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Zusammenfassung

Die kohärente Zustandsmanipulation eines einzelnen Quantensystems ist eine fundamentale
Bedingung für die Herstellung von Geräten zur Quanteninformationsverarbeitung. In den
letzten Jahren wurden dafür viele verschiedene Qubit Implementierungen vorgeschlagen
und deren grundlegende kohärente Kontrolle konnte demonstriert werden. In Bezug auf die
Wechselwirkung mit Photonen ist das Exziton-Qubit von besonderem Interesse für Anwen-
dungen im Bereich der kohärenten Optoelektronik. Bisher wurde die kohärente Kontrolle
dieses Qubit Systems imWesentlichen mit ultraschnellen Laserpulsen realisiert. Insbesondere
Einzel-Quantenpunkt Photodioden wurden dabei für eine Reihe kohärenter Experimente
verwendet, zum Beispiel zur Untersuchung von Rabi-Oszillationen und Ramsey-Fringes,
sowie der Demonstration einer crot Quantengatter Funktionalität.
In dieser Arbeit wird ein neues Schema zur kohärenten optoelektronischen Manipulation

eines Exziton-Qubits entwickelt. Dieses Schema verwendet einen optisches Takt und ein dazu
synchrones, elektrisches Signal, das die kohärente Manipulation steuert. Die experimentel-
le Realisierung kombiniert dabei moderne Pikosekunden-Lasertechniken mit synchroner
elektrischer Operation im kohärenten Regime. Die Experimente werden an einem einzelnen
Exziton in einem InGaAs-Quantenpunkt in einer GaAs-Photodiode durchgeführt.
Zur Bestätigung der experimentellen Daten wurde ein detailliertes theoretisches Modell

entwickelt. Diese Modell basiert auf den optischen Blochgleichungen und beinhaltet einen
2-Stufen Relaxationsmechanismus, der charakteristisch ist für den Tunnelprozess des Exzitons
aus einem Quantenpunkt in einer Photodiode. Zur Überprüfung des Modells wurden die
Simulationsergebnisse mit den Daten von früher entwickelten Experimenten verglichen. Das
vorgestellte Modell erlaubt dabei eine tiefergehende Analyse der früheren Ergebnisse als
es bisher möglich war. Desweiteren wird im Rahmen des Modells die leistungsabhängige
Dämpfung der Rabi-Oszillationen bei tiefen Temperaturen untersucht.
In dieser Arbeit werden außerdem noch CdSe/ZnSeQuantenpunktphotodioden eingeführt.

Dieses Materialsystem besitzt ein höheres Einschlusspotenzial für das Exziton und größere
Coulombkorrelationsenergien als das InGaAs/GaAs System und ist daher ein Kandidat für
kohärente Manipulationen bei erhöhten Temperaturen. Die Ergebnisse der spannungsabhän-
gigen Photolumineszenz deuten an, dass es möglich ist CdSe/ZnSe Photodioden herzustellen
mit denen weitere kohärente Experimente durchgeführt werden können.





Abstract

�e coherent state manipulation of single quantum systems is a fundamental requirement
for the implementation of quantum information devices. In the past, many di�erent qubit
implementations have been proposed, and basic coherent control has been demonstrated.
Concerning the interaction with photons, exciton qubits are of particular interest for coherent
optoelectronic applications. Until now, coherent manipulations of exciton qubits in semi-
conductor quantum dots have been performed mostly by ultrafast laser pulses. In particular,
single quantum dot photodiodes have been used for a variety of coherent experiments, for
example Rabi-oscillations, Ramsey fringes, and crot quantum gate operation.
In this work, a new scheme for the coherent optoelectronic manipulation of an exciton

qubits is developed. �e scheme employs an optical clock signal and a synchronous electric
gate signal, which controls the coherent manipulation. �e experimental realization combines
state of the art picosecond laser techniques with synchronous electric operation in the coherent
regime. �e experiments are performed using a single exciton, con�ned in a InGaAs QD in a
GaAs photodiode.
To verify the experimental data, a detailed theoretical model is developed. �e model is

based on the optical Bloch equations and includes a two-step relaxation mechanism, which is
characteristic for the tunneling of the quantum dot exciton in a photodiode. To con�rm the
model, results from previously developed experiments are compared to the model. �ereby,
the model allows a more detailed analysis of the previous results. In particular, the evaluation
of the heavy-hole tunneling time from the cw saturation spectroscopy is now more reliable.
Furthermore, detailed analysis of the excitation dependent damping of the Rabi-oscillations
at low temperature is given in the context of the theoretical model.
In this thesis, also CdSe/ZnSe QD photodiodes are introduced. �is material system

provides higher con�nement andCoulomb correlation energies than the InGaAs/GaAs system
and therefore is a candidate for coherent operation at elevated temperatures. �e results of the
voltage dependent photoluminescence measurements indicate, that it is possible to provide
working CdSe/ZnSe QD photodiodes for future coherent photocurrent experiments.
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1 Introduction

Richard Feynman’s famous talk “�ere’s plenty of room at the bottom”, given 50 years ago at
the annual meeting of the American Physical Society in 1959,[1] is maybe the earliest propose
to use the laws of quantum mechanics for building a computer:

When we get to the very, very small world—say circuits of seven atoms—we have a
lot of new things that would happen that represent completely new opportunities
for design. Atoms on a small scale behave like nothing on a large scale, for they
satisfy the laws of quantum mechanics. So, as we go down and �ddle around with
the atoms down there, we are working with di�erent laws, and we can expect to
do di�erent things. We can manufacture in di�erent ways. We can use, not just
circuits, but some system involving the quantized energy levels, or the interactions
of quantized spins, etc.

With this talk Feynman had set a big challenge, although nobody at this time had a clue how
it should be possible to gain control over single quantum systems or to compute with them.
Nevertheless, the idea of miniaturization was, is, and probably will be one of the dominating
topics in applied science in the 20th and 21st century and remarkable achievements have been
made.
Semiconductor technology thereby played a key role and the continuous advances in this

�eld led to smaller and smaller and ever faster devices; in 2009 microprocessors with a struc-
ture size of 32 nm and clock speeds beyond 3GHz are in mass production,[2] and chips with
even smaller structure sizes are announced to be available in 2011.[3]�ese current semicon-
ductor devices are primarily based on ‘classical’ physics, where all currents can be regarded
as a continuous charge distribution. However, the quantum properties of nanostructured
semiconductors will surely play an important role in future miniaturization steps. �e chal-
lenge for future developments will therefore be to combine the conventional design with the
quantum e�ects.
For optoelectronic applications, as well as for fundamental research, low dimensional

semiconductor structures have attracted a lot of attention. Since the early 1970s, molecular
beam epitaxy (MBE)[4] enabled to grow low dimensional semiconductor structures with an
outstanding high precession and quality.
�e reduction of the degree of freedom of the charge carriers in one of more dimensions

in�uence signi�cantly the density of states in these structures. �is unique possibility led to the
development of new devices like the quantum well laser[5] and the discovery of fundamental
e�ects like the quantum Hall e�ect in a two-dimensional electron gas.[6]
Nowadays it is possible to fabricate semiconductor structures, which exhibit a con�nement

of the charge carriers in all three spacial dimensions. �ese zero dimensional (0D) objects are
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1 Introduction

called quantum dots (QDs) and have been intensively studied within the last two decades.
�e three dimensional con�nement in a QD results in the appearance of discrete ‘atomic-
like’ energy levels, making QDs interesting object for di�erent optoelectronic devices like
QD lasers,[7–9] photodetectors,[10] QD enhanced solar cells,[11] and most recently proposed
QD-based terahertz optoelectronic devices.[12]
Another amazing feature of QDs is, that they can provide access to a single quantum system,

incorporated in a solid state device. �is single quantum system can be, for example, the
spin of a single electron or an exciton, which is used in this thesis. �e possibility to access
and control a single quantum system has become of particular importance in the context of
quantum information processing (QIP). QIP “is the study of the information processing tasks
that can be accomplished using quantum mechanical systems”[13] and has been established as
a new concept in theoretical computer science and physics.
�e ultimate goal of quantum information science is the creation of an universal quantum

computer which would be capable to run quantum algorithms to solve some mathematical
problems, such as factoring exponentially faster than the best known algorithm running on a
classical computer. A quantum computer consist basically of quantum bits (qubits), repre-
sented by a single (two-level) quantum system, and quantum logic gates, which manipulate
one or more qubits in a coherent fashion. Today there are a few physical implementations of
quantum computers, but only with a very limited number of qubits. �e maybe most exciting
demonstration of a quantum computer was the implementation of Shor’s factoring algorithm
using nuclear magnetic resonance to factorize 15 = 3 ⋅ 5.[14] Unit now it is really doubtful
whether it will ever be possible to build a system with hundreds or thousands of qubits, which
seems to be the requirement for an e�ective quantum computer.
However, other parts of the quantum information technology, like quantum cryptography

have reached �rst commercial applications. Quantum cryptography, also known as quantum
key distribution (QKD), guarantees a secure communication between two parties by using
the quantummechanical properties of a (single) photons (e. g. by using the BB84 protocol[15]).
Up to now only point-to-point connections have been established, limited to less than 200 km.
A big step forward will be a quantum communication network, which requires a quantum
repeater. �is device is essentially a small (few qubit) quantum computer with a single photon
in- and output.
In this thesis the coherent optoelectronic control of a single exciton is studied. �e exciton

is con�ned in a QD and, in the context of QIP, can be regarded as a qubit. �e exciton qubit
provides an excellent coupling to the light �eld, thus allowing for ultrafast control of its
population with resonant picosecond laser pulses. Previously, it was demonstrated that the
qubit can reach every quantum state if it is coherently controlled by laser pulses with a de�ned
phase, intensity, and detuning. �e highlight of the work presented here is the demonstration
of the coherent control of the quantum phase of an exciton qubit by electric interaction. �e
new scheme employs an optical clock signal and a synchronous electric gate signal, which
controls the coherent manipulation. In principle, this approach can easily be scaled to parallel
optical clocking of an array of single quantum systems with individual electric control by
functional gate pulses, which is an important step forward for future quantum devices.
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1 Introduction

Outline of This Thesis

�is thesis starts with an introduction into the physics of self-assembled quantum dots in
chapter two. �e basic properties of these quantum dots are discussed, regarding growth
methods, basic optical properties, and spectroscopic methods. �e chapter closes with a short
review of the basic properties of InGaAs/GaAs single quantum dot photodiodes.

�e basic concepts of quantum computation and quantum information processing are brie�y
explained in chapter three, to set a fundament for the further discussion in the next chapters.

In chapter four the details of the experimental setup are explained.

�e results from photoluminescence experiments on CdSe/ZnSe QD photodiodes are pre-
sented in in chapter �ve. �is research has been done in a close collaboration with Marina
Pan�lova from the group of Prof. K. Lischka.

�e theoretical model derived in chapter six is one main part of this work. It describes the
exciton two-level system in a single quantum dot. �e model is based on the optical Bloch
equations, but in order to model the exciton system in a quantum dot quantitatively, the basic
equations are extended by a phenomenological approach.

In order to con�rm the theoretical model, it is compared to cw and coherent experiments,
performed by photocurrent spectroscopy. In chapter seven the outstanding coincidence
between the theory and the experiment is presented.

�e highlight of this thesis is presented in chapter eight, where the coherent optoelectronics
control of an exciton is demonstrated.

A conclusion of the results and achievements of this work, together with an outlook presenting
the perspective of furture investigations based on this work is given in chapter nine.
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2 Fundamental Remarks on Quantum Dots

Quantum dots are semiconductor nanostructures who exhibit a three dimensional con�ne-
ment for charge carriers. �is results in the formation of discrete energy levels, similar to those
of single atoms. Within the last two decades a large variety of di�erent quantum dot systems
has been investigated by research groups all over the world. �e presumably three most
important systems are gate de�ned quantum dots, colloidal quantum dots, and self-assembled
quantum dots (�gure 2.1):

• QDs de�ned by gate structure above a two dimensional electron gas (2DEG) are very
o�en used for quantum transport measurements.[19]�ese structures provide the pos-
sibility to �ll the QD deterministically with electrons and to control a single electron
spin coherently.[20]

• Colloidal QDs are synthesized from precursor compounds dissolved in solutions by
a self-organizing process. �ey possess good optical properties, although the surface
may lead to disadvantageous e�ects (e.g. blinking). �ese QD can be incorporated
in di�erent materials, and are especially useful in bio-medical applications.[17,21] As
recently shown by the group of K. Lischka, it is also possible to incorporate colloidal
QDs into epitaxial grown structures.[22]

• Self-assembled quantum dots (SAQD) are grown by MBE. �ey can be fabricated with
an amazingly low defect density and in a couple of di�erent material systems. �ey are
the most commonly used system for optical and optoelectronic investigations so far.

Within this thesis, mainly coherent experiments on excitons in self-assembled InGaAs/GaAs
QD are discussed. Additionally, in Chapter 5, basic investigations on CdSe/ZnSe quantum
dots, incorporated in the intrinsic region of a photodiode, are presented.

(a) (b) (c)

Figure 2.1: (a) Gate de�ned QD.[16] (b) Colloidal QDs labeling cell microtuboles.[17] (c) AFM
image of a sample with self-assembled QDs.[18]
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2 Fundamental Remarks on Quantum Dots
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Figure 2.2:Density of states of the conduction band for di�erent geometries (�gure according
to [25])

2.1 Self-Assembled Quantum Dots

2.1.1 Fabrication

Self-assembled quantum dots are usually grown by MBE in the Stranski-Krastanov growth
mode.[23] For the formation of quantum dots during heteroepitiaxial growth, materials with
di�erent lattice constants are necessary. �e process starts with the epitaxial growth of a
thin two-dimensional layer (wetting layer, WL) on top of the host material. When a critical
thickness is reached, the accumulated strain is released by the formation of coherently strained
small islands. A�erwards, the islands are overgrown by the host material. �is formations
process leads to islands that are almost free of defects and have a very high optical quality.
�e size of the islands, their position and density are subjects to statistical distributions.
In practice, the island formation process depends critically on many di�erent parameters,

for example the substrate temperature and the growth rate. By changing the growth parameters,
the statistical distributions of position, density and size of the quantum dots can be in�uenced
within certain constraints. A lot of experience is necessary to fabricate high quality samples.
�ere are several approaches to overcome the issue of randomly positioned quantum dots.

�ey mostly rely on pre-structuring of the sample, for example by focused ion beam (FIB)
implantation end etching, prior to the Stranski-Krastanov growth, which leads to a more
controlled growth.[24]

2.1.2 Energy States of Self-Assembled Quantum Dots

Creating a con�nement in one or more dimension of a semiconductor results in a drastic
change of the density of states of the conduction and valence band, as schematically shown
in �gure 2.2. In the zero dimensional system (QD), the density of states is represented by
δ-functions, analogous to the states of an atom.

10



2.1 Self-Assembled Quantum Dots

A concrete theoretical calculation of the energy states is very di�cult, because the energy
spectra depend strongly on the QD geometry and potential barrier, which both are in�uenced
by the growths conditions. However, by assuming very simple geometries a model system
which allow for a good qualitative insight into the physics of QDs can be derived.
For self-assembled quantum dots commonly a lens shape geometry is assumed. �ereby, the

dimension in growth direction (z-direction) is signi�cantly smaller than the lateral dimensions.
�is means that the wave function of the electron is strongly con�ned to the lowest subband of
the narrow quantum well of the WL.[26] Higher subband states can be neglected. In the lateral
dimensions the con�nement potential can be assumed to be harmonic. Usually, the potential
is not equal in x and y direction due to a small asymmetry in the QD shape and crystal
structure. �e resulting energy splitting is called �ne structure splitting (FSS). �erefore, the
energy levels equal those of an anisotropic two-dimensional oscillator with the two quantum
numbers nx and ny:[27,28]

Enx ,ny(δ) = ħω [(nx + 1/2)
√

δ + (ny + 1/2)/
√

δ] (2.1)

�e ratio δ = ωx/ωy denotes the asymmetry. For the symmetric case (δ = 1) the energy
states are (N + 1)-fold degenerated, with N = nx + ny = 0, 1, 2, . . . Each state has a twofold
spin degeneracy, and so, respecting the Pauli principle, the shells can be �lled with 2, 4, 6, . . .
electrons. Analogous to atomic physics the energy levels are classi�ed by their total angular
momentum L = ∣nx − ny ∣ = 0, 1, 2, . . . as s-, p-, d-,…shell.
For the hole states, all of the above assumptions are also valid. Additionally, it has to be

taken into account that the valence bands of the light and heavy holes are degenerated at
the Γ-point of the Brillouin zone in a bulk semiconductor. But for the lower energy levels of
the QD, only the heavy holes are relevant, because the quantization energy depends on the
e�ective mass.
When �lling the QD with electrons and holes, the Coulomb interactions between the

charge carriers have to be considered. �ese interaction leads to a renormalization of the
single particle energy levels.

2.1.3 Excitons in Self-Assembled Quantum Dots

Subject of interest in optical spectroscopy of QDs are (most commonly) excitons. �e simplest
occupancy that can be assumed is the uncharged exciton, o�en denoted with X or 1X. It is
formed by an electron in the conduction band and a hole in the valence band (�gure 2.3(a)).
When electron and hole both occupy the s-shell, this state is called single exciton ground state.
�is state will be of special importance throughout the whole thesis, because when using
resonant excitation, this state can be regarded as a two-level system.
�e exciton can also be created in excited states, where, for example, electron and hole

occupy a state in the p-shell, as shown in �gure 2.3(b). �e excited exciton states underlie a
fast relaxation (ps-timescale) into the exciton ground state.[29]
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Figure 2.3: Schematic illustration of di�erent QD occupations: (a) Exciton (X), (b) p-shell
exciton(Xp), (c) Biexciton (2X), (d) Single charged exciton (X−)

If a second exciton is con�ned in the QD this exciton complex is called biexciton (XX or
2X). As the s-shell is two-fold spin degenerated, both excitons can occupy the same shell
(�gure 2.3(c)). In an optical spectrum, the recombination of the second exciton (in presence
of the �rst one) is labeled as biexciton line. Due to the renormalization by the exciton-exciton
binding energy, this line appears most o�en at a lower energy than the single exciton line. In
self-assembled InGaAs QDs this line has typically an energetic di�erence to the transition of
the single exciton ground state of 2-3meV. In CdSe QDs, the binding energy is much higher.
Here an energetic di�erence of 20-25meV is typical.[30]
When con�ning an additional electron in the quantum dot, the transition energy of the

exciton is also shi�ed due to Coulomb and exchange interactions. �e exciton-electron
complex is then called negatively charged exciton X−. Adding more than one electron, higher
charged excitons are created X2−, X3−, . . . When holes are con�ned instead of electrons, the
exciton complexes are called, positively charged excitons Xn+. �e single charged exciton (X−)
is illustrated in �gure 2.3(d).
For the resonant excitation of an exciton, as well as for the spontaneous emission of a photon,

optical selection rules apply. Optical dipole transitions require a change in the total angular
momentum of ±1. �erefore, one has to take into account the total angular momentum of
the involved valence and conduction band: �e heavy hole band is characterized by the total
angular momentum j = 3/2, i. e. m j = ±3/2, while the conduction band is characterized by
j = 1/2, i. e. m j = ±1/2.[31]�erefore, in the �rst order optical interband transitions are only
allowed between QD levels that have the same angular momentum (i. e. from the same shell,
e. g. shh → se). Regarding the quantum number m j, only combinations of electron and hole
resulting in a total spin of ±1 are optically allowed. �is spin can be transferred by a circular
polarized photon. �ose combinations resulting in a total spin of ±2 cannot couple to the
light �eld, and therefore are called dark excitons.
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2.2 Quantum Dot Spectroscopy

2.2 Quantum Dot Spectroscopy

For a single QDs, discrete optical transition lines are expected due to its discrete energy struc-
ture. However, if an ensemble of hundreds up to several ten-thousands QDs is investigated,
the spectrum shows an inhomogeneously broadened distribution of superimposed peaks.
�is results from the statistical size distribution due to the self organized growth, since the size
of the QD directly in�uences the transition energy of its excitonic states. �e full width at half
maximum (FWHM) of the optical emission of the ground state transitions of an ensemble of
QDs depends strongly on the material system and the growth conditions. A typical value for
InGaAs QD is 100meV, whereas narrow broadenings down to 18.4meV have been achieved
for this material system.[32]
In many situations—and also in this thesis—it is desirable to investigate a single QD. �is

requires, as a matter of fact, a sample with a low areal QD density of 1010 cm−2 (= 100 µm−2)
or less. Further, the investigated region of the sample must be restricted to a region of
0.1-1 µm2, which can be achieved by a near �eld shadow mask in combination with a µ-
photoluminescence setup. �e shadow mask consists of a nontransparent aluminum layer
with holes of a few 100 nm in diameter and is usually fabricated by e-beam lithography and wet
or dry etching. By using a µ-photoluminescence setup with a very high spatial resolution it is
possible to investigate single QDs even on unstructured samples, if they exhibit an extremely
low QD density (1 QDs/µm and less). However, even on those samples it is advantageous to
use a shadow mask to relocate the same QD from time to time. In the following the major
methods of QD spectroscopy on single QDs are brie�y introduced.

