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Abstract

Self-adaptive mechatronic systems automatically adapt their behavior to a changing environ-
ment by reconfiguring their software architecture at runtime. In particular, this includes to dy-
namically form systems of systems at runtime, where several systems collaborate with each
other using message-based communication protocols. Often, these systems are safety-critical
and need to satisfy hard real-time constraints, i.e., any (timing) error in their behavior may
put lives at risk. As a consequence, the software of a mechatronic system needs to meet high
quality standards. In particular, it needs to be guaranteed that reconfigurations of the soft-
ware architecture do not lead to an unsafe behavior or a violation of the real-time constraints.
Testing alone cannot prove the correctness and thereby the safety of the mechatronic system.
Existing approaches for model-driven development and analysis of mechatronic systems ei-
ther provide support for analyzing real-time constraints or for analyzing reconfigurations of
the software architecture, but none of the existing approaches supports both.

In this thesis, we present a combination of constructive and analytical techniques that
can be used by software engineers as part of a model-driven software engineering method
for assuring the correctness of the software of a self-adaptive mechatronic system. As a
key novelty, our approach combines formal verification and simulation-based testing for
achieving a scalable analysis of the system’s software. As a basis, our component-based
software architecture explicitly separates discrete event-based software components from
time-continuous feedback controllers. This enables to verify the software components us-
ing a compositional model checking approach that we extended by a refinement check for
message-based communication protocols. The correct integration of software components
and feedback controllers is assessed by a testing-based approach based on model-in-the-loop
simulation. Finally, we define an approach for specifying and verifying the reconfiguration
behavior of software components that, in particular, separates the reconfiguration behavior
from the functional behavior for improving scalability of the verification.

We evaluated all of our contributions based on the RailCab system. In particular, we spec-
ified a component-based software architecture including reconfigurations for a RailCab and
conducted two case studies. These case studies demonstrate the viability of our techniques.
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Zusammenfassung

Selbstadaptive mechatronische Systeme passen ihr Verhalten über die Rekonfiguration ihrer
Softwarearchitektur zur Laufzeit automatisch an eine sich verändernde Umwelt an. Dies er-
möglicht insbesondere die Bildung von sogenannten „Systems-of-Systems“ zur Laufzeit, in
denen mehrere eigenständige Systeme unter Verwendung nachrichtenbasierter Kommunika-
tionsprotokolle miteinander kollaborieren. Dabei müssen die einzelnen Systeme in der Regel
harten Echtzeitanforderungen genügen und sind häufig sicherheitskritisch, d.h. jegliche Feh-
ler im funktionalen oder zeitlichen Verhalten können Menschenleben gefährden. Nicht zu-
letzt deshalb muss die Software eines komplexen mechatronischen Systems hohen Qualitäts-
standards genügen. Die besondere Kritikalität dieser Systeme bedingt, dass eine Rekon-
figuration der Softwarearchitektur nicht zu einem undefinierten bzw. gefährdenden Ver-
halten oder einer Verletzung der Echtzeitanforderungen führt. Durch die Anwendung test-
basierter Verfahren alleine kann die Korrektheit und damit auch die Sicherheit des mecha-
tronischen Systems nicht garantiert werden. Existierende Ansätze für eine modellgetriebene
Entwicklung und Analyse mechatronischer Systeme ermöglichen entweder die Analyse von
Echtzeitanforderungen oder die Analyse von Rekonfigurationen der Softwarearchitektur zur
Laufzeit. Bisher existiert jedoch kein Ansatz der beides unterstützt.

Im Rahmen dieser Arbeit wird eine Kombination aus konstruktiven und analytischen Ver-
fahren vorgestellt. Sie kann von Softwareentwicklern im Rahmen einer modellgetriebenen
Softwareentwicklungsmethode eingesetzt werden, um die Korrektheit der Software eines
selbstadaptiven mechatronischen Systems zu verifizieren. Die Neuartigkeit des vorgestellten
Konzepts liegt in der gezielten Kombination formaler Verifikationsverfahren mit simulations-
basierten Testverfahren mit dem Ziel, einen skalierbaren Ansatz für die Analyse der Soft-
ware eines mechatronischen Systems zu erhalten. Als Grundlage für diesen Ansatz wird
ein Komponentenmodell vorgestellt, das explizit zwischen ereignisdiskreten Softwarekom-
ponenten und zeitkontinuierlichen Reglern unterscheidet. Es erlaubt die formale Verifikation
der Softwarekomponenten mit einem kompositionalen Model Checking Verfahren, das um
eine Verfeinerungsüberprüfung für nachrichtenbasierte Kommunikationsprotokolle erweitert
wurde. Die fehlerfreie Integration von Softwarekomponenten und Reglern wird anschließend
mit einem Testverfahren unter Verwendung von Model-in-the-Loop Simulationen überprüft.
Ergänzend wird ein Konzept für die Spezifikation und Verifikation von Rekonfigurationen
vorgestellt. Dieser Ansatz trennt explizit die Spezifikation und Analyse des funktionalen Ver-
haltens vom Rekonfigurationsverhalten, um die Skalierbarkeit der Verifikation zu verbessern.

Alle Beiträge dieser Arbeit wurden auf Basis des RailCab Systems evaluiert. Dazu wurde
eine komponentenbasierte Softwarearchitektur für das RailCab inklusive der notwendigen
Rekonfigurationen entwickelt. Weiterhin wurden zwei Fallstudien durchgeführt, die die
praktische Anwendbarkeit der vorgestellten Verfahren aufzeigen.
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1 Introduction

Today’s technical systems mostly consist of mechanical, electrical, and software parts. Ex-
amples of such systems include modern cars, trains, or airplanes. We call those systems
mechatronic systems [VDI04, GKP08]. New functionality in such systems is increasingly
realized by embedded software. In particular, embedded software interconnects previously
isolated software parts of a system [PBKS07, SW07]. In addition, embedded software en-
ables to build systems of systems where several systems collaborate with each other using
application-level communication protocols [WA13]. An example of such systems of systems
is given by car platoons. In a car platoon, cars drive closely behind each other for reducing
the energy consumption and increasing the throughput on a highway [RCC10, HESV91].

Realizing advanced functionality such as car platooning often requires an adaptation of
the software architecture at runtime [CdLG+09]. Such adaptation is called structural re-
configuration [OMT98]. As an example, cars need to adapt their software architecture for
driving in a platoon. Followers, for example, need to take the distance to the preceding car
into account. The leading car needs to manage communication links to a varying number of
followers because cars may join or leave the platoon at any time.

Despite the fact that the software architecture and communication links may change during
runtime, self-adaptive mechatronic systems need to be safe [ISO10, p. 316]. Especially
systems like cars or public transportation systems require high-quality software because any
software failure in such a system may put lives at risk. In particular, reconfigurations can put
a system into an unsafe state if they are executed incorrectly or only partially.

Ensuring high quality of the software is further complicated by hard real-time constraints
that apply to such systems [But05]. That means that the correctness of the software does not
only depend on the implemented functionality but also on the correct timing of the executed
operations. That holds, in particular, for the interaction of systems by communication pro-
tocols. In our example, a braking maneuver of a car platoon requires that the platoon leader
notifies all followers to brake at the correct point in time.

A common approach for achieving the necessary quality and mastering the inherent com-
plexity of such software is model-driven development [Sch06, SV06]. When applying model-
driven development, the developers build models of the software instead of implementing it
directly. If these models have a defined (formal) semantics, they enable to build the soft-
ware correct by construction [Cha06], i.e., models may be analyzed in order to find errors
already at design time. In particular, such models enable to apply analysis techniques like
model checking [BK08] and simulation [ÅEM98] for guaranteeing correctness of the soft-
ware. However, current approaches for the model-driven development of mechatronic sys-
tems provide no or only very limited support for adapting the software architecture of a
system at runtime and for reasoning over the adaptation at design time.

Existing standards like UML [Gro11c] or SysML [Gro10] support modeling the software
of a mechatronic system, but neither provide support for specifying real-time constraints
and runtime reconfiguration nor define a formal semantics enabling to analyze these mod-
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els. Formal models like timed automata [AD94, BY04] that are specifically dedicated to the
formal analysis of real-time systems also fail with respect to specifying runtime reconfig-
uration. The same restriction holds for commercial tools like MATLAB/Simulink [Matg]
or Dymola/Modelica [Das, Mod09] that are used in industry for developing automotive
software [PBKS07, KSHL12]. In contrast, graph-based approaches like graph transfor-
mation systems [Roz97] enable the specification of runtime reconfiguration but provide
no means for specifying their real-time properties. Component models for real-time sys-
tems either provide limited support for self-adaptation behavior or they support formal ver-
ification [CSVC11, HPB+10]. Architecture description languages for self-adaptive sys-
tems [BCDW04] do not consider the real-time properties that apply to mechatronic systems.
Hence, none of the approaches provides the necessary modeling and analysis capabilities that
are required for self-adaptive mechatronic systems.

The goal of this thesis is to extend a model-driven software engineering method by tech-
niques for guaranteeing the correctness of the software of a self-adaptive mechatronic sys-
tem. In this thesis, we will use the model-driven software engineering method MECHA-
TRONICUML [GTB+03, BDG+14a] as a basis for developing and illustrating our contri-
butions. MECHATRONICUML adapts concepts of the UML [Gro11c] for supporting the
model-driven development of self-adaptive mechatronic systems. In particular, it provides a
domain-specific modeling language with a formal semantics that enables formal verification
of software models. Previous works on MECHATRONICUML contributed, for example, the
specification of feedback controller exchange [BGO06, Hir08, OMT+08], the specification
of software reconfiguration [THHO08, Tic09], and the verification of communication proto-
cols [GTB+03, EHH+13]. As a result, MECHATRONICUML supports the specification of a
software architecture including state-based real-time behavior and reconfiguration operations
for self-adaptive mechatronic systems. In this thesis, we extend the support of MECHATRON-
ICUML for specifying and analyzing reconfigurations and message-based communication
protocols that are necessary for realizing self-adaptive mechatronic systems. As an applica-
tion example, we use the RailCab system that is introduced in the next section.

1.1 The RailCab System

The RailCab system [HTS+08a, NBP] is one representative example of a whole class of self-
adaptive mechatronic systems that applies runtime reconfiguration for adapting their software
to their changing environment [HSD+15]. The vision of the RailCab system is a new kind
of railway transportation system where autonomous vehicles, the RailCabs, transport people
and goods directly to their destination without the need for changing trains. RailCabs drive
autonomously, only controlled by software using the existing track systems. Figure 1.1(a)
shows a RailCab prototype in scale 1:2.5 on the test track at the University of Paderborn.

One feature of the RailCab system is the convoy mode which is similar to the aforemen-
tioned car platoons. In convoy mode, two or more RailCabs agree on driving behind one
another at small distances in order to reduce the energy consumption [HTS+08a, HP14].
Figure 1.1(b) shows an illustration of the build-up of a convoy of three RailCabs. Joining a
convoy requires the RailCabs to adapt their software, e.g., for handling the necessary com-
munication inside the convoy.
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(a) RailCab Prototype in Scale 1:2.5 on Test
Track

(b) Build-up of a Convoy of Three RailCabs at
a Switch [NBP]

Figure 1.1: The RailCab System

In addition, building a convoy includes electing a so-called coordinator [HTS+08a, HP14].
The coordinator is responsible for providing reference data and announcing acceleration and
braking maneuvers to all other RailCabs in the convoy, which we call members. The neces-
sary communication between the RailCabs is formally defined by a message-based commu-
nication protocol called ConvoyCoordination. This communication protocol is safety-critical
because collisions are inevitable if RailCabs are not notified correctly about acceleration or
braking maneuvers.

1.2 Problem Statement

The software of a self-adaptive mechatronic system like the RailCab is complex, i.e., it con-
sists of a large number of concurrent, interconnected functions. A common approach for
building such software is a component-based approach where the software architecture is
specified by hierarchical, interconnected components [SGM02]. MECHATRONICUML fol-
lows this approach as well. Components interact via message-based communication proto-
cols. In MECHATRONICUML, a reconfiguration of the system is specified by a modification
of the software architecture, i.e., adding and removing component instances and connectors.
Communication protocols and reconfigurations are formally verified for safety properties us-
ing model checking [GTB+03, GS13] and inductive analyses [BBG+06]. In this section, we
outline three particular problems regarding the specification and analysis of models including
runtime reconfiguration that are currently not sufficiently solved by MECHATRONICUML
and other related approaches.

1. Reconfiguration of Mechatronic Systems In a component-based system, a re-
configuration often affects several components of the software architecture. As an example,
consider two RailCabs that reconfigure their software architecture for building a convoy as
shown in Figure 1.2. Before building the convoy, both RailCabs only execute their a Veloc-
ityController that controls their speed as shown in the upper part of Figure 1.2. For driving
in the convoy, the member RailCab needs to instantiate the software component MemberCon-
trol that implements the communication protocols for driving in a convoy. In addition, this
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RailCab needs to replace its VelocityController by a DistanceController that takes the distance to
the preceding RailCab into account as shown in the lower part of Figure 1.2. The coordina-
tor only needs to instantiate the software component ConvoyCoordination that implements the
communication protocols for communicating with the convoy members.

RailCab2 : RailCab

member : 

MemberControl

ctrl : 

DistanceController

RailCab1 : RailCab

convoy : 

ConvoyCoordination

ctrl : 

VelocityController

CoordinatorMember

NoConvoy

NoConvoy

RailCab2 : RailCab

ctrl : 

VelocityController

RailCab1 : RailCab

ctrl : 

VelocityController

before Reconfiguration

after Reconfiguration

Figure 1.2: Illustration of the Software Reconfiguration of RailCabs for Building a Convoy

Thus, the reconfiguration for becoming a convoy member affects the RailCab software
component as well as the VelocityController. In such cases, all of the affected components need
to reconfigure correctly such that the intended result can be established. If reconfigurations
are only executed partially, the system may become unsafe. If the RailCab only instantiates
the MemberControl component but does not switch the feedback controller, the system is un-
safe. In this case, the RailCab does not consider the distance to the preceding RailCab while
driving in a convoy. If the RailCab only switches the feedback controller but does not instan-
tiate the MemberControl component, the system is unsafe as well. In this case, the feedback
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controller does not receive the reference speed for driving in the convoy and, as a result, the
RailCab may drive too fast and cause a collision.

To be safe, a reconfiguration approach needs to ensure, on the one hand, that the recon-
figurations can never produce an inconsistent software architecture as, e.g., executing the
DistanceController without executing the MemberControl. On the other hand, the reconfigura-
tion approach must ensure that a reconfiguration can be executed completely in time before
actually starting it. That, in turn, requires to take the real-time constraints of the system
into account while deciding whether a reconfiguration should be executed or not, and to ver-
ify that no reconfiguration violates the real-time constraints. Since the component model
of a self-adaptive mechatronic system is hierarchical in most cases, the reconfiguration ap-
proach needs to support reconfiguration across different levels of hierarchy while preserving
the encapsulation of components [SGM02]. At present, no existing approach for specifying
reconfiguration of component-based systems considers all of the aforementioned properties.

2. Refining Communication Protocols In a self-adaptive mechatronic system, whose
software is implemented in a component-based fashion, communication between the com-
ponents is essential for realizing the functionality of the system [SW07]. This includes both,
the communication between components inside a single system but also the communication
between systems as part of a system of systems [WA13]. As a result, the correctness of
the software of a self-adaptive mechatronic system does not only depend on the correctness
of a single component but also on the correctness of the application-level communication
protocols that define the interaction between components and between different system.

Due to the safety critical nature of self-adaptive mechatronic systems, it is desirable to
apply formal verification methods like model checking [CGP00, BK08] to ensure correct-
ness of their component-based software. Model checking gives a mathematical proof that
safety and liveness properties, which have been specified for the system, hold. However,
formal verification techniques like model checking suffer from the so-called state-explosion
problem [CGP00]. It denotes the fact that the number of runtime states of a software grows
exponentially in both, the number processes and the number of states of each process, if the
system has concurrent executions [CKNZ12]. This makes the verification of component-
based systems with concurrent components quickly infeasible. Compositional verification
approaches [BCC98] tackle the state-explosion problem by verifying single components of
a component-based system in isolation. Many of these approaches are based on the as-
sume/guarantee principle [CGP00, ch. 12], i.e., they verify the correctness of a component
based on assumptions that must be guaranteed by the component’s environment. One of the
main difficulties of assume/guarantee approaches is deriving good assumptions automatically
from the software model [CAC08].

One example of a compositional verification approach based on the assume/guarantee prin-
ciple is given by the compositional verification approach of MECHATRONICUML [GTB+03,
GS13]. This approach prevents the computation of assumptions by providing a syntactic de-
composition of the system. In particular, MECHATRONICUML separately defines compo-
nents and communication protocols that define the interaction of components. Then, compo-
nents may be verified under the assumption that the interaction via the communication pro-
tocol is correct. Guaranteeing this assumption requires two steps. First, we need to verify the
communication protocol using model checking [EHH+13]. At this point, the assume/guar-
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antee principle requires that the protocol is independent of the component. Second, we need
to guarantee that the component correctly implements the communication protocol without
invalidating the verification results obtained for the communication protocol in the first step.

However, implementing the communication protocol in the component requires to modify
it. In particular, we need to integrate the protocol with the internal behavior of the compo-
nent, for example, for accessing data and triggering computations. As a result, we need to
verify that the component implementation of the communication protocol is a correct refine-
ment of the verified protocol behavior according to a refinement definition. The refinement
definition guarantees that the component implementation of a communication protocol does
not invalidate the verification result that has been obtained for the communication protocol.
In particular, a refinement definition formally defines how the component implementation
(refined protocol) may deviate from the communication protocol (abstract protocol) without
invalidating a particular set of verified properties. Thus, a suitable definition of refinement is
essential for a compositional verification approach as the one used by MECHATRONICUML.

In literature, many different refinement definitions and according verification procedures
exist [BK08, WL97, JLS00]. "Examples include timed simulation and timed bisimula-
tion [WL97]. Depending on the particular type of protocol that is refined, all refinement
definitions might be useful when building a system. A suitable refinement definition for a
compositional approach needs to be as weak as possible for enabling reuse of an abstract
protocol in as many different components as possible but as strong as necessary for guaran-
teeing that all verified properties hold for the refined protocol. If the refinement definition
is too weak, it is not guaranteed that verified properties still hold for the refined protocol. If
the refinement definition is too strong, the refinement check might reject the refined proto-
col although it fulfills all properties. This may happen, for example, if the refined protocol
removes behavior that is irrelevant for the properties, but which is checked by the too strong
refinement definition. The existing refinement definitions provide different compromises be-
tween reuse and preserved properties. As a consequence, there does not exist one refinement
definition that is suitable for all possible protocols. Instead, a compositional verification ap-
proach should support several refinement definitions where each of which may be suitable
for a particular abstract and refined protocol and a set of verified properties." [HBDS15]

As a result, we need an integrated approach that automatically selects a suitable refinement
definition and, in particular, verifies it for a given pair of abstract and refined protocols.

3. Simulation of Self-adaptive Mechatronic Systems The safe and correct op-
eration of a mechatronic system depends on the correct integration of the time-continuous
feedback controllers and the discrete software components. This includes, in particular, re-
configuration of the software architecture at runtime. As discussed before, reconfiguration
of the software architecture of a mechatronic system may require to exchange feedback con-
trollers. Exchanging feedback controllers involves the specification and execution of po-
tentially complex fading functions [BGO06, OMT+08] that guarantee that safe meaningful
values are applied on the physical machine at any time during the exchange. Therefore, it is
absolutely mandatory to ensure correctness of the reconfigurations.

A major objective of MECHATRONICUML is to prove the correctness of such system
models by applying formal verification. However, the integration of time-continuous feed-
back controllers whose behavior is defined by differential equations hardens formal verifi-
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cation significantly. In literature, it is often referred to as the hybrid model checking prob-
lem [Hen96]. Hybrid model checking approaches either only use very simple models of time-
continuous behavior or they apply overapproximation techniques [HHMWT00]. "A primary
reason for adopting overapproximation is that a precise model, or a practical engineering
model at hand, incorporates elements that no verification tool can handle in combination.
This is often the case for hybrid system models due to their rich vocabulary. Analysis of
such models can only commence after a chain of approximation steps, some of which can be
achieved automatically, others – the majority in practice – requiring manual reformulation of
the model under inspection. Each of these approximations may cause a loss of precision in
the model, e.g., when capturing nonlinear behavior by a linear model, making the analysis
less likely to succeed with a positive certificate as outcome. At the same time, as these ap-
proximations often have to be done manually, they require extremely skilled staff, are tedious
and have to be repeated when the original model changes." [ERNF12] In addition, even the
most recent techniques can only handle models that are "still of academic nature in the size
of problems solvable." [ERNF12]. As a result, it is not yet possible to verify correctness for
large and complex reconfigurable mechatronic systems such as the RailCab.

A different approach to assess the correctness of the operations of a mechatronic system
is testing by using a model-in-the-loop (MIL) simulation [Plu06]. In a MIL simulation, the
developer tests a model of the mechatronic system against a model of its environment. The
model of the mechatronic system always includes the feedback controllers and the discrete
software components, but it may also include models of the mechanic, electric, or hydraulic
parts of the system. This approach is already used in the automotive industry [BB08, SHS12].

MIL simulation of mechatronic systems is supported by commercial-of-the-shelf simula-
tors such as MATLAB R©/Simulink R© [Matg] or Dymola [Das] for the specification language
Modelica [Fri04, Mod09]. These tools, however, require models to be static, i.e., once spec-
ified, components and connections may not change while running a simulation. In addition,
they do not provide native support for asynchronous, message-based communication with
message buffers.

As a result, we need an approach that supports MIL simulation of self-adaptive mecha-
tronic systems that communicate via asynchronous, message-based communication proto-
cols. This approach needs to be integrated into our component-based development approach
such that model checking the event-discrete software components using the compositional
verification approach mentioned above remains possible.

1.3 Contribution

The contribution of this thesis is a combination of constructive and analytical techniques that
support the component-based specification and analysis of self-adaptive mechatronic systems
as part of a model-driven approach. As a key novelty compared to related approaches, we
combine formal verification and simulation-based testing for achieving a scalable analysis for
ensuring correctness of the software of a self-adaptive mechatronic system. In particular, we
contribute a transactional execution of hierarchical reconfigurations including an approach
for their verification (C1), a verification procedure for showing correct refinements of com-
munication protocols (C2), and support for simulating self-adaptive mechatronic systems
in MATLAB/Simulink (C3). We integrate our contributions into the MECHATRONICUML
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method. As a result, our contributions enhance the existing development process of MECHA-
TRONICUML [HSST13, BDG+14b] as outlined in Figure 1.3. All of our contributions have
been implemented as part of the MECHATRONICUML Tool Suite [DGB+14].

Domain-Specific Design and Development

Derive Component 

Model

 Specify Communication 

Protocols

component model communication protocol integrated

platform-independent

model

S1 S2

domain-spanning 

conceptual design
Specify Component 

Reconfiguration

reconfiguration 

behavior

real-time component 

behavior

 Specify Real-Time 

Behavior of 

Components

S4
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Transactional Execution 

of Hierarchical 

Reconfigurations

Verification of Correct 

Refinements

Simulation Support in 

MATLAB/Simulink
C1

C2

C3

process step parallel execution artefactcontribution

Simulate Platform-

Independent 

Model S5

domain-spanning 

conceptual design
software

artifacts

Specify Platform-

Independent Model

Specify Platform-

Specific Model

Domain-Spanning 

Conceptual Design

platform-independent 

model

platform-

independent
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Legend

Figure 1.3: Excerpt of the Design Process for the Development of Self-Adaptive Mechatronic
Systems (cf. [HSST13, GV14])

The starting point for the process, shown in Figure 1.3, is the domain-spanning conceptual
design [GFDK09, GSG+09] that has been created collaboratively by experts from all dis-
ciplines involved in building the mechatronic system, e.g., mechanical engineering, control
engineering, and software engineering. It includes all information about use cases, functions,
and system elements that affect more than one discipline. Based on the domain-spanning
conceptual design, each of the involved disciplines starts the domain-specific design and de-
velopment phase. In this phase, the software engineers execute the MECHATRONICUML
process [HSST13, BDG+14b], which consists of two main phases in accordance to the
model-driven architecture approach [Gro14]. Thus, the process starts by creating a platform-
independent model of the software. Then, the software engineers derive a platform-specific
model of the software and define a deployment of the software to the hardware platform. The
contributions of this thesis address the specification of the platform-independent model.

The software engineer starts specifying the platform-independent model in Step S1 by
deriving an initial component model from the domain-spanning conceptual design. In this
thesis, we unify the existing component models of MECHATRONICUML and provide an
extension that enables a concise, declarative specification of hierarchical reconfigurations.
This specification forms the basis for a transactional execution of reconfigurations (C1) that
respects ACI-properties of database systems [BHG87]. These are atomicity, i.e., either all
component instances reconfigure or none does, consistency, i.e., each reconfiguration pro-
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duces a consistent component instance configuration, and isolation, i.e., reconfigurations do
not interfere with each other.

In Step S2, the software engineer specifies a communication protocol for each interaction
between components. This includes a formal verification of the protocol behavior using
model checking [GTB+03, EHH+13, Ger13].

After specifying the communication protocols, the software engineer needs to specify the
real-time behavior for each component of the component model. This real-time behavior
needs to include the communication protocols that have been specified and verified in Step S2
such that the verified safety and liveness properties are not invalidated. We support the soft-
ware engineer in this step by an integrated verification procedure that verifies whether the
real-time behavior of a component correctly refines a communication protocol according to
a formal refinement definition (C2). As a byproduct, our approach automatically selects a
suitable refinement definition out of a set of possible refinement definitions.

In Step S4, the software engineer specifies the reconfiguration behavior of the components
using our aforementioned extensions of the component model. In addition, we extend this
step by an approach for verifying that the reconfiguration behavior fulfills the required ACI-
properties and meets all hard real-time deadlines (C1). The result of Steps S3 and S4 is a
platform-independent model of the software.

Finally, the software engineer needs to analyze whether event-discrete software and time-
continuous feedback controllers have been integrated correctly by using a MIL simulation
in Step S5. We support the software engineer in this step by automatically deriving a sim-
ulation model that includes both, the real-time behavior and the reconfiguration behavior of
the components. The simulation model is then extended by the implementations of the feed-
back controllers and the environment model. The MIL simulation may then be carried out
using MATLAB/Simulink. It enables the engineers of the different disciplines to validate the
whole self-adaptive mechatronic system by simulation and enables to use the code generation
facilities of MATLAB/Simulink for deriving source code for the system.

1.4 Overview

The remainder of this thesis is structured as follows. Chapter 2 introduces the foundations
that are required for understanding the contributions of this thesis. In Chapter 3, we define
a new component model for MECHATRONICUML. The MECHATRONICUML component
model forms the basis for the remaining contributions of this thesis. Along with the com-
ponent model, we continue our RailCab example from Section 1.1. We use this example
throughout the remainder of this thesis. Chapter 4 introduces our concept for transactional
execution of reconfigurations. In addition, we explain our concept for verifying reconfig-
urable components for ACI and timing properties. Thereafter, Chapter 5 presents our ap-
proach for verifying that communication protocols have been correctly refined by the com-
ponents in our component model. Next, we present our approach for MIL simulation of
self-adaptive mechatronic systems in Chapter 6. In particular, we define how simulation
models in MATLAB/Simulink can be derived automatically from a MECHATRONICUML
model. Finally, we summarize the contributions of this thesis and give a perspective on fu-
ture works in Chapter 7. We discuss the implementation and evaluation of our concepts as
well as related works along with our contributions as part of the main chapters of this thesis.
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The appendices provide additional, more technical information that supplement our con-
tributions. First, Appendix A presents additional parts of the RailCab model that we use as
a running example. Appendix B contains a formal definition of the semantics of Real-Time
Statecharts that we use for defining state-based behavior. Finally, we describe our frame-
work for performing reachability analyses (Appendix C) and the metamodels that have been
created as part of this thesis (Appendix D).
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2 Foundations

This chapter introduces the foundations for understanding the concepts presented in the
remainder of this thesis. We start by reviewing concepts and terminology related to self-
adaptive mechatronic systems in Section 2.1 that we will use in the following. Thereafter,
Section 2.2 introduces timed model checking including timed automata and the timed com-
putation tree logic. The latter two provide the formal basis for specifying and verifying
state-based behavior models of a self-adaptive mechatronic system. Section 2.3 introduces
graphs and corresponding graph transformations that form the basis for specifying and veri-
fying reconfiguration operations of a self-adaptive mechatronic system. Finally, Section 2.4
introduces MECHATRONICUML, which is a domain-specific language based on timed au-
tomata and graph transformations, that enables to specify software models for a self-adaptive
mechatronic system on a higher level of abstraction. We will integrate all of the contributions
of this thesis into MECHATRONICUML.

2.1 Self-Adaptive Mechatronic Systems

Self-adaptive mechatronic systems automatically adapt their software architecture to a chang-
ing environment without human intervention. That requires to integrate and associate the
software with the constituent parts of the mechatronic system such that the system may rea-
son about itself and its behavior in its current environment. In this section, we introduce
basic concepts and corresponding terminology related to self-adaptive mechatronic systems
that we use throughout the remainder of this thesis. In Section 2.1.1, we describe how self-
adaptive mechatronic systems may be structured hierarchically. Thereafter, we introduce the
operator-controller-module as a reference architecture that enables to realize self-adaptive
behavior in mechatronic systems (cf. Section 2.1.2). Finally, Section 2.1.3 describes how the
concept of models@runtime may be used for executing reconfigurations.

2.1.1 Structuring

Self-adaptive mechatronic systems can be structured hierarchically as shown in Figure 2.1.
In particular, they can be structured into mechatronic function modules, autonomous mecha-
tronic systems, and networked mechatronic systems (cf. [GRS14, pp. 8-10]).

On the lowest level, a mechatronic system consists of several mechatronic function mod-
ules (MFM). An MFM embodies part of the mechanical system including sensors, actuators,
and software for controlling the mechanical system. An example is given by the drive mod-
ule [HZ14] or the active suspension module [KT14] of a RailCab. MFMs may, again, be
composed of other MFMs.

The overall mechanical structure is represented by the autonomous mechatronic system
(AMS). It consists of the MFMs of the mechatronic system and includes additional sensors
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Networked Mechatronic System (NMS)

Autonomous Mechatronic System (AMS)

Mechatronic Function Module (MFM)

Figure 2.1: Structuring of Self-Adaptive Mechatronic Systems (cf. [GRS14, p. 9])

and software components for realizing self-adaptive behavior. An example of an AMS is a
single RailCab.

Finally, AMS’ may collaborate and form networked mechatronic systems (NMS). Net-
worked mechatronic systems usually have no physical representation but are only virtually
created by the AMS by using message-based communication protocols. Then, each AMS
fulfills a particular role in the NMS. An example is given by convoys of RailCabs.

2.1.2 Operator-Controller-Module

The operator-controller-module (OCM) is a reference architecture for self-adaptive mecha-
tronic systems that separates the behavior specification into three conceptual levels [HOG04,
GRS09, GRS14]. As part of this thesis, we relate our contributions to these three conceptual
levels of the OCM. The different levels are the cognitive operator, the reflective operator, and
the controller as shown in Figure 2.2.

The controller level is the lowest. It contains the feedback controllers that control the
physical system that is also called the controlled system [Kil05]. A feedback controller
continuously receives the current value of the controlled variable from the physical sensors.
Based on a reference value for the controlled variable, it tries to reduce the difference between
the current value and reference value to zero by computing signals for the system’s actuators.

The reflective operator forms the middle layer of the OCM. It contains event-discrete
software that is required for the operations of the mechatronic system as, for example, the
behavior for operating as a coordinator or member of a convoy. As a key element of this
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Figure 2.2: Overview of the Operator-Controller-Module [GRS14, p. 11]

behavior, the reflective operator executes communication protocols for interacting with other
AMS.

In addition, the reflective operator provides the ability to reconfigure its own software
architecture including the feedback controllers on the controller level. In accordance to Allen
et al. [ADG98] and Zhang et al. [ZC06], we distinguish between steady-state behavior and
reconfiguration behavior. The steady-state behavior defines the behavior that is executed
by the feedback controllers on the controller level and by the reflective operator based on
a particular software architecture without considering reconfigurations. The reconfiguration
behavior defines possible modifications of the software architecture. Using the reflective
loop, self-adaptive systems continuously monitor their own behavior for deciding whether,
when, and how they need to reconfigure. During a reconfiguration, the system switches from
one steady-state behavior to another steady-state behavior [ADG98, ZC06]. In the following,
we refer to the different steady-behaviors of a self-adaptive mechatronic system as functional
behavior [MSKC04].
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The cognitive operator provides the self-optimization capabilities to the system. There-
fore, it typically manages a set of weighted goals that the AMS shall achieve at runtime [vL01,
GSB+08]. As a result, the cognitive operator contains functionality for reasoning about the
system’s behavior and the environment for optimizing the system’s behavior according to the
given goals.

The software on the controller level and part of the reflective operator are executed with
respect to hard real-time constraints [Kop97]. This includes, in particular, the reconfiguration
of the software being executed on these levels and the communication between different
systems. The cognitive operator and the remainder of the reflective operator are executed in
soft real-time [Kop97].

2.1.3 Models@Runtime

A model@runtime is a model of a system that it manages and uses by itself during run-
time [BBF09]. In contrast to a reflective system model [Mae87], it is typically specified on
a higher level of abstraction as denoted by Blair et al. [BBF09]. Both approaches, however,
require that the model and the system are causally connected. That means that any change in
the running system is reflected into the model@runtime and, what is even more important,
any change of the model@runtime changes the running system in the same way. As a conse-
quence, the system can be modified by modifying the model@runtime instead of modifying
the running system directly. In this thesis, we use this approach for defining and executing
reconfigurations based on a model@runtime of the software architecture [GS04].

model@run-time

running system

Figure 2.3: Illustration of a Model@Runtime

Figure 2.3 illustrates the principle of a model@runtime. The running system on the lower
level consists of a set of objects. The model@runtime abstracts these objects to a component
representation and associates the objects and connectors of the running system to the model
elements of the model@runtime. Changing the component structure in the model@runtime
will also change the object structure in the running system.

2.2 Timed Model Checking

Model checking [CGP00, BK08] is an automated formal verification procedure that gives
a mathematical proof whether a software model fulfills a given set of formal requirements.
Thus, it may guarantee the absence of errors in a model, in contrast to testing, which may
only show the presence of errors. Timed model checking [ACD93, HNSY94] additionally
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considers the real-time characteristics that apply to a model of a mechatronic system’s soft-
ware. In this thesis, we use (timed) model checking as an analytical method for showing the
correctness of functional and reconfiguration behavior of a self-adaptive mechatronic system.

Timed model checking uses timed automata as introduced in Section 2.2.1 as a behav-
ioral model. Therefore, timed automata provide the formal basis for specifying state-based
real-time behavior in MECHATRONICUML (cf. Section 2.4). The timed computation tree
logic as introduced in Section 2.2.2 enables the specification of formal requirements. These
formal requirements express the safety and liveness properties that the timed automata need
to fulfill. We require knowledge about such formal requirements for defining our refinement
approach in Chapter 5. Finally, a timed model checking algorithm decides whether the timed
automata fulfill the formal requirements given based on the timed computation tree logic (cf.
Section 2.2.3).

2.2.1 Timed Automata

A timed automaton [AD94, BY04] is a state-based model for specifying real-time behavior.
Timed automata extend finite automata [Mea55] by a set of real-valued variables called clocks
and constraints over these clocks. Clocks measure the progress of time in a system. Time
progresses constantly and uniformly in all clocks. In literature, there exist many variants of
timed automata (see Waez et al. [WDR11] for a recent survey). In this thesis, we will use
timed safety automata [HNSY94] as they are defined for the UPPAAL model checker by
Bengtsson and Wang [BY04]. For the remainder of this thesis, we will refer to timed safety
automata simply as timed automata.

Like finite automata, timed automata have a set of inputs, a set of outputs, and a set of
integer variables. Each transition may consume an input and produce an output. Integer
variables may be used for guard conditions of the transitions and may be changed using
assignments while the transition fires.

In addition, timed automata support three modeling elements based on clocks. These
are invariants, time guards, and resets. An invariant is assigned to a location. The timed
automaton may only rest in a location as long as the invariant is true for the current clock
values. A time guard restricts the firing of a transition to a time interval. A reset sets a clock
back to zero while a transition fires.

Timed automata can be composed to networks of timed automata (NTA). In an NTA, the
single automata interact via their inputs and outputs using so-called channels. Then, they use
the channels as inputs (marked with ?) and outputs (marked with !).

Figure 2.4 shows an NTA consisting of two timed automata that specify a simple convoy
behavior. The member automaton in Figure 2.4b requests to start a convoy. The coordinator
automaton in Figure 2.4a either starts the convoy or declines the request. Finally, the member
automaton may choose to leave the convoy and the coordinator automaton confirms.

The two timed automata use five channels named request, start, decline, leave, and confirm
for realizing the convoy behavior. Each of the timed automata has four locations and five
transitions. As an example, the coordinator automaton in Figure 2.4a has locations Idle,
Request, Convoy, and MemberLeaves. The transition from Idle to Request specifies a reset on
clock c1, i.e., the coordinator automaton resets c1 any time it receives a request from the
member automaton. The location Request has an invariant c1 ≤ 50, i.e., the coordinator
automaton needs to send an answer to the member automaton while c1 is less or equal 50.
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possible = i, c1 = 0

c1 ≥ 25 &&

possible == true

Idle
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(a) Coordinator

c2 = 0

c2 ≥ 25

Idle

start?
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c2 ≤ 50
request!

decline?

confirm?

leave!c2 = 0

(b) Member

Figure 2.4: Network of Timed Automata Specifying a Simple Convoy Behavior

However, the transition from Request to Convoy may only fire if c1 is greater of equal to 25 as
specified by the time guard. Thus, the coordinator automaton may only start the convoy 25
time units after receiving the request.

Timed automata may be nondeterministic. In particular, they may select a value nondeter-
ministically from a given range using selections [BDL06a]. This value may be assigned to
a variable. In our example, the coordinator automaton in Figure 2.4a uses a selection at the
transition from Idle to Request. It selects the value of i from an integer range from 0 to 1. The
value of i is then assigned to the variable possible that defines whether it is possible to start
the convoy.

The state of an NTA is defined by the discrete locations of all timed automata including the
values of their variables and their clocks. Since clocks are real-valued and time increases con-
tinually, timed automata always have an infinite number of states. Therefore, the semantics of
an NTA is usually defined by means of symbolic states based on clock zones [Alu99, BY04].
Clock zones store intervals of clock values and enable to represent the state space of an NTA
using a finite zone graph. The rules for computing the zone graph define the semantics of
NTAs. We refer to paths of the zone graph as traces. Figure 2.5 shows the zone graph of the
NTA in Figure 2.4.

The execution of an NTA starts in the initial states of all timed automata (Idle in both
automata in Figure 2.4) with all clocks being zero and all variables set to their initial values.
The corresponding symbolic state S1 is the initial state of the zone graph in Figure 2.5.
Further symbolic states and transitions in the zone graph are inferred by the following rules:

1. Delay
An NTA may delay, i.e., the values of all clocks increase, but neither the active lo-
cations nor the values of the integer variables change. The values of the clocks may
increase as long as no invariant of an active location restricts them. In the zone graph,
these transitions are labeled with δ. As an example, consider the transition from S1 to
S2. In S2, all clocks have an unbounded value greater or equal to 0 because the Idle
locations do not define invariants.

2. Single Transition
A timed automaton in an NTA may fire a transition that does not use a channel. In this
case, the active location and, potentially, the values of the integer variables change.
The active locations of all other timed automata remain unchanged. Furthermore, fir-
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Figure 2.5: Excerpt of a Zone Graph of the NTA in Figure 2.4

ing transitions in an NTA takes no time and, thus, the values of the clocks do not
change except for resets that are performed by the transition. In the zone graph, the
corresponding transitions are labeled with τ .

3. Synchronized Transitions
Two timed automata in an NTA may synchronize over a channel and synchronously
fire one transition each. The synchronization is defined by the CCS parallel composi-
tion operator [Mil82]. As a result, synchronization is realized by hand-shake synchro-
nization, i.e., the two timed automata move to the target locations of their transitions
synchronously. For synchronizing transitions, the assignments and resets of the transi-
tion with the output (!) are executed prior to the assignments and resets of the transition
with the input (?). In the zone graph, the corresponding transitions are labeled with the
name of the channel. As an example, consider the transition from S2 to S3 that cor-
responds to a synchronization via the channel request. As a consequence, both timed
automata change their active locations and, due to the resets, both clocks are set back
to 0.

Transitions of a timed automaton do not need to fire if they are enabled unless they are
forced to. If a location specifies an invariant, the timed automaton is forced to fire before
the invariant expires. In addition, timed automata provide urgent channels as well as urgent
locations for forcing immediate progress in an NTA. If two transitions that synchronize over
an urgent channel are enabled, they need to fire instantly without delay. In urgent locations,
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no delay is allowed as well. In the timed automaton in Figure 2.4a, MemberLeaves is an urgent
location.

2.2.2 Timed Computation Tree Logic

The timed computation tree logic (TCTL, [ACD93]) is a timed temporal logic for real-time
systems. It enables to specify formal safety and liveness properties [Lam77] for a given real-
time behavior model as, e.g., an NTA. "A safety property is one which states that something
will not happen" [Lam77], e.g., that it may never happen that one RailCab assumes to be a
member of a convoy after the coordinator has declined the request. "A liveness property is
one which states that something must happen" [Lam77], e.g., that a RailCab always answers
to a proposal on building a convoy. For specifying timing properties, TCTL extends the
computation tree logic (CTL, [CES86, HR04]) that was developed for finite-state models by
quantitative timing constraints. While CTL may only specify that some condition will be
true at some point in the future, TCTL may define a quantitative time bound by defining, for
example, that the condition must be fulfilled within 5 ms.

TCTL uses a textual syntax. We may define the syntax of a TCTL formula φ inductively
via a Backus Naur form

φ ::= true | false | p | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | φ1 → φ2 | AG∼c φ | EG∼c φ |
AF∼c φ | EF∼c φ | A(φ1 U∼c φ2) | E(φ1 U∼c φ2)

where p is an element of a set AP of atomic formulas, c ∈ N, and ∼ represents one of the
binary relations <,≤,=,≥, > (cf. [HR04, ACD93]).

The set AP of atomic propositions refers to facts of an NTA that may be evaluated to true
or false for any (symbolic) state of the NTA. Considering the NTA shown in Figure 2.4, we
use the atomic proposition Coordinator.Request to express the fact that the state Request
of the coordinator automaton is active.

The temporal connectives AG, EG, AF, EF, AU, and EU define which atomic propositions
need to hold in the future. As its name indicates, TCTL is a branching time logic where
formulas are evaluated based on a computation tree. That means, TCTL acknowledges the
fact that computations of an NTA may branch. Therefore, the temporal connectives always
consist of a path quantifier (A or E) and a temporal operator (one of G, F, U).

Using the path quantifiers, the developer may express that a formula shall hold either for
all paths of a computation tree (A) or for at least one path (E). For an NTA, the computation
tree is given by its zone graph where all loops are unrolled. The temporal operator G defines
that the subformula φ must hold for any (symbolic) state of a given path. The temporal
operator F defines that φ needs to eventually hold for a (symbolic) state in the future. The
binary temporal operator U defines that φ1 needs to hold for any (symbolic) state on a path
until eventually φ2 becomes true.

In TCTL, the temporal connectives may be restricted with a time bound∼ c. Based on the
NTA in Figure 2.4, we may specify, for example, the following formula:

ϕ1 = AG(Coordinator.Request → AF≤50 (Member.Idle or

Member.Convoy)))

It specifies that on all execution paths it globally holds that whenever the coordinator
automaton is in state Request, then on all execution paths the member automaton reaches
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either the Idle state or the Convoy state within 50 time units. In the above formula, we omitted
the time bound ≥ 0 of AG in the concrete syntax because it does not restrict the temporal
connective. In this case, the temporal connectives of TCTL become semantically equivalent
to the temporal connectives of CTL [ACD93]. Thus, any TCTL formula that only uses the
time bound ≥ 0 is a valid CTL formula.

In accordance to UPPAAL [BDL04], we use a dedicated atomic proposition deadlock

that refers to a deadlock state. A deadlock state is a state that does not have any successors.
Using this atomic proposition, we may express that an NTA is free of deadlocks:

ϕ2 = AG ¬deadlock

In addition to the regular temporal connectives of TCTL introduced above, we use the
weak-until connective (AW and EW) as part of our example in Chapter 5. Weak-until is a
variation of the until connectives AU and EU. In contrast to until, weak-until does not require
that ψ holds eventually, i.e., φ may hold globally. A weak-until, however, may be expressed
in terms of the regular temporal connectives of TCTL [BK08, p. 327].

An alternative for specifying safety and liveness properties is given by linear-time tempo-
ral logic (LTL, [Pnu77, HR04]). LTL uses a linear time model based on paths that do not
consider branching. Therefore, the temporal connectives of LTL only use a temporal opera-
tor but no path quantifier. We discuss preservation of LTL formulas for our refinement check,
but do not use LTL for specifying safety and liveness properties as part of this thesis because
timed variants of LTL like the metric temporal logic (MTL, [Koy90]) are not decidable for
the dense time model used by NTAs presented above [AH92] and, thus, no model checkers
exist.

2.2.3 Model Checking Procedure

A timed model checking procedure decides whether a given timed automata or NTA fulfills
a given TCTL property [HNSY94, BDM+98, BY04]. Therefore, the model checking proce-
dure computes a zone graph for the timed automaton or the NTA. Then, it successively labels
the resulting states with the atomic propositions and the subformulas that hold for a given
state. The timed automaton or the NTA fulfills the TCTL property if and only if the formula
is true for the initial state of the zone graph. If the TCTL property is not fulfilled, the model
checker returns a counterexample. A counterexample is a trace of the zone graph that
caused that the TCTL property is not fulfilled. In the course of this thesis, we use the model
checker UPPAAL [LPY95, BDL+06b] for verifying TCTL properties for NTAs.

2.3 Graph-Based Specifications

The theory of graph transformation systems (GTS, [Roz97]) is based on graphs. Intuitively,
graphs consist of nodes and edges connecting the nodes. GTS define a language consisting
of words where each word is a graph. Productions of a GTS are given by graph transfor-
mation rules that formally specify how one graph may be transformed into another one. In
this thesis, we use GTS as a basic formalism for formalizing reconfiguration operations of
MECHATRONICUML that modify the software architecture of a self-adaptive mechatronic
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system. This, in turn, enables to formally verify reconfiguration operations of MECHATRON-
ICUML, which we exploit in our reconfiguration approach introduced in Chapter 4.

In a general GTS, the nodes and edges of a graph do not have a predefined correspondence
to a real-world or software entity. For defining reconfigurations of a software architecture
by graph transformations, we need to define a correspondence between nodes and edges of a
graph and the components and connectors of the software architecture. This a achieved by us-
ing typed attributed GTS that we introduce in Section 2.3.1. Story diagrams as introduced in
Section 2.3.2 extend typed attributed graph transformation rules by the ability to specify con-
trol flow. This enables to specify more complex reconfiguration operations. Therefore, story
diagrams are the basis for specifying reconfiguration operations in MECHATRONICUML as
defined in Section 3.3.

2.3.1 Typed Attributed Graph Transformations Systems

Typed attributed GTS [EEPT06] extend GTS by a type graph and node attributes. The type
graph defines which types of nodes exist and by which types of edges they may be connected.
Node attributes enable to store values like integers or strings inside a node. Both features are
essential for modeling reconfiguration (cf. Section 3.3).

Figure 2.6 shows an example of a simple type graph that defines two nodes types and
six edge types. The two nodes types, RailCab and TrackSection, represent RailCabs and track
sections. The node type RailCab defines an attribute of type Integer that stores the size of the
convoy that the RailCab is currently driving in. The edge types define how nodes of type
RailCab and TrackSection may be connected.

RailCab

convoySize : int

railcabs

on

0..*

1

TrackSection next0..1

0..1
prev

0..1
coordinator

0..* member

Figure 2.6: Example of a Type Graph

A TrackSection has a next and a prev TrackSection. These edge types define the outline of
the track system. In addition, the edge type railcabs is used to refer to all RailCabs currently
driving on a track section. The edge type on enables to define on which TrackSection a RailCab
is currently located. Finally, coordinator and member enable a RailCab to refer to its coordinator
or its members.

A typed attributed graph is always typed over exactly one type graph, while an arbitrary
number of typed attributed graphs may use the same type graph. All nodes and edges of a
typed attributed graph must be typed over exactly one node type or edge type, respectively,
of the type graph. The type of a node or edge is immutable. In the course of this thesis, we
will assume that the type graph is given by a metamodel [Küh06].

Figure 2.7 shows an example of a typed attributed graph that is typed over the type graph
in Figure 2.6. It contains five nodes and five edges. It specifies the situation where two
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RailCabs drive on two consecutive track sections. The RailCabs are not yet driving in a
convoy because they are not connected with each other by a coordinator or member edge.

ts3 : TrackSection

rc1 : RailCab

convoySize = 0

prev
ts2 : TrackSection

next

ts1 : TrackSection
prev

next

rc2 : RailCab

convoySize = 0

onon

railcabs railcabs

Figure 2.7: Typed Attributed Graph

Each node of a typed attributed graph has values for all of its attributes. In Figure 2.7, the
nodes rc1 and rc2 both have value 0 for their convoySize attribute.

A typed attributed GTS consists of a type graph, an initial graph that is typed over the type
graph, and a set of graph transformation rules that define how graphs may be modified. A
graph transformation rule specifies a left hand side (LHS), a right hand side (RHS), a so-
called rule morphism, and a set of negative application conditions (NAC) [EEPT06]. LHS,
RHS, and NACs are typed attributed graphs based on the type graph. The rule morphism
associates nodes in the LHS to nodes in the RHS to denote which nodes are the same. In
addition, each NAC defines its own morphism that associates nodes in the LHS to nodes in
the NAC.

Rule: startConvoy

LHS

::=

RHS

NAC1

ts2 : TrackSection

rc1 : RailCab

ts1 : TrackSection
next

rc2 : RailCab

onon

ts2 : TrackSection

rc1 : RailCab

convoySize = convoySize + 1

ts1 : TrackSection
next

rc2 : RailCab

onon

coordinator

member

rc3 : RailCabrc2 : RailCab coordinator

NAC2

rc1 : RailCabrc2 : RailCab member

Figure 2.8: Graph Transformation Rule for Starting a Convoy

Figure 2.8 shows an example of a graph transformation rule startConvoy that starts a convoy
between two RailCabs that are positioned on two consecutive track sections. The LHS spec-
ifies this situation. The RHS specifies the same situation but rc2 is now a member of a convoy
that is coordinated by rc1. In our example, we implicitly define the rule morphism by using
the same names, e.g., rc1 and rc2 for nodes in the LHS and RHS. The graph transformation
rule startConvoy defines two NACs. NAC1 defines a situation where rc2 is already a member of
a convoy that is coordinated by a different RailCab rc3. NAC2 defines a situation where rc2 is
already a member of a convoy that is coordinated by rc1.

The application of a graph transformation rule such as startConvoy to a typed attributed
graph is performed in three steps. In the first step, we search a match of the LHS to the typed
attributed graph, the so-called host graph. Basically, a match is an occurrence of the LHS
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in the host graph. The match needs to consider both, the type of the node and the attribute
values of the node. That means, nodes of type RailCab in the LHS may only be matched to
nodes of type RailCab in the host graph. If a node in the LHS specifies an attribute value, the
matched node in the host graph needs to have the same attribute value. Attributes that are not
used in the LHS are ignored while searching the match. A match for a graph transformation
rule is only valid, if no NAC of the graph transformation rule can be matched to the host
graph. In the second step, we remove all nodes and edges that occur in the LHS but not in
the RHS of the graph transformation rule. To determine this set of nodes, we use the rule
morphism. In the third step, we add all nodes and edges that occur in the RHS but not in the
LHS. In this step, we also modify attribute values if necessary.

When applying the graph transformation rule startConvoy in Figure 2.8 to the typed at-
tributed graph in Figure 2.7, we proceed as follows. For obtaining a match, we search for an
occurrence of the LHS in the graph. The occurrence is given by the nodes rc1, rc2, ts2, and
ts3 in Figure 2.7. Next, we need to check whether this match may be extended such that any
NAC is completely matched. This is not the case because rc2 in Figure 2.7 is not yet mem-
ber of a convoy. Thus, startConvoy has been successfully matched and we perform the graph
rewriting. Therefore, we create a coordinator edge from rc2 to rc1 and a member edge from rc1
to rc2. In addition, we update the value of the attribute convoySize of rc1 by incrementing it
by 1.

For the application of graph transformation rules, we follow the single pushout approach
with injective matches (SPO, [Roz97]). In essence, that means that different nodes of the
LHS need to be matched to different nodes in the host graph. For example, rc1 and rc2 in
the LHS of startConvoy need to be matched to different RailCab nodes in the host graph. In
addition, if the graph transformation rule specifies to delete a node without deleting all of its
incident edges, then the incident edges are implicitly deleted as well to avoid dangling edges.

2.3.2 Story Driven Modeling

Story driven modeling (SDM, [Zün01]) is an approach for the object-oriented and model-
driven software development. One essential part of SDM are story diagrams [FNTZ00,
Zün01] that are used in the design phase for formally specifying operations of an object-
oriented program. They combine an imperative control flow specification based on UML
Activity Diagrams [Gro11c] with a formal, declarative specification of object manipulation
based on typed attributed graph transformations, called story patterns. Story diagrams may
also be used as an endogenous in-place model transformation language [CH06] and form
the basis for defining reconfiguration operations in our approach as described in Section 3.3.
In the following, we give a brief overview of story patterns (cf. Section 2.3.2.1) and story
diagrams (cf. Section 2.3.2.2) based on the latest version by von Detten et al. [vDHP+12a].

2.3.2.1 Story Patterns

A story pattern consists of object variables and link variables that correspond to the nodes and
edges of a typed attributed graph transformation rule. Object variables and link variables are
typed over a metamodel [Küh06]. Story patterns use a concise notation of the typed attributed
graph transformation rule that visualizes LHS, RHS, and NACs in a single graph. As an
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example, consider the story pattern in Figure 2.9 that is equivalent to the typed attributed
graph transformation rule in Figure 2.8.

rc2 

convoySize := convoySize + 1

rc1

ts2 : TrackSection ts1 : TrackSectionnext ►

▼  on ▼  on

coordinator ►
«create»

◄ member
«create»

◄ member

r3 : RailCab ◄ coordinator

Figure 2.9: Story Pattern

Objects variables and link variables that shall be created by the story pattern are labelled
with a «create» annotation such as the link variables coordinator and member in Figure 2.9.
Object variables and link variables that shall be deleted are labeled with «destroy». All
object variables and link variables not carrying an annotation are not changed by the graph
rewriting.

Furthermore, object variables have a binding state. In particular, we distinguish between
bound and unbound object variables. An unbound object variable needs to be matched by the
graph matching when the story pattern is applied. A bound object variable has already been
matched to an object of the host graph during the application of another story pattern. This
matching is not changed while matching the unbound object variables of the story pattern.
In our example, the object variables ts1, ts2, and r3 are unbound, while rc1 and rc2 are bound.
In the concrete syntax, unbound variables visualize both, their name and their type, whereas
bound variables only visualize their name.

Story patterns that are embedded in a story diagram always need to have at least one bound
object variable. In addition, any unbound object variable must be reachable from at least one
bound object variable by traversing link variables. The objective of this restriction is to
reduce the matching effort for story patterns compared to typed attributed graph transforma-
tion rules. In general, deriving a matching for a typed attributed graph transformation rule
is equivalent to the NP-complete subgraph isomorphism problem and, thus, requires expo-
nential runtime. The bound object variables, however, provide starting points for the graph
matcher and, in combination with the type graph, reduce the number of possible matchings
and, thus, the runtime for deriving a valid matching significantly [SWZ95, Zün95, pp. 195ff.].

NACs are represented by so-called negative variables that are crossed out in the concrete
syntax. In our example, the negative object variable rc3 and the negative link variable coor-
dinator between rc2 and rc3 correspond to NAC1 in Figure 2.8. They denote that rc2 does not
have a coordinator reference to another RailCab. The negative link variable member from rc1
to rc2 corresponds to NAC2 and defines that rc2 must not already be a member of rc1.

Object variables may contain conditions on and assignments to object attributes as in typed
attributed graph transformation rules. In our example, the value of the attribute convoySize
of rc1 is set to one. As in typed attributed graph transformation rules, conditions on object
attributes are part of the LHS, while assignments to attributed values are part of the RHS.
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2.3.2.2 Story Diagrams

A story diagram consists of activity nodes and activity edges for specifying the control flow
such as sequential and conditional execution as well as loops. As part of this thesis, we use
different kinds of activity nodes and activity edges that we illustrate below.

The kinds of activity nodes that we consider are initial nodes, final nodes, story nodes,
decision nodes, activity call nodes, and statement nodes. Each story diagram contains ex-
actly one initial node that marks the starting point of its execution. In addition, each story
diagram has at least one final node that marks the end of its execution. A story node con-
tains a story pattern and, thus, defines a modification of an object structure. Decision nodes
enable to define complex branch and merge structures for the control flow. An activity call
node [BvDHR11] enables to invoke another story diagram. Finally, statement nodes contain
source code and may be used, for example, to define local counter variables.

rc1 as Coordinator

[failure]

startConvoy(RailCab rc1,RailCab rc2) : Boolean result

rc2

convoySize := convoySize + 1

rc1

ts2 : TrackSection ts1 : TrackSectionnext ►

▼  on ▼  on

coordinator ►
«create»

◄ member result := false

[success]

result := true

«create»

◄ member

r3 : RailCab ◄ coordinator

Call

rc1.enableCoordination();

[else]

[rc1.convoySize == 1]

Figure 2.10: Story Diagram with Control Flow

As an example, consider the story diagram shown in Figure 2.10. The story diagram
specifies the behavior of starting a convoy. It embeds the story pattern shown in Figure 2.9
in the story node named rc1 as Coordinator. If rc2 is the first member of rc1 as specified by the
decision node below the story node, we additionally invoke enableCoordination on rc1 via the
activity call node at the bottom of the figure.

Activity edges connect the activity nodes and define how the execution of the story diagram
proceeds after executing an activity node. Story diagrams support different kinds of activity
edges that are distinguished by their labels in the concrete syntax. The kind and number of
outgoing activity edges depend on the kind of the source activity node.

Initial nodes and activity call nodes always have exactly one outgoing default activity edge
but no other outgoing activity edges. A default activity edge has no label. Final nodes have
no outgoing edges. A story node may either have one outgoing default activity edge or it may
have one outgoing success activity edge, identified by the label [success], and one outgoing
failure activity edge, identified by the label [failure]. The success activity edge is taken if the
story pattern in the story node has been matched successfully. The failure activity edge is
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taken if the story pattern could not be matched. Finally, a decision node may have either
one outgoing default activity edge (merge node) or it has n outgoing activity edges where
n ≥ 2 (branch node). In the latter case, n − 1 of the outgoing activity edges must carry a
Boolean condition, while the remaining one is an else activity edge that has the label [else].
In this case, the activity edge with a satisfied condition is executed or, if none of the Boolean
conditions is fulfilled, the else activity edge is executed.

In addition to defining the control flow, the activity edges define how matchings are prop-
agated through a story diagram. An initial matching of a story diagram is provided by the
input parameters. The story diagram in Figure 2.10 has two input parameters rc1 and rc2 of
type RailCab. This matching is propagated to the story node via the default activity edge. The
story pattern, which is embedded in the story node, uses rc1 and rc2 as bound variables. If the
story pattern can be applied successfully, the matching is extended by all matched and created
variables. Destroyed object variables are removed from the matching. Then, the matching is
propagated via the success activity edge to the subsequent node. If the story pattern cannot
be matched, the matching is propagated unmodified via the failure activity edge. Decision
nodes never change a matching. The Boolean conditions at the outgoing activity edges may
refer to any object variables in the current matching and to their attributes. At a final node,
object variables contained in the current matching can be assigned to the output parameters.
In our example, however, we only assign the literals true and false to the output parameter
result depending on whether the creation of the convoy was successful.

Story diagrams may be defined as an implementation of an operation of a class of the
metamodel. In this case, the story diagram may be invoked by calling the operation for an
object of the corresponding type. In our example in Figure 2.10, the activity call node invokes
the operation enableCoordination on the object rc1 of type RailCab. In this case, rc1 serves as
an implicit parameter for the story diagram and may be used as a bound variable with the
name this in the embedded story patterns.

For defining loops, story nodes may be marked as for-each story nodes. A for-each story
node is iteratively applied to any matching that may be obtained for the embedded story
pattern in the host graph but guarantees that no matching is used twice. A for-each story
node always has one outgoing end activity edge that is taken if no further matching may be
obtained for the story pattern in the for-each story node (labeled with [end]). Optionally, a
for-each story node may have an additional each time activity edge (labeled with [each time])
that is taken for each matching of the embedded story pattern.

Bind each Member...

[end]

RailCab::breakConvoy()

this

member : RailCab

▼  member

… and remove it!

this

convoySize := convoySize – 1

member

▼  member

[each time]

«destroy»

Figure 2.11: Story Diagram with for-each Activity Node
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Figure 2.11 shows the story diagram breakConvoy. The story diagram may be invoked
on an object of type RailCab, represented by the this variable, for dissolving a convoy. For
the RailCab the for-each story node Bind each member..., which is visualized with a cascaded
border line, matches any member of the RailCab. For each match, we exit the for-each story
node via the each time activity edge. The second story node destroys the link to the member
and decreases the convoySize by 1.

2.4 MechatronicUML

MECHATRONICUML [GTB+03, EHH+13, BDG+14a] is a model-driven software engin-
eering method for developing event-discrete software of self-adaptive mechatronic systems.
It adapts the concepts of UML 2.4 [Gro11c] for defining a component-based software ar-
chitecture, state-based behavior, and runtime reconfiguration of a self-adaptive mechatronic
system. In the course of this thesis, we integrate all of our contributions into MECHATRON-
ICUML and provide an example model for the RailCab system based on MECHATRON-
ICUML in Appendix A.

In the following, we briefly review the most important parts for specifying platform-
independent models based on MECHATRONICUML that we use as part of this thesis. In
particular, we introduce Real-Time Coordination Protocols (Section 2.4.1), Real-Time Stat-
echarts (Section 2.4.2), and the assumptions on quality-of-service characteristics that are
employed by MECHATRONICUML. For a detailed description of these parts of MECHA-
TRONICUML, we refer to the MECHATRONICUML language specification [BDG+14b]. We
discuss the component model of MECHATRONICUML and the specification and execution
reconfigurations in detail in Chapters 3 and 4.

2.4.1 Real-Time Coordination Protocols

MECHATRONICUML uses Real-Time Coordination Protocols (RTCPs) for formally spec-
ifying asynchronous message-based communication between two communication partners
[GTB+03, EHH+13]. RTCPs may be used in the reflective operator and in the cognitive op-
erator of the OCM for defining message-based communication between different AMS but
also between different components inside a single AMS.

An RTCP defines a name and two named roles that represent the communication partners.
Each role has a behavior specification in terms of a Real-Time Statechart (cf. Section 2.4.2)
that defines its behavior. The roles are connected by a role connector that specifies require-
ments to the physical connection such as the maximum transmission delay for a message and
the possibility of message loss (cf. Section 2.4.3).

Figure 2.12 shows the declaration of a RTCP named DistanceTransmission that is used by a
convoy coordinator for periodically transmitting new reference data to the members [HH11a,
EHH+13]. The RTCP has two roles named provider and receiver. The RTCP is represented
by the dashed ellipse, while the roles are represented by the dashed squares including the
connection to the pattern ellipse. In our example, the role connector specifies a transmission
delay of 1 ms for each message.

Each role defines a set of message types that it may send or receive. Message types are used
to type the messages that are exchanged at runtime. They have a name and an optional list of
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provider receiver

DistanceTransmission

[0..*] [1]
in-buffer size: 1 in-buffer size: 1

delay: 1 ms

single rolemulti role role connector

coordination 

protocol
role name label

Figure 2.12: Declaration of the RTCP DistanceTransmission

typed, named parameters. Which messages may be sent or received at a particular point in
time is defined by the Real-Time Statecharts of the roles, which we present in Section 2.4.2.
If a role only receives messages, it is an in-role. If it only sends messages, it is an out-
role. If it both sends and receives messages, it is an in/out-role [BDG+14b]. In our example
in Figure 2.12, both roles are in/out-roles which is denoted by the two triangles inside the
squares.

Received messages are stored in a message buffer that we call in-buffer. In this work, we
restrict ourselves to FIFO-queues as in-buffers where all the received messages are stored
in the same queue. Each role specifies a buffer size for its in-buffer [BDG+14b]. In our
example, both roles specify a buffer size of 1, i.e., they can store at most one message in their
in-buffer.

In addition, each role specifies a cardinality using a Min-Max-Notation as defined by Coad
and Yourdon [CY90, p. 127]. Thus, the cardinality of a role defines with how many instances
of the other role it may communicate at least and at most. If the upper bound of the cardinality
equals 1, then we call it a single role. If the upper bound is greater than 1, we call it a multi
role [EHH+13, BDG+14b]. In our example, the role receiver defines a cardinality of [1] while
provider defines a cardinality of [0..∗]. Consequently, an instance of the multi role provider may
communicate with 0 to many receiver’s while any instance of the single role receiver may only
communicate with exactly one provider.

At runtime, an instance of a multi role contains of a set of subrole instances as shown in
Figure 2.13. Each subrole instance is connected via a single-cast connector to one instance
of the single role and manages the communication with it. Due to the single-cast connectors,
each subrole instance may only exchange messages with one particular single role instance.

Multi role instances are ordered, i.e., there exists a total order of the subrole instances.
One subrole instance is the first one in the ordering, another one is the last one in the order.
Adjacent subrole instances in the order have a successor-predecessor relationship. In our
example in Figure 2.13, we may assume that the top most subrole instance is the first one
while the bottom most subrole instance is the last one. The subrole instance in the middle is
the successor of the first one and the predecessor of the last one.

2.4.2 Real-Time Statecharts

Real-Time Statecharts (RTSCs) as defined by Becker et al. [BDG+14b] are a combination of
UML statemachines [Gro11c] and timed automata (cf. Section 2.2.1). Thus, they enable to
specify hierarchical, state-based real-time behavior.
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:receiver

:provider :receiver

:receiver

:DistanceTransmission

protocol instance label

role instance label
role instance label

role connector instance

single role instance

multi role instance

subrole instance

Figure 2.13: Instance of the RTCP DistanceTransmission (cf. [BDG+14b])

Basically, RTSCs consist of states and transitions. They use clocks with corresponding
invariants, time guards, and resets as defined for timed automata (cf. Section 2.2.1). In
addition, they may use variables for storing data and operations for encapsulating complex
computations. As in UML statemachines, states may define actions that are executed upon
entering (entry event) or leaving (exit event) a state.

As an example, we provide the RTSCs of the roles receiver and provider of the RTCP Dis-
tanceTransmission in Figures 2.14 and 2.15, respectively. They implement the behavior that
the provider periodically sends an update message with a new reference distance and speed to
all receivers. Each receiver acknowledges the receipt with an ack message.

receiver variable: int dist, int speed;

clock: c2;

SendAck

c2 ≤ 1 ms

entry/ {reset: c2;}

WaitUpdate

update /

{dist := update.distance;

speed := update.speed;}

[1ms;1ms]

/ ack()

[1ms;1ms]

Figure 2.14: RTSC of Role receiver of DistanceTransmission

The RTSC of receiver shown in Figure 2.14 contains two states WaitUpdate and SendAck
that are connected by two transitions. The state WaitUpdate is the initial state. The state
sendAck defines an invariant based on c2 and an entry event that resets c2 upon entering the
state. Thus, SendAck may be active for 1 ms. In contrast to timed automata, RTSCs use
SI-units [BIPM06] for defining time values used in time guards, invariants, and deadlines.

A transition of a RTSC defines an enabling condition, an effect, and optionally a deadline.
The enabling condition is a Boolean condition that defines whether a transition is enabled.
If a transition is enabled, it may fire and thereby cause a state change in the RTSC. Upon
firing, the effect of the transition is established. The deadline provides a lower and an upper
bound on how long it takes to establish the transition effect. Thus, transitions of a RTSC are
time-consuming in contrast to timed automata.
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The enabling condition consists of a time guard, a guard condition using the variables of
the RTSC, a synchronization, and a trigger message. Synchronizations based on synchroniza-
tion channels are used in the same way as in timed automata. The trigger message defines
the type of message that needs to be located at the head of the message buffer. All parts of
the enabling condition are optional. In the concrete syntax, the enabling condition is placed
before the "/" of the transition label.

The effect consists of an action, a raise message, and a clock reset. All are optional and
executed in the given order. The action may modify the variables of the RTSC, call opera-
tions, and, in particular, invoke story diagrams that define reconfiguration behavior. The raise
message defines a message that is sent including values for the parameters.

In the RTSC in Figure 2.14, the transition from WaitUpdate to SendAck requires an update
message to be at the first position in the message buffer. The transition action assigns the
values contained in the parameters distance and speed of the message update to the integer
variables dist and speed. Executing the effect takes at least 1 ms and at most 1 ms as denoted
by the deadline. The transition from SendAck back to WaitUpdate defines no enabling condi-
tion and sends a message ack as a part of its effect. Thus, this transition is always enabled.

In contrast to timed automata, RTSCs define urgency based on transitions rather than syn-
chronization channels. In Figure 2.14, the transition from WaitUpdate to SendAck is urgent as
denoted by the solid line, i.e., it fires as soon as it is enabled. The transition from SendAck
to WaitUpdate is non-urgent, i.e., it fires at some point in time after it was enabled and before
the invariant in SendAck expires.

Figure 2.15 shows the RTSC of the multi role provider. RTSCs of multi roles have a
fixed form. They consist of one hierarchical state with two regions [BDG+14b]. The
adaptation region contains the adaptation RTSC while the subrole region contains the sub-
role RTSC [EHH+13]. At runtime, each multi role instance executes exactly one instance
of the adaptation RTSC. In addition, it executes one instance of the subrole RTSC for each
subrole instance.

Hierarchical states optionally define a set of synchronization channels as, e.g., send and
done in state Provider_Main. Then, transitions may specify synchronizations based on these
synchronization channels as in timed automata. A synchronization always synchronizes two
transitions whose enabling conditions are fulfilled. These transitions fire in an atomic fashion
where the effect of the initiating transition (denoted by !) is executed before the effect of the
receiving transition (denoted by ?). As in UPPAAL, the initiating transition is blocked if no
receiving transition is enabled. Synchronizing transitions only fire urgently if both transitions
are urgent. Otherwise, they fire non-urgently.

In RTSCs, synchronization channels may optionally use selectors that generalize the con-
cept of channel arrays used in UPPAAL timed automata [BDL04]. Then, a synchronization
channel defines a type for the selector while synchronizations provide a selector expression
in square brackets that evaluates to the given type. A selector expression is either of type in-
teger or, if it is used in a multi role, of type role. In both cases, the selector expressions define
an additional condition for enabling the transition. Two transitions may only synchronize if
they specify the same value in their selector expressions. Synchronizations that do not use a
selector are called plain synchronizations.

