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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Konstruktion neuer Klassen von unend-
lichdimensionalen Lie-Gruppen, welche eine Verallgemeinerung bereits bekannter Klas-
sen darstellen. Anschließend soll deren Regularität (nach der Definition John Milnors)
bewiesen werden, welche dann insbesondere auch für die bereits bekannten Klassen gilt.
Dadurch kann zum Beispiel die offene Frage nach der Regularität der von Pisanelli ein-
geführten Lie-Gruppen beantwortet werden.

Im ersten Kapitel werden die Voraussetzungen für die weitere Arbeit geschaffen, in-
dem Grundlagen der linearen und nichtlinearen Funktionalanalysis sowie der unendlich-
dimensionalen Lie-Theorie erläutert werden. Im Einzelnen werden dabei folgende Kon-
zepte definiert:

• Differenzierbare und analytische Abbildungen in lokal-konvexen topologischen Vek-
torräumen nach Michal-Bastiani

• Direkte Limites von aufsteigenden Folgen von Banachräumen ((LB)-Räume); diese
werden im weiteren Verlauf der Arbeit als Modell-Räume der zu konstruierenden
Lie-Gruppen verwendet.

• Unendlich-dimensioale Lie-Gruppen sowie der Regularitätsbegriff nach John Mil-
nor

Im zweiten Kapitel beweise ich einen Satz über analytische Abbildungen zwischen (LB)-
Räumen. Dieses von mir bereits publizierte Resultat (siehe [5]) dient im Folgenden zur
Konstruktion der Lie-Gruppenstrukturen und zum Beweis der Regularität.

Das dritte Kapitel enthält die Konstruktion einer Lie-Gruppe, welche aus Keimen von
analytischen Diffeomorphismen um ein Kompaktum in einem reellen oder komplexen
Banachraum besteht. Deren Konstruktion war bisher nur möglich, wenn der Banachraum
endlichdimensional war. Im Anschluss daran wird die Regularität der so konstruierten
Gruppe bewiesen. Dies war selbst im Falle eines eindimensionalen Banachraums mit
einpunktigem Kompaktum bisher nicht möglich.

In Kapitel 4 werden aufsteigende Vereinigungen einer Folge von Banach-Liegrupen un-
tersucht und — falls gewisse leicht zu überprüfende Bedingungen erfüllt sind — mit
einer (LB)-Lie-Gruppenstruktur versehen. Anschließend wird auch bei diesen (LB)-Lie-
Gruppen die Frage nach der Regularität beantwortet. Als Hilfsmittel werden in diesem
Kapitel außerdem auch lokale Lie-Gruppen untersucht.

Schließlich werde ich in Kapitel fünf an einigen Beispielen zeigen, wie man mit Hilfe der
Ergebnisse aus dem vierten Kapitel neue Klassen regulärer (LB)-Lie-Gruppen erhält,
beziehungsweise wie man für bereits bekannte Lie-Gruppen die bislang offene Frage nach
der Regularität beantworten kann.
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Introduction

Infinite dimensional Lie theory is an area of mathematics, connecting group theoretic
questions with (both linear and non-linear) functional analysis. An infinite dimensional
Lie group is a group whose elements can be parameterized via elements in an infinite
dimensional locally convex topological vector space, the modelling space. So far only
some general structure theory is available. There are many open problems.

The most prominent example of an infinite dimensional Lie group is the diffeomorphism
group of a compact manifold. Unfortunately, the diffeomorphism group of a noncompact
manifold carries no canonical Lie group structure (more precisely, it carries no Lie group
structure modelled on the Lie algebra of smooth vector fields). However, one can consider
the group of compactly supported diffeomorphisms which is a union of Lie groups and
can be given a Lie group structure itself. This leads to the question, under which
circumstances the union of a family of Lie groups is again a Lie group.

The aim of this dissertation is to construct new, interesting classes of of infinite dimen-
sional Lie groups. Most of these Lie groups are generalizations of known Lie groups.
Furthermore, we show their regularity in Milnor’s sense. This will imply the regularity
of some Lie groups which where already constructed but not known to be regular so far.

In Chapter 1 we fix some notation and discuss the preliminaries concerning our differ-
ential calculus, Lie groups, local Lie groups, regularity of Lie groups (in Milnor’s sense)
and direct limits of locally convex topological vector spaces.

In Chapter 2 we prove our main tool for both constructing new Lie groups and showing
regularity of them. Theorem 2.1 is a sufficient criterion for mappings defined on direct
limits of normed spaces to be complex analytic.

In 1976, Pisanelli showed in [16] that the germs of holomorphic diffeomorphisms in C
n

form an infinite dimensional Lie group. In Chapter 3, we will generalize this concept to
germs of analytic diffeomorphisms around a compact set in a possibly infinite dimensional
Banach space. Furthermore, we will show that all these Lie groups obtained in this
fashion are regular (in Milnor’s sense). In particular this implies regularity of Pisanelli’s
original example, which has been an open problem before (Problem VI.5 in [15]).

A result by Glöckner (see [8]) shows that the directed union of a sequence of finite
dimensional Lie groups can always be given an (LB)-Lie group structure. In Chapter 4,
we show how to construct regular Lie group structures on ascending unions of a sequence
of (possibly infinite dimensional) Banach Lie groups.

As a tool in showing regularity, we will use the concept of local Lie groups.

In Chapter 5, we will give some examples of cases where the situation of chapter 4 occurs.
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1 Preliminaries

1.1 Infinite dimensional differential calculus

1.1.1 Ck and FC
k mappings

We begin with two different notions of differentiability in infinite dimensional vector
spaces: (Details can be found in [7], [10], [13] and in [15].)

Definition 1.1.1 (Ck in the sense of Michal-Bastiani). LetX and Z be Hausdorff locally
convex topological vector spaces over K ∈ {R,C} and let Ω be an open nonempty subset
of X.

(i) A mapping γ : Ω −→ Z is called C0
K
, if it is continuous.

(ii) A mapping γ : Ω −→ Z is called C1
K
, if for each (x, v) ∈ Ω × X the directional

derivative

dγ(x, v) := lim
t→0
t∈K

γ(x+ tv) − γ(x)

t

exists and if the map

dγ : Ω ×X −→ Z

is continuous.

(iii) Inductively, we say that γ : Ω −→ Z is of class Ck
K

if it is C1
K

and if dγ : Ω×X −→ Z
is Ck−1

K
. We call γ smooth or C∞

K
if γ is Ck

K
for all k ∈ N. If the ground field K is

clear from the context, we write Ck instead of Ck
K
.

From this definition it follows that if γ is C1
K

and x ∈ Ω, then the following is a continuous
K-linear map:

γ′(x) := dγ(x, ·) : X −→ Z : v 7→ dγ(x, v).

The following definition of differentiability is more well-known but has the disadvantage
that it only works in normed spaces:

11



1 Preliminaries

Definition 1.1.2 (FC k-maps). Let X and Z be normed spaces over K ∈ {R,C} and
let Ω be an open nonempty subset of X.

(i) A mapping γ : Ω −→ Z is called Fréchet differentiable at the point x ∈ X if there
exists a bounded linear operator T ∈ L (X,Z) such that

lim
v→0

γ(x+ tv) − γ(x) − Tv

‖v‖X
= 0

(in this case, this map T is equal to γ′(x) = dγ(x, ·) as defined in Definition 1.1.1).

(ii) The map γ is called FC 1
K

if it is everywhere Fréchet differentiable and the map

γ′ : Ω −→
(
L (X,Z) , ‖·‖op

)
: x 7→ γ′(x) = dγ(x, ·)

is continuous.

(iii) Inductively, we say that γ : Ω −→ Z is of class FC k
K if it is FC 1

K and if γ′ : Ω −→
L (X,Z) is FC k−1

K
. We will use the notation γ(1) := γ′ and

γ(k)(x)(v1, . . . , vk) :=
(
γ(k−1)

)′
(x)(v1)(v2, . . . , vk).

Note that each γ(k)(x) : Xk −→ Z is a continuous symmetric k-linear map.

Again, if the ground field K is clear from the context, we write FC k instead of FC k
K.

These two notions are connected via the following

Lemma 1.1.3 (Criterion of Fréchet Differentiability). Let X,Z be normed spaces over
K ∈ {R,C}, Ω ⊆ X open. Then γ : Ω −→ Z is FC 1 if and only if it is C1 and the map

γ′ : Ω −→
(
L (X,Z) , ‖·‖op

)
: x 7→ γ′(x) = dγ(x, ·)

is continuous.

Proof. If γ is FC 1, it is clearly C1 and γ′ is continuous. Conversely, we assume that γ
is C1 and that γ′ is continuous. We will show that γ is Fréchet differentiable at each
point. Therefore, let x ∈ Ω be fixed and let v so small that the interval [x, x + v] :=
{x+ tv : t ∈ [0, 1]} lies in Ω. Then we define the curve

ηv : [0, 1] −→ Z : t 7→ γ(x+ tv).

Since γ is C1, the curve ηv is also C1 with

η′v(t) = dγ(x+ tv, v) = γ′(x+ tv).v.

12



1.1 Infinite dimensional differential calculus

Now, we can write:

∥∥∥∥
γ(x+ v) − γ(x) − γ′(x).v

‖v‖X

∥∥∥∥
Z

=
1

‖v‖X

∥∥ηv(1) − ηv(0) − γ′(x).v
∥∥
Z

=
1

‖v‖X

∥∥∥∥
∫ 1

0
η′v(t) dt− γ′(x).v

∥∥∥∥
Z

=
1

‖v‖X

∥∥∥∥
∫ 1

0

(
γ′(x+ tv).v − γ′(x).v

)
dt

∥∥∥∥
Z

=
1

‖v‖X

∫ 1

0

∥∥(γ′(x+ tv) − γ′(x)
)
.v
∥∥
Z
dt

≤

∫ 1

0

∥∥γ′(x+ tv) − γ′(x)
∥∥

op
dt

The map γ′ : Ω −→ L (X,Z) is continuous by assumption. Therefore, the integrand on
the right hand side of this inequality is continuous in t and in v. So, the theorem of
parameter dependent integrals yields that the integral tends to 0, when v converges to
0. This concludes the proof.

Proposition 1.1.4. Let X,Z be normed spaces over K ∈ {R,C}, Ω ⊆ X open. Let
γ : Ω −→ Z be a Ck+1 map, k ≥ 0. Then γ is FC k. In particular, γ is C∞ if and only
if FC∞.

Proof. See e.g. Lemmas A.4.1 and A.4.3 in [18].

Remark. Although for mappings between normed spaces FC∞ and C∞ are equivalent,
the notions Ck and FC k are not equivalent. An example (due to H. Glöckner and K.-H.
Neeb) is the following C1-map:

f : L2([0, 1]) −→ L2([0, 1])
γ 7−→ sin ◦γ.

If it were FC 1, it would satisfy the hypotheses of the Inverse Function Theorem for
Banach spaces (see for example Theorem 1.1.21), so it would be a local diffeomorphism.
However, this contradicts the fact that the image of f contains no 0-neighborhood.

Definition 1.1.5 (Differential calculus on non-open subsets of normed spaces). Let X
and Z be normed spaces over K ∈ {R,C}. Let A ⊆ X be a subset with dense interior A◦

which is locally convex in the sense that for every a ∈ A there is a convex set C ⊆ A which
is a neighborhood of a in the induced topology on A. We say that a map γ : A −→ Z is
FC 1

K if γ is continuous, γ|A◦ is FC 1
K and if γ′ can be extended to continuous map on A.

This generalization of Definition 1.1.2 since for open A, the two definitions agree.

13



1 Preliminaries

Remark. (i) One can also generalize the concepts of FC k-maps and Ck-maps (also
between locally convex spaces) to this setting of locally convex domains with dense
interior.

(ii) Most of the statements for Ck- and FC k-maps which are stated for open sets
generalize to this more general setting, e.g. the chain rule. (see [10] for further
details).

(iii) We will use this concept only in the case where A is a product of an open set with
the unit interval [0, 1].

1.1.2 Polynomials between normed spaces

Here and in the rest of the thesis, BXr (a) denotes the open ball of radius r around the
point a in the space X.

Definition 1.1.6. (a) Let f : Xk −→ Y be a continuous symmetric k-linear map be-
tween normed spaces. Then we define the operator norm of f as:

‖f‖op :=
∥∥∥f |BX

1 (0)×···×BX
1 (0)

∥∥∥
∞

= sup
{
‖f(x1, . . . , xk)‖Y : ‖xj‖X < 1

}
.

The space of all k-linear symmetric continuous maps from Xk to Y together with
this operator norm will be denoted by Symk

c (X,Y ).

(b) Let p : X −→ Y be a continuous homogeneous polynomial, i.e.

p(x) = f(x, . . . , x)

for an f ∈ Symk
c (X,Y ). Then we define the operator norm of p as:

‖p‖op :=
∥∥∥p|BX

1 (0)

∥∥∥
∞

= sup {‖p(x)‖Y : ‖x‖X < 1} .

The space of all continuous k-homogeneous polynomials fromX to Y together with
this operator norm will be denoted by Powk

c (X,Y ).

(c) Let γ : X −→ Y be a continuous polynomial, i.e. a function that can be written as
a finite sum of j-homogeneous polynomials for j ≤ k. Then we define the operator
norm of γ as:

‖γ‖op :=
∥∥∥γ|BX

1 (0)

∥∥∥
∞

= sup {‖γ(x)‖Y : ‖x‖X < 1} .

The space of all continuous polynomials from X to Y of degree at most k together
with this operator norm will be denoted by Polkc (X,Y ).

These notions are obviously generalizations of the operator norm of a continuous linear
map between normed spaces:

(Sym1
c (X,Y ) , ‖·‖op) = (Pow1

c (X,Y ) , ‖·‖op) = (L (X,Y ) , ‖·‖op).

14



1.1 Infinite dimensional differential calculus

Remark. The normed space (Symk
c (X,Y ) , ‖·‖op) can be isometrically embedded in the

normed space BC
((

BX1 (0)
)k
, Y
)

of bounded continuous functions on the k-th power

of the open unit ball, endowed with the supremum norm ‖·‖∞. Similarly, the spaces
Powk

c (X,Y ) and Polkc (X,Y ) can be regarded as subspaces of BC
(
BX1 (0) , Y

)
.

Proposition 1.1.7 (Derivatives of homogeneous polynomials). Let X and Y be normed
vector spaces over K ∈ {R,C}. Let k ∈ N, f ∈ Symk

c (X,Y ) be a continuous symmetric
k-linear map and

p : X −→ Y : x 7→ f(x, . . . , x)

be the corresponding k-homogeneous polynomial. Then the Fréchet derivative of p is a
(k − 1)-homogeneous polynomial:

p′ : X −→ L (X,Y )
x 7−→ p′(x) : (v 7→ kf(x, . . . , x, v)) .

Proof. (Sketch) Write the difference quotient

1

t

(
f(x+ tv, . . . , x+ tv) − f(x, . . . , x)

)

as a telescoping sum.

One of the most important formulas when dealing with polynomials between infinite
dimensional spaces is the following:

Proposition 1.1.8 (Polarization formula). Let X and Y be vector spaces over K ∈
{R,C}, let k ∈ N0 and set I := {1, . . . , k}. Let f : Xk −→ Y be a symmetric k-linear
map and let

p : X −→ Y : x 7→ f(x, . . . , x)

be the corresponding k-homogeneous polynomial. Then the values of f can be recovered
from p via

f(x1, . . . , xk) =
1

k!

∑

F⊆I

(−1)|I\F | p
(∑

j∈F

xj

)

Proof. See for example Theorem A in [2].

Corollary 1.1.9. Let X and Y be normed vector spaces over K ∈ {R,C}. Let k ∈ N0,
let f ∈ Symk

c (X,Y ) be a continuous symmetric k-linear map and

p : X −→ Y : x 7→ f(x, . . . , x)

be the corresponding k-homogeneous polynomial. Then we have the following estimates:

15



1 Preliminaries

(a) ‖p‖op≤ ‖f‖op.

(b) ‖f‖op≤
(2k)k

k! ‖p‖op≤ (2e)k ‖p‖op.

(c) ‖p′‖op≤ k ‖f‖op≤ k(2e)k ‖p‖op.

(d) ‖p′′‖op≤ k(k − 1)(2e)2k−1 ‖p‖op.

Proof. Part (a) is clear by the definition. Part (b) is a direct consequence of the po-
larization formula (Proposition 1.1.8) and the well-known formula kk/k! ≤ ek. Part (c)
uses Proposition 1.1.7, together with part (b). Part (d) is just part (c) applied twice.

From Corollary 1.1.9 (a) and (b), it follows that SymK
c (X,Y ) and Powk

c (X,Y ) are
topologically isomorphic. We will now turn to the space Polkc (X,Y ):

Proposition 1.1.10 (Interpolation of Polynomials). Let X and Z be normed spaces
over K and let k ∈ N0 be given. Then the map

k∏
j=0

(
Powj

c (X,Z) , ‖·‖op

)
−→

(
Polkc (X,Z) , ‖·‖op

)

(γj)j 7−→
∑k

j=0 γj

is a topological isomorphism.

Proof. The map is clearly bijective and continuous. It remains to show that for every
j0 ≤ k the coefficient map

(
Polkc (X,Z) , ‖·‖op

)
−→

(
Powj0

c (X,Z) , ‖·‖op

)

γ =
∑k

j=0 γj 7−→ γj0

is continuous.

We fix a subset F ⊆]0, 1[ with k + 1 elements. For every point µ ∈ F we define the
corresponding Lagrange polynomial:

Λµ(t) :=
∏

ν∈F
ν 6=µ

t− ν

µ− ν
=

k∑

j=0

λµ,j t
j ∈ R[t].

This is the unique polynomial of degree k such that Λµ(ν) = δµ,ν for ν ∈ F . The
coefficients λµ,j ∈ R depend only on k and F and are therefore considered fixed for the
rest of the proof.

Now, suppose that a function g : F −→ Z from the finite set F to the normed space
Z is given. Then there is a unique polynomial g̃ : K −→ Z such that g̃|F = g. This
polynomial is given by:

g̃(t) :=
∑

µ∈F

g(µ) · Λµ(t) =

k∑

j=0



∑

µ∈F

g(µ) · λµ,j


 tj

16



1.1 Infinite dimensional differential calculus

We can estimate the norm of the j-th coefficient of g̃:

∥∥∥∥∥∥

∑

µ∈F

g(µ) · λµ,j

∥∥∥∥∥∥
Z

≤
∑

µ∈F

|λµ,j | ‖g‖∞ .

Now, we consider a continuous polynomial γ =
∑k

j=0 γk : X −→ Z, where each γj is

a continuous j-homogeneous polynomial. Let v ∈ BX1 (0). Then γj0(v) is the j0-th
coefficient of the polynomial

gv(t) := γ(tv) =

k∑

j=0

γj(v) t
j

and we can estimate its norm by:

‖γj0(v)‖Z ≤
∑

µ∈F

|λµ,j| ‖gv‖∞ ≤
∑

µ∈F

|λµ,j |
∥∥∥g|BX

1 (0)

∥∥∥
∞
.

Since v ∈ BX1 (0) was arbitrary, this shows

∥∥∥γj|BX
1 (0)

∥∥∥
∞

≤



∑

µ∈F

|λµ,j |



∥∥∥γ|BX

1 (0)

∥∥∥
∞

which finishes the proof.

Proposition 1.1.11 (Taylor’s Formula). Let X and Z be normed spaces over K and let
Ω be an open convex subset of X and x0 ∈ X. Assume γ : Ω −→ Z is FC k with k ≥ 1.
Then we have for all v ∈ X such that x0 + v ∈ Ω:

(a) γ(x0 + v) =
∑

j≤k−1

γ(j)(x0)(v, . . . , v)

j!

+

∫ 1

0

(1 − t)k−1

(k − 1)!
γ(k)(x0 + tv)(v, . . . , v)dt.

(b) γ(x0 + v) =
∑

j≤k

γ(j)(x0)(v, . . . , v)

j!

+

∫ 1

0

(1 − t)k−1

(k − 1)!

(
γ(k)(x0 + tv) − γ(k)(x0)

)
(v, . . . , v)dt.

Proof. By setting h : ]−r, r[−→ Z : s 7→ γ(x0 +sv) and using continuous linear function-
als on F , we can reduce (a) to the classical formula where X and Z are one-dimensional.

Since
∫ 1
0

(1−t)k−1

(k−1)! dt = 1/k!, part (b) follows from (a).
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1 Preliminaries

Proposition 1.1.12 (Complexifications). (a) Let E be a locally convex topological
vector space over R. Then the complexification

EC := E × E

with the product topology, pointwise addition and the scalar multiplication

C × EC −→ EC

(u+ iv, (x, y)) 7−→ (ux− vy, vx+ uy)

becomes a locally convex topological vector space over C. We will identify x ∈ E
with (x, 0) ∈ EC and treat E as a closed real vector subspace of EC. All linear
or polynomial mappings between real vector spaces extend uniquely to their com-
plexifications. The extended mappings are continuous if and only if the original
mappings were so.

(b) Let (E, ‖·‖E) be a normed space over R. Then the complexification is again a
normed space with respect to the norm

‖x̃‖
C

:= inf




∑

j

|zj | ‖xj‖ : x̃ =
∑

j

zjxj where xj ∈ E, zj ∈ C



 .

This norm has the property that for all x+ iy ∈ EC, we have:

max(‖x‖E , ‖y‖E) ≤ ‖x+ iy‖
C
≤ ‖x‖E + ‖y‖E .

In particular, the norm induces the given norm on the real subspace E.

(c) Let T : E −→ F be a continuous linear operator between real normed spaces. Then
the unique extension

TC : EC −→ FC : x+ iy 7→ Tx+ iTy

satisfies ‖TC‖op = ‖T‖op.

(c) Let β : E ×E −→ F be a bilinear map with

‖β(x1, x2)‖F ≤ ‖x1‖E ‖x2‖E .

Then the unique extension

βC : EC × EC −→ FC

satisfies

‖βC(x̃1, x̃2)‖FC
≤ 4 ‖x̃1‖EC

‖x̃2‖EC
.

Proof. See [2] for more details on complexifications of normed spaces.
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1.1 Infinite dimensional differential calculus

1.1.3 Analytic mappings between locally convex spaces

Definition 1.1.13 (Complex analytic mappings). Let E and F be Hausdorff locally
convex spaces over C, let f : U −→ F be a mapping from an open subset U ⊆ E with
values in F . We say that f is complex analytic or Cω

C
if it is continuous and if it admits

locally a power series expansion around each point a ∈ U , which means there exist
continuous homogeneous polynomials pk of degree k such that

f(x) =

∞∑

k=0

pk(x− a)

for all x in a neighborhood of a.

Definition 1.1.14 (Real analytic mappings). Let E and F be Hausdorff locally convex
spaces over R and let EC and FC be their complexifications. A mapping f : U −→ F
from an open subset U ⊆ E with values in F is called real analytic or Cω

R
if it extends to

a complex analytic FC-valued map on an open neighborhood of U in the complexification
EC.

There is an easy characterization of complex analyticity, that can be found in [1, Theorem
6.2] :

Lemma 1.1.15 (Gateaux Analyticity). Let f : U ⊆ E −→ F be a function defined on
some open subset of a complex Hausdorff locally convex space E. Then f is Cω

C
if and

only if it is continuous and Gateaux analytic, which means that for every point a ∈ U
and every vector b ∈ E there exists an ε > 0 such that the function

BC
ε (0) −→ F : z 7→ f(a+ zb)

is complex analytic.

Proposition 1.1.16 (Cω
C

= C∞
C

). Let f : U ⊆ E −→ F be a function defined on some
open subset of a complex Hausdorff locally convex space E.

(a) Then f is Cω
C

if and only if it is C∞
C

in the sense of Michal-Bastiani (Definition
1.1.1).

(b) If F is assumed to be complete, then C1
C

already suffices for f to be complex analytic.

Proof of part (b). In view of Lemma 1.1.15, it suffices to show this for E = C and
U = BC

ε (0). Without loss of generality, ε = 1. We set r := 1
2 and define the following

function:

g : BC
r (0) −→ F : z 7→

1

2πi

∫

|w|=r

f(w)

w − z
dw

This integral converges in F , since F is complete. By the rule of parameter-dependent
integrals, the function is C∞

C
. We can show that f(z) = g(z) for all z ∈ BC

r (0) by
testing with continuous linear functionals (Hahn-Banach) and using the classical one-
dimensional Cauchy-formula.
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Lemma 1.1.17 (Complex analyticity in Banach spaces). Let X and Y be complex
Banach spaces and let f : U −→ Y be a FC 1

R function defined on an open subset U ⊆ X.
Then the following are equivalent:

(a) f is complex analytic

(b) For every x ∈ U , the Fréchet derivative f ′(x) : X −→ Y is complex linear.

Lemma 1.1.18 (Complex analyticity with values in a function space). Let U be an open
subset of a complex Hausdorff locally convex space X, let V be a topological space and Z
be a complex Banach space. Assume a continuous function h : U −→ BC(V,Z) is given,
such that the map

hy : U −→ Z
u 7−→ h(u)(y)

is Cω
C

for each y ∈ V . Then h : U −→ BC(V,Z) is Cω
C
.

Proof. By Lemma 1.1.15, it suffices to show that h is Gateaux-analytic. Thus, we may
assume that X = C and U = BC

1 (0). It remains to show that for each z ∈ BC
1
2

(0) we

have

h(z) =

∫

|w|= 1
2

h(w)

w − z
dw.

By completeness of BC(V,Z) and continuity of h we know that the integral on the right
exists. We check equality by applying the following point evaluations to both sides:

πy : BC(V,Z) −→ Z
γ 7−→ γ(y).

Since these operators separate the points of BC(V,Z) and since πy ◦ h is analytic by
assumption, the assertion follows.

Lemma 1.1.19 (Absolute convergence of bounded power series). Let E and F be com-
plex normed vector spaces and let f : BER (a) −→ F be a bounded complex analytic map
with the following power series expansion:

f(a+ x) =

∞∑

k=0

βk(x, . . . , x)

where the βk : Ek −→ F are continuous symmetric k-linear maps. Then for all r < R
2e

the following series converges and can be estimated as shown:

∞∑

k=0

‖βk‖opr
k ≤

R

R− 2er
· ‖f‖∞ .

Here ‖f‖∞ := sup
{
‖f(x)‖ : x ∈ BER (a)

}
and e = 2.718281828 . . .
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1.1 Infinite dimensional differential calculus

Instead of giving a direct proof of Lemma 1.1.19, we will prove the following generaliza-
tion:

Lemma 1.1.20 (Absolute convergence of families of bounded power series). Let K ⊆ E
be a nonempty subset of a complex normed vector space E. Let U := K + BER (0) =⋃
a∈K BER (a) be a union of open balls with fixed radius R > 0. Now, consider a set M of

bounded Cω
C
-mappings from U to a normed space F such that supf∈M ‖f‖∞ <∞. Then

we have for all r < R
2e the following estimate:

∞∑

k=0

sup
f∈M
a∈K

∥∥f (k)(a)
∥∥

op

k!
rk ≤

R

R− 2er
· sup
f∈M

‖f‖∞ .

This clearly implies Lemma 1.1.19 by taking K := {a} and M := {f}.

Proof of Lemma 1.1.20. Without loss of generality, we may assume that F is a Banach
space. Let f ∈ M and a ∈ K be given. Let v ∈ E be a vector of norm ‖v‖E = 1.
Furthermore let s < R be a fixed number. Then we define the following function

g : BC

R (0) −→ F : z 7→ f(a+ zv)

Note that g depends on the choices of f, a and v. It is possible to expand g into a power
series:

g(z) =

∞∑

k=0

1

k!
f (k)(a)(zv, . . . , zv) =

∞∑

k=0

1

k!
f (k)(a)(v, . . . , v) · zk.

Using the Cauchy formula (see e.g. [1, Corollary 3.2]), we can write the coefficients of
this power series as a complex integral:

1

k!
f (k)(a)(v, . . . , v) =

1

2πi

∫

|z|=s

g(z)

zk+1
dz.

Multiplying with k! and taking the norm on both sides yields the following estimate of
f (k)(a)(v, . . . , v):

∥∥∥f (k)(a)(v, . . . , v)
∥∥∥
F
≤ k!

∥∥∥∥∥
1

2πi

∫

|z|=s

g(z)

zk+1
dz

∥∥∥∥∥
F

≤ k!
1

2π
2πs

‖g‖∞
sk+1

≤
k!

sk
‖f‖∞ .

Since v was arbitrary, this gives us an estimate for the norm of the homogeneous poly-
nomial

∥∥∥v 7→ f (k)(a)(v, . . . , v)
∥∥∥

op
≤
k!

sk
‖f‖∞ .

21



1 Preliminaries

By Corollary 1.1.9, this implies an upper bound for the norm of the corresponding k-
linear map:

∥∥∥f (k)(a)
∥∥∥

op
≤

(2k)k

k!
·
k!

sk
‖f‖∞ ≤ (2e)k

k!

sk
‖f‖∞ .

Since s < R, a ∈ K and f ∈M were arbitrary, we obtain the following:

sup
f∈M
a∈K

∥∥∥f (k)(a)
∥∥∥

op
≤ (2e)k

k!

Rk
· sup
f∈M

‖f‖∞ .

Now, we multiply both sides of the inequality by rk

k! and sum up:

∞∑

k=0

sup
f∈M
a∈K

∥∥f (k)(a)
∥∥

op

k!
rk ≤

∞∑

k=0

(
2er

R

)k
· sup
f∈M

‖f‖∞ .

Since r was assumed to be strictly less that R
2e , the series

∑∞
k=0

(
2er
R

)k
converges to

1
1−2er/R = R

R−2er . This finishes the proof.

1.1.4 Ordinary differential equations in Banach spaces

In Chapter 3, we will construct and work with Lie groups of germs of diffeomorphisms in a
Banach spaces. Here, we collect some tools to deal with diffeomorphisms and differential
equations in Banach spaces:

We start with a quantitative version of the Inverse Function Theorem for Banach spaces:

Theorem 1.1.21 (Lipschitz inverse function theorem). Let X be a Banach space over
K and let T : X −→ X be a continuous linear invertible map. Suppose f : U −→ X
is L-Lipschitz continuous with L > 0, where U an open neighborhood of 0 in X and
f(0) = 0, and λ := L ·

∥∥T−1
∥∥

op
< 1. Then T +f is a homeomorphism of U onto an open

subset V of X and (T + f)−1 is Lipschitz with constant 1
1−λ

∥∥T−1
∥∥

op
. If U contains the

ball BXr (0), then V contains the ball BXr′ (0) with r′ := r(1−λ)
‖T−1‖op

.

Proof. This can be found at the beginning of [19].
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1.1 Infinite dimensional differential calculus

Now, we state three tools to work with differential equations:

Theorem 1.1.22 (A Quantitative Version of Picard-Lindelöf). Let X be a Banach space
over R and let (t0, x0) ∈ [0, 1] × X be given. Let V ⊆ [0, 1] × X be a neighborhood of
(t0, x0) and let

f : V −→ X

be a continuous function which is k-Lipschitz in the second component (for a k > 0).
Let τ, ρ,M > 0 such that

([0, 1] ∩ [t0 − τ, t0 + τ ]) × BXρ (x0) ⊆ V

and that
∥∥∥f |([0,1]∩[t0−τ,t0+τ ])×BX

ρ (x0)

∥∥∥
∞

≤M.

Then the initial value problem

dx

dt
= f(t, x),

x(t0) = x0

admits a unique solution on the interval [0, 1] ∩ [t0 − α, t0 + α], where α := min{τ, ρM }.

Proof. This is essentially Corollary II.1.7.2 in [4].

Theorem 1.1.23 (The flow of an ordinary differential equation with parameters). Let
E and L be Banach spaces over R, and let f : U −→ E be a continuous map, defined on
an open subset U ⊆ R × E × L. Assume the following conditions are satisfied:

- The partial differentials ∂
∂xf(t, x, λ) ∈ L (E,E) and ∂

∂λf(t, x, λ) ∈ L (L,E) exist
and are continuous maps on U .

- Let (t0, x0, λ0) ∈ U and let I ⊆ R be a compact interval, containing t0 on which
the initial value problem

dx

dt
= f(t, x, λ0),

x(t0) = x0

has a unique solution φ : I −→ E.

Then

• There is a neighborhood V E of x0 and a neighborhood V L of λ0 such that for all
u ∈ V E and λ ∈ V L the initial value problem

dx

dt
= f(t, x, λ0),

x(t0) = u

has a solution φu,λ : I −→ E.
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• The flow Φ: I × V E × V L −→ E : (t, u, λ) 7→ φu,λ(t) is of class FC 1
R.

• Furthermore ∂Φ
∂u and ∂Φ

∂λ are differentiable with respect to t and one has:

∂

∂t

∂Φ

∂u
=

∂

∂u

∂Φ

∂t
and

∂

∂t

∂Φ

∂λ
=

∂

∂λ

∂Φ

∂t
.

• Let u ∈ V E and λ ∈ V L be fixed and define:

Bu,λ(t) =
∂f

∂x
(t,Φ(t, u, λ), λ)

Cu,λ(t) =
∂f

∂λ
(t,Φ(t, u, λ), λ).

Then the function ∂Φ
∂λ (·, u, λ) is equal to a solution z : I −→ L (L,E) of the initial

value problem

dz

dt
(t) = Bu,λ(t) ◦ z(t) + Cu,λ(t),

z(t0) = 0.

Proof. This is Theorem II.3.6.1 in [4].

Lemma 1.1.24 (Grönwall’s inequality). (a) Let b, c ≥ 0 and let h : [0, 1] −→ [0,+∞[
be a bounded Lebesgue-measurable function, such that for all t ∈ [0, 1] we have

h(t) ≤ c+ b

∫ t

0
h(s)ds.

Then we have the following estimate:

h(t) ≤ c · ebt.

(b) Let U be a convex open subset of a Banach space (X, ‖·‖X) over K ∈ {R,C} and
let f : [0, 1]×U −→ X be a time dependent vector field on U , which is L-Lipschitz.
Let x1, x2 : [0, 1] −→ U be two solutions of the corresponding differential equation,
i.e. x′i(t) = f(t, xi(t)) for all t ∈ [0, 1]. Then we have the following estimate:

‖x1(t) − x2(t)‖X ≤ ‖x1(0) − x2(0)‖X · eLt.

Proof. (Sketch) (a) Show the following inequality by induction on k ∈ N0 (Fubini):

h(t) ≤ c ·

k∑

j=0

(bt)j

j!
+ b

∫ t

0
h(s) ·

bk(t− s)k

k!
ds.

Then, take the limit for k → ∞.

(b) Apply part (a) to the continuous function

h : [0, 1] −→ [0,+∞[
t 7−→ ‖x1(t) − x2(t)‖X .
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1.1 Infinite dimensional differential calculus

1.1.5 Composition operators

We close this section with facts on composition operators and their differentiability
properties:

Lemma 1.1.25 (Derivatives of composition operators). Let X, Y and Z be normed
spaces over K ∈ {R,C}, U ⊆ X and V ⊆ Y open subsets and k, ℓ ∈ {0, 1, 2, . . .}.

(a) Then the continuous map

gkZ : BC k+ℓ+1
K

(V,Z) × BC ∂,k
K

(U, V ) → BC k
K (U,Z) : (γ, η) 7→ γ ◦ η

is a Cℓ-map. If ℓ ≥ 1, its differential is given by:

d
(
gkZ

)
(γ0, η0, γ, η) = γ ◦ η0 + (γ′0 ◦ η0) · η. (1.1)

Here, BC ∂,k
K

(U, V ) is the set of all γ ∈ BC k
K (U, Y ) whose image is contained in V

and has a positive distance to the boundary of V . It is open in BC k
K (U, Y ). The

notation (γ′0◦η0)·η should be interpreted as ε◦((γ′0 ◦ η0), η) with ε : L (Y,Z)×Y −→
Z : (T, y) 7→ T (y).

(b) Let f : V −→ Z be a BC k+ℓ+1
K

(V,Z) map. Then the map

g : BC ∂,k
K

(U, V ) → BC k
K (U,Z) : η 7→ f ◦ η

is Cℓ
K

with differential (if ℓ ≥ 1)

dg(η0, η) = (f ′ ◦ η0) · η. (1.2)

Proof. Part (a) is Proposition 3.3.10 of [18]. Part (b) is just a special case.

Proposition 1.1.26 (Evaluations of bounded FC 1-mappings). Let X and Y be Banach
spaces over K ∈ {R,C} and let U ⊆ X be open.

(a) The map

ev0 : BC(U, Y ) × U −→ Y
(γ, x) 7−→ γ(x)

is continuous.

(b) The map

ev1 : BC 1
K

(U, Y ) × U −→ Y
(γ, x) 7−→ γ(x)

is an FC 1
K

map.
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Remark. • In this thesis, BC1 always refers to bounded Fréchet differentiable map-
pings with bounded Fréchet derivative.

• The statements (a) and (b) remain true if U is replaced by a non-open locally
convex set with dense interior (see Definition 1.1.5).

Proof. (a) Let (γ0, x0) ∈ BC(U, Y ) × U and ε > 0 be given. Since γ0 : U −→ Y is
continuous at x0, there is a δ > 0 such that γ0

(
BUδ (x0)

)
⊆ BYε

2
(γ0(x0)). Let (γ, x) ∈

B
BC(U,Y )
δ (γ0) × BUε

2
(x0). Then we can estimate:

‖ev0(γ, x) − ev0(γ0, x0)‖ = ‖γ(x) − γ0(x0)‖

≤ ‖γ(x) − γ0(x)‖ + ‖γ0(x) − γ0(x0)‖

≤ ‖γ − γ0‖∞︸ ︷︷ ︸
< ε

2

+ ‖γ0(x) − γ0(x0)‖︸ ︷︷ ︸
< ε

2

< ε.

Hence, ev0 is continuous.

(b) We start by calculating the directional derivative of ev1 at the point (γ0, x0):

1

t

(
ev1(γ0 + tη, x0 + ty) − ev1(γ0, x0)

)
=

1

t

(
(γ0 + tη)(x0 + ty) − γ0(x0)

)

=
1

t

(
γ0(x0 + ty) − γ0(x0)

)
+ η(x0 + ty)

t→0
−→ dγ0(x0, y) + η(x0)

= γ′0(x0)(y) + η(x0).

This shows that all directional derivatives exist and that

dev1

(
(γ, x), (η, y)

)
= γ′(x)(y) + η(x).

So, it remains to show that the map

ev′
1 : BC 1

K
(U, Y ) × U −→ L

(
BC 1

K
(U, Y ) ×X,Y

)

(γ, x) 7−→ dev1

(
(γ, x), ·

)

is continuous.
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Let (γ, x) and (γ0, x0) in BC k+1
K

(U, Y ) × U . We may assume that the convex segment
[x0, x] lies in U .

∥∥ev′
1(γ, x) − ev′

1(γ0, x0)
∥∥

op

= sup
‖η‖+‖y‖=1

∥∥ev′
1(γ, x)(η, y) − ev′

1(γ0, x0)(η, y)
∥∥
Y

= sup
‖η‖+‖y‖=1

∥∥γ′(x)(y) + η(x) − γ′0(x0)(y) − η(x0)
∥∥
Y

≤ sup
‖η‖+‖y‖=1

∥∥γ′(x)(y) − γ′0(x0)(y)
∥∥
Y

+ ‖η(x) − η(x0)‖Y

= sup
‖η‖+‖y‖=1

∥∥(γ′(x) − γ′0(x0)
)
(y)
∥∥
Y

+

∥∥∥∥
∫ 1

0
η′(tx+ (1 − t)x0)(x− x0)dt

∥∥∥∥
Y

≤ sup
‖η‖+‖y‖=1

∥∥γ′(x) − γ′0(x0)
∥∥

op
‖y‖X︸ ︷︷ ︸
≤1

+
∥∥η′
∥∥
∞︸ ︷︷ ︸

≤1

‖x− x0‖X

≤
∥∥γ′(x) − γ′0(x0)

∥∥
op

+ ‖x− x0‖X

By part (a), this converges to 0 when (γ, x) tends to (γ0, x0). This finishes the proof.

1.2 Locally convex direct limits of normed spaces

Direct limits will only occur in the following situation: Let E1 ⊆ E2 ⊆ · · · be an
increasing sequence of normed K-vector spaces such that all bonding maps in : En −→
En+1 are continuous (i.e. bounded operators). Then we define the locally convex direct
limit of the sequence (En)n∈N

as the union E :=
⋃∞
n=1En together with the locally

convex vector topology in which a convex subset U is a 0-neighborhood if and only if
U ∩En is a 0-neighborhood in En, for each n ∈ N. If each En is complete, i.e. a Banach
space, the direct limit is called an (LB)-space.

The locally convex direct limit topology satisfies the following universal property: A
linear map f : E −→ F to a locally convex space F is continuous if and only if every
restriction f |En : En −→ F is continuous with respect to the topology of En.

Note: In general a locally convex direct limit of normed spaces need not be Hausdorff. In
the examples of this paper we can show the Hausdorff property directly by constructing
an injective continuous map into a suitable Hausdorff space.

Proposition 1.2.1 (Characterization of zero neighborhoods). Let (δn)n∈N
be a sequence

of positive real numbers. Then the set

V (δ1, δ2, . . .) :=
⋃

n∈N

(
BE1
δ1

(0) + · · · + BEn

δn
(0)
)

is a 0-neighborhood of the locally convex direct limit E :=
⋃∞
n=1En. Furthermore, the

sets of this type form a basis of 0-neighborhoods.
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Proof. This is a well-known consequence of the fact that E is a quotient of the direct
sum

⊕
n En, equipped with the box topology. (see e.g. [20])

1.2.1 Compact regularity and bounded regularity

Definition 1.2.2 (Regularity of Direct Limits). Let E :=
⋃∞
n=1En be a direct limit of

Banach spaces. We assume E is Hausdorff.

(i) The sequence (En)n∈N
is called compactly regular , if every compact subset in E is

also a compact set in some En.

(ii) The sequence (En)n∈N
is called boundedly regular , if every bounded subset in E is

also a bounded set in some En.

Lemma 1.2.3. Let E :=
⋃∞
n=1En be a direct limit of normed spaces. We assume E is

Hausdorff. Then compact regularity implies bounded regularity.

Proof. This Statement can also be found in [20], but we also give a nice elementary proof
here:

We fix on each Banach space a norm, such that BEn

1 (0) ⊆ B
En+1

1 (0) for each n ∈ N.
We assume that the direct sequence (En)n∈N

is compactly regular and let A ⊆ E be a
bounded subset of E. We claim that there is an index n ∈ N such that A ⊆ BEn

n (0).
Since BEn

n (0) is a bounded subset of En, this claim would imply the statement. We
prove the claim by contradiction:

Assume for each n ∈ N there is an an ∈ A such that

an /∈ BEn
n (0) . (∗)

Now, since the set {an : n ∈ N} lies in the bounded set A, the sequence (an)n∈N
is

bounded in E and hence:

an
n

→ 0 in E.

So, the set K := {0}∪
{
an

n : n ∈ N
}

is a compact subset of E and by compact regularity,
K is a compact subset of one Em. Since the inclusion map Em −→ E : x 7→ x is
continuous, K is compact in Em and E is Hausdorff, the topologies of Em and E coincide
on the set K. In particular, the sequence

(
an

n

)
n∈N

converges in Em to zero. Hence, there

is an index n0 ∈ N such that
an0
n0

∈ BEm

1 (0). We may assume that n0 ≥ m. Since the

sequence of unit balls
(
BEn

1 (0)
)
n∈N

is increasing by choice of the norms, this yields:

an0

n0
∈ BEm

1 (0) ⊆ B
En0
1 (0) .

Multiplying by n0 gives a contradiction to (∗).
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Proposition 1.2.4 (Criterion for compact regularity). Let E :=
⋃∞
n=1En be a direct

limit of Banach spaces. We assume E is Hausdorff. Consider the following statements:

(i) For every n ∈ N, there is a 0-neighborhood Ω ⊆ En and a number m ≥ n and such
that all the spaces Em, Em+1, Em+2, . . . induce the same topology on Ω.

(ii) The sequence (En)n∈N
is compactly regular.

(iii) The locally convex vector space E is complete.

Then (i) is equivalent to (ii) and both imply (iii).

Proof. This follows from Theorem 6.4 and corresponding Corollary in [20].

1.2.2 Curves in direct limits

The following very useful theorem about continuous mappings into direct limits can be
found in [14] or [17].

Theorem 1.2.5 (The Mujica Theorem). Let X be a compact Hausdorff topological space
and let E :=

⋃∞
n=1En be a direct limit of locally convex spaces. We assume E is Haus-

dorff. We denote by in : En −→ E the inclusion map.

(a) The map

Φ :
⋃
n∈N

C(X,En) −→ C
(
X,
⋃
n∈N

En
)

γ ∈ C(X,En) 7−→ in ◦ γ

is a topological isomorphism onto its dense image, with respect to the locally convex
direct limit topology on the left hand side.

(b) If the sequence (En)n∈N
is compactly regular, then the map Φ is also surjective,

hence an isomorphism of topological vector spaces.

Remark. It is easy to verify that the map Φ is continuous, injective and in part (b)
surjective. The hard part is to show that it is open.

Definition 1.2.6 (Integral completeness). A locally convex Hausdorff space E is called
integral complete if every continuous curve η ∈ C([0, 1], E) has an antiderivative γ ∈
C1([0, 1], E) with γ(0) = 0 and if the corresponding operator

C([0, 1], E) −→ C1([0, 1], E)
η 7−→ γ

is continuous.

Remark. • If E is complete, then it is also integral complete.

• Integral completeness of E is equivalent to strong C0-regularity of the Lie group
(E,+) (see Definition 1.3.5). So strong C0-regularity is a generalization of the
concept of integral completeness to Lie groups.
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Lemma 1.2.7 (Mujica’s Theorem for Ck-curves). Let k ∈ N0 be a (finite) number and
let E :=

⋃∞
n=1En be a direct limit of integral complete locally convex Hausdorff spaces.

We assume E is also integral complete and Hausdorff. We denote by in : En −→ E the
inclusion map.

(a) The map

Φ :
⋃
n∈N

Ck([0, 1], En) −→ Ck
(
[0, 1],

⋃
n∈N

En
)

γ 7−→ in ◦ γ

is a topological isomorphism onto its dense image.

(b) If the sequence (En)n∈N
is compactly regular, then the map Φ is also surjective,

hence an isomorphism of topological vector spaces.

Proof. For an integral complete locally convex Hausdorff space F , the map

∆F : Ck([0, 1], F ) −→ F k × C([0, 1], F )

γ 7−→
(
(γ(0), . . . , γ(k−1)(0)), γ(k)

)

is an isomorphism of topological vector spaces. Since the maps ∆En are compatible with
the direct limit structure, we can define

⋃

n∈N

∆En :
⋃

n∈N

Ck([0, 1], En) −→
⋃

n∈N

Ekn × C([0, 1], En)

We get the following commuting diagram, where Ψ is induced by the inclusion maps:

⋃
n∈N

Ck([0, 1], En)
Φ //

S

n∈N
∆En

��

Ck
(
[0, 1],

⋃
n∈N

En
)

∆E

��⋃
n∈N

Ekn × C([0, 1], En)
Ψ // Ek × C([0, 1], E).

It remains to show that the map Ψ is an embedding of topological vector spaces and
that it is surjective in the case of (b). But that directly follows from the classical Mujica-
Theorem (Theorem 1.2.5) and the fact that locally convex direct limits and finite direct
products can be interchanged.

Remark. The statement of Lemma 1.2.7 no longer holds if one consideres C∞-curves.

Proposition 1.2.8 (Lipschitz-continuous curves in boundedly regular direct limits).
Let γ : [0, 1] −→

⋃
n∈N

En be a Lipschitz-continuous curve with values in the Hausdorff
locally convex direct limit E of the boundedly regular sequence of Banach spaces (En)n∈N

.
Then there is an m ∈ N such that γ([0, 1]) ⊆ Em and the corestriction γ : [0, 1] −→ Em
is Lipschitz continuous.
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Proof. Since the map γ : [0, 1] −→ E is Lipschitz, the set

M :=

{
γ(s) − γ(t)

s− t
: s, t ∈ [0, 1], s 6= t

}

is bounded in E =
⋃
nEn. By the bounded regularity of the sequence (En)n∈N

, there is
an indexm ∈ N such that M is a bounded subset of Em. This implies that γ([0, 1]) ⊆ Em
and that γ is Lipschitz-continuous with values in Em.

Remark. See [12] for further discussion of Lipschitz curves in locally convex topological
vector spaces.

1.3 Lie Theory

1.3.1 Lie groups and regularity

The definitions of manifolds and Lie groups are analogous to the finite dimensional case:

Definition 1.3.1. (a) Let E be a Hausdorff locally convex K-vector space with K ∈
{R,C}. Let r ∈ {∞, ω}. A Cr

K
-manifold modelled on E is a Hausdorff space M

together with a maximal set (atlas) of homeomorphisms (charts) φ : Uφ −→ Vφ
where Uφ ⊆ M and Vφ ⊆ E are open subsets, such that the transition maps
φ ◦ ψ−1 : ψ (Uφ ∩ Uψ) −→ φ (Uφ ∩ Uψ) are Cr

K
and M =

⋃
φ Uφ.

(b) Let k ∈ N0∪{∞, ω}, k ≤ r. Continuous mappings between Cr
K
-manifolds are called

Ck
K

if they are Ck
K

after composition with suitable charts.

(c) A Cr
K
-Lie group Gis a group which is at the same time a Cr

K
-manifold such that

the group operations are Cr
K
.

Remark. • The definitions of tangent spaces, tangent bundles, vector fields and sim-
ilar concepts are similar to the finite dimensional case and can be found in [15].

• The Lie algebra of a Lie group G, denoted by L(G), is the tangent space T1G at
the identity element, together with the Lie bracket, obtained from the Lie algebra
of left-invariant vector fields on the group G. It is a topological locally convex Lie
algebra. Once again, we refer to [15] for details.

Definition 1.3.2 (Left logarithmic derivative). Let γ : [0, 1] −→ G be a C1-curve in a
locally convex Lie group G. Then the left logarithmic derivative of γ is defined as:

δγ : [0, 1] −→ L(G)

t 7−→ (γ(t))−1 · γ′(t).

The multiplication on the left is to be understood as the canonical multiplication on the
tangent bundle group TG.
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Definition 1.3.3 (Left evolution). Let η : [0, 1] −→ L(G) be a continuous curve in the
Lie algebra of a locally convex Lie group G with identity element 1G. Then a C1-curve
γ : [0, 1] −→ G is called a left evolution of η if

δγ = η and γ(0) = 1G.

The left evolution is unique when it exists and is denoted by Evol(η). We will denote
Evol(η)(1) by evol(η).

Definition 1.3.4 (Regular Lie group (in Milnor’s sense)). A locally convex Lie group
G is called regular if every η ∈ C∞ ([0, 1],L(G)) has a left evolution and if

evol : C∞ ([0, 1],L(G)) −→ G

is smooth.

Definition 1.3.5 (Strongly Ck-regular Lie group). Let k ∈ N0. A locally convex Lie
group G is called strongly Ck-regular if every η ∈ Ck ([0, 1],L(G)) has a left evolution
and if

evol : Ck ([0, 1],L(G)) −→ G

is smooth.

Clearly, strong Ck-regularity implies regularity in Milnor’s sense.

Proposition 1.3.6 (Regularity using Right Logarithmic Derivatives). Instead of using
left logarithmic derivatives and left evolutions, one can also use right logarithmic deriva-
tives and right evolutions. This results in the same concepts of regularity as in Defini-
tions 1.3.4 and 1.3.5.

Proof. Let (G, ·) be a Lie group. Define on the manifold G a new multiplication by
g⊙h := h ·g. Then the Lie groups (G, ·) and (G,⊙) are isomorphic via the isomorphism:

(G, ·) −→ (G,⊙)
g 7−→ g−1.

Since the two Lie groups are isomorphic, (G, ·) is (strongly Ck-)regular if and only if
(G,⊙) is so. Now, the right logarithmic derivative of a (G, ·)-valued curve is exactly
the left logarithmic derivative of the same curve, considered with values in (G,⊙). The
assertion follows.

For further details concerning logarithmic derivatives and regularity, we refer to [13]
and [15].
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1.3.2 Local Lie groups and regularity

Although we are mostly interested in (global) Lie groups, we will use so called local Lie
groups as a tool to show regularity of global ones.

Definition 1.3.7 (Local Lie group). Let G be a smooth manifold, D ⊆ G×G an open
subset, 1 ∈ G, and let

mG : D −→ G : (x, y) 7→ x ∗ y,

ηG : G −→ G : x 7→ x−1

be smooth maps. We call (G,D,mG, 1G, ηG) a local Lie group if

(Loc1) Assume that (x, y), (y, z) ∈ D. If (x∗y, z) or (x, y∗z) ∈ D, then both are contained
in D and (x ∗ y) ∗ z = x ∗ (y ∗ z).

(Loc2) For each x ∈ G we have (x, 1G), (1G, x) ∈ D and x ∗ 1G = 1G ∗ x = x.

(Loc3) For each x ∈ G we have (x, x−1), (x−1, x) ∈ D and x ∗ x−1 = x−1 ∗ x = 1.

(Loc4) If (x, y) ∈ D, then (y−1, x−1) ∈ D.

Remark. Every symmetric open identity neighborhood of a Lie group can be turned into
a local Lie group, but not every local Lie group can be enlarged to a Lie group.

Definition 1.3.8 (The Lie algebra of a local Lie group). Let G = (G,D,mG, 1G, ηG) be
a local Lie group. Then there exists a continuous Lie bracket on L(G) := T1G

G. There
is also a Lie functor and a left logarithmic derivative (for curves with values in the small
manifold D). The definitions are almost literally the same as in the case of global Lie
groups.

Definition 1.3.9 (Regularity of a local Lie group). A local Lie group G is called regular
if there is an open 0-neighborhood Ω ⊆ C∞ ([0, 1],L(G)) such that every η ∈ Ω has a
left evolution and if

evol : Ω −→ G

is smooth. Consequently, it is called strongly Ck-regular if there is an open neighborhood
Ω ⊆ Ck ([0, 1],L(G)) such that every η ∈ Ω has a left evolution and if evol : Ω −→ G is
smooth.

Remark. Similar to Proposition 1.3.6 one can also use right logarithmic derivatives and
evolutions to characterize regularity.

Proposition 1.3.10. Let G be a Lie group. Then it is (strongly Ck-)regular as Lie
group if and only if it is (strongly Ck-)regular as a local Lie group.
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Proof. We assume G to be a strongly Ck-regular local Lie group with k ∈ N0 ∪ {∞}.
The case k = ∞ is supposed to mean that G is regular as a local Lie group.

For each continuous seminorm q on g, and each ℓ ∈ N0 with ℓ ≤ k we set

Ωℓ,q :=

{
γ ∈ Ck([0, 1], g) : sup

t∈[0,1],j≤ℓ
q
(
γ(j)(t)

)
< 1

}
.

By definition of the topology of Ck([0, 1], g) it is clear that

{Ωℓ,q : ℓ ≤ k; q continuous seminorm on g}

is a basis of 0-neighborhoods.

Every curve γ ∈ Ck ([0, 1], g) can be split in two parts:

Lγ : [0, 1] −→ g : t 7→ γ

(
1

2
t

)

and

Rγ : [0, 1] −→ g : t 7→ γ

(
1

2
+

1

2
t

)
.

This yields two linear mappings:

L,R : Ck ([0, 1], g) −→ Ck ([0, 1], g) .

One checks easily that for every basis 0-neighborhood Ωℓ,q we have

L (Ωℓ,q) ⊆ Ωℓ,q and R (Ωℓ,q) ⊆ Ωℓ,q. (∗)

This implies that L and R are continuous.

Now, since G is a strongly Ck-regular local Lie group, there exists an open neighborhood
Ω ⊆ Ck ([0, 1], g) such that every γ ∈ Ω admits a left evolution and such that

evolΩ : Ω −→ G : γ 7→ Evol(γ)(1)

is C∞
K

. We may assume that Ω = Ωℓ,q for a suitable ℓ ≤ k and a continuous seminorm q
on g.

Now, we want to extend the map evolΩℓ,q
to the bigger set 2Ωℓ,q.

To this end, let γ ∈ 2Ωℓ,q be given. Then 1
2γ ∈ Ωℓ,q and by (∗), we have

L

(
1

2
γ

)
∈ Ωℓ,q and R

(
1

2
γ

)
∈ Ωℓ,q.
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Thus, there exist left evolutions

ηL := Evol

(
L

(
1

2
γ

))
and ηR := Evol

(
R

(
1

2
γ

))
.

Finally, we glue these two curves together and obtain

η : [0, 1] −→ G

t 7−→

{
ηL(2t) if t ≤ 1

2
ηL(1) · ηR(2t− 1) if t ≥ 1

2

This curve η is well-defined and piecewise C1. It maps 0 to 1 and its left-logarithmic
derivative is exactly γ, whence η is C1 in particular. So each γ ∈ Ωℓ,q has a left evolu-
tion. Now, by using the explicit construction of this left evolution, we see that the new
evolution map

evol2Ω : 2Ωℓ,q −→ G
γ 7−→ evolΩ

(
L
(

1
2γ
))

· evolΩ
(
R
(

1
2γ
))

is a composition of C∞
K

maps, hence smooth.

So, every curve γ ∈ 2Ω has a left evolution which depends smoothly on γ. By induction
we see that every curve in

Ck ([0, 1], g) =
⋃

n∈N

2nΩℓ,q

has an evolution and the evolution map

evolG =
⋃

n∈N

evol2nΩℓ,q

is smooth.

This finishes the proof that G is strongly Ck-regular.

Definition 1.3.11 (Baker-Campbell-Hausdorff-Series). Let g be a Lie algebra over K ∈
{R,C}. The Baker-Campbell-Hausdorff-Series (or BCH -series) is a formal series of the
form

x ∗ y =

∞∑

n=1

pn(x, y),

where each pn : g × g −→ g is a homogeneous polynomial of degree n, consisting only of
linear combinations of iterations of Lie brackets. Its first terms are

x ∗ y = x+ y +
1

2
[x, y] +

1

12
[x, [x, y]] +

1

12
[y, [y, x]] + . . .

We will not give the explicit formula here, but refer to [3](Definition 1, Ch. II, §6))
or [15](Definition IV.1.3) for a formal definition.

35



1 Preliminaries

Remark. If g is a topological Lie algebra, each pn is continuous but the series may or
may not converge at a given pair (x, y) ∈ g × g.

For x, y ∈ g with [x, y] = 0, we have x ∗ y = x+ y since all pn = 0 for n ≥ 2.

This implies in particular that for all x ∈ g we have

x ∗ 0 = 0 ∗ x = x and x ∗ (−x) = (−x) ∗ x = 0.

Lemma 1.3.12 (BCH -series in Banach Lie algebras). Let (g, ‖·‖) be a Banach Lie
algebra over K ∈ {R,C} with compatible norm, i.e. ‖[x, y]‖ ≤ ‖x‖ ‖y‖.

(a) The BCH-series converges on the set

Ω := {(x, y) ∈ g × g : ‖x‖ + ‖y‖ < log 2}

to a Cω
K

function ∗ : Ω −→ g.

(b) If x, y, z are elements in g with ‖x‖ + ‖y‖ + ‖z‖ < log 3
2 , then

(x, y) ∈ Ω, (y, z) ∈ Ω, (x ∗ y, z) ∈ Ω, (x, y ∗ z) ∈ Ω and x ∗ (y ∗ z) = (x ∗ y) ∗ z.

Proof. This is taken from [3] (Propositions 1 and 2, Ch. II, §7).

Proposition 1.3.13. Let (g, ‖·‖) be a Banach Lie algebra with compatible norm, i.e.
‖[x, y]‖ ≤ ‖x‖ ‖y‖. Set B := Bg

1
3

log 3
2

(0). By construction, B × B lies in the set Ω,

defined in 1.3.12 and therefore two elements in B can always be BCH-multiplied. This
enables us to define the set

D := {(x, y) ∈ B ×B : x ∗ y ∈ B} ⊆ B ×B

and the map

mB : D −→ B : (x, y) 7→ x ∗ y.

Together with inversion map

ηB : B −→ B : x 7→ −x

we obtain a local Lie group (B,D,mB, 0g, ηB).

Proof. The four properties listed in Definition 1.3.7 follow easily from Lemma 1.3.12.
As an example, we prove (Loc1): Let (x, y), (y, z) ∈ D and assume that (x ∗ y, z) or
(x, y ∗ z) ∈ D. Now, since x, y, z ∈ B, we know that

‖x‖ + ‖y‖ + ‖z‖ <
1

3
log

3

2
+

1

3
log

3

2
+

1

3
log

3

2
= log

3

2

and by part (b) of Lemma 1.3.12, we get that

x ∗ (y ∗ z) = (x ∗ y) ∗ z. (∗)

Since we know that (x ∗ y, z) ∈ D or (x, y ∗ z) ∈ D, one of the sides of equation (∗) lies
in B. Hence (x ∗ y, z) ∈ D and (x, y ∗ z) ∈ D and x ∗ (y ∗ z) = (x ∗ y) ∗ z.
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Remark. We will show later, in Theorem 4.2.3, that the local Lie group constructed in
Proposition 1.3.13 is always strong C0-regular in the sense of Definition 1.3.9.

Lemma 1.3.14 (Logarithmic derivative in a local Banach Lie group). Let (g, ‖·‖) be

a Banach Lie algebra with compatible norm and let

(
Bg

1
3

log 3
2

(0) ,D, ∗, 0,−id

)
be the

corespending local Banach Lie group, according to Proposition 1.3.13. For each C1-curve
γ : [0, 1] −→ Bg

log 3
2

(0), the left logarithmic derivative can be written as:

δγ(t) = dλ−γ(t)(γ(t), γ
′(t)) = dµ

(
(−γ(t), γ(t)), (0, γ′(t))

)
.

Here, λ−γ(t) denotes the left-multiplication with the element −γ(t).

Proof. This is an easy calculation.

If a local Lie group can be included into an (abstract) group, there is a possibility to
enlarge it to a global Lie group:

Proposition 1.3.15. Let K ∈ {R,C}. Let G be a group, let V ⊆ G be a subset of G
carrying a Cω

K
-manifold structure. Let U ⊆ V be an open symmetric subset containing

1G such that U · U ⊆ V . We assume that

(i) the multiplication map U × U −→ V : (x, y) 7→ x · y is analytic,

(ii) the inversion map U −→ U : x 7→ x−1 is analytic,

(iii) for every g ∈ G there is an open subset Wg ⊆ U such that gWgg
−1 ⊆ V and the

conjugation map Wg −→ V : x 7→ gxg−1 is analytic.

Then there exists a unique Cω
K
-Lie group structure on G such that U is an open subset

of G with the given manifold structure. If G is generated by U then (i) and (ii) imply
(iii).

Proof. See [3, Chapter III, §1.9, Proposition 18] for the case of a Banach Lie group.

Corollary 1.3.16 (Construction of a Lie group with a given exponential function). Let g

be a Hausdorff locally convex Lie algebra and let U and V be symmetric 0-neighborhoods
in g such that the BCH-series converges on U×U and defines a Cω

K
-map ∗ : U×U −→ V .

Let Φ: g −→ H be a map into a group H satisfying

• Φ|V is injective.

• Φ(nx) = (Φ(x))n for n ∈ N, x ∈ g.

• Φ(x ∗ y) = Φ(x) · Φ(y) for x, y ∈ U.
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Then there exists a unique Cω
K
-Lie group structure on G := 〈Φ(g)〉 = 〈Φ(V )〉 = 〈Φ(U)〉

such that Φ|U : U −→ Φ(U) becomes a diffeomorphism onto an open subset.

Furthermore, the topological isomorphism T0Φ: g −→ L(G) is an isomorphism of locally
convex Lie algebras and after identifying g with L(G), we obtain that G admits a Cω

exponential function and we have expG = Φ.

Proof. Define G := 〈Φ(U)〉. Since for all x ∈ g, there is an n ∈ N such that x
n ∈ U , we

have

Φ(x) = Φ
(
n
x

n

)
=
(
Φ
(x
n

))n
∈ G.

This shows G = 〈Φ(g)〉 = 〈Φ(V )〉 = 〈Φ(U)〉.

Since Φ|V is injective, we can use it to define a Cω
K

manifold on Φ(V ) such that
Φ|V : V −→ Φ(V ) becomes a Cω

K
-diffeomorphism.

Now, Φ(U) is an open symmetric subset of the manifold Φ(V ) satisfying the assumptions
on Proposition 1.3.15. So, there is a unique Lie group structure on G such that Φ|U
becomes a Cω

K
-diffeomorphism.

Let n ∈ N be given. Then for all x ∈ nU , we have

Φ(x) =
(
Φ|U

(x
n

))n

and so the function Φ|nU : nU −→ G is Cω
K

as a composition of Cω
K

maps.

Since g =
⋃
n nU , the map Φ is analytic.

Hence, for each x ∈ g the curve

γx : R −→ G
t 7−→ Φ(tx)

is analytic. It is a group homomorphism from (R,+) to G since it satisfies γx(s + t) =
γx(s)γx(t) for small s, t ∈ R. Its derivative at time 0 is γ′(0) = x since T0Φ = idg after
identification of g with L(G). This finishes the proof.
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The following theorem is our main tool for constructing (LB)-Lie groups and showing
their regularity:

Theorem 2.1 (Complex analytic mappings defined on (LB)-spaces). Let E be a C-
vector space that is the union of the increasing sequence of subspaces (En)n∈N. Assume
that a norm ‖·‖En

is given on each En such that all bonding maps

in : En −→ En+1 : x 7→ x

are continuous and have an operator norm at most 1. We give E the locally convex
direct limit topology. Let R > 0 and let U :=

⋃
n∈N

BEn

R (0) be the union of all open
balls with radius R around 0. Let f : U −→ F be a function defined on U with values
in a Hausdorff locally convex space F , such that each fn := f |

BEn
R

(0)
is C-analytic and

bounded. Then f is continuous.

If in addition the topology on E is Hausdorff then f is even C-analytic.

Note that the statement cannot be generalized to direct limits of Fréchet spaces. There
even exist homogeneous polynomials that are continuous on each step En but fail to be
continuous on the limit. Similar pathologies arise when looking at uncountable direct
limits of normed spaces (see e.g. [11] for details).

This theorem and its proof can also be found in [5] (Theorem A).

Proof of Theorem 2.1. We start with some simplifications: Since f restricted to BEn

R (0)
is analytic and the intersection of each one dimensional affine subspace with U is locally
contained in some BEn

R (0), the function f is clearly Gateaux analytic. By Lemma 1.1.15
it remains to show the continuity of f . The range space F is Hausdorff and locally
convex and can therefore be embedded in a product of Banach spaces. We now use that
a function into a product is continuous if and only if the projection onto each factor is
continuous. Therefore we can assume without loss of generality that F is a Banach space.
Let p ∈ U be given. It remains to show continuity of f at p. Since p ∈

⋃
n∈N

BEn

R (0),

there is an index m such that p ∈ BEm

R (0). We may assume that m = 1 since omitting
only a finite number of spaces does not change the direct limit. Choose R′ > 0 such that
‖p‖E1

+ R′ ≤ R. Then BEn

R′ (p) ⊆ BEn

R (0) for all n ∈ N, using that the inclusion maps

have operator norm at most 1. Now, we may restrict f to the subset
⋃
n∈N

BEn

R′ (p) and
without loss of generality, we may assume that R′ = R and p = 0. Therefore we only
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have to show continuity of f at 0. Furthermore, we may assume that f(0) = 0 which can
be obtained by a translation in F which is clearly continuous. Let r be a fixed positive
real number strictly less that R

2e .

We know that each fn : BEn

R (0) −→ F : x 7→
∑∞

k=1 βk,n(x, · · · , x) is Cω
K

and bounded
between normed complex vector spaces. Then by Lemma 1.1.19, we have the estimate:

∞∑

k=1

‖βk,n‖opr
k ≤

R

R− 2er
‖fn‖∞ =: Sn.

Now, let aj := r
2j which implies that r =

∑∞
j=1 an. Then we have for every n ∈ N:

Sn ≥

∞∑

k=1

‖βk,n‖opr
k =

∞∑

k=1

‖βk,n‖op




∞∑

j=1

aj



k

=
∞∑

k=1

‖βk,n‖op

∑

~j∈Nk

aj1aj2 · · · ajk . (∗)

Let ε > 0 be given. We set bn := min
(
1, ε

2n·(Sn+1)

)
and δn := an · bn. By construction

it is clear that δn ≤ an which will be used later.

To show continuity of f at 0, it suffices to show that the 0-neighborhood V (δ1, δ2, . . .) ⊆
E as defined in Proposition 1.2.1 is a subset of the domain of f and is mapped by f into
BFε (0).

Let x ∈ V (δ1, δ2, . . .). This means that there is a number m ∈ N such that x =
∑m

j=1 xj
with ‖xj‖Ej

< δj . We can estimate the Em-norm of x by

∥∥∥∥
m∑

j=1

xj

∥∥∥∥
Em

≤

m∑

j=1

‖xj‖Em
≤

m∑

j=1

‖xj‖Ej
<

m∑

j=1

δj ≤

m∑

j=1

aj < r < R.

So, x ∈ BEm

R (0) ⊆
⋃
n∈N

BEn

R (0) which is the domain of f . So it makes sense to evaluate
f(x):

f(x) = fm(x) =
∞∑

k=1

βk,m (x, . . . , x) =
∞∑

k=1

βk,m




m∑

j1=1

xj1, . . . ,
m∑

jk=1

xjk




=

∞∑

k=1

∑

~j∈Nk

~j≤m

βk,m (xj1 , . . . , xjk) =

∞∑

k=1

m∑

n=1

∑

~j∈Nk

max~j=n

βk,n (xj1, . . . , xjk)
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Note, that we used in the last line that βk,m and βk,n coincide when the arguments are
elements of En. Now, we can estimate the norm:

‖f(x)‖F =

∥∥∥∥∥

∞∑

k=1

m∑

n=1

∑

~j∈Nk

max~j=n

βk,n (xj1 , . . . , xjk)

∥∥∥∥∥
F

≤
∞∑

k=1

m∑

n=1

∑

~j∈Nk

max~j=n

‖βk,n‖op‖xj1‖En
· · · ‖xjk‖En

≤

m∑

n=1

∞∑

k=1

∑

~j∈Nk

max~j=n

‖βk,n‖op‖xj1‖Ej1
· · · ‖xjk‖Ejk

≤
m∑

n=1

∞∑

k=1

∑

~j∈Nk

max~j=n

‖βk,n‖opδj1 · · · δjk

One of the factors δj1 , . . . , δjk is equal to δn = an · bn, all the others can be estimated by
the corresponding aj :

‖f(x)‖F ≤
m∑

n=1

∞∑

k=1

∑

~j∈Nk

max~j=n

‖βk,n‖opaj1 · · · ajk · bn

≤
m∑

n=1

bn

∞∑

k=1

‖βk,n‖op

∑

~j∈Nk

aj1aj2 · · · ajk

by (∗)
≤

m∑

n=1

bn · Sn

≤

m∑

n=1

ε

2n · (Sn + 1)
· Sn < ε.

This finishes the proof.

Although this result explicitly needs that K = C, the following easy consequence also
holds in the real case:

Corollary 2.2 (Continuity of polynomials). Let K ∈ {R,C}. A polynomial function
defined on the direct limit E =

⋃
n∈N

En of normed K-vector spaces E1 ⊆ E2 ⊆ · · · with
values in a Hausdorff locally convex space is continuous if and only if it is continuous
on each step.

Proof. First consider the case K = C. Let f : E −→ F be an F -valued polynomial
map, defined on the locally convex direct limit E =

⋃
n∈N

En of normed spaces En. It
is possible to choose on each En an equivalent norm ‖·‖En

such that the continuous
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2 Analytic maps on (LB)-spaces

bonding maps in : En −→ En+1 : x 7→ x have operator norm at most 1. Set R := 1
and U :=

⋃
n∈N

BEn

R (0). By hypothesis, each fn := f |BEn
R

(0) is continuous. A continuous

polynomial is automatically Cω
C

and maps bounded sets to bounded sets, in particular,
fn(B

En

R (0)) is bounded in F . Therefore, we can directly apply Theorem 2.1. and obtain
that f is continuous on the 0-neighborhood U . But for polynomial functions this is
enough to guarantee continuity on the whole domain E. (see [2, Theorem 1])

Let K = R now and let EC, (En)C and FC denote the complexifications of the R-
vector spaces E, En and F respectively. Then every polynomial map fn : En −→ F
can be extended to a complex polynomial map (fn)C : EC −→ FC. The maps (fn)C are
continuous because the maps fn are so. We now apply the complex case and obtain that
fC is continuous and hence f is continuous, too.
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3 Germs of diffeomorphisms around a
compact set in a Banach space

Throughout this chapter, let (X, ‖·‖X) be a Banach space over K, and let K ⊆ X be
a nonempty compact subset. We are interested in germs of analytic diffeomorphisms
around K, i.e. we examine analytic diffeomorphisms η : Uη −→ Vη where Uη and Vη
are open subsets of X, both containing K, such that η|K = idK . We identify two
diffeomorphisms if they coincide on an open set W ⊆ X, containing K. It is easily
checked that these equivalence classes of diffeomorphisms form a group with respect to
composition. In the first section we will turn this group into a Lie group modelled on a
compactly regular direct limit of Banach spaces, and in the second section, we will prove
its regularity.

The content of the first section can also be found in [5].

3.1 Construction of DiffGerm(K, X)

In this section we will prove the following theorem:

Theorem 3.1.1 (Lie group of germs of diffeomorphisms). Let K ∈ {R,C} and let X be
a Banach space over K. Let K ⊆ X be a non-empty compact subset of X. Consider the
group

DiffGerm(K,X) :=

{
η :

η is a Cω
K
-diffeomorphism between open

neighborhoods of K and η|K = idK

}
/∼,

where two diffeomorphisms η1, η2 are considered equivalent, η1 ∼ η2 if they coincide on
a common neighborhood of K. Then DiffGerm(K,X) can be turned into a Cω

K
-Lie group

modeled on a compactly regular (LB)-space.

If X = K
n, this is known and can be found in [9]. If in addition K = {0}, the Lie group

structure was first constructed by Pisanelli in [16] and denoted by Ghn(C).

We will follow the strategy of [9] to first consider the case K = C and reduce the real
case to the complex case. The topologies used in [9] do not work when X is infinite
dimensional. However, once we have constructed the Lie group structure for K = C, the
proof of the real case can be copied verbatim from [9, Corollary 15.11].

Therefore, from now on, K = C.
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3 Germs of diffeomorphisms around a compact set in a Banach space

3.1.1 The modelling space

Throughout this section, we will fix the following countable basis of open neighborhoods
of K:

Un := K + BX1
n

(0) =
⋃

a∈K

BX1
n

(a) .

For every n ∈ N, we define the following spaces:

BC 0
C (Un,X) := BC(Un,X) = {γ : Un −→ X : γ is continuous and bounded }

Holb (Un,X)K := {γ : Un −→ X : γ is Cω
C
, bounded and γ|K = 0} .

It is well-known that BC 0
C (Un,X) is a Banach space when equipped with the sup-norm.

The space Holb (Un,X)K is a closed vector subspace of BC 0
C (Un,X) and hence becomes

a Banach space as well.

For every k ∈ N we define

BC k
C (Un,X) :=

{
γ : Un −→ X :

γ is FC k
C, bounded and the

first k Fréchet derivates are bounded

}
.

This space becomes a Banach space when endowed with the (finite number of) seminorms(
γ 7→

∥∥γ(ℓ)
∥∥
∞

)
where ℓ ∈ {0, 1, . . . , k}. Here γ(ℓ) : Un −→ (Symℓ

c (X,X) , ‖·‖op) denotes
the k-th Fréchet derivative of γ (Definitions 1.1.2 (iii) and 1.1.6).

By Proposition 1.1.16(b) every C1
C
-map between complex Banach spaces is automatically

Cω
C

which implies that for k ≥ 1 all of the elements of BC k
C (Un,X) are complex analytic.

Therefore the exponent k only refers to the boundedness of the first k derivatives.

Lemma 3.1.2. Let n ∈ N and k ∈ {0, 1, 2, . . .}. Then the linear operator
Holb (Un,X)K −→ BC k

C (Un+1,X) : γ 7→ γ|Un+1 is continuous.

Proof. Let x ∈ Un+1 be given. Then there is an a ∈ K such that x ∈ BX1
n+1

(a). Set

R := 1
n − 1

n+1 = 1
n(n+1) . Then BXR (x) ⊆ BX1

n

(a) ⊆ Un. For each γ ∈ Holb (Un,X)K we

obtain a bounded analytic function γ|BX
R

(x) : BXR (x) −→ X. We fix a real number r < R
2e

and apply Lemma 1.1.19 to get the following estimate:

∞∑

ℓ=0

∥∥γ(ℓ)(x)
∥∥

op

ℓ!
rℓ ≤

R

R− 2er
· ‖γ‖∞ .

In particular we can estimate every summand in the infinite sum by the whole sum and
conclude

∥∥∥γ(ℓ)(x)
∥∥∥

op
≤
ℓ!

rℓ
·

R

R− 2er
· ‖γ‖∞ .

This bound does not depend on the choice of x ∈ Un+1, hence
∥∥∥γ(ℓ)|Un+1

∥∥∥
∞

= sup
x∈Un+1

∥∥∥γ(ℓ)(x)
∥∥∥

op
≤
ℓ!

rℓ
·

R

R− 2er
· ‖γ‖∞ .
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3.1 Construction of DiffGerm(K,X)

We also need the space

BC 1
C (Un,X)K :=

{
γ ∈ BC 1

C (Un,X) : γ|K = 0
}
.

This is a closed subspace of BC 1
C

(Un,X) and therefore becomes a Banach space with
the induced topology.

Lemma 3.1.3. The topology of the Banach space BC 1
C (Un,X)K is given by the norm

‖γ‖D :=
∥∥γ′
∥∥
∞

= sup
x∈Un

∥∥γ′(x)
∥∥

op
.

Proof. By definition, ‖·‖D is one of the two seminorms generating the topology of
BC 1

C (Un,X)K . It suffices to show that the other, ‖·‖∞, is bounded above by a multiple
of ‖·‖D.

Let γ ∈ BC 1
C

(Un,X)K and let x ∈ Un = K + BX1
n

(0). Then x = a+ v with a ∈ K and

‖v‖X < 1
n . Then

‖γ(x)‖X = ‖γ(a+ v)‖X =

∥∥∥∥∥ γ(a)︸︷︷︸
=0

+

∫ 1

0
γ′(a+ tv)(v)dt

∥∥∥∥∥
X

≤

∫ 1

0

∥∥γ′(a+ tv)
∥∥

op
‖v‖X dt ≤ ‖γ‖D ·

1

n
.

Therefore ‖γ‖∞ ≤ 1
n ‖γ‖D and this finishes the proof.

Note that this does not work without the assumption that γ|K = 0.

From now on, the space BC 1
C

(Un,X)K is endowed with the norm ‖·‖D.

In the proof of Lemma 3.1.3 we have seen that

BC 1
C (Un,X)K −→ Holb (Un,X)K : γ 7→ γ

is a bounded operator of norm at most 1
n . Hence, we are now in the following situation:

All of the arrows in the following diagram are injective bounded operators between
Banach spaces:

Holb (Un,X)K
//

))R

R

R

R

R

R

R

R

R

R

R

R

R

Holb (Un+1,X)K
//

))S

S

S

S

S

S

S

S

S

S

S

S

S

S

Holb (Un+2,X)K
//

&&M

M

M

M

M

M

M

M

M

M

M

M

· · ·

BC 1
C

(Un,X)K
//

OO

BC 1
C

(Un+1,X)K
//

OO

BC 1
C

(Un+2,X)K
//

OO

· · ·

We will now identify a holomorphic function with its image under these injective opera-
tors, and thus consider them as germs around K. This allows us to define the following
locally convex direct limit:
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3 Germs of diffeomorphisms around a compact set in a Banach space

Proposition 3.1.4. The direct limit

Germ(K,X)K :=
⋃

n∈N

Holb (Un,X)K =
⋃

n∈N

BC 1
C (Un,X)K

is Hausdorff, compactly regular and complete.

Proof. To simplify notation, let En := Holb (Un,X)K . To see that the direct limit is
Hausdorff, note that every γ ∈ Holb (Un,X)K is uniquely determined if we know its
power series expansion at each a ∈ K, since Un =

⋃
a∈K BX1

n

(a). Therefore the following

mappings are injective:

Φn : Holb (Un,X)K −→
∏

a∈K
k∈N

Symk
c (X,X) : γ 7→

(
γ(k)(a)

)
a∈K,k∈N

By Lemma 3.1.2, calculating these Fréchet derivatives is continuous with respect to
the sup-norm, therefore the mappings above are continuous and linear. Since they are
compatible with the bonding maps Holb (Un,X)K −→ Holb (Un+1,X)K : γ 7→ γ|Un+1 we
can extend these maps to the direct limit and obtain an injective continuous map into a
Hausdorff space. This proves that the direct limit is Hausdorff.

To show compact regularity and completeness, we want to use Proposition 1.2.4. There-
fore it suffices to show that for every n ∈ N, there is a 0-neighborhood Ω ⊆ En and
a number m ≥ n and such that all the spaces Em, Em+1, Em+2, . . . induce the same
topology on Ω. We need the following constant: D := 3

3−e ≈ 10, 6489403. Let n ∈ N be

given. Set Ω := BEn
1 (0) and m := 6n.

Now we can apply Lemma 1.1.20 with E = F = X and M = 2Ω = BEn

2 (0), R = 1
n and

r = 1
6n <

R
2e and obtain

∞∑

k=0

sup
γ∈2Ω
a∈K

∥∥γ(k)(a)
∥∥

op

k!

︸ ︷︷ ︸
=:sk

(
1

6n

)k
≤

1
n

1
n − 2e 1

6n

· sup
γ∈2Ω

‖γ‖∞ = 2D. (∗)

Let ℓ ≥ m. To show that Eℓ and Em induce the same topology on Ω, it remains to prove
that the inclusion map Ω ⊆ Eℓ −→ Em : γ 7→ γ is continuous. Let ε > 0 be given. By

(∗) the series
∑∞

k=0 sk
(

1
6n

)k
converges. Therefore there is a number k0 ∈ N such that

∑
k>k0

sk
(

1
6n

)k
< ε

2 . We set δ := 1
D

(
n
ℓ

)k0 · ε2 .

Now, let γ1, γ2 ∈ Ω be two elements with Eℓ-distance ‖γ1 − γ2‖Eℓ
≤ δ. For the Em-

distance, we show that ‖γ1 − γ2‖Em
≤ ε. With γd := γ1 − γ2, we know that γd ∈ 2Ω. It

46



3.1 Construction of DiffGerm(K,X)

remains to show that ‖γd‖Em
= supx∈Um

‖γd(x)‖X ≤ ε. Therefore let x ∈ Um be given.

By definition of Um = K + BX1
m

(0), there is an a ∈ K such that x ∈ BX1
m

(a). Now,

‖γd(x)‖X =

∥∥∥∥∥

∞∑

k=0

γ
(k)
d (a)(x− a, . . . , x− a)

k!

∥∥∥∥∥
X

≤
∞∑

k=0

∥∥∥γ(k)
d (a)

∥∥∥
op

k!

(
1

m

)k

≤
∑

k≤k0

∥∥∥γ(k)
d (a)

∥∥∥
op

k!

(
1

6n

)k
+
∑

k>k0

∥∥∥γ(k)
d (a)

∥∥∥
op

k!

(
1

6n

)k

≤
∑

k≤k0

∥∥∥γ(k)
d (a)

∥∥∥
op

k!

(
1

6ℓ

)k ( ℓ
n

)k0
+
∑

k>k0

sk

(
1

6n

)k

≤

(
ℓ

n

)k0 ∞∑

k=0

∥∥∥γ(k)
d (a)

∥∥∥
op

k!

(
1

6ℓ

)k
+
ε

2

≤

(
ℓ

n

)k0
·D · ‖γd‖Eℓ︸ ︷︷ ︸

<δ

+
ε

2
≤

(
ℓ

n

)k0
·D ·

1

D

(n
ℓ

)k0
·
ε

2
+
ε

2
= ε.

This shows that the space

Germ(K,X)K =
⋃

n∈N

Holb (Un,X)K =
⋃

n∈N

BC 1
C (Un,X)K

is a compactly regular complete (LB)-space.

Remark. In the proof, we did not use that the range space of the mappings is equal to
the Banach space containing K and we did not use that the mappings all vanish on K.
So, the same argument also shows that

⋃

n∈N

Holb (Un, Z)

is compactly regular for every Banach space Z. We will not need that in this chapter,
but later, in chapter 5 (Theorem 5.1.1).

3.1.2 The monoid

To turn DiffGerm(K,X) into a Lie group modelled on Germ(K,X)K , we first construct
an analytic structure on the set

EndGerm(K,X) :=

{
η : Uη −→ X :

η is a Cω
C
-map, Uη is an open

neighborhood of K and η|K = idK

}
/∼

where η1 ∼ η2 if and only if they coincide on a common neighborhood of K.
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3 Germs of diffeomorphisms around a compact set in a Banach space

The set EndGerm(K,X) becomes a monoid with the multiplication

[η1]∼◦ [η2]∼ := [η1 ◦ η2]∼ .

Here, [η]∼ denotes the equivalence class of η with respect to the relation ∼.

Since every neighborhood of K contains one of the neighborhoods Un, it suffices to look
at analytic maps of the form η = idUn + γ with γ ∈ Holb (Un,X)K for some n ∈ N. This
implies that the following map is a bijection:

Φ : EndGerm(K,X) −→ Germ(K,X)K
[γ + idUn ]∼ 7−→ γ ∈ Holb (Un,X)K

We use this map as a global chart and define the complex analytic manifold structure
on EndGerm(K,X) such that Φ is a diffeomorphism.

Proposition 3.1.5. The monoid multiplication of EndGerm(K,X):

µ : EndGerm(K,X) × EndGerm(K,X) −→ EndGerm(K,X)
([η1]∼ , [η2]∼) 7−→ [η1 ◦ η2]∼

is Cω
C

with respect to the manifold structure defined by Φ.

Proof. Using the global chart Φ, this map becomes

Φ ◦ µ ◦ (Φ × Φ)−1 :Germ(K,X)K × Germ(K,X)K −→ Germ(K,X)K

(γ1, γ2) 7→ (γ1 + id) ◦ (γ2 + id) − id = γ1 ◦ (γ2 + id) + γ2.

To show analyticity of that map, it suffices to show that

f : Germ(K,X)K × Germ(K,X)K −→ Germ(K,X)K
(γ1, γ2) 7−→ γ1 ◦ (γ2 + id)

is analytic.

For each n ∈ N, we set

En := (Holb (Un,X)K , ‖·‖∞) ,

Fn :=
(
BC 1

C (Un,X)K , ‖·‖D

)
.

The domain of the map f in question can now be regarded as the following direct
limit: Germ(K,X)K × Germ(K,X)K =

⋃
n∈N

En × Fn. For each R > 0 we set ΩR :=⋃
n∈N

BFn

R (0). One easily checks that

⋃

R>0

ΩR = Germ(K,X)K

⋃

n∈N

BEn

R (0) = Germ(K,X)K for every R > 0.
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3.1 Construction of DiffGerm(K,X)

Therefore the domain

Germ(K,X)K × Germ(K,X)K =
⋃

R∈N

(Germ(K,X)K × ΩR)

can be written as a union of open 0-neighborhoods. This means that f is analytic on
Germ(K,X)K × Germ(K,X)K if and only if f is analytic on each Germ(K,X)K ×ΩR.

Let R ∈ N be given. To simplify notation, we denote the restriction of f to
Germ(K,X)K × ΩR also by f .

Now, define ℓn := (R + 1)(n + 2) ∈ N. Since limn→∞ ℓn = ∞, the sequence (Fℓn)n∈N
is

cofinal in (Fn)n∈N
, hence

Germ(K,X)K × ΩR =
⋃

n∈N

(
BEn

R (0) × B
Fℓn

R (0)
)

=
⋃

n∈N

BHn

R (0) .

Here, we set Hn := En × Fℓn with the norm

‖(γ1, γ2)‖Hn
:= max{‖γ1‖∞ , ‖γ2‖D} = max{‖γ1‖∞ ,

∥∥γ′2
∥∥
∞
}.

All bonding maps in : Hn −→ Hn+1 have operator norm at most 1. We now would like
to apply Theorem 2.1. To this end, we define

fn : BHn

R (0) −→ Germ(K,X)K : (γ1, γ2) 7→ γ1 ◦ (γ2 + idUℓn
).

We claim:

(a) Each fn makes sense,

(b) Each fn is Cω
C
,

(c) Each fn is bounded.

Once we have this, by Theorem 2.1 the map f is analytic, as we had to show.

(a) Let (γ1, γ2) ∈ BHn

R (0) = BEn

R (0)×B
Fℓn

R (0). We have to show that γ1 and (γ2+idUℓn
)

can be composed, i.e. that (γ2 + idUℓn
)(Uℓn) ⊆ Un. In fact, we actually show that

(γ2 + idUℓn
)(Uℓn) ⊆ Un+2.

Therefore, let x ∈ Uℓn = K + BX1
ℓn

(0) be given. Then x is of the form x = a + v with

a ∈ K and ‖v‖X < 1
ℓn

. Now, we apply (γ2 + idUℓn
) to x:

(γ2 + idUℓn
)(x) = γ2(a+ v) + a+ v = a+ w

with w := v + γ2(a+ v). Now, we estimate the norm of w:

‖w‖X = ‖v + γ2(a+ v)‖X ≤ ‖v‖X + ‖γ2(a+ v)‖X
= ‖v‖X + ‖γ2(a+ v) − γ2(a)‖X

= ‖v‖X +

∥∥∥∥
∫ 1

0
γ′2(a+ tv)(v)dt

∥∥∥∥
X

<
1

ℓn
+ sup
t∈[0,1]

∥∥γ′2(a+ tv)
∥∥

op
‖v‖X ≤

1

ℓn
+ ‖γ2‖D ‖v‖X

≤
1

ℓn
+R

1

ℓn
=

R+ 1

(R+ 1)(n + 2)
=

1

n+ 2
.
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3 Germs of diffeomorphisms around a compact set in a Banach space

Therefore (γ2 + idUℓn
)(x) ∈ BX1

n+2

(a) ⊆ Un+2.

(b) The image of fn is a subset of Holb (Uℓn ,X)K . The inclusion map:

Holb (Uℓn ,X)K −→ Germ(K,X)K

is continuous linear and therefore Cω
C
. It remains to show that the arrow ♣ in the

following diagram is Cω
C
:

BHn

R (0)
♣

//

fn

--

♦
��

Holb (Uℓn ,X)K� _

♠

��

// Germ(K,X)K

BC 2
C

(Un+1,X) × BC ∂,0
C

(Uℓn , Un+1)
♥ // BC 0

C (Uℓn ,X)

The space Holb (Uℓn ,X)K is a closed subspace of BC 0
C (Uℓn ,X) and ♠ is a topological

embedding. Therefore fn will be Cω
C

if we are able to show that ♠ ◦ ♣ is so.

Let (γ1, γ2) ∈ BHn

R (0). Then γ1 is complex analytic and bounded on Un. We have seen
in Lemma 3.1.2 that all derivatives of γ1 are bounded when restricting γ1 to the smaller
set Un+1 and that the inclusion

Holb (Un,X)K −→ BC k
C (Un+1,X) : γ1 7→ γ1|Un+1

is continuous for every k ∈ N.

We have just shown in (a) that the image of (γ2+idUℓn
) is a subset of Un+2, hence it has a

positive distance from the boundary of Un+1. Hence, it lies in the space BC ∂,0
C

(Uℓn , Un+1)
as defined in Lemma 1.1.25. The map

♦ : BHn

R (0) −→ BC 2
C (Un+1,X) × BC ∂,0

C
(Uℓn , Un+1) : (γ1, γ2) 7→ (γ1, γ2 + idUℓn

)

in the diagram above is therefore well-defined and continuous. Since it is affine, it is
automatically analytic.

To make the diagram commutative, we define the remaining arrow as

♥ : BC 2
C (Un+1,X) × BC ∂,0

C
(Uℓn , Un+1) −→ BC 0

C (Uℓn ,X)
(γ, η) 7−→ γ ◦ η

and this is C1
C

by Lemma 1.1.25 (with k = l = 1). Since we are dealing with mappings
between complex Banach spaces, the C1

C
-property implies complex analyticity.

(c) Let (γ1, γ2) ∈ BEn

R (0)×B
Fℓn

R (0). Then fn(γ1, γ2) = γ1 ◦ (γ2 + idUℓn
) is an element of

Holb (Uℓn ,X)K of norm
∥∥γ1 ◦ (γ2 + idUℓn

)
∥∥
∞

≤ ‖γ1‖∞ < R. Therefore the image of fn
is a bounded subset of Holb (Uℓn ,X)K and hence a bounded subset of the direct limit
Germ(K,X)K .

Therefore, by Theorem 2.1, f is complex analytic and we have shown that
EndGerm(K,X) is a complex analytic monoid.
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3.1 Construction of DiffGerm(K,X)

3.1.3 The group

The monoid Germ(K,X)K has a Cω
C
-manifold structure and an analytic multiplication.

We now show that the group of invertible elements of the monoid is open and that
inversion is analytic.

For the openness, we use a lemma:

Lemma 3.1.6. Let γ ∈ BC 1
C (Un,X)K with ‖γ‖D = ‖γ′‖∞ < 1. Then η := idU6n

+γ|U6n

is a Cω
C
-diffeomorphism onto its open image.

Proof. Let x ∈ U6n. Then the Fréchet derivative η′(x) at x is an element in the Banach

algebra
(
L (X) , ‖·‖op

)
. The distance between η′(x) and the identity of the algebra is

‖η′(x) − idX‖op = ‖γ′(x)‖op ≤ ‖γ′‖∞ < 1. Therefore η′(x) ∈ B
L(X)
1 (idX). All elements

in an open ball with radius 1 centered around the identity of Banach algebra are invertible
(Neumann-series). Hence, η′(x) is invertible.

By the Inverse Function Theorem for complex Banach spaces this implies that there
is an open neighborhood of x on which η is a diffeomorphism onto its open image.
Since x ∈ U6n was arbitrary, we know that the image η(U6n) is open. To show that
η : U6n −→ η(U6n) is not only a local, but a global diffeomorphism, it remains to show
injectivity of η.

Let x, y ∈ U6n with η(x) = η(y) be given. We have to show that x = y. This is easy
once we have shown that the line segment joining x and y lies in Un. By definition
of U6n, there are elements a, b ∈ K and v,w ∈ X such that ‖v‖X , ‖w‖X < 1

6n and
x = a + v, y = b + w. Let [a, x] := {a+ tv : t ∈ [0, 1]} ⊆ BX1

6n

(a) ⊆ U6n denote the

compact line segment joining a and x. Then

‖η(x) − η(a)‖X =

∥∥∥∥
∫ 1

0
η′(a+ tv)(v)dt

∥∥∥∥
X

≤ max
t∈[0,1]

∥∥η′(a+ tv)
∥∥
X
· ‖v‖X

≤
(
‖id‖op+

∥∥γ′
∥∥

op

)

︸ ︷︷ ︸
<2

· ‖v‖X < 2 ·
1

6n
=

1

3n
.

Likewise we see that ‖η(y) − η(b)‖X < 1
3n . We can now estimate the distance between

the points a and b:

‖a− b‖X = ‖η(a) − η(b)‖X

≤ ‖η(a) − η(x)‖X︸ ︷︷ ︸
< 1

3n

+ ‖η(x) − η(y)‖X︸ ︷︷ ︸
=0

+ ‖η(y) − η(b)‖X︸ ︷︷ ︸
< 1

3n

<
2

3n
.

This also allows us to estimate the distance between y and a:

‖y − a‖X ≤ ‖y − b‖X + ‖b− a‖X <
1

6n
+

2

3n
<

1

n
.
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3 Germs of diffeomorphisms around a compact set in a Banach space

So, y ∈ BX1
n

(a). Therefore the two points x and y both lie in the convex set BX1
n

(a).

Therefore also the line segment [x, y] lies in BX1
n

(a) which is a subset of Un, and thus

0 = ‖η(x) − η(y)‖X = ‖x− y + γ(x) − γ(y)‖X
≥ ‖x− y‖X − ‖γ(x) − γ(y)‖X

= ‖x− y‖X −

∥∥∥∥
∫ 1

0
γ′(y + t(x− y))(x− y)dt

∥∥∥∥
X

≥ ‖x− y‖X −
∥∥γ′
∥∥
∞
‖x− y‖X = ‖x− y‖X (1 −

∥∥γ′
∥∥
∞

)
︸ ︷︷ ︸

>0

.

Therefore ‖x− y‖X has to be zero and so η : U6n −→ X is injective. This finishes the
proof.

Proposition 3.1.7. Let EndGerm(K,X)× denote the group of invertible elements of
EndGerm(K,X) and let

DiffGerm(K,X) :=

{
η :

η is a Cω
K
-diffeomorphism between open

neighborhoods of K and η|K = idK

}
/∼,

where two diffeomorphisms η1, η2 are considered equivalent, η1 ∼ η2 if they coincide on
a common neighborhood of K. Then DiffGerm(K,X) = EndGerm(K,X)× and this is
an open subset of EndGerm(K,X).

Proof. If η is a diffeomorphism between open neighborhoods of K, then [η]∼ is clearly
invertible and thus DiffGerm(K,X) ⊆ EndGerm(K,X)×.

Conversely, let [η1]∼ ∈ EndGerm(K,X)× be given. This means that there exist Cω
C
-

maps η1 : Vη1 −→ X and η2 : Vη1 −→ X on open neighborhoods Vη1 , Vη2 of K in X such
that ηj |K = idK and [η1]∼ ◦ [η2]∼ = [idX ]∼ = [η2]∼ ◦ [η1]∼.

From [η2]∼◦[η1]∼ = [idX ]∼, we get that there is an open K-neighborhoodW1 ⊆ η−1
1 (Vη2)

such that η2 ◦ η1|W1 = idW1 . In particular, η1|W1 is injective.

From [η2]∼◦[η1]∼ = [idX ]∼, we get that there is an open K-neighborhoodW2 ⊆ η−1
2 (Vη1)

such that η1 ◦ η2|W2 = idW2 . By making W2 smaller, we may assume W2 ⊆ η−1
2 (W1).

Now, η1(W1) ⊇ η1 (η2(W2)) = W2. Hence the image of η1|W1 contains an open K-
neighborhood. so we may restrict η1 to η−1

1 (W2) and obtain an injective Cω
C
-map whose

image is the open K-neighborhood W2 and whose inverse is given by a restriction of the
Cω

C
-map η2. This proves that η1|η−1

1 (W2) is a Cω
C
-diffeomorphism onto an open neighbor-

hood of K, fixing K pointwise. Hence, [η1]∼ ∈ DiffGerm(K,X).

This shows the equality of the two sets DiffGerm(K,X) and EndGerm(K,X)×. It
remains to show the openness.
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3.1 Construction of DiffGerm(K,X)

The set U :=
⋃
n∈N

B
BC

1
C
(Un,X)K

1 (0) ⊆ Germ(K,X)K is an open 0-neighborhood in
Germ(K,X)K . Using the global chart, we see that Φ−1(U) is an open [id]∼-neighborhood
in EndGerm(K,X). By Lemma 3.1.6 we know that every γ ∈ Φ−1(U) is a diffeomor-
phism onto an open image and thus Φ−1(U) ⊆ DiffGerm(K,X) = EndGerm(K,X)×.
Therefore the unit group of the monoid contains an open identity neighborhood, and
hence the whole unit group has to be open.

From Lemma 3.1.6, we know that the image of η : U6n −→ X is an open neighborhood
of K and therefore has to contain one of the basic neighborhoods Um for an m ∈ N. The
next lemma provides quantitative information:

Lemma 3.1.8. Let γ ∈ BC 1
C (Un,X)K with ‖γ‖D = ‖γ′‖∞ ≤ 1

2 and let η := idU6n
+γ|U6n

be as in Lemma 3.1.6. Then the image of η contains U12n and we have

∥∥∥∥∥

(
(γ + idUn)

∣∣∣
U6n

)−1
∣∣∣∣∣
U12n

− idU12n

∥∥∥∥∥
∞

≤
1

6n
.

To prove this lemma, we need the quantitative version of the Inverse Function Theorem
for Banach spaces (1.1.21).

Proof of Lemma 3.1.8: Let x ∈ U12n = K + BX1
12n

(0) be given. We have to show that
x ∈ η(U6n). We know that there is an a ∈ K such that x = a + v with v ∈ BX1

12n

(0).

Now, we set r := 1
6n , T := idX , U := BX1

6n

(0) and f : U −→ X : w 7→ γ(a + w).

This function satisfies f(0) = 0 and is Lipschitz continuous with Lipschitz constant
L := ‖f ′‖∞ ≤ ‖γ‖D ≤ 1

2 . The number λ := L ·
∥∥T−1

∥∥
op

= L ≤ 1
2 is strictly less than 1

and therefore all hypotheses of Theorem 1.1.21 are satisfied. Therefore we can conclude
that the image of (id + f) contains the ball BXr′ (0) with r′ = r(1−λ)

‖T−1‖op
= 1

6n · (1 − λ) ≥

1
6n(1 − 1

2) = 1
12n . So, there exists a w ∈ U such that (id + f)(w) = v. But this means:

x = a+ v = a+ (id + f)(w) = a+ w + f(w) = a+ w + γ(a+ w) = η(a+ w).

So x is in the image of η. This proves U12n ⊆ η(U6n).

Since the Fréchet derivative of η := idU6n
+γ|U6n

has distance at most 1
2 from the identity,

the Neumann-series for inverses implies that the Fréchet derivative of η−1 has distance
at most 1

1− 1
2

= 2 from the identity. Therefore:

∥∥∥∥∥

(
(γ + idUn)

∣∣∣
U6n

)−1
∣∣∣∣∣
U12n

− idU12n

∥∥∥∥∥
D

≤ 2.

Together with ‖·‖∞ ≤ 1
12n ‖·‖D the assertion follows.
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3 Germs of diffeomorphisms around a compact set in a Banach space

So far we showed that DiffGerm(K,X) is an open subset of the Cω
C
-manifold

EndGerm(K,X) and therefore has an induced manifold structure. To show complex
analyticity of the inversion map, we once again use our global chart Φ and define:

i : Φ(DiffGerm(K,X)) −→ Φ(DiffGerm(K,X))

γ 7−→ Φ
((

Φ−1(γ)
)−1
)
.

It remains to show that i is analytic.

From now on, we again use the notation: En := Holb (Un,X)K and Fn := BC 1
C

(Un,X)K .
Lemma 3.1.8 allows us to define for every n ∈ N the following map:

in : BFn
1
2

(0) −→ BE12n
1
6n

(0)

γ 7−→

(
(γ + idUn)

∣∣∣
U6n

)−1
∣∣∣∣∣
U12n

− idU12n
.

If we are able to show that every in is Cω
C

then we can directly apply Theorem 2.1 and
see that the monoid inversion is analytic on an open neighborhood of the identity. Then
inversion is everywhere Cω

C
and we are done.

Proposition 3.1.9. (a) The mapping

hn : BFn
1
2

(0) × BE12n
1
6n

(0) −→ E12n

(γ1, γ2) 7−→ (γ1 + idUn) ◦ (γ2 + idU12n
) − idU12n

is complex analytic.

(b) For every fixed (γ1, γ2) ∈ BFn
1
2

(0)×BE12n
1
6n

(0) and every γ̂1 ∈ Fn, γ̂2 ∈ E12n we have

h′n(γ1, γ2)(γ̂1, γ̂2) = γ̂1 ◦ (γ2 + idU12n
) + γ′1 ◦ (γ2 + idU12n

) · (γ̂2) + γ̂2.

(c) For (γ1, γ2) ∈ BFn
1
2

(0) × BE12n
1
6n

(0), we have the equivalence:

(
hn(γ1, γ2) = 0

)
⇐⇒

(
γ2 = in(γ1)

)
.

(d) Every in is complex analytic.

Proof. (a) The argument is essentially the same as in Proposition 3.1.5. We write
hn(γ1, γ2) = ♣(γ1, γ2) + γ2 with ♣(γ1, γ2) = γ1 ◦ (γ2 + idU12n

) and have the following
commutative diagram:

BFn
1
2

(0) × BE12n
1
6n

(0) ♣ //

♦

��

E12n� _

♠

��

BC 2
C (U2n,X) × BC ∂,0

C
(U12n, U2n)

♥ // BC 0
C (U12n,X)
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3.1 Construction of DiffGerm(K,X)

Once again ♠ is a topological embedding. The map

♦ : BFn
1
2

(0) × BE12n
1
6n

(0) −→ BC 2
C (U2n,X) × BC ∂,0

C
(U12n, U2n)

(γ1, γ2) 7−→ (γ1|U2n
, γ2 + idU12n

)

is well-defined and continuous. Since it is affine, it is automatically analytic. The last
arrow

♥ : BC 2
C

(U2n,X) × BC ∂,0
C

(U12n, U2n) −→ BC 0
C

(U12n,X)
(γ, η) 7−→ γ ◦ η

is Cω
C

by Lemma 1.1.25 and since the diagram commutes, hn is analytic.

(b) This follows directly from the formula in Lemma 1.1.25.

(c) Assume that γ2 = in(γ1) holds. Then

hn(γ1, γ2) = (γ1 + idUn) ◦ (in(γ1) + idU12n
) − idU12n

= (γ1 + idUn) ◦

(
(γ1 + idUn)

∣∣∣
U6n

)−1
∣∣∣∣∣
U12n

− idU12n

= idU12n
− idU12n

= 0.

Conversely, assume that (γ1, γ2) ∈ BFn
1
2

(0) × BE12n
1
6n

(0) is given with hn(γ1, γ2) = 0.

Then (γ1 + idUn) ◦ (γ2 + idU12n
) = idU12n

. Since γ2 + idU12n
is continuous, W := (γ2 +

idU12n
)−1(U6n) ⊆ U12n is an open K-neighborhood. Moreover,

(γ1 + idUn)
∣∣
U6n

◦ (γ2 + idU12n
)|W = idW .

But since (γ1 + idUn)
∣∣
U6n

is a diffeomorphism, we can compose this equality from the

left with

(
(γ1 + idUn)

∣∣∣
U6n

)−1

and obtain

(γ2 + idU12n
)|W =

(
(γ1 + idUn)

∣∣∣
U6n

)−1
∣∣∣∣∣
W

.

Thus we obtain that γ2 and in(γ1) coincide on the nonempty set W which is open in
the connected set U12n. By the identity theorem for complex analytic maps, this means
γ2 = in(γ1).

(d) Let γ1 ∈ BFn
1
2

(0) and set γ2 := in(γ1) ∈ BE12n
1
6n

(0). By (c) this implies hn(γ1, γ2) = 0.

We wish to use the Implicit Function Theorem and therefore examine the following
operator, the “partial differential with respect to the second argument”:

T : E12n −→ E12n

γ̂2 7−→ h′n(γ1, γ2)(0, γ̂2).
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3 Germs of diffeomorphisms around a compact set in a Banach space

By (b) this can be rewritten as T : γ̂2 7→ γ′1 ◦ (γ2 + idU12n
) · (γ̂2) + γ̂2.

Let γ̂2 ∈ E12n be given. Then we can estimate

‖(T − idE12n
) (γ̂2)‖∞ = sup

x∈U12n

‖(T (γ̂2) − γ̂2) (x)‖X

= sup
x∈U12n

∥∥γ′1(γ2(x) + idU12n
(x))(γ̂2(x))

∥∥
X

≤ sup
x∈U12n

∥∥γ′1(γ2(x) + x)
∥∥

op
‖γ̂2(x)‖X

≤
∥∥γ′1
∥∥
∞
‖γ̂2‖∞ = ‖γ1‖D ‖γ̂2‖∞ ≤

1

2
‖γ̂2‖∞ .

Thus, ‖T − idE12n
‖op ≤

1
2 < 1. Therefore the bounded operator T is invertible, i.e. an

isomorphism of Banach spaces.

By the Implicit Function Theorem, there are neighborhoods Ω1 ⊆ Fn,
Ω2 ⊆ E12n of γ1 and γ2 respectively, such that h−1

n ({0}) ∩ (Ω1 × Ω2) is the graph of
a Cω

C
-map from Ω1 to Ω2. But by (c), we know that this function has to be a restriction

of in : BFn
1
2

(0) −→ BE12n
1
6n

(0). Therefore in is Cω
C

in a neighborhood of γ1. Since γ1 was

arbitrary, in is Cω
C
.

This proves Theorem 3.1.1 for K = C. As mentioned at the beginning of this section,
the case K = R now follows verbatim as in [9, Corollary 15.11].

3.2 Regularity of DiffGerm(K, X)

Let X be a complex Banach space and K ⊆ X be a nonempty compact subset.

Let Ur := K + BXr (0).

Let Er := Holb (Ur,X)K , Fr := BC 1
C (Ur,X)K and Dr := C1 ([0, 1], Fr). On the space

Fr, we use the norm ‖γ‖D := ‖γ′‖∞, on Dr, we use the norm ‖∆‖Dr
:= ‖∆‖∞ + ‖∆′‖∞.

The space Er is endowed with the usual ‖·‖∞-norm.

Let Γ := Germ(K,X)K :=
⋃
r>0Er =

⋃
r>0 Fr denote the locally convex direct limit.

From now on, we fix two positive real numbers r and R and consider the following
function

g : [0, 1] × Ur × BDr

R (0) −→ X
(t, x,∆) 7−→ ∆(t)(x)

and the corresponding ordinary differential equation (with given parameter ∆0 in the
set BDr

R (0):

dx

dt
(t) = g(t, x,∆0).
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3.2 Regularity of DiffGerm(K,X)

Proposition 3.2.1. (a) The function g is of class FC 1
R.

(b) The partial derivative

∂
∂xg : [0, 1] × Ur × BDr

R (0) −→ LR (X,Y )
(t, x,∆) 7−→ (∆(t))′ (x)

is continuous and takes values in the closed subspace LC (X,Y ).

(c) The partial derivative

∂
∂∆g : [0, 1] × Ur × BDr

R (0) −→ LR (Dr, Y )
(t, x,∆) 7−→ g(t, x, ·) = (Σ 7→ Σ(t)(x))

is continuous and takes values in the closed subspace LC (Dr, Y ).

Proof. (a) The mappings

Dr × [0, 1] −→ Fr : (∆, t) 7→ ∆(t)

and

Fr × Ur −→ X : (γ, x) 7→ γ(x)

are FC 1 by Proposition 1.1.26. Since Dr × [0, 1] is not an open subset of Dr × [0, 1] we
have to use the calculus on locally convex sets with dense interior (Definition 1.1.5).

(b) and (c): The existence and continuity of the partial derivatives follows from (a). It
is easily verified that the partial derivatives have the given forms. The complex linearity
of the operators is clear from the formulas.

Proposition 3.2.2 (Local Existence). Let (t0, x0,∆0) ∈ [0, 1] × Ur × BDr

R (0). Then
there exists an ε > 0 such that the initial value problem

dx

dt
(t) = g(t, x,∆0)

x(t0) = x0

has a unique solution x : ]t0 − ε, t0 + ε[∩[0, 1] −→ Ur.

Proof. By Proposition 3.2.1, the function g satisfies a Lipschitz-condition in its second
component. Hence, the assertion follows from the classical Picard-Lindelöf-Theorem (see
e.g. Theorem 1.1.22).

Proposition 3.2.3 (Global Existence). Let s < r
2e

−R. Let t0 := 0, x0 ∈ Us and ∆0 ∈

BDr

R (0). Then the initial value problem

dx

dt
(t) = g(t, x,∆0) = ∆0(t)(x)

x(0) = x0

has a unique solution x : [0, 1] −→ Ur.
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3 Germs of diffeomorphisms around a compact set in a Banach space

Proof. We know by Proposition 3.2.2 that there exists a unique local solution around
each point. We will assume that x : I −→ Ur is a solution where I = [0, T ] ⊆ [0, 1] is an
interval containing 0. The point x0 ∈ Us = K + BXs (0) can be written as x0 = a0 + v0
with a0 ∈ K and ‖v0‖X < s. We will now show that this solution never gets out of

BXr
2

(a0) and use that fact to conclude that it extends to a global solution:

For every t ∈ [0, 1] the vector field ∆0(t) lies in Fr = BC 1
C (Ur,X)K and therefore

vanishes on K. Therefore ∆0(t)(a0) = 0 for all t ∈ [0, 1]. Hence, the following constant
curve

y : I −→ Ur : t 7→ a0

is a solution to the initial value problem

dy

dt
(t) = g(t, y,∆0) = ∆0(t)(y)

y(0) = a0.

Now, by Grönwall’s inequality (Lemma 1.1.24(b)), the difference between two solutions
of the same differential equation at time t can be bounded above by

‖x(t) − y(t)‖X ≤ ‖x(0) − y(0)‖X · et·‖∆0‖∞ .

Here, maxt∈[0,1] ‖∆0(t)‖D = ‖∆0‖∞ ≤ ‖∆0‖C1 < R is a Lipschitz constant for the
differential equation. Therefore, we get

‖x(t) − a0‖X = ‖x(t) − y(t)‖X ≤ ‖x0 − a0‖X · et·‖∆0‖∞

≤ ‖v0‖X︸ ︷︷ ︸
<s

·e1·R <
r

2
· e−R · eR =

r

2
.

This shows that the maximal solution x : I −→ Ur takes values only in the closed ball
BXr

2
(a0). Hence, its distance to the boundary is always at least r

2 . We may apply

the quantitative version of Picard-Lindelöf (Theorem 1.1.22) with the parameters ρ :=
r
2 , τ := 1,M = R and see that the solution can be enlarged around point T to a solution
on [0, 1]∩ [0, T +α] with α := ρ

M . Since this value alpha does not depend on the number
T , we can iterate this argument and obtain after a finite number of steps a global solution
on [0, 1].

Since the local solutions are unique, the same holds for the global solution.
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3.2 Regularity of DiffGerm(K,X)

Proposition 3.2.4 (Existence of a flow). As in Proposition 3.2.3, let s < r
2e

−R.

(a) There is a unique map

Φ: [0, 1] × Us × BDr

R (0) −→ Ur

with the property that for every fixed x0 ∈ Us and ∆0 ∈ BDr

R (0), the map Φ(·, x0,∆0)
is a solution to

dx

dt
(t) = g(t, x,∆0)

x(0) = x0.

(b) The map Φ: [0, 1] × Us × BDr

R (0) −→ Ur is FC 1
R.

(c) For every fixed t ∈ [0, 1], the map

Φ(t, ·) : Us × BDr

R (0) −→ Ur

is Cω
C
.

(d) For fixed (t,∆) ∈ [0, 1] × BDr

R (0), the map

Φt,∆ : Us −→ Ur
x 7−→ Φ(t, x,∆)

is a Cω
C
-diffeomorphism onto its open image, fixing K pointwise.

(e) For fixed t ∈ [0, 1], the map

BDr

R (0) −→ BC(Us,X)
∆ 7−→ Φt,∆

is Cω
C
.

(f) The curve

Σ : [0, 1] −→ Es
t 7−→ Φt,∆ − idUs

makes sense and is C1
R

with derivative:

Σ′(t) = ∆(t) ◦ Φt,∆

Proof. (a) This is exactly what was shown in Proposition 3.2.3.

(b) Using Proposition 3.2.1, we see that our differential equation satisfies the hypotheses
of Theorem 1.1.23. Therefore there is an FC 1

R-flow around each point. By uniqueness
of the flow (Proposition 3.2.2), we get the FC 1

R-property of the map Φ: [0, 1] × Us ×
BDr

R (0) −→ Ur constructed in (a).
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3 Germs of diffeomorphisms around a compact set in a Banach space

(c) Let (t0, x0,∆0) ∈ [0, 1]×Us ×BDr

R (0). By Lemma 1.1.17, it suffices to show that the
partial derivatives ∂

∂xΦ(t0, x0,∆0) and ∂
∂∆Φ(t0, x0,∆0) are complex linear.

In the special case t = 0, we get Φ(0, x0,∆0) = x0. And therefore ∂
∂xΦ(0, x0,∆0) = idX

and ∂
∂∆Φ(0, x0,∆0) = 0 are complex linear.

We define the following curve

Ω: [0, 1] −→ LR (X,X) : t 7→
∂

∂x
Φ(t, x0,∆0).

It suffices to show that it takes values in the closed subspace LC (X,X) ⊆ LR (X,X).

By Theorem 1.1.23, the curve Ω: [0, 1] −→ LR (X,X) is differentiable and we have

Ω′(t) =
∂

∂t

∂

∂x
Φ(t, x0,∆0)

=
∂

∂x

∂

∂t
Φ(t, x0,∆0)

=
∂

∂x

(
g
(
t,Φ(t, x0,∆0),∆0

) )

=
∂g

∂x
(t,Φ(t, x0,∆0),∆0) ·

∂Φ

∂x
(t, x0,∆0)

︸ ︷︷ ︸
=Ω(t)

.

This shows:

Ω′(t) =
∂g

∂x
(t,Φ(t, x0,∆0),∆0) · Ω(t).

By Proposition 3.2.1, ∂g
∂x takes only values in LC (X,X). Hence, the linear differential

equation

y′ =
∂g

∂x
(t,Φ(t, x0,∆0),∆0) · y.

admits a solution Ξ in the closed subspace LC (X,X). By uniqueness of solutions of the
corresponding differential equation in LR (X,X), we get that Ω = Ξ.

The same argument works for ∂
∂∆Φ.

(d) The complex analyticity of Φt0,∆0 follows from part (c). To see injectivity, assume
Φt0,∆0(x1) = Φt0,∆0(x2). Consider the following initial value problem

dx

dt
(t) = g(t, x,∆0)

x(t0) = Φt0,∆0(x1).

It has a unique solution, whence also the value at time 0 is unique. Therefore, x1 = x2.

Since the vector field ∆(t) is constantly zero on K, the flow is constant on K.
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3.2 Regularity of DiffGerm(K,X)

(e) By part (c) and Lemma 1.1.18, the map

BDr

R (0) −→ BC(Us,X)
∆ 7−→ Φt,∆

is analytic, if it is continuous. Therefore, it remains to show its continuity.

For (x,∆) ∈ Us × BDr

R (0), set

Bx,∆ : [0, 1] −→ L (X,X) : t 7→
∂g

∂x
(t,Φ(t, u,∆),∆)

Cx,∆ : [0, 1] −→ L (Dr,X) : t 7→
∂g

∂∆
(t,Φ(t, u,∆),∆).

By Theorem 1.1.23, we know that for fixed (x,∆) ∈ Us × BDr

R (0) the curve

zx,∆ : [0, 1] −→ L (Dr,X)

t 7−→ ∂Φ
∂∆(t, x,∆)

satisfies the initial value problem

dz

dt
(t) = Bx,∆(t) ◦ z(t) + Cx,∆(t),

z(0) = 0.

Therefore, we can estimate:

‖zx,∆(t)‖op =

∥∥∥∥∥∥
z(0)︸︷︷︸
=0

+

∫ t

0

d

dt
zx,∆(s)ds

∥∥∥∥∥∥
op

=

∥∥∥∥
∫ t

0

(
Bx,∆(s) ◦ zx,∆(s) + Cx,∆(s)

)
ds

∥∥∥∥
op

≤ sup
s∈[0,1]

‖Bx,∆(s)‖op

︸ ︷︷ ︸
=bx,∆

·

∫ t

0
‖zx,∆(s)‖op ds+ sup

s∈[0,1]
‖Cx,∆(s)‖op

︸ ︷︷ ︸
=cx,∆(s)

So, we can apply Grönwall’s inequality (Lemma 1.1.24(a)) and obtain:

∥∥∥∥
∂Φ

∂∆
(t, x,∆)

∥∥∥∥
op

= ‖zx,∆(t)‖op≤ cx,∆ · et·bx,∆ . (∗)

Now, we use Proposition 3.2.1 to find estimates for bx,∆ and cx,∆, which are independent
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3 Germs of diffeomorphisms around a compact set in a Banach space

of x and ∆:

bx,∆ = sup
s∈[0,1]

‖Bx,∆(s)‖op

= sup
s∈[0,1]

∥∥∥∥
∂g

∂x
(s,Φ(s, u,∆),∆)

∥∥∥∥
op

= sup
s∈[0,1]

∥∥(∆(s))′ (Φ(s, u,∆))
∥∥

op

≤ ‖∆‖∞ ≤ ‖∆‖Dr
< R.

cx,∆ = sup
s∈[0,1]

‖Cx,∆(s)‖op

= sup
s∈[0,1]

∥∥∥∥
∂g

∂∆
(s,Φ(s, u,∆),∆)

∥∥∥∥
op

= sup
s∈[0,1]

‖g(s,Φ(s, u,∆), ·)‖op

≤ 1.

Therefore, (∗) reduces to

∥∥∥∥
∂Φ

∂∆
(t, x,∆)

∥∥∥∥
op

≤ eRt. (∗∗)

Now, we can show Lipschitz-continuity of the map ∆ 7→ Φt,∆:

‖Φt,∆ − Φt,Σ‖∞ = sup
x∈Us

‖Φ(t, x,∆) − Φ(t, x,Σ)‖X

= sup
x∈Us

∥∥∥∥
∫ 1

0

∂Φ

∂∆
(t, x, τ∆ + (1 − τ)Σ).(∆ − Σ) dτ

∥∥∥∥
X

≤ sup
x∈Us

∫ 1

0

∥∥∥∥
∂Φ

∂∆
(t, x, τ∆ + (1 − τ)Σ)

∥∥∥∥
op

‖∆ − Σ)‖Dr
dτ

≤ eRt · ‖∆ − Σ‖Dr
.

(f) The map Φt,∆ − idUs : Us −→ X is complex analytic, bounded and constantly zero
on K, therefore it is an element in the Banach space Es = Holb (Us,X)K and the map
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3.2 Regularity of DiffGerm(K,X)

Σ: [0, 1] −→ Es makes sense. Now

∥∥∥∥
Φt+τ,∆ − Φt,∆

τ
− ∆(t) ◦ Φt,∆

∥∥∥∥
∞

= sup
x∈Us

∥∥∥∥
Φ(t+ τ, x,∆) − Φ(t, x,∆)

τ
− ∆(t) ◦ Φt,∆(x)

∥∥∥∥
X

= sup
x∈Us

∥∥∥∥
∫ 1

0

∂Φ

∂t
(t+ uτ, x,∆)du− ∆(t) ◦ Φt,∆(x)

∥∥∥∥
X

= sup
x∈Us

∥∥∥∥
∫ 1

0

(
∆(t+ uτ) ◦ Φ(t+ uτ, x,∆) − ∆(t) ◦ Φt,∆(x)

)
du

∥∥∥∥
X

≤ sup
x∈Us

u∈[0,1]

‖∆(t+ uτ) ◦ Φ(t+ uτ, x,∆) − ∆(t) ◦ Φt,∆(x)‖X

≤ sup
x∈Us

u∈[0,1]

∥∥∆(t+ uτ)
(
Φ(t+ uτ, x,∆)

)
− ∆(t)

(
Φ(t+ uτ, x,∆)

)∥∥
X

+ sup
x∈Us

u∈[0,1]

∥∥∆(t)
(
Φ(t+ uτ, x,∆)

)
− ∆(t)

(
Φ(t, x,∆)

)∥∥
X

≤ sup
u∈[0,1]

‖∆(t+ uτ) − ∆(t)‖∞

+
∥∥(∆(t))′

∥∥
∞

sup
x∈Us

u∈[0,1]

‖Φ(t+ uτ, x,∆) − Φ(t, x,∆)‖X

≤ sup
u∈[0,1]

‖∆(t+ uτ) − ∆(t)‖∞ +
∥∥(∆(t))′

∥∥
∞

∥∥∥∥
∂

∂t
Φ

∥∥∥∥
∞

|τ |

−→ 0

This shows that the curve Σ: [0, 1] −→ Es is differentiable with derivative Σ′(t) =
∆(t) ◦ Φt,∆.

The derivative is continuous by Lemma 1.1.25 .

Now, we may prove the final theorem of this chapter:

Theorem 3.2.5 (Strong C1-Regularity of DiffGerm(K,X) ). The Lie group G :=
DiffGerm(K,X), constructed in Theorem 3.1.1 is strongly C1-regular, i.e. there is a
map

Evol : C1([0, 1],L(G)) −→ C1([0, 1], G)

such that
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3 Germs of diffeomorphisms around a compact set in a Banach space

(a) For every ∆ ∈ C1([0, 1],L(G)), we have δR(Evol(∆)) = ∆.

(b) The map

evol : C1([0, 1],L(G)) −→ G : ∆ 7→ Evol(∆)(1)

is C∞
R

.

Proof. Let R > 0 be fixed.

By Proposition 3.2.4(d), we know that for fixed r > 0, 0 < s < r
2e

−R and ∆ ∈ BDr

R (0),
the map

Φt,∆ : Us −→ Ur
x 7−→ Φ(t, x,∆)

can be considered as an element in the Lie group DiffGerm(K,X).

By Proposition 3.2.4(f), the curve

Σ : [0, 1] −→ Es
t 7−→ Φt,∆ − idUs

is C1
R
.

The inclusion map Es −→ Γ : γ 7→ γ is continuous linear. The manifold structure on
DiffGerm(K,X) was constructed such that addition of the identity becomes a diffeomor-
phism. This means that

Σ̃ : [0, 1] −→ DiffGerm(K,X)
t 7−→ Φt,∆

is a C1
R
-curve.

Since the global chart is just an affine map, the tangent space at each point on the Lie
group can be identified with the vector space Γ.

By Proposition 3.2.4(f), we have

Σ′(t) = ∆(t) ◦ Φt,∆

This allows us to calculate the right logarithmic derivative of Σ̃:

δRΣ̃(t) = Σ̃′(t) ◦
(
Σ̃(t)

)−1

= ∆(t) ◦ Φt,∆ ◦ (Φt,∆)−1 = ∆(t).

So far, we have seen that every curve in the set BDr

R (0) has a right evolution.
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3.2 Regularity of DiffGerm(K,X)

But since the direct limit Γ =
⋃
r>0 Fr is compactly regular (Proposition 3.1.4), every

C1-curve ∆: [0, 1] −→ Γ can be considered as a C1-curve with values in Fr for an r > 0.
By choosing R > 0 large enough, we see that every C1-curve in the Lie algebra has a
right evolution.

Now, we claim that for each r,R > 0 the map

evolr : BDr

R (0) −→ DiffGerm(K,X)
∆ 7−→ Evol(∆)(1) = Φ1,∆

is complex analytic. In order to show that, we use the global chart and that the inclusion
map into the direct limit is continuous linear. Hence, it suffices to show that

BDr

R (0) −→ Es
∆ 7−→ Φ1,∆ − idUs

is complex analytic, which follows from Proposition 3.2.4(e).

So, we are in the following situation: Each evolr : BDr

R (0) −→ DiffGerm(K,X) is complex
analytic and bounded (using the global chart). By construction, it is clear that for each

r2 < r1, we have B
Dr1
R (0) ⊆ B

Dr2
R (0) and

evolr2|B
Dr1
R

(0)
= evolr1

By Theorem 2.1, the following map

evol :=
⋃

r>0

evolr :
⋃

r>0

BDr

R (0) −→ DiffGerm(K,X)

is complex analytic. It is defined on
⋃
r>0 BDr

R (0), which is an open subset of the locally
convex vector space

⋃

r>0

Dr =
⋃

r>0

C1 ([0, 1], Fr) ,

which can be identified with

C1

(
[0, 1],

⋃

r>0

Fr

)

using the Theorem of Mujica for Ck-curves (Lemma 1.2.7). The completeness assump-
tions of Lemma 1.2.7 are satisfied since every Fr is a Banach space and since

⋃
r>0 Fr is

complete by Proposition 3.1.4.

This proves that there is a smooth evolution map on a 0-neighborhood of C1
(
[0, 1],

⋃
r>0 Fr

)
,

which is by Proposition 1.3.10 sufficient to ensure strong C1-regularity.

Hence, DiffGerm(K,X) is a strongly C1-regular Lie group.
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4 Ascending unions of Banach Lie groups

4.1 Construction of the Lie group structure

In the following let G1 ⊆ G2 ⊆ · · · be an increasing sequence of analytic Banach Lie
groups, such that the inclusion maps jn : Gn −→ Gn+1 are analytic. Our goal is to
construct a Lie group structure on the union G :=

⋃∞
n=1Gn. But before we can define a

manifold structure on G, first we have to construct the modelling locally convex vector
space.

For every n ∈ N let gn := L(Gn) be the corresponding Banach Lie algebra. Since every
jn is an injective morphism of Lie groups with exponential function, it is well known
that the corresponding morphism of Lie algebras in := L(jn) : gn −→ gn+1 is injective
as well. Therefore we can identify in(gn) with gn and we may then assume that the
Lie algebras form an increasing sequence. The union of this sequence will be denoted
by g :=

⋃∞
n=1 gn. As a directed union of Lie algebras, this is clearly a Lie algebra. We

endow it with the locally convex direct limit topology. Since we can only deal with Lie
groups modeled on Hausdorff spaces, we have to make the assumption that this direct
limit is Hausdorff.

By Corollary 2.2, the Lie bracket [·, ·] : g × g −→ g is continuous and therefore (g, [·, ·])
becomes a locally convex Lie algebra. Note: This would already go wrong in general if
we considered direct limits of non-normable Lie algebras gn. There are examples where
the gn are Fréchet Lie algebras and the resulting Lie bracket fails to be continuous.

Since every group Gn is a Banach Lie group it admits a smooth exponential function.
By commutativity of the diagram

Gn
jn // Gn+1

gn
in //

expGn

OO

gn+1

expGn+1

OO

we know that every exponential function expGn
can be regarded as the restriction of the

exponential function expGn+1
of the following group. This allows us to define

Exp : g −→ G
x ∈ gn 7−→ expn(x) ∈ Gn

67



4 Ascending unions of Banach Lie groups

(Since we do not have a Lie group structure on G yet, it makes no sense to claim that
Exp is the exponential function of G, but it will turn out to be the right exponential
function.) So far we did not use the norms on the Banach Lie algebras gn. In a Banach
Lie algebra one usually expects the bilinear map [·, ·]n : gn×gn −→ gn to have a norm less
than or equal to 1, in which case we call ‖·‖n compatible. This can always be achieved
by replacing the norm ‖·‖n by a scalar multiple. For what follows it will be necessary
that all bonding maps in : gn −→ gn+1 have norm ≤ 1. Unfortunately, in general one
cannot have both. There are cases where it is not possible to find equivalent norms such
that both, the bonding maps and the Lie brackets, have a norm at most 1. Now we are
ready to formulate the main theorem of this section:

Theorem 4.1.1. Let G1 ⊆ G2 ⊆ · · · be analytic Banach Lie groups over K ∈ {R,C},
such that all inclusion maps jn : Gn −→ Gn+1 are analytic group homomorphisms. Set
G :=

⋃
n∈N

Gn. Assume that the following hold:

(a) For each n ∈ N there is a norm ‖·‖n on gn := L(Gn) defining its topology, such
that ‖[x, y]‖n ≤ ‖x‖n ‖y‖n for all x, y ∈ gn and such that the bounded operator
L(jn) : gn −→ gn+1 has operator norm at most 1.

(b) The locally convex direct limit topology on g :=
⋃
n∈N

gn is Hausdorff.

(c) The map expG :=
⋃
n∈N

expGn
: g −→ G is injective on some 0-neighborhood

Then there exists a unique K-analytic Lie group structure on G which makes expG a
local Cω

K
-diffeomorphism at 0.

This theorem and its proof can also be found in [5] (Theorem C).

Proof. Set R := 1
3 log 3

2 and C := log 2. By Lemma 1.3.12, we know that in a Banach
Lie algebra gn with compatible norm ‖·‖n, the BCH -series converges for all x, y ∈ gn
with ‖x‖n + ‖y‖n < log 3

2 and defines an analytic multiplication:

∗n : Bgn×gn

R (0) −→ Bgn

C (0) .

We give the space En := gn × gn the norm ‖(x, y)‖En
:= max(‖x‖n , ‖y‖n).

We will show now that this BCH-multiplication extends to the direct limit, using The-
orem 2.1. Since Theorem 2.1 is only available in the complex case, we need a case
distinction:

First, conder K = C.

The set U :=
⋃
n∈N

BEn

R (0) is an open 0-neighborhood in the direct limit

E :=
⋃

n∈N

(gn × gn) ∼=

(
⋃

n∈N

gn

)
×

(
⋃

n∈N

gn

)
.

We are now ready to apply Theorem 2.1, since all hypotheses are satisfied and therefore
the map ∗ =

⋃
n∈N

∗n : U −→ g is complex analytic.
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Now, consider the case K = R.

If K = R, we may consider the complexifications (gn)C of the real Banach spaces
(gn, ‖·‖gn

), together with the complex norms, introduced in Proposition 1.1.12. The
bonding maps L(jn) : gn −→ gn+1 extend to unique continuous C-linear mappings

L(jn) : gn −→ gn+1,

still having operator norm at most 1. The Lie bracket on each gn extends uniquely to
a continuous Lie bracket on (gn)C, turning it into a complex Lie algebra. However, it
is not clear, if the new norms are compatible with the new Lie bracket. By Proposition
1.1.12, we only have that

‖[x̃1, x̃2]‖(gn)C
≤ 4 · ‖x̃1‖(gn)C

‖x̃2‖(gn)C
.

Now, we replace each norm ‖·‖(gn)C
by 4 ‖·‖(gn)C

. These new norms induce the same
topology and are compatible with the Lie bracket. Since we took the same factor for
each (gn)C, the bonding maps still have operator norm at most 1.

Now, we proceed like in the complex case and obtain a complex analytic BCH -multiplication
on a (0, 0)-neighborhood of gC × gC which then restricts to a Cω

R
-map

∗ =
⋃

n∈N

∗n : U −→ g,

where U :=
⋃
n∈N

BEn
R
4

(0).

Now, we established that the BCH -multiplication is Cω
K

for K ∈ {R,C} and we can now
construct the Lie group structure using Corollary 1.3.16:

By hypothesis (c), we know that the exponential function is injective on some neighbor-
hood V ⊆ g. Since ∗ is continuous, there exists a smaller 0-neighborhood U ′ ⊆ U such
that U ′ ∗U ′ ⊆ V . Then, by Corollary 1.3.16 there exists an analytic Lie group structure
on the group

〈exp(g)〉 =
⋃

n∈N

〈
expGn

(gn)
〉

=
⋃

n∈N

(Gn)0

which is the union of the identity components of the Banach Lie groups we started with.

We now can extend this manifold structure from
⋃
n∈N

(Gn)0 to the whole group G, using
Proposition 1.3.15. In fact, being a subgroup,

⋃
n∈N

(Gn)0 is symmetric and contains 1.
As
⋃
n∈N

(Gn)0 already is a Lie group, multiplication and inversion are Cω
K

as required.
It only remains to show that conjugation with elements g ∈ G is Cω

K
.

Let g ∈ G be such an element. Then there is an m ∈ N such that g ∈ Gm. We have to
show that cg :

⋃
n∈N

(Gn)0 −→
⋃
n∈N

(Gn)0 is analytic.

Since AdGg :=
⋃
n≥m AdGn

g :
⋃
n≥m gn −→

⋃
n≥m gn is continuous by the locally convex

direct limit property, exp is a local diffeomorphism at 0 and cg ◦ exp = exp ◦AdGg , it
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4 Ascending unions of Banach Lie groups

follows that cg is analytic on some identity neighborhood. This is sufficient for a group
homomorphism to be analytic everywhere.

This turns G into a Cω
K
-Lie group in which

⋃
n∈N

(Gn)0 is an open connected subgroup,
hence the identity component.

The uniqueness of the manifold structure is clear since exp is a local diffeomorphism.

4.2 Regularity of local Banach Lie groups

Lemma 4.2.1. Let
∑∞

n=1 ηnX
n denote the power series expansion of − log (2 − exp(2X))

around zero. Then the power series
∑

n∈N

n(2e)nηnX
n and

∑

n∈N

n(n− 1)(2e)2n−1 · ηnX
n

have positive radius of convergence.

Let g be a Banach Lie algebra over K with compatible norm and BCH-series

µ(x, y) = x ∗ y =
∑

n∈N

pn(x, y)

with continuous homogeneous polynomials pn : g×g −→ g and Fréchet derivatives p′n : g×
g −→ L (g × g, g) and p′′n : g×g −→ L (g × g,L (g × g, g)) ∼= Lin2

c (g × g, g). On the space
g × g, we use maximum norm. Then we have the following estimates:

(a) ‖pn‖op≤ ηn.

(b) ‖p′n‖op≤ n(2e)n · ηn.

(c) ‖p′′n‖op≤ n(n− 1)(2e)2n−1 · ηn.

Proof. The convergence of the two series is obvious. The proof of part (a) can be found
in [3] (Lemma 1, Ch. II, §7). Part (b) and (c) follow from (a) using Corollary 1.1.9

Lemma 4.2.2. We fix a real number s0 ∈]0, 1
3 log 3

2 [ such that

∑

n≥2

n(2e)nηn · (4s0)
n−1 ≤

1

4

and that
∑

n≥2

n(n− 1)(2e)2n−1ηn · (4s0)
n−2 ≤

1

8
,

using the converging power series introduced in Lemma 4.2.1.

Let g be a Banach Lie algebra over K with compatible norm, addition map αg : g× g −→
g : (x, y) 7→ x+ y and BCH-multiplication µ(x, y) = x ∗ y. Then for all a, b ∈ Bg

4s0
(0),

we have the estimates:
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4.2 Regularity of local Banach Lie groups

(a) ‖µ′(a, b) − αg‖op≤
1
2

(b) ‖µ′′(a, b)‖op≤
1
8 .

Proof. First of all, a number s0 with the desired properties exists since the power series
introduced in Lemma 4.2.1 have a positive radius of convergence.

(a) We write the BCH -multiplication as in Lemma 4.2.1:

µ(a, b) = a ∗ b =
∑

n∈N

pn(a, b)

It is known that p1 = αg. Now, we take the Fréchet derivative on both sides:

µ′(a, b) =
∑

n∈N

p′n(a, b).

Since p1 is linear, we have p′1(a, b) = p1 = αg. Hence, we can estimate:

∥∥µ′(a, b) − αg

∥∥
op

=

∥∥∥∥∥
∑

n∈N

p′n(a, b) − p′1(a, b)

∥∥∥∥∥
op

=

∥∥∥∥∥∥

∑

n≥2

p′n(a, b)

∥∥∥∥∥∥
op

≤
∑

n≥2

∥∥p′n(a, b)
∥∥

op

≤
∑

n≥2

∥∥p′n
∥∥

op
‖(a, b)‖n−1

≤
∑

n≥2

n(2e)nηn(4s0)
n−1

≤
1

4
.

(b) Taking once again the Fréchet derivative of µ′, we obtain:

µ′′(a, b) =
∑

n∈N

p′′n(a, b)
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4 Ascending unions of Banach Lie groups

with p′′1 = 0. Now, we estimate:

∥∥µ′′(a, b)
∥∥

op
=

∥∥∥∥∥∥

∑

n≥2

p′′n(a, b)

∥∥∥∥∥∥
op

≤
∑

n≥2

∥∥p′′n(a, b)
∥∥

op

≤
∑

n≥2

∥∥p′′n
∥∥

op
‖(a, b)‖n−2

≤
∑

n≥2

(n(2e)n)2 ηn(4s0)
n−2

≤
1

8
.

Theorem 4.2.3 (Quantitative Strong C0-Regularity of local Banach Lie groups). Let(
Bg

1
3

log 3
2

(0) ,D, ∗, 0g,−id

)
be the local Banach Lie group, corresponding to a Banach

Lie algebra (g, ‖·‖) as constructed in Proposition 1.3.13 and let s0 > 0 be the number
taken from Lemma 4.2.2 and consider the set V :=

{
γ ∈ C1

∗ ([0, 1], g) : ‖γ′‖∞ < 4s0
}

which is open in the Banach space

C1
∗ ([0, 1], g) :=

{
γ ∈ C1([0, 1], g) : γ(0) = 0

}
.

Then the left logarithmic derivative

δ|V : V −→ C ([0, 1], g)
γ 7−→ δγ

is a diffeomorphism onto its open image δ (V ) which contains B
C([0,1],g)
s0 (0). In particular,

the local Lie group Bg

1
3

log 3
2

(0) is strongly C0-regular.

Proof. We set R := 1
3 log 3

2 and C := log 2 and let

µ : Bg

R (0) × Bg

R (0) −→ Bg

C (0) : (x, y) 7→ x ∗ y.

By Lemma 1.3.14, we know that the left logarithmic derivative of a C1-curve in Bg

R (0)
can be written as:

δγ(t) = dλ−γ(t)(γ(t), γ
′(t)) = dµ

(
(−γ(t), γ(t)), (0, γ′(t))

)

First, we will now show that δ : C1
∗

(
[0, 1],Bg

R (0)
)
−→ C ([0, 1], g) is a smooth map.

Since the BCH -multiplication is smooth, the map

dµ : (Bg

R (0) × Bg

R (0)) × (g × g) −→ g
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4.2 Regularity of local Banach Lie groups

is also smooth. Now, the map δ : C1
∗

(
[0, 1],Bg

R (0)
)
−→ C ([0, 1], g) can be written as

δ = g ◦ Φ, with

Φ : C1
∗

(
[0, 1],Bg

R (0)
)

−→ C
(
[0, 1], (Bg

R (0) × Bg

R (0)) × (g × g)
)

γ 7−→

(
(−γ, γ), (0, γ′)

)

and

g : C
(
[0, 1], (Bg

R (0) × Bg

R (0)) × (g × g)
)

−→ C ([0, 1], g)
η 7−→ dµ ◦ η.

The map Φ is just a restriction of a bounded linear operator, hence smooth. The map g
is a composition map and it is smooth by Lemma 1.1.25.

Hence, the left logarithmic derivative δ : C1
∗

(
[0, 1],Bg

R (0)
)
−→ C ([0, 1], g) is a smooth

map.

From now on, we fix the following norm on the space C1
∗ ([0, 1], g):

‖γ‖D :=
∥∥γ′
∥∥
∞
.

It generates the usual topology on C1
∗ ([0, 1], g), because of the estimate:

‖γ‖∞ = sup
t∈[0,1]

∥∥∥∥
∫ t

0
γ′(s)ds

∥∥∥∥ ≤ ‖γ‖D . (∗)

However, it has the advantage, that the following operator

T : C1
∗ ([0, 1], g) −→ C ([0, 1], g)

γ 7−→ γ′

becomes an isometric isomorphism.

Now, we define the function

f : V = B
C1

∗([0,1],g)
4s0

(0) −→ C ([0, 1], g)

γ 7−→ δγ − γ′.

Our next goal is to show that f is Lipschitz-continuous by estimating the norm of the
Fréchet derivative:

f ′ : V −→ L
(
C1
∗ ([0, 1], g) , C ([0, 1], g)

)
.
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4 Ascending unions of Banach Lie groups

Let γ ∈ B
C1

∗([0,1],g)
4s0

(0), η ∈ C1
∗ ([0, 1], g) with ‖η‖D = 1 and t ∈ [0, 1] be given. By (∗),

this implies that ‖γ‖∞ < 4s0. Now

∥∥(f ′(γ).η
)
(t)
∥∥

g
=
∥∥(dδ(γ, η) − η′

)
(t)
∥∥

g

=
∥∥(dµ)′ (Φ(γ)(t)) · Φ(η)(t) − η′(t)

∥∥
g

=
∥∥d(dµ) (Φ(γ)(t),Φ(η)(t)) − η′(t)

∥∥
g

=
∥∥∥d(dµ)

( (
−γ(t), γ(t), 0, γ′(t)

)
,
(
−η(t), η(t), 0, η′(t)

) )
− η′(t)

∥∥∥
g

≤
∥∥∥d(2)µ

(
(−γ(t), γ(t)) ,

(
0, γ′(t)

)
, (−η(t), η(t))

)∥∥∥
g

+
∥∥∥dµ

(
(−γ(t), γ(t)) ,

(
0, η′(t)

) )
− η′(t)

∥∥∥
g

=
∥∥∥µ′′

(
− γ(t), γ(t)

)( (
0, γ′(t)

)
, (−η(t), η(t))

)∥∥∥
g

+
∥∥µ′ (−γ(t), γ(t))

(
0, η′(t)

)
− αg(0, η

′(t))
∥∥

g

≤
∥∥µ′′(−γ(t), γ(t))

∥∥
op

∥∥(0, γ′(t)
)∥∥ ‖(−η(t), η(t))‖

+
∥∥µ′ (−γ(t), γ(t)) − αg

∥∥
op

∥∥(0, η′(t)
)∥∥

≤
∥∥µ′′

∥∥
∞
‖γ‖D ‖η‖∞ +

∥∥µ′(−γ(t), γ(t)) − αg

∥∥
op
‖η‖D

≤
1

8
· 4s0 · 1 +

1

2
· 1 <

3

4
.

This shows that f ′ : V −→ L
(
C1
∗ ([0, 1], g) , C ([0, 1], g)

)
is globally bounded by 3

4 and
hence f is 3

4 -Lipschitz.

By the Lipschitz inverse function theorem (Theorem 1.1.21), the map δ = T + f is a

homeomorphism of B
C1

∗
([0,1],g)

4s0
(0) onto an open subset of C ([0, 1], g), containing the ball

B
C([0,1],g)
r′ (0) with r′ = 4s0

(
1 − 3

4

)
= s0.

For every fixed γ ∈ B
C1

∗([0,1],g)
4s0

(0), we have ‖δ′(γ) − T‖op = ‖f ′(γ)‖op ≤ 3
4 . Therefore

the bounded operator δ′(γ) lies in the open ball with radius 3
4 < 1 around an isometric

isomorphism and hence, δ′(a) is invertible. Using the ordinary inverse function theorem
for smooth mappings between Banach spaces, we get that δ is a diffeomorphism between

V and δ (V ) ⊇ B
C([0,1],g)
s0 (0). This finishes the proof.
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4.3 Regularity of (local and global) (LB)-Lie groups

4.3 Regularity of (local and global) (LB)-Lie groups

Theorem 4.3.1 (Regularity of local (LB)-Lie groups). Let g1 ⊆ g2 ⊆ · · · be an ascending
sequence of Banach Lie algebras over K ∈ {R,C} with a Hausdorff locally convex direct
limit g =

⋃
n gn. Assume furthermore, that all inclusion maps and all Lie brackets have

operator norm at most 1. As in Proposition 1.3.13, we have for each n ∈ N a local Lie

group

(
Bgn

1
3

log 3
2

(0) ,Dn, ∗|Dn , 0gn ,−id

)
, where

Dn :=

{
(x, y) ∈ Bg

1
3

log 3
2

(0) × Bg

1
3

log 3
2

(0) : x ∗ y ∈ Bg

1
3

log 3
2

(0)

}
.

We set V :=
⋃
n Bg

1
3

log 3
2

(0) and D :=
⋃
nDn ⊆ V × V .

(a) The space g is again a topological Lie algebra and (V,D, µ, 0, ηV ) becomes a local
Cω

K
-Lie group, where µ is the BCH-multiplication and ηV = −idV .

(b) If the sequence (gn)n∈N
is boundedly regular, then (V,D, µ, 0, ηV ) is strongly C1-

regular.

(c) If the sequence (gn)n∈N
is compactly regular, then (V,D, µ, 0, ηV ) is even strongly

C0-regular.

(d) If the sequence (gn)n∈N
is not boundedly regular, then (V,D, µ, 0, ηV ) is not even

C∞-regular.

Proof. During this proof, we fix the constants R := log 3
2 and C := log 2.

(a) We begin with the case that K = C. We endow the space En := gn × gn with the
norm ‖(x, y)‖En

:= max{‖x‖n , ‖y‖n}. Then we have

BEn

R (0) = Bgn

R (0) × Bgn

R (0)

and the BCH -multiplication maps

µ̃n : BEn

R (0) −→ Bgn

C (0) : (x, y) 7→ x ∗ y

are complex analytic and bounded (Lemma 1.3.12). It is possible to define the map

µ̃ : D :=
⋃

n∈N

BEn

R (0) −→ V :=
⋃

n∈N

Bgn

C (0) : (x, y) 7→ x ∗ y,

which is complex analytic by Theorem 2.1. Now, we restrict this map to set D:

µ := µ̃|D : D −→ V.

One verifies easily that (V,D, µ, 0, ηV ) becomes a local Lie group with this multiplication.
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4 Ascending unions of Banach Lie groups

The case K = R can be reduced to the complex case using the complexifications, (gn)C ,
together with the norms introduced in Proposition 1.1.12 and proceed like in the proof
of Theorem 4.1.1.

(b) We start with the continuous linear map

ψ : C1([0, 1],
⋃
n gn) −→ C([0, 1],

⋃
n gn)

γ 7−→ γ.

Since the sequence (gn)n∈N
is boundedly regular, we can apply Proposition 1.2.8 to

conclude that the image of ψ is contained in the locally convex direct limit

⋃

n

C([0, 1], gn)

which is a topological subspace of C([0, 1],
⋃
n gn) by Mujica’s Theorem (Theorem 1.2.5).

This yields a continuous linear map

ψ̃ : C1([0, 1],
⋃
n gn) −→

⋃
nC([0, 1], gn)

γ 7−→ γ.

By Theorem 4.2.3, every local group

(
Bgn

1
3

log 3
2

(0) ,Dn, ∗|Dn , 0gn ,−id

)
is strongly C0-

regular with the smooth evolution map

Evoln : B
C([0,1],gn)
s0 (0) −→ C1

∗

(
[0, 1],Bgn

1
3

log 3
2

(0)

)

δγ 7−→ γ.

The constant s0 > 0 is chosen as in Lemma 4.2.2 and is, in particular, independent of n.
If K = C, this allows us to use Theorem 2.1 again to get the complex analyticity of the
map

Evol :
⋃
n B

C([0,1],gn)
s0 (0) −→

⋃
nC

1
∗

(
[0, 1],Bgn

1
3

log 3
2

(0)

)

δγ 7−→ γ.

If K = R, we complexify the Banach Lie algebras gn with the norm introduced in
Proposition 1.1.12 and rescale it by 4 to obtain compatibility with the Lie brackets.
Then, use Theorem 2.1 to this complex setting and then restrict it to get the real
analyticity of Evol :=

⋃
n Evoln.

By construction, it is clear that ψ̃ maps the open neighborhood
⋃
n B

C1([0,1],gn)
s0 (0) in the

neighborhood
⋃
n B

C([0,1],gn)
s0 (0). Hence, the composition

Evol ◦ ψ̃ :
⋃
n B

C1([0,1],gn)
s0 (0) −→

⋃
nC

1
∗

(
[0, 1],Bgn

1
3

log 3
2

(0)

)

δγ 7−→ γ
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4.3 Regularity of (local and global) (LB)-Lie groups

is complex analytic. Thus, we have shown that each C1-curve in the 0-neighborhood⋃
n B

C1([0,1],gn)
s0 (0) has a left evolution and that the evolution map is complex analytic.

Hence, the local Lie group is strongly C1-regular.

(c) If we assume that the sequence (gn)n∈N
is even compactly regular, then the Mujica

Theorem (Theorem 1.2.5) tells us that

φ : C([0, 1],
⋃
n gn) −→

⋃
nC([0, 1], gn)

γ 7−→ γ

is a topological isomorphism and hence we get that

Evol ◦ φ :
⋃
n B

C([0,1],gn)
s0 (0) −→

⋃
n Bgn

C (0)
δγ 7−→ γ

is analytic. Hence, the local Lie group is strongly C0-regular.

(d) By [15], every C∞-regular local Lie group has a Mackey complete Lie algebra. But
by [6] (1.4.(f)), a countable direct limit of Banach spaces is Mackey complete if and only
if the sequence of Banach spaces is boundedly regular. The claim follows.

Let us return to the situation described at the beginning of this chapter:

Theorem 4.3.2 (Regularity of countable unions of Banach Lie groups). Let K ∈ {R,C}.
We are given an increasing sequence

G1 ⊆ G2 ⊆ · · ·

of K-analytic Banach Lie groups, such that the inclusion maps jn : Gn −→ Gn+1 are
analytic group homomorphisms. We fix a norm ‖·‖n on the Banach Lie algebra gn :=
L(Gn), defining its topology. We assume, that the locally convex direct limit g =

⋃
n gn

is Hausdorff and that all inclusion maps and all Lie brackets have operator norm at most
1. Also, we assume that the map

expG :=
⋃

n

expGn
: g −→

⋃

n

Gn

is injective on some 0-neighborhood in g. Then

(a) There exists a unique locally convex Lie group structure on the group G :=
⋃
nGn,

such that expG becomes a local diffeomorphism.

(b) If the sequence (gn)n∈N
is boundedly regular, then G is strongly C1-regular.

(c) If the sequence (gn)n∈N
is compactly regular, then G is even strongly C0-regular.

(d) If the sequence (gn)n∈N
is not boundedly regular, then G is not even C∞-regular.

77



4 Ascending unions of Banach Lie groups

Proof. Part (a) is exactly what was shown in Theorem 4.1.1.

The Lie group G is locally exponential which means that there is a 0-neighborhood
U ⊆ g such that expG |U is a diffeomorphism onto the open identity-neighborhood V :=
expG(U). We may assume that V is symmetric. We set

DV := {(x, y) ∈ V × V : xy ∈ V }

Then (V,DV , µ, 1G, ηV ) becomes a local Lie group. After making the 0-neighborhood U
smaller, we may assume that the exponential map becomes a local isomorphism between

the local Lie groups W ⊆ G and the local Lie group

(
Bg

1
3

log 3
2

(0) ,D, ∗, 0g,−id

)
. By

Proposition 1.3.10 strong Ck-regularity of the Lie group G is equivalent to the regularity
of the local group (V,D, µ, 1G, ηV ). Therefore, (b), (c) and (d) follow immediately from
Theorem 4.3.1.
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5 Examples of ascending unions of Banach
Lie groups

5.1 Groups of germs of Lie group-valued mappings

Let K ∈ {R,C} and let X be a Banach space over K. Let K ⊆ X be a non-empty
compact subset, let H be a fixed K-Banach Lie group.

Consider the set:

Germ(K,H) :=

{
η : Uη −→ H :

Uη is a neighborhood of K in X
and η is a Cω

K
map

}
/∼,

where two maps η1, η2 are considered equivalent, η1 ∼ η2, if they coincide on a common
neighborhood of K. This becomes a group with respect to pointwise multiplication of
maps.

As in Chapter 3, we fix the following basis of K-neighborhoods: Un := K + BX1
n

(0).

Consider the following Banach spaces:

En := (Holb (Un, h) , ‖·‖∞) .

Helge Glöckner showed in [9, Section 10] that the group Germ(K,H) carries the structure
of a locally convex Lie group with Lie algebra

Germ(K, h) :=
⋃

n∈N

En,

with the following continuous linear mappings as bonding maps:

En −→ En+1 : γ 7→ γ|Un .

He used different methods for constructing the Lie group structure, which did not depend
on Theorem 2.1. However, with the tools developed in this thesis, we can prove the
regularity of the above group — a novel result.

Theorem 5.1.1 (Regularity of Germ(K,H)). The Lie group Germ(K,H) is strongly
C0-regular.

Proof. By Theorem 4.3.2, it suffices to show that the direct limit is compactly regular.
But this is the case by Proposition 3.1.4 (and the accompanying remark).
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5 Examples of ascending unions of Banach Lie groups

5.2 Lie groups associated to Dirichlet series

In this section we construct more “exotic” examples of Lie groups modelled on Banach
and (LB)-spaces. In fact, the discussion of these examples originally led to the discovery
of Theorem 2.1. All vector spaces and Lie groups will be over the field C.

5.2.1 Banach spaces of Dirichlet series

Definition 5.2.1. 1. A formal Dirichlet series with values in a complex Banach
space X is a formal series of the form

∑

n∈N

an · n
−z,

where all an are elements in X. Like formal power series, two Dirichlet series are
considered equal if and only if all coefficients are equal.

2. For every s ∈ R, let Hs := {z ∈ C : Re(z) > s} denote the corresponding open half
plane and Hs := {z ∈ C : Re(z) ≥ s} the closed half plane in C.

3. A Dirichlet series is said to converge absolutely on Hs if

∥∥∥∥∥
∑

n∈N

an · n
−z

∥∥∥∥∥
(s)

:=

∞∑

n=1

‖an‖n
−s <∞.

The space of all X-valued Dirichlet series that converge absolutely on Hs will be
denoted by Ds(X). Together with the norm just defined this vector space becomes
a Banach space isomorphic to ℓ1(N,X) via the isomorphism

Ds(X) −→ ℓ1(N,X) :
∑

n∈N

an · n
−z 7→

(
an · n

−s
)
n∈N

.

4. The Banach space X can be embedded isometrically into Ds(X) via

X −→ Ds(X) : a 7→ a · 1−z =
∑

n∈N

δn,1a · n
−z.

All Dirichlet series obtained in this fashion are called constant.

Every Dirichlet series in Ds(X) can be viewed as a continuous bounded function from the
closed right half plane Hs to X. In fact, this interpretation defines a bounded operator
between Banach spaces of norm at most 1:

Υs : Ds(X) −→
(
BC
(
Hs,X

)
, ‖·‖∞

)
∑

n∈N
an · n

−z 7−→ (z 7→
∑∞

n=1 ann
−z)

(∗)
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5.2 Lie groups associated to Dirichlet series

All functions obtained in this fashion are complex analytic on the open half plane Hs.
Constant Dirichlet series as defined above are mapped to constant functions. The opera-
tor Υs is injective which means that it is possible to reconstruct the coefficients (an)n∈N

from the function. For example, the first coefficient is a1 = limRe(z)→+∞ γ(z). Similarly,
the other coefficients may be calculated. This means that a continuous function can
have at most one Dirichlet series representation.

But there are lots of functions which cannot be written as a Dirichlet series, although
they are continuous, bounded on Hs and complex analytic on Hs, e.g. f(z) = e−z · a for
an element a ∈ X,a 6= 0. This means that Υs is far from being surjective.

5.2.2 (LB)-spaces of Dirichlet series

So far, the number s defining the complex half plane Hs was fixed. Now, we are interested
in Dirichlet series which converge absolutely on some half plane. For s < t, the vector
space Ds(X) is a subspace of Dt(X), when both of them are regarded as vector subspaces
of the space of all formal Dirichlet series.

Lemma 5.2.2. For s < t the bonding maps it,s : Ds(X) −→ Dt(X) are bounded opera-
tors of norm ≤ 1.

Proof.

∥∥∥∥
∑

n∈N

an · n
−z

∥∥∥∥
(t)

=

∞∑

n=1

‖an‖X n
−t ≤

∞∑

n=1

‖an‖X n
−s =

∥∥∥∥
∑

n∈N

an · n
−z

∥∥∥∥
(s)

.

Since (N,≤) is cofinal in (R,≤) is suffices to look only at s ∈ N. So, again, we are dealing
with a countable direct limit:

Proposition 5.2.3. The space

D∞(X) :=
⋃

s∈N

Ds(X) ,

of all formal Dirichlet series which converge absolutely on some half plane, endowed
with the locally convex direct limit topology is Hausdorff and compactly regular.

Proof. Let fs : Ds(X) −→ XN :
∑

n∈N
an · n−z 7→ (an)n∈N

be the map that assigns to
every Dirichlet series its sequence of coefficients. This map is continuous since the range
space has the product topology and every component of fs is a continuous functional.
The space XN is locally convex (it is in fact a Fréchet space) and therefore, by the
universal property of the locally convex direct limit, there is a continuous extension
f : D∞(X) −→ XN. Since f is injective by construction and XN is Hausdorff, it follows
that also D∞(X) is Hausdorff.
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5 Examples of ascending unions of Banach Lie groups

Proposition 1.2.4 guarantees compact regularity of the limit D∞(X) if we can show that
for every s ∈ N there is a t ≥ s and an open 0-neighborhood Ω ⊆ Ds(X) such that
Dt(X) ,Dt+1(X) , . . . induce the same topology on Ω.

For every given s ∈ N we set t := s+ 2 and Ω := B
Ds(X)
1 (0). Let u ≥ t. To see that the

topologies on Ω induced by Dt(X) and Du(X) agree, it suffices to show that

Ω ⊆ Du(X) −→ Dt(X) : γ 7→ γ

is continuous. To this end, let ε > 0. Since the positive series
∑∞

n=1
1
n2 converges,

there is an n0 ∈ N such that
∑∞

n>n0

1
n2 < ε

4 . Set δ := nt−u0 · ε2 . We show that, for
any Dirichlet series γ1, γ2 ∈ Ω with ‖γ1 − γ2‖(u) < δ, we have ‖γ1 − γ2‖(t) < ε. Since
γ1, γ2 ∈ Ω, we have γd := γ1 − γ2 ∈ 2Ω. Therefore ‖γd‖(s) < 2 and ‖γd‖(u) < δ. Writing

γd =
∑

n∈N
an · n

−z, we obtain

‖γd‖(t) =
∞∑

n=1

‖an‖n
−t =

∑

n≤n0

‖an‖n
−t +

∑

n>n0

‖an‖n
−t

=
∑

n≤n0

‖an‖n
−u · nu−t︸︷︷︸

≤nu−t
0

+
∑

n>n0

‖an‖n
−s · ns−t︸︷︷︸

= 1
n2

≤ nu−t0

∑

n≤n0

‖an‖n
−u +

∑

n>n0

‖an‖n
−s

︸ ︷︷ ︸
≤‖γd‖(s)

·
1

n2

≤ nu−t0 ‖γd‖(u)︸ ︷︷ ︸
<δ

+ ‖γd‖(s)︸ ︷︷ ︸
<2

∑

n>n0

1

n2

︸ ︷︷ ︸
< ε

4

< nu−t0 · δ + 2 ·
ε

4
= ε.

This is what we had to show.

5.2.3 Lie groups associated with Dirichlet series

From now on, let G denote a fixed complex Banach Lie group with Lie algebra g. As be-
fore, s ∈ R is a real number. We know that G has an exponential function expG : g −→ G.
Every Dirichlet series γ ∈ Ds(g) with values in g can be composed with the exponential
function and yields a continuous function from Hs to G. All these continuous functions
generate a group (with respect to pointwise multiplication of functions):

Theorem 5.2.4 (Lie groups associated with Dirichlet series (Banach case)). Let s ∈ R,
and a Banach Lie group G with Lie algebra g be given. Then there exists a unique
Banach Lie group structure on the group

Ds(G) := 〈{expG ◦Υs(γ) : γ ∈ Ds(g)}〉 ≤ C
(
Hs, G

)

such that

Exps : Ds(g) −→ Ds(G) : γ 7→ expG ◦Υs(γ).
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5.2 Lie groups associated to Dirichlet series

becomes a local diffeomorphism around 0. Like before, Υs : Ds(g) −→ BC
(
Hs, g

)
denotes

the operator that assigns to a Dirichlet series its continuous function on Hs.

Proof. We start by choosing a compatible norm on g, i.e. ‖[x, y]‖
g
≤ ‖x‖

g
‖y‖

g
for all

x, y ∈ g. Then the space Ds(g) also carries a continuous bilinear map of operator norm
at most 1:

[·, ·] : Ds(g) ×Ds(g) −→ Ds(g)((∑

n∈N

an · n
−z

)
,
(∑

n∈N

bn · n
−z

))
7−→

∑

N∈N

(
∑

(n1,n2)∈N×N

n1·n2=N

[an1 , bn2 ]

)
·N−z,

turning it into a Banach Lie algebra. Note that the inner sum is finite. This Lie bracket
corresponds to the pointwise Lie bracket of functions, i.e. the operator

Υs : Ds(g) −→ BC
(
Hs, g

)

becomes a morphism of Banach Lie algebras. The Lie algebra g becomes a closed Lie
subalgebra of Ds(g) by identifying elements of g with constant Dirichlet series.

By Lemma 1.3.12, the BCH -series converges on

Ωg := {(x, y) ∈ g × g : ‖x‖ + ‖y‖ < log 2}

and defines an analytic multiplication: ∗ : Ωg −→ g. Since Ds(g) is a Banach Lie algebra
in its own right, we also have a BCH -multiplication there: ∗ : ΩDs(g) −→ Ds(g) . The
BCH -series is defined only in terms of iterated Lie brackets. Since addition and Lie
bracket of Dirichlet series in Ds(g) correspond to the pointwise operations in g, the BCH -
multiplication in Ds(g) corresponds to the pointwise BCH -multiplication of functions in
BC
(
Hs, g

)
.

Since G is a Banach Lie group, it is locally exponential, therefore there is a number ε◦ > 0
such that expG |Bg

ε◦ (0) is injective. Since the BCH -multiplication on g is continuous, there

is a δ > 0 such that Bg

δ (0) × Bg

δ (0) ⊆ Ωg and Bg

δ (0) ∗ Bg

δ (0) ⊆ Bg
ε◦ (0).

Let C
(
Hs, G

)
be the (abstract) group of all continuous maps from Hs to G with pointwise

multiplication. Then we can define the following map

Exps : Ds(g) −→ C
(
Hs, G

)
: γ 7→ expG ◦Υs(γ).

The restriction of Exps to B
Ds(g)
ε◦ (0) is injective since expG |Bg

ε◦(0) is injective. Here we
use that Υs is injective and of operator norm at most 1.

Now, all hypotheses for Corollary 1.3.16 are satisfied for U := B
Ds(g)
δ (0) , V := B

Ds(g)
ε◦ (0)

and H := C
(
Hs, G

)
. Therefore, by Corollary 1.3.16, we get a unique Cω

C
-Lie group

structure on the group Ds(G) = 〈Exps(Ds(g))〉 such that

Exps|U : U ⊆ Ds(g) −→ 〈Exps(U)〉

is a Cω
C
-diffeomorphism.
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Since for s < t the bonding maps

jt,s : Ds(G) −→ Dt(G)
f 7−→ f |

Ht

are injective group homomorphisms, we identify Ds(G) with a subgroup of Dt(G) and so
we can form the union group, which then consists of germs of functions from a complex
half plane to G together with the pointwise multiplication.

Theorem 5.2.5 (Lie groups associated with Dirichlet series ((LB)-case)). (a) On the
group

D∞(G) :=
⋃

s∈R

Ds(G) = 〈{expG ◦γ : γ ∈ Ds(g) , s ∈ R}〉

there is a unique Lie group structure turning

Exp :=
⋃

s∈R

Exps : D∞(g) −→ D∞(G) : γ ∈ Ds(g) 7→ expG ◦γ

into a local diffeomorphism around 0.

(b) This Lie group is strongly C0-regular.

The construction of this Lie group and the proof of part (a) can also be found in [5]
(Theorem D).

Proof. (a) We wish to use Theorem 4.1.1. For every s ∈ N, set Gs := Ds(G). The
bonding maps js : Gs −→ Gs+1 are group homomorphisms. Since js ◦ Exps = Exps ◦ is
with the continuous linear inclusion map is : Ds(g) −→ Ds+1(g), we see that each js is
analytic with L(js) = is.

By construction, the norms on the Lie algebras Ds(g) and the bounded operators
is : Ds(g) −→ Ds+1(g) have operator norm at most 1. The locally convex direct limit
is Hausdorff by Proposition 5.2.3, and the exponential map Exp =

⋃
s∈N

Exps is injec-

tive on the 0-neighborhood
⋃
s∈N

B
Ds(g)
ε◦ (0). Hence, by Theorem 4.1.1, there is a unique

complex analytic Lie group structure on G such that Exp is a local diffeomorphism at 0.

(b) By Proposition 5.2.3, the modelling space is a compactly regular direct limit. So, we
can apply Theorem 4.3.2 and obtain the result.
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5.3 Lie groups associated to Hölder continuous functions

5.3 Lie groups associated to Hölder continuous functions

5.3.1 Spaces of Hölder Continuous Functions

Throughout this section, let Ω be a convex bounded non-empty open subset of a real
Banach space X 6= 0.

Definition 5.3.1 (Hölder Spaces). Let Z be a Banach space over the field K ∈ {R,C}.

(a) We let BC 0,0(Ω, Z) := BC(Ω, Z) be the vector space of all bounded continuous Z-
valued functions on the set Ω. It will always be endowed with the norm ‖·‖(0,0) :=
p(0,0)(·) := ‖·‖∞.

(b) For a real number s ∈]0, 1], we set

BC 0,s(Ω, Z) :=




γ : Ω −→ Z : p(0,s)(γ) := sup

x,y∈Ω
x 6=y

‖γ(x) − γ(y)‖Z
‖x− y‖sX

<∞




.

From this definition follows at once that every γ ∈ BC 0,s(Ω, Z) is uniformly con-
tinuous and bounded (since Ω is bounded). We endow this vector space with the
norm ‖·‖(0,s) := ‖·‖∞ + p(0,s)(·).

(c) Recursively, we define

BC k+1,s(Ω, Z) :=
{
γ ∈ FC 1(Ω, Z) : γ′ ∈ BC k,s(Ω,L (X,Z))

}

for k ∈ N0 and s ∈ [0, 1]. We endow this vector space with the norm ‖·‖(k+1,s) :=
‖·‖∞ + p(k+1,s)(·), where

p(k+1,s)(γ) := p(k,s)(γ
′).

5.3.2 Inclusion Mappings

In this subsection, we show that the inclusion operators between the above spaces are
continuous (Proposition 5.3.5).

We begin with the following special case where the inclusion operator behaves very
nicely:

Proposition 5.3.2. For every k ∈ N0 the vector space BC k+1,0(Ω, Z) is a vector subspace
of BC k,1(Ω, Z) and the inclusion map is an isometric embedding.
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5 Examples of ascending unions of Banach Lie groups

Proof. Since for (k, s) 6= (0, 0) the norm ‖·‖(k,s) is the sum of the ‖·‖∞-norm and the

p(k,s)(·)-seminorm, it suffices to show that for every γ ∈ BC k+1,0(Ω, Z) we have γ ∈

BC k,1(Ω, Z) and

p(k,1)(γ) = p(k+1,0)(γ).

It suffices to show this for k = 0. The rest follows immediately by induction on k. Let
γ ∈ BC 1,0(Ω, Z) be given. By definition of the Hölder spaces, this means γ is continuously
differentiable with bounded Fréchet derivative. Now, we estimate

‖γ(x) − γ(y)‖Z =

∥∥∥∥
∫ 1

0
γ′
(
tx+ (1 − t)y

)(
x− y

)
dt

∥∥∥∥
Z

≤
∥∥γ′
∥∥
∞
‖x− y‖X

= p(1,0)(γ) ‖x− y‖X

This shows that γ ∈ BC 0,1(Ω, Z) and

p(0,1)(γ) ≤ p(1,0)(γ).

But conversely: Let x0 ∈ Ω, v ∈ X with ‖v‖Z = 1 and t ∈ R
× (small enough) be given.

Then we can estimate:
∥∥∥∥

1

t

(
γ(x+ tv) − γ(x)

)∥∥∥∥
Z

=
1

|t|
‖γ(x+ tv) − γ(x)‖Z

≤
1

|t|
· p(0,1)(γ) ‖(x+ tv) − x‖Z

= p(0,1)(γ).

Now, as t tends to zero, the left hand side converges to γ′(x).v. Since v was arbitrary
with norm 1, this yields ‖γ′(x)‖op≤ p(0,1)(γ) and since x was arbitrary, we finally obtain:

p(1,0)(γ) ≤ p(0,1)(γ).

Therefore the seminorms are equal and this finishes the proof.

Proposition 5.3.3. Let k ∈ N0 and let 0 < s1 < s2 ≤ 1. Then the vector space
BC k,s2(Ω, Z) is a vector subspace of BC k,s1(Ω, Z) and we have for all γ ∈ BC k,s2(Ω, Z):

p(0,s1)(γ) ≤ (diamΩ)s2−s1 · p(0,s2)(γ).

The inclusion map is continuous with operator norm at most max{1, (diamΩ)s2−s1}.

Proof. First consider the case k = 0. Let γ ∈ BC 0,s2(Ω, Z) be given. Then

‖γ(x) − γ(y)‖Z
‖x− y‖s1X

=
‖γ(x) − γ(y)‖Z

‖x− y‖s2X
· ‖x− y‖s2−s1X

≤ p(0,s2)(γ) · (diamΩ)s2−s1 .
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5.3 Lie groups associated to Hölder continuous functions

This shows BC 0,s2(Ω, Z) ⊆ BC 0,s1(Ω, Z) and

p(0,s1)(·) ≤ (diamΩ)s2−s1 · p(0,s2)(·).

This inequality can be generalized for arbitrary k ∈ N0 with a simple induction argument.
So, we get:

BC k,s2(Ω, Z) ⊆ BC k,s1(Ω, Z) and p(k,s1)(·) ≤ (diamΩ)s2−s1 · p(k,s2)(·).

The corresponding inequality for ‖·‖(k,s2)
and ‖·‖(k,s1)

follows immediately.

Lemma 5.3.4. Let (k, s) ∈ N0×]0, 1] and x0 ∈ Ω be fixed.

(a) The linear operator

BC k,s(Ω, Z) −→
(
Symk

c (X,Z) , ‖·‖op

)

γ 7−→ γ(k)(x0)

is continuous.

(b) The linear operator

BC k,s(Ω, Z) −→ BC k,0(Ω, Z)
γ 7−→ γ

is continuous.

The operator norms of these operators may be bounded by constants depending on k,Ω
and x0, but not on Z or s.

Proof. For k = 0 both (a) and (b) are trivial. So, we may assume k ≥ 1.

Before we show (a), we show how (b) follows from (a):

‖γ‖(k,0) = ‖γ‖∞ + p(k,0)(γ)

≤ ‖γ‖∞ +
∥∥∥γ(k)

∥∥∥
∞

= ‖γ‖∞ + sup
x∈Ω

∥∥∥γ(k)(x)
∥∥∥

op

≤ ‖γ‖∞ + sup
x∈Ω

∥∥∥γ(k)(x) − γ(k)(x0)
∥∥∥

op
+
∥∥∥γ(k)(x0)

∥∥∥
op

≤ ‖γ‖∞ + p(0,s)(γ
(k)) · (diamΩ)s +

∥∥∥γ(k)(x0)
∥∥∥

op

≤ ‖γ‖∞ + (diamΩ) · p(k,s)(γ) +
∥∥∥γ(k)(x0)

∥∥∥
op
.

The first two summands are obviously continuous with respect to ‖·‖(k,s) and the conti-
nuity of the third summand follows from part (a).
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Now we prove (a): Since Ω is open, there is an ε0 ∈]0, 1] such that BXε0 (x0) ⊆ Ω. Let

v ∈ X be a vector with ‖v‖X ≤ 1. Since γ ∈ BC k,s(Ω, Z), it is in particular FC k and
therefore we can use Taylor’s formula (Proposition 1.1.11 (b) ) and obtain:

γ(x0 + ε0v) = T kx0
γ(ε0v) +Rγ(ε0v) (∗)

with

T kx0
γ(ε0v) =

∑

j≤k

γ(j)(x0)(v, . . . , v)ε
j
0

j!

and

Rγ(ε0v) =

∫ 1

0

(1 − t)k−1

(k − 1)!

(
γ(k)(x0 + tε0v) − γ(k)(x0)

)
(v, . . . , v)εk0 dt.

First, we look at the remainder part Rγ(ε0v):

‖Rγ(ε0v)‖Z =

∥∥∥∥
∫ 1

0

(1 − t)k−1

(k − 1)!

(
γ(k)(x0 + tε0v) − γ(k)(x0)

)
(v, . . . , v)εk0dt

∥∥∥∥
Z

≤

∫ 1

0

1

(k − 1)!

∥∥∥γ(k)(x0 + tε0v) − γ(k)(x0)
∥∥∥

op
‖v‖kX ε

k
0 dt

≤

∫ 1

0

1

(k − 1)!
p(k,s)(γ) · ‖tε0v‖

s
X ε

k
0 dt

≤
εk+s0

(k − 1)!
‖γ‖(k,s) ≤

εk0
(k − 1)!︸ ︷︷ ︸

=:C1

‖γ‖(k,s) .

Now, we estimate the norm of the Taylor-polynomial:

∥∥∥T kx0
γ(ε0v)

∥∥∥
Z

(∗)
= ‖γ(x0 + ε0v) −Rγ(ε0v)‖Z

≤ ‖γ(x0 + ε0v)‖Z + ‖Rγ(ε0v)‖Z
≤ ‖γ‖∞︸ ︷︷ ︸

≤‖γ‖(k,s)

+C1 ‖γ‖(k,s)

≤ C2 ‖γ‖(k,s) .

Since v ∈ BX1 (0) was arbitrary, this shows that the sup norm of the Taylor polynomial
on the closed unit ball is bounded by a constant times ‖γ‖(k,s). By Proposition 1.1.10
the norm of every homogeneous part is bounded above by the norm of the polynomial:

∥∥∥∥∥
γ(j)(x0)(·)ε

j
0

j!

∥∥∥∥∥
op

≤ C3 ‖γ‖(k,s) .
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5.3 Lie groups associated to Hölder continuous functions

As we saw in the proof of Proposition 1.1.10, this constant does only depend on j and
k.

In particular, we have for the case j = k:
∥∥∥γ(k)(x0)

∥∥∥
op
≤ C4 ‖γ‖(k,s)

which is what we had to show.

Proposition 5.3.5. Let (k, s), (ℓ, t) ∈ N0 × [0, 1] be given. Assume k + s < ℓ+ t. Then

BC ℓ,t(Ω, Z) ⊆ BC k,s(Ω, Z)

and the inclusion map is a continuous operator whose norm can be bounded above by a
constant depending only on ℓ, X and Ω.

Proof. This is a immediate consequence of Proposition 5.3.2, Proposition 5.3.3 and
Lemma 5.3.4 (b).

5.3.3 Completeness of the Hölder Spaces

Lemma 5.3.6. Let s ∈ [0, 1] and k ∈ N0 be given. Then the map

κ : BC k+1,s(Ω, Z) −→ BC(Ω, Z) × BC k,s(Ω,L (X,Z))
γ 7−→ (γ, γ′)

is a topological embedding.

Proof. For this proof we endow the product space

BC(Ω, Z) × BC k,s(Ω,L (X,Z))

with the norm ‖(γ, η)‖ := ‖γ‖∞ + ‖η‖(k,s). The map κ is clearly linear and injective.
We show the continuity of κ with the following estimate:

‖κ(γ)‖ = ‖γ‖∞ +
∥∥γ′
∥∥

(k,s)
= ‖γ‖∞ + p(k,s)(γ

′) +
∥∥γ′
∥∥
∞

≤ ‖γ‖(k+1,s) + ‖γ‖(1,0) .

By Proposition 5.3.5, ‖·‖(1,0) is continuous with respect to ‖·‖(k+1,s). This implies the
continuity of κ.

On the other hand, ‖γ‖(k+1,s) = ‖γ‖∞ + p(k,s)(γ
′) ≤ ‖γ‖∞ + ‖γ′‖(k,s) = ‖κ(γ)‖. Hence,

κ is a topological embedding.

Proposition 5.3.7. Let s ∈ [0, 1] and k ∈ N0 be given. Then the normed space(
BC k,s(Ω, Z) , ‖·‖(k,s)

)
is complete, hence a Banach space.
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Proof. For (k, s) = (0, 0), this is well known. Now, let k = 0 and s ∈]0, 1].

For every γ ∈ BC(Ω, Z), define

Rγ : UΩ −→ Z : (x, y) 7→
γ(x) − γ(y)

‖x− y‖sX
.

Here, UΩ := {(x, y) ∈ Ω × Ω : x 6= y} denotes the complement of the diagonal in Ω × Ω.

Now, it is clear that BC 0,s(Ω, Z) := {γ ∈ BC(Ω, Z) : Rγ ∈ BC(UΩ, Z)} and that

ι : BC 0,s(Ω, Z) −→ BC(Ω, Z) × BC(UΩ, Z)
γ 7−→ (γ,Rγ)

is an isometric embedding. Therefore it remains to show that the image of ι is closed in
the product of the two Banach spaces BC(Ω, Z) × BC(UΩ, Z).

Now, let (γ, η) be in the closure of the image of ι. This implies that there is a sequence
(γn)n∈N

in the space BC 0,s(Ω, Z) such that (γn)n∈N
converges uniformly to γ ∈ BC(Ω, Z)

and that (Rγn)n∈N
converges uniformly to η ∈ BC(UΩ, Z). In particular, we have point-

wise convergence, hence the following holds for all (x, y) ∈ UΩ:

η(x, y) = lim
n→∞

γn(x) − γn(y)

‖x− y‖sX
.

But the right hand side converges pointwise to γ(x)−γ(y)
‖x−y‖s

X
since (γn)n∈N

converges to γ.

Therefore η = Rγ and therefore the image of ι is closed and BC 0,s(Ω, Z) is a Banach
space.

Now, we show the assertion for (k+1, s), assuming by induction that it holds for (k, s) ∈
N0 × [0, 1]. We use the topological embedding from Lemma 5.3.6:

κ : BC k+1,s(Ω, Z) −→ BC(Ω, Z) × BC k,s(Ω,L (X,Z))
γ 7−→ (γ, γ′).

Again it suffices to show that the image of κ is closed in the Banach space BC(Ω, Z) ×
BC k,s(Ω,L (X,Z)) which by the inductive hypothesis is a product of two Banach spaces.

Now, let (γ, η) be in the closure of the image of κ. This implies that there is a se-
quence (γn)n∈N

in the space BC k+1,s(Ω, Z) such that (γn)n∈N
converges to γ in BC(Ω, Z)

and that (γ′n)n∈N
converges to η ∈ BC k,s(Ω,L (X,Z)). We have to show that γ ∈

BC k+1,s(Ω, Z) and that γ′ = η.

To this end, let x0 ∈ Ω and v ∈ X be given. Since Ω is convex and open, we can write
the difference quotient of γn at point x0 ∈ Ω in direction v ∈ X as:

1

t
(γn(x0 + tv) − γn(x0)) =

∫ 1

0
γ′n(x0 + stv).vds
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if |t| is small enough. Now, we take the pointwise limit as n→ ∞ and obtain:

1

t
(γ(x0 + tv) − γ(x0)) =

∫ 1

0
η(x0 + stv).vds

For the convergence of the integral, we use that ‖γ′n − η‖∞ → 0.

Letting now t tend to 0, the integral on the right hand side converges to η(x0).v. So, we
have shown that the directional derivative of γ at point x0 in direction v exists and is
equal to η(x0).v. Since v ∈ X was arbitrary, all directional derivatives exist and are of
the form

dγ : Ω ×X −→ Z : (x, v) 7→ η(x).v.

This map is continuous and therefore γ is C1 the Michal-Bastiani sense. But since

γ′(x) = dγ(x, ·) = η(x)

and η : Ω −→ L (X,Z) is continuous by hypothesis, we can apply Lemma 1.1.3 and obtain
that γ is FC 1. Since γ′ = η ∈ BC k,s(Ω,L (X,Z)), this implies that γ ∈ BC k+1,s(Ω, Z)
which finishes the proof.

5.3.4 Products of Hölder Continuous Functions

Theorem 5.3.8 (Products of Hölder Continuous Functions). Let Z1, Z2, Z be Banach
spaces over K ∈ {R,C}. We assume that diamΩ ≤ 1. Let • : Z1 ×Z2 −→ Z be a contin-
uous bilinear map. We define the pointwise product of two functions γ1 ∈ BC k,s(Ω, Z1)
and γ2 ∈ BC k,s(Ω, Z2) as

γ1 • γ2 : Ω −→ Z : x 7→ γ1(x) • γ2(x).

Then the product is again in BC k,s(Ω, Z) and we have the following formula:

‖γ1 • γ2‖(k,s) ≤ Ck · ‖•‖op · ‖γ1‖(k,s) ‖γ2‖(k,s)

Here, Ck > 0 is a constant, depending only on k, but not on s or on • (which will
important later on).

Proof. By replacing the continuous bilinear map • by its multiple 1
‖•‖op

•, we may assume

that ‖•‖op = 1.

The claim is trivial for (k, s) = (0, 0). The case k = 0 and s ∈]0, 1] is done in the
following way:

‖γ1 • γ2(x)−γ1 • γ2(y)‖Z≤‖γ1(x) • γ2(x) − γ1(x) • γ2(y)‖Z
+ ‖γ1(x) • γ2(y) − γ1(y) • γ2(y)‖Z

≤‖γ1(x)‖Z ‖γ2(x) − γ2(y)‖Z
+ ‖γ1(x) − γ1(y)‖Z ‖γ2(y)‖Z

≤
(
‖γ1‖∞ p(0,s)(γ2) + p(0,s)(γ1) ‖γ2‖∞

)
‖x− y‖sX .
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Therefore we have

p(0,s)(γ1 • γ2) ≤ ‖γ1‖∞ p(0,s)(γ2) + p(0,s)(γ1) ‖γ2‖∞

Now we add the inequality ‖γ1 • γ2‖∞ ≤ ‖γ1‖∞ ‖γ2‖∞ and the previous one:

‖γ1 • γ2‖(0,s) ≤ ‖γ1‖∞ p(0,s)(γ2) + p(0,s)(γ1) ‖γ2‖∞ + ‖γ1‖∞ ‖γ2‖∞

= ‖γ1‖∞ p(0,s)(γ2) + ‖γ1‖(0,s) ‖γ2‖∞

≤ ‖γ1‖(0,s) ‖γ2‖(0,s) + ‖γ1‖(0,s) ‖γ2‖(0,s) .

This proves the claim for k = 0 and s ∈ [0, 1] for the constant C0 := 2.

Now assume the claim holds for k. We will show it for k + 1.

By Proposition 5.3.5, we know that the inclusion maps

BC k+1,s(Ω, Z) −→ BC k,s(Ω, Z)

and

BC k+1,s(Ω, Z) −→ BC 1,0(Ω, Z)

are continuous and that their operator norms can be bounded by constants Dk and Ek
respectively, depending only on k,X and Ω.

Now, let γ1 ∈ BC k+1,s(Ω, Z1) and γ2 ∈ BC k+1,s(Ω, Z2) be given. By definition, this
means that γ1 and γ2 are FC 1 and

γ′1 ∈ BC k,s(Ω,L (X,Z1)) and γ′2 ∈ BC k,s(Ω,L (X,Z2)) .

Now we define the following bilinear operators:

∗1 : Z1 × L (X,Z2) −→ L (X,Z)
(z, T ) 7−→ (x 7→ z • (Tx))

and

∗2 : L (X,Z1) × Z2 −→ L (X,Z)
(T, z) 7−→ (x 7→ (Tx) • z) .

It is easy to verify that ‖∗1‖op, ‖∗2‖op≤ 1. Therefore, we can use the inductive hypothesis

and obtain that γ1∗1γ
′
2 and γ′1∗2γ2 belong to BC k,s(Ω,L (X,Z)) and we have the following

estimates:

∥∥γ1 ∗1 γ
′
2

∥∥
(k,s)

≤ Ck ‖γ1‖(k,s)

∥∥γ′2
∥∥

(k,s)

and

∥∥γ′1 ∗2 γ2

∥∥
(k,s)

≤ Ck
∥∥γ′1
∥∥

(k,s)
‖γ2‖(k,s)
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5.3 Lie groups associated to Hölder continuous functions

By the product rule for Fréchet derivatives, we know that

(γ1 • γ2)
′ = γ1 ∗1 γ

′
2 + γ′1 ∗2 γ2.

And hence (γ1 • γ2)
′ ∈ BC k,s(Ω,L (X,Z)) which implies γ1 • γ2 ∈ BC k+1,s(Ω, Z).

It remains to show the norm estimate:

p(k+1,s)(γ1 • γ2) = p(k,s)((γ1 • γ2)
′) ≤ p(k,s)(γ1 ∗1 γ

′
2) + p(k,s)(γ

′
1 ∗2 γ2)

≤
∥∥γ1 ∗1 γ

′
2

∥∥
(k,s)

+
∥∥γ′1 ∗2 γ2

∥∥
(k,s)

≤ Ck

(
‖γ1‖(k,s)

∥∥γ′2
∥∥

(k,s)
+
∥∥γ′1
∥∥

(k,s)
‖γ2‖(k,s)

)

= Ck ‖γ1‖(k,s)

∥∥γ′2
∥∥
∞

+ Ck ‖γ1‖(k,s) p(k,s)(γ
′
2)

+Ck
∥∥γ′1
∥∥
∞
‖γ2‖(k,s) + Ckp(k,s)(γ

′
1) ‖γ2‖(k,s)

≤ Ck ‖γ1‖(k,s) ‖γ2‖(1,0) + Ck ‖γ1‖(k,s) ‖γ2‖(k+1,s)

+Ck ‖γ1‖(1,0) ‖γ2‖(k,s) + Ck ‖γ1‖(k+1,s) ‖γ2‖(k,s)

≤ CkDkEk ‖γ1‖(k+1,s) ‖γ2‖(k+1,s) + CkDk ‖γ1‖(k+1,s) ‖γ2‖(k+1,s)

+CkEk ‖γ1‖(k+1,s)Dk ‖γ2‖(k+1,s) + Ck ‖γ1‖(k+1,s)Dk ‖γ2‖(k+1,s)

= 2CkDk(Ek + 1)︸ ︷︷ ︸
Ck+1:=

‖γ1‖(k+1,s) ‖γ2‖(k+1,s) .

This finishes the proof.

5.3.5 Directed Unions of Hölder Spaces

From now on, we will assume that diamΩ ≤ 1. By Proposition 5.3.3, this implies that
for a fixed k ∈ N0 and 0 < s1 < s2 ≤ 1 the inclusion map

BC k,s2(Ω, Z) −→ BC k,s1(Ω, Z)

is continuous with operator norm at most 1. However, this is not really a big restric-
tion since for every bounded nonempty convex open Ω, the scalar multiple Ω

diamΩ has

diameter 1 and it is clear that the Banach spaces BC k,s(Ω, Z) and BC k,s
(

Ω
diamΩ , Z

)
are

topologically isomorphic.

Proposition 5.3.9 (Logarithmic Convexity Property for k = 0).

(a) Let 0 < s < u ≤ 1. Assume γ ∈ BC 0,u(Ω, Z) and let λ ∈]0, 1[. Then we have

p(0,λs+(1−λ)u)(γ) ≤
(
p(0,s)(γ)

)λ
·
(
p(0,u)(γ)

)1−λ
.

(b) Let 0 ≤ s < u ≤ 1. Assume γ ∈ BC 0,u(Ω, Z) and let λ ∈]0, 1[. Then we have

‖γ‖(0,λs+(1−λ)u) ≤ 2
(
‖γ‖(0,s)

)λ
·
(
‖γ‖(0,u)

)1−λ
.
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5 Examples of ascending unions of Banach Lie groups

Proof. (a) We may estimate:

‖γ(x) − γ(y)‖Z

‖x− y‖
λs+(1−λ)u
X

=
‖γ(x) − γ(y)‖λZ · ‖γ(x) − γ(y)‖1−λ

Z

‖x− y‖λsX · ‖x− y‖
(1−λ)u
X

=

(
‖γ(x) − γ(y)‖Z

‖x− y‖sX︸ ︷︷ ︸
≤p(0,s)(γ)

)λ
·

(
‖γ(x) − γ(y)‖Z

‖x− y‖uX︸ ︷︷ ︸
≤p(0,u)(γ)

)1−λ

.

This shows (a).

Now (b) readily follows:

‖γ‖(0,λs+(1−λ)u) = ‖γ‖∞ + p(0,λs+(1−λ)u)(γ)

≤ ‖γ‖λ∞ · ‖γ‖1−λ
∞ +

(
p(0,s)(γ)

)λ
·
(
p(0,u)(γ)

)1−λ

≤ ‖γ‖λ(0,s) · ‖γ‖
1−λ
(0,u) + ‖γ‖λ(0,s) · ‖γ‖

1−λ
(0,u) .

Proposition 5.3.10. Let (k, s0) ∈ N0 × [0, 1[ be given. Then the direct limit space

BC k,>s0(Ω, Z) :=
⋃

t∈]s0,1]

BC k,t(Ω, Z)

is Hausdorff and compactly regular.

Proof. Since for every t > s0 the inclusion map

BC k,t(Ω, Z) −→ BC k,s0(Ω, Z) : γ 7→ γ

is continuous, it follows from the direct limit property that the inclusion map from the
direct limit space into the Banach space

BC k,>s0(Ω, Z) −→ BC k,s0(Ω, Z) : γ 7→ γ

is also continuous. Since it is injective, we deduce that BC k,>s(Ω, Z) is Hausdorff.

We prove compact regularity using Proposition 1.2.4. Thus, it suffices to show that for
every u ∈]s0, 1] there is a t ∈]s0, u[ such that every space BC k,s(Ω, Z) with s ∈]s0, t]

induces the same topology on the set B := B
BC

k,u(Ω,Z)
1 (0).

So, let u ∈]s0, 1] be given. We choose t ∈]s0, u[ arbitrarily. Let s ∈]s0, t[. Since t lies
between s and u, we can write t = λs+ (1− λ)u. Now, we apply Proposition 5.3.9(a) to
γ(k) and obtain for every γ ∈ B

p(0,t)(γ
(k)) ≤

(
p(0,s)(γ

(k))
)λ

·
(
p(0,u)(γ

(k))
︸ ︷︷ ︸

≤1

)1−λ
.

This inequality shows that the identity map from B⊆BC k,s(Ω, Z) to B⊆BC k,t(Ω, Z) is
continuous. Since the continuity of the inverse map is trivial, we have shown that the
topologies coincide.
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5.3.6 Lie groups associated to Hölder continuous functions

In the following, G is an analytic Banach-Lie group over K ∈ {R,C} with Lie algebra g.

As before, Ω ⊆ X is an open bounded convex subset of a real Banach space X with
diamΩ ≤ 1. Let (k, s) ∈ N0 × [0, 1] be fixed. We may define a pointwise Lie bracket
on the function space BC k,s(Ω, g) and by Theorem 5.3.8, this bracket is continuous
with operator norm at most Ck. Throughout this section, Ck will always denote these
constants introduced in Theorem 5.3.8. Note that they do not depend on the space g.

Now we can compose each γ ∈ BC k,s(Ω, g) with the exponential function and obtain the
following map:

Exp(k,s) : BC k,s(Ω, g) −→ C(Ω, G)

γ 7−→ expG ◦γ.

Theorem 5.3.11 (Lie groups associated with Hölder continuous functions (Banach
case)). Let (k, s0) ∈ N0 × [0, 1] and a Banach-Lie group G with Lie algebra g be given.
Then there exists a unique Banach-Lie group structure on the group

BC k,s0(Ω, G) :=
〈{

expG ◦γ : γ ∈ BC k,s0(Ω, g)
}〉

≤ C(Ω, G)

such that

Exp(k,s0) : BC k,s0(Ω, g) −→ BC k,s0(Ω, G) : γ 7→ expG ◦γ

becomes a local diffeomorphism around 0.

Proof. We start by choosing a compatible norm ‖·‖
g

on g with the additional property
that

‖[x, y]‖
g
≤

1

Ck
‖x‖

g
‖y‖

g

for all x, y ∈ g. This means that ‖[·, ·]‖op ≤
1
Ck

. Then the space BC k,s0(Ω, g) carries a
continuous Lie bracket of operator norm at most 1, due to Theorem 5.3.8:

[·, ·] : BC k,s0(Ω, g) × BC k,s0(Ω, g) −→ BC k,s0(Ω, g)

turning it into a Banach-Lie algebra. The Lie algebra g becomes a closed Lie subalgebra
of BC k,s0(Ω, g) by identifying elements of g with constant functions.

By Lemma 1.3.12, we know that in in a Banach-Lie algebra with compatible norm, the
BCH -series converges on

Ug := {(x, y) ∈ g × g : ‖x‖ + ‖y‖ < log 2}

and defines an analytic multiplication: ∗ : Ug −→ g. Since BC k,s0(Ω, g) is
a Banach-Lie algebra in its own right, we also have a BCH -multiplication
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there: ∗ : U
BC

k,s0(Ω,g) −→ BC k,s0(Ω, g) . The BCH -series is defined only in
terms of iterated Lie brackets. Since addition and Lie bracket of elements in
BC k,s0(Ω, g) correspond to the pointwise operations in g, the BCH -multiplication in
BC k,s0(Ω, g) corresponds to the pointwise BCH -multiplication of functions.

SinceG is a Banach-Lie group, it is locally exponential, therefore there is a number ε◦ > 0
such that expG |Bg

ε◦ (0) is injective. Since the BCH -multiplication on g is continuous, there

is a δ > 0 such that Bg

δ (0) × Bg

δ (0) ⊆ Ug and Bg

δ (0) ∗ Bg

δ (0) ⊆ Bg
ε◦ (0).

Let C(Ω, G) be the (abstract) group of all continuous maps from Ω to G with pointwise
multiplication. Then we define the following map

Exp(k,s0) : BC k,s0(Ω, g) −→ C(Ω, G) : γ 7→ expG ◦γ.

The restriction of Exp(k,s0) to B
BC k,s0(Ω,g)
ε◦ (0) is injective since expG |Bg

ε◦(0) is injective.

Now, all hypotheses for Corollary 1.3.16 are satisfied for U := B
BC

k,s0(Ω,g)
δ (0),

V := B
BC

k,s0(Ω,g)
ε◦ (0) and H := C(Ω, G). Therefore, by Corollary 1.3.16, we get a unique

Cω
K
-Lie group structure on the group BC k,s0(Ω, G) =

〈
Exp(k,s0)(BC k,s0(Ω, g))

〉
such that

Exp(k,s0)|U : U ⊆ BC k,s0(Ω, g) −→
〈
Exp(k,s0)(U)

〉

is a Cω
K
-diffeomorphism.

Theorem 5.3.12 (Lie groups associated with Hölder continuous functions ((LB)-case)).
Let (k, s) ∈ N0 × [0, 1[ be given.

(a) There exists a unique Lie group structure on the group

BC k,>s(Ω, G) :=
⋃

t∈]s,1]

BC k,t(Ω, G)

such that

Exp(k,>s) :=
⋃
t∈]s,1] Exp(k,s) : BC k,>s(Ω, g) −→ BC k,>s(Ω, G)

γ 7−→ expG ◦γ

is a local diffeomorphism around 0.

(b) The Lie group BC k,>s(Ω, G) is strongly C0-regular.

Proof. (a) We wish to use Theorem 4.1.1. Let (tn)n∈N
be a strictly decreasing cofinal

sequence in ]s, 1], e. g. tn := s + (1 − s) · 1
n . For every n ∈ N, set Gn := BC k,tn(Ω, G).

The bonding maps jn : Gn −→ Gn+1 are group homomorphisms. Since jn ◦ Exp(k,tn) =

Exp(k,tn+1)◦in with the continuous linear inclusion map in : BC k,tn(Ω, g) −→ BC k,tn+1(Ω, g),
we see that each jn is analytic with L(jn) = in.
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Like in the proof of Theorem 5.3.11, we choose the norm on g such that

‖[x, y]‖
g
≤

1

Ck
‖x‖

g
‖y‖

g
for x, y ∈ g.

Note that this is possible because k ∈ N0 is fixed and the Ck do not depend on s. This
implies that the Lie brackets on the Lie algebras BC k,tn(Ω, g) and the bounded operators
in : BC k,tn(Ω, g) −→ BC k,tn+1(Ω, g) have operator norm at most 1.

The locally convex direct limit is Hausdorff by Proposition 5.3.10, and the exponential

map Exp =
⋃
t∈]s,1] Exp(k,t) is injective on the 0-neighborhood

⋃
t∈]s,1] B

BC
k,t(Ω,g)

ε◦ (0).
Hence, by Theorem 4.1.1, there is a unique complex analytic Lie group structure on G
such that Exp is a local diffeomorphism at 0. (b) By Proposition 5.3.10, the modelling
space is a compactly regular direct limit. So, we can apply Theorem 4.3.2 and obtain
the result.

5.4 Lie groups associated to ℓp-Spaces

This construction follows the same idea as the one in Sections 5.2 and 5.3.

Let G be a Banach Lie group with Lie algebra g. We fix a compatible norm ‖·‖
g

on g.
For every p ∈ [1,+∞[, we define on the Banach space

ℓp(N, g) :=




f : N −→ g : ‖f‖p :=



∑

j∈N

‖f(j)‖p
g




1/p

<∞





the pointwise Lie bracket:

[f, g](n) := [f(n), g(n)]g.

In order to include the case p = ∞, we set ℓ∞(N, g) to be the Banach space of bounded
functions from Nto g, together with the ordinary sup-norm and the pointwise Lie bracket.

Lemma 5.4.1 (Inclusion operators). If 1 ≤ p < q ≤ ∞, we have

ℓp(N, g) ⊆ ℓq(N, g)

and the inclusion operator

ℓp(N, g) −→ ℓq(N, g) : f 7→ f

has operator norm at most 1.
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Proof. It is clear that ‖f(j)‖
g
≤ ‖f‖p for all j ∈ N. Hence, ‖f‖∞ ≤ ‖f‖p which proves

the case q = ∞.

For the case q <∞, let f ∈ ℓp(N, g) with ‖f‖p = 1 be given.

‖f‖qq =
∑

j∈N

‖f(j)‖q
g

=
∑

j∈N

‖f(j)‖p
g
· (‖f(j)‖

g︸ ︷︷ ︸
≤‖f‖p

)q−p

≤ ‖f‖pp ‖f‖
q−p
p ≤ 1.

Lemma 5.4.2 (Generalized Hölder inequality). Let p, q, r ∈ [1,+∞[ such that 1
p+ 1

q = 1
r .

Let f ∈ ℓp(N,K) and g ∈ ℓq(N,K). Then fg ∈ ℓr(N,K) and

‖fg‖r ≤ ‖f‖p ‖g‖q .

Proof. This is just the usual Hölder inequality applied to the functions |f |r and |g|r.

Lemma 5.4.3 (Interval lemma). Let 0 < s < t < u ≤ ∞. Let f ∈ ℓs(N,K) ∩ ℓu(N,K).
Then f ∈ ℓt(N,K) and

∑

j

‖f(j)‖t
g
≤ ‖f‖αs · ‖f‖βu .

with

α := s ·
u− t

u− s
and β := (t− s) ·

u

u− s
, where

∞

∞
:= 1.

Proof. If u = ∞ this is easily verified. For u < ∞, the proof becomes more technical:
Since α+ β = t, we can write

|f |t = |f |α · |f |β.

If we set

p :=
s

α
and q :=

u

β

one easily checks that 1/p + 1/q = 1 and that we have

‖|f |α‖p = (‖f‖s)
α and

∥∥∥|f |β
∥∥∥
q

= (‖f‖u)
β .
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Thus, we calculate using the ordinary Hölder inequality:

‖f‖t =
∥∥|f |t

∥∥ 1
t

1

=
∥∥∥|f |α|f |β

∥∥∥
1
t

1

≤

(
‖|f |α‖p ·

∥∥∥|f |β
∥∥∥
q

) 1
t

=
(
(‖f‖s)

α · (‖f‖u)
β
) 1

t

= ‖f‖α/ts · ‖f‖β/tu .

Remark. More generally, the Lemmas 5.4.2 and 5.4.3 hold also for Banach spaces of the
type Lp(Ω, g) for a measure space Ω. However, the next lemma is no longer true if one
replaces ℓp(N, g) by Lp(Ω, g).

Lemma 5.4.4. (ℓp(N, g), [, ]) is a Banach Lie algebra.

Proof. It is well-known that ℓp(N, g) is a Banach space. It remains to show that for
f, g ∈ ℓp(N, g), we have [f, g] ∈ ℓp(N, g) and ‖[f, g]‖p ≤ ‖f‖p ‖g‖p.

‖[f, g]‖p =
∥∥∥
(
‖[f, g](n)‖

g

)
n∈N

∥∥∥
p

=
∥∥∥
(
‖[f(n), g(n)]‖

g

)
n∈N

∥∥∥
p

≤
∥∥∥
(
‖f(n)‖

g
‖g(n)‖

g

)

n∈N

∥∥∥
p
.

≤ ‖f‖2p ‖g‖2p

by the generalized Hölder inequality (Lemma 5.4.2). Since the inclusion maps ℓp(N, g) −→
ℓ2p(N, g) : f 7→ f have operator norm at most 1 (Lemma 5.4.1), the assertian follows.

Proposition 5.4.5 (The space ℓ<p). Let p ∈]1,∞]. Then the locally convex direct limit

ℓ<p(N, g) :=
⋃

s<p

ℓs(N, g)

is a compactly regular, Hausdorff and becomes a complete locally convex topological Lie
algebra with the pointwise Lie bracket.

Proof. By Lemma 5.4.1 each inclusion ℓs(N, g) −→ ℓp(N, g) : f 7→ f is continuous.
Therefore, by the universal property of the locally direct limit, the inclusion operator

ℓ<p(N, g) −→ ℓp(N, g) : f 7→ f

is continuous linear and injective with values in a Banach space. Hence, the space
ℓ<p(N, g) is Hausdorff.
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To show compact regularity, we use the criterion in Proposition 1.2.4. Henceforth, let
s < t < u < p be given and set Ω := Bℓ

s

1 (0).

Let f ∈ Ω and apply Lemma 5.4.3:

‖f‖t ≤ ‖f‖α/ts︸ ︷︷ ︸
≤1

· ‖f‖β/tu .

This shows that ℓt(N, g) and ℓu(N, g) induce the same topology on Ω. Thus, Proposition
1.2.4 ensures that the direct limit is compactly regular and complete.

Now, Corollary 2.2 ensures the continuity of the Lie bracket on the locally convex direct
limit. This finishes the proof.

We can use the same arguments as in Theorems 5.2.4 and 5.2.5 to obtain the following
two theorems:

Theorem 5.4.6 (Lie groups associated with ℓp-spaces (Banach case)). For p ∈ [1,∞]
there exists a unique Banach Lie group structure on the group

ℓp(N, G) := 〈{expG ◦f : f ∈ ℓp(N, g)}〉 ≤ GN

such that

Expp : ℓp(N, g) −→ ℓp(N, G) : f 7→ expG ◦f

becomes a local diffeomorphism around 0.

Theorem 5.4.7 (Lie groups associated with ℓp-spaces ((LB)-case)). Let p ∈]1,∞].

(a) On the group

ℓ<p(N, G) :=
⋃

s<p

ℓs(N, G) = 〈{expG ◦f : f ∈ ℓs(N, g), s < p}〉

there is a unique Lie group structure turning

Exp :=
⋃

s<p

Exps : ℓ
<p(N, g) −→ ℓ<p(N, G) : f ∈ ℓ<p(N, g) 7→ expG ◦f

into a local diffeomorphism around 0.

(b) This Lie group is strongly C0-regular.

Proof of Theorems 5.4.6 and 5.4.7. By Lemma 5.4.4, we know that each space ℓp(N, g)
is a Banach Lie algebra with respect to pointwise operations. Therefore, we can copy
the proof of Theorem 5.2.4 and obtain the Lie group structure on the ℓp(N, G). This
proves Theorem 5.4.6.
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In order to prove Theorem 5.4.7 (a), we fix a strictly increasing sequence (sn)n∈N
with

sn → p and set Gn := ℓsn(N, G).

The inclusion jn maps between the corresponding Lie algebras are continuous linear
maps by Lemma 5.4.1. This implies that the bonding maps between the Lie Groups
jn : Gn −→ Gn+1 are analytic, since jn ◦ Expn = Expn+1 ◦ in. The inclusion maps and
the Lie algebras have operator norm at most 1 by Lemma 5.4.4 and Lemma 5.4.1. The
locally convex direct limit ℓ<p(N, g) is Hausdorff by Propostion 5.4.5. The exponential

map Exp =
⋃
s<pExps is injective on the neighborhood

⋃
s<p B

ℓs(N,g)
ε◦ (0), where ε◦ > 0

is chosen such that ExpG|Bg

ε◦ (0) is a diffeomorphism onto its image. Hence, by Theorem

4.1.1, there is a unique complex analytic Lie group structure on ℓ<p(N, G) such that Exp
is a local diffeomorphism at 0.

(b) By Proposition 5.4.5, the modelling space is a compactly regular direct limit. So, we
can apply Theorem 4.3.2 and obtain the result.
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analytic
complex, 19
Gateaux, 19
real, 19

atlas, 31

Baker-Campbell-Hausdorff-Series, 35

chart, 31
complexification, 18

differentiable
Fréchet, 12
Michal-Bastiani, 11

Dirichlet series, 80
absolutely convergent, 80

evolution
left, 32
right, 32

Gateaux analytic, 19

Hölder spaces, 85
homogeneous polynomial, 14

integral complete, 29

(LB)-space, 27
Lie algebra of a Lie group, 31
Lie group, 31
local Lie group, 33
locally convex direct limit, 27

boundedly regular, 28

compactly regular, 28
locally convex domain, 13
logarithmic derivative

left, 31

right, 32

manifold, 31

operator norm
of a homogeneous polynomial, 14
of a multilinear symmetric map, 14
of a polynomial, 14

polynomial, 14

regular Lie group, 32
strongly Ck, 32

regular local Lie group, 33
strongly Ck, 33

smooth mapping, 11
symmetric k-linear map, 14
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Notation

BC 1
C (Un,X)K bounded complex analytic functions on Un that van-

ish on the set K with bounded first Fréchet derivative
45

BC(I, Z) Banach space of bounded functions from I to Z, en-
dowed with the ‖·‖∞-norm

15

‖γ‖(k,s) (k, s)-Hölder norm on BC k,s(Ω, Z) 85

BC k,s(Ω, Z) Banach space of (k, s)-Hölder continuous functions
from Ω to Z

85

BC k,>s0(Ω, Z) (LB)-space of Hölder continuous functions 94

BC k,s0(Ω, G) Banach-Lie group associated to BC k,s0(Ω,L(G)) 95

BC k,>s(Ω, G) (LB)-Lie group associated to BC k,>s(Ω,L(G)) 96

BC k
K

(V,Z) Banach space of bounded FC k-functions from V to
Z with bounded Fréchet derivatives

25

BXr (a) open ball with radius r around a in X 14

Ck Ck-mappings in the sense of Michal-Bastiani 11
Cω

C
complex analytic mappings 19

Cω
R

real analytic mappings 19

‖γ‖D := ‖γ′‖∞ supremum norm of the Fréchet derivative 45
δγ left logarithmic derivative of the curve γ 31
dγ differential map 11
DiffGerm(K,X) Lie group of germs of diffeomorphism around K 43
D∞(G) (LB)-Lie group associated with D∞(g) 84
D∞(X) (LB)-space of germs of X-valued Dirichlet series 81
Ds(G) Banach Lie group associated with Ds(g) 82
Ds(X) Banach space of X-valued Dirichlet series converging

absolutely on Hs

80

(ηn)n∈N
a useful sequence related to the BCH series 70

Evol(η) left evolution curve of the curve η 31
evol(η) endpoint of the left evolution curve of η 31

γ′ Fréchet derivative 11

γ(k) kth Fréchet derivative of γ 12

FC k Fréchet-Ck-mappings 12
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Notation

(G,D,mG, 1G, ηG) local Lie group 33
Germ(K,H) Lie group of H-valued germs around K 79
Germ(K, h) Lie algebra of h-valued germs around K 79
Germ(K,X)K (LB)-space of germs of analytic functions around the

compact set K
45

Ghn(C) Lie group of germs of Cω
C
-diffeomorphism of C

n

around {0}
43

Holb (Un,X)K bounded complex analytic functions on Un that van-
ish on the set K

44

Hs closed (right) half plane 80
Hs open (right) half plane 80

L(G) Lie algebra of G 31
ℓ∞(N, g) Banach space of bounded sequences in g 97
ℓp(N, g) Banach space of p-the summable sequences in g 97
ℓ<p(N, g) (LB)-space of all ℓs-functions with s < p 99
ℓp(N, G) Banach Lie group associated with ℓp(N, g) 100
ℓ<p(N, G) (LB)-Lie group associated with ℓ<p(N, g) 100
L (X,Z) Banach space of continuous linear maps from X to

Z, endowed with the operator norm
12

p(k,s)(γ) (k, s)-Hölder seminorm on BC k,s(Ω, Z) 85

(Polkc (X,Y ) , ‖·‖op) space of continuous polynomials from X to Y of de-
gree at most k together with the operator norm

14

(Powk
c (X,Y ) , ‖·‖op) space of continuous k-homogeneous polynomials from

X to Y together with the operator norm
14

∑
n∈N

an · n
−z formal Dirichlet series 80

(Symk
c (X,Y ) , ‖·‖op) space of k-linear symmetric continuous maps from

Xk to Y together with the operator norm
14

⋃∞
n=1En locally convex direct limit of the ascending sequence

(En)n∈N

27

V (δ1, δ2, . . .) typical neighborhood in an (LB)-space 27
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