2.2.1 Photoluminescence and Electroluminescence

A very basic characterization method and most commonly used is the photoluminescence
(PL) spectroscopy. �ereby, charge carriers are excited by a laser, whose energy is (usually)
above the band gap of the host material. �e charge carriers subsequently relax into the lowest
energy states of the QDs followed by a spontaneous emission. �e relaxation process is very
fast, which means that nearly all charge carriers relay into the lowest energetic states before
they recombine. With classical PL spectroscopy one can therefore only observe the electronic
ground states. �e number of the charge carriers, which can relax into the QD, is subject of a
Possionian statistic. By recording the PL versus the incident power, it is possible to distinguish
between the exciton and biexciton transitions, because the intensity of the latter one increases
stronger with increasing excitation power.
It is also possible to record the PL signal with a time-resolving method to determine the

radiative recombination time. Hereby the sample is excited with a short laser pulse and the
subsequent PL is recorded with a streak camera or another time-resolving detector.
When the QDs are embedded in a p-i-n-diode structure, it is possible to inject electrons

and holes directly into the QDs. By modern lithography techniques structures with an active
region of less than 1 µm2 can be created, which allow for investigations on a single QD.[33,34]
�e resulting electroluminescence spectra are comparable with PL spectra.

13



2 Fundamental Remarks on Quantum Dots

2.2.2 Absorption Techniques

�e traditional PL method has some drawbacks. Especially, excited (single) exciton states of
a QD do not appear in the PL spectrum due to the fast relaxation into the ground state. To
gain access to these states, absorption techniques have to be applied. Furthermore, accessing
the coherent quantum properties of excitons in QDs is not possible with the PL technique
due to the incoherent relaxation process. For coherent measurements the exciton state under
investigation therefore has to be excited resonantly, usually by ultrafast laser pulses. To
determine the quantum state a�er the coherent excitation, di�erent methods have been
developed. A couple of these methods utilize the signal of the inherent decay of the exciton to
measure the population of the exciton two-level system.
�ebasic PLmethod can be enhanced to a photoluminescence excitation (PLE)measurement,

which is basically an absorption method. �ereby the luminescence of the QD exciton ground
state (or, depending on the structure of the sample, of charged exciton states) is detected while
the excitation energy is tuned through the region of the excited states. If the excitation is in
resonance with an excited exciton state, an exciton will be created and subsequently relax into
its ground state and recombine. �e technique is quite simple to integrate into an existing PL
setup, as it has been done in our lab.[35] Besides the energetic position of the excited exciton
states, also information about the relaxation process is in principle accessible. A big advantage
of the PLE spectroscopy is, that other QDs, which might also absorb light, do not contribute
to the signal.
For excited states the detection of the luminescence of a lower state can be used in coherent

experiments, which is a commonmethod.[35,36]However, it seems hardly possible to access the
coherent properties of the exciton ground state with an all-optical method, because in this case
the resonant excitation is superimposed with the radiative decay of the exciton. Nevertheless,
R. Melet et al. have recently observed Rabi oscillations of the exciton ground state in a rather
complicated all-optical experiment by combining spatially resolved spectroscopy with a 1D
waveguiding geometry (see �gure 2.4b).[37]
Beside these techniques, direct absorption measurements of a single QD have been carried

out by several groups. �e absorption of a single QD is very weak (about 0.1% of the incident
light is absorbed at resonance), therefore usually a di�erential measurement method has
to be used (e. g. Stark shi� modulation,[38,39] optical modulation,[40] etc.). With this direct
absorptionmethod the ground state as well as the excited exciton states can be investigated and
parameters like the microscopic oscillator strength can be evaluated quantitatively. �erefore
the results of this method can be very well compared to theoretical calculations.
A more complex, but very powerful method is the Four-Wave Mixing (FWM) technique

(�gure 2.4a), which is o�en used to investigate the coherent properties of quantum dot
ensembles. �e dephasing dynamics of di�erent exciton states in QDs can be investigated
by using a sensitive transient FWM technique in heterodyne detection. By combining the
technique with a polarization control of the excitation pulses, Borri et al. achieved to measure
�ne-structure splittings and biexciton binding energies with high accuracy.[41]With the FWM,
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2.2 Quantum Dot Spectroscopy

it is possible to observe Rabi oscillations of the ground state exciton in a QD ensemble.[42]
Langbein et al. also used the technique to investigate individual quantum systems.[43,44]
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Figure 2.4: (a) In a FWM experiment the di�racted signal is detected, while in a pump-probe
experiment the linear response is measured (�gure derived from [31]). (b) Using a guided
excitation through a quantumwire, R. Melet et al. observed Rabi-oscillations of the ground
state in an all-optical experiment (�gure taken from [37]).

2.2.3 Photocurrent Spectroscopy

Another important absorption technique—and the key technique in this work—is the pho-
tocurrent spectroscopy. �ereby the QD is again resonantly excited, but instead of a radiative
recombination, the charge carriers are forced to tunnel out of the QD and contribute to a
photocurrent (PC) which is detected with a high resolution current measurement.[45,46] Com-
pared to the other absorption techniques, the optical setup is very simple because only the
excitation has to be focused onto the sample and neither the luminescence nor the transmitted
light has to be collected. �e largest restriction of the method is the necessity of an appropriate
sample structure. �e QD has to be incorporated into a photodiode structure (usually a
n-i-Schottky diode or a p-i-n diode), which allows to apply an electric �eld with a strength
that the charge carriers can tunnel out from the QD, as explained later in section 2.3.2. �e
detection e�ciency of the current measurement is nearly 100%, so that the signal strength
primarily depends on the ratio between tunneling and radiative recombination. To acquire
the spectral shape of a resonance, it is—in principle—possible to tune either the excitation
energy or the exciton energy (e. g. via the Stark shi�), but the later one usually provides a
much higher spectral resolution (here less than 0.5 µeV).
�e method is capable to investigate the ground state and the excited states of excitons, but

it is most o�en only applied to the ground state. �e real strength of the photocurrent method
is its application in the coherent spectroscopy, where it allows for a quantitative measurement
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2 Fundamental Remarks on Quantum Dots

of the quantum state of the exciton. A detailed theoretical model of the PC from a single QD
is presented in chapter 6.3.2.

2.3 Single Quantum Dot Photodiodes

Incorporating quantum dots into the active region of a photodiode structure allows for optical
and electrical access to the exciton in a single QD. In this section the basic (incoherent)
properties of such a device are presented using the example of the well understood InGaAs
QD photodiode.
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Figure 2.5: (a) Schematic layer structure of a GaAs Schottky photodiode with InGaAs QDs
embedded in the intrinsic region. (b) Band diagram of the GaAs photodiode used in this
work with an applied reverse bias voltage.

2.3.1 Sample Structure and Electric Field

�ephotodiode structure is basically always the same. Figure 2.5 shows the schematic structure
of a typical photodiode. Above highly doped back contact, an intrinsic layer is grown. On top
of this layer a Schottky contact is processed. �e QDs are embedded in the intrinsic region
during the growth. To address only a single QD by the laser excitation, a near �eld shadow
mask restricts the excitation region.
An important feature of the QD photodiode is, that it is possible to apply a vertical electric

�eld to the quantum dot. For a n-i-Schottky diode with a highly doped back contact, the
electric �eld can be calculated as a function of the bias voltageVbias and the distance d between
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2.3 Single Quantum Dot Photodiodes

the back contact and the Schottky contact:

F = Vbuild-in + Vbias
d

(2.2)

�e build-in voltage of the Schottky diode is approximately half of the band-gap; for a GaAs
Schottky diode with a titanium Schottky gate Vbuild-in = 0.75V is presumed. �e formula is
only correct for moderate voltages and as long as there is no current �ow and no charges are
trapped inside the QDs or the wetting layer, so a careful treatment is necessary. However,
for the interesting reverse bias voltage region (here between 0V and 2V) the equation can
certainly be applied.

2.3.2 Tunneling

e

hh

Econf

Econf

QD
CB

VB

Figure 2.6: Tunneling of electron
and hole from a QD.

If a QD is located in the intrinsic region of a photodi-
ode, an exciton in the QD can decay via two competing
processes: radiative recombination and tunneling. �e
radiative recombination time (for InGaAs QDs about 400-
600 ps) of an exciton in a small QD (i.e. a QD with a
small height) does not depend very strongly on the elec-
tric �eld, and can here assumed to be a constant for a
speci�c QD. Instead of recombining, the electron and
hole can tunnel through the barrier to the back contact
or the Schottky contact, respectively (see �gure 2.6). �e
tunneling time depends on the barrier—which is strongly
�eld dependent—and on the e�ective mass of the charge
carrier. �e tunneling time of the electron and the (heavy)
hole can di�er by a factor of more than 10, because the
hole has a much higher e�ective mass. Nevertheless, a�er the electron (which has the shorter
tunneling time) has tunneled, the single hole has no counterpart to recombine and therefore
tunnels subsequently. A rough estimation of the dependencies of the tunneling rate can be
given by the Wentzel-Kramer-Brillouin approximated expression

1
τt

= ħ
8m∗a2

exp(−4
√
2m∗

3eFħ
(Econf)3/2) , (2.3)

but neither the con�nement energy Econf nor the height of the QD a can be measured directly
and small variations of these parameters result in a considerable change of the tunneling time.
However, the dependence of the tunneling time from the external �eld 1/τt ∝ exp(−1/F)
depicts the experimental results very well.
�e ratio between tunneling decay and radiative recombination is simply determined by

the according time constants. At a certain electric �eld, the tunneling time becomes shorter
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2 Fundamental Remarks on Quantum Dots

than the radiative recombination time. �is means, that the probability of the exciton to
tunnel from the QD becomes greater than the a radiative recombination.

2.3.3 Quantum Con�ned Stark E�ect

�e quantum con�ned Stark e�ect (QCSE) is an essential e�ect for the photocurrent spec-
troscopy. It enables the tuning of the energy of the exciton ground state (of course, other
states are also e�ected) via the bias voltage with a very high accuracy. It is a well known e�ect
in QDs, and also in quantum wires[47,48] and quantum wells.[49–51] Here only the in�uence of
an electric �eld F in vertical (z-)direction is discussed, as the lateral �eld remains constant in
the photodiode structures. �erefore, the treatment of the QCSE in QDs is analogous to that
of a quantum well.
As mentioned above in section 2.1.2, only the lowest energy state of the quantization in

z-direction is taken into account. As an intuitively explanation, the wave functions of electrons
and holes in a QD are shi�ed and slightly deformed by the electric �eld, as schematically
shown in �gure 2.7. For moderate �eld strength and depending on the polarizability α, a �eld
induced dipole moment µ = αF is induced which results together with the permanent dipole
moment µel of the exciton in a reduction of the transition energy. In a �rst approximation,
the decrease of the energy is therefore quadratic with increasing electrical �eld:

EX = EX(F = 0) − µelF − αF2, (2.4)

where µel is the permanent dipole moment and α the polarizability.[52]�is is only a coarse
approximation, however it re�ects the behavior of the QCSE in the InGaAs/GaAs QD photo-
diodes very well. For very high electric �eld, the induced dipole moment is limited due to
the con�nement of the electron and hole inside the dimensions of the QD. �en the QCSE is
linear with increasing electric �eld.
For amore exact description, the reduction of the Coulomb-interaction (due to an increased

EC

EV

EC

EV

∆Ee

∆Ehh

Figure 2.7:Deformation of the electron and hole wave functions due to the external electric
�eld. �ereby, the transition energy of the exciton is reduced.
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Figure 2.8:�e QCSE of the exciton ground state, recorded in the photoluminescence and
photocurrent regime. �e experimental data is �tted with a parabola.

electron–hole distance) and the change of the quantization energy have to be taken into
account. �ereby, a more complicated behavior can appear.[45,52–54]
�eQSCE allows for a very accurate tuning of the transition energy; the adjustment �delity

depends only on the stability of the voltage source.[55] At lower electric �elds (below 32 kV/cm),
at which the optical recombination processes are dominating, the QCSE can be observed in
the PL. At higher �elds, the tunneling probability increases. �en the energy of the exciton
transition can be measured by PC spectroscopy. Figure 2.8 shows the QSCE of a QD in the
InGaAs/GaAs photodiode, which continuously covers the PL and PC region. �erein, the
energy is plotted against the bias voltage, which is—referring to equation 2.2—proportional
to the electric �eld.

2.3.4 Voltage Dependent Photoluminescence and Charging E�ects

In a photodiode structure it is possible to investigate the PL in dependence of the applied
bias voltage and the electric �eld, respectively. As explained above, thereby the energy of
the exciton transitions are shi�ed due to the QCSE and the transition from the PL to the
tunneling regime can be observed. In addition, one can observe a charging of the exciton
due to tunneling of electrons into the QD at certain bias voltages. �e mechanism behind
this can be explain as follows. In thermal equilibrium, the Fermi level is determined by the
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Figure 2.9:Voltage dependent photoluminescence of a single QD (some weaker linemay arise
from a di�erent QD) at di�erent excitation power. �e color coding of the luminescence
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n-doped back contact. By applying an external bias voltage Vbias the electron energy levels
of the quantum dot can be shi�ed relative to the Fermi level. For increasing bias voltage the
band �attens and the electron levels are subsequently shi�ed below the Fermi level of the back
contact. �is results in an occupation of the QD with electrons.[45,56–58]
A detailed discussion of the PLV spectra can be found in the dissertation of F. Findeis,[18]

therefore only a brief description will be presented here. Figure 2.9 shows three color plots
of the voltage dependent PL of a single InGaAs/GaAs QD (Sample 120799.2b δ), recorded
for di�erent excitation powers. �e signal originates mainly from a single QD, but at higher
excitation power contributions that may originate from a second QD are visible. �e indicated
excitation power can only be referred as relative power, because the re�ection and absorption
of the excitation by the µ-PL setup and the shadow mask is unknown.
In the bias voltage region VPC (below -0.35V), the luminescence of the QD if e�ectively

quenced. Here all captured charge carriers tunnel from the QD before recombining. �is is
the voltage region where the photocurrent spectroscopy can be used to investigate the optical
properties of the QD.
At low excitation power, between ca. -0.35 V and -0.2 V (region V0) only one peak appears

in the spectrum. It originates from the neutral exciton transition. Above -0.2V (region V1)
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a second peak arises. In this voltage region the single electron state of the s-shell of QD is
below the Fermi level of the n-doped back contact. �erefore, an electron can tunnel into
the QD. Although the s-shell is two-fold degenerated, a second electron cannot tunnel into
the dot, due to the Coulomb blockade. If now an electron-hole pair is captured, relaxes into
the lowest energy state and recombines, the emitted photon has the energy of the X− exciton.
�is states is separated by about 5meV from the ground state. Further, it is also possible that
a single hole is captured, resulting in the appearance of the neutral exciton state X also in
this voltage region. Close to the ground state, about 0.5meV above, an accompanying state
is visible. �is state could be tentatively assigned to the positive charge exciton X+, created
from the biexciton state 2X if one electron tunnels out from the QD.
�e power dependence of the lines is an additional indicator for the identi�cation of the

states. With increasing excitation power a pronounced line arises at an energy, which is
2.7meV lower than that of the ground state. �e intensity of this line increases faster with
the excitation power than the intensity of the ground state, which is a clear signature of the
biexciton state 2X.
Above a reverse bias voltage of about 0.05V (region V2), the two electron state is shi�ed

below the Fermi level. Here two electrons can occupy the QD, and therefore the luminescence
can be expected (at low excitation) from X− (one hole capture) and X2− (exciton capture).
�e neutral exciton cannot be created e�cently, hence the line vanishes in this region. A
doubtless assignment of the here appearing lines is very di�cult and not subject of this thesis.
At 0.15 V the signature of the spectrum changes again and especially the X− becomes blurred
with increasing bias voltage, possibly due to charging of the wetting layer.

2.3.5 High Resolution Photocurrent Spectroscopy

�e basic principle of the photocurrent spectroscopy is the resonant absorption of photons
and subsequent tunneling of the charge carriers from the QD. A cw Ti:Sapphire laser is tuned
close to the resonance of the previously with PLV measurements analyzed QD. �en the
exciton resonance is tuned through the laser energy by utilizing the QCSE.
�e spectral line width of the laser is much smaller than the homogenous line width of the

QD, therefore, the spectral resolution depends only on the tuning of the exciton energy by the
bias voltage. In �gure 2.10 the resonances of the neutral exciton X are recorded for di�erent
laser wavelengths. At low bias voltage the FSS is fully resolved, at high voltages the lines are
lifetime broadened due to the faster tunneling and the FSS cannot be resolved any more. In
the inset of �gure 2.10 a highly resolved PC spectrum of the ground state is shown. �e FSS
can be resolved easily. �e voltage scale on the top is converted to an energy scale via the
QCSE. �e peaks can then be �tted with a Lorentzian curve with a very good agreement.
�e line width is in�uenced by two e�ect: the lifetime due to the tunneling and a power

broadening. Both e�ects will be discussed in the theoretical section. �e doublet line structure
visible at low voltages can be further investigated by using a linear polarized excitation. On
rotating the orientation of linear polarization each peak can be clearly suppressed with respect
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Figure 2.10: Photocurrent resonances of a single QD for di�erent excitation energies. Inset:
A highly resolved PC spectrum. �e bias voltage scale on the top axis, is converted to the
relative energy on the bottom axis via the QCSE.

to the other. �is can be explained by a slight shape asymmetry, present in almost any
self assembled QDs, resulting in an energy splitting caused by the electron–hole exchange
interaction, which is commonly known as �ne structure or asymmetry splitting in the literature
(see section 2.1.2, and references [59, 60]).

2.3.6 Electrically Connected Quantum System

�e single QD photodiode structure allows for optical and electrical access to a single quan-
tum system, represented by an exciton in a QD.�e new parameters, bias voltage Vbias and
photocurrent IPC allow for an electrical measurement of the occupancy of an optical isolated
QD via the tunneling e�ect. At the same time, the energy of the exciton transition can be
tuned by the quantum con�ned Stark e�ect. With resonant ps laser excitation of the (single)
exciton ground state of the QD, the exciton state can be described as a two-level system.(a)
Under these conditions, a single QD photodiode can be regarded as an unique coherent
optoelectronic device, with the possibly of coherent optical and electrical control, as discussed
later.

(a)A detailed description of this two-level system is given in chapter 6
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3 Introduction into Quantum Information

�e intention of this chapter is to give a brief overview about quantum information processing
(QIP) and to de�ne the basic terms used throughout this thesis. Good reviews of this �eld are
given for example in the textbooks [13, 61–63].

3.1 Historical Overview

�e roots of quantum information processing go back to the 1960s, when R. Landauer investi-
gated the heat dissipation of logical operations. He found, that the only logical operations
which require dissipation of energy are irreversible ones. Later on, C. Bennet discovered the
possibility of reversible, dissipation-less computation and T. To�oli invented the classical
two bit cnot and three bit To�oli gate, whereas the latter is an universal gate for digital
computation. �is means, that all algorithms that can be solved by a Turing machine can be
e�ciently solved by a sequence of this gate. �ese developments are fundamental prerequisites
for QIP, because in a quantum computer all quantum logical operations have to be reversal,
else the quantum state is destroyed.
In the early 1980s, P. Benio� showed that it is possible to build a classical Turing ma-

chine by using a quantum mechanical Hamiltonian,[64] and R. Feynman proposed, that a
quantum computer might be able to be more than a classical computer. He suggested, that
such a computer would be especially useful to simulate the dynamics of another quantum
system.[65,66] In 1985, the concept of a universal quantum computer was fully developed by
David Deutsch.[67,68] He remarked, that such a computer includes a quantum parallelism, “a
method by which certain probabilistic tasks can be performed faster by an universal quantum
computer than by any classical restriction of it.”[67] In 1991 he proposed the �rst quantum
algorithm (Deutsch-Josza algorithm[69]), which demonstrated the theoretical advantage of a
quantum computer over a classical computer.
�e interest in quantum computation increased strongly in 1994, when P. Shor invented

the �rst quantum algorithm which can factorize integers exponentially faster than the fastest
known classical algorithm.[70,71]
Physical implementations for qubits have been proposed since the early 1990s in various

di�erent systems, e. g. in trapped ions, nuclear spins, �ux quanta, polarized photons, excitons,
etc., and exciting progress by experimental groups have been made. Nevertheless, the today
achieved functionality is only rudimentary. New concepts for the coherent manipulation and
interconversion of qubits have to be invented to establish quantum information as an useful
and e�cient technology.
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3.2 Qubits

�e building blocks of quantum information science are qubits. Unlike a classical digital
bit, which can take only the two values “0”and “1”, a quantum mechanical two-level system,
here called qubit,(a) can exist in a complex superposition of its quantum mechanical states
∣0⟩ and ∣1⟩. �e quantum state of a qubit can be mathematically written as a vector in a
two-dimensional Hilbert space, given by

∣ψ⟩ = α ∣0⟩ + β ∣1⟩ , (3.1)

where α and β are complex numbers that satisfy the condition ∣α∣2 + ∣β∣2 = 1. Apart from a
global, not measurable phase, this is equivalent to

∣ψ⟩ = cos(θ/2) ∣0⟩ + e iϕ sin(θ/2) ∣1⟩ , (3.2)

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. Using this parametrization, the qubit state can easily
visualized in spherical coordinates on the Bloch sphere, introduced in chapter 6. �ereby,
the parameters θ and ϕ are corresponding to the altitudinal angle and the azimuthal angle,
respectively.
Due to the fundamental laws of quantum mechanics, it is not possible to determine the

complete information about the quantum state of a qubit. When measuring a qubit as de�ned
in Equation 3.1, the probability to get either the result ∣0⟩ or the result ∣1⟩ is ∣α∣2 = cos2(θ/2)
and ∣β∣2 = sin2(θ/2), respectively.
In the next section it is described, how the quantum state of a single qubit can be manipu-

lated. However, it is obvious, that for a functional quantum computer, more than one qubit is
required. A two-qubit system has four basis states ∣00⟩, ∣01⟩, ∣10⟩, and ∣11⟩. �e two-qubit
system can also be in a superposition of these four states, thus the total quantum state is given
by

∣ψ⟩ = α00 ∣00⟩ + α01 ∣01⟩ + α10 ∣10⟩ + α11 ∣11⟩ , (3.3)

where ∣αi j∣2 is the probability to get the result ∣i j⟩ from ameasurement of the two-qubit system
in total. Of course it is possible to measure only one qubit of the two-qubit system. If, for
example, one measures the �rst qubit and gets the result ‘∣0⟩’, the system is le� in the state

∣ϕ′⟩ = α00 ∣00⟩ + α01 ∣01⟩√
∣α00∣2 + ∣α01∣2

. (3.4)

A special and and important two-qubit state is the Bell state or EPR pair, given by

∣00⟩ + ∣11⟩√
2

. (3.5)

(a)�e term qubit was coined by B. Schumacher in 1995.[72]
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If one measures the �rst qubit of this state, one obtains ‘∣0⟩’ with the probability of 1/2 leaving
the two-qubit system in the post-measurement state ∣00⟩, or ‘∣1⟩’ with the probability of 1/2
leaving the system in the state ∣11⟩. �us, the measurement of the second qubit will always
give the same result as the measurement of the �rst one. �e Bell state is thereby the simplest
example of entanglement and it cannot be written as a product of two one-qubit states. Such
entangled states have applications in the quantum cryptography and quantum teleportation.
For an e�cient quantum computer a large number of qubits, assembled in a qubit register

is necessary.

3.3 Single Qubit Gates

Classical computers operate with logical gates like and, or, and not, which preform the
manipulation of the information according to a truth table. For example, the not gate changes
the state of a bit from 0→ 1 and vice versa. Analogous to the classical logic gates, quantum
logic gate, or just quantum gates can be de�ned. Due to the fact that quantum logical operation
have to be reversible, they can be described by an unitary operator Û acting on the quantum
state vector ∣ψ⟩ of a qubit. In the following, the most important quantum gates are introduced.
One of the simplest quantum gates is the not gate, which, analogous to the classical not,

switches the state ∣0⟩ to ∣1⟩ and vice versa. However, it act of course also on a superposition of
states, in the manner that ∣0⟩ and ∣1⟩ change their role:

α ∣0⟩ + β ∣1⟩ notÐÐ→ α ∣1⟩ + β ∣0⟩ . (3.6)

�is operation can be represented by the unitary matrix

Ûnot = (0 1
1 0) , (3.7)

which denoted as X in many textbooks due to historical reasons.(b) One immediately sees,
that U2not = I2,(c)thus applying a not gate twice results in the original state.
�e maybe most famous single qubit quantum gate is theHadamard gate, whose matrix

representation is

H = 1√
2
(1 1
1 −1) . (3.8)

If applied to the ground state ∣0⟩, the resulting state is a coherent superposition

H ∣0⟩ = 1√
2
∣0⟩ + 1√

2
∣1⟩ . (3.9)

(b)�is matrix is the same as the Pauli matrix σx .
(c)I2 denotes the two-dimensional identity matrix (

1 0
0 1).
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3 Introduction into Quantum Information

�is operation is very o�en the initial operation in quantum algorithms. In the quantum
interference experiments, performed on the exciton qubit system described in the chapters
6 and 8, the �rst laser pulse acts also like a Hadamard gate, enabling the qubit’s quantum
interference property.
�e Hadamard gate is sometimes regarded as something like the square root of the not

gate, because it rotates half the pathway of a not gate, but applying the Hadamard gate twice
is the identity operation H2 = I2. However, the di�erence is only a constant phase factor
−π/2, and in many experiments the absolute phase cannot be controlled, thus it is generously
neglected.
�e last single qubit gate which is regarded here is the arbitrary phase shi�er gate. It acts

only on the phase of the qubit, rotating it by an angle of ϕ. Its unitary matrix is given by

P(ϕ) = (1 0
0 e iπϕ) . (3.10)

It has been proven mathematically, that any unitary operation on a single qubit can be approx-
imated as a series of operation by the Hadamard gate together with the π/8 phase shi�er gate.
However, an arbitrary phase shi�er gate is is very useful to simplify some quantum algorithms
(i. e. reduce the number of gate operations) and for fault-tolerant quantum computation.[13] A
strong motivation for the experiments presented in chapter 8 was to create such a gate for the
exciton qubit system, where the phase angle can be controlled by an electric signal.

3.4 Two Qubit Gates

In order to build a quantum circuit, it is necessary to couple two (or more) qubits. For this
purpose one has to build two-qubit gates. �e prototype and most important two-qubit gate
is the controlled-not (cnot) gate. It has two qubit inputs; the �rst qubit is called control qubit
and the second one target qubit. �e cnot performs the following: If the control qubit is 0, the
target bit keeps its current state. If the control qubit is 1, then the target bit is �ipped according
to the not gate operation. Like every quantum gate, the cnot gate can be represented by an
unitary matrix. Because it acts on a two-qubit state, it is described by a 4 × 4 matrix:

Ûcnot =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
. (3.11)

�e cnot gate forms, together with the Hadamard gate and the phase shi�er gate, an universal
set of quantum gates. With such an universal set it is possible to perform in principle every
thinkable quantum algorithms.[73–76]
An important application of the cnot gate is the creation of entanglement between two
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3.5 Quantum Algorithms and Applications

qubits. Using the quantum circuit shown in �gure 3.1b, the state of the two qubits is trans-
formed into a Bell state.
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Figure 3.1: (a) Graphical representation of the cnot gate. (b) Quantum circuit to create an
entanglement between two qubits. (c) “Truth table” of the circuit in (b)

Another important two-qubit gate, is the swap gate. It simply exchanges the quantum state
of two qubits. �is operation might be very useful for a physical implementation of a quantum
computer, if, for example the qubits are lined up in a row and can only be measured at one
position or only one position in an in-/outport for photon qubits. �e matrix representation
of the swap gate is given by:

Ûswap =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠

(3.12)

�ere are of course more (to be exact: an in�nite number) two (and more) qubit gates, and
especially the controlled-phase shi�er gate and the three qubit To�oli gate are o�en used to
describe quantum algorithms. However, the cnot gate is universal and quite simple, so the
research for physical implementations of two-qubit gates focuses mainly on this gate.

3.5 Quantum Algorithms and Applications

3.5.1 Quantum Algorithms

A quantum algorithm is an algorithm, where each step is performed on a quantum computer.
Each algorithm starts with the initialization of the qubits in a qubit register. �e steps of the
quantum algorithm are composed of quantum gates acting on one or more qubits. A�er the
quantum operations are performed, the �nal states of the qubits are measured, yielding the
result of the algorithm. Many quantum algorithms are only probabilistic algorithms, in the
sense that they give the correct answer only with a high probability.
In the following the Deutsch-Josza algorithm is brie�y explained, and it is commented on

the basic strategies of the important Grover and Shor algorithms.
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1

0 H
Uf

H

Hn nn
x x

y y f(x) 

Figure 3.2:Quantum circuit implementation of the general Deutsch-Jozsa algorithm. �e
upper wire represents a set of n qubits.

Deutsch-Josza Algorithm

One of the �rst and simplest invented quantum algorithms is the Deutsch-Jozsa algorithm.
�e original deterministic version quantum algorithm was developed by D. Deutsch and R.
Jozsa,[69] and further improved by R. Cleve et al.[77] to the general Deutsch-Jozsa algorithm,
which is presented here. It is an example of a deterministic quantum algorithm, producing
always the correct answer. It solves the problem, whether the oracle function

f ∶ {0, 1}n → {0, 1} (3.13)

is either constant (returning the same result for all inputs) or balanced (returning 1 for half of
the inputs and 0 for the other half). �e best classical algorithm has to evaluate the function
f for n inputs 2n−1 + 1 times.
�e steps of the algorithm are shown in �gure 3.2. �e algorithm requires n+1 qubits, from

which n are initialized in the ∣0⟩ state (query register) and the last qubit in the ∣1⟩ state (answer
qubit). �e �rst step of the algorithm is to apply a Hadamard gate to all qubits, bringing the
system in the superposition state

∣Ψ⟩ = 1√
2n+1

∑
x∈{0,1}n

∣x⟩ (∣0⟩ − ∣1⟩). (3.14)

�us, a superposition of all values is stored in the query register, and the answer qubit is in the
superposition state (∣0⟩-∣1⟩). A�erwards, the function f , implemented as a quantum oracle is
evaluated using U f ∶ ∣x , y⟩ → ∣x , y ⊕ f (x)⟩, giving

∣Ψ⟩ = 1√
2n+1

2n−1
∑
x=0

(−1) f (x) ∣x⟩ (∣0⟩ − ∣1⟩). (3.15)

A second Hadamard gate on all qubits in the query register transforms the qubits to their
�nal state:

∣Ψ⟩ = 1√
2n+1

∑
z
∑
x
(−1)xż+ f (x) ∣z⟩ (∣0⟩ − ∣1⟩). (3.16)
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�e following measurement of the qubits in the query register will yield 0s if the function
constant. For a balanced function, at least one qubit will yield 1.
In summary, a quantum computer can solve this problem with only one evaluation of the

function f , due to the parallel evaluation by the superposition state. However, this quantum
algorithm solves only a theoretical problem, but it gives the idea that the quantum parallelism
can be used to solve mathematical problems more e�ciently than a classical computer.

Grover Algorithm

�e Grover algorithm is a quantum algorithm for searching an unsorted database with N
entries. L. Grover showed, that it needs onlyO(

√
N) steps on a quantum computer, whereas

on a classical computerO(N) steps are necessary.[78]�e algorithm utilizes an oracle function
O, which can be written as

∣x⟩ OÐ→ (−1) f (x) ∣x⟩ , (3.17)

where f (x) = 1, if x is the solution of the search problem, else f (x) = 0. So, the oracle
function marks the solution of the search problem by a phase shi�. �e algorithm cannot
provide the location of the solution, but through its iterative procedure the amplitude of the
solution is increased while all other database states are decreased. �us, the Grover algorithm
is a probabilistic algorithm.

Shor Algorithm

�e most famous quantum algorithm is Shor’s factoring algorithm. �e interest in this
algorithm arises from the fact, that the security of public-key encryption is based on the
mathematical problem of factoring large numbers. �e runtime of best classical algorithm (the
general number �eld sieve algorithm[79]) is approximatelyO(exp((logN)1/3(log logN)2/3)).
By using a quantum computer, this can be dramatically reduced toO(logN2).
�e algorithm has a classical and a quantum part. �e classical part converts the problem

of factoring N into the problem of �nding the multiplicative order of an arbitrary element of
Z×

N , which is a cyclic group related to N . �e quantum part of the algorithm is based on the
quantum version of the discrete Fourier transform, to �nd the order of Z×

N . �e quantum
Fourier transform performs the same transformation as the (classical) fast Fourier transform,
but it uses the quantum parallelism for speedup.
�e Shor algorithm represents a crucial breakthrough, because it o�ers an exponential

speed-up over both deterministic and probabilistic classical algorithms for an important
mathematical problem.

3.5.2 Quantum Key Distribution and Quantum Repeater

Quantum Key Distribution (QKD) is a method of securely distributing a cryptographic key
by using a quantum communication channel. Subsequently, this key can used to encrypt and
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Figure 3.3: Sketch of an idealized quantum repeater (taken from [84]).

decrypt messages using one-time-pad cryptography over a classical communication channel.
�e easiest method for QKD is the BB84 protocol.[80] It is based on polarization coding of

qubits, using four quantum states from two conjugate Hilbert space bases. For example, a
classical bit can be encoded in the basis of horizontal (‘0’) and vertical (‘1’) polarization of
single photons. A second, conjugate basis can be provided by the diagonal polarization, +45○
(‘0’) and +45○ (‘1’). �e sender (o�en called Alice), sends now a sequence of photons to the
receiver (Bob), with each photon encoded in a randomly chosen basis. Bob measures the
polarization state of the single photons, and because he doesn’t have any information about
the basis which was selected by Alice, he choses also a random basis. A�er the transmittance
Alice and Bob compare the chosen bases, and whenever they have chosen the same basis, they
can use the transmitted bit for a cryptography key. To check for the presence of eavesdropping,
Alice and Bob a�erwards compare a part of their keys. If someone has intercepted and replaced
photons from on the communication between Alice and Bob, the two keys di�er, because the
eavesdropper cannot estimate the correct basis to send his photon.
Other QKD protocols have been invented, for example using entangled-photon pairs or

a third conjugate basis. A fundamental problem of all QKD protocols is, that—in contrast
to classical computation—a quantum channel cannot be ampli�ed. �is prevents today the
application of QKD over long distances, because of absorption of photons in the transmission
channel and loss of coherence and entanglement. To overcome this issue, a new device—a
quantum repeater is proposed.[81–83]
Figure 3.3 shows a schematic sketch of a quantum communication channel equipped with

a series of ideal quantum repeaters. Each repeater consist of two stationary qubits. In a �rst
step, Bell pairs are generated and exchanged between neighboring repeaters. By measurement
in the Bell basis one remote Bell pair between the stations 1 and 5 is created.[84]�is enables a
secure communication over much longer distances. However, building a quantum repeater is
quite di�cult. It requires not only coherent control over a few stationary qubits, but also the
interconversion of photon qubits (“�ying qubits”) to and from the stationary qubits.
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In this chapter the general experimental setup of the di�erent experimental methods are
explained. It introduces the basic techniques and the sample structures.

4.1 Low Temperature Microscope

Basically all experiments described in this thesis require a high spatial resolution and a
temperature of only a few kelvin. �e central unit of the experimental setup is therefore a
sample holder with a low temperature microscope, which can be dipped into a liquid helium
dewar (temperature T = 4.2K). At the lower end of the sample holder the low temperature
microscope (�gure 4.1) is mounted. It consists of a microscope objective and a piezo driven
xyz-positioner. �e sample is mounted on this positioner and can thereby be accurately
positioned (with a step size of less than 250 nm at low temperatures) below the microscope
objective. Although the objective is interchangeable, for the most experiments an in�nity
corrected objective from Zeiss(a) is used.
Electrical connections from the sample holder head to the low temperature microscope

provide control of the nanopositioner and allow for electrical control and measurements of

(a)Zeiss Epiplan, 100x, NA=0.75 , working distance 0.95mm.

Objective

RF-Connector

Electrical 
Connections

xyz-Positioner
Sample-
Position

Figure 4.1: Low temperature microscope with the high NA objective in the upper part and
the xyz-positioner in the lower part.
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the sample. For the high resolution PC measurements shielded cables are available and a
semi-rigid cable allows the connection of a radio frequency signal to the sample.
Before cooling the sample holder in the liquid helium, the lower part is enclosed in a stainless

steel tube, which is evacuated and �lled with helium gas at a low pressure (approximately
1mbar) to ensure heat transfer.
�eupper part of the sample holder (�gure 4.2) consist of a breadboard for �exiblemounting

of di�erent optical components. An imaging unit allows to monitor an image of the sample on
a TV screen. �is makes it easy to position the structure under the microscope objective. �e
laser excitation is steered in a free space setup to the head of the sample holder. A beamsplitter
splits the excitation into two beams; one is directed down to the sample, while the other is
used to record the intensity with a photodiode or powermeter. �e beamsplitter lets also pass
a part of the luminescence from the sample to a multimode �ber coupler. From there the
light is guided via a multimode optical �ber to the spectrometer. For some experiments, the
�ber coupler is exchanged by a mirror to achieve a free space setup in the detection path.
By exchanging the beamsplitter the setup can be optimized for di�erent experiments. For
example, a non-polarizing beamsplitter cube is used for polarization sensitive experiments,
while for PL measurements an uncoated pellical beamsplitter is optimal suited (re�ection of
the laser excitation 8%, transmission of the luminescence 92%).

4.2 Photoluminescence Spectroscopy

As explained in chapter 2.2, the photoluminescence spectroscopy is usually the method of
choice for a �rst investigation of a QD sample. It is based on the principle of excitation of
charge carriers by light and the subsequent relaxation of them into the lowest states of the
QDs. �e light resulting from the recombination of electron and hole is analyzed with a
spectrometer.

4.2.1 Excitation

For a basic characterization of QD samples the charge carriers are usually excited in the host
material of the QDs. �erefore, the excitation energy has to be higher than the band gap of
this material. For InGaAs QD embedded in GaAs usually a red Helium-Neon laser (633 nm,
1.96 eV) is used. �e CdSe QDs, investigated in chapter 5, are embedded in ZnSe, which has a
band gap of about 2.8 eV at 4K. �erefore a semiconductor laser diode(b)with a wavelength
of 404nm, equivalent to 3.07 eV, is used as excitation source. �e intensity of the excitation is
adjusted to the appropriate level by di�erent neutral density �lters and a computer controlled,
continuously variable metallic �lter wheel.

(b)Coherent VioFlame™
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Figure 4.2:Head of the sample holder with the usually mounted optical components. �e
electrical connections to the sample and piezo positioner are attached on the rear panel.
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4.2.2 Detection

�e collected luminescence of the sample is dispersed by a spectrometer and detected by a
multichannel camera. For all experiments presented within this thesis, Acton spectrometers
with a focal length fL of 500mm(c) and at least two di�erent di�raction gratings (g = 300 1/mm
and g = 1200 1/mm, both blazed at 750 nm) are used. A liquid nitrogen cooled silicon charge
coupled device (CCD)(d) is mounted on each spectrometer. �e more sensitive CCD can
detect light with wavelength from 200 nm up to 1075 nm. �e quantum e�ciency in the most
interesting wavelength range for InGaAs QD spectroscopy from 920 to 960 nm is approxi-
mately 65%. In the range of the CdSe QD (about 550 nm) the quantum e�ciency is slightly
higher, approximately 70%. �e maximum spectral resolution of the setup is determined by
the spectrometer geometry, slit width of the spectrometer entrance, the dispersion of the used
grating in the spectrometer, the pixel size of the CCD-Camera and the central wavelength. In
case of the �ber based setup, the entrance slit is formed by the core diameter of the optical
�ber. For high resolution measurements a multimode �ber with a core diameter of 50 µm is
used, which �ts very well to the resolution of the spectrometer in this case. �e maximum
achievable resolution is then 80 µeV at 950 nm (InGaAs QDs) and 280 µeV at 550 nm (CdSe
QDs).
In the PL signal from a few QDs, the line width of the dots is usually much smaller than

the resolution of the spectrometer, and the separation of the lines from single QD is much
higher than the resolution. �erefore, the resolution of the setup is sometimes not the crucial
parameter, and it is better to use a �ber with a bigger core diameter which makes it easier to
couple the luminescence into the �ber. A good compromise, and extensively used here in
most experiments here, is a multimode �ber with a core diameter of 105 µm.(e)

4.3 Photocurrent Spectroscopy

�e photocurrent (PC) technique has three major bene�ts. First, it allows for very high
resolution measurements, only limited by the accuracy of the applied bias voltage of the diode
and the line width of the resonant laser excitation. Second, and this is here the most important
point, it is possible to investigate the coherent properties of the QD ground state driven by
a resonant laser �eld, which is very di�cult with other techniques. �ird, it allows for a
quantitative quantum measurement.

(c)Acton 500i or Acton 2505i
(d)Princeton Instruments SPEC-10 400R/LN or SPEC-10 400BR/LN
(e)�orlabs Multimode VIS-IR Fiber AFS105/125Y, NA=0.22, Core 105 µm
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4.3.1 Excitation and Pulse Preparation

Laser system

For the resonant excitation of the QD states, two titanium sapphire laser (Ti:Sa)(f) systems are
available. �ey are pumped by diode-pumped Nd:YVO4-ring-lasers,(g) which provide a very
stable and high quality pump beam at 532 nm with a maximum power of 6.5W and 10.5W,
respectively.
�e laser systems feature a broad tuning range from less than 700 nm up to more than

980 nm. �ey can be (quasi-)continuously tuned by a Lyot-�lter, but by doing so small mode
jumps and the intensity variation appear. �e systems are designed as ultrafast oscillators,
providing 1.5–4 ps(h) laser pulses with a repetition rate of 80MHz. �e pulse length cannot be
tuned directly, but it can be in�uenced via di�erent parameters in the adjustment. To analyze
the pulse length, a part of the laser beam is directed into an autocorrelator.(i) �ere is a strong
evidence, that the pulse is transform limited and has a hyperbolic secant envelope. �is is
based on the one hand on the autocorrelation signal and on the other hand on the spectrum
of the laser pulse. By assuming this pulse form, the width of the autocorrelation signal can
be converted into the temporal pulse width. It is also possible to operate the laser systems as
tunable cw laser sources with a narrow line width for high resolution measurements.
�e maximum power of the Ti:Sa lasers is approximately 1W and 3W, but for pulsed

operation at 920 nm the maximum power is lower, about 300mW and 1W, respectively. �is
is more than enough for the excitation of the QDs in the coherent experiments. �e laser
beam is therefore attenuated by a set of neutral density �lters and a continuously variable
metallic �lter wheel.
�e laser beam has a horizontal polarization, but for many experiments in this thesis the

polarization has to be adjusted in order to suppress quantum beating due to the excitation of
both �ne structure splitted exciton lines.[85]�erefore, a λ/2-wave plate is inserted into the
beam path to rotate the polarization accordingly.

Michelson Interferometer

In most of the coherent experiments a double pulses excitation is essential. �e delay time
tdelay and the optical phase relation between the two pulses has to be tuned very precisely
to achieve reliable results. �is is realized by a Michelson interferometer, whose one inter-
ferometer mirror has a �xed position, while the other is mounted on a high-precision linear
positioner. �is positioner consists of a motorized linear stage with a travel range of 300mm
for the coarse delay and a thereon attached closed-loop nanopositioner with a travel range
of 500 µm for the �ne delay. �e coarse delay has a precession of 0.1 µm while the �ne delay

(f )Coherent Mira Optima 900-D
(g)Coherent Verdi V6 or V10
(h)�e systems can also be con�gured as femtosecond lasers, then providing 80–250 fs laser pulses.
(i)APE ‘Mini’, ‘PulseCheck’ or ‘Carpe’
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Figure 4.3:�e laser beam is attenuated to the appropriate level and passes then theMichelson
interferometer two create the double pulses. A λ/2-plate is used to change the orientation
of the linear polarized light from the laser. �is is necessary to suppress the quantum beats,
which else could appear due to the FSS of the exciton line.

achieves a nominal repeatability of 5 nm. �e time delay between the two pulses is adjusted
by driving the coarse delay a certain distance from the zero point (the point, at which both
light paths have the same (optical) length). �e precision of the delay time depends critically
on the determination of this zero point. To �nd this position, the following simple procedure
is executed: �e two laser pulses show only (optical) interference if they are overlapping each
other. Hence, the coarse delay is slowly varied while the intensity at the interferometer output
is recorded. �ereby the zero point can be found quickly with an accuracy of less than 50 µm,
corresponding to an uncertainty of the delay time of 0.3 ps. With more e�ort the precession of
the determination of zero point could certainly be improved, but this is usually not necessary.
In nearly all double-pulse experiments, the optical phase relation between the two laser

pulses is an important parameter. With the present setup, it is not possible to control the phase
in an absolute manner, but for a given delay time the phase can be continuously changed by
the nanopositioner.

4.3.2 Current Measurement

�e PC signal is very low in the coherent experiments presented in this thesis. It will be
shown later, that the maximum expected PC from a coherent manipulation, e. g. by a so called
π-pulse, produces a current signal of only 12.81 pA for a laser repetition frequency of 80MHz.
In practice, the PC is even lower, because not all charge carriers tunnel out from the QD.
Additionally, a current up to 50 pA from incoherent absorption is superimposed with the
relevant signal.
To measure these low currents with high accuracy a transimpedance ampli�er with a very

large ampli�cation of 1 GV/A or 10GV/A is used. Most experiments have been performed
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with a home build ampli�er, based on the ultralow input bias current operational ampli�er
AD549 from Analog Devices.[86]�e electric circuit is displayed in �gure 4.4. �e choice of
the feedback resistor is mainly in�uenced by the resulting bandwidth and noise level. Here,
a feedback resistor R f with a resistance of 1 GΩ is used, resulting in a current to voltage
conversion of 1mV/pA. An additional capacitor parallel to R f suppresses oscillation or gain
peaking of the ampli�er. �e dominating noise of the ampli�er is the Johnson noise of the
feedback resistor. �e noise is transferred to the output without ampli�cation, but rolled o�
by the bandwidth limit of the circuits transresitance. �is leads to a root mean square output
noise (RMS) of[87]

EnoR =
√
2kBTR f πBWt , (4.1)

where kB is the Boltzman’s constant and T the temperature of the resistor in Kelvin. Because
the signal increases linear with the feedback resistor, the signal-to-noise ratio of the setup
improves by

√
R f for an increasing feedback resistance. A measurement of the noise level

from the ampli�er reveals a RMS noise of 22 fA.

Rf =1GΩ
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Cs 

Figure 4.4: Schematic circuit diagram of the photocurrent setup with the transimpedance
ampli�er in the center. �e photodiode symbol on the le� adumbrates the sample.

�e bandwidth of the transimpedance ampli�er is determined by the feedback resistor R f ,
the phase compensation capacitance C f , and the stray capacitance CS , parallel to C f :

BWt =
1

2πR f (CS + C f )
, (4.2)

�e ampli�er circuit has a bandwidth of approximately 15Hz. Additionally the output of the
ampli�er is equipped with a low-pass �lter matched with the analog to digital converter.
�e circuit has a very high impedance and high sensitivity, thus it requires a good shielding

and an e�ective power supply bypassing. To reduce the external noise, it is battery powered and
enclosed in a metal housing with good grounding and the only external electrical connections
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4 Experimental Setup and Techniques

are those to the sample. �ese connections are all over coaxial cables and as short as possible.
�e data transfer to the computer is provided by �ber-optic communication.
As an alternative to the home build system, a commercial high gain current ampli�er from

FEMTO is available(j). It includes a sophisticated electrical circuit, which achieves a gain of
10mV/pA at a bandwidth of 200Hz. �e noise of this system is roughly the same as for the
home build one, but the higher bandwidth allows for faster measurements if the subsequent
electronics is adapted accordingly. However, this improvement has not been carried out yet.
�e voltage signal from the ampli�er is measured by an integrating analog to digital con-

verter (ADC)(k) with a resolution of 15.625 µV/bit and a full scale of ±512mV. �us, the resolu-
tion is slightly higher than the noise level of the ampli�er.

4.4 Photon Correlation Measurement

�eproof of a single photon emission is done by performing photon correlationmeasurements
based on a Hanbury-Brown and Twiss (HB-T) setup (�gure 4.5). �e luminescence of the
single photon emitter must be spectrally �ltered to avoid cross-correlations with other sources
(e. g. the excitation or other emitters), or other states of the same quantum emitter. For
this purpose, the HB-T setup is mounted behind the spectrometer. �ereby a very good
�ltering is achieved, but the weak light throughput is disadvantage. �e light coming from
the spectrometer is collimated and splitted by a 50 ∶ 50 non-polarizing beam splitter cube.
Both parts are coupled into multimode optical �bers and guided to two similar single photon
counting modules (SPCM)(l). For each registered photon the SPCM sends an electrical pulse
to a time to digital converter(m), which has a time resolution of 40 ps. �is resolution is about
a factor 10 higher than the time resolution of the SPCM. By recording the time di�erence
between a registered photon at the �rst SPCM and a photon at the second SPCM, it is possible
to create a histogram which is closely related to the second order correlation function. A
simpli�ed explanation that such a setup can distinguish between a true single photon emitter
and a conventional light source can be given as follows. A single photon can not be split into
two parts and therefore can only be transmitted or re�ected. �us, it will be detected only by
one SPCM. If now the light truly is a sequence of single photons, the two detectors will never
register a photon at the same time and the histogram will show a dip at zero time di�erence.

4.5 Coherent Electric Control Experiments

�e experiments presented later in chapter 8, featuring the coherent electric control of the
exciton phase, require an electric signal, synchronous to the optical excitation. In this work

(j)Model LCA-200-10G
(k)Maxim MAX132[88]
(l)SPCM-AQRH-16-FC, a Si APD Single Photon Counting Module with <25 dark counts/s and FC receptacle
(m)PicoQuant Timeharp 200
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Figure 4.5: (a) Schematic illustration of the Hanbury-Brown and Twiss setup for the photon
correlation measurements. (b) Picture of the real setup.

two types of signals have been used. In the �rst approach, a very short electric pulse was
created and applied to the QD photodiode. �is signal underlies a signi�cant dispersion,
broadening a 400 ps electric pulse to more than a nanosecond, due to the too large capacity of
the QD photodiode. As an alternative signal, which provides basically the same e�ect on the
quantum system, a 2.4 GHz radio frequency (RF) signal is created from the laser reference. A
block diagram for both circuits is shown in �gure 4.6a-c.

Short electric pulse generation

To create a synchronous electric pulse the signal of a fast photodiode is utilized (�gure 4.6a).
�is photodiode is by default integrated in the Ti:Sapphire laser and usually used to monitor
the modelocking of the laser. In a �rst step, the provided signal is converted to a sine wave
with the frequency of the laser repetition. �is is achieved by amplifying the signal from the
photoreceiver by 40 dB, running the ampli�er into saturation. �e resulting square wave is
transformed to a sine wave by a low-pass �lter.
�e principle of the short pulse creation, depicted in �gure 4.6d, is quite simple. However,

the implementation requires a very good layout of the printed circuit board and well selected
electric components, due to the high frequencies. �e sine wave is fed into a �rst fast com-
parator, resulting in a square wave. �e voltage level of the square wave depends only on
the comparator output voltage. From this square wave only the rising edge is relevant here.
By changing the control voltage, applied to the second input of the comparator, the point in
time of the rising edge of the square wave can be shi�ed in respect to photodiode signal. �e
maximum time shi� depends on the voltage amplitude of the sine, and is here in the order of
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Figure 4.6: Creation of the fast electric signal as a block diagram: (a) Deriving the sync signal
from the laser. (b) Creation of the short electric pulse. (c) By �ltering the 2.4GHz signal is
created from the pulse. (d) Schematic drawing of the short pulse generation.
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a few nanoseconds. A�erwards, the square wave output is �ltered by a high pass �lter, leading
to a sharp peak. By means of the second comparator, this peak is transformed into the short
voltage pulse. By adjusting the control voltage of the second comparator, the length of the
voltage peak can be adjusted. �is setup achieves a minimum pulse length of 400± 20 ps. �e
jitter of the rising edge of the short pulse as well as the jitter of the pulse length are in the
order of 10 to 20 ps. �is is close to the resolution of the 6GHz real-time oscilloscope, which
was used to develop and control the setup. For further improvements of the circuit layout, a
20GHz sampling oscilloscope has been recently purchased.

Radio Frequency Signal Generation

To avoid the dispersion of the short electric pulse a 2.4GHz signal was used as an alternative.
Of course, this signal underlies the same dispersion, but as it consists only of a single frequency,
only the amplitude and phase is a�ected. �e signal is derived as the 30th harmonic of the
laser repetition frequency (80 MHz), enabling a synchronous sequence of the optical pulses
and the electric signal.
�e signal is created directly from the short electric pulse by utilizing with an interdigital

�lter,(n) with a very strong suppression of other frequencies. A�erwards, the signal is ampli�ed
by two cascaded 30 dB ampli�ers fromMini-Circuits.(o)�epeak to peak voltage amplitude of
the 2.4GHz exceeds 2V at the ampli�er output, and can be reduced by a series of attenuators
to the appropriate level for the experiment.
By adjusting the control voltage of the �rst comparator, the signal can be shi�ed contin-

uously in time for more than one period, referred as phase shi� of the electric signal in
chapter 8.

4.6 Samples

4.6.1 InGaAs Quantum Dot Photodiode

All presented coherent measurements in this thesis refer to a particular InGaAs QD, located
in a sample grown in 1999. �is QD was also inversitgated in the scope of the PhD theses of
S. Stu�er, P. Ester and M. C. Hübner.[35,89,90]�e sample was developed at the Walter Schottky
Institute (WSI) in Garching, and was optimized for PC spectroscopy. It was designed in such
a way, that no charge carriers permanently resist in the QD in the PC bias voltage regime. A
detailed description of the individual processing steps and sample parameters can be found
in the PhD thesis of F. Findeis (sample 120799.2).[18]
�e structure of the n-i-photodiode is shown in �gure 4.7(a). A�er the growth of a n+-

doped GaAs, containing an AlAs/GaAs super-lattice, a n-doped GaAs layer with a doping
concentration of 5×1018 cm−3 was deposited. Subsequently to this back contact, a 40 nm thick
(n)ID-Elektronik GmbH, Customized 13 cm Interdigital�lter
(o)10–2500MHz Ampli�er ZKL-2R5
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Figure 4.7: (a) Layer structure of the sample (b) Microscope image of a photodiode on the
sample

layer of intrinsic GaAs was grown. On top of this layer, the InGaAs QDs were grown. �e
areal density of the QDs is low enough to achieve optical access to a single QD bymeans of the
later processed shadow mask. A�erwards, 270 nm intrinsic GaAs, 40 nm of Al0.3Ga0.7As and
a 10 nm capping layer were deposited. On top of the semitransparent Schottky gate (5 nm Ti)
a near �eld shadow mask was processed. For this step, a 20 nm thin Si3N4 layer was deposited,
serving as an etch stop. �e shadow mask material is a 80 nm aluminum layer, in which
apertures with a diameter of 100 nm to 500 nm were etched by using e-beam lithography and
reactive ion etching techniques. In contrast to the selective optically excitation of individual
QDs, the electrical access to the QDs is not selective. All QDs in the photo diode (about 12
million QDs in this structure) are electrically contacted in parallel. Figure 4.7(b) shows a
microscope image of the sample. �e photodiode has an area of 300 × 400 µm2. On the gold
metalization on the le� the bond wire is visible. �e shadow mask is located in the right area,
between the bigger markers.
�e intrinsic region of this structure is 360 nm broad and the build-in voltage Vbuild-in of

the GaAs-Schottky contact is approximately 0.75V. Hence, the electric �eld can be calculated
(following equation 2.2) by

F ≈ 27.78 ⋅ 103Vbias
1
cm

+ 20.8kV
cm
, (4.3)

where Vbias denotes the applied bias voltage.
During this work samples from the group of D. Reuter (Universität Bochum) with the

same semiconductor layer structure were also investigated. However, in these samples no
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Figure 4.8: (a) Layer structure of the sample used for the voltage dependent PL. (b) Simpli�ed
band diagram of this CdSe QD PD.�e diagram is not to scale and the band bending at
the heterojunction is neglected.

appropriate QD (concerning spectral position and spacial and spectral isolation) has been
discovered, yet. In the future, the samples from Bochum will surely play an important role.

4.6.2 CdSe Quantum Dot Photodiode

�e CdSe/ZnSe QD photodiode structures are grown in the group of K. Lischka. �ese
structures are a completely new development, therefore a couple of di�erent samples were
grown to �nd an optimal structure. However, the basic layer sequence is the same for all
samples. Figure 4.8a shows a schematic cross section of the multilayer structure. �e samples
were grown using standard MBE on a n-doped (2 × 1018 cm−3) (0 0 1) GaAs substrate.�e
substrate is overgrown with a doped GaAs layer of about 200 nm to achieve a good surface
quality. At �rst a layer of intrinsic ZnSe was deposited, inmost of the samples.(p)�e thickness
of this layer varied in the di�erent samples from 20 nm to 40 nm. In the newest samples
optimized for the PC spectroscopy an additional n-doped ZnSe layer was grown at �rst. �ese
samples are explained in detail in the thesis of M. Pan�lova.[91]
For the QDs, a thin layer of CdSe was grown on top of the intrinsic ZnSe. �e 3D Stran-

ski–Krastanov CdSe dot formation was induced by a thermal activation process and in-situ
controlled by re�ection high energy electron di�raction (RHEED) measurements.[92] For an
optimal areal density of QD, the thickness of the CdSe layer was about 2.1monolayers, but
(p)�e latest samples are grownwith a n-doped ZnSe layer at �rst, to reduce the band bending at the heterojunction.

43



4 Experimental Setup and Techniques

within the di�erent samples the nominal thickness of the layer ranged from 2 to 3monolayers.
�e areal density was not a very critical parameter in these �rst studies, because even for a
higher QD density spectrally separated lines arise at the low energy tail of the ensemble. In
none of the samples a QD density comparable to the low density InGaAs QD samples was
found. Finally, the QDs were capped with a layer of intrinsic ZnSe with a thickness of 50 to
60 nm�e Schottky barriers of the samples were established by a 5 nm thick semi-transparent
gold layer on top of the structures. For spatial isolation of single QDs an aluminum shadow
mask was fabricated using e-beam lithography. �e Ohmic back contacts were processed with
indium on the GaAs substrate.
To calculate the electric �eld in this structure, again equation 2.2 is used. However, one has

to be very carefully in this case, as the band diagram (�gure 4.8b) exhibit a heterojunction
between the GaAs and the ZnSe. Regarding the QCSE in the experimental data, there is a
strong evidence, that for an excitation above the ZnSe band gap the electric �eld is reduced at
the position of the QDs. �is e�ect might be a result of the heterojunction, but there is no
proof of this these.
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5 Voltage Dependent Photoluminescence
of CdSe Quantum Dots

In principle, CdSe quantum dots may provide advantages over InGaAs for quantum infor-
mation processing purposes. Due to the larger band gap of this II-VI material system,(a) the
con�nement energy of electron and hole is signi�cantly larger than in the III-V semiconductor
material systems. Moreover, the Coulomb correlation energies are also about ten times higher,
thus it should be possible to manipulate these quantum dots with femtosecond laser pulses
without a�ecting the biexciton state of the QD.
In this chapter, the PL properties of single CdSe QD in a photodiode are investigated. �e

research has been performed in a close collaboration with Marina Pan�lova and Alexander
Pawlis form the group of Klaus Lischka. Further measurements, featuring a �rst evidence of a
resonant photocurrent signal, will be presented in the PhD thesis of M. Pan�lova.[91]

5.1 Ensemble Photoluminescence

�e PL observed in the unstructured region of the sample is inhomogeneously broadened to
about 70meV, as shown in �gure 5.1a. �e broadening exhibits a slight asymmetry; towards
the low-energy tail of the PL spectrum the QD density decreases and separated lines appear.
By using the shadow mask apertures the excited region of the sample is further restricted to a
small area and clearly separated lines are observed. �ese arise probably from just a few QDs.
However, due to the higher Coulomb correlation energies in the II-VI semiconductors, the
lines from di�erent states of a single QD cover a larger energy range as compared to the III-V
system. �is increases the probability that the spectra from di�erent dots are overlapping;
making an identi�cation of the di�erent lines from a single dot much more di�cult.

5.2 Spectral Jitter

For some QDs a spectral jitter over time is observed (see �gure 5.1b), which is a well-know
e�ect in CdSe QDs. Localized charge carriers in the nanoenvironment of the QD are held
responsible for this behavior. However, the jitter did not appear always and not on every dot.
Especially the PL of later grown samples does not show this jitter, proving the enhancement of
the structural properties due to optimized growth conditions and improved sample processing.

(a)�e band gap of ZnSe at 4 K is about 2.8 eV
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5.3 Single QD Photoluminescence

�e e�ect is used to identify lines originating from the same QD analog to Patton et al.,[93]
by assigning those transitions which show the same jitter to the di�erent exciton states of an
individual dot. However, the measurements presented in the following sections are recorded
from spectral lines which do not show this jitter, as it prevents a detailed analysis.

5.3 Single QD Photoluminescence

5.3.1 Voltage Dependent PL

Figure 5.2a shows a two-dimensional map of the luminescence, in which two spectral lines as
a function of the bias voltage are visible. �e lines seem to arise from a single QD and are
separated by 11meV (at a bias voltage of 2.2 V). To identify the exciton state, from which these
line originate, results from other groups and the band diagram of the photodiode (see chapter
4.6.2) are taken into account.
A strong luminescence line is observed at zero bias voltage. In this case band calculations

indicate that the energy of the lowest conduction band state of the QD is below the Fermi
level of the back contact. �erefore, electrons from the substrate can tunnel into the QD and
occupy the single electron state. Hence, the dominate line in the PL at moderate excitation
intensities originates from the recombination of the negative charged exciton, labeled with
X− in the diagram.
With increasing reverse bias voltage the conduction band ground state is li�ed above the

Fermi level, which favors the radiative recombination of the neutral exciton, which arises
for reverse bias voltages larger than 2 V. However, there is a non-zero probability that two
electrons occupy the QD even in this bias voltage region. �erefore, the spectral line of
exciton transition is accompanied by the charged exciton line. �e two lines are separated
by the electron–exciton binding energy which is determined to be 11meV, in agreement
with the results in reference [94]. At high bias voltages the intensities of both, X and X−,
are consequently reduced, since the tunneling process is here competing with the radiative
decay of the excitons. For voltages higher than 3.8V the PL is e�ectively quenched due to
the tunneling. �is principally con�rms the possibility of photocurrent measurements with
single dots on our samples, however the IV characteristic of this sample shows a too large
background current at this bias voltage.
�e observed line widths of both excitonic transitions are in the range of 280 µeV, limited

by the spectral resolution of our setup. However, a slight increase of the line width is observed
at reverse voltages above 2V.�is broadening may arise from the reduced exciton lifetime due
to the additional tunneling, but also from interaction with charge carriers from the increasing
background current.
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5.3.2 Stark E�ect

A central feature observed in the PLV spectrum, shown in �gure 5.2a, is the quantum-con�ned
Stark e�ect (QCSE). �e vertical electric �eld F at the QD, which is responsible for the QCSE,
can be calculated according to equation 2.2. In this sample, the distance between the Schottky
contact and the doped back contact is 80 nm. For the build-in voltage of the ZnSe-Schottky
diode, a value of 1.4 V is assumed.
�e Stark e�ect is evaluated for both exciton lines. �e upper diagram in �gure 5.2b shows

the Stark shi� of the exciton transition and the lower one the shi� of charged exciton transition
as a function of the electric �eld strength. In the region between approximately 300 and
600 kV/cm one can observe a quadratic dependence for both transitions as expected for the
common QCSE. Optimal agreement with the measured data is obtained by �tting the data by
the function given in equation 2.4 in this electric �eld range. For the exciton the polarizability
α is found to be 10 ± 1 µeV/(kV/cm)2 and for the charged exciton α = 25 ± 2 µeV/(kV/cm)2
is derived from the �t. For low electric �eld strength the exciton transition vanishes due to
the formation of the charged exciton. For the charged exciton state, a signi�cant deviation
from the common Stark e�ect is observed below a �eld strength of 300 kV/cm. In this region
the transition energy is nearly independent of the applied bias voltage. �is behavior is can
be explained in two di�erent ways: Either an anomalous Stark e�ect appears, similar to the
theoretical prediction for a lateral �eld by S. Ritter et al.,[53] or the electric �eld is screened in
this voltage region. Recent measurements support the latter assumption, because the behavior
of spectral lines seems to depend strongly on the energy of the excitation, and thereby on the
number of additional charge carriers, which may screen the electric �eld.

5.4 Photon Correlation Measurements

In order to con�rm that the spectral lines originate from single quantum emitters, correlation
measurements were performed on several spectral lines. A typical normalized correlation
spectrum is shown in �gure 5.3. Due to the exponential state decay, the data can be �tted with
the expression

g(2)(t) = (1 − g(2)(t0)) × exp(−∣t − t0∣
tc

) , (5.1)

where g(2)(t0) corresponds to the minimum correlation value and tc is the convolution of the
decay time with the response time of the single photon counters. �e time-axis is a�erwards
corrected, so that t0 = 0ns.
From the correlation data in �gure 5.3 g(2)(t0) = 0.4 is obtained, which is a clear evidence

that the line arises from a single quantum emitter. However, stray light from the laser excitation
and other sources create a substantial background in the correlation measurement, which
limits the achievable g(2)(t0). �e parameter tc , which gives an upper limit for the radiative
lifetime of the state is determined to be 900 ± 100 ps, which is a typical value for the largest
CdSe Stranski–Krastanov dots.[95]
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Figure 5.3: Photon correlation measurement a�er interband excitation at zero bias voltage.
�e correlation data is �tted with the expression for an exponential state decay.

5.5 Towards Photocurrent Measurements

�e investigations of CdSe/ZnSe photodiodes show the expected fundamental e�ects: charg-
ing of the exciton state, observation of the QCSE and a reduction of the luminescence due to
tunneling. �us, this basic research opens a new material system for coherent spectroscopy
in the PC regime.
At the beginning of theses experiments with the CdSe/ZnSe QD photodiodes, the reverse

current of the Schottky diodes was to high for their application in PC spectroscopy. With great
e�orts the processing of the Schottky diodes was optimized, so that now good Schottky diodes
can be fabricated. However, resonant PC spectroscopy is not easy in this spectral region,
especially because tunable cw laser source with a narrow bandwidth are rare in this spectral
region. Usually, cw experiments are utilized to align the photocurrent measurement setup
and are necessary to evaluate the Stark shi� in the PC regime before the coherent properties
can be investigated with picosecond laser excitation. Nevertheless, �rst evidence of a resonant
PC signal has been observed[96] and further experiments are planned.

49





6 The QD Exciton Two-Level System

�e concept of two-level systems (TLS) is a simple, but important model system of quantum
mechanics. �e approach is widely utilized to describe the behavior of many di�erent systems.
In several situations the interaction between light and matter (e. g. atomic systems, excitons in
semicondutors,…) can be reduced to the concept of the TLS. �e theory for a two-level atom
interacting with a light �eld is conceptual the same as for a spin 1/2 system in a magnetic �eld,
developed by I. I. Rabi[97] and F. Bloch[98] in the �rst half of the 20th century. �e basic theory
is treated in many textbooks, e.g. in references [99–102]. In the �rst part of this chapter (6.1
and 6.2), the basic theory of TLS is presented. �e derivation of the basic equations follows
closely the approaches in [31] and [100]. In the derivation, the interaction between light and
matter is treated in a semiclassical theory, i.e., the quantum mechanical properties of the TLS
are considered, whereas the light �eld is treated as a classical �eld.
�e second part of the chapter (6.3) extends the basic equations to the model of an exciton

in a QD photodiode. �erefore, the dampingmechanisms, which occur for an exciton in a QD
photodiode are modeled within the density matrix equations. Although these extensions are
only phenomenological, their physical background is discussed. Additionally, the theoretical
quantities of the density matrix are mapped to the experimental quantity – the photocurrent.

6.1 Basic Theory of Two-Level Systems

In this work the TLS is represented by the ground state of the QD (“empty” QD), denoted
as ∣0⟩ and the single exciton ground state, denoted as ∣X⟩ or more general as ∣1⟩. Apart
from the phenomenological damping due to radiative recombination, all interactions with
the surrounding and other eigenstates of the QD are neglected within this �rst part. �e
Hamiltonian of the undisturbed system is

Ĥ0 = ∣0⟩ ħω0 ⟨0∣ + ∣1⟩ ħω1 ⟨1∣ (6.1)

with ħω0 and ħω1 being the eigenenergies of the ground state and the excited state, respectively.
�eir energy separation is ħω10 = ħω1 − ħω0. A schematic sketch of the TLS is illustrated in
�gure 6.1a.
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Figure 6.1: (a) two-level system with the states ∣0⟩ and ∣1⟩. �e transition is driven by a light
�eld at resonance. �e system can underlies a spontaneous decay with the decay rate γr .
(b) Representation of the quantum state on the Bloch sphere.

6.1.1 Representation of a Two-Level System

�e quantum state of a two-level system can be described by its density matrix

ρ̂ = ( ρ00 ρ01
ρ10 ρ11

) . (6.2)

�e diagonal elements ρ00 and ρ11 of the density matrix represent the occupancy of the lower
and upper level of the TLS, respectively. �e non-diagonal elements ρ10 and ρ01 are called
coherences of the system. For them the relation

ρ01(t) = ⟨0∣ ρ̂(t) ∣1⟩ = ρ∗10(t) (6.3)

is obtained.
�e quantum mechanical state of the TLS can be visualized on the Bloch sphere, shown in

�gure 6.1b. In an undamped system, the identities ρ00 + ρ11 = 1 and ρ10 = ρ∗01 are valid, and
therefore the system can be displayed on the surface of an unit sphere by using the following
de�nition of the Bloch vector R = (u, v ,w):(a)

u = ρ̃10 + ρ̃01 = 2R(ρ̃10) (6.4)
v = i(ρ̃10 − ρ̃01) = 2I(ρ̃10) (6.5)
w = ρ11 − ρ00 (6.6)

�ereby the components u, v ,w of the Bloch vector are given in a Cartesian coordinate system.
�e w component is called inversion and re�ects to the occupancy of the upper level of the

(a)Later on, the rotating frame will be used and ρ10 will be transformed into ρ̃01, which is already used in these
equations.
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system. �e representation of the system’s state as the bloch vector is also possible when the
system is damped. �en the vector lies inside the sphere.

6.1.2 Interaction with the Light Field

When interacting with a light �eld, the Hamiltonian of the system is composed of the Hamilto-
nian of the undisturbed system Ĥ0 and the Hamiltonian ĤL, which describes the interaction
between the TLS and the light �eld:

Ĥ = Ĥ0 + ĤL . (6.7)

�e size of a QD is very small compared to the wavelength of the light �eld u sed for the
excitation. Hence the variation of the �eld within a QD can be neglected, and one can take
the �eld at the point R0 which determines the position of the QD as a whole. �is is usually
known as the dipole approximation.[103]
To model arbitrary laser pulses and pulse sequences with a center frequency ωL, the light

�eld E(t) is described by

E(t) = εE0(t)e−iϕ(t)e−iωL t + c.c. (6.8)

where ε is an unit polarization vector, and ϕ(t) the phase. �e light �eld is described by its
slowly varying envelope E0(t) which determines the temporal pulse shape. �is especially
limits this approach to not to short and well shaped laser pulses. For a typical ps laser pulse
from a Ti:Sapphire laser, which is used here, an envelope with a Gaussian or hyperbolic secant
shape can be assumed. If a sequence of laser pulses with di�erent center wavelengths should
be applied, E(t) simply has to be replaced by a sum of the di�erent electric �elds. For the
here discussed cases, ϕ is only necessary if the system is interacting with two laser pulses with
di�erent phase, else it can be set to 0 without loss of generality.
�e strength of the interaction between the light �eld a the TLS depends on the optical

transition dipole matrix element µ01. �e transition between the lower and the upper state is
then described by the polarization operator

P̂ = µ01 ∣0⟩ ⟨1∣ +H.C . (6.9)

�e interaction Hamiltonian for optical excitation close to the resonance is given by

ĤL = −E(t) ⋅ P̂(t). (6.10)
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6.1.3 Solving the Liouville-von Neumann Equation

�e dynamics of the system can be described by the Liouville-von Neumann equation of
motion of the density matrix. It is given by

iħ d
dt

ρ̂ = [Ĥ, ρ̂] . (6.11)

When inserting the light �eld in the equations of the density matrix elements, terms with
E0(t)µ01 appear. It is convenient to de�ne a parameter Ω, which is called Rabi frequency, by

Ω(t) = E0(t)µ01
ħ

. (6.12)

�is parameter determines the frequency, with which the system oscillates between the
states ∣0⟩ and ∣1⟩ under resonant excitation. �is oscillation is called Rabi oscillation and is a
fundamental e�ect of a two-level system. To simplify the calculation, the rotating-wave approx-
imation (RWA) is commonly used. �ereby, the contributions from the rapidly varying terms
with exp(±2iωt) (whereas ω ≈ ωL ≈ ω10) are neglected (Riemann-Lebesgue Lemma[31,104]).
�is is generally a good approximation if not to short pulse are used and the excitation is close
to the resonance, i.e. ωL + ω01 ≈ 2ωL is valid. At the same time the detuning δ = ωL − ω01 is
introduced.
Usually the behavior of the system is easier to understand if the equations are transferred

into a rotating frame, which rotates with the laser frequency ωL.

ρ̃01(t) = e−iωL tρ01(t) (6.13)

Due to this transformation, the rotation of the Bloch vector of the system around the w-axis
is reduced to the frequency of the detuning.
Finally, a�er some algebra, a set of ordinary di�erential equations is obtained, which

describes the dynamics of the TLS for resonant and slightly detuned excitation:

d
dt

ρ̃01 = i
Ω0(t)
2
e iϕ(ρ11 − ρ00) − iδρ̃01 (6.14)

d
dt

ρ00 = i
Ω0(t)
2

(ρ̃10e iϕ − ρ̃01e−iϕ) (6.15)

d
dt

ρ11 = i
Ω0(t)
2

(ρ̃01e−iϕ − ρ̃10e iϕ) (6.16)

�is set of equations is called optical Bloch equations in the rotating wave approximation in a
rotating frame.
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6.1.4 Phenomenological Dephasing due to Recombination

�e equations 6.14–6.16 are only valid for a system without relaxation. But, as indicated in
�gure 6.1a, the TLS can exhibit a damping, for example due to radiative decay from ∣1⟩ to
∣0⟩ at a rate γr . For such a system, a phenomenological dephasing term can be included by
adding

−ρ01
T2

(6.17)

to the right side of equation 6.14 and the relaxation terms

ρ11
T1

and − ρ11
T1

(6.18)

to the right side of the equations 6.15 and 6.16, respectively. �e time constants T1 and T2
were �rst introduced in the Bloch equations of nuclear magnetic resonance and electron spin
resonance. �us, the terminology is taken from this �eld, where T1 is called longitudinal
lifetime, and T2 transversal lifetime. For the atomic TLS presented here, T1 is related to the
population decay and T2 to the loss of coherence. At this point, T1 is the time constant of the
radiative decay, and γr = 1/T1.
�e decay constants are not independent, because a decay of the population leads also to a

loss of coherence. �is relation is described by the equation

1
T2

= 1
2T1

+ 1
T∗2
. (6.19)

�e constant T∗2 = 1/γ∗2 corresponds to a dephasing of the coherence without loss of popula-
tion and is called pure-dephasing. For the undisturbed QD system at a temperature of 4.2 K,
no evidence of pure-dephasing has been found, but for the later presented coherent electric
control, this constant is used to model the thereby induced additional dephasing.