As an example, consider the synchronization channel send in Figure 2.15 that specifies a
selector of type role. If a selector of type role is used, two transitions may synchronize if they
refer to the same subrole instance in their selector expressions. We support five dedicated
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provider

Provider_Main

2

channel: send[Role], done;

1

adaptation

subrole

SendUpdate

c1 ≤ 10 ms

Idle

send[self]? /

{reset: c1;}

AwaitAck

c1 ≤ 50 ms

/ update(newDist, newSpeed)

[30ms;30ms]

[self = last]

ack  done! /

variable: int newDist, int newSpeed;

clock: c1;

ack

send[self.next]! /

variable: boolean newMember;

operation: void newSubRole();

clock: c3;

AddMember

c3 ≤ 500 ms

NoConvoy

/ {newSubRole();}

[10ms;10ms]

[10ms;10ms]

Convoy

Update

c3 ≤ 499 ms

InitUpdates

c3 ≤ 500 ms

entry/ {newMember := int<0,1>;}

done? /

[c3 = 500ms]

send[first]! /

{reset: c3;}

[newMember]

[c3 ≤ 489ms] // {newSubRole();}

convoy

Figure 2.15: RTSC of Multi Role provider of DistanceTransmission

keywords for referring to subrole instance with respect to the order of the multi role instance.
These are self, first, last, next, and prev. Self refers to the subrole instance that executes the
RTSC. First (last) refers to the first (last) subrole instance of the multi role instance. Both
return null if the multi role has no subrole instances. The keywords next and prev may only be
applied to a subrole instance. Then, next (prev) returns the next (previous) subrole instance
with respect to the order of the multi role instance. Next (prev) returns null if it is applied on
the last (first) subrole instance.

In our example, the adaptation RTSC periodically triggers the first subrole RTSC of the
ordered multi role instance via send at the transition from InitUpdates to Update to send an up-
date to the receiver. This transition synchronizes with transition Idle to SendUpdate of the first
subrole instance. Upon receiving the ack, the subrole instance either synchronizes via send
with the next subrole instance in the multi role instance or, if it is the last one as expressed
by the guard condition, it synchronizes via done with the adaptation RTSC.

RTSCs are deterministic except for so-called non-deterministic choice expressions. A non-
deterministic choice expression defines an integer range and non-deterministically selects
one value out of this range similar to a selection in a timed automaton (cf. Section 2.2.1).
The value may be assigned to a variable as a part of an action. In our example, the entry action
of InitUpdates uses a non-deterministic choice expression for assigning a value to newMember.
newMember indicates that a new member wants to join the convoy. This decision is made
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outside the RTCP and, therefore, we non-deterministically choose whether a new subrole
shall be created.

The hierarchical state Convoy of the adaptation RTSC uses an entry-point and an exit-
point. An entry point enables to activate particular substates upon entering a hierarchical
state. If Convoy is entered via the entry-point at its bottom, the substate InitUpdates becomes
active. An exit-point enables to define that a hierarchical state may only be left if a particular
substate is active. In our example, Convoy may only be left if InitUpdates is active. When
using entry- and exit-points, only the transition entering the entry- or exit-point may carry an
enabling condition. In addition, only the transition leaving the entry- or exit-point may carry
an effect [BDG+14b]. In this thesis, we require that RTSCs of single roles as well as the
adaptation RTSC and the subrole RTSC of a multi role only use hierarchical states with one
embedded region. Since hierarchical RTSCs with more regions may be flattened [DMY03,
Ger13], this is no general limitation but eases the descriptions of our contributions.

In our example, the operation newSubRole that is called in the adaptation RTSC implements
a reconfiguration rule. This reconfiguration rule adds a new subrole instance to an instance
of the multi role provider. It may be formalized by a story diagram [EHH+13].

A snapshot1 of an RTSC is defined by the active discrete state of the RTSC including the
values of their variables and their clocks. As for timed automata, there exists an infinite
number of snapshots for an RTSC. Therefore, we define the operational semantics of RTSCs
by a zone graph using symbolic states as for an NTA. In particular, we define the operational
semantics based on a network of flat timed automata as described in Section 2.2.1. Hierar-
chical states of RTSCs may be flattened to NTAs [DMY02, DMY03, Ger13]. Asynchronous
communication using buffers may be mapped to additional timed automata representing the
connector and buffer using shared integer variables for storing messages [KMR02, Ger13].
Deadlines as well as entry and exit actions may be resolved by intermediate states and tran-
sitions [GB03, DMY03]. Urgent transitions may be mapped to urgent channels using an
additional automaton [DMY03]. Then, the rules for computing the zone graph are the same
as those described in Section 2.2.1 with two exceptions. First, RTSCs use time guards at
urgent transition, i.e., during a delay, time may only progress as long as no urgent transition
becomes enabled. Second, urgent transitions have precedence over non-urgent transitions.

We provide a full formalization of the semantics of RTSCs based on NTAs in Appendix B
that forms the basis of our refinement check in Chapter 5. Since our refinement check does
not yet support reconfiguration of multi roles such as provider described above, we do not
consider reconfiguration in our formalization. We refer to [EHH+13, HH11b] for a formal
definition of the operational semantics of multi roles with reconfiguration.

2.4.3 Assumptions on Quality-of-Service Characteristics

In this thesis, we only consider platform-independent models of the discrete software of the
self-adaptive mechatronic system. Thus, the underlying hardware resources and the network
infrastructure [PMDB14] that are used for executing the software and for transporting mes-
sages are not part of our model. Nevertheless, our models cannot entirely ignore the timing
and quality-of-service characteristics of the underlying networking infrastructure. We cap-
ture these quality-of-service (QoS) characteristics by a set of assumptions that we call QoS

1NTAs as introduced in Section 2.2.1 use the term state. We use the term snapshot in accordance to Gerk-
ing [Ger13] to avoid confusion with the states that are part of the syntax of an RTSC.
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assumptions for the remainder of this thesis. Then, a RTCP may be safely executed using
a networking infrastructure if this networking infrastructure guarantees to fulfill the QoS
assumptions [HBDS15]. We present our assumptions in the following.

A fundamental assumption for our approach is that the clocks within the two roles of a
RTCP run synchronously at the same rate. This also holds for any two ports of components
that communicate according to the RTCP. This assumption is realistic because there exist
standards like the precision clock synchronization protocol [IEE08] that may synchronize
clocks with a precision of a few microseconds. Such a precision is sufficient because time
constraints for mechatronic systems like cars are typically specified in the order of magnitude
of milliseconds [SLT09, p. 7]. There are approaches existing as well for clock synchroniza-
tion regarding heterogeneous and adaptive hardware platforms [BK13].

In addition, we consider several assumptions regarding the transmission of messages. We
introduce them by following a message from the sender to the receiver. For a firing transition
that defines a sender message, we assume that this message is immediately handed over to
the underlying network layer. This layer sends the message and — if needed — buffers it
before sending. Thus, we do not use buffers for outgoing messages on the level of MECHA-
TRONICUML.

As stated in Section 2.4.1, the transmission of a message from the sender to the receiver
takes time. Therefore, the developer has to define a message delay. We assume that the delay
defines the time between sending the message from the level of MECHATRONICUML and
storing the message within the receiver’s in-buffer. Thus, this delay is not just the transmis-
sion via the physical medium but also the transport through the underlying network layers.
As a consequence, we allow that a message is retransmitted via the physical medium if it
gets lost during the transmission as long as it arrives in the receiver’s in-buffer within the
delay. However, if the underlying network layer assumes by mistake that a message got
lost, duplicate messages may arrive at the underlying network layer. We assume that the
underlying network layer detects and deletes such messages using duplicate message detec-
tion mechanisms [Kiz05]. If the in-buffer is full and another message arrives, we assume
that the incoming message is dropped. If a connector of the RTCP guarantees that no mes-
sages get lost during communication, all messages arrive at the receiver’s in-buffer within
the transmission delay. In addition, we assume that messages are never reordered during
transmission.
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MECHATRONICUML follows a component-based approach for defining the software ar-
chitecture of a system. "The cornerstone of any component-based development method-
ology [SGM02] is its underlying component model, which defines what components are,
how they can be constructed and represented, how they can be composed or assembled, how
they can be deployed and how to reason about all these operations on components." [Lau06]
In addition, the component model defines how components interact if they are composed or
assembled [HC01, p. 11]. Therefore, the component model is the central artifact for design-
ing the software of a (mechatronic) system. Consequently, we need a precise definition of
a component model for MECHATRONICUML that serves as a basis for formal analyses and
transformations to other languages like MATLAB/Simulink [Matg].

A component model for defining software architectures of self-adaptive mechatronic sys-
tems needs to consider the properties of these systems. It needs to support message-based
communication between components and their reconfiguration at runtime (cf. Section 1.1).
This includes, in particular, to establish connections between AMS that were previously not
connected with each other such that they may collaborate in an NMS. In addition, the compo-
nent model needs to enable the specification of real-time behavior using, for example, RTSCs
for coping with the hard real-time requirements of mechatronic systems. Moreover, the com-
ponent model needs to enable the integration of feedback controllers into the software archi-
tecture because only the integration of feedback controllers and the software components en-
ables advanced functionality as the convoy mode of the RailCab system [HTS+08a]. Finally,
the component model shall facilitate the specification and formal verification of reconfigu-
ration operations such that the software architecture remains syntactically and semantically
correct after a reconfiguration.

In previous works, two component models have been developed for MECHATRONICUML
based on the requirements introduced in the previous paragraph. The component model by
Burmester, Giese, and Hirsch [GTB+03, GBSO04, HHG08, GS13] focuses on integrating
feedback controllers into the software architecture and reconfiguring them at runtime. Their
component model uses a state-based formalism called hybrid reconfiguration charts that enu-
merates all possible software architectures that the system may use at runtime and how the
system may switch between them. The component model by Tichy [THHO08, Tic09] fo-
cuses on a formal, flexible, and concise specification of reconfiguration operations using a
domain-specific variant of typed attributed graph transformations called component story di-
agrams. In this approach, the components of the component model define the type graph for
the component story diagrams. Then, the type graph defines syntactical restrictions based
on the components that guarantee syntactical correctness of the software architecture after a
reconfiguration. In addition, it enables the formal verification of component story diagrams
for proving correctness of the reconfigurations.

Both existing component models do not fulfill all of the aforementioned requirements.
The component model by Burmester, Giese, and Hirsch provides no support for instantiat-
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ing embedded components more than once. This and the fact that all software architectures
need to be enumerated lead to large models, in particular, if a component may have sev-
eral architectures at runtime. This makes the models hard to handle for a developer. The
component model by Tichy does not distinguish between software components and feedback
controllers in the type graph that is used for specifying component story diagrams. As a re-
sult, component story diagrams cannot specify the reconfiguration of feedback controllers. In
addition, both component models do not enable to connect software components to feedback
controllers and to establish connections between different AMS [HB14].

In this chapter, we derive a consolidated component model for MECHATRONICUML that
combines the features of the two existing component models. In particular, we extend the
concept of the type graph used by Tichy such that the component model may include feed-
back controllers and such that they may interact with software components. As a result,
we can specify software architectures on the reflective operator and controller levels of the
OCM. In addition, we extend component story diagrams such that they can reconfigure feed-
back controllers as defined by Burmester and Giese [GBSO04, Bur06, BGO06]. Finally, we
provide a concept for establishing connections between AMS. As a result, our new compo-
nent model enables for concise and formal specifications of components, their integration
with feedback controllers, and their reconfiguration behavior.

In the following, we illustrate our component model based on a software architecture for
the driving module of a RailCab that includes the behavior for building convoys. The re-
quirements for the convoy behavior have been presented in our technical report [Hei12]. In
our example, we use ideas presented by Hirsch [Hir08], Tichy [Tic09], and Flaßkamp et
al. [FHK+13]. These ideas have been significantly extended as part of this thesis.

The remainder of this chapter is structured as follows. We start by defining how compo-
nents (Section 3.1), component instances (Section 3.2), and reconfiguration operations (Sec-
tion 3.3) are specified. Thereafter, we introduce our concepts for establishing connections
between AMS (Section 3.4) and for specifying architectural constraints (Section 3.5). Next,
we describe how the new component model has been implemented as part of the MECHA-
TRONICUML Tool Suite (Section 3.6). Finally, we discuss related approaches (Section 3.7)
and summarize the chapter (Section 3.8).

3.1 Modeling Components

"A [..] component is a software element that conforms to a component model and can be in-
dependently deployed and composed without modification according to a composition stan-
dard." [HC01, p. 7] In accordance to UML [Gro11c], components are either implemented
directly or they are assembled from other components. We refer to the former as atomic
components and to the latter as structured components.

In both cases, the internals of a component are hidden from the outside world. This
is denoted as component encapsulation [SGM02]. Access to the capabilities or data of a
component is only allowed via its ports. This enables to replace one component by an-
other one with a compatible interface without affecting any other component in a system.
In addition, component encapsulation is one of the key enablers of compositional verifica-
tion [BCC98, GTB+03] because it guarantees that there may not exist more dependencies to
other components than those captured by ports. We will exploit this in Chapter 5.
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Our component model explicitly distinguishes between component types and component
instances. The component types are instantiated to component instances for representing the
software architecture of a system. In the following, we refer to component types simply as
components. We introduce component instances in detail in Section 3.2.

We illustrate the specification of components and component instances based on exam-
ples given in concrete syntax. A formalization of the component model is given by a meta-
model [SV06, ch. 4] whose abstract syntax is defined in Appendix D.1. The static semantics
has been formalized based on constraints in the object constraint language (OCL, [Gro12])
that are contained in the metamodel. The OCL constraints are listed in the MECHATRON-
ICUML language specification [BDG+14b].

In the following, we first introduce the different kinds of ports that we support in our
component model (Section 3.1.1). They differ in the kind of information they process and
in their purpose. Based on the different kinds of ports, we define different kinds of atomic
components (Section 3.1.2) and structured components (Section 3.1.3). Thereafter, we de-
fine how components may be connected via their ports using connectors (Section 3.1.4).
As an extension to the previous component models, our component model supports that
a component may expose a set of component properties (Section 3.1.5) that we need for
our reconfiguration concept presented in Chapter 4. The concepts presented in this sec-
tion have successively been integrated into the MECHATRONICUML language specifica-
tions [BDG+11, BBD+12, BBB+12, BDG+14b].

3.1.1 Ports

In our component model, we distinguish between six kinds of ports based on their purpose
and the kind of data they process. We use discrete and continuous ports as defined by Bur-
mester and Giese [GBSO04, Bur06, BGO06]. Additionally, we use hybrid ports that enable
to connect discrete software components and feedback controllers. Furthermore, we use
broadcast ports for instantiating RTCPs between AMS. Finally, we use two kinds of recon-
figuration ports, namely reconfiguration message ports (RM ports) and reconfiguration exe-
cution ports (RE ports), that enable to execute reconfigurations involving several component
instances. Figure 3.1 summarizes the concrete syntax of the different kinds of ports.

Each port defines a cardinality that defines how many instances of it may be created in
one component instance. The previous component models only supported three fixed car-
dinalities that defined that the port can be instantiated at most once ([0..1]), exactly once
([1]), or arbitrary often ([0..∗]). We extend the concept of cardinalities by enabling to specify
precise cardinalities using an integer for lower and upper bound. Again, we allow ∗ as an
upper bound to indicate that the port may be instantiated arbitrary often. If the cardinality
has a lower bound of 0, we call it an optional port and visualize it with unfilled triangles
(cf. Figures 3.1b and 3.1d) according to Giese and Schäfer [GS13]. If the lower bound
of the cardinality is greater or equal to 1, we call it a mandatory port and visualize it with
filled triangles (cf. Figures 3.1a and 3.1c). Ports with an upper bound of 1 are called single
ports while ports with an upper bound greater than 1 are called multi ports in accordance to
Hirsch [Hir08, HHG08]. We visualize multi ports with a cascaded border line as shown in
Figures 3.1c and 3.1d [Hir08, HHG08, Tic09].

In the following, we introduce the different kinds of ports in more detail.

35



3. MechatronicUML Component Model

in-port out-port in/out-port

discrete

continuous

hybrid

n/A

n/A

RM / RE

broadcast

n/A n/A

n/A n/A B

RM RE

(a) Mandatory Single Ports

in-port out-port in/out-port

discrete

continuous

hybrid

n/A

n/A

RM / RE

broadcast

n/A n/A

n/A n/A B

n/A

(b) Optional Single Ports

in-port out-port in/out-port

discrete

continuous

hybrid

n/A

n/A

RM / RE

broadcast

n/A n/A

n/A n/A

n/A n/A

n/A n/A

n/A

RM RE

(c) Mandatory Multi Ports

in-port out-port in/out-port

discrete

continuous

hybrid

n/A

n/A

RM / RE

broadcast

n/A n/A

n/A n/A

n/A n/A

n/A n/A

n/A

n/A

(d) Optional Multi Ports

Figure 3.1: Kinds of Ports (cf. [BDG+14b])

3.1.1.1 Discrete Port

Discrete ports send and receive asynchronous messages. Therefore, each discrete port de-
fines a set of message types that it may send or receive. A message type has a name and
an ordered set of typed, named parameters. In contrast to the existing component models,
we do not provide explicit interfaces in terms of required and provided interfaces. Instead,
we use a port-based specification of the interface where we directly assign message types
to the ports [CSVC11]. This approach introduces flexibility that we need for introducing
hierarchical reconfiguration in Chapter 4.

If a discrete port only sends messages, it is an in-port which is denoted by a small triangle
pointing "into" the component similar to the notation of Koala [vOvdLKM00]. If it only
sends messages, it is an out-port as denoted by the small triangle pointing "outside" the com-
ponent. If it both sends and receives messages, it is an in/out-port denoted by two embedded
triangles. Discrete ports define a message buffer in the same fashion as a role of a RTCP (cf.
Section 2.4.1).
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Each discrete port needs to refine a role of an RTCP (cf. Section 2.4.1). Then, the discrete
port needs to send and receive the same message types as the role. In our concrete syntax,
we enable to visualize the role that is refined by a port by a dashed line that is attached to the
port as shown in Figure 3.5 on Page 42. Visualizing the refined role of a port is optional.

A discrete port has a behavior specification in terms of an RTSC. The behavior that is
defined by the port’s RTSC needs to be compliant to the behavior that is defined by the
role. We describe how the RTSC of a role may be refined to an RTSC of a port in detail in
Chapter 5. The RTSC of a multi port has the same structure as the RTSC of a multi role (cf.
Section 2.4.2).

3.1.1.2 Reconfiguration Message Port and Reconfiguration Execution Port

Reconfiguration message ports (RM ports) and reconfiguration execution ports (RE ports) are
special kinds of discrete ports. We use these kinds of ports for realizing the communication
that is necessary for our concept of transactional execution of reconfiguration in structured
components as described in Chapter 4. In the concrete syntax, we visualize RM ports and
RE ports by squares that embed the letter "RM" and "RE", respectively.

Compared to discrete ports, RM ports and RE ports have extended interface specifications
that provide additional information for the messages types that may be sent or received. We
introduce the interface specification in detail in Section 4.3.

RM ports and RE ports have message buffers and their behavior is defined by a RTSC as
for discrete ports. However, RM ports and RE ports are always mandatory in/out ports. Both
may be used as multi ports as we explain in Section 4.1.

3.1.1.3 Broadcast Port

Broadcast ports are a special kind of discrete port. We use broadcast ports only for instanti-
ating RTCPs between different AMS as explained in Section 3.4. In the concrete syntax, we
visualize broadcast ports by squares that embed the letter "B".

Analogously to discrete ports, broadcast ports define a set of message types that they may
send and receive as well as a message buffer. Their behavior is defined by a RTSC. In contrast
to discrete ports, broadcast ports are always in/out-ports and may only be used as single ports.
In addition, they do not refine a role of a RTCP.

3.1.1.4 Continuous Port

Continuous ports send (out-port) or receive (in-port) a signal value. "A signal is a time
varying quantity that has values at all points in time" [Matf]. The data type of the signal must
be a primitive data type or an array of primitive types.

Continuous ports are either in-ports or out-ports. In addition, continuous ports may be
optional, but we currently do not support continuous multi ports.

In the concrete syntax, continuous ports are visualized as isosceles triangles where the top
of the triangle either points into the component (in-port) or outside the component (out-port).
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3.1.1.5 Hybrid Port

Hybrid ports send (out-port) or receive (in-port) a signal value similar to a continuous port.
They enable that a discrete component sends a signal to or receives a signal from a feedback
controller. As for a continuous port, the data type of the signal must be a primitive data type
or an array of primitive types. Thus, we define a new semantics of hybrid ports compared to
Burmester [Bur06]. Burmester introduced hybrid ports as "multiple discrete and continuous
ports as syntactic construct to reduce visual complexity" [Bur06, p. 56] but did not define
them.

Hybrid ports are either in-ports or out-ports. Then, the RTSC of the component may read
(in-port) or write (out-port) the value of the hybrid port like a normal variable. In addition,
hybrid ports may be optional, but we currently do not support hybrid multi ports.

For keeping the behavior specification of a discrete component discrete, hybrid ports define
a sampling interval. Then, the value of the signal only changes at the rate of the sampling
interval and we do not make any assumptions on how the value may change.

In the concrete syntax, hybrid ports are visualized as squares that embed an isosceles
triangle. The top of the triangle either points into the component (in-port) or outside the
component (out-port).

3.1.2 Atomic Components

An atomic component directly contains a behavior specification and does not embed other
components. Our component model distinguishes three kinds of atomic components that
differ in their purpose and their behavior specification. In accordance to Burmester and
Giese [GBSO04, Bur06, BGO06], we distinguish between discrete and continuous atomic
components. Discrete atomic components define discrete, event-based behavior while con-
tinuous atomic components represent the feedback controllers of the system. In addition, we
introduce a new kind of atomic component: the fading component [Vol13].

  

   MemberControl

refDist

speedProvider

member

distReceiver

(a) Discrete Atomic Component

  

   StandaloneDrive
refSpeed

curSpeed
force

(b) Continuous Atomic Component

+ -

  

  ConvoyFading
standalone

convoy

force

(c) Fading Component

Figure 3.2: Kinds of Atomic Components

Figure 3.2 illustrates the concrete syntax of the different kinds of atomic components. In
accordance to the UML [Gro11c], components are represented by rectangles with a com-
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ponent icon in the upper right corner and a name label in the center. At the border of the
component, we visualize the ports of the component.

In contrast to the previous component models, we distinguish the different kinds of atomic
components by using different component icons to increase semiotic clarity. Semiotic clarity
requires that different semantic constructs of a language need to be represented by different
graphical symbols for reducing the potential for misinterpretation [Moo09]. In the following,
we introduce all three kinds of atomic components in more detail.

3.1.2.1 Discrete Atomic Component

Discrete atomic components define the discrete, event-based real-time behavior of the sys-
tem. As a result, a discrete component operates on time-discrete values and implements
message-based communication. Thus, discrete atomic components are used for defining the
behavior of the reflective operator of the OCM.

A discrete atomic component may use discrete ports for interacting with other components
based on RTCPs. In addition, it may use hybrid ports for interacting with continuous atomic
components (cf. Section 3.1.2.2) and broadcast ports if it implements the instantiation of
RTCPs between AMS. If the component is reconfigurable, it has one RM port and one RE
port.

MemberControl

MemberControl_Main

member

distReceiver

speedProvider

Synchronization1

Figure 3.3: Structure of a RTSC of a Discrete Atomic Component

The behavior of a discrete atomic component is defined by a RTSC that has a fixed, hi-
erarchical structure [Hir08, p. 133]. Figure 3.3 illustrates this structure for the component
MemberControl shown in Figure 3.2a. The RTSC always contains one hierarchical state. This
state contains one region for each discrete port that embeds the port’s RTSC. In the example,
we obtain regions for the discrete ports member, distReceiver, and speedProvider. In addition,
the RTSC may contain an arbitrary number of so-called synchronization RTSCs that may be
used to synchronize the port RTSCs [GTB+03].

3.1.2.2 Continuous Atomic Component

Continuous atomic components represent the feedback controllers of the system that are
located of the controller level of the OCM. They operate on time-continuous values that are

39



3. MechatronicUML Component Model

represented by signals. Their behavior is typically defined "by block-diagrams, differential
equations, or transfer functions" [Bur06, p. 56].

A continuous atomic component may only use continuous ports for exchanging signals
with other components. In accordance to Burmester et al. [BGH+07], we only specify the
interface of the continuous component based on its ports but not the component’s behavior.
The behavior of continuous atomic components is specified in a control engineering tool such
as MATLAB/Simulink [Matg].

As an example, consider the continuous atomic component StandaloneDrive shown in Fig-
ure 3.2b. It implements a feedback controller that lets a RailCab drive at a constant speed. It
receives a reference speed via refSpeed and the current speed of the RailCab via curSpeed. By
modifying force of the electric drive emitted via force, it modifies the speed of the RailCab
such that curSpeed eventually equals refSpeed. This control strategy, however, needs to be
implemented in MATLAB/Simulink.

3.1.2.3 Fading Component

A fading component enables to switch between continuous component instances as part of a
reconfiguration if the continuous component instances produce the same output signal. Thus,
fading components operate on time-continuous values like continuous atomic components
and are located on the controller level of the OCM.

As an example, consider that the continuous component StandaloneDrive shown in Fig-
ure 3.2b is to be replaced by a continuous component ConvoyDrive as illustrated in Figure 3.4.
The ConvoyDrive component implements a feedback controller that additionally considers a
reference distance (refDist) and the current distance (curDist) to the preceding RailCab. It
needs to be used by all RailCabs that are convoy members. Thus, any RailCab that wants to
join a convoy needs to perform this replacement at runtime as part of a reconfiguration.

Physical Machine

  

    :StandaloneDrive
:refSpeed
:curSpeed

:curDist

  

    :ConvoyDrive

:refSpeed

:curSpeed

:refDist

:force

:force

«destroy»

«create»

Figure 3.4: Illustration of Exchanging a Controller without Fading Function

In general, continuous component instances must not be replaced instantaneously if they
produce the same output signal such as force in Figure 3.4. In the figure, the green graphs
illustrate the computed value of force over time while the vertical yellow bar denotes the point
in time where the continuous component instances are replaced instantaneously. In this case,
a jump in the value of the controlled variable force occurs at the engine and may damage it.
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For preventing such jumps, previous works integrated fading functions based on cross
fading [BGO06] and flatness-based switching [OMT+08] into MECHATRONICUML. These
are two strategies for smoothing the output signal while replacing continuous component
instances. The actual behavior of the fading function or the flatness-based switching is spec-
ified in a control engineering tool such as MATLAB/Simulink [Matg].

In our component model, we encapsulate fading functions and flatness-based switching in
fading components such as ConvoyFading shown in Figure 3.2c. The fading component has
one continuous out-port for the output signal and one continuous in-port for any continuous
component that may produce this output signal. Thus, ConvoyFading has one out-port force
and in-ports standalone and convoy for the two continuous components StandaloneDrive and
ConvoyDrive, respectively.

In addition to the ports, the fading component defines a set of fading functions. Each
fading function fades from the input signal of one in-port to the input signal of another in-
port. In the example in Figure 3.4, the ConvoyFading would need to fade from standalone to
convoy. At this point, we do not need to distinguish whether the fading function implements
a cross fading [BGO06] or flatness-based switching [OMT+08]. We only need to specify
how long it takes to execute the fading function. If the fading component does not execute a
fading function, it forwards the input signal unmodified to its out-port.

3.1.3 Structured Components

A structured component embeds other component types by means of component parts as
defined in the component model by Tichy [Tic09]. Component parts are defined as an asso-
ciation to another component [Gro11c], i.e., the same component may be embedded multiple
times in a structured component. Component parts define a name and a cardinality.

Structured components only define a reconfiguration behavior but no functional behavior.
This enables separation of concerns between reconfiguration behavior and functional behav-
ior. According to McKinley et al. [MSKC04], this is one of the three key enablers for suc-
cessfully developing self-adaptive systems. With respect to the OCM given in Section 2.1.2,
structured components belong to the reflective operator.

In contrast to the existing component models, our component model distinguishes between
two kinds of structured components based on the kinds of components they embed. These
are discrete structured components (cf. Section 3.1.3.1) and hybrid structured components
(Section 3.1.3.2). The differentiation between two kinds of structured components is helpful
for defining our transactional reconfiguration approach in Chapter 4.

3.1.3.1 Discrete Structured Component

A discrete structured component (recursively) embeds discrete components only. Conse-
quently, a discrete structured component may use all kinds of ports except continuous ports
analogous to discrete atomic components (cf. Section 3.2a).

Figure 3.5 shows an example of a discrete structured component named ConvoyCoordina-
tion. It contains the behavior of a convoy coordinator, i.e., it provides behavior for adding
and removing RailCabs to/from the convoy and for announcing all acceleration and breaking
maneuvers to the convoy members. ConvoyCoordination embeds two components ConvoyMan-
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agement and RefGen using two component parts named man and refGen, respectively. Both of
which are discrete components.

 ConvoyCoordination

  

   man : 

      ConvoyManagement [1]
coordinatorcoordinator

refDistProvider
refDistProvider

  

   refGen : RefGen [1..*]

speedProvider speedProvider

prev next

strategy receiver

curPoscurPos

profileProvider

profileReceiver

ConvoyCoordination.coordinator

DistanceTransmission.provider

StrategyTransmission.receiver

SpeedTransmission.provider

Figure 3.5: The structured component type ConvoyCoordination

Our component model allows for a precise specification of cardinalities using integers for
lower and upper bound, but still enables to use an asterisk to support an arbitrary number of
instances. Supporting precise cardinalities is especially useful for simulations in a simulation
tool as MATLAB/Simulink as presented in Chapter 6. In Figure 3.5, the component part man
has a cardinality of [1]. That means any instance of ConvoyCoordination contains exactly one
instance of ConvoyManagement. We call this a single part. refGen has a cardinality of [1..∗]
such that an instance of ConvoyCoordination has arbitrary many but at least one instance of
RefGen. In accordance to Tichy, we call this a multi part. In the concrete syntax, multi parts
are visualized by a cascaded border line [Tic09, p. 38].

In ConvoyCoordination, the ConvoyManagement is responsible for adding and removing con-
voy members to the convoy and for negotiating the maximum speed of the convoy. The
interaction with the convoy members is implemented in the port coordinator that refines the
role coordinator of the RTCP ConvoyCoordination [FHK+13, FHK+14]. We present the RTCP
ConvoyCoordination in Appendix A.1.2.

For each convoy member, the ConvoyCoordination has one instance of the RefGen multi
part that generates reference data for the convoy member (cf. [Tic09]). RefGen receives in-
formation about the corresponding convoy member and the negotiated speeds from Convoy-
Management via profileReceiver. The information about the convoy members is encapsulated
in so-called profiles [Hir08, FHK+13, FHK+14]. The RefGen instance for the first convoy
member additionally receives the position of the coordinator RailCab via curPos. Then, Re-
fGen computes a reference distance to the preceding RailCab based on the position of this
preceding RailCab and the profile of the RailCab. This can be used to adapt the distances
between RailCabs within the convoy to changing environmental conditions such as higher
speeds, strong wind, or slopes. RefGen sends the new reference distance to the convoy mem-
bers using the RTCP DistanceTransmission introduced in Section 2.4.
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3.1.3.2 Hybrid Structured Component

A hybrid structured component embeds a mixture of discrete, hybrid, and continuous com-
ponents. Hybrid structured components may use all kinds of ports. Component parts and
their cardinalities are used in the same fashion as in discrete structured components.

Figure 3.6 shows the hybrid structured component RailCabDriveControl that implements the
driving functions of the RailCab. It embeds eight component parts that implement different
parts of the behavior. In the following, we provide a detailed description of the RailCab-
DriveControl component because it forms the basis of our running example that we use in the
remainder of this thesis for illustrating our concepts.

  

  member : 

      MemberControl [0..1]

  

  convoy : 

      ConvoyCoordination [0..1]

 RailCabDriveControl

  

  ctrl : VelocityController [1]

refSpeed

curSpeed

curDist

refDist

refDist

force

  

  strategy : 

      OperationStrategy [1]

peer
  

   drive : 

      DriveLogic [1]

speedProvider

refSpeed

speedProvider

peer

coordinatorcoordinator
member member

distReceiver refDistReceiver
curPos

receiver

B

protocolInst

B

protocolInst

strategySender

section1 section1

section2 section2

speedProvider

maxSpeed

  

  dist : DistanceSensor [0..1]

distance

requestor requestor

requestee requestee

  

  pos : PositionSensor [0..1]

position

  

  sp : SpeedSensor [1]
speed

refDistProvider
refDistProvider

180 180

Figure 3.6: The component type RailCabDriveControl

The component OperationStrategy implements the operation strategy that defines, for ex-
ample, the maximum speed for the RailCab. In addition, it contains the logic for deciding
whether to build a convoy or not. Via the broadcast port protocolInst, it establishes connec-
tions to other RailCabs that are eligible for building convoys (cf. Section 3.4.1). The ports
requestor and requestee implement both roles of the RTCP ProtocolInstantiation introduced in
Section 3.4.2. The ProtocolInstantiation protocol implemented in OperationStrategy only instan-
tiates the RTCP ConvoyEntry that is refined by the peer port. This RTCP specifies the message
exchange for negotiating whether to build a convoy or not and which RailCab will serve as
the coordinator for the convoy. We provide a description of this RTCP in Appendix A.1.1.

The component DriveLogic defines the current speed of the RailCab that it sends via the ref-
Speed port to the VelocityController. The current speed is either defined by the OperationStrategy
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if the RailCab drives alone or it depends on the maximum speed that has been negotiated for
the convoy. In addition, the DriveLogic contains the two ports section1 and section2. These
ports are used for communicating with the current and the next track section for gaining ad-
mission to drive onto a track section. This is necessary for avoiding collisions between Rail-
Cabs that want to drive onto the same track section. In addition, this communication may be
used to obtain further information about the track characteristics (cf. [BGO06, Hir08]) or a
track specific maximum speed [Hei12]. We introduce the associated behavior in Chapter 5.

The component part convoy is typed by the component ConvoyCoordination shown in Fig-
ure 3.5. It is connected to the operation strategy because it needs to be informed about the
information that has been negotiated with new convoy members. The continuous port curPos
is connected to the PositionSensor that provides the current position of the RailCab.

The component MemberControl, also shown in Figure 3.2a, implements the behavior for
operating as a convoy member. The ports member and distReceiver implement the comple-
mentary roles of the RTCPs ConvoyCoordination and DistanceTransmission for communicating
with the coordinator. In particular, MemberControl receives the reference speed and reference
distances for driving in the convoy. It sends the reference speed via speedProvider to the
DriveLogic and the reference distance via refDist to the VelocityController.

+ -

 VelocityController

  

  standalone_ctrl :

       StandaloneDrive [0..1]

refSpeed

curSpeed

curDist

  

  convoy_ctrl :

       ConvoyDrive [0..1]

refSpeed

curSpeed

refDist

force

force

curDist

refSpeed

curSpeed

refDist

force

  

  fade :

   ConvoyFading [1]
standalone

convoy

force

Figure 3.7: The component type VelocityController

Finally, the VelocityController shown in Figure 3.7 contains the feedback controllers that
control the electric motors of the RailCab. The continuous component StandaloneDrive con-
tains the feedback controller that is used if the RailCab drives alone or as a convoy coordi-
nator. Based on the current speed obtained from the SpeedSensor and the reference speed
provided by the DriveLogic it computes a force to be applied by the electric motor. The port
force is directly connected to the actuator and, therefore, remains unconnected in RailCab-
DriveControl. If the RailCab operates as a convoy member, it needs to execute the feedback
controller implemented in the continuous component ConvoyDrive. It additionally considers
the current distance obtained from the DistanceSensor and the reference distance provided by
the MemberControl for computing the force. In addition, the VelocityController contains the fad-
ing component ConvoyFading shown in Figure 3.2c for switching between the two continuous
components.
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3.1.4 Connectors

Components in our component model are connected via their ports using connectors. In
accordance to UML [Gro11c] and to the existing component models by Burmester and Giese
as well as Tichy, we distinguish between two kinds of connectors: assembly connectors
and delegation connectors. An assembly connector connects two ports of component parts
inside the same structured component. Delegation connectors connect ports of structured
components to the ports of component parts of the same structured component.

As an example, consider the structured component RailCabDriveControl shown in Figure 3.6.
The discrete ports strategySender of strategy and receiver of convoy are connected by an assem-
bly connector because both are ports of component parts. The ports coordinator of RailCab-
DriveControl and coordinator of convoy are connected by a delegation connector. We use the
concrete syntax defined by Burmester and Giese [GBSO04, GS13] and visualize both kinds
of connectors by solid lines.

Whether two ports may be connected by a connector depends on three conditions. First,
they need to be structurally compatible. Second, they need to have matching interface specifi-
cations. Third, they need to have matching endpoint cardinalities. We define these conditions
in detail in the following.

To be structurally compatible, the ports need to be of compatible kinds and have compat-
ible directions. Discrete ports may only be connected to discrete ports. The same holds for
RM ports and RE ports. Continuous and hybrid ports may be connected with each other.
Broadcast ports may only by delegated to broadcast ports but not connected by assembly
connectors (cf. Section 3.4). For delegation connectors, both ports need to have the same
direction. For assembly connectors, they need to have inverse directions. Figure 3.8 summa-
rizes the combinations of structurally compatible ports for discrete, hybrid, and continuous
ports. Only combinations marked with a checkmark are allowed. We explain how RM ports
and RE ports may be connected in more detail in Section 4.1.
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Figure 3.8: Structurally Compatible Ports Allowing for a Connector (cf. [BDG+14b])
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As the second condition, ports need to have compatible interfaces. For continuous and
hybrid ports, we require that they send or receive a signal value with the same data type.
For discrete ports, we require that they refine the same role of the same RTCP (delegation
connector) or different roles of the same RTCP (assembly connector).

Finally, we require that the endpoint cardinalities of a connector match as defined by
Tichy [Tic09, p. 39]. The cardinality of an endpoint is the product of the port cardinality
and the component part cardinality. In essence, that means that a single port may only be
delegated to a single port of a single part as, e.g., the port member of RailCabDriveControl. A
multi port may either be delegated to a multi port as, e.g., coordinator of RailCabDriveControl,
or to a single port of a multi part as, e.g., refDistProvider of ConvoyCoordinator (cf. Figure 3.5).
The same conditions hold for assembly connectors.

For a structured component, we require that all of its ports are connected by at least one
delegation connector to a port of a component part. In addition, we require that all ports of
the component parts are attached to at least one connector. The only exception to this rule are
continuous ports of component parts if they are directly connected to a hardware component
that is not part of the MECHATRONICUML component model. An example of such port is
given by the port force of the component part ctrl in RailCabDriveControl. This port is directly
connected to the electric motors. In order to prevent unconnected ports in our component
model, we visualize such ports as shown in Figure 3.6. We use a graphical symbol that is
inspired by a pin in a digital circuit diagram as defined in IEC60617 [IEC96] to represent the
hardware pin. Then, we connect this pin by a connector to the continuous port. The notation
may be used for both, in-ports and out-ports.

3.1.5 Component Properties

A component may define a set of so-called component properties. They enable that a com-
ponent exposes information about its inner state or configuration to its parent component. A
component property has a name and a primitive data type similar to attributes of components
as defined by Tichy [Tic09, p. 36] or to attribute controllers in Fractal [BCL+06]. In con-
trast to attributes, component properties may only be read by the parent component but not
modified. We forbid modifications because any change that is applied to the inner state of a
component instance needs to be made through one of its ports. This ensures encapsulation
and correctness of the compositional verification approach (cf. Chapter 5). In addition, the
value of a component property is derived (cf. [SBPM08, p. 108]), i.e., it is computed from
the inner state or configuration of a component instance but does not contribute to it.

We present a modeling language, called component story decision diagrams, for express-
ing component properties based on the current configuration in Section 3.5. In our concrete
syntax, we enable to optionally visualize component properties for component instances as
illustrated in Figure 3.9, but we do not visualize component properties for components.

3.2 Component Instances

The components introduced in Section 3.1 are instantiated to component instances for defin-
ing a software architecture of a system. Components may be instantiated multiple times in
a system. In particular, each structured component instance creates its own instances for the
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components that are embedded by the component parts (cf. [Tic09]). Upon instantiation,
the variable parts of the component need to be determined. That means, the number of port
instances for each port, the number of embedded component instances for each component
part, and the connector instances need to be determined. By default, all ports and component
parts are instantiated with minimum cardinality.

Each component instance has a configuration that is defined by its currently instantiated
port instances, embedded component instances, and connector instances. If a component is
reconfigurable, as in our approach, then a component instance may switch between different
configurations at runtime by executing reconfigurations (cf. Section 3.3 and Chapter 4). The
current configurations of all component instances in the software architecture of the system
define the configuration of the system itself. We refer to this as the component instance
configuration (CIC) of the system.

As on the type level, we distinguish between atomic component instances and structured
component instances. An atomic component instance is typed over an atomic component and
executes its behavior specification at runtime. A structured component instance is typed over
a structured component and embeds a CIC that contains all embedded component instances
and connector instances. Any component instance has a name and, in case that it is embedded
in a structured component instance, refers to its component part (cf. [Tic09]).

Figure 3.9 shows the CIC of RailCabDriveControl for a RailCab driving alone. The stan-
daloneRC only embeds four component instances: os of type OperationStrategy, dl of type
DriveLogic, vc1 of type VelocityController, and sp of type SpeedSensor. Consequently, the max-
imum speed for the RailCab is defined by os and provided to dl. dl sets the reference speed
for the VelocityController vc1. vc1 controls the force of the electric motor only based on this
reference speed and the current speed of the RailCab provided by sp. Consequently, vc1 only
uses the feedback controller implemented in StandaloneDrive (cf. Figure 3.7).

 standaloneRC : RailCabDriveControl

  
  vc1 / ctrl : VelocityController

[inConvoyMode == false]

:refSpeed

:curSpeed
:force

  

   os / strategy : 

      OperationStrategy

  

   dl / drive : 

      DriveLogic
:speedProvider

:refSpeed

B

:protocolInst

B

:protocolInst
:section1 :section1

:section2 :section2

:maxSpeed

  

  sp / sp : SpeedSensor
:speed

180 180

[isStandalone == true, isCoordinator == false]

Figure 3.9: Component Instance of Component RailCabDriveControl for a RailCab Driving
Alone

The visualization of component properties for component instances is optional. For struc-
tured component instances, we visualize component properties in an additional compartment
as shown in Figure 3.9. The compartment contains a comma-separated list of component
properties with their values in square brackets. In the example, the value of the component
property isStandalone is true while the value of the component property isCoordinator is false.
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For an atomic component instance or an embedded component instance of a structured com-
ponent, we visualize component properties in square brackets below the name label of the
component instance. In Figure 3.9, the embedded component instance vc1 visualizes the
component property inConvoyMode, which is false in the example.

A CIC is syntactically correct under the following conditions. First, the number of port
instances of a component instance complies with the cardinality of the corresponding port
of the component. For a structured component, we additionally require that the number of
embedded component instances for a given component part complies to the cardinality of the
component part. Furthermore, port instances of structured component instances may only
be delegated to port instances of embedded component instances if the corresponding ports
are connected by a delegation connector in the structured component. Analogously, port in-
stances of embedded component instances may only be connected by assembly connector
instances if the corresponding ports are connected by an assembly connector in the struc-
tured component. If the component instances are not embedded in a structured component,
then they may be connected via their port instances using assembly connector instances by
applying the same rules that we defined for connectors in Section 3.1.4.

Each discrete port instance is either connected to exactly one other port instance by an
assembly connector instance or it is delegated to exactly one port instance of the parent com-
ponent instance. Port instances of structured component instances have an additional delega-
tion connector instance to a port instance of an embedded component instance. Continuous
and hybrid port instances need to fulfill the same properties, but two exceptions apply. A
continuous or hybrid out-port may have more than one outgoing connector instance, i.e., the
signal value may be send to several other component instances. In addition, continuous in-
ports of a structured component instance may be delegated to several embedded component
instances. A continuous or hybrid port instance may also have no connector instance if it
is directly attached to hardware as, e.g., instances of the port force of VelocityController. In
any case, component instances that are embedded in a structured component instance may
only be connected by connector instances if the corresponding port types are connected by a
connector in the structured component type.

In addition, our component model uses three implicit composite aggregations for com-
ponent instances. First, a component instance that is embedded in a structured component
instance cannot exist without its parent. Second, a port instance cannot exist without its
surrounding component instance. Third, a connector instance cannot exist without being
attached to exactly two port instances [Tic09, p. 42].

Figure 3.10 shows an instance of ConvoyCoordination that is executed in a coordinator Rail-
Cab with one member. It contains an instance cm of type ConvoyManagement and, since the
convoy has one member, one instance rg1 of type RefGen. Since rg1 is associated to the first
convoy member, it receives the current position of the coordinator RailCab via curPos. Fur-
thermore, cc has instances of the coordinator and refDistProvider multi ports for communicating
with the member.

Hirsch [Hir08] and Tichy [Tic09] did not distinguish between single port instances and
multi port instances in the concrete syntax. However, a multi port instance has the same
structure as a multi role instance (cf. Section 2.4.1), i.e., it contains several subport in-
stances that belong together. Therefore, we propose to visualize the multi port instance by
a dashed square that groups its subport instances as shown for the instances of coordinator,
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 cc : ConvoyCoordination

    cm / man : 

       ConvoyManagement

  

   rg1 / refGen : RefGen

:curPos:curPos

r1:refDistProvider :refDistProvider

c1:coordinator c1:coordinator

:speedProvider :speedProvider

:strategy :receiver

p1:profileProvider

:profileReceiver

Figure 3.10: Component Instance of Component ConvoyCoordination for a Convoy with 1
Member

refDistProvider, and profileProvider in Figure 3.10. The subport instances are visualized as port
instances as before.

We present additional component instances for coordinator RailCabs and member Rail-
Cabs in Appendix A.4.

3.3 Modeling Reconfiguration

The existing component models defined two modeling languages for specifying reconfigu-
ration behavior of reconfigurable structured components. The component model by Tichy
uses component story diagrams (CSDs, [THHO08, Tic09]), which enable a rule-based spec-
ification of reconfiguration behavior based on story diagrams (cf. Section 2.3.2). They en-
able formal, modular, and concise models. In contrast, hybrid reconfiguration charts as
proposed by Burmester and Giese [GBSO04, BGO06, Bur06] provide a state-based model
where each state contains one configuration of a structured component instance. Hybrid re-
configuration charts quickly become very large and unmaintainable if a component instance
has several configurations. This is the case, for example, for the component ConvoyCoordi-
nation in Figure 3.5 where we have a sequence of RefGen instances that reflects the order of
the convoy members on track. As a result, we chose to use CSDs for specifying reconfig-
uration of structured and atomic component instances in our component model. We refer
to Schubert [Sch12] and our technical report [HB14] for a detailed comparison of hybrid
reconfiguration charts and CSDs.

In the following, we first introduce CSDs as they have been defined by Tichy (cf. Sec-
tion 3.3.1). Thereafter, we introduce three extensions to CSDs that we developed as part of
this thesis. These are controller exchange nodes (cf. Section 3.3.2), constraints for multi
port variables (cf. Section 3.3.3), and CSDs for atomic components (cf. Section 3.3.4).
These extensions add features to CSDs that are necessary for specifying reconfiguration be-
havior in our component model. We illustrate these features based on examples given in
concrete syntax. A formalization of CSDs is given by a metamodel [SV06, ch. 4] whose
abstract syntax is defined in Appendix D.2. The static semantics has been formalized based
on OCL constraints [Gro12]. The operational semantics of CSDs has already been defined
by Tichy [Tic09, pp. 71ff] in form of a translational semantics [SK95] by defining a transfor-
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mation of CSDs to story diagrams. Our extensions only extend the type system that is used
for the story diagrams and do not require a new definition of the operational semantics.

3.3.1 Component Story Diagrams

In our component model, we use CSDs [THHO08, Tic09] for modeling reconfiguration of
component instances. Each component contains a set of CSDs that define how instances of
the component may be reconfigured at runtime. We define how and when CSDs are executed
for a component instance in Chapter 4.

CSDs are based on story diagrams (cf. Section 2.3.2.2) and support the same constructs
for specifying control flow including a set of input and output parameters. The story nodes
of a CSD, however, contain component story patterns instead of story patterns [Tic09].

A component story pattern defines the modification of a component instance and, in case
of a structured component instance, its embedded CIC. We use the components that are
defined in our component model as a type graph to type the variables of the component
story pattern. Then, all variables and links of the component story pattern are typed by the
components, ports, and connectors that are defined by the component model. Thereby we
can ensure that component instances remain syntactically correct after applying a component
story pattern. In particular, we can ensure that a component story pattern can only be executed
if its modifications do not violate the cardinalities of ports and component parts.

Each component story pattern contains exactly one this component variable. The this vari-
able is typed by the component that contains the corresponding CSD. At runtime, the this
variable is automatically bound to the component instance that invoked the CSD on itself.
Thus, it is a implicit input parameter of any CSD [Tic09].

Figure 3.11 shows a CSD becomeMember of the component RailCabDriveControl. The CSD
reconfigures an instance of RailCabDriveControl of a RailCab driving alone (cf. Figure 3.9) to
an instance of a RailCab driving as a member of a convoy (cf. Figure A.31).

The CSD has two story nodes. In the first story node, we match the embedded component
instances of types OperationStategy, DriveLogic, and VelocityController. We destroy the assembly
connector instance between os and dl. In addition, we invoke the reconfiguration applyMem-
berStrategy on os that destroys the speedProvider port instance. We explain this CSD in more
detail in Section 3.3.4. In addition, we invoke the reconfiguration switchToConvoy on vc that
reconfigures the feedback controllers for driving as a convoy member. We introduce this
CSD in more detail in Section 3.3.2. In the second story node, we create an instance of
MemberControl. In addition, we create an instance of DistanceSensor and connect it to vc by an
assembly connector instance. Finally, we create port instances of member and refDistReceiver
on this and connect all port instances of mc.

A CSD may specify invocations of further CSDs on embedded component instances. The
invocation is directly attached to the corresponding component variable [Tic09, p. 62] as
shown in the first story node of the CSD becomeMember in Figure 3.11. We define how such
invocations are executed with respect to the component hierarchy in Chapter 4.

In our component model, we restrict CSDs such that they respect component encapsu-
lation. In particular, we forbid that a CSD directly creates or destroys port instances of
embedded component instances as it is allowed by Tichy [Tic09, p. 55]. Such port instances
may only be created by the embedded component instance itself. The corresponding CSD
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 this

Switch Operation Strategy and destroy Assembly

Create MemberControl and Sensor, Connect Ports

  

  mc / member : 

      MemberControl

 this

  

  vc

:curDist :refDist :refDist

  

   dl 

:speedProvider

:member

:member

:distReceiver

:refDistReceiver

:maxSpeed

  

  ds / dist : DistanceSensor

:distance

«create»

«create»

«create»

«create» «create»

«create»

«create»

«create»

  

  os / strategy : 

      OperationStrategy

applyMemberStrategy()

  

   dl / drive : 

      DriveLogic
:maxSpeed

:speedProvider
«destroy»

  

  vc / ctrl : VelocityController

switchToConvoy()

RailCabDriveControl::becomeMember() 

Figure 3.11: CSD for Component RailCabDriveControl that Reconfigures the Component In-
stance to Serve as a Member

that creates the port instance needs to be invoked on the embedded component instance as
shown in Figure 3.11.

In accordance to Tichy, a component may define one or more constructor CSDs. A con-
structor CSD defines how instances of the component are initialized upon instantiation. Then,
a component variable with stereotype «create» may invoke a constructor [Tic09, p. 62].
In addition, every component defines an implicit constructor that instantiates all ports and
embedded components according to their minimum cardinality. The implicit constructor is
always used if no explicit constructor is invoked for a coponent variable with stereotype
«create». In Figure 3.11, we used implicit constructors for both, ds and mc. We provide an
example of an explicit constructor in Appendix A.6.2.

3.3.2 Controller Exchange Nodes

The component model by Tichy does not distinguish between different kinds of compo-
nents [Tic09]. Consequently, it does not enable to use fading functions, which are typically
required when replacing continuous component instances as explained in Section 3.1.2.3.
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As a solution, Schubert [Sch12] introduced controller exchange nodes for enabling the
reconfiguration of continuous components. A controller exchange node is a special kind of
story node that enables safe execution of fading functions. It has a fixed structure that con-
sists of exactly three component variables. Two of which reference continuous components
where one is destroyed and one is created. The third component variable refers to the fading
component that is connected to the two continuous components. The component variable
referring to the fading component additionally specifies which fading function needs to be
executed.

Perform fading to convoy controller

VelocityController::switchToConvoy()

+ -
[150 ms;180 ms]

+ -

 this

  

  sd / standalone_ctrl :

       StandaloneDrive

:refSpeed

:curSpeed

:curDist

  

  cd / convoy_ctrl :

       ConvoyDrive

:refSpeed

:curSpeed

:refDist

:force

:force

:curDist

:refSpeed

:curSpeed

:refDist

  

  f / fade :

   ConvoyFading

fadeToConvoy()

:standalone

:convoy

«destroy»

«create»

«create»«create»

«create»

«create»

«create»

«destroy»

«destroy»

«destroy»

«create»

«create»

Figure 3.12: CSD for Component VelocityController that Reconfigures the Component Instance
to Serve as a Member

Figure 3.12 shows the CSD switchToConvoy that uses a controller exchange node. It is in-
voked by becomeMember and reconfigures an instance of VelocityController such that it uses
an instance of ConvoyDrive instead of StandaloneDrive. Consequently, it destroys the latter
and creates a new instance of the former. Since both continuous components provide a sig-
nal force, we need to use the fading component ConvoyFading to fade between both signals.
In the controller exchange node of switchToConvoy, we therefore select the fading function
fadeToConvoy for the reconfiguration as specified within the fading component variable. As
indicated in the upper right corner of the controller exchange node, the fading takes between
150 ms and 180 ms.

3.3.3 Constraints for Multi Port Variables

Multi ports are ordered, i.e., the subport instances are arranged in a sequence as it has been
defined for multi roles (cf. Section 2.4.1). Up to now, this order cannot be used in component
story pattern, for example, for creating a subport instance as a successor of another subport
instance.
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As an example, consider the component ConvoyCoordinator shown in Figure 3.5 on Page 42.
The subport instances of an instance of the multi port coordinator shall have the same order
as the corresponding convoy members on track. Thus, if a new member joins the convoy at
a particular position, we need to insert a subport instance at the same position into the multi
port instance.

Therefore, we extend component story patterns by constraints for multi port variables
that refer to the order of the subport instances [Hei14]. They are inspired by so-called link
constraints of story diagrams [vDHP+12a]. In accordance to these link constraints, we dis-
tinguish between multi port position constraints and multi port order constraints. Both of
which are illustrated in Figure 3.13.

Order Constraints

...

...

:port1

 this

«next»
«first»

«last»

Figure 3.13: Order Constraints for Multi Port Variables

A multi port position constraint enables to refer to the first (or last) subport instance of a
multi port instance. In our concrete syntax, we visualize it by attaching a stereotype «first»
(or «last») to the corresponding subport variable. In Figure 3.13, the upper subport variable
matches the first subport instance while the lower subport variable matches the last subport
instance.

A multi port order constraint enables to refer to the relative order of the subport instances.
We enable to define that a subport instance is a direct successor (or predecessor) of another
subport instance. In our concrete syntax, we visualize these constraints by a dashed arrow
annotated with the stereotype «next» (or «prev») to denote that the target subport instance
is a direct successor (or direct predecessor) of the source subport instance. In Figure 3.13,
the lower subport instance has to be a direct successor of the upper subport instance of the
multi port instance of type port1 for successfully matching the component story pattern.

Multi port position constraints and multi port order constraints may be part of the LHS
or RHS of the component story pattern. A multi port position constraint is part of the LHS
if it is attached to a subport variable with no stereotype or with stereotype «destroy». In
this case, the matched subport variable needs to fulfill the multi port position constraint for
a successful matching. A multi port position constraint is part of the RHS if it is attached
to a subport variable with stereotype «create». In this case, the created subport instance
is inserted at the specified position into the multi port, i.e., either at first or last position. A
multi port order constraint is part of the RHS if at least one of the attached subport variables
carries a «create» stereotype. It is part of the LHS in all other cases. It is not allowed to
connect a subport variable stereotyped with «create» and a subport variable stereotyped
with «destroy» by a multi port order constraint.
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int i := 1;

if (next != null){

  tmpRefGen := next;

  next := null; 

  tmpC := c;

  c := null}

[i < position]

i++;
[success]

[else]

[else]

[position == 1]

[failure]

cPort := newC,

rPort := newR

ConvoyCoordination::addConvoyMemberAtPos(int position) : (coordinator cPort, refDistProvider rPort) 

Get next RefGen

    cm 

tmpC

 this

    tmpRefGen

c:coordinator

«next»

    next /

       refGen : RefGen

:next

:prev

tmpP:profileProvider

:profileReceiver

Create Embedded Ports

    cm

(embC, embP) := 

createMemberPortsAfter(tmpC, tmpP)

 this

Create Embedded Ports

    cm

(embC, embP) := 

createFirstMemberPorts()

 this

Create RefGen

    cm 

 this

    tmpRefGen

c

    newRefGen /

       refGen : RefGen

:next

:prev

:refDistProvider

:refDistProvider

«create»
«create»

:refDistProvider

newR:

refDistProvider

«next»

«create»

«create»

embP

:profileReceiver
«create»

newC:coordinator «create»

«create»

    next /

       refGen : RefGen

:next

:prev

tmpC

:refDistProvider
:refDistProvider

«next»

«create»
«destroy»

«next»

«next»

embC

Create RefGen at Beginning

    cm 

 this

    newRefGen /

       refGen : RefGen

embC
«next»

    tmpRefGen

:next

:prev

:curPos:curPos

newR:

refDistProvider

:refDistProvider

«first»

«create»

«create»

«create»

«create»

:refDistProvider:refDistProvider

«next»

«create»

:curPos:curPos

«destroy»
«destroy»«destroy»

«create»

embP

:profileReceiver
«create»

newC:

coordinator

«first» «create»

«create»

«first»

Get first RefGen

    cm / man : 

       ConvoyManagement

tmpC:coordinator

 this

«first»

    tmpRefGen /

       refGen : RefGen

:curPos:curPos

Figure 3.14: CSD for Adding a Convoy Member (cf. [Tic09, Sch12])
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Figure 3.14 shows an example of a complex CSD of the component ConvoyCoordination
that implements the aforementioned use case of adding a new convoy member at a specific
position of the convoy. The CSD takes a position as its input and returns the subport instances
that have been created for the multi ports coordinator and refDistProvider of ConvoyCoordination.
In addition to the subport instances, the CSD also creates an instance of the RefGen multi
part.

The behavior of the CSD addConvoyMemberAtPosition is as follows. The first story node
matches the first RefGen instance which is the only one having an instance of the curPos port.
Matching this story node will always succeed because the corresponding component parts are
both mandatory. Thereafter, the statement node initializes a counter variable i that is used for
iterating over the list of RefGen instances until the instance at the position given as parameter
has been found. The iteration is performed via the story node and the two statement nodes in
the upper right corner. The component story pattern in the story node uses a multi port order
constraint for iterating over the subport instances of coordinator.

If the correct position has been found, the story node in the lower left corner inserts an
instance of refGen at the beginning of the list, while the story node in the lower right inserts
an instance of refGen at any other position. Along with the instance of RefGen, we create
subport instances for the multi ports coordinator and refDistProvider of this and insert them at the
corresponding positions. In the story node Create RefGen at Beginning, we use the «first»
stereotype two times within the same multi port variable. This is allowed because one is part
of the LHS for matching the previously first subport instance while the other one is part of
the RHS. Finally, the final node assigns the created subport instances newC of type coordinator
and newR of type refDistProvider to the output parameters cPort and rPort, respectively.

3.3.4 Reconfiguration of Atomic Components

In our component model, we use CSDs for reconfiguring atomic components as well. Tichy
neither explicitly defined nor restricted CSDs in that way [Tic09]. The only difference to
a CSD of a structured component is that we visualize the this component variable as an
atomic component. Then, the this component variable may only contain port variables but no
embedded component variables (cf. [BDG+14b]).

Delete speedProvider Port

OperationStrategy::applyMemberStrategy() 

  

     this 

«destroy»
:speedProvider

Figure 3.15: CSD for Component OperationStrategy that Reconfigures the Ports for Being
Member
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Figure 3.15 shows the CSD applyMemberStrategy that is invoked in the first story node of be-
comeMember shown in Figure 3.11. OperationStrategy is an atomic component and, therefore,
the this variable has no embedded component variables. The CSD deletes the speedProvider
port instance because the reference speed of a member is defined by the coordinator and not
by its own operation strategy.

3.4 Instantiating Real-Time Coordination Protocols on
System Level

RTCPs on the system level define the communication between different AMS while they col-
laborate in an NMS. Since NMS are virtual, there does not exist a component that contains
both AMS and that may instantiate an RTCP between the AMS. Consequently, the instanti-
ation cannot be described by CSDs, but the AMS need to agree on instantiating a particular
RTCP via message-based communication. This, however, requires at least one of the AMS to
know about the existence of the other AMS. Then, one of the AMS may initiate the commu-
nication for agreeing on the instantiation. This communication, however, cannot be handled
by the discrete ports and connectors introduced in Section 3.1 because their instances already
require a connector with a RTCP.

For solving this problem, we need to relax the strict requirement of MECHATRONICUML
that all communication between AMS is exclusively handled by RTCPs with single-cast con-
nectors [GTB+03, EHH+13]. In particular, we use broadcast ports as introduced in Sec-
tion 3.1.1.3 that enable for broadcast communication. Whenever an AMS sends a message
via a broadcast port, the message is received by all other broadcast ports "in reach" that can
process this message. Which broadcast ports are in reach depends on the spatial distribution
of the AMS as well as the transmission medium. In general, it is not known at design time
which ports will receive a message and which will not. In order to retain the safety guaran-
tees provided by the use of RTCPs, we only allow the use of broadcast ports for two special
purposes. First, for gaining knowledge about the existence of other systems and, second,
for instantiating one particular RTCP called ProtocolInstantiation. This RTCP then enables to
instantiate further RTCPs. No further broadcast ports are allowed in a MECHATRONICUML
model.

Following the terminology of Baresi et. al. [BDNG06], gaining knowledge about other
systems is only required in so-called open-world scenarios. In an open-world scenario, sys-
tems do not know each other in advance and the possible communication partners change
frequently over time. For example, RailCabs move along the track system and do not know
when or where they meet which other RailCab. In this case, we may need to use a broadcast
port that executes a so-called discovery protocol [NNSS07] that detects and gathers knowl-
edge about the systems in the environment. This information needs to be stored in an envi-
ronment model that may be used by the cognitive operator of the OCM for deciding which
other systems are suitable for which cooperation. We present a simple discovery protocol
and environment model in Appendix A.2.1, but we do not consider this use case in detail as
part of this thesis.

In the following, we illustrate how we use a broadcast port for instantiating the RTCP
ProtocolInstantiation for two AMS (Section 3.4.1). Thereafter, we show how to use the RTCP
ProtocolInstantiation for instantiating further RTCPs (Section 3.4.2).
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3.4.1 Instantiating the RTCP ProtocolInstantiation

An AMS may use its protocolInst broadcast port for contacting another AMS for instantiating
a connector including the ProtocolInstantiation RTCP. ProtocolInstantiation is the only RTCP that
may be instantiated via broadcast communication. All other RTCPs need to be instantiated
via ProtocolInstantiation or as part of another, user-defined RTCP.

Assumptions For instantiating the RTCP ProtocolInstantiation, the AMS that initiates the
instantiation needs to know the other system in its environment model. Based on this, we
apply the following assumptions to the instantiation process:

1. Each AMS has a unique ID that is known to the RTSC of the broadcast port.

2. There may exist different versions of this message exchange that only differ in their
timing constraints as, e.g., timeouts, where each version has a unique identifier. The
broadcast port knows the ID of the version that it implements.

3. The IDs are represented using a data type that can be sent as a parameter of a message.

4. No message loss occurs during the interaction.

5. No eavesdropper tries to compromise or prevent the connection setup.

Since the different versions only differ in their timing constraints, the message exchange
for instantiating the RTCP ProtocolInstantiation may be used in different systems without mod-
ification.

Behavior Figure 3.16 shows the message exchange for instantiating the RTCP ProtocolIn-
stantiation as a modal sequence diagram (MSD, [HM08a]). For better readability of the figure,
we omitted all timing constraints.

In the MSD, sys1 initiates the instantiation of ProtocolInstantiation with sys2. It sends a con-
nectionRequest via the broadcast port that includes the ID of sys2 as the first parameter and
its own ID as the second parameter. If an AMS receives such message, it checks whether
its ID is contained in the first parameter. If so, it evaluates the message and checks whether
another instance of the port implementing the RTCP ProtocolInstantiation may be created. If
not, it answers with a connectionDenial. If the port instance can be created, it sends a con-
nectionApproval. sys1 then checks whether the connectionApproval has been sent by sys2 and
continues with the instantiation by sending a startProtocolInstantiation message. This message
contains the version ID in addition to the IDs of the two systems. After receiving the start-
ProtocolInstantiation message, sys2 checks whether it supports the desired version. If not, it
sends an abortProtocolInstantiation message and the instantiation fails. If it supports the desired
version, sys2 creates a port instance that implements the RTCP ProtocolInstantiation. Then, it
answers with a confirmProtocolInstantiation message that includes the created port instance.
If sys1 receives this message, it creates a port instance including the connector instance to
the port instance contained in the message. Finally, it sends a completedProtocolInstantiation
message to sys2 including the port instance it just created. Finally, sys2 receives this mes-
sage and creates the connector instance itself to the port instance provided by sys1. At this
point, both systems successfully instantiated the RTCP ProtocolInstantiation and may continue
to instantiate further RTCPs.
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sys1:Aut.System sys2:Aut.SystemEnvironment

connect(sys2)

connectionDenial(sys1, sys2)

checkIDs

alt numOfPorts ≥  

maxNumber

connectionRequest(sys2, sys1)

startProtocolInstantiation(sys2, sys1, version)

[else]
connectionApproval(sys1, sys2)

checkIDs

createPort 

: thePort
confirmProtocolInstantion(sys1, sys2, thePort)

alt

[else]

version not 

supported

abortProtocolInstantiation(sys1, sys2)

checkIDs

createConnector(thePort) 

: theOtherPort

completedProtocolInstantiation(sys2, sys1, theOtherPort)

createConnector(theOtherPort)

Figure 3.16: MSD Specifying the Broadcast Message Exchange for Instantiating the RTCP
ProtocolInstantiation

Please note that connector instances between two AMS are virtual, i.e., there exists no
shared connector instance object between the two systems. Instead, each of the AMS knows
the other one as an external system and maintains its own connector instance object to that
external system. Therefore, the connector is created two times: once in each system.

We specified the behavior of the broadcast port by a RTSC and verified it using the UP-
PAAL model checker [BDL+06b]. The RTSC is contained in Appendix A.2.2. The behavior
is free of deadlocks and ensures that if sys1 created the port instance, then also sys2 created
the port instance. Furthermore, it ensures that a third system may not accidentally create a
port instance.

3.4.2 The RTCP ProtocolInstantiation

The RTCP ProtocolInstantiation, whose declaration is shown in Figure 3.17, is a special pur-
pose RTCP that is intended to be used in combination with the protocolInst broadcast port. It
has two roles requestor and requestee. The system that initiated the instantiation of ProtocolIn-
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stantiation (cf. Section 3.4.1) is always the requestor. It requests the requestee to instantiate a
particular role of a RTCP.

requestor requestee

ProtocolInstantiation

[1] [1]
buffer size: 1 buffer size: 1

Figure 3.17: Declaration of the RTCP ProtocolInstantiation

Assumptions The specification of ProtocolInstantiation as described below underlies the
following assumptions:

1. Each RTCP has a unique ID.

2. Each role of a RTCP has a unique ID within its RTCP.

3. The IDs are represented using a data type that can be sent as a parameter of a message.

4. The component instance that executes the requestor role at one of its port instances is
able to instantiate a port that implements the other role of the requested RTCP.

5. No message loss occurs during the interaction.

Behavior The message exchange between the two roles of the RTCP ProtocolInstantiation
is defined by the MSD in Figure 3.18.

The interaction starts with a request that is sent by the requestor. It requests the requestee
to instantiate a particular role (roleID) of the RTCP identified by the protocolID. The requestee
checks whether it supports the requested protocol and role. If so, it requests its environ-
ment to create a port instance that implements the requested role. If not, it answers with
a protocolNotSupported message and the instantiation fails. In the context of this RTCP, the
environment is the atomic component instance that contains the port instance executing one
of its roles. This atomic component instance then either creates the port instance itself or it
triggers a reconfiguration using our approach presented in Chapter 4.

If the requestee requested to create a port instance, the environment either answers with
success or failed depending on whether the port could be created successfully. In the latter
case, the requestee sends a declineInstantiation message to the requestor and the instantiation
fails. In the former case, the requestor sends a confirmInstantiation message to the requestor.
This message includes the port instance that was created by the requestee. The requestor
then advises its environment to create a port instance as well and provides the port instance
of the requestor as a parameter. According to our assumptions, the creation of the port in-
stance succeeds. The requestor then sends a finalize message including the port instance that
it created. Then, the requestee passes this port instance to its environment to create the con-
nector instance, which finishes the connection setup. The environment acknowledges that
by sending finished. Then the requestee sends completed to the requestor which completes the
instantiation.
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requestor requesteeEnvironment

alt

[else] protocolNotSupported()

instantiationFailed()

Environment

success(port)
confirmInstantiation(port)

createPort(port)

success(port2)
finalize(port2)

createConnector(port2)

instantiate(protocolID, roleID)

supported == 

true

request(protocolID, roleID)

isSupported

(protocolID, roleID) : 

supported

createPort(protocolID, 

roleID)

alt

[else]

finished()
completed()

instantiationComplete()

failed()
declineInstantiation()

instantiationFailed()

Figure 3.18: MSD Specifying the Message Exchange for Instantiating an RTCP

We present RTSCs implementing the behavior for both roles in Appendix A.2.3. The
RTSCs have been specified and verified using a connector delay of 25 ms. The verification
has been carried out using UPPAAL [BDL+06b]. The RTSCs guarantee that the protocol is
deadlock free and that either both roles succeed or both roles fail.

Usage The message exchange shown in Figure 3.18 is independent of the RTCPs that an
AMS wants to instantiate. They only appear as parameters of messages. If the developer
assigns the requestee role to a port of a component of the AMS, the developer needs to
implement the isSupported function. In addition, the port that implements requestor needs to
be integrated with the behavior that decides when to ask another system to start collaborating.
Both ports need to be integrated with the reconfiguration behavior such that the necessary
reconfigurations may be triggered.

Although the purpose of ProtocolInstantiation is instantiating RTCPs, we do not want to
instantiate all RTCPs that an AMS supports via this protocol. In general, only RTCPs with
a predefined role assignment should be instantiated via ProtocolInstantiation. As an example,
consider the RTCPs that are necessary for driving as part of a convoy. Driving in a convoy
includes the election of a coordinator and complex negotiation about the speed for the convoy,
maximum accelerations and decelerations, and the ongoing route. As a result, we do not
want to instantiate these RTCPs, but only a RTCP that can be used to elect a coordinator for
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the convoy that can manage the necessary negotiations. In our example, we only want to
instantiate the RTCP ConvoyEntry that is refined by the port peer of RailCabDriveControl shown
in Figure 3.6. We introduce this RTCP in Appendix A.1.1.

3.5 Modeling Component Properties by Architectural
Constraints

In this thesis, we define component properties (cf. Section 3.1.5) by architectural constraints.
An architectural constraint defines a condition on the configurations of a (structured) com-
ponent instance [GMW00]. In addition, we enable to define such component properties as
invariants. An invariant needs to evaluate to true for any configuration of the component,
whereas other component properties may evaluate to false for some configurations. Invari-
ants enable to define valid configurations of a component, which we exploit for verifying the
correctness of the reconfiguration behavior in Section 4.5.1.

We define a new language called component story decision diagrams (component SDDs,
[Hei14]) for modeling architectural constraints. Component SDDs combine the constraint
specification of story decision diagrams (SDDs, [KG07, Sta08]) with component story pat-
terns (cf. Section 3.3.1) for referring to components. They have a name and always apply to
one component of our component model. This component defines the type of the this variable
which is used in the component story patterns.

In the following, we give a brief overview of component SDDs using examples in concrete
syntax and an informal description of their semantics. Component SDDs have been formal-
ized by a metamodel [SV06, ch. 4] whose abstract syntax is given in Appendix D.2.4. Their
operational semantics has been formally defined in form of a translational semantics [SK95]
by defining a transformation to SDDs. We describe this transformation in our technical re-
port [Hei14].

Component SDDs use the same syntactic elements as SDDs [KG07]. They consist of one
initial node, a set of pattern nodes and leaf nodes, and a set of directed edges connecting
the nodes. The initial node denotes the starting point for evaluating the component SDD.
A pattern node contains a component story pattern. Leaf nodes mark the end for evaluating
the component SDD. There exist two kinds of leaf nodes: (0)-nodes and (1)-nodes. The
nodes are connected by two kinds of edges: then-edges (also called high-edges) and else-
edges (also called low-edges). The initial node has exactly one outgoing then-edge and no
incoming edge. Each pattern node has exactly one outgoing then-edge and one outgoing
else-edge, while leaf nodes have no outgoing edges. The number of incoming edges is not
restricted for pattern nodes and leaf nodes, but nodes and edges need to form a directed
acyclic graph [Sta08, p. 60].

Figure 3.19 shows an example of a simple component SDD called isCoordinator. The initial
node is visualized as a filled black circle. It shows the name of the component and the name
of the component SDD. (1)-nodes are visualized as green circles containing a 1, while (0)-
nodes are visualized as red circles containing a 0. Pattern nodes are visualized as squares
and visualize the component story pattern that they contain. It the upper left corner, they
have a label that enumerates all unbound variables of the component story pattern. In our
example, the component story pattern defines that RailCabDriveControl embeds instances of
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$ cc, ps

then else

01

RailCabDriveControl::isCoordinator

 this

  

  cc / convoy : 

      ConvoyCoordination

:curPos

  

  ps / pos : PositionSensor

:position

Figure 3.19: Component SDD isCoordinator for Component RailCabDriveControl

ConvoyCoordination and PositionSensor. The pattern node is connected by a solid then-edge to
the (1)-node and by dashed else-edge to the (0)-node.

The semantics of a component SDD is defined analogously toSDDs [Sta08]. The evalua-
tion starts at the initial node with a variable binding that only assigns the this variable of the
component story pattern to the component instance on which the component SDD should be
evaluated. In our example, this is an instance of RailCabDriveControl. This variable binding is
passed to the first pattern node. If the contained component story pattern can be matched on
RailCabDriveControl, then the variable binding is extended with bindings for all unbound vari-
ables (cc and ps) of the component story pattern and passed down the then-edge. Otherwise,
the variable binding remains unchanged and is passed down the else-edge. If the evaluation
ends at a (1)-node, then the component SDD is fulfilled. If the evaluation ends at a (0)-node,
then the component SDD is not fulfilled. Thus, the component SDD in Figure 3.19 is ful-
filled for an instance of RailCabDriveControl if it embeds instances of ConvoyCoordination and
PositionSensor that are connected by an assembly connector instance.

Since component SDDs are a constraint language, the component story patterns used in
pattern nodes may not use «create» or «destroy» annotations. In addition, we do not
allow to use optional or negative variables. Optional variables have no influence on a suc-
cessful matching and, thus, cannot be referenced in subsequent nodes. Thus, they have no
semantics in component SDDs. In accordance to Stallmann [Sta08], we do not use negative
variables either but express negation by switching the then- and else-edges. As an example,
consider the component SDD isStandalone shown in Figure 3.20.

The component SDD isStandalone denotes that RailCabDriveControl neither operates as a
coordinator nor as a member of a convoy. It is fulfilled if the component story patterns in
both pattern nodes cannot be matched on an instance of RailCabDriveControl. If one of the
component story pattern could be matched, the evaluation would proceed via the then-edge
and end at a (0)-node.

The pattern nodes that are used in Figures 3.19 and 3.20 are so-called existential pattern
nodes. A component SDD containing only existential pattern nodes is fulfilled if and only if
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$ cc, ps

then
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RailCabDriveControl::isStandalone

 this

  

  cc / convoy : 

      ConvoyCoordination

:curPos

  

  ps / pos : PositionSensor

:position

$ mc

 this

  

  mc / member : 

      MemberControl

then else

0 1

else

Figure 3.20: Component SDD isStandalone for Component RailCabDriveControl

there exists one variable binding for the pattern nodes such that the evaluation terminates at
a (1)-node. In addition, there exist so-called universal pattern nodes as shown in Figure 3.21.
They are visualized with a cascaded border line [Sta08] in accordance to CSDs. If a com-
ponent SDD contains a universal pattern node, then the evaluation needs to terminate at a
(1)-node for any matching that can be obtained for the universal pattern node.

The invariant component SDD convoyOrder shown in Figure 3.21 specifies that any two
successive subport instances of refDistProvider are delegated to successive subport instances
of ConvoyCoordination. This ensures that reference speeds and distances can always be dis-
tributed within the convoy in the right order. In the component SDD, the first pattern node
matches an instance of ConvoyCoordination that is embedded in RailCabDriveControl. The sec-
ond pattern node is a universal pattern node that matches all pairs of successive refDistProvider
port instances. For any match that may be obtained for this pattern node, the third pattern
node needs to be matched as well such that the execution terminates at the (1)-node. If there
exists no matching for the universal pattern node, then the component SDD is fulfilled. For
this reason, we only visualize one outgoing then-edge for an universal pattern node as a
shorthand notation [Sta08, p. 63].

A component SDD may require that an embedded component instance has a component
property with a particular value. This component property may be specified, again, using
a component SDD. This enables to connect architectural constraints through the different
hierarchy levels of the component model. In Figure 3.21, the part variable cc in the universal
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Figure 3.21: Component SDD convoyOrder for Component RailCabDriveControl
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pattern node requires that the component property convoyOrder is true for the component
instance matched to cc.

3.6 Implementation

The concepts presented in this chapter have been implemented as part of the MECHATRON-
ICUML Tool Suite1 [DGB+14]. We have built a metamodel (cf. Appendix D) and several
diagram editors for creating models based on our component model. In contrast to the pre-
vious version of the tool, called Fujaba Real-Time Tool Suite [PTH+10], the metamodel has
been developed using the Eclipse Modeling Framework (EMF, [SBPM08]). The static se-
mantics has been completely encoded in the metamodel using OCL [Gro12]. Figure 3.22
provides a conceptual overview of the Eclipse plugins that have been created.

«de.uni_paderborn.fujaba»

muml
«org.storydriven»

storydiagrams

«de.uni_paderborn.fujaba.muml»

reconfiguration

«de.uni_paderborn.fujaba.muml»

componentstorypattern

«de.uni_paderborn.fujaba.muml»

componentstorydiagram

«de.uni_paderborn.fujaba.muml.verification.sdd»

componentSDD

«de.uni_paderborn.fujaba.muml»

component.diagram

«de.uni_paderborn.fujaba.muml»

componentinstance

configuration.diagram

«de.uni_paderborn.fujaba.muml»

reconfiguration.ui

«de.uni_paderborn.fujaba.muml.verification.sdd»

componentSDD.diagram

«de.uni_paderborn.fujaba.muml»

componentstorydiagram.diagram

«extends» 

«extends» «extends» 

«extends» 

«extends» 

«extends» 

«extends» 

«extends» 

«uses» 

«uses» 

«uses» 

«uses» 

«uses» 

«package»

plugin name

«package»

plugin name
Legend: Metamodel Plugin Diagram Editor Plugin

Figure 3.22: Plugins Implementing the Concepts of the Component Model

The plugin muml contains the core metamodel of MECHATRONICUML. It enables to spec-
ify components and CICs including RTCPs and RTSCs. In muml, we only support non-
reconfigurable components in order to have a core language that can be used for simple,
non-adaptive systems. Reconfigurable components are modeled in the plugin reconfiguration.
This plugin also contains the metamodel for broadcast ports. The metamodel for CSDs has
been split into two plugins. The first one, called componentstorypattern, enables to specify
component story patterns based on reconfigurable components. The componentstorydiagram
plugin adds the story nodes that are special for CSDs. The metamodel for CSDs extends
the story diagram metamodel [HRvD+11] contained in the plugin storydiagrams and reuses
as much of the implementation as possible. In addition, we reuse the componentstorypattern
metamodel for specifying component SDDs. The corresponding plugin componentSDD only

1https://trac.cs.upb.de/mechatronicuml
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defines the nodes and edges of component SDDs and uses the same component story pattern
implementation as CSDs. We present class diagrams for our metamodels in Appendix D.

Based on the metamodels, we developed four diagram editors using the graphical modeling
framework (GMF, [Gro09]). In particular, we created editors for specifying components,
CICs, CSDs, and component SDDs. The reconfiguration.ui plugin extends the component
editor such that it may also be used for modeling reconfigurable components.

At present, our implementation does not yet support the specification component proper-
ties for a component. Component SDDs are currently only used as part of our transactional
reconfiguration approach as discussed in Chapter 4. Statement nodes of CSDs are not yet
supported as well.

3.7 Related Work

This section relates our new component model for MECHATRONICUML to other approaches
for defining software architectures. First, we compare it to other software component models
(Section 3.7.1). Second, we relate it to architecture description languages (ADLs, [MT00])
for self-adaptive systems (Section 3.7.2). Finally, we discuss related works regarding the
specification of architectural constraints for a component-based system (Section 3.7.3).

3.7.1 Software Component Models

The surveys by Lau [LW07] and Crnković et al. [CSVC11] review different kinds of com-
ponent models. They distinguish between general purpose component models as, for exam-
ple, CORBA [Gro11a] and EJB [Ora13], and specialized component models for particular
domains. The latter usually address business information systems or embedded real-time
systems. In this section, we focus primarily on component models for embedded real-time
systems and on component models that support runtime reconfiguration.

Hošek et al. [HPB+10] surveyed component models for embedded real-time systems.
Only few of which support runtime reconfiguration including SOFA-HI, MyCCM-HI, Pro-
Com, BlueArX, and AUTOSAR. All of these component models are restricted to mode
changes [HKMU06] where a component instance moves from one implementation to an-
other one. SOFA-HI [PWT+08, PKH+11] is an extension of the SOFA 2.0 [HP06, HB07]
component model for real-time systems. It enables to specify hierarchical components that
are considered to be implemented manually in C. In contrast to SOFA 2.0, reconfigura-
tions in SOFA-HI cannot change connectors at runtime [PWT+08, HPB+10]. MyCCM-
HI [BFHP09] extends the OMG CORBA Component Model (CCM, [Gro11a]) for specify-
ing adaptive embedded systems with a textual syntax. It enables a detailed specification of
tasks and their activation but does not define how the behavior of tasks is implemented. A
mode change of a structured component may reconfigure connectors. The BlueArX compo-
nent model by Bosch [KKH+08, KRKH09] also provides the specification of hierarchical
components with mode changes. In BlueArX, the behavior of a component is defined by
signal flows. In addition, each component defines a set of tasks including a scheduling of
these tasks. A mode switch may either change the signal flow inside a component or it
may change the task scheduling. Mode changes cannot be composed hierarchically. The
ProCom component model [VSC+09] has recently been extended to support hierarchical
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reconfiguration based on mode changes as well [HQCH13]. We discuss this approach in
detail in Section 4.8 along with our transactional reconfiguration approach. For automotive
systems, the AUTOSAR standard [FMB+09] defines a component model for specifying hi-
erarchical components. AUTOSAR does not specify how application software components
are implemented [AUT14c]. As of version 4.0, AUTOSAR supports modes [AUT14a] and a
timing specification [AUT14b]. Modes only enable to activate and deactivate trigger events
in atomic software components thereby changing their behavior. The timing specification
enables to define periods and orders for events as well as end-to-end deadlines for chains
of events. All of these component models have in common that they do not provide means
to specify and verify asynchronous message-based communication with real-time proper-
ties and that they only provide limited reconfiguration capabilities. In contrast, CSDs of
MECHATRONICUML provide a more powerful and flexible specification of reconfigurations
that includes control flow and reconfigurations across different levels of hierarchy (see also
Chapter 4).

Fractal [BCL+06, LLC10] provides the definition of hierarchical components including
runtime reconfiguration of structured components. Each component consists of a membrane
and a content area. The content area embeds other components while the membrane contains
so-called controllers that enable introspection and reconfiguration. Although Fractal pro-
vides a C-implementation called Think [AHJ+09], it does not provide the ability to specify
clock-based real-time properties for components or to verify the functional behavior or the
reconfiguration specification.

The DEECo component model [BGH+13] provides non-hierarchical components for soft
real-time systems based on ensembles. While being in an ensemble, components may com-
municate and exchange knowledge. The communication, however, is not explicitly modeled
in their approach. Components declaratively specify conditions for being part of an ensem-
ble and a shared runtime framework automatically constructs and dissolves ensembles based
on these conditions. De Nicola et al. [DNFLP13] present a textual language named SCEL
that enables to express these conditions as policies including the necessary modifications of
the software architecture for establishing the ensemble. In contrast to MECHATRONICUML,
both approaches neither provide further reconfigurations of components and nor real-time
constraints in their behavior specification. In [BBCP13], Barnat et al. introduce DCCL that
is a formal component specification implementing the concepts of DEECo. They provide an
LTL model checking of ensembles proving properties concerning the knowledge of compo-
nents but not their behavior or the structure of the ensembles.

CompoSE [KKTS09, ASTPH10] defines a hierarchical component model for modeling
embedded systems. Atomic components may be implemented in a different language com-
parable to our continuous components. Each atomic component defines a set of configura-
tions each consisting of a set of ports and a computation that defines the behavior. Structured
components specify configurations based on combinations of ports and embedded compo-
nent instances. At runtime, a component may switch between configurations. In contrast to
MECHATRONICUML, the approach does not support using fading functions and message-
based communication.

EAST-ADL2 [CFJ+10] is an architecture description language targeted to the development
of automotive systems. It provides a component specification where components refer to
an external implementation, e.g., specified in MATLAB/Simulink [Matg]. The component
model can be mapped to the AUTOSAR component model but does not yet support modes.
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Similar to MECHATRONICUML, it focuses on the integration of feedback controllers but
provides no means for formal verification or runtime reconfiguration.

Other component models for embedded real-time systems like Koala [vOvdLKM00], Ro-
bocop [Maa05], SaveCCM [CHP06, ÅCF+07], Rubus [HMTN+08], COMDES-II [KSA07],
PECOS [GCW+02], and CHESS [PV14] provide the ability to specify real-time behavior on
a low level of abstraction. They support formal analysis as our component model but neither
support message-based communication (except COMDES-II) nor runtime reconfiguration.

All of the mentioned approaches except DEECo do not provide a concept for instantiating
connectors on system level.

3.7.2 ADLs for Self-Adaptive Systems

ADLs [MT00] specify software architectures based on components and connectors, although
the term component is less strictly defined as for component models. Connectors define the
interaction of components, constraints define restrictions that the architecture needs to follow
while it evolves, and architectural styles are families of related architectures [GMW00].

Bradbury et al. [BCDW04] survey ADLs that enable runtime reconfiguration of the soft-
ware architecture. They classify these ADLs into three categories: graph-based, process
algebra-based, and formal logic-based. Graph-based approaches define an initial configu-
ration that is modified by graph rewriting rules. Examples include CHAM [IW95] and the
approaches by Le Métayer [LM98] and Hirsch et al. [HIM98]. MECHATRONICUML also
belongs to this category. Process algebra-based approaches like Dynamic Wright [ADG98],
Darwin [KM98], or the approach by Bartels and Kleine [BK11] specify processes for each
configuration using a process algebra like the π-calculus [MPW92] (Darwin) or CSP [Hoa85]
(Dynamic Wright, Bartels and Kleine). At runtime, components switch between processes
to execute reconfigurations. Formal-logic-based approaches like the approach by Aguirre
and Maibaum [AM02] or GeReL [EW92] declaratively specify component behavior and
constraints based on first-order logic. All of the mentioned approaches rely on a textual
specification and enable checking for architectural constraints. However, they do not support
real-time constraints for functional or reconfiguration behavior. Most approaches discussed
above (except Darwin and GeReL) do not support structured components.

The approach by Kacem et al. [KKJ12] specifies a system model using UML 2.0 compo-
nents [Gro05]. They specify reconfigurations by graph transformations using the concrete
syntax of components that are guarded by OCL constraints [Gro12]. In contrast to MECHA-
TRONICUML, they do not support control flow in their rules. They support verifying con-
straints by translating their specification to Z [Spi92]. In contrast to MECHATRONICUML,
they do not support hierarchical components and real-time properties.

3.7.3 Constraint Languages

We compare our approach for modeling architectural constraints by component SDDs to two
kinds of constraints languages. First, we compare it to object-based constraints languages
that are defined based on classes and objects (cf. Section 3.7.3.1). Second, we compare
component SDDs to constraint languages that were defined based on components, mostly as
part of an architecture description language (cf. Section 3.7.3.2).
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3.7 Related Work

3.7.3.1 Object-Based Constraint Languages

Approaches in this category enable to specify constraints for approaches that are based on
classes, references, and objects. Probably the most well-known example is OCL, [Gro12].
OCL supports the textual specification of complex structural properties for classes, e.g., using
iterators, sets, and selections.

In [FHTW05], Fish et.al. compare two visualizations of OCL: visual OCL [BKPPT01,
KTW02] and constraint diagrams [Ken97]. Visual OCL uses a graph-based syntax for vi-
sualizing OCL constraints which is derived from the UML 1.4 notation [Gro01]. Constraint
diagrams [Ken97] use a visual notation that is inspired by UML and Venn diagrams [Ven80].
In [FFH05], constraint diagrams are extended by a partial order for quantifiers and their
semantics is defined based on first-order predicate logic.

All of these approaches support the specification of architectural constraints based on the
abstract syntax of the component model. That requires the developer, who specifies com-
ponents based on concrete syntax, to translate the constraints to the abstract syntax of the
component model. This introduces additional complexity for a developer that keeps him
from effectively specifying constraints.

3.7.3.2 Component-Based Constraint Languages

Approaches in this category enable to specify constraints based on a component specification
either provided by an architecture description language or a component model.

The ADL Dynamic Wright [ADG98] supports the specification of constraints based on
first-order logic using a textual notation. The constraints directly refer to the components
and connectors defined by the architectural style. Armani [Mon01] is a constraint language
for the Acme ADL [GMW00]. It allows to specify architectural constraints in a first-order
predicate logic using a textual concrete syntax. In contrast to our approach, neither Dynamic
Wright nor Armani enable to refer to properties of embedded components.

FPath [DLLC09] is a textual query language based on the Fractal component model. It is
inspired by XPath [W3C10] and allows to select a set of embedded components in a hierar-
chical Fractal component across different levels of hierarchy. Therefore, it requires knowl-
edge of the implementation of all components thereby breaking encapsulation. FPath is not
explicitly defined as a constraint language, but may be used like one.

The ACL family of architecture constraint languages [TFS10, TSDF11] enables the spec-
ification of constraints for components independent of a concrete component model. It sup-
ports two levels of abstraction: an object level using an OCL-like language called CCL (core
constraint language) and an architecture-level constraint language. In the latter, constraints
are modeled as special constraint components that are connected to the functional compo-
nents by special non-functional or constraint ports even across different levels of hierarchy.
The constraints are then verified at design-time to ensure that components are correctly as-
sembled and implemented. In contrast to our approach, they do not enable to evaluate their
constraints during runtime.
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3.8 Summary

In this chapter, we introduce a consolidated component model for MECHATRONICUML that
enables to specify software architectures for self-adaptive mechatronic systems. Thereby,
our component model primarily addresses the reflective operator of the OCM reference
architecture but also includes the interface to the feedback controllers on the controller
level. Therefore, it combines and enhances two existing component models for MECHA-
TRONICUML that have been created by Burmester, Giese, and Hirsch [GTB+03, GBSO04,
BGO06, HHG08, GS13] as well as Tichy [THHO08, Tic09]. In a little more detail, we use
the necessary distinction of discrete atomic components and continuous atomic components
representing feedback controllers from Burmester and Giese [GBSO04, BGO06]. In addi-
tion, we use the specification of structured components by means of component parts from
Tichy [Tic09]. Compared to the previous component models, our new component model
guarantees component encapsulation, enforces a separation of concerns between functional
and reconfiguration behavior, and improves semiotic clarity [Moo09] of the concrete syntax.
In our component model, we use CSDs [THHO08, Tic09] for specifying reconfigurations of
components because they enable for a more concise specification compared to hybrid recon-
figuration charts [GBSO04, BGO06]. Furthermore, we introduce a concept for instantiating
RTCPs between AMS that are not yet connected with each other. Finally, we defined com-
ponent SDDs that enable to specify architectural constraints and component properties based
on the software architecture.

We underpin the suitability of our component model for specifying software architectures
of self-adaptive mechatronic systems by providing a software architecture of the RailCab
system (cf. Section 1.1) focussing on the convoy mode. Our example includes the component
definitions and the necessary CSDs for realizing RailCab convoys. Additional CICs and
CSDs of the example scenario are given in Appendix A. We use this example as a basis for
illustrating the further contributions of this thesis in the subsequent chapters.
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4 Transactional Execution of
Hierarchical Reconfigurations

Reconfigurations in a hierarchical component model often require the reconfiguration of sev-
eral components that are located on different levels of hierarchy. As an example, the re-
configuration of a structured component instance may require the upfront reconfiguration
of one or more of its children as it has been shown in the example of Figure 3.11. In this
example, creating the instance mc of MemberControl requires to reconfigure the instances of
OperationStrategy and VelocityController first. Then, the port instances created by these recon-
figurations are connected by RailCabDriveControl. In general, we distinguish two use cases for
such reconfigurations.

In Use Case 1, an embedded component instance, in the following referred to as child, de-
tects a situation that requires a reconfiguration that it cannot handle by itself. In our example
in Figure 3.6, the OperationStrategy component negotiates that the RailCab enters a convoy,
but it does not know how to do this itself. Thus, it needs to send a request to the embedding
structured component instance of type RailCabDriveControl to handle that situation and to ex-
ecute the necessary reconfiguration. We will refer to the embedding structured component
instance as parent in the following.

In Use Case 2, a structured component instance executes a reconfiguration that requires
the reconfiguration of one or more of its children. In our example, becoming a member of a
convoy requires a reconfiguration of the RailCabDriveControl (cf. Figure A.31). Executing this
reconfiguration, however, requires that the OperationStrategy changes its port instances and
that the VelocityController switches to the ConvoyDrive component instance (cf. Figure 3.12).
Therefore, RailCabDriveControl needs to trigger the corresponding reconfigurations on its chil-
dren.

For both use cases, executing such reconfigurations safely demands that all component
instances, which are required to reconfigure, perform their reconfiguration in a coordinated
way. The necessary conditions for executing a hierarchical reconfiguration safely are given
by the ACI-properties (atomicity, consistency, and isolation) of database systems [BHG87,
LLC10] and a correct timing. Atomicity requires that either all or no component instances,
which need to reconfigure, execute their reconfiguration. If reconfigurations are only exe-
cuted partially, the system is usually unsafe. Consistency requires that any component in-
stance has a valid architecture before and after each reconfiguration. Isolation ensures that
reconfigurations do not interfere with each other. Interference of reconfigurations results in
invalid architectures. A correct timing demands that if a hard deadline for executing a re-
configuration exists, the system needs to make sure that it meets the deadline before starting
to reconfigure. For the remainder, we refer to these properties as ACI-T properties. If a
reconfiguration is executed according to ACI-T properties, we denote this as transactional
execution.
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4. Transactional Execution of Hierarchical Reconfigurations

For guaranteeing ACI-T properties for a distributed execution of reconfigurations, we
provide an approach that adapts the 2-phase commit protocol for distributed database sys-
tems [BHG87, ch. 7] to the domain of mechatronic systems. In accordance to the 2-phase-
commit protocol, a structured component instance asks all children that are required to re-
configure whether they can execute the required reconfiguration. If all children confirm and
if the reconfiguration can be finished in time, the children are notified to execute their re-
configuration. Additionally, we need to check whether the reconfiguration can be finished in
time, which is not part of the original 2-phase-commit protocol.

Figure 4.1 summarizes our process for specifying reconfigurations based on our variant of
the 2-phase-commit protocol [HSST13]. This process specifies Step S4 of our overview pro-
cess in Figure 1.3 on Page 8 in more detail. In the first Step S4.1, the developer specifies the
reconfiguration rules using CSDs as introduced in Section 3.3. Thereafter, the developer cre-
ates a declarative, table-based specification of hierarchical reconfigurations in Step S4.2. This
specification defines in which situation which CSD is to be executed, but it relieves the devel-
oper from specifying how the reconfiguration is carried out [HB13]. Then, we automatically
generate an operational behavior specification based on RTSCs from the declarative table-
based specification in Step S4.3. The operational behavior specification additionally specifies
how reconfigurations are executed based on the 2-phase-commit protocol. In Step S4.4, the
developer specifies architectural invariants based on component SDDs (cf. Section 3.5) that
define the set of valid configurations for instances of a component. In Step S4.5, we use
the component SDDs as well as the generated RTSCs that form the operational behavior
specification for verifying that the reconfiguration specification fulfills ACI-T properties.
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Figure 4.1: Process for Specifying Reconfiguration Behavior (cf. [HSST13])

In the remainder of this section, we first introduce the MECHATRONICUML reconfigu-
ration controller with its constituent elements that contains our declarative, table-based re-
configuration model (Section 4.1). Thereafter, we explain how reconfigurations are executed
with respect two the 2-phase-commit protocol (Section 4.2). Section 4.3 defines how we
specify these reconfigurations declaratively based on tables in our reconfiguration controller.
This specification is the basis for generating operational behavior models as described in
Section 4.4. Section 4.5 describes our approach for verifying ACI-T properties for the re-
configuration specification for guaranteeing its safety. We describe our implementation of
the hierarchical reconfiguration approach in Section 4.6 and discuss the assumptions and
limitations of our approach in Section 4.7. Section 4.8 presents related work regarding trans-
actional execution of reconfigurations before we summarize the contributions of this chapter
in Section 4.9.
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4.1 MechatronicUML Reconfiguration Controller

4.1 MechatronicUML Reconfiguration Controller

In the MECHATRONICUML component model, a developer defines a set of CSDs that spec-
ify the possible reconfigurations of a reconfigurable component. This does not enable to
specify in which situation which reconfiguration is to be executed. In addition, the MECHA-
TRONICUML component model as introduced in Chapter 3 does not offer means to execute
a reconfiguration hierarchically according to ACI-T properties while preserving component
encapsulation.

As a solution, we syntactically extend each reconfigurable discrete or hybrid component
with a dedicated reconfiguration controller that is inspired by the reconfiguration controller
of the Fractal component model [BCL+06, BHR09]. Our reconfiguration controller as shown
in Figure 4.2 introduces two syntactic elements, namely a manager and an executor, that en-
capsulate the necessary behavior for deciding when to execute which reconfiguration and
for executing a particular reconfiguration. Optionally, we may add a risk manager to the
reconfiguration controller that decides whether it is safe to execute a particular reconfigura-
tion [PHST12].

RailCabDriveControl

RM

reconfMsg

    Manager     ExecutorRM

RRM

parent

embeddedCI

executor

events RRE
embeddedCI

RE

reconfExec

RE

parent

component part compartment

reconfiguration controller compartment

component name compartment

    RiskManager

riskManager

manager

Figure 4.2: Reconfiguration Controller of a Structured Component (cf. [HB13])

By using a dedicated reconfiguration controller, we retain separation of concerns between
functional behavior and reconfiguration behavior as advised by McKinley et al. [MSKC04].
We use the RM ports and RE ports as introduced in Section 3.1.1.2 in our reconfiguration
controller for providing the necessary interfaces for executing reconfigurations across differ-
ent levels of hierarchy without violating component encapsulation.

In our approach, the executor is responsible for executing reconfigurations respecting hi-
erarchy and ACI-T properties based on the 2-phase-commit protocol. Thus, it is similar to
the script interpreter of Fractal [BHR09]. The manager decides which reconfiguration is ex-
ecuted in which situation, which is not supported by the Fractal reconfiguration controller.
The RM ports and RE ports provide the bottom-up and top-down message flow for initiating
and executing reconfigurations.

In a little more detail: A component uses its RM ports for sending information on situa-
tions that may require a reconfiguration to its parent. Consequently, RM ports are used for
bottom-up information provision and to provide the necessary message flow for realizing Use
Case 1. A component uses its RE port for offering reconfigurations to its parent. The parent
may trigger a reconfiguration on a child by sending a message to the RE Port of that child.
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4. Transactional Execution of Hierarchical Reconfigurations

Thus, RE ports are primarily used for top-down reconfiguration initiation and to provide the
necessary message flow for realizing Use Case 2. As of [BHR09], Fractal only supports Use
Case 2.

For enabling message flow across different levels of hierarchy at runtime, we connect the
manager (and executor) to the parent and all embedded component instances using the RM
ports (or RE ports). Figure 4.3 illustrates these connections for an instance of the RailCab-
DriveControl component for driving alone.
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Figure 4.3: Component Instance RailCabDriveControl with Reconfiguration Controller

As shown in Figure 4.2, the manager specifies two RM ports named parent and embed-
dedCI. The RM port parent implements the RM port of the structured component and is used
for sending messages to the parent. The RM multi port embeddedCI connects the manager to
the RM port instances of the embedded component instances for receiving their messages.
At runtime, one subport instance of this port exists for each child of the structured compo-
nent instance as shown in Figure 4.3. Since dc:DriveControl has three embedded component
instances, the embeddedCI port of the manager contains three subport instances. The executor
is connected to the parent and the embedded component instances in the same fashion.

Since the reconfiguration controller has the same structure for any structured component
and introduces additional visual complexity, we typically use the short-hand notation shown
in Figure 4.4 for visualizing reconfigurable structured and atomic components [HPB12].

Initial ideas regarding the introduction of a manager and executor including dedicated
ports for handling reconfiguration have been presented by Dreising [Dre11]. These ideas
have been refined and extended significantly in our publications [HPB12] and [HB13].
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Figure 4.4: Short-hand Notation for Reconfigurable Components

4.2 Executing Reconfigurations

Using our reconfiguration controller, we can execute reconfigurations with respect to hi-
erarchy considering our two use cases. As mentioned above, we provide a variant of the
2-phase-commit protocol [BHG87, ch. 7]. The 2-phase-commit protocol starts with a voting
phase. In the voting phase, a structured component instance queries all of its children, which
are required to participate in the reconfiguration, whether they actually can reconfigure. The
children then evaluate in parallel whether they can execute the requested reconfiguration or
not. If so, they commit otherwise they abort. Only if all queried children have committed to
the reconfiguration, it can be executed in the execution phase as explained below.

In MECHATRONICUML, we need to use such 2-phase-commit approach because we may
only start the reconfiguration, if we can ensure that the reconfiguration can be executed com-
pletely in time. This is necessary because the reconfiguration controllers are executed as part
of the reflective operator of the OCM of the mechatronic system that underlies hard real-
time constraints. Therefore, we must not try to reconfigure optimistically and roll-back to
a preexisting configuration if the reconfiguration fails as, for example, proposed for reliable
reconfiguration of Fractal components in [LLC10]. This is for two reasons: first, the system
might come into an inconsistent state that causes it to malfunction if a reconfiguration is only
executed partially. Second, it is not guaranteed that returning to the configuration before
reconfiguration has started is even possible and safe.

For executing a reconfiguration in the execution phase of our 2-phase-commit protocol,
we need to distinguish between purely discrete reconfigurations and reconfigurations that
involve continuous components. In the former case, all affected children need to be quiescent
as explained in Section 4.2.3 and, therefore, we may reconfigure the system bottom-up in a
single pass as explained in Section 4.2.1. We refer to this as single-phase execution. If the
reconfiguration replaces continuous components, we need to execute fading functions (cf.
Section 3.1.2.3). These fading functions require that all port instances of the destroyed and
created continuous component instance are properly connected. This requires to split the
execution phase into three sub-phases. We refer to this as three-phase execution as explained
in Section 4.2.2. In general, single phase execution is faster and requires less messages to be
exchanged between the executor of a structured component instance and the executors of the
children. Therefore, single phase execution should be preferred whenever possible.
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4.2.1 Single-Phase Execution

Using single phase execution, the reconfiguration of a structured component instance is per-
formed in a single, bottom-up pass over the component hierarchy. That means, we start at
the children that are nested most deeply. The reconfiguration of a structured component in-
stance is then executed after the parallel execution of the reconfigurations of all children. In
the following, we describe the message flow and responsibilities in our reconfiguration con-
troller for realizing the two use cases mentioned above with our 2-phase-commit protocol
and single-phase execution.

Figure 4.5 illustrates Use Case 1 (i.e., a reconfiguration triggered by a child component) for
an instance dc of RailCabDriveControl (cf. Figure 4.3). First, the OperationStrategy component
instance sends a message via its RM port to the Manager, requesting, for example, a reconfig-
uration for adding new a convoy member. Then, the Manager decides whether to execute the
reconfiguration and, if so, triggers the executor. The executor initiates the 2-phase-commit
protocol and collects the votes of the children. In our example, only the ConvoyCoordination
instance is affected by the reconfiguration. If at least one child sends an abort, the recon-
figuration will be aborted. If a child commits, it provides a commit time. The commit time
denotes how long the child can assure to execute the reconfiguration. After that time, the
child is no longer bound to its commit (cf. Section 4.3.4). If all children have committed, the
executor computes the minimum of all commit times provided by the children. If the time
needed for executing the reconfiguration is less than the minimum commit time, then the ex-
ecutor queries all children to execute their reconfiguration. After all children have finished,
the executor performs the reconfiguration of the structured component instance and reports
the result to the manager. Since the reconfiguration originated from a request of a child, the
result is reported to OperationStrategy.
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Figure 4.5: Use Case 1: Reconfiguration after Child Request (cf. [HB13])

Figure 4.6 illustrates Use Case 2 in the same fashion. Continuing our example, we consider
the ConvoyCoordination instance that is triggered by its parent for adding a new member to
the convoy (cf. Figure 4.5). The ConvoyCoordination receives the message via its RE port.
The message is propagated to the manager which decides upon the request. The manager
then reports the decision to the executor. If the manager has decided not to execute the
reconfiguration, the executor immediately sends an abort to the parent. If the manager has
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decided to execute the reconfiguration, the executor initiates the 2-phase-commit as in Use
Case 1. After it has collected the votes of the children, it checks whether the reconfiguration
can be executed in time using the commit times of the children. Then, it sends the resulting
vote to the parent. After sending the vote, the executor waits for the answer of the parent,
but no longer then the minimum commit time. If the parent decides to execute (or abort), the
executor queries the execution (or abortion) of the reconfiguration on the children. After all
children have finished, the executor performs the reconfiguration of the structured component
and reports to its parent that the reconfiguration has been finished.
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Figure 4.6: Use Case 2: Reconfiguration as Part of 2-Phase-Commit (cf. [HB13])

The use cases for reconfiguration are designed such that they propagate recursively for
children. If a structured component reconfigures based on Use Case 1 and invokes a child,
that child reconfigures based on Use Case 2. If the child is a structured component instance
itself and needs to invoke reconfigurations of its children as well, Use Case 2 propagates
recursively. For an atomic component, only Use Case 2 may occur.

4.2.2 Three-Phase Execution

Single-phase execution of reconfigurations as described in the previous section cannot be
applied if the reconfiguration involves replacing continuous components. As an example,
consider the reconfiguration for becoming a convoy member shown in Figure 3.11. The
reconfiguration requires that the VelocityController switches from the StandaloneDrive to the
ConvoyDrive feedback controller (cf. Figure 3.7).

Figure 4.7 shows an intermediate CIC that would occur if we executed this reconfigura-
tion according to single-phase execution. As part of the execution phase, rc1 already queried
the execution on vc1. As a result, vc1 started executing the CSD shown in Figure 3.12. vc1
already created the ConvoyDrive instance and currently executes the fadeToConvoy fading func-
tion in the fading component. At this point of time, both continuous component instances are
executed in parallel. However, the ConvoyDrive instance will not properly work because the
input ports refDist and curDist have no defined values. The reason is that these port instances
are delegated by vc1 and needed to be connected in rc1 before starting to execute the fading.
In particular, we needed to create instances of the SpeedSensor and the MemberControl in rc1
prior to executing the fading function.
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Figure 4.7: Problems when Replacing Continuous Component Instances using Singe-Phase
Execution

As a solution to this problem, we split the execution phase of our 2-phase-commit protocol
into three sub-phases as proposed by Volk [Vol13] if the reconfiguration replaces continuous
components. These sub-phases are setup, fading, and teardown. Each of these sub-phases ex-
ecutes part of the reconfiguration. Figure 4.8 illustrates how these sub-phases are executed in
a structured component instance. A filled bar denotes that the instance is currently executing
reconfiguration behavior, while an unfilled bar denotes that the instance is idle. We explain
this figure in more detail along with the different phases in the following Sections 4.2.2.1
to 4.2.2.3. The voting phase of the 2-phase-commit is executed as for single-phase execution
(cf. Section 4.2.1) and will not be described here.

4.2.2.1 Setup

The three-phase execution starts with the setup phase. The setup phase (hierarchically) recon-
figures a component instance such that all preconditions for executing the fading functions
are established. Therefore, it changes the software architecture of the mechatronic system,
but it does not change the exhibited behavior of the mechatronic system. The setup phase
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Figure 4.8: Illustration of Three-Phase Execution [Vol13]

is executed bottom-up as shown in Figure 4.8, i.e., a component first triggers its children in
parallel and executes its own setup behavior after all children are finished.

In the setup phase, each component instance that is affected by the reconfiguration creates
all discrete, continuous, and hybrid port instances as specified by the reconfiguration rule.
In addition, structured component instances create all embedded component instances and
all connector instances between continuous and hybrid port instances. Discrete component
instances and ports are kept in a suspended mode, i.e., their RTSCs are not being executed
and their clocks do not yet progress. All hybrid port instances that have been created during
setup already emit their default value though. All affected fading components still forward
the unmodified value of the continuous component that is to be replaced.

Figure 4.9 shows component instances of RailCabDriveControl and VelocityController after
performing the setup phase for the reconfiguration becomeMember shown in Figure 3.11. The
corresponding CSD is applied on the component instance of RailCabDriveControl for driving
alone shown in Figure 3.9.

Since the setup phase is executed bottom-up, the execution starts at vc1. vc1 creates an
instance of ConvoyDrive including the port instances refDist and curDist. In addition, it delegates
all in-ports to the corresponding port instances of the new component instance cd. Finally, it
creates the port convoy at the fading component including the assembly instance. As a result,
vc1 contains all necessary component instances, port instances, and connector instances for
executing the fading function.

After vc1 finished, rc1 executes its setup phase. According to the CSD in Figure 3.11,
rc1 creates instances of DistanceSensor and MemberControl. Since MemberControl is a discrete
component, the instance mc remains suspended and only emits the default reference distance
via its hybrid refDist port instance. In addition, rc1 creates the port instances member and
refDistReceiver, but it does not yet create the corresponding delegation instances. Finally, rc1
creates the assembly connector instances between the continuous and hybrid port instances
for connecting DistanceSensor and MemberControl to vc1.

As it can be inferred from Figure 4.9, all in-ports of vc1 are properly connected. Thus,
the fading function can now be executed and provide a meaningful result. Up to now, the
behavior of rc1 and vc1 has not been changed because vc1 still emits the force value of sd and
because the discrete connector instances in rc1 have not yet been modified and MemberControl
is still suspended.

4.2.2.2 Fading

In the fading phase, the behavior of the mechatronic system changes, but its software archi-
tecture does not change. In particular, we execute the fading functions of all affected fading
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Figure 4.9: RailCabDriveControl after Executing the Setup Phase for the Reconfiguration be-
comeMember

components. As shown in Figure 4.8, we execute all fading functions in parallel, i.e., the fad-
ing components now emit the values of the fading functions that combine their input values.
Discrete components remain idle during this phase.

In our example in Figure 4.9, the fading component f executes the switchToConvoy fading
as specified by the CSD in Figure 3.12.

4.2.2.3 Teardown

The execution of the reconfiguration finishes with the teardown phase. In this phase, both,
the behavior and the software architecture of the mechatronic system change. The teardown
phase is executed top-down as shown in Figure 4.8, i.e., a component first executes its own
teardown behavior before it triggers its children in parallel.
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In the teardown phase, we destroy all component instances, port instances, and connec-
tor instances as specified by the reconfiguration rule. Furthermore, we activate all discrete
component instances and port instances that were created in the setup phase including the
connector instances between discrete port instances. The fading components now forward
the unmodified value of the continuous component instance that has been created.

Continuing our example in Figure 4.9, we now destroy the StandaloneDrive instance includ-
ing all of its port instances and adjacent connector instances. In rc1, we destroy the assembly
between speedProvider of os and maxSpeed of dl. Additionally, os destroys its speedProvider
port instance. Furthermore, we create delegation connector instances that delegate the port
instances member and distReceiver of mc to the corresponding port instances of rc1. Finally, we
create the assembly connector instance between speedProvider of mc and maxSpeed of dl. The
result is, as expected, equivalent to the component instance Member shown in Figure A.31.

4.2.3 Quiescence

Component instances and port instances may not be deleted at any point in time. In particular,
they may not be deleted if they currently perform a computation or if they are engaged in
executing a communication protocol that is required for the safe operation of the system.
Quiescence [KM98, ZC06] defines whether it is safe to delete a component instance or one
of its port instances at a certain point of time. Then, executing a reconfiguration safely
demands that all affected component instances are quiescent.

As an example, consider a member RailCab that leaves a convoy. As a consequence,
the RailCab will destroy its instance of MemberControl and it will switch back to the Stand-
aloneDrive feedback controller (cf. Section 4.2.2). However, the RailCab may not perform
this reconfiguration if it is still driving closely behind another RailCab. If it performs the
reconfiguration, it will not be notified about braking maneuvers of the convoy and, thus, a
crash is likely to occur.

Therefore, we need a concept for defining quiescence of component instances in MECHA-
TRONICUML. In particular, we need to define quiescence of discrete atomic component
instances. For continuous atomic component instances, the fading functions define how they
may be safely replaced. A structured component instance is quiescent with respect to a par-
ticular reconfiguration if all children that are affected by this reconfiguration are quiescent.

The concept for quiescence of discrete atomic component instances needs to answer the
following three questions for being usable in our 2-phase-commit protocol.

1. Is the component instance quiescent?

2. If the component instance is quiescent, how long will it remain quiescent?

3. If the component instance is not quiescent, when will it be quiescent again?

These questions need to be answered by the discrete atomic component instance during the
voting phase of the 2-phase-commit protocol. Question 1 and 3 are important for deriving
the voting result. A discrete atomic component instance may only vote for commit if it is
presently quiescent or if it will become quiescent early enough. Question 2 is important
for deriving the commit time that defines how long the component instance will stick to its
commit. However, the component instance will only vote for commit if the commit time is
above a threshold that is defined by the developer as we discuss in Section 4.3.4.
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An approach that may answer the three questions given above for a self-adaptive mecha-
tronic system has been developed as part of a Master’s thesis [Sch15]. We will sketch its
core ideas in the following. Our ideas are inspired by the approach of Zhang and Cheng
[ZC06]. Their approach considers a state-based functional behavior specification of com-
ponents based on petri nets (cf. [ZC06]) or UML Statecharts (cf. [RC08]), but they do not
consider real-time constraints or properties of the physical system in their specification. For
performing a reconfiguration, the system switches between source and target functional be-
haviors by executing an adaptation behavior (cf. Section 2.1.2). In our approach, the source
and target functional behaviors correspond to the CICs before and after executing a reconfig-
uration, while the adaptation behavior is represented by our 2-phase-commit protocol.

For guaranteeing quiescence, Zhang and Cheng define a set of global invariants using
temporal logic that need to be fulfilled during the adaptation process. Then, a state s of the
source functional behavior is quiescent if there exists a state t in the target functional behav-
ior such that the adaptation from s to t does not violate any global invariant [ZC06]. This
is ensured at design time by model checking the functional behaviors and the adaptation be-
havior [ZGC09]. Then, all states s of the source functional behavior are marked as quiescent
with respect to a given adaptation.

In a self-adaptive mechatronic system, the state of a component instance is not only deter-
mined by the active state of its RTSC but also by the current clock values of the RTSC and,
potentially, the physical state of the mechatronic system. The physical state of a mechatronic
system is given, for example, by its current spatial position, its speed, or its acceleration.
Consider a member RailCab that wants to leave a convoy as an example. There, we need to
consider the RailCab’s distance to the preceding RailCab and its current speed for deciding
whether the component instance is quiescent. Therefore, it is not possible to simply mark
states of an RTSC as quiescent as proposed by Zhang and Cheng.

As an additional problem, considering the clock values and the physical state of the system
induces a so-called hybrid model checking problem [Hen96]. Such model checking problems
cannot be solved efficiently with current techniques [ERNF12] as we discuss in more detail
in Chapter 6. As a possible solution, we can use our approach of motion profiles [FHK+13,
FHK+14] for avoiding hybrid verification. A motion profiles gives an assertion on the limits
of a change of the physical parameters of the mechatronic system in the future. Each motion
profile is defined with respect to a particular control strategy, with respect to the current
driving maneuver, e.g., braking or accelerating, and with respect to optimization criteria, e.g.,
braking strongly vs. braking smoothly. As a result, each system is equipped with a multitude
of motion profiles. However, even in this case the state-space that needs to be explored is
significantly larger compared to Zhang et al. [ZGC09] because we need to consider clocks
and all possible motion profiles of the RailCab based on each possible point in time of the
maneuver that is defined by the motion profile.

Therefore, our idea is to identify quiescent states at runtime as a part of the voting phase
of our 2-phase-commit protocol. This is more efficient than computing all possible symbolic
states at design time [GCZ08] because we only need to check a few symbolic states. In par-
ticular, we only need to consider symbolic states that are reachable from the current snapshot
of the component instance in a short period of time. In addition, we only need to consider the
currently applied motion profile instead of considering all n available motion profiles which
reduces the state space by factor n. Figure 4.10 summarizes the idea of our approach.

82



4.2 Executing Reconfigurations

At design time, the developer needs to specify a set of conditions for quiescence. These
conditions refer to the different parts of the atomic component instance, e.g., an active state
of the RTSC, messages that are located in the message buffer of a port instance, or values
regarding the physical state of the system that are received via a hybrid port instance. In
our example, we might require that the distance of the member RailCab to the RailCab di-
rectly driving in front of it must be larger than 50 m. Then, any symbolic state of the RTSC
that fulfills all of the imposed conditions at runtime is considered to be quiescent. Thus, the
conditions correspond to the invariants used by Zhang et al. [ZGC09]. For supporting the
developer, we provide him with a checklist for typical influence factors that need to be con-
sidered for quiescence. The checklist will be derived by analyzing influence factors on qui-
escence in different self-adaptive mechatronic systems such as RailCabs or self-coordinating
cars [PHMG14].

Design Time

Runtime

Discrete Atomic Component

Checklist for 

Influence Factors

Developer Set of Conditions for 

Quiescence

refers to

Evaluation of Conditions 

via Reachability Analysis

model@runtime

Vote

Commit Time

of

Figure 4.10: Approach for Identifying Quiescent States in MECHATRONICUML

At runtime, we use our model@runtime of the atomic component instance for evaluating
the conditions as a part of the voting phase of the 2-phase-commit protocol. If the atomic
component instance is requested to execute a reconfiguration by its parent, we start a reach-
ability analysis on the current snapshot of the model@runtime. Then, we calculate the sym-
bolic states that the atomic component instance may reach in a short time frame starting from
the current snapshot. The time frame that needs to be considered is defined by the time for
execution of our 2-phase-commit protocol and the threshold for the commit time. For each
of the symbolic states, we evaluate the conditions that the developer has specified at design
time. The result is a zone graph (cf. Section 2.2.1) where each symbolic state is marked as
quiescent or non-quiescent. Thereby, we only need to consider the currently active motion
profile and the current physical state of the system. Based on the clock values of the symbolic
states, we may utilize the paths of the zone graph for calculating whether the component in-
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stance is quiescent and how long it will remain quiescent. From this information, we derive
the voting result and the commit time that are passed to the parent.

The reachability analysis may be carried out by a variant of the reachability analysis for
RTSCs introduced in Appendix C.3 that is optimized for being executed on embedded com-
puting devices. This rechability analysis needs to be implemented such that its runtime is
predictable. This is necessary for guaranteeing that the component instance will obtain a
voting result within a given time that the component asserts to its parent as we describe in
more detail in Section 4.3.4. Predictability may be achieved, e.g., by limiting the number of
symbolic states that are investigated for each trace of the zone graph as proposed by bounded
model checking techniques [BCC+03].

4.3 Declarative, Table-based Specification of the
Reconfiguration Controller

In our approach, we provide a declarative specification of the behavior of the reconfiguration
controller based on tables. These tables extend the component model introduced in Chap-
ter 3 by additional syntactical elements that are tailored the 2-phase-commit protocol. More
technically speaking, the tables relieve the developer from manually specifying RTSCs for
RM ports, RE port, manager, and executor.

In a little more detail, the developer needs to specify one table for each RM port and for
each RE port of a reconfigurable component. This table enhances the interface of the port,
i.e., which messages the port may send or receive, with timing constraints for the messages
that are relevant for executing the 2-phase-commit protocol. In addition, the developer needs
to specify one table for the manager and for the executor of each reconfigurable structured
component. The entries in these tables define conditions that express when to execute which
reconfiguration, but they do not specify how the conditions are checked and how reconfigu-
rations are executed according to the 2-phase-commit protocol.

The timing constraints that are contained in our declarative, table-based specification are
requirements for an execution of the reconfiguration behavior on a hardware platform. For
a self-adaptive mechatronic system, these requirements originate from three sources. First,
they originate from conditions that are imposed by the physical environment. As an example,
consider a convoy build-up at a switch. In this case, the reconfigurations for becoming a co-
ordinator or member, respectively, need to be finished before coming too close to the switch.
Second, timing requirements are defined by the functional safety specification. In case of
a hardware failure, a reconfiguration that implements a self-healing operation needs to be
finished within a particular time in order to prevent a hazard. This particular time may be ob-
tained by performing a timed hazard analysis [PST13]. Third, timing requirements originate
from the quiescence criteria. The component instances that are affected by a reconfiguration
need to remain quiescent throughout the reconfiguration (cf. Section 4.2.3). As a result, the
reconfiguration needs to be finished before the component instance needs to execute some
non-quiescent behavior that is necessary for safely operating the system.

In the following, we provide details regarding our declarative, table-based specifications of
manager and executor as well as of the interfaces of RM ports and RE ports in Sections 4.3.1
to 4.3.3.
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4.3.1 Interface Specification of RM Ports

An RM port is a special kind of discrete port (cf. Section 3.1.1.2) that is solely used for
communication between the managers of reconfigurable components. Its interface is defined
by a table with four columns. The first column defines the message types that may be sent to
the parent. The second column gives additional information on the semantics of the message
using a type. We distinguish two types of messages: info messages and requests. An info
message is only provided for information and does not necessarily require a reconfiguration.
A request is sent in situations where a reconfiguration is necessary from the perspective of
the sending component and where it cannot solve the situation itself. In case of a request, the
developer of a component may specify an expected response time in the third column. It de-
fines the point in time where the component needs the information whether a reconfiguration
has been executed by the parent. The fourth column optionally contains a human readable
description of the reported situation for a developer. Each interface entry corresponds to one
row in the table.

Message Type Description

drivingAtHighSpeed RailCab travels at high speed.

Type

info

Expected 

Response Time

drivingAtNormalSpeed RailCab travels at normal speed.info

---

---

distanceSensorFailure Distance sensor is broken.request 200 ms

Figure 4.11: RM Port Specification of the RailCabDriveControl Component (cf. [HB13])

Figure 4.11 shows an example of an RM port specification for the RM port of the Rail-
CabDriveControl component shown in Figure 4.3. It contains three entries. First, the RailCab-
DriveControl informs its parent about its speed profile using the messages drivingAtHighSpeed
and drivingAtNormalSpeed of type info. This information may be used to adapt the sensing
of obstacles depending on the speed. If the speed is high, obstacles need to be sensed in
larger distances to brake early enough. In addition, RailCabDriveControl sends a request po-
sitionSensorFailure, which denotes that the distance sensor is broken. This request triggers a
self-healing operation (cf. [Pri13, PST13]) and needs to be finished in 200 ms for guarantee-
ing the convoy safety.

4.3.2 Manager Specification

The behavior of a manager is specified declaratively using a table with eight columns. We
refer to each row of the table as an entry of the manager specification. The entries of the
manager specification define how the manager needs to react if it receives a particular mes-
sage. In our approach, the manager only reacts to messages that it receives from the children
or from the executor. We did not yet include dedicated monitoring capabilities for structured
components in our approach. The manager specification needs to contain exactly one entry
for each message that the manager may receive from the children or from the executor.

In the manager specification, the first column contains a message type that the manager
may receive either from a child or from the executor. The second and third column define
whether the manager treats the message or whether it propagates the message to its parent.
A message that is received from the executor always needs to be treated. We allow, how-
ever, that the manager operates as a sink with respect to messages sent by a child by neither
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treating nor propagating them. We do not allow to treat and propagate a message at the
same time because that may lead to conflicting reconfiguration decisions on different levels
of hierarchy in the component model. All messages that are specified as propagated in the
manager specification need to appear in the interface specification of the RM port parent of
the corresponding reconfigurable component.

If the specification defines that a message is treated, the developer must specify a reconfig-
uration rule to be executed by the executor in the fourth column. Whether a reconfiguration
may be executed at runtime depends on three conditions that are specified in columns five
to seven: (1) whether it is allowed to execute the reconfiguration (column Structural Condi-
tion), (2) whether it is safe to execute the reconfiguration (column Safety Relevant), and (3)
whether it is useful to execute the reconfiguration (column Invoke Planner). Only if all three
conditions evaluate to true during runtime, the manager will trigger the executor to execute
the reconfiguration. We explain these conditions in more detail in the following.

For each entry of the manager specification, the developer needs to define a structural con-
dition. The structural condition specifies a condition on the embedded component instances
that must be fulfilled for executing the reconfiguration. Currently, we only support specify-
ing structural conditions based on component SDDs (cf. Section 3.5). It is only allowed to
execute a reconfiguration if the structural condition is fulfilled. If the execution of the recon-
figuration shall not be restricted, true may be used as a structural condition as for Entries 4,
6, 7, and 8.

A reconfiguration may affect the functional safety [IEC10, ISO11a] of the system. An
example for such reconfiguration is joining a convoy as a member. The functional safety
specification puts a limit on the risk that a dangerous situation may occur during runtime. If
a RailCab joins a convoy, the risk of a collision rises due to the small distances between the
RailCabs. If, in addition, one of the sensors necessary for a convoy drive is broken, the risk
of a collision may become too high to be acceptable. In such cases, we need to use a runtime
risk manager in the reconfiguration controller as shown in Figure 4.2. Then, the runtime
risk manager decides whether it is safe to execute the reconfiguration [PHST12, TSL13]. If
it is not safe, the reconfiguration will be blocked and not executed. If the reconfiguration
does not affect the functional safety, we do not need to invoke the runtime risk manager.
Then, it is always safe to execute the reconfiguration. In addition, the runtime risk manager
may only be invoked if the message of the corresponding entry is treated. The runtime risk
manager introduced in [PHST12] calculates in advance which reconfigurations need to be
blocked based on the current system configuration. Therefore, we do not need to account for
its runtime in our specification.

Finally, we account for the usage of a planner in our manager specification. The planner
will be contained in the cognitive operator of the OCM and decides whether it is useful to
execute the reconfiguration based on the goals of the system [ZW14]. Although we have not
explicitly added a planner to our approach, yet, we enable the developer to specify whether
to invoke a planner or not. A planner may only be invoked if the message is treated. If a
planner is invoked, the developer needs to provide the maximum time that the planner may
run in the eighth column of the table. If no planner shall be invoked, it is always considered
to be useful to execute the reconfiguration if it is requested.

Figure 4.12 shows the manager specification of the RailCabDriveControl component in Fig-
ure 4.3. The messages in the Entries 1 to 3 are sent by the child OperationStrategy that ne-
gotiates with other RailCabs whether to form a convoy. These messages are treated and not
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Message Type Treat

becomeCoordinator No

Propagate

to parent

Yes

newMember Yes No

Structural Condition

isStandalone()

Reconfiguration Rule

becomeCoordinator()

Invoke

Planner

Yes

No

Time For

Planning

20 ms

addConvoyMember() isCoordinator() ---

noConvoyMode NoYes

enableConvoyMode Yes No

truedisableConvoyMode() No

NoenableConvoyMode() convoyDisabled() ---

---

distanceSensorFailure No Yes No--- true ---

drivingAtHighSpeed No Yes No--- true ---

drivingAtNormalSpeed No Yes No--- true ---

1

2

4

5

6

7

8

becomeMember NoYes isStandalone()becomeMember() Yes 20 ms3

Safety

Relevant

Yes

No

Yes

No

No

No

No

No

Figure 4.12: Manager Specification of the RailCabDriveControl Component (cf. [HB13])

propagated. Therefore, we specify a reconfiguration rule that is contained in the executor
specification (cf. Section 4.3.3) for each of them. Each of the reconfigurations specifies a
structural condition by means of a component SDD (cf. Section 3.5). A RailCab may only
become coordinator of a convoy, if it is not yet engaged in a convoy. This is expressed by
the component SDD isStandalone in Figure 3.20. The same condition needs to be fulfilled for
becoming a member of a convoy. New members can only be added if RailCab already is the
coordinator of a convoy. This is formally specified by the component SDD isCoordinator in
Figure 3.19. The reconfigurations becomeCoordinator and becomeMember are safety relevant
and may be blocked by the runtime risk manager because building a convoy affects the func-
tional safety of the system. Adding a new member to an existing convoy is not safety relevant
for the coordinator. In addition, we foresee invoking a planner before building a convoy. For
both reconfigurations, we permit the planner to run for 20 ms.

The messages in Entries 4 and 5 are sent by the parent of RailCabDriveControl. If a RailCab
started transporting hazardous goods, it must no longer engage in convoys and, thus, the Op-
erationStrategy component instance will remove its broadcast port (Entry 4). After delivering
the hazardous good, the convoy mode may be enabled again (Entry 5). Both reconfigurations
are not safety relevant and do not require to invoke a planner.

Finally, the messages in Entries 6 to 8 are sent by the VelocityController. These messages are
propagated to the parent and not treated. Consequently, we neither specify a reconfiguration
rule nor one of the three conditions for executing the reconfiguration.

4.3.3 Executor Specification

The behavior of an executor is specified declaratively using a table with three columns.
Again, we refer to each row of the table as an entry of the executor specification. The entries
of the executor specification define an integer ID for each reconfiguration rule in the first col-
umn. The second column contains a reference to the reconfiguration rule. In our approach,
we use CSDs as introduced in Section 3.3 for specifying reconfiguration rules. The third
column defines the maximum worst-case execution time (WCET, [Kop97, ch. 4.5]) for exe-
cuting the reconfiguration rule on a platform. Please note that this is not the actual WCET of
the CSD on a particular platform but a requirement how large the WCET may be as described
at the beginning of Section 4.3.
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ID Reconfiguration Rule

1 becomeCoordinator()

2 addConvoyMember()

4 disableConvoyMode()

5 enableConvoyMode()

3 becomeMember()

WCET

50 ms

10 ms

50 ms

5 ms

5 ms

Figure 4.13: Executor Specification of the RailCabDriveControl Component (cf. [HB13])

Figure 4.13 shows the executor specification of the component RailCabDriveControl (cf.
Figure 4.3). RailCabDriveControl supports five reconfiguration rules. The first one creates the
necessary components, ports, and connectors for operating as a convoy coordinator. It is
formally specified by the CSD in Figure A.53. If the component already operates as a co-
ordinator, the second reconfiguration rule adds another member to the convoy. It is shown
in Figure A.57. The third reconfiguration rule creates the necessary components, ports, and
connectors for operating as a convoy member as specified by the CSD in Figure 3.11. Fi-
nally, reconfiguration rules four and five enable to remove or create the broadcast port of
OperationStrategy including the broadcast port and delegation connector instance in RailCab-
DriveControl. The corresponding CSDs are given in Figures A.60 and A.62.

4.3.4 Interface Specification of RE Ports

An RE port is a special kind of discrete port (cf. Section 3.1.1.2) that is solely used for
communication between the executors of reconfigurable components. Its interface is defined
by a table with five columns. The first column defines a message type that it accepts from its
parent. The second column contains a human readable description of the effect of sending a
corresponding message to the component. The remaining columns contain time values that
define timing requirements towards the execution of the 2-phase-commit protocol.

The third column contains the time for decision. This time value provides an upper bound
for the time that the component needs for deriving a decision whether it may execute a recon-
figuration or not. This may include the time that is necessary for moving into a quiescent state
(cf. Section 4.2.3). The fourth column contains a timing specification that defines an upper
bound on how long the component needs for executing the reconfiguration that is associated
with this message in the manager specification (cf. Section 4.3.2). If the reconfiguration may
be executed according to single-phase execution, the time for execution is a single value. If
the reconfiguration needs to be executed according to three-phase execution, then the tim-
ing specification contains separate time values for setup, fading, and teardown. We need to
provide distinct time values for each phase for correctly computing how much time a hierar-
chical reconfiguration needs for being executed after deploying the component as explained
below. Finally, the fifth column provides the minimum commit time that defines a lower
bound on how long the component may stick to its decision of executing the reconfiguration
(cf. Section 4.2).

Figure 4.14 shows the interface specification of the RE port reconfExec of the RailCabDrive-
Control component in Figure 4.3. The component offers two reconfigurations to its parent
that correspond to the two entries in the table. The first one uses the message type noCon-
voyMode. Sending this message to the RE port of RailCabDriveControl causes the RailCab not
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Message Type Description
Time for 

Decision

noConvoyMode The RailCab will not engage in 

convoys anymore.
25 ms

Time for 

Execution

20 ms

enableConvoyMode The RailCab will try to join convoys 

if possible and useful.
25 ms 50 ms

Minimum

Commit Time

200 ms

200 ms

Figure 4.14: RE Port Specification of the RailCabDriveControl Component (cf. [HB13])

to drive in convoys any longer. This reconfiguration will be triggered by the RailCab if it
transports hazardous goods. The second one uses the message type enableConvoyMode and
causes RailCabDriveControl to enable the convoy mode again. Since both reconfigurations in-
volve discrete components only, the entries in the fourth column of the RE port interface
specification only provide a single time value for the time for execution.

4.4 Generating Operational Behavior Specifications

The declarative, table-based specification of the reconfiguration controller introduced in the
previous section cannot be verified or implemented directly. In order to verify or implement
the reconfiguration behavior, we need a formal and operational behavior specification. There-
fore, we automatically generate a RTSC for both, manager and executor, because RTSCs are
formal and operational.

Using RTSCs for specifying the operational behavior of manager and executor enables to
reuse the existing tool chain for MECHATRONICUML. That includes model checking sup-
port (cf. Section 4.5), WCET analyses [Bur06, BGST05], export to simulation environments
as MATLAB/Simulink (cf. Section 6) or Modelica [PSR+12, PHMG14], and code genera-
tion [BGS05, AAB+11, Gei13].

In this section, we provide generation templates for the RTSCs of manager and execu-
tor [HB13]. The generation templates define the 2-phase-commit protocol implementation
as outlined in Section 4.2 and contain placeholders for the entries of the tables of our declara-
tive, table-based reconfiguration specification introduced in Section 4.3. The placeholders are
automatically filled by the information given in each row of the tables. By using the genera-
tion templates and an automatic generation process, we relieve the developer from specifying
a large and complicated behavior specification for the 2-phase-commit protocol by himself.
In summary, this means saving 18 states and 30 transitions for the manager RTSC given in
Section 4.4.1 plus 2 states and 8 transitions for each entry of the manager specification. For
the executor RTSC given in Section 4.4.2, we save another of 71 states and 102 transitions
of manual work plus 1 state and 4 transitions for each entry in the RE port specification, 2
states and 5 transitions for each reconfiguration rule assuming single-phase execution, and 6
states and 7 transition for each reconfiguration assuming three-phase execution.

4.4.1 Manager Specification

Figure 4.15 shows the generation template for the manager RTSC. The RTSC template is
complex and provides many variation points that depend on the manager specification. By
using our generation template, however, we hide the complexity of the RTSC from the de-
veloper who can reuse the template for all of his reconfigurable structured components.
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Manager

Manager_Main

2

3

ch: reply[boolean], parentReply[boolean], executed[boolean], executeReconf, syncX;

parent

internal behavior

embeddedCI 4

1executor

variable: boolean request;

variable: int reconfiguration, int[] blockedReconfigurations;

variable: boolean request, boolean result;

operation: boolean invokePlanner(int reconfiguration), boolean isBlocked(int reconfiguration),

boolean checkStructuralConditionX();

variable: boolean executor_request;

Idle

entry/ {request := false;}
AwaitReply

syncX? / x()

{request := true;}

success parentReply[true]! /

failed parentReply[false]! /

Propagated
U [request] /

[not request] /

occupied parentReply[false]! /

Idle

entry/ 

{executor_request = false;}

ExecuteReconf

executeReconf? / executeReconf(reconfiguration)

Request

x  syncX! / {executor_request := true;}

executeReconf? / 

confirmRequest(reconfiguration)
WaitForConfirm

reply[false]? /

declineRequest()
failed /

Finished success 

executed[true]! /

failed executed[false]! /

[executor_request] reply[false]? /
U

[not executor_request] /

[executor_request] reply[true]? /

Idle

entry/ {request := false;}

syncX? / 

{result := not isBlocked(R.id) && checkStructuralConditionX();

reconfiguration := R.id; request := true;}

[request] reply[true]! /

CheckX

[result == true] / {result := invokePlanner(reconfiguration);}

U

Fail [request] reply[false]! /
U

Success
U

[result == false] /

[not request] /

Plan
U

[not request] /

[result == false] /

Execute

executed[false]? /

executed[true]? /[result == true] executeReconf! /

[timeForPlanning; timeForPlanning]

EmbeddedCI_Main

subport 1

Idle

entry/ {request := false;

propagate := false;}

AwaitReply

x /

{request := true; reset: c_req;

propagate := true;}

reply[true]? / success()

reply[false]? / failed()

ReceivedMsgX

c_req ≤ β

[not request] /

variable: boolean request, boolean propagate;

clock: c_req;

DeliverMsg

[request && not propagate] /

UsyncX! /

[c_req ≥ β] / occupied()

AwaitParentReply

parentReply[true]? / success()

parentReply[false]? / failed()
[request && propagate] /

adaptation 2

β = x.expectedResponseTime – y.executionTime

Legend:

Generated only once and are used by all reconfiguration rules  

Generated for each reconfiguration message X that is propagated to the parent

Generated for each reconfiguration message X that is treated.

Generated additionally for each reconfiguration message X that is request from child.

Generated for each reconfiguration message X that is received from child or executor.

Generated additionally for each reconfiguration message X that invokes planning.

Generated additionally for each reconfiguration Y that may be blocked.

5riskManager

Idle

updateRiskData / 

{blockedReconfigurations := updateRiskData.reconfIDs;}

Figure 4.15: Generation Template for the Manager RTSC (cf. [HB13])
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In the RTSC, all black states and transitions form the general frame of the RTSC. They are
always present and will only be generated once for every manager RTSC. The colored parts
are variable and are generated based on the entries of the manager specification. The green
parts are generated of each entry of the manager specification. They are used to handle an
incoming message. If the message is a request, we additionally generate the purple parts for
the corresponding entry. The brown parts are generated for each message that is treated. They
specify the behavior for checking whether to execute the reconfiguration. If the message is
propagated to the parent, we generate the blue parts. The yellow and pink parts provide the
functionality for invoking a planner and checking whether a reconfiguration is blocked if this
is specified by the corresponding manager specification entry.

The resulting manager RTSC consists of one state Manager_Main with four or five regions.
The region parent implements the RM port parent of the manager that is used for communi-
cating with the parent. The region executor implements the executor port for communicating
with the executor. The region riskManager contains the communication with the runtime risk
manager and is only present if a runtime risk manager is actually used in the reconfiguration
controller. The region internal behavior specifies the behavior of deciding whether to execute
which reconfiguration. The region embeddedCI implements the behavior of the multi port em-
beddedCI that is used for communicating with the children. The RTSC follows the standard
structure of a multi port RTSC (cf. Section 2.4.2), although we only need the subport RTSC
for communicating with the children in this case.

The information flow through the manager RTSC depends on the use cases. In Use Case 1,
messages reach the manager via the embeddedCI port and are processed by the subport. If the
message is treated, the subport triggers the internal behavior which checks whether to execute
a reconfiguration. Then, the internal behavior triggers the executor region to send a message to
the executor. The executor region waits for an answer from the executor and reports the result
to the internal behavior which, in turn, propagates the result to the subport.

If the message is propagated to the parent, the subport triggers the parent directly. In case
of a request, the region parent waits for the answer of the parent and reports this answer back
to the subport.

In Use Case 2, the executor sends a message to the manager which is processed by the
executor region. Then, the executor RTSC triggers the internal behavior and the execution pro-
ceeds as for Use Case 1.

If several requests reach the manager at the same time, for example, from different chil-
dren, we need to serialize these messages to ensure isolation of the reconfiguration opera-
tions. This is achieved by the internal behavior that ensures that only one message is treated at
a time.

In the following, we provide a detailed, technical description of the generation template
and explain how Use Cases 1 and 2 are encoded in the template. An example of a generated
manager RTSC is given in Appendix A.6.3.1 for the component RailCabDriveControl.

Use Case 1 starts with a message from a child. Therefore, we start explaining the subport
region. For each message x that may be sent by a child, we generate one state ReceivedMsgX
and a transition from Idle to that state. This transition receives the message x. If the message
is a request, we reset a clock c_req at this transition and add an invariant c_req ≤ β to Re-
ceivedMsgX. The invariant ensures that the RTSC will return to Idle if the reconfiguration can
no longer be executed. This is the case if the time needed for executing the reconfiguration
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exceeds the expected response time. In this case, the subport sends an occupied message to
the child indicating that the reconfiguration is currently not possible.

The state ReceivedMsgX may also be left via the transition to DeliverMsg. That transition
initiates a synchronization via the synchronization channel syncX. The synchronization chan-
nel syncX is generated for each message x that is either propagated or treated by the manager.
The transition synchronizes either with the internal behavior if the message is treated or with
the parent if the message is propagated.

If the message is propagated, the subport synchronizes with the parent. Then, the parent
switches from Idle to Propagated and sends the message x to the parent. If the message is
a request, the parent switches to AwaitReply while the subport switches to AwaitParentReply.
When the parent answers, either by success or failure or occupied. Then, the parent uses the
synchronization channel parentReply to report the result back to the subport which, in turn,
sends the result back to the child.

If the message received by the subport is treated, the synchronization via syncX causes
the internal behavior to switch to CheckX. As its transition action, the transition checks the
structural condition of the message x by calling the operation checkStructuralConditionX. This
operation implements the structural condition that is specified in the manager specification
(cf. Section 4.3.2). If the reconfiguration is safety relevant, then the operation isBlocked
checks whether the reconfiguration with the given id is currently blocked by the runtime risk
manager. Therefore, it uses the variable blockedReconfigurations that is set by the riskManager
any time the runtime risk manager provides new data via updateRiskData. If the structural
condition is not fulfilled or the reconfiguration is currently blocked, then the internal behavior
immediately switches to Fail. Then it reports the result via the synchronization channel reply
to the subport if the message is a request. If it is not a request, both RTSCs return to their Idle
states without synchronization. If the structural condition is fulfilled and the reconfiguration
is not blocked, the internal behavior switches to Plan and optionally invokes a planner. If the
reconfiguration should be executed, the internal behavior synchronizes with the executor region
using the synchronization channel executeReconf. Then, the internal behavior waits in state
Execute for the result of the execution.

The synchronization via executeReconf causes the executor region to switch from Idle to
ExecuteReconf. The corresponding transition sends a message executeReconf to the executor.
The reconfiguration to be executed is referred by its ID from the executor specification and
encoded by an integer parameter of the message. Then, the executor performs the 2-phase
commit protocol and reports the result, either success or failed, to the manager. The executor
region reports the result to the internal behavior using the synchronization channel executed.
Then, the executor region takes the lower transition from Finished back to Idle. If the message
has been a request, the internal behavior reports the result to the instance of the subport that
initiated the reconfiguration via the synchronization channel reply. The instance of the subport
waits for that synchronization in the state AwaitReply and sends the result, either success or
failed, back to the child. This finishes Use Case 1.

In Use Case 2, the executor sends a message x to the manager. This message is processed
by the executor RTSC at the transition from Idle to Request. Such transition is generated for
each message offered by the RE port of the structured component. This transition, however,
may only fire if a synchronization via the synchronization channel syncX with the internal
behavior is possible. That, in turn, is only possible if currently no other reconfiguration is
executed. Thus, we use the synchronization channel syncX for serializing the messages inside
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the manager. If the synchronization is possible, the execution proceeds as for Use Case 1. If
the executor region reaches state Finished, however, it takes one of the upper two transitions
back to Idle. These transitions synchronize with the transitions from Success to Idle and Fail
to Idle in the internal behavior. These transitions enable to treat Use Cases 1 and 2 identical
within the internal behavior. This finishes Use Case 2.

4.4.2 Executor Specification

Figures 4.16 and 4.17 show the generation template for the executor RTSC. The template
includes the behavior for both, single-phase execution and three-phase execution. The tem-
plate implements the 2-phase-commit protocol including many variation points that depend
on the executor and RE port specification.

In the RTSC, all black states and transitions form the general frame of the RTSC. As for
the manager generation template, they are always present and will only be generated once
for every executor RTSC. The colored parts are variable and depend on the executor and RE
port specification. We generate the blue parts for each message that is offered by the RE
port of the component. The purple parts are generated for each reconfiguration rule that the
executor may execute. Finally, the brown parts are generated for every reconfiguration rule
that is offered by a child in its RE port.

For realizing Use Case 1, the information flows as follows through the executor RTSC: The
executor is initially triggered by the manager and receives the request in the events region.
The events region triggers the internal behavior that initializes the 2-phase-commit protocol.
The implementation of the 2-phase-commit protocol is mainly located in the adaptation region
of embeddedCI. The adaptation computes the children that are affected by the reconfiguration.
Then it performs the voting by triggering the corresponding subport instances that are con-
nected to the affected children. Then, the reconfiguration is executed. In case of single-phase
execution, the adaptation region triggers the subport instances again. After the execution of
the child reconfigurations is finished, the adaptation reports the result to the internal behavior.
Then, the internal behavior executes the reconfiguration for the structured component. In case
of three-phase execution, the adaptation and the internal behavior execute the three phases of
the reconfiguration. The adaptation triggers the subport instances that are connected to the
affected children while the internal behavior executes the local reconfiguration operations. Af-
ter the reconfiguration has been completely executed, the internal behavior notifies the events
region that the reconfiguration is completed. Then, the events region notifies the manager.
This finishes Use Case 1 for the executor.

In Use Case 2, the parent region receives a message from the parent. This message is
forwarded to the events region which, in turn, forwards the message to the manager. Then, the
manager answers with the decision and, if the request is confirmed, with the reconfiguration
to be executed. Then, the 2-phase-commit protocol is executed as in Use Case 1 except for
one difference. After finishing the voting phase, the adaptation triggers the parent region for
sending the voting result back to the parent. Then, the parent region waits for the answer of
the parent and triggers the adaptation region after the answer has been received. In case of
three-phase execution, this is repeated for each of the three phases. Finally, the parent region
informs the parent that the reconfiguration has been completed. This finishes Use Case 2.
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Legend:

Generated only once and are used by all reconfiguration rules  

Generated for each reconfiguration message X that is offered via RE port

Generated for each reconfiguration message Z that is offered by an embedded child

Generated for each reconfiguration rule Y that is executed by the executor

Generated additionally for each reconfiguration Y1/Z1 that is executed using single-phase execution

Generated additionally for each reconfiguration Y2/Z2 that is executed using three-phase execution

Figure 4.16: Generation Template for the Executor RTSC (Pt. 1)
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4.4 Generating Operational Behavior Specifications
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Figure 4.17: Generation Template for the Executor RTSC (Pt. 2)
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4. Transactional Execution of Hierarchical Reconfigurations

In the following, we provide a detailed, technical description of the generation template
and explain how the Use Cases 1 and 2 are encoded in the template. An example of a gener-
ated executor RTSC is given in Appendix A.6.3.2 for the component RailCabDriveControl.

In Use Case 1, the events region receives a message executeReconf from the manager. This
message is processed by the transition from Idle to AwaitVoting. The message contains the ID
of the reconfiguration rule to be executed as a parameter. In addition, the transition from
Idle to AwaitVoting synchronizes with the internal behavior via startExecution. The corresponding
transitions from Idle to Start set the variable singlePhase to true if the reconfiguration needs to
be executed with single-phase execution or false if the reconfiguration needs to be executed
with three-phase execution. Then, the internal behavior starts the 2-phase-commit protocol
using the transition from Start to Wait by synchronizing with the adaptation RTSC in embed-
dedCI via init2PC. The reconfiguration to be executed is encoded in the selector expression.

The RTSC of the multi-port embeddedCI encodes the main logic for executing the 2-phase-
commit protocol and controlling its different stages. We use the adaptation RTSC for syn-
chronizing the communication with the children that are affected by the reconfiguration. The
actual communication with the children is contained in the subport RTSC.

If the adaptation RTSC is triggered via init2PC, it enters the PrepareY state. We generate
such state for each reconfiguration Y that can be executed by the executor. In this state, we
compute which children are affected by the reconfiguration using the function computeAffect-
edChildrenY(). The result is saved in a temporary data structure of type AffectedComponents
that contains the information which reconfiguration needs to be executed on which child. By
using this data structure, we achieve that the remainder of the adaptation RTSC is independent
of the actual reconfiguration that is executed. We present the definition of AffectedComponents
in Appendix A.6.4.1 and an example for computeAffectedChildrenY() in Appendix A.6.4.2. All
functions that are recursively contained in embeddedCI are formally specified using story
diagrams that we present in Appendix A.6.4.3.

After PrepareY, the adaptation switches to the Vote state. In the Vote state, the votes of
all affected children for executing their reconfiguration are requested and collected. In Trig-
gerSubPort, all subport instances communicating with an affected child are triggered by the
self-transition using the synchronization channel sendRequest.

The subport RTSC contains one transition from Idle to WaitForResponse for each message
z that is offered by a child. The message z to be sent to the particular child is stored in
the variable tmpMsg of embeddedCI. The adaptation RTSC stores this message in the variable
tmpMsg during its entry action in state TriggerSubPort. Upon synchronization via sendRequest,
the subport RTSC uses this variable in its guard for sending the corresponding message z
to the child. If the child does not answer in time or answers abort, the subport switches to
VotedAbort. If the child answers commit, the subport switches to VotedCommit and stores the
commit time in an internal variable.

The adaptation switches from TriggerSubPort to GetReplies after all subports have been trig-
gered. In GetReplies, the adaptation synchronizes with the subport, again, to receive their
voting results. We use the synchronization replyReceived for that purpose and transfer the
voting results using the variables tmpCommit and tmpCommitTime. After collecting all votes,
the adaptation switches to CheckResult and calls the function canCommit() upon entry. The
function determines whether all children voted for executing the reconfiguration and whether
the minimum commit time sent by the children is greater than the time needed for executing
the reconfiguration. If so, it is possible to execute the reconfiguration.
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After the voting phase has been finished, the adaptation reports the voting result via vot-
ingComplete to the events region. The RTSC either switches to DoAbort or DoExecute, respec-
tively, and triggers either the execution via performReconf or the abortion via doAbort. Then,
it waits in state Busy until the execution of the 2-phase-commit protocol has been finished.

The further behavior of the adaptation depends on the voting result and whether the recon-
figuration is executed with single-phase or three-phase execution. If the reconfiguration is
aborted, adaptation enters the Abort state and triggers all affected subport instances, again, for
sending the message to the corresponding children. The subport sends abort at the transition
from ReplyReceived to Idle.

If the reconfiguration is executed with single-phase execution, the adaptation enters the Ex-
ecute_SinglePhase state. In this case, the adaptation triggers all affected subport instances for
sending execute to the corresponding children at the transition from ReplyReceived to Execute.
If the child executed, it answers with finished after successfully executing the reconfiguration.
Then, the subport reports to the adaptation that the child has finished executing the reconfig-
uration using the synchronization finished. The adaptation waits for these synchronizations in
substate Wait of Execute. After all child replies have been received, the adaptation synchro-
nizes with the internal behavior via the synchronization channel finished2PC to report that all
child reconfigurations have been completed.

Execute_ThreePhase

Wait

entry / {finished := 

allEmbeddedFinished(ac)}

[finished = true] /

{finished := false}

var: boolean finished := false;

op: void resetActionPerformed(AffectedComponents ac);

[finished = false]

reconfFinished? /

{setFinished(ac, subPort);}

SendSetup

entry / {curPort := 

getNextPortInstanceForAction(ac);

finished := allActionsPerformed(ac);}

U

[finished = false]

sendSetup[curPort]! /

ExecuteLocalSetup

[finished = true] 

localSetup! /

FinishedSetup

localFinish? /

U
WaitFading

finishPhase! / 

{finished := false; 

resetActionPerformed(ac);}

Wait

entry / {finished := 

allEmbeddedFinished(ac)}

[finished = true] /

{finished := false}

[finished = false]

reconfFinished? /

        {setFinished(ac, subPort);}

SendSetup

entry / {curPort := 

getNextPortInstanceForAction(ac);

finished := allActionsPerformed(ac);}

U

[finished = false]

sendFading[curPort]! /

FinishedFading

[finished = true]

localFinish? /U

performFading? /
ExecuteLocalFading

U localFading! /

WaitTeardown

finishPhase! / 

{finished := false;

resetActionPerformed(ac);}

Wait

entry / {finished := 

allEmbeddedFinished(ac)}

[finished = true] /

{finished := false}

[finished = false]

reconfFinished? /

{setFinished(ac, subPort);}

SendTeardown

entry / {curPort := 

getNextPortInstanceForAction(ac);

finished := allActionsPerformed(ac);}

U

[finished = false]

sendTeardown[curPort]! /

[finished = true]  . 

finished2PC! /

ExecuteLocalTeardown
localTeardown! /performTeardown? /

WaitLocal
localFinish? /U

Figure 4.18: Internal Structure of the Execute_ThreePhase State

If the reconfiguration is executed with three-phase execution, the adaptation enters the Ex-
ecute_ThreePhase state. The internal structure of this state is shown in Figure 4.18. The
execution starts in Execute_Setup for executing the setup phase. First, the adaptation triggers
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all affected subport instances for sending setup to the corresponding children at the transi-
tion from ReplyReceived to ExecuteSetup. If the child executed, it answers with finished after
successfully executing the setup phase. Again, the adapatation waits in substate Wait of Ex-
ecute_Setup for the replies of the subport instances. After all children have performed their
setup, the adaptation synchronizes with the internal behavior via localSetup. This causes the
internal behavior to enter the LocalExecuteY2 state and to execute the local setup. After it is fin-
ished, it synchronizes via localFinished and the adaptation finishes the setup phase. It reports
that the phase has been finished to the events region via finishedPhase and waits for the next
phase to start. The remaining phases are executed in the same fashion. There are only two
notable differences. In the fading phase, the adaptation first triggers the local fading. Without
waiting for the finish of the local fading, it triggers the subport instances such that all fading
functions are executed in parallel. In the teardown phase, the adaptation also triggers the local
teardown first, but waits for the local teardown to finish. After the local teardown is finished,
it triggers the subport instances for the last time. After all children have performed their tear-
down, the adaptation synchronizes via finished2PC with the internal behavior to report that the
reconfiguration has been executed successfully.

In case of three-phase execution, the synchronization via finished2PC causes the internal
behavior to switch from Finished to Execute. Since singlePhase is false in this case, it im-
mediately proceeds to Report. In case of single-phase execution, the synchronization via
finished2PC causes the internal behavior to switch from Wait to Execute. If twoPCResult, which
stores the decision on whether to execute or not, is false, the internal behavior switches back
to Idle. If twoPCResult is true, then the internal behavior switches to Report and calls the own
reconfiguration rule in the transition action. The transition back to Idle synchronizes with the
events region to indicate that the execution has been finished.

The synchronization finish causes the events RTSC to switch from Busy to Finished. This
transition also sends a message success or failed to the manager in case that the reconfiguration
has been executed or aborted, respectively. Finally, the RTSC fires the upper transition from
Finished to Idle which finishes Use Case 1.

In Use Case 2, messages reach the executor via the parent port and are processed by the
corresponding RTSC in region parent. For each message x that the component offers via its
RE port, we generate one state CheckX including transitions from Idle to CheckX and from
CheckX to CheckSelf and SendAbort. The transition from Idle to CheckX receives the message
x. In CheckX, the parent tries to synchronize via checkX with the RTSC in the events region.
The state CheckX contains an invariant c2 ≤ γ. γ is the time for decision specified in the RE
port minus the time actually needed for deriving a decision in the manager. If γ is exceeded,
it is no longer possible to check whether the reconfiguration can be executed within the
time for decision and the RTSC switches to SendAbort. This case will usually happen if the
executor is already executing a reconfiguration when the message x arrives. In this case, a
synchronization with the events region via checkX is not possible.

If the synchronization via checkX is possible, the parent triggers the events region and
switches to CheckSelf. The RTSC in the events region switches from Idle to Check and for-
wards message x to the manager. We generate such transition from Idle to Check for each
message x in the RE port specification. In Check, the events region waits for the decision of
the manager. If the manager sends declineRequest, the events region reports the result via the
synchronization channel execute and the parent switches to SendAbort. If the manager sends
confirmRequest, then the reconfiguration may be executed. The events region reports that re-
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sult via execute to the parent which switches to AwaitVoting and triggers the internal behavior.
Then, the voting phase is performed as in Use Case 1.

In contrast to Use Case 1, the voting result is returned to the parent that sends the voting
result to the parent component. If the component needs to abort, the parent switches via
Aborted to FinalizeAbort. In FinalizeAbort, it synchronizes via finished with the events region and
both RTSCs return to their Idle states. If the component has committed the reconfiguration,
the parent waits in WaitForParent for the decision of the parent component. If the parent com-
ponent aborts the reconfiguration, the parent FinalizeAbort. The transition from WaitForParent
to FinalizeAbort synchronizes with the adaptation RTSC of embeddedCI via doAbort to abort
the child reconfigurations. Afterwards, it synchronizes with the events region via finished
as described above. If the parent decided to execute the reconfiguration, the parent region
switches from WaitForParent to either Execution or to ExecuteSetup depending on whether the
reconfiguration is executed with single-phase or three-phase execution. The corresponding
transitions synchronize via performReconf with the adaptation RTSC of embeddedCI. Then, the
child reconfigurations are triggered as in Use Case 1. In three-phase execution, the adaptation
synchronizes with parent via finishPhase after completely executing one of the phases. The
parent then reports that the phase has been finished to the parent. After all child reconfigu-
rations and the own reconfiguration have been performed, the internal behavior synchronizes
with the events region that informs the manager about the result of the execution. Finally,
events takes the lower transition from Finished to Idle and synchronizes with parent via fin-
ished. That synchronization causes the transition from Execution to Idle to fire. This transition
sends finished to the parent component which finishes Use Case 2.

In the executor it may happen that two requests arrive at the same time: one from the
parent component, the other one from the manager. These interleavings are handled in the
events region using the states AbortParentReq, WaitForAnswer, and AnswerReceived as well as
the variable abortedReqWaiting. If the events region is in state Check as part of Use Case 2, it
may happen that the manager sends executeReconf instead of confirmRequest. In this case, the
manager already treated a child request according to Use Case 1 when the executor forwarded
the parent request. Then, the events region first treats the reconfiguration that was requested
by the manager according to Use Case 1. Therefore, it switches from Check to AbortParentReq.
This transition aborts the parent request by synchronizing via execute with the parent. As a
result, the parent switches to SendAbort and finishes the request. However, the request by
the parent still resides in the message queue of the manager. Therefore, after finishing the
reconfiguration, the events region does not return to Idle, but it switches to WaitForAnswer. In
this state, it waits for the confirmRequest or declineRequest message from the manager. If one
of these messages is received, the events RTSC switches to AnswerReceived and immediately
replies failed to the manager. In WaitForAnswer, it may also happen that another executeReconf
message arrives. Then, the manager has treated another child request before the request of the
executor. Then, the events RTSC switches back to AbortParentReq and the procedure repeats
as described before.

4.5 Verifying the Reconfiguration Specification

We need to verify that the specified reconfiguration behavior of a structured component ful-
fills all of the ACI-T properties of the 2-phase-commit protocol. These properties guarantee
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that the reconfiguration behavior of the structure component is correct and, thus, safe. In
our approach, formal verification is enabled by the operational behavior specifications for
manager and executor in terms of RTSCs.

For verifying the ACI-T properties of the 2-phase-commit protocol, we need to verify the
following yet informal properties:

1. If the executor decides to execute (abort), then all affected children execute (abort)
(Atomicity).

2. The reconfiguration rules cannot produce an inconsistent CIC (Consistency).

3. The executor will execute no other reconfiguration than the one requested by the man-
ager (Consistency).

4. At any time, at most one reconfiguration is executed (Isolation).

5. The RTSCs of manager and executor are free from deadlocks (Timing).

6. Each reconfiguration is executable (Timing).

Properties 1, 3, and 4 can already be guaranteed by the correctness of the generation tem-
plates given in Section 4.4. Therefore, they do not need to be verified again for a particular
structured component. The correctness of the generation templates with respect to these three
properties has been verified using UPPAAL [HB13, Vol13].

Property 2 specifies that reconfigurations may not produce an inconsistent CIC. A CIC
may either be syntactically inconsistent or semantically inconsistent. A CIC is syntactically
inconsistent if it violates the conditions for syntactical correctness that we introduced in
Section 3.2. In our approach, the CSDs guarantee that CICs remain syntactically consistent
after a reconfiguration due to syntactic restrictions. Thus, no further check is necessary. A
CIC is semantically inconsistent if the instantiated component instances, port instances, and
connector instances do not constitute a desired functional behavior. In the worst case, the
component may even be unsafe. As an example, consider a RailCab that drives as part of a
convoy as a member but which does not have an instance of MemberControl (cf. Figure 4.7)
although it switched the controller. Such situations cannot be prevented by syntactic rules
but need to be verified for each structured component as we describe in Section 4.5.1.

Finally, Properties 5 and 6 specify the conditions for a correct timing specification. In a
platform-independent model, we may verify whether the timing requirements provided in our
declarative, table-based specification are satisfiable. If they are satisfiable, there may exist a
hardware platform that enables to execute the reconfiguration behavior without violating the
timing requirements. After deriving a platform-specific model that includes a platform model
and a deployment of components to hardware nodes [PMDB14], we may already check at
design-time whether the execution of the reconfigurations on the hardware platform fulfills
the imposed requirements. We describe the verification of the timing specification in detail
in Section 4.5.2.

In combination, both verification steps and the verified generation templates enable to ver-
ify the reconfiguration behavior of our components completely with respect to the ACI-T
properties. The only part of the reconfiguration behavior that cannot be formally verified
using model checking is given by the implementations of the fading functions. Their correct-
ness needs to be determined using our approach for MIL simulation introduced in Chapter 6.
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4.5.1 Consistency

We ensure consistency by verifying that the reconfiguration behavior cannot produce a se-
mantically inconsistent CIC. However, it is not possible to automatically derive from the
component model which CICs are semantically inconsistent and which are not. Therefore,
a developer needs to provide this information explicitly. In the following, we introduce
three possibilities for specifying semantically inconsistent CICs. These are forbidden CICs
(Section 4.5.1.1), architectural invariants (Section 4.5.1.2) and properties in temporal logic
(Section 4.5.1.3). For each of these, we describe an approach for formal verification.

4.5.1.1 Forbidden CICs

A forbidden CIC is a particular CIC or part of a CIC that may never occur for a given compo-
nent. As an example, consider the CIC in Figure 4.19 that defines an excerpt of an instance
inconsistent of the component RailCabDriveControl. It specifies the situation where both, Mem-
berControl and ConvoyCoordination, are instantiated. In our example, we only allow RailCabs
either to be the coordinator or a member but not both at the same time. Therefore, we con-
sider this CIC as semantically inconsistent and, thus, as forbidden.

 inconsistent : RailCabDriveControl

  

  cc / convoy : 

      ConvoyCoordination

/curPos

  

  ps / pos : PositionSensor

/position

  

  mc / member : 

      MemberControl

Figure 4.19: Example of a Forbidden CIC

We have two alternatives for verifying that a forbidden CIC may not occur. First, we may
perform a reachability analysis [HSE10] using our framework described in Appendix C. In
this approach, we compute all possible configurations of a component starting from the initial
configurations. Then, we may check whether the forbidden CIC occurs in any of these con-
figurations. Second, we can use the inductive invariant approach by Becker et al. [BBG+06].
This approach provides a proof that a forbidden CIC cannot have been produced out of a
semantically consistent CIC by applying a backward application of typed attributed graph
transformation rules. Backward application means that they match the RHS and enforce the
LHS of the typed attributed graph transformation rule. This approach has been extended to-
wards supporting story diagrams with few branches in the control flow by Meyer [Mey09].
The benefit of this approach is that it may even be applied if the number of configurations of
a component instance is unbounded.

Applying the inductive invariant approach requires to translate the CSDs to normal story
diagrams. This translation has been defined by Tichy [Tic09, p. 77ff]. The basic idea is using
the metamodel of our component model (cf. Appendix D.1) as a type graph for the story
diagrams.
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4.5.1.2 Architectural Invariants

Our component model enables to specify architectural invariants based on component SDDs
as described in Section 3.5. Any CIC that violates an architectural invariant is considered as
semantically inconsistent. An example is given by the component SDD in Figure 3.21 that
ensures a correct ordering of the subport instances of the multi port instance refDistProvider of
a coordinator RailCab. This constraint ensures that updates of reference speed and distance
are distributed in the correct order among the members. Component SDDs are more expres-
sive than forbidden CICs because they enable specifying conditional constraints and support
quantification based on first-order logic.

Component SDDs may be verified by a reachability analysis on the CSDs. First, the CSDs
need to be translated to normal story diagrams as defined by Tichy [Tic09, p. 77ff]. Then,
the component SDDs first need to be translated to normal SDDs [KG07] by applying the
transformation by Tichy to the component story patterns that are contained in the pattern
nodes. Thereafter, the resulting normal SDDs are translated to story diagrams by applying
the concept of Ahmadian et al. [AAB+11, p. 38ff]. Then, the SDD is fulfilled if and only if
the resulting story diagram can be executed successfully on each configuration of the com-
ponent. We can check this condition by performing a reachability analysis on the resulting
set of story diagrams using the initial configuration of our structured component. In the
reachability analysis, we check whether there exists a configuration to which the story dia-
gram resulting from the SDD cannot be matched. We may utilize the reachability analysis
introduced in [HSJZ10, HSE10] for this purpose.

4.5.1.3 Properties in Temporal Logic

Temporal logic constraints based on CTL and LTL (cf. Section 2.2.2) enable to specify con-
straints on the evolution of a CIC. In our example, we want to specify that a RailCab may
not directly switch from being coordinator to being member. Such properties may be ex-
pressed by graph-based variants of CTL and LTL such as quantified CTL (QCTL, [Ren06]),
graph-based LTL (GLTL, [Ren08]), or first-order TCTL (FO-TCTL, [Suc11, SHS11]).

Verifying such properties requires a graph-based model checking, for example, based on
GROOVE [KR06, Ren08] or CheckVML [SV03]. Applying GROOVE on CSDs requires to
translate the component model and CSDs into a typed attributed GTS. Then, the component
model defines the type graph and the initial configuration of the structured component defines
the initial graph. The CSDs need to be translated in two steps. First, they need to be translated
to story diagrams as defined by Tichy[Tic09, p. 77ff]. Second, the story diagrams need to be
translated to typed attributed graph transformation rules as defined by Reineke [Rei07].

4.5.2 Timing

We ensure a correct timing specification by applying timed model checking on the platform-
independent component model as described in Section 4.5.2.1. If the model checking en-
counters a deadlock or a reconfiguration rule that cannot be executed, the timing require-
ments in our declarative, table-based specification are not satisfiable. After deriving a plat-
form model including a deployment of component instances to hardware nodes [PMDB14],
we need to check whether the timing requirements are satisfied by the platform model as
described in Section 4.5.2.2.
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4.5.2.1 Ensuring Correct Timing by Timed Model Checking

We apply timed model checking on the RTSCs of manager and executor for guaranteeing
that they are free from deadlocks and that they enable to execute each reconfiguration rule.
In order to achieve an efficient and scalable verification approach, we verify the timing re-
quirements separately for each structured component. This is enabled by using stubs for the
parent component as well as the children. These stubs abstract from the internal behavior of
the parent and the children. They only implement the relevant behavior based on the inter-
faces of the RM and RE ports that is necessary for checking a correct vertical integration of
the component with respect to timing.

For applying timed model checking, we need to translate the RTSCs of manager and ex-
ecutor into an NTA as illustrated in Figure 4.20. In particular, we obtain one timed automaton
for each region of the manager RTSC and of the executor RTSC. In addition, we need one
automaton that defines the behavior of the connector between manager and exeuctor. Finally,
we add two parent stubs for the parent component and two child stubs for each embedded
component part. The number of child stubs is equal to the number of timed automata that
are generated for the subport RTSCs of the embeddedCI ports of manager and executor (cf.
Section 4.4). The arrows illustrate the information flow between the timed automata that
results from the synchronizations used in the RTSCs and the messages being sent.

Coordinator : RailCabDriveControl

RM

    : Manager
RM

parent

embeddedCI

executor events

connector...

...

internalBehavior

manager 

parent stub

manager 

child stubs

    : Executor RE RE

parent

embeddedCI
...

...
executor 

child stubs

internalBehavior

executor 

parent stub

Figure 4.20: Sketch of the Generated NTA

Figure 4.21 shows an executor child stub that was generated based on the RE port specifi-
cation of ConvoyCoordination for verifying the correct timing of RailCabDriveControl.

The behavior of the executor child stub is as follows. It waits in Idle for being triggered by
RailCabDriveControl for executing a reconfiguration. In this case, only AddConvoyMemberAtPos
may be triggered by RailCabDriveControl. This corresponds to the channel childAddConvoyMem-
berAtPos and the executor child stub switches to ReceivedAddConvoyMemberAtPos. As part of
the transition, the executor child stub nondeterministically chooses whether it will commit
or abort the request. The result is stored in doCommit. In addition, we assign the time val-
ues for the timeForDecision, the timeForExecution, and the minCommitTime that are contained in
the RE port interface specification to the eponymous variables. The child stub now waits in
ReceivedAddConvoyMemberAtPos until the timeForDecision has expired. Then, it either synchro-
nizes via msgChildAbort and returns to Idle or it synchronizes via msgChildCommit and switches
to Committed. In Committed, the invariant ensures that the executor child stub will only rest
in the Committed state until the minCommitTime expires. As a result, a deadlock occurs if Rail-
CabDriveControl does not sent a decision whether to execute or abort the reconfiguration in
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Idle c_child <= timeForDecisioni: int[0,1]
ReceivedAddConvoyMemberAtPos Committed

ExecuteSendMessage

c_child <= timeForExecution

childAddConvoyMemberAtPos[id]?

msgChildCommit[id]!

msgChildAbort[id]!

msgChildAbort[id]?
msgChildExecute[id]?

msgChildFinished[id]?

doCommit == true && 

c_child >= timeForDecision

doCommit == false && 

c_child >= timeForDecision

c_child >= timeForExecution

c_child = 0

c_child = 0, doCommit = i,

timeForDecision = 5,

timeForExecution = 20,

minCommitTime = 500 tmpChildCommitTime = 

minCommitTime,

c_child = 0

childMsgAvailable[id] = truechildMsgAvailable[id] = false

c_child <= minCommitTime

Figure 4.21: Child Stub Representing ConvoyCoordination for the Verification of RailCabDrive-
Control

time. Based on the decision by RailCabDriveControl, the executor child stub either switches
to Idle (abort) or to Execute (execute). In Execute, the executor child stub rests as long as
the timeForExecution has not expired. Then, it switches to SendMessage to check whether
RailCabDriveControl may accept the result message, which is then send at the transition from
SendMessage to Idle.

Examples for specifying parent stubs and manager child stubs may be found on the web-
site [Hei13] that accompanies our paper [HB13]. The resulting NTA may then be verified us-
ing UPPAAL [BDL+06b]. In particular, we need to check that the NTA contains to deadlock
and that the state Report of the internal behavior region of the executor RTSC (cf. Figure 4.16)
may be reached for each reconfiguration rule that is specified in the executor specification.

4.5.2.2 Ensuring Correct Timing after Deployment

After creating a platform model including a deployment, we need to check whether the de-
ployment satisfies the timing requirements. As a basis, we need to compute WCETs for the
behavior of manager and executor as well as for the execution of the CSDs on the given
platform. Since the behavior of manager and executor is defined by RTSCs, we may use the
WCET analysis defined by Burmester [Bur06, BGST05] for this purpose. In addition, we
need to apply the WCET analysis for CSDs presented by Tichy et al. [TGS06, THHO08]
for checking whether the hardware platform satisfies the WCET requirements for the CSDs
given in the executor specification. Thereafter, we need to check that the vertical integration
of the components with respect to timing is still correct.

Expected Response Time First, we need to check whether the timing of child requests
that are propagated to the parent by the manager is correct. In this case, the interface speci-
fications of the RM ports of the structured component and of the child that sends the request
need to be consistent. For being consistent, the expected response time tresp of the structured
component must be smaller than the expected response time tsubresp of the child such that the
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response arrives at the child within time as defined by the formula:

tresp ≤ tsubresp − 2 ·msub − eoverhead

where msub is the message delay for a message sent to the child and eoverhead denotes the
WCET for executing the internal behavior of the manager.

Time For Voting Second, we need to check whether the time for decision that is contained
in the interface specification of the RE port is still satisfied. In particular, if the reconfigura-
tion that is associated with the interface entry of the RE port involves reconfigurations of one
or more children, the time for decision needs to be large enough to include the execution of
the voting phase by the children.

Based on the execution of the voting phase illustrated in Figure 4.6, four time values
contribute to the time for decision dd. First, we need to consider the maximum time for
decision dsubd among the children that are affected by the reconfiguration if all children are
executed in parallel. Otherwise, we first need to sum up the times for decision of all children
that are executed sequentially on the same hardware node before calculating the maximum.
Here, we additionally need to consider the message delay msub for sending the request to
the child and the message delay for the voting decision being sent back. Second, we need
to consider the time for planning tplan (cf. Section 4.3.2) that is specified in the manager
specification. Third, we need to add two times the message delay m for a message that is
exchanged between manager and executor. Finally, we need to consider eoverhead, which
is the WCET for executing the internal behavior of manager and executor that includes,
for example, checking the structural condition in the manager and initializing the 2-phase-
commit protocol in the executor. Then, the time for decision of the structured component
must be greater or equal to

dd ≥ max
i
{dsubd,i + 2·msub

i }+ tplan + 2·m+ eoverhead

where dsubd,i refers to the time for decision of the ith child that is affected by this reconfig-
uration and msub

i is the message delay for a message sent to that child. We assume that a
message sent from parent to child takes as long as a message in the opposite direction. The
computation of dd is the same for single-phase and three-phase execution.

Time For Execution Third, we need to check whether the time for execution that is
contained in the interface specification of the RE port is still satisfied. In particular, if the
reconfiguration that is associated with the interface entry of the RE port involves reconfigu-
rations of one or more children, the time for execution needs to be large enough to include
the child reconfigurations.

The time for execution de denotes the maximum time that the component needs to execute
the reconfiguration in the execution phase of the 2-phase-commit protocol. For single phase
execution, three time values contribute to the time for execution. First, we need to consider
the maximum time for execution dsube among the children that are affected by the reconfig-
uration. This includes, again, two times the message delay msub for sending a message to
a child. Second, we need to consider the WCET of the reconfiguration rule executed by
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the component itself. Finally, we need to consider the WCET eoverhead for managing the
2-phase-commit protocol in the executor. Then, the time for execution de of the structured
component must be greater or equal to

de ≥ max
i
{dsube,i + 2·msub

i }+ dreconf + eoverhead

where dsube,i refers to the time for execution of the ith child that is affected by this reconfigu-
ration and msub

i is the message delay for a message sent to that child.
If we execute reconfigurations based on three phase execution, we need to apply the above

formula separately for each execution phase. We cannot provide a single value for three-
phase execution because a phase can only be finished after all children have finished their
executions. As a result, the duration of a phase for a single child may be extended by a wait-
ing period where it waits for another child to finish its execution as illustrated in Figure 4.8.
Thus, we need to compute the maximum duration separately for each phase.

Minimum Commit Time Finally, the minimum commit time dct denotes the minimum
time that the component sticks to a commit. A structured component instance may only stick
to the commit at most as long as the children do. Thus, we need to consider the minimum
among the minimum commit times dsubct of all affected children. In addition, we need to
subtract two times the message delay msub because the commit time starts after the child
sent the commit and the query to execute needs to reach the child before the commit time
expires. Thus, the minimum commit time dct of a structured component must be less or equal
to

dct ≤ min
i
{dsubct,i − 2·msub

i }

where dsubct,i refers to the minimum commit time of the ith child that is affected by this recon-
figuration and msub

i is the message delay for a message sent to that child.

4.6 Implementation

We implemented the concepts introduced in this chapter as part of the MECHATRONICUML
Tool Suite. In particular, we integrated the implementation into the plugins reconfiguration
and reconfiguration.ui shown in Figure 3.22 on page 65.

We extended the metamodel in plugin reconfiguration such that it includes our reconfigura-
tion controller including the declarative, table-based specification. A class diagram of this
metamodel is presented in Appendix D.2.1.

The plugin reconfiguration.ui extends the component editor such that it enables to specify
reconfigurable components including their reconfiguration controllers. In addition, it con-
tains the generator that enables to generate RTSCs for manager and executor based on the
generation templates given in Section 4.4. The generator has been implemented in QVT Op-
erational [Gro11b]. In addition, we support to convert a non-reconfigurable component into
a reconfigurable component.
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4.7 Assumptions and Limitations

Our approach for the transactional execution of reconfiguration underlies the following as-
sumptions and limitations:

• Any reconfiguration that has been started can be finished successfully. In particular,
we assume that no hardware failures occur while executing a reconfiguration.

• All monitoring is performed by atomic components that accumulate the monitoring
data and provide accumulated data to the manager of the parent component.

• The reconfiguration controller and the generation templates for deriving an operational
behavior specification for manager and executor have only been defined for structured
components because of the missing concept of quiescence for atomic components in
MECHATRONICUML (cf. Section 4.2.3).

• We may only trigger at most one reconfiguration on each child of a structured compo-
nent instance when executing a CSD for the structured component instance.

In addition, our implementation underlies the following limitations:

• The generation templates do not support input and output parameters of CSDs as they
are used, e.g., by the CSD in Figure 3.14 on Page 54.

• The concept for verifying consistency introduced in Section 4.5.1 has not yet been
implemented.

4.8 Related Work

Section 3.7 reviewed component models and architecture description languages that support
reconfiguration of the software architecture at runtime. Only few of them consider reconfig-
uration of hierarchical components supporting a transactional execution of reconfigurations.
We review their reconfiguration capabilites in Section 4.8.1. Thereafter, we discuss related
approaches for achieving quiescence in a system in Section 4.8.2.

4.8.1 Approaches Supporting Reconfiguration of Hierarchical
Components

Our approach is inspired by the reconfiguration concepts of Fractal [BCL+06, LLC10] which
has been extended to distributed execution in [BHR09]. Their concept extends each reconfig-
urable component with a reconfiguration interface and a reconfiguration executor for execut-
ing reconfiguration scripts. We have adopted the concept of a reconfiguration executor and
extended the remote reconfiguration invocation. In contrast to our approach, Fractal starts
reconfigurations optimistically and performs a roll-back in case that the reconfiguration is
not possible. As described in Section 4.2, this is not safe in mechatronic systems. Their ap-
proach achieves ACI properties as well, but does not consider timing of reconfigurations. In
addition, we support a higher level modeling language for modeling reconfigurations rather
than implementing them as a script. The approach by Boyer et al. [BGP13] also follows a
roll-back approach for achieving reliable reconfiguration, but their approach neither treats
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hierarchy nor achieves any of the ACI-T properties. The SOFA 2.0 component uses compo-
nent controllers similar to Fractal and to our approach, called micro-components, but does
not provide a transactional execution of reconfigurations [HB07].

The architecture description language GeReL [EW92] supports a separation of concerns
between functional and reconfiguration behavior. It uses a first-order logic to determine
whether a reconfiguration can be executed or not. This ensures consistency of the modi-
fied system, while their execution model guarantees atomicity of reconfigurations. Their
approach, however, does explicitly support hierarchical components. In addition, they do not
consider real-time properties.

Pop et al. [PPO+12] introduce a mode change operation of embedded real-time systems
based on the SOFA-HI [PWT+08] component model. In their approach, each mode of a
component instance corresponds to a configuration. They also separate functional and recon-
figuration behavior and enable mode changes across different levels of hierarchy. Consistent
modes of a component and its children are specified by property networks. In contrast to
our approach, they cannot ensure atomicity if a child is currently not able to reconfigure
and they do not provide a formal verification support for checking for a correct timing of
reconfigurations.

The approach by Hang et al. [HCH12, HQCH13] implements a composable mode change
operator based on the ProCom component model [VSC+09]. As in [PPO+12], modes corre-
spond to component configurations. Similar to our approach, they use dedicated reconfigu-
ration components that are hierarchically connected. Reconfiguration requests may traverse
the hierarchy bottom-up or top-down. In [HH13], they adopted our approach for executing
reconfigurations in two phases and use our verification approach introduced in Section 4.5.2.
In contrast to our approach, they do not provide explicit real-time properties regarding the
execution of reconfigurations in their specification.

The framework by de Oliveira et al. [DOLS13] uses several autonomic managers for adapt-
ing cloud applications in a coordinated fashion. Their autonomic managers have a similar
purpose as our reconfiguration controller but are horizontally composed. They share infor-
mation using event-based coordination protocols for improving adaptation decisions but do
not consider transactional execution or real-time properties.

The Rainbow framework [GCH+04, CGS09] provides an implementation of the reference
architecture MAPE-K [IBM06] that targets business information systems. Their concept
defines an adaptation manager and an adaptation executor that closely correspond to the
manager and executor in our approach. However, their approach does not respect component
encapsulation for a hierarchical component architecture. In addition, their approach does
neither support real-time properties nor guarantee ACI-T properties.

Similarly, Zhang et al. [ZCYM05] provide an approach for safe adaptation of component-
based systems. Their approach uses one central adaptation manager that orchestrates the
adaptation process, and several agents that are attached to the components and perform their
modification. If an adaptation cannot be finished successfully, they perform a roll-back to the
previous configuration. Thus, their approach guarantees ACI properties for the execution of
reconfigurations but no real-time properties. In addition, their approach does not explicitly
consider hierarchical components.

The approach by Edwards et al. [EGT+09] uses meta-level components for implementing
a self-adaptation control loop similar to MAPE-K [IBM06] based on a hierarchical compo-
nent model. The meta-level components fulfill a similar purpose as our reconfiguration con-
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troller by monitoring the components on the hierarchy level below, by evaluating whether
and how to adapt, and by executing the resulting adaptation plan. Similarly, Vromant et
al. [VWMA11] connect several MAPE control loops that are located on the same hierarchy
level following a master-slave pattern. Then, the control loops communicate for deriving a
consistent adaptation strategy. Both approaches do not explicitly connect meta-level compo-
nent or MAPE control loops, respectively, on different hierarchy levels such that hierarchical
execution are not supported and ACI-T properties cannot be guaranteed.

EUREMA [VG14] supports the specification of self-adaptation feedback loops based on
MAPE-K [IBM06] using a graphical notation called feedback loop diagrams. The approach
supports to use and to coordinate multiple feedback loops in a single system. In addition,
feedback loops on different architectural levels may be connected and coordinated by using
layer diagrams. Weyns et al. [WSG+13] discuss different design patterns for connecting
multiple MAPE feedback loops in a system. With respect to their pattern, our approach is
based on the hierarchical control pattern. In contrast to our approach, the approaches do
not support real-time constraints and do not explicitly consider ACI-T properties. However,
EUREMA satisfies isolation of adaptations.

Finally, the fault-tolerant component model by de Lemos et al. [dLdCGFR06] partitions
component behavior into normal and abnormal (exception) behavior. We follow the same
idea by separating normal behavior and reconfiguration behavior. Their approach provides
horizontal propagation of exceptions, but not propagation to parent components. With a
similar objective, Strunk and Knight [SK06] provide a dependable reconfiguration approach
for hard real-time systems where a system moves from one configuration to another one
with degraded functionality in case of a failure. The approach, however, neither considers
components nor hierarchy, but it ensures by formal proofs that any reconfiguration can be
executed successfully.

4.8.2 Quiescence of Components

In the approach by Kramer and Magee [KM98], the conditions for quiescence require all
affected component instances and all component instances that are connected to them to be
passive. In essence, this means that the component instances are shut down and no longer
executed. After the reconfiguration has been finished, they are started, again. Given an
NMS such as a convoy of RailCabs, this is not a viable approach. In the worst case, it
requires that all the RailCabs in a convoy need to shutdown if one RailCab needs to perform
a reconfiguration. This, in turn, requires the RailCab to stop for each reconfiguration, which
is not desirable. The concept of tranquility [VEBD07] relaxes the conditions on quiescence
by Kramer and Magee [KM98]. The major drawback of their approach is that tranquility is
not predictable, i.e., it cannot be decided whether a component instance will become tranquil
in a given amount of time.

The approaches by Chen et al. [CHS01], Ghafari et al. [GJSH12], and Panzica La Manna
[PLM12] support the evolution of a software architecture of a business information system
where component instances are upgraded to a new version implements the same behavior.
The new component instance either fixes bugs of the old component instance or provides
quality of service that suites better to the current requirements. The approaches by Chen et
al. and Ghafari et al. work similar to our fading functions. The component instance to be
removed and the new component instance are executed in parallel. Then, new transactions
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are handled by the new component instance while the old component instance remains active
until it has processed all pending transactions. The approach by Panzica La Manna tries to
transfer the complete state of the old component instance to the new one such that the new
component instance may continue processing all transactions that have been started using
the old component instance. If this is not possible, the approach applies a version consistent
update as defined by Ma et al. [MBG+11] that applies a similar strategy as the approaches
by Chen et al. and Ghafari et al. In essence, all of these approaches try to preserve the
functional behavior of the system during and after the update with the exception of corrected
bugs and improved quality of service characteristics. In contrast, our approach explicitly
aims at modifying the functional behavior, e.g, if a RailCab joins a convoy. Therefore, we
require to add or to entirely remove component instances from the software architecture,
which is not supported by these approaches. In addition, they do not consider the real-time
constraints and the physical movement of the system, e.g., its current speed or its distance to
other vehicles.

4.9 Summary

This section introduces an approach for executing reconfigurations in a hierarchical compo-
nent model for self-adaptive mechatronic systems. On the syntactic level, we extend each
structured component by a dedicated reconfiguration controller that contains the reconfig-
uration behavior. The reconfiguration controller contains a manager, an executor, and an
optional runtime risk manager. The manager defines whether and how the component shall
reconfigure. The executor is responsible for executing reconfigurations with respect to hi-
erarchy. The runtime risk manager defines which reconfigurations may be executed such
that the functional safety of the system is retained. On the semantic level, our reconfigura-
tion controller implements a variant of the 2-phase-commit protocol [BHG87, ch. 7] that has
been adapted to the domain of mechatronic systems. As a result, our approach satisfies ACI-
T properties for the execution of reconfigurations, i.e., atomicity, consistency, isolation, and
a correct timing, even for reconfigurations spanning vertical compositions of components.
Furthermore, our approach respects encapsulation of components. For the execution of the
reconfiguration, our approach supports a single-phase execution for reconfiguring discrete
component instance and a three-phase execution for safely replacing continuous components
that contains feedback controllers.

Our approach relieves the component developer from specifying the complex implementa-
tion of the 2-phase-commit protocol by hand for each component. Instead, we provide a con-
cise declarative specification of the behavior of manager and executor based on tables. These
tables specify the conditions when to execute which reconfiguration. Then, these tables are
used as an input of a generator that automatically derives an implementation of the 2-phase-
commit protocol based on RTSCs. The generated RTSCs fulfill atomicity and isolation by
construction. In addition, the generated RTSCs and the CSDs that define the modification of
the CIC serve as inputs for our verification procedure that verifies consistency and a correct
timing of the reconfiguration behavior.
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Self-adaptive mechatronic systems are often intended to operate as part of an NMS. As an
example, RailCabs are intended to operate in convoys. Then, the correct functionality of the
self-adaptive mechatronic system and, in particular, its safety do not only depend on its own
correctness but also on the correct interaction with other AMS inside the NMS. The inter-
action, in turn, is typically defined by complex application-level communication protocols.
These communication protocols define which messages are needed to be exchanged and in
which order and time intervals for realizing the intended functionality. Equally, defining the
behavior of a single AMS requires to connect the different components of its software archi-
tecture using application-level communication protocol as well. As an example, consider the
component instances of a RailCab given in Section 3.2 and Appendix A.4.

Due to the safety critical nature of self-adaptive mechatronic systems, we need to for-
mally verify their behavior based on model checking [CGP00, BK08] for guaranteeing their
correctness. On the one hand, this requires to verify the reconfiguration behavior of the
components as discussed in Section 4.5. On the other hand, this requires to verify the func-
tional behavior specification of each discrete atomic component that is used in the software
architecture. However, the correctness of a single component does not only depend on its
own behavior specification but also on the behavior specifications of the components that
it needs to interact with. The resulting software architecture as given by a CIC consists of
several interconnected component instances. Such CIC, however, cannot be verified using
standard model checking tools like UPPAAL [BDL+06b] due to the state-explosion prob-
lem [CGP00].

Compositional verification approaches [BCC98] based on the assume/guarantee princi-
ple [CGP00, ch. 12] tackle the state explosion problem by decomposing the system into
smaller units for verification. Previous works defined such compositional verification ap-
proach for MECHATRONICUML as well [GTB+03, Gie03, GS13]. The basic idea of
MECHATRONICUML’s compositional verification approach is a syntactic decomposition of
the functional behavior into RTCPs and components. It requires that RTCPs are specified
independent of components. Then, each discrete port of a discrete atomic component refines
one role of a RTCP, which results in one RTSC for each discrete port. These port RTSCs
are then composed to a component RTSC as illustrated in Figure 3.3. This allows to verify
the functional behavior of large components or even of complete an NMS in three steps as
illustrated in Figure 5.1.

In the following, we illustrate the three steps of MECHATRONICUML’s compositional ver-
ification approach based on the RailCab system using the RTCP EnterSection. In the RailCab
system, RailCabs travel on a track system that is subdivided into different types of sections
including switches and railroad crossings. Before entering a section, a RailCab needs to
query the section whether it is allowed to enter it using EnterSection. This is necessary for
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1. Verify Abstract Protocol via Model Checking
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Figure 5.1: Overview of the Refinement Approach [HBDS15]

realizing collision avoidance because sensors in a RailCab may not detect other RailCabs if
they are hidden behind a bend or some other obstacle. Therefore, RailCabs communicate
with a section for getting permission to enter it.

In the first step of the compositional verification approach, the developer needs to verify all
RTCPs that he used in the system for safety and liveness properties. The verification may ei-
ther be carried out using model checking based on UPPAAL as described by Gerking [Ger13]
or using a graph-based verification technique [EHH+13, SHS11]. In our RailCab example,
this step includes verification of the RTCP EnterSection beside others. For the remainder of
this chapter, we refer to the behavior implemented by the roles of the RTCP as the abstract
protocol.

In the second step, we verify whether the ports of a component correctly refine the roles
of the RTCP. This is necessary because the ports usually need to extend the role behavior
by additional computations. In our example, a port of a track section may not decide on
its own whether the track section is free. If several ports of a track section communicate
with different RailCabs, the ports need to be synchronized such that only one port allows a
RailCab to enter at a time. Despite the necessary modifications, the behavior of a port must
be compliant to the specified role behavior, i.e., it must be a legal refinement according to a
refinement definition. In the following, we refer to the behavior implemented by the discrete
ports as the refined protocol.

In the third step, we combine the port RTSCs to a component RTSC using additional syn-
chronization RTSCs (cf. Section 3.1.2.1). Then, we need to verify for each component RTSC
that it is free of deadlocks [Gie03]. We may verify additional safety and liveness properties
referring to a correct interaction of the different ports of a component if necessary. In our
RailCab example, we may verify the aforementioned property that the track section gives
permission to only one RailCab to enter at a time. Approaches for resolving such depen-
dencies automatically have beeen introduced by Eckardt and Henkler [EH10] and Goschin
et al. [Gos14, DGB14].
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Verifying the correctness of the refinement in the second step of the compositional ver-
ification approach requires a formal refinement definition. It guarantees that all properties
that have been verified for the RTCP also hold for the interaction of components via their
discrete ports. A suitable refinement definition leaves the developer with as much flexibility
on refining the model as possible, but is as restrictive as necessary for guaranteeing that no
verified property is violated. This enables to use the same RTCP for different components.
In the RailCab example, it is particularly useful to use the RTCP EnterSection for all types of
track sections. Then, the type of track section is opaque for a RailCab. Each kind of track
section, however, requires the behavior of a section to be refined differently.

In literature, different refinement definitions have been proposed [WL97, JLS00, HH11a].
Each of which provides a different compromise between preserved properties and allowed
modifications. Depending on the particular type of RTCP that is refined, all of them might
be useful when building a system. As a consequence, there does not exist one refinement
definition that is suitable of all RTCPs. Instead, a compositional verification approach should
support several refinement definitions. Presently, the compositional verification approach
supports only one particular kind of timed simulation [Gie03], which is not sufficient to
handle the example sketched above.

In this chapter, we extend the compositional verification approach of MECHATRONICUML
by supporting a total of six different refinement definitions. As our main contribution, we
present a refinement check that enables to verify all six refinement definitions for a given
role of a RTCP and a discrete port of a component. Our refinement check extends the ap-
proach by Jensen et al. [JLS00] that is based on so-called test automata. A test automaton
encodes both the behavior of the role and the conditions for a correct refinement. If (and
only if) the port behavior violates the conditions for a correct refinement, the test automaton
enters a special error location indicating a negative verification result. We parameterized and
extended the original construction such that we may verify all refinement definitions in a
single algorithm that may easily be extended to include additional refinement definitions if
necessary. As a byproduct, our refinement check may automatically detect which refinement
definition is suitable for a given pair of role and port behavior including the verified proper-
ties. Although the compositional verification approach of MECHATRONICUML is primarily
intended for verifying the software that is used in the reflective operator of the OCM [GS13],
our refinement check may also be used for checking refinements of RTCPs that are used in
the cognitive operator.

In the remainder of this chapter, we first describe the behavior of the RTCP EnterSection
including refined port RTSCs for the different types of track sections in Section 5.1. Sec-
tion 5.2 reviews the six refinement definitions that we consider in our approach. Then, we
introduce our refinement check based on test automata in Section 5.3 and its implementation
in Section 5.4. Thereafter, we discuss the assumptions and limitations of our approach in
Section 5.5. We evaluate our refinement check using a case study based on the RTCP En-
terSection (Section 5.6). Finally, we discuss related work (Section 5.7) and summarize the
results (Section 5.8).

The test automaton construction presented in Section 5.3 has been developed as part of
a Master’s Thesis [Bre10]. The contents of this chapter have been published in [BHSH13]
and [HBDS15].
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5.1 Refining Real-Time Coordination Protocols to Port
Implementations

In the following, we describe the RTCP EnterSection including the RTSCs of both roles in
Section 5.1.1. Then, we show in Section 5.1.2 how the role section needs to be refined for
different types of track sections.

5.1.1 Real-Time Coordination Protocol EnterSection

The RTCP EnterSection has two roles named railcab and section as shown in Figure 5.1. The
role railcab is to be implemented by RailCabs while the role section is to be implemented by
all types of track sections. Both roles have a buffer size of 1 and a message has a propagation
delay of 20 ms.
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Figure 5.2: RTSCs of Role railcab and Role section of RTCP EnterSection [HBDS15]

Figure 5.2 shows the RTSCs of the two roles railcab and section. In our behavior specifi-
cation, we assume that a track section senses upcoming RailCabs that are about to enter and
notifies these RailCabs using a message newSection. Then, the informal behavior definition
is as follows: Initially, both roles are in state Idle. As soon as role section recognizes the
RailCab, it sends the message newSection to role railcab. railcab needs to answer with request
within 100 ms. Then, role section switches to state CheckRequest. In this state, the section
checks within 1980 ms if the RailCab may enter. This check is not part of the protocol but of
the concrete component because each type of section must execute different checks. How-
ever, the result is stored in variable free and may be true or false. If the section is free,
then the role section sends the message enterAllowed and switches to state EnterAllowed, else
it sends the message enterDenied and switches to state EnterDenied. The RailCab expects one
of these messages within 2 s. If the track section was not free, section will check repeatedly
whether the track section becomes free. As soon as this is the case, section sends enterAllowed
and switches to the eponymous state. For simplicity reasons, we assume that entering will
eventually be allowed within 1980 ms. After receiving enterAllowed, the RailCab switches to
Approved and starts entering the track section. Upon entering the track section, railcab sends
enterSection. This needs to happen within 2 min. section will receive this message at most
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120,040 ms (= 2 min 40 ms) after it allowed the railcab to enter and will answer with message
confirmEntry. As soon as the RailCab leaves the section, it will send message leaveSection.
Role section will confirm this with the message confirmExit. After one second, the interaction
for this drive through is finished. Then, railcab may start a new interaction with the next track
section.

The RTCP EnterSection is safety-critical. If a RailCab is allowed to enter a track section
although the track section is occupied, a crash will happen. Therefore, we verify the RTCP
for safety and liveness properties in Step 1 of the compositional verification approach. In
particular, we verify three properties φ1 to φ3 that are needed to be preserved by the ports
that refine the roles of this RTCP (cf. [HBDS15]).

The first property is: "The message enterSection will not be sent by role railcab until section
sends enterAllowed." We may formalize this property φ1 using TCTL as:

φ1 = AG(A not railcab.enterSectionMsg W section.enterAllowed)

The second property is: "A RailCab may eventually enter a track section". We may for-
malize this property φ2 using TCTL as:

φ2 = EF (section.RailCabOnSection)

Finally, φ3 ensures that the RTCP does not have a deadlock.

5.1.2 Refined Port Real-Time Statecharts

The roles of EnterSection now need to be refined by discrete ports of the components. "Typ-
ical refinement steps include adding data exchange between different ports of a compo-
nent, adding component specific functions, and accessing shared variables inside the compo-
nent. That, in turn, may require to add additional states and transitions to the RTSC of the
role." [HBDS15] This refinement results in the port RTSC.

In our RailCab example, the RailCab refines the role section at its ports section1 and sec-
tion2 of the embedded component DriveControl as shown in Figure 3.6. These two ports are
mandatory in DriveControl. We assume that they are always reconnected by the surrounding
RailCab component such that one port instance is always connected to the current track sec-
tion while the other is connected to the next track section. If the RailCab has left and track
section and returned to the Idle state, the port is reconnected to the next track section.

We consider three different types of track sections. These are normal track sections, rail-
road crossings, and switches. The corresponding components are shown in Figure 5.3. By
using EnterSection for all types of track sections, we enable RailCabs to register at any type of
track section without needing to distinguish them. However, each of the three types of track
sections requires the behavior to be refined differently as we illustrate in the following.

"We start with the normal track section. A normal track section is a track section that has
only tracks but no switches, stations, or any kind of crossing. A normal track section may
need to communicate with more than one RailCab at a time, e.g., from different directions.
Then, the decision whether the track section is free does not only depend on the commu-
nication of a single port with a RailCab, but it depends on the communication of several
ports with RailCabs. This is because if one port permits a RailCab to enter the track section,
all other ports have to deny. Thus, the decision whether the track section is free can only
be made within the component but not within the RTCP. As a consequence, we need to re-
fine the track section behavior as shown in Figure 5.4. We highlighted the parts that were
changed or added with respect to the RTSC in the right part of Figure 5.2 in blue color. In
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       Normal

  TrackSection
rightleft

precedingSwitch

(a) Component for Normal Track Sections

   Railroad

     Crossing
rightleft

precedingSwitch

(b) Component for Railroad Crossings

    Switch

rightleft

bottom followingSection

(c) Component for Switches

Figure 5.3: Components for the Different Types of Track Sections [HBDS15]

particular, the RTSC for ports of the normal track section reads the variable sectionFree at the
transition from RailCabApproaching to CheckRequest which is declared inside the component
RTSC. If the track section is free, then the RTSC needs to synchronize via the synchroniza-
tion channel acquire with the internal RTSC of the component for reserving the track section.
As part of this synchronization, the internal RTSC changes the value of sectionFree to false
(cf. Figure A.39 in Appendix A.5.2.1).

normal_section

Idle

variable: boolean free

clock: c2

RailCabApproaching

c2 ≤ 1800ms

CheckRequest

c2 ≤ 1980ms

request /

{free := sectionFree}

RailCabOnSectionWaitPostAction

c2 ≤ 1s
leaveSection /

confirmExit() {reset: c2}

[c2 ≥ 1s]

release! /

/ newSection() {reset: c2}

EnterDenied

c2 ≤ 1980ms

[not free] /

enterDenied()

{reset: c2}
[free] acquire! / 

enterAllowed() {reset: c2}

EnterAllowed

c2 ≤ 120040ms

enterSection / 

confirmEntry()

[free] acquire! / 

enterAllowed() 

{reset: c2}

[c2 ≥ 1s] [not free] /

{free := sectionFree}

Figure 5.4: Refined Protocol Behavior for Normal Sections [HBDS15]

Having consumed the message newSection, the RTSC of the role section gives a limit of
1980 ms for deciding whether the section is free. The normal track section, however, only
needs to read the variable sectionFree that is defined in the component RTSC for this decision.
This only takes a small amount of time. Therefore, we relax the invariant of the state Rail-
CabApproaching from 100 ms to 1800 ms to increase the probability that a RailCab currently
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driving on the section has already left. As a result, the normal track section will store the
request in the in-buffer beyond the point in time that was allowed by the abstract protocol.

Normal Track 

Section (ts1)

Switch (ts3)

Railroad 

Crossing (ts4)

Normal Track 

Section (ts2)

RailCab 2

R
ailC

ab 1

Figure 5.5: Deadlock Resulting from RailCab Stopping on a Switch [HBDS15]

The second type of track section is the switch. In addition to the requirements of a normal
track section, switches have the requirement that a RailCab must not stop on a switch. In
particular, a RailCab must stop before entering the switch if the subsequent section is not
free. Consider the situation shown in Figure 5.5. RailCab 1 entered the switch ts3 driving to
the right. It needs to stop because the subsequent section ts4 is occupied by RailCab 2 driving
to the left. Since RailCab 1 blocks the switch, RailCab 2 cannot pass. If RailCab 1 waited
on ts1, i.e. before the switch, RailCab 2 would have been able to pass. For preventing such
situations, we only allow RailCabs to enter a switch if the subsequent track section is free as
well. As a consequence, the switch needs to communicate with the subsequent track section
if it receives a request from a RailCab.

Figure 5.6 shows the resulting RTSC for a switch. The switch also uses an additional
state, which is called WaitForTrack. At the transition from RailCabApproaching to WaitForTrack,
the RTSC synchronizes with the port followingSection of the switch (cf. Figure 5.3c) via the
synchronization channel nextSectionFree. Then, the port followingSection communicates with
the subsequent track section for checking whether that track section is free. If so, the port
synchronizes via sectionFree, otherwise it synchronizes via sectionOccupied. Only if the switch
itself and the subsequent track section are free, then the RTSC may switch to EnterAllowed
and give permission to enter the switch to the RailCab.

Finally, we consider railroad crossings where cars and pedestrians cross the tracks. In ad-
dition to the requirements of a normal track section, we must close the gates before allowing
a RailCab to enter. The gates needs to remain closed as long as the RailCab drives on the
railroad crossing and need to be opened after the RailCab left." [HBDS15]

Figure 5.7 shows the resulting RTSC for a railroad crossing. We added an additional state
ClosingGate where the railroad crossing waits for the gates to close. At the transition from
CheckRequest to ClosingGate, the RTSC synchronizes with the internal behavior of the railroad
crossing using the synchronization channel closeGate for closing the gate. After the gates
have been closed, the internal behavior synchronizes via gateClosed and the RTSC switches
to EnterAllowed. Although the RTSC looks fine at a first glance, it does not correctly refine the
abstract protocol due to a timing error in state CheckRequest. We deliberately added this error
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switch

Idle

variable: boolean free, boolean firstTry;

clock: c2;

RailCabApproaching

c2 ≤ 100ms

CheckRequest

c2 ≤ 1980ms

request  nextSectionFree! /

{firstTry := true}

RailCabOnSectionWaitPostAction

c2 ≤ 1000ms

leaveSection /

confirmExit() {reset: c2}

[c2 ≥ 1000ms]

release! /

/ newSection() {reset: c2}

EnterDenied

c2 ≤ 1980ms

[firstTry and (not free)] /

enterDenied() {reset: c2}

[free] acquire! / 

enterAllowed() {reset: c2}

EnterAllowed

c2 ≤ 120040ms

enterSection /

confirmEntry()

[c2 ≥ 1s] [not free] /

{free := sectionFree}

WaitForTrack

c2 ≤ 1900ms

exit/ {free := sectionFree}

sectionFree? /sectionOccupied? /

{free := false}

[free] nextSectionFree! /

{firstTry := false; reset: c2}

[(not firstTry) and (not free)] /

{reset: c2}

Figure 5.6: Refined Protocol Behavior for Switches [HBDS15]

for illustrating in our case study (cf. Section 5.6) how we detect such incorrect refinements
using our refinement check. We present a correctly refined RTSC in Section 5.6.4.

"Although each of the three RTSCs introduced above refines the same abstract protocol
behavior, the resulting refined RTSCs look quite different. Even though the RTSCs are only
of medium size, it is already very hard to decide manually whether they have been refined
correctly." [HBDS15] Using our refinement check, we may automatically decide whether
they are correctly refined.

5.2 Considered Refinement Definitions

"A refinement definition relates an abstract model and a refined model of the same system.
In our approach, the abstract model is given by the abstract protocol while the refined model
is given by the refined protocol as shown in Figure 5.1. The refinement definition defines
how the behavior defined by the refined protocol may deviate from the behavior defined by
the abstract protocol such that verified properties still hold. That means, if the refinement
definition is fulfilled, we can avoid any explicit verification of the refined protocol.

In a little more detail, a restrictive refinement definition guarantees that verified safety and
liveness properties, like properties φ1, φ2, and φ3 in Section 5.1.1, still hold for the refined
protocol. This is crucial for our compositional verification approach. A less restrictive re-
finement definition leaves developers with more flexibility to adapt the abstract protocol to a
component and, thus, allows for more possible refined protocols. Finding a suitable refine-
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rail_road_crossing

Idle

variable: boolean free

clock: c2

RailCabApproaching

c2 ≤ 100ms

CheckRequest

c2 ≤ 120ms

request /

{free := sectionFree}

RailCabOnSection

WaitOpenGate

c2 ≤ 1s

openGate!  

leaveSection /

confirmExit() 

{reset: c2}

[c2 ≥ 1s]

gateOpened? /

/ newSection() 

{reset: c2}

EnterDenied

c2 ≤ 1980ms

[not free] /

enterDenied() {reset: c2}

EnterAllowed

c2 ≤ 120040ms

enterSection /

confirmEntry()

[c2 ≥ 1s] [not free] /

{free := sectionFree}

ClosingGate

c2 ≤ 1980ms
[free] closeGate! /

{reset: c2}

gateClosed? / 

enterAllowed()

{reset: c2}

[free] 

closeGate! /

Figure 5.7: Incorrectly Refined Protocol Behavior for Railroad Crossings due to a Timing
Error in State CheckRequest [HBDS15]

ment definition is, thus, a trade-off between flexibility upon building the refined protocol and
properties that are preserved by the refined protocol." [HBDS15]

"In the following, we briefly explain the six most relevant refinement definitions for net-
worked mechatronic systems. Four of these, simulation [BK08], bisimulation [BK08], timed
simulation [WL97], and timed bisimulation [WL97], are especially well-known definitions.
Each of them has been shown to preserve a particular class of verified properties. We ad-
ditionally consider the less well-known timed ready simulation [JLS00] and relaxed timed
bisimulation [HH11a, Hen12] because they are particularly useful for refining MECHATRON-
ICUML models." [HBDS15] We restrict ourselves to informal descriptions of the refinement
definitions because the formal definitions are not required for understanding the presented
concepts. We refer the interested reader to the literature given above for formal definitions
of all refinements.

"All of the considered refinement definitions only allow the refined protocol to include
sequences of sent and received messages that are already specified in the abstract proto-
col. None of them allows the refined protocol to add additional sequences of messages.
As a minor extension to the existing definitions, we require that the refined protocol cor-
rectly refines non-deterministic choices contained in the abstract protocol. That means after
a choice, the refined protocol needs to conform to the abstract protocol that made the same
choice." [HBDS15]

For being able to add behavior to the role RTSCs as described in Section 5.1.2, we consider
only so-called weak variants of the refinement definitions [WL97]. These abstract from inter-
nal behavior that is defined by transitions not carrying a message but performing an internal
computation or synchronization. Since these operations are not visible to a communication
partner, they are not relevant for the message exchange defined by the protocol. In particular,
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the refinement only needs to ensure that the next message after such internal computation is
sent in the right time interval.

"The upper part of Figure 5.8 shows a timing diagram for an excerpt of the role behav-
ior defined by the RTSC section in Figure 5.2. The timing diagram shows when (in which
time interval) the messages newSection, request, enterAllowed, and enterDenied can be sent or
received. Here, section may send the message newSection at an arbitrary point in time. Af-
ter sending newSection, the clock c2 is reset to 0 and request must be received within 100 ms.
Then, either enterAllowed or enterDenied must be sent until c2 reaches 1980 ms. The lower part
of Figure 5.8 gives six examples for port RTSCs. Each refines the role section in a different
way, resulting in different intervals for sending or receiving the aforementioned messages.
Each of the examples showcases a different combination of changes to the intervals, e.g, the
extension of intervals for received messages but not for sent messages. As a consequence,
each example fulfills a different set of refinements as indicated in the corresponding row in
the table on the right. In the following, we introduce all six refinement definitions from left
to right with respect to the table in Figure 5.8. Along with the description of each refinement
definition, we will refer to Figure 5.8 to illustrate the differences.

All of the refinement definitions mentioned above rely on the assumptions stated in Sec-
tion 2.4.3. If a system does not fulfill these assumptions, the refinement definitions presented
in this section cannot guarantee that the verified properties still hold for the refined proto-
col." [HBDS15]

Simulation
Simulation [CGP00, BK08] is the least restrictive refinement definition that we consider.
It requires that the refined protocol only includes sequences of messages that are already
specified by the abstract protocol. The refined protocol may remove sequences of messages
and define a different timing of messages. As a result, simulation preserves all LTL formulas
and all CTL formulas that only contain ∀-path quantifiers. Formulas with an ∃-path quantifier
are not preserved because the paths fulfilling the property might be removed.

In Example 1 in Figure 5.8, the message enterDenied is removed, while enterAllowed can
still be sent later. The interval for receiving the message request, on the other hand, is short-
ened. These changes are permitted by simulation but not by any other considered refinement
definition.

Bisimulation
Bisimulation [CGP00, BK08] requires that the refined protocol contains the same sequences
of messages as the abstract protocol but allowing for a different timing. As a result, bisimu-
lation preserves all LTL and CTL formulas.

Example 2 in Figure 5.8 fulfills the conditions of bisimulation because it uses the same
sequences of messages with a different timing. Example 1 does not fulfill the conditions of
bisimulation because a message has been removed.

Timed Simulation
Timed simulation [WL97] imposes the same conditions as simulation but additionally im-
poses timing constraints. In particular, the refined protocol may only send and receive mes-
sages in the same or a restricted time interval compared to the abstract protocol. As a conse-
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Figure 5.8: Example for Illustrating the Differences Between the Considered Refinement
Definitions [HBDS15]
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quence, timed simulation preserves all TCTL formulas that only contain ∀-path quantifiers.
We refer to this as ATCTL.

In Figure 5.8, the refinement in Examples 3 and 4 fulfills the conditions of timed simulation
because time intervals are only reduced but never extended. Examples 1 and 2 extend the
time interval for sending enterAllowed and, therefore, do not fulfill the conditions of timed
simulation.

Timed Ready Simulation
Timed ready simulation [JLS00] imposes the same conditions as timed simulation but ad-
ditionally requires that the refined protocol preserves all urgent transitions including their
timing. Jensen et al. [JLS00] proved that this is necessary for a compositional verification
approach if the behavior contains urgent transitions. As a result, timed ready simulation
preserves all ATCTL properties and ensures that the refined protocol has the same urgent
behavior as the abstract protocol.

In Figure 5.8, Example 4 fulfills the timed ready simulation because the interval of the
urgent transition for receiving the message request is not changed. In addition, the behavior
of the switch and the crossing fulfills the timed ready simulation because it sends and receives
all messages in the same time intervals as the role section.

Timed Bisimulation
Timed bisimulation [WL97] imposes the same conditions as a bisimulation but additionally
requires that the refined protocol sends and receives messages in exactly the same time in-
tervals as the abstract protocol. Therefore, it is the strictest refinement definition that we
consider. Still, the timed bisimulation allows to modify the abstract protocol during the re-
finement step by inserting internal computations between the sent and received messages if
they do not affect the timing of messages. Timed bisimulation preserves all TCTL properties.

In Figure 5.8, only the behavior of switch and crossing fulfills the conditions of timed
bisimulation because it neither removes messages nor changes time intervals of messages as
it is the case in all other examples.

Relaxed Timed Bisimulation
The relaxed timed bisimulation [HH11a, Hen12] relaxes the strict conditions of timed bisim-
ulation. In particular, it enables to extend the time intervals for receiving message, but it still
requires that the upper bounds for sent messages remain unchanged. This refinement is par-
ticularly useful for networked mechatronic systems. If two mechatronic systems coordinate
on a specific task, it often does not matter when messages are received but only that the an-
swer is on time. In our example, it is irrelevant for a RailCab at what point in time the track
section processes its request. For the RailCab, it only matters that it receives the answer in
time. Due to the relaxation on received messages, relaxed timed bisimulation preserves all
LTL and CTL-formulas as well as all TCTL formulas only referring to the latest sending of
messages.

Relaxed timed bisimulation imposes two important conditions on the RTCP being refined.
First, the refined protocol needs a larger in-buffer than the abstract protocol in order to avoid
buffer overflows because message are taken out of the in-buffer later. Second, the RTCP
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must be bidirectional. Otherwise, the receiving protocol will not be restricted in its timing
behavior at all.

In Figure 5.8, the behaviors of normal track section, switch, and crossing fulfill the condi-
tions of relaxed timed bisimulation. The behavior of normal track section (cf. Figure 5.4) still
receives request after 1800 ms which is covered by relaxed timed bisimulation but violates
timed bisimulation.

5.3 Test automata-based Refinement Checking

This section introduces our approach [Bre10] for verifying correct refinements of roles to
ports. Our approach is based on test automata. "Test automata have been introduced by
Jensen et al. [JLS00] as an approach for verifying refinements for UPPAAL timed automata.
The basic idea of their approach is to encode an abstract automaton A and the conditions for
a correct refinement as an automaton TA, called test automaton. Test constructs in TA encode
which changes are allowed and which are not, according to the conditions of the particular
refinement definition (cf. Section 5.2). The test automaton TA is then used to verify whether a
refined automatonR is a correct refinement ofA according to the given refinement definition.
If and only if the conditions of the refinement definition are not fulfilled by R, a special state
Error in TA becomes reachable via the test constructs. Jensen et al. use a reachability analysis
for deciding whether Error is reachable or not. Figure 5.9 gives an overview of our process
for refinement checking based on test automata in MECHATRONICUML." [HBDS15]

Role RTSC A Port RTSC R

Test RTSC TA

Parallel Test System (TA || Radj)

[Error State Reachable]

2. Construct Test Automaton

(Section 7.4.2)

4. Parallel Composition

(Section 7.4.4)

5. Reachability Analysis

(Section 7.4.4)

[else]

false + 

Counterexample
true

Refinement Definition

3. Adjust Refined System

(Section 7.4.3)

RTSC Radj

1. Refinement Selection

(Section 7.4.1)

Safety/Liveness 

Properties

Legend: ... Artifact Control/Data Flow... Algorithm

Figure 5.9: Refinement Check using Test Automata [HBDS15]
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The inputs for our refinement check are the RTSC of the role serving as the abstract au-
tomaton A, the RTSC of the port serving as the refined automaton R, and the safety and
liveness properties that have been verified for the abstract protocol. The refinement check
is then carried out in five steps. In the first step, we automatically select the most suitable
refinement definition based on the role RTSC and the safety and liveness properties (cf. Sec-
tion 5.3.1). In the second step, we construct the test automaton TA (cf. Section 5.3.2). We
extend the construction by Jensen et al. [JLS00] such that it enables checking all six refine-
ment definitions introduced in Section 5.2. In particular, we introduce new test constructs
for checking relaxed timed bisimulation and bisimulation. Our new construction is param-
eterized such that a test automaton can be built based on the selected refinement definition.
Since TA is a RTSC in our approach, we call it the Test RTSC. In the third step, we adjust
the port RTSC R to Radj such that it may be tested by TA (cf. Section 5.3.3). In particular,
TA needs to communicate via synchronizations with R, i.e., without the additional delay of
asynchronous communication, for testing the intervals in which R sends or receives mes-
sages. Thereafter, we build the parallel test system TA ‖ Radj . The construction of the
parallel test system is based on NTAs. We refer to Appendix B for a formal definition of the
construction of an NTA for two RTSCs. Finally, we perform a reachability analysis on the
parallel test system (cf. Section 5.3.4). If the special error state is reachable in TA ‖ Radj ,
the port RTSC is not refined correctly and our algorithm returns a counterexample. If the
error state is not reachable, the refinement is fulfilled.

5.3.1 Refinement Selection

We summarized the characteristics of the six refinement definitions introduced in Section 5.2
in the decision tree shown in Figure 5.10. Using this decision tree, we may automatically
derive the most suitable refinement definition based on the role RTSC, the port RTSC, and the
verified properties. The most suitable refinement definition is the one that is least restrictive
for the given kind of models while still preserving all properties that were verified for the
abstract protocol. A less restrictive refinement definition allows more modifications in the
refined protocol and, therefore, provides more flexibility to the developer.

no clocks clocks

Simulation Bisimulation

only

"-quantifiers else

only "-quantifiers

Timed Ready 

Simulation

urgent 

transitions

no urgent 

transitions

Relaxed Timed 

Bisimulation

Timed 

Simulation

same 

buffer

larger 

buffer

Timed 

Bisimulation

larger 

buffer

same 

buffer

else

bidirec-

tional

unidirec-

tional

Legend: ... Refinement Definition Conditional EdgeChoice

Figure 5.10: Decision Tree for Selecting a Refinement Definition [HBDS15]
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We can extract the necessary information for deriving a decision based on the decision
tree by a syntactical analysis of the inputs. For the first decision in the tree, we need to
analyze whether the RTSCs use clocks or not. Untimed refinements are not suited for models
that define time-dependent behavior. Second, we check whether the properties only contain
∀-path quantifiers as, e.g., Property φ1 in Section 5.1.1, or whether they also contain ∃-
path quantifiers as, e.g., Property φ2. If any property uses an ∃-path quantifier, we need a
variant of bisimulation to preserve this formula. Third, for timed refinements we need to take
into account whether the port RTSC uses a larger in-buffer than the role RTSC. While our
Relaxed Timed Bisimulation is less restrictive than the alternatives, it can only be used in
cases where a larger buffer is available. To decide whether to select Timed Ready Simulation
or Timed Simulation we also need to analyze if the role RTSC uses urgent transitions. Finally,
Relaxed Timed Bisimulation is only applicable for bidirectional protocols. If the protocol is
unidirectional, we need to apply the more restrictive Timed Bisimulation.

In our example in Section 5.1, all three refined RTSCs use clocks. Therefore, we take the
right branch of the decision tree in all three cases. As Property ϕ2 contains an ∃-path quan-
tifier, we take the else-branch on the next decision. Therefore, the only suitable refinements
remaining are relaxed timed bisimulation and timed bisimulation.

The refined RTSC of the normal track section (cf. Figure 5.4) uses a larger in-buffer than
the role section. As a result, the decision tree selects relaxed timed bisimulation for checking
this refined RTSC. The refined RTSCs of switch (cf. Figure 5.6) and railroad crossing (cf.
Figure 5.7) do not use a larger buffer. Therefore, the decision tree selects timed bisimulation
for these refined RTSCs.

5.3.2 Construction of the Test Automaton

"Figure 5.11 presents the schema for the construction of a part of TA. In particular, it defines
how one single transition S −→ S′ of A is translated to TA. Thus, the construction schema
needs to be applied to each transition of A. Figure 5.12 shows an excerpt of a test RTSC Sec-
tionTA_TBS that has been constructed by applying the construction schema to each transition
of the role section (cf. Figure 5.2) for checking a timed bisimulation. In the following, we
refer to this example to illustrate the constructs created as part of TA.
TA contains test constructs for checking the different conditions of the refinement def-

initions. In particular, the test constructs check for allowed communication (Case 1, cf.
Section 5.3.2.1), forbidden communication (Cases 2a and 2b, cf. Section 5.3.2.2), and re-
quired communication (Cases 3a, 3b, and 3c, cf. Section 5.3.2.3) in R. Which of these test
constructs are used in TA depends on the refinement definition to be checked as shown in
Table 5.1. In addition, Table 5.1 summarizes the definition of the function widen used at
the transitions STA −→ STA

′ in TA. We explain this function along with the labels of the
transitions in the following." [HBDS15]

5.3.2.1 Test Constructs for Allowed Communication (Case 1)

Case 1 includes allowed communication in TA, i.e., sequences of messages that are defined
by A. We include allowed communication in TA because all refinement definitions allow
these sequences of messages to be included in R. The white states STA and S′TA in the
schema correspond to the states S and S′, respectively, of A. The transitions between white
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RTSC_TA

RTSC_A
S‘S

I

[cc = cclow ˄ cchigh] [g] µin  /

µout() {a, reset: r}
... ...

...
1

[cTA = tmax]

3b

3a

3c

2a

2b

C3a

C3b

STA‘STAError

C3c

Neutral

µout? µin![cTA = tmax]

[not g] µout? µin!

[˄i (¬widen(ref,cci,I))]

µout? µin!

[cc ˄ I] [g]

[cchigh ˄ I] [g]

µout? µin!

...[widen(ref,cc,I)] [g] µout? µin! /

{a‘, reset: r È {cTA}}

[cchigh ˄ I ˄ cTA = 0] [g]

      µout? µin!

 " min,moutÏ∑(L):

mout? min!

Figure 5.11: Construction Schema for our Test Automata [HBDS15]

Table 5.1: Required Cases and Definition of widen Function for Each Refinement Defini-
tion [HBDS15]

Refinement Definition Required Cases Definition of widen
Simulation 1, 2a true

Bisimulation 1, 2a, 3c true

Timed Simulation 1, 2a, 2b cc ∧ I
Timed Ready Simulation 1, 2a, 2b, 3a (urgent) cc ∧ I
Relaxed Timed Bisimulation 1, 2a, 2b, 3b (sending), cchigh ∧ I (sending),

3c (receiving) true (receiving)
Timed Bisimulation 1, 2a, 2b, 3a cc ∧ I

states correspond to the role behavior. For each transition S −→ S′ in A, we add one
corresponding transition STA −→ STA

′ to TA. In the example of Figure 5.12, the white
states and the transitions between them have been created to handle allowed communication.

Since TA needs to communicate synchronously with Radj , we map asynchronous mes-
sages to synchronizations. If S −→ S′ sends (receives) a message µout (µin), then the cor-
responding transition STA −→ STA

′ specifies a synchronization µin? (µout!). That means,
TA produces the inputs for Radj and receives its outputs. All transitions in TA that carrying
a synchronization are non-urgent even if the corresponding transition is urgent in A. This is
necessary for entering the test constructs checking for forbidden and required communication
because urgent transitions have precedence over non-urgent transitions. Then, TA ‖ Radj
would urgently execute the allowed behavior without being able to enter the test constructs.
All other transitions TA have the same urgency as their corresponding transitions in A.
STA −→ STA

′ specifies the same guard g as the corresponding transition in A such that it
may only be enabled if S −→ S′ is enabled. In addition, we add all clock resets of S −→ S′
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SectionTA_TBS

Error

RailCabApproachingTA

CheckRequestTA
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{reset: c2, cTA}

[free] [c2 ≤ 1980ms] 

enterAllowed? / 

{reset: c2, cTA}

EnterAllowedTAenterAllowed? /

{reset: c2, cTA}
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Error
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Error
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enterDenied!
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...
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enterAllowed?

[not free] enterAllowed?

[free] enterDenied?

Figure 5.12: Example Test RTSC (Excerpt) for Checking the Timed Bisimulation for sec-
tion [HBDS15]

to STA −→ STA
′. The latter includes one additional clock reset for the clock cTA. This

clock is used by TA for checking required communication as we explain in Section 5.3.2.3.

In Figure 5.12, the transition from IdleTA to RailCabApproachingTA defines the synchroniza-
tion newSection?. It has been derived from the transition Idle to RailCabApproaching of section
(cf. Figure 5.2) that sends a message newSection. In addition, the transition from IdleTA to
RailCabApproachingTA specifies the clock reset for c2 and additionally resets cTA.

The time guard of STA −→ STA
′ depends on the refinement definition to be checked, the

time guard cc of S −→ S′, and the invariant of state S in A. Based on these inputs, the
function widen assigns a time guard to STA −→ STA

′. Table 5.1 summarizes the outputs
of widen for the different refinement definitions. In any case, the state STA does not have
an invariant. This is necessary to enable that TA may check whether R sends or receives
messages in different time intervals compared toA. If STA carried an invariant, TA would be
forced to fire a transition and would not be able to identify whether R may exceed the time
interval specified by A due to the semantics RTSCs (cf. Appendix B).

Simulation and bisimulation do not check timing conditions and, therefore, widen assigns
true as a time guard to STA −→ STA

′. The same holds for transitions receiving a message
when checking for a relaxed timed bisimulation because relaxed timed bisimulation allows
to delay such transitions arbitrarily.
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For timed simulation, timed ready simulation, and timed bisimulation, the time guard
returned bywiden is the conjunction of the original time guard cc and the invariant I of S. As
a result, the transition STA −→ STA

′ may only fire if the corresponding transition S −→ S′

is enabled. Since the example in Figure 5.12 has been constructed for a timed bisimulation,
all time guards at transitions between white states use time guards of the form cc ∧ I .

Finally, the relaxed timed bisimulation uses the guard cchigh ∧ I , i.e., it conjuncts the
upper bound of the original time guard and the invariant I of S. This is because relaxed
timed bisimulation also allows transitions to send messages earlier compared to A but not
later.

The translation of the transition action a of S −→ S′ depends on whether a contains a non-
deterministic choice expression. If so, the non-deterministic choice expression is removed
from a. If not, a is added unmodified to STA −→ STA

′. All variables used with non-
deterministic choice expressions are shared in TA ‖ Radj . The reason for the same is, R
needs to refineA correctly for any choice. However, after making a choice,R should not need
to correspond to an A that made a different choice. In our example, the RTSC for role section
in Figure 5.2 and the RTSC for port normal_section in Figure 5.4, both non-deterministically
assign the variable free. Then, A and R need to show the same behavior if the section is free
(sending enterAllowed) and if the section is not free (sending enterDenied). As a consequence,
only Radj makes the non-deterministic choices and TA follows these choices.

5.3.2.2 Test Constructs for Forbidden Communication (Case 2)

Case 2 checks for forbidden communication, i.e., messages that may not be sent or received
by R if A is in state S. Therefore, we add the special state Error to TA and create transitions
from white states to Error. Here, we need to distinguish Cases 2a and 2b. Case 2a checks
for illegal messages, i.e., messages sent or received by R in state STA that are not defined
by any outgoing transition of S in A. These messages may also not appear in R because
all refinement definitions forbid to add new sequences of messages to R. Case 2b checks
for legal messages that are sent at illegal times, i.e., messages that may indeed be sent by R
in state STA, but which do not comply to the timing restrictions imposed by the refinement
definition. We explain both cases below in more detail. In Figure 5.12, we included several
Error states to improve the readability of the figure.

Case 2a: Illegal Message
In Case 2a, we add two types of transitions to TA. First, we add one transition STA −→
Error for each message µ that is not specified at any outgoing transition of S inA. IfR adds
a forbidden message, these transitions make Error reachable. The resulting transitions only
carry the synchronization corresponding to the message µ. Second, we add one transition
for each message µin or µout that is specified at an outgoing transition of S in A. This
transition checks whether R may send µout or receive µin if the guard g is not fulfilled. This
is forbidden because R needs to behave in the same way as A under a given decision. The
resulting transition only carries the synchronization corresponding to µin or µout and the
negated transition guard ¬g. We add such transitions for any refinement definition that we
consider in our approach (cf. Table 5.1).

In our example in Figure 5.12, the thick and dashed red transition from IdleTA to Error has
been constructed based on Case 2a. It represents a set of transitions to improve readability
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of the figure. In particular, we obtain one transition that checks whether R may receive
newSection in state Idle and additional transitions for any other message that checks whether
this message may be sent or received by R. All of these messages are forbidden because
R may only send newSection in state Idle. The two upper transitions from CheckRequestTA

to Error are also constructed based on Case 2a. The first one checks whether R may send
enterDenied even though the section is free. The second one checks whether R may send
enterAllowed even though the section is not free. Both are forbidden because R needs to
behave in the same way as A if the section is free or not free.

Case 2b: Legal Message at Illegal Time
In Case 2b, we add one transition STA −→ Error for each time interval in which µ may
not be sent or received in R according to the given refinement definition. This case is
only checked by refinement definitions that impose conditions on the timing of messages
(cf. Table 5.1). The resulting transitions only carry a synchronization corresponding to
the message µ and a time guard. The time guard encodes all time intervals where transi-
tions STA −→ STA

′ with synchronization µ may not fire.

We compute the time guard as follows. Each transition i from STA to STA′ in TA has a
time guard of the form

∧
j lowij ≤ cj ≤ upij for clocks cj . We negate this clock constraint

to obtain time intervals where the corresponding message µ may not be sent or received and
yield a time guard of the form

∨
j(cj < lowij ∨ cj > upij). Then, we need to conjunct the

resulting time guards for all transitions i to obtain time intervals where none of them may
fire. Consequently, the transition from STA to Error has the time guard

∧
i

∨
j

(cj < lowij ∨ cj > upij)

 .

For a simple example, consider a state with two outgoing transitions that send a message
a, one with the clock constraint 10 ≤ c ≤ 20 and one with 50 ≤ c ≤ 60. Then, the resulting
clock constraint is

¬((c ≥ 10 ∧ c ≤ 20) ∨ (c ≥ 50 ∧ c ≤ 60))
= (c < 10 ∨ c > 20) ∧ (c < 50 ∨ c > 60)
= (c < 10 ∧ c < 50) ∨ (c < 10 ∧ c > 60) ∨ (c > 20 ∧ c < 50) ∨ (c > 20 ∧ c > 60)
= (c < 10) ∨ (20 < c < 50) ∨ (c > 60)

Since clock constraints may only contain conjunctions, we create individual transitions for
c < 10, 20 < c < 50, and c > 60. If Radj defines the synchronization a! within one of these
time intervals, then Error becomes reachable.

In Figure 5.12, the right transition from RailCabApproachingTA to Error has been created
based on Case 2b. The transition from RailCabApproachingTA to CheckRequestTA has the time
guard c2 ≤ 100 resulting from the invariant of state RailCabApproaching in section. Thus, the
transition from RailCabApproachingTA to Error has the time guard c2 > 100 and specifies the
same synchronization.
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5.3.2.3 Test Constructs for Required Communication (Case 3)

Case 3 checks for required communication, i.e., sequences of messages that must be included
in R according to the refinement definition. In particular, all variants of bisimulation and the
timed ready simulation require that R contains particular sequences of messages that are
contained in A. We add a neutral state Neutral to TA that is reached when a required message
is correctly sent or received by R. Case 3 is further subdivided into Cases 3a to 3c. Each
case is associated with one particular kind of test state CX(X ∈ [3a, 3b, 3c]) for checking
the corresponding conditions. TA contains one such state for each required message µ that
needs to be included in R. In addition, we add transitions STA −→ CX , CX −→ Neutral,
and CX −→ Error to TA. If R violates the conditions imposed by the refinement defini-
tion, transitions CX −→ Error are enabled and Error is made reachable. Otherwise, the
transitions CX −→ Neutral lead to the neutral state.

The Cases 3a to 3c check for different time intervals where µ needs to be sent or received
by R. Which case is used depends on the particular refinement definition that is applied (cf.
Table 5.1). We introduce the different cases in detail below.

Case 3a: Message in Same Time Interval
Case 3a with the associated state C3a checks that R sends or receives µ in exactly the same
time interval as A. This is needed for timed bisimulation and timed ready simulation. Timed
bisimulation does not allow R to reduce the time intervals for messages that were defined
in A. Timed ready simulation requires the same but only for messages defined for urgent
transitions.

The transition from STA to C3a has a guard and a time guard. Both are the same as
for STA −→ STA

′ considering the definition of widen for timed bisimulation and timed
ready simulation in Table 5.1. Consequently, TA may enter C3a whenever A may send or
receive µ.

The transition from C3a to Neutral is urgent, i.e., it has precedence over the non-urgent
transition to Error. As long as R sends or receives µ, the transition to Error is never enabled
and error is not reachable. If there exists a time interval in cc ∧ I where R does not send or
receive µ, thenCX −→ Neutral is not enabled and the transition to Error may fire indicating
a violation of the refinement definition.

In the example in Figure 5.12, the state Neutral, the C3a-states and all in- and outgoing
transitions of the C3a-states have been created according to Case 3a to check for required
communication according to the timed bisimulation.

Case 3b: Message Obeys Upper Bound
Case 3b with the associated state C3b checks that R does not send or receive µ later than A.
In our approach, we only apply Case 3b for checking transitions that send a message µ when
checking for a relaxed timed bisimulation.

The transition from STA to C3b has a guard and a time guard. While the guard is the
same as for STA −→ STA

′, the time guard differs. In particular, the time guard conjuncts
the upper bound cchigh of the clock constraint with the invariant I of S. Consequently, TA
may enter C3b in a time interval that is restricted by the latest point in time where µ may be
sent in A.
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As long as the urgent transition to Neutral is enabled up to the upper bound of the time
interval where C3b was entered, no time may pass in C3b. Therefore, the transition to Error
has a time guard that compares the clock cTA to a maximum value that is larger than any
value used in the clock constraints ofA andR. Thus, the transition to Error may only become
enabled if time passes in C3b which may not be the case if R refines A correctly.

Case 3c: Message Eventually Sent or Received
Case 3c with the associated stateC3c checks thatR eventually sends or receives µ not check-
ing for time intervals. This is needed for bisimulation and for transitions receiving a message
µ when checking for relaxed timed bisimulation.

The transition from STA to C3b has a guard and a time guard. While the guard is the
same as for STA −→ STA

′, the time guard differs. In particular, the time guard conjuncts
the upper bound cchigh of the clock constraint with the invariant I of S and requires that cTA
is 0. Consequently, TA may enter C3c in a time interval whose upper bound is restricted by
the by the latest point in time where µ may be sent in A. The lower bound is restricted by the
point in time where STA may be entered at the earliest expressed by cTA = 0.

The transition to Neutral checks that R eventually sends or receives µ. The transition to
Error is again guarded by an artificial maximum value tmax that shall never be reached in A
or R. This transition will only become enabled if R never sends or receives µ.

5.3.3 Adjusting the Port Real-Time Statechart

"The port RTSC needs to be adjusted such that it may be combined with TA to the parallel
test system. The adjustments do not change the behavior of R but only ensure that the test
constructs in TA may correctly identify forbidden deviations of R from A. The result of this
step is the adjusted port RTSC Radj . Figure 5.13 shows an excerpt of an example for Radj as
constructed for the port RTSC of railroad crossings (cf. Figure 5.7)." [HBDS15]

rail_road_crossingadj

Idle

variable boolean free

clock c2

RailCabApproaching CheckRequest[c2 ≤ 100ms] request? /

{free := int<0,1>;}

newSection! / {reset: c2}

[c2 ≤ 120ms] [not free] 

enterDenied! / {reset: c2}

[c2 ≤ 120ms] 

[free] /

... ... ...

Figure 5.13: Adjusted Port RTSC for Railroad Crossings [HBDS15]

First, all sent and received messages need to be replaced by corresponding synchroniza-
tions, i.e., a sent messagemout is replaced withmout! and a received messagemin is replaced
with min?. This is necessary for building the parallel test system using a network of timed
automata.

Second, any invariants of states of Radj need to be removed. The corresponding clock
constraints are conjuncted with the time guards of the outgoing transitions. This prevents that
an invariant in Radj may stop time from progressing in TA after both have been composed
to the parallel test system. The modification does neither add nor remove externally visible
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behavior of R because a transition is only enabled if its time guard is fulfilled and if the
invariant of the source state is fulfilled. In the example in Figure 5.13, this modification
affects the states RailCabApproaching and CheckRequest and their outgoing transitions.

Third, all transitions carrying a message are urgent in Radj as shown in Figure 5.13. They
need to synchronize urgently with the transitions from theCX states to the Neutral state in the
test constructs checking for required communication (Cases 3a, 3b, and 3c). The transitions
in Radj , however, still synchronize non-urgently with the transitions between white states in
TA because the latter are all non-urgent (cf. Section 5.3.2.1).

Fourth, we remove all synchronizations of R with other RTSCs within the component
RTSC. An example is given by the synchronization closeGate! at the transition from Check-
Request to ClosingGate in Figure 5.7. In our refinement check, we only check whether the
externally visible behavior of R is correct with respect to A and the selected refinement defi-
nition. Checking that the integration with the remaining ports via these synchronizations has
been done correctly is subject to Step 3 of our compositional verification approach.

"Finally, R may read and write variables of the component RTSC. An example is given
by the variable sectionFree that is read by all refined protocols introduced in Section 5.1.2.
From the perspective of R, such variables may change at arbitrary points in time. Verifying
their correct usage by the component and all of its ports is, again, subject to Step 3 of the
compositional verification approach. Therefore, we replace read accesses to component vari-
ables by non-deterministic choices, i.e., we assume that the variable may have any allowed
value when it is accessed. In addition, we completely remove write accesses to component
variables because they are irrelevant if the written value is never read." [HBDS15]

5.3.4 Parallel Composition and Reachability Analysis

We combine TA and Radj to the parallel test system based on an NTA as formally defined in
Appendix B. The reachability analysis then computes the reachable state space in terms of a
zone graph (cf. Section 2.2.1). Each path in the zone graph represents a trace consisting of a
sequence of symbolic states.

In the reachability analysis, we search for a trace where the Error state of TA is active
in a symbolic state. This corresponds to verifying the formula φ EF T_A.Error. If this
formula is fulfilled for TA ‖ Radj , the reachability analysis returns the trace that leads to the
particular symbolic state where Error is active. This trace then serves as a counterexample
that is provided to the developer. If φ is not fulfilled, the reachability analysis does not return
a result and the conditions of the refinement definition are fulfilled for A and R. We provide
an example of a counterexample in Section 5.6.

5.4 Implementation

We have implemented all algorithms shown in Figure 5.9 in version 0.4 of the MECHA-
TRONICUML Tool Suite. Figure 5.14 shows the plugins that have been created as part of the
implementation.

The plugin muml implements the component model of MECHATRONICUML including
RTCPs and RTSCs (cf. Section 3.6). The plugin runtime enables to store the currently active
states and the current values of variables for RTSCs. The plugin reachabilityGraph provides
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Figure 5.14: Plugins Implementing our Refinement Check

abstract superclasses for storing state spaces computed by a reachability analysis (cf. Ap-
pendix C). This plugin is extended by reachabilityGraph.rtsc for storing a zone graph that has
been computed for a network of timed automata (cf. Section 2.4.2). In particular, this plugin
uses the runtime plugin for representing the active states in TA ‖ Radj and the current values of
all variables. The clock values are stored in federations that are provided by the udbm plugin.
Our udbm plugin [EH11] integreates an UPPAAL library [Dav06] for storing federations and
executing operations on them using so-called difference bound matrices (DBMs, [Dil90]).

The aforementioned plugins are used by the algorithm plugins on the right side of Fig-
ure 5.14. The plugin refinement.testautomata contains the main parts of the refinement check.
In particular, it implements the algorithm for selecting a suitable refinement definition (cf.
Section 5.3.1), the construction of the test automaton as described in Section 5.3.2, and the
adjustment of the port RTSC as described in Section 5.3.3. Our implementation underlies the
assumptions and limitations discussed in Section 5.5. At present, our implementation may
not yet automatically detect whether an existential quantifier has been used in the verified
properties. Instead, we ask the developer using a dialog. All algorithms in this plugin have
been implemented in Java based on the initial implementation provided by Brenner [Bre10].

Finally, the two plugins reachanalysis.core and reachanalysis.rtsc implement the reachabil-
ity analysis on TA ‖ Radj . reachanalysis.core implements a state-space exploration based
on a breadth-first search (BFS) while reachanalysis.rtsc implements the RTSC-specific com-
putation of successor states. The result of the reachability analysis is a zone graph that is
constructed according to the formal semantics defined in Appendix B. We provide a more
detailed description of our framework for reachability analyses in Appendix C. Based on the
constructed zone graph, the algorithm in refinement.testautomata may decide whether the re-
finement is fulfilled or not. Our algorithm exports counterexamples using the PDF or SVG
file formats.
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5.5 Assumptions and Limitations

Our test automaton construction underlies the following assumptions and limitations:

• Role RTSC and port RTSC are flat, i.e., they may not use hierarchical states.

• Transitions in the role RTSC may only send or receive a message but not both. This
is no general limitation because transitions with two messages may be split into two
transitions with one message each and an intermediate state.

• When checking for a relaxed timed bisimulation, the role RTSC must not use clock
resets at transitions that receive a message.

• Messages must not have parameters.

• The RTCPs and port RTSCs to be checked underlie the assumptions on quality of
service characteristics described in Section 2.4.3.

5.6 Case Study

"We evaluate our automatic refinement check based on a RTCP of the RailCab system. We
conducted a case study based on the guidelines defined by Kitchenham et al. [KPP95]. In
our case study, we investigate the correctness of our method for a realistic example within
our domain and do not aim at generalizing this statement in this thesis."[HBDS15]

5.6.1 Case Study Context

The objective of our case study is evaluating whether our refinement check returns correct
results for a realistic RTCP and corresponding correctly and incorrectly refined protocols.
We conduct our case study based on the RailCab system using RTCP EnterSection and the
refined protocols introduced in Section 5.1.

5.6.2 Setting the Hypothesis

"In Section 5.1.2, we presented three refined protocols. According to our expertise, two of
them are correctly refined (the ones for normal sections and switches) and one is incorrectly
refined (the one for railroad crossings). In addition, we consider a refined protocol of the role
railcab where we did not apply any modification. This is a correct refinement with respect to
any refinement definition.

For our case study, we define two evaluation hypotheses. Our first evaluation hypothesis
H1 is that our refinement check correctly identifies the correctly and incorrectly refined proto-
cols. Our second evaluation hypothesis H2 is that the counterexample that is produced for an
incorrectly refined protocol enables to identify the reason for the violation of the conditions
of the checked refinement definition.

For evaluating our hypotheses, we manually calculate the state spaces of the role section
and of the three refined protocols. Based on the state spaces we manually check whether
the conditions of the corresponding refinement definition are satisfied. We will compare the
results of our refinement check to the results of our manual calculations. In addition, we will
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derive a correctly refined protocol for railroad crossings based on the counterexample re-
turned by the refinement check. We consider our evaluation to be successful, if the automatic
refinement check returns the same results as our manual calculation and if we succeed in cor-
recting the refined protocol for railroad crossings based on the counterexample."[HBDS15]

5.6.3 Preparing the Input Models

In preparation of the case study, we specify all models presented in Section 5.1 using our
implementation described in Sections 3.6 and 5.4. The created models are available for
download on our webpage [HBD13].

In particular, we define the RTCP EnterSection, the components shown in Figure 5.3, and
the refined port RTSCs presented in Section 5.1.2. "We refine the role section at the ports Nor-
malTrackSection.left, NormalTrackSection.right, Switch.left, Switch.right, Switch.bottom, RailRoad-
Crossing.left, and RailRoadCrossing.right. In addition, we refine the role railcab at the ports
DriveLogic.section1 and DriveLogic.section2 (cf. Figure 3.6). We also specified the internal be-
havior of the components in Figure 5.3. We refer to Appendix A.5.2 for a description of these
RTSCs.

5.6.4 Validating the Hypothesis

We apply our refinement check to the ports of section1 and section2 of RailCabDriveControl and
to all ports of NormalTrackSection, Switch, and RailroadCrossing that refine the role section of
protocol EnterSection.

We start by verifying the refinement for the ports of RailCabDriveControl. Our refinement
check first selects timed bisimulation based on the decision tree in Figure 5.10 and the ver-
ification succeeds. Thereafter, we repeated the verification without existentially quantified
formula such that the decision tree selects the timed ready simulation. Again, the verification
succeeds as expected.

Concerning the ports of NormalTrackSection, our refinement check selects a relaxed timed
bisimulation as stated in Section 5.3.1. The verification succeeds as expected. Next, the
verification returns that the refined RTSC for the ports of the Switch is valid with respect to a
timed bisimulation.

Finally, we check the ports of the RailroadCrossing. Again, our refinement check select a
timed bisimulation. In this case, however, the refinement is invalid with respect to timed
bisimulation. Therefore, our refinement check returns the counterexample shown in Fig-
ure 5.15 for this violation.

"The counterexample consists of six symbolic states. It has been obtained by performing
a reachability analysis on the parallel composition of the test RTSC shown in Figure 5.12
and the adjusted RTSC of rail_road_crossing shown in Figure 5.13. In the counterexample, the
test RTSC is denoted as SectionTA_TBS while rail_road_crossing denotes the adjusted RTSC of
rail_road_crossing. In the first symbolic state S1 of the counterexample, both RTSCs are in
their initial Idle states and all clocks are zero. Please note that we convert all time units to
milliseconds in our implementation and, therefore, do not visualize time units in the coun-
terexample. Then, the RTSCs synchronize via newSection and enter the RailCabApproaching
states. In the next step, the RTSCs synchronize via request and enter the CheckRequest states.
In both symbolic states, all clocks are still zero. In S3, the variable free receives the value
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S1

States: SectionTA_TBS.IdleTA

rail_road_crossing.Idle

Vars: free = true

Clocks: SectionTA_TBS.c2 = 0

rail_road_crossing.c2 = 0

cTA = 0

S2

States: SectionTA_TBS.RailCabApproachingTA

rail_road_crossing.RailCabApproaching

Vars: free = true

Clocks: SectionTA_TBS.c2 = 0

rail_road_crossing.c2 = 0

cTA = 0

newSection

S3

States: SectionTA_TBS.CheckRequestTA

rail_road_crossing.CheckRequest

Vars: free = false

Clocks: SectionTA_TBS.c2 = 0

rail_road_crossing.c2 = 0

cTA = 0

request

S4

States: SectionTA_TBS.CheckRequestTA

rail_road_crossing.CheckRequest

Vars: free = false

Clocks: SectionTA_TBS.c2 ≥ 0

rail_road_crossing.c2 ≥ 0

cTA ≥ 0

d 

S5

States: SectionTA_TBS.C3aCheckRequest_enterDenied?

rail_road_crossing.CheckRequest

Vars: free = false

Clocks: SectionTA_TBS.c2 ≤ 1980

rail_road_crossing.c2 ≤ 1980

cTA ≤ 1980

t 

S6

States: SectionTA_TBS.Error

rail_road_crossing.CheckRequest

Vars: free = false

Clocks: SectionTA_TBS.c2 > 120

SectionTA_TBS.c2 ≤ 1980

rail_road_crossing.c2 > 120

rail_road_crossing.c2 ≤ 1980

cTA > 120

cTA ≤ 1980

t 

Figure 5.15: Counterexample for the Incorrectly Refined Behavior for Railroad Cross-
ings [HBDS15]

false. The next transition in the counterexample is a delay transition (cf. Section 2.2.1).
Since we removed all invariants and moved the corresponding clock constraints to the outgo-
ing transitions (cf. Section 5.3.2), the clock values are not restricted. Thus, all clocks have an
unbounded value greater or equal to zero. The transition from S4 to S5 is a so-called tau tran-
sition where the test RTSC fires a transition without synchronization (cf. Section 2.2.1). In
particular, it enters the C3aCheckRequest_enterDenied? state that checks whether rail_road_crossing
may send the message enterDenied in the same time interval as the section role. When enter-
ing the state, all clocks have a value less or equal to 1980 resulting from the clock constraint
of the transition from CheckRequestTA to C3aCheckRequest_enterDenied?. In the final symbolic
state S6, the test RTSC is in state Error and, thus, the refinement does not hold. The clock
values show that the Error state has been reached with all clocks having a value in the interval
120 < c2 ≤ 1980.

From the counterexample, we can deduce that the refinement is violated by the transition
from CheckRequest to EnterDenied in rail_road_crossing that sends the message enterDenied.
Since the Error state has been reached via the C3aCheckRequest_enterDenied? state, we also know
that the refined RTSC of the railroad crossing does not support sending enterDenied in the
whole time interval that is required by the section RTSC. In particular, the transition enables
to send the message enterDenied only until c2 is at 120 ms, while the RTSC for role section
allows sending until c2 is at 1980 ms.

Using this information, we derive a correctly refined RTSC for the railroad crossing that is
shown in Figure 5.16. In particular, we correct the error by introducing the state SendDenial.
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If the railroad crossing is not free, we do not immediately switch to EnterDenied, but we
switch to SendDenial. This state enables to send enterDenied until c2 is at 1980 ms as it is
required by the timed bisimulation. The resulting RTSC fulfills the conditions of the timed
bisimulation."[HBDS15]

rail_road_crossing

Idle

variable: boolean free, boolean first

clock: c2

RailCabApproaching

c2 ≤ 100ms

CheckRequest

c2 ≤ 120ms

request /

{free := sectionFree}

RailCabOnSection

WaitOpenGate

c2 ≤ 1s

openGate!  

leaveSection /

confirmExit() 

{reset: c2}

[c2 ≥ 1s]

gateOpened? /

/ newSection() 

{reset: c2}

EnterDenied

c2 ≤ 1980ms

/ enterDenied() 

{reset: c2}

EnterAllowed

c2 ≤ 120040ms

enterSection /

confirmEntry()

[c2 ≥ 1s] [not free] /

{free := sectionFree}

ClosingGate

c2 ≤ 1980ms
[free] closeGate! /

{reset: c2}

gateClosed? / 

enterAllowed()

{reset: c2}

[free] 

closeGate! /

SendDenial

c2 ≤ 1980ms

[not free]

Figure 5.16: Correctly Refined Behavior for Railroad Crossings [HBDS15]

5.6.5 Analyzing the Results

"The results of our case study show that our refinement check correctly identifies for all given
refined protocols whether they are refined correctly or not. Therefore, our first evaluation
hypothesis H1 is fulfilled. In addition, we were able to identify the cause of the incorrect re-
finement based on the counterexample that was returned by our automatic refinement check.
That enabled us to correct the refined protocol and, as a result, our second evaluation hy-
pothesis H2 is fulfilled as well. This gives rise to the assumption that our approach is also
applicable to other realistic examples within our domain.

In our case study, the most important threats to validity are as follows: (1) We might
have made mistakes in the manual calculation that identified which refined protocols are a
correctly refined and which are not. (2) We only considered one abstract protocol and four
different refinements. Even though we consider this example as realistic, other realistic pro-
tocols could be highly different. (3) We did not check all possible refinement definitions but
only timed ready simulation, timed bisimulation, and relaxed timed bisimulation. However,
checking for a timed bisimulation includes checks for a (timed) simulation and a bisimula-
tion. In particular, the refinement definitions that we checked explicitly cover all cases of
our construction (cf. Section 5.1). (4) We are experts for verification and refinement check-
ing. Therefore, we could easily derive the cause for the violation of the refinement from the
counterexample which might not be true for novices." [HBDS15]
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5.7 Related Work

We discuss related work from two research areas. First, we review other approaches that
support refinements of real-time behavior and approaches that use multiple refinement defini-
tions (Section 5.7.1). Second, we review related works that use test automata for verification
(Section 5.7.2).

5.7.1 Refinement Checking

"Reeves and Streader [RS08a, RS08b] identify commonalities and differences of refinement
definitions for process algebras and unify them in a generalized definition but provide neither
a selection nor a verification algorithm. Sylla et al. [SSdR05] present a refinement definition
including a refinement check where the refinement is parameterized by a particular LTL for-
mula [BK08] such that only this particular formula is preserved. In contrast to our approach,
both do not consider real-time properties.

In [Bey01], Beyer introduces timed simulation for Cottbus Timed Automata which are
a special kind of timed automata. We cover this refinement definition in our refinement
check. In addition, there exist refinement definitions based on (timed) I/O automata [dAH05,
dAHS02] as, for example, (timed) alternating simulations and bisimulations [AHKV98,
DLL+10]. These approaches use a two player game for deciding whether a refined com-
ponent behaves in the same way as the abstract component in an unknown environment. In
our approach, the behavior of the environment is not unknown but formally defined by the
RTCPs. Therefore, we do not need to check refinement based on a two player game. Instead,
we may use a simple reachability analysis using our test automaton.

The FOCUS approach [BS01] supports the specification of embedded systems. It defines
the behavior of components by stream-processing functions on streams of messages [Ste97]
and uses, according to [BS01], three kinds of refinements. Two of them, namely interface
refinement and conditional refinement, enable to modify the input/output behavior of the sys-
tem. In particular, they allow to change the number of messages, the types of parameters,
and the encoding of data. These refinements support a top-down refinement of the system’s
behavior including, in particular, the modification of component internal behavior. In con-
trast, we only refine the interface behavior of our components, which is more restrictive.
As a result, their approach requires to consider the internal behavior of the sending and re-
ceiving component in addition to the interface behavior. That makes refinement checking
much more expensive compared to our approach and scalability becomes a problem. The
third refinement, which is called behavioral refinement, defines the conditions for simula-
tion and bisimulation. According to [HHR09], interface abstractions of component behavior
are equivalent to statemachines that, in turn, correspond to I/O automata. Refinements for
I/O automata have been discussed in the previous paragraph. In contrast to our approach,
[HHR09] supports completely non-deterministic specifications." [HBDS15]

5.7.2 Test automata-based Verification

"Test automata are used by Aceto et al. [ABBL03] for model checking temporal properties
specified in SBBL (Safety Model Property Language) on timed automata rather than verify-
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ing correct refinements. Their test automata construction encodes a temporal logic formula.
Consequently, they use a different set of test constructs compared to our approach.

The approaches by Gerth et al. [GPVW96] and Tripakis et al. [Tri09] perform LTL model
checking [BK08] on (timed) Büchi automata and encode the properties in automata as well.
Again, they use a different construction because they encode a temporal logic formula instead
of a refinement definition.

Li et al. [LBD+10] specify safety and liveness properties for timed automata as live se-
quence charts (LSC, [HM03]). They translate the LSC into an observer timed automaton that
enters a special error location if the property is violated. Since they encode a LSC, they also
use different test constructs compared to our approach." [HBDS15]

5.8 Summary

In this chapter, we extend the compositional verification approach of MECHATRONICUML
by five additional refinement definitions and an integrated refinement check. Our refinement
check may automatically select a suitable refinement definition based on the role RTSC, the
port RTSC, and the properties that have been verified for the RTCP. Then, our refinement
check generates a so-called test automaton that encodes the behavior of the role RTSC and
the conditions of the applied refinement definition. Our approach extends the construction of
test automata by Jensen et al. [JLS00] by additional test constructs that enable to check all
of the six considered refinement definitions. In our evaluation, we showed that our approach
was successfully applied to a RTCP of the RailCab system.

Our refinement check relieves developers of NMS from choosing a refinement definition
manually. As a result, developers require less detailed expertise in refinements when refining
roles of a RTCP to ports of a component. An additional advantage of our refinement check
is that additional refinement definitions, if needed, only require minor extensions of the de-
cision tree and the test automaton construction. The remaining algorithms do not need to be
changed.
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6 Simulating Self-Adaptive Mechatronic
Systems in MATLAB/Simulink

Our component model as introduced in Chapter 3 supports to specify a software architec-
ture for a self-adaptive mechatronic system. Therefore, it enables to specify and connect
discrete components that contain event-discrete behavior specified by RTSCs and continu-
ous components that contain feedback controllers. In addition, our concept for hierarchical
reconfiguration as introduced in Chapter 4 enables to jointly reconfigure both kinds of com-
ponents. Such joint reconfiguration is necessary, for example, for a RailCab that wants to
join a convoy as a member. As described in Section 4.2, this reconfiguration requires (1) to
instantiate a discrete component, (2) to replace a continuous component instance by another
one, and (3) to connect these component instances. As a result, correctness of the RailCab’s
behavior with respect to this reconfiguration depends on the correct interaction of discrete
and continuous components as well as the correct integration of fading functions, which are
used for replacing continuous component instances, in a hierarchical reconfiguration. Thus,
an error in the interaction or an erroneous fading function may lead to a crash when a RailCab
enters a convoy.

Therefore, it is desirable to verify the correctness of the behavior by applying formal verifi-
cation techniques for proving that such errors may not occur. Verifying the behavior of a Rail-
Cab for joining a convoy as a member, however, induces a so-called hybrid model checking
problem [Hen96] because it includes event-discrete RTSCs as well as time-continuous feed-
back controllers and fading functions. At present, hybrid model checking approaches like
PHAVer [Fre05] or SpaceEx [FLGD+11] either use very simple models of time-continuous
behavior or rely on several, manual overapproximation steps. Both kinds of approaches suf-
fer from a loss of precision leading to potentially wrong verification results and may still only
be applied to small models of academic nature [ERNF12]. Therefore, the correctness of the
behavior of mechatronic systems is typically only assessed by testing, which cannot prove
the absence of errors.

Our goal is to provide the best possible compromise between formal verification and test-
ing approaches while avoiding the need for hybrid verification. In particular, we want to
fully verify all of the discrete components for proving that they are free of errors. Then,
testing is only necessary for checking the behavior of continuous components and their in-
tegration with the discrete components. As a basis, the MECHATRONICUML component
model syntactically decouples the event-discrete part of the behavior specification from the
time-continuous part. Discrete components may only interact with continuous components
based on hybrid ports whose values are only updated in fixed, predefined time intervals.
We do not apply any assumptions on how the values of hybrid ports change and we do
not allow, in particular, to include time-continuous variables in RTSCs. This enables to
efficiently verify the discrete components based on MECHATRONICUML’s compositional
verification approach as outlined in Chapter 5. At the same time, we can use established
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approaches based on model-in-the-loop (MIL) simulation [Plu06] for testing the continu-
ous components of the mechatronic system using tools like MATLAB/Simulink [Matg] or
Dymola [Das]/Modelica [Mod09]. MIL simulation and the corresponding tools are already
successfully applied in industry [TDH11, KSHL12]. In contrast to MECHATRONICUML,
the tools for MIL simulation of mechatronic systems do not support modifications of a sim-
ulation model during a simulation run. Consequently, these tools do not natively support
runtime reconfiguration that we need, for example, for realizing the convoy mode of the
RailCab system. In addition, they do not support communication between systems based on
asynchronous messages.

In this chapter, we define an approach for performing a MIL simulation for a self-adaptive
mechatronic system whose software architecture and behavior have been specified using
MECHATRONICUML. In our approach, we consider both, the reflective operator and the
controller level of the OCM. As our main contribution, we define how a model specified in
MECHATRONICUML may be represented in a simulation environment that provides no built-
in support for message-based communication and runtime reconfiguration. As a simulation
tool, we use MATLAB/Simulink because it is widely used in industry and well supported by
code generators like TargetLink [dSP] or ASCET [ETA] that enable to generate production
code for the final system.

Our approach solves three particular challenges. First, the reconfiguration controller of a
structured component operates on a model@runtime that is shared between manager, execu-
tor, and runtime risk manager. Since MATLAB/Simulink does not have a model@runtime,
we define an explicit encoding of the model@runtime in MATLAB/Simulink. Second, since
MATLAB/Simulink does not allow to modify the simulation model during a simulation run,
we enumerate and encode all configurations beforehand in the MATLAB/Simulink model
such that we may switch between these encoded configurations at runtime. Third, MAT-
LAB/Simulink only supports communication via synchronous signals that may only be re-
ceived as long as they are sent. Therefore, we provide helper blocks for MATLAB/Simulink
that realize message-based communication and respect the QoS assumptions of MECHA-
TRONICUML. The helper blocks only use build-in features of MATLAB/Simulink. In con-
trast to related works like Mosilab [ZJS08], Sol [Zim07], or the block library by Kovácsházy
et al. [KSP03], this retains the ability to use the code generators for generating production
code for the system out of the resulting MATLAB/Simulink model.

Our translation needs to preserve the semantics of the (verified) MECHATRONICUML
model. Proving correct preservation of semantics is currently not possible because the oper-
ational semantics of Simulink and Stateflow are intellectual property of The MathWorks and
solely defined by the implementation of the simulator and code generators [TSCC05]. Al-
though approaches for defining a formal semantics exist for both, Simulink [TSCC05, BC12]
and Stateflow [Ham05, HR07, Wha10], these are incomplete with respect to the features that
we require and cannot guarantee to be correct because they also have only been checked
based on a few test cases [TSCC05, BC12]. Therefore, we only provide an informal descrip-
tion of how we preserve semantics. In addition, we have tested the semantics of the resulting
Simulink and Stateflow models using our implementation.

In the following, we first introduce basic concepts of Simulink and Stateflow that are re-
quired for understanding the concepts of our translation (Section 6.1). Thereafter, Section 6.2
introduces our approach for MIL simulation in MATLAB/Simulink. As part of this section,
we define an algorithm consisting of several steps for translating a MECHATRONICUML
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model into a MATLAB/Simulink model. Sections 6.3 to 6.5 describe the steps of the algo-
rithm in more detail. Then, we describe our implementation of the algorithm in Section 6.6.
Section 6.7 discusses the limitations of our approach and our implementation. Section 6.8
presents the results of our case study. Finally, we discuss related works in Section 6.9 before
summarizing the approach in Section 6.10.

The contents presented in this section have been published in [HPR+12] and [HRS13].
The translation of the reconfiguration specification has been contributed by the Bachelor’s
Thesis of Pines [Pin12] and the Master’s Thesis of Volk [Vol13].

6.1 MATLAB/Simulink and Stateflow

MATLAB R© is a tool environment for numeric computations and visualizations [ABRW09,
Matd]. MATLAB is extended by a set of tool boxes that provide additional modeling and
simulation capabilities. The most important tool box for modeling and simulating mecha-
tronic systems is Simulink R© [Matg]. Simulink, in turn, is extended by the Stateflow R© [Math]
tool box for specifying state-based behavior. Since all features of MATLAB that we require
for performing MIL simulations of mechatronic systems are offered by Simulink and State-
flow, we restrict our descriptions in Sections 6.1.1 and 6.1.2 to these tool boxes. We refer to
Angermann et al. [ABRW09] for a detailed introduction to MATLAB.

6.1.1 Simulink

The Simulink toolbox supports the model-based design and simulation of technical sys-
tems [Matg]. Since mechatronic systems are a special kind of technical systems, their devel-
opment is supported as well. A Simulink model is a block diagram that consists of blocks
and lines. Figure 6.1 shows a simple Simulink model that contains the most important blocks
that we use in our approach. The model computes a function based on two values and plots
the result if it is greater or equal to 0.

1

value1

2

value2

1

result

fcn

Embedded MATLAB FunctionBus

Creator

Bus

Selector

inbus outbus

5

Constant1

Subsystem

15

Constant2

value2

value1

result >=0

Switch
0

Constant3

Scope

Figure 6.1: Simple Simulink Model

In the upper part of Figure 6.1, all blocks except Subsystem are basic blocks that are pro-
vided by the Simulink block library. The blocks Constant1, Constant2, and Constant3 are
constant blocks that constantly emit the specified value. The switch block named Switch en-
ables to select a data input (upper and lower input) based on a control input (middle input).
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If the control input fulfills the switch criterion, >= 0 in the example, then the switch outputs
the upper data input, otherwise the lower data input. The Scope block visualizes a 2D-plot of
its input signal.

In Simulink, blocks are connected by lines that are visualized by arrows. Lines define how
data flows between the blocks. They represent signals while "a signal is a time varying quan-
tity that has values at all points in time" [Matf]. A signal has, among others, a data type and
a dimension. The dimension defines whether the signal is a scalar or an (multidimensional)
array. Signals are directed and can be forked. As an example, the signal from Subsystem to
Switch in Figure 6.1 is forked into two signals. Forks are visualized by a small black dot on
the line.

A Simulink model specifies a sample time that defines how often the values of the blocks
in the model are recalculated. For a sample time of 1 ms, the values are recalculated every
millisecond with respect to the simulation time.

In Figure 6.1, Subsystem is a subsystem block that can be used to group Simulink models
hierarchically. Normal subsystems are virtual, i.e., they do not influence the semantics of
the model. Subsystem has two inports named value1 and value2 and one outport named result.
Data enters a subsystem via the inports and leaves the subsystem via the outports.

The lower part of Figure 6.1 shows the internals of the subsystem block Subsystem. The
oval shaped blocks represent the inports and outports of the subsystem. The block in the mid-
dle is an embedded MATLAB function block that enables to specify user-defined scripts. An
embedded MATLAB function may have multiple inputs and may produce multiple outputs.

In our example, the embedded MATLAB function operates on a bus signal that is created
by the Bus Creator block. A bus signal is a composite signal that groups a set of named
signals [Matb]. It is comparable to a structure in the programming language C [KR88]. Buses
enable to group signals of different data types and dimensions. The Bus Selector enables to
extract a signal from the bus. In the concrete syntax, buses are visualized as "a triple line with
a dotted core" [Matf]. We will use bus signals in our approach for representing messages (cf.
Section 6.3.3).

The upper half of Figure 6.2 shows a special kind of subsystem: the enabled subsystem.
In addition to a normal subsystem, it has an enable port at the top. If the signal at the enable
port is 0, then the enabled subsystem is off and not simulated. If the signal at the enable
port is 1, then the enabled subsystem is on and simulated. We will exploit this behavior for
emulating the creation and deletion of component instances in Section 6.5.4.

Inside the enabled subsystem, we specified a chart block named Chart as shown in the
lower half of Figure 6.2. A chart block embeds a Stateflow chart (cf. Section 6.1.2). The
Stateflow chart may interact with the Simulink model via inports and outports which is cru-
cial for translating message-based communication of RTSCs to Stateflow as discussed in
Section 6.3.3. In our example, the chart block receives a speed from the Simulink model and
emits a distance via dist and an information whether the RailCab drives fast or not via fast.
We introduce the contents of the chart block in more detail in the subsequent section.

6.1.2 Stateflow

The Stateflow toolbox extends Simulink towards "modeling and simulating combinatorial
and sequential decision logic based on state machines and flow charts" [Math]. As a result, a
Stateflow model consists of states and transitions. We will use Stateflow for mapping RTSCs
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speed
dist

SpeedMonitor

1

speed

1

distspeed

dist

Chart

Enable

fast

2

fast
fast

Figure 6.2: Enabled Subsystem

of MECHATRONICUML to MATLAB. Figure 6.31 shows a simple Stateflow chart that is
embedded in the chart block of Figure 6.2. It implements a simple behavior for detecting
whether a RailCab drives slow or fast and for updating the reference distance accordingly.

Slow Fast

entry: fast = 1

exit: fast = 0

[speed >= 100]

{send(adjustDistHigh, DistCtrl);}

[speed <= 95]

{send(adjustDistLow, DistCtrl);}

SmallDist HighDist

adjustDistHigh
2DistCtrl

adjustDistLow

1SpeedMon

eM [result] = calcDist(fast)

Main

{dist = calcDist(1);}

{dist = calcDist(0);}

Figure 6.3: Simple Stateflow Chart

The chart contains a state Main. Main has a so-called default transition that marks it as the
initial state. In addition, Main contains two embedded states SpeedMon and DistCtrl. These

1Please note that we use a black and white notation of Stateflow charts instead of the default colored notation.
We do so to avoid confusion with the colored elements that appear in generation templates for Stateflow
charts that we use in the remainder of this chapter.
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states are parallel states as indicated by the dashed border line, whereas all other states
are exclusive states. If Main is active, then SpeedMon and DistCtrl are both active. Inside
SpeedMon, for example, only one of the two states Slow and Fast is active at any point in time.
Parallel states specify an execution order in the upper right corner. If the chart is executed,
then parallel states are executed according to increasing numbers.

In our example, the state SpeedMon monitors the value of the input speed and outputs
whether the RailCab drives slows or fast. DistCtrl computes a distance value based on the
RailCab’s speed that serves as an output. Initially, the RailCab drives Slow and uses a small
distance (SmallDist). If the input speed of the chart block becomes greater or equal to 100,
the transition from Slow to Fast in SpeedMon becomes active due to the transition guard.
Upon firing, the transition sends a signal event adjustDistHigh to the DistCtrl state. A signal
event may either be sent to the whole chart or to a specific hierarchical state inside the chart.
The signal event triggers the outgoing transition of SmallDist, i.e., the transition cannot fire
until it receives the signal event. The receiving transition is then executed immediately after
sending the signal. A sent signal needs to be consumed within the same execution step and
will no longer be available in the next one. After the receiving transition has been executed
completely, the execution resumes at the sending transition.

In each simulation step, a chart only executes one transition for each hierarchical state.
The only exception to this rule is given by connective junctions. In a connective junction,
the Stateflow chart may not rest, i.e., it needs to fire transitions until it reaches a state. As
a consequence, there always needs to exist one enabled outgoing transition for a connective
junction. As an example for a connective junction, consider the outgoing transition of Small-
Dist. After entering the connective junction, which is visualized by a circle in the concrete
syntax, the chart immediately fires the outgoing transition to HighDist.

The transition to DistHigh calls a function calcDist and assigns its return value to the output
dist of the chart block. The function is specified as an embedded MATLAB function inside
the chart. As in Simulink, these functions may have an arbitrary number of input and output
parameters. In Stateflow, functions are called according to call-by-value and may not modify
any variables of the chart. As a result, if the function needs to change a value, it must be
returned as an output parameter and explicitly assigned.

The state Fast in SpeedMon specifies an entry and an exit action. The entry action is exe-
cuted when the state becomes active, the exit action is executed when the state is left. In our
example, both, entry and exit action, assign a value to the output fast of the chart block.

6.2 MIL Simulation of MechatronicUML Models in Simulink
and Stateflow

In the following, we describe our concept for testing the correct integration of discrete and
continuous components in a self-adaptive mechatronic system based on MIL simulation. Our
concept requires sofware engineers and control engineers to collaboratively perform several
steps that are summarized in the process shown in Figure 6.4. This process specifies Step S5
of our overview process in Figure 1.3 on Page 8 in more detail. In the following, we refer
to the software engineers and the control engineers simply as the developers if they work
collaboratively on a process step.
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Figure 6.4: Process for Performing a MIL Simulation of a MECHATRONICUML Model in
Simulink and Stateflow

The software engineer starts in Step S5.1 by translating the verified MECHATRONICUML
model into a MATLAB/Simulink and Stateflow model. The next two process steps may
be performed in parallel. In Step S5.2, the developers need to integrate the controller and
environment models into the Simulink model that resulted from Step S5.1. These models
have been specified directly in Simulink by the control engineers. At the same time, the
developers need to define scenarios for the MIL simulation in Step S5.3. These scenarios are
test cases that define a particular environmental situation and generate suitable stimuli for
the MIL simulation model. In our RailCab example, we may, for example, define a scenario
where two RailCabs start a convoy at a switch. In this case, the scenario defines where
the RailCabs will start to drive on the track system and it configures the operation strategy
such that the RailCabs will start a convoy. Based on the MIL simulation model and the test
scenarios, the developers may perform the MIL simulation in Simulink in Step S5.4.

In the remainder of this chapter, we will focus on Step S5.1 and derive a concept for au-
tomatizing the translation from MECHATRONICUML models to MATLAB/Simulink and
Stateflow models. Steps S5.2 to S5.4 need to be carried out manually by the developers. In
particular, deriving a set of scenarios from requirements is beyond the scope of this thesis.

Figure 6.5 summarizes the algorithm for translating a MECHATRONICUML model into
a MATLAB/Simulink model. The inputs are the (reconfigurable) components that are used
in the MECHATRONICUML model and an initial CIC of the system. The latter defines how
many component instances exist on the system level, e.g., how many RailCabs should be
simulated. The output is a Simulink and Stateflow model that shows the same behavior as
the MECHATRONICUML model.

The algorithm in Figure 6.5 consists of two phases. The first phase is defined by the
expansion region and consists of Steps 1 to 4. These steps explicitly enumerate all possi-
ble configurations for each component that is used in the MECHATRONICUML model and
encode these configurations. These steps need to be executed separately for each (recon-
figurable) component. The second phase consists of Steps 5 to 7. These steps create the
simulation model in Simulink and Stateflow and are executed once after the first phase has
been finished.

In the first phase, we start in Step 1 by computing the possible configurations for each
reconfigurable component based on the CSDs contained in its reconfiguration controller. If
a component is not reconfigurable, it only has one possible configuration at runtime. There-
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Algorithm: Translate MechatronicUML Model to MATLAB/Simulink and Stateflow (S5.1)
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Figure 6.5: UML Activity Diagram Defining the Algorithm for Translating a MECHATRON-
ICUML Model into a MATLAB/Simulink and Stateflow Model

after, we create a so-called integrated CIC for the component that contains the superposition
of all possible configurations that were computed in Step 1. Based on this, we generate a
MATLAB-specific reconfiguration controller in Step 3. The MATLAB-specific reconfigura-
tion controller contains an additional component for encoding the model@runtime as given
by the integrated CIC. The MATLAB-specific reconfiguration controller enables to execute
reconfigurations using control signals that are computed in Step 4. The result of this phase is
one integrated CIC for each component of the MECHATRONICUML model.

In the second phase, we create the Simulink and Stateflow models. Therefore, we use the
integrated CICs in Step 5 for generating an integrated CIC for the overall system based on the
initial system CIC. The result is a MECHATRONICUML model that (a) contains all possible
configurations that the system may use at runtime and that (b) contains an explicit encoding
of the model@runtime including control signals for switching between the encoded config-
urations. In Step 6, we translate the integrated system CIC to a Simulink block diagram.
Thereby, we generate additional helper constructs for emulating message-based communica-
tion. In Step 7, we translate the RTSCs of the component instances in the integrated system
CIC to Stateflow charts.
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In Figure 6.5, we highlighted Steps 6 and 7 with different color because they may be
used without prior execution of Steps 1 to 5 for translating a MECHATRONICUML model
not employing runtime reconfiguration to MATLAB/Simulink. We address this use case in
detail in our technical reports [HRB+13, HRB+14].

In the following, we start in Section 6.3 by describing the translation of a CIC to MAT-
LAB/Simulink (Step 6). Thereafter, Section 6.4 describes the translation of RTSCs to State-
flow charts (Step 7). We describe these steps first because this translation determines how we
need to encode configurations and which control signals we require for switching between
configurations. Finally, Section 6.5 describes Steps 1 to 5 of our algorithm in detail and ex-
plains how the MATLAB-specific reconfiguration controller is integrated into the Simulink
block diagram.

6.3 Translating Component Instance Configurations to
Simulink Block Diagrams

This section defines the translation of a CIC into a Simulink block diagram as introduced in
Section 6.1.1. Thus, it defines Step 6 of our algorithm shown in Figure 6.5. The input to this
step is an integrated system CIC that contains one or more hierarchical component instances.
The output is a Simulink block diagram that contains a set of subsystems. These subsystems
reflect the structure of the CIC.

In the following, we start by illustrating how we translate atomic component instances
(Section 6.3.1) and structured component instances (Section 6.3.2). Thereafter, we show in
more detail how we encode message-based communication in Simulink using several kinds
of helper blocks (Section 6.3.3). Finally, we discuss how the generated Simulink model
considers the QoS assumptions (Section 6.3.4) that are specified in MECHATRONICUML
(cf. Section 2.4.3).

6.3.1 Translating Atomic Component Instances

We create one enabled subsystem for each atomic component instance that appears in the
CIC. Using enabled subsystems enables to emulate the creation and deletion of component
instances by enabling and disabling the subsystem. Figure 6.6 shows the generation template
for deriving the external interface of the enabled subsystem from the atomic component
instance. In particular, the generation template defines how the port instances of a component
instance are represented in Simulink. This step of the translation is identical for each type of
atomic component instance.

Continuous and hybrid port instances are directly translated to inports2 and outports of the
subsystem because both receive or emit a signal value. The inports and outports in Simulink
have the same names as the port instances in MECHATRONICUML. We strive at preserving
the names of modeling constructs of MECHATRONICUML in Simulink because it enables
the developers to relate simulation errors occurring in Step S5.4 of our process in Figure 6.4
to the MECHATRONICUML model.

2Please note that we use the terms in-port and out-port for referring to ports of a MECHATRONICUML compo-
nent, while inport and outport refer to ports of a Simulink subsystem.
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Legend:

Generated once for a component instance X.  

Generated for each continuous / hybrid in-port instance Y1.

Generated for each continuous / hybrid out-port instance Y2.

Generated for each discrete port instance Z.

Figure 6.6: Generation Template for Creating a Subsystem for an Atomic Component In-
stance

Discrete port instances cannot be directly translated because they may send and receive
messages which are not natively supported by Simulink. Therefore, we translate discrete port
instances to port structures that consist of three inports and one outport [HPR+12, HRB+14].
Figure 6.6 shows the port structure that is generated for a discrete port instance Z. In the port
structure, the inport Z_recv is used for receiving messages while the outport Z_send is used
for sending messages. The inports Z_net_addr and Z_recv_net_addr define addresses for the
message exchange that we explain in more detail in Section 6.3.3.

In the following, we explain how we generate the internals of the enabled subsystem in
Figure 6.6. The internals of the enabled subsystem differ based on the type of atomic com-
ponent instance being translated. We explain the internals of subsystems that result from
discrete atomic component instances in Section 6.3.1.1. Thereafter, we describe the internal
structure generated for continuous atomic component instances in Section 6.3.1.2 and for
fading component instances in Section 6.3.1.3. We refer to Appendix A.8.1 for an example
of an enabled subsystem that has been generated based on the template in Figure 6.6.

6.3.1.1 Discrete Atomic Component Instances

Discrete atomic component instances contain a behavior specification in terms of an RTSC
including the message buffers for the port instances. Therefore, we create a block diagram
that is embedded in the enabled subsystem that has been created for the atomic component
instance. This block diagram contains, in particular, a chart block containing the Stateflow
chart that implements the RTSC of the discrete atomic component instance. Figure 6.7 shows
the generation template that is used for generating the block diagram that is embedded in a
subsystem for a discrete atomic component instance. An example of a block diagram that
results from applying the generation template to a discrete atomic component instance is
presented in Appendix A.8.1.

The chart block is shown at the top of Figure 6.7. In addition, we generate one sub-
system called link layer for each discrete port instance Z of the discrete atomic component
instance [HPR+12]. The link layer subsystem has been developed as a part of this thesis. It
handles the message-based communication via one port instance and implements the mes-
sage buffer of this port instance. These are directly connected to the port structure generated
for Z. We explain the link layer subsystems in more detail in Section 6.3.3.
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Figure 6.7: Generation Template for Creating the Internal Structure of a Subsystem for an
Atomic Component Instance

Hybrid ports of a discrete atomic component instance are directly connected to the State-
flow chart by a line. As a result, they may be used as variables inside the Stateflow chart. For
hybrid in-port instances, we additionally generate a zero order hold block in Simulink. This
block reads its input in fixed, predefined time steps and propagates this value unmodified
until a new input value is read. By setting the time steps to the sampling interval of the hy-
brid port instance, we retain the semantics of MECHATRONICUML’s hybrid port instances
as defined in Section 3.1.1.5.

Finally, the chart block always has an inport clockSignal that is connected to a digital clock
block. The digital clock provides the global simulation time and is automatically updated.
We exploit the time values provided by the digital clock block for implementing the clock
concept of MECHATRONICUML in Stateflow as we explain in Section 6.4.3.

6.3.1.2 Continuous Atomic Component Instances

For continuous atomic component instances, the enabled subsystem remains empty in our
translation. This is consistent to the MECHATRONICUML component model that only de-
fines the interface of continuous components but not their behavior (cf. Section 3.1.2.2).
The resulting enabled subsystem will contain the implementation of the feedback controller
which will be added in Step S5.2 of our process shown in Figure 6.4.
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6.3.1.3 Fading Component Instances

For fading component instances, we generate a block diagram that is embedded in the enabled
subsystem. This block diagram implements the behavior of the fading component as defined
in Section 3.1.2.3. Its structure depends on the number of fading functions that are contained
in the fading component and on the number of inputs of each fading function. Figure 6.8
shows the generation template for generating the block diagram for a fading component
instance.
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Legend:

Generated once for a fading component instance.  

Generated for each continuous in-port instance in1 / in2.

Generated for each fading function F.

Figure 6.8: Generation Template for Internal Structure of a Subsystem for a Fading Compo-
nent

The inports in1 and in2 represent the values that are provided by the continuous component
instances that are connected to the fading component instance. In addition, we obtain one
enabled subsystem for each fading function F that contains the implementation of the fading
function. The contents for these subsystems will be added in Step S5.2 of our process shown
in Figure 6.4. The enabled subsystem F is enabled if the state of the chart block is equal
to the integer constant α as defined by the compare block. The Multiport Switch at the right
determines which of the input signals is propagated to the out outport. The Multiport Switch is
also controlled by the state of the chart block.

In the following, we describe how the behavior of the fading component instance is real-
ized by the block diagram and the Stateflow chart that is contained in the chart block. As an
example, we use an instance of the fading component ConvoyFading shown in Figure 3.2c on
Page 38.

Figure 6.9 shows the result of applying the generation template shown in Figure 6.8 to Con-
voyFading. The block diagram contains two subsystems fadeToConvoy and fadeToStandalone
that correspond to the eponymous fading functions of ConvoyFading.

Figure 6.10 shows the Stateflow chart that is embedded in the chart block of Figure 6.9.
It receives the input signal ctrl and the current simulation time provided by the digital clock
block. It outputs a signal status and a signal state. The former denotes whether the fading
component is currently executing a fading function (1) or not (0). The latter is used for
controlling the block diagram shown in Figure 6.9.

The execution of the Stateflow chart starts in the Static1 state. In this state, state is set to 1.
As a result, both compare blocks evaluate to 0 and no fading function is executed. In addi-
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Figure 6.9: Example of a Simulink Model for a Fading Component [Vol13]
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state=3;

Fading1

entry: status=1;

c=reset();

state=2;
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[ctrl == 1]
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[time(c) > t1]

[time(c) > t2]

eM logicalTime = time(clock)

eM clock = reset()

Figure 6.10: Example of a Stateflow Chart for a Fading Component [Vol13]

tion, state is forwarded as a control signal to the MultiportSwitch. There, a value i defines that
the value of the ith data input is forwarded. Thus, the fading component forwards the value
received via in1. In state Fading1, state is set to 2. Consequently, the fading function fadeTo-
Convoy is enabled and the MultiportSwitch forwards the output of the fading function. After the
duration of the fading function t1 has elapsed, the Stateflow chart proceeds to state Static2.
In this state, the value received via in2 is forwarded. The execution of the fadeToStandalone
fading function in state Fading2 works analogously. As a consequence, the fading component
either forwards one of its input values without modification or it executes a fading function
which retains the semantics of fading components as defined in Section 3.1.2.3.

6.3.2 Translating Structured Component Instances

We create one enabled subsystem for each structured component instance that is contained
in the CIC. The rules for creating the enabled subsystem and its external interface repre-
sented by the port instances are the same as for atomic component instances. As a result, we
can apply the generation template shown in Figure 6.6 for structured component instances
as well. However, the generation of the internal structure differs for structured component
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instances. In particular, we need to translate its embedded CIC into a Simulink block dia-
gram. The embedded CIC is translated in two steps. In the first step, we translate all embed-
ded component instances by recursively applying the translation for atomic and structured
component instances to them. In the second step, we translate all connector instances that
connect the component instances in the embedded CIC. This requires, on the one hand, to
translate connector instances between continuous and hybrid port instances as explained in
Section 6.3.2.1. On the other hand, we need to translate all connector instances between dis-
crete port instances as explained in Section 6.3.2.2. A complete example of a block diagram
that results from translating a structured component instance is presented in Appendix A.8.2.

6.3.2.1 Continuous Connector Instances

Continuous connector instances propagate signal values and are, thus, equivalent to lines
in Simulink. Therefore, we may directly translate continuous connector instances to lines
in Simulink that connect the outport corresponding to the source port instance to the inport
corresponding to the target port instance.

If we want to enable reconfiguration of continuous connector instances, we need to use
two additional helper blocks named MultiSourceControl and MultiTargetControl [Vol13] shown
in Figure 6.11. Both blocks are implemented using basic blocks of Simulink. We refer to
Volk [Vol13] for a description of their implementation.

outin1

in2

ctrl

(a) MultiSourceControl Block

out1

in

ctrl

out2

(b) MultiTargetControl Block

Figure 6.11: Helper Blocks that Enable Reconfiguration of Continuous Connector Instances
in Simulink [Vol13]

The MultiSourceControl block in Figure 6.11a has one ctrl inport and one to many data inports
whose names are prefixed by in. ctrl defines which of the data inports is propagated to out.
If none of the data inports shall be propagated, it outputs 0. The MultiTargetControl block in
Figure 6.11b has two inports ctrl and in. In addition, it has one to many data outports whose
names are prefixed by out. For n outports, ctrl is an array of length n of type Boolean. If
the nth field of the array is true, then the value received via in is forwarded via the nth data
outport. This enables to specifically select an arbitrary number of receivers for the input
value.

Figure 6.12 shows the generation template for using the MultiTargetControl block. We gen-
erate one MultiTargetControl block for each continuous or hybrid out-port Y of our MECHA-
TRONICUML model that has an outgoing connector instance that is reconfigurable, i.e., there
exist several in-ports Y1 that may be connected to Y at runtime. Then, we generate one out-
port at the MultiTargetControl including a line to every inport Y1. The generation template
for MultiSourceControl blocks is defined analogously and, therefore, omitted. It is applied for
each continuous or hybrid in-port Y of our MECHATRONICUML model that has an incoming
connector instance that is reconfigurable.
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Figure 6.12: Generation Template for Translating Continuous Connector Instances
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Figure 6.13: Example for Using a MultiTargetControl Block for Translating a Reconfigurable
Delegation Connector

Figure 6.13 shows an example of using a MultiTargetControl block. The block diagram in
Figure 6.13 results from translating the embedded CIC of an instance of VelocityController (cf.
Figure 3.7) to Simulink. The inports refSpeed and curSpeed are either connected to their coun-
terparts in standalone_ctrl or to their counterparts in convoy_ctrl or to both (cf. Section 3.3.2).
Therefore, we connect both inports to MultiTargetControl while the out1 and out2 outports of the
MultiTargetControl are connected to the embedded subsystems. The ctrl input is then a Boolean
array of length 2. If the first array entry is true, the values are propagated to standalone_ctrl.
If the second entry is true, the values are propagated to convoy_ctrl. If both entries are true,
the values are propagated to both embedded subsystems.

6.3.2.2 Discrete Connector Instances

Discrete connector instances transport messages from the sending port instance to the receiv-
ing port instance. For the translation of a CIC into a Simulink subsystem, we need to distin-
guish between the assembly connector instances and the delegation connector instances that
are used in the CIC. We present generation templates for their translation in the following.

Figure 6.14 shows the generation template for translating assembly connector instances
based on a helper system called communication switch. The communication switch forwards
messages from the sending port structure to the receiving port structure. We generate ex-
actly one communication switch for each CIC. The communication switch is connected to a
BusCreator and BusSelector. For discrete port instances of an embedded component instance,
we generate one line from the outport of the corresponding port structure to the BusCreator
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Generated for assembly connector instance between Z1 and Z2.

Figure 6.14: Generation Template for Translating Assembly Connector Instances

and one line from the BusSelector to the inport of the corresponding port structure. Then, we
use the addresses of the port structures for translating the assembly connector instance. As
an example, consider an assembly between Z1 and Z2 in Figure 6.14. The port structure Z1
has net_addr A, while the port structure Z2 has net_addr B. As a consequence, the recv_net_addr
of Z1 is B while the recv_net_addr of Z2 is A. We explain the behavior of the communication
switch in more detail in Section 6.3.3.3 and describe how the communication switch enables
to reconfigure assembly connector instances in Section 6.5.
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Figure 6.15: Generation Template for Translating Delegation Connector Instances

Figure 6.15 shows the generation template for translating delegation connector instances
based on the communication switch and an additional helper system called delegation switch.
The delegation switch is responsible for forwarding messages that have been received (or
sent) by a port structure of the structured component subsystem to the receiving (or send-
ing) port structure of an embedded subsystem. For each port instance Z1 of the structured
component instance, we generate one port structure as introduced in Section 6.3.1 including
a delegation switch. The inports and the outport of the port structure are connected to the
delegation switch. The delegation switch, in turn, is connected to the communication switch
in the same fashion as described above for an assembly connector instance. This enables
to treat assembly connector instances and delegation connector instances identically in our

156



6.3 Translating Component Instance Configurations to Simulink Block Diagrams

MATLAB-specific reconfiguration controller as we explain in Section 6.5. Then, we use the
addresses of the port structures for translating the delegation connector instance. As an ex-
ample, consider a delegation between Z1 and Z2 in Figure 6.15. The delegation switch has
net_addr A, while the port structure Z2 has net_addr B. As a consequence, the recv_net_addr of
the delegation switch is B while the recv_net_addr of Z2 is A. We explain the behavior of the
delegation switch in more detail in Section 6.3.3.4.

6.3.3 Using Message-Based Communication

This section describes how we emulate message-based communication in Simulink. In
particular, we explain the encoding of messages (Section 6.3.3.1) and the behavior of the
helper blocks, namely of the link layer (Section 6.3.3.2), the communication switch (Sec-
tion 6.3.3.3), and the delegation switch (Section 6.3.3.4). For a detailed description of the
internal implementation of the helper blocks, we refer to our technical report [HRB+13] and
the thesis of Volk [Vol13].

6.3.3.1 Encoding Messages

Since Simulink does not support asynchronous messages that are exchanged by discrete com-
ponent instances in MECHATRONICUML, we need to define an encoding based on signals in
Simulink. We encode messages as tuples consisting of six signals: a package ID, a message
ID, a parameter value, a sender ID, a receiver ID, and a timestamp [HPR+12]. The message
ID is a uniquely identifiable integer that represents a particular message type of the MECHA-
TRONICUML model. We need to use an integer encoding because Simulink does not support
strings. The parameter encodes a single parameter value. The sender ID is the address of the
port structure sending the message, while the receiver ID denotes the address of the message
receiver. The package ID is an incrementing integer ID that numbers the messages that are
exchanged between two port structures. We utilize this field for detecting lost messages as
we explain in Section 6.3.4. The timestamp refers to the point in time where the message was
sent based on the simulation time. We use this value for simulating message delay and iden-
tifying messages that arrive too late. In Simulink, we implement the six-tuple for a message
by means of a bus signal with six entries [HRB+14].

In MECHATRONICUML, a message may define more than one parameter. Since our en-
coding only considers one parameter for each message in Simulink, messages with more than
one parameter need to be split into several messages [HRB+14]. As an example, consider
the message update that is sent by the port instance refDistProvider of rg1 in Figure 3.103. This
message is split into two consecutive messages where the first one contains the value for the
distance parameter and the second message contains the value for the speed parameter.

6.3.3.2 Link Layer

For each discrete port instance of an atomic component instance in MECHATRONICUML,
we obtain a port structure and a link layer subsystem that is connected to the port structure as
described in Section 6.3.1.1. The link layer serves as a middleware between the application-
layer component behavior contained in the Stateflow chart and the network infrastructure.

3refDistProvider implements the role provider of the RTCP DistanceTransmission introduced in Section 2.4.1
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Upon creation of the platform-specific model for the system, the link layer needs to be re-
placed by the middleware for the system that implements the interfaces to the networking
hardware.

In the following, we describe the behavior of the link layer based on the generation tem-
plate shown in Figure 6.7. If a message arrives via port_in at the link layer, the link layer
reads the message from the bus signal and checks whether it is the intended receiver by
comparing the receiver ID in the message with its own net_address. Then, the message is
stored in the message buffer for incoming messages. The message buffer is implemented by
two arrays; one for message IDs and one for parameter values. These arrays are then sent
to the Stateflow chart using the signals write_event_queue_in and write_event_param_queue_in.
Then, the Stateflow chart may consume messages from these signals as we explain in Sec-
tion 6.4.2. The modified buffer is sent back to the link layer such that the link layer may keep
track of the current buffer status. If the Stateflow chart sends a message, it adds the mes-
sage to the z_WriteOut and z_ParamWriteOut queues that are defined analogously to the queues
for received messages. Then, the link layer reads these queues and successively sends the
messages via port_out.

The idea and concept for the link layer subsystems and the encoding of messages has
been reused from Henke et al. [HTS+08b]. In their approach, each discrete component only
used one such link layer subsystem that was shared by all of the port instances. As a result,
the Stateflow chart needed to know the address of the receiving port structure. We reimple-
mented their concept such that we use one dedicated link layer for each discrete port instance
of our MECHATRONICUML model, which corresponds to the semantics of MECHATRON-
ICUML where each discrete port instance has its own message buffer. In addition, we ex-
tended the link layer such that it considers the QoS assumptions of MECHATRONICUML
(cf. Section 6.3.4). In our approach, the Stateflow chart is independent of the net_address and
receiver_new_address and, thus, of the concrete network infrastructure.

6.3.3.3 Communication Switch

The communication switch shown in the middle of Figure 6.14 is responsible for routing
messages from the sender port structure to the receiver port structure. Thus, its serves as a
virtual networking infrastructure [HPR+12]. Upon creation of the platform-specific model
of the system, the communication switch is replaced by the networking hardware (or a sim-
ulation model of it).

The behavior of the communication switch is as follows: For each message in inBus, it
reads the receiver ID and writes the message to the corresponding field in outbus that is con-
nected to the receiving port structure. The communication switch learns automatically which
field in outbus belongs to which receiver ID. First, the order of IDs in inBus and outBus are
the same. That means, if a message is contained in inBus, the communication switch learns
the ID of the port structure by reading the sender ID of the message. If a communication
switch receives a message whose receiver ID is still unknown to it, it forwards the mes-
sage to all unknown receivers. Then, the right receiver will answer with an acknowledgment
and the communication switch may update its information. This behavior is inspired by the
address resolution protocol (ARP, [Plu82]) that is used in Ethernet networks. It enables to
use the same communication switch implementation for all subsystems that were created for
structured component instances and the (integrated) system CIC.
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6.3.3.4 Delegation Switch

The delegation switch shown in Figure 6.15 realizes a delegation connector instance between
two discrete port instances by performing a network address translation (NAT, [SH99]). In
our approach, the addresses of the ports are only unique within a subsystem that corresponds
to a structured component instance, i.e., each structured component defines its own private
subnet. This enables that we may change connector instances inside a structured component
instance without exposing this change to another component instance thereby retaining com-
ponent encapsulation. In particular, a component instance that is connected to a port instance
of the structured component instance does not need to know about the change.

Therefore, the inports extern_net_addr and extern_recv_net_addr of the delegation switch
receive the addresses that are used by the port structure for communicating with another
subsystem outside its boundaries. The inports local_net_addr and local_recv_net_addr define
the addresses for communicating inside the boundaries of the subsystem. If the delegation
switch receives a message via extern_in, this message contains the external addresses of the
port structure. Then, the delegation switch replaces these addresses with its local ones, i.e.,
the sender ID is set to local_net_addr while the receiver ID is set to local_recv_net_addr.

Consider the generation template shown in Figure 6.15 as an example. The port struc-
ture for Z2 in the embedded subsystem X has the address B, while the delegation switch has
address A. Thus, for any message arriving at the delegation switch via extern_in, the sender
ID is set to A while the receiver ID is set to B. Consequently, the port structure Z2 has the
recv_net_addr A. Then, the message is sent via local_out to the communication switch that
routes the messages to the receiver. Messages that are sent by embedded component in-
stances are treated in the same fashion, however, the delegation switch replaces the local
addresses with the external ones in this case.

6.3.4 Considering QoS Assumptions

In our translation, we support the QoS assumptions that are defined for MECHATRONICUML
(cf. Section 2.4.3). We implemented all of these inside the link layer subsystem rather than
the communication switch, as the communication switch is shared by all assembly connector
instances and these may have different QoS assumptions. By implementing them in the link
layer, we may separately configure QoS assumptions for each assembly.

The link layer implements FIFO buffers using the buffer size specified in the MECHA-
TRONICUML model. Our message buffer implementation guarantees that received messages
are never reordered. We exploit the package ID for this purpose. If the message buffer is full,
we discard the incoming message, i.e., the message buffer does not change. If the link layer
receives a message, it only inserts the message into the message buffer after the minimum
propagation delay has passed. We compare the timestamp of the message with the current
time for computing its current delay. If the message arrives after the maximum propagation
delay, it is dropped and considered as lost. Then, this message loss needs to be handled by
the component RTSC.

In addition, our implementation considers message loss with a given message loss per-
centage ϑ for simulating unreliable channels. Then, the link layer randomly drops an in-
coming message with probability ϑ. In addition, the link layer configures how a message
loss is treated. First, we can ignore message loss similar to the user datagram protocol
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(UDP, [Pos80]). Second, we can detect the lost messages and retransmit them as in the
transmission control protocol (TCP, [IETF81]). If the link layer receives a message with
package ID x, it sends an acknowledgment with x back to the sender. If the sender does
not receive the acknowledgment within a timeout period, it sends the message again. The
resending terminates if the message can no longer reach the receiver before the maximum
propagation delay expires.

We refer to our technical report [HRB+14] for a more detailed description of the imple-
mentation of the QoS assumptions in the link layer.

6.4 Translating Real-Time Statecharts to Stateflow Charts

This section defines the translation of RTSCs to Stateflow charts and, thus, covers Step 7 of
the algorithm shown in Figure 6.5. We reason that our translation preserves the semantics of
RTSCs based on the informal description of the semantics of Stateflow provided in the online
documentation [Mata].

In the course of this section, we illustrate most parts of the translation based on an example.
In particular, we use an excerpt of the Stateflow chart shown in Figure 6.16 that is generated
for the RTSC of the component instance rg1 of type RefGen (cf. Appendix A.5.1.5). The
Stateflow chart shows the translation of the region refDistProvider that defines the behavior of
the refDistProvider port instance4. We explain the figure in detail in the subsequent subsections
and provide explicit generation templates for complex parts of the translation where no 1:1
correspondence between MECHATRONICUML model element and Stateflow model element
exists. An extensive formalization of the transformation based on triple graph grammars
(TGGs, [Sch95]) is given in our technical report [HRB+14].

In the following, we first introduce the basic concepts of the transformation (Section 6.4.1).
Thereafter, we describe in more detail how message-based communication (Section 6.4.2),
clocks (Section 6.4.3), urgency (Section 6.4.4), RTSCs of multi ports (Section 6.4.5), and
synchronizations (Section 6.4.6) may be translated to Stateflow. In this section, we only
provide a brief overview of the concepts of the translation. We refer to our technical re-
ports [HRB+13, HRB+14] for a detailed description of the translation.

6.4.1 Basic Transformation Concepts

We reuse the basic parts of the transformation from RTSCs to Stateflow charts from a pre-
vious approach by Steinke [Ste07]. In particular, we translate states to states, transitions to
transitions, and initial states to initial states. Furthermore, we encode parallel regions by
parallel substates in Stateflow.

For the RTSC of the component RefGen, we obtain one state RefGen_Main that embeds
five parallel states that correspond to the five embedded regions. Thus, we have one parallel
state for each of the four port instances (refDistProvider, prev, next, and profileReceiver) and
one for the internal behavior. In addition, the parallel state refDistProvider contains states Idle,
SendUpdate, and AwaitAck that correspond to the eponymous states of the port RTSC. We
omitted the internals of the remaining parallel states to improve readability of the figure.

4refDistProvider refines the subport behavior of the role provider shown in Figure 2.15 on Page 30
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Figure 6.16: Stateflow Chart for the Subsystem rg1
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For each transition in the RTSC, we obtain a corresponding transition in Stateflow as, e.g.,
for the transition from Idle to SendUpdate. An exception are transitions with deadlines such as
from SendUpdate to AwaitAck as we explain in Section 6.4.3. In Stateflow, the transition spec-
ifies a guard in square brackets and an action in curly brackets comparable to MECHATRON-
ICUML. We translate the guard conditions and transition actions that are specified using the
action language of MECHATRONICUML to corresponding expressions in Stateflow.

Variables of RTSCs are translated to local data variables in Stateflow. We use the same
name and data type as in the MECHATRONICUML model. Operations become embedded
MATLAB functions of the same name. We translate the expressions contained in the body of
the operation into an equivalent embedded MATLAB script. Entry- and exit-actions of states
in MECHATRONICUML are translated to corresponding entry and exit behavior of Stateflow
states.

6.4.2 Message-Based Communication

For realizing message-based communication in Stateflow, the Stateflow chart must oper-
ate on the message buffers that are provided by the link layer subsystems as described in
Section 6.3.3. We reuse the approach by Tichy et al. [THB+10] that uses three embedded
MATLAB functions named checkQueue, enqueue, and dequeue for operating on the message
buffers as shown in Figure 6.17. However, we need to adjust the functions according to the
changes in the link layers (cf. Section 6.3.3) such that the functions respect the FIFO property
of our message buffers.

The function checkQueue checks whether a particular message is at the first position in our
FIFO in-buffer. If so, it returns true, otherwise it returns false. The function dequeue removes
the message that is located at the first position of the in-buffer and returns the parameter
value contained in the message. Finally, enqueue adds a message including a parameter to
the out-buffer. We generate these functions once for each port RTSC that is embedded in
the component RTSC. The function names are prefixed with the name of the corresponding
discrete port instance. In our example in Figure 6.16, we obtain the functions r1_checkQueue,
r1_dequeue, and r1_enqueue for the port instance r1.

We use these three functions at the transitions of the Stateflow chart for processing mes-
sages that appear at the transitions of the port RTSC. As defined in our generation template in
Figure 6.17, we use the function X_checkQueue in the transition guard for checking whether a
received message is contained in the in-buffer. As a result, the transition is only enabled if the
message is present, which corresponds to the semantics of RTSCs. The message is encoded
by an integer constant EVT_Y1 where Y1 is the name of the message in MECHATRONICUML.
If the transition fires, the transition action calls X_dequeue to consume the message. This call
needs to be the first one in the action because the value of the message parameter needs to
be available for the remainder of the transition action. The value of the message parameter is
assigned to a variable param1. If the message had no parameter in MECHATRONICUML, the
returned parameter value is 0 and the variable is not further used. Then, the message param-
eter may be used in the remaining action by accessing the corresponding variable. This is
compliant to the semantics of MECHATRONICUML. If a transition of the port RTSC sends
a message Y1, we invoke the X_enqueue function in the transition action. As parameters, we
pass the integer constant EVT_Y2 and, optionally, the value of a message parameter. The calls
of X_enqueue are placed behind the remaining statements of the transition action such that
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A B

[X_checkQueue(EVT_Y1, X_ReadOut)]

{[X_ReadOut, X_ParamReadOut, param1] =  

X_dequeue(EVT_Y1, X_ReadOut, X_ParamReadOut);

[X_WriteOut, X_ParamWriteOut] =  

X_enqueue(EVT_Y2, X_WriteOut, param, X_ParamWriteOut);}

eM [evtQueue, paramQueue, parameter] = 

X_dequeue(event, evtQueueIn, paramQueueIn)

eM [evtQueue, paramQueue] = 

X_enqueue(event, evtQueueIn, param, paramQueueIn)

eM available = X_checkQueue(event, evtQueue)

Legend:

Generated for each transition from A to B.  

Generated for each port RTSC X that can receive messages.

Generated for each port RTSC X that can send messages.

Generated for each received message Y1.

Generated for each sent message Y2.

Figure 6.17: Generation Template for Translating Sent and Received Messages of Transitions
to Stateflow

the message is sent after executing the transition action. This complies to the semantics of
RTSCs. If the corresponding message in MECHATRONICUML has more than one parameter,
then it is split into several messages as explained in Section 6.3.3.1. Then, we add one call
to X_checkQueue, X_dequeue, and X_enqueue for each of the resulting messages.

In our example in Figure 6.16, consider the upper transition from AwaitAck to Idle. This
transition needs to process the received message ack. Therefore, we invoke r1_checkQueue
in the transition guard for checking whether the ack message, encoded by the integer con-
stant EVT_ACK, is contained in the in-buffer. In the transition action, we invoke r1_dequeue
for consuming the message. Since ack has no parameters, param1 is 0 in this case and is
not further used in the transition action. In addition, consider the transition from SendUp-
date_AwaitAck_Deadline_1 to AwaitAck. This transition needs to send the message update that
has two parameters newDist and newSpeed. Thus, we invoke r1_enqueue twice in the tran-
sition action. The first invocation enqueues a message with the ID EVT_UPDATE_NEWDIST
that contains the newDist parameter of update. As a value of the parameter, it passes the vari-
able distance to the enqueue function. The second invocation enqueues a message with the
parameter newSpeed in the same fashion.

The functions X_enqueue and X_dequeue always need to return the message buffers that
they modified. These are then assigned by the transition action to the outports of the chart
block due to the call-by-value semantics of Stateflow.

6.4.3 Clock Concept

We translate clocks of RTSCs to variables in Stateflow as proposed by Steinke [Ste07]. How-
ever, we decided to develop a new concept how these variables are used. In her approach,
all clock variables are incremented by 1 each time the Stateflow chart is evaluated. As a
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consequence, it is mandatory to execute the Stateflow chart with a fixed sample time of 1 ms
and the chart needs to be aware of its own sample time. In contrast, our approach uses the
clockSignal that is attached to a digital clock block in Simulink (cf. Figure A.95). This block
provides the current simulation time in milliseconds (and may be connected to the system
clock in a real system). Thereby, the RTSC becomes independent of its sample time. That,
in turn, enables to change the sample time of the RTSC when creating a platform-specific
model including, e.g., a task mapping and scheduling for the RTSC [BGS05, But05].

In our approach, clocks are reset by calling the function reset. It simply returns the current
value of clockSignal that is assigned to the clock variable. Then, the current value of the
clock is obtained by calling time which returns the difference between clock signal and the
value of the clock variable. As in MECHATRONICUML, the result is the time that has passed
since the last reset. Time guards are then translated to normal guards in Stateflow using the
function time. Then, the transition may only fire if the time guard is fulfilled, which retains
the semantics of RTSCs. The values of the time constraints in MECHATRONICUML are
converted to ms.

Stateflow provides no concept that is comparable to invariants of states in MECHATRON-
ICUML. However, a violation of an invariant indicates an error in the model. In accordance
to Steinke [Ste07], we add an error location, called Inv_Error in Figure 6.16, to the chart that
models a violation of an invariant. For each state that has an invariant, we create a transition
from that state to Inv_Error as, e.g., for the state SendUpdate in Figure 6.16. The transition
contains a guard that corresponds to the negated time constraint of the invariant, i.e., when-
ever the invariant is not fulfilled, the transition to the error location fires. This is compliant
to the semantics of RTSCs.

In Stateflow, transitions fire in zero time as in timed automata. Therefore, we map transi-
tions with deadlines to two transitions with an intermediate state as shown in Figure 6.18 as it
has been defined for mapping RTSCs to timed automata [GB03, Ger13]. For each transition
from A to B that has a deadline, we generate an intermediate state A_B_Deadline including
transitions from A to A_B_Deadline and from A_B_Deadline to B. The transition from A to
A_B_Deadline specifies the precondition of the original transition resets an additional clock
called cDead. The transition from A_B_Deadline to B specifies the original transition’s effect
including a guard that specifies that cDead is greater or equal to the lower bound α of the
deadline. Furthermore, we need to add a transition from A_B_Deadline to Inv_Error for resolv-
ing the invariant of A_B_Deadline that results from the transformation and described by Giese
and Burmester [GB03]. In particular, this transition will fire if cDead is greater than the upper
bound β of the deadline.

A_B_DeadlineA B{cDead = reset();} {time(cDead) >= α;}

Inv_Error

entry: invariant()

{time(cDead) > β;}

Legend:

Generated once for an RTSC.  

Generated for source and target state A / B.

Generated for each transition with deadline [α;β].

Figure 6.18: Generation Template for Translating Transitions with Deadline to Stateflow
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In our example in Figure 6.16, the state SendUpdate_AwaitAck_Deadline_1 including the
transitions from SendUpdate and to AwaitAck resulted from mapping a transition with deadline
based on the generation template in Figure 6.18.

6.4.4 Urgency

In each simulation step, Stateflow checks the active states in a chart for enabled outgoing
transitions. If a transition is enabled, it is immediately fired. This corresponds to the se-
mantics of urgent transitions in RTSCs (cf. Section 2.4.2). Non-urgent transitions are not
supported by Stateflow and can, thus, not be preserved by our translation. Due to Stateflow’s
semantics, we restrict the time intervals where non-urgent transitions may fire. Thus, our
translation preserves the behavior according to a timed ready simulation (cf. Section 5.2).
As a consequence, all verified ATCTL properties still hold for the Stateflow chart and we re-
tain all urgent transitions. Properties that contain existential quantifiers need to be rechecked
in Stateflow using test cases that need to be defined in Step S5.3 of our process in Figure 6.4.

If a state is urgent in the RTSC, then the corresponding Stateflow chart may not rest in this
state and wait for the next simulation step. Therefore, we translate urgent states to connective
junctions in Stateflow. This retains the semantics of MECHATRONICUML because no time
passes in Stateflow until the connective junction is left.

6.4.5 Real-Time Statecharts of Multi Port Instances

In MECHATRONICUML, a multi port instance contains a set of subport instances where each
subport instance executes the behavior defined by the subport RTSC (cf. Section 2.4). As
an example, consider the multi port instance of type coordinator shown in Figure 6.19 that is
implemented by the component instance cm of type ConvoyManagement (cf. Figure 3.5). It
contains two subport instances and, thus, the RTSC for this multi port instance executes two
copies of the subrole RTSC.

c1:coordinator

c2:coordinator

«first»

«next»

«last»

Coordinator_Main

adaptation

subrole_c1

subrole_c2

Figure 6.19: Multi Port Instance with Resulting RTSC

As a consequence, the Stateflow chart needs to contain corresponding subport charts for
all subport instances. That means, we need to replicate the subport RTSC for each subport
instance. This replication is performed before translating the RTSC to Stateflow.
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6.4.6 Synchronizations

We translate synchronizations used at transitions of a RTSC to signal events in Stateflow as
proposed by Steinke [Ste07]. However, we significantly extended the transformation because
the concept by Steinke does not retain the semantics of MECHATRONICUML. In particular,
Steinke’s concept did not prevent that the transition that initiates the synchronization fires
even though the receiving transition cannot fire. We introduce our new concept for translating
plain synchronizations in Section 6.4.6.1. In addition, we extend the concept such that it
supports selector expressions of synchronizations in Section 6.4.6.2.

6.4.6.1 Plain Synchronizations

For each synchronization channel, we create a signal event with the channel’s name in State-
flow. Synchronizations that may appear at the transitions of an RTSC are translated to State-
flow based on the generation template shown in Figure 6.20. Basically, the receiving transi-
tion waits for the signal event sync while the initiating transition receives a send operation that
sends the signal event sync to RegB. Sending the signal event needs to be the very last state-
ment in the transition action. This is because upon sending, Stateflow immediately switches
to the receiving transition and completely executes it before finishing to execute the sending
transition. If sending the signal event is the last statement, we guarantee that the transition
action of the sending transition is completely executed prior to executing the transition action
of the receiving transition. This preserves the semantics of synchronizations in RTSCs.

RegB

RegA

1

2

C

entry: α = enablingConditionC_D; 

during: α = enablingConditionC_D; 

exit: α = false; 

D

A B

[α == true] 

{send(sync, RegB)}

 sync

Legend:

Generated based on rules for states and regions.

Generated for each outgoing transition that receives sync.

Generated additionally for transitions that receive sync.

Generated additionally for each transition that initiates sync.

Figure 6.20: Generation Template for Translating Transitions with Plain Synchronizations to
Stateflow

In our example in Figure 6.16, the transition from Idle to SendUpdate receives the signal
event send that corresponds to the synchronization send in Figure A.38 on Page 233. The
lower transition from AwaitAck to Idle sends the signal event send_next to the parallel state
next.

In contrast to RTSCs, the transition sending a signal event does not block in Stateflow
if there is no receiving transition that may fire. Therefore, we need to block the sending
transition using an additional transition guard until a receiving transition becomes enabled.
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For each transition that may receive a synchronization in the RTSC, we create one Boolean
variable α in Stateflow that encodes whether the transition may fire as shown in Figure 6.20.
Then, we add a transition guard to the sending transition that checks whether α is true. Thus,
the sending transition is blocked until there exists a receiving transition that may fire. For
plain synchronizations, the value of α corresponds to the enabling condition of the receiving
transition, i.e., it is the conjunction of the following conditions: the source state is active,
the transition guard of the transition is fulfilled, the time guard is fulfilled, and the trigger
message is available in the message buffer. We assign the conjunction of these conditions to
α in the entry action of the source state of the receiving transition and periodically update α
in the during action. If the source state of the receiving transition is left, we set α to false
in the exit action. If there exists more than one receiving transition, we need to replicate the
transition from A to B for each region that contains a possible receiving transition using the
α associated to this receiving transition in the transition guard. Please refer to our technical
report [HRB+14] for a detailed discussion of this translation step.

In our example in Figure 6.16, the state Idle contains a variable α1 = sendAvailableRefDist-
ProviderIdleSendUpdate. Since the transition from Idle to SendUpdate in Figure A.38 only
specifies the synchronization in its enabling condition, we only assign true to indicate that
the outgoing transition to SendUpdate may fire. We may omit the during action in this case
because the value of α1 may never change. In addition, consider the lower transition from
AwaitAck to Idle. This transition sends the signal event send_next to the hierarchical state
next. Thus, it uses the variable α2 = send_nextAvailableNextIdleIdle in its transition guard that
defines whether the receiving transition inside the next state may fire.

6.4.6.2 Synchronization with Selector

RTSCs support two types of selectors that we need to handle in our translation. These are in-
teger and port while the latter only applies to multi port RTSCs (cf. Section 2.4). These
impose an additional condition on whether two transitions may synchronize. The basic
transformation of synchronizations with selector is identical to plain synchronizations, but
we need to generate five additional constructs [HRB+14] when using selectors as shown in
Figure 6.21. The additional constructs are generated as follows:

1. We need to generate a variable β that encodes the selector expression of the receiving
transition.

2. We add an additional entry action to the source state of the receiving transition that
assigns the value of the selector expression to β. As for α, we need to update β
periodically in the during action of the source state.

3. We extend the guard condition of the sending transition by a conjunction of α with a
comparison of β to the selector expression of the sending transition. As a result, the
initiating transition may only fire if there is a receiving transition that is enabled and
that has the same selector expression.

4. We add one additional variable γ for each synchronization channel with selector. Just
before sending the signal event, the sending transition assigns the value of its own
selector expression to γ.
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5. We need to add a guard condition to each receiving transition that checks if β is equal
to γ. This check is necessary to ensure that only the transition with the right selector
expression may fire.

RegY

RegX

1

2

C

entry: α = enablingConditionC_D;

β = selectorExpressionC_D; 

during: α = enablingConditionC_D; 

β = selectorExpressionC_D;

exit: α = false; 

D

A B

[α == true && β == selectorExpressionA_B] 

{γ = selectorExpressionA_B;

send(sync, RegB)}

 sync

[β == γ]

Legend:

Generated based on rules for states and regions.

Generated for each outgoing transition that receives sync.

Generated additionally for transitions that receive sync.

Generated additionally for each transition that initiates sync.

Generated additionally for the selector expression of transition that receives sync.

Generated additionally for the selector expression of transition that initiates sync.

Figure 6.21: Generation Template for Translating Transitions with Synchronizations with Se-
lectors to Stateflow

We illustrate these constructs in more detail using the example shown in Figure 6.22.
The example shows a small excerpt of the Stateflow chart that is obtained by translating the
component RTSC of Switch (cf. Figure 5.3c) that is shown in Figure A.40 to Stateflow. In
particular, we consider the transitions from WaitForTrack to CheckRequest in the region left
that receive the synchronization sectionFree and the transition from Notify to Idle in the region
followingSection that initiates the synchronization sectionFree.

Since sectionFree uses a selector of type int, we need to apply the generation template shown
in Figure 6.21 to the aforementioned transitions. As a result, we obtain two variables α1 =
syncAvailableLeftWaitForTrackCheckRequest1 and α2 = syncAvailableLeftWaitForTrackCheckRe-
quest2. α1 is associated to the left transition from WaitForTrack to CheckRequest while α2 is as-
sociated to the right transition from WaitForTrack to CheckRequest. Since both transitions only
specify the synchronization in their enabling conditions, we set both variables to true in the
entry action of WaitForTrack. Since the values of α1 and α2 cannot change, we omit the during
action. In addition, we obtain two variables β1 = selCondLeft_WaitForTrack_CheckRequest1
and β2 = selCondLeft_WaitForTrack_CheckRequest2 (Construct 1). We assign the selector ex-
pressions of the corresponding transitions to β1 and β2 in the entry action of WaitForTrack
(Construct 2). Thus, we assign 0 to β1 and 1 to β2. Again, we may omit the during action
because β1 and β2 have constant values in this example.

The transition guard of the transition from Notify to Idle compares the values of β1 and β2 to
the variable status that is used as a selector expression by this transition (Construct 3). Thus,
the transition may only fire if the value of status equals either β1 or β2. In addition, we gen-
erate one variable γ = sendSelCond_sectionFree for the synchronization channel sectionFree.
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left

followingSection

1

2

WaitForTrack

entry: syncAvailableLeftWaitForTrackCheckRequest1 = true; 

syncAvailableLeftWaitForTrackCheckRequest2 = true; 

selCondLeft_WaitForTrack_CheckRequest1 = (0); 

selCondLeft_WaitForTrack_CheckRequest2 = (1); 

exit: syncAvailableLeftWaitForTrackCheckRequest1 = false; 

syncAvailableLeftWaitForTrackCheckRequest2 = false; 

CheckRequest

 sectionFree 

[syncAvailableLeftWaitForTrackCheckRequest2  == 

sendSelCond_sectionFree]

Idle Notify

[(syncAvailableLeftWaitForTrackCheckRequest1 && 

(selCondLeft_WaitForTrack_CheckRequest1 == (status))) || 

(syncAvailableLeftWaitForTrackCheckRequest2  && 

(selCondLeft_WaitForTrack_CheckRequest2 == (status)))]

{sendSelCond_sectionFree = status; send(sectionFree, left); }

 sectionFree 

[syncAvailableLeftWaitForTrackCheckRequest1 == 

sendSelCond_sectionFree]

21

Figure 6.22: Example of Using Transitions with Synchronizations with Selectors in Stateflow

Then, we assign the value of status to γ in the transition action of the transition from Notify to
Idle (Construct 4).

Finally, we add a guard condition to each transition from WaitForTrack to CheckRequest
(Construct 5). Considering the left transition, this guard compares β1 (= selCondLeft_WaitFor-
Track_CheckRequest1) and γ (= sendSelCond_sectionFree). If we omitted this guard condition,
the transition from Notify to Idle could synchronize with either of the transitions from Wait-
ForTrack to CheckRequest in Stateflow irrespective the value of the selector expression. By
using the additional guard, we retain MECHATRONICUML’s semantics of synchronization
channels with selectors in Stateflow.

Please note that the transition from Notify to Idle needs to be replicated for each region
that contains a transition that may receive sectionFree as described in Section 6.4.6.1. As a
result, we obtain three transitions from Notify to Idle in Stateflow that send sectionFree to the
hierarchical states resulting from the regions left, right, and bottom of the component RTSC,
respectively.

Selectors of type port refer to the order of the multi port instance. As an example, consider
the multi port instance of type coordinator shown in Figure 6.19. The order defines that c1
is the first subport instance while c2 is the last subport instance. In addition, c2 is the direct
successor of c1. In the RTSC of the multi port, we may refer to the order using the keywords
first, last, next, prev, and self as defined in Section 2.4. In Stateflow, we need to encode this
order explicitly into the chart using integers. The reason is that Stateflow does not enable
to define such order based on the resulting states. The resulting encoding is inspired by the
representation of multi port instances as proposed by Hirsch [Hir08].

We generate one variable η for each subport RTSC that encodes the position of the sub-
port. We start numbering the subport instances with 1. In our example, we obtain variables
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η1 = subport_c1_pos and η2 = subport_c2_pos. The values of these variables encode the or-
der, i.e., subport_c1_pos = 1 and subport_c2_pos = 2. Then, we replace each occurrence of self
by η for each subport RTSC. In addition, we may replace next by η + 1 and prev by η − 1.
Next, we replace first by 1 because the first subport instance always has position 1. Finally,
we need to generate an additional variable numOfSubports that denotes the currently instanti-
ated number of subport instances. Then, last may be replaced by numOfSubports. Thereby, we
yield an integer encoding of the selector expressions and we may translate them to Stateflow
using the rules for selectors of type integer as defined above.

6.5 Translating Reconfiguration Specifications to Simulink
and Stateflow

This section describes how we translate the reconfiguration controller and the CSDs, which
define reconfiguration behavior in MECHATRONICUML, to Simulink. Thus, this section
covers Steps 1 to 5 of the algorithm shown in Figure 6.5. In the following, we introduce
these steps in more detail in the order given by the algorithm. In addition, we describe how
the MATLAB-specific reconfiguration controller may be represented in Simulink and how
reconfiguration of port instances may be realized in Stateflow as part of Steps 6 and 7 of our
algorithm.

6.5.1 Step 1: Compute Possible Configurations

In Step 1 of the algorithm, we compute the possible configurations for each (reconfigurable)
component that is used in the MECHATRONICUML model. We compute these configurations
by applying a reachability analysis [HSE10] using our framework (cf. Appendix C). The
inputs for reachability analysis are (1) the initial configurations of the component as defined
by its constructors (cf. Section 3.3.1) and (2) all CSDs defining the possible reconfigurations.
The result of the reachability analysis is a reachability graph where each node corresponds to
a possible configuration and where each transition corresponds to the application of a CSD.

Figure 6.23 shows an excerpt of the reachability graph for the structured component Con-
voyCoordination shown in Figure 3.5 on Page 42. The states of the reachability graph are
represented by rounded rectangles. In our example, we have two states config1 and config2
and three transitions. config1 is the initial state of the reachability graph. We mark the initial
states analogously to RTSCs by using a filled black circle with a transition to the initial state.

Each state contains a CIC of ConvoyCoordination. config1 contains the initial configuration
that is created by the constructor instantiate1Member shown in Figure A.55. We mark the ini-
tial state with the constructor that was used for creating it. config2 contains the configuration
for two convoy members that results from applying the CSD addConvoyMemberAtPos to the
configuration contained in config1. We label the transitions between configurations with the
CSD that was applied. By repeatedly applying addConvoyMemberAtPos, we may generate ad-
ditional configurations, each adding one additional member to the convoy. For the remainder
of this section, we restrict ourselves to config1 and config2 for sake of simplicity.

Computing the possible configurations of a component requires that the number of con-
figurations is finite. Otherwise, the reachability analysis will not terminate. In our example,
ConvoyCoordination has an infinite number of configurations because RefGen and the coordi-
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config1
addConvoyMemberAtPos()instantiate1Member()

 : ConvoyCoordination

    cm / man : 

       ConvoyManagement

  

   rg1 / refGen : RefGen

:curPos:curPos

r1:refDistProvider :refDistProvider

c1:coordinator c1:coordinator

:speedProvider :speedProvider

:strategy :receiver

p1:profileProvider

:profileReceiver

 : ConvoyCoordination

    cm / man : 

       ConvoyManagement

  

   rg1 / refGen : RefGen

:prev

:next

:curPos:curPos

r1:refDistProvider :refDistProvider

c1:coordinator c1:coordinator

c2:coordinator c2:coordinator

  

   rg2 / refGen : RefGen

r2:refDistProvider
:refDistProvider

:speedProvider :speedProvider

:strategy :receiver

p1:profileProvider p2:profileProvider

:profileReceiver

:profileReceiver

config2
addConvoyMemberAtPos()

...

Figure 6.23: Excerpt of the Reachability Graph for the Component ConvoyCoordination
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nator multi port may be instantiated arbitrarily often (cf. Figure 3.5). We have two options
for ensuring that the reachability analysis terminates. First, we may restrict cardinalities and,
second, we may use a depth limitation that prunes branches of the reachability graph if they
reach the depth limit. In our example, it is sufficient to provide a finite upper bound either for
the cardinality of the RefGen multi part or of coordinator multi port because both cardinalities
imply each other. This is because the CSD shown in Figure 3.14 creates both in the same
component story pattern.

6.5.2 Step 2: Create Integrated CIC for Component

The integrated CIC is the superposition of all configurations that appear in the states of its
reachability graph. Thus, it contains the least set of port instances, embedded component
instances, and connector instances that encodes all possibles configurations of instances of
the component. The integrated CIC is the basis for generating the MATLAB-specific recon-
figuration controller in Step 3 (cf. Section 6.5.3) and for creating the integrated system CIC
in Step 5 (cf. Section 6.5.5).

Continuing our example from Figure 6.23, we compute the integrated CIC of ConvoyCo-
ordination. Since the CSD addConvoyMember only adds component instances, port instances,
and connector instances, the integrated CIC is equivalent to the configuration contained in
config2.

6.5.3 Step 3: Generate the MATLAB-specific Reconfiguration
Controller

The MECHATRONICUML reconfiguration controller as introduced in Section 4.1 operates
on an implicitly defined model@runtime that is shared between manager, executor, and run-
time risk manager. For the translation to Simulink, we need to encode the model@runtime
manually by enumerating and encoding all configurations of a component instance based
on the reachability graph and the integrated CIC. Therefore, we extend the reconfiguration
controller by a configuration store that encodes the model@runtime and enables its modi-
fication. The configuration store is then integrated with the manager and executor. This is
necessary to enable that the manager reads the current configuration and to enable that the
executor may read and write the current configuration. The runtime risk manager is not yet
considered in our simulation approach but needs to be connected to the configuration store
as well for being able to read the current configuration. The resulting MATLAB-specific
reconfiguration controller is shown in Figure 6.24.

Although we generate the MATLAB-specific reconfiguration controller on the level of
MECHATRONICUML, we only generate it for the translation to Simulink. It restricts the
capabilities of the reconfiguration controller as introduced in Chapter 4 to a fixed and finite
number of configurations and also the possibility to switch between them. If the reachability
graph of the component has been finite in the first place, we do not restrict the reconfigura-
tion capabilities of the component. If the reachability graph is, in principle, infinite as for
ConvoyCoordination (cf. Section 6.5.1), then restrict we restrict the reconfiguration capabilities
but not significantly. This is because the reachability analysis that we use in Step 1 identifies
configurations that are isomorphic [HSE10, Ren07], i.e., where the same embedded com-
ponent instances, port instances, and connector instances are instantiated. Thus, we only
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Figure 6.24: Integration of the ConfigurationStore in the MATLAB-specific Reconfiguration
Controller (cf. [Vol13])

remove configurations where multi ports and multi parts have unbounded cardinalities, e.g.,
for interacting with an arbitrary number of other systems. In our RailCab example, we only
restrict the maximum number of convoy members at runtime, which is a realistic restriction.

Since the configuration store explicitly encodes the model@runtime, manager and execu-
tor may no longer directly access the model@runtime but need to communicate with the
configuration store. Therefore, we connect the configuration store to manager and executor
using ports and assembly connectors as shown in Figure 6.24. In addition, we generate an
RTSC for the configuration store that enables the interaction with the manager and the execu-
tor and that encodes the model@runtime. We introduce a generation template for this RTSC
in Section 6.5.3.1. In addition, we need to adapt the generation templates of the manager and
the executor (cf. Section 4.4) such that they may interact with the configuration store.

6.5.3.1 Behavior Specification of the Configuration Store

Figure 6.25 shows the generation template for generating the RTSC of the configuration
store of a structured component based on the reachability graph. It consists of two regions
named executor and manager. The former encodes the model@runtime and implements the
communication with the executor while the latter implements the communication with the
manager. Figure 6.26 shows the executor region that has been generated for the component
ConvoyCoordination based on the reachability graph shown in Figure 6.23.

The RTSC in the executor region always contains one initial state named Initial. The re-
mainder of the RTSC is generated based on the reachability graph. In essence, the RTSC
encodes the reachability graph. For each state of the reachability graph, we generate one
blue state named StateX that has a unique ID with a corresponding operation establishCon-
figX. The ID uniquely identifies the configuration that is contained in the corresponding state
of the reachability graph. In its entry action, the ID is assigned to the variable config. In
addition, the entry action calls the operation establishConfigX. This operation establishes the
configuration X in Simulink using the control signals computed in Step 4 of our algorithm
(cf. Section 6.5.4). In Figure 6.26, the states State_Config1 and State_Config2 have been gen-
erated based on the states config1 and config2 of the reachability graph in Figure 6.23. For
each initial configuration of the component, we generate one green transition from Initial to
the state corresponding to the particular initial configuration.
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ConfigurationStore

ConfigurationStore_Main

2executor

manager 1

variable: int config;

Initial

[initial == X.id] /

StateX

entry/ {config := X.id;

establishConfigX();}

U

operation: establishConfigX();

clock: c1;

TransitionY1_X1toX2

entry / {reset: c1;}

Y1 / [c1 ≥ t_Execute] /

finished()

TransitionY2_X1toX2

operation: void setup(), void fading();

Setup

Working

entry / {reset: c1;}

exit/ {setup();}

Finished
[c1 ≥ t_Setup] /

finished()
fading/

Fading

Working

entry / {fading();}
Finished

[fading_z <> 1] /

finished()
teardown/

Teardown

Working

entry / {reset: c1;}
Finished

[c1 ≥ t_Teardown] /

finished()

U

Y2 /

Idle

getConfiguration / configurationIs(state)

Legend:

Generated only once and are used by all reconfigurations

Generated for each state X of the reachability graph

Generated additionally for each state X if X is an initial state

Generated for each transition Y1 that was created based on single-phase execution

Generated for each transition Y2 that was created based on three-phase execution

Generated additionally for each transition Y2 that involves a fading component.

Figure 6.25: Generation Template for the Configuration Store RTSC (cf. [Vol13])
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ConfigurationStore

ConfigurationStore_Main

2executor

variable: int config;

Initial

[initial == 1] /

State_Config1

entry/ {config := 1;

establishConfig1();}

U

operation: void establishConfig1(), void establishConfig2();

clock: c1;

TransitionAddConvoyMember_1to2

entry / {reset: c1;}

addConvoyMember /

[c1 ≥ 5 ms] /

finished()

TransitionRemoveConvoyMember_2to1

entry / {reset: c1;}

removeConvoyMember /

[c1 ≥ 3 ms] /

finished()

State_Config2

entry/ {config := 2;

establishConfig2():}

Figure 6.26: Example of the executor Region of the Configuration Store RTSC

Finally, we generate the purple and brown parts of the configuration store RTSC based on
the transitions of the reachability graph. If the transition of the reachability graph corresponds
to a reconfiguration that is executed according to single-phase execution (cf. Section 4.2.1),
we generate a purple state including the adjacent transitions. If the reconfiguration is exe-
cuted according to three-phase execution (cf. Section 4.2.2), we generate the hierarchical
brown state including the adjacent transitions. In Figure 6.26, we only obtain purple states
and transitions because the reconfigurations addConvoyMember and removeConvoyMember are
executed based on single-phase execution. In both cases, the first transition leaving StateX is
triggered by a reconfiguration message that is sent by the executor.

If the reconfiguration is executed based on single-phase execution, the reconfiguration
message triggers a transition from StateX to state TransitionY1_X1toX2. In Figure 6.26, the
reconfiguration message addConvoyMember triggers the transition from State_Config1 to Tran-
sitionAddConvoyMember_1to2. The state TransitionAddConvoyMember_1to2 is active as long as
the reconfiguration is executed. Since Simulink and Stateflow do not consider that actions
take time, we need to introduce this intermediate state. The entry action resets a clock c1, the
outgoing transition is activated after the WCET of the CSD has passed. Then, the transition
to the state representing the target configuration (State_Config2 in Figure 6.26) fires. Upon
entering the target state, the result of the reconfiguration is established and, thus, becomes
visible after the WCET has passed, which emulates the behavior of the real system.

If the reconfiguration is executed based on three-phase execution, the reconfiguration mes-
sage triggers a transition from StateX to the hierarchical state TransitionY2_X1toX2. The hier-
archical state contains three states that correspond to the three phases setup, fading, and
teardown of the three-phase execution. In addition, it contains two operations setup and fad-
ing. setup establishes the intermediate configuration that results from executing the setup
phase (cf. Section 4.2.2.1). fading controls the execution of the fading function using the
fading component in Simulink (cf. Section 6.3.1.3). The RTSC waits in Working until the
execution of the fading function has been finished. This is indicated by the value of fading_z
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that is defined by a hybrid port that is connected to the fading component. The result of the
teardown phase, which is the configuration resulting from executing the reconfiguration, is
established when entering the state corresponding to this configuration.

The RTSC in the manager region is trivial. It only consists of one state Idle with a self-
transition. The transition consumes a message getConfiguration and answers with a message
configurationIs that contains the ID of the current configuration as a parameter.

6.5.3.2 Adaptated Behavior Specification of the Manager

The manager RTSC needs to access the model@runtime for evaluating the structural con-
dition (cf. Section 4.3.2) that is specified by a component SDD. Since the model@runtime
is now contained in the configuration store, the corresponding operation checkStructuralCon-
ditionForX for a reconfiguration X in the manager RTSC generation template can no longer
be implemented by accessing the model@runtime. Instead, the manager needs to query the
current configuration from the configuration store. Figure 6.27 illustrates how the manager
RTSC (cf. Figure 4.15) needs to be adapted for translating it into a Stateflow chart.

internal behavior 3

5confStore

Idle AwaitReply
requestConfig? / getConfiguration()

configurationIs receivedConfig!/ 

{currentConfig := configurationIs.config;} 

variable: boolean request, boolean result;

operation: boolean checkStructuralConditionX(int config), 

boolean invokePlanner(int reconfiguration), boolean isBlocked(int reconfiguration);

Idle

entry/ {request := false;}

syncX? / 

{reconfiguration := R.id; request = true;}

[request == true] reply[true]! /

CheckX

[result == true] / {result := invokePlanner(reconfiguration);}

U

Fail [request == true] reply[false]! /
U

Success
U

[result == false] /

[request == false] /

Plan
U

[request == false] /

[result == false] /

Execute

executed[false]? /

executed[true]? /[result == true] executeReconf! /

[timeForPlanning; timeForPlanning]

ObtainConfig

receivedConfig? / 

{result := not isBlocked(R.id) && 

checkStructuralConditionX(currentConfig);}

WaitConfig
U requestConfig! /

Legend:

Generated only once and are used by all reconfiguration rules  

Generated for each reconfiguration message X that is treated.

Generated additionally for each reconfiguration message X that is request from child.

Generated additionally for each reconfiguration message X that invokes planning.

Generated additionally for each reconfiguration Y that may be blocked.

Figure 6.27: Adapted Generation Template for the Manager RTSC (cf. [Vol13])

First, we introduce a region confStore for communicating with the configuration store. The
RTSC in this region sends the message getConfiguration when switching to AwaitReply and
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receives the message configurationIs at the transition back to Idle. The received ID of the
configuration is stored in the variable currentConfig.

Second, we need to replace the transition from Idle to CheckX in the internal behavior by three
transitions with two intermediate states named ObtainConfig and WaitConfig. The transition
from Idle to ObtainConfig receives the synchronization via syncX and sets the reconfiguration
ID and the request flag as in the original template. The transition from the urgent state Obtain-
Config to WaitConfig initiates a synchronization with the region confStore such that confStore
requests the current configuration from the configuration store. After the configuration has
been received, both regions synchronize via receivedConfig. Then, internal behavior checks the
conditions for executing the reconfiguration at the transition from WaitConfig to CheckX. The
operation checkStructuralConditionForX receives the ID of the current configuration as an inte-
ger parameter. The operation is then implemented using a switch case that decides whether
the configuration with the given ID fulfills the structural condition. We may obtain the switch
case by successively matching the component SDDs that specify the structural condition to
all states of the reachability graph.

6.5.3.3 Adaptated Behavior Specification of the Executor

The executor RTSC, as introduced in Section 4.4.2, needs to modify the model@runtime
for executing reconfigurations. In the MATLAB-specific reconfiguration controller, how-
ever, only the configuration store may switch between configurations and thereby modify
the model@runtime. Therefore, we need to realize modifications of the model@runtime by
a communication between executor and configuration store. As a consequence, we extend
the executor RTSC generation template by an additional region confStore that implements
the communication with the configuration store. In addition, we may simplify the internal
behavior because it no longer needs to execute the reconfiguration. Figure 6.28 shows the
adapted internal behavior region and the new confStore region of the executor RTSC generation
template.

The internal behavior no longer contains the hierarchical state LocalExecuteY2 (cf. Fig-
ure 4.16). The corresponding behavior is now contained in the confStore region. Whenever
the adaptation RTSC of embeddedCI synchronizes to trigger the execution of a reconfigu-
ration, it now synchronizes directly with confStore. confStore then sends a corresponding
message to the configuration store which performs the desired operation.

In addition, we replace the structure type AffectedComponents, which is used by the RTSC
of the embeddedCI multi port (cf. Figure 4.17), by an array implementation. Thereby, we
avoid the use of variable-size data structures in Stateflow. Figure 6.29 illustrates the gener-
ated arrays and their usage at runtime for the executor of ConvoyCoordination.

The executor of ConvoyCoordination has three subport instances in the embeddedCI multi
port instance that handle the interaction with the three embedded component instances cm,
rg1, and rg2 (cf. Figure 6.23). Therefore, we generate arrays with length 3 in the adaptation
RTSC of embeddedCI that replace the variable ac of type AffectedComponents. We generate
one array with the same length for each attribute of AffectedComponents (cf. Figure A.71 in
Appendix A.6.4.1).

Based on the array implementation and the reachability graph, we can now generate an im-
plementation for the operation computeAffectedChildrenForAddConvoyMemberAtPos of the adap-
tation RTSC. This operation computes the embedded component instances that need to recon-
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internal behavior 3
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Legend:

Generated only once and are used by all reconfiguration rules  

Generated additionally for each reconfiguration rule Y1 that is executed using single-phase execution

Generated additionally for each reconfiguration rule Y2 that is executed using three-phase execution

Figure 6.28: Adapted Generation Template for the Executor RTSC (cf. [Vol13])

figure for executing the CSD addConvoyMemberAtPos of ConvoyCoordination (cf. Figure 3.14).
Based on the reachability graph in Figure 6.23 and the CSD, we can determine that only the
reconfiguration createMemberPortsAfter needs to be triggered on cm. Therefore, the operation
computeAffectedChildrenForAddConvoyMemberAtPos assigns 1 to the first entry of ac and 0 to
the other two entries to indicate that only cm is affected by the reconfiguration. In addition,
it assigns 2 to the first entry of message to indicate that the second message of the RE port
interface specification of cm needs to be sent to cm (cf. Figure A.52). The remaining oper-
ations for accessing ac and its attributes can be translated by accessing and modifying the
generated arrays.

6.5.4 Step 4: Encode Configurations and Generate Control Signals

In this step, we encode the configurations that are contained in the reachability graph into
the functions of the configuration store RTSC. In particular, we generate implementations
for the operations establishConfigX, setup, and fading that are contained in the executor region
of the configuration store RTSC. These operations shall write the control signals to hybrid
ports that are then connected to the control inports of our helper blocks when generating the
Simulink model in Step 6 of our algorithm.

For the integrated CIC of a structured component, we create one control signal with an
associated hybrid port at the configuration store
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Figure 6.29: Array Implementation of the AffectedComponents Structure

• for each embedded component instance that is connected to the enable port of the cor-
responding enabled subsystem for activating and deactivating the instance in Simulink

• for each embedded fading component instance that sets the ctrl inport of the corre-
sponding subsystem (cf. Section 6.3.1.3)

• for each discrete port instance of the structured component instance that defines the
local_recv_net_addr of the corresponding delegation switch (cf. Section 6.3.3.4)

• for each MultiSourceControl and MultiTargetControl that defines the ctrl input of the blocks
for rerouting the signal (cf. Section 6.3.2.1)

• for each discrete port instance of an embedded component instance that defines the re-
ceiver_net_addr of the corresponding port structure for controlling assembly connector
instances and delegation connector instances (cf. Section 6.3.3.3)

In our example, we obtain a total of 22 control signals for the integrated CIC of ConvoyCo-
ordination. In particular, we obtain control signals

• cm, rg1, and rg2 for the embedded component instances

• c1, c2, r1, r2, receiver, and speedProvider for the discrete port instances of ConvoyCoordi-
nation

• curPos for the MultiTargetControl block that handles the delegation of the continuous port
instance curPos of ConvoyCoordination

• cm.c1, cm.c2, cm.p1, cm.p2, cm.strategy, cm.speedProvider, rg1.profileReceiver, rg1.next,
rg1.r1, rg2.prev, rg2.profileReceiver, rg2.r2 for the discrete port instances of the embedded
component instances where the name of the port instance is prefixed with the name of
the component instance.

Figure 6.30 illustrates the hybrid ports that are generated for the control signals at the
configuration store of ConvoyCoordination.

Based on the control signals, we now generate implementations of the establishConfigX
operations in the configuration store RTSC. We illustrate the result for the operation estab-
lishConfig1 in Figure 6.26. The resulting implementation is shown in Listing 6.1. Applying
the generated control signals to the Simulink model generated for the integrated CIC estab-
lishes the Simulink model shown in Figure A.97 that corresponds to config1 in the reachability
graph in Figure 6.23.
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    ConfigurationStore

manager executor

cm rg1 rg2 c1 rg2.refDistProvider...c2

Figure 6.30: ConfigurationStore of the Component ConvoyCoordination with Hybrid Ports Gen-
erated for the Control Signals (cf. [Vol13])

Listing 6.1: "Implementation of the Operation establishConfig1"
cm := 1 ; s p e e d P r o v i d e r := 3 ; rg1 . p r o f i l e R e c e i v e r := 4 ;
rg1 := 1 ; cu rP os := 1 ; rg1 . r e f D i s t P r o v i d e r := 8 ;
rg2 := 0 ; cm . c1 := 7 ; rg1 . n e x t := 0 ;
c1 := 1 ; cm . c2 := 0 ; rg2 . p r ev := 0 ;
c2 := 0 ; cm . p1 := 6 ; rg2 . p r o f i l e R e c e i v e r := 0 ;
r1 := 5 ; cm . p2 := 0 ; rg2 . r e f D i s t P r o v i d e r := 0 ;
r2 := 0 ; cm . s t r a t e g y := 8 ;
r e c e i v e r := 2 ; cm . s p e e d P r o v i d e r := 9 ;

The implementations for the operations setup and fading are computed analogously. setup
establishes the configuration after the setup phase as described in Section 4.2.2. fading trig-
gers a state change in the Stateflow chart of the fading component (cf. Figure 6.10) to enable
the corresponding fading function.

6.5.5 Step 5: Create Integrated System CIC

In this step, we replace the component instances that are contained in the initial system CIC
by the integrated CICs of the components that have been computed in the previous steps.
Component instances that are contained in an integrated CIC of a component are recursively
replaced by their integrated CICs as well. The result is the integrated system CIC that encodes
all configurations that the system may have during runtime. The integrated system CIC is
then translated into a Simulink model as described in Section 6.3. The RTSCs that define
the behavior of the component instances are translated to Stateflow charts as described in
Section 6.4.

6.5.6 Integrate MATLAB-specific reconfiguration controller into the
Simulink Block Diagram

In Step 6 of our algorithm in Figure 6.5, we translate the integrated system CIC into a Simu-
link block diagram. After generating the block diagram according to the rules presented in
Section 6.3, we need to integrate the MATLAB-specific reconfiguration controller into the
Simulink block diagram and connect its control signals.

Figure 6.31 shows the generation template for adding the MATLAB-specific reconfigu-
ration controller including all of its control signals and their connections. An example of a
resulting block diagram for an instance of ConvoyCoordination is presented in Appendix A.8.2.

The subsystem Reconfiguration Controller in Figure 6.31 contains the MATLAB-specific re-
configuration controller. The subsystem has different kinds of inports and outports. First, the
four ports manager_recv, manager_send, executor_recv, and executor_send are generated for the
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reconfMsg and reconfExec port instances of the structured component instance. Second, we
obtain four ports man_X_recv, man_X_send, exec_X_recv, and exec_X_send for each embedded
component instance X that correspond to a subport instance of the embeddedCI multi ports of
manager and executor. Finally, we obtain one outport for each control signal that has been
computed in Step 4 of our process (cf. Section 6.5.4), plus one additional inport for each
fading component instance. In the following, we describe how these ports are connected to
the remainder of the block diagram that has been generated according to the rules given in
Section 6.3.

Reconfiguration Controller
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executor_recv
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exec_X_recv

manager_send

executor_send

man_X_send
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Legend:

Generated once for the structured component instance.  

Generated for each embedded component instance X.

Generated for each embedded fading component instance F.

Generated for each delegation switch.

Generated for each discrete port instance Z2 of embedded component instance.

Generated for each MultiSourceControl block Y1.

Generated for each MultiTargetControl block Y2.

out1

in

ctrl

out2

MultiTargetControl

outin1

in2

ctrl

MultiSourceControl

Figure 6.31: Generation Template for Integrating the MATLAB-specific Reconfiguration
Controller into a Block Diagram of a structure component instance

The ports man_X_recv, man_X_send, exec_X_recv, and exec_X_send are directly connected
to the corresponding reconfMsg_recv, reconfMsg_send, reconfExec_recv, and reconfExec_send
ports of the enabled subsystem X. We use a direct connection in this case because these
assembly connector instances are immutable, i.e., as long as X is executed, the connection to
the reconfiguration controller is active as well.

The ports for the control signals are connected as follows. The control signal X that has
been generated for the embedded component instance X is connected to the enable port of the
enabled subsystem X. By setting a 0 to the control signal, we stop simulating the subsystem
and emulate the destruction of the component instance X. By setting a 1 to the control signal,
we start simulating the subsystem and emulate the creation of the component instance X.
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The control signal F_ctrl that has been generated for the embedded fading component in-
stance F is connected to the ctrl inport of the corresponding subsystem F. In addition, the out-
port status of F is connected to the inport F_status of the subsystem Reconfiguration Controller.
These control signals enable the interaction of the configuration store with the Stateflow chart
shown in Figure 6.10 that is generated for a fading component instance.

The control signal Z1 is connected to the local_recv_net_addr inport of the delegation switch
corresponding to the port Z1 of the structured component instance. The control signal then
defines the net_addr of the receiving port structure. By changing the local_recv_net_addr via
the control signal, we enable that the port instance is delegated to a different embedded
component instance.

The control signal X.Z2 is connected to the recv_net_addr inport of the port structure corre-
sponding to the discrete port instance Z2 of an embedded component instance X. This control
signal defines the net_addr of the port structure that shall receive messages sent by Z2. Thus,
we can redirect assembly connector instances by changing the recv_net_addr via the control
signal.

The control signals Y1 and Y2 are used for emulating the reconfiguration of assemblies
between continuous and hybrid port instances. Therefore, the control signals are connected
to the ctrl inports of the corresponding MultiSourceControl and MultiTargetControl blocks. By
modifying the control signal, we may change the sender or receiver of the signal, respectively.

The internal structure of the subsystem Reconfiguration Controller is a direct translation of the
MATLAB-specific reconfiguration controller shown in Figure 6.24 (cf. [Vol13]). We refer
to Appendix A.8.2 for a detailed description of the internals of the ReconfigurationController
subsystem.

6.5.7 Realizing Port Reconfiguration in Stateflow Charts

In Step 7 of our algorithm in Figure 6.5, we translate the RTSCs of the component instances
contained in the integrated system CIC to Stateflow charts as described in Section 6.4. If
the component instance is reconfigurable, we also need to integrate additional constructs that
enable to activate and deactivate parallel states in Stateflow for implementing the creation
or destruction of (sub-)port instances. If a (sub-)port instance is activated in Simulink by a
reconfiguration, then we also need to activate the corresponding parallel state that contains
the behavior for this (sub-)port instance. If the (sub-)port instance is deactivated in Simulink,
we need to deactivate the corresponding parallel state as well. Therefore, we generate one
control variable for each (sub-)port chart in Stateflow. This control variable is true if the
(sub-)port chart needs to be executed and false otherwise. In addition, we need to adapt the
generation of Stateflow charts such that they use the control variable.

Figure 6.32 shows the general structure of a parallel state that may be activated and deac-
tivated. The example is based on the chart for the subsystem rg1 in Figure 6.16. The parallel
state r1 in Figure 6.32 corresponds to the parallel state r1 in Figure 6.16.

Inside r1 in Figure 6.32, we generate two states: Inactive and Active. The former indicates
that the parallel state is currently inactive while the latter indicates that the parallel state
is currently active. The state Active then contains the states and transitions that define the
behavior of r1 (cf. Figure 6.16). The contents of Active are translated according to the rules
defined in Section 6.4.
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2r1

Inactive

[ _r1_active == false]
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entry: sendAvailableP1IdleSendUpdate = true;

exit: sendAvailableP1IdleSendUpdate = false;

Active
[ _r1_active == false]

[ _r1_active == true]

Figure 6.32: Reconfiguration in Stateflow

Both, Active and Inactive, have a default transition with a guard condition. The guard con-
dition contains the control variable and defines whether the parallel state is initially active
or not. During runtime, the parallel state may be activated and deactivated by modifying the
control variable. After entering the state Active, the execution always starts at the initial state
Idle. Furthermore, the transition from Inactive to Active resets all clock variables and set all
variables that are owned by the parallel state to their initial values.

6.6 Implementation

We have prototypically implemented all steps of the algorithm shown in Figure 6.5. Our
implementation is based on and integrated into version 0.5 of the MECHATRONICUML Tool
Suite. Figure 6.33 shows the plugins that have been created as part of the implementation.
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Figure 6.33: Plugins Implementing the Translation of MECHATRONICUML Models to MAT-
LAB/Simulink Models
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The plugin simulink.wizard implements the UI integration and controls the execution of
the single steps of the algorithm shown in Figure 6.5. In the following, we describe which
plugins implement which steps of the algorithm. The reachability analysis in Step 1 is im-
plemented using our framework for reachability analysis (cf. Appendix C). The four plugins
reachabilityGraph, reachabilityGraph.sdm, reachanalysis.core, and reachanalysis.sdm implement a
reachability analysis based on story diagrams. Since we specify reconfiguration rules based
on CSDs, we first translate the CSDs to story diagrams using the model transformation in
plugin componentstorydiagram.sdm.transforms. The resulting story diagrams are then inserted
into the reachability analysis. Step 2, i.e., computing the integrated CIC for a component,
has been implemented based on the Eclipse project EMF Diff/Merge [Eclb] that enables to
easily merge all configurations contained in the states of the reachability graph. Steps 3 to 5,
namely generating the MATLAB-specific reconfiguration controller, encoding the configu-
rations, and generating the integrated system CIC, have been implemented in Java as part of
the simulink.wizard plugin.

Steps 6 and 7 have been implemented as a model-to-model transformation using triple
graph grammars (TGG, [Sch95]). TGGs require a two domain metamodels and one corre-
spondence metamodel. The domain metamodels define the source and target metamodels for
the transformation while the correspondence metamodel associates elements of both meta-
models that are equivalent with respect to the transformation. In our case, we use muml as the
source metamodel. The plugin simulink.model contains a metamodel for Simulink and State-
flow models that we created based on EMF [SBPM08]. It serves as the target metamodel
for the transformation. Finally, simulink.corrmodel contains the correspondence model while
fujaba2simulink contains the TGG rules that define the transformation. We refer to our techni-
cal reports for a detailed description of the TGG rules [HRB+13, HRB+14]. After creating
the Simulink and Stateflow models in EMF, we perform a layouting of both models. While
layouting the Simulink model is only for usability reasons, layouting the Stateflow model
is mandatory because layout defines the semantics in Stateflow. In particular, hierarchical
states are defined by x-y-coordinates. We perform the layout using the tool Graphviz [Gra].
Finally, we generate a Simulink model file for the resulting Simulink and Stateflow mod-
els. We implemented this step as a model-to-text transformation using XPand [Ecla] that is
contained in the plugin simulink.m2t.

6.7 Limitations

Our approach for the translation of MECHATRONICUML models to MATLAB/Simulink
models underlies the following limitations:

1. Steps 1 to 5 of our algorithm shown in Figure 6.5 have only been defined and imple-
mented for structured components. The reason is that we currently cannot define a
reconfiguration controller for atomic components as discussed in Section 4.7.

2. Our approach does not support user-defined structure types. Currently, we only support
the translation of the structure type AffectedComponents used in the executor RTSC (cf.
Section 4.4.2).

3. We do not support transition actions that are specified by story diagrams except for
those used in the executor RTSC. A prerequisite for translating user-defined story dia-
grams is a concept for translating structure types as mentioned above.
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4. We do not support entry and exit points of hierarchical states with more than one
region.

5. Do actions of states cannot be translated.

6. Complex transition actions including if-statements and loops are not supported.

7. Using multidimensional array data types for variables and using array data types for
message parameters is not possible.

While limitations 4 to 7 are minor issues, limitations 1 to 3 require significant effort for
being solved. Solving these limitations is beyond the scope of this thesis. In addition to the
conceptual limitations, our implementation introduced in Section 6.6 does not yet cover all
of the concepts presented in this chapter. In particular, our implementation does not support:

1. Activating and deactivating parallel states for (sub-)port RTSCs as described in Sec-
tion 6.4.5

2. Translating the structure type AffectedComponents including the story diagrams that
implement the operations of the executor RTSC as described in Section 6.5.3.3.

3. Urgent states as described in Section 6.4.4

4. Using more than one initial configuration for a component when computing possible
configurations as described in Section 6.5.1.

5. Deriving an implementation for the operation checkStructuralConditionX as described in
Section 6.5.3.2.

These tooling limitations prevent to automatically translate models of self-adaptive mecha-
tronic systems such as the RailCab using the MECHATRONICUML Tool Suite. However,
despite the limitations of our concepts and our implementation, our implementation is suffi-
cient for translating a reasonable set of MECHATRONICUML models to MATLAB/Simulink
and Stateflow as we show in our case study in Section 6.8.

6.8 Case Study

In this section, we evaluate our approach for enabling MIL simulation of mechatronic sys-
tems in MATLAB/Simulink. We evaluate our approach by conducting a case study based
on the guidelines defined by Kitchenham et al. [KPP95]. In our case study, we evaluate the
translation of MECHATRONICUML models for non-adaptive mechatronic systems to MAT-
LAB/Simulink, i.e., models of systems that do not employ runtime reconfiguration. Thus,
our case study considers Steps 6 and 7 of our algorithm shown in Figure 6.5. We perform our
evaluation for three realistic examples of mechatronic systems but do not aim at generalizing
this statement as part of this thesis.

We cannot yet conduct a case study for self-adaptive mechatronic systems such as the Rail-
Cab example presented in this thesis due to the limitations of our implementation. However,
we have tested the effectiveness and feasibility of our approach by semi-automatically trans-
lating parts of the RailCab model from MECHATRONICUML to MATLAB/Simulink. These
experiments have been successful, i.e., we could successfully emulate runtime reconfigura-
tion for discrete and continuous component instances in Simulink. We refer to Pines [Pin12]
and Volk [Vol13] for more information on the results of our experiments.
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In the following, we describe the hypotheses and results of our case study for non-adaptive
mechatronic systems.

6.8.1 Case Study Context

The objective of our case study is evaluating whether our translation of MECHATRONICUML
models to MATLAB/Simulink and Stateflow models produces syntactically and semantically
correct models that may be simulated in Simulink and Stateflow. We consider a model to be
semantically correct if it shows the same behavior as the MECHATRONICUML model.

We conduct our case study based on models of three mechatronic systems that do not
employ runtime reconfiguration. In the following, we give a brief description of the systems
and denote the characteristics of the corresponding MECHATRONICUML models.

First, we consider the cooperating delta robots that are shown in Figure 6.34 [GTS14,
PTD+14]. These robots are able to juggle a ball without utilizing a camera system. Instead,
they sense the ball by sensors on the plate and compute a prediction when and where the ball
will arrive at the other robot. This prediction is then sent to the other robot using a message
and the other robot strikes based on the prediction and, in turn, computes a new prediction
after hitting and thereby sensing the ball. The resulting MECHATRONICUML model of the
discrete components is simple but relies on tight integration with the continuous components
that contain the sensors for sensing the ball.

Figure 6.34: Cooperating Delta Robots (cf. [PTD+14])

Second, we consider a coordinated overtaking of cars shown in Figure 6.35 as introduced
by Gerking [Ger13] and Pohlmann et al. [PHMG14]. There, the overtaking red car commu-
nicates with the overtaken yellow car such that the overtaking is safe, i.e., the overtaken car
will not accelerate or decelerate if it is not safe. The MECHATRONICUML model contains
hierarchical states and a complex timing specification.

Figure 6.35: Coordinated Overtaking of Two Cars [PHMG14]

Finally, we consider the registration of RailCabs at track sections that we already used in
our case study in Section 5.6. In particular, we simulate the scenario shown in Figure 6.36
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where two RailCabs try to enter the same switch ts3. The MECHATRONICUML model ex-
tensively uses synchronizations and the coordination involves several component instances
(cf. Section 5.1.2).

Normal Track Section (ts1)

Switch (ts3)

Railroad 

Crossing (ts4)

Normal Track Section (ts2)

RailCab 2

RailCab 1

Figure 6.36: RailCabs Trying to Enter the Same Switch (cf. [HBDS15])

6.8.2 Setting the Hypothesis

The three example models that we use have been verified based on UPPAAL and our refine-
ment check. Therefore, we consider them as correct with respect to their specifications.

For our case study, we define two evaluation hypotheses. Our first evaluation hypothesis H1
is that the generated MATLAB/Simulink and Stateflow models are syntactically correct. Our
second evaluation hypothesis H2 is that the behavior of the generated MATLAB/Simulink
and Stateflow models in a simulation complies to the behavior defined by the MECHATRON-
ICUML model.

We evaluate our evaluation hypothesis based on MATLAB Release R2009b and our imple-
mentation described in Section 6.6. In particular, we evaluate H1 by compiling the generated
model in MATLAB/Simulink. For evaluating H2, we first need to implement all continuous
components in Simulink. Then, we simulate the models in Simulink and manually compare
the behavior of the simulated model to the results of our verification procedures (cf. Sec-
tion 4.5 and Chapter 5). For comparing the behavior, we plot values of variables using scope
blocks (cf. Section 6.1.1) and analyze Stateflow charts using the Stateflow debugger [Matc].

6.8.3 Preparing the Input Models

In preparation of the case study, we obtained MECHATRONICUML models for the cooper-
ating delta robots and the blind overtaking scenario. In addition, we use the RailCab models
for entering a track section as described in Section 5.6.3. All of the models have been created
using our implementation described in Section 3.6.

Each of the models contains the specification of RTCPs and components including their
RTSCs. In addition, we created a CIC for each model that serves as an input for our transla-
tion.
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6.8.4 Validating the Hypothesis

We start by translating the MECHATRONICUML model of the cooperating delta robots to
MATLAB/Simulink. Then, we compile the resulting model and the compilation succeeds
without errors. Thereafter, we integrate a Simulink model of the physical environment that
includes, in particular, the movement of the ball and the sensing of the ball. Then, we sim-
ulate the resulting model. The simulation results show that the two robots can successfully
exchange their predictions. The observed behavior in Simulink and Stateflow is compliant to
the behavior specified in MECHATRONICUML.

Next, we translate the model for coordinated overtaking to MATLAB/Simulink. The com-
pilation of the model succeeds without errors. Then, we integrate the generated model with
a simple behavior of the overtaking car that signals that the overtaking has been finished.
Thereafter, we simulate the resulting model. The simulation results show that the two cars
can successfully coordinate during the overtaking. The observed behavior in Simulink and
Stateflow is compliant to the behavior specified in MECHATRONICUML.

Finally, we translate the RailCab model for entering track sections to MATLAB/Simulink.
Then, we compile the resulting model and the compilation succeeds without errors. In the
step next, we implement a simple behavior for the continuous component Gates that rep-
resents the feedback controller of the gates of the railroad crossing (cf. Figure A.26 on
Page 220). Thereafter, we simulate the resulting model. The simulation results show that the
RailCabs may successfully register at the switch ts3. In particular, the simulation results show
that only one RailCab at a time is allowed to enter the Switch. Thus, the observed behavior in
Simulink and Stateflow is compliant to the behavior specified in MECHATRONICUML.

6.8.5 Analyzing the Results

The results of our case study show that our translation of MECHATRONICUML models into
models of MATLAB/Simulink and Stateflow produces syntactically correct models. Thus,
our first evaluation hypothesis H1 is fulfilled. In addition, the translation was fully automa-
tized and did not require manual intervention. The simulation results show that the generated
models behave as expected based on the verification results that have been obtained for the
MECHATRONICUML models. Thus, our second evaluation hypothesis H2 is fulfilled as well
and we conclude that our translation preserves the semantics of MECHATRONICUML.

In our case study, the most important threats to validity are as follows: (1) Our translation
and its implementation do not yet support all modeling constructs of MECHATRONICUML
as outlined in Section 6.7. Thus, models that use these modeling constructs will not be trans-
lated correctly. (2) We only tested the preservation of the semantics of MECHATRONICUML
based on three examples. Although we consider all of these examples as realistic, other ex-
amples from other domains could be highly different. (3) We only checked manually that
the generated Simulink and Stateflow models show the same behavior as the MECHATRON-
ICUML models. Although we did not identify any deviations, we might have missed some
minor deviation.
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6.9 Related Work

This section discusses related works from four research areas. First, we review other ap-
proaches that enable reconfiguration of MATLAB/Simulink models (Section 6.9.1). Second,
we compare our approach to other tools targeting the development of mechatronic systems
(Section 6.9.2). Third, we discuss approaches enabling reconfiguration in AUTOSAR ver-
sion 3.x (Section 6.9.3). Fourth, we relate our approach to approaches for hybrid verification
(Section 6.9.4) that try to replace MIL simulation by a formal verification of the system.

6.9.1 Reconfiguration in MATLAB/Simulink

Cancare [Can08] and Paiz et al. [PKP07] describe approaches for simulating reconfigurable
FPGA-boards in Simulink. They only switch between implementation variants of the same
block using switches but provide no means for message-based communication and adding/re-
moving components from the simulation. Schulze et al. [SWB12] provide a concept for
product line support in Simulink where a concrete variant is configured via control signals.
In addition, they support to switch between different variants of a component at run-time. In
contrast to our approach, they do not enable to reconfigure connectors or to remove compo-
nents completely.

The Quanser Real-Time Control Software (QUARC, [Qua]) provides special blocks for
switching between two Simulink models during runtime. They stop the simulation, transfer
variables, and restart the simulation on the target model. In contrast to our approach, this
approach does not permit to simulate the transient phase where the reconfiguration is exe-
cuted. In particular, this is necessary for correct simulation of fading functions. Kovácsházy
et al. [KSP03] provide a block library for simulating reconfigurable digital signal processors
(DSPs). Both approaches use self-defined blocks, which hinders the use of production code
generators like TargetLink [dSP] or ASCET [ETA].

6.9.2 Reconfiguration in other Simulation Environments

There exist several competitors of MATLAB/Simulink. These include Modelica [Mod09,
Fri04] with the commercial simulator Dymola [Das], CAMeL-View [iXt], SCADE [Est],
and ASCET [ETA], that support the development and simulation of feedback controllers.
None of these approaches natively supports runtime reconfiguration. CAMeL-View sup-
ports message-based communication using concepts of MECHATRONICUML [THB+10,
BGSH11], Modelica can be extended by a library implementing RTCPs of MECHATRON-
ICUML [PDS+12, PDM+14].

For Modelica, two extensions named Mosilab [ZJS08] and Sol [Zim07] exist that support
reconfiguration. Both approaches rely on their own simulators because their extensions are
not supported by Dymola. In contrast to our approach, they cannot use existing production
code generators. ter Beek et al. [tBGS13] provide an approach for simulating a reconfig-
urable e-Banking system, which has been specified using Reo [Arb04], in Dymola. Recon-
figurations are specified using graph transformations as in our approach, but the approach for
simulation seems to be limited to supporting one particular application example with only
two configurations.
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Burmester et al. [BGH+07] provide an approach for simulating reconfigurable systems in
CAMeL-View. They require to generate C++-Code for the reconfigurable discrete software
that needs to be integrated manually with the controller code. The simulation is performed
based on code rather than on models as in our approach. In contrast to our approach, this sig-
nificantly hardens the inspection of the model while performing MIL simulations in Step S5.4
of our process in Figure 6.4.

Güdemann et al. [GAOR07] support simulation of self-adaptive robots in SCADE. They
model reconfiguration by manually specifying flags to switch between different function
implementations in each robot. In contrast, our approach automatically generates control
signals and may enable and disable parts of the model if they are not needed.

6.9.3 Reconfiguration in AUTOSAR 3.x

Since version 4.0, AUTOSAR supports reconfiguration based on modes as discussed in Sec-
tion 3.7.1. For AUTOSAR 3.x [AUT11], which does not support reconfiguration, several
approaches for integrating reconfiguration have been developed.

Becker et al. [BGN+10] define an extension for AUTOSAR to support architectural re-
configuration which makes it closest to our approach. In their approach, a developer needs
to specify all configurations of a system manually including an automaton defining how to
switch between the configurations. This is very similar to our approach, but our approach
may automatically derive this information from a declarative rule set introducing less ef-
fort for a developer. Based on the automaton and the configurations, they generate an AU-
TOSAR system containing all configurations including code for a so-called StateManager
and a RoutingComponent. The StateManager controls the current configuration, while the
RoutingComponent redirects signals based on the current configuration. In contrast to our
approach, their approach does not allow for early validation using MIL simulations.

Berger and Tichy [BT12] extend the AUTOSAR watchdogs towards transactional recon-
figurations with rollback support, but they do not consider simulation of the system. Zeller et
al. [ZPW+11, ZP12] and Klobedanz et al. [KKMR11] provide reconfiguration of networked
embedded systems by reallocating software components to new ECUs at runtime. Their ap-
proaches can be used for technically realizing reconfiguration but not for MIL simulations in
Simulink.

Trumler et al. [THP+07] and Feng et al. [FCT08] propose middlewares for automotive
systems supporting runtime reconfiguration by migrating tasks (Trumler et al.) or switching
between different component implementations (Feng et al.). Their middlewares are supposed
to replace the AUTOSAR Runtime Environment (RTE) but do not support MIL simulation.

6.9.4 Hybrid Verification

Hybrid verification tries to formally prove that safety and liveness properties hold for a mixed
discrete-continuous system. Such systems are usually formalized by a variant of hybrid au-
tomata [Hen96] that consist of a set of discrete locations where each location embeds a set
of equations that defines how the continuous variables of the system evolve. The verification
of hybrid automata is undecidable in the general case [HKPV98]. Thus, hybrid verifica-
tion techniques fall in two categories. Approaches in the first category restrict themselves to
simpler variants of hybrid automata whose verification is decidable. Approaches in the sec-
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ond category apply approximation techniques for retrieving a finite state space. For recent
surveys on hybrid verification approaches, we refer to Zaki et al. [ZTB08] and Alur [Alu11].

Approaches in the first category are typically based on variants of linear hybrid automata
[Hen96, DISS11a]. Examples include HyTech [HHWT97], PHAVer [Fre05], RED [Wan05],
and approaches by Damm et al. [DISS11a, DISS11b, DDD+12]. The property that all of
these approaches have in common is that they significantly restrict continuous dynamics
such that most systems of practical relevance cannot be specified with them [HHMWT00].
In particular, they do not support ordinary differential equations (ODEs) and differential al-
gebraic equations (DAEs) that are essential for describing many physical phenomena. Since
MATLAB/Simulink supports both [XC13, ch. 5.4], our approach supports such systems.

Approaches in the second category apply over-approximations of the continuous dynam-
ics. Most approaches are based on flow pipes [CK99] where the system states are represented
by polyhedra. Examples include HyperTech [HHMWT00], CheckMate [SK00, SRKC00],
d/dt [ADM01, ADM02], an approach by Alur et al. [ADI06], and SpaceEx [FLGD+11]. A
new class of approaches encodes hybrid models using constraints and solves them with a
SAT-solver as, e.g., approaches by Ishii et al. [IUH11] and Eggers et al. [ERNF12]. All of
the mentioned approaches have in common that they may only verify small system models
with up to 200 variables [FLGD+11]. However, realistic examples that may be simulated in
Simulink use thousands of blocks [SP12] where each block defines at least one variable.

In addition, none of the approaches mentioned above supports runtime reconfiguration
which is supported by our simulation-based approach.

6.10 Summary

In this chapter, we introduce an approach for MIL simulation of self-adaptive mechatronic
systems in MATLAB/Simulink and Stateflow. Our approach provides a syntactic decoupling
of discrete and continuous components that enables to efficiently verify the discrete part of
the system’s behavior based on the compositional verification approach of MECHATRON-
ICUML. Thus, we only need to rely on MIL simulations for testing the correctness of (1)
the feedback controllers contained in the continuous components, (2) the fading functions
used for replacing continuous components, and (3) the correct interaction of discrete and
continuous components. As our main contribution, we define an algorithm that translates
a MECHATRONICUML model into a MATLAB/Simulink and Stateflow model. In our ap-
proach, we explicitly compute and encode all possible configurations of the self-adaptive
mechatronic system. The resulting Simulink model then enables to switch between the en-
coded configurations for emulating runtime reconfiguration. This enables to emulate runtime
reconfiguration without needing to structurally modify the simulation model, which is not
supported by Simulink.

Although our contributions have been illustrated based on MATLAB/Simulink and State-
flow, our approach for emulating reconfigurations of the software architecture of a system
may easily be transferred to other languages and tools for MIL simulation such as Dy-
mola [Das]/Modelica [Mod09].
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7.1 Summary

Introducing self-adaptation into mechatronic systems increases the complexity of developing
the software for them. In particular, it introduces more sources for errors that may occur at
runtime and hardens to predict the behavior of the system. However, self-adaptive behav-
ior is the basis for self-healing [Sha02, Pri13] and self-optimization [GRS09, GRS14] that
enable to improve safety, availability, and (resource) efficiency of the system. The contribu-
tions of this thesis enable software engineers of self-adaptive mechatronic systems to cope
with the additional complexity such that they may safely unleash the full potential of self-
adaptive behavior when developing the next generation of mechatronic systems. In the scope
of this thesis, all of our contributions have been defined based on the MECHATRONICUML
method, but our contributions may also be transferred to other model-driven approaches that
provide support for developing platform-independent models of software for self-adaptive
mechatronic systems. We have implemented all of our contributions as part of the MECHA-
TRONICUML Tool Suite [DGB+14].

As our first contribution, we define a component model that enables to specify a software
architecture for a self-adaptive mechatronic system. The component model explicitly in-
cludes the necessary variability in the definition of component types and provides CSDs,
which enable the model-driven specification of runtime reconfigurations of the software
architecture. In particular, CSDs improve comprehensibility of reconfiguration behavior
by providing a visual representation based on the concrete syntax of components [Moo09,
HB14]. As a key benefit of our component model compared to related approaches, we explic-
itly consider the integration of feedback controllers including their reconfiguration into the
software architecture. In addition, our component model enables to establish RTCPs between
AMS for dynamically building NMS and provides component SDDs that allow specifying
architectural constraint based on components. We illustrate the effectiveness of our compo-
nent model by creating a model of the RailCab system including the reconfiguration behavior
for building convoys that is documented in detail in Appendix A.

As our second contribution, we define a formal execution semantics for reconfigurations
in a hierarchical component model that is based on an adaption of the 2-phase-commit proto-
col [BHG87, ch. 7]. In our approach, we syntactically extend the components in our compo-
nent model by a dedicated reconfiguration controller that executes the 2-phase-commit proto-
col. The reconfiguration controller enables to execute reconfigurations across different levels
of hierarchy without violating component encapsulation. Our approach significantly reduces
the complexity of specifying such hierarchical reconfigurations by providing a rather simple
declarative specification based on tables that enables to automatically generate an implemen-
tation of the 2-phase-commit protocol. We extended the existing 2-phase-commit protocol
such that it can execute reconfigurations in a self-adaptive mechatronic system including the
exchange of feedback controllers according to ACI-T properties. The ACI-T properties are
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atomicity, consistency, isolation, and correct timing. While our 2-phase-commit protocol
specification guarantees atomicity and isolation offhand, we define a verification approach
for guaranteeing consistency and a correct timing of reconfigurations. Thereby, we can en-
sure the correctness and, thus, the safety of the reconfigurations. We demonstrated the ef-
fectiveness of our approach by specifying a hierarchical reconfiguration behavior for our
RailCab model. In addition, we generated the 2-phase-commit protocol implementation and
verified the resulting models as described on our website [Hei13]. Recently, our approach
for hierarchical reconfigurations has been integrated into the ProCom component model by
Hang and Hansson [HH13].

As our third contribution, we enhance MECHATRONICUML’s compositional verification
approach [GTB+03] by a new refinement check. Our refinement check enables to verify that
the ports of the components in our component model correctly refine the roles of the RTCPs
that define the interaction of components. In particular, our approach enables to prove that
all safety and liveness properties that have been verified for the RTCPs still hold for the ports
of the components. Our refinement check is based on test automata. The test automaton en-
codes both, the behavior of the role and the conditions of the refinement definition that is to
be checked. Our construction of the test automaton is parameterized such that it supports to
verify correct refinements based on six different refinement definitions. Each refinement def-
inition supports different kinds of constructs that may be used in RTSCs and different kinds
of safety and liveness properties. Combined with an automatic selection of the refinement
definition to be used, our approach enables for a fully automatic verification of refinements
as part of the compositional verification approach. We evaluate our approach by conducting
a case study based on the RailCab system. In particular, our case study shows the viability
of the automatic selection and verification of different refinement definitions. In addition, we
illustrate how the returned counterexamples enable to identify the root cause of a refinement
violation.

As our fourth and final contribution, we provide an approach for MIL simulation of self-
adaptive mechatronic systems. This approach enables to test the correct integration of dis-
crete components and feedback controllers, which cannot be tackled by formal verification
techniques for complex systems such as the RailCab. As our main contribution, we defined
how message-based communication of discrete components and reconfiguration behavior of
structured components may be realized in a tool for MIL simulation that has no built-in
support for such behavior. We illustrated our contributions based on MATLAB/Simulink,
which is a de facto standard tool in industry for developing and simulating feedback con-
trollers. However, our contributions are not limited to MATLAB/Simulink but may also
be used in related transformations [PHMG14] to other simulation tools that share the same
restrictions with respect to reconfiguration such as Dymola/Modelica [Das]. Since the sim-
ulation model may not structurally change within these simulation tools while executing a
simulation, we encode all possible configurations of the system into the simulation model.
During a simulation, we may then switch between the different configurations and thereby
simulate the reconfiguration behavior of the system. In our approach, we define how a MAT-
LAB/Simulink and Stateflow model can be derived from a MECHATRONICUML model by
an automatic model transformation. We evaluate our model transformation by a case study
where we translate MECHATRONICUML models of three different mechatronic systems to
MATLAB/Simulink. The results of our case study show that our model transformation pre-
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serves the semantics of MECHATRONICUML and that the MECHATRONICUML models are
much more concise compared to the resulting Simulink and Stateflow models.

In combination, our contributions reduce the complexity of specifying reconfiguration
behavior for a hierarchical component model. Moreover, our integrated analyses enable
software engineers to proof the correctness of the reconfiguration behavior and thereby re-
establish the predictability of the system’s behavior at runtime.

7.2 Future Work

The results of this thesis give rise to different possibilities for future works that we highlight
in the following. As a basis, future works may enhance the contributions of this thesis by
overcoming the limitations and possibly relaxing the assumptions that we described in the
corresponding sections of the previous chapters. In addition, all of the contributions should
be further evaluated in industrial projects and by using models from different domains such
as automotive [FMB+09], avionics, or factory automation. In the following paragraphs, we
discuss further directions for future works.

Requirements Engineering The input for the contributions of this thesis is the domain-
spanning conceptual design of the self-adaptive mechatronic system that has been created by
experts from all involved disciplines [GFDK09, GSG+09]. This specification uses a state-
based technique for describing different configurations of the system as we illustrated in our
paper [HSST13]. State changes in this approach typically translate to reconfigurations in
MECHATRONICUML. Future works should investigate how this specification may be com-
plemented by model-based requirements engineering techniques that focus particularly on
software reconfiguration. Examples include adapt cases [LNGE11] and goal-based tech-
niques like the approach by Cheng et al. [CSBW09]. Such approaches would improve the
early consideration and traceability of reconfiguration-related requirements.

Cognitive Operator Our component model supports to define a software architecture
including reconfiguration operations for the reflective operator of the OCM. In addition, it
includes an interface to the controller level by using continuous components. Future works
should provide a similar interface to the cognitive operator of the OCM (cf. Section 2.1.2).
A starting point is given by using unsafe ports as proposed by Giese and Schäfer [GS13] that
define interactions with non-real-time parts of the software. However, the interface to the
cognitive operator needs to be integrated with our concept for transactional execution of re-
configurations such that the cognitive operator may trigger the execution of reconfigurations.

Monitoring Monitoring the environment and the operations of the mechatronic system
itself are crucial for self-adaptive behavior. At present, we assume that all relevant mon-
itoring data is gathered and accumulated by discrete atomic components in our compo-
nent model. At present, MECHATRONICUML does not support the developer in specify-
ing monitoring behavior. Therefore, future works should integrate monitoring of the sys-
tem behavior [DGR04, WH07] into MECHATRONICUML, e.g., using a framework like
Kieker [vHWH12]. In particular, this should also enable to specify additional monitoring
in the reconfiguration controller of a structured component, e.g., for monitoring information
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entering the structured component. An example is given by monitoring the current speed in
the component VelocityController (cf. Figure 3.7 on Page 3.7) for deriving whether the RailCab
drives slow or fast.

Uncertainty The decision about executing a reconfiguration is made based on monitor-
ing data, which reflects information about the system itself and its physical environment, and
based on communication with other systems in the environment. As a result, the effectiveness
of the reconfigurations is determined by the quality of the knowledge about the environment.
Often, this knowledge is incomplete or inconsistent, e.g., due to false assumptions, unpre-
dictable phenomena in the environment, or even imprecise and inaccurate sensors [RJC12].
Therefore, future work should investigate whether the reconfiguration behavior in our ap-
proach may be improved by explicitly addressing uncertainty during the development, e.g.,
using RELAX [WSB+09] or ActiFORMS [IW14].

Quiescence The concept for quiescence of discrete atomic component instances that we
outline in Section 4.2.3 needs to be further elaborated and evaluated. In particular, future
works should investigate whether it is possible to perform part of the necessary runtime anal-
ysis already at design time, e.g., by identifying states that always fulfill a part of the imposed
conditions for quiescence and by labeling these beforehand. In addition, it might be possible
to automatize the creation of the condition for quiescence at least partially. An idea is intro-
ducing an ontology [GOS09] that may be used for relating monitored signals at port instances
to properties of the physical system such as speed or distance to another system. Then, we
may specify constraint patterns that automatically translate typically unsafe situations like
high speed combined with a small distance into conditions for quiescence.

Learning Reconfigurations Our approach for transactional execution of reconfigura-
tions only applies pre-programmed reconfigurations based on monitored situations. That
means that the system will always react with the same reconfiguration to the same environ-
mental situation. Future works may utilize the cognitive operator of the OCM for evaluating
the effect of a particular reconfiguration in a specific situation. Then, we can provide several
reconfiguration rules for a situation and the system can adjust the decision which rule to ex-
ecute based on past decisions. It would also be possible that systems share their experiences
to learn from each other. This, in turn, could provide a data set that is large enough to apply
machine learning [Mit04] to further optimize reconfiguration decisions and predictions of the
system. In our current approach, this would require an adaptation of the RTSCs for manager
and executor at runtime as illustrated, for example, by Schäfer and Wehrheim [SW07]. In
addition, this would enable to inject new reconfiguration rules or even completely new com-
ponents including their reconfigurations into the system at runtime. In addition, that would
require a modification of the allocation and to check at runtime whether this change does not
compromise the consistency and timing properties of the 2-phase-commit protocol.

Security At present, our approach only addresses the safety of the system by applying
formal verification and MIL simulation for guaranteeing that the system adheres to its spec-
ification. At runtime, however, security becomes an issue because self-adaptive mecha-
tronic systems shall engange in NMS where they communicate via wireless communica-
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tion links. These wireless communication links could be used by an intruder to perform,
for example, a man-in-the-middle attack [Kiz05] that compromises the safe operation of
the NMS. As a consequence, future works first need to integrate an authentication mech-
anism [DVOW92, BCK98] into the instantiation of RTCPs on system level to ensure that
no unauthorized system enters an NMS. Second, future works need to integrate the use of
encryption standards like the Advanced Encryption Standard (AES, [NIS01, DR02]) into
RTCPs to enable secure communication. Such security measures may probably be generated
into the system automatically when deriving the platform-specific model.

Executing Reconfigurations Our reconfiguration approach integrates flat switching
for replacing feedback controllers [OMT+08]. In this approach, the decision whether a re-
configuration is possible may, in some cases, depend on the values of the new controller.
These values cannot be obtained before executing the setup phase in our current approach
but at this point no abort is allowed. Thus, it may happen that a reconfiguration that has
been started cannot be finished. A solution would be to extend our approach towards a
3-phase-commit protocol [BHG87, SS83] consisting of a voting, pre-commit, and commit
phase. Then, the execution of the setup phase would be part of the pre-commit phase. After
executing the precommit phase, children are still able to abort the reconfiguration. Since no
modification of the behavior took place in the setup phase, this will be possible and safe. In
addition, it might be necessary to integrate roll-back behavior [ZCYM05, LLC10] or a con-
trolled transition into a fail-safe behavior [dLdCGFR06] if an unexpected hardware failure
occurs while executing the reconfiguration.

Refinement of Multi Roles At present, our refinement check is only applicable to single
roles and single ports. Future works should extend this approach towards checking correct
refinements for multi roles that include reconfigurations, i.e., the instantiation and removal
of subrole instances. In [HH11a], the relaxed timed bisimulation has already been extended
towards multi roles, but it requires a dedicated refinement check. Therefore, future works
should extend our test automaton construction such that we may verify refinement of multi
roles. Initial ideas towards such extended test automaton construction have already been
presented by Brenner [Bre10] but require significant extensions of the approach. In this
context, especially refinements of multi roles to ports of multi parts as for the multi part
RefGen in Figure 3.5 are challenging and require additional concepts for constructing the test
automaton.

Counterexample Analysis The counterexamples returned by our refinement check are
tool-specific and refer to the generated test automaton. The test automaton, however, is not
familiar to a developer and, therefore, interpreting the counterexample still requires a detailed
knowledge of our test automaton construction. Future works should provide means for trans-
lating counterexamples back to the role and port RTSCs using, for example, the approaches
by Gerking [Ger13] or Hegedüs et al. [HBRV10]. This back-translation of counterexamples
may additionally provide an automatic root cause analysis of the refinement violation. The
counterexample may be associated to the specific test construct described in Section 5.3.2
that lead to the error state which, in turn, can be associated to the root cause of the violation.
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Synthesis of Component Behaviors The RTSC of a discrete atomic component is
assembled from the port RTSCs. Typically, the port RTSCs of a component are not indepen-
dent of each other. For example, they may need to exchange data or one port may only enter
a particular state if one of the other ports is (or is not) in a specific state. In previous works,
Eckardt and Henkler [EH10] as well as Goschin [Gos14] provided an automatic synthesis
of component behaviors that resolves such dependencies automatically based on a formal
dependency language [DGB14]. These approaches need to be extended towards supporting
multi ports and runtime reconfiguration.

Model-Based Testing At present, our approach for MIL simulation of a self-adaptive
mechatronic system only supports the developer in translating the MECHATRONICUML
model into a MATLAB/Simulink model. Future works shall provide additional support for
the remaining process steps for performing MIL simulations. In particular, Steps S5.3 and S5.4
of our process in Figure 6.4 need to be extended by a framework for model-based testing.
This framework shall support the developers in deriving scenarios from the requirements in
an (semi-) automatic fashion. In addition, it needs to support the automatic execution of the
resulting test cases and the computation of metrics like test coverage [JFA+07, OHY11, T-V,
Mate]. For Step S5.3, an approach for automatically deriving test scenarios from a scenario-
based requirements specification [Gre11] could significantly reduce the effort for testing and
may positively influence test coverage.

Deployment The platform-independent models that may be created using the contribu-
tions of this thesis need to be deployed on a hardware platform [PMDB14] for being exe-
cuted. The hardware platform need to provide enough resources for executing the reconfigu-
rations and for executing the resulting CICs. This can be guaranteed by a using a deployment
approach [TMD09, Dea07, MMMR12] that considers reconfigurations [Poh13].
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Complete RailCab Example

This appendix introduces a complete example of a self-adaptive mechatronic system whose
software has been specified using MECHATRONICUML. In particular, we continue the Rail-
Cab system [HTS+08a, HSD+15] that we already used in the main chapters of this thesis
for illustrating our concepts. In the remainder of this chapter, we introduce the remaining
parts of the MECHATRONICUML model of the RailCab system. We omit all models that
have already been introduced in the main chapters and only provide references to those mod-
els in this appendix. All models presented in the following have been implemented in the
MECHATRONICUML Tool Suite as far as possible under the given limitations of our tooling
as discussed in the respective sections of our main chapters. The model is available on our
website [HS15]. At present, the example is still limited in the number of use cases that it
supports. In particular, we currently only enable to build and extend convoys with additional
RailCabs. We do not yet support dissolving convoys and that RailCabs leave a convoy.

In the following, we start in Section A.1 by presenting the RTCPs that are used by the
discrete components of the RailCab’s software architecture. Thereafter, we introduce the
behavior models and a simple environment model that can be used for instantiating RTCPs
on system level in Section A.2. Section A.3 introduces one additional component that has not
been included in Section 3.1, while Section A.4 introduces instances of these components
for different convoy situations. In Section A.5, we present RTSCs for all discrete atomic
components that we defined in our component model. Next, we describe the reconfiguration
behavior of all structured components including a declarative, table-based specification of
the reconfiguration behavior and the CSDs of the components. Section A.7 presents the
component SDDs of our components. Finally, Section A.8 presents an excerpt of a generated
Simulink model for the components RefGen and ConvoyCoordination.

A.1 RTCPs

This section introduces the RTCPs that specify the communication between the discrete com-
ponents of the RailCab. In particular, we introduce the RTCPs ConvoyEntry (Section A.1.1),
ConvoyCoordination (Section A.1.2), ProfileDistribution (Section A.1.3), SpeedTransmission (Sec-
tion A.1.4), StartExecution (Section A.1.5), StrategyExchange (Section A.1.6), and NextSection-
Free (Section A.1.7). The RTCP DistanceTransmission has been introduced in Section 2.4,
while the RTCP EnterSection has been introduced in Section 5.1.
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A.1.1 ConvoyEntry

The RTCP ConvoyEntry, whose declaration is shown in Figure A.1, provides a simple negoti-
ation of a convoy coordinator. ConvoyEntry only has one role peer with a cardinality 2. Thus,
two communication partners execute the same behavior for electing a coordinator. The RTCP
defines a message buffer for one message and a message delay of 10 ms. In our RailCab ex-
ample, ConvoyEntry is refined by the port peer of the component OperationStrategy as shown
in Figure 3.6. The initial version of the RTCP has been derived from the real-time coordi-
nation pattern Master-Slave-Assignment [DBHT12] but significantly extended for the RailCab
system.

peer

ConvoyEntry

[2]

in-buffer size: 1
delay: 10 ms

Figure A.1: Declaration of the RTCP ConvoyEntry

Figure A.2 shows the RTSC of the role peer. The behavior that is specified by the RTSC is
as follows. Both peers start in the state NoAssignment. In the following, we will refer to them
as "the one peer" and "the other peer" for explaining the interaction between the two peers.
The RTSC uses two Boolean variables masterPossible and slavePossible that encode whether a
peer can operate as a coordinator or as a member, respectively.

If masterPossible is true, then the one peer may nondeterministically switch to MasterPro-
posed by sending a youSlave message to the other peer. If the other peer cannot be a member,
it fires the self transition of NoAssignment and answers with cannotSlave. In this case, the
one peer switches back to NoAssignment as well. If the other peer may still be a member
(slavePossible is true), then the other peer switches to AcceptSlave after receiving the youSlave
message and sends a confirm. Then, the other peer switches from AcceptSlave to StartingSlave.
This transition is used for triggering the reconfiguration for becoming a member in a compo-
nent that uses this RTCP. Therefore, it specifies a deadline of 50 ms. The one peer switches
from MasterProposed to StartingMaster. This transition is used for triggering the reconfigura-
tion for becoming a coordinator in a component that uses this RTCP.

The further behavior depends on whether the reconfigurations have been successful or
not. In the RTSC, we model both results by using non-deterministic choice expressions in
the entry actions of the states StartingSlave and StartingMaster. If the one peer has success-
fully executed the reconfiguration for becoming coordinator (member), then masterStarted
(slaveStarted) is true. If masterStarted is true, then the one peer sends masterReady otherwise
it sends cannotMaster while switching to WaitForSlaveFinish. In the same fashion, the other
peer sends slaveReady if slaveStarted is true and cannotSlave, otherwise, while switching to
WaitForMasterFinish.

If the other peer receives cannotMaster from the one peer, then it switches back to No-
Assignment regardless of the value of slaveStarted and sets slavePossible to false. Thus, it
cannot be member because the one peer cannot be the coordinator. If slaveStarted is true and
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Figure A.2: RTSC of the Role peer of the RTCP ConvoyEntry
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the other slave receives masterReady, it switches to Slave and the assignment is finished for
the other peer. If slaveStarted is false and the other peer receives masterReady, then the other
peer switches back to NoAssignment. The one peer reacts in the same way as the other peer
based on the messages slaveReady and cannotSlave. If both, masterPossible and slavePossible
are false, then RTSC switches to Failed. In Failed, the one peer may still receive youSlave
messages from the other peer, which it answers with cannotSlave. In addition, the one peer
will switch from NoAssigment to Failed if it has not received a message for 10.000 ms. These
two transitions are necessary to prevent deadlocks in case that one or both peers start with
one of the variables masterPossible or slavePossible being false at the start of execution.

We verified the RTCP using UPPAAL. We have verified the following properties:

• The RTCP is free from deadlocks.

• None of the message buffers may overflow.

• If one peer reaches the Master state, then the other peer will always eventually enter the
Slave state.

• If one peer enters the Fail state, then the other peer will always eventually enter the Fail
state as well.

A.1.2 ConvoyCoordination

The RTCP ConvoyCoordination, whose declaration is shown in Figure A.3, is responsible for
managing the convoy. In particular, this RTCP finally decides whether a RailCab may join a
convoy as a member and it defines the position where the RailCab may enter the convoy. Both
decisions are made based on so-called motion profiles. A motion profile, in the following
simply referred to as profile, is a certificate how a RailCab moves in a particular driving
maneuver such as braking. For driving in a convoy, each RailCab needs to be equipped with
one or many of such profiles in order to guarantee safe convoys [FHK+13, FHK+14].

coordinator member

ConvoyCoordination

[0..*] [1]
in-buffer size: 1 in-buffer size: 1

delay: 1 ms

Figure A.3: Declaration of the RTCP ConvoyCoordination

The RTCP consists of two roles, namely coordinator and member. coordinator is a multi
role such that a coordinator RailCab may coordinate a convoy with many members. If a
new member wants to enter the convoy, it sends all of its profiles to the coordinator. Then,
the coordinator checks whether an assignment of profiles to convoy members exists such that
the convoy is safe in all driving maneuvers. If so, the new member may enter the convoy,
otherwise it may not enter. Figure A.4 shows the RTSC that defines the behavior of the
coordinator role while Figure A.5 shows the RTSC of the member role.

The behavior of the coordinator is slightly extended compared to our previous publica-
tions [FHK+13, FHK+14]. In particular, it enables that the profiles of RailCabs that already
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drive as part of the convoy may be changed if a new RailCab wants to enter. We describe the
behavior executed by coordinator and member in the following.

The coordinator starts by initializing its variables. In particular, it must create a new Pro-
fileStore that stores all received profiles and that is assigned to variable allProfiles. Then, at
an arbitrary point in time, a new member may appear and a corresponding subrole is created
by the transition from Idle to HandleNewMember. The member fires the transition from Idle
to Request and creates its profiles. In addition, it sends requestConvoyEntry to the coordinator.
The subrole receives this message and synchronizes via newMemberPossible with the adapta-
tion RTSC. Then, the adaptation RTSC checks whether it is possible and useful to add a new
convoy member at the given point in time. If not, it synchronizes via entryFail and the subrole
will decline the convoy entry. If the member may enter, the adaptation RTSC synchronizes
via entrySuccess and the subrole approves the convoy entry.

After this, the member initiates sending its profiles using the message startProfileTransmis-
sion while entering the Wait state. The subrole acknowledges that it is readyForProfileTransmis-
sion and the transmission of the profiles starts. As long as the member has unsent profiles,
it switches from Transmit to awaitAck and sends a profile to the subrole. The subrole stores
the profile in allProfiles and acknowledges via profileReceived. After all profiles have been
transmitted, the member sends endOfProfileTransmission, which causes the subrole to switch to
ProfilesReceived. Using this transition, the subrole synchronizes with the adaptation RTSC
via requestPosition in order to request an entry position for the new member.

The adaptation RTSC then invokes calculateProfiles. This function compares the profiles of
all RailCabs with each other in order to obtain an assignment of profiles to RailCabs such that
the convoy is safe [FHK+13, FHK+14]. If no such assignment could be found, newRailCab-
Position is 0 and the adaptation RTSC synchronizes via entryFail with the subrole. Then, the
subrole declines the convoy entry and switches to Fail. Similarly, the member switches from
WaitForPosition to Declined and the convoy entry has failed. Finally, the adaptation RTSC
deletes the subrole including its profiles and returns to Idle.

If calculateProfiles could obtain a profile assignment, the adaptation RTSC switches to Up-
dateRequired. If changed is false, then no profiles of the current convoy members have been
changed. In this case, the adaptation switches to Finished and synchronizes via entrySuccess
with the subrole. Then, the subrole sends the profile and the position to the member. The
member acknowledges by sending startConvoy and enters the Convoy state. After receiving
this message, the subrole also switches to Convoy and synchronizes via convoy with the adap-
tation RTSC, which finishes the convoy entry.

If calculateProfiles derived a profile assignment that requires to change the profiles of the
existing convoy members, the adaptation RTSC switches to UpdateProfiles. Then, the adapta-
tion RTSC iterates all subroles and synchronizes via sendNewProfile with them. In this case,
the corresponding subrole switches from Convoy to NewProfile and sends the new profile to
the corresponding member. The member processes the message at the self-transition at Convoy
and confirms the update. The subrole of the new member is treated as before and the convoy
setup finishes after all members have been informed about their new profiles.

A.1.3 ProfileDistribution

The RTCP ProfileDistribution, whose declaration is shown in Figure A.6, is responsible for
propagating profiles and the data, which is necessary for using the profile, inside the co-

203



A. Complete RailCab Example

coordinator

Coordinator_Main

adaptation

subrole

1

2

channel: newMemberPossible, entryFail, entrySuccess, requestPosition, sendNewProfile[Role], finished[Role], convoy;

variable: Role curSubRole, Role tmpSubRole, int members := 0, const int maxNumMembers := 3;

clock: c1, c2;

variable: bool memberPossible, int newRailCabPosition, bool changed, Profile newProfile, ProfileStore allProfiles;

operation: bool isMemberPossible(), bool calculateProfiles();

variable: int newPos;

clock: c3, c4;

Idle NewQuery

[members < maxNumMembers]/ 

{curSubRole := 

createSubRoleInstance(self);

members := members + 1; reset: c1;}

HandleNewMember

c1 ≤ 10ms

NewMember

c1 ≤ 1000ms
Calculate

UpdateProfiles

c1 ≤ 10ms && c2 ≤ 1000ms

entry/ {reset: c1;}

WaitForSubrole

c1 ≤ 100ms

newMemberPossible? /

{memberPossible := 

isMemberPossible ( ) }

[not memberPossible] entryFail! /

[memberPossible]

entrySuccess! /

{reset: c1}

requestPosition? /

{calculateProfiles()}

[newRailCabPosition > 0] /

[tmpSubRole <> curSubRole]

sendNewProfile[tmpSubRole]! /

{newProfile := getProfile(allProfiles, tmpSubRole);}

finished[tmpSubRole]? /

{tmpSubRole := tmpSubRole.next}

U

U

[500ms;500ms]

UpdateRequired

[changed] /

{tmpSubRole := first;

reset: c2;}

UFinish

c1 ≤ 200ms

[tmpSubRole == null]/

{reset: c1;}

[not changed] entrySuccess! /

{newProfile := getProfile(allProfiles, curSubRole);

reset: c1;}

DeleteSR

c1 ≤ 200ms

[newRailCabPosition == 0] 

entryFail! /

[c2 ≥ 200ms] /

{deleteSubRoleInstance(curSubRole);

deleteSRProfiles(allProfiles, curSubRole);

members := members – 1;}

convoy? /

{curSubRole := null;}

[tmpSubRole == curSubRole] entrySuccess! /

{newProfile := getProfile(allProfiles, tmpSubRole); 

tmpSubRole := tmpSubRole.next;}

Initialize

/ {allProfiles := initializeVariables(); }

U

Idle

c3 ≤ 10ms
Request

requestConvoyEntry

newMemberPossible! / EntryPossible

c3 ≤ 50ms

entrySuccess? /

{reset: c3;}

approveConvoyEntry()

Perform Transmission

c3 ≤ 100ms && c4 ≤ 1000ms

entry/ {reset: c3}

startProfileTransmission / 

{createProfileList(allProfiles, self); reset: c4;} 

readyForProfileTransmission()

Profiles

Received

endOfProfileTransmission 

requestPosition! / 

Wait

c3 ≤ 200ms
Convoy

entrySuccess? /

{newPos := newRailCabPosition; 

reset: c3;}

enterConvoyAt(newPos, newProfile)

convoy!

acceptPosition /

startConvoy()

NewProfile

c3 ≤ 100ms

sendNewProfile[self]? /

{reset: c3}

updateProfile(newProfile)

confirmProfileUpdate

finished[self]! /

profile / 

{addProfile(allProfiles, self, profile.p);}

profileReceived()

Failed

       entryFail? /

declineConvoyEntry()

entryFail? / declineConvoyEntry()

Figure A.4: RTSC of the Role coordinator of the RTCP ConvoyCoordination (cf. [FHK+14])
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member

Idle

c ≤ 10ms
Declined

/ {profiles := 

obtainProfiles(numOfProfiles)} 

requestConvoyEntry()

variable: const int numOfProfiles := 5, boolean hasNext, int entryPosition, Profile curProfile; 

Profile tmpProfile, ProfileIterator iterator, ProfileList profiles;

clock: c;

Request

c ≤ 75ms

Wait

c ≤ 50ms

Transmit

c ≤ 10ms

entry/ {reset: c;

hasNext := hasFurtherProfile(iterator);}

WaitForPosition

c ≤ 1000ms

declineConvoyEntry /

approveConvoyEntry / 

{reset: c} startProfileTransmission()
declineConvoyEntry /

readyForProfileTransmission /

{iterator := getIterator(profiles);}
[not hasNext] /

{deleteIterator(iterator);}

endOfProfileTransmission()

ReceivedPosition

c ≤ 100ms
AwaitAck

c ≤ 50ms

[hasNext] /

{tmpProfile := getNextProfile(iterator);}

profile(tmpProfile)

profileReceived /

enterConvoyAt /

{entryPosition := enterConvoyAt.pos;

curProfile := enterConvoyAt.profile;}

acceptPosition()

Convoy
startConvoy /

updateProfile / 

{curProfile := updateProfile.profile} 

confirmProfileUpdate()

Figure A.5: RTSC of the Role member of the RTCP ConvoyCoordination

ordinator RailCab. This profile is used within the ConvoyCoordination component shown in
Figure 3.5. The multi role profileProvider sends the profile information to many profileRe-
ceivers and receives information about the current maximum speeds for the profileReceivers.
The latter information may be used for adjusting the convoy speed after a profile change.

profileProvider profileReceiver

ProfileDistribution

[0..*] [1]
in-buffer size: 1 in-buffer size: 1

delay: 1 ms

Figure A.6: Declaration of the RTCP ProfileDistribution

Figure A.7 shows the RTSC of the multi role profileProvider, while Figure A.8 shows the
RTSC of the role profileReceiver. The execution of the profileProvider starts in the Idle state of
the adaptation RTSC. At an arbitrary point of time, it may add a new subrole by firing the
self-transition at the Idle state. Thus, it will be defined by the implementing component at
which point in time a new instance is required.

Once per second, the adaptation RTSC switches from Idle to sendUpdate and synchronizes
with the first subrole via startUpdate. This initiates and update process where new data and
profile information are sent to the receivers. The synchronization causes the first subrole to
switch from Idle to SendMsg. If a new profile is available, it sends a newProfile message to the
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profileProvider

ProfileProvider_Main

adaptation

subrole

1

2

channel: startUpdate[Role], finished;

clock: c5;

variable: int minDistance, int newConvoySpeed, int convoySpeed, int ownMaxSpeed, 

bool updateProfiles := false, ProfileStore allProfiles;

variable: Profile tmpProfile, int tmpMemberSpeed;

operation: int updateConvoySpeed(int newSpeed);

clock: c6;

Idle

c5 ≤ 1s

entry/ {reset: c5;}

sendUpdate

c5 ≤ 950ms

[c5 ≥ 1s] startUpdate[first]! / 

{newConvoySpeed := ownMaxSpeed; reset: c5;}

finished? / {convoySpeed := newConvoySpeed;}

[c5 ≤ 950ms]/ 

{createSubRoleInstance(self);}

[10ms;10ms]

Idle
startUpdate[self]? /

WaitAnswer

c6 ≤ 45 ms

entry/ {reset: c6;}

SendMsg
U

TriggerNext

c6 ≤ 1 ms

entry/ {newConvoySpeed := 

updateConvoySpeed(tmpMemberSpeed; 

reset: c6;}

[updateProfiles == true] /

{tmpProfile := getProfile(allProfiles, self);

updateProfiles := false;}

newProfile(tmpProfile, convoySpeed, 

minDistance, ownMaxSpeed)

[updateProfiles == false] /

newData(convoySpeed, 

minDistance, ownMaxSpeed)

updateStrategy / 

{tmpMemberSpeed := 

updateStrategy.speed;}

[self == last] 

finished! / 

[self <> last] 

startUpdate[next]! / 

Figure A.7: RTSC of the Role profileProvider of the RTCP ProfileDistribution
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profileReceiver. This message contains the profile and information that is necessary for using
the profile such as the current reference speed of the convoy, the minimum distance to be
kept, and the own potential maximum speed of the coordinator. If no new profile is available,
then the subrole sends newData that contains the same information as newProfile except for
the profile. Thereby, we acknowledge the fact that applying a new profile requires more
complicated operations by the profileReceiver and that the profiles will change less frequently
than the remaining information because the remaining information depends on the goals of
the RailCabs and the current environmental conditions such as strong wind or slopes.

profileReceiver

Idle

newData/ 

{convoySpeed := newData.convSpeed; 

convoyMinDist := newData.minDist; 

coordMaxSpeed := newData.coordMaxSpeed;}

variable: int convoyMinDist, Profile curProfile, int convoySpeed, 

int ownPotentialMaxSpeed, int coordMaxSpeed;

clock: c2;

NewData

c2 ≤ 1ms

entry/ {reset: c2;}

newProfile/ 

{curProfile := newProfile.profile;

convoySpeed := newProfile.convSpeed; 

convoyMinDist := newProfile.minDist; 

coordMaxSpeed := newProfile.coordMaxSpeed;}

/ updatedStrategy(ownPotentialMaxSpeed)

Figure A.8: RTSC of the Role profileReceiver of the RTCP ProfileDistribution

After receiving either newProfile or newData, the profileReceiver switches to NewData. Then,
it sends updatedStrategy containing its new potential maximum speed back to the subrole of
profileProvider. Then, the subrole switches to TriggerNext and updates the convoy speed. The
corresponding operation updateConvoySpeed computes the minimum of all speeds provided
by the profileReceivers and stores it in newConvoySpeed. Then, the subrole either triggers the
next subrole or, if it is the last one, it synchronizes via finished with the adaptation RTSC.
Finally, the adaptation RTSC returns to Idle and sets the convoySpeed to the newConvoySpeed.
As a result, the new convoy speed will be applied as part of the next update.

A.1.4 SpeedTransmission

The RTCP SpeedTransmission, whose declaration is shown in Figure A.9, is used for period-
ically transmitting the current speed of the RailCab. It has been derived from the Real-Time
Coordination Pattern PeriodicTransmission [DBHT12].

sender receiver

SpeedTransmission

[1] [1]
in-buffer size: 1 in-buffer size: 1

delay: 0 ms

Figure A.9: Declaration of the RTCP SpeedTransmission
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The behavior of the two roles sender and receiver, as given by the RTSCs in Figure A.10, is
quite simple. Every 100 ms, the sender sends the current speed of the RailCab via newSpeed.
The receiver waits in PeriodicReceiving for the new speed value. If newSpeed arrives, it fires
the self-transition at PeriodicReceiving and stores the new speed value in the variable speed.
If the new speed value does not arrive within 100 ms, then the receiver switches to Timeout.
If eventually a new speed value arrives, the receiver switches back to PeriodicReceiving. The
Timeout state may be used for handling a delayed update if necessary.

sender variable: int speed;

clock: c;

PeriodicSending

c ≤ 100 ms

entry/ {reset: c;}

[c ≥ 100 ms] / newSpeed(speed)

receiver

Timeout

newSpeed / {speed := newSpeed.speed;}

variable: int speed;

clock: c;

PeriodicReceiving

c ≤ 100 ms

entry/ {reset: c;}

[c ≥ 100 ms] /

newSpeed / {speed := newSpeed.speed;}

Figure A.10: RTSCs of the Roles sender and receiver of the RTCP SpeedTransmission

A.1.5 StartExecution

The RTCP StartExecution, whose declaration is shown in Figure A.11, enables the initiator
to trigger the executor to execute some behavior on demand. We use this RTCP inside the
ConvoyCoordination component (cf. Figure 3.5 on Page 42) such that one instance of RefGen
may trigger the next one after it has finished its computation.

initiator executor

StartExecution

[1] [1]
in-buffer size: 1 in-buffer size: 1

delay: 0 ms

Figure A.11: Declaration of the RTCP StartExecution

The behavior of the two roles initiator and executor, as given by the RTSCs in Figure A.12,
is quite simple. At an arbitrary point of time, the sender sends a startExecution message
containing a newSpeed and a curPos parameter to the executor. The executor receives this
message and may perform a computation using the parameter values.

sender variable: int newSpeed, 

int curPos;

Idle

/ startExecution(curPos, newSpeed)

executor

Execute

startExecution

Figure A.12: RTSCs of the Roles initiator and executor of the RTCP StartExecution

208



A.1 RTCPs

The conditions when the sender is required to trigger the executor need to be defined by
the component that uses this RTCP. In the same fashion, the operation to be executed by the
executor needs to the defined by the component.

A.1.6 StrategyExchange

The RTCP StrategyExchange, whose declaration is shown in Figure A.13, is used for distribut-
ing information about the current operating strategy of the RailCab inside RailCabDriveControl.
Since we are currently using a very simple operating strategy, the resulting behavior of the
two roles sender and receiver, as given by the RTSCs in Figures A.14 and A.15, is rather
simple.

sender receiver

StrategyExchange

[1] [1]
in-buffer size: 1 in-buffer size: 1

delay: 0 ms

Figure A.13: Declaration of the RTCP StrategyExchange

At an arbitrary point in time, the sender sends a updateStrategy message to the receiver
that contains information about the new strategy. At present, this message only contains the
new maximum speed and minimum distance as parameters. Upon sending, it resets c1 and
waits for 10 ms for an ackStrategy of the receiver. Upon receiving the updateStrategy message,
the receiver stores the parameters into two variables and returns to WaitForUpdate after 5 ms
thereby sending ackStrategy.

sender variable: int curMinDistance, int curMaxSpeed;

clock: c1;

Idle
Wait

c1 ≤ 10 ms

/ updateStrategy(curMaxSpeed, curMinDistance) 

{reset: c1;}

ackStrategy /

Figure A.14: RTSC of the Role sender of the RTCP StrategyExchange

receiver

WaitForUpdate

updateStrategy / 

{newMaxSpeed := updateStrategy.speed; 

newMinDistance := updateStrategy.dist;

reset: c2}

variable: int newMaxSpeed, int newMinDistance;

clock: c2;

NewStrategy

c2 ≤ 5 ms

/ ackStrategy()

Figure A.15: RTSC of the Role receiver of the RTCP StrategyExchange

At present, the message exchange has been derived from the Real-Time Coordination Pat-
tern Producer-Consumer [DBHT12]. If a more complicated operating strategy is applied, it
might be necessary to extend this RTCP.
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A.1.7 NextSectionFree

The RTCP NextSectionFree, whose declaration is shown in Figure A.16, has two single roles
named tracksection and switch. The role switch is to be implemented by a switch while the role
tracksection is to be implemented by the track section following the switch. Both roles have
an in-buffer of size one. The transmission delay for a message is 3 ms.

tracksection switch

NextSectionFree

[1] [1]
in-buffer size: 1 in-buffer size: 1

delay: 3 ms

Figure A.16: Declaration of the RTCP NextSectionFree

Figure A.17 shows the RTSCs of both roles. The behavior implemented by the RTSCs
is as follows: Initially, both RTSCs are in their Idle states. Then, switch sends a message
requestSectionStatus to the tracksection at an arbitrary point in time thereby resetting its clock
c2. Then, it waits for at most 500 ms in state WaitForSection for the answer of tracksection.
tracksection receives the message requestSectionStatus at the urgent transition to Request and,
thus, processes the message as soon as it arrives. Then, tracksection determines whether it is
free, which modeled by the non-deterministic choice expression in the entry-action. After
at least 400 ms, tracksection answers with sectionStatus where the current status is encoded
as a Boolean parameter. After 550 ms, switch processes this message at the transition from
WaitForSection to Idle. While firing the transition, switch assigns the parameter value of the
message sectionStatus to its variable status.

tracksection

Idle
Request

c1 ≤ 5 ms

entry/ {free := INT<0,1>;}

requestSectionStatus /

{reset: c1}

[c1 ≥ 4 ms] / sectionStatus(free)

variable: boolean free;

clock: c1;
switch

Idle WaitForSection

c2 ≤ 20 ms

/ requestSectionStatus() 

{reset: c2}

[c2 ≥ 20 ms] sectionStatus /

{status := sectionStatus.free;}

variable: boolean status;

clock: c2;

Figure A.17: RTSCs of the Roles tracksection and switch of the RTCP NextSectionFree

We verified the behavior of the RTCP in UPPAAL and showed four properties:

1. The behavior is free of deadlocks.

2. If tracksection and switch are in their idle states, then free and status have the same value.

3. If switch is in state WaitForSection, it will always eventually return to Idle.

4. There exists a execution where switch eventually enters WaitForSection.
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A.2 Instantiating Real-Time Coordination Protocols on
System Level

This section provides additional models for instantiating RTCPs on system level. In partic-
ular, we provide a simple discovery protocol that enables to store information about other
systems in the environment in Section A.2.1. Thereafter, we introduce the RTSC of the
protocolInst broadcast port that enables to instantiate the RTCP ProtocolInstantiation in Sec-
tion A.2.2. Finally, Section A.2.3 presents the RTSCs of the roles requestor and requestee of
the RTCP ProtocolInstantiation (cf. Section 3.4.2).

A.2.1 A Simple Discovery Protocol and Environment Model

In an open-world scenario [BDNG06], we need to gain knowledge about other systems in the
environment for being able to collaborate with them. This is achieved by using a discovery
protocol. A discovery protocol (periodically) broadcasts information about the system itself
and listens to broadcast messages by other AMS. The information published via the broadcast
port includes the networking address of the broadcast port and a short system identification.

The information about other AMS that is received by the broadcast port needs to be stored
locally. We developed a simple environment model for storing this information. In the en-
vironment model, we distinguish between known types of systems and unknown types of
systems. A known type of system is a type of system that the mechatronic system needs to
interact with for realizing its functionality. In the RailCab system, other RailCabs and track
side systems like track sections or switches are considered to be known systems. In contrast,
an unknown type of system is a type of system that the mechatronic system usually does not
interact with, but which it meets nevertheless. In the RailCab system, we may consider cars
as unknown systems. In a close-world scenario, this model needs to be loaded from a local
storage.

Figure A.18 shows a class diagram of an environment model for the RailCab system. It
consists of an application independent part and an application specific part. The application
independent part is the same for all AMS. It specifies the Enviroment which consists of an
arbitrary number of ExternalSystems. For each ExternalSystem, we store its address and the
timestamp indicating the last receipt of a message from the particular system. In addition,
the application independent part contains a class UnknownSystem that is used for storing in-
formation about unknown types of systems. The application specific part contains a class
RailCabKnownSystem that stores all the information about known systems. In addition, the
enumeration RailCabKnownType contains one literal for each type of system that the RailCab
knows. In this case, it knows other RailCabs and track sections.

Application Specific

Application 

Independent

UnknownSystem

identification : string

ExternalSystem

lastTimestamp : double

address : int

RailCabKnownSystem

type : RailCabKnownType

Environment
* systems

<<enum>>

RailCabKnownType

RAILCAB

TRACKSECTION

Figure A.18: Environment Model for the RailCab System
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The environment models needs to be managed by the discovery protocol. If a message of a
system that is not yet contained in the environment model is received, the discovery protocol
needs to add an instance of RailCabKnownSystem or UnknownSystem to the environment model.
If a message of a system that is already contained in the environment model is received, only
the time stamp is updated. The timestamp may be used to clean the environment model from
time to time. If no message of a particular system has been received for a longer period in
time, it can be assumed that the corresponding system has moved out of reach and may no
longer be contacted. The corresponding object is then removed from the environment model.

Most networking standards already include such discovery protocols. Examples include
the Neighbor Discovery Protocol for IPv6 networks [NNSS07], the Bluetooth Service Dis-
covery Protocol [Blu10], or ZigBee’s device discovery protocol [Zig08]. They all fulfill
the requirements stated above. In particular, any device sends broadcast messages includ-
ing its own identification and listens to broadcast messages of other devices. Depending
on the particular radio technology used for realizing communication between AMS, the dis-
covery protocol for this technology should be used to fill the environment model given in
Figure A.18.

In course of this thesis, we only consider platform independent models. These do not
contain platform specific information like a concrete radio technology. However, we want
to support simulation of AMS as early as possible (cf. Chapter 6) based on the platform
independent models. In such simulations, we cannot rely on technology specific discov-
ery protocols. Therefore, we provide a simple discovery protocol for platform independent
models that is to be replaced by the technology specific protocol when creating the platform
specific model.

The behavior of the broadcast port in our simple discovery protocol is given by the RTSC
in Figure A.19. The RTSC contains two states: Idle and Update. Initially, the RTSC is in state
Idle. Every 5 s, the RTSC fires the self-transition at the lower right of Idle. This transition
sends a systemInformation message via the broadcast port. The systemInformation message
contains the address of the mechatronic system, a short identification, and a timestamp. If
the broadcast port receives such a message from another system, then the transition from
Idle to Update fires. The transition consumes the message and stores the information on
the other system in temporal variables. The entry action of Update updates the information
on the system in the environment model. If the system has already been contained in the
environment model, the method returns true. In this case, the RTSC returns to Idle using the
upper transition not performing any further actions. If the system has not been contained
in the environment model, the RTSC fires the lower transition from Update to Idle. This
transition invokes the operation addSystem that adds a new system to the environment model
based on the received information. If c1 becomes larger than 10min, the RTSC fires the self-
transition at the upper left of Idle. This transition invokes the clean operation that removes all
systems from the environment model where no systemInformation message has been received
for the past 10 min.

We specified the operations used in the RTSC of the discovery protocol formally by story
diagrams. The operations updateEnvironment and clean are application independent in our
specification. The operation addSystem is application dependent, because it needs to instan-
tiate a <Sys>KnownSystem object with the corresponding enum literal depending on the short
identification contained in the systemInformation message.
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Idle

c0 ≤ 6s

variable: int tmpAddress, string tmpID, double timestamp; boolean result; Environment env;

operation: void clean(Environment e), 

      boolean updateEnvironment(Environment e, int address, double timestamp)

      void addSystem(Environment e, int address, double timestamp, string sysType)

clock: c0, c1;

3

2

System Identification

1

[c0 < 4s] systemInformation() /

{ tmpAddress := systemInformation.address;

tmpID := systemInformation.sysID; 

timestamp := systemInformation.timeStamp; }

[c0 ≥ 5s] / 

systemInformation(address, sysInfo, sysTime)

{reset: c0}

[c1 > 5 min] / 

{clean(env);

reset: c1;}

Update

entry/ {result := updateEnvironment(env, 

tmpAddress, tmpID)

2

[result == true]

U

1

[result == false]

/ {addSystem(env, tmpAddress, timestamp, tmpID)

Figure A.19: RTSC for the SystemIdentification Protocol

The story diagram for the operation updateEnvironment is shown in Figure A.20. It takes the
Environment object, the address which has been received, and the time stamp of the message
as parameters. Then, the first story node tries to match an ExternalSystem in the environment
with the given address. If such ExternalSystem can be found, the attribute lastTimestamp is
set to the time given as a parameter. In this case, the matching was successful and the story
diagram assigns true to the out parameter result. If no ExternalSystem with the given address
could be found, the story diagram assigns false to the out parameter result.

Update existing system

updateEnvironment(env: Environment, addr: int, time: double): 

result : boolean

env
systems

►

[success]

e: ExternalSystem

address == addr

lastTimestamp := time

[failure]

result := true

result := false

Figure A.20: Story Diagram Implementing the Operation updateEnvironment

The operation addSystem shown in Figure A.21 is application specific and needs to be gen-
erated using the enumeration RailCabKnownType. The story diagram contains one story node
for each entry of the enumeration and an additional entry for UnknownSystems. The control
flow specifies one decision node for each entry of the enumeration where one outgoing ac-
tivity edge compares the id given as a parameter to the identification of the known system.
In the example, the first decision node specifies the guard id == "RailCab". The else activity
edge leads to the next decision node. The final else edge leads to the story node creating an
UnknownSystem in the Environment.

The clean operation is formalized by the story diagram shown in Figure A.22. As param-
eters, it takes the Environment object and the current time. Then, the for-each activity node
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Add RailCab

addSystem(env: Environment, addr: int, time: double, id: string): void

env

«create»

systems

►

[success]

[id == „RailCab“]

«create»

r: KnownSystem

address := addr

lastTimestamp := time

type := RailCabKnownType.RAILCAB

Add TrackSection

env

«create»

systems

►

[id == „TrackSection“]

«create»

r: KnownSystem

address := addr

lastTimestamp := time

type := RailCabKnownType.TRACKSECTION

[success]

Add Unknown System

env

«create»

systems

►

«create»

r: UnknownSystem

address := addr

lastTimestamp := time

identification := id

[else]

[else]

Figure A.21: Story Diagram Implementing the Operation addSystem
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matches all ExternalSystems whose timestamp has not been updated during the last 10 min-
utes. These systems have not provided a systemInformation message for the last 10 minutes
and are considered to be out of reach.

Remove vanished systems

clean(env: Environment, time: double): void

env

«destroy»

systems

►

[end]

e: ExternalSystem

lastTimestamp <= time – 10 min

Figure A.22: Story Diagram Implementing the Operation clean

A.2.2 Instantiating the RTCP ProtocolInstantiation

Figure A.23 shows the RTSC of the broadcast port that is used for instantiating the RTCP
ProtocolInstantiation. The RTSC implements the behavior described in Section 3.4.1. The
RTSC has one state Broadcast with two regions named actor and reactor. The region actor
contains the RTSC defining the behavior sys1 in Figure 3.16, i.e., of the system that initiates
the instantiation. The region reactor contains the RTSC defining the behavior of sys2 in
Figure 3.16, i.e., of the system that reacts to the instantiation request. The shared variable
mutex and corresponding guards at the transitions in both regions ensure that at any point in
time at most one of the two regions may execute.

In the following, we describe the behavior that is specified by the RTSC. Although we
describe the interaction of the RTSCs in the two regions, of course these two regions never
interact within the same broadcast port instance. The actor region of one broadcast port
instance always communicates with a reactor region in another broadcast port instance.

Initially, both regions are in their Idle states. Then, the actor starts the interaction by
sending a connectionRequest with the address of the intended communication partner and its
own address as parameters. The address of the communication partner needs to be provided
by the component implementing the broadcast port. We also assume that the component
triggers the transition from Idle to Start in actor. This transition may only be fired if the
variable mutex is false, i.e., the reactor is currently not engaged in an interaction. Upon firing,
the transition sets mutex to true thereby indicating that it started an interaction.

The reactor receives the connectionRequest at the transition from Idle to CheckIDs. It stores
the two addresses in the parameters in the variables tmpReceiverAddr and tmpSenderAddr. In
CheckIDs, the reactor checks if it was the intended receiver of the message. If not or if mutex is
true, the reactor returns to Idle without any further action. If the reactor is the intended receiver
and if mutex is false, it switches to CheckRequest thereby setting mutex to true. If the maximum
number of ports has been reached, reactor switches back to Idle and sends a connectionDenial.
As for any message, it includes the address of the receiver as well as its own address as
parameters. In addition, it sets mutex back to false because it stopped the interaction. If the
maximum number of ports has not yet been reached, the reactor proceeds to ApproveRequest
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broadcast

Broadcast

2

1

actor

reactor operation: Port createRequesteePort(), createConnector(Port reqPort);

clock: c1;

operation: Port createRequestorPort(Port reqPort);

clock: c;

PortCreated

Idle

entry/ {partnerAddr := 0; 

tmpReceiverAddr := 0;

tmpSenderAddr := 0;}

connectionRequest /

{tmpReceiverAddr = connectionRequest.addr1;

tmpSenderAddr = connectionRequest.addr2;}

ApproveRequest

CheckRequest

c1 ≤ 500 ms

[tmpReceiverAddr != ownAddr || mutex == true]

[numOfPorts < maxNumPorts] /

{partnerAddr := tmpSenderAddr;}

connectionApproval(partnerAddr, 

       ownAddr)

CheckIDs
U

[tmpReceiverAddr == ownAddr 

&& mutex == false] /

{mutex := true; reset: c1;}

[numOfPorts >= maxNumPorts] / {mutex := false;} connectionDenial(tmpSenderAddr, ownAddr)

CheckIDs2

entry/ {result := checkIDs();}

[result == true && partnerVersion == ownVersion] /

{ownPort := createRequesteePort();}

confirmProtocolInstantiation(partnerAddr, ownAddr, ownPort)

U

startProtocolInstantiation() /

{tmpReceiverAddr := startProtocolInstantiation.addr1;

tmpSenderAddr := startProtocolInstantiation.addr2;

partnerVersion := startProtocolInstantiation.version;}

[result == false]

[result == true && partnerVersion != ownVersion] /

{mutex := false;}

abortProtocolInstantiation(partnerAddr, ownAddr)

CheckIDs3

entry/ {result := checkIDs();}

U

completedProtocolInstantiation() /

{tmpReceiverAddr := completedProtocolInstantiation.addr1;

tmpSenderAddr := completedProtocolInstantiation.addr2;

partnerPort := completedProtocolInstantiation.port;}

[result == false]

[result == true] /

{createConnector(partnerPort); 

mutex := false;}

variable: const int ownAddr, const int ownVersion, int partnerAddr, int partnerVersion, Port partnerPort, Port ownPort, int tmpReceiverAddr, 

int tmpSenderAddr, boolean result, boolean mutex := false;

operation: boolean checkIDs();

Idle

entry/ {partnerAddr := 0; 

tmpReceiverAddr := 0;

tmpSenderAddr := 0;}

[mutex == false] / 

{mutex := true; reset: c;}

connectionRequest(partnerAddr, ownAddr)
Start

connectionDenial /

{tmpReceiverAddr := connectionDenial.addr1;

tmpSenderAddr := connectionDenail.addr2;} CheckIDs_Denial

entry/ {result := checkIDs();}

U

[c ≥ 1000 ms] / {mutex := false;} [result == false] /

[result == true] / {mutex := false; }

CheckIDs_Approval

entry/ {result := checkIDs();}

U

connectionApproval /

{tmpReceiverAddr := connectionApproval.addr1;

tmpSenderAddr := connectionApproval.addr2;}

[result == false] /

Started

[result == true] /

startProtocolInstantiation(partnerAddr, ownAddr, ownVersion)

CheckIDs_Abort

entry/ {result := checkIDs();}

U

CheckIDs_Confirm

entry/ {result := checkIDs();}

U

abortProtocolInstantiation /

{tmpReceiverAddr := abortProtocolInstantiation.addr1;

tmpSenderAddr := abortProtocolInstantiation.addr2;}

[result == false] /

[result == true] / {mutex := false;}

confirmProtocolInstantiation /

{tmpReceiverAddr := confirmProtocolInstantiation.addr1;

tmpSenderAddr := confirmProtocolInstantiation.addr2;

partnerPort := confirmProtocolInstantiation.port}

[result == false] /

[result == true] / 

{ownPort := createRequestorPort(partnerPort); mutex := false;}

completedProtocolInstantiation(partnerAddr, ownAddr, ownPort)

Figure A.23: RTSC Implementing the Broadcast Communication for Instantiating the RTCP
ProtocolInstantiation
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and sends a connectionApproval back to the actor. In addition, it stores the sender’s address,
which was temporarily stored in tmpSenderAddr, in the variable partnerAddr that denotes it
communication partner for the remainder of the interaction.

If the actor receives a connectionDenial, it switches from Start to CheckIDs_Denial. Upon
entering, it checks whether the message has been sent by the communication partner. If not,
it returns to Start and waits for the message from the communication partner. If the message
was from the communication partner, the actor switches back to Idle and sets mutex back to
false thereby terminating the interaction. If actor receives a connectionApproval, it also checks
the addresses. This time using the entry action in state CheckIDs_Approval. If the message has
not been sent by the communication partner, then actor switches back to Start and waits for
the message of the communication partner. Otherwise, actor proceeds to Started and sends a
startProtocolInstantiation including its own protocol version to the communication partner.

If reactor receives the startProtocolInstantiation message, it switches to CheckIDs2. If the pro-
tocol version is not supported, reactor sends a abortProtocolInstantiation to the communication
partner, switches back to Idle, and sets mutex back to false. Then, the interaction terminates.
If the protocol version is supported by reactor, it proceeds to PortCreated. At this transition,
the reactor creates a port instance implementing the requestee role of ProtocolInstantiation (cf.
Section 3.4.2). This operation is a stub in the RTSC and needs to be replaced if the RTSC
is integrated in a component. After the port instance has been created, the transition sends a
confirmProtocolInstantiation message including the created port instance.

After receiving the confirmProtocolInstantiation messagen, the actor fires the transition from
Started to CheckIDs_Confirm. If the message has been sent by the communication partner, the
actor creates a port instance implementing the requestor role of ProtocolInstantiation including
its virtual connector instance to the port instance partnerPort of the communication partner.
After creating the port instance, actor sets mutex to false and sends a completedProtocolInstan-
tiation message to the reactor. This message includes the newly created port instance. After
sending this message, the actor returns to the Idle state and the interaction is finished.

The reactor waits in state PortCreated for the answer of the actor. After it has received
the completedProtocolInstantiation message and confirmed that it has been sent by the com-
munication partner, it creates its virtual connector instance to the port instance of the actor.
Thereafter, it sets mutex back to false and returns to the Idle state. Now, the instantiation of
ProtocolInstantiation is complete for both, actor and reactor.

A.2.3 The RTCP ProtocolInstantiation

Figures A.24 and A.25 show the RTSCs of the roles requestor and requestee of the RTCP Pro-
tocolInstantiation introduced in Section 3.4.2. In particular, the RTSCs implement the behavior
defined by the modal sequence diagram in Figure 3.18.

Initially, both RTSCs are in their Idle states. The requestor starts executing by firing the
transition from Idle to Request where it choses a protocol and a role within the protocol that
should be instantiated. On the protocol level, we use non-deterministic choice expressions.
If the requestor role is refined to a port RTSC, then this transition needs to synchronize with
the component behavior for defining the ID of the protocol to be instantiated. Thereafter,
requestor sends a request with the protocol ID and the role ID to the requestee while it switches
to SentRequest.
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requestor variable: int reqProtocolID, int reqRoleID, Port ownPort, Port otherPort;

clock: c1;

Idle

/ {reqProtocolID := int<0,10>;

reqRoleID := int<1,2>;}

AwaitCreation

c1 ≤ 300 ms

confirmInstantiation /

{otherPort := 

confirmInstantiation.port;

reset: c1;}

Aborted
declineInstantiation /

NotSupported
protocolNotSupported /

WaitFinish

c2 ≤ 350 ms

[c1 ≥ 250 ms] / 

finalize(ownPort) {reset: c1;}
Success

completed /

Request
SentRequest

c1 ≤ 400 ms

/ {reset: c1;}

request(reqProtocolID, reqRoleID);

Figure A.24: RTSC Implementing the Role requestor of the RTCP ProtocolInstantiation

The requestee consumes the request at the transition from Idle to CheckRequest and resets c2.
The entry action in state CheckRequest calls the operation isSupported with the requested pro-
tocol ID and role ID. Based on this information, the operation decides whether the requested
protocol and role are supported by the requestee. This operation needs to be implemented for
any port that refines the requestee role. This decision may take up to 50 ms as specified by
the invariant. In the role RTSC, this operation is simply implemented by a non-deterministic
choice. If the protocol or role are not supported, the requestee switches to Abort and sends
protocolNotSupported to the requestor. In this case, the requestor switches from SentRequest to
NotSupported. Since both RTSCs are now in final states, the interaction is terminated.

requestee variable: boolean supported, boolean success, int requestedProtocol, int requestedRole, Port ownPort, Port otherPort;

operation: boolean isSupported(int protocolID, int roleID);

clock: c2;

Idle
request /

{requestedProtocol := request.protocolID;

requestedRole := request.roleID;

reset: c2;}

CheckRequest

c2 ≤ 50 ms

entry/ {supported := isSupported(requestedProtocol, requestedRole);}

CreatePort

c2 ≤ 300 ms

[supported] /

{success := int<0,1>;

reset: c2;}Abort

[not supported] /

protocolNotSupported()

Failed

[not success] [c2 ≥ 250 ms] /

declineInstantiation()

WaitRequestor

c2 ≤ 450 ms

[success] [c2 ≥ 250 ms] /

{reset: c2;}

confirmInstantiation(ownPort)

CreateConnector

c2 ≤ 150 ms

finalize / 

{otherPort := finalize.port;

reset: c2;}

Finished

[c2 ≥ 100ms] / 

completed()

Figure A.25: RTSC Implementing the Role requestee of the RTCP ProtocolInstantiation

If the requested protocol and role are supported by the requestee, it fires the transition from
CheckRequest to CreatePort. This transition shall initiate the creation of the corresponding
port instance implementing the requested role of the requested protocol. Thus, this transi-
tion needs to be refined by a port RTSC and needs to be integrated with the reconfiguration
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behavior of the component. In the role RTSC of requestee, the success of the reconfigura-
tion is, again, realized by a non-deterministic choice. If the creation was not successful, the
requestee switches to Failed and sends declineInstantiation. In this case, the requestor switches
from SentRequest to Aborted. Since both RTSCs are now in final states, the interaction is
terminated.

If the creation of the port instance has been successful, the requestee switches from Cre-
atePort to WaitRequestor. Thereby, it sends a confirmInstantiation message to the requestor and
resets c2. Then, it waits for 450 ms for the reply of the requestor. The requestor processes the
confirmInstantiation message at the transition from SentRequest to AwaitCreation. At this transi-
tion, the requestor triggers the instantiation of the port instance implementing the other role of
the requested protocol. In a port that refines this role, this transition needs to be refined such
that it may trigger the actual reconfiguration. After the port has been created, the requestor
switches to WaitFinish and sends a finalize message to the requestee.

The requestee receives the finalize message at the transition from WaitRequestor to Create-
Connector. This state and transition need to be refined by a port such that they trigger the cre-
ation of the (virtual) connector instance to the port instance created by the requestor. After the
connector instance has been created, the requestee switches to Finished and sends completed
to the requestor. The requestor finally switches from WaitFinish to Success after receiving this
message. Then, both RTSCs are in final states and it interaction terminates with success.

A.3 Components

We have introduced all but one component of our RailCab example in the main chapters of
this thesis. In particular, we use three structured components for the RailCab itself. These are
RailCabDriveControl shown in Figure 3.6, ConvoyCoordination shown in Figure 3.5, and Veloci-
tyController shown in Figure 3.7. We do not repeat the component definitions in this section.
In addition, we use five discrete atomic components, five continuous atomic component, and
one fading component for the RailCab. These are all contained in the three structured com-
ponents and will not be presented in the section, again. Finally, we defined three components
for the different kinds of track sections in Figure 5.3 on Page 116. Of these components,
NormalTrackSection and Switch are atomic components whereas RailroadCrossing is a hybrid
structured component. We introduce RailroadCrossing in more detail in Section A.3.1.

A.3.1 RailroadCrossing

The component RailroadCrossing is a hybrid structured component as shown in Figure A.26.
It contains one component part infProcessing of type Crossing_InfProf and one component part
gates of type Gates. The former is a discrete atomic component that implements the commu-
nication with the RailCabs via ports left and right and, if necessary, with a preceding switch
via port precedingSwitch. The latter component part refers to a continuous atomic compo-
nent that controls the gates of the crossing. Both component parts are connected such that
infProcessing may advise gates to open or close the gates via the hybrid port gateAction. In
addition, gates provides the current state of the gates (either open or closed) via status. Both
continuous ports are Boolean-valued.
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RailroadCrossing

  

   infProcessing : 

      Crossing_InfProc [1]

  

   gates : Gates [1]

action

gateAction

status

gateStatus

leftleft

rightright

precedingSwitch

precedingSwitch

Figure A.26: Structured Component RailroadCrossing

A.4 Component Instances

In this section, we introduce additional component instances for the RailCab examples. We
have already introduced the component instance standaloneRC in Figure 3.9 on Page 3.9,
which we will not repeat in this section. In the following, we present component instances
for a RailCab driving as a coordinator (Section A.4.1) and for a RailCab driving as a member
(Section A.4.2).

A.4.1 RailCab Driving as a Coordinator

Figure A.27 shows an instance of RailCabDriveControl for a coordinator RailCab that coordi-
nates a convoy with one member. As the main difference to the component instance stan-
daloneRC shown in Figure 3.9, Coordinator has an instance cc of type ConvoyCoordination that
is attached to an instance ps of the PositionSensor. Furthermore, Coordinator has instances of
the coordinator and refDistProvider multi ports for communicating with the member.

In a coordinator RailCab, the instance os of OperationStrategy is no longer directly con-
nected to dl of type DriveLogic. As a result, the operation strategy does no longer directly
determine the reference speed of the RailCab. Instead, the reference speed determined by os
is passed to cc which uses this value as a basis for defining a reference speed for the convoy.
Then, cc sends the reference speed that it defined for the convoy to dl.

Figure A.28 shows the inner structure of the instance vc of type VelocityController that is
embedded in Coordinator. vc1 executes an instance of StandaloneDrive that is connected to the
instance f of type ConvoyFading.

Figure A.29 shows the inner structure of the component instance cc of type ConvoyCoordi-
nation that is embedded in Coordinator. It is used for computing reference data for a convoy
with one member. Therefore, it contains an instance cm of type ConvoyManagement and, since
the convoy has one member, one instance rg1 of type RefGen. Since rg1 is associated with the
first convoy member, it receives the current position of the coordinator RailCab via curPos. It
is connected to cm for receiving the current profile of the member.

Figure A.30 shows an instance cc2 of type ConvoyCoordination that is used for a coordinator
RailCab with two members. Compared to cc shown in Figure A.29, it contains one additional
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  cc / convoy : 

      ConvoyCoordination

 Coordinator : RailCabDriveControl

  

  vc1 / ctrl : VelocityController

:refSpeed

:curSpeed

:force

  

  os / strategy : 

      OperationStrategy

  

   dl / drive : 

      DriveLogic

:refSpeed

:curPos

:receiver

B

:protocolInst

B

:protocolInst

:strategySender

:section1 :section1

:section2 :section2
:speedProvider

:maxSpeed

  

  ps / pos : PositionSensor

:position

  

  sp / sp : SpeedSensor

:speed

:refDistProvider

:coordinator

:refDistProvider

:coordinator

180 180

Figure A.27: Component Instance of Component RailCabDriveControl for a Coordinator Rail-
Cab

+ -

 vc1 : VelocityController

  

  sd / standalone_ctrl :

       StandaloneDrive

:refSpeed

:curSpeed

:force:refSpeed

:curSpeed
:force

  

  f / fade :

   ConvoyFading:standalone :force

Figure A.28: Component Instance of Component VelocityController that is used by a Coordi-
nator RailCab

 cc : ConvoyCoordination

    cm / man : 

       ConvoyManagement

  

   rg1 / refGen : RefGen

:curPos:curPos

r1:refDistProvider :refDistProvider

c1:coordinator c1:coordinator

:speedProvider :speedProvider

:strategy :receiver

p1:profileProvider

:profileReceiver

Figure A.29: Component Instance of Component ConvoyCoordination for a Convoy with 1
Member
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instance rg2 of type RefGen including one additional subport instance for each multi port
instance.

 cc2 : ConvoyCoordination

    cm / man : 

       ConvoyManagement

  

   rg1 / refGen : RefGen

:prev

:next

:curPos:curPos

r1:refDistProvider :refDistProvider

c1:coordinator c1:coordinator

c2:coordinator c2:coordinator

  

   rg2 / refGen : RefGen

r2:refDistProvider
:refDistProvider

:speedProvider :speedProvider

:strategy :receiver

p1:profileProvider p2:profileProvider

:profileReceiver

:profileReceiver

Figure A.30: Component Instance of Component ConvoyCoordination for a Convoy with 2
Members

In particular, Figure A.30 illustrates how the RefGen instances are arranged in a sequence.
rg1 generates reference data for the first member that drives directly behind the coordinator.
rg2 generates reference data for the member driving at the last position in the convoy. Then,
rg1 and rg2 are connected via their next and prev port instances, thereby defining a sequence.
Thus, the reference data that is calculated for a RailCab depends on the reference data of the
RailCab driving in front of it.

A.4.2 RailCab Driving as a Member

Figure A.31 shows the CIC of RailCabDriveControl for a convoy member. The main difference
to standaloneRC shown in Figure 3.9 is that the member has an instance of MemberControl
for communicating with the coordinator. In addition, os is disconnected from the remain-
ing components because a convoy member may not voluntarily decide upon a new speed.
This information is solely provided by the coordinator and received by the member via the
refDistReceiver port instance. The reference speed is then send to dl via the speedProvider port
instance of mc.

In addition, the convoy member uses a different VelocityController vc2 that controls the speed
of the RailCab based on speed and distance to the preceding RailCab. As a result, Member
has an instance ds of type DistanceSensor to obtain the current distance that is provided to
vc2.

Figure A.32 shows the corresponding instance vc2 of type VelocityController that is used by
Member. vc2 embeds an instance cd of type ConvoyDrive that is connected to the instance f of
type ConvoyFading.
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  mc / member : 

      MemberControl

 Member : RailCabDriveControl

  

  vc2 / ctrl : VelocityController

:refSpeed

:curSpeed :curDist

:refDist
:refDist

:force

  

   os / strategy : 

      OperationStrategy
  

   dl / drive : 

      DriveLogic

:refSpeed

:speedProvider

:member :member

:distReceiver :refDistReceiver

B

:protocolInst

B

:protocolInst :section1 :section1

:section2 :section2
:maxSpeed

  

  ds / dist : DistanceSensor

:distance

  

  sp / sp : SpeedSensor

:speed

180 180

Figure A.31: Component Instance of Component RailCabDriveControl for a Member RailCab

+ -

 vc2 : VelocityController

:curDist

  

  cd / convoy_ctrl :

       ConvoyDrive

:refSpeed

:curSpeed

:refDist

:force

:curDist

:refSpeed

:curSpeed

:refDist :force

  

  f / fade :

   ConvoyFading:convoy :force

Figure A.32: Component Instance of Component VelocityController that is used by a Member
RailCab

223



A. Complete RailCab Example

A.5 Component RTSCs

This section introduces the component RTSCs that we created for the discrete atomic com-
ponents that we used in the RailCab example. The components for the RailCab itself have
been introduced in Section 3.1. We present their RTSCs in Section A.5.1. The components
for the different kinds of track sections have been introduced in Section 5.1.2. We present
their RTSCs in Section A.5.2. For each of the component RTSCs, we focus on describing the
internal behavior regions and the differences of the port RTSCs to their corresponding role
RTSCs.

A.5.1 RTSCs of the RailCab Components

In this section, we present the component RTSCs of the discrete atomic components that
are (recursively) contained in RailCabDriveControl. In particular, we present the component
RTSCs of OperationStrategy (Section A.5.1.1), DriveLogic (Section A.5.1.2), MemberControl
(Section A.5.1.3), ConvoyManagement (Section A.5.1.4), and RefGen (Section A.5.1.5).

A.5.1.1 OperationStrategy

The component RTSC of OperationStrategy is shown in Figures A.33 and A.34. OperationStrat-
egy is embedded in RailCabDriveControl (cf. Figure 3.6 on Page 43) and is responsible for
negotiating the convoy entry of further RailCabs and for setting the operation strategy. The
RTSC has eight regions; five of which embed the port RTSCs of the five discrete ports of
OperationStrategy, one embeds the RTSC of the broadcast port, and two embed the RTSCs of
the RM and RE port.

The region reconfMsg contains the RTSC of the RM port. It has been derived manually from
the parent region of the manager RTSC generation template shown in Figure 4.15 and satisfies
the message exchange for the 2-phase-commit protocol. However, it does not yet incorporate
a decision whether the reconfiguration shall be executed or not. The RTSC supports sending
the three reconfiguration messages that appear in the RM port interface specification shown
in Figure A.49. All of which are requests and, thus, the RTSC waits for a reply by the parent
in AwaitReply. It synchronizes via started with the peer region and uses the selector expression
of type Boolean to indicate the result of the request.

The region reconfExec contains the RTSC of the RE port. It has been specified manually
and satisfies the message exchange for the 2-phase-commit protocol. The specified behavior,
however, is very simple such that any request by the parent will be executed. The RTSC
contains four states CheckApplyCoordinationStrategy, CheckApplyMemberStrategy, CheckDisable-
ConvoyBuildUp, and CheckEnableConvoyBuildUp that are reached from Idle by receiving one of
the messages that are offered by the RE port interface specification shown in Figure A.50. We
manually defined a unique reconfID four each of the corresponding reconfiguration operations
in accordance to the executor RTSC generation template (cf. Figure 4.16). In our example,
the reconfExec RTSC checks the structural condition for executing the reconfigurations itself
at the transitions from the Check∗ states to the Checked state. In particular, applyCoordination-
Strategy (or applyMemberStrategy) may be executed if the RailCab is not in member mode (or
in coordinator mode) as defined by the component SDD in Figure A.91 (or the component
SDD in Figure A.90, respectively). Finally, the RTSC returns to Idle either by receiving abort
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from the parent or by receiving execute from the parent. In the latter case, the reconfID is used
to define the transition that is fired and that executes the corresponding CSD.

The region broadcast contains the RTSC of the broadcast port. It is almost unchanged
compared to Figure A.23 and, therefore, we only show a small excerpt of the broadcast port
RTSC in Figure A.33. The only change is that we inserted a state TriggerReq in the actor region
of the Broadcast state. The transition from TriggerReq to Idle synchronizes with the RTSC of
the requestor port such that the instantiation proceeds after the requestor port has been created
by the broadcast RTSC using the CSD createRequestorPort shown in Figure A.64, which is
called at the transition from CheckIDs_Confirm to TriggerReq.

The region requestor contains the port RTSC of the requestor port. The port RTSC has been
adapted as follows compared to the role RTSC shown in Figure A.24. First, the transition
from Idle to Request now waits for the synchronization startInstantiation initiated by the broad-
cast port. Second, we replaced the non-deterministic choice expressions by assigning the
IDs of ConvoyEntry and its peer role to the variables reqProtocolID and reqRoleID because we
only enable to instantiate the peer port of OperationStrategy via the RTCP ProtocolInstantiation.
Finally, we moved calling the createPeerPort CSD shown in Figure A.66 to the entry action
of AwaitCreation.

The region requestee contains the port RTSC of the requestee port. The RTSC is un-
changed compared to the role RTSC shown in Figure A.25 except that we replaced the non-
deterministic choice expression at the transition from CheckRequest to CreatePort by a call to
the CSD createPeerPort shown in Figure A.66. Therefore, we omit the RTSC in Figure A.34.

The region peer contains the RTSC of the peer port. Compared to the role RTSC shown
in Figure A.2, we added a new initial state Init. The transition from Init to Idle initializes
the variables masterPossible, isMaster, and slavePossible by evaluating the component SDDs
inMemberMode and inCoordinatorMode shown in Figures A.91 and A.90, respectively. These
variables define whether the RailCab may become coordinator or member of the convoy.
After an initial assignment has been proposed by switching to the MasterProposed and Ac-
ceptSlave states, the peer region synchronizes with the reconfMsg region via becomeCoord and
becomeMember for executing the reconfigurations for becoming a coordinator or member of
a convoy. The transitions from StartingMaster to WaitForSlaveFinish now wait for the answer of
reconfMsg using the synchronization channel started. The same holds for the transitions from
StartingSlave to WaitForMasterFinish. Thereby, we integrated the peer port with the reconfig-
uration behavior that executes the requested reconfigurations based on the 2-phase-commit
protocol.

Finally, regions speedProvider and strategySender contain the port RTSCs of the ports speed-
Provider and strategySender. Both RTSCs are unchanged compared to their port RTSCs shown
in Figures A.10 and A.14 except that they access the variables of the component RTSC in-
stead of their local variables. Therefore, we omit the RTSCs in Figure A.34.

A.5.1.2 DriveLogic

The component RTSC of DriveLogic is shown in Figure A.35. DriveLogic is embedded in
RailCabDriveControl (cf. Figure 3.6 on Page 43) and is responsible for setting the speed of the
RailCab and for requesting permission to enter track sections. The component RTSC contains
three regions that correspond to the three discrete ports of DriveLogic. Since DriveLogic is not
reconfigurable, it has no RM port and no RE port.
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OperationStrategy

OperationStrategy_Main

channel: startInstantiation, becomeCoord, addMember, becomeMember, started[boolean];

variable: int numRequesteePorts, const int maxNumRequesteePorts := 1, int numRequestorPorts, 

const int maxNumRequestorPorts := 1, boolean isMaster, int maxSpeed := 120, int minDistance := 1, 

const int convoyEntryID := 1711, const int peerRoleID := 1712;

variable: boolean request;reconfMsg

reconfExec

broadcast

variable: boolean result, int tmpCommitTime, int reconfID;

clock: c2;

variable: const int ownAddr, const int ownVersion, int partnerAddr, int partnerVersion, Port partnerPort, 

Port ownPort, int tmpReceiverAddr, int tmpSenderAddr, boolean result, boolean mutex := false;

Idle

entry/ {request := false;}
AwaitReply

[not isMaster] becomeCoord? / 

{request := true;} becomeCoordinator()

success started[true]! /

failed started[false]! /

Propagated
U [request == true] /

occupied started[false]! /

Idle

entry/ {reconfID := 0;}

CheckApplyCoordinationStrategy

c2 ≤ 1 ms

CheckEnableConvoyBuildUp

c2 ≤ 1 ms

Checked
U

applyCoordinationStrategy /

{reconfID := 1; reset: c2;}

enableConvoyBuildUp /

{reconfID := 4; reset: c2;}

/ {result := true;

tmpCommitTime := 2000;}

/ {result := not inMemberMode();

tmpCommitTime := 200;}

[result == false] / abort()

WaitForParent

[result == true] /

confirm(tmpCommitTime)

abort /

[reconfID == 1] execute / {applyCoordinationStrategy();}

[reconfID == 2] execute / {applyMemberStrategy();}

[isMaster] becomeCoord? / 

{request := true;} newMember()

becomeMember? / 

{request := true;} becomeMember()

CheckApplyMemberStrategy

c2 ≤ 1 ms

applyMemberStrategy /

{reconfID := 2; reset: c2;}

CheckDisableConvoyBuildUp

c2 ≤ 1 msdisableConvoyBuildUp /

{reconfID := 3; reset: c2;}

/ {result := not inCoordinatorMode();

tmpCommitTime := 200;}

/ {result := true;

tmpCommitTime := 2000;}

[reconfID == 3] execute / {disableConvoyMode();}

[reconfID == 4] execute / {enableConvoyMode();}

requestor variable: int reqProtocolID, int reqRoleID;

clock: c1;

Broadcast

2

1

actor

reactor clock: c1;

clock: c;

Idle

entry/ {partnerAddr := 0; 

tmpReceiverAddr := 0;

tmpSenderAddr := 0;}

[mutex == false] / 

{mutex := true; reset: c;}

connectionRequest(partnerAddr, ownAddr)

[c ≥ 1000 ms] / {mutex := false;}

[result == true] / {mutex := false; }

CheckIDs_Confirm

entry/ {result := checkIDs();}

U

[result == true] / {mutex := false;}

...

TriggerReq
U

[result == true] / 

{ownPort := createRequestorPort(); mutex := false; numRequestorPorts++;}

completedProtocolInstantiation(partnerAddr, ownAddr, ownPort)

startInstantiation! /

...

Figure A.33: RTSC of the Component OperationStrategy (Pt. 1)

226



A.5 Component RTSCs

peer variable: boolean masterPossible, boolean slavePossible, boolean masterStarted, boolean slaveStarted;

clock: c0;

requestor variable: int reqProtocolID, int reqRoleID;

clock: c1;

requestee variable: boolean supported, boolean success, int requestedProtocol, int requestedRole;

operation: boolean isSupported(int protocolID, int roleID);

clock: c2;...

Idle startInstantiation! /

{reqProtocolID := convoyEntryID;

reqRoleID := peerRoleID;}

AwaitCreation

c1 ≤ 300 ms

entry/ {createPeerPort();}

confirmInstantiation /

{reset: c1;}

Aborted
declineInstantiation /

NotSupported
protocolNotSupported /

WaitFinish

c2 ≤ 350 ms

[c1 ≥ 250 ms] / 

finalize(ownPort) {reset: c1;}
Success

completed /

Request
SentRequest

c1 ≤ 400 ms

/ {reset: c1;}

request(reqProtocolID, reqRoleID);

NoAssignment

entry/ {reset: c0;}

MasterProposed

c0 ≤ 100 ms

entry/ {reset: c0;}

WaitForSlaveFinish

c0 ≤ 100 ms

entry/ {reset: c0;}

StartingMaster

c0 ≤ 600 ms

WaitForMasterFinish

c0 ≤ 700 ms

entry/ {reset: c0;}

StartingSlave

c0 ≤ 600 ms

[c0 ≥ 50] [masterPossible] /

youSlave()

confirm 

becomeCoord!  /

{reset: c0;}

youSlave /

cannotSlave /

{masterPossible := false;}

started[false]? /

{masterPossible := false;

masterStarted := false;}

cannotMaster()

[not masterPossible && 

not slavePossible] /

[slavePossible] youSlave /

confirm()

[not slaveStarted]

masterReady /

started[true]? /

{slaveStarted := true;}

slaveReady()

[50ms;

50ms]

FailedMaster Slave

started[true]? /

{masterStarted := true;}

masterReady()

[masterStarted] 

slaveReady() /

[not masterStarted]

slaveReady /

AcceptSlave

[slaveStarted] 

masterReady() /

U

becomeMember! / 

{reset: c0;}

started[false]? /

{slavePossible := false;

slaveStarted := false;}

cannotSlave()
cannotMaster /

{slavePossible := false;}

[c0 ≥ 10000 ms]

[not masterPossible] /

[c0 ≥ 50 ms] cannotSlave /

{masterPossible := false; 

reset: c0;}

[not slavePossible] youSlave /

cannotSlave() {reset: c0;}

[c0 ≥ 100 ms] / {masterPossible := false;}

Init
U

/ {masterPossible := not inMemberMode(); isMaster := inCoordinatorMode(); 

slavePossible := not inCoordinatorMode();}

strategySender clock: c1;

speedProvider clock: c;...
...

Figure A.34: RTSC of the Component OperationStrategy (Pt. 2)
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DriveLogic

DriveLogic_Main

variable: int speed := 0;

clock c1;section1

section2

maxSpeed

Idle WaitForAnswer

c1 ≤ 2s

Approved

c1 ≤ 2min

enterAllowed /

{reset: c1}

DriveOnSectionLeaveSection

c1 ≤ 100ms
/ leaveSection()

{reset: c1}

confirmExit /

newSection /

request() 

{reset: c1}

Waiting

enterDenied /

{refSpeed := 0;} enterAllowed /

{refSpeed := speed;

reset: c1}
EnterSection

c1 ≤ 100ms

confirmEntry /

/ enterSection()

{reset: c1}

...
clock: c1;

Timeout

newSpeed / {speed := newSpeed.speed;}

clock: c;

PeriodicReceiving

c ≤ 100 ms

entry/ {reset: c;}

[c ≥ 100 ms] /

newSpeed / {speed := newSpeed.speed;}

Figure A.35: RTSC of the Component DriveLogic

The region section1 contains the port RTSC of section1 that refines the railcab role of Sec-
tionEntry. Compared to the role RTSC shown in Figure 5.2 on Page 114, we only applied two
changes. First, whenever the RailCab is denied to enter a track section (transition from Wait-
ForAnswer to Waiting), we set the value of the hybrid port refSpeed to 0 such that the RailCab
stops. If the RailCab eventually receives permission to enter the track section and switches
from Waiting to Approved, we set refSpeed back to the current maximum speed of the RailCab.

The RTSC of section2 contained in region section2 is refined in the same way and, therefore,
omitted in Figure A.35.

Finally, the region maxSpeed contains the port RTSC of the maxSpeed port. It is responsible
for receiving the current maximum speed for the RailCab and for storing it in the variable
speed.

A.5.1.3 MemberControl

The component RTSC of MemberControl is shown in Figure A.36. MemberControl is embedded
in RailCabDriveControl (cf. Figure 3.6 on Page 43) and is responsible for executing the behav-
ior that is necessary for driving in a convoy as a member. The component RTSC contains
four regions; three of which correspond to the three discrete ports of MemberControl while the
fourth one contains internal behavior. Since MemberControl is not reconfigurable, it has no
RM port and no RE port.

228



A.5 Component RTSCs

MemberControl

MemberControl_Main

channel: updateValues;

variable: int speed := 0, int distance := 100, Profile curProfile;

clock: c;

var: const int numOfProfiles := 5, boolean hasNext, int entryPosition, 

Profile tmpProfile, ProfileIterator iterator, ProfileList profiles;

member

refDistReceiver

speedProvider

clock: c2;

clock: c3;

internal behavior operation: int sanityCheck(int speed, int dist, Profile profile);

clock: c4;

PeriodicSending

c3 ≤ 100 ms

entry/ {reset: c3;}

[c3 ≥ 100 ms] / newSpeed(speed)

SendAck

c2 ≤ 1 ms

entry/ {reset: c2;}

WaitUpdate

update /

{dist := update.distance; speed := update.speed;}
[1ms;1ms]

updateValues! / ack()

[1ms;1ms]

Processing

c4 ≤ 1 ms

entry/ {speed := sanityCheck(speed, distance, curProfile);

reset: c4;}

Idle
updateValues? /

/ {refDist := distance;}

...

Figure A.36: RTSC of the Component MemberControl

The region member contains the RTSC of the member port that refines the role RTSC of the
member role of ConvoyCoordination shown in Figure A.5. The RTSC is identical to the role
RTSC and, therefore, is omitted from the figure.

The region refDistReceiver contains the RTSC of the refDistReceiver port that refines the
role RTSC of the receiver role of DistanceTransmission shown in Figure 2.14. After the RTSC
received an update from the coordinator, it stores the new reference speed and distance in the
variables speed and distance of the component RTSC. Before sending the ack, it synchronizes
with the internal behavior region via updateValues to indicate that new reference values are
available.

The region speedProvider contains the RTSC of the speedProvider port that refines the role
RTSC of the sender role of SpeedTransmission shown in Figure A.10. It periodically sends the
value of the variable speed as a parameter of the newSpeed message.

Finally, the region internal behavior contains an internal behavior of DriveLogic. The RTSC
waits in Idle until refDistReceiver initiates the synchronization via updateValues. Then, the
RTSC switches to Processing and calls the operation sanityCheck in its entry action. sanity-
Check checks the reference values that have been provided by the coordinator based on the
current profile. The reference values are adjusted if necessary. In addition, the transition
from Processing back to Idle sets the value of distance to the hybrid port refDist.
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A.5.1.4 ConvoyManagement

The component RTSC of ConvoyManagement is shown in Figure A.37. ConvoyManagement is
embedded in ConvoyCoordination (cf. Figure 3.5 on Page 42) and is responsible for managing
the members of a convoy. The RTSC has six regions; four of which embed the port RTSCs
of the four discrete ports of ConvoyManagement, two of which embed the RTSCs of the RM
and RE port.

The region reconfMsg contains the RTSC of the RM port. It has been derived manually from
the parent region of the manager RTSC generation template shown in Figure 4.15 and satisfies
the message exchange for the 2-phase-commit protocol. However, it does not yet incorporate
a decision whether the reconfiguration shall be executed or not. The RTSC supports sending
the stopCoordination message that is defined in the RM port interface specification shown in
Figure A.51. Sending this message is triggered by a synchronization via stopCoordination that
is initiated by the RTSC in the coordinator region.

The region reconfExec contains the RTSC of the RE port. It has been specified manually
and satisfies the message exchange for the 2-phase-commit protocol. The specified behav-
ior, however, is very simple such that any request from the parent will be executed. The
RTSC contains two states CheckCreateFirstMemberPorts and CheckCreateMemberPortsAfter that
are reached from Idle by receiving one of the messages that are offered by the RE port in-
terface specification shown in Figure A.52. We manually defined a unique reconfID for each
of the corresponding reconfiguration operations in accordance to the executor RTSC gener-
ation template (cf. Figure 4.16). In our example, the reconfExec RTSC checks the structural
condition for executing the reconfigurations itself at the transitions from the Check∗ states
to the Checked state. In particular, executing both reconfigurations is possible if the current
number of members is less than maxNumMembers indicating the maximum number of convoy
members. Finally, the RTSC returns to Idle either by receiving abort from the parent or by re-
ceiving execute from the parent. In the latter case, the reconfID is used to define the transition
that is fired and that executes the corresponding CSD. In addition, both of these transitions
increase the number of members of the convoy.

The region speedProvider contains the RTSC of the speedProvider port that refines the RTSC
of the role provider of SpeedTransmission shown in Figure A.10. It has not been modified and,
therefore, we omit it is the figure.

The region coordinator contains the RTSC of the coordinator port that refines the RTSC of the
role coordinator of ConvoyCoordination shown in Figure A.4. Most of the RTSC are unchanged
with respect to the role RTSC and, therefore, we only show a small excerpt in Figure A.37.
We applied the following changes. First, the transition from Idle to HandleNewMember does
no longer check the condition for executing a reconfiguration and for executing the recon-
figuration rule. Instead, it synchronizes via newMember with the reconfExec region, which
now contains the behavior for executing the reconfiguration. Then, this transition will fire
any time after a new subport has been created by reconfExec. As our second modification,
we inserted the CheckCoordination state. After the entry of the new member has failed, the
transitions from CheckCoordination to Idle check whether there still exists a member in the
convoy (members is greater than 0). If not, then the RTSC synchronizes via stopCoordination
with the reconfMsg region such that a request for stopping the coordination of a convoy is
sent. Currently, this request is not further processed in our behavior model because we only
consider building convoys yet. The remaining behavior of coordinator is unchanged except
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ConvoyManagement

ConvoyManagement_Main

channel: newMember, stopCoordination;

variable: int ownMaxSpeed, boolean updateProfiles := false, int minDistance, int convoySpeed, ProfileStore 

allProfiles, int maxNumberMembers := 10, profileProvider curPPort, coordinator curCPort, int members := 0;

variable: boolean request;reconfMsg

reconfExec

coordinator

variable: boolean result, int tmpCommitTime, int reconfID, coordinator ccPort, profileProvider ppPort;

clock: c2;

variable: boolean memberPossible, int newRailCabPosition, boolean changed, Profile newProfile;

operation: boolean isMemberPossible(), boolean calculateProfiles();

strategyReceiver clock: c2;

Idle

entry/ {request := false;}
AwaitReply

stopCoordination? / 

{request := true;}

stopCoordination()

success /

failed /

Propagated
U [request == true] /

occupied /

Idle

entry/ {reconfID := 0;}

CheckCreateFirstMemberPorts

c2 ≤ 1 ms

CheckCreateMemberPortsAfter

c2 ≤ 1 ms

Checked
U

createFirstMemberPorts /

{reconfID := 1; reset: c2;}

createMemberPortsAfter /

{reconfID := 2; reset: c2;}

/ {result := 

(members < maxNumMembers);

tmpCommitTime := 500;}

/ {result := 

(members < maxNumMembers);

tmpCommitTime := 500;}

[result == false] / abort()

WaitForParent

[result == true] /

confirm(tmpCommitTime)

abort /

[reconfID == 1] execute newMember! / 

{[curCPort, curPPort] := createFirstMemberPorts(); members := members + 1;}

[reconfID == 2] execute newMember! / 

{[curCPort, curPPort] := createMemberPortsAfter(ccPort, ppPort); members := members + 1;}

speedProvider clock: c;

Coordinator_Main

adaptation

subrole

channel: newMemberPossible, entryFail, entrySuccess, requestPosition, sendNewProfile[Role], finished[Role], convoy;

variable: coordinator tmpCPort;

clock: c1, c2;

variable: int newPos;

clock: c3, c4;

Idle NewQuery
newMember? / {reset: c1;} HandleNewMember

c1 ≤ 10ms

NewMember

c1 ≤ 1000ms
Calculate

newMemberPossible? /

{memberPossible := 

isMemberPossible ( ) }

[not memberPossible] 

entryFail! /

[memberPossible]

entrySuccess! /

{reset: c1}

requestPosition? /

{calculateProfiles()}

[newRailCabPosition > 0] /

U

U

[500ms;500ms]

DeleteSR

c1 ≤ 200ms

[newRailCabPosition == 0] 

entryFail! /convoy? /

{curCPort := null;}

Initialize

/ {allProfiles := initializeVariables(); }

U

CheckCoordination
U

[c2 ≥ 200ms] /

{deleteSRProfiles(allProfiles, curSubRole);

members := members – 1; curCPort := null;}

[members > 0]

[members == 0]

stopCoordination! /

...

...

profileProvider variable: int newConvoySpeed;

...

...

...

Figure A.37: RTSC of the Component ConvoyManagement
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that we use variables that are typed by the coordinator port instead of variables typed by the
role while iterating all subports of coordinator.

Finally, the regions strategyReceiver and profileProvider contain the RTSCs of the strategyRe-
ceiver and profileProvider ports. The RTSC of strategyReceiver is unchanged compared to the
role RTSC shown in Figure A.15. The RTSC of profileProvider is unchanged compared to the
role RTSC shown in Figure A.7 except that we removed the self-transition from the Idle state
of the adaptation RTSC. The reason is that the reconfiguration executed by this transition is
now contained in the reconfExec RTSC.

A.5.1.5 RefGen

The component RTSC of RefGen is shown in Figure A.38. ConvoyManagement is embedded
in ConvoyCoordination (cf. Figure 3.5 on Page 42) and is responsible for computing reference
values for the convoy members based on their profiles. The component RTSC contains five
regions; four of which correspond to the four discrete ports of RefGen while the fifth one
contains internal behavior. Since RefGen is not reconfigurable, it has no RM port and no RE
port.

The region refDistProvider contains the RTSC of the refDistProvider port that refines the role
provider of DistanceTransmission shown in Figure 2.15. Since refDistProvider is a single port,
the port RTSC only refines the subrole behavior of the multi role provider. The creation of
new RefGen instances, which corresponds to the creation of a new subrole instance in the
role RTSC, is implemented by the parent component ConvoyCoordination. The synchroniza-
tion behavior that triggers sending new reference values periodically is implemented by the
internal behavior region as well as the next and prev port RTSCs.

The behavior is as follows. The internal behavior starts in the state InitUpdates. Every 500 ms,
it fires the transition to UpdateVars and checks whether it is the first or the last RefGen instance
in the sequence of RefGen instances inside ConvoyCoordination using the component SDDs is-
First and isLast given in Section A.7.5. If it is not the first instance, it returns to InitUpdates
without action. If it is the first instance, it triggers the refDistProvider RTSC via the synchro-
nization channel send. Then, the refDistProvider performs the update similar to the subrole
RTSC of the provider role. However, it uses the curProfile and, if it is the first instance, the
value of curPos for computing new reference values. Finally, it waits in AwaitAck for the ack
of the member. If it is the last instance, it returns to Idle without further action after receiving
the ack. If it is not the last instance, it triggers the next region via send_next. The RTSC in
region next refines the role initiator of StartExecution shown in Figure A.12. Thus, it sends a
startExecution message to the prev port of the next RefGen instance in the sequence. Upon
receiving this message, the prev region synchronizes via send with the refDistProvider region
and the behavior proceeds as described above.

Finally, the profileReceiver region contains the RTSC of the profileReceiver port that refines
the role profileReceiver of ProfileDistribution shown in Figure A.8. It is responsible for receiving
the profile that has been selected for the corresponding convoy member by ConvoyManage-
ment. The RTSC is identical to the role RTSC except that all variables of the role became
variables of the component RTSC. Therefore, the RTSC is omitted in Figure A.38.
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RefGen

RefGen_Main

channel: send, send_next;

variable: Profile curProfile, int currentPos, int prevPos, int prevSpeed, 

int newSpeed, int convoySpeed, int convoyMinDist, int coordMaxSpeed, 

int newDist, boolean _first, boolean _last;

operation: void calculateRefValues();

clock: c1;refDistProvider

clock: c2;profileReceiver

internal behavior clock: c3;

next

prev

SendUpdate

c1 ≤ 10 ms

Idle

send? /

{reset: c1;}

AwaitAck

c1 ≤ 50 ms

/ {calculateRefValues();}

update(newDist, newSpeed)

[30ms;30ms]

[_last]

ack /
ack

send_next! /

InitUpdates

c3 ≤ 500 ms

entry/ {reset: c3;}

[_first] send! /

 [not _first] /

UpdateVars

[c3 == 500 ms] /

{_first := isFirst(); _last := isLast();} U

Idle
 send_next? / startExecution(currentPos, newSpeed)

Idle
startExecution send! / 

{prevPos := startExecution.position; 

 prevSpeed :=  startExecution.speed);}

...

Figure A.38: RTSC of the Component RefGen
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A.5.2 RTSCs of the Section Components

In this section, we present the component RTSCs of the components NormalTrackSection (Sec-
tion A.5.2.1), Switch (Section A.5.2.2), and RailroadCrossing (Section A.5.2.3) that were used
in Chapter 5 for illustrating our refinement check.

A.5.2.1 NormalTrackSection

Figure A.39 shows the RTSC of the component NormalTrackSection shown in Figure 5.3a on
Page 116. The component RTSC defines one state NormalTrackSection_Main and one variable
sectionFree that denotes whether the section is currently free or not.

NormalTrackSection

NormalTrackSection_Main

channel: acquire, release;

variable: boolean sectionFree;

Idle

variable: boolean free;

clock: c2;

RailCabApproaching

c2 ≤ 1800ms

CheckRequest

c2 ≤ 1980ms

request /

{free := sectionFree}

RailCabOnSectionWaitPostAction

c2 ≤ 1s
leaveSection /

confirmExit() {reset: c2}

[c2 ≥ 1s]

release! /

/ newSection() {reset: c2}

EnterDenied

c2 ≤ 1980ms

[not free] /

enterDenied()

{reset: c2}
[free] acquire! / 

enterAllowed() {reset: c2}

EnterAllowed

c2 ≤ 120040ms

enterSection / 

confirmEntry()

[free] acquire! / 

enterAllowed() 

{reset: c2}

[c2 ≥ 1s] [not free] /

{free := sectionFree}

left

variable: boolean free;

clock: c2;
right

...

Free Occupiedacquire? /

{sectionFree := false}

release? /

{sectionFree := true}

internal behavior

Idle
Request

c1 ≤ 5 ms

entry/ {free := sectionFree;}

requestSectionStatus /

{reset: c1}

[c1 ≥ 4 ms] / sectionStatus(free)

variable: boolean free;

clock: c1;
precedingSwitch

Figure A.39: RTSC of the Component NormalTrackSection

The state NormalTrackSection_Main has four regions. The regions left and right contain the
port RTSCs of the ports left and right that both refine the role section of the RTCP EnterSection.
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The RTSCs in both regions are identical to the RTSC shown in Figure 5.4 on Page 116.
Therefore, we omitted the RTSC for right to improve readability of the figure.

The region internal behavior defines the internal behavior of the component. It consists of
two states Free and Occupied that denote the current status of the track section. In our exam-
ple, only the internal behavior may write the variable sectionFree. When the internal behavior
switches from Free to Occupied, it sets sectionFree to false. The transition in the opposite di-
rection sets the value of sectionFree back to true. The internal behavior synchronizes via the
channels acquire and release with the RTSCs of left and right. In particular, left and right use
acquire to block the section for the RailCab they are communicating with. Only if the syn-
chronization via acquire succeeds, one of these RTSCs may send enterAllowed to a RailCab at
the transition from CheckRequest to EnterAllowed. After the RailCab left the track section, left
or right synchronizes via release to report that the track section is free again.

Finally, the region precedingSwitch implements the role tracksection of the RTCP NextSec-
tionFree. The RTSC is almost identical to the RTSC shown in Figure A.17. The only differ-
ence is that the entry action of Request now assigns the value of the variable sectionFree to
the local variable free.

A.5.2.2 Switch

Figure A.40 shows the RTSC of the component Switch shown in Figure 5.3c on Page 116.
The component RTSC defines one state Switch_Main and one variable sectionFree that denotes
whether the switch is currently free or not.

The state Switch_Main has five regions. The regions left, right, and bottom contain the port
RTSCs of the ports left, right, and bottom that all refine the role section of the RTCP EnterSec-
tion. The RTSCs in these regions are identical to the RTSC shown in Figure 5.6 on Page 118.
Therefore, we omitted the RTSCs for right and bottom to improve readability of the figure.

The region internal behavior defines the internal behavior of the component. It is identical
to the internal behavior of the normal track section shown in Figure A.39 and interacts with
the RTSCs in left, right, and bottom in exactly the same way.

The region followingSection implements the role switch of the RTCP NextSectionFree. The
RTSC in followingSwitch refines the role RTSC by introducing one additional state Notify in-
cluding a transition from Notify to Idle and a synchronization channel sectionFree for synchro-
nizing with the regions left, right, and bottom. After one of the latter three regions received
request, the transition from RailCabApproaching to WaitForTrack synchronizes with following-
Section via nextSectionFree. Then, followingSection switches to WaitForSection and sends re-
questSectionStatus to the following track section. After the track section has answered with
sectionStatus, followingSection switches to Notify. The transition from Notify to Idle then syn-
chronizes with one of the regions left, right, or bottom. The status (free or not free) of the
following track section is encoded in the selector expression of sectionFree.

A.5.2.3 RailroadCrossing

Figure A.41 shows the RTSC of the component Crossing_InfProc. The component RTSC
defines one state Crossing_InfProc_Main and one variable sectionFree that denotes whether the
railroad crossing is currently free or not.
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Switch

Switch_Main

channel: acquire, release, nextSectionFree, sectionFree[int];

variable: boolean sectionFree;

Idle RailCabApproaching

c2 ≤ 100ms

CheckRequest

c2 ≤ 1980ms

request  nextSectionFree! /

{firstTry := true}

RailCabOnSectionWaitPostAction

c2 ≤ 1000ms

leaveSection /

confirmExit() {reset: c2}

[c2 ≥ 1000ms]

release! /

/ newSection() {reset: c2}

EnterDenied

c2 ≤ 1980ms

[firstTry and (not free)] /

enterDenied() {reset: c2}

[free] acquire! / 

enterAllowed() {reset: c2}

EnterAllowed

c2 ≤ 120040ms

enterSection /

confirmEntry()

[c2 ≥ 1s] [not free] /

{free := sectionFree}

WaitForTrack

c2 ≤ 1900ms

exit/ {free := sectionFree}

sectionFree[1]? /
sectionFree[0]? /

{free := false}

[free] nextSectionFree! /

{firstTry := false; reset: c2}

[(not firstTry) and (not free)] /

{reset: c2}

variable: boolean free, boolean firstTry;

clock: c2;
left

...
variable: boolean free, boolean firstTry;

clock: c2;
right

...
variable: boolean free, boolean firstTry;

clock: c2;
bottom

Free Occupiedacquire? /

{sectionFree := false}

release? /

{sectionFree := true}

internal behavior

followingSection

Idle WaitForSection

c2 ≤ 20 ms

nextSectionFree? /

{reset: c2} requestSectionStatus()

variable: boolean status;

clock: c2;

Notify

c2 ≤ 20 ms

[c2 ≥ 20 ms] sectionStatus /

{status := sectionStatus.free; reset: c2;}

sectionFree[status]! /

Figure A.40: RTSC of the Component Switch
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Crossing_InfProc

Crossing_InfProc_Main

channel: closeGate, openGate, gateClosed, gateOpened;

variable: boolean sectionFree;

variable: boolean free;

clock: c2;
left

Idle RailCabApproaching

c2 ≤ 100ms

CheckRequest

c2 ≤ 120ms

request /

{free := sectionFree}

RailCabOnSection

WaitOpenGate

c2 ≤ 1s

openGate!  

leaveSection /

confirmExit() 

{reset: c2}

[c2 ≥ 1s]

gateOpened? /

/ newSection() 

{reset: c2}

EnterDenied

c2 ≤ 1980ms

/ enterDenied() 

{reset: c2}

EnterAllowed

c2 ≤ 120040ms

enterSection /

confirmEntry()

[c2 ≥ 1s] [not free] /

{free := sectionFree}

ClosingGate

c2 ≤ 1980ms
[free] closeGate! /

{reset: c2}

gateClosed? / 

enterAllowed()

{reset: c2}

[free] 

closeGate! /

SendDenial

c2 ≤ 1980ms

[not free]

...
variable: boolean free;

clock: c2;
right

internal behavior

Free

Closing

c3 ≤ 1800ms

closeGate? /

{gateAction := true;

reset: c3;}

Opening

c3 ≤ 1800ms

Closed

[not gateStatus] 

gateOpened! /

{sectionFree := true}
openGate? /

{gateAction := false;

reset: c3}

[gateStatus] gateClosed! /

{sectionFree := false}

clock: c3;

Idle
Request

c1 ≤ 5 ms

entry/ {free := sectionFree;}

requestSectionStatus /

{reset: c1}

[c1 ≥ 4 ms] / sectionStatus(free)

variable: boolean free;

clock: c1;
precedingSwitch

Figure A.41: RTSC of the Component Crossing_InfProc
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The state Crossing_InfProc_Main has four regions. The regions left and right contain the port
RTSCs of the ports left and right that both refine the role section of the RTCP EnterSection. The
RTSCs in both regions are identical to the RTSC shown in Figure 5.16 on Page 137, i.e., they
contain the correctly refined behavior for a railroad crossing. We omitted the RTSC for right
to improve readability of the figure.

The region internal behavior defines the internal behavior of the component. It synchro-
nizes with the regions left and right for closing the gates when a RailCab wants to enter the
railroad crossing. Initially, the railroad crossing is in state Free that denotes that the railroad
crossing is free. If a RailCab wants to enter, the transition from CheckRequest to ClosingGate
synchronizes via closeGate with the transition Free to Closing in the internal behavior. In the
transition action, the transition from Free to Closing sets the value of the hybrid port gateAction
to true. This indicates that the gates need to be closed. As a result, the continuous component
Gates closes the gates and sets the port status to true as soon as the gates are closed. Then,
gateStatus becomes true in Crossing_InfProc and the transition from Closing to Closed fires. It
synchronizes via gateClosed with left or right to indicate that the gate is now closed. After the
RailCab left the railroad crossing, left or right synchronizes via openGate with the internal be-
havior to open the gates again. Then, the transition from Closed to Opening sets the hybrid port
gateAction to false which causes Gates to open the gates. After the gates are open, gateStatus
becomes false and the transition from Opening to Free may fire. This transition synchronizes
with left or right to indicate that the section is free again.

Finally, the region precedingSwitch implements the role tracksection of the RTCP Next-
SectionFree. The RTSC is identical to the one in region precedingSwitch of NormalTrackSec-
tion_Main and works in exactly the same fashion.

A.6 Reconfiguration Behavior Specification of
Components

This section introduces the remaining parts of the reconfiguration behavior specification of
the three structured components RailCabDriveControl, ConvoyCoordination, and VelocityController.
For the atomic components, we present the reconfiguration behavior only partially due to
the current restrictions of our approach as denoted in Section 4.7. We start by describing
the declarative, table-based reconfiguration specifications in Section A.6.1. Thereafter, we
present the remaining CSDs used by the components in Section A.6.2. Finally, we present
a manager and an executor RTSC that have been generated for the component RailCabDrive-
Control in Section A.6.3 and story diagram implementations of the operations used by the
executor in Section A.6.4.

A.6.1 Declarative, Table-based Reconfiguration Specification

Section A.6.1.1 presents the declarative, table-based specification of ConvoyCoordination while
Section A.6.1.2 presents the specification of VelocityController. The specification of RailCab-
DriveControl has already been given in Section 4.3. In addition, we present RM port and
RE port interface specifications of OperationStrategy in Section A.6.1.3 and ConvoyManage-
ment in Section A.6.1.4. Although we cannot yet define generation templates for deriving an
executable reconfiguration behavior specification for atomic components, the interface speci-
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fications of RM ports and RE ports need to be identical to structured components. Otherwise,
we would violate component encapsulation.

A.6.1.1 ConvoyCoordination

Figure A.42 shows the manager specification of ConvoyCoordination. ConvoyCoordination may
react to two messages. First, it may receive stopCoordination from ConvoyManagement. This
message indicates that the RailCab shall no longer coordinate the convoy, e.g., after all mem-
bers have left the convoy. This message is not further processed because we do not yet
consider dissolving convoys. Second, ConvoyCoordination may receive addConvoyMemberAt-
Pos from the parent component. This message will be treated by executing the reconfigura-
tion rule addConvoyMemberAtPos (cf. Figure 3.14 on Page 54). This reconfiguration has no
structural condition, is not safety relevant, and requires no planning.

Message Type Treat

stopCoordination No

Propagate

to parent

No

addConvoyMember

AtPos

Yes No

Structural ConditionReconfiguration Rule
Invoke

Planner

No

No

Time For

Planning

addConvoyMemberAt

Pos()

true ---

--- true ---1

2

Safety

Relevant

No

No

Figure A.42: Manager Specification of the ConvoyCoordination Component

Figure A.43 shows the executor specification of ConvoyCoordination. The executor only
contains the reconfiguration rule addConvoyMemberAtPos that defines a WCET requirement
of 50 ms.

ID Reconfiguration Rule

1 addConvoyMemberAtPos(int pos) : 

(coordinator cp, refDistProvider rpp)

WCET

50 ms

Figure A.43: Executor Specification of the ConvoyCoordination Component

Since addConvoyMemberAtPos shall be received from the parent component, it is contained
in the RE port specification of ConvoyCoordination shown in Figure A.44. The entry defines
that ConvoyCoordination needs 50 ms for deriving a decision whether to execute the reconfig-
uration and that the execution takes another 100 ms.

Message Type Description
Time for 

Decision

addConvoyMember

AtPos(int pos) : 

(coordinator cp, 

refDistProvider rpp)

The ConvoyCoordination will 

create and return port instances for 

communicating with a new convoy 

member.

50 ms

Time for 

Execution

100 ms

Minimum

Commit Time

200 ms

Figure A.44: RE Port Specification of the ConvoyCoordination Component

At present, ConvoyCoordination does not send reconfiguration messages to its parent and,
thus, the RM port interface specification is empty.
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A.6.1.2 VelocityController

Figure A.45 shows the RM port interface specification of VelocityController. It sends three
messages to its parent. These are drivingAtHighSpeed, drivingAtNormalSpeed, and distanceSen-
sorFailure. The former two are info messages that indicate that the RailCab drives at high
speed or normal speed, respectively. The latter message indicates a hardware failure of the
distance sensor and requests a self-healing operation from the parent.

Message Type Description

drivingAtHighSpeed RailCab travels at high speed.

Type

info

Expected 

Response Time

drivingAtNormalSpeed RailCab travels at normal speed.info

---

---

distanceSensorFailure Distance sensor is broken.request 250 ms

Figure A.45: RM Port Specification of the VelocityController Component

Figure A.46 shows the manager specification of VelocityController. The manager specifica-
tion defines the three messages contained in the RM port specification are propagated to the
parent. These are meant to be collected by a monitor of VelocityController as discussed in Sec-
tion 7.2. In addition, the manager handles the message switchToConvoy that is received from
the parent. This message will be treated and is connected to the eponymous reconfiguration
rule. In addition, it defines a structural conditions that is specified by the component SDD
inStandaloneCtrl shown in Figure A.87. Before switching to the convoy controller, Velocity-
Controller invokes a planner for 10 ms. Finally, the manager contains an entry for the message
switchToStandalone that may be used by a member for leaving a convoy. The correspond-
ing reconfiguration rule switchToStandalone will only be executed if the VelocityController is in
convoy mode as expressed by the component SDD inConvoyCtrl shown in Figure A.88.

Message Type Treat

switchToConvoy No

Propagate

to parent

Yes

switchToStandalone Yes No

Structural Condition

inStandaloneCtrl()

Reconfiguration Rule

switchToConvoy()

Invoke

Planner

Yes

No

Time For

Planning

10 ms

switchToStandalone() inConvoyCtrl() ---

distanceSensorFailure No Yes No--- true ---

drivingAtHighSpeed No Yes No--- true ---

drivingAtNormalSpeed No Yes No--- true ---

1

2

4

5

3

Safety 

Relevant

Yes

No

No

No

No

Figure A.46: Manager Specification of the VelocityController Component

Figure A.47 shows the executor specification of VelocityController. It contains the reconfigu-
ration rules switchToConvoy (cf. Figure 3.12) and switchToStandalone. For both reconfiguration
rules, it defines that the reconfiguration rules must be executable in 65 ms.

ID Reconfiguration Rule

1 switchToConvoy()

2 switchToStandalone()

WCET

65 ms

65 ms

Figure A.47: Executor Specification of the VelocityController Component

Finally, Figure A.48 shows the RE port interface specification of VelocityController. It de-
fines two entries, one for switchToConvoy and one for switchToStandalone. The entry for switch-
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ToConvoy defines a time for decision of 20 ms. Since this reconfiguration includes a fading
function for replacing a controller, it denotes separate times for execution of the setup, fading,
and teardown phases. The entry for switchToStandalone is specified analogously.

Message Type Description
Time for 

Decision

switchToConvoy The VelocityController operates as 

a convoy member and considers 

the distance to the preceding 

RailCab.

20 ms

Time for 

Execution

Setup:   10 ms

Fading:   50 ms

Teardown:  5 ms

switchToStandalone The VelocityController operates as 

standalone or coordinator RailCab 

and will control speed solely based 

on a reference speed.

20 ms

Minimum

Commit Time

200 ms

200 msSetup:   10 ms

Fading:   50 ms

Teardown:  5 ms

Figure A.48: RE Port Specification of the VelocityController Component

A.6.1.3 OperationStrategy

Figure A.49 shows the RM port interface specification of OperationStrategy. It sends three
messages to its parent. These are becomeCoordinator, newMember, and becomeMember. All
of which are requests. The first message indicates that OperationStrategy negotiated that the
RailCab shall become the coordinator of a convoy. The second message indicates that an
additional member shall be added to the convoy. The third message indicates that Opera-
tionStrategy negotiated that the RailCab shall become member of a convoy.

Message Type Description

becomeCoordinator RailCab should start operating 

as a convoy coordinator.

Type

Expected 

Response 

Time

newMember RailCab is coordinator and 

needs to add a new member 

to the convoy.

request 500 ms

request 500 ms

becomeMember RailCab should start operating 

as a convoy member.
request 500 ms

Figure A.49: RM Port Specification of the OperationStrategy Component

Finally, Figure A.50 shows the RE port interface specification of OperationStrategy. It
defines four entries that use four messages. These are applyCoordinationStrategy, applyMem-
berStrategy, disableConvoyBuildUp, and enableConvoyBuildUp. applyCoordinationStrategy causes
OperationStrategy to instantiate the port instances that are required for driving as a coordi-
nator. In the same way, applyMemberStrategy causes OperationStrategy to instantiate the port
instances that are required for driving as a member. Since becoming a member requires
three-phase execution, the entry specifies distinct times for execution for the setup, fading,
and teardown phases. Finally, the latter two entries allow to disable and to enable that the
RailCab may engage in convoys.
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Message Type Description
Time for 

Decision

applyCoordination

Strategy

The OperationStrategy will no 

longer send a reference speed but 

information on the current strategy.

5 ms

Time for 

Execution

5 ms

applyMemberStrategy The OperationStrategy will no 

longer send a reference speed.
5 ms

Minimum

Commit Time

200 ms

200 ms

disableConvoyBuildUp The RailCab will not try to engage 

in convoys anymore.
5 ms 5 ms

enableConvoyBuildUp The RailCab will try to join convoys 

if possible and useful.
5 ms 5 ms

2000 ms

2000 ms

Setup:    0 ms

Fading:    0 ms

Teardown: 2 ms

Figure A.50: RE Port Specification of the OperationStrategy Component

A.6.1.4 ConvoyManagement

Figure A.51 shows the RM port interface specification of ConvoyManagement. It sends one
message to its parent, namely stopCoordination. This message indicates that all member Rail-
Cabs have left the convoy and that the RailCab shall stop operating as a coordinator.

Message Type Description

stopCoordination RailCab stops being convoy 

coordinator.

Type
Expected 

Response Time

250 msrequest

Figure A.51: RM Port Specification of the ConvoyManagement Component

Finally, Figure A.52 shows the RE port interface specification of ConvoyManagement. It
defines two entries that use two messages. These are createFirstMemberPorts and createMem-
berPortsAfter. Both messages are required for adding new members to the convoy. The first
message, createFirstMemberPorts, is used for adding a member at the first position, i.e., di-
rectly behind the coordinator. The second message, createMemberPortsAfter, is used for adding
a member after the one whose port instances are passed as parameters.

Message Type Description
Time for 

Decision

createFirstMemberPorts() : 

(coordinator cPort, 

profileProvider pPort)

Creates new port instances for 

dealing with an additional member 

driving at first position.

5 ms

Time for 

Execution

5 ms

createMemberPortsAfter

(coordinator c, 

profileProvider p) : 

(coordinator cPort, 

profileProvider pPort)

Creates new port instances for 

dealing with an additional member 

driving behind the RailCab whose 

corresponding port instances are 

given as parameters.

5 ms 5 ms

Minimum

Commit Time

500 ms

500 ms

Figure A.52: RE Port Specification of the ConvoyManagement Component

A.6.2 Reconfiguration Rules

This section introduces the reconfiguration rules specified as CSDs that we use in our Rail-
Cab example for building convoys. In our example, we build convoys by first establishing a
convoy of two RailCabs and then adding additional RailCabs one after the other later on. As a
result, we need two reconfigurations. The first one reconfigures the CIC of a RailCab driving
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alone (cf. Figure 3.9 on Page 47) to a CIC of a coordinator with one member (cf. Figure A.27
on Page 221). We explain the necessary CSDs and constructor CSDs in Section A.6.2.1. The
second reconfiguration adds one additional member to a convoy. We explain this reconfig-
uration in Section A.6.2.2. The CSDs defining the reconfiguration for a RailCab to become
a member of a convoy have already been introduced in Section 3.3 and will not be repeated
in this section. In addition, we introduce the CSDs that are used by RailCabDriveControl for
enabling and disabling the convoy mode in Section A.6.2.3. Finally, we present the CSDs
that are used by the component OperationStrategy for handling the instantiation of RTCPs on
system level in Section A.6.2.4.

A.6.2.1 Becoming Coordinator

Figure A.53 shows the CSD becomeCoordinator that reconfigures the component instance
standaloneRC of Figure 3.9 such that it is equivalent to Coordinator in Figure A.27.

In the first story node, we match the embedded component instances of types Opera-
tionStrategy and DriveLogic. Then, we destroy the assembly connector instance between both
component instances and invoke the reconfiguration applyCoordinationStrategy on the com-
ponent instance matched by os. Since both component parts referenced by os and dl have
cardinality [1] (cf. Figure 3.6), this story node is not expected to fail.

In the second story node, we create instances of ConvoyCoordination and PositionSensor. For
instantiating ConvoyCoordination, we use a constructor instantiate1Member that initializes the
component instance such that it is equivalent to cc shown in Figure 3.10. In addition, we
create an assembly connector instance between speedProvider of c and maxSpeed of dl. Fur-
thermore, we create the multi port instances coordinator and refDistProvider with one subport
instance each and delegate them to the corresponding port instances of c. Since the Velocity-
Controller does not change if a RailCab becomes coordinator of a convoy, it is not used in the
CSD.

Figure A.54 shows the CSD applyCoordinationStrategy that is invoked in the first story node
of becomeCoordinator shown in Figure A.53. OperationStrategy is an atomic component and,
therefore, the this variable has no embedded part variables. The CSD deletes the speedProvider
port instance and creates a strategySender port instance.

Figure A.55 shows the constructor instantiate1Member of the component ConvoyCoordination
that is used by the CSD becomeCoordinator shown in Figure A.53. Since the CSD is a con-
structor CSD, all variables of the component story pattern carry a «create» stereotype. The
constructor creates instances of ConvoyManagement and RefGen. For RefGen, it recursively in-
vokes the constructor CSD initWithCurPos shown in Figure A.56 for creating an instance with
a curPos port instance. For ConvoyManagement, we use the default constructor. In addition, the
constructor creates the necessary port instances for an instance of ConvoyCoordination includ-
ing the delegations to cm and rg1. The resulting instance of ConvoyCoordination is equivalent
to the component instance cc shown in Figure 3.10 on Page 49.

A.6.2.2 Adding Convoy Members

Having established a convoy with one member, we may add additional members by ex-
ecuting the CSD addConvoyMember shown in Figure A.57 on a component instance of type
RailCabDriveControl. In the first story node, addConvoyMember triggers the reconfiguration add-
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Create ConvoyCoordination and connect Ports

RailCabDriveControl::becomeCoordinator() 

 this

  

  os / strategy : 

      OperationStrategy

applyCooordinationStrategy()

  

   dl / drive : 

      DriveLogic
:maxSpeed

:speedProvider
«destroy»

  

    c / convoy : 

        ConvoyCoordination

instantiate1Member()

 this

  

  os

  

   dl

:curPos

:receiver

:strategySender

:speedProvider

:maxSpeed

  

  ps / pos : PositionSensor

:position

:refDistProvider

:coordinator

:refDistProvider

:coordinator

«create»
«create»

«create»

«create»

«create»

«create»

«create»

«create»

«create»

Switch Operation Strategy and destroy Assembly

Figure A.53: CSD for Component RailCabDriveControl that Reconfigures the Component In-
stance to Serve as a Coordinator

Delete Provide Port, Create Strategy Port

OperationStrategy::applyCoordinationStrategy() 

  

     this 
:strategySender

«create» «destroy»
:speedProvider

Figure A.54: CSD for Component OperationStrategy that Reconfigures the Ports for Being
Coordinator
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Constructor: ConvoyCoordination::instantiate1Member() 

Initialize Port Instances and Embedded Component Instances

 this

    cm / man : 

       ConvoyManagement

  

   rg1 / refGen : 

          RefGen

initWithCurPos()

:curPos:curPos

:refDistProvider :refDistProvider

:coordinator c1:coordinator

:speedProvider :speedProvider

:strategy :receiver

:profileProvider

:profileReceiver

«create»

«create»

«create»

«create»

«create»
«create»

«create»

«create»

«create»
«create»

«create»
«create»

«create»

Figure A.55: Constructor CSD for Creating an Instance of ConvoyCoordination

Constructor: RefGen::initWithCurPos() 

Initialize Port Instances

  

    this

:curPos

:refDistProvider

:profileReceiver«create»
«create»

«create»

«create»

Figure A.56: Constructor CSD for Creating an Instance of RefGen
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ConvoyMemberAtPos on the ConvoyCoordination instance. Then, ConvoyCoordinator reconfigures
itself to include the new member at the given position pos. The necessary reconfiguration of
ConvoyCoordination is defined by the CSD shown in Figure 3.14 on Page 54. The CSD add-
MemberAtPos returns the two port instances cp and rpp that it created. These are assigned to
the variables cp and rpp.

Reconfigure ConvoyCoordination

RailCabDriveControl::addConvoyMember(int pos) 

   c / convoy 

         : ConvoyCoordination

(cp, rpp) := 

addConvoyMemberAtPos(pos)

 this

[else]

[position == 1]

Create PortInstances at First Position

  

     c 

 this

cp

«create»

:coordinator

«first»
:coordinator

«create»

«next»

rpp

«create»

:refDistProvider

«first»
:refDistProvider
«create»

«next»

Create PortInstances in the Middle

  

     c 

 this

cp«create»

:coordinator

:coordinator
«create»

«next»

:coordinator

«prev»

:coordinator

«next»

:coordinator

«prev»

rpp«create»

:refDistProvider

:refDistProvider
«create»

«next»

:refDistProvider

«prev»

:refDistProvider

«next»

:refDistProvider

«prev»

«first»

«first»

Figure A.57: CSD for Component RailCabDriveControl that Adds an Additional Convoy Mem-
ber

The decision node after the first story node distinguishes two cases, namely, whether the
new member is added at the first position or in the middle of the convoy. In the former case,
the execution of the CSD proceeds with the story node at the bottom left. It matches the first
subport instances of coordinator and refDistProvider of this, which are both optional. Then, it
creates new subport instances for both multi port instances which both carry the «first»

constraint. As a result, they will be inserted at the first position and the previously first
subport instances are their direct successors. In addition, the component story pattern creates
delegation connector instances to cp and rpp, respectively.

If the new member is not added at the first position, we proceed with the story node at the
bottom right. This story node creates new subport instances for coordinator and refDistProvider
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as well. It inserts these port instances at the same position where cp and rpp have been inserted
in ConvoyCoordination. Again, cp and rpp are delegated to the newly created port instances of
this.

The CSD addConvoyMemberAtPos in Figure 3.14 on Page 54 invokes two reconfigurations
on ConvoyManagement: createFirstMemberPorts and createMemberPortsAfter that we will explain
in more detail in the following.

The CSD createFirstMemberPorts of ConvoyManagement is shown in Figure A.58. It consists
of three story nodes. The first story node in the upper left corner matches the first subport
instances of coordinator and profileProvider. If these subport instances could be matched suc-
cessfully, the story node at the bottom left creates new subport instances at the first position.
The previously matched subport instances tmpC and tmpP become direct successor of the
newly created subport instances. If the first story node could not be matched successfully,
then no subport instances exist in coordinator and profileProvider. In this case, the story node in
the upper right corner creates new subport instances and inserts them at the first position. In
both case, the created subport instances newC and newP are assigned to the output parameters
cPort and pPort, respectively, at the final node.

Try to match first Ports

ConvoyManagement::createFirstMemberPorts() : (coordinator cPort, profileProvider pPort)

  

     this 

tmpC:coordinator

«first»

«first»tmpP:profileProvider

Create Ports at first position

  

     this 

tmpC

«first»

«first»
newP:profileProvider

newC:coordinator
«create»

«next»

«create»

«next»

Create first Ports

  

     this 

newC:coordinator

«first»

«first»newP:profileProvider

«create»

«create»

[failure]

[success]

cPort := newC,

pPort := newP
tmpP

Figure A.58: CSD for Component ConvoyManagement that Adds Port Instances for an Addi-
tional Convoy Member at the Beginning of the Convoy

The CSD createMemberPortsAfter of ConvoyManagement is shown in Figure A.59. It takes
two subport instances of the multi ports coordinator and profileProvider as its inputs. The sub-
port instances that are created in the story node will be direct successors of these subport
instances. If these subport instances already had direct successors, they would be matched
by the optional variables. Then, the subport instances matched by the optional variables be-
come direct successors of the newly created subport instances for maintaining a correct order
of the subport instances.
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Create Ports

ConvoyManagement::createMemberPortsAfter(coordinator c, profileProvider p) : 

(coordinator cPort, profileProvider pPort)

cPort := newC,

pPort := newP

  

           this 

c

newP:profileProvider

newC:coordinator
«create»

«next»

«create»

«next»

«next» «next»

:coordinator

«next»

«next»

p :profileProvider

Figure A.59: CSD for Component ConvoyManagement that Adds Port Instances for an Addi-
tional Convoy Member in the Middle of the Convoy

A.6.2.3 Enabling and Disabling the Convoy Mode

In our example, we implement stopping the RailCabs from engaging in convoys and that they
may start engaging in convoy, again.

The CSD disableConvoyMode is executed by RailCabDriveControl for stopping to engage in
further convoy. Therefore, the CSD deletes the broadcast port that is used for establishing
new connections to other RailCabs. Without the broadbast port, the RailCab will not be able
to instantiate the requestor and requestee ports and, thus, it may not start collaborating with
other RailCabs.

If the instance of RailCabDriveControl contains instances of the requestor and requestee ports,
then these instances are deleted as well by the optional port variables. Along with the port
instances, we delete all delegation connector instances. Finally, the second activity node of
the CSD invokes the reconfiguration disableConvoyBuildUp on os.

The CSD of OperationStrategy that corresponds to disableConvoyBuildUp is shown in Fig-
ure A.61. This CSD operates in the same fashion as disableConvoyMode, i.e., it deletes the
broadcast port instance and the possibly existing instances of requestor and requestee.

If the RailCab shall engage in convoys, again, it executes the CSD enableConvoyMode on
RailCabDriveControl. The CSD is shown in Figure A.62. This CSD consists of two story nodes.
The first story node invokes the reconfiguration enableConvoyBuildUp on os. The second story
node creates a new instance of the broadcast port including a delegation connector instance
to the broadcast port instance of os that has been created by enableConvoyBuildUp.

The CSD of OperationStrategy that corresponds to the reconfiguration enableConvoyBuildUp
is shown in Figure A.63. Similar to enableConvoyMode, it creates a new instance of the broad-
cast port for the instance of OperationStrategy.
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RailCabDriveControl::disableConvoyMode() 

:protocolInst

 this

Delete Port Instances and Delegations of this

  

  os / strategy : 

      OperationStrategy

B

:protocolInst

B

:requestor :requestor

:requestee :requestee

«destroy»

«destroy»

«destroy»

«destroy»

«destroy»

«destroy»

 this

Trigger OperationStrategy

  

  os 

disableConvoyBuildUp()

Figure A.60: CSD for Component RailCabDriveControl that Disables the Convoy Mode by
Deleting the Necessary Port Instances for Convoy Build-up

OperationStrategy::disableConvoyBuildUp() 

:protocolInst

Delete Port Instances

  

     this

B

:requestor

:requestee

«destroy»

«destroy»

«destroy»

Figure A.61: CSD for Component OperationStrategy that Disables the Convoy Mode by Delet-
ing the Port Instances that are Necessary for Convoy Build-up
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RailCabDriveControl::enableConvoyMode() 

 this

Trigger OperationStrategy

  

  os / strategy : 

      OperationStrategy

enableConvoyBuildUp()
:protocolInst

 this

Create Port Instance and Delegation

  

  os 
B

:protocolInst

B
«create»

«create»

Figure A.62: CSD for Component RailCabDriveControl that Enables the Convoy Mode by Cre-
ating the Necessary Broadcast Port Instance

OperationStrategy::enableConvoyBuildUp() 

:protocolInst

Create Port Instances

  

     this
B«create»

Figure A.63: CSD for Component OperationStrategy that Enables the Convoy Mode by Cre-
ating the Necessary Broadcast Port Instance
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A.6.2.4 Handling Connection Setup in OperationStrategy

Our concept for instantiating RTCPs on system level as introduced in Section 3.4 involves
several reconfigurations inside OperationStrategy. We introduce the CSDs that specify these
reconfigurations in the following.

The RTSC of the broadcast port (cf. Section A.2.2) triggers the instantiation of an instance
of requestor or requestee depending on whether it initiated the instantiation or not. The result-
ing CSDs that create these port instances are shown in Figures A.64 and A.65. Both CSDs
contain only one story node that creates the port instance.

OperationStrategy::createRequestorPort() 

:requestor

Create Port Instance

  

     this
«create»

Figure A.64: CSD for Component OperationStrategy that Creates a requestor Port Instance

OperationStrategy::createRequesteePort() 

:requestee

Create Port Instance

  

     this
«create»

Figure A.65: CSD for Component OperationStrategy that Creates a requestee Port Instance

Thereafter, both RailCabs use the RTCP ProtocolInstantiation for instantiating the ConvoyEn-
try RTCP. As a consequence, OperationStrategy needs to instantiate the peer port, which is
specified by the CSD in Figure A.66.
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OperationStrategy::createPeerPort() : Boolean b

:peer

Create Port Instance

  

     this
«create»

[failure][success]

b := true b := false

Figure A.66: CSD for Component OperationStrategy that Creates a peer Port Instance

A.6.3 Generated RTSCs for Manager and Executor of
RailCabDriveControl

This section presents examples of a manager RTSC (Section A.6.3.1) and an executor RTSC
(Section A.6.3.2) that have been derived for the component RailCabDriveControl based on the
generation templates given in Section 4.4.

A.6.3.1 Manager RTSC

Figures A.67 and A.68 show the manager RTSC of the component RailCabDriveControl that
has been derived based on the generation template shown in Figure 4.15 and the declarative,
table-based specification introduced in Section 4.3. In the following, we briefly describe
how the RTSC resulted from the template and we do not repeat the general behavior of the
RTSC. We reused the color coding of the template in order to relate generated constructs in
the manager RTSC to their corresponding template elements.

The parent region contains three transitions from Idle to Propagated that result from the
three messages that are propagated to the parent as defined in the manager specification in
Figure 4.12. These transitions send the messages distanceSensorFailure, drivingAtHighSpeed,
and drivingAtNormalSpeed to the parent component. In addition, three corresponding syn-
chronization channels syncDