
Faculty of Computer Science, Electrical Engineering and
Mathematics

PhD Thesis

Integrating Contract-based Testing into Model-driven
Software Development

by Barış Güldali

A dissertation submitted to the
Faculty of Computer Science, Electrical Engineering, and Mathematics of

the University of Paderborn

Supervisors:
Prof. Dr. rer. nat. Gregor Engels

(University of Paderborn)

Prof. Dr. rer. nat. Mario Winter
(Cologne University of Applied Sciences)

Paderborn, June 3th, 2014

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Model-based Software Development 4
1.3 Model-based Testing . 6
1.4 Problem Statement . 7
1.5 Solution . 9

I Foundations and Related Work 15

2 Fundamentals of Model-based Testing 17
2.1 Software Development Methodology 17
2.2 Model-based Software Development 18

2.2.1 Modeling . 20
2.2.2 Model Transformations 20

2.3 Testing in Development Process 25
2.3.1 Test Levels . 25
2.3.2 Test Activities . 28
2.3.3 Test Automation Techniques 33

2.4 Model-based Testing . 35
2.4.1 MBT Process . 37
2.4.2 Di↵erent Approaches 39
2.4.3 Di↵erent Paradigms . 42

3 Contract-based Testing 47
3.1 Characteristics . 47

3.1.1 Reference Model for Contract Modeling 48
3.1.2 Reference Model for Testing with Contracts 49

3.2 Approaches in the Literature 51
3.2.1 AutoTest . 54
3.2.2 Korat . 56

iii

iv CONTENTS

3.2.3 WeSUF . 56
3.2.4 LTG/B . 57
3.2.5 WSTVC . 58

3.3 Tabular Comparison of Approaches 59
3.4 Summary . 61

4 Visual Contracts 63
4.1 Modeling with Visual Contracts 63

4.1.1 Running Example: Online Shop 65
4.1.2 Visual Contracts . 67
4.1.3 Semantics of Visual Contracts 69

4.2 Application Areas . 72
4.3 Experiences with Visual Contracts 73

5 Summary of Part I 77
5.1 Improvement Potential in CBT Approaches 77
5.2 Requirements on a novel Testing Approach 81

II Approach 85

6 General Approach 87
6.1 Development Process Overview 88
6.2 Implementation . 92
6.3 Test Design . 94
6.4 Test Implementation . 96
6.5 Test Execution . 98
6.6 Summary . 101

7 Unit Testing 103
7.1 Development Scenario . 104
7.2 Test Design . 107

7.2.1 Approach 1: Artificial Prestate 108
7.2.2 Approach 2: Natural Prestate 116

7.3 Test Implementation . 125
7.4 Test Execution . 126

8 Integration Testing 129
8.1 Development Scenario . 130
8.2 Test Design . 133
8.3 Test Implementation and Execution 136

CONTENTS v

9 System Testing 143
9.1 Development Scenario . 144
9.2 Test Design . 150
9.3 Test Implementation . 154
9.4 Test Execution . 158

10 Tool Support and Evaluation 161
10.1 Unit Testing . 162

10.1.1 Approach 1: Artificial Prestate 164
10.1.2 Approach 2: Natural Prestate 169

10.2 Integration Testing . 175
10.3 System Testing . 177
10.4 Evaluation . 181

10.4.1 Evaluation by interviews and case studies 181
10.4.2 Evaluation by quantitative methods 182
10.4.3 Evaluation by peer reviews 184

III Closure 187

11 Conclusion and Future Work 189
11.1 Contributions . 191
11.2 Epilogue . 195
11.3 Roadmap for further Research 197

11.3.1 Further selection criteria for test data 197
11.3.2 Binding real test data 197
11.3.3 Agile development . 199

Bibliography 200

vi CONTENTS

Abstract

Model-based testing (MBT) aims at improving the manual test design pro-
cess by using test models for automated test case generation, which is sys-
tematic and e�cient. However, MBT is not for free: test models must be
created and maintained; tools and techniques for test case generation and
execution are required. Furthermore, testing activities must be integrated
into the model-driven development process. For a seamless integration of the
development and test processes, models should be interchangeable between
developers and testers at each stage of the development process. This pose
challenges for both developers and testers in their modeling, implementing
and testing activities. Most of the existing approaches propose using detailed
and complete models for development and testing, which requires advanced
modeling skills and tools. Experts agree that these challenges are the main
reasons why model-driven development is still not there it needs to be. As
a reaction, a former work proposed using Visual Contracts for a light-weight
and semi-automated development process. However, the questions regarding
testing and its integration remained unanswered.

In this thesis, we fill this gap and extend the proposed development pro-
cess by a Visual Contract-based testing process. Our approach proposes using
Visual Contracts as a test basis for an automated test process. Thereby, test
cases and test scripts are systematically derived from Visual Contracts using
formal selection criteria. The Visual Contract language follows the Design-
by-Contract paradigm resulting in intuitive test models specifying precondi-
tion and postconditions for test object operations. Visual Contracts allow
creating partial models enabling starting testing activities before all imple-
mentation details are known. The originality of our approach compared to
other contract-based approaches lies in its support of all test levels during the
model-driven development process such that a complete integration of devel-
opment and testing processes is given. Furthermore, we apply many novel
techniques and tools (e.g. model transformations, model checking, code gen-
eration, model-driven monitoring) for realizing the testing activities resulting
in a sophisticated test process.

vii

viii CONTENTS

Zusammenfassung

Modellbasiertes Testen (MBT) hat das Ziel den manuellen Testentwurfsprozess
durch den Einsatz von Testmodellen zur automatischen Testfallgenerierung
zu verbessern. Dadurch wird der Prozess e�zienter und systematischer.
Allerdings MBT bedeutet erst ein Mal investieren: Testmodelle müssen er-
stellt und gewartet werden, Werkzeuge für die Generierung und Ausführung
müssen entwickelt werden. Ausserdem müssen diese neuen Techniken und
Werk-zeuge in den modellbasierten Entwicklungsprozess (MBE) integriert
werden. Für eine nahtlose Integration müssen die Modelle zur jedem Zeit-
punkt der Entwicklung austauschbar unter den Entwicklern und den Testern
sein. Diese Anforderung bedeutet neue Herausforderungen für die Beteiligten
bei ihren Entwicklungs- und Testaktivitäten. Viele der aktuellen MBT-
und MBE-Ansätze erfordern den Einsatz von detaillierten und vollständigen
Modellen, was fortgeschrittene Fähigkeiten von Entwicklern und Testern
notwendig macht. Experten sind sich einig, dass genau diese neuen Her-
ausforderungen die Entwicklung und die Verbreitung von modellbasierten
Techniken erschwert. Als eine Reaktion zu diesen Entwicklungen wurde die
Softwareentwicklung mit den Visuellen Kontrakten als eine leichtgewichtige
und teil-automatisierte Technik eingeführt. Allerdings blieben viele Fragen
bzgl. des Testens unbeantwortet.

In dieser Dissertation füllen diese Lücke zwischen der modellbasierten
Entwicklung mittels visuellen Kontrakten und dem modellbasiertem Testen.
Dabei verwenden wir die Visuellen Kontrakte als Basis für den automa-
tisierten Testfallentwurf, wo die Testfälle und die Testskripte mittels formalen
Auswahlkriterien von den Visuellen Kontrakten abgeleitet werden. Unser
Ansatz setzt auf das Design-by-Contract-Paradigma und spezifiziert intuitive
Testmodelle mittels Vor- und Nachbedingungen an Testobjekten. Die Test-
modelle dürfen unvollständig sein und erlauben dadurch einen früheren Start
mit den Testaktivitäten, ohne dass alle Einzelheiten der Implementierung
bekannt sein müssen. Der Beitrag unseres Ansatzes im Vergleich zu anderen
kontraktbasierten Testansätzen ist es, dass wir im Gegensatz zu anderen
Ansätzen alle Teststufen behandeln, was die Integration der Entwicklungs-

ix

x CONTENTS

und Testaktivitäten zu jeder Zeit möglich macht. Dabei setzen wir viele inno-
vative Software Engineering-Techniken (z.B. Modelltransformationen, Mod-
elchecking, Code-Generierung, Model-driven Monitoring), um diese Integra-
tion zu ermöglichen.

Chapter 1

Introduction

Manual testing is an expensive and error-prone task. Test automation can
help in making the test process more e�cient and more precise. In the mod-
ern times of model-based software development, model-based testing pro-
poses using models for supporting test automation. Thereby, test cases or test
scripts are generated from models. In the literature of model-based testing,
many paradigms and notations are proposed for creating models. For adapt-
ing model-based testing in the software development process, it is important
to select appropriate paradigms and notation addressing the needs of the
development context. Design-by-Contract (DbC) is a well-known paradigm
for specifying software. In this thesis, we discover the embodiment of DbC
paradigm and appropriate contract-based notations into model-based test-
ing (MBT). In this chapter, we roughly describe the context of model-based
testing and motivate the need for a novel approach for contract-based testing
(CBT).

1.1 Motivation

The expectations of users on high quality software are growing. They are
expecting more functionality in shorter version-cycles for less cost. Besides
functionality, they also expect good non-functional qualities, like high per-
formance, easiness in usability etc. Thus, both functional and non-functional
qualities [ISO01] have a direct influence on the success of software. In addi-
tion to the end user’s expectations, also rapid changes in market requirements
and in legal issues make the development of software more and more complex.

For assuring the requirements on high quality software, constructive and
analytical activities are required throughout the development process. While
the constructive activities aim at building the software correctly, analytical

1

2 CHAPTER 1. INTRODUCTION

activities aim at checking the correctness of the software with respect to a
specification after or during the construction. Process models for software
development define how these activities are to be organized. Depending on
the development context di↵erent process models can be applied, e.g. RUP
[Kru99], V-model [Boe84], Scrum [SB01].

The V-model is the most traditional process model which defines the rela-
tion between constructive and analytical activities. Figure 1.1 illustrates the
V-model1 based on Basili and Pezze [BP06]. In V-model, the development
process starts with capturing the requirements on software and ends with the
deliverable software. In-between, design and implementation constitute the
constructive activities and testing constitutes the analytical activity. During
the design, which is illustrated on the left branch, the requirements on soft-
ware are translated into a specification. During the implementation, which is
illustrated in the right branch of V-model, the software is coded with respect
to its specification. Then, in order to assure the correct implementation, the
software is tested against its specification by means of test cases. If errors in
the software are detected, they have to be corrected. If the desired quality
of software is reached, it can be delivered.

As the complexity of software to be developed grows, also the complex-
ity of the development activities increases. This leads to more e↵ort and
to more costs in software development, not only for the constructive part
but also for the analytical part. A current analysis of development e↵orts in
[SS10] show that testing can make a draft of up to 40% of total development
costs. The main reason for these costs is that many testing tasks are done
manually. Typical manual activities in testing are test case design, test exe-
cution and evaluation of the test results. The manual work is time-consuming
and error-prone. Even if almost the half of the total development e↵orts is
invested in testing, software can still contain undetected errors at its deliv-
ery. Depending on their severity, these errors can lead to failures in software
systems which can harm human life or which can result in high financial loss.
Thus appropriate testing techniques should be selected for e↵ective quality
assurance. The appropriateness of testing techniques strongly depends on
the characteristics of the software under test and also on the characteristics
of the development process [VB05].

In order to handle the complexity of software development, model-based
techniques are proposed. Thereby, abstract models of software are used for
capturing the requirements, for designing the software and for code gener-

1This illustration is slightly di↵erent than the illustration of Boehm [Boe84]. While
Boehm places the constructive activities on the left branch and the analytical activities
on the right branch, Basili and Pezze place the constructive activities (design and imple-
mentation) on the outer V, and testing on the inner V.

1.1. MOTIVATION 3

i li

Requirements

Deliverable

Design Impl.Testing

Test case

Specification Code

Figure 1.1: Activities and artifacts in V-model based on [BP06]

ation. In the context of model-based software development (MBSD), also
testing activities are supported by models. Model-based testing (MBT) uses
models for automating the manual tasks of testing, especially the test case
design [UL07]. Thus, models play a central role in MBSD and MBT.

Dias-Neto et al. have identified in [DNSVT07] over 400 MBT approaches
which address di↵erent kind of notations (e.g UML or FSM) and paradigms
(e.g. state-based or event-based) for creating models. It is a challenge for de-
velopers and testers to select appropriate modeling notations and paradigms
depending on many factors, e.g. the characteristics of the software under
consideration, the skills of the developers and testers, compatibility with
existing tool and notations [ESS08].

At the University of Paderborn, we also deal with various modeling no-
tations and paradigms in the context of our research on MBSD. At the soft-
ware engineering group of Prof. Engels, one of the main research topics is
the MBSD with UML. Some of the research topics are: defining more formal
semantics for UML [Küs04, Hau05, Sch09], defining UML profiles for domain-
specific modeling [Mlynarski, Sauer] and defining new UML-based languages
which extend UML [Loh06, För09]. In this context, Lohmann has developed
in 2006 a new language Visual Contracts [Loh06] which extends the UML
by the concept of Design-by-Contract (DbC) [Mey92]. He has shown that
Visual Contracts are useful for specifying component interfaces by using pre-

4 CHAPTER 1. INTRODUCTION

and postconditions. He has also shown, how Visual Contracts can be used
for code generation and run-time monitoring which are means for assuring
software quality.

In this dissertation thesis, we carry forward the MBSD research and show
how MBT can be integrated into the MBSD process using Visual Contracts.
Thereby, we show how Visual Contracts can be used for test case design, test
execution and evaluating test result. However, the idea of using contract
based notations for testing is not new. There are already approaches, which
use the DbC paradigm for supporting testing tasks. In this thesis, we report
on a literature survey on contract-based testing (CBT) and show how a novel
testing technique using Visual Contracts can help in improving the flaws of
existing approaches.

In the next sections of this introductory chapter, we give more insight into
MBSD and MBT and discuss the role of DbC for constructive and analytical
activities. Then, we identify the requirements on CBT for integration into
MBSD. After addressing the flaws of existing techniques, we motivate our
MBT approach with Visual Contracts.

1.2 Model-based Software Development

In order to handle the complexity of software, model-based software devel-
opment (MBSD) proposes using abstract models of software during the de-
velopment process. Models are used to describe the software itself or its
environment. Thereby, they focus on most important aspects of software
thus hiding the irrelevant details for a particular point of time during the
development process. Software developers use models (a) for communication
within the development team, (b) for documenting the customer require-
ments and the specifications, (c) for analysis of software quality and finally
(d) for code generation. Especially, the need for a model-based code genera-
tion is supported by the following citation of Bill Gates [Ude05]:

“There’s only really one metric to me for future software de-
velopment, which is - do you write less code to get the same thing
done?” Bill Gates 2005

Following the vision of writing less code, the Object Management Group
(OMG) launched its Model-Driven Architecture (MDA) [Gro03a] initiative
as well as modeling standards such as the Unified Modeling Language (UML)
[Gro03b] that provides the foundation for MDA. The main target of MDA
is to drive the software development by specifying models instead of writing
code. In MDA first the requirements on software are translated into abstract

1.2. MODEL-BASED SOFTWARE DEVELOPMENT 5

i li

Requirements

Deliverable

Design Impl.Testing

System
model

Code

PIM modelPIM

Code
System
modelPSM

Figure 1.2: V-model with MDA concepts

models. Then, these models are stepwise refined with technical details until
executable code arise.

Figure 1.2 shows the V-model with MDA concepts. The design phase
begins with the creation of design models (also called system models)
with respect to the requirements. These models arise in early phases of the
development process and they do not address any technical details on the
implementation or on the execution of software. That is why these mod-
els are called platform-independent models (PIM) and focus on only domain
specific aspects. Then, the PIM’s are stepwise refined to more specialized sys-
tem models by adding technical details resulting in platform-specific models
(PSM). After having fed PSM’s with su�cient technical details, they can
be transformed into program code. The refinement steps are conducted
by Model Transformations (MT) [MG06]. OMG also defines a standard
Query/View/Transformations (QVT) [Gro05b] for specifying model trans-
formations. Using QVT and supporting tools the refinement steps can be
automated. The program code can be further transformed to more complex
code resulting in the fully-fledged deliverable software at the end.

However, Engels et. al formulates the problems of MDA as follows [ELSH06]:
MDA is still in its infancy compared to its ambitious goals of having a
(semi-)automatic, tool-supported stepwise refinement process from informal
requirements specifications to complete running software . A lot of unre-

6 CHAPTER 1. INTRODUCTION

solved questions exist for modeling tasks as well as for automated model
transformations. For instance, a complete understanding of the appropriate
level of detail and abstraction of models is still missing. The notion of ab-
straction naturally conflicts with the desired automatic code generation from
models as proposed by the MDA. To enable the latter, fairly complete and
low-level models are needed.

Thus, in today’s software development processes, manual programming
by developers for realizing the requirements specified in abstract models is
still indispensable. However, manual programming is error-prone. The more
manual programming is conducted, the more errors can be inserted into
the software. Before delivery of software, these errors must be detected by
dynamic testing and be eliminated.

1.3 Model-based Testing

Traditional testing is mostly a manual activity and it is expensive. Thereby,
an appropriate set of test cases has to be selected and the software under test
has to be executed using these test cases. During the execution of each test
case, the observed behavior of software is compared to the expected behavior
which is defined in the specification. Moreover, often manual testing is not
systematic and depends on the skills and experience of testers; such that the
selection and the execution of test cases, and the evaluation of test results
can su↵er from the subjectiveness of testers. This hinders the reproducibility
of the selection of test cases and their execution.

In order to handle high e↵orts caused by the manual testing, numerous
automation techniques are proposed in the literature, e.g. capture-replay
testing, script-based testing, keyword-driven testing. Depending on the needs
and the maturity of the development and the testing process one or more
testing techniques can be applied. Using these techniques, the execution of
test cases can be easily automated. However, automating the test execution
only does not solve all problems of manual testing. Fewster said in [FG99]:

“It is far better to improve the e↵ectiveness of testing first
than to improve the e�ciency of poor testing. Automating chaos
just gives faster chaos.” Fewster 1999

Thus, before the test execution is automated, the test case design should
be conducted in a systematic way. Also the evaluation of the test results
remains a challenge. These activities require the intelligence of tester to
decide which test cases are important and whether the software behaves
correctly or not.

1.4. PROBLEM STATEMENT 7

i lTesting

Requirements

Deliverable

Design Impl.Testing
Test model

Test case

Code
System

d l
Code

model

Figure 1.3: V-model with MBT concepts

In order to cope with these challenges, MBT utilizes formal models of the
software under test for systematically deriving test cases and evaluating test
results. Thereby, either system models, which are created during the design
phase, can be used for MBT purposes, or testers can explicitly create their
own models with respect to the initial requirements. We will call the later
ones as test models . Figure 1.3 shows both scenarios on the V-model (cf.
Figure 1.2). The derivation can be either manual or automated, however it
must be systematic, i.e. a formal test selection criteria has to be defined.
For automating the test case derivation, the models should be specified in
a machine readable notation. In MBSD, many notations (e.g. UML, FSM,
Petri nets, B or Z) are used for modeling di↵erent aspects of the software
[UPL06].

1.4 Problem Statement

In MBSD and MBT, the selection of a suitable modeling notation depends
strongly on the characteristics of the software under test and also on the con-
text of software development. For example, in [UL07] Utting and Legeard
propose using transition-based notations if control-oriented software is mod-
eled and using pre/post-based notations if data-oriented software is modeled.
If separate test models are to be created, testers can decide on the modeling
notation by themselves, however, if system models are to be used for testing,
testers and developers have to agree on common notations. For the selection
of suitable notations, it is also important to clarify other aspects, e.g. which

8 CHAPTER 1. INTRODUCTION

MBT
?

Test model+

derive

Test model+

Test case

derive run

MBSD Lohmann
2006

++
derive

Figure 1.4: MBSD and MBT process using Visual Contracts

skills do team members have, which modeling notations and tools are already
in use [ESS08]. Thus, integrating the MBT process into the MBSD process
has to be planned carefully.

At the research group of Prof. Engels, we develop languages and meth-
ods for UML-based software engineering. In the previous years “Visual Con-
tracts” (VC) has been developed by Lohmann [Loh06], which integrates the
notion of Design-by-Contract (DbC) [Mey92] into UML-based modeling. Us-
ing VC the behavior of software is modeled in terms of pre-and postconditions
on system’s state which is typed over a UML Class diagram. Thereby, VC
specify conditions which must be fulfilled by any client of the software (pre-
conditions) and conditions that must be fulfilled by the software if it has
been executed (postconditions).

Lohmann has shown that VC is a useful and light-weight notation for
specifying software interfaces [Loh06]. He has also shown how these specifi-
cations can be used for MBSD (see Figure 1.4, lower box) where parts of the
Java program code are automatically generated. Missing parts of software
are programmed manually which can insert errors into the software. For
checking the correctness of software at runtime, he has developed the tech-
nique model-driven monitoring (MDM) where software behavior is monitored
by assertions in Java Modeling Language (JML) [LC03] which are generated
from VC and check the conformance of software behavior with the VC speci-
fication at runtime. If inconformities are detected, the software reports these

1.5. SOLUTION 9

to the caller which is then responsible for further actions. However, the tar-
get of the quality assurance should be that errors should be detected during
the test process before the software is delivered. For that, the software has
to be executed with controlled test cases which systematically cover di↵erent
scenarios for execution of software under test. The design of such test cases
requires a systematic and e�cient test process, which is integrated into the
VC-based MBSD process.

In this dissertation, we extend the VC-based MBSD depicted in Figure
1.4 by a MBT process which uses VC as a source for test cases. Thereby, we
generate test cases from VC, where test inputs are derived from preconditions
and postconditions represent the expected behavior of software. The test
inputs are object constellations as proposed by Winter in [Win99]. Testing
with VC combines the DbC paradigm with MBT techniques.

However, the idea of combining DbC and testing is not new. There are
already some approaches (e.g [Ciu08, MSM+07, Gro05a, Ave10]), which use
the DbC paradigm and pre/post notations (e.g. Ei↵el, JML, OCL, Spec#,
B) for supporting testing tasks like test case generation or test case execution.
Therefore, we have conducted a literature survey on the so called “contract-
based testing (CBT)” and studied these approaches for conformance with
the MBSD process depicted in Figure 1.4. We have identified the following
flaws in these approaches:

• Most of the proposed notations are very low-level, such that a seamless
integration into UML is not possible.

• Testers must have programming skills for creating low-level contracts.
However, testers need light-weight notations for creating and maintain-
ing test models.

• Most of the approaches address the unit testing level, however, during
the development process also higher test levels, i.e. integration testing
and system testing, must be supported by MBT.

• Most of the approaches use artificial states for invoking the software
under test which hinders realistic test scenarios.

1.5 Solution

In this thesis, we show how a novel MBT approach using the Visual Con-
tracts can help in handling the flaws of current CBT approaches for inte-
grating DbC into MBT. We use VC for CBT on three testing levels: unit

10 CHAPTER 1. INTRODUCTION

testing, integration testing and system testing. We call our approach Visual
Contracts-based Testing (VCBT).

In unit testing (cf. Figure 1.5), we generate test cases from the VC
which are used by the developers as a specification as explained by Lohmann
[Loh06]. We generate test cases from the preconditions which have two parts:
test inputs and prestate. The prestate is used for setting the object of the
class under test into a controlled state which fulfills the precondition of the
operation under test. After setting the prestate, the operation is invoked us-
ing the test inputs. During the test execution, the JML assertions generated
from the VC and embedded into the Java code check the conformance of the
poststate to the postcondition of VC. If this is operation the case, then test
has been passed. For automating this process, we generate JUnit test scripts
which implement the scenario explained above [Ell08, EEG08].

The above mentioned test technique extracts an artificial prestate directly
from the precondition of the operation under test. Since the precondition is
partial, the computed prestate can be incomplete for a realistic test. In
order to test with a more realistic prestate, the prestate should be set by
a sequence of class operations. For computing an operation sequence, we
consider the VC of all operations in the subsystem which is tested on this
test level. Computing a state transition system, which represents all pos-
sible interactions within the operations, and using reachability analysis, we
compute an operation sequence which should set a subsystem into a con-
trolled prestate [EGL06a]. After setting the prestate in a more realistic way,
the operation under test can be invoked similar to the unit testing with the
artificial prestate.

During unit testing, the classes are tested in isolation. In integration
testing (cf. Figure 1.6), we are interested in the interaction of many classes
and their operations which constitute a subsystem. Thereby the caller and
callee classes must be tested and stepwise integrated to build the subsystem.
During the test process of a caller class, if a callee class is not implemented
yet, it must be simulated using stubs. Because the simulation is a costly
activity, the integration test must be planned well by considering the de-
pendencies between the classes. In order to set up an e�cient integration
test process, we use topological sorting for planning the test execution and
integration sequence of classes of a subsystem under test. A specialty in in-
tegration testing is the monitoring of subsystem interfaces for checking the
the correctness of data interchange. For that we instrument the embedded
assertions generated by Visual contracts.

During the unit testing and the integration testing, we use the VC which
was created by developers as a system specification. Thereby, errors in the
manual programming can be found with respect to the VC. However, there

1.5. SOLUTION 11
Unit testing

Requirements Deliverable

System
specification

Integrated
System

Subsystem
design SubsystemsTest case

Component
design Components

MBT using VC - B. Güldali - s-lab Research Days 2010 17Figure 1.5: Unit testing using visual contractsIntegration testing

Requirements Deliverable

System
specification

Integrated
System

Test case

Subsystem
design Subsystems

Component
design Components

MBT using VC - B. Güldali - s-lab Research Days 2010 16Figure 1.6: Integration testing using visual contracts

12 CHAPTER 1. INTRODUCTION

System testing

Requirements Deliverable

System
specification

Integrated
System

Test case

Test model

Subsystem
design Subsystems

Test case

Component
design Components

MBT using VC - B. Güldali - s-lab Research Days 2010 21

BG3

Figure 1.7: System testing using visual contracts

can also be errors in the VC which stem from erroneous interpretations of
initial requirements on software. In order to prevent such errors, testers can
directly derive test models from the initial requirements. In the level of sys-
tem testing, we show how this can be done using the VC (cf. Figure 1.7). In
this level, use-case specifications are partially formalized by VC, where the
pre- and postconditions of the use-case are formalized by the pre- and post-
conditions of VC respectively. From the VC, test cases are generated using
similar techniques as in unit testing and integration testing. However, the
test cases have a higher abstraction than the test cases from the unit testing
and integration testing. Because the use-cases, which are the basis for test
cases, emerge in early phases of the development process, they contain ab-
stract requirements on the software and thus the test cases are also abstract.
Developers refine these use-cases stepwise until executable software evolves.
In order to be able to execute the abstract test cases on executable code, test
cases must also be concretized. For that, we use the documentation of design
decisions of developers for transforming the abstract test cases into concrete
test cases [GMWE09].

Using the techniques sketched above, we aim at completing the VC-based
MBSD process and resolving the flaws of the existing CBT approaches. In
the next chapters, we give more details on the context of our approach and
on testing activities on each level. The rest of this thesis is structured as

1.5. SOLUTION 13

1) Introduction1) Introduction

Part I ‐ Foundations and Related Work

2) Fundamentals of 3) Contract based2) Fundamentals of
Model‐based Testing

3) Contract‐based
Testing

4) Visual Contracts

5) Summary of Requirements

P t II A hPart II ‐ Approach

6) General Process of VCBT

7) Unit 8) Integration 9) System7) Unit
Testing

8) Integration
Testing

9) System
Testing

10) Tool Support & Evaluation) pp

11) Conclusion & Future Work

Figure 1.8: Outline of the dissertation

follows (Figure 1.8):

• Part I gives an overview on the foundations of MBT, CBT and VC and
identifies the requirements for a novel testing approach.

– Chapter 2 summarizes existing work on test automation and dis-
cusses the need for MBT. It also characterizes di↵erent approaches
in MBT.

– Chapter 3 introduces CBT as a sub-category of MBT. The related
work on CBT is studied and their appropriateness for MBSD is
discussed. Then, the need for a novel CBT approach using VC is
motivated.

– Chapter 4 summarizes the work of Lohmann on VC which is the
modeling language for our approach. The intuitive and the formal
semantics of VC are defined. An overview on the applications of
VC is given.

– Chapter 5 summarizes the requirements on a novel CBT approach
for being integrated into MBSD.

• Part II introduces the Visual Contracts-based Testing (VCBT) ap-
proach for di↵erent test levels, the tool support prototypically devel-

14 CHAPTER 1. INTRODUCTION

oped during the dissertation and an evaluation which serves as a proof-
of-concept.

– Chapter 6 describes the general MBT process using VC. Thereby,
the MBT scenario, the fault model and the test selection criteria
are presented in general.

– Chapters 7-9 introduces the di↵erent test levels for which the gen-
eral test process is instantiated. The software under test on these
levels are characterized and the challenges to be handled are ad-
dressed.

– Chapter 10 introduces the prototype tool support for the ap-
proach. An evaluation is presented which serves as a proof-of-
concept for the approach.

• Chapter 11 concludes the thesis by discussing the fulfillment of the
requirements and showing future directions for further research.

Part I

Foundations and Related Work

15

Chapter 2

Fundamentals of Model-based
Testing

In Chapter 1 we have motivated the need for a novel approach of Contract-
based testing embedded into the UML-based software development process.
The basic idea is to use Visual Contracts not only for development purposes
but also for testing purposes. Thus, our research bases on three main funda-
mentals: (1) Model-based software development and model-based testing, (2)
Contract-based testing as a specialization of MBT, and (3) Visual contracts
as modeling language. Part I of this thesis explains these fundamentals.

In this first chapter, we explain the role of model-based testing in the
model-based development process. First, we give an overview on how test-
ing activities are embedded into the development process and what are the
challenges for testers in general. Section 2.4 explains then what is new in
model-based testing (MBT) in comparison to classical testing techniques.
Finally, we introduce a systematic comparison criterion in order to be able
to characterize our new testing approach.

2.1 Software Development Methodology

Engels et al. state in [ESS08] that typically software developers have a good
understanding of development tools they are using every day. However, a
common understanding of the development methodology is mostly lacking
among the development team. In order to establish a well-understood devel-
opment methodology, the authors propose a step-by-step approach to define
the elements of the development process (see Figure 2.1). Thereby, method
engineers incl. development leaders and quality assurance leaders, should
first define the software engineering concepts they want to realize. Then

17

18 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING

lTools

Process

Artifacts

SE ConceptsLanguages

Figure 2.1: Step-by-step definition of a development method [ESS08]

they should select languages for describing these concepts.
The third step consists of organizing the concepts and their specification

in the selected languages in development artifacts (e.g. design documents)
and defining the relations between the development artifacts. In the next
step, the processes are defined during which the development artifacts are
produced. As last step the tools are selected which enable the defined pro-
cesses and support the production of the development artifacts.

2.2 Model-based Software Development

In this section, we will briefly explain the concepts and techniques of model-
based software development (MBSD). Figure 2.2 illustrates an exemplary
MBSD scenario based on the V-model by Basilli and Pezze [BP06]. Com-
pared with the abstract V-model from Figure 1.2, the design and the im-
plementation artifacts are defined in this figure more concretely. During the
design phase, the initial requirements are stepwise refined into system spec-
ifications, subsystem specifications and to component specifications. The

2.2. MODEL-BASED SOFTWARE DEVELOPMENT 19

Figure 2.2: Model-based software development for V-model

implementation begins with the components, which are the building blocks
of the software. The components are stepwise integrated to subsystems and
subsystems to integrated system. The implementation phase results with the
deliverable software.

MBSD aims at using models as central artifacts through the develop-
ment process, especially for specifying requirements on software during the
design phase. The purpose of using models is to handle complexity of the
software. Models allow to abstract from irrelevant details and thus to focus
on relevant aspects of software under development at a certain point of time
during the development process. The abstraction improves the communica-
tion between team members and customers. Furthermore, they are used for
documenting the customer requirements and design specifications. If models
are captured in a formal and machine readable format, these can be auto-
matically analyzed for certain quality attributes. Also program code can be
generated from models by using model transformations.

In order to benefit from models, however, they first have to be created.
In the next section, we give an overview on the state of the art modeling
languages. After that, we will introduce model transformations as a tool for
realizing the notion of MBSD to automatically translate models into other
models or into program code.

20 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING

2.2.1 Modeling

Models help us to better understand our environment by simplifying and
generalizing our experiences from daily life [Lud03]. Stachowiak states three
characteristics for models: (1) they have to map to properties of real world
objects (mapping criterion), however, (2) they should not map all of the
properties of real world objects (reduction criterion) and (3) they should
fulfill useful purposes (pragmatic criterion) [Sta73, Lud03]. While we mostly
deal with implicit mental models in our daily life, in MBSD mental models
have to be made explicit, such that they can be discussed or exchanged
within team members. If the criteria of Stachowiak are applied, models in
MBSD are used for describing the software or its environment, they focus on
certain aspects of the software while hiding other aspects, and they support
a concrete development activity.

In MBSD, models are used for describing the structure and the behavior
of software systems. Structural models describe the concepts or entities
of software and how these are related to each other, which is the architecture
of software. Behavioral models describe the functions of software, its
interaction with the human users or with other software and how software’s
states are changing depending on internal or external events.

In the literature of software engineering, many modeling languages are
addressed depending on the aspects to be modeled and on the requirements
of the application domain. Unified Modeling Language (UML) [Gro03b]
is the state of the art modeling language for software development. UML
contains many notations for behavioral and structural modeling. Figure 2.4
summarizes the UML notations for describing the behavioral and structural
aspects.

The UML notations are defined for general use. However, in a concrete
software development process, not all of the UML notations have to be used.
A subset of notations can be selected for the concrete needs of the devel-
opment process. If further language constructs or totally new notations are
needed, the extension mechanism of UML enables to extend the existing no-
tations or to define new notations based on the UML meta-modeling. This
mechanism is called UML profiles [Gro03b]. By using UML profiles, do-
main specific languages (DSL) can be defined.

2.2.2 Model Transformations

As discussed above, models are used in MBSD not only for documenting
and communicating software requirements, they are also used for automated
analysis. Thereby, certain quality properties of models can be automatically

2.2. MODEL-BASED SOFTWARE DEVELOPMENT 21

 class SE Concepts

Entities

Structure

Architecture

System model

Interactions

Behav iorFunctions

States

Figure 2.3: Design concepts in Model-based software development

Structure Behavior

i i A hi i I i SEntities Architecture Functions Interactions States

Class
diagrams

Package
diagrams

Activity diagrams State Charts

Object
diagrams

Distribution
diagrams

Use case
diagrams

Sequence
diagrams

Component Communication
diagrams diagrams

Composite
structure

Interaction
overview

diagrams diagrams

…

Figure 2.4: UML diagrams for modeling structure and behavior [Ros09]

22 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING

analyzed or models can be automatically manipulated or transformed into
di↵erent formats. For automation purposes, models must be defined in a
formal way. In this section, we explain how models can be automatically
transformed into other models or program code for fulfilling the notion of
MBSD to use models as the central artifacts in the development process.

In MDA [Gro03a], which is the concrete MBSD technology of OMG,
model transformations are used as an enabling technology for stepwise re-
finement of design specifications and for code generations. As shown in Figure
2.5, the MDA process starts with a manual derivation of platform indepen-
dent models (PIM) from customers requirements. PIM’s are abstract models
which focus on logical and domain-related aspects of software under devel-
opment. In the next step of MDA process, platform specific models (PSM)
are derived from PIM’s, where the elements of PIM are fed with technical
details. The derivation can be conducted either manually or automatically.
If PIM’s and PSM’s are defined formally, the derivation can automatically be
done by model-to-model (M2M) transformations. Then, the PSM’s are ex-
tended with further structural and behavioral details, such that they can be
transformed into program code. If PSM’s contain enough details, the trans-
formations again can be done automatically. Thereby, the model elements in
PSM’s are translated into code fragments by model-to-text (M2T) transfor-
mations. Even if the notion of MDA is the fully automatic code generation
from PSM’s, in practice, the models do not contain to much implementa-
tion details such that manual programming is still needed for completing the
generated program code for achieving executable software.

After having informally introduced the notion of model transformations,
we want to give some details on the theoretical background of this technique.
Figure 2.6 illustrates the concepts and the process of model transformations
based on Czarnecki and Helsen [CH06]. A model transformation addresses
three key areas which are the source models, the target models and the
transformation itself. The source and target models must conform to corre-
sponding metamodels which define their abstract syntax. The definition of
the transformation contains transformation rules which refer to the syntax
elements of the source and target metamodels. These rules specify how the
syntactical elements from the source model have to be transformed into the
syntax of the target metamodel resulting in the target model. The transfor-
mation engine then reads the source model and applies the transformations
rules. Resulting model elements are written into the target model.

In the literature, various approaches and tools for model transforma-
tions are presented both from academia and industry. Czarnecki and Helsen
[CH06] and Mens and Van Gorp [MG06] give detailed overviews on di↵er-
ent categories of approaches and tools for model transformations. Parallel

2.2. MODEL-BASED SOFTWARE DEVELOPMENT 23

Figure 2.5: Model driven architecture (MDA) by OMG

Figure 2.6: Model transformations based on [CH06]

24 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING

Figure 2.7: Model transformations in V-model

to UML and MDA, OMG also o↵ers a standard for model transformations,
which is the Query/View/Transformations (QVT) language [Gro05b]. QVT
standard describes how the transformation definition in Figure 2.6 can be
created. Concrete implementation of this standard (e.g. ATL, VIATRA, Fu-
jaba [SEG]) can be then used as transformation engine, as shown in Figure
2.6.

Figure 2.7 shows how the concepts of MDA, UML and QVT can be inte-
grated into the V-model. After initially deriving abstract system specification
using UML, these can be stepwise refined into more detailed specifications by
M2M transformations. Then, the specifications can be used for generating
parts of software code (e.g. in Java) by using M2T transformations. From
structural models in the specifications, code frames or interfaces or assertions
can be generated from structural models. Programmers can manually extend
the generated code by behavioral code which is specified in the behavioral
models. Then, the resulting code parts can be stepwise integrated to more
sophisticated software. Figure 2.8 illustrates the program code concepts in
MBSD.

During the manual coding and integration activities, programmers can
make errors which results in erroneous software. Also the automated trans-
formation steps can cause errors in software, because of several possible rea-
sons: the source models can be erroneous, or the transformation rules can
be faulty, or the implementation of the transformation engine can contain
errors. In any case, the resulting software must be tested after each imple-

2.3. TESTING IN DEVELOPMENT PROCESS 25
 class SE Concepts

Interface

Generated code Code frame

Manual code

Assertions

Software

Manual code

Figure 2.8: Implementation concepts in Model-based software development

mentation step in order to assure the correct functioning of software. In the
next sections, we will explain as first the fundamentals of software testing in
general and finally its integration into the MBSD process.

2.3 Testing in Development Process

We have already discussed, how design and implementation activities in V-
model are organized in order to cope with the complexity of software devel-
opment. Similarly, testing is also a complex task and should be considered
as a distinct process integrated into the development process. In this thesis,
we mainly consider the V-model as the development scenario, since this is
the most traditional software development process.

As already shown in Figures 2.2 and 2.7, the design and the implementa-
tion activities produce specifications and software of di↵erent characteristics.
While, the specifications have di↵erent abstraction levels, the software at each
development level are of di↵erent size and complexity. The task of tester is
to check the conformance of the implemented software to its specification on
each development level. The di↵erent development levels require appropriate
test activities and test techniques, which we explain in the next subsections.

2.3.1 Test Levels

The implementation activities first start with small size of software (e.g.
methods, classes). Then, the small size software are stepwise integrated

26 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING

Figure 2.9: V-model with test levels

into bigger size of software (e.g. subsystems, systems) giving at the end
of the development process the deliverable software. Software of di↵erent
size and complexity must be tested di↵erently. One reason for that is the
di↵erent types of defects, which may have been inserted during the manual
implementation and integration steps; an other reason is the di↵erent kinds of
interfaces of software under test, which we call as test objects. A systematic
test process must consider these di↵erences in development levels.

Figure 2.9 shows four test levels in V-model which correspond to the
development levels: unit testing, integration testing, system testing and ac-
ceptance testing. The dashed lines represent the data flow, where for each
level of test process the test object and the corresponding specification are
used as inputs. For simplicity, the test results, which are the outputs of the
test process, are not illustrated in the Figure. The solid lines represent the
control flow of the overall test process, where the testing activities start with
the unit testing and ends with acceptance testing.

As next, we will characterize these test levels based on Spillner and Linz
[AS05]. Thereby, we will address the following aspects for each test level:
test object, test environment, test target, defect type, test strategy.

Unit Testing

Unit testing is the most low-level testing activity which is mostly conducted
by developers. That is why unit testing is sometimes called as development

2.3. TESTING IN DEVELOPMENT PROCESS 27

testing [MH09]. Test objects are software components, classes in components
and their methods. Unit testing aims at validating the correct implementa-
tion of components with respect to the component specification. Thereby the
functional correctness of components is checked by input/output behavior of
the class methods. The test environment is very similar to the programming
environment, where a test driver calls the public interfaces of the components
under test. Typical types of defects for components are faulty or missing pro-
gram code. Besides functional correctness, also non-functional properties of
components are in focus, e.g. robustness of components in case of invalid in-
puts (negative testing) or their e�ciency. If errors are detected, components
must be debugged, the errors have to be corrected and the components must
be re-tested.

Integration Testing

After single components are tested and corrected, the components can be
integrated to subsystems. Thereby, not only the self developed components
can be integrated, but also third-party components ca be a part of the sub-
system. The resulting subsystem constitute a self-contained domain-relevant
functionality. The test target in integration testing is to validate the cor-
rect interaction of the integrated components to realize the intended func-
tionality. Defect types are incompatible interfaces between the integrated
components, that is, missing or erroneous interface parameters, inconsistent
interpretation of interface data. In addition to these functional errors, also
non-functional errors can occur, e.g. timing problems between components,
if caller components and callee components cannot be synchronize the data
transfer. The test environment is still low-level as in unit testing, i.e. com-
ponent interfaces can be invoked by the test driver. An important challenge
in integration testing is to define an order of testing activities, in which the
components should be integrated and tested. Top-down integration requires
that caller components are used as test driver for testing the interaction of
the caller with the callee components. Thereby the callee components, which
are not implemented yet, must be simulated. In bottom-up integration the
callee components are assumed to be available. The caller components are
simulated by the test driver. Besides top-down and bottom-up strategies,
there are also some other strategies, e.g. ad-hoc integration (random order
for testing components) or big-bang integration (testing all components at
once).

28 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING

System Testing

System testing aims at testing the complete system which results from the
integration of the subsystems. Test target is to validate the fulfillment of
the customer requirements, which are specified in system specification and
which address both the functional and the non-functional needs. Therefore,
the testers require an test environment, which must be similar to the cus-
tomer’s environment as much as possible. It is a challenge for testers to
set-up an environment involving the platform software (operating system
and drivers) and the application software (o�ce software, proprietary appli-
cations, etc.) and the hardware comparable to the customer’s productive
environment. If the test environment is set-up appropriately, errors can be
found, which were not testable during the low-level test activities. For ex-
ample, inconsistencies in the system specification, or missing requirements,
or bad design-decisions can be detected after the complete system is con-
structed and executed on a realistic environment. For testing functional and
non-functional properties, various test strategies can be applied. Important
is, that the test activities involve end-user scenarios, e.g. testing use cases,
performance, user-friendliness, etc. As test interface, end-user interfaces are
used, e.g. the graphical user interface (GUI).

Acceptance Testing

Even if the developers of the software system assure the quality of software by
testing it before the delivery, the customer also wants to test the system by
himself to make sure that the requirements are fulfilled. This activity is called
as acceptance testing. The main target thereby is to check the contractual
issues for the complete system. Important for acceptance testing is, that it
should be conducted in the productive environment by end-users, which is
also the main di↵erence to the system testing. Otherwise the test cases can be
similar to the system testing. Defect types relevant for acceptance testing are
missing requirements, unexpected influences of other software or hardware
components in the productive environment, which could not be simulated
during system testing. There are di↵erent strategies for acceptance testing,
e.g. alpha-tests, which involve both the developers and the end-users, and
beta-tests, which is conducted by the end-users alone.

2.3.2 Test Activities

In the last section, we have characterized the four test levels in V-model.
Even if these test levels di↵er in many aspects, like defect types or test en-

2.3. TESTING IN DEVELOPMENT PROCESS 29

Figure 2.10: Fundamental test process by [ISTQB]

vironment, they involve similar activities. The International Software Test-
ing Qualifications Board (ISTQB) has defined the fundamental test process
(FTP) [ISTQB] which proposes a district and unified process for testing,
which should be applied for each test level [Win09]. As illustrated in Figure
2.10, FTP contains the following activities [MBE+07]:

• Planning and controlling: Test planning aims at defining the test objects
(i.e. software under test) and test targets of the particular test level
and at planning the activities for meeting these targets. Also the exit
criteria for testing phase, which refine the test targets, are decided in
this phase. Controlling aims at a continuous monitoring of the test
activities and checking whether testing activities process as planned. If
not changes in the test plans have to be made.

• Analysis and design: During test analysis the specification documents
are identified which are relevant for test targets. These documents
serve as test basis for test design. From the test basis a set of logical
test cases are derived by using some selection criteria resulting in a test
suite. The logical test cases test cases aim at defining the test relevant
scenarios from an abstract point of view.

• Implementation and execution: In this phase the logical test cases are
concretized with concrete test data, resulting in concrete test cases.

30 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING

Then, concrete test cases are enhanced with technical details such that
they can be executed. As we aim at automated test execution, we speak
of test scripts at this stage, which are executable test cases. For test
execution, testers set up a test environment involving the test objects
and further software and hardware used by the test objects. If the setup
of the test environment is not possible, this will be simulated. After test
execution test results are verified with respect to the expected results.

• Evaluation and reporting: The fulfillment of the exit criteria is checked
in this phase. If these criteria are not fulfilled, new test cases have to
be defined. Test reporting aims at documenting the test results and
the fulfillment of the exit criteria.

• Closure: Test closure is about collecting experiences, best practices,
lessons learned from the completed test process and to consolidate these
for future tests.

Testers face many challenges during the above mentioned activities. Main
challenges in testing are hidden in test selection and the test execution. Be-
cause these activities are mostly conducted manually, they are ine�cient and
error-prone. Manual activity can also lead to subjective decisions of testers
which makes the test process unsystematic and not replicable. As next, we
want to focus on the test activities “Analysis and Design” and “Implemen-
tation and execution” which involve these challenges.

Analysis and Design

The aim of testing is to validate the correct implementation of the software
with respect to its specification. For doing this, testers think of exemplary
usage scenarios based on the specification. Thereby, depending on the test
level, testers handle di↵erent test objects, which emerge to di↵erent the de-
velopment levels. Therefore, it is an important task for the testers during
“analysis and design” to identify the test objects and the corresponding parts
in the specification. This specification and all other documents related for
testing the software are called test basis. From the test basis, a set of test
cases (test suite) is derived. Figure 2.11 illustrates the concepts in analysis
and design and their relations.

In traditional testing, testers define test cases based on their domain
knowledge and experience. However, this way of defining test cases is not
systematic and not comprehensible by other team members. In order to
achieve a systematic and comprehensible test process, the test suite should

2.3. TESTING IN DEVELOPMENT PROCESS 31
 class Domain Model

Preamble BodyTest selection
criteria

Test caseTest suite Observ ationTest basis

Figure 2.11: Testing concepts and abstract test case

 class Domain Model

Preamble BodyTest selection y
criteria

Test caseTest suite Observ ationTest basis

class Domain Modelclass Domain Model

Test data Preamble BodyTest selection
criteria

Test caseTest suite Observ ationTest basis

Test script

Figure 2.12: Concrete test case and test script

be selected from the test basis by using some predefined test selection crite-
ria. Thereby, the selection criteria can base on some coverage metrics or on
prioritization of requirements. A test suite contains a set of test cases. At
this stage of test process, test cases describe the test scenarios from a logical
point of view and do not concrete test data. However, they have to address
which activities have to be conducted in order to prepare the test execution
(preamble), the execution of the test objects itself (body) and the activities
to decide on the correctness of the test results (observation) [ISO94].

Implementation and Execution

After the logical test cases are derived from the test basis, during “imple-
mentation and execution” these are concretized with concrete test data and

32 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING

technical details for being executed (see Figure 2.12). The resulting concrete
test cases contain di↵erent combinations of test data. In general, it is not
possible to test all combinations of test data for a logical test case. The
reason for that is the (almost) infinite number of possible combinations of
data, if the test objects deal with usual data types, e.g. integer, float or
strings. Thus, testers have to select a subset of the all possible test data. For
doing this, testers need a systematic way how to go through the specification
and derive exemplary data combinations. In the literature, many techniques
are proposed for test data selection. Some of these techniques are defined in
[ISTQB] as follows:

• Equivalence partitioning: A design technique in which the test data
space is divided into partitions with the assumption, that the test cases
in a partition will result in the same or similar behavior of the test
object. Thus, selecting a representative from a partition will be enough
for covering the behavior under test. Testers are done, if from each
partition at least one representative is selected and executed.

• Boundary value analysis: A test design technique which uses the bound-
ary values of equivalence partitions as test input parameters. This tech-
nique is motivated by the assumption that test input parameters in the
near of the edges (minimum and maximum values) of the equivalence
partitions are likely to detect errors in software.

• Random testing: A test design technique where test data are selected
by using a random generation algorithm.

• Statistical testing: A test design technique in which a model of the
statistical distribution of the test data is used to select representatives.

After having concretized the test cases with concrete test data, testers
execute them on the test object. During the test execution, the responses of
the test object have to be analyzed for conformance to the expected behav-
ior as defined in the specification. Similar to the test case selection during
“analysis and design”, also the execution of test cases and the evaluation of
test results in this stage of test process are tedious and error-prone tasks if
they are manually conducted. Therefore, these test activities are tried to be
conducted automatically.

For executing test cases automatically, they have to be translated into a
computable format, which we call test scripts (cf. Figure 2.12). Test scripts
are computer programs which implement the test scenarios described by test
cases. Thus, they inherit the elements of a test case, which are the preamble,

2.3. TESTING IN DEVELOPMENT PROCESS 33

body, observation and test data. The automation of test execution using
test scripts makes the test process e�cient, precise and repeatable. However,
similar to software development, also the development of test scripts must be
conducted carefully and systematically. The next section gives an overview
on test automation techniques and its challenges.

2.3.3 Test Automation Techniques

The activities defined by the fundamental test process can be very expen-
sive and error-prone if they are manually done. Especially the core activities
“analysis and design” and “implementation and execution” contain the most
tedious work for testers. During “analysis and design”, testers manually ana-
lyze the test basis and design the logical test cases. During “implementation
and execution”, they manually select test input parameters, execute the test
cases and evaluate the test results. Each of these individual tasks require cre-
ativity and concentration of testers. In order to reduce the error-proneness
and to improve the e�ciency of these tasks, test automation tools are used.

In classical test automation, the focus lies on the automated execution of
test scenarios using test scripts, which are the implementation of test cases.
The automatic execution of test scripts makes testing faster, more precise
and repeatable. Test scripts are executed by test drivers (i.e. test tools),
which are software able to interpret and execute the test logic implemented
in the test scripts. Depending on the test level and the characteristics of
test object, test drivers can invoke the operations of test objects using their
interfaces (cf. Figure 2.8).

Script-based Test Automation

In the literature of software test automation, various test tools are proposed
for di↵erent test levels. For unit testing, the JUnit was developed by Gamma
and Beck [EG14], which is a programing environment for testers. Test scripts
are programmed as Java classes and have standardized interfaces for prepar-
ing and executing the test cases. Test cases can be assigned to hierarchical
test suites, which constitute complex test scenarios. The results after execut-
ing the test scripts and the test suites are collected and shown to the testers
textually or graphically. Even if the repeatable test scripts improve the e�-
ciency of test execution, script-based test automation requires the test
scripts to be implemented manually, which is a costly task. Additionally,
the correctness of the manually implemented test scripts has to be assured,
which again increases the costs of the test automation.

34 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING

Capture/Replay Testing

As an alternative to the script-based test automation, capture/replay test-

ing was introduced. In capture/replay (C/R) testing, the test scripts are not
implemented manually, instead they are automatically recorded (or captured)
by the recording engine during the interactions of the testers or users with the
test object. The recorded test scripts can be then executed repeatedly (re-
play). Typically, capture/replay tools are applied on higher test levels (e.g.
system testing or acceptance testing), where the test scripts are recorded on
the graphical user interface (GUI) of the test object. Thereby, the recorded
test scripts contain sequences of GUI interactions of the user including the
test inputs used during these interactions. For the replay of the test scripts,
the test inputs can be parameterized and bound to data sources in order to
use di↵erent test data for each test iteration. This helps to simulate di↵erent
test scenarios and to increase the test coverage. Besides of its advantages at
creating the test script, capture/replay testing also has some disadvantages,
i.e. the recorded test scripts must be parametrized and maintained. Depend-
ing on the techniques applied during the capturing, the recorded test script
can be useless if changes on the GUI are made. That is, test scripts captured
by C/R tools are not flexible and not maintainable.

Keyword-driven Testing

As an answer to the disadvantages of capture/replay testing, keyword-

driven testing was introduced, which proposes to define the test cases
on a higher abstraction level, such that they do not contain any technical
details. The technical details are handled during the test execution by an
adapter, which translates the abstract definitions of the test steps into spe-
cific invocations on test object’s interface. In this technique, the abstract
test logic is separated from the technical test execution, which makes the
test scripts more maintainable and flexible.

Summary

So far, we have seen some test automation techniques which handle the prob-
lems of manual testing for creating, executing and maintaining test scripts.
However, the definition of the test cases is in these techniques ad-hoc and not
systematic. They are not explicitly linked to the test basis. Thus, a coverage
measurement on the test basis during test execution is not directly possible.
However, in order to be able to control the test process and to decide on test
exit, systematic and coverage-oriented testing is important.

2.4. MODEL-BASED TESTING 35

Another weakness of the above mentioned test automation techniques
is the missing test oracle. Test oracle is “a source to determine expected
results to compare with the actual result of the software under test” [MH09].
In each of the presented automation techniques, the expected results have to
be manually integrated into the test scripts or the actual test results have
to be manually checked after the test execution. Both of these approaches
increase the costs of the test automation.

The flaws of the above mentioned test automation techniques show the
need for a for a more systematic way of test automation. In the next sec-
tion we will introduce model-based testing and show its role in model-based
software development (MBSD) which introduced in section 2.2.

2.4 Model-based Testing

There are various definitions for model-based testing (MBT) in the litera-
ture which di↵er in their focus. Utting and Legeard define MBT in [UL07] as
“the automation of black-box test design”. With this definition, they set the
focus of MBT on the testing activity “analysis and design” (cf. Figure 2.10).
Heckel and Lohmann focus in [HL03] on both “analysis and design” and “im-
plementation and execution” (cf. section 2.3.2). They see the following tasks
to be solved by MBT:

1. ”the generation of test cases from models according to a
given coverage criterion,

2. the generation of a test oracle to determine the expected
results of a test,

3. the execution of tests in test environments, possibly also
generated from models.” [HL03]

Thus, models play a central role in MBT as it is also the case in MBSD
(cf. section 2.2). The so-called test models are used as test basis from which
test artifacts, like test cases, test oracles or test scripts, are generated. Figure
2.13 shows the relation of test models to other testing artifacts. Thereby, the
test selection criteria must address coverage metrics for model elements or
for possible test data.

The idea for using models for supporting testing activities is not new.
Binder stated 1999 that “testing is always model-based” [Bin99]. He claims
that testers always have an implicit mental model when they create test
cases, implement test scripts or evaluate test results. Pretschner and Philipps

36 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING

 class SE Concepts

Model-based Testing

Test scriptModel cov erage Data cov erage

Test selection
criteria

Test model Test caseTest suite

Figure 2.13: Artifacts in model-based testing

state in [PP04] that MBT makes the mental models of testers explicit. Simi-
larly, Winter compares in [Win09] traditional specification-based testing tech-
niques with model-based testing. He concludes that utilization of models in
software testing is not new, however it becomes more important at times of
MBSD.

The definitions of MBT in the literature are all agree that MBT is about
using models for supporting test activities. However, MBT approaches di↵er
in to what extent they use models. Rossner di↵erentiates in a recent article
[Ros09] between three maturity levels for MBT approaches:

• In model-oriented testing, models are used for documentation and com-
munication purposes only. The test case design and the further testing
activities, like the test execution and the evaluation of the test results
are done manually.

• Model-driven testing contains the automatic generation of test artifacts,
especially of the test scripts from models. However, the execution of the
test scripts and the evaluation of the test results are handled similar to
classical test automation. The test results are not linked to the models.

• In model-centric testing however, the models are the most central test
artifacts, which are not only used for the generation of test scripts, they

2.4. MODEL-BASED TESTING 37

Test model

Test selection
criteria

SUTTest cases

Test results

[Pretschner, A., Philips, J.: Methodological Issues in Model‐Based Testing. 2005]

Figure 2.14: General process for MBT based on [PP04]

are also fed with the informations gathered after the evaluation of test
results. Thus, during all phases of the test process, the informations
(e.g. test coverage, found error) are hold and archived by means of
models.

These definitions show that, MBT can help testers to resolve the flaws
of test automation addressed in section 2.3.3. That is, MBT makes the
test design systematic, e�cient and comprehensible and it makes the test
execution e�cient, precise and repeatable. In the rest of this section, we will
introduce the general MBT process and some MBT scenarios.

2.4.1 MBT Process

The general MBT process is illustrated by Pretschner and Philipps in [PP04]
as in Figure 2.14. First, test models are created. Then, test cases are gen-
erated from test models with respect to some test selection criteria. The
generated test cases are executed on the test object, which is the software
under test (SUT). Then the test results are evaluated with respect to the
expected behavior specified in the test models.

Being an automated technique, MBT aims at improving the test process
by making it more e�cient and more precise. Di↵erent than the classical test
automation techniques explained in section 2.3.3, MBT also aims at making
the test cases and the test scripts more flexible. The changes in the software
specification are edited directly into the test models from which then the test
cases or the test scripts are just re-generated. The test selection criteria make

38 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING

MBT Taxonomy

Figure 2.15: Taxonomy for model-based testing by [UPL06]

the test case generation more systematic, such that a navigability between the
test cases and the test models is assured. Last but not least, MBT handles
the oracle problem by embedding the specification of the SUT’s expected
behavior into the models, which is used for the evaluation of the test results.

Even if MBT can help in coping with the flaws of classical test automation,
it dissembles also some challenges: (1) creating the test models can be an
expensive and error-prone work, and (2) MBT requires additional skills of
testers for handling with models, and (3) MBT process requires tools which
integrate into the development environment.

In the literature of MBT, various approaches are proposed, which di↵er
in the languages, techniques and tools they utilize. Utting et al. created
in [UPL06] a taxonomy for characterizing the MBT approaches, which is
illustrated in Figure 2.15. They define seven dimensions regarding the MBT-
activities modeling, test generation and test execution.

Regarding the modeling, four dimensions are defined: subject, indepen-
dence, characteristics and paradigm. Subject is about what is modeled. The

2.4. MODEL-BASED TESTING 39

modeling subject can be the SUT itself, but it can also be its environment.
Schiefedecker also addresses in [Sch07] approaches which model the testware,
e.g. the test driver, the adapter etc. Independence is about the reuse of
the system models, which are created by developers during design phase, as
test models. The more testers create their own separate models, the more
independent are these two models. Pretschner and Philipps discuss in [PP04]
the importance of independence for fault detecting capability of MBT. Char-
acteristics describes the properties of the models, e.g. timed models, deter-
ministic models or discrete models. These characteristics mainly depend on
the application domain, e.g. in the automotive domain, timed and continu-
ous models are required. Paradigm is about the modeling notation used for
creating the models, e.g. pre/post-based or transition-based notation.

The dimensions for the activity test generation are test selection criteria
and technology. Test selection criteria addresses some techniques for spec-
ifying which elements of the test models and which test data are relevant
for the test case generation. These techniques are mostly adopted from the
classical black-box and white-box test selection techniques mentioned in the
Section 2.3.2. The technology dimension is about how test cases are tech-
nically generated. The tools and the algorithms used there depend on the
notation and the characteristics of the test models.

The dimension on/o✏ine for the test execution is about when the test
cases are generated. They can be either generated prior to or during the test
execution. In the later case the informations gathered from the interim test
results can be used for generating new test cases.

In the next sections, we want to explain the dimensions “independence”
and “paradigm” in detail, because these dimensions are the most important
characterizing aspects for MBT approaches.

2.4.2 Di↵erent Approaches

As explained in the MBT taxonomy above, the relation between the system
models and test models plays an important role in MBT. Figure 2.16 shows
the structural dependencies between the artifacts in the MBSD process (cf.
Figures 2.3 and 2.8). Structurally, test models can be similar to system
models, such that they entail also behavioral and structural parts. However,
while system models are used as a specification for the software under devel-
opment, test models are used as a specification for the testing artifacts. By
selecting exemplary scenarios from the test model and enriching them with
test data, realistic application situations for the SUT can be established.

Even if system models and test models can be structurally similar, con-
cerning the contents, they can (or should) be very di↵erent. The more testers

40 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING
 class SE Concepts - MBT artifacts

Model-based Testing

Test selection
criteria

Test data

Test model Test caseTest suite

ImplementationModel-based Design

Generated codeStructure validates

Manual code

System model

Behav ior

Software
specifies

Figure 2.16: The relation between design, implementation and testing arti-
facts

reuse developers models for testing, the lower are their chance to find errors
in the SUT. The reason for that is the fact that, developers models are used
as a source for the implementation of the SUT. If there are errors in the de-
velopers models, in case of a high reuse, these will be also existent in the test
models. Thus, the errors will be hidden from the testers. The more testers
create their own separate models, the more independent are testers from the
developers. Also Pretschner and Philipps discuss in [PP04] the importance of
independence of test models for a better fault detecting capability of MBT.
They di↵erentiate between four approaches:

1. common model,

2. automatic model extraction from code,

3. manual modeling and

4. separate models.

Common model approach handles the development scenario, where de-
velopers and testers use the same models for their activities. In the second

2.4. MODEL-BASED TESTING 41

approach, models are extracted from the SUT, i.e. from SUT’s code or from
its execution traces, by using re-engineering techniques. For the first two
approaches, the authors see high dependency between the developers models
and test models. The third approach is about creating the test models manu-
ally by looking at the developers models and the initial software requirements.
Finally, the fourth approach creates test models totally separately from the
developers activities. Thus, the last two approaches enable an independent
development of test models, which increases the chances to detect errors in
the SUT.

In addition to the four approaches in [PP04], we have identified in [BG10]
two further approaches in the literature. The first one extracts test models
from already existing test cases. The second one proposes using model trans-
formations for creating test models from other test models or from developers
models. In [BG10], we have also discussed the e↵orts needed by each of the
totally six approaches.

In the rest of this section, we will give some details on the common
model and the separate model. We will discuss the pros and cons for these
approaches. Then, we will show which notations are used for creating the
test models.

Common Model

In the common model scenario, a single model is used for the development
of the SUT and for test case generation as shown in Figure 2.17. The model
is created by developers according to the customer requirements.

As this model can be used by the testers and the developers, no additional
e↵ort for test modeling is needed. This scenario has a high automation level,
because the code and test cases can be automatically generated from a single
model.

However, this scenario induce high dependency between the SUT and the
test cases. Thus requirement-related errors cannot be found by using this
scenario, because the source for the SUT and the test cases are the same.
However, the manual evaluation of test results can detect errors in code
generators and in the assumptions on the environment specified in the test
models.

Separate Models

In the separate model scenario, both testers and the developers create their
own models as shown in Figure 2.18. The test model in this scenario is
only used for automatic test case generation. The generated test cases can

42 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING

Common model

Requirements

Model

Test selection
SUT

criteria
SUTTest cases

Test results

[Pretschner, A., Philips, J.: Methodological Issues in Model‐Based Testing. 2005]Effort comparison for MBT scenariosFigure 2.17: Common model based on [PP04]

be executed manually or automatically. As the needed redundancy between
both models is given by this separation, the test model can be used as a test
oracle. In this case, the test evaluation can be fully automated.

However, in order to profit from the advantages of this scenario, both
models have to be manually created, which results in high e↵orts. An im-
portant factor is the need for high modeling skills of the test team, because
they have to handle the modeling by their owns.

On the other side the overall e�ciency is high, because the test case
generation and test evaluation step can be better automated. Moreover,
the separate modeling activity enables early start of testing activities thus
reducing the dependency between the test team and the development team.

2.4.3 Di↵erent Paradigms

Having discussed two di↵erent approaches for using models, in this section we
want to give an overview on the di↵erent modeling paradigms and notations
which can be used for creating test models. The taxonomy of MBT in Figure
2.15 shows seven paradigms for modeling notations which are used in the lit-
erature of MBT ([vL00] as cited in [UPL06] and [UL07]): Pre/post-based (or
state-based), transition-based, history-based, functional, operational, statis-

2.4. MODEL-BASED TESTING 43

Separate models

Requirements Specification

Test model

Test selection
SUT

criteria
SUTTest cases

Test results

[Pretschner, A., Philips, J.: Methodological Issues in Model‐Based Testing. 2005]
Effort comparison for MBT scenariosFigure 2.18: Separate model based on [PP04]

tical, data-flow-based.
For determining the most suitable paradigm for a project, the project

context should be analyzed. Many factors play a role in this decision. First,
the MBT approach as explained in Section 2.4.2 must be considered. If
developers’ models are to be re-used for testing purposes, testers should be
familiar with the developers’ notations. This has the advantage that existing
know-how and tools in a development team can also be re-used. However,
if separate test models are to be created by testers, also other modeling
notations can be considered. In choosing a modeling notation, some general
qualities of the test models should be considered. Lindland et al. di↵erentiate
in [LO94] as cited in [ECFGP10] between three types of model qualities:

• Syntactic quality indicates to which extent the model satisfies the rules
of the modeling language. Syntactic errors and violations of the rules
reduce the syntactic quality.

• Semantic quality points out the degree to which the model represents
the problem domain. The more related the model and the problem
domain, the better the semantic quality.

• Pragmatic quality represents the degree to which the model is correctly
interpreted by its users. The less misunderstanding, the better the

44 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING

pragmatic quality.

Aiming at the semantic quality of test models, the characteristics of the
SUT must be considered for choosing a modeling notation. In [UL07], pri-
marily two types of systems are addressed: control oriented systems and
data-oriented systems. In control-oriented systems, the behavior description
focuses on which operations are activated or invoked depending on the cur-
rent state of the system or on the external or internal events. In data-oriented
systems, the behavior is defined by the way how system’s state, which com-
prises variables, objects and set of those, is modified by the operations. Thus,
for specifying control-oriented systems, one should focus on the reactions of
the system on the current state or on the events, whereas for specifying data-
oriented systems, the focus lies on the changes in system’s state. Of course,
many systems have both of these characteristics and it is not always possible
to assign a system to only one of these categories. However, for abstraction
purposes in testing, the most important aspects have to be identified and
focused during particular testing activities.

As next, we will explain which modeling paradigms are suitable for mod-
eling control-oriented and data-oriented systems.

Transition-based Paradigm

Utting and Legeard state that the transition-based paradigm o↵ers the most
suitable notations for modeling control-oriented systems. Transition-based
modeling is the most traditional technique used in software testing [Cho78,
FvBK+91, Pet01]. These approaches use finite state machines (FSM) as the
modeling notation for test models. Thereby, the system states are symbol-
ically modeled as nodes of FSM and the state transitions are modeled as
edges. The transitions between the states are triggered by operations, which
are modeled as labels at the edges.

In MBT with FSM’s, test cases are represented by sequences of oper-
ations which trigger the state transitions. For selecting test cases, various
selection criteria can be used as shown in the taxonomy in Figure 2.15. For
example, the taxonomy defines the structural model coverage criterion, which
exploits the structural elements of the model, such as the nodes and edges of
a transition-based test model [UPL06]. Using this criterion, one can select
test cases which cover all of the edges or nodes of the test model. In the first
case, we speak of edge coverage (or transition coverage), in the later case we
speak of node coverage (or state coverage). During the test execution, the
operations in the test case are executed on the SUT, and the executability
of the operations and the correct state transitions are checked.

2.4. MODEL-BASED TESTING 45

Pre/Post-based Paradigm

For data-oriented systems, the pre/post-based paradigm enables modeling
the changes in the system’s state [UL07]. Thereby, the operations of the SUT
are described by means of the state changes they cause. The state change is
specified by the di↵erence between the state properties before (preconditions)
and after (postconditions) the execution of the operations. This paradigm is
also widely used in MBT [CL05, BKM02, HM05].

Pre/post-based MBT approaches generate test inputs from the precon-
ditions and check the fulfillment of the postconditions after executing the
operation under test with the generated test inputs. For selecting the test
inputs, data-coverage criterion can be applied which systematically cover the
value ranges of pre- and the postconditions. Data-coverage criterion selects
concrete values from a number of possible input data by using the bound-
ary analysis or equivalence classes (cf. section 2.3.2). One of the challenges
in pre/post-based approaches is that they mostly use very low-level model-
ing notations, e.g. OCL, JML, Spec# [CL05, BKM02]. Thus, they require
programming skills by testers for creating test models.

In the next chapter, we will focus in detail on the pre/post-based modeling
paradigm and discuss the existing approaches and motivate the need for a
novel UML-based MBT approach.

46 CHAPTER 2. FUNDAMENTALS OF MODEL-BASED TESTING

Chapter 3

Contract-based Testing

In the last chapter, we have addressed the foundations and the related work
for model-based testing (MBT) in general. Due to the taxonomy of MBT,
we have explained the di↵erent approaches and the modeling paradigms in
MBT. As one of the modeling paradigms, we have shortly characterized the
pre/post-based paradigm for modeling data-oriented systems and addressed
some of its challenges. In this chapter, we give more details on the pre/post-
based paradigm for MBT and discuss the pros and cons of the existing ap-
proaches, which we group under the term contract-based testing. Finally, we
summarize the shortcomings of existing approaches, which motivated us to
research on contract-based testing using Visual Contracts and its integration
into the model-driven software development process.

3.1 Characteristics

Contract-based testing (CBT) addresses testing approaches which use be-
havioral contracts for testing activities. In the taxonomy of MBT [UPL06],
CBT can be assigned to the pre/post modeling paradigm, as contracts are
represented by pre- and postconditions. In this thesis we will use the terms
contracts and pre/postconditions as synonyms.

Ciupa defines CBT in [Ciu08] as “the automatically testing e↵ort of con-
tracted object-oriented software, which is software built according to the
principles of Design by Contract (DbC) by Meyer” [Mey92]. Thereby, con-
tracts are mechanisms for specifying conditions for an operation (callee) that
must be fulfilled by any client (caller) upon calling the operation (precondi-
tions) and conditions that must be fulfilled by the operation after it has been
executed (postconditions). Contracts also specify class invariants, which are
conditions on the states of the class instances, which must be fulfilled during

47

48 CHAPTER 3. CONTRACT-BASED TESTING

the execution of class operations at all observable states [LBR06].
Ciupa states that CBT enables automated testing that uses operation’s

preconditions for constraining test inputs and postconditions and invariants
as automated oracles [Ciu08].

Collet et al. state in [CDRT04] that contracts make testing very easy
to conduct because once the requirements on the callee and the caller have
been specified in terms of contracts, testing is equivalent to invoke the callee
with contracts activated. They also describe how reasons of detected failures
should be investigated. These can be either remain in the erroneous contract
specification, or in the faulty implementation of the callee which violates the
postcondition, or the caller is not conforming to the preconditions.

In summary, CBT involves the activities creating contracts, generating
test inputs, invoking the software under test and analyzing the test results.
In the following subsections, we will group these activities in two phases,
which are the modeling phase and the testing phase.

3.1.1 Reference Model for Contract Modeling

Figure 3.1 shows a generic structure of a contract for a class operation. A
class operation comprises software functionality which can be invoked over
its interface by using some input parameters. Depending on the size of soft-
ware under consideration, an operation can be a simple class method or a
more complex functionality, e.g. a web service or a software feature exe-
cutable on the graphical user interface. After the execution of the operation,
it returns output parameters. The contract of the operation includes a pre-
condition, a postcondition an an invariant as described by Meyer [Mey92].
The precondition and the postcondition constrain the input parameters and
the output parameters respectively, i.e. the input parameters must fulfill the
precondition and output parameters must fulfill the postcondition.

Models created using contracts represent “a system as a collection of vari-
ables, which represent a snapshot of the internal state of the system, plus
some operations that modify those variables. Rather than defining the oper-
ations using code as with programming languages, each operation is usually
defined by a precondition and a postcondition” [UPL06]. Thus, contracts
can be used for defining the behavior of software functions. Thereby, the
contracts can serve as a specification for the programmers or for testers.

For using contracts for testing, Utting and Legeard propose a reference
process for modeling contracts [UL07]. The reference model contains the
following four steps as given in [UL07]:

1. Choose a high-level test objective.

3.1. CHARACTERISTICS 49

DbC Implementation

Behavioral model
Contract

Assertion
Software

Classspecifies

Condition Parameter Interface

*

specifies

P diti P t diti I i t

*

constrains

Precondition Postcondition Invariant

Figure 3.1: Structure of a contract for an operation

2. Design the signatures of the operations in the model.

3. Design the state variables of the model and choose their types.

4. Write the preconditions and postconditions of each operation.

Utting and Legeard point to the importance of how to choose a good level
of abstraction for pre/post notations. They state that the goal of the contract
modeling is to have just enough detail in the model to be able to generate
test inputs and check the correctness of outputs while avoiding unnecessary
detail that would make the model larger and more complex [UL07]. The
authors mainly address contracts for low level software functions, like class
methods. However, this process can also be applied to high level software
functions if a suitable abstraction can be found.

3.1.2 Reference Model for Testing with Contracts

Utting and Legeard state in [UL07] that “pre/post notations allow you to
develop behavior models that are good for generating functional test cases.
The precondition of an operation specifies when and how the environment can
call that operation. The postcondition describes how the operation changes
the state of the model, which is an abstraction of how it changes the internal
state of the SUT”. Thus, preconditions can be used for generating test
inputs and postconditions can be used as test oracles, which show whether
the outputs of the operation are as expected [UL07] .

50 CHAPTER 3. CONTRACT-BASED TESTING

Figure 3.2: Test case in contract-based testing

Figure 3.2 shows the testing concepts related to the DbC concepts from
Figure 3.1. A test case comprises test inputs which are typed over the input
parameters of the operation under test and which conform to the precondi-
tion. Test inputs define the collection of input parameters, which are needed
for the invocation of the operation under test. Test script defines, how the
test case is applied on the operation under test, i.e. how the operation under
test is invoked using the test case.

Having a test definition, which is specific for the contract-based testing,
we can define as next the contract-based test process. The following steps
are required for generating test cases from contracts and to execute them:

1. Define a test selection criteria

2. Generate test inputs from precondition

3. Invoke the operation with the test inputs

4. Check the fulfillment of the postconditions

The first step is about specifying how to select test cases from the con-
tract. For that well-known selection techniques from testing literature are
used, e.g data coverage criteria [AS05]. Secondly, using the test selection cri-
teria, test inputs are generated from the precondition. The operation under
test is invoked using the test inputs and the output parameters are checked
for conformance with the postconditions. Thus postcondition of the contract
is used as test oracle. In case of inconsistencies, the error can be in the con-
tract itself or in operations’s implementation, or something has gone false
during the test execution.

3.2. APPROACHES IN THE LITERATURE 51

3.2 Approaches in the Literature

Testing using contracts is studied extensively in the literature. In this section,
we will give an overview on the approaches in the literature and explain how
these approaches uses contract specifications for testing. We will also discuss
their strengths and shortcomings. Thereby, we will characterize and compare
the approaches using the following dimensions: general characteristics (based
on [VB05]), MBT-specific characteristics (based on [DNT09]), CBT-specific
characteristics (based on own literature survey).

General characteristics

Vegas and Basili have defined in [VB05] a characterization schema for se-
lecting testing techniques. We have adopted some of their characterization
attributes for CBT and grouped them logically as shown below.

• People

– Knowledge

– Experience

• Process

– Application domain

– Development method

– Relation to a programming language

– Test level

– Test object

• Quality

– Testing type

– Test objective

– Defect type (fault model)

– Test selection criteria

– Number of generated cases

– E↵ectiveness

– Completeness

– Type of evaluation

52 CHAPTER 3. CONTRACT-BASED TESTING

The group people is about the human aspect in characterizing testing
techniques. Testers should have some knowledge of special techniques and
experience in certain development activities to use a technique. The group
process contains characterization attributes for testing techniques which are
related to the integration of testing into the development context. Thereby,
the application domain (e.g. embedded software, business information sys-
tems) and the development method (e.g. RUP, V-model) has a major in-
fluence on test techniques and test organization. The development method
can include di↵erent test levels (e.g. unit testing, system testing) handling
di↵erent test objects (e.g. classes, subsystems). Especially in low level tests,
the technologies used for testing can be directly related to the programming
language used for the development of test objects.

The group quality is about qualitative and quantitative characteristics of
test techniques. Test type addresses whether testing is conducted in a black-
box manner (functional) or in a white-box manner (structural). Another
characterization issue is the test objective which addresses the quality to
be tested (functional or non-functional quality). Some test techniques are
meant for detecting certain defect types (e.g. defects in control flow or data
flow). In order to find these certain defects, the testing technique should
define how a set of test cases is to be selected from the test basis (e.g. data
coverage, requirements coverage). Choosing a formal selection criteria has the
advantage that the test suite is generated in a replicable way: the number of
test cases can be predicated in early stages of the test process which improves
the cost estimation for test process. The test selection criteria influences also
the the e↵ectiveness and completeness of test process, i.e. how many defects
can be found and how much coverage on the test basis or on program code
can be achieved. For characterizing the quality of a test technique, the
experiences with this technique in former projects can help. Dias-Neto et
al. di↵erentiate in [NSV+08] between test techniques which are evaluated in
di↵erent context (e.g. simple example, industrial projects).

MBT-specific characteristics

In addition to the general characteristics listed above, we will consider also
MBT-specific characteristics for explaining and comparing the existing test
techniques related to our approach. For that, we adapt the characterization
schema of Dias-Neto et al. given in [DNT09] where they conducted a detailed
survey on more than 400 publications. The schema of Dias-Neto bases on the
schema of Vegas and Basili, that is why there are some overlapping between
the characterization attributes of both approaches. We have grouped the
characteristics of Dias-Neto again in four logical groups as shown below:

3.2. APPROACHES IN THE LITERATURE 53

• Artifact

– Notation

– Inputs

– Outputs

• Redundancy

– Shared models

– MBT scenario

• Automation

– Tool support

– Test case generation (logical)

– Test case generation (executable)

– Test execution

– Test evaluation (oracle)

• Tool

– Environment

– External tools

– Technology used

– Extensible

As we have seen in section 1.3, main artifacts in MBT are test models.
MBT-techniques di↵er in the notation (e.g. UML, OCL) they use to edit test
models. Di↵erent techniques also require various input artifacts (e.g. behav-
ioral models, environment models, test data) and produces various outputs
(logical test cases, executable test scripts). In di↵erent MBT techniques, dif-
ferent scenarios (common models, separate models) are realized, where test
models can either be shared between developers and testers, or testers create
their own models. MBT techniques also di↵er in the automated tool support.
Di↵erent testing activities as explained in section 2.3 can be supported by
tools. In the literature there are various tools and technologies used in MBT.
Tool characterization is important if MBT techniques are to be integrated in
existing tool landscape.

54 CHAPTER 3. CONTRACT-BASED TESTING

CBT-specific characteristics

In addition to the general and MBT-specific characteristics, CBT approaches
exhibit other characteristics regarding the usage of contracts and the struc-
ture of test cases. The quantitative relation (1:1, 1:many, many:1) of con-
tracts and software addresses how many contracts specify a test object.
Sometimes a contract can specify many test objects, e.g. in case of inheri-
tance. CBT techniques can also di↵er regarding the relation and the usage
of pre- and postcondition and invariants for testing activities. The modus
of contract addresses whether it is used as a declarative or an operative de-
scription. Depending on the characteristics of contracts, the generated test
artifacts can also di↵er. Some approaches just produce test inputs, while
some others additionally generate prestates and expected values.

• Contract

– Relation contract/software

– Relation pre/post

– Usage of invariants

– Modus

• Test case

– Input parameter computation

– Prestate computation

– Preamble computation

– Expected output computation

In the following sections we will characterize existing CBT approaches
using the characterization scheme given above. A summarizing tabular com-
parison follows in Figure 3.3. For the sake of simplicity and if applicable, we
title the sections with the name of the tools, which are implemented by these
approaches.

3.2.1 AutoTest

The first approach we want to report on is developed by Ciupa during her
dissertation [Ciu08] at the chair of Bertrand Meyer at ETH Zurich. Meyer
already addressed the role of software contracts in testing in his invited talk
at RISE 2005 [Mey05]. Ciupa developed an automatic testing approach based
on the Design by Contract for Ei↵el programs. This approach uses embedded

3.2. APPROACHES IN THE LITERATURE 55

contracts for testing classes’ routines. Thus, this approach can be assigned
to the level of unit testing. The contracts are used for two purposes by this
approach: for generating test inputs from preconditions, and for validating
test results by postconditions and invariants.

For test case generation, Ciupa di↵erentiates between a constructive way
and a brute force way. Constructive way is about generating test input ob-
jects in an natural way by using the routines of the class under test for setting
the attributes of these objects. The brute force way is about setting the ob-
jects and their attributes directly without using the natural functions of the
class under test. Ciupa applies a constructive approach for test case genera-
tion. For generating test input objects, she randomly invokes constructors of
the classes and stores the generated objects in an object pool. The attribute
values are either assigned predefined values or they are generated randomly.
The objects in the object pool can be reused for di↵erent test cases, or new
objects are generated if needed. Using an object distance function, the diver-
sification of test input objects is guaranteed, which means that the test cases
are dissimilar to each other such that more coverage can be assured by test
execution. This approach also involves a minimization step for the number
of test cases [Ciu08].

For the validation, the contracts can be seen as an executable specifica-
tion. Any failed test case can signal an error in the implementation of the
class’ routines. However, the error can also be in the contracts it selves or in
the execution environment of the class’ routines.

Their tool AutoTest, which was developed together with Andreas Leitner,
is fully functional including the test case generation, execution and evaluation
of the test results. Additionally, it has an extensible architecture, such that
other test selection strategies can be added to AutoTest.

As stated above, this approach supports unit testing activities where pro-
grammers can specify the contracts of class’ routines and use them for testing
the routines’ implementation. Creating the contracts, which are specified in
Ei↵el language, requires low level programming skills, which makes this ap-
proach not suitable for model-driven development. The constructive way for
test case generation as explained above can be good for unit testing, where
the particular behavior of a single class’ routine is examined. However, for
higher test levels, e.g. integration testing or system testing, more sophisti-
cated test generation techniques are needed. For example, the generation
of test input objects may require more computation by class’ routines and
also more interaction of classes such that useful objects can be generated for
testing.

56 CHAPTER 3. CONTRACT-BASED TESTING

Testing activity JUnit JMLUnit Korat+JMLUnit

generating test inputs +
generating test oracle + +
running tests + + +

Table 3.1: Functions of related tools to Korat (based on [Mar04])

3.2.2 Korat

The Korat tool [BKM02, Mar04, MSM+07] uses JML specifications for test
case generation for Java classes. Thus again, this approach is about unit
testing. This tool assumes that imperative predicates specifying the class in-
variants and the pre- and postconditions of the method under test are given.
It generates all non-isomorphic inputs up to a given bound from the precon-
dition. Korat analyzes attribute values which can influence the evaluation
of the precondition and only looks for alternative input values which do not
violate the precondition. Because it sets attribute values directly (rather
than building test inputs through sequences of creation procedure and rou-
tine calls), Korat must check that every generated input object fulfills its
class invariant. If this is not the case, the input is invalid and it is discarded.

In [Mar04] Marinov explains the relation of the Korat tool to JUnit and
JMLUnit (see table 3.1). JUnit is the widely used test driver which runs test
scripts programmed in Java using the JUnit library. JMLUnit additionally
can handle JUnit test scripts including JML assertions. The JML assertions
can be used as test oracles. If the assertions are not fulfilled, JMLUnit catches
the JML exceptions and reports them as failed test runs. On top of these
two tools, Korat supports the test input generation, thus enabling a full scale
test automation.

A major disadvantage of this approach is that the test inputs are only set
artificially (also called brute force generation of test inputs by [Ciu08]). Gen-
eration of test inputs in a natural way by invoking a sequence of operations
is not handled. Another disadvantage is that the invalid test inputs are just
ignored. However these test inputs could be used for robustness testing. Also
the low-level JML language and the usage of first-order logic for creating
the contracts require high skills of testers in programming and in theoretical
computer science.

3.2.3 WeSUF

Averstegge and Winter show in [AW05] how predicate testing techniques
known from white-box testing can be adapted to black-box functional test-

3.2. APPROACHES IN THE LITERATURE 57

ing. They apply predicate coverage techniques on OCL contracts for both
structural and functional testing testing for Java classes. This work is also
inspired by design-by-contract and addresses invariants, preconditions and
postconditions of Java classes for test input generation.

The authors motivate their work with the similarity between the tech-
niques for predicate coverage and for contract coverage. They apply classical
techniques known from white-box testing like branch coverage (C1), simple
condition coverage, multiple condition coverage (MC) and modified condi-
tion/decision coverage (MC/DC) techniques on contracts and exploit their
possibilities for functional testing.

For the sake of simplicity this approach only focuses on testing class op-
erations. The authors define a testing strategy with the following testing
order for operations: (1) constructors, (2) simple observers, (3) simple mod-
ifiers, (4) complex observers, (5) complex modifiers, (6) destructors. The
test inputs for the operators are divided into positive tests, which are gener-
ated in conformance with the preconditions, and into negative tests, which
are inconsistent with the preconditions. For each test input, the expected
fulfillment of the postconditions must be computed manually.

The authors have implemented a tool support called WeSUF. It has a
multi layer architecture and supports test generation for both structural and
functional testing. A specialty of this tool is that it optimizes the set of test
input data by checking the tautologies and computing a minimal set test
inputs.

3.2.4 LTG/B

Utting and Legeard propose to use the B language for contract-based testing.
Traditionally, the B language is used in B method for refinements and proofs
to generate a correct implementation. In [UL07], they use the B abstract
machine notation for model-based testing. Like the complete B method,
the B notation is used to define an abstract model of the system under test.
This model is a partial model, written just for testing purposes, rather than a
complete model of the desired system. They assume that the implementation
has been coded manually in some programming language and is likely to
contain errors. They use model-based testing tools to automatically generate
a systematic set of test cases from the model. When these tests are executed
on the implementation, they expose di↵erences between the behavior of the
implementation and the behavior of the model. Each di↵erence can address
either an error in the implementation or in the test model. This can be
the case because of an unclarity in the original informal requirements of the
system. [UL07]

58 CHAPTER 3. CONTRACT-BASED TESTING

Even if the authors find the usage of B method lightweight, it requires
low-level skills of testers to create the contracts in B language.

3.2.5 WSTVC

The most related work to the underlying dissertation is the body of work of
many researchers from the Universities of Paderborn and Leicester on Web
Service Testing using Visual Contracts (WSTVC).

The basic idea of testing with Visual Contracts was first presented by
Reiko Heckel and Marc Lohmann at the University of Paderborn in [HM05].
The authors use graph transformation rules for test case generation for test-
ing web services. Test cases are generated from the behavioral specifications
and executed using a dedicated testing interface to ensure the correct func-
tioning of the web service [HM05]. In a later work [LMH07] Lohmann, who
has developed Visual Contracts, contributes to the work presented in [HM05]
by using Visual Contracts. In this contribution (1) the authors extend and
apply domain-based testing and data-flow techniques to the case of graph
transformations, (2) they generate executable test oracles from graph trans-
formation rules and (3) they automatically test and validate web services.
However some di↵erences still exists. For example this approach misses a pre-
cise definition and implementation of finding invocation sequences for setting
the system state in a black-box system.

The most recent work related to this thesis is the dissertation of Tamim
Ahmed Khan advised by Reiko Heckel from the University of Leicester [Kha12].
He has carried forward the research on testing of web services using Visual
Contracts. Thereby Visual Contracts are used as a specification for web
service operations and thus as the test basis. Even if this work addresses
systematic test input generation from Visual Contracts, the focus lies in us-
ing them as test oracles. For that the Visual Contracts are used as a formal
executable specification for determining the expected outputs for a given test
input. Besides test oracles, this thesis also describes how Visual Contracts
can be used for dependency analysis and for regression testing.

The main di↵erence between the addressed thesis and the underlying the-
sis is that we focus more on test input generation for di↵erent test levels in
the development process. The focus of [Kha12] is the usage of Visual Con-
tracts as test oracles. We also di↵erent scenarios in creating Visual Contracts.
While [Kha12] reuses existing Visual Contracts for testing, we also describe
a scenario where Visual Contracts are created by testers separately.

3.3. TABULAR COMPARISON OF APPROACHES 59

3.3 Tabular Comparison of Approaches

In this section, we summarize the characteristics of CBT approaches ad-
dressed in last section and put them into a table. In this way the various
approaches can be compared. From the comparison, we want to identify the
problems of the existing approaches. Table 3.3 shows in the rows the charac-
teristics introduced in the beginning of this chapter and the CBT approaches
from last section in the columns.

Regarding the characteristics People, all of the approaches require high
skills from testers in programming-like activities and a very good knowledge
on using predicates for specifying software. The approaches are designed for
very di↵erent process context. However, many of them are related to OOP
(object-oriented programming). Most of the approaches are designed for low
test levels like unit testing. As a consequence, test objects are mainly classes
and their methods. Regarding the quality characteristics, the approaches
di↵er very much. Besides classical use of CBT for black-box testing, some of
the approaches also use program code additionally to the contracts for test
case generation, thus we speak of white-box testing. Most of the approaches
use well-established test selection criteria for test generation, e.g. random
testing, MC/DC. The evaluations of the approaches mostly depend on proof-
of-concept and only some of them have industrial evaluations.

Regarding the MBT-specific characteristics, many approaches use the
process model common models, where the developers models are used for
test models. This has the disadvantage that some of the specification failures
cannot be found, because the developers and testers use the same informa-
tion as basis for their activities. The notations used for creating contracts
are mainly low-level notations, e.g. Ei↵el, JML, OCL, which demands low
level skills from testers. Many of the approaches supply automated support.
However, not all of the MBT activities are supported. Especially, the gener-
ation of logical test cases is mostly not supported by the approaches. They
mostly generate directly executable test scripts. The technologies used in
tools vary from search algorithms to optimization algorithms. Most of the
tools are extensible.

Regarding the CBT-specific characteristics, in most of the approaches
there is a 1-to-1 relation between the contract and the test object. The
contracts are mostly used as declarative specification of the test object’s be-
havior. Testers generate test inputs from these contracts for invoking the test
object. However, these test inputs are artificial ones. There is no guarantee,
that using these test inputs will test realistic scenarios.

60 CHAPTER 3. CONTRACT-BASED TESTING

AutoTest Korat WeSUF MBTVC
[Ciu08] [MSM+07] [AW05] [Khan2012]

DbC First-order logic DbC

Prog. High Prog. Prog. Modeling, testing
n.A. Complex data structures

(linked data structures with
complex invariants)

Web Services Web Services

General characteristics
People Knowledge

Experience
Process Application domain

OOP OOP OOP OOP

Eiffel Java Java Java
UT UT, ST UT, ST CT, IT

Class methods Class methods Class methods Web Service
operations

WB BB, WB BB BB

Functional Functional Functional Functional

Rel. program. language
Test level

Development method

Test object

Quality Testing type

Test objective Functional Functional Functional Functional

n.A.
high statement, branch,
mutation coverage

statement, branch,
predicate coverage

?

Specification faults
(…), implementation
faults (…)

Wrong or missing or
superfluous
operators, wrong
variables

Random, object
distance

bounded non-isomorphic
inputs

C1, MC, MC/DC

Test objective

Effectiveness
Completeness

Defect type (fault model)

Test selection criteria
distance inputs
n.A. depends on the given bound

in finitization method

Eiffel JML OCL

Contracts, classes,
manual tests

Imperative predicate,
finitization

Predicates

Number of generated cases

Type of evaluation II

MBT-specific char.

III-IV III-IV

Artifact Notation

Inputs

Optimized set of test
input objects

set of non-isomoprhoc test
inputs

Optimal set of
logical values

No No Yes
Common model Common model Common model Common model

No No Yes (Yes)
Yes Yes No Yes

Yes Yes No Yes

Yes Yes Yes (manual) Yes

Outputs

Redundancy Shared models
MBT scenario

Automation Test case generation (logical)
Test case generation
(executable)
Test execution

Test evaluation (oracle) Yes Yes Yes (manual) Yes
Yes Yes Yes Yes
See
http://se.inf.ethz.ch/pe
ople/leitner/auto_test/

Java

?? Alloy analyzer for
vizualization of test inputs,
JMLUnit as test driver

SableCC for OCL
parsing, Barat for
Java parsing, DoIT
for code
instrumentation

AGG

Adaptive random Bounded exhaustive testing tautology checking Graph

Test evaluation (oracle)
Tool Tool support

Environment

External tools

Technology used Adaptive random
testing for OO,
diversification

Bounded-exhaustive testing
by constraint solving

tautology checking,
normalization of
predicates

Graph
tnasformations

Yes Yes (pure Java) No ?

1--1 1--1 1--1 1--1
Yes ("@pre"
operator)

Yes

Yes Yes Yes No

declerative declerative declerative declarative

Technology used

Extensible

CBT-specific char.
Contract Rel. contract/software

Rel. pre/post Yes ("old" operator)

Usage of invariants

Modus declerative declerative declerative declarative,
operative

Yes Yes Yes Yes
Yes Yes? Yes? Yes
No Yes? (no evidance) No (however a
No No No Yes

Modus

Test case Input parameter computation
Prestate computation
Preamble computation
Expected output computation

Figure 3.3: Tabular comparison of CBT approaches

3.4. SUMMARY 61

3.4 Summary

Our comparison shows that the current approaches for CBT have some short-
comings. First, all of them address low-level testing activities and use low-
level notations for modeling contracts, which are not conform to the lan-
guages used by testers, which makes them hard to learn. The notations
used by these approaches are very specific for their application domain and
they cannot be very well integrated into a standard UML-based develop-
ment process. In most of the approaches, testers use the same contracts as
the developers have specified for implementation purposes. These contracts
contain low redundancy for detecting errors and may miss test relevant as-
pects. Finally, the test inputs generated from the contracts are artificial test
inputs, which makes realistic test scenarios impossible.

In order to handle these shortcomings, we propose a novel contract-based
testing approach using Visual Contracts [Loh06]. Before this approach is
explained in Part II in detail, we briefly explain the language of Visual Con-
tracts in the next chapter.

62 CHAPTER 3. CONTRACT-BASED TESTING

Chapter 4

Visual Contracts

In chapter 3 we have addressed some contract-based modeling approaches and
their usage for contract-based testing. In the summary, we have seen that one
of the shortcomings of existing approaches is the usage of low level contract
notations. These notations are not conform to the languages used by testers,
which makes them hard to learn (cf. section 3.4). Another shortcoming of
these notations is that they can hardly be embedded into the UML-based
development process.

In this chapter we will introduce Visual Contracts [Loh06], a visual model-
ing technique based on the idea of Design-by-Contract [Mey92], and explain
how the shortcomings addressed above can be eliminated. Developed by
Marc Lohmann [Loh06], Visual Contracts allow functional modeling of soft-
ware by specifying pre and postconditions. The novelty of Visual Contracts
is that they are UML-based and have a formal semantics. In this chapter,
we will explain the characteristics of Visual Contracts on a simple example
and address the application areas.

4.1 Modeling with Visual Contracts

In MBSD many modeling languages are used for describing the structure
and the behavior of software. As shown in section 2.2.1, UML serves with
many notations for describing structure by means of entities and architec-
ture and for describing behavior by means of functions, interactions and
states [Ros09]. The vision of MBSD is just to deal with models for spec-
ifying software characteristics and to automatically generate program code
from models. In the past years, many techniques and tools are developed
for fulfilling this vision [KBJV06], e.g. MDA by OMG [Gro03a], DSL by
Microsoft, EMF/GEF by Eclipse community. However, all these techniques

63

64 CHAPTER 4. VISUAL CONTRACTS
 object VC - DbC

UML DbC

ContractVisual Contract
f

*

specifies

Condition

Class Diagram Collaboration
Diagramtyped over

specifies

+NPC
0..1

+NAC
0..1

+post
1

+pre
1

Precondition Postcondition Inv ariant

Figure 4.1: Visual Contracts embed DbC into UML

and tools require complete behavioral models in order to generate functional
program code. Creating complete behavioral models can be a very tedious
and error-prone work such that the e↵orts for modeling could be as much as
the e↵orts needed for manual programming.

In our research, we prefer a partial modeling technique, where we do
not model the behavior completely, instead we model the e↵ects of single
functions on the system state. For modeling we use Visual Contracts which
are developed by Lohmann [Loh06] based on the Design-by-Contract (DbC)
[Mey92] paradigm. Visual Contracts allow for modeling the requirements
(preconditions) of a software function on the system state and its changes
on the systems state (postconditions) partially. Thereby, preconditions and
postconditions are represented by object structures which are modeled by
UML Collaboration Diagrams which are typed over a UML Class Diagram
(see Figure 4.1). The pre- and postconditions may also specify object struc-
tures, which are not allowed to exist before or after the invocation of the
function. These are called negative application conditions (NAC) or neg-
ative postconditions (NPC), respectively. For simplicity, Visual Contracts
only model preconditions and the postconditions, but not the invariants as
defined by DbC. By using Visual Contracts, we extend UML by the notions
of DbC.

Figure 4.2 shows the concrete syntax of Visual Contracts. The outer
frame of a Visual Contract contains on the top the header which shows
the name of the function specified. If there are inputs and outputs of the
function, they are also specified in the header. The body of the Visual

4.1. MODELING WITH VISUAL CONTRACTS 65

FunctionName (Inputs): Outputs

Precondition PostconditionPrecondition Postcondition

NAC NPC

MBSD

derive

Figure 4.2: Concrete syntax of Visual Contracts

Contract contains two areas separated with an arrow. The left hand side
of the arrow contains the precondition and the right hand side of the arrow
contains the postcondition. While, the precondition can optionally include a
NAC, the postcondition can optionally include a NPC [Loh06].

As next, we will define the semantics of Visual Contracts by means of
a running example, which is simple enough to introduce the concepts intu-
itively. Then, the semantics of Visual Contracts will be defined formally.

4.1.1 Running Example: Online Shop

The running example is a simple online shop enabling customers to start a
shopping session, to add some products into the shopping cart and to clear
the shopping cart. Figure 4.3 represents the required functionalities of the
online shop using a UML Use Case Diagram. These functionalities shall be
triggered from a GUI of the online shop which is not described here.

During requirements analysis, a domain model is created which shows the
concepts of an online shop and their relations to each other. This step is fol-
lowed by the design of the implementation model which refines the concepts
from the domain model and maps them to an implementation model. In our
simple example we jump over the domain model step and show as next the
implementation model of the online shop.

The UML Class Diagram in Figure 4.4 shows the implementation classes
of the online shop, where we di↵erentiate between controller classes and entity
classes. Controller classes are active classes which operate on and change the
system state. The entity classes represent the real life objects in the applica-
tion and are mostly responsible for storing the process relevant information.
The functionalities of the applications are realized by controller classes by
operating on the entity classes. In Figure 4.4 the class OnlineShop is the
controller class and other classes are entity classes. The customer starts a

66 CHAPTER 4. VISUAL CONTRACTS

Customer

OnlineShop

Create cart

Add item into the
cart

Clear cart

Figure 4.3: Use Case diagram for OnlineShop

shopping session by invoking the operation cartCreate of OnlineShop which
then creates an instance of Cart class. The entity Product is an abstract class
which is concretized by classes Book or DVD. A book can have one or many
authors which are instances of class Person. A dvd can have one or many
actors also instances of Person class. After the session is started the user
can add products into the shopping cart. This functionality is implemented
by the operation cartAdd of OnlineShop, where for each added product into
the cart an instance of class CartItem is created and linked to corresponding
Cart and Product objects.

If we were the programmers of the online shop and would be asked to
implement the scenario described above, we would have the problem that
the Class Diagram above only describes the structure of the implementa-
tion classes. However, the functionality of the operations in a class are not
specified using models, they are just described textually which can lead to
misunderstandings and inconsistencies. Therefore, also the functional re-
quirements should be described in a more formal way. As we have seen so
far, UML also o↵ers notations for functional descriptions, e.g. UML State
Charts, Activity Diagrams or Sequence Diagrams (cf. section 2.2.1). As we
have discussed in chapter 2 di↵erent modeling paradigms have their strengths
and weaknesses. In our running example, we want to demonstrate how func-
tional descriptions can be made using pre/post notations, particularly using
Visual Contracts.

4.1. MODELING WITH VISUAL CONTRACTS 67

+cartAdd(in product : Product, in quantity : Integer, in cid : String) : String
+cartClear(in cid : String)
+cartCreate() : Cart

OnlineShop

Cart
+cartId : String

CartItem
+cartItemId : String
+quantity : Integer

Product
+ASIN : String
+titel : String

Book
+pages : Integer

Dvd
+length : Integer

1

-controlsC*

1

-controlsPr1..*

-cart1

-cartItem

*

-cartItem

*

-product 1

Person
+personId : String
+name : String

1 -author1..*

1

-actor 1..*

Figure 4.4: UML Class Diagram for implementation classes

4.1.2 Visual Contracts

First we demonstrate how the functionality of operation cartCreate can be
described using Visual Contracts. This operation is responsible for creating
an instance of Cart. The Visual Contract in Figure 4.5 illustrates this be-
havior using two object structures separated by an arrow (cf. Figure 4.2).
The arrow represents a transition from a state to a new state. However Vi-
sual Contracts do not aim at describing system states in full detail. They
describe just some parts of the system state which are of most interest for
the programmers. The object structure on the left hand side of the arrow
represents the conditions on the system state before the execution of the
operation to be described [Loh06]. We call this condition precondition of
the operation. The object structure on the right hand side of the arrow
represents the postcondition of the operation, respectively.

The precondition in Figure 4.5 shows a Visual Contract, where the only
precondition of the operation cartCreate is the existence of an instance
(this) of the class OnlineShop. This is a trivial case because every non-static
operation requires an instance of the owner class. The postcondition includes
additionally an instance of class Cart. The new object has an attribute
cartId with a value id. The intuitive semantics of this Visual Contract is
that during the execution of operation cartCreate, a new instance of the
class Cart including a new cartId must be created. The new value of the
attribute cartID is returned by the operation.

68 CHAPTER 4. VISUAL CONTRACTS

/this : OnlineShop

vc: cartCreate(): id

cartId = id
/c : Cart/this : OnlineShop

Figure 4.5: Visual contract for operation cartCreate

cartId = cid
/c : Cart

/this : OnlineShop

vc: cartClear(cid)

cartItemID
quantity

/ci : CartItem

cartId = cid
/c : Cart

/this : OnlineShop

*

Figure 4.6: Visual contract for operation cartClear

Next example of Visual Contract specifies the operation cartClear. In-
tuitively this operation should remove all items from the shopping cart. It
makes just sense to invoke this functionality, if a shopping cart already exists
and some items are already added into it. Figure 4.6 shows, how this scenario
can be described using Visual Contracts in a more formal way. The precon-
dition shows this object and an instance of Cart which is linked to a set
of instances of type CartItem. These objects are to be removed during the
execution of the operation. This behavior is specified by the postcondition
which looks similar to the precondition; however all instances of CartItem
are deleted.

The last example demonstrates how the operation cartAdd can be de-
scribed using Visual Contracts. This functionality has to assure that a prod-
uct selected by the user is put into the shopping cart, if it was not already in
the shopping cart. Figure 4.7 shows, how this informal functional description
can be formalized. The objects with the white background to the left of the
arrow specify that in addition to the this object, an instance of Cart and
an instance of Book or DVD, which are subclasses of Product, must exist.

The precondition also contains objects with a gray background. This part
of the precondition is called negative application condition (NAC) and
prohibits the existence of objects in the system state before the execution
of the operation cartAdd. The NAC in Figure 4.7 specifies that no instance
of CartItem should be already in the shopping cart.

4.1. MODELING WITH VISUAL CONTRACTS 69

NAC

cartId = cid
/c : Cart

/product : Product

/this : OnlineShop cartItemID = id
quantity = quantity

/ci : CartItem

cartItemID
/citemNAC : CartItem

cartId = cid
/c : Cart

/product : Product

/this : OnlineShop

cartId = cid
/c : Cart

/product : Product

vc: cartAdd(product, quantity, cid): id

Figure 4.7: Visual Contract for operation cartAdd

As shown in the postcondition, after the execution of cartAdd a new
instance of CartItem must be generated and linked to the instances of Cart
and Book or DVD.

Until now we explained how the operations can be specified using Visual
Contracts in a more formal way than just with textual descriptions. As next
we want to introduce the semantics of Visual Contracts in detail.

4.1.3 Semantics of Visual Contracts

As we have seen in the examples above, the pre- and postconditions in Vi-
sual Contracts are made up of object structures. The object structure in
the precondition describes the requirements on the system state before the
execution of a function. However this is not a complete description of the
systems state, it is a partial description, which contains the most relevant
objects. After the invocation of the specified function, the object structure
in the postcondition is required in the systems state. Thereby, the objects
which are specified both in the precondition and the postcondition must exist
in the system state after and before the invocation of the function. The ob-
jects specified only in the precondition, but not in the postcondition have to
be deleted. The objects specified not in the precondition, which are however
specified in the postcondition, have to be generated by the function.

The above description is an intuitive description of the semantics of Vi-
sual Contracts. Lohmann has also defined a formal semantics for the Visual
Contracts [Loh06] , which makes Visual Contracts to a more powerful mod-
eling language with many possibilities for analysis. Since the preconditions
and the postconditions of Visual Contracts are represented by UML Col-
laboration Diagrams, which are also graphs [Hec06], the semantics of Visual
Contracts is defined by using graph transformations [CMR+97]. Heckel states

70 CHAPTER 4. VISUAL CONTRACTS

in [Hec06] the following about the graph theoretical interpretation of UML
notations:

“These notations produce models that can be easily seen as
graphs and thus graph transformations are involved, either ex-
plicitly or behind the scenes, when specifying how these models
should be built and interpreted, and how they evolve over time
and are mapped to implementations. At the same time, graphs
provide a universally adopted data structure, as well as a model
for the topology of object-oriented, component-based and dis-
tributed systems. Computations in such systems are therefore
naturally modeled as graph transformations, too.”

Using graph transformations, the changes in the objects structure spec-
ified between preconditions and postconditions can be defined in a formal
way. In the following we give some formal definitions of graph transforma-
tions based on [Hec06, BH02, Loh06, Che06, Han08] which will help to define
the semantics of Visual Contracts in the next section.

A Visual Contract contains two object structures which can formally be
defined by a graph.

Definition 1 (Directed graph) A directed graph is a tupel
G = hG

V

, G
E

, src
G

, tar
G

i where G
V

is a set of vertices and G
E

is a set of
edges. src

G

: G
V

! G
E

and tar
G

: G
V

! G
E

are relations which assign
to each edge a source and a target vertex [Hec06].

Since the objects in Visual Contracts are typed over a Class Diagram
we need to di↵erentiate between type graph (TG) and instance graph. TG
specifies the concepts (type) and the instance graph specifies the concrete
occurrences of these concepts. This relation is similar to the relations between
XML schema and XML documents, data bases and data base schema [Hec06].

In addition to vertices and edges a graph may also contain attributes
a : T of type T to store values a = v. Based on these terms, we can define
the relation between an object o : C of type class C in the following manner
[Hec06]:

• for each vertex o : C in the instance graph G there must be a vertex
type C in the type graph TG

• for each edge between objects o1 : C1 and o2 : C2 there must be a
corresponding edge type in TG between vertex types C1 and C2

4.1. MODELING WITH VISUAL CONTRACTS 71

• for each attribute value a = v associated with a vertex o : C in an
instance graph, there must be a corresponding deceleration a : T in
vertex type C such that v is of data type T .

Definition 2 (Graph transformation rule) A graph transformation
rule r : L ! R consists of a name r and a pair of instance graphs L
and R typed over a type graph TG. Thus, the structures of L and R are
compatible, i.e. vertices with the same identity in L and R have the same
type and attributes, and edges with the same identity have the same type,
source, and target. The left-hand side L represents the pre-conditions of
the rule while the right-hand side R describes the post-conditions [Hec06].

Definition 3 (Graph transformation) A modification of a pre-state
G resulting in a post-state H is called a graph transformation G)

r(o) H
where the following steps must be performed [Hec06]:
1) Find an occurrence o

L

of the pre-condition L in the graph G.
2) Delete from G all vertices and edges matched by L \ R.
3) Add to the resulting graph a copy of R \ L, giving the graph H.

The graph transformation given in definition 3 is based on the standard
interpretation which is called double-pushout (DPO) [Hec06]. However, this
interpretation is very strict such that the changes in the graph must follow
the defined steps. However, the formalization of Visual Contracts requires
a more flexible interpretation of graph transformations [Loh06]. That’s why
we use another interpretation of graph transformation, which is called graph
transition.

Definition 4 (Graph transition) A graph transition G
r(o) H allows

deleting or adding more vertices and edges than specified by L \R or R \L
[Loh06].

A graph transition generalizes the definition of a graph transformation
given in 3 such that the deletion and addition steps (2) and (3) are specified
in a more flexible way. This interpretation is called double-pullback (DPB)
approach [Hec98]. Di↵erent to other graph transformation approaches, DPB
uses a loose or flexible interpretation of graph transformations, which means
that also other objects may be changed by the graph transformation which
are not specified in the pre- and postconditions. This interpretation allows
the programmers, who uses Visual Contracts as a specification for the func-
tions under development, to implement more behavior than specified in the
Visual Contracts.

After having introduced the syntax and the semantics of Visual Contracts
in this section, as next we will give an overview on the application areas of
Visual Contracts as defined by Lohmann [Loh06].

72 CHAPTER 4. VISUAL CONTRACTS

interact

Service
Requestor

Discovery
Service

Service
Provider

Service

publishfind

Client

Service
Description

Service
Description

Figure 4.8: SOA triangle for service matching (based on [Loh06])

4.2 Application Areas

Visual Contracts are a visual language which integrates the Desing-by-Contract
paradigm into the UML-based modeling. Their formal semantics allow to
conduct automated analysis on system which are specified by using Visual
Contracts. In this section, we will give some examples on the di↵erent appli-
cation scenarios of Visual Contracts in Model-based Software Development.

Visual Contracts are initially developed for modeling, implementing and
searching web services in service oriented architectures (SOA) [Loh06]. Fig-
ure 4.8 shows the main concepts of a SOA. The main motivation was the lack
of appropriate definition mechanisms for service description for service be-
havior. Even if the syntactical descriptions of services can be done formally
using languages like WSDL [W3C14], the semantics of web service cannot be
described by these languages in a formal way. Thus an automated finding
and interacting of services is not possible. Amodel-driven matching approach
developed by Lohmann solves this problem by specifying the service behav-
ior using Visual Contracts. Thereby, Visual Contracts are embedded into
the service descriptions of both providers and requesters. In this way, the
searching and binding of services can be automated.

Having specified the behavior of services using Visual Contracts, they
can also be used by programmers as a behavioral specification during the

4.3. EXPERIENCES WITH VISUAL CONTRACTS 73

MBSD

++
derive

knows implementsknows implements

Figure 4.9: Model-based software development using Visual Contracts
[Loh06]

development of the intended web service functions. As Figure 4.9 illustrates,
Visual Contracts can extend the structural and behavioral specifications in
an UML model by pre/post notations for individual functions. Lohmann
proposed a model-based software development (MBSD) approach using Vi-
sual Contracts [Loh06], where program code in Java is partially generated
from the UML Class Diagrams. Programmers extend these partial code man-
ually by considering the functional specification given by Visual Contracts.
Because of the loose semantics of Visual Contracts, the programmer can
also implement other e↵ects which are not specified by the Visual Contract
(cf. section 4.1.3). In order to assure the correctness of the manually im-
plemented functions, the Visual Contracts are converted to JML assertions
and embedded into the Java code. After compiling them to an executable
program, the embedded assertions can monitor the system state before and
after the function invocation and give errors, if the state changes are not
conform to the specification of Visual Contracts.

4.3 Experiences with Visual Contracts

Having introduced the language characteristics of Visual Contracts and their
integration into the software development process, in this section we report

74 CHAPTER 4. VISUAL CONTRACTS

on some experiences with Visual Contracts from industrial projects and aca-
demic work.

Together with the company Capgemini (formerly sd&m AG) We have
conducted a case study for modeling service behavior with Visual Contracts
[EGL+06b]. Thereby, we have specified the behavior of over 40 services from
the insurance domain. Before specifying the services, we have created an
ontology for the German insurance domain (based on the [dDVe01]) using
UML Class Diagrams. Together with colleagues from sd&m AG, we have an-
alyzed the textual descriptions of services in this domain and created Visual
Contracts for both conceptual and technical levels.

Our experience from the industrial projects has shown that

• Visual Contracts are very intuitive to use and they can be learned very
quickly by newcomers.

• Given a proper type definition, Visual Contracts can be used for spec-
ifying the behavior on di↵erent abstraction levels. Thus, they can be
used in di↵erent phases in the software development process.

• The loose semantics of Visual Contracts is helpful if designers do not
want to specify the intended behavior completely, either because there
are some lack of clarity in the requirements or because designers want
to give programmers flexibility in making decision.

In our academic work we have also collected experiences with Visual Con-
tracts and with di↵erent application scenarios explained in the last section.
Lohmann has developed the Visual Contract Workbench (VCW) - an eclipse-
based tool support for modeling and code generation with Visual Contracts
[Loh06]. Using VCW, Visual Contracts and UML Class Diagrams can easily
be edited and transformed into Java and JML code. After compiling these
code fragments with a JML compiler, the runtime behavior of the software
under consideration can be monitored. If the inputs used by invoking the
software functions or the outputs of the software violate the pre- and post-
conditions, VCW warns the user about an inconformity. Even this technique
is helpful for assuring the functional correctness of software at runtime, it
is a passive mean for quality assurance. Without a systematic and exhaus-
tive trial of di↵erent input and output combinations, the errors can remain
undetected and be delivered to the end-users. Even if these errors can be
detected at runtime, the erroneous functionality can lead to dissatisfaction if
the software misses its intended purpose.

“Neither behavioral nor timing contract testing can guarantee that all
behavioral and timing failures are identified before the system is deployed. No

4.3. EXPERIENCES WITH VISUAL CONTRACTS 75

quality assurance technique is capable of doing that. Therefore, an additional
quality assurance measure can be constantly carried out during runtime of
the final system, and this is the assertion checking mechanisms that I briefly
introduced in Chap. 4.”

These experiences motivated us to continue the research on Visual Con-
tracts and to extend the MBSD process by a systematic testing process. We
have also recognized that some of the challenges of contract-based testing as
listed in chapter 3 can be solved by using Visual Contracts. Namely, they
can be easily learned by testers and enable a high level UML-based com-
munication between testers and other team members for various phases in
the development process. Thus, we aimed to extend the MBSD process by a
model-based testing (MBT) process using Visual Contracts (see Figure 4.10).
The research question we want to deal with in the rest of this thesis is:

“How can we extend the MBSD process and enable a model-
based testing process using Visual Contracts resolving the short-
comings of the existing contract-based approaches?”

In the next part will address our conceptual and technical solutions for
resolving the shortcomings of existing approaches.

76 CHAPTER 4. VISUAL CONTRACTS

MBT

?

Test case
Tester

MBSD

derive run

Lohmann

Tester

++
derive

2006

i l tknows implements

ProgrammerProgrammer

Figure 4.10: Integration of MBT into MBSD using Visual Contracts

Chapter 5

Summary of Part I

As illustrated in Figure 5.1, in the previous chapters of Part I, we have
reported on the fundamentals ofmodel-based testing (MBT) and on its special
case contract-based testing (CBT). In the end of the chapter 3, we have
compared the existing CBT approaches and identified some potential for
further improvement. In chapter 4, we have described the Visual Contracts
language which we will use to establish a novel testing approach called Visual
Contracts-based Testing (VCBT) to reach the required improvements. In
this chapter, we will summarize the challenges of MBT and CBT approaches
as described in chapters 2 and 3 and define the requirements on an VCBT
approach.

5.1 Improvement Potential in CBT Approaches

In chapter 3, we have motivated the use of contracts for testing and ad-
dressed various CBT approaches. The tabular comparison in Figure 3.3
shows a detailed comparison between the CBT approaches based on a big
set of comparison criteria, which we summarize in the following sections.
In this comparison, we have identified improvement potential regarding the
following criteria:

• Relation to the development process

• Skills of testers and the selection of the modeling techniques

• Test levels

• Quality of test cases

77

78 CHAPTER 5. SUMMARY OF PART I

MBT
Ch 2

CBT VC
Ch 3 Ch 4

CBT VC

VCBT

Figure 5.1: Overview on the building blocks of the requirements

Relation to the development process

As testing must be an integral part in the development process, it is impor-
tant to define the relations between the development and testing activities
and the traceability between the development artifacts and testing artifacts.
In section 2.4.2, we have addressed the common model and separate model
approaches for MBT, which are totally di↵erent regarding the organization
of the activities and the content of models [UPL06] in the following manner:

Common model (also shared model) proposes sharing the models be-
tween the developers and the testers, such that no additional e↵orts must be
invested by testers for creating models as test basis. However, this approach
lacks the redundancy which is required by test process to be able to find
errors. As an alternative, separate model proposes totally independent
development and testing activities, where testers create their own separate
test models.

As shown in Figure 5.2, most of the CBT approaches we have studied in
chapter 3 use the common model, such that the contracts created by devel-
opers for development purposes are reused by testers for testing purposes.
However, the following problem may arise in the reuse of development con-
tracts: The development contracts are created very late in the development
process and so they may lack relevance to the initial customer requirements.
If these contracts are used as a source for test cases, there may be a gap
between the test results and the initial requirements. Such contracts are
only suitable as a test basis for low level tests. Thus, if high level tests are

5.1. IMPROVEMENT POTENTIAL IN CBT APPROACHES 79

NeuNeu

AutoTest
[Ciu08]

Korat
[MSM+07]

WeSUF
[AW05]

MBTVC
[Khan2012]

General characteristics
People Low level Low level Low level Low levelPeople
Test level
Process integration
Quality

Low level
UT
No
WB

Low level
UT, ST
No
WB

Low level
UT
No
BB

Low level
UT,IT
No
WB

MBT ifi h t i tiMBT‐specific characteristics
Artifact
Redundancy
Automation
Tool

Eiffel
Shared
Yes
Yes

JML
Shared
Yes
Yes

OCL
Separate
Yes
Yes

VC
Shared
Yes (Oracle)
Yes (Oracle)

CBT‐specific characteristics
Contract
Test case

Declarative
Artific. states

Declarative
Artific. states

Declarative
Artific. states

Decl./Imp.

Figure 5.2: Summary of tabular comparison of CBT approaches

needed, there is a need for an approach which allows testers creating their
own contracts also earlier in the development process. In this way testers
can decide on the abstraction level and on the desired content of test models
for their testing purposes.

Skills of testers and the selection of the modeling techniques

If testers should be able to create their own models as stated lastly, testers
should also have the skills required for reading, creating or updating these
models. The required skills include the knowledge on di↵erent modeling
paradigms and on modeling languages suited to the characteristics of the
software to be modeled. CBT approaches from chapter 3 all use the pre/post-
based paradigm (cf. section 2.4.3) for specifying the changes in the data
variables of a software function.

As shown in Figure 5.2, CBT approaches use di↵erent modeling languages
for specifying contracts, e.g. Ei↵el, JML, OCL. These languages are very low
level ones which are perfectly suited for embedding them into the program
code and to compile them together with the code in order to check the fulfill-
ment of the contracts at run-time. However, these languages are too formal
and not suitable for documenting and communicating the test specifications
among the testers and also the customers. For that, more abstract and dia-
gramatic modeling languages are required.

UML, which contains general purpose modeling languages, have been

80 CHAPTER 5. SUMMARY OF PART I

used for a long time for modeling test specifications. In CBT, there is a
need to lift the contracts to the UML level and to integrate them into the
UML-based development process.

Test levels

The software development process based on the V-model as depicted in sec-
tion 2.3 goes through di↵erent abstraction and detail levels. Accordingly, the
test process defines mainly four test levels (unit testing, integration testing,
system testing, acceptance testing) handling the di↵erent development stage
and di↵erent granularity of software (cf. Figure 2.9).

As shown in Figure 5.2, most of the CBT approaches from chapter 3
address low level testing activities like Unit testing where contracts are spec-
ified for components or subsystems. However, there is also a need for CBT
of data-oriented software on system level. Using similar modeling paradigms
and modeling notations throughout the whole test process enables a uniform
process and keeps the e↵orts for training testers low.

Quality of test cases

The central activity in testing is the definition of test cases based on the
test basis. In MBT, test cases are created from models either manually or
automatically, but in both cases systematically by applying a model coverage
criterion. Ideally, test cases should both include test inputs and expected
behavior. Thus, models should specify both the inputs of the software under
test and its expected behavior. Various modeling paradigms and modeling
languages have di↵erent abilities and language elements to describe these
aspects.

In CBT, the requirements of a software on its inputs and the guarantees of
the software regarding its outputs are modeled using pre- and postconditions.
The pre- and postconditions are ideally suited for generating test inputs and
expected outputs. As shown in Figure 5.2, many CBT approaches from
chapter 3 use contracts for generating test inputs. The postconditions are
used as a test oracle at runtime for checking the expected outputs. However,
there are two problems with most of the existing approaches regarding the
quality of test cases:

• There is no guarantee that the test inputs which are generated from
the preconditions are realistic enough. They may lack further objects
and states which would have been a part of the execution environment,
because other operations invoked previously could create them. In
order to test with realistic inputs, a realistic test preamble is required,

5.2. REQUIREMENTS ON A NOVEL TESTING APPROACH 81

which invokes operations in a realistic order such that required test
inputs are created before the invocation of operation under test.

• The postconditions are used as a generic test oracle for each test input
generated form the precondition, which may cause unsound or insignifi-
cant test verdicts. Thus, further investigations for test evaluation would
be needed. For decreasing the e↵orts of test evaluation, there is a need
for computing individual expected outputs for each test input.

5.2 Requirements on a novel Testing Approach

Having summarized the improvement potential in existing CBT approaches,
we impose now some requirements on a novel approach which should realize
these improvements.

The chapters 2 and 3 addressed the challenges of MBT and CBT as
summarized in the last section. Some of these challenges are directly handled
by using the Visual Contracts language described in chapter 4. However, the
novel testing approach has to address all the challenges pretended by MBT
and CBT. In this section, we explain which requirements we impose on the
novel testing approach for handling these challenges.

Based on the challenges described in the last section, we define the fol-
lowing requirements on the novel testing approach:

1. Requirement: The novel testing approach should use a light weight
and intuitive notation for testers. Using this notation, testers should
be able to document and communicate the test models among the test
team and if needed with the customers.

2. Requirement: UML is the de facto standard in software engineering,
thus the novel testing approach should be compatible with the UML
based software development process.

3. Requirement: The novel testing approach should enable using both
MBT scenarios: shared models or separate models. The novel approach
should enable both to reuse the contracts created by developers or to
create separate contracts only for test purposes.

4. Requirement: The novel testing approach should be applicable for dif-
ferent test levels. Thereby, the contract language should enable to
specify the characteristics of software under test on di↵erent abstrac-
tion levels.

82 CHAPTER 5. SUMMARY OF PART I

5. Requirement: The novel testing approach should enable to automate
typical testing activities. The most central activities are the test design,
test execution and the test evaluation.

6. Requirement: The novel testing approach should describe a procedure
how test inputs which are generated from the preconditions can be set
in a realistic way.

By using Visual Contracts (cf. chapter 4) as a modeling language and
introducing proper testing techniques, we contribute to the field of CBT in
the following way:

1. Contribution to Requirements 1 and 2: Visual Contracts are an
UML based notation which uses two UML Collaboration Diagrams for
specifying the pre- and postconditions. The Collaboration Diagrams
are typed over an UML Class Diagram. Both of these notations are
intuitive and easy-to-learn notations, which contributes to the Require-
ments 1 and 2.

However, the questions how to define the test inputs from the precon-
ditions systematically and how to check the correctness of the test out-
puts compared to the postconditions remain unsolved. VCBT defines
selection criteria and selection algorithms for generating test inputs
from preconditions systematically. Furthermore, VCBT defines how
postconditions can be used as test oracles.

2. Contribution to Requirement 3 and 4: The development scenario
Model-driven monitoring introduced in chapter 4 describes the usage
of Visual Contracts for specifying the behavior of the software and us-
ing them for runtime monitoring. The same contracts can be used by
the testers for test case generation. This usage of Visual Contracts
corresponds to the MBT scenario shared models. Model-driven match-
ing, which is also introduced in chapter 4, shows the creation of Visual
Contracts by di↵erent parties in the development process. Thus, also
testers can create Visual Contracts for their own purposes enabling the
MBT scenario separate model.

However, the testing scenarios using shared models and or separate
models require informations of di↵erent detail levels. The current de-
velopment scenarios with Visual Contracts do not address the separa-
tion of concerns between developer models and test models. VCBT
shows how developers contacts can be used for testing purposes and
how testers can create their own contracts for upper testing levels.

5.2. REQUIREMENTS ON A NOVEL TESTING APPROACH 83

3. Contribution to Requirement 5: Model-driven monitoring enables
automatic evaluation of test results at run-time. Thereby, the Vi-
sual Contracts are translated to low-level assertion code (e.g. JML
or Spec#) and embedded into the program code (e.g. Java or C# re-
spectively). After compiling the assertions together with the program
code, the software under test can be invoked with arbitrary inputs. The
conformance of the inputs with the preconditions and the conformance
of the outputs with the postconditions can be checked by the embedded
assertions automatically.

However, the questions still remain how test case selection, test execu-
tion and test evaluation can be implemented by tools and how these
tools can be integrated into the development environment. VCBT in-
troduces new tools and techniques in order to able the test case se-
lection, test script generation and test execution and integrates these
tools into the development environment for Visual Contracts.

4. Contribution to Requirement 6: In order to set the test inputs
in a realistic way, a realistic execution context of the software under
test must be defined. A realistic execution context is characterized as
a realistic execution order of the operations of the SUT.

VCBT uses the the formal semantics of Visual Contracts based on
graph transformations (cf. subsection 4.1.3) for computing the depen-
dencies between operations specified by VCs. Then, these dependencies
are used for defining a realistic execution order of operations resulting
realistic test inputs.

In Part II, we will explain in detail how Visual-Contract-based Testing
(VCBT) approach enables the above mentioned contributions.

84 CHAPTER 5. SUMMARY OF PART I

Part II

Approach

85

Chapter 6

General Approach

Having introduced the related work and motivated the need for a novel
contract-based testing approach in Part I, in Part II we introduce our contract-
based testing approach using Visual Contracts and its integration into the
UML-based development process. The contribution of our approach lies in its
generic treatment of all test levels (cf. section 2.3.1) and of the main test ac-
tivities (cf. section 2.3.2) as required by the ISO/IEC 29119 [ISO]. Whereas
other contract-based testing approaches address mainly low level tests (cf.
table 3.3), we show how contracts created at di↵erent phases of the develop-
ment process can be used for di↵erent testing levels. While other approaches
mainly concentrate on how test cases are derived from contracts, we also
show how these test cases are transformed into executable test scripts and
how test execution and test evaluation can be supported by contracts. For
assuring the generality of our approach, we adapt the notion of component
by Gross [Gro05a] and develop uniform development and testing techniques
for components with di↵erent functional granularity (cf. [Cri11, Blo11] and
section 2.2).

Before introducing our contract-based approach for each test level in de-
tail, in this chapter we characterize the general properties of our approach.
Section 6.1 gives an overview on our UML-based development process with
Visual Contracts and explains the component notion which enables a uni-
formed treatment of software with di↵erent granularity during both devel-
opment and testing activities. Section 6.2 summarizes the semi-automated
implementation process using Visual Contracts defined by [Loh06] (cf. chap-
ter 4) and extends this process for better testability. Each one of the sections
6.3-6.5 explains a particular testing activity based on the fundamental testing
process [ISTQB]: First, we describe how abstract test cases can be derived
from Visual Contracts using a formal selection criteria. Section 6.4 explains
how the abstract test cases are transformed into executable test scripts. Fi-

87

88 CHAPTER 6. GENERAL APPROACH

nally in section 6.5, we show how the test scripts are executed and how
embedded assertions act as test oracles for evaluating the test results. Sec-
tion 6.6 summarizes the general concepts and techniques introduced in this
chapter.

6.1 Development Process Overview

Our development process is based on the modified V-model by Basili and
Pezze [BP06], where implementation artifacts are explicitly named and as-
sociated with design and test levels (see Figure 6.1). Vertical and horizontal
dimensions, as described in [Gro05a] and [Cri11, Blo11], represent the ab-
straction, decomposition and granularity relations between the development
artifacts (cf. section 2.2).

In the left branch of the V-model, design activities begin with creating
abstract specifications of the software system and its business-level function-
alities. These specifications are decomposed step-by-step into more concrete
specifications for the subsystems and components with fine-grained function-
alities. On the right branch, the components are implemented and integrated
into subsystems and finally into the deliverable system with coarse-grained
and business-level functionality. In order to assure the correct functionality
of each component, subsystem and the deliverable system with respect to
their functional specifications, these are tested using test cases derived from
these specifications. For automation purposes, test cases are transformed to
test scripts, which can be automatically executed by test drivers.

During the design, we use behavioral and structural notations of UML
for creating the functional specifications. A system specification contains
Use Case models describing the business-level system functionalities. The
terms and concepts of the desired system are specified by a Class Diagram.
The standard and alternative steps of a Use Case are refined by Activity
Diagrams. The system specification is refined into subsystems by decompos-
ing the coarse-grained business-level system functionalities into fine-grained
functional units. We use Component Diagrams and Class Diagrams for spec-
ifying the structure of the functional units and their interfaces. Finally, the
subsystem specifications are decomposed into component specifications which
make up the most low-level functional specifications. Component specifica-
tions contain Component Diagrams and Class Diagrams for specifying the
structure of the functional units and their interfaces. In UML, the behavior of
the implementation artifacts are typically specified by Statecharts or Activ-
ity Diagrams. However, these notations require mostly a complete specifica-
tion of the system states and functional steps, thus making the specification

6.1. DEVELOPMENT PROCESS OVERVIEW 89

Testing

os
iti

on

nu
lr

ity

Sys. spec. Sys.
Test case Test script

Test case Test script

C
om

po

oa
rs

e-
G

ra
n

Subsys.
spec. Subsys.Test case Test script

p

C
o

Comp. spec. Comp.

Design

po
si

tio
n

an
ul

ar
ity

Implementation

D
ec

om
p

F
in

e-
G

ra

ConcretizationAbstraction

Figure 6.1: Extended V-model based on [BP06]

activity complex. Thereby, designers can forget modeling some states and
functions due the component behavior, thus the completeness of the models
cannot be assured. As an alternative to traditional notations for behavioral
specification, we use Visual Contracts (VC) [Loh06], which enable specifying
the behavior partially following the Design-by-Contract paradigm (cf. chap-
ter 3). Thereby pre- and postconditions are used for specifying the required
system state changes when system functions are executed. The programmer
has total freedom for coding the system functions, as long as he or she en-
sures that the pre- and postconditions are fulfilled by the implementation.
Besides traditional UML notations, we propose to use Visual Contracts for
behavioral specification for components, subsystems and system. Thereby,
we specify the provided and required interfaces of the software artifacts using
Visual Contracts (see Figure 6.2). The components are implemented with
respect to the Visual Contracts specifications and then stepwise integrated
giving the subsystems and systems which also have to fulfill their Visual
Contracts specifications.

The manual coding activities are error-prone which can induce software
errors during the implementation and integration of the software components.
Winter et al. classify errors in three groups (see Figure 6.3): component

90 CHAPTER 6. GENERAL APPROACH

Comp. Subsys. Sys.

Sys.

Subsys.
Visual Contracts

pre post

Visual Contracts

pre post
y

pre post pre post

Comp.

Figure 6.2: Implementation artifacts and their provided and required inter-
faces specified by Visual Contracts

errors, integration errors and system errors [WEMS+12]. In our test process,
we are able to detect these kinds of errors by instrumenting Visual Contracts
for test case generation, test execution and for test evaluation. Thus, after
each implementation and composition step, our test process assures that the
Visual Contracts are fulfilled by the implementation artifacts.

Figure 6.4 focuses on the central artifacts and activities of an implementa-
tion and testing phase during the V-model (cf. Figure 6.1), which we want to
explain in detail in the next sections. First, we explain, how the implementa-
tion artifacts are developed based on the Spec including the Visual Contracts.
Then, we explain our test design techniques for deriving Test Cases from the
Spec systematically using formal selection criteria. For executing the test
cases automatically, we define a transformation from test cases to executable
Test Scripts. The implementation under test, which is called (Test object),
is then automatically invoked by test scripts and its conformance to the Spec
is checked. While explaining these activities in the next sections, we keep
these as generic as possible in order to fulfill the requirements of ISO-29119
[ISO].

6.1. DEVELOPMENT PROCESS OVERVIEW 91

Comp. Subsys. Sys.

Sys.

Subsys.
Comp. Comp.

Subsys.
Comp.

Subsys.
C C

Subsys.
Comp. Comp.

Component error Integration error System error

[based on Winter et al. Der Integrationstest, 2013]

Figure 6.3: Classification of errors (based on [WEMS+12])

Section 6.3 Section 6.4
Testing artifacts

Test cases Test scripts

t t d i t t ti

test implementation

Spec. Test object

test design test execution

i l t ti

Design artifacts Implementation artifacts

p j
implementation

Section 6.2 Section 6.5

Figure 6.4: Overview on the activities of the general process

92 CHAPTER 6. GENERAL APPROACH

a) c)
Apre

post
pre
post

a) c)

A
Provided
interface

Requested
interface

:A

op

d)

public class A{
//@ i

assert_op1 _pre

op1

b)

//@requires pre;
//@ensures post;
public op1(){
delegate_op2();

}

assert_delegate_op2_pre

op2
}
//@requires pre;
//@ensures post;
public delegate_op2(){
op2() assert op post()

assert_delegate_op2_post

op2();
}

}

assert_op1 _post()

Figure 6.5: Implementation life-cycle

6.2 Implementation

During the implementation, we use the design specification incl. Visual Con-
tracts for a semi-automated development of the components as described
by Lohmann in [Loh06]. Thereby, we automatically derive class frames and
method frames from the Class Diagrams. We complete these code frames
with the functional code, for which we use the Visual Contracts as a specifi-
cation. That is, we implement a functional code which should fulfill the pre-
and postconditions in a Visual Contract. In parallel, the pre- and postcon-
ditions in the Visual Contracts are automatically translated into embedded
assertions. If the generated assertions and the program code are compiled
together into an executable binary, the embedded assertions act as runtime
monitors during the execution and check the fulfillment of the contracts by
the executed program. For our development process, we adopted and ex-
tended the implementation activities of Lohmann for better testability as
illustrated in Figure 6.5.

6.2. IMPLEMENTATION 93

First, we have extended the code and assertion generation by Lohmann
(cf. Chapter 4) using the required interfaces (see Figure 6.5 box a). Besides
provided interfaces, which specify the interaction with the callers, required
interfaces specify the interaction with the callees. Thus, we propose the gen-
eration of additional embedded assertions for required interfaces. Box b in
the Figure shows the generated code for component A including the gen-
erated Java operation frames and JML (Java Modeling Language [LBR06])
assertions for the required interface. Thereby, we use the delegation pat-
tern, such that a delegate operation is generated, which forwards the calls
to the actual operation. The Visual Contracts specify which conditions
the outgoing invocations and incoming responses to/from the callee must
fulfill. Box c illustrates the executable component and the embedded as-
sertions for provided and required interfaces after the compilation of pro-
gram code and assertion code. Box d shows the execution of the assertions,
while the op1 calls the required operation op2 over the delegation operation.
Thereby, when the provided operation op1 is called, the preconditions of op1

are checked by assert op1 pre. If the condition hold, the required operation
op2 is invoked. Thereby, first the preconditions of the delegation operation
are checked by assert delegate op2 pre, before the real operation op2 is called.
The response of the operation op2 is first checked by the required assertions
assert delegate op2 post, before the delegation operation forwards these to
the operation op1. Before op1 response to its callers, the postconditions of
op1 are checked by assert op1 post. If during these checks of embedded asser-
tions, the conditions do not hold, the execution is aborted and an exception
is thrown, which will be explained in section 6.5 in detail.

In order to formalize the concepts explained above, we have created a do-
main model, based on the component meta-model by Gross [Gro05a], which
shows the relations between the design and implementation artifacts (see
Figure 6.6). The source for the automated code generation contain the Class
Diagrams and Visual Contracts. A Visual Contract contains two Conditions,
a Precondition and a Postcondition. The objects specified in conditions are
typed over the Class Diagram, which means that these objects must be valid
instances of a class in the Class Diagram. One or many operations in a Class
Diagram are specified by a Visual Contract. From the design artifacts, im-
plementation artifacts are generated semi-automatically. Thereby, class and
operation frames for components, subsystems and systems are generated au-
tomatically from the Class Diagram, and the behavioral code for the opera-
tions are implemented manually with respect to the pre- and postconditions
of Visual Contracts. Each software artifact has a Provided Interface and a
Required Interface which contain Operations specified by Visual Contracts.
An Operations have Input Parameter and Output Parameter. Operation has

94 CHAPTER 6. GENERAL APPROACH

two Assertions one for the Precondition of the Visual Contract and one for
the Postcondition of Visual Contract.

The embedded assertions act as runtime monitors and validate the prop-
erties of the system state during the execution and throw exceptions, if these
properties do not hold. This technique is called by Lohmann Model-driven
Monitoring (MDM) [Loh06] and is an e↵ective quality assurance technique
for software at use. With the extension of the embedded assertions for the
required interfaces, this monitoring technique becomes more powerful.

Even if MDM is able to detect errors during the execution of the system
and to prevent system failures by exception handling, errors in the system
during the usage, i.e. after the delivery of the software, may lead to dis-
satisfaction of users. In other words, it is desired that no or at least fewer
errors exist in the software while delivery. Using testing techniques, errors
can be detected before delivery. In the next section, we explain how Visual
Contracts can be utilized for designing test cases.

6.3 Test Design

Each implementation artifact must fulfill its specification given by the de-
sign artifacts. In order to check the conformance to the specification, the
implementation must be tested systematically against the design artifacts.
The focus of our test process lies in testing of the state-changing behavior of
the implementation artifacts, specified by Visual Contracts. How an imple-
mentation artifact should change the system state, is specified by the pre-
and postconditions in Visual Contracts. If invoked in a state which conforms
to the precondition, an implementation artifact must transform the system
state to a new one, which conforms to the postcondition. Checking this
conformity is the main target of our testing approach.

During the test design, test cases are derived from the Visual Contracts
and Class Diagrams (see Figure 6.7). A test case contains an initial state
representing an exemplary object constellations conforming to the precon-
dition and input parameter values for the invocation of the operation under
test. The test target is to check whether the operation under test changes the
given initial state after the invocation in a way, such that the state changes
conform to the postcondition of the Visual Contract. The objects in the
initial state are derived from the precondition using a formal test selection
criteria. Depending on the constructs in the precondition, di↵erent objects
constellations can be considered. The objects have attribute values which
have to be consistent with the input parameter values. The object constella-
tions must also conform to the associations and attributes given in the Class

6.3. TEST DESIGN 95

St
at

e

va
lid

at
es

al
id

at
es

n n

In
pu

t p
ar

am
et

er

O
ut

pu
t p

ar
am

et
er

P
ar

am
et

er

ns
tra

in
s

st
ra

in
s

v

O
pe

ra
tio

n

A
ss
er
tio

Pr
ec

on
di

tio
n

A
ss
er
tio

Po
st

co
nd

iti
on

Im
pl

em
en

ta
tio

n

co
n

co
ns

fa
ce

ac
e

Co
m

po
ne

nt

Su
bs

ys
te

m

S
ys

te
m

S
of

tw
ar

e

P
ro

v
id

ed
 In

te
rf

Re
qu

ir
ed

 In
te

rf
a

ifi
es

ci
fie

s

C
on
di
tio
n

P
os

tc
on

di
tio

n

C
on
di
tio
n

P
re

co
nd

iti
on

V
is

ua
l C

on
tra

ct

De
si

gn

sp
ec

sp
ec

Cl
as

s
D

ia
gr

am

ty
pe

d
ov

er

ty
pe

d
ov

er

Figure 6.6: Meta-model for design and implementation artifacts (based on
[Gro05a])

96 CHAPTER 6. GENERAL APPROACH

AA
Provided
interface

vc op(in param):out paramclass diagramm

pre post
class

association

operation

attribute

test casetest casetest case

initial
state

in param
values+

Figure 6.7: Test design artifacts

Diagram. For that the objects in the initial state are completed by further
objects and their attribute values so that the cardinalities given in the Class
Diagram are fulfilled.

Formally defined, our test design activity addresses the following design
and testing artifacts as illustrated in Figure 6.8. A Test case is composed of
Initial states and Input parameter values which are derived from the Precon-
dition of the Visual Contract and from the Class Diagram. For testing with
di↵erent object constellations and di↵erent parameter values, a Test selection
criteria is used which results in a Test suite containing a set of test cases.

The standard definition of a test case also contains the information of
expected return values and expected states after the invocation of the system
under test [MH09], however, in our approach, we not necessarily compute
the expected states during the test design. The embedded assertions derived
from the Visual Contracts (cf. chapter 4) checks the conformance of the
post object constellation with the postcondition at runtime. This will be
explained in section 6.5 in detail.

6.4 Test Implementation

As illustrated in the overview of our development and testing activities in
Figure 6.4, the test cases are then transformed into executable test scripts
for the automated test execution. The test script should operationalize the
test target, which includes the following steps:

6.4. TEST IMPLEMENTATION 97

Design Testing

Condition
Precondition

Initial statedefines

defines

defines

In. param. v alueTest selection

typed over

defines

Visual Contract
Test selection

criteriaClass Diagram
constrains

Condition
Postcondition

Test caseTest suite

typed over

Figure 6.8: Meta-model for design and testing

1. preamble for setting the initial state,

2. invoking the implementation under test,

3. setting verdict for the test execution.

Figure 6.9 shows a pseudo code for a test script which implements these
steps. Thereby, first the initial state is created as specified by the test case.
Then, the operation under test is invoked using the input parameters. During
the execution of the operation, the embedded assertions (cf. Figure 6.5) check
the fulfillment of the pre- and postconditions. If the initial state is conform
to the precondition and if the resulting state is conform to the postcondition,
the invocation returns normally and the verdicts is set to pass.

If any inconformities are detected during the invocation, exceptions are
thrown. If a preconditional exception is thrown, the initial state did not
conform to the precondition. Thus the requirements of the operation under
test are not fulfilled and it will not executed. Since the operation under
test is not executed, the verdict is set to inconclusive, which means that the
test case cannot decide on the correctness of the operation under test. If
a postconditional exception is thrown, that means that the precondition is
fulfilled and the operation under test is executed using the input parameters,
however, the postcondition is not fulfilled by the state after the invocation,

98 CHAPTER 6. GENERAL APPROACH

testscript() {testscript() {
try {
set initial_state;
call operation under test(in param);call operation_under_test(in_param);
//execute embedded assertions
//if normal_return
verdict = pass; p

} catch (precondition_exception) {
verdict = inconclusive;

} catch (postecondition_exception) {
verdict = fail;

} catch (other) {
verdict = error;

}
}

Figure 6.9: Abstract test script

thus the operation under test fails the test case. If any other exception occurs
during the test execution, the verdict is set to error.

Figure 6.10 formalizes the concepts of test scripts and their relation to
the implementation. Thereby, the testing meta-model from Figure 6.8 is
extended by a Test script and a Verdict. Test script invokes a operation
under test. The assertions generated from the pre- and postconditions of a
Visual Contract define the value of the verdicts as described above.

6.5 Test Execution

The abstract and generic test scipt in Figure 6.9 can be implemented in
various test script languages, e.g. JUnit [EG14], TTCN-3 [TTC]. Then, the
test scripts are executed by a test driver which can parse and interpret the
corresponding test script language. Thereby, the test driver executes each
script statement one by one as illustrated in Figure 6.11.

First the initial state is set by the test driver, then the operation under
test op1 of class instance :A of class A is invoked by using the input parame-
ters param. During the execution of the operation op1, the embedded asser-
tions for precondition assert op1 pre() and postcondition assert op1 post()
are invoked. The sequence diagram shows two alternative fragments (alt)
each for one assertion. If assert op1 pre() returns true ([op1.pre==true]),

6.5. TEST EXECUTION 99

Operation

Assertion
Pre condition

Assertion
Postcondition

Input parameter

Output parameter

Pa rame ter Sta te

Ini tial s tate

Tes t cas e

In. para m. v a lue

Test script

Ve rdict

Implementation

Testing

Tes t sui te

constrai ns

val idates

de fines

constrai ns

val idates

implements

constrai ns

invokes
de fines

Figure 6.10: Meta-model for test execution

100 CHAPTER 6. GENERAL APPROACH

:Test driver :A:Test driver :A

set initial_state

op1(param)

assert_op1 _pre()

…alt op1.pre

[op1.pre == true]
assert_op1 _post()

[]

alt op1.post

[op1.post == true]

[op1.post == false]

normal_return

postcondition_exception

[op1.pre == false]
diti tiprecondition_exception

Figure 6.11: Test execution by a test driver

which means that the precondition is fulfilled, the actual behavior of the op-
eration (...) is executed and the assertion for postcondition assert op1 post()
is executed. If the precondition is not fulfilled ([op1.pre==false]), then the
class instance :A throws a precondition exception.

If the precondition is fulfilled, a second alternative fragment (alt op1.post)
is executed for the two possibilities of fulfillment of the postcondition. If the
postcondition is also fulfilled ([op1.post==true]), then both assertions suc-
ceeded and the class instance returns a normal return. If the postcondition
fails ([op1.post==false]), then the class instance :A return with a postcondi-
tion expection. Depending on thrown exceptions or the normal return, the
verdict of the test case is defined as explained in the last section.

Compared to the implementation life-cycle in Figure 6.5, the sequence
diagram shows only the execution flow of the embedded assertions for the
required interface. The required interface is invoked by the test driver. In the
next chapters, we will see that the operation under test can also call other

6.6. SUMMARY 101

functions on its requested interface. As shown in Figure 6.5, the requested
interface can also be specified by Visual Contracts, for which delegation as-
sertions are generated. In a test scenario, where the requested interface is
also of importance, further assertion blocks will be required, which we have
omitted for simplicity in this chapter. However, the chapter 8 Integration
testing explicitly addresses the use of delegation assertions during the test
execution with more than one participating classes.

6.6 Summary

In this chapter, we have given an overview on the development and testing
activities of our general approach. The usage of component term enables us
to characterize the granularity of design and implementation activities. De-
pending on that, we also characterize the test objects and test interfaces. We
have shown how the Visual Contracts can be used for generating embedded
assertions and test cases. For automation purposes, we have explained how
test scripts can be implemented and executed. Using meta-models we have
formalized the relation between design, implementation and test concepts.

Depending on the individual requirements and characteristics of each test
level, the general approach explained above has to be concretized accordingly.
Figure 6.12 shows the V-model from Figure 6.1 in a flattened way, where the
“V” has been pulled down on both ends. This enables us to get a uniform
illustration of the processes of each test level as 6.4.

In the next chapters, we will explain how the general approach can be
concretized for each test level. Thereby, we will explain which characteristics
Visual Contracts must fulfill in order to be used as a test basis in a specific
test level. Then, we will explain how the test cases are computed from the
test basis and transformed into test scripts. Finally, we will explain for
each test level, how the test scripts can be executed and the test results be
evaluated.

102 CHAPTER 6. GENERAL APPROACH

() ()
Unit testing System testingIntegration testing

(Ch. 7) (Ch. 9)(Ch. 8)

CBT

Test case Test script

Test case Test script

Test case Test script

Test case Test script

Comp. spec.
(CD+VC)

Subsys.
spec.Sys. spec.

(UC+CD+VC) Comp. Subsys. Sys.

MBSD

(CD+VC)p
(CD+VC)(UC+CD+VC) p y y

refinement
implementation/integration

test design
test implementation

test execution

Figure 6.12: Flattened V-model showing the parallel activities of MBSD and
MBT

Chapter 7

Unit Testing

In the last chapter, we have explained our Visual Contract-based develop-
ment and testing approach in a generic manner as required by the ISO/IEC
29119 [ISO]. This chapter concretizes this approach for low-level software
components (cf. Figure 6.2). The contribution of our Unit Testing approach
lies in the systematic selection of test preambles for state-based testing. First,
we propose a light-weight selection technique which produces artificial but
comprehensive prestates. Second, we propose a more sophisticated tech-
nique which produces longer preambles for setting natural prestates.

By creating prestates, we are interested in checking the conformance of
behavior of low-level software components such as classes and their operations
in changing the system state with respect to their contract specifications: if
the component under test is executed outgoing from a created prestate

which fulfills the preconditions of the contract, it must change the prestate
during its execution in such a way, that the poststate after the execution is
conform to the postcondition of the contract. If the component under test
passes the checks for preconditions and postconditions given in the contract,
it is assumed to be functional correct.

We explain in the next sections, how components’ state changing behav-
ior can be specified by UML notations extended by Visual Contracts and how
these specifications can be used for a systematic selection of test cases with
artificial and natural prestates. For selecting artificial test cases, we adapt

test objects classes and operations
test target conformance of operation implementations

to Visual contracts
test strategy artificial prestates, natural prestates

Table 7.1: Overview Unit Testing

103

104 CHAPTER 7. UNIT TESTING

objects coverage criteria for UML and classical test data selection criteria.
For selecting natural test cases, we use model checking techniques for com-
puting preambles which set the components under test in a state, which is
reachable from a given initial state. We also show how test execution and
test evaluation are conducted based on Visual Contracts.

7.1 Development Scenario

Component-based development aims at developing low-level, fine-grained and
reusable software components using which functional subsystems are imple-
mented [Gro05a]. Thereby, component interface descriptions specify the in-
tended behavior of the components (cf. Figure 6.2). Unit Testing aims at
checking the correct implementation of components with respect to their
interface specifications [ISTQB]. Figure 7.1 shows the contract-based Unit
Testing process (CBT) combined with the development process (MBSD) us-
ing Visual Contracts. Before explaining the test process in detail, we explain
first how the components are developed.Unit Testing

CBT

object
preamble for

setting objects

Test cases
Tester

Test scripts
i l i

j
constellations

g j

test design
test execution

test implementation

selection criterion

Component
code

Component
specification transformation

Component
binary

compilation

Class
skeletons

compilation

coding

embedded
i

MBSD ProgrammerDesigner
assertions

Figure 7.1: Process of Unit Testing

7.1. DEVELOPMENT SCENARIO 105

Our development process for components as illustrated in the lower box
of Figure 7.1 follows the model-driven development approach based on
Visual Contracts introduced by Lohmann [Loh06]. This approach is di↵erent
than the classical model-driven development approaches whose target is to
generate the full functional code automatically. Lohmann’s approach pro-
poses the generation of class skeletons from the component specification, the
manual completion of class skeletons with behavioral code and the genera-
tion of embedded JML assertions by model transformations to monitor the
components behavior at runtime (cf. Chapter 4).

During the component design, a software designer specifies a model of the
component under development. This model consists of UML Class Di-

agrams and Visual Contracts . The Class Diagrams describe the static
aspects of the system, like the class attributes, the syntax of class operations
and the relations between classes. Each Visual Contract specifies the behav-
ior of a class operation. The behavior of the operation is given in terms of
state changes by pre- and postconditions, which are modeled by a pair of
UML Composite Structure Diagrams [ELSH06] (cf. Chapter 4).

After the component design, we generate code fragments from the design
models using the transformation rules illustrated in Figure 7.2. With the
first rule r1, we generate Java class skeletons from the design Class Diagrams.
The second rule r2 generates a frame for each provided operation consisting
of a return type and if given input parameters and annotates them with JML
assertions generated from the pre- and postconditions of the Visual Contract.
The third rule r3 generates for a requested operation a delegation pattern
which frames the actual operation call with JML assertions for pre- and
postconditions. This pattern enables a better testability of state variables by
client-side monitoring. By applying the algorithm in Figure 7.3, starting with
an empty code, the transformation rules create step by step code fragments
containing placeholders for the programmers to extend.

After the code generation by model transformations, a programmerman-

ually completing the generated Java fragments with behavioral code re-
sulting in a functional component. Thereby, the programmer uses the Visual
Contracts in the component design as a behavioral specification for the op-
erations. The programmer codes the operation bodies and is also allowed
to add new operations or new classes, but the programmer is not allowed to
change the JML assertions generated by the model transformations [LSE05].

When the programmer has completed the behavioral code, he uses a JML
compiler to build the executable component binary. The binary component
consists of the programmer’s behavioral code and executable runtime asser-
tions which are generated by the JML compiler from the JML assertions.
During the execution, the behavioral code leads to changes in the system

106 CHAPTER 7. UNIT TESTING

A
public class A {
<generated_code>

}

//@requires <pre_code>;
//@ensures <post_code>;
public returntype op() {
<manual_code>

}

//@requires <pre_code>;
//@ensures <post_code>;
public returntype delegate_op() {
return op();

}

r1

r2

r3

Figure 7.2: Transformation rules for code generation

Algorithm Code generation from Visual Contracts

1. component_code = empty string
2. for all class_c do
3. component_code = invoke r1(class_c)
4. for all provided_op do
5. op_code = invoke r2(provided_op)
6. extend component_code with op_code
7. for all required_op do
8. op_code = invoke r3(required_op)
9. extend component_code with op_code

Figure 7.3: Algorithm for code generation using transformation rules

7.2. TEST DESIGN 107

op4()
op5()

op1()
op2()

A

op6()
...

op3()
...

state space of :A

Component errorp

Figure 7.4: Component errors

state. Thereby, the generated runtime assertions monitor the conformance
of the system state with the pre- and postconditions [Loh06].

The manual coding activity of programmers are error-prone, which can
lead to programming errors in the component. These can be exposed during
various execution paths of the component as illustrated in Figure 7.4. Even
if such errors can be detected by runtime monitoring during the operation of
the component as explained above, existence of errors after the delivery can
lead to dissatisfaction of users. That is why a component must be tested

thoroughly to find and remove the errors before delivery. Since we deal with
state-based errors, during Unit Testing, the test cases have to set the compo-
nent under test to a prestate in which it can be invoked in a controlled way.
Only if the component under test is executed under controlled conditions,
its results can be evaluated to pass or to fail. In the next section, we will
explain how such test cases with controlled prestates can be specified
systematically.

7.2 Test Design

In Unit Testing, we use Visual Contracts as the test basis which are part
of the component specification. On one hand, we derive controlled prestates
from the Visual Contracts as test inputs for state-based testing. On the
other hand, we use the Visual Contracts as test oracles for evaluating the
conformance of the state changes during the test execution with the embed-
ded assertions. During our research, we have developed two approaches for
specifying controlled prestates for state-based testing.

108 CHAPTER 7. UNIT TESTINGArtificial state
op1()

ATest driver

state space of :A

prestate

op1()

poststate

a) setting prestate artificially
Figure 7.5: Setting the prestate for testing op1 artificially

In the first approach, a minimal prestate is computed from the specifi-
cation, such that the precondition of a method under test is fulfilled. Since
this prestate is created from scratch, we call this kind of state an artificial

prestate. In the second approach, the prestate for a method under test is
computed by invoking other methods. We call this kind of state a natural

prestate, since it represents a system state which could have been created by
real method interactions. The more realistic the prestate is, the more reliable
are the test results. As next, we explain these two approaches in detail.

7.2.1 Approach 1: Artificial Prestate

As illustrated in Figure 7.5, the prestate is a member of the set of all possible
states (state space) of an object of class A. A Test driver is responsible
for setting the test object to a prestate and invoke a class operation op1

using test inputs and to evaluate the test results. The prestate is crucial
for the invocation and for the evaluation of the test results. In this scenario
we will explain, how a prestate can be set artificially and how the resulting
poststate is evaluated.

The overall test design procedure of this approach is illustrated in Figure

7.2. TEST DESIGN 109

vc op(in param):out paramclass diagram p(p) p

pre post

g

class

association

operation

attribute 1

in paramin paramobjectobject

associationattribute

24 3 in param
values

in param
values

object
constellation

object
constellation

object
constellation

x in param
values

5

test casetest casetest case

prestate in param
values+

Figure 7.6: Procedure for generating test cases

7.6. In step 1 object constellations are derived from the precondition of
the Visual Contract of the operation under test op. After concrete input
parameter values are derived from the signature of the op in step 2, these are
assigned in step 3 to the derived objects. In step 4, the object constellations
and their variables are completed based on the class specifications resulting
in logical test cases including a prestate and input parameter values for the
test invocation (step 5). As next we explain these steps in detail using the
Visual Contract for the operation cartAdd as shown in Figure 7.7.

Step 1 of the overall procedure is the generation of object constellations
which build the basis for the prestates. The algorithm generateobjects for
this step as shown in Figure 7.8 starts with the this-object of the class under
(line 1-2) test and computes possible object constellations conforming to the
prestate (line 3-12). If there are no multiple objects in the precondition, the
object constellation will have similar number objects like in the preconition.
However, if there are multiple objects, various object constellations are pos-
sible, which contain di↵erent number of instances for each multiple objects.
To keep it simple, we derive 0, 1 and a random number of objects for each
multiple object. The result of the algorithm is a set of object constellations,

110 CHAPTER 7. UNIT TESTING

Figure 7.7: Example for Visual Contract

Figure 7.8: Algorithm for step 1

7.2. TEST DESIGN 111

Figure 7.9: Example for step 1

each of which represents a test case.

Figure 7.9 shows an example for step 1 using the Visual Contract cartAdd
(cf. Figure 4.7 in chapter 4). From the precondition, empty object constel-
lations for classes Book, OnlineShop and Cart are created. Because, the
objects in the precondition are single objects (not multiple objects), single
instances of the classes are generated and linked to each other obeying the
class associations.

Besides object constellations which build the basis for the prestates, a
test case also contains concrete values for input parameters for invoking an
operation under test. For that, we derive in step 2 concrete values for
each input parameter. As shown in Figure 7.10, the derivation can follow
various test data generation techniques [AS05]. In our approach, we apply
random test data generation, boundary value analysis and equivalence

partitioning method. Using these techniques, huge number of combinations
of parameter values are possible. However, former research has shown that
high test data coverage helps in increasing the fault detecting capability of
a testing approach [ABLN06]. In order to cope with the big number of
test cases, corresponding configuration mechanism must be available in tool
support, such that each tester can define its own way for test data coverage.

Figure 7.11 shows an example for step 2 where the parameters in the
operation signature of cartAdd are instantiated. Our example applies the
random selection for strings and the boundary value technique for integers.
Thereby, for the data types integer the boundary values 0(±1), MIN INT(±1)
and MAX INT(±1) are used for instantiating the input parameters. In this
way, many possible combinations of input parameter values can be computed

112 CHAPTER 7. UNIT TESTING

Algorithm 2. generateparameters(paramset, signature)
Generation of parameter values from the signature

1 paramset = {}1. paramset = {}
2. foreach parameter in signature do
3. case selectioncriteria do
4. random:
5. paramvalue = random(paramtype)
6. paramset.add(<paramname, paramvalue>)
7. boundaryvalue:y
8. foreach boundaryvalue of paramtype do
9. paramset.add(<paramname, boundaryvalue >)
10. equivalenceclasses:
11. foreach equivalenceclass of paramtype do
12. paramvalue = random(equivalenceclass)
13. paramset.add(<paramname, paramvalue>)
14. return paramset

Figure 7.10: Algorithm for step 2

Figure 7.11: Example for step 2

as in the example. Ellerweg has studied in [EEG08] the boundary values of
various data types for test case generation.

For defining prestates, the object constellations from step 1 and the input
parameter values from step 2 need to be combined in step 3 because of two
reasons: The object constellations contain objects and object links, however,
their attribute values (object variables) are undefined. The input parameters
can address the attribute values of objects, so that these can be directly as-
signed to object variables. Furthermore, the input parameter values can also
contain objects which are already part of the object constellation computed
in step 1. That is why the results of step 1 and 2 are consolidated (see Figure
7.12) resulting in object constellations with concrete attribute values.

Figure 7.13 shows an example for the initialization of object variables in
step 3. Thereby, the parameter values generated in example in Figure 7.11

7.2. TEST DESIGN 113

Algorithm 3. initializeobjects(objectset, paramset) g j (j , p)
Initialize object constelleations using parameter values

1. foreach object in objectset do
2 foreach variable of object do2. foreach variable of object do
3. if variable in paramset then
4. variablevalue = paramvalue
5. return objectsetj

Figure 7.12: Algorithm for step 3

Figure 7.13: Example for step 3

are combined with the generated objects from example in Figure 7.9 resulting
in realistic objects.

As stated at the beginning of this section, the more realistic the prestate,
the more reliable are the test results. The prestates in approach 1 are artificial
because these are directly derived from the precondition of an operation.
That means, the prestates are created to fulfill the preconditions. It may
happen, that these prestates would never be created in real deployment of
the class under test. However, this approach enables a controlled invocation
of the operation under test and the evaluation of the state changing behavior
of the operation. To make the artificial prestate more realistic, in step 4,
we extent it based on the specifications in the class diagram. If an object in
the object constellation is specified in the class diagram to have further links
to other objects, these are completed in the object constellation (see Figure

114 CHAPTER 7. UNIT TESTING

Algorithm 4. completeobjectsconstelllations(objectset, classdiagram)
Initialize object constelleations using parameter values

1 f h bj t i bj t t d1. foreach object in objectset do
2. class = type of object;
3. foreach association of class do
4 if association not in object links then4. if association not in object.links then
5. newobject = create association.targetClass
6. objectset.add(newobject)
7 return objectset7. return objectset

W i t it t ib t t tWas ist mit atribute wetrten
und velinkung von objekten?

Figure 7.14: Algorithm for step 4

Figure 7.15: Example for step 4

7.14).
Figure 7.15 shows an example for the extension of object constellation in

step 4. Since the corresponding Visual Contract is typed by the class diagram
shown in Figure 4.4, the objects are checked for further links. Thereby, the
object book of class Book is extended by an object pr of class Person.

Having derived object constellations from preconditions and completed
them based on the class diagram and using the generated input parameter
values, in step 5 we combine these to give individual test cases each of which
contains a prestate and a list of parameter values for the test invocation (see
Figure 7.16). The prestates fulfill the specifications given by the precondi-
tions and by the class diagram. Figure 7.17 shows an example joining the
prestate from Figure 7.15 and the input parameters from Figure 7.11.

7.2. TEST DESIGN 115

Algorithm 5. generatetestcases(objectset, paramset)
Combine objects and parameters giving test casesCombine objects and parameters giving test cases

1. testcases = {}
2. foreach object in objectset do
3. foreach param in paramset do
4. objectstate = combine(object, param)
5. testcases.add(objectstate)
6 t t t6. return testcases

Figure 7.16: Algorithm for step 5

Figure 7.17: Example for step 5

116 CHAPTER 7. UNIT TESTING
Natural state

op1()
op2()

...
opx()

ATest driver

state space of :A

op1()

initial state

prestate

op1()
op2()...

opx()

poststate

b) setting prestate naturally
Figure 7.18: Setting the prestate for testing op

x

naturally

7.2.2 Approach 2: Natural Prestate

In approach 1, the prestate is generated artificially based on the preconditions
of a Visual Contract in order to set the class under test into a testable state.
This can be a first validation step of the quality assurance where the im-
plemented classes are tested just after their implementation using controlled
prestates. However, in real deployment, objects of classes always interact
with other objects and constitute more complex behavior. During this inter-
action, system states changes as an e↵ect of invocation of various operations.
Thus, in order to test class operations in a realistic manner, their prestates
must be set also in a natural way.

For this purpose, in this section we introduce a second approach where
the prestate is computed by the invocation of various operations. Thereby,
the order in which the operations are invoked is crucial for setting a required
prestate. Figure 7.18 illustrates the state space of the class A and the
invocation of its operations in a particular sequence starting from an ini-

tial state , such that the class under test is set step-by-step into a required

7.2. TEST DESIGN 117

prestate . From the prestate on, the operation under test op
x

can be invoked
and the poststate can be checked for conformance with the Visual Con-

tract , which specifies the operation under test (cf. Chapter 6). We call the
particular sequence of operations for setting the prestate a preamble . The
computation of the preamble requires a formal analysis of the state space of
the class under test and the reachability of the prestate.

For computing the state space and the preamble, we use techniques of
graph transformations [Hec06] and model checking [KR06]. The the-
ory of graph transformations enables a formal definition of semantics of Vi-
sual Contracts for specifying the state changing behavior of class operations
(cf. Chapter 4). Having these specifications, we use model checking tech-
niques to explore the state space of a class and look for a path from the
initial state to the prestate. If such a path exists, it represents the preamble
for setting the prestate.

In the terminology of graph transformations, the preamble computation
can be explained as follows (see also Table 7.2): A graph transition rule

transforms a source graph into a target graph . Given an initial graph

and a set of graph transition rules, a graph transition system can be
computed which comprises a possibly infinite set of graphs. cpunterexample
reachability analysis, a graph transition sequence can be computed which
transforms an initial graph step-by-step into a required source graph. The
graph transition sequence represents the order of operations to be invoked
for setting the prestate. We call this sequence of operations the preamble.

Having roughly explained how graph transformations can map the con-
cepts of Unit testing and how preambles can be computed, in Figure 7.19
we illustrate the overall approach which we explain now in detail. In step
1, starting with an initial state and a set of operation specifications given
by Visual Contracts, a state space is computed. Every state in this state

Unit testing Graph transformations

state space graph transition system
initial state initial graph

Visual contract specification graph transition rule
operation invocation graph transition

preamble graph transition sequence
prestate source graph
poststate target graph

Table 7.2: Mapping between concepts of Unit testing and Graph transfor-
mations

118 CHAPTER 7. UNIT TESTING

vc op(in param):out paramvc op(in param):out param

pre post

vc op(in param):out param

pre post

initial state vc op(in param):out param

pre postobjects

1

state space

states transitions

prestate

objects

2
blpreamble

operations

Figure 7.19: Procedure for generating test cases

space, which is reachable from the initial state by state transitions as a re-
sult of invocation of class operations, is a natural state. In step 2, we try to
compute a preamble for setting the class under test into a controlled state.
First, a test case containing a prestate and input parameter values for test
invocation are generated using the techniques introduced in approach 1 (cf.
Section 7.2.1). Then, by checking the reachability of a prestate in the state
space, we try to compute a preamble which transforms the initial state to
the required prestate. If such a preamble cannot be computed, the required
prestate is not reachable, thus not feasible for testing purposes. In this case,
another prestate should be computed using the techniques of approach 1.

Step 1: Computation of state space

Since the objects states are graphs, the state space means a set of graphs
which results from graph transformations. Having defined the graph trans-
formation rules and graph transitions in Chapter 4, we introduce in this
section further definitions based on [Roz97, KR06, Han08].

7.2. TEST DESIGN 119

Figure 7.20: Example for transformation rule 1: cartAdd

Definition 5 (Graph production system) A graph production system
is a tupel GPS = hI, Ri where I is a graph representing an initial state
and R is a set of graph transformation rules.

Figures 7.20 and 7.21 illustrate examples for a graph transformation rule
and for an initial state. Figure 7.20 shows how a Visual Contract can be
formalized as a visual graph transformation rule for model checker GROOVE
[KR06]. Thereby, the objects to be created in postcondition are colored green,
the objects to be deleted are colored blue. Objects which are not allowed to
exist (Negative application conditions - NAC) are colored red. Figure 7.21
illustrates an initial state s0 containing an instance of class OnlineShop and
concrete parameter values for the input parameters of operation cartAdd

Definition 6 (Graph transition sequence) A sequence of graph trans-
formations which begins with a start state and ends with a concrete state
from S is represented by G0)

r0 G1)
r1 ...)

rn�1 G
n

where the transfor-
mation rules are r0...rn�1.

120 CHAPTER 7. UNIT TESTING

sinputsinput

s0

Figure 7.21: Example for initial state

Definition 7 (State space) Given a GPS, the state space S containing
all reachable states from an initial state I over the graph transitions by a
set of transformation rules R is represented by S = {G|G 2 G : I)⇤

R

G}.

Definition 8 (Graph transition system) The graph transition system
GTS = hS,!, Ii generated by a graph production system GPS = hI, Ri
consists of a set S of states, which are actually graphs; a transition relation
!✓ S ⇥ R ⇥ [G ! G] ⇥ S, such that hG, r,m,Hi 2! i↵ there is a rule
application G

r,m��! H 0 with H 0 isomorphic to H; and an initial state I 2 S
[KR06].

Figure 7.22 illustrates how the state space of the class under test is ex-
plored and the graph transition system is computed. Thereby, starting from
a initial state s0, we apply the Visual contracts of class operations as graph
transformation rules. The initials state s0 is set by any constructor operation.
Starting from the s0, in each step, a set of Visual contracts (vc1...vcn) are
applicable on the current state. The Visual contracts, which are applicable
in step k, are defined as vck

nk
.

Figure 7.23 shows an illustrated example how a graph transition system
can be computed by the GROOVE tool for the OnlineShop example. Starting
with an initial state s0 (see Figure 7.21), by applying graph transformation
rules (see Figure 7.20), possible states and and state transition are computed.

7.2. TEST DESIGN 121

1
1vc

0s
1
2vc

1
1n

vc

1n
s1s 2s ...

..2vc

ts us

......2
2vc

1vc

...

... ...
Figure 7.22: GTS generated by Visual Contracts as production rules

Step 2: Computation of preamble

In order to compute the preamble for setting a controlled prestate in a GTS,
we apply model checking for graph transformations as defined in [KR06,
Han08]. This model checking technique is integrated into our testing ap-
proach using the corresponding GROOVE tool [GMR+12] which will be ex-
plained later in chapter 10. In this section, we explain how the preamble
found in the GTS can be described formally and how it maps to our testing
concepts.

In [KR06], the GTS is transformed into a Kripke structure, which is
comparable to a finite state machine, however without an input and an output
alphabet. The states of the Kripke structure are assigned a set of graph
transformation rules which are applicable on that state [KR06]. For the
Kripke structure, system properties are formulated in temporal logic which
are then checked by exploring the state space using specific graph traversal
algorithms [KR06].

In our model checking approach, we define the system properties using
Computation Tree Logic (CTL) [BBF+10]. We di↵erentiate between the
following three classes of properties regarding their art of formulating the
property: Reachability properties define system properties, saying that some
state of the system with a desired property is reachable. A reachability
property holds, if there is some execution of a system including a state where
the property holds. Liveness properties assure that a system executes as
expected or that “something good will eventually happen”. Safety properties

122 CHAPTER 7. UNIT TESTING

4.3 Automatische Zustandssuche 71

Zustand erreichbar ist. Die markierten Gegenbeispiele im LTS bilden also
gerade Pfade vom Startzustand zu den gesuchten Zuständen (vgl. Beispiel
in Abbildung 4.18).

Abbildung 4.18: LTS mit markierten Gegenbeispielen

Die Kanten dieser Pfade stehen dabei für die eingesetzten Graphtransfor-
mationen, anhand derer die zugehörigen Sequenzen von Methoden gebildet
werden können, wobei der Match des Aufrufknotens einer Regel die Para-
meterwerte für den jeweiligen Methodenaufruf liefert (vgl. Beispiel in Ab-
bildung 4.19).

Abbildung 4.19: Match des Aufrufknotens der Regel cartCreate

Auf diese Art und Weise lassen sich somit also automatisch mithilfe von
Groove Aufrufsequenzen erstellen, die ein Software-System aus dem In-

Figure 7.23: Example for GTS for OnlineShop

on the other hand ensure that the system does not enter an undesired state
or “that something bad will not happen” [BBF+10, Gül05].

In order to find a sequence of graph transformation rules for transforming
an initial state into a required prestate, we formulate the following reachabil-
ity property: “Does any path of graph transitions starting at a given initial
state exist, which ends with a state of GTS where the required prestate is
a subset of that state?” This property can be formulated in CTL as EF�.
Thereby, � is a state property which represents the required prestate. The
temporal operator F states that the state property � will eventually hold on a
given path at some state. The path quantifier E states that there must exist
at least one path starting from the initial state, on which the path property
F� holds. This property is checked on the Kripke structure of GTS K

GTS

.
The model checking question is represented formally as K

GTS

|= ¬EF�.
If such a path exists in GTS, the model checking will return a yes as a

result. However, we are not only interested in finding out whether such a
path exists or not, we are also interested to know how this path looks like,
i.e. we want to know which transitions are contained in this path. For that
purpose, we use the facility of model checking to produce counterexamples,
in case of a not fulfilled property. Therefore, we negate our reachability

7.2. TEST DESIGN 123

1
1vc

0s
1
2vc

1
1n

vc

1n
s1s 2s ...

..

2
2
1vc

ts us
...

......2
2vc

1

3...

xs

3
3vc...

x

Figure 7.24: Operation invocation sequence representing the preamble

property resulting in a safety property ¬EF� which is equivalent to AG¬�.
This property includes the temporal operator G and the path quantifier A
and has the following semantic: “Is it true, that there is no state which is
the same as the prestate represented as � in all possible paths of GTS?” The
model checking question K

GTS

|= AG¬� can either return a yes, stating that
the required prestate does not exist or it is not reachable. Or it can answer
no, i.e. that the prestate does exist. In the later case, the model checking
returns a counterexample which represents a path where this property does
not hold. In other words, model checking returns a path which contains
transitions from the initial state to the required prestate. Using this trick,
we can formally define the preamble as follows.

Definition 9 (Preamble) A preamble is the result of model checking of
the reachability property. It is represented by a sequence of operation in-
vocations G0)

op0 G1)
op1 ...)

opn�1 G
n

where the transformation rules
op0...opn�1 represent the operations.

Figure 7.24 illustrates the exploration of the preamble for the following
testing scenario: We are looking for a preamble for testing the operation op3
which is specified by the Visual contract vc3. In order to be able to invoke
op3, we have to set the object under test into a controlled state where the
precondition of op3 is fulfilled. Therefore, we derive an object constellation

124 CHAPTER 7. UNIT TESTING

sinputsinput

s0

Figure 7.25: Target graph

s
u

from the precondition of vc3 using test case generation techniques from
approach 1 (cf. section 7.2.1). This object constellation is the prestate we are
looking for. For that, we formulate the safety property is K

GTS

|= AG¬s
u

.
Since this state is contained in the state space of GTS and it is reachable from
the initial state, the model checker produces a counterexample containing the
transitions s0)

vc

1
1
s1)

vc

2
2
s
u

(see the solid green line).

Having found the preamble the object under test can be set into a prestate
from where the operation under test op3 can be invoked (see the dashed blue
line). This invocation will also lead to a new state s

x

. Our test target in this
approach is to check this new state for conformance with the postcondition
of vc3.

Figure 7.25 shows an example for a target graph s
i

nput which can be
used as a state property. If this state property is model checked on the GTS
from Figure 7.23, a counterexample is computed which represents the path
on which the state property is not fulfilled. This counterexample can then
be used as a preamble for testing as shown in Figure 7.26.

7.3. TEST IMPLEMENTATION 125

Figure 7.26: Example for preamble

7.3 Test Implementation

In the last section Test Design, we have described our approach to systemat-
ically derive test cases for state-based testing for classes. The test target is
to check the conformance of a class operation with its Visual contract spec-
ification, i.e. to validate that the implementation of an operation changes
the state of the object as specified by the pre- and postconditions. For that
test target, the object is set into a controlled state which conforms to the
precondition of the Visual contract and is executed with input parameters.
After the execution, if the return values and the state changes conform to
the postcondition of the Visual contract, the implementation succeeds the
test.

As we aim at the automation of our testing approach, we define in this
section how the above described test scenario can be implemented using test
scripts. In the abstract test script shown in Figure 6.9, we have defined three
main parts: (1) setting the prestate, (2) invoking the operation under test,
(3) setting test verdict after checking poststate. In the last section, we have
described how the prestate can be computed. Here we describe how a test
script can be implemented such that the computed prestate is set during
the test execution. The implementations di↵er according to the test design
approaches for artificial and natural prestates as described in sections 7.2.1
and 7.2.2.

Figure 7.27 shows in pseudo code how the abstract step for setting the

126 CHAPTER 7. UNIT TESTING

Artificial state

create objects;create objects;create objects;
initialize object variables;
link objects;

create objects;
initialize object variables;
link objects;

Figure 7.27: Test implementation for artificial prestate

prestate can be refined for artificial prestates. Thereby, the objects of an ar-
tificial prestate are directly generated by object constructors, their variables
are assigned with concrete values and they are linked together resulting in a
prestate from where on the operation under test can be invoked.

In the second approach, setting the natural prestate requires a more com-
prehensive way of creating and linking the objects. The preamble computed
in the last section is transformed into script code. As defined in Definition 9,
the preamble is a sequence of operation calls G0)

op0 G1)
op1 ...)

opn�1 Gn

which starts with an initial state G0 and transforms it at each operation call
op

x

into a new state until the end state G
n

is reached. As shown in Figure
7.28 these operation calls are implemented in pseudo code.

Natural state

create object under test;create object under test;create object under test;
call object:operationX
call object:operationY
...

create object under test;
call object:operationX
call object:operationY
.........

Figure 7.28: Test implementation for natural prestate

7.4 Test Execution

Having conceptually sketched the implementation of a test script, in this
section we explain the execution of test scripts. This activity contains the
assertion checks for the pre- and postconditions. In Figure 6.11 of chapter 6,
using a sequence diagram we have shown the interaction of a test driver and
the object under test during the execution of the test script. This interaction

7.4. TEST EXECUTION 127

:Test driver :A

create objects;

new A()

initialize object variables;

link objects;

...

Figure 7.29: Test execution using artificial prestate

:Test driver :A

new A()

opY (param)

opX (param)

...

Figure 7.30: Test execution using natural prestate

comprises two main steps: First, the operation sequence determined by the
test case generation must be executed in order to set prestate is set. Second,
the operation under test is called with the test input parameters generated
during the test case design. The sequence diagram shows also the invocation
of embedded assertions for pre- and postcondition during the test execution.

Figures 7.27 and 7.28 shows the refinement of setting the prestate ac-
cording to our two approaches. While the test driver one by one creates and
links the artificial objects computed during test design in the first approach,
for the second approach the test driver invokes the operations from the com-
puted preamble one after another which should set the object state to the
required prestate.

The embedded assertions lead to the runtime behavior as shown in Fig-
ure 7.31. When the operation under test is called, a precondition check
method evaluates the method’s precondition and throws a precondition vi-
olation exception if it does not hold. If the precondition holds, then the
original, manually implemented operation is invoked. After the execution of

128 CHAPTER 7. UNIT TESTING

alt

Test driver :A

normal return

invoke operation under test

exception

assert precondition

throw
precondition error

execute method under
test

assert postcondition

throw
postcondition error

return normally

system
state sk

system
state sk+1

[precondition holds]

[postcondition holds]
[else]

[else]

set prestate

Figure 7.31: Assertion checking during test execution

the original operation, a postcondition check method evaluates the postcon-
dition and throws a postcondition violation exception if it does not hold. If
the embedded assertions throw an exception then the implementation does
not behave according to its specification. Thus, we have found an error.

Chapter 8

Integration Testing

The last chapter dealt with Visual Contract-based unit testing, where classes
and their operations are tested against their specification given by Visual
Contracts. Thereby, we assumed that the classes under tests are 1) either
independent and do not call other classes, or 2) they call classes, which
are already quality assured, or 3) the classes to call are simulated by mock
objects. After all classes have been tested during unit testing, in the next
test level, the classes have to be tested in integration, which means that the
mock objects are replaced with real classes and real interactions.

In this chapter, we show how subsystem specifications with Visual Con-
tracts can support planning and conducting integration testing. Thereby, we
analyze the Visual Contract specifications of subsystems and their classes
in order to compute the dependencies between them and to compute ap-
propriate test plans. In section 8.2, the test target is not to test individual
components as in unit testing. The new test target is to test the interaction
of components and their interfaces. For the test implementation and exe-
cution, test scripts must be derived from test cases with respect to the test
plan which aims at reducing the need for mock objects or simulators. There-
fore, we introduce an algorithm to compute the test order. In section 8.3, we
describe the test environment and the configuration of embedded assertions
for adapting the degree of monitoring of subsystem interfaces, which is the
main contribution of our integration testing approach.

test objects subsystems and classes
test target conformance of interfaces to Visual contracts
test strategy topology sorting, monitoring levels

Table 8.1: Overview Integration Testing

129

130 CHAPTER 8. INTEGRATION TESTING

CBT

Integration Testing

CBT

T

prestates/preambles

Tester

Test cases Test scripts
test implementation

Test plan
class

test executiontest design
class
dependencies

ComponentsSubsystem
specification

Component
specification

Sub-
systems

Designer
monitoring

levelstop-down/
bottom up

MBSD Programmer
bottom-up

Figure 8.1: Integration Testing Process

8.1 Development Scenario

After the quality assurance of classes and components during Unit testing,
these can be integrated into subsystems to build more complex computational
units. As we have explained in chapter 6, the assembly of subsystems and
the subsystem interfaces are specified during the left branch of the V-model.
Visual Contracts are used for specifying the required and provided interfaces
of subsystems (cf. Figure 6.2). The task of developers is to integrate the im-
plemented classes to subsystems such that the Visual Contract specifications
of subsystems are fulfilled. In order to assure that the integrated subsystems
will be tested against the Visual Contracts.

Figure 8.1 extends the Unit testing process from last chapter by subsys-
tems and their specifications in the lower box (MBSD). First, the designer
specifies the architecture of the components assembly and defines interfaces
between the components. As exemplary illustrated in Figure 8.2, a subsystem

8.1. DEVELOPMENT SCENARIO 131

Subsys.

A

A A

B

B1

Subsys.

A1 A2

D

D D
C

D1 D2

Figure 8.2: Exemplary Subsystem model

can contain other components which again are subsystems containing various
components (e.g. A,B and D). Also third party components can be involved
where the Designer or Programmer have no insight into the component (e.g.
C).

During the assembled execution, data is interchanged between classes of
subsystems over their interfaces. As illustrated in Figure 8.3, a caller class
A invokes an operation from a callee class B over the provided interface of
B. Dependent on the state of the callee class and the input parameters of
the caller class, it conducts computations and makes changes in its state
and returns output values. In our design phase for subsystems and their
interfaces, we specify only state changes which are visible at the interface
of the components. These are specified using Visual Contracts both at the
provided and required interfaces.

The semantics of a Visual Contract specification for a provided interface
is, that the operations at that interface can be invoked, if the objects and
their variables in input parameters of caller fulfill the preconditions of the
provided interface of callee. The postcondition specifies that the callee guar-
antees that the objects and their variables in the output parameters fulfill the
postconditions. The semantics of a Visual Contract for a required interface
is, that the caller components assure the objects and their variables as input
parameters as specified in the precondition by invoking an operation from
a callee component. As a result of the operation invocation, it requires at

132 CHAPTER 8. INTEGRATION TESTING

Apre Bprepre preAp
post

Bp
post

p
post

p
post

Figure 8.3: Interface specification using Visual Contracts

least the objects in the return values as specified in the postcondition. If we
consider two Visual Contract specifications for a required interface of com-
ponent A and for a provided interface of component B which are connected
together, the following relation must hold between these two specifications
(see also [Loh06]): The preconditions of the callee component B must be a
subset of the preconditions of the caller component A, and the postconditions
of the caller component A must be subset of the postconditions of the callee
component B. In other words, the callee component can get more inputs
that it requires and it can return more outputs than the caller component
expects.

For the integration phase, besides the architecture of the subsystems and
components and their interface specifications, also the order of their inte-
gration is of big importance. The order of integration is relevant in case
of availability of components to be integrated and in case of dependencies
between components. Thereby, two strategies can be followed for the inte-
gration of components to subsystems: bottom-up integration and top-down
integration.

Bottom-up integration starts with components which have less dependen-
cies and thus reside on the bottom of a call hierarchy. These components are
functionally self-contained, which means that they do not require operations
from other classes. If such a component is implemented and tested success-
fully, it can be used during the integration of other components which reside
higher on the call hierarchy. The disadvantage of bottom-up integration is
that the overall functionality of the subsystem will not be available until all
other components on the top of the call hierarchy are also integrated.

Top-down integration means, that integration activity starts with compo-

8.2. TEST DESIGN 133

Sys.

Subsys.
Comp. Comp.

Subsys.
Comp.

Subsys.
C C

Subsys.
Comp. Comp.

Integration error

[based on Winter et al. Der Integrationstest, 2013]

Figure 8.4: Fault model component integration (based on [WEMS+12])

nents which reside on the top of the call hierarchy and which have the most
dependencies to other components. In this strategy, the overall functionality
of the subsystem can be invoked over the interface of the already existing
components on the top of the call hierarchy. However, if lower components
do not exist yet or if these are not quality assured yet, the subsystem will
require some mocks and stubs to simulate the functionality of the missing
components.

During the assembly of components, integration errors can be induced as
illustrated in Figure 8.4. Since we assume that the individual components
are already tested during Unit testing, now we focus on the communication
and data interchange between the components to be integrated. Thereby,
the exchange of information among the operation invocations are checked for
completeness and for semantic and syntactical correctness.

8.2 Test Design

Chapter 7 dealt with testing of components and classes using unit testing
techniques. Thereby test cases are derived from Visual Contracts and the
state changing behavior of low level software components are tested. If errors
are detected, they have to be fixed before routing them to the next devel-
opment phase. However, if no errors are detected, the question remains,
whether the tested components also function correctly if they are executed

134 CHAPTER 8. INTEGRATION TESTING

in integration with other components.
The issue in integration testing is to validate the conformance of data

interchange between components for conformance with the Visual Contracts
for provided and required interfaces. As illustrated in the upper box (CBT)
of Figure 8.1, three main concepts are crucial for our integration testing
process: 1) the order in which the components are tested has to be defined,
2) test cases for invoking interface operations have to be derived, 3) during
test execution, the data interchange has to be monitored by the embedded
assertions. In this section, we will describe how the test order can be defined
by considering the component dependencies and how test cases can be derived
from Visual Contracts. The test execution will the topic of next section.

Since we deal with components with di↵erent size, integration testing
becomes di↵erent meanings. Winter et al. define four types of integration
testing in [WEMS+12] with respect to the granularity of software components
to be integrated:

• Member integration testing

• Class and module integration testing

• Components and subsystem integration testing

• System integration testing

Applying to our exemplary components assembly in Figure 8.2, the mem-
ber integration testing addresses the integration of the member classes A1 �
A2 and D1 � D2. Class and module integration addresses the integration
of classes A,B,C and D. Components and subsystem integration would ad-
dress the integration of Subsys. with other subsystem. Even if the techniques
described in this chapter can also be applied to system integration testing,
to keep it simple, we will not go further into that type.

Besides the granularity of software artifacts to be integrated, also the or-
der of their integration is of big relevance. As explained in the last section,
the two integration strategies bottom-up and top-down address the availabil-
ity of components and the dependency between them. While the availability
is an issue of test management where the components can be integrated and
tested according a time schedule, the dependency between components must
be detected by formal analysis. This can be done by topology sorting as
proposed by many testing experts [Bin99, Bor09, WEMS+12].

Borner summarizes in his thesis [Bor09] many techniques for defining the
order of integration. We have adapted a graph based technique to our con-
text, where we consider each integrable component as a graph node. Starting

8.2. TEST DESIGN 135

Test plan
(Bottom-up)

A
Test plan
(Top-down)

D2
D1
D
CD

C

B1

B A1

A2

A
A1
A2
B

D1

C
B1
B
A2
A1

1 2 B
B1
C
D
D1

D2

A1
A

D1
D2

a) b) c)a) b) c)

Figure 8.5: a) Topology sorting, Test plan for b) bottom-up and c) top-down
integration

with callee components with no required interfaces, we stepwise identify the
caller components and sort these hierarchically such that we end up with a
topology sorting [Kah62]. Thereby, we assume that the components do not
have cycles in their dependency relations. Figure 8.5-a show the topology
sorting of the components in the Figure 8.2. Thereby, the components A2,
B1 and D2 are callee classes with only provided interface. Based on this sort-
ing, we can now define concrete test plans for integration strategies top-down
(Figure 8.5-c) and bottom-up (Figure 8.5-b).

In the bottom-up strategy, testing activities begin with the components
which have no required interfaces, i.e. which do not depend on other com-
ponents. In our example, the bottom-up integration testing can start either
with A2, B1 or D2. Then, the next component in the topology order will
be integrated and tested. One concrete order beginning with D2 and end-
ing with A is shown in Figure 8.5-b. The advantage of bottom-up strategy
is that the components under test requires no mocks or stubs during test-
ing, because the topology sorting assures that the required functionalities
of a component are available and already tested, thus these can directly be
involved in the test environment. Besides its advantages, bottom-up integra-
tion always needs to implement a test driver for each new component to be
integrated.

Top-down integration starts with testing top-level caller components which
invoke other component operations over their provided interfaces (Figure 8.5-
c). Thereby, at each integration step, the top-level component acts as a test

136 CHAPTER 8. INTEGRATION TESTING

Top‐down vs. Bottom‐up
top-down

A pre

Bpre
post

9 ?

(Test driver) post

Mock or Stubs
?

bottom up

Bpre

bottom-up

? 9

Apre
post

B
post

Test driver pre
post

9
Cpre

post

9

?

Figure 8.6: Bottom-up integration testing

driver for other components. This makes top-down integration more e�cient
compared with bottom-up integration, because no additional test drivers are
required. However, if some lower components are missing in the call hierar-
chy, these have to be simulated by mock objects or simulators, which is the
main disadvantage of the top-down integration.

8.3 Test Implementation and Execution

Independent of the integration strategy, concrete test cases for the invocation
of the interface operations are derived using the same techniques as in Unit
Testing. We rather prefer artificial prestates for integration testing in order
to strictly control the prestate for the operation under test. In the natural
prestate approach, preambles could be required which contain operation in-
vocations which are not part of the test plan according to the integration
strategy.

The test scripts for integration testing are similar to those of unit testing,
where first a prestate is set, an operation under test is invoked and according
to the assertions checks the test verdict is set. However, the di↵erence of
integration testing lies in the test environment and the test execution. The
test environment does not only consist of the component under test and a test
driver as in unit testing, it contains more than one component, if required
the test driver and mock objects or stubs for simulating callee components.

Figure 8.6 shows the test environment for bottom-up integration testing.
Thereby, we assume that the most low-level components in the topology
sorting B and C are already tested during unit testing. Thus the test target
here is first to test the functions of component A in assembly with the other

8.3. TEST IMPLEMENTATION AND EXECUTION 137
Top‐down vs. Bottom‐up

top-down

A pre

Bpre
post

9 ?

(Test driver) post

Mock or Stubs
?

bottom up

Bpre

bottom-up

? 9

Apre
post

B
post

Test driver pre
post

9
Cpre

post

9

?

Figure 8.7: Top-down integration testing

two components and second to test the data interchange between A and B,
and between A and C. In order to test A, a test driver invokes operation at
the provided interface of A. Test cases for those invocations can be created
based on the provided Visual Contracts by using techniques from unit testing.

In top-down integration, testing starts with top-level components. As ex-
plained in the last section, the top-down integration requires the simulation
of low-level components in the call hierarchy if these are missing. As shown
in Figure 8.7, we assume that the top-level components are already tested
roughly during unit testing, however only by simulating all component de-
pendencies. This can be done by traditional testing artifacts stubs and mock
objects. Fowler defines these two artifacts in [Fow07] as follows:

“Stubs provide canned answers to calls made during the test,
usually not responding at all to anything outside what’s pro-
grammed in for the test.

Mocks are ... objects pre-programmed with expectations which
form a specification of the calls they are expected to receive.”

By using Stubs or Mocks, we can test the components A and B in assem-
bly. Thereby, we can instrument the component A as a test driver for the
component B. Test cases are derived on the basis of provided Visual Con-
tracts of component B. Also at this integration strategy, we are interested
in testing the data interchange between the components.

In order to monitor the data interchange, we instrument the embedded
assertions for interaction monitoring. Even if we cannot monitor the whole
transfer of data between two components, we can monitor the interfaces

138 CHAPTER 8. INTEGRATION TESTING

Level of Monitoring

Apre BpreT t d i pre) Apre
post

Bpre
post

Test driver pre
posta)

Apre
post

Bpre
post

Test driver pre
postb)

Apre
post

Bpre
post

Test driver pre
postc)

Adapterp

Figure 8.8: Levels of monitoring

locally, such that the incoming and outgoing data can be checked for con-
formance with Visual Contract specifications. For that, we adapt the model
driven monitoring technique proposed by Lohmann [LES06] (cf. chapter 4).

Figure 8.8 shows di↵erent levels of monitoring which can be realized by
the embedded assertions generated from Visual Contracts. Since monitoring
can negatively e↵ect the performance of the test execution, the embedded
assertions can be switched on and o↵. If testers are interested only in the
functional correctness of a component A as observed at the provided inter-
faces of A, the embedded assertions for the provided contracts of A can be
switched on, while other assertions of interfaces of A and B can be switched
o↵ (see a in the Figure). The most powerful monitoring level is illustrated
in scenario c where all embedded assertions are activated for monitoring ev-
ery provided and required interface. This scenario is especially relevant for
checking the correctness of the interaction if Adapters are used between the
two components, because the conversion of adapters can be error-prone.

Figures 8.9 and 8.10 illustrate the monitoring activity of embedded asser-
tions in case of monitoring levels 2 and 3 correspondingly. Both interactions

8.3. TEST IMPLEMENTATION AND EXECUTION 139

begin with setting the prestate. After the execution of operation under test
op1 with input parameters, first the embedded assertions for preconditions
of op1 activated. The most outer alternate box specifies the further progress
in case of the fulfillment or not fulfillment of the preconditions. To begin
with the the simple case, if the precondition is not fulfilled, the object :A
returns with a precondition exception as shown in the lower half and the
test execution ends with an erroneous verdict (cf. chapter 6). If however,
the preconditions are fulfilled, the test execution continues with further op-
eration invocations of object :A on object :B. If object :B returns with an
exceptional case, the exception will directly forwarded to the test driver by
object :A which again leads to an erroneous verdict. Only if the object :B
returns normally, the postcondition assertions of object :A becomes relevant
for defining the test result. If the postcondition of :A is fulfilled, it returns
normally and the verdict is set to pass. In case of a postcondition exception,
that means that the return data of :B does not conform to the expectations
of :A. Thus the verdict is set to fail.

In monitoring level 3, in addition to the assertion checks for provided Vi-
sual Contracts, also the assertion for required Visual Contracts are executed
during testing. As explained in Figure 6.5 in chapter 6, for the required Vi-
sual Contracts, delegation operations are generated. Thus, in this monitoring
level, also the assertion for delegated operations are executed.

140 CHAPTER 8. INTEGRATION TESTING

:Testdriver :A :B

op1(param)

assert_op1 _pre()

set initial_state

…alt op1.pre

assert_op2 _pre()

op2()
[op1.pre == true]

…

assert_op2 _post()

alt op2.pre

[op2.pre == true]

precondition exception

normal_return

postcondition_exception

alt op2.post

[op2.post == false]

[op2.post == true]

[f l]

assert_op1 _post()

alt op1.post

precondition_exception[op2.pre == false]

alt op1.post

normal_return

postcondition_exception
[op1.post == false]

[op1.post == true]

precondition_exception
[op1.pre == false]

Figure 8.9: Level 2 monitoring

8.3. TEST IMPLEMENTATION AND EXECUTION 141

:Testdriver :A :B

set initial_state

op1(param)

assert_op1 _pre()

…alt op1.pre

assert delegate op pre()
[op1.pre == true]

assert_op2 _pre()

...

op2()

alt op2.pre

alt delegate_op2.pre

assert_delegate_op2 _pre()

[delegate_op2.pre == true]

assert_op2 _post()

normal_return

postcondition_exception

alt op2.post

[op2.post == false]

[op2.post == true]

[op2.pre == true]

precondition_exception

assert_delegate_op2 _post()

[op2.pre == false]

normal_returnalt delegate_op2.post

t t()

postcondition_exception

precondition_exception
[delegate_op2.pre == false]

[delegate_op2.post == true]

[delegate_op2.post == false]

assert_op1 _post()

alt op1.post

normal_return

postcondition_exception
[op1.post == false]

[op1.post == true]

precondition_exception[op1.pre == false]

Figure 8.10: Level 3 monitoring

142 CHAPTER 8. INTEGRATION TESTING

Chapter 9

System Testing

The chapters 7 and 8 have dealt with contract-based testing of low-level
software components, e.g. classes, modules and subsystems. Thereby, test
cases are derived from low-level Visual Contracts. In these test levels, because
testing activities start directly after the development activities, the semantic
distance between the Visual Contracts and the implemented software is low.
Thus, the object states specified by the test cases can directly be transformed
into program code and used for testing.

On the test level system testing, the software under test is a composition
of the tested subsystems. The composite system is tested against the Use case
specifications to show that it fulfills the functional requirements. However,
the Use cases are created generally very early in the development process
and they do not cover technical details about how the abstract concepts are
to be implemented later in the development process. Thus, the semantic gap
between the Use cases and the implemented software is big. Furthermore,
the informal Use case descriptions must be formalized for a systematic and
automated test design.

This chapter shows at first, how the informal Use case specifications can
be formalized using Visual Contracts and used for a systematic and auto-
mated derivation of test cases. Then, we show how abstract test cases can
be transformed into executable test scripts by using model transformations
in order to bridge the gap between abstract requirements and the implemen-
tation.

test objects composite system
test target conformance of composite system to Use cases
test strategy refinement of test cases by model transformations

Table 9.1: Overview Integration Testing

143

144 CHAPTER 9. SYSTEM TESTING

CBT

System Testing
f d f

TesterTest model

formalization
of Use Cases

refinement
of objects

adapters for
setting/checking
objects

Tester

Concrete
Test cases Test scripts

test implementation

Test model

Abstract
Test cases

test execution
test design

Refinement
specification Adapter

ComponentsSystem
specification

SystemSubsystem
specification

Component
specification

Sub-
systems

MBSD ProgrammerDesigner

Figure 9.1: System Testing Process

9.1 Development Scenario

Every software development process begins with specifying the system re-
quirements from the end users point of view. In UML-based development
processes, requirements specification is typically done by using the Use Case
modeling. The system analyst captures the functional requirements using a
Use Case template [Coc01] including e.g. the preconditions, Use Case steps
and postconditions. These elements in a Use Case specification are typically
formulated in natural language, such that all stakeholders incl. customer, de-
signer, developers and testers can understand them. From these Use Cases,
team members derive their own artifacts, e.g. design documents, test cases
as shown in our general approach in Figure 6.1.

The usage of natural language for Use Case specification has both advan-
tages and disadvantages. The biggest advantages are the readability, under-
standability and editability of Use Cases by all stakeholders. No special skills
or comprehensive trainings are required for reading and editing Use Cases.
However, the disadvantage of Use Cases in natural language is, that they can
be ambiguous and thus lead to misunderstandings between the requirements
analysts and the members of design team and test team. By formalizing

9.1. DEVELOPMENT SCENARIO 145

Use Cases, system requirements can be specified in a more consistent and
clear way. The following citation from Hsia et al. [HKS97] addresses the
role of formalism for requirement specifications, not only for creating better
specifications, but also enabling automation of some activities:

“Researchers have shown that using formal specification lan-
guages in the requirements phase can reduce the e↵ort in accep-
tance testing because it helps one to generate test cases automati-
cally [Ferguson and Korel 1996] [FK96]. However, formalisms are
often used at the expense of communication between customers
and developers, since most customers are not well versed in for-
mal specification languages. This approach may be useful and
e↵ective in certain domain specific applications as it can facili-
tate the automation of many activities required in the software
development process. However, the prospect of popularizing this
approach is probably not very bright.” [HKS97]

In our model-based development process as illustrated in Figure 9.1, we
require modeling languages which are both understandable for communica-
tion purposes and formal for automation purposes. The central development
artifact we deal with in this chapter is the System specification (see lower box)
which contains Use Cases for functional specification. The following infor-
mation must be specified to capture functionalities using Use Cases [Coc01]:

• The activation of the functionality (trigger)

• The requirements of the functionality (preconditions)

• Standard and alternative scenarios for the functionality (steps)

Online Shop

Login
Add product into

cart

Checkout cart

Logout
Customer

Stakeholder: Customer

Trigger: "Order" button is clicked

Precondition: Cart contains cart items.
Customer owns a credit card.

Steps:
1. Check the cart items
2. Give delivery address and receipt address
3. Give credit card data
4. Start checkout

Postcondition: An order is generated.
A receipt is sent to the customer.
...

Check cart items

Update cart items

Check delivery address

Check account data

Update account data

Srart checkout

Update delivery address

[false]

[OK]

[false]

[OK]

[OK]

[false]

Use Case::Checkout cart

Figure 9.2: Test basis for system testing

146 CHAPTER 9. SYSTEM TESTING

Cart Product
-title
-price

Customer
-name
-address

CreditCard
-account nr
-institute

Order
-delivery add.

Receipt
-amount

CartItem
-count

*

1..*

1 1

0..1

1

* 1

1
1

1

0..1

Figure 9.3: Domain model for Online Shop

• The expected results after execution of the functionality (postcondi-
tions)

Having this structure and described in natural language, Use cases en-
sure an understandable specification of the required system functionalities.
Based on the Use Cases in the System specification, developers stepwise cre-
ate Subsystem specifications and Component specifications as the basis for
the implementation as explained in chapters Integration Testing and Unit
Testing.

Figure 9.2 shows an exemplary Use Case description of an Online Shop:
the customer can add product items into a shopping cart and order these by
checking out. The functionality Checkout Cart is described in the figure. In
order to checkout the cart the customer has to click the Order button (trig-
ger). However, before the button is clicked, some products have to be added
to the cart and customers’ payment method must be known (preconditions).
If the preconditions are fulfilled and the trigger is activated, the scenario is
stepwise conducted. This scenario must result in a (generated) order and a
receipt which is sent to the customer (postcondition).

Besides Use Cases, the System specification also contains a Domain model
for capturing the important concepts and the relations of these concepts to
each other. It is created by using Class diagrams. Figure 9.3 shows an exem-
plary domain model for an Online Shop. This model is created by analyzing
the requirements descriptions in the Use Cases and identifying the impor-
tant concepts and their relations. Since these concepts are described in Use
Cases in an abstract manner, also the resulting Domain model is abstract. In

9.1. DEVELOPMENT SCENARIO 147

-userID : int
User

1

1

+addCartItem(ein productID : int, ein quantity : int) : bool
+deleteCartItem(ein cartItemID : int) : bool
+clearShoppingCart()
+updateQuantityCartItem(ein cartItemID : int, ein quantity : int) : bool
+deleteShoppingCart()
+setShoppingCart(ein shoppingCart : ShoppingCart)
+getShoppingCart() : <nicht spezifiziert>
+getCartItems() : <nicht spezifiziert>
+setProductManagement(ein productManagement : ProductManagement)
+getProductManagement() : <nicht spezifiziert>

-shoppingCart
-productManagement

CartManagement

+addProduct(ein product : Product) : bool
+deleteProduct(ein productID : int) : bool
+updateProductName(ein productID : int, ein name : string) : bool
+updateProductPrice(ein productID : int, ein price : double) : bool
+updateProductType(ein productID : int, ein typeID : int) : bool

ProductManagement
+createOrder() : <nicht spezifiziert>
+deleteOrder(ein orderID : int)
+setCustomer(ein customer)
+getCustomer() : <nicht spezifiziert>
+setCartManagement(ein cartManagement : CartManagement)
+getCartmanagement() : <nicht spezifiziert>
+getAllOrders() : <nicht spezifiziert>
+getAllOrderItems(ein orderID : int) : OrderItems

-cartManagement
-customer

FinanceDepartement +login(ein username : string, ein password : string) : <nicht spezifiziert>
+register(ein username : string, ein password : string, ein address : Address, ein paymentType : PaymentType) : bool

AutorisationManagement

+acceptUserRequest(ein RegisterID : int) : bool
+rejectUserRequest(ein RegisterID : int) : bool
+deleteUser(ein UserID : int) : bool

UserManagement

*

1
*

1

0..1

1

0..1

-administrator
AdminProfileManagement

+setUserID(ein userID : int)
+getUserID() : int

userID : int

+getCartItems() : <nicht spezifiziert>
+setCartItems(ein cartItem : CartItem)

-cartItems
«session»ShoppingCart +setOrderID(ein orderID : int)

+getOrderID() : int
+setCustomer(ein customer)
+getCustomer() : <nicht spezifiziert>
+getOrderItems() : OrderItems

-orderID : int
-customer
-orderItems : OrderItems

Order

*

+setRegisterID(ein registerID : int)
+getRegisterID() : int
+setUser(ein user : User)

-registerID : int
-user

RegisterRequest

1

1

*

getProductManagement() : nicht spezifiziertp yp (p yp)
+updateProductStock(ein productID : int, ein stock : int) : bool
+searchProduct(ein searchString : string) : <nicht spezifiziert>
+getAllProductsType(ein typeID : int) : <nicht spezifiziert>
+getAllProducts() : <nicht spezifiziert>
+getProduct(ein productID : int) : <nicht spezifiziert>
+getAllTypes() : <nicht spezifiziert>

+unregister()
+editAdress(ein adress : Address)
+editPaymentType(ein paymentType : PaymentType)
+edtPassword(ein password : string)
+setCustomer(ein customer)
+getCustomer() : <nicht spezifiziert>

-customer
ProfileManagement

()
+getAllRequests()
+getAllUser() : <nicht spezifiziert>
+searchUser()
+getAllCustomer() : <nicht spezifiziert>

1
0..*

1

1

1

*

1
1

1
+edtPassword(ein password : string)
administrator

1

+setOrderItemsID(ein orderID : int)
+getOrderItemsID() : int
+setOrder(ein order : Order)
+getOrder() : <nicht spezifiziert>
+setProductName(ein productName : string)

-orderItemsID : int
-order
-productName : string
-type : string
-quantity : int
-price : double

OrderItems

1

*

+setProfile(ein profile : Profile)
+getProfile() : <nicht spezifiziert>

-profile
«entity»Customer

+setLogininformation(ein logininformation : Logininformation)
+getLogininformation() : <nicht spezifiziert>

-logininformationen
Administrator

«entity»Profile

-paymentID : int
-bank : string
-accountNumber : int
-bankCode : int

«entity»PaymentType 1

1
0..1

+setName(ein Name : string)
+getName() : string
+setPrice(ein Price : double)
+getPrice() : double
+setType(ein Type)
+getTypy() : Type
+setStock(ein Stock : int)
+getStock() : int

-name : string
-price : double
-type : Type
-stock : int
-productID : int

«entity»Product

+setProduct(ein product : Product)
+getProduct() : <nicht spezifiziert>
+setQuantity(ein quantity : int)

-product
-quantity : int
-cartItemID : int

«session»CartItem

1

*

1

*

1 *

+setUser(ein user : User)
+getUnregisteredUser() : UnregisteredUser

1

+getCustomer() : <nicht spezifiziert>

0..11

+setProfile(ein profile : Profile)
-profile

UnregisteredUser11

1

+getProductName() : string
+setType(ein type : string)
+getType() : string
+setQuantity(ein quantity : int)
+getQuantity() : int
+setPrice(ein price : double)
+getPrice() : double

+setAddress(ein address : Address)
+getAdress() : Address
+setPaymentType(ein paymentType : PaymentType)
+getPaymentType() : PaymentType
+setLogininformation(ein logininformation : Logininformation)
+getLogininformation() : <nicht spezifiziert>
+setProfilID(ein profileID : int)
+getProfilID() : int

-profilID : int
-paymentType
-address
-logininformationen

«entity»Profile

+setPassword(ein password : string)
+getPassword() : string
+setUsername(ein username : string)
+getUsername() : string

tL i ID(i l i ID i t)

-username : string
-password : string
-LoginID : int

«entity»Logininformation

+setBank(ein bank : string)
+getBank() : string
+setBankCode(ein bankCode : int)
+getBankCode() : int
+setOwner(ein owner : string)
+getOwner() : string
+setPaymentID(ein paymentID : int)
+getPaymentID() : int

-bankCode : int
-owner : string
-cardType

1

0..1

11

1

g ()
+setProductID(ein productID : int)
+getProductID() : int

+setQuantity(ein quantity : int)
+getQuantity() : int
+setCartItemID(ein cartItemID : int)
+getCartItemID() : int

+setTypeID(ein typeID : int)
+getTypeID() : int
+setName(ein name : string)
+getName() : string

-typeID : int
-name : string
-products

«entity»Type

1
0..*

+getProfile() : <nicht spezifiziert>

+setLoginID(ein loginID : int)
+getLoginID() : int

+setSalution(ein salutation : string)
+getSalution() : string

-addressID : int
-salutation : string
-firstName : string
-familyName : string
-street : string
-number : int
-zipCode : int
-city : string
-country : string

«entity»Address

1
1 1

g () g
+getProducts() : <nicht spezifiziert>

+getSalution() : string
+setFirstName(ein firstName : string)
+getFirstName() : string
+setFamilyName(ein name : string)
+getFamilyName() : string
+setStreet(ein street : string)
+getStreet() : string
+setHouseNumber(ein number : string)
+getHouseNumber() : string
+setZipCode(ein zipCode : int)
+getZipCode() : int
+setCity(ein city : string)
+getCity() : string
+setCountry(ein country : string)
+getCountry() : string
+setAddressID(ein addressID : int)+setAddressID(ein addressID : int)
+getAddressID() : int

Figure 9.4: Implementation model for Online Shop

MDA, models of this level of abstraction are referred to Platform independent
models (PIM), since they do not handle platform specific technical issues.

During the stepwise refinement of the System specification into subsys-
tem specifications and component specifications, developers make decisions
on technical issues, e.g. which subsystems are required, which software ar-
chitecture is to be used, which third-party libraries are to be used. The
Domain model evolves with these technical decisions into Platform specific
models (PSM). Figure 9.4 shows a fragment of the Implementation model
for the Online Shop, which specifies implementation details for the concepts
from Domain model. In this example we see that the developers have de-
cided to use the model-view-controller (MVC) architecture and they have
specified which concepts from the Domain model are to be implemented as
Controller classes, Entity classes and View classes. These classes have also
been assigned Attributes and Operations.

In our development scenario, we assume that such design and implemen-
tation decisions are documented in a new development artifact Refinement
specification in a formal way, such that these can be re-used by other members
of the development team [Kön10] (cf. Figure 9.1). For the formal documen-
tation of refinement specifications, a formal language is required which is
compatible with the UML-based specification techniques. The OMG pro-
poses in MDA guide [Gro03a] model-to-model transformations (M2M) for

148 CHAPTER 9. SYSTEM TESTING

Customer
-name
-address

CreditCard
-account nr
-institute

1..*

«entity»
Customer

-customerID : int

«entity»
Profile

-profilID : int

«entity»
Logininformation
-username : string
-password : string
-LoginID : int

«entity»Address
-addressID : int
-salutation : string
-firstName : string
-familyName : string
-street : string
-number : int
-zipCode : int
-city : string
-country : string

«entity»
PaymentType

-paymentID : int
-bank : string
-accountNumber : int
-bankCode : int
-owner : string
-cardType : string1

1

1

1..*

Mapping

metamodel BOOK {
 class Chapter;
 class Book {title: String; composes chapters: Sequence(Chapter);}
 class Chapter {title : String; nbPages : Integer;}
}

metamodel PUB {
 class Publication {title : String; nbPages : Integer;}
}

transformation Book2Publication(in bookModel:BOOK,out pubModel:PU

main() {
 bookModel.objectsOfType(Book)->map book_to_publication();
}

mapping Book::book_to_publication () : Publication {
 title := self.title;
 nbPages := self.chapters->nbPages->sum();
}

PIM

PSM

Figure 9.5: Mapping between PIM and PSM

specifying transformations from a PIM to a PSM. M2M transformations can
be specified by languages Queries/Views/Transformations (QVT) [Gro05b]
and Triple Graph Grammars (TGG) [KS06]. The transformation specifica-
tion, usually a set of transformation rules, defines how particular elements
from a source model (e.g. a PIM) are mapped to a target model (e.g. a
PSM) [MG06].

To give an example, the mapping in Figure 9.5 sketches the decision of
how the classes Customer with CreditCards from PIM are refined in the PSM.
Several technical details were added to the classes: a Profile connects further
information to the Customer ; namely a detailed Address, a LoginInforma-
tion, and a more detailed representation of credit cards as PaymentType.
Moreover, each class in the PSM-part of the mapping is stereotyped as an
entity and has an attribute holding a unique identifier. Figure 9.6 shows the
formalization of the mapping as a transformation rule in QVT.

Lines 2-5 define the transformation rule Logical2Executable with the source

9.1. DEVELOPMENT SCENARIO 149

1 ...
2 transformation Logical2Executable(
3 in src:PIM,
4 out tgt:PSM
5)
6
7 main() {
8 src.objectsOfType(Customer)->map cust2cust ();
9 }

10
11 mapping Customer::cust2cust():Customer {
12 customerID := random();
13 ...
14 self.objectsOfType(CreditCard)->map card2pay();
15 }
16
17 mapping CreditCard::card2pay():PaymentType {
18 paymentID := randomInteger();
19 accountNumber := self.accountnr;
20 cardType := self.institute;
21 ...
22 }

Figure 5. Transformation rule for "Customer"

Lines 2-5 define the transformation rule Logi-
cal2Executable with the source model of type PIM and the
target model of type PSM. Lines 7-9 define the starting point
of the transformation where for all instances of the Customer
class the subtransformation cust2cust is invoked. Lines 11-15
define that the subtransformation cust2cust which first gene-
rates a random ID number. Then for all instances of the class
CreditCard which are linked to the Customer object another
subtransformation card2pay is invoked where attributes of
the CreditCard object are used to instantiate attributes of
PaymentType object (Lines 17-22). Other details of the trans-
formation concerning the classes Address, Profile and Logi-
ninformation are not shown here.

Fig. 6 shows an example on how we apply the transfor-
mation rule on input objects of a logical test case generated
from the precondition of the visual contract in Fig. 4. In this
transformation step the logically generated objects k1 of type
Customer and kk1 of type CreditCard are transformed into
objects of types Customer, Profile, Address, Logininforma-
tion and PaymentType with the corresponding attribute val-
ues.

«entity»
k1 : Customer

cartItems = {ci1, ci2}

«session»
c : ShoppingCart

product = p1
quantity : int = 2
cartItemID : int = 67

«session»
ci1 : CartItem

product = p2
quantity : int = 3
cartItemID : int = 78

«session»
ci2 : CartItem

profilID : int
paymentType
address
logininformationen

«entity»
pr1 : Profile

username : string
password : string
LoginID : int

«entity»
l1 : Logininformation

addressID : int
salutation : string
firstName : string
familyName : string
street : string
number : int
zipCode : int
city : string
country : string

«entity»
a1 : Address

paymentID : int
bank : string
accountNumber : int
bankCode : int
owner : string
cardType

«entity»
kk1 : PaymentType

name = Max M.
address = Friedenweg 8

k1 : Customer
account nr = 1234
institute = VISA

kk1 : CreditCardc : Cart

Transformation step

... ...

...Logical
test inputs

Executable
test inputs

Figure 6. Transformation step for logical test inputs

V. CONCLUSION & FUTURE WORK
In this paper we introduced an approach for system test-

ing which supports testing process beginning with the analy-
sis of the test basis given by use cases, and ends with the test
execution. The gap between abstract requirements and the
executable test cases is bridged by using model transforma-
tions. The transformation rules are derived from mappings
betwwen domain models and implementation models created
by developers. We use in our approach standardized lan-
guages, e.g. UML and QVT. In former work we reported on
existing tool support for our approach [15, 16]. However
some activities require still high human intervention and
remain manual, i.e. deriving test models and mappings.

REFERENCES
[1] Object Management Group: UML Specification V2.1.1.

www.omg.org/cgi-bin/doc?formal/-07-02-05, 2007
[2] Meservy, T.O., Fenstermacher, K.D.: Transforming software dev-

elopment: An MDA Road Map. IEEE Computer 38(9) (2005) 52–58
[3] Lohmann, M., Sauer, S., Engels, G.: "Executable visual contracts," In

Proc. of IEEE Symposium on Visual Languages and Human-Centric
Computing, 2005, pp. 63-70, 2005

[4] Ciupa, I., L.A.: Automatic testing based on design by contract. In:
Proceedings of Net.ObjectDays 2005 (6th Annual International
Conference on Object-Oriented and Internet-based Technologies,
Concepts, and Applications for a Networked World). (2005) 545–557

[5] Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing
based on java predicates. In: ISSTA. (2002) 123–133

[6] Engels, G.; Güldali, B.; Sauer, S.: Formalisierung der funktionalen
Anforderungen mit visuellen Kontrakten und deren Einsatz für
modellbasiertes Testen. In: Softwaretechniktrends Band 28 Heft 3
(2008), August, S. 24–27

[7] Meyer, B.: Applying ”design by contract”. IEEE Computer 25(10)
(1992) 40–51

[8] Cockburn, A.: Writing Effective Use Cases, Addition-Wesley, 2001.
[9] Object Management Group: MOF 2.0 Query / Views /

Transformations RFP ad/2002-04-10 (2002) URL:
http:///www.omg.org/cgi-bin/apps/doc?ad/02-04-10.pdf.

[10] ATLAS Group; LINA & INRIA (Hrsg.): ATL User Manual. Version
0.7. Nantes: LINA & INRIA, Februar 2006.

[11] Hasling, B.; Goetz, H. & Beetz, K.: Model Based Testing of System
Requirements using UML Use Case Models. In Proceedings of the
International Conference on Software Testing, Verification, and
Validation, 2008

[12] Illes-Seifert, T.; Borner, L. & Paech, B.: Testfallgenerierung aus
semi-formalen Use Cases. Informatik 2007. Infor-matik trifft
Logistik. Bd. 2. Beiträge der 37. Jahrestagung der Gesellschaft für
Informatik e.V. (GI), 2007

[13] Heckel, R., Ehrig, H., Wolter, U., Corradini, A.: Double-pullback
transitions and coalgebraic loose semantics for graph transformation
systems. APCS, 9(1) 83–110, 2001

[14] Spillner, A. & Linz, T.: Basiswissen Softwaretest. dpunkt.Verlag,
Heidelberg, 2005

[15] Ellerweg, J.; Engels, G.; Güldali, B.: Modellbasierter Kom-
ponententest mit visuellen Kontrakten. In Proc. Workshop on Model-
Based Testing (MoTes 2008), GI Jahrestagung (1) 2008: 211-214

[16] Klaholt, D.: Einsatz visueller Kontrakte für modellbasierten
Systemtest am Beispiel einer Web-Anwendung. Bachelorthesis,
University of Paderborn, 2008

[17] Zander, J.; Dai, Z.R.; Schieferdecker, I.; Din, G.: From U2TP Models
to Executable Tests with TTCN-3 - An Approach to Model Driven
Testing , F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS
3502, pp. 289 – 30 , 2005

Figure 9.6: Transformation rule from PIM to PSM

model of type PIM and the target model of type PSM. Lines 7-9 define the
starting point of the transformation where for all instances of the Customer
class the subtransformation cust2cust is invoked. Lines 11-15 define that
the subtransformation cust2cust which first generates a random ID number.
Then for all instances of the class CreditCard which are linked to the Cus-
tomer object another subtransformation card2pay is invoked where attributes
of the CreditCard object are used to instantiate attributes of PaymentType
object (Lines 17-22). For simplicity, further details of the transformation
concerning the classes Address, Profile and Logininformation are not shown
here.

Having a set of of such Refinement specifications, other members of the
development team can reuse them for own purposes [Kön10]. In our ap-
proach, we propose to use them for testing purposes [GMWE09]. As shown
in the upper box of Figure 9.1, our testing process begins with the formal-
ization of Use Cases by using Visual Contracts and storing them as separate
Test models. Then Abstract test cases can be automatically derived from Test
models and transformed stepwise into executable Test scripts. Thereby, the
test objects in the abstract test cases are refined and concretized due to the
Refinement specifications. The Concrete test cases can then be transformed
into Test scripts which contain enough technical details for being executed

150 CHAPTER 9. SYSTEM TESTING

System

Subsys.
Comp. Comp.

Subsys.
Comp.

Subsys.
C C

Subsys.
Comp. Comp.

System error

[based on Winter et al. Der Integrationstest, 2013]

Figure 9.7: Fault model for system testing

by the test driver. An Adapter helps in setting test objects in the system
state and checking the changes on the system state after the execution of
system functionalities.

The contribution of the above sketched testing approach lies in the sys-
tematic refinement of abstract test cases into executable test scripts. For the
refinement, developers’ design decisions are reused. In this way, the develop-
ment and testing activities evolve in parallel and the semantic gap between
abstract and concrete testing artifacts can be filled. In the following, we
explain how the test models are created, how abstract test cases can be de-
rived from test models and refined to concrete test cases and finally how test
scripts can be implemented and executed.

9.2 Test Design

While integrating subsystems to the composite software system, errors can
be induced into the software, or errors which were not detected during Unit
testing and Integration testing can be detected after the integration of the
subsystems. The target of system testing is to detect such errors by invoking
the system features on the system interfaces (see Figure 9.7). In other words,
during system testing, we are trying to detect system errors which can be
triggered using the system interfaces.

For detecting system errors, Use case specifications are used as test basis.

9.2. TEST DESIGN 151

use case

pre

poststeps

trigger

21

vc op(in param):out paramclass diagram

pre post3
class

associationattribute

4
test casetest casetest case

5

object
state

in param
values+

Figure 9.8: Process of test design

Since we are mainly interested in testing the state changing behavior specified
in a Use Case, we create formal models of the textual descriptions of pre-
and postcondition by using Visual Contracts. Figure 9.8 shows the process of
deriving test cases from the use cases in five steps. Having already explained
the derivation of a domain model (step 1) in form of a class diagram in the
last section, we explain how to derive Visual contracts in step 2 from the
Use case specifications.

Figure 9.9 shows an example for modeling the pre- and postconditions of
the Use case in Figure 9.2 which are modeled as two object diagrams. The
object structure in the left hand side show the formalization of the textual
precondition in the Use case as given in Figure 9.2: “Cart contains cart items.
Customer own a credit card.”. Instances of classes Cart, CartItem, Product,
Customer and CreditCard are specified and linked to each other conforming
to the domain model in Figure 9.3. This object structure must be fulfilled in
order to invoke the system functionality Checkout Cart. After the invocation,
the following postcondition must hold: “An order is generated. A receipt is
sent to the customer.” Thus the object structure on the right hand side
show newly created instances of classes Order and Receipt. The delivery

152 CHAPTER 9. SYSTEM TESTING

IV. MODEL-BASED TESTING
In the last section we have explained how high-level re-

quirements can be transformed into program code by step-
wise refinement of models and how design decisions during
refinements can be documented. In this section, we explain
the general idea of our model-based testing approach. The
first step of our testing process is to derive test models from
requirements. The second step is to generate test cases from
the test models. The third step is the test execution and eval-
uation, which will not be handled in this paper.

A. Deriving test models
For generating test cases from requirements specifica-

tions we first formalize use case descriptions. In contrast to
other approaches [11, 12], which focus on data flows or ac-
tion flows, our approach mainly focuses on the state chang-
ing behavior of a use case. Thus we are mainly interested in
how the specified functionality changes system state after its
execution. For that we formalize the textual descriptions in
pre- and postcondition of the use case by using visual con-
tracts [6]. Pre- and postconditions are specified by two object
structures (left and right of the arrow in Fig. 4). Object struc-
tures are modeled using UML collaboration diagrams [1]
typed over a class diagram (like in Fig. 3).

VC::Checkout Cart

 : Customer

 : CreditCard

 : Cart

 : Customer

 : CreditCard

delivery add. = y
 : Order

amount = b
 : Receipt

title
price

 : Product

title = z
price = p_1

 : Product

count
 : CartItem

count = t_1
 : CartItem

title
price

 : Product

title = z
price = p_1

 : Product

b = SUMM(t_x * p_x)

Figure 4. Visual contract for "Checkout cart"

The intuitive semantic of visual contracts is the follow-
ing: (1) Objects only existing on the right hand side must be
newly created; (2) objects only existing on the left hand side
must be deleted; (3) objects on both sides remain unchanged.
The formal semantics of visual contracts is given by loose
graph transformations [13]. Visual contracts model just a
part of system state which is of special interest. Visual con-
tracts are used as test models in our approach, from which
the logical test cases are generated.

B. Generation of logical test cases
From the test models we can generate instances of given

object structures which are the logical test cases. We name
these logical because they are generated based on high-level
requirements specification. If we talk about a test case we
mean a tuple <sinput, sresulting>. sinput is a set of linked ob-
jects which must be exist in SUT’s state before the execution
of the functionality under test. sresulting is a set of objects
which are expected to exist in SUT’s state after the execution
of the functionality under test.

We generate sinput from the precondition of the visual
contract in following steps (see the upper part of Fig. 6 for an
example): (1) We first generate instances of each object in
the precondition. For multiple objects three sets of test inputs
with 0, 1 and a random number of objects are generated. (2)
Then the attribute values are generated and assigned to the
objects. For generating attribute values our approach use
classical techniques, e.g. are boundary value analysis, equi-
valence classes and random generation [14]. (3) Then the
objects are linked to each other. (4) At the end the consisten-
cy of the generated object structure with the domain model is
checked. If objects are missing they are also generated and
added to the object structure [15].

sresulting is not generated directly from the postcondition,
because it depends on sinput. For computing sresulting, sinput
is handled as the source graph of a graph transformation sys-
tem and the visual contract is applied as a graph transforma-
tion rule on sinput. The object structure resulting from the
graph transformation comprises sresulting. Thus visual con-
tracts act as a test oracle.

For test execution, sinput must be set before test execu-
tion, sresulting must be checked after test execution. However,
in system testing, the objects generated from high-level test
models and objects computed by the implemented software
can differ. The reason for that is that the former ones are
specified on the requirements level and have a coarse grained
structure than the later ones. Additionally the tester does not
know how to handle these coarse grained objects on the im-
plementation level. Because of this gap input objects cannot
set in system state directly. They have to be transformed into
implementation level objects.

C. Transformation of logical test cases into executable test
cases
As described in the last section test cases generated from

requirements documents cannot be executed directly because
they have another abstraction than the implemented soft-
ware. For example the implementation of a Customer object
can have more details than described in the use cases and in
the domain model (see Fig. 3). In order to generate the Cus-
tomer object in SUT’s state the tester has to know how this
object is implemented, e.g. whether it has to be persisted in a
data base or not. Our approach assumes that this information
is supplied by the developers in the form of mappings as
described in Sect. III.

We propose using model transformations for translating
logical test cases to executable test cases. Executable means
that objects, which are to be set before test execution or
which are to be checked after test execution, correspond to
the implementation model and the tester know how to set
these in system’s state. In our approach we formalize map-
pings by using transformation rules. Fig. 5 shows a simpli-
fied example of a transformation rule implemented in QVT
[9] for transforming logical objects of type Customer and
CreditCard as specified in PIM into objects of type Custom-
er and PaymentType as specified in PSM (see Fig. 3).

Figure 9.9: Visual Contract for formalizing the Use case Checkout Cart

address variable of instance Order gets the value of the address variable of
instance Customer, and the amount variable of instance Receipt gets the
summed value of the product prices multiplied by the count of CartItems.
As explained in chapter 4, Visual Contracts are designed to specify objects
and objects relations, however, in this chapter, we also add some constraints
to Visual contracts that specify variable values depending on other object
variables.

After the formalization of the pre- and postcondition of the Use cases in
form of a Visual contract, this can be used for a systematic test case design.
In step 3, object constellations are selected using the same techniques like
in Unit Testing, which are then completed in step 5 with further objects, if
the domain model specifies further object relations. Input parameters for the
test invocation are derived from the input parameters of the system features
in step 4. After these steps, test cases are derived which have the same
abstraction level as the domain model and the Visual contacts.

As explained in chapter General Approach, our definition of a test case
comprises a prestate and input parameter values. During Unit Testing and
Integration Testing we have not computed the expected poststate explicitly,
but checked the real poststate for conformance with the embedded assertions.
In this way, we could decide on the success of test case. In system testing,
we propose another approach, where we define the expected poststate in
an abstract manner at design time. However, it is not generated directly
from the postcondition, which is the case in prestate generation from the
precondition. Instead, the expected poststate for a prestate, which is derived
from the precondition using the test case selection techniques described in
section Approach 1: Artificial Prestate, is computed using the formal graph
transformation semantics of Visual contracts. Therefore, the Visual contract

9.2. TEST DESIGN 153

generate graph transformation

High level

model transformation

Low level

Figure 9.10: Transformation of the test inputs and expected outputs

is applied as a graph production rule on the prestate as described in section
Approach 2: Natural Prestate [Kla08, GMWE09]. In this case, the prestate
is handled as the source graph of a graph transformation (see Figure 9.10).
The object structure resulting from the graph transformation comprises the
target graph. Thus graph transformation semantics of Visual contracts acts as
a test oracle. After the derivation of the prestate and the computation of the
expected poststate, these high-level object structures have to be transformed
into low-level object structures for the test execution.

For transforming high-level objects structures to low-level objects struc-
tures, we propose to reuse the Refinement specifications of developers (see
last section) as transformation specification for test cases as shown in Figure
9.11. The upper part depicts the transformation from System specification
(PIM in Figure 9.5) to a Component specification (PSM in Figure 9.5) in the
MDA process. The Refinement specification represents the design decisions
made by the developers during transforming PIM to PSM. The lower part is
a new transformation of the high-level test cases (conforming to the PIM) to
low-level test cases (conforming to the PSM).

The goal here is to perform the test case transformation as automated as
possible, having the Refinement specification available. The instantiation of
PSM objects is straightforward. However, there are several non-trivial issues

154 CHAPTER 9. SYSTEM TESTING

Legend:
conforms to
uses

UML

f

System
ifi i

Component
ifi i

Refinement
specification

specification specificationderive

Test data
transformation
specification

Abstract
test case

Concrete
test case

Figure 9.11: Transformation of test cases using the design desicions

concerning attributes: how are the attributes in the PIM related to the ones
in the PSM? Is an automatic derivation even possible or is user-interaction
required here? After these issues are solved (which needs to be done only
once), the transformation can be performed. As a remark, even though the
derivation of the test data transformation specification could be performed
automatically, a revision of it is strongly recommended to ensure correct test
data propagation.

9.3 Test Implementation

As we have explained in the last section, two important requirements on
model-based specification techniques are 1) understandability by all stake-
holders and 2) enabling the automation. Since the model-based specifications
are used as a source for the test cases, these requirements also apply to them,
i.e. test cases must be understandable by all stakeholders, especially by the
end users, and must enable the automation of testing activities. Having
the same abstraction as the high-level domain model and Visual contracts,
the derived test cases can be assumed to be understandable. However, ab-

9.3. TEST IMPLEMENTATION 155

Level of abstraction
ConcreteAbstract

SUTTestcase Adaptera)

Testscript SUTTestcaseb)

Testscript SUTTestcase Adapterc)

manual implementationp

Testscript SUTTC b 0 Adapterd) TC b 1 TC b n Testscript SUTTCabs0 Adapterd) TCabs1 TCabsn…
Figure 9.12: Level of abstraction (based on [UL07])

straction means also that the test cases should not involve technical details,
which are required for the execution of test cases. In other words, the tech-
nical details are relevant and important for invoking system functionalities
and observing and validating system behavior. In case of automated test
execution with test scripts, the need for technical details arise, so that the
test driver can conduct test steps without much manual intervention.

Utting and Legeard describe in [UL07] three scenarios for test automation
(see Figure 9.12), how the gap between abstract test cases (TC) and test
scripts can be filled. If an abstract TC is to be executed on a software under
test SUT, the semantic gap can be filled in the following way:

a) An Adapter is implemented, which can read and understand the elements
in an abstract TC and directly invoke the SUT using the inputs given
in TC. The Adapter is a proprietary software which is specialized for the
corresponding TC s and the SUT.

b) The TC s are transformed manually into test scripts (TS) in a standard-
ized scripting language and can be executed with an appropriate test
driver. In order to assure the executability of the TS by the test driver,
the transformation must address all the required elements of the scripting
language.

156 CHAPTER 9. SYSTEM TESTING

Level of abstraction
ConcreteAbstract

SUTTestcase Adaptera)

Testscript SUTTestcaseb)

Testscript SUTTestcase Adapterc)

manual implementationp

Testscript SUTTC b 0 Adapterd) TC b 1 TC b n Testscript SUTTCabs0 Adapterd) TCabs1 TCabsn…

Figure 9.13: Level of abstraction for Visual Contract-based system testing

c) In order to spread the e↵orts for transforming the TS and the imple-
mentation of the Adapter, the third scenario follows a mixed approach.
Thereby, TS make up a more technical view of TC, however these are not
overcrowded with technical details which are only relevant for the test
driver. The technical details are implemented by the Adapter.

These three scenarios help in bridging the gap between abstract TC s and
the SUT, however, the transformation steps and the implementation of the
Adapter cause additional e↵orts and may lead to new errors, since these are
all manual activities. In our approach we aim at reducing the e↵orts and er-
rors in test automation using abstract TC s, while the understandability and
automation requirements are still fulfilled. Figure 9.13 shows a fourth sce-
nario we propose where the test process begins with an abstract TC

abs

0 which
is then transformed stepwise into a more concrete TC

abs

n using the model
transformation approach described in the last section until a Testscript is
created which contains enough technical details. Then, the testscript can be
executed by a test driver using an Adapter. In our system testing approach,
we integrate this fourth scenario described above.

Figure 9.14 shows an example, how an abstract test case can be stepwise
transformed into a test script. Thereby, we di↵erentiate between the test
steps and the test data. The test steps have to be derived from the specifica-
tion of Use case steps as shown in Figure 9.15. Also for this activity there are
model-based test case generation techniques like [KKBK07, LJX+04], which

Beispiel
Test script

Edit „James Bond“ in „Search“Abtstract test case
Concrete test case

Edit „James Bond in „Search
Select and Add „Goldfinger“
Goto „Shooping Cart“
Select „Checkout“

…

Abtstract test case

Buy DVD

…

Search for DVD
Select and insert DVD into
Shopping Cart
Checkout Shopping Cart

…

SUT

Adapter

Edit X in Y
Æ search(X);

class HTMLPage {
Edit search;
Checkbox[] selected;
Button add, checkout;

Test script

Edit „James Bond“ in „Search“
Select and Add „Goldfinger“ Æ search(X);

Select X
Æ selected[X].setTrue();

…

Hyperlink shoopingcart;

public search();
public add();
public checkout();

Select and Add „Goldfinger
Goto „Shooping Cart“
Select „Checkout“

…
p ();

…
}

Figure 9.14: Example for di↵erent levels of abstraction of test cases

9.3. TEST IMPLEMENTATION 157

Test case
{

set a controlled pre state before

Click („Order“);
Select („Delivery address“, default);

set a controlled pre state before
invoking SUT

Click („Confirm ordering info“);
Select („Account data“, neu);
Edit („InstituteNr“, „12345 “);
Edit („AccountNr“, „67890“);
Cli k (C fi t d t “)

Invoke software functionality to be
tested

Click („Confirm account data“);
Click („Finalize booking“);

check the post state after invoking SUT

}

3 2

? use various pre states

3 2

Figure 9.15: Test script for system testing

we not explain in detail. Our focus is on the test data which are required for
these steps.

The abstract test case in Figure 9.14 shows a test step for testing the
Buying DVD functionality at an Online shop. If refined further, buying
a DVD at an online shop includes the following concrete activities: first
search for the desired DVD, then select and insert into the shopping cart,
finally checkout the shopping cart. The abstract test step is refined into the
corresponding concrete test steps. For test automation purposes, a test script
is derived from the concrete test case by adding one or more technical test
steps for each concrete test step. For example, “Searching for a product” is
realized by the test script as “editing the name of the product in the search
field”.

For automated execution of the test script, the test driver must map the
technical test steps to the application interface of the SUT. Figure 9.16 shows
an example for mapping some of the technical steps from the test script in
Figure 9.14 to the interface of HTMLPage class. Editing a search term X
and conducting a search is mapped by the adapter to the public operation
search() after setting the edit field to X. Selecting a search result X is mapped
to setting the selected-Attribute of a checkbox to true.

158 CHAPTER 9. SYSTEM TESTING

Beispiel
Test script

Edit „James Bond“ in „Search“Abtstract test case
Concrete test case

Edit „James Bond in „Search
Select and Add „Goldfinger“
Goto „Shooping Cart“
Select „Checkout“

…

Abtstract test case

Buy DVD

…

Search for DVD
Select and insert DVD into
Shopping Cart
Checkout Shopping Cart

…

SUT

Adapter

Edit X in Y
Æ search(X);

class HTMLPage {
Edit search;
Checkbox[] selected;
Button add, checkout;

Test script

Edit „James Bond“ in „Search“
Select and Add „Goldfinger“ Æ search(X);

Select X
Æ selected[X].setTrue();

…

Hyperlink shoopingcart;

public search();
public add();
public checkout();

Select and Add „Goldfinger
Goto „Shooping Cart“
Select „Checkout“

…
p ();

…
}

Figure 9.16: Example for the adapter between test script and SUT

9.4 Test Execution

Having generated the test cases and transformed them into test scripts, the
third step of our test process is to execute them. Figure 9.17 shows the
architecture of the test environment for system testing. Thereby, a test driver
accesses various interfaces of the SUT: interfaces ti1 and ti2 for exchanging
the prestate and the expected poststate, and an interface f for functional
invocations.

The test execution realized by the test driver includes the following three
steps as shown in Figure 9.18:

(1) setup The prestate is sent to the SUT by the test driver using a ded-
icated test interface ti1. The system under test sets the prestate in
order to enable the execution of functionalities under test and sends an
acknowledgment back to the test driver.

(2) run After the required prestate is set, the test steps defined in last sec-
tion are invoked using the test parameters. These steps address end
user actions interacting with the external functional interface f of the
SUT (e.g. clicking buttons or editing text fields on the graphical user

SUTTest driver

1ti

f

2ti

Figure 9.17: Test architecture for system testing

9.4. TEST EXECUTION 159

interface). After each test step, the test driver gets an acknowledge
that the action is done.

(3) evaluate During step (2) some changes occur in the system state of the
SUT which are to be checked for compliance with the postcondition
of the Use case specification. The expected poststate is sent to the
SUT via a dedicated test interface ti2. SUT invokes an assertion which
checks the system state after the execution of test steps with the ex-
pected poststate. If the actual system state conforms to the expected
poststate, it returns normally which sets the test verdict on pass. If
this is not the case, it returns with an postcondition, which sets the
test verdict on erroneous.

160 CHAPTER 9. SYSTEM TESTING

:Test driver :SUT:Test driver :SUT

send_prestate1
set_prestate

acknowledge

1

step1(param)

acknowledge

test steps

2 …2

send_posttate

assert_poststate

alt

3

normal_return

postcondition_exception

Figure 9.18: Test execution in system testing

Chapter 10

Tool Support and Evaluation

The chapters 6-9 have addressed conceptual aspects of the Visual Contract-
based Testing approach. In order to show the applicability of the approach,
we have developed tool support for various algorithms and execution proce-
dures [Ell08, Kla08, Beu09, Han08]. We have published our results in various
conferences and workshops [EEG08, EGL06a, GMWE09]. Furthermore, var-
ious case studies are conducted in order to study the e↵ectiveness and the
scalability of the approach [SG10]. In this chapter, we will summarize these
tools and the evaluation results.

Tool support

Test cases Test scripts

t t d i t t ti

test implementation

Spec. Test object

test design test execution

i l t ti

Design artifacts Implementation artifacts

p j
implementation

Figure 10.1: Overview of tool support

The tool support covers mainly three activities of our approach as illus-
trated in Figure 10.1: First test cases are generated from the Visual contracts.
Second, test cases are transformed into executable test scripts. Finally, the
system under test is executed using the test scripts resulting in a test verdict.

161

162 CHAPTER 10. TOOL SUPPORT AND EVALUATIONUnit Testing
VCTF

JET Template
for Test case

GEF

Test cases

Tester

Test scripts

GEF
(Approach 1)

JUnitGROOVE
(Approach 2)

VCW
Component

code
Component
specification

Component
binary

Class skeletons

JET Template

ProgrammerDesigner

for Java class

Figure 10.2: Tool support for Unit testing

The contribution of our tool support is that we could show the applicabil-
ity of various software engineering techniques on contract-based testing, e.g.
graph transformations, model checking, model transformations, code gener-
ation and model-driven monitoring. Not every test level makes use of each
technique, but many techniques we have implemented are transferable to
further test levels. Also, not every testing activity is completely automated,
some manual interventions are required.

The next sections 10.1-10.3 describe the implementations of some these
techniques for various test levels. The section 10.4 reports on the results of
some evaluations.

10.1 Unit Testing

The Visual Contract-based Unit Testing is characterized in chapter 7 as a
low-level testing activity where the tester deals with fine-grained software
components like classes and their operations. As a consequence, the tool
support for testers is similar to the development environment. Figure 10.2

10.1. UNIT TESTING 163

Figure 10.3: Modeling visual contracts with VCW

shows the tools which we have used for implementing the concepts described
in chapter Unit Testing.

The basis for our contact-based testing approach is the design of Visual
Contracts which is illustrated in the lower box of Figure 10.2. Visual con-
tracts are created using the Visual Contract Workbench (VCW) developed
by Lohmann [Loh06]. Also the activities of Java code frame generation, JML
assertion generation and the compilation of JML assertions together with the
manually extended code are conducted by the VCW-Tool.

As shown in Figure 10.3 VCW allows modeling Visual Contracts by spec-
ifying their preconditions (LHS) and postconditions (RHS) and negative ap-
plication condition (NAC) and negative postconditions (NPC). The objects
in Visual Contract are typed over a class diagram, which can also be modeled
by VCW (see Figure 10.4). Lohmann has developed this tool based on the
Eclipse platform such it can easily be extended using the Plug-In mechanism.

164 CHAPTER 10. TOOL SUPPORT AND EVALUATION5.5 Bedienungsanleitung

Abbildung 5.14: Visual Contract Workbench-Projekt

Zur Generierung von Testfällen ist eine Aktion an zwei Stellen zu Visual Contract

Abbildung 5.15: Aktionen für die Testfallgenerierung

Workbench hinzugekommen (siehe Abbildung 5.15). Wenn diese Aktion gestartet
wird, dann ö↵net sich ein neuer Dialog (siehe Abbildung 5.16), der zur Konfigura-
tion der Testfallgenerierung dient. Zunächst wird ein Verfahren ausgewählt, das zur
Generierung der Testfälle eingesetzt werden soll (siehe Schnittstelle

”
testdriver“ im

Abschnitt 5.4.2).
Standardmäßig ist nur das vorgestellte Verfahren (siehe Abschnitt 4.6) vorhanden.
Bei diesem Verfahren kann noch eingestellt werden, auf welche Weise die Übergabe-
parameter und die Systemzustände erzeugt werden sollen.
Außerdem muss konfiguriert werden, in welchem Java-Projekt der generierte Java-
Code, der zur Testausführung benötigt wird, gespeichert werden soll. Es wird emp-
fohlen nicht das selbe Java-Projekt zu wählen, in dem sich das Visual Contract
Workbench-Projekt befindet. Andernfalls kann es vorkommen, dass der JML Runti-
me Assertion Checker Compiler (siehe Abschnitt 2.2.1) auf Kompilierfehler stößt.
Ist die Konfiguration der Testfallgenerierung abgeschlossen, dann werden beim Klick

113

Figure 10.4: Modeling class diagrams with VCW

10.1.1 Approach 1: Artificial Prestate

For the purposes of Unit testing with artificial prestates, Jens Ellerweg have
extended the VCW by some feature of generating testing artifacts, naming
it Visual Contract Test Framework (VCTF) [Ell08] (see upper box in Figure
10.2).

VCTF first generates logical test cases from Visual Contracts. Logical
test cases are objects structures and input parameters generated from the
precondition of a Visual contract. The objects represent a prestate which is
required for the execution of the system under test. Afterwards, executable
test scripts are generated from the test cases and they are executed. This
procedure is illustrated in the Figure 10.2.

These techniques are implemented in VCTF using a Plug-in mechanism,
so that they can easily be modified or extended. Figure 10.5 shows the flexible
component architecture of VCTF. The component de.upb.swt.ggsu.test
is the interface to the VCW of Lohmann [Loh06]. The Visual Contracts
created by using the VCW are further processed by the vctest-components.
The three components at the bottom of Figure 10.5 implement the algorithms
for prestate generation and for test input generation as explained in chapter
7. If further selection algorithms should be implemented, new components
can be plugged into the vctest.defaulttestdriver component. Details to
the implementation of these components can be found in the master thesis
of Jens Ellerweg [Ell08] .

The main technological element in VCTF is Java Emitter Templates
(JET) [Con06c]. JET enables programmers to create code templates which
are then translated into template java classes. VCW uses JET technology
for generating java classes from the source model with embedded assertions

10.1. UNIT TESTING 165

5 Realisierung

Abbildung 5.7: Übersicht über die Eclipse-Plug-ins

92

Figure 10.5: Components of VCTF [Ell08]

derived from the pre- and postconditions. Based on this idea, VCTF defines
test case templates which are filled with object structures derived from Vi-
sual Contracts as logical test cases. These can be viewed and edited by GEF
(Graphical editing Framework) editors [Con06b]. The logical test cases are
then transformed into executable JUnit test scripts.

Figure 10.6 shows an exemplary test script generated by VCTF on the
basis of Visual Contract for cartAdd operation of class OnlineShop. For the
class under test, a new class (TestOnlineShop) extending the TestCase is
generated with test operations for each logical test case (e.g. testCardAdd 0()).
Each test operation is composed of following four steps as conceptually ex-
plained in chapter 7:

• Step 1: For each input parameter and the self-object, a local variable
is declared. The variables are initialized with values defined by the
selection criteria.

• Step 2: Set up system state by invoking a helper setUp-function. As
shown in Figure 10.7 this function creates instances for the objects and
links given in the precondition of the corresponding Visual Contract.
The resulting object state is linked with the self-object.

166 CHAPTER 10. TOOL SUPPORT AND EVALUATION

Figure 10.6: JUnit test script generated from Visual Contract for cartAdd

• Step 3: Having created a prestate fulfilling the precondition of the
Visual Contract, the operation under test can be invoked by the test
operation using the input parameters and objects in steps 1 and 2.
During the invocation, the JML assertions are automatically checked
by the Java runtime environment (JRE) for conformance with the pre-
and postconditions of the corresponding Visual Contract. If the system
state is generated correctly, the assertion for precondition will pass.
Otherwise the JRE returns with an exception. After the assertion
for precondition, the operation under test is invoked. The resulting
poststate is checked then by the assertions for postcondition. Again
here, if the system state after the invocation of operation under test
conforms to the postcondition of the Visual Contract, JRE returns with
pass. Otherwise an exception will be thrown.

• Step 4: Even if, the assertions for the pre- and postconditions return
with pass, i.e if the the system state was conform with the pre- and
postconditions of Visual Contract, the resulting system state may not

10.1. UNIT TESTING 167

Figure 10.7: Helper operation for setting up the system state

be conform with the associations specified in the class diagram. This is
because the Visual Contracts may incomplete with respect to the class
diagram. That is why a final check for conformance with class diagram
is implemented in the test operation as the last step.

As shown in Figure 10.1, the third tool supported step is the execution of
the test scripts. The test driver of JUnit can started from the context menu
of VCTF as shown in Figure 10.8. This leads to the invocation of all test
operations in the Test-class.

5 Realisierung

ausführbare Java-Code kann also jederzeit manuell aus zuvor generierten Testfällen
erzeugt werden.
In der Abbildung 5.17 (in dem

”
Package-Explorer“) sind die generierten Java-Dateien

in dem Projekt
”
AmazonMiniTest“ zu sehen:

”
Testhelper.java“ und

”
TestOnlineShop.java“.

Die Datei
”
Testhelper.java“ ist die angesprochene Hilfsklasse zur Überprüfung eines

Systemzustandes in Bezug auf das Klassendiagramm (siehe Abschnitt 5.4.3).
Die eigentlichen Testfälle befinden sich in der Java-Datei

”
TestOnlineShop.java“. Die-

se Datei ist, wie bereits in dem Abschnitt 5.4.3 erwähnt, so aufgebaut, dass sie mit
JUnit ausgeführt werden kann.
Zum Starten wählt man den Befehl

”
Run As“ -

”
JUnit Test“ (siehe Abbildung 5.20).

Bei diesem Schritt handelt es sich um die Testausführung.
Das Ergebnis der Testausführung wird in der Abbildung 5.21 dargestellt. Im oberen

Abbildung 5.20: Testausführung mit JUnit

Bereich dieser Abbildung ist eine Zusammenfassung der Testausführung zu sehen: die
Anzahl der ausgeführten Testfälle, die Anzahl der fehlgeschlagenen Testfälle (

”
error“)

und die Anzahl der nicht bestandenen Testfälle (
”
failure“) (siehe Abschnitt 5.4.3).

Bei dem ersten Testfall
”
testJMLRAC“ handelt es sich um eine Überprüfung, ob

JML Runtime Assertion Checker (siehe Abschnitt 2.2.1) aktiv ist. Falls der Testfall

”
testJMLRAC“ nicht bestanden ist, dann werden die Vor- und auch Nachbedingun-
gen nicht validiert und damit haben alle Ergebnisse der Testfälle keine Aussagekraft.
JML Runtime Assertion Checker kann aktiviert werden, indem man zum einen Visu-
al Contract Workbench verwendet oder zum anderen das zusätzliche Eclipse-Plug-in

”
JMLEclipse“ [SAn08] einsetzt. Das Plug-in

”
JMLEclipse“ ist im Vergleich zu der

”
Compile JML“-Funktion von Contract Workbench etwas benutzerfreundlicher, da
JML Runtime Assertion Checker nur einmal nach dem Start von Eclipse mit diesem
Plug-in aktiviert werden muss (siehe Abbildung 5.22). Außerdem benötigt das Plug-
in

”
JMLEclipse“ keine Konfigurationseinstellungen.

Zu jedem fehlgeschlagenen oder nicht bestandenen Testfall zeigt diese Übersicht die
auslösende Fehlermeldung an. In der Abbildung 5.21 handelt es sich um eine

”
JML-

PostconditionError“-Fehlermeldung.
Wie bereits in dem Abschnitt 2.2.1 festgestellt, sind die gelieferten Details zu den
von JML verursachten Fehlermeldungen recht dürftig. Es werden nur die KUT und
die Werte der Übergabeparameter angezeigt. Es fehlen die Informationen, an welcher
Stelle und aus welchem Grund eine Vor- oder Nachbedingung verletzt wurde.

116

Figure 10.8: Running the test script from the context menu

168 CHAPTER 10. TOOL SUPPORT AND EVALUATION

5.5 Bedienungsanleitung

Abbildung 5.21: Ergebnisse der Testausführung

Abbildung 5.22: Aktivierung von JML Runtime Assertion Checker mit
”
JMLEclipse“

117

Figure 10.9: JUnit test report indicating the status of test cases

10.1. UNIT TESTING 169

During the test invocation, the test script steps are executed and a test
report is generated as shown in Figure 10.9. Depending on the results of
JML assertions, the test operations are assigned a test verdict pass, fail or
error. Test verdict pass means that both the assertions for precondition and
postcondition are fulfilled by the operation under test. Fail means that ei-
ther the assertions for the postcondition or the final conformance check with
the class associations have failed. Error indicates that either the assertions
of precondition are not fulfilled or during the execution of the assertions an
error has occurred. For determining the actual fault, manual inspections are
required. Unfortunately, the VCTF does not supply with detailed informa-
tions indicating the exact position of faulty code [Ell08].

10.1.2 Approach 2: Natural Prestate

In the last section, we have presented the tool support for generating artificial
prestates from Visual contracts and translating them into JUnit test scripts
for an automated execution. As described in chapter Unit Testing, a second
approach enables the computation of natural prestates for a more realistic
testing the state changing behavior of the system under test.

In section Approach 2: Natural Prestate of chapter Unit Testing, we have
described how preambles for test cases can be computed which will set the
system under test into a required prestate in a natural way. For that, we
have defined a mapping between the test concepts and graph transformation
concepts (cf. Table 7.2). This mapping is illustrated in Figure 10.10 visually.

The aim in this approach is to interpret the Visual contracts as graph
production rules and compute a graph transition system starting from an
initial graph. Having computed the graph transition system, analysis on
the state transitions becomes possible. Then, we instrument a reachability
analysis using model checking techniques for searching for a path of operation
invocations which brings the system from the initial state to a required state.
This path represents the invocation sequence of class operations.

In order to these computations, we have used the Groove-Tool [GMR+12]
which is a model checker for graph transformation systems. Hannwacker de-
scribed in his master thesis [Han08], how the Visual contracts can be trans-
lated into graph transformation rules in Groove and how the preamble can
be computed using reachability analysis. First step in adapting the Groove
tool for our purposes is to translate the Visual contracts into the Groove
language.

In this section, we present a small example, where the operation cartAdd
of a class OnlineShop is tested. For computing a preamble for this oper-
ation, we need further operation calls for setting the instance of class into

170 CHAPTER 10. TOOL SUPPORT AND EVALUATION

initial graph
graph transition

system

state space of SUT

initial state

g p

graph transition

y

preamble

op1()
op2()...

initial state
rules

p

prestate

opx()

poststate
target graph

p

Figure 10.10: Mapping between concets of Unit testing and Groove-Tool

a required prestate. Figures 10.11 and 10.12 illustrate two translations of
Visual contracts for the class operations cartAdd and cartCreate. We will
demonstrate how these contracts can be used for computing a preamble.

Figure 10.11 illustrates the translation of three main concepts in Visual
contracts:

• preconditions and postcondition

• negative application conditions

• operation signature with input parameters

The objects and their links are translated to graph objects and links in
Groove. Thereby, the precondition and the postcondition of a Visual contract
are represented in one graph (right hand side of Figure 10.11). Thereby, the
objects and links which remain as unchanged between the pre- and postcon-
dition are colored grey (e.g. instances of Product, OnlineShop and Cart).
Objects which exists only in the postcondition, i.e. which are created newly,
are colored green (e.g. instance of CartItem, its attribute quantity and
corresponding links to Product and Cart). Objects which exist only in the
precondition, i.e. which are deleted, are colored blue (e.g. objects cartAdd
and callToken and corresponding links). Finally, the objects are colored red,
which are part of the negative application condition, i.e. which are not al-
lowed to exist before the execution of the specified operation (e.g. instance
of CartItem and corresponding links).

10.1. UNIT TESTING 171

Figure 10.11: Transformation of a Visual Contract into a Graph Transfor-
mation Rule for Groove

172 CHAPTER 10. TOOL SUPPORT AND EVALUATION

Figure 10.12: Transformation rule 2

A specialty in our translation is the definition of a new type or rule, which
we call invocation rules (left hand side of Figure 10.11). These rules ensure
the application of the graph transformation rule for a Visual contract with
a given set of concrete input parameters [Han08]. Before matching during
the state space exploration, these rules create callToken objects together
with the input parameters which are then deleted by the actual rule after its
application.

Figure 10.12 shows a second example for a rule translation. Thereby, the
instance of class OnlineShop is preserved in the postcondition, whereas the
instance of class Cart is created and bound to the input parameter cid. After
the required changes in the system state is done, the objects of invocation
rule are deleted.

Having translated the Visual contracts of operations into the Groove lan-
guage, we need a start graph for starting the state space exploration. Figure
10.13 illustrates an example of a start graph s0 in Groove. Since we aim at
testing the operation cartAdd of class OnlineShop in our running example,
we require an instance of this class and the input parameters for the oper-
ation under test. These input parameters will be matched by the rule for

10.1. UNIT TESTING 173

sinputsinput

s0

Figure 10.13: Start graph

operation under test, if the state space exploration finds a path from the
start graph to the required prestate.

As we have already mentioned, we aim at adapting reachability analysis
via model checking for computing preambles for cartAdd. As described in
section 7.2.2, we use the model checking functionality of the Groove tool.
Thereby, we define a state property � which represents the required prestate.
This prestate will act as a target graph for the state space exploration. Thus,
we derive a state property from the precondition of the Visual contract of
operation under test. In our example, we derive an object structure s

input

from the precondition of cartAdd and extend it with input parameters defined
in the start graph. As we explained in section 7.2.2, we formulate the CTL
formula AG¬s

input

for triggering the counter example finding feature of the
model checker.

Given a start graph and a set of graph production rules, Groove tool
explores the reachable states and creates a state space [KR06]). Figure 10.15
visualizes a typical state space computed by Groove (example from [KR06]).
Since our example is small, our state space exploration ends up with a smaller
one as illustrated in Figure 10.16. Starting from the s0 as shown in Figure
10.13, the graph transition rules for operations cartCreate and cartClear have
resulted in the given state space and the a counter example which is shown
with the thick framed black vertices.

In order to the integrate this functionality of Groove tool in our VCTF,
Hannwacker has defined in [Han08] how the extension mechanism of VCTW
can be used. Thereby, a new test driver, which has access on the functionali-
ties of Groove, can replace extend the abstract test driver (see Figure 10.17).

174 CHAPTER 10. TOOL SUPPORT AND EVALUATION

sinputsinput

s0

Figure 10.14: Target graph

Model Checking Dynamic States in GROOVE 301

(a) put rule. (b) get rule. (c) extend rule.

Fig. 2.2. Graph transformation rules specifying the behaviour of the circular bu�er

print-out) are part of both L and R. They need to be present in the source graph
in order for the rule to apply and will be preserved during transformation. The
thin dashed elements (blue) are also part of L but not of R, and will be removed.
The solid fat gray elements (green) are part of R but not of L and will be created.
The dashed fat gray elements (red) represent the NACs, whose presence in the
source graph prevent the rule from being applied.

Each GPS P = hR, Ii specifies a (possibly infinite) state space which can be
generated by repeatedly applying the graph transformation rules on the states,
starting from the initial state I. This results in a graph transition system (GTS):

Definition 1 (graph transition system). The graph transition system T =
hS, !, Ii generated by P = hR, Ii consists of a set S of states, which are actually
graphs (S ✓ G); a transition relation ! ✓ S ⇥ R ⇥ [G ! G] ⇥ S, such that
hG, p, m, Hi 2 ! i� there is a rule application G �p,m��! H � with H � isomorphic
to H; and an initial state I 2 S.

The graph transformation process is implemented in the Groove Simulator [9].
This tool is implemented in Java, and currently consists of 18 packages comprising
approximately 400 classes, and 75,000 lines of code. The tool can handle arbitrary

Fig. 2.3. State space of a circular bu�er with capacity extending to 5Figure 10.15: State space visualitaion

10.2. INTEGRATION TESTING 175

4.3 Automatische Zustandssuche 71

Zustand erreichbar ist. Die markierten Gegenbeispiele im LTS bilden also
gerade Pfade vom Startzustand zu den gesuchten Zuständen (vgl. Beispiel
in Abbildung 4.18).

Abbildung 4.18: LTS mit markierten Gegenbeispielen

Die Kanten dieser Pfade stehen dabei für die eingesetzten Graphtransfor-
mationen, anhand derer die zugehörigen Sequenzen von Methoden gebildet
werden können, wobei der Match des Aufrufknotens einer Regel die Para-
meterwerte für den jeweiligen Methodenaufruf liefert (vgl. Beispiel in Ab-
bildung 4.19).

Abbildung 4.19: Match des Aufrufknotens der Regel cartCreate

Auf diese Art und Weise lassen sich somit also automatisch mithilfe von
Groove Aufrufsequenzen erstellen, die ein Software-System aus dem In-

Figure 10.16: State space for Online Shop

The user interface of VCTF enables the selection of the new test drivers as
shown in Figure 10.18.

10.2 Integration Testing

Since the integration testing is very similar to unit testing, there are no
dedicated tool support for this level. The test cases for integration can be
generated using the same tooling as for Unit testing. However, there are two
specialities in integration testing, which we presented in chapter Integration
Testing: (1) topology sorting and (2) configurable monitoring levels.

Since topology sorting is a well known traditional testing in integration
testing, there are many tools which can compute the hierarchical dependen-
cies. We have also implemented a small Java program which computes the
top-down or bottom-up integration orders of components given a connected
graph of subsystems. A challenge in computing the topology sorting are cir-
cular dependencies [WEMS+12]. To keep it simple, we assume that we have
not such kind of dependencies.

Also some UML modeling tools have features for computing the topol-

176 CHAPTER 10. TOOL SUPPORT AND EVALUATION

79

und dabei die geerbten abstrakten Methoden implementiert (siehe Abb. 5.5).

+addMethodUnderTest(ein operation : Operation)
+removeMethodUnderTest(ein operation : Operation)
+clearMethodUnderTest()
+getConfigurationPanel(ein parent : Composite) : Composite

AbstractTestDriver

+run(ein monitor : IProgressMonitor) : IStatus
org.eclipse.core.runtime.jobs.Job

NewTestDriver

Abbildung 5.5: Neu hinzugefügte Testtreiberklasse

Wie diese Implementierung vorzunehmen ist, wird gleich beschrieben. Zuerst
soll aber die Integration des neuen Testtreibers in die Workbench aufgezeigt
werden. Diese erfolgt durch ein neues Plug-in für Eclipse. Dieses Plug-in
enthält die neu erstellte Testtreiberklasse, zusammen mit allen eventuell
zusätzlich benötigten Hilfsklassen und Softwarebibliotheken (libraries). Je-
des Plug-in für Eclipse muss zudem eine Deklarationsdatei in XML-Format
(plugin.xml) besitzen. In dieser wird unter anderem festgehalten, welche Ele-
mente vom Plug-in bereitgestellt bzw. beigesteuert werden. Die Deklaration
über beigesteuerte Elemente erfolgt unter der Verwendung sogenannter Ex-
tension Points. Wird also beispielsweise ein Editor durch das Plug-in zur
Workbench hinzugefügt, so muss dieser durch einen Eintrag in der XML-
Datei unter Bezugnahme auf einen entsprechenden Editor-Extension-Point
deklariert werden.

In diesem Fall soll durch das Plug-in ein neuer Testtreiber bereitgestellt
werden. Für Testtreiber wurde vom Plug-in de.upb.swt.ggsu.test der Exten-
sion Point de.upb.swt.ggsu.test.testdriver eingerichtet, der dann in der Datei
plugin.xml des neuen Plug-ins zu referenzieren ist (vgl. Abb. 5.6). Die An-
gaben, die dabei zu machen sind, ergeben sich aus dem Schema, welches den
Extension Point beschreibt. Unter anderem ist hier die Testtreiberklasse an-
zugeben, also die Klasse, welche von AbstractTestDriver erbt.

Wird ein solches Plug-in in Eclipse geladen, so steht der neu bereitgestell-
te Testtreiber sofort als Auswahl in der Visual Contract Workbench zur
Verfügung. Betrachten wir als nächstes nun die Implementierung der Test-
treiberklasse.

Figure 10.17: Extension of Plug-Ins for new test driver

77

Java-Klassengerüste mit Methodenrümpfen erzeugen, welche zusätzlich mit
JML-Annotationen versehen sind.

Zur Realisierung dieser Funktionalitäten ist auf einige Standard-Plug-ins
zurückgegri↵en worden. Der visuelle Editor wurde unter Zuhilfenahme des
Graphical Editing Frameworks (GEF) [Eclc] umgesetzt und arbeitet zudem
auf Basis von Metamodellen, die mithilfe des Eclipse Modeling Frameworks
(EMF) [Eclb] erstellt worden sind; und der Java-Quellcode wird via Java
Emitter Templates (JET) generiert. Die eingesetzte JET-Engine zur Quell-
codegenerierung ist dabei Teil des EMF-Plug-ins.

Abbildung 5.3: Dialog zur Generierung von Testfällen

In der Diplomarbeit von Jens Ellerweg [Ell08] wurde dann die Funktiona-
lität dieser Workbench um die automatische Generierung von Unit-Tests
erweitert. Nun kann man für jeden der modellierten visuellen Kontrakte
Testfälle generieren lassen (siehe Abb. 5.3), wobei mit der Generierung eines

Figure 10.18: Selection of Plug-Ins

10.3. SYSTEM TESTING 177

ogy sorting. For example, the Enterprise Architect of Sparx Systems1 can
compute and visualize the hierarchical dependencies of components.

10.3 System Testing

As described in chapter System Testing, the system testing process contains
the following steps:

• Formalizing the preconditions and postconditions of Uses cases using
visual contracts which are used as test models.

• Documenting and formalizing the design decisions of developers during
transforming PIM to PSM by using model transformations.

• Generating logical test cases from test models.

• Transforming the logical test cases to executable test scripts by using
model transformations derived from developers’ activities.

• Executing the test scripts using Adapters and automatically evaluating
test results.

For automating these steps, we aim at using various tools for particular
steps. Figure 10.19 shows the development and testing paths in the lower
and upper boxed correspondingly. While the VCW by Lohmann can be used
for modeling the Visual contracts and implementing the code, the VCTF
requires many extensions for automating the testing activities.

For documenting and reusing the Refinement specifications, there are
many model-to-model transformation techniques available, both in commer-
cial and non-commercial tools and environments. We require rule- or mapping-
based transformation engines, which almost applies to any engine. Hence,
we focus on freely available tools, namely the QVT implementations in the
Eclipse framework and an implementation of TGGs [KS06] based on the
Eclipse Modeling Framework; still, other technique would work as well, e.g.
the Fujaba tool2, IBM Rational Software Architect3, openArchitectureWare4,
or mediniQVT5. For showing the applicability of the approach, we have cre-
ated some ATL rules as described in chapter System Testing. We have also
created some higher order transformation using the Henshin tool6.

1http://www.sparxsystems.de/uml/neweditions/
2http://www.fujaba.de/
3http://www-03.ibm.com/software/products/de/ratisoftarch
4http://www.openarchitectureware.org/
5http://projects.ikv.de/qvt
6https://www.eclipse.org/henshin/

178 CHAPTER 10. TOOL SUPPORT AND EVALUATION

VCTF

System Testing

Tester
Test model

JET Template
for Test case

GEF

Low‐level
Test cases Test scripts

Test model

High‐level
Test cases

VCW

HTMLUnit
ATL

Hibernate
VCW

ComponentsSystem
specification

SystemSubsystem
specification

Component
specification

Sub‐
systems

ProgrammerDesigner

Figure 10.19: Technology overview of the VCW extension for system testing

10.3. SYSTEM TESTING 179

H l j

Test

Faces Servlet
Helper java
classes

Data

Request

driver

JSP files +
Test interface

Backing
beans +
Test

Entitiy java
classes

ata
base

A t

Response

Test interface Test
beans

classesAnwort

Figure 10.20: Components of VCTF for system testing ([Kla08])

Having transformed abstract test cases into test scripts, we require test
interfaces and functional interfaces at the system under test for setting the
prestates for Use cases and for triggering a check procedure for the poststate.
Klaholt have implemented in his thesis [Kla08] a prototypical Online shop
fulfilling the requirements defined in chapter System Testing. As illustrated
in Figure 10.20, the Online shop has EJB architecture where entity classes
and functional beans are connected to a database and to user interfaces.
For setting and checking the instances of entity classes, which comprise the
system state, dedicated test interfaces and test beans are implemented.

Figure 10.21 shows a HTMLUnit7 test script which is composed of three
part:

• set pre-state: This step accesses the test interface setTest.jsp and
uploads the prestate and the expected poststate which are stored in
XML files preState.xml and postState.xml respectively.

• execute test script: This part contains functional calls to the Online
shop as specified in the Use case description. If the input parameters
are relevant to the precondition, then objects and variable values from
the preState.xml can be used here.

• check poststate: If the functional steps are complete, the test driver
invokes the evaluation step for the poststate.

At the end of the test script, a test report is generated documenting the
test verdict and an explanation if test case has failed.

7http://htmlunit.sourceforge.net/

180 CHAPTER 10. TOOL SUPPORT AND EVALUATION

Figure 10.21: HtmlUnit test script generated from Visual Contract for use
case Checkout Cart

10.4. EVALUATION 181

10.4 Evaluation

In order to assess the the applicability, the adequacy and the reliability of
scientific methods, the following evaluation methods can be applied as ex-
plained in [LG87]:

• peer review : Experts in a research field read and evaluate the doc-
umented results of a research and give feedback about the flaws and
strengths of the research results and suggest improvements. Typically,
submissions to scientific conferences, workshops and journals are re-
viewed by at least 2-3 experts.

• interviews and questionnaires : While peer review aims at get-
ting detailed feedback from few experts, interviews and questionnaires
aim at involving a bigger set of experts in evaluating research results.
Thereby, standardized questions are prepared for making answers of
participants short, comparable and countable.

• quantitative methods : The quantitative methods aim at evaluating
research results systematically by measurements specially to prove the
e↵ectiveness of the developed techniques. Mostly cost-benefit analysis
is done to show the e↵orts needed for applying a technique and the
advantages gained by applying the technique.

• case studies : Case studies are empirical investigations of the quality
of research results in realistic context by applying them on realistic
problems, e.g. in the industry. The applicability and the usefulness of
the research results from the industry point of view su�ce to evaluate
them to be adequate and reliable.

We have evaluated our approach by applying all four evaluation methods.
We have submitted our research results in many international and national
conferences and workshops, where they are peer reviewed. Together indus-
trial partners we have conducted interviews and case studies. Within the
scope of student works, we have evaluated the e↵ectiveness of our approach
using quantitative methods.

10.4.1 Evaluation by interviews and case studies

Our evaluation together with the industrial partner had two parts: First,
we interviewed the partner for assessing the principal applicability of Visual
Contracts for modeling component interfaces. Second, we have applied the

182 CHAPTER 10. TOOL SUPPORT AND EVALUATION

modeling technique with Visual Contracts in a case study to evaluate prac-
tical applicability of the modeling technique by software engineers from the
industry [EGL+06b].

In the first part of the industrial evaluation, we have evaluated the princi-
pal abilities of Visual Contracts and their applicability by software engineers
from the industry, who did not have any experience with Visual Contracts.

The industrial project together with Capgemini sd&m aimed at evaluat-
ing the usability of Visual Contracts by software engineers from the industry,
who do not have any former experience with this modeling language. Even
if the context in this project was modeling of web services in the context of
a service oriented architecture (SOA), the results can be transferred to the
domain of software testing. Also here, software testers have to deal with a
new language and a new modeling paradigm. The project has shown that,
Visual Contracts and the pre/post-based modeling paradigm can be easily
learned by software engineers. The colleagues from sd&m could create a do-
main model for insurance domain and many Visual Contracts in short time.
However, the project has also shown that, for a more detailed modeling,
further language constructs are required. From these experiences, I infer
that software testers also would learn Visual Contracts easily and use them
especially for creating separate models for system testing purposes.

10.4.2 Evaluation by quantitative methods

In order to experiment with our approach, to evaluate the applicability and
to make some measurements on the e↵ectiveness of our approach, we have
conducted student works. Bachelor of science and master of science students
at the University of Paderborn have implemented the algorithms explained
in this thesis, conducted experiments, made measurements and documented
their results. Following four theses are subject of the evaluation by quanti-
tative methods:

• Master thesis by Ellerweg, J.: Komponententest mit visuellen Kontrak-
ten, University of Paderborn, 2008

• Bachelor of science thesis by Klaholt, D.: Einsatz visueller Kontrakte
fr modellbasierten Systemtest am Beispiel einer Web-Anwendung, Uni-
versity of Paderborn, 2008

• Master thesis by Hannwacker, D.: Kontraktbasierte Generierung von
Methodensequenzen fr Testflle mittels Model-Checking, University of
Paderborn, 2008

10.4. EVALUATION 183

• Bachelor of science thesis by Beulen, D.: Evaluierung eines Ansatzes
zum kontraktbasierten Komponententest fr eine datenintensive Java-
Anwendung, University of Paderborn, 2009

The student works aimed at assessing the realizability of the described
algorithms and at finding the fault detecting capability of our algorithms.
Thereby, we have identified that our approach is capable to detect typical
state-based errors [Ell08, EEG08, Beu09], e.g.

• initialization failures

• missing links, missing objects

• reachability errors

In detail, we have identified nine types of state-based errors which are
listed in the table 10.1. This table shows the fault-detecting capability of
di↵erent test data generation techniques, i.e. boundary value testing (BVT)
and random testing (RT).

Table 10.1: Fault detecting capability of applied techniques

Nr. Fault description BVT RT

1 Generated object with faulty variables + +
2 Generated object with faulty links + +
3 Missing object to be generated + +
4 Changed object with faulty links + +
5 Object not deleted + +
6 Not-changeable Object does not exist + +
7 Inconformance with cardinality + +
8 Faulty decision node + -
9 Object not generated - -

Furthermore, we have measured some performance attributes of thge im-
plemented algorithms for boundary value testing and for random testing.
The results are shown in table 10.2

184 CHAPTER 10. TOOL SUPPORT AND EVALUATION

Table 10.2: Time spent by generator

Criteria BVT RT

Number of generated test cases 134 34
Time for test case generation 90 ms 50 ms
Time for coxde generation 500 ms 500 ms
Time for test execution 200 ms 100 ms

We have conducted a further quantitative evaluation together with Matthias
Schnelte [SG10] in order to assess the performance and scalability properties
of our approach. The question of interest was which memory consumption
do the state space exploration techniques by Visual Contracts require in
comparison to the planning algorithms. The results are shown in 10.3.

Table 10.3: Memory consumption

Number of objects Preamble length States generated
(LAMA/GROOVE)

4 4 14/10
7 5 27/152
10 6 44/3248
13 7 65/¿20000
16 8 90/n.a.

10.4.3 Evaluation by peer reviews

The research results which are the subject of this evaluation chapter are
submitted to the international and national conferences to get feedback from
the scientific community. Here is a chronological list of the peer reviewed
and accepted papers which emerged in the context of our research:

• Engels, G.; Güldali, B., Lohmann, M. Hearnden, D.; S, J.; Rapin,
N., Baudry, B. (ed.) Towards Model-Driven Unit Testing Proceed-
ings of the workshop on Model Design and Validation (MoDeVa 2006),
Toulouse (France), Le Commissariat l’Energie Atomique - CEA, 2006,
16-29

10.4. EVALUATION 185

• Gregor Engels, Baris Güldali, Marc Lohmann, Oliver Juwig, and Jan-
Peter Richter. Industrielle fallstudie: Einsatz visueller kontrakte in
serviceorientierten architekturen. In Bettina Biel, Matthias Book, and
Volker Gruhn, editors, Software Engineering, volume 79 of LNI, pages
111-122. GI, 2006

• Ellerweg, J.; Engels, G., Güldali, B. Hegering, H.-G.; Lehmann, A.;
Ohlbach, H. J., Scheideler, C. (ed.) Modellbasierter Komponenten-
test mit visuellen Kontrakten INFORMATIK 2008, Beherrschbare Sys-
teme - dank Informatik, Band 1, Beitrge der 38. Jahrestagung der
Gesellschaft fr Informatik e.V. (GI), Gesellschaft fr Informatik (GI),
2008, 133, 211-214

• Güldali, B.; Mlynarski, M.; Wübbeke, A., Engels, G. Model-Based
System Testing Using Visual Contracts EUROMICRO-SEAA, 2009,
121-124

• B. Güldali, M. Mlynarski, Y. Sancar. E↵ort Comparison for Model-
based Testing Scenarios Proc. of Quombat Workshop at ICST, 2010

• Schnelte, M., Güldali, B. Test Case Generation for Visual Contracts
Using AI Planning INFORMATIK 2010, Beitrge der 40. Jahrestagung
der Gesellschaft fr Informatik e.V. (GI), Gesellschaft fr Informatik (GI),
2010, 176, 369-374

• Mlynarski, M.; Güldali, B.; Weileder, S., Engels, G. Model-Based Test-
ing: Achievements and Future Challenges Advances in Computers,
2012, 86, 1-39

186 CHAPTER 10. TOOL SUPPORT AND EVALUATION

Part III

Closure

187

Chapter 11

Conclusion and Future Work

In this thesis, we have proposed the Visual Contract-based Testing approach,
which uses Visual Contracts as test basis and derives test artifacts from them
using automated techniques.

As shown in Figure 11.1, we assume that Visual Contracts are used by
designers as an extension to UML for specifying system behavior at di↵er-
ent development phases, i.e. beginning from high level system specification
ending with implementation of executable components. Each implementa-
tion and integration activity of programmers is followed by a testing activity,
where the components are tested against Visual Contracts specifying the
behavior of components. Then, components are integrated resulting in sub-
systems. The subsystem operations are tested against the Visual Contracts
specifying the subsystem interfaces and the component interactions. Finally,
subsystems are integrated into complete system, which is tested against the
high level system specifications describing the use cases. We have showed
in this thesis, how testers can reuse the Visual Contracts of designers for
low-level test levels, or create their own test models at higher test levels.

We have used various technologies in order to implement the algorithms
for test case generation and for test execution. Thereby we have used the
model checking tool Groove for computing operation sequences setting artifi-
cial prestates, the model transformation too ATL for transforming high level
test cases into implementation level test cases, and JUnit for executing test
cases.

In this concluding chapter, we address our contributions, give a personal
comment and show future directions for further research.

189

190 CHAPTER 11. CONCLUSION AND FUTURE WORK

Sys. spec. Sys.

Test case Test script
Tester

Subsys.
spec Subsys.Test case Test script

Test case Test script

Comp. spec.

spec.

Comp.

p

ProgrammerDesigner

Figure 11.1: Process overview of Visual Contract-based Testing

11.1. CONTRIBUTIONS 191

AutoTest
[Ciu08]

Korat
[MSM+07]

WeSUF
[AW05]

MBTVC
[Khan2012] VCBT

General characteristics
People
Test level
Process integration

Low level
UT
No

Low level
UT, ST
No

Low level
UT
No

Low level
UT,IT
No

High level
UT, IT, ST
YesProcess integration

Quality
No
Industrial c.s.

No
Industrial c.s.

No
Small c.s.

No
WB

Yes
Small c.s.

MBT‐specific characteristics
Artifact Eiffel JML OC VC UML
Redundancy
Automation
Tool

Separate
Yes
Yes

Separate
Yes
Yes

Separate
Yes
Yes

Shared
Yes (Oracle)
Yes (Oracle)

Sep./shared
Yes
Yes

CBT specific characteristicsCBT‐specific characteristics
Contract
Test case

Declarative
Artificial

Declarative
Artificial

Declarative
Artificial

Decl./Imp. Decl./Oper.
Artif./Nat.

Figure 11.2: Comparison of the contract-based testing approaches

11.1 Contributions

The VCBT approach, as summarized above, lead to improvements compared
with other CBT approaches (see the Figure 11.2) and fulfills the requirements
defined in section 5.2 in the following way.

Relation to the development process

Aiming at the integration of contract-based testing into the model-driven
process, the VCBT approach seamlessly integrates into to the UML-based
development process, fulfilling the requirements 2 and 3 (cf. section 5.2)

Contribution to Requirement 2: VCBT approach is compatible with
the UML-based software development process, because it uses or extends the
concepts and languages of the UML-based process. We have shown, how
concepts of design-by-contract (section 3.1) are related to the concepts of
UML for behavioral and structural modeling (section 2.2) and to the concepts
of model-based testing (section 2.4). The pre- and postconditions of a Visual
Contract constrains the states of the software under test before and after
the execution of the SUT. By doing that, Visual Contracts both specify
structures using the pre- and postconditions and also behavior by defining a
transition relation between the pre- and postconditions.

For specifying pre- and postconditions of a Visual Contracts, we have used
UML collaboration diagrams which are typed over UML class diagrams (cf.
chapter 4). The collaboration diagrams are grouped into four compartments
including two positive application conditions for the pre- and postconditions

192 CHAPTER 11. CONCLUSION AND FUTURE WORK

particularly, one negative application condition and one negative postcondi-
tion.

Using these concepts and languages, the VCBT approach defines how the
Visual-Contract based software development process defined by Lohmann
[Loh06] can be extended by testing activities (section 6). In order to do that,
this thesis presents algorithms and tools for deriving test artifacts from the
Visual Contracts and conducting test execution and evaluation for di↵erent
test levels (see chapters 7-10).

Contribution to Requirement 3: Both MBT scenarios shared models
and separate models (cf. section 2.4.2) are supported by VCBT approach.
The di↵erence between these scenarios lies in the fault detecting capability
of the testing approach with respect to the initial requirements. If testers
reuse the developers model as test basis, they will test the software under
test against the developers models, however, they will not be able to find any
errors related to the initial requirements.

The VCBT approach extends the artifacts of UML-based development
process, such that Visual Contracts can either be a part of the specification
artifacts of the system under development as shown in chapters 7 or 8, or
they can be separately created by testers as explicit test models, as shown in
chapter 9. Unit testing and integration testing against the Visual Contracts
by developers can detect errors where the callee operations do not fulfill
the postconditions after being executed or the callers functions do not fulfill
the preconditions for executing a callee operation. These errors may result
either from the manual coding activities where the Visual Contracts are not
transformed to code correctly or from wrong specifications of the Visual
Contracts during the refinement of design artifacts. In each case, testers
and developers have to look for the reasons for the errors during the test
evaluation phase.

The separate models scenario for system testing shows that testers can
go a totally independent way from the developers, where they derive the
test basis directly from the initial system requirements. In this way, testers
are also able to find unconformities between the Visual Contracts for system
design and the initial system requirements.

Test levels and Quality of Test Cases

VCBT approach fulfills the requirement 4 in section 5.2 that it should support
di↵erent test levels in the development process as follows.

Contribution to Requirement 4 and 6: Model-based software de-
velopment process contains various refinement steps where software under
development is specified on di↵erent abstraction and detail level. These

11.1. CONTRIBUTIONS 193

specification levels also define the test levels, where test cases have simi-
lar abstraction as the test basis. Considering the typical three refinement
steps in software design, i.e. system specification, subsystem specification
and component specification (cf. section 2.2), we defined the three test levels
system testing, integration testing and unit testing (chapters 7-9).

Unit testing (chapter 7) aims at checking the conformance between the
the implemented class operations with their specifications by Visual Con-
tracts. The test target here is to validate that the class operations fulfill
the postconditions if they are invoked with test cases which fulfill their pre-
conditions. The test cases are object constellations as defined by Winter
[Win99] which we derive from the preconditions by applying well-known se-
lection criteria on object variables and on multi-objects. We have developed
an Eclipse-based test generator implementing the test case generation algo-
rithms and transforming the test cases into executable test scripts [Ell08].
The execution of the test scripts is done by the JUnit tool. The fulfillment
of the pre- and postconditions are checked at runtime automatically by em-
bedded JML assertions [Loh06]. Visual Contract-based Unit testing can find
errors due to missing objects, missing or wrong object relations, or wrong
object variables.

The object constellations used as test cases for unit testing are generated
directly from the precondition of a Visual Contract specifying a single opera-
tion. Thus these object constellations are generated in isolation from the real
execution context of the operation under test. In a realistic environment, the
class operations should be tested in context with other class operations where
the object constellations are created naturally in interaction with other oper-
ations. For that reason, we have proposed a second approach for unit testing
8 to setup a more natural test environment for testing the class interactions.
For a natural test environment, the object constellations required for testing
a class operation is set by a sequence of other class operations. Thereby we
compute operation sequences based on the contract specifications of the class
operations and model checking techniques (chapter 7). Here, given a start
state and a set of Visual Contracts, a state transition system is computed
by the model checker Groove [Ren03]. Reachability analysis is conducted in
order to compute a path from the start state to the prestate of the opera-
tion under test. If a path can be found on the specification, during the test
execution, the corresponding invocation sequence of operations should 1) be
executable in the computed order and 2) lead to a prestate which fulfills the
precondition of the operation under test. If this is not the case, either the
Visual Contracts are not complete missing some required objects, or the class
operations are not correctly implemented due to the Visual Contracts.

If the low-level components are tested during unit testing, these are inte-

194 CHAPTER 11. CONCLUSION AND FUTURE WORK

grated to subsystems. The task of integration testing is to define an integra-
tion strategy and to test the components in interaction. For computing the
order in which the components are to be integrated and tested, we proposed
to use topology sorting. Due to the chosen strategy top-down or bottom-up
integration, the test environment requires test drivers and stubs in order to
simulate the caller and callee components which are either not implemented
yet or which are not tested yet. We have proposed for these strategies the
usage of Visual contracts as a medium for monitoring the data interchange
between components. By activating or deactivating embedded assertions,
which are generated from Visual Contracts, we can define various monitor-
ing levels. The higher the monitoring level, the more insight the testers have
into the inner life of the integrated system.

Both unit testing and integration testing dealt with testing low-level soft-
ware artifacts, like components and subsystems which are collections of com-
ponents. These are tested against Visual Contracts which are created by
developers as an implementation specification. These test activities can ver-
ify the conformance of implemented code with their specification, however
in order to validate the fulfillment of initial requirements, the system spec-
ifications from earlier development phases must be used as test basis. This
is exactly the target of Visual Contract-based system testing (cf. chapter
9), where the integrated system is tested against customer requirements. In
UML-based software development process, customer requirements are doc-
umented as Use Case models where required functionalities are described
by using preconditions, operation steps and postconditions [Coc01]. Testers
can use these information to specify system test cases. In our approach, we
have shown how pre- and postconditions of Use Cases can be formalized by
using Visual Contracts. Similar to test case generation techniques for unit
testing and integration testing, pre- and postconditions of Visual Contracts
are used for generation of object constellations. However, the objects cre-
ated on the basis of Use Cases must be translated into the detail level of
the implemented software. For that, we reuse the formalized design deci-
sions [Kön10] as model transformations rules for transforming high level test
objects into implementation level test objects. Our tool support includes
the ATL model transformation [Con06a] technology for transforming and
serializing high level test objects into implementation level objects.

Skills of testers and the selection of the modeling techniques

One of the reasons, why model-based software development does not gain
acceptance by industry, is the usage of too formal modeling languages and
the attempt to create complete models [Spe12]. That is why notations for

11.2. EPILOGUE 195

contract-based testing must be more user-friendly and easily adaptable for
testers. Another reason for the missing acceptance is the tool support. Our
approach fulfills these requirements as formulated in section 5.2.

Contribution to Requirements 1: VCBT uses Visual Contracts as
modeling notation, which is a easy-to-learn contract language. Furthermore,
Visual Contracts use UML Object diagrams for specifying pre- and post-
conditions which makes this approach fully compatible with the UML based
development process.

Contribution to Requirement 5: We have implemented the algo-
rithms and procedures for test case generation, test script generation and
test execution using Open Source technologies. We have used Eclipse as the
platform for the testing framework which is extensible for further test selec-
tion criteria and for further test drivers. We have used JUnit as test driver for
unit testing. JML assertions are used as as embedded test oracles. Groove
model checker is used for computing state setting operation sequences. ATL
is used for transformations of abstract test cases into implementation level
test cases.

11.2 Epilogue

Even if developers have longtime experiences with these technologies and
tools, testers are relatively new to the model-driven development techniques.
Due to the Gartner Hype Cycle of application development from 2007, model-
based testing (see scriptless testing [Gar07]) was seen as a rising hype topic
“generating over-enthusiasm and unrealistic expectations” [Wik]. Since then,
many case studies have been conducted with varying results. In [MGWE12]
and [WGM+11], we have reported on the most influential case studies and
their results. The main finding in these case studies was that MBT reduces
e↵orts in repeating activities like test case design and test implementation.
However, relatively big e↵orts must be invested for creating and maintaining
the models thus many testers hesitate to introduce MBT and prefer waiting
until more practical and light-weight approaches are invented. Also the Gart-
ner hype cycle from 2010 acknowledges this fact, where MBT has reached the
trough of disillusionment where it does not “meet expectations and quickly
becomes unfashionable” [Wik].

In order to build acceptance in MBT among the test organizations, suit-
able modeling notations must be selected which are easy to learn and use by
testers. Also the integration of development and testing must be assured by
enabling model interchange between developers and testers. In some cases,
testers should reuse developer models as test basis. This is mostly the case

196 CHAPTER 11. CONCLUSION AND FUTURE WORK

if low level development and testing activities are considered. In other cases,
testers should be able to create their own test models which are indepen-
dent of development artifacts. In summary, the tight integration of testing
and development activities through many test levels and the usage of simi-
lar light-weight modeling notations and corresponding tools will improve the
acceptance of MBT among the test teams.

Traditionally, MDD approaches uses UML notations for behavioral and
structural modeling. Thereby, developers tend to create complete specifica-
tions in order to be able to generate program code from the models auto-
matically. However, because of many unsolved issues, the automatic code
generation for an executable program code is not feasible. Also for testers,
using behavioral and structural UML notations lead to complete test models,
which require too high e↵orts compared with the benefit they bring and are
heavily maintainable.

An alternative to the classical UML notations is the contract-based mod-
eling paradigm where system behavior is described partially by specifying
preconditions and postconditions for system functions. Thus, contracts do
not aim at describing complete behavior but some aspects of it which the
modeler wants to focus on. Developers can use then contracts as minimal
specifications and implement program code using a combination of automatic
code generation and manual coding fulfilling the conditions of the contract.
In this way developers cerate more light-weight models which are more main-
tainable and developers can handle the flaws of the automatic code generation
manually.

The research community has proposed the usage of many contract mod-
eling notations for development and testing so far (e.g. Ei↵el, JML, OCL
[Ciu08, Mar04, Gro05a, AW05]). However, a comparison of these notations
(cf. chapter 5, Figure 5.2) have shown that no one of the proposed nota-
tions fully fulfill the requirements of developers and testers in the context of
model-driven software development. As a result, a new UML-based contract
notations was developed by Lohmann [Loh06], which is called Visual Con-
tracts. Visual Contracts specify preconditions and postconditions using two
object diagrams which are typed over a class diagram. The modeler is free
to choose the detail level for the preconditions and postconditions, which en-
ables partial specifications. Lohmann has also defined a development process
using Visual Contracts, where parts of program code are generated from the
Visual Contracts automatically and completed manually. Even if automatic
code generation helps in assuring the correctness of the generated code, be-
cause of the manual completion, errors can be inserted into the program
code. That is why, the Visual Contract-based development process has to be
extended by a suitable testing approach.

11.3. ROADMAP FOR FURTHER RESEARCH 197

11.3 Roadmap for further Research

In our research, we have dealt with a wide spectrum of topics of software en-
gineering. We have shown that Visual contracts can be seamlessly integrated
into the Model-driven software development process. However, during our
research, we have also identified further possibilities, how this spectrum can
be extended. In this section we describe some ideas, how Visual contracts
can be used for further software engineering topics.

11.3.1 Further selection criteria for test data

As described in chapters 7-9, we require concrete test data for input pa-
rameters of the functionalities under test. To keep it simple we have dealt
with some basic techniques Boundary analysis and Random generation, how
concrete test data can be selected.

For increasing the test data coverage and to bring more alternation in to
the test data, also further test data selection techniques can be integrated,
e.g.

• Equivalence classes

• Statistical data coverage

• Pairwise testing

11.3.2 Binding real test data

Instead of generating random or boundary values, we could use real data from
customer databases, which contain valuable information for testers. Visual
Contracts can be used as a visual SQL language to formulate SQL queries.
As shown in the Figures 11.3 and 11.4, two strategies are possible. Either
the objects derived from the pre- or postconditions of a Visual contract can
be independently be selected, or the data dependencies between the objects
can also be considered. In the first case, simple select queries in SQL are
formulated for each test object and filled with real data from a database.
In the second case, the select queries must be refined with where clauses
addressing the data relations between the objects as given in the pre- and
postconditions.

An important issue while the usage fo real data is, that the customer
data is not allowed to be directly used for testing purposes [Osw11], thus

198 CHAPTER 11. CONCLUSION AND FUTURE WORKIndependent input objectsIndependent input objects
«control»

cartCreate() : Cart
cartAdd(Zoll cartId : String, Zoll ASIN : String, Zoll quantity : Integer) : String

«control»
OnlineShop

cartId

1

0..*

controls
productNo

1

0..*

controls

cartCreate() : Cart
cartAdd(cartId : String, productNo : String, quantity : Integer) : String

1 +cartItem

0 *

«key» cartId : String

«entity»
Cart

«key» cartItemId : String
productNo : String
quantity : Integer

«entity»
CartItem

«key» productNo : String
title : String

«entity»
Product

+cartItem

0 *

+product

1

0.. 0..

getypt

SELECT productNo FROM products

SELECT cartId FROM carts

DB

Figure 11.3: Extracting independent test data from DB

Dependent input objects

wk : Warenkorb
Titel = Name der Rose
Preis = 35,-

p2 : Produkt

Anzahl = 3
wp2 : Warenposten

k1 : Kunde

wk : Warenkorb ,

Titel = Harry Potter
Preis = 45,-

p1 : Produkt

Anzahl = 2
wp1 : Warenposten

Name = Max M.
Adresse = Friedenweg 8

Nummer = 1234
kk1 : Kreditkarte

Institut = VISA

getypt SELECT dg yp SELECT name, adresse, nummer,
institute, titel, preis
FROM Kunde, Kreditkarte, Produkt
WHEREWHERE
Kunde.kreditkarte = Kreditkarte.Id

SELECT productNo FROM productsSELECT productNo FROM products
DB

Figure 11.4: Extracting dependent test data from DB

11.3. ROADMAP FOR FURTHER RESEARCH 199

it must be anonymized before using as test data. However, there are some
approaches for anonymizing productive data, e.g. Q-up1.

11.3.3 Agile development

We have used Visual contracts in a plan-driven development process based
on the V-model so far. Thereby, we have strictly distinguished between the
test levels and the abstraction levels of the software specifications and the
generated test cases. However, many software development companies apply
agile development processes where the development phases and test levels
are not strictly isolated. In Scrum [SB01], test activities of di↵erent levels
are conducted in daily sprints.

In order to improve the e↵ectiveness of test design and test automa-
tion, we have already proposed adapting model-based testing techniques into
Scrum [GR11]. Thereby we have proposed to use light weight modeling tech-
niques based on UML. However, even if the models are light weight, the
consistency requirements between the models increases the complexity of
this approach. Therefore, Visual contracts could support the agile testing
activities as a light weight modeling notation since it does not require much
relations to other UML notations other than Class diagrams.

1https://www.q-up-data.com/

200 CHAPTER 11. CONCLUSION AND FUTURE WORK

Bibliography

[ABLN06] J.H. Andrews, L.C. Briand, Y. Labiche, and A.S. Namin. Us-
ing mutation analysis for assessing and comparing testing cov-
erage criteria. Software Engineering, IEEE Transactions on,
32(8):608–624, Aug 2006.

[AS05] T. Linz A. Spillner. Basiswissen Softwaretest. dpunkt.verlag, 3
edition, 2005.

[Ave10] Michael Averstegge. Generisches testen von web services:
Automatisierung ohne programmierung. OBJEKTspektrum,
SIGSDATACOM, 4:69–74, 2010.

[AW05] Michael Averstegge and Mario Winter. Structural and func-
tional predicate coverage testing. In Proc. of 3rd World
Congress for Software Quality (WCSQ) 2005, pages 1–12, 2005.

[BBF+10] Béatrice Bérard, Michel Bidoit, Alain Finkel, François
Laroussinie, Antoine Petit, Laure Petrucci, and Philippe Sch-
noebelen. Systems and software verification: model-checking
techniques and tools. Springer Publishing Company, Incorpo-
rated, 2010.

[Beu09] Dominik Beulen. Evaluierung eines ansatzes zum kon-
traktbasierten komponententest für eine datenintensive java-
anwendung. Master’s thesis, University of Paderborn, 2009.

[BG10] Y. Sancar B. Güldali, M. Mlynarski. E↵ort comparison for
model-based testing scenarios. In Proc. of Quombat Workshop
at ICST, 2010.

[BH02] Luciano Baresi and Reiko Heckel. Tutorial introduction to
graph transformation: A software engineering perspective. In
Graph Transformation, pages 402–429. Springer Berlin Heidel-
berg, 2002.

201

202 BIBLIOGRAPHY

[Bin99] Robert V. Binder. Testing object-oriented systems: models,
patterns, and tools. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1999.

[BKM02] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Mari-
nov. Korat: automated testing based on java predicates. In
Proc. of International Symposium on Software Testing and
Analysis (ISSTA) 2002, pages 123–133, 2002.

[Blo11] Jason Bloomberg. Functional vs. interface granularity: Still
powerful ideas, February 2011.

[Boe84] B. W. Boehm. Verifying and validating software requirements
and design specifications. IEEE Softw., 1(1):75–88, 1984.

[Bor09] Lars Borner. Integrationstest - Testprozess, Testfokus und Inte-
grationsreihenfolge. PhD thesis, Ruprecht – Karls – Universität,
Heidelberg, 2009.

[BP06] Luciano Baresi and Mauro Pezzè. An introduction to soft-
ware testing. Electr. Notes Theor. Comput. Sci., 148(1):89–111,
2006.

[CDRT04] P. Collet, D. Deveaux, R. Rousseau, and Y.L. Traon. Contract-
based testing: from objects to components. In Proc. of first In-
ternational Workshop on Testability Assessment, 2004. IWoTA
2004., pages 5 – 14, 2 2004.

[CH06] K. Czarnecki and S. Helsen. Feature-based survey of model
transformation approaches. IBM SYSTEMS JOURNAL,
45(3):621–645, 2006.

[Che06] Alexey Cherchago. Service specification and match-
ing based on graph transformation. PhD the-
sis, University of Paderborn, http://ubdata.uni-
paderborn.de/ediss/17/2006/cherchag/disserta.pdf, 2006.

[Cho78] T. S. Chow. Testing software design modeled by finite-state
machines. IEEE Trans. Softw. Eng., 4(3):178–187, 1978.

[Ciu08] Ilinca Ciupa. Strategies for Random Contract-Based Testing.
PhD thesis, ETH Zürich, 2008.

BIBLIOGRAPHY 203

[CL05] I. Ciupa and A. Leitner. Automatic testing based on design
by contract. In Proceedings of Net.ObjectDays 2005 (6th An-
nual International Conference on Object-Oriented and Internet-
based Technologies, Concepts, and Applications for a Networked
World), pages 545–557, 2005.

[CMR+97] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and
M. Löwe. Handbook of Graph Grammars and Computing by
Graph Transformation, Volume 1: Foundations. World Scien-
tific, 1997. Chapter Algebraic Approaches to Graph Transfor-
mation Part I: Basic Concepts and Double Pushout Approach.

[Coc01] Alistair Cockburn. Writing E↵ective Use Cases. Addition-
Wesley, 2001.

[Con06a] Eclipse Consortium. Atl - a model transformation technology,
2006.

[Con06b] Eclipse Consortium. Eclipse modeling framework (emf) - ver-
sion 2.1.2., 2006.

[Con06c] Eclipse Consortium. Java emitter templates (jet). eclipse mod-
eling framework (emf) - version 2.1.1, 2006.

[Cri11] Peter Cripps. Architectural granularity, April 2011.

[dDVe01] Gesamtverband der Deutschen Versicherungswirtschaft e.V.
Versicherungsanwendungsarchitektur (vaa), 2001.

[DNSVT07] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and
Guilherme H. Travassos. A survey on model-based testing ap-
proaches: a systematic review. In WEASELTech ’07: Pro-
ceedings of the 1st ACM international workshop on Empirical
assessment of software engineering languages and technologies,
pages 31–36, New York, NY, USA, 2007. ACM.

[DNT09] Arilo Claudio Dias-Neto and Guilherme Horta Travassos.
Model-based testing approaches selection for software projects.
Inf. Softw. Technol., 51(11):1487–1504, 2009.

[ECFGP10] Sergio España, Nelly Condori-Fernandez, Arturo González, and
Óscar Pastor. An empirical comparative evaluation of require-
ments engineering methods. Journal of Brazilian Computer
Society, 16:3–19, 2010.

204 BIBLIOGRAPHY

[EEG08] Jens Ellerweg, Gregor Engels, and Baris Güldali. Modell-
basierter komponententest mit visuellen kontrakten. In H.-G.
Hegering, A. Lehmann, H. J. Ohlbach, and C. Scheideler, edi-
tors, INFORMATIK 2008, Beherrschbare Systeme - dank Infor-
matik, Band 1, Beiträge der 38. Jahrestagung der Gesellschaft
für Informatik e.V. (GI), volume 133 of Lecture Notes in Infor-
matics, pages 211–214, Bonn, 2008. Gesellschaft für Informatik
(GI).

[EG14] Kent Beck Erich Gamma. Junit, 2014.

[EGL06a] Gregor Engels, Baris Güldali, and Marc Lohmann. Towards
model-driven unit testing. In D. Hearnden, J.G. Süß, N. Rapin,
and B. Baudry, editors, Proceedings of the workshop on Model
Design and Validation (MoDeVa 2006), Toulouse (France),
pages 16–29, Berlin / Heidelberg, October 2006. Le Commis-
sariat à l’Energie Atomique - CEA.

[EGL+06b] Gregor Engels, Baris Güldali, Marc Lohmann, Oliver Juwig,
and Jan-Peter Richter. Industrielle fallstudie: Einsatz visueller
kontrakte in serviceorientierten architekturen. In Bettina Biel,
Matthias Book, and Volker Gruhn, editors, Software Engineer-
ing, volume 79 of LNI, pages 111–122. GI, 2006.

[Ell08] Jens Ellerweg. Komponententest mit visuellen kontrakten.
Master’s thesis, University of Paderborn, 2008.

[ELSH06] Gregor Engels, Marc Lohmann, Stefan Sauer, and Reiko Heckel.
Model-driven monitoring: An application of graph transforma-
tion for design by contract. In International Conference on
Graph Transformation (ICGT) 2006, 2006.

[ESS08] Gregor Engels, Stefan Sauer, and Christian Soltenborn. Un-
ternehmensweit verstehen – unternehmensweit entwickeln: Von
der modellierungssprache zur softwareentwicklungsmethode.
Informatik-Spektrum, 31:451–459, 2008. 10.1007/s00287-008-
0274-9.

[FG99] M. Fewster and D. Graham. Software Test Automation. Addi-
son Wesley, 1999.

[FK96] Roger Ferguson and Bogdan Korel. The chaining approach
for software test data generation. ACM Trans. Softw. Eng.
Methodol., 5(1):63–86, January 1996.

BIBLIOGRAPHY 205

[För09] Alexander Förster. Pattern based business process design and
verification. PhD thesis, University of Paderborn, 2009.

[Fow07] Martin Fowler. Mocks aren’t stubs, February 2007.

[FvBK+91] Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek,
Mokhtar Amalou, and Abderrazak Ghedamsi. Test selec-
tion based on finite state models. IEEE Trans. Softw. Eng.,
17(6):591–603, 1991.

[Gar07] Gartner. Gartner’s hype cycle, 2007.

[GMR+12] AmirHossein Ghamarian, Maarten Mol, Arend Rensink, Ed-
uardo Zambon, and Maria Zimakova. Modelling and analysis
using groove. International Journal on Software Tools for Tech-
nology Transfer, 14(1):15–40, 2012.

[GMWE09] Baris Güldali, Michael Mlynarski, Andreas Wübbeke, and Gre-
gor Engels. Model-based system testing using visual contracts.
In EUROMICRO-SEAA, pages 121–124, 2009.

[GR11] Baris Güldali and Thomas Rossner. Integration von modell-
basiertem testen in den agilen entwicklungsprozess. In German
Testing Day, 2011.

[Gro03a] Object Management Group. Mda guide, 2003.

[Gro03b] Object Management Group. Unified modeling language speci-
fication, 2003.

[Gro05a] Hans-Gerhard Gross. Component-Based Software Testing with
UML. Springer Verlag, 2005.

[Gro05b] Object Management Group. Mof qvt final adopted specifica-
tion, omg adopted specification ptc/05-11-01, 2005.

[Gül05] Baris Güldali. Model testing – combining model checking and
coverage testing. Master’s thesis, University of Paderborn,
2005.

[Han08] Dennis Hannwacker. Kontraktbasierte generierung von meth-
odensequenzen für testfälle mittels model-checking. Master’s
thesis, University of Paderborn, 2008.

206 BIBLIOGRAPHY

[Hau05] Jan Hendrik Hausmann. Dynamic meta modeling : a semantic
description technique for visual modeling languages. PhD thesis,
University of Paderborn, 2005.

[Hec98] Reiko Heckel. Open Graph Transformation Systems. PhD the-
sis, Technical Univesity of Berlin, 1998.

[Hec06] Reiko Heckel. Graph transformation in a nutshell. Electronic
Notes in Theoretical Computer Science, 148:187–198, 2006.

[HKS97] Pei Hsia, David Kung, and Chris Sell. Software require-
ments and acceptance testing. Annals of Software Engineering,
3(1):291–317, 1997.

[HL03] Reiko Heckel and Marc Lohmann. Towards model-driven
testing. Electronic Notes in Theoretical Computer Science,
82(6):33 – 43, 2003. TACoS’03, International Workshop on Test
and Analysis of Component-Based Systems (Satellite Event of
ETAPS 2003).

[HM05] Reiko Heckel and Leonardo Mariani. Automatic conformance
testing of web services. In Fundamental Approaches to Software
Engineering (FASE) 2005, pages 34–48, 2005.

[ISO] Iso/iec/ieee 29119 the international software testing standard.

[ISO94] Iso/iec 9646-1. information technology—open systems
interconnection—conformance testing methodology and
framework, part 1: General concepts., 1994.

[ISO01] Iso/iec 9126-1 software engineering - product quality, 2001.

[ISTQB] ISTQB International Software Testing Qualifications Board.
Certified tester - foundation level.

[Kah62] A. B. Kahn. Topological sorting of large networks. Commun.
ACM, 5(11):558–562, November 1962.

[KBJV06] I. Kurtev, J. Bezivin, F. Jouault, and P. Valduriez. Model-based
dsl frameworks. In Companion to the 21st ACM SIGPLAN
conference on Object-oriented programming systems, languages,
and applications, pages 602–616, New York, 2006. ACM Press.

[Kha12] Tamim Ahmed Khan. MODEL-BASED TESTING USING VI-
SUAL CONTRACTS. PhD thesis, Tamim Ahmed Khan, 2012.

BIBLIOGRAPHY 207

[KKBK07] Hyungchoul Kim, Sungwon Kang, Jongmoon Baik, and Iny-
oung Ko. Test cases generation from uml activity diagrams.
In Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing, 2007. SNPD 2007. Eighth
ACIS International Conference on, volume 3, pages 556–561,
July 2007.

[Kla08] Dominik Klaholt. Einsatz visueller kontrakte für modell-
basierten systemtest am beispiel einer web-anwendung. Mas-
ter’s thesis, University of Paderborn, 2008.

[Kön10] Patrick Könemann. Design decisions in model-driven software
development. In Software Engineering (Workshops), pages 531–
536, 2010.

[KR06] Harmen Kastenberg and Arend Rensink. Model checking dy-
namic states in groove. In 13th International SPIN Workshop,
pages 299–305, 2006.

[Kru99] P. Kruchten. Der Rational Unified Process - Eine Einführung.
Addison-Wesley, 2 edition, 1999.

[KS06] Alexander Königs and Andy Schürr. Tool integration
with triple graph grammars - a survey. Electronic Notes
in Theoretical Computer Science, 148(1):113 – 150, 2006.
¡ce:title¿Proceedings of the School of SegraVis Research Train-
ing Network on Foundations of Visual Modelling Techniques
(FoVMT 2004)¡/ce:title¿ ¡xocs:full-name¿Foundations of Visual
Modelling Techniques 2004¡/xocs:full-name¿.

[Küs04] Jochen Malte Küster. Consistency management of object-
oriented behavioral models. PhD thesis, University of Pader-
born, 2004.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Prelimi-
nary design of jml: a behavioral interface specification language
for java. SIGSOFT Softw. Eng. Notes, 31(3):1–38, May 2006.

[LC03] G. Leavens and Y. Cheon. Design by contract with jml, 2003.

[LES06] Marc Lohmann, Gregor Engels, and Stefan Sauer. Model-driven
monitoring: Generating assertions from visual contracts. In
21st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE) 2006 Demonstration Session, 2006.

208 BIBLIOGRAPHY

[LG87] Terttu Luukkonen-Gronow. Scientific research evaluation: a
review of methods and various contexts of their application.
R&D Management, 17:207—221, 1987.

[LJX+04] Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li Xuan-
dong, and Zheng Guoliang. Generating test cases from uml
activity diagram based on gray-box method. In Software En-
gineering Conference, 2004. 11th Asia-Pacific, pages 284–291,
Nov 2004.

[LMH07] Marc Lohmann, Leonardo Mariani, and Reiko Heckel. A model-
driven approach to discovery, testing and monitoring of web
services. In Luciano Baresi and Elisabetta Di Nitto, editors,
Test and Analysis of Web Services, pages 173–204. Springer,
2007.

[LO94] Sølvberg A Lindland OI, Sindre G. Understanding quality in
conceptual modeling. IEEE Software, 11(2):42–49, 1994.

[Loh06] Marc Lohmann. Kontraktbasierte Modellierung, Implemen-
tierung und Suche von Komponenten in serviceorientierten Ar-
chitekturen. PhD thesis, University of Paderborn, 2006.

[LSE05] Marc Lohmann, Stefan Sauer, and Gregor Engels. Executable
visual contracts. In Martin Erwig and Andy Schürr, edi-
tors, 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC’05), pages 63–70, 2005.

[Lud03] Jochen Ludewig. Models in software engineering – an introduc-
tion. Softw Syst Model, 2:5—14, 2003. cite this!

[Mar04] Darko Marinov. Automatic Testing of Software with Struc-
turally Complex Inputs. PhD thesis, Computer Science and
Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, 2004.

[MBE+07] T. Müller, R. Black, S. Eldh, D. Graham, K. Olsen,
M. Pyhäjärvi, G. Thompson, and E.van Veendendal. Cer-
tified tester - foundation level syllabus - version 2007, 2007.
International Software Testing Qualifications Board (ISTQB),
Möhrendorf, Germany.

[Mey92] Bertrand Meyer. Applying ”design by contract”. IEEE Com-
puter, 25(10):40–51, 1992.

BIBLIOGRAPHY 209

[Mey05] Bertrand Meyer. Doing more with contracts: Towards auto-
matic tests and proofs. In RISE, page 1, 2005.

[MG06] Tom Mens and Pieter Van Gorp. A taxonomy of model trans-
formation. Electr. Notes Theor. Comput. Sci., 152:125–142,
2006.

[MGWE12] Michael Mlynarski, Baris Güldali, Stephan Weißleder, and Gre-
gor Engels. Model-based testing: Achievements and future chal-
lenges. Advances in Computers, 86:1–39, 2012.

[MH09] Horst Pohlmann Matthias Hamburg, Uwe Hehn. Istqb/gtb
standard glossar der testbegri↵e. Technical report, German
Testing Board (GTB), 2009. Version 2.0.

[MSM+07] Aleksandar Milicevic, Sasa, Misailovi, Darko Marinov, and Sar-
fraz Khurshid. Korat: A tool for generating structurally com-
plex test inputs. In Proc. of 29th International Conference on
Software Engineering (ICSE’07), pages 771–774. IEEE Com-
puter Society Press, 2007.

[NSV+08] Arilo Dias Neto, Rajesh Subramanyan, Marlon Vieira, Guil-
herme Horta Travassos, and Forrest Shull. Improving evidence
about software technologies: A look at model-based testing.
IEEE Software, 25:10–13, 2008.

[Osw11] Stephan Oswald. Software testen mit rechtskonformen daten.
OBJEKTSpektrum, Quality Managament:21–22, 2011.

[Pet01] Alexandre Petrenko. Fault model-driven test derivation from
finite state models: annotated bibliography. pages 196–205,
2001.

[PP04] Alexander Pretschner and Jan Philipps. Methodological issues
in model-based testing. In Manfred Broy, Bengt Jonsson, Joost-
Pieter Katoen, Martin Leucker, and Alexander Pretschner, ed-
itors, Model-Based Testing of Reactive Systems, volume 3472 of
Lecture Notes in Computer Science, pages 281–291. Springer,
2004.

[Ren03] Arend Rensink. The groove simulator: A tool for state space
generation. In Applications of Graph Transformations with In-
dustrial Relevance (AGTIVE) 2003, pages 479–485, 2003.

210 BIBLIOGRAPHY

[Ros09] Thomas Rossner. Modellbasiertes testen – eine einführung. iX
- heise Verlag, 11:125–130, 2009.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1: Foundations.
World Scientific, 1997.

[SB01] K. Schwaber and M. Beedle. Agile Software Development with
SCRUM. Prentice-Hall, 2001.

[Sch07] Ina Schieferdecker. Modellbasiertes testen. OBJEKTspektrum,
SIGSDATACOM, 03:39–45, 2007.

[Sch09] Tim Schattkowsky. Platform independent modeling of synthe-
sizable software systems using UML 2. PhD thesis, University
of Paderborn, 2009.

[SEG] University of Paderborn. Software Engineering Group. Fujaba
tool suite.

[SG10] Matthias Schnelte and Baris Güldali. Test case generation for
visual contracts using ai planning. In INFORMATIK 2010,
Beiträge der 40. Jahrestagung der Gesellschaft für Informatik
e.V. (GI), volume 176 of Lecture Notes in Informatics, pages
369–374. Gesellschaft für Informatik (GI), 2010.

[Spe12] Various Speakers. Closing panel: Code generation - how far
have we come in 5 years?, 2012.

[SS10] Harry M. Sneed and Richard Seidl. Einflussfaktoren bei der
schätzung von testprojekten. Online Ressource, 21. January
2010. Presentaion at Software Quality Days 2010.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer, Wien,
1973.

[TTC] Testing and test control notation version 3 (ttcn-3).

[Ude05] Jon Udell. An interview with bill gates at pdc 2005, September
2005.

[UL07] Mark Utting and Bruno Legeard. Practical Model-Based Test-
ing: A Tools Approach. Morgan Kaufmann, 2007.

BIBLIOGRAPHY 211

[UPL06] Mark Utting, Alexander Pretschner, and Bruno Legeard. A
taxonomy of model-based testing. Technical Report 04/2006,
Department of Computer Science, The University of Waikato
(New Zealand), April 2006.

[VB05] Sira Vegas and Victor Basili. A characterisation schema for
software testing techniques. Empirical Softw. Engg., 10(4):437–
466, 2005.

[vL00] A. van Lamsweerde. Formal specification: a roadmap. In Proc.
ICSE’00, pages 147–159, 2000.

[W3C14] W3C. Web services description language (wsdl) version 2.0 part
1: Core language, 2014.

[WEMS+12] Mario Winter, Mohsen Ekssir-Monfared, Harry M. Sneed,
Richard Seidla, and Lars Borner. Der Integrationstest: Von
Entwurf und Architektur zur Komponenten- und Systeminte-
gration. Carl Hanser Verlag GmbH & CO. KG, 2012.

[WGM+11] Stephan Weißleder, Baris Güldali, Michael Mlynarski, Arne-
Michael Törsel, David Faragó, Florian Prester, and Mario Win-
ter. Modellbasiertes testen: Hype oder realität? OBJEKTspek-
trum, 06/2011:60–66, 2011.

[Wik] Wikipedia. Hype cycle. Online. Last visited at 6.2.2013.

[Win99] Mario Winter. Qualitätssicherung für objektorientierte Soft-
ware: Anforderungsermittlung und Test gegen die An-
forderungsspezifikation. PhD thesis, Fachbereich Informatik
der FernUniversität - Gesamthochschule - in Hagen, Septem-
ber 1999.

[Win09] Mario Winter. Modellbasierter test ? alter wein in neuen
schläuchen? Presentation, 2009. Software & Systems Qual-
ity Conference 2009.

212 BIBLIOGRAPHY

	Introduction
	Motivation
	Model-based Software Development
	Model-based Testing
	Problem Statement
	Solution

	I Foundations and Related Work
	Fundamentals of Model-based Testing
	Software Development Methodology
	Model-based Software Development
	Modeling
	Model Transformations

	Testing in Development Process
	Test Levels
	Test Activities
	Test Automation Techniques

	Model-based Testing
	MBT Process
	Different Approaches
	Different Paradigms

	Contract-based Testing
	Characteristics
	Reference Model for Contract Modeling
	Reference Model for Testing with Contracts

	Approaches in the Literature
	AutoTest
	Korat
	WeSUF
	LTG/B
	WSTVC

	Tabular Comparison of Approaches
	Summary

	Visual Contracts
	Modeling with Visual Contracts
	Running Example: Online Shop
	Visual Contracts
	Semantics of Visual Contracts

	Application Areas
	Experiences with Visual Contracts

	Summary of Part I
	Improvement Potential in CBT Approaches
	Requirements on a novel Testing Approach

	II Approach
	General Approach
	Development Process Overview
	Implementation
	Test Design
	Test Implementation
	Test Execution
	Summary

	Unit Testing
	Development Scenario
	Test Design
	Approach 1: Artificial Prestate
	Approach 2: Natural Prestate

	Test Implementation
	Test Execution

	Integration Testing
	Development Scenario
	Test Design
	Test Implementation and Execution

	System Testing
	Development Scenario
	Test Design
	Test Implementation
	Test Execution

	Tool Support and Evaluation
	Unit Testing
	Approach 1: Artificial Prestate
	Approach 2: Natural Prestate

	Integration Testing
	System Testing
	Evaluation
	Evaluation by interviews and case studies
	Evaluation by quantitative methods
	Evaluation by peer reviews

	III Closure
	Conclusion and Future Work
	Contributions
	Epilogue
	Roadmap for further Research
	Further selection criteria for test data
	Binding real test data
	Agile development

	Bibliography