6.2 Rabi Oscillations and Quantum Interference

Rabi Oscillations

When the system is excited coherently with a laser at resonance (δ = 0), the TLS oscillates
between the upper and the lower level with the frequency Ω(t). For a light �eld at resonance
the dynamics of Bloch vector R of the upper and lower level is then given by

u = 0 (6.20)
v = sin[Ω(t)t] (6.21)
w = − cos[Ω(t)t]. (6.22)
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6 �e QD Exciton Two-Level System

When a constant light �eld is applied for a time τ, the Bloch vector rotates an angle Θ = Ωτ
around the u axis. Extending this relation for arbitrary pulses leads to

Θ = ∫ tEndtStart
Ω(t)dt. (6.23)

�e rotation angle Θ is commonly called optical pulse area. A pulse which results in a rotation
angle of π or π/2 is called π-pulse and π/2 pulse, respectively.
Usually, one cannot measure these Rabi oscillations in the time domain(b), i. e. changing

the pulse length continuously, but it is easy to change the intensity of the pulse. �erefore, the
Rabi oscillations are recorded in the power domain.
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Figure 6.2: (a) Pulse area displayed on Bloch sphere. (b) Rabi-oscillation as a function of the
pulse area.

Quantum Interference

To investigate the decoherence and quantum phase dynamics of the TLS, double pulse ex-
periments are the favored method. A �rst laser pulse creates a coherent superposition of the
upper and lower state. �ereby, the phase of the laser pulse is stored in TLS. A�er a delay time
tdelay, the second laser pulse arrives and interferes with the quantum system. �e resulting
quantum state of the TLS depends now in the optical phase of a second laser pulse and of
the phase of the quantum system at the time when the second laser pulse arrives. It is a good
choice in such an experiment to use π/2-pulses, because then the interference contrast is
the highest. In this case, constructive (destructive) interference will turn the system into the
upper (lower) state, which is not the case for other pulse areas.

(b)�ere is a recent paper fromA. Ramsay et al. whomeasured the beating exciton-dressed states in a time resolved
fashion by a two-color experiment.[105]
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6.3 Exciton TLS with Electrical Access

�e experiment can be very well explained by visualizing the trajectory of the state vector
on the Bloch sphere, as shown in �gure 6.3. �e �rst π/2 pulse rotates the Bloch vector to the
equator. During the delay time the quantum phase of the TLS might change, which will be
extensively discussed later, but here the phase is assumed to be �xed. If the second laser pulse
now has the same phase, the Bloch vector will be rotated to the upper state. Otherwise, if the
phase of the second laser pulse has been shi�ed by π, the Bloch vector returns to the ground
state.

(a) (b)

0 π/4 π/2 π

Figure 6.3: (a) E�ect of the �rst π/2 laser pulse. (b) Result of the quantum interference due to
a phase shi�ed second laser pulse. �e phase shi� between the two laser pulses is indicated
below the Bloch spheres.

6.3 Exciton TLS with Electrical Access

�eTLS, which is used in this work, is represented by the ground state of the QD (“empty” dot)
and the single exciton ground state, as shown schematically in �gure 6.4a. �e general optical
Bloch equations, derived in the previous section give inmany situations an excellent qualitative
description of the physics of this TLS under (near) resonant excitation. However, when the
concrete system should be analyzed more precisely and quantitatively, the device structure
around of the QD cannot be neglect. In particular in experiments where the dephasing plays
an important role, deviations from the standard theory of a TLS become obvious and are
nonsatisfying. Hence, the following section focuses on the physics of a quantum dot in a
photodiode in more detail. Here, the decay of the exciton due to tunneling via the heavy-hole
state and the excitation dependent damping of the Rabi oscillations are included into the
theoretical model. To compare the theoretical results directly with the experiment, the values
of the density matrix are mapped to the PC.
Please note, that the inclusion of the heavy-hole and electron state, as shown in �gure 6.4

and explained in the next section, does not change the system to a (conventional) quantum
mechanical three- or four-level system, because these state do not couple to the upper and
lower state via the light �eld. �erefore, the exciton system is furthermore referred as a
two-level system.
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Figure 6.4: (a) �e exciton TLS system in a QD; the ground state on the le� is represented by
the QD without an exciton, while the excited state ∣1⟩ is represented by the single exciton
ground state ∣X⟩. During the relaxation process, the system can take the single heavy-hole
state ∣hh⟩ and the single electron state ∣e⟩. (b) �e excited state in a QD photodiode
can decay either by radiative recombination or by tunneling of the exciton in a two-step
relaxation process through the heavy-hole or electron state.

6.3.1 Tunneling Decay

When simulating double pulse experiments, in which the delay time between the two pulses
is in the order of the electron tunneling time, the calculated data shows a signi�cant deviation
from the experiment. Especially in an inversion recovery experiment, presented in section
7.3.1, the experimental data cannot be �tted with the basic theory of a TLS. �e reason for this
is the tunneling process, which makes an extension of the general Bloch equations necessary.
�e tunneling can be described as a two-step relaxation process, characterized by fast electron

and slow heavy-hole tunneling. �e following example emphasizes the problem: An exciton is
created in the QD with a π pulse. A�er the time τe , the electron tunnels out of the dot, leaving
the QD occupied with the heavy-hole (∣hh⟩). If now a second laser pulse arrives before the
hole has tunneled out, the laser pulse would have to drive the ∣hh⟩ → ∣X+⟩ transition, which is
not resonant to the laser due to an energy renormalization of here about 0.5meV. �is is large
enough, that a transform limited 2 ps laser pulse, which is used in this work, does not a�ect
the state signi�cantly.(c) �erefore, here only the two-step exciton decay via an intermediate
state is included in the ordinary di�erential equations of the density matrix.
Although the electron tunneling is much faster than the heavy-hole tunneling, there is of

course a non-zero probability that the hole tunnels �rst. In this case the QD is le� in the single
electron state ∣e⟩, where the renormalization energy for the transition to ∣X−⟩ is 2.7meV as
compared to the neutral exciton transition. Because the occupancy of this state will always

(c)It should be noted, that if a shorter laser pulse would be used, there might be a contribution from this transition.
In this case, the ∣X+⟩ state and its coupling with the light �eld have to be included in the equations.
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decay very fast by the electron tunneling, the e�ect to the PC is much smaller than of the
heavy-hole state. Nevertheless it can be easily included in the model in the same way as the
∣hh⟩ state.
�e variables ρhh and ρe represent the occupancy of the intermediate states. �ese states

are �lled by the decay from the upper state ρ11 with a rate γe(Vbias) = 1/τe(Vbias) and
γhh(Vbias) = 1/τhh(Vbias) and decays to the ground state ρ00 with the rate γhh(Vbias) and
γe(Vbias), respectively. Both rates depend strongly on the applied bias voltage, as indicated in
section 2.3.2. In the following, γe(Vbias) and γhh(Vbias) are written as γe and γhh, to keep the
equations simple.
�e extended optical Bloch equations are then given by

d
dt

ρ̃01 = i
Ω0(t)
2
e iϕ(ρ11e−iϕ − ρ00e iϕ) − iδρ̃01 − (γr + γe + γhh

2
+ γ∗2)ρ̃01 (6.24)

d
dt

ρ00 = i
Ω0(t)
2

(ρ̃10e iϕ − ρ̃01e−iϕ) + γrρ11 + γhhρhh + γeρe (6.25)

d
dt

ρ11 = i
Ω0(t)
2

(ρ̃01e−iϕ − ρ̃10e iϕ) − (γr + γe + γhh)ρ11 (6.26)

d
dt

ρhh = γeρ11 − γhhρhh (6.27)

d
dt

ρe = γhhρ11 − γeρe (6.28)

6.3.2 Calculating the Photocurrent

�e occupancy of the upper level of the quantum dot can be determined by measuring
the photocurrent (PC). �is is a remarkable property, because it allows for a quantitative
measurement of the quantum state. �e photocurrent from the QD a�er a coherent state
preparation is given by the key formula

IPC = f eρ11, (6.29)

where f is the laser repetition frequency and e the elementary charge. However, in this equa-
tion it is assumed, that all excitons tunnel out from the QD (i. e. no radiative recombinations),
and the heavy-hole tunneling is considerably faster than the laser repetition time.
�emeaning of the formula can be explained as follows: A�er the coherent state preparation,

the QD is occupied with an exciton with the probability ρ11. �e exciton tunnels out from
the QD and creates a net charge �ow of one electron.(d) To calculate the current, one has to
multiply with the repetition frequency of the experiment, which is given by the repetition
frequency of the laser system. �is equation also gives the maximum expected current from

(d)Although the exciton consist of two charge carriers—electron and hole—it is obvious that only a net charge
�ow of one elementary charge is created.
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the QD, if the TLS is prepared in the upper state ρ11 = 1. For a laser repetition frequency
of 80MHz, which is used in the labs in Paderborn, this result in a maximum current of
IPCmax = 12.82 pA.

Detection E�ciency

As described above, the radiative recombination is a competing process to the tunneling decay.
If the tunneling time is in the order of the recombination time, a signi�cant fraction of the
excitions recombine and thus the photocurrent is reduced. To calculate the photocurrent
without neglecting the radiative recombination, the voltage dependent detection e�ciency η
is introduced. It describes the probability that the exciton decays by tunneling, and therefore
contributes to the photocurrent, instead of recombining radiatively.

η(Vbias) =
γe + γhh

γr + γeγhh
(6.30)

Consequently, in equation 6.29, ρ11 has to be replaced by η × ρ11.

Photocurrent Created During the Coherent Manipulation

In the most interesting experiments—the double pulse experiments—a second issue emerges.
Here a part of the excitons created by the �rst pulse relaxes during the delay time tdelay between
the two pulses of usually 50–500 ps. To include these charges in the simulation one has to
“count” the excitons, which relax through the heavy-hole state. �is can be done by calculating
the integral

IPC = f e ∫ t2t1 (γe + γhh)ρ11(t)dt (6.31)

or the equivalent di�erential

d
dt
IPC = f e(γe + γhh)ρ11. (6.32)

�is latter expression can be simply included in the system of the ordinary di�erential equa-
tions 6.24–6.28 and solved parallel with them by the same algorithm. In principle, one would
have to integrate from the beginning of the coherent manipulation until the QD has relaxed
completely into the ground state. In order to save calculation time, the equations 6.31 and
6.29 (including η) can be combined to

IPC = f e ( ∫ tcalc0
(γe + γhh)ρ11(t)dt + ηρ11(tcalc)) , (6.33)

where tcalc can denotes a time a�er the last pulse of the sequence. Usually the calculation is
stopped at this point, because nothing else will happen as that the relaxation into the ground
state.
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Heavy-Hole Tunneling

Another issue is the slow tunneling of the heavy-hole, especially at low electric �elds. In many
experiments it is desirable to have a very long coherence time (equivalent to the electron
tunneling time), but then also the tunneling time of the heavy-hole increases up to values
comparable to the repetition time of the laser (Trep = 12.5 ns). In this case, there is a consider-
able probability that the QD is occupied with the heavy-hole when the next laser pulse (or
pulse train) arrives. As described above, in such a case the laser pulse does not a�ect the QD.
�is reduces the maximum possible occupancy of the upper level, and therefore reduces the
photocurrent.
In the transition region from the PL to the PC regime the photocurrent for a π pulse

increases steeply. �is shape can only be explained if the slow tunneling of the heavy-hole is
included in the theory.
A simple approach to include this issue in the calculation, is an iterative method. As a �rst

step (n=1), the di�erential equations 6.24–6.28 and 6.32 are solved with the TLS completely
relaxed into the ground state, expressed by:

ρ00(t = 0, n = 1) = 1 (6.34)
ρ11(t = 0, n = 1) = 0 (6.35)
ρhh(t = 0, n = 1) = 0 (6.36)
ρ10(t = 0, n = 1) = 0 (6.37)
ρe (t = 0, n = 1) = 0 (6.38)

�erea�er the iteration is done by using the value of the density matrix elements at the point
of time Trep as new start values:

ρ00(t = 0, n + 1) = ρ00(t = Trep, n) (6.39)
ρ11(t = 0, n + 1) = ρ11(t = Trep, n) (6.40)
ρhh(t = 0, n + 1) = ρhh(t = Trep, n) (6.41)
ρe (t = 0, n + 1) = ρe (t = Trep, n) (6.42)
ρ10(t = 0, n + 1) = ρ10(t = Trep, n) (6.43)

�e iteration converges very quickly, usually the error in the photocurrent is less than 2%
a�er the second step.
It is also possible to derived an analytical solution from the equations 6.39–6.43 for n →∞,

at least for some special cases. In the following is assumed, that the system is coherently
prepared with a su�ciently short pulse and the electron relaxation time is much shorter than
Trep (that means, ρ11(t = Trep ≈ 0) and ρe(t = Trep) ≈ 0). A�er the coherent manipulation,
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the upper level takes the value

ρ11 = Θ(1 − ρhh(t = 0, n →∞)), (6.44)

where Θ is the pulse area. �erefore, the important value which has to be calculated is the
occupancy of the heavy-hole. A�er some algebra the equation

ρhh(t = 0, n →∞) =
Θp(Trep)

1 − e−γhhTrep + Θp(Trep)
(6.45)

is derived. �erein p(t) is the probability that the occupation from the upper level (ρ11) is
transferred to the heavy-hole level (and is not transferred to the ground state) a�er the time t.
�e expression

p(t) = γe
γhh − (γe + γr)

(e−γhh t − e−γe t)) (6.46)

is derived from 6.25–6.28, with Ω0(t) = 0.
�e photocurrent for a single pulse with the pulse area Θ can then be calculated by modi-

fying equation 6.29 to
IPC = f eη(1 − ρhh(t = 0, n →∞)), (6.47)

using the equation 6.45 for the steady state occupancy of the heavy-hole state.

Incoherent Background

When measuring Rabi oscillations one observes with increasing incident power continuously
increasing background current. �is background current scales linear with the intensity and
is therefore attributed to incoherent absorption processes in the photodiode (e. g. from other
QDs in the surrounding). As the background is proportional to the intensity—and therefore
proportional to Ω0(t)2—it can be included by modifying equation 6.32 in the following way:

d
dt
IPC = ⋅ ⋅ ⋅ + αbgΩ0(t)2. (6.48)

�e coe�cient αbg depends on the applied bias voltage, because at high electric �elds more
incoherently excited charge carriers contribute to the signal. To achieve a very high corre-
spondence with the experiments, it is su�cient to assume a linear dependency, although this
might not be exact.
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6.4 Summary – A Complete Set of Equations

In summary, the equations 6.24-6.28, 6.32, 6.48, and (the later derived equation) 7.11 are used
to describe the exciton TLS. �e following complete set of equations is obtained:

d
dt

ρ̃01 = i
Ω0
2
e iϕ(ρ11e−iϕ − ρ00e iϕ) − iδρ̃01 − (γr + γe + γhh

2
+ γ∗2 + γI(Ω0)) ρ̃01 (6.49)

d
dt

ρ00 = i
Ω0
2

(ρ̃10e iϕ − ρ̃01e−iϕ) + γrρ11 + γhhρhh + γeρe (6.50)

d
dt

ρ11 = i
Ω0
2

(ρ̃01e−iϕ − ρ̃10e iϕ) − (γr + γe + γhh)ρ11 (6.51)

d
dt

ρhh = γeρ11 − γhhρhh (6.52)

d
dt

ρe = γhhρ11 − γeρe (6.53)

d
dt
IPC = γeρ11 + γhhρ11 + αbgΩ0(t)2 (6.54)

�ese equations ares used to simulate the exciton TLS with all its features under consideration
of equation 6.33 and 6.39–6.43. �e numerical calculations are performed with MATLAB,
using build-in a forth-order Runge-Kutta algorithm.[106] In the next chapter the experimental
results from PC spectroscopy are compared to the simulation.
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QD Exciton

In this chapter the quantum optical properties of a single exciton, con�ned in a QD, are
discussed. By comparison of the experimental results with theoretical model, derived in the
previous chapter, the assumptions of the model are con�rmed.

7.1 Optical Properties Under Continuous Excitation

�e optical properties of the exciton TLS under continuous excitation are regarded in this
section. �e corresponding experiments have been performed earlier, but the interpretation
presented by E. Beham, S. Stu�er and P. Ester[35,89,107,108] neglects the two-step relaxation. �e
new and more accurate model presented here leads to a signi�cant deviation of the derived
parameters (by a factor of about 2 for the slow tunneling constant), making a reinterpretation
of the results necessary.
In case of continuous excitation with a spectral narrow (monochromatic) laser source,

two important e�ects can be observed: saturation and power broadening. Both rely on the
same mechanism: the average occupation of the upper level of a TLS cannot exceed 1/2 for
resonant (or detuned) excitation due to stimulated emission.
�e statistics of the occupation of the upper and lower levels can be derived in two ways.

Either one analyzes the optical Bloch equations in the limit of long times t →∞, or by using
rate equations using the Einstein-coe�cients for absorption, simulated and spontaneous
emission (and here also for the tunneling decay). A derivation without the single heavy-
hole and the single electron level can be found in reference [102] for a two-level atom or
in the dissertation of Patrick Ester,[35] where this derivation is adapted to an exciton TLS.
�e considerations in this section include the single heavy-hole and electron states, but the
derivation follows more or less the same scheme. A general condition in all approaches is of
course, that the sum of the occupancy of all involved quantum states is always 1:

ρ00(t) + ρ11(t) + ρhh(t) + ρe(t) = 1 ∀t (7.1)

Saturation

To describe the saturation behavior for resonant excitation, the easiest way is to use the
rate equation approach. Using the same nomenclature as before, and introducing and the
excitation intensity P̃ and the factorM, re�ecting the probability for the stimulated processes
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(following the convention from Beham et al.[109]), the rate equations can be written in the
following form:

d
dt

ρ00 = −ρ00MP̃ + ρ11MP̃ + γrρ11 + γhhρhh + γeρe (7.2)

d
dt

ρ11 = +ρ00MP̃ − ρ11MP̃ − (γr + γe + γhh)ρ11 (7.3)

d
dt

ρhh = γeρ11 − γhhρhh (7.4)

d
dt

ρe = γhhρ11 − γeρe (7.5)

Under the steady state condition, all derivation are zero. Hence, under continuous excitation
the occupancy of ρhh and ρe can be expressed by

ρhh =
γe
γhh

ρ11, and ρe =
γhh
γe

ρ11, (7.6)

respectively. �e PC is given by the tunneling decay of the upper level times the elementary
charge:

IPC = eρ11(γe + γhh) (7.7)

�e occupancy of the upper level for the normalized incident intensity P̃ is derived a�er some
algebra

ρ11 =
1

2 + γe
γhh

+ γhh
γe

× P̃
P̃ + γr+γe+γhh

M(2+ γe
γhh

+
γhh
γe
)

(7.8)

�e second term determines how fast the steady state is reached with increasing excitation
intensity. In the limit of P̃ →∞ the second term equals 1, and the occupancy of the upper level
is given by the �rst term, which is always smaller than 1/2. �us, with increasing intensity
the PC saturates to a value determined by γhh and γe .
�e here presented model is inconsistent with the model developed by Beham et al.[109]

As a matter of fact, for the QD investigated in [35, 89, 108], which is also used in this thesis,
the derived value for the heavy-hole tunneling di�ers by a factor of about 2. For example, in
the experimental data presented in �gure 7.1, the saturation current of 74.5 pA results in a
heavy-hole tunneling time of about 2 ns, calculated using the new model, in contrast to the
value of 1 ns, derived with the old model. �e mathematical reason for the deviation is the
two-step relaxation process which reduces the occupancy of the upper level to a value less
than 1/2.
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Figure 7.1: (a,b) Comparison of the experimental results and theoretical calculations. �e
calculation is based on the extended optical Bloch equation, which are solved numerically
for a cw light �eld by integrating a long time. �e asymmetric broadening is clearly visible,
as well as the higher saturation current of the right peak due to the decreasing heavy-hole
tunneling time at higher bias voltages. �e slight shi� of the peak position is not included
in this theoretical model. (c) PC signal of the le� peak with increasing power. Because
the tunneling times of the theoretical model are derived from the �t curve, the theoretical
model delivers, by construction, exactly the same curve. (d) Broadening of the peak
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7 Quantum Optical Properties of a Single QD Exciton

Power broadening

�e inherent dephasing time of a TLS gives a lower limit for its homogeneous line width[110]

Γhom = 2ħ
T2
, (7.9)

therefore, the dephasing constant, here composed of γr + γe + γhh, can be measured by
analyzing the spectral width of the TLS. In the photocurrent regime the relation γe > γr ≫ γhh
is valid, thus the dephasing can be attributed mainly to γe , with an error in the order of
γe/(γe + γr + γhh). �is corresponds to the earlier interpretations in[35, 89, 107, 108].
With increasing excitation power the linewidth of a TLS in the absorption (PC) spectrum

broadens as a direct consequence of the saturation behavior at slightly detuned excitation. At
resonance, the absorption saturates faster as compared to the saturation of the absorption
at detuned excitation. �is results in a broadening of the absorption line, referred as power
broadening in the literature. For a Lorentzian line shape of the width Γ0, the power broadened
peak is again Lorentzian with the increased width[108]

Γ = Γ0
√
1 + P̃ (7.10)

�is equation can be derived form an analysis of the optical bloch equations for t → ∞.
Because the power broadening e�ect can be easily calculated with the presented model (6.24–
6.28), a detailed analytic derivation is omitted here.
In the experimental data shown in �gure 7.1c, a slight shi� of the resonance energy towards

hight voltages as the excitation power increases is obvious. An analysis of the peak position
suggest electrostatic shielding to be responsible for this e�ect.[89]

7.2 Rabi Oscillations and Excitation Dependent Damping

Rabi oscillations are a fundamental example of coherent non-linear light matter interaction.
�e exciton TLS Rabi oscillation have been observed by several groups utilizing di�erent
detection methods.[36,42,111–115] In all experimental data the Rabi oscillations exhibit a dephas-
ing at higher pulse areas (see �gure 7.2). �is driving-dependent dephasing is obviously not
included in the theory presented above.
�e phenomenon has been discussed controversially in several theoretical papers in the

last years. One early proposal by J. Villas-Bôas et al. was, that this damping is related to the
excitation of the biexciton.[116] Although their calculations can reproduce the experimental
data from [117] very well, the damping also occurs when the biexciton generation is e�ciently
suppresses, which can be achieved by excitation with circular-polarized light.
A very common thesis concerning the damping mechanism is the coupling to acoustic

phonons (see e.g. Förstner et al.[118] and Krügel et al.[119]). Remarkable on the phonon thesis
are predictions of an undamping under special conditions,[120] which has not been observed
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Figure 7.2: A comparison between the experimental data and the damping model

experimentally, yet. A proof of the interactionwith phonons should be possible by temperature
dependent measurements (see PhD thesis of M.C. Hübner[90]) and by using pulse shaping
technics, to vary the laser pulse length. Very recently, A. Ramsay et al. published a paper
which strongly support this thesis with experimental data acquired by suchmeasurements.[121]
A more general approach, which is compatible to the phonon thesis, is presented by

Mogilevtsev et al.[122,123]�ey showed that the coupling to a non-Markovian reservoir leads
directly to a dependence of the dephasing on the excitation intensity.
To include the excitation dependent damping in the optical bloch equations, a �eld depen-

dent damping constant γI is introduced:

γI(Ω0(t)) = β1Ω0(t) + β2Ω0(t)2 (7.11)

�is has also been done by Brandi et al.[124] to resample the data form [117]. A more reliable
data set from precise experiments is presented in �gure 7.2a. �e red curve in this diagram is
a least square �t to the data using the expression

IPC = I1/2 + IA sin(ωΘ + ϕ)e−γΘ , (7.12)

where I1/2 is the mean PC value of the oscillation. IA, ω, and ϕ are the oscillation amplitude,
frequency, and phase, respectively. �e pulse area is denoted by Θ and the dephasing constant
by γ. �e �t correlates very well with experimental data, especially at low pulse areas. At
higher pulse areas a small di�erence arise, but there also the noise in the data increases due to
the increasing incoherent background, which has been subtracted here. �e reason of this
noise are small variation of the laser intensity of a few percent, which is linearly transferred to
the background current and with the square root of the intensity to the coherent signal.
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7 Quantum Optical Properties of a Single QD Exciton

�us, it turns out that the damping can be well described with a pure exponential decay
with increasing pulse area, here. �erefore, the linear damping term in the equation 7.11 is
su�cient to achieve a good coincidence between experiment and simulation. However, to
test the signi�cance of this result, the Rabi oscillations were also simulated with the quadratic
dephasing term. Figure 7.2b shows the calculated result for a pure linear (red curve) and
pure quadratic term (blue curve). �e dashed lines correspond to the exponential decay part
of the functions. For the red curve this is proportional to exp(−γΘ) and for the blue curve
exp(−γΘ2).(a) �e decay is very similar for the �rst three periods, and a signi�cant di�erence
appears only a higher pulse areas.
To conclude this comparison, the intensity dependent damping of the Rabi oscillation as

observed here at low temperature can be well described with a linear dephasing term in the
optical Bloch equations. A pure quadratic dephasing term (which is proposed by A. Ramsay
et al.[121]) seems very unlikely, as it does not �t very well to the data. However, an additional
contribution from a quadratic damping term cannot be excluded, because a small quadratic
dephasing will be only important at higher pulse areas.

7.3 Double-Pulse Experiments

As mentioned before in section 6.2, double pulse experiments are the method of choice to
get information about the coherent dynamics of a TLS, here of the exciton system. In this
section the three di�erent experiments inversion recovery, quantum interference, and Ramsey
interference are regarded. To simplify the things,the possibility that the heavy-hole could
tunnel �rst is neglected in this section. �e thereby introduced error is usually smaller than
the experimental errors.

7.3.1 Inversion Recovery

In the inversion recovery experiment the occupation is measured as a function of the time
delay between to resonant π pulses.�e method is similar to the inversion recovery method
used by NMR and electron spin resonance (ESR) spectroscopists.[125,126]
�e sequence of the experiment can easily explained with the help of the Bloch sphere

representation. �e �rst pulse rotates the Bloch vector through an angle Θ = π around the
u axis. �e system starts in the lower level ∣0⟩, and thus it is inverted to the upper level ∣X⟩.
During the delay time, the vector slides down the w axis due to the exciton decay with the
rate γe + γr + γhh (T1 decay). �e second pulse inverts the state vector again (w ⇒ −w). �e
�nal state is thereby independent of the optical phase between the laser pulses, because the
state vector has no component in u and v direction (i. e. ρ10 = 0) a�er the �rst (and also the
second) pulse and so the quantum system has no measurable phase.

(a)Please note, that the relation between γ and β1/2 is non-trival and no analytic expression can be given here.
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Figure 7.3: (a,b) Illustration of the inversion recovery experiment. le� spheres: A�er the
inversion by the �rst laser pulse the Bloch vector slides down along the w axis. right
spheres:�e second laser pulse performs a point re�ection across the center of the Bloch
sphere. A�er the second laser pulse the quantum state decays to the ground state. �e
resulting PC is proportional to the length of the vertical lines arising from the decay.
(c) PC signal of an inversion recovery experiment at 0.59V. �e incoherent background
has been substracted from the PC. �e red curve is a bi-exponential �t, delivering an
electron and heavy-hole tunneling time of 60± 10 ps and 2050± 200 ps. �e blue (dashed)
curve is the best (mono-)exponential �t, revealing clearly the necessity of the two-step
relaxation model.
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7 Quantum Optical Properties of a Single QD Exciton

�e experiment can be used to characterize the decay of the upper level.[127] In the diagram
7.3, the PC is plotted against the delay time. �e signature of a two-step decay through
metastable level is visible in the bi-exponential curve shape. �e PC curve can be �tted with
the expression

IPC = I2π − Aee−γe tdelay − Ahhe−γhh tdelay (7.13)

For zero delay time, the PC should be equal to a 2π-pulse, which is—in theory—zero. However,
if the delay time is shorter than the pulse length, the laser pulses can interfere optically.
�erefore, the experiment is only evaluated for delay times larger than 2tdelay. �e experiment
is in principle very simple, but the experimental realization is not trivial. For a solid data base,
the delay time has to be changed from close to zero up to the order of the tunneling time
of the heavy-hole. By doing so, the focus of the second laser pulse might change due to the
divergence of the laser or a small misalignment of the interferometer. �en the second laser
pulse is not a π pulse any more, but for example 0.9π or 1.1π pulse. �us the experiment has
to be carried out very carefully to avoid these errors. In conclusion, this experiment reveals
the two-step relaxation process clearly. It is an interesting tool to get access to the heavy-hole
tunneling time, which previously has only been obtained by cw measurement, which are not
available for all material systems.

7.3.2 Quantum Interference

�e basic quantum interference experiment is used to determine the coherence time of a
quantum system. In this section it is assumed, that the quantum system is in (exact) resonance
with the excitation (δ = 0). As already explained in section 6.2, the �rst laser pulse shall create
a coherent superposition between the ∣0⟩ and ∣X⟩ state. �us, it is a fundamental requirement
that it is not π pulse. As said before, π/2 pulses are an optimal choice for the investigation
of the coherence time because the interference amplitude is maximum in this case. �e
�rst coherent manipulation determines the quantum phase of the exciton. Because of the
assumption that the quantum system is in exact resonance with the light �eld, the azimuthal
angle of the Bloch vector (representing the phase of the quantum system) does not change
during the delay time. A�er the delay time tdelay, the second laser pulse arrives and interferes
with the quantum system. �e resulting quantum state of the exciton depends now in the
optical phase of second laser pulse. If the system underlies a dephasing due to pure dephasing
or population decay, a mixed quantum state is created which lies inside the Bloch sphere and
the interference amplitude measured in the PC decreases.
�e procedure of a quantum interference experiment is usually the following: For each

delay time tdelay, the phase of the second laser pulse is varied by means of a precise additional
delay, controlled via the nanopositioner. To evaluate the decoherence time, the interference
amplitude is plotted against the delay time and �tted with an exponential decay expression.
�is procedure has the advantage, that the incoherent background current is not relevant for
the evaluation of the dephasing rate.
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Figure 7.4: (a) Decay of the resonant quantum interference amplitude at a bias voltage of
0.4 V. �e data is �tted with an exponential decay with a dephasing constant of 320 ± 5 ps.
(b) �e photocurrent signal of the quantum interference at a delay time of 55 ps.

Figure 7.4a shows the decay of the quantum interference amplitude at a bias voltage of 0.4 V.
�e data is �tted with an exponential decay, delivering a dephasing constant of 320±5 ps. �is
dephasing constant is composed of the radiative decay constant and the electron tunneling
constant.

7.3.3 In�uence of Detuning

Figure 7.5: Trajectory of a detuned
2π pulse.

In case of (slightly) detuned excitation (δ ≠ 0), a single
laser pulse rotates the Bloch vector not around theu axis
but around the axis given by the vector [−Ω(t), 0,−δ].
�erefore, the complete inversion of the state cannot be
reached anymore with a single pulse. As a consequence,
the Rabi frequency is increased to Ω′ =

√
Ω2 + δ2. Fig-

ure 7.5a visualizes the trajectory of a detuned 2π pulse.
In a quantum interference experiment, the e�ect of de-
tuning can result in a quite complex trajectory of the
Bloch vector. In reference [128], we showed this for the
excitation with two partly overlapping 0.8π pulses. By
changing phase and detuning, the obtained �nal states
can cover the whole Bloch sphere.
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8 Coherent Optoelectronic Control

In the previous chapters the exciton in a QD has been treated as a two-level system, and by
comparison of the experimental data with the theoretical model this perception has proven
its eligibility. In the �eld of quantum information a quantum mechanical TLS is regarded as a
qubit, and so the here presented exciton TLS can be considered as a qubit implementation.
�e exciton qubit can be coherently controlled by resonant and detuned excitation with

a very high �delity by ultrafast laser pulses, as shown before. However, it is impossible or
at least very di�cult to control such ultrafast laser pulses from pulse to pulse concerning
intensity, energy, and phase. In this chapter it is demonstrated, that a coherent phase control
can be achieved by electric interaction. �ereby, it is possible to restrict the optical excitation
to a �xed optical clock with constant intensity, energy, phase, and pulse distance, while a
synchronous electric gate signal controls the coherent manipulation.
At �rst, the Ramsey interference experiment is described, from which the basic principle of

the coherent electric manipulation is derived. A�erwards, the concept of the coherent electric
control is explained and a new quantity—the electric pulse area—is introduced. �e concept is
proven by an experimental demonstration of a quantum phase gate, which is capable to shi�
the exciton qubit phase between 0 and π, controlled by the electric parameters of a 2.4GHz
RF signal. In the last part of this chapter, the concept is generalized and it is explained, how
an universal single qubit control can be achieved by the presented scheme.

8.1 Ramsey Interference: Static Phase Shift

�e basic principle of the coherent electric control is derived for the Ramsey interference
experiment, which is a remarkable modi�cation of the quantum interference experiment.
�ereby, the delay time between the two laser pulses, as well as their phase relation, is �xed
and the energy of the quantum system is moderately detuned. N. F. Ramsey discovered, that
in such a con�guration the spectral sensitivity of a TLS is substantially enhanced.[129]�e
e�ect is well known from atomic optics and has nowadays several applications in precision
spectroscopy and atomic clocks. N. F. Ramsey was awarded the Nobel Prize in 1989 for the
discovery of this e�ect.
�e optical pulse sequence is the same as for the basic quantum interference experiment.

At �rst, a π/2-pulse turns the qubit in a superposition state between ∣0⟩ and ∣1⟩, which falls
on the equator of the Bloch sphere. In the terminology of QIP, this coherent manipulation is
also known as Hadamard gate. �e quantum phase of the exciton qubit in this superposition
is de�ned by the optical phase of the laser pulse, and the phase is stored in the exciton qubit
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Figure 8.1: (a) Trajectories of the Bloch vector on the Bloch sphere during a Ramsey experi-
ment for di�erent detuning: from resonance (le�) to a detuning, which leads to a phase
shi� of 2π (right). �e yellow arrow indicates the rotation of the Bloch vector during the
delay time due to the detuning. �e �nal state is indicated by the red ball.
(b) le�: PC signal of a Ramsey experiment with increasing delay time (published in
[130–133]). right: corresponding theoretical calculation, based on the equations 6.49–6.54.
�e phase relation between the two laser pulses is not constant for the di�erent delay times,
in order to �t to the experimental data. �e dephasing constants were taken from the cw
experiments and quantum interference experiments.
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8.1 Ramsey Interference: Static Phase Shi�

during the coherence time. A�er a time delay, the phase of the exciton qubit is probed
by quantum interference with a second π/2 laser pulse (second Hadamard gate operation).
Depending on the momentary phase of the exciton a�er the delay time, and the optical phase
relation between two pulses, the second π/2-pulse will rotate the Bloch vector to its �nal state.
In the case of detuning, the Bloch vector will rotate along the equator of the Bloch sphere

with detuning δ, de�ned by δ = ωlaser − ω01, during the delay time of the two laser pulses.
�us, within the delay time tdelay between the two laser pulses, a phase di�erence of

∆ϕ = δ × tdelay (8.1)

between the laser �eld and the exciton qubit is acquired. For two in-phase laser pulses, the
trajectory of the Bloch vector on the Bloch sphere is displayed for di�erent e�ective phase
shi�s (but without dephasing) in �gure 8.1a. �e in-plane rotation of the Bloch vector due to
the detuning is indicated by the yellow arrows on the Bloch spheres.
�e detuning is controlled by the bias voltage Vbias via the QCSE. As a function of the

detuning the phase changes, which leads to an oscillation of the �nal state between ∣0⟩and
∣1⟩. �is oscillation appears as Ramsey fringes in the photocurrent. From equation 8.1 one
can conclude, that the frequency of the fringes increases directly proportional to the delay
time between the two pulses. Figure 8.1b show a measurement of Ramsey fringes at delay
times ranging from 33 ps to 167 ps. �e corresponding calculated data is shown besides the
experimental data. In the lowest curve of theoretical data the resonance (‘0’) and the phase
shi�s of the adjacent minimum (‘π’) and maximum (‘2π’) are marked.
At a low bias voltage (close to 0.4 V), where the dephasing times are longer, it is possible to

record the Ramsey fringes at a very long delay time. As previously shown (e. g. in the PhD
thesis of S. Stu�er[89]), it is possible to achieve a resolution (here de�ned as half period of the
Ramsey fringes) which is smaller than the homogeneous linewidth of the system (5 µeV).
In a detailed analysis of the data one notices a slight increase of the frequency of the Ramsey

fringes towards higher voltages. �is is caused by the quadratic dependence of the QCSE with
the voltage. �e simultaneous decrease of the interference amplitude is caused by the voltage
dependence of the dephasing times. �e envelope of the PC signal corresponds basically to
the spectrum of a single pulse with a pulse area of π = 2 × π/2. �e non-oscillatory part of
the PC is determined by the dephasing of the exciton qubit between the two laser pulses. It
becomes the dominant part of the PC signal for longer delay times and higher voltages.
Figure 8.2 shows a detail of a Ramsey fringes dataset, recorded with a delay time of 208 ps.

�e red line marks the bias voltage Vres, at which the exciton qubit is in resonance with the
light �eld, in this case Vres = 0.456V. Below the bias voltage scale, the frequency detuning
between the quantum system and the light �eld is indicated. �e scaling of the frequency
axis is derived from the QCSE. In this case, the QCSE is approximated as a linear e�ect,
which is a good assumption for the here regarded relative small detuning range. At resonance,
the exciton, as well as the light �eld, has a frequency of 323.4449THz. Detuning the qubit
to 323.4401 THz, which is 4.8GHz below the resonance frequency, implies, that the qubit
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Figure 8.2:Detail of a Ramsey interference data set. �e upper axis shows the (reverse) bias
voltage. �e corresponing frequency shi� from the resonance (vertical red line) is plotted
on the middle axis. �e lower axis denotes the relative phase shi� between the quantum
system and the light �eld. �e orange dashed line indicates the o�set voltage required to
achieve a phase shi� of π.

performs one oscillation less than the light �eld during the given delay time. �e acquired
phase shi� is given by:

ϕ = 2π × (νqubit − νlaser) × tdelay = 2π × 4.8GHz × 208.3 ps = 2π × 1. (8.2)

�us, the qubit has acquired a phase shi� of 2π during the delay time in respect to the reference
phase of the light �eld, and the frequency shi� can be converted to a phase shi�, shown on
the lower axis of the diagram.
�e dashed orange line indicates a phase shi� of π, which is necessary to switch from

constructive to destructive interference. �e di�erence between Vres and the bias voltage,
which is required for a phase shi� of π during the delay time tdelay, is here called ∆Vπ .

8.2 Coherent Electric Phase Manipulation

�e coherent electric phase manipulation is based on the adiabatic temporal detuning of the
systemwithin the delay time between two laser pulses. �e schematic timeline of the concept of
the coherent manipulation by an electric pulse is shown in �gure 8.3. �roughout this chapter,
the optical manipulation is indicated in red, while the coherent electrical manipulations is
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Figure 8.3: Schematic timeline of the optoelectronic phase control (not to scale). �e pulse
area (red) of the �rst pulse of the optical clock creates a coherent superposition state,
indicated by product of the occupancy of the upper level ρ11 and the quantum phase. �e
second pulse probes the quantum phase. Depending on the coherent manipulation of
the quantum phase of the qubit due to the electric pulse area (green), the qubit shows
constructive or destructive interference.

indicated in green.
�e detuning is controlled by the applied coherent manipulation voltage VCM(t), which is

the di�erence between the applied voltage between the applied voltage Vcontrol(t) + Vbias and
the voltage Vres, at which the exciton qubit is in resonance with the light �eld:

VCM(t) = Vcontrol(t) + Vbias − Vres . (8.3)

To describe the optoelectronic phase control, it is convenient to de�ne an electric pulse area
analogous to the optical pulse area, introduced in chapter 6. �e optical pulse area describes
the rotation of the Bloch vector around an axis in the uv-plane (for resonant excitation and
depending on the phase) in contrast to the electric pulse area, which is responsible for the
rotation of the Bloch vector around the w-axis, which is essentially the quantum phase of the
qubit. �e total phase shi� (equal to the rotation angle) induced by electric manipulation
during the delay time of the two pulses is given by

Ael = CCM ∫ tdelay0
VCM(t)dt. (8.4)

where VCM(t) is responsible for the coherent manipulation and CCM is the coherent electric
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manipulation coe�cient (EMC). �e unit of the EMC is [CCM] = 1/Vs; its magnitude is
controlled by the steepness of the voltage induced shi� of the transition energy resulting from
the Stark e�ect. �e EMC can be obtained from voltage controlled Ramsey experiments as
inverse product of tdelay and the necessary voltage shi� to achieve a qubit phase shi� of π:

CCM = 1
Vπ tdelay

. (8.5)

From the data shown in �gure 8.2 a (inverse) EMC of 1/CCM = 1.15 ± 0.05V ps is obtained
for the speci�c exciton qubit.

8.3 Experiment

To detect the electric phase manipulation, Ramsey interference experiments are performed,
similar to the experiments explained before. Within these experiments, coherent qubit manip-
ulations by transient electric control for the condition of �xed optical excitation conditions
are demonstrated. �e optical excitation from the mode-locked Ti:Sapphire laser is thereby
used as an optical clock signal, with consists of a stream of double pulses from the Michelson
interferometer with constant delay, constant phase relation, and constant pulse area (π/2).
Further, an electric control signal, applied synchronously to the optical clock, is required for
the demonstration of the coherent optoelectronic control of the exciton qubit. For the electric
qubit manipulation, only the electric signal applied during the time interval between the ps
pulse pair e�ects the quantum interference.

8.3.1 Single Pulse Experiment

�e �rst and obvious approach is to use a short electric pulse, placed between the two laser
pulses (like in �gure 8.3). Considering the dephasing time of the exciton qubit, the delay time
is limited to approximately 600 ps for low bias voltages. With the electronics described in
chapter 4.5 it is possible to create an electric pulse with a FWHM of less than 450 ps, analyzed
directly behind the second comparator with a 6GHz real-time oscilloscope. �is pulse is
transferred to the QD photodiode by the RF network shown in �gure 8.4a. It turns out, that
the electric signal is capable to switch the PC signal from the constructive interference to
the PC value expected for destructive interference. However, due to the LRC-time constants
of the sample and its wiring, it is expected that the electric pulse underlies a dispersion. To
analyze the dispersion, the electric pulse is shi�ed in respect to the optical clock signal by the
electronic control and an external delay box, as shown in �gure 8.4b. �ereby, the quantum
system is utilized as a kind of oscilloscope. �e diagram (�gure 8.4c) shows the resonant PC
response of the QD at a bias voltage of Vbias = Vres = 0.5V and a delay time of tdelay = 50 ps
between the two laser pulses. �e grey curve represents the original obtained PC data, while
the red curve is derived by smoothing this data to reduce the noise.
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Figure 8.4: (a) �e photodiode with the RF coupling network. (b) Sketch of the timeline of
the experiment. (c) PC response as a function of the pulse delay of the electric pulse in
respect of the optical clock.

In the region of a pulse shi� of 5000 ps to 7000 ps the PC is lowered to the level of destructive
interference in a quantum interference, thus the quantum phase is shi�ed by π at this point.
�e FWHM of this dip is approximately 1.2 ns, meaning that the electric pulse has broadened
due to the dispersion. At other pulse shi�s, the PC signal is also a�ected, thus the signal of
the electric pulse is not limited to the dip (e. g. at 4000 ps).
In a strict interpretation of this experiment, there is no essential di�erence to the classical

Ramsey interference experiment, because although an electric pulse is applied to the photodi-
ode, the electric �eld between the two laser pulses remains (more or less) constant. Due to
the broadening of the electric pulse to more than a nanosecond, it is not possible to increase
the optical delay time to an appropriate value, so that the electric pulse is enclosed between
the optical pulses.
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8.3.2 RF Signal Experiment

To avoid the problems arising from the dispersion of the electric signal, now a single frequency
RF signal is used to demonstrated the coherent phase manipulations. Such a signal underlies
of course also a dispersion due to the inductances and capacities of the sample and its wiring,
however, these change only phase and amplitude of the signal, which can be compensated in
advance.
�e fundamental requirement to the signal is its synchronism with the optical clock, thus

one has to take a higher harmonic of the laser repetition frequency. For the creation of the time
correlated electric signal, here the 30th harmonic of the laser repetition frequency (80MHz)
is used, as explained in chapter 4.5. �e thereby obtained 2.4 GHz radio frequency (RF) signal
has a de�ned phase relation with respect to the laser pulses. �e phase of this signal can be
swept continuously by electronic control and the amplitude can be adjusted by a series of
attenuators. �e signal can be described by

VRF(t) = VRF0 sin(ωRF t + ϕRF), (8.6)

where VRF0 and ωRF are the amplitude and angular frequency of the RF signal, respectively.
�e phase ϕRF is de�ne to be zero for the situation displayed in �gure 8.6a.(a) �e RF signal is
applied to the QD PD by superimposing it with the DC bias voltage Vbias. As shown in �gure
8.5, VRF is terminated (50Ω) and capacitively coupled to the gate electrode of the PD. It is
important to note, that the chosen time delay between the two laser pulses (tdelay = 208 ps)
is set exactly to the half period time of the RF signal. �is means in particular that one can
continuously sweep between the situations, where the upper or the lower half wave of the RF
signal is lying exactly between the two laser pulses.

(a)Here, t = 0 is the point of time of the �rst laser pulse.
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8 Coherent Optoelectronic Control

In �gure 8.6 a detailed description of the experiment is presented. �erein, the optical clock,
consisting of two in-phase π/2 laser pulses, results in constructive quantum interference, if
the phase of the resonant quantum system remains unchanged. �is is not a fundamental
requirement of the experiment, because as a phase shi� between the two laser pulses can
be compensated by a static quantum phase shi� by a constant bias voltage. However, this
condition makes it easier to explain the experiment.
In order to achieve a higher sensitivity for small phase shi�s of coherent electric manipula-

tion, an additional constant phase shi� is introduced. It is induced by a static o�set voltage
Vo�set, which leads to an additional phase shi� of –π/2 (Vo�set = −2.75mV in this case). �is
phase shi� is illustrated on the Bloch spheres by yellow arrows. Essentially, this can regarded
as a shi� of the operation point of the quantum device to a point where the derivation of the
PC signal has a maximum (or minimum). �e same e�ect can be achieved by introducing a
π/2 phase shi� between the two laser pulses.
In the situation shown in �gure 8.6b, the positive half-wave of the RF signal is located

between the two laser pulses. Hence, the quantum phase shi� induced by VRF is maximum. In
the shown case, this corresponds to a RF-induced phase shi� of +π/2, which is compensated
by the o�set phase shi� to 0, leading to constructive quantum interference. In the second
case (�gure 8.6c), the RF-induced phase was changed to zero. Here the Bloch vector is at
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Figure 8.7: (a) �e coherent optoelectronic manipulation measured in the photocurrent. �e
marked points A, B, and C correspond to the situations presented in �gure 8.6. �ese
points indicate, that the phase of the system can be inverted by electric manipulation. �e
minima dri� in the data from 0π to 2π can be attributed to a small dri� in the laser energy
and/or the Michelson interferometer. (b) Corresponding theoretical calculation.
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�rst moved clock-wise, then stopped and moved counter-clock-wise to end up at the starting
point. �erefore no additional quantum phase shi� is created by the RF voltage. Due to the
action of Vo�set, the total phase shi� is π/2 and the second laser pulse leaves the exciton qubit
in the superposition state. In the third case (�gure 8.6d), the induced phase shi� of – π/2
adds up with the action of Vo�set, resulting in a total phase shi� of π. �erefore, the quantum
interference is destructive, rotating the Bloch vector to ∣0⟩.
In the experiment shown in �gure 8.7a the electric phase is varied from 0 to 4π. For each

electric phase setting Vbias was tuned from 0.42 to 0.47V in order to obtain Ramsey fringes.
In the resulting color diagram, color coded photocurrent data (red=5.7 pA, blue=4.4 pA) is
plotted as a function of Vbias and the RF phase ϕRF . In the experiment VRF0 has been adjusted
in such a way, that a sweep of the electric RF phase from 0 to π in fact results in an inversion
of the observed Ramsey pattern. �is inversion is related to an electrically induced quantum
phase shi� of π. �e observed oscillation amplitude is slightly smaller as compared to the
conventional Ramsey experiment due to weak RF-induced heating.
A simulation of the resulting PC response was performed by solving these extended optical

Bloch equations from chapter 6. �e slight dephasing due to the heating of the sample is
modeled in the equations as a pure dephasing term (γ∗2 ). �e only free �t parameter in
this model is the amplitude of the RF signal VRF0 , applied to the gate electrode. Due to
the in�uence of parasitic contributions to the RF impedance of the photodiode (bond wire,
internal capacitance), the exact magnitude ofVRF0 on the gate electrode remains unknown. By
comparing the result of the calculations (�gure 8.7b) with the experimental data (�gure 8.7a),
one �nds that the presentedmodel can reproduce the experiment with high accuracy. �e best
agreement is found for an applied RF amplitude of VRF0 = 4.4 ± 0.1mV, which corresponds
to 1/CCM = 1.17 ± 0.03Vps. �is is in very good agreement with the EMC obtained from
conventional Ramsey experiments described before.
In summary, the presented new scheme for the coherent optoelectronic manipulation has

been veri�ed by the above explained experiment, using an optical clock and a synchronous
RF voltage.

8.4 Generalization of the Scheme

8.4.1 Universal Single Qubit Control

�e presented concept can be easily extended towards an universal single qubit control. To
explain this, the laser pulses and the electrical pulse in the scheme in �gure 8.3 is decomposed
into single gate operations. �e two π/2 laser pulses represent Hadamard gate operations.
�e second Hadamard gate is thereby utilized for the quantum interference experiment. As
demonstrated experimentally, the electric gate pulse represents an arbitrary phase shi�er
gate, whereas the phase angle can be controlled by the electric pulse area. It is of course not
necessary, that the gates are used is this particular order. For a functional quantum operation,
these gate might be applied in any order and might be repeated several times.
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8 Coherent Optoelectronic Control

From an theoretical point of view, it is trivial that thereby an universal single qubit control
can be constructed. As mentioned in chapter 3, an universal single qubit control can be
achieved by a �nite (but potentially high) number of Hadamard (the π/2 laser pulse) and
π/8 phase shi�er gates (which requiring only an appropriate electric pulse). Due to the fact,
that the phase angle can be easily controlled by the electric pulse area, it is possible to achieve
the universal control with a sequence of only two Hadamard gates and two phase gates. One
possible sequence is presented in �gure 8.8. �e �rst Hadamard gate turns the Bloch vector
on the equator. �e following phase gate rotates the Bloch vector along the equator, so that
the second Hadamard gate can reach every height on the Bloch sphere. A second phase shi�er
gate can now reach ever point on the Bloch sphere on this height. So, by controlling only the
two electrical phase gates, it is possible to reach every point on the Bloch sphere, which is
equivalent to an universal coherent control of a single qubit.

time

P(ϕ‘)HP(ϕ)HA A‘

(a) (b)

Figure 8.8: (a) Sequence for an universal single qubit control, using the coherent electric
manipulation as an arbitrary phase shi�er quantum gate. (b) Corresponding, exemplary
trajectory of the Bloch vector.

8.4.2 Scaling the Approach

One of the most remarkable features of the presented scheme is its scalability. For instance,
one can imagine a qubit register, in which the phase of each qubit is coherently controlled by
an individual electric signal while all qubits are clocked by the same optical excitation. �is is
a big advantage over an individual optical control, which is much more di�cult to achieve.
Furthermore, the electric control of the eigenenergies of the qubits, whereby two neigh-

boring qubits can be brought into resonance. Although the exact concept of a two-qubit gate
has to be developed in the future, the resonant coupling of two qubits is a fundamental step
towards two-qubit gates, for example a quantum cnot or swap gate.
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9 Conclusion and Outlook

Quantum information is a rapidly growing �eld and new theoretical and experimental con-
cepts are developed by research groups all over the world. A major topic is thereby the
precise coherent state control, which is a fundamental requirement for the implementation of
quantum devices.
In this work, a new scheme for the coherent optoelectronic control of an exciton qubit

has been described and experimentally demonstrated. It was shown, that it is possible to
manipulate the quantum phase of an optically clocked exciton qubit by applying an electric
RF signal. Besides the experimental veri�cation of the approach, a theoretical model of the
exciton two-level system was developed and compared to the experimental data, yielding an
outstanding coincidence. �e model is based on the optical Bloch equations and includes the
two-step relaxation mechanism, which is characteristic for the tunneling of the QD exciton in
a photodiode.
To con�rm the theoretical approach, previously developed experiments were also com-

pared to the model. �ereby, the model allows for a more detailed analysis of the previous
results, in particular, the evaluation of the heavy-hole tunneling time from the cw saturation
spectroscopy is now more reliable. Moreover, a detailed analysis of the excitation dependent
damping of the Rabi-oscillations at low temperature was given in the context of the theoretical
model. At this time, the results seem to be contradictory to recent results of the group of M.
Skolnick. �us, further experiments have to be carried out, focussing on Rabi oscillations at
high pulse areas and at di�erent temperatures or excited with shaped laser pulses.
In this thesis the coherent manipulation of an exciton qubit by optoelectronic control

has been proven. Anyhow the new optoelectronic quantum gate can be further optimized.
�e next step is the improvement of the RF-properties of the QD photodiode, enabling the
coherent electric control with short electric pulses. Very likely, the pulse width can be reduced
to less than 100 ps by using a MSM-photodiode for the pulse creation and an appropriate
QD photodiode design. Furthermore, an integrated “on-chip” creation of the electric control
signal can be considered.
In the future, the proposed scalability of the new concept has to be evaluated, which will

require a precise lithography to contact two nearby QDs separately. �e long-term objective
in this context will be to couple to neighbored exciton qubits. Although it is not clear how
this goal can be achieved, the individual control of the energies of the qubits by an applied
electric gate signal will play an important role.
Quantum key distribution for secure communication is an interesting application in quan-

tum information. For long-distance quantum communication a quantum repeater is required,
in order to avoid decoherence of the transmitted quantum signal. A key task for the develop-
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ment of such a device is the interconversion of the quantum state of a photon to a stationary
qubit. �e exciton qubit system provides an excellent coupling the photons, and basic concepts
for the interconversion have been recently proposed in the master thesis of D. Mantei and are
going to be patented. �e further development of these concepts will be an important task in
the future.
�e principles of the new scheme are not limited to the exciton qubit. �us, a transfer of

the concept to a qubit system which provides longer coherence times, for example a single
electron spin, is a worthwhile objective.
In addition, CdSe/ZnSe QD photodiodes have been introduced in this thesis. �is kind of

photodiodes may provide advantages in certain aspects as compared to InGaAs/GaAs QD
photodiodes. �e CdSe/ZnSe material system provides higher con�nement and Coulomb
correlation energies than the InGaAs/GaAs systems and possess the potential for coherent
operation at elevated temperatures. �e results from the voltage dependent PL indicate, that
the QD photodiode is in principle functional. However, the material system is not as easy to
handle as the traditional InGaAs/GaAs system, regarding processing and spectroscopy.
Nevertheless, taking into account the very recent results, which will be presented by M.

Pan�lova, it seems possible to perform experiments in the photocurrent regime. Although it is
not clear, whether excitons in CdSe QDs will provide longer coherence times at elevated tem-
perature than III-V semiconductor systems, the research on the CdSe/ZnSe material system
might deliver some interesting results helping to understand the decoherence mechanisms.

�e presented scheme for the coherent optoelectronic manipulation of exciton qubits is
an innovative and fundamental method for the quantum state control. It opens up for new
promising concepts in the area of quantum information research.
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Symbols and Abbreviations

Symbols

Ael electric pulse area
CCM coherent manipulation coe�cent
δ detuning between laser energy and QD-resonance (δ = ωlaser − ω01)
e representation for an electron or the elementary charge (1.6022 × 10−19 C)
F electric �eld
flaser repetition frequency of the laser (80MHz)
Γ linewidth
Γ0 natural linewidth
h Planck’s constant (4.1357 × 10−15 eVs)
ħ h/2π (6.5821 × 10−16 eVs)
hh heavy-hole
λ wavelength
µ dipole moment
Ω, Ω0 Rabi-frequency (on resonance)
ω angular frequency of the laser radiation or the optical transition
ν frequency of the laser radiation or the optical transition
ϕ phase angle
P (optical) excitation intensity
P̃ standardized excitation intensity
T1 life time
T2 dephasing time
T2∗ time scale of pure dephasing (no life time induced dephasing)
Θ (optical) pulse area
u dispersive component of the Bloch-vector
v absorptive component of the Bloch-vector
w occupation component of the Bloch-vector
Vbias bias voltage of the photo diode
Vres bias voltage at the resonance
VCM coherent manipulation voltage
X− negative charged exciton
X neutral uncharged ground state exciton
X+ positive charged exciton
2X biexciton (neutral, uncharged, ground state)
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Symbols and Abbreviations

Abbreviations
AFM atomic force microscope
cw continuous excitation (continuous wave)
FSS �ne structure splitting
FWHM full width half maximum
MBE molecular beam epitaxy
NA numerical aperture
PC photocurrent (spectroscopy)
PL photoluminescence (spectroscopy)
PLE photoluminescence-excitation (spectroscopy)
QCSE quantum con�ned Stark e�ect
QD quantum dot
RF radio frequency
RHEED re�ection high energy electron di�raction
TEM transmission electron microscope
WL wetting layer
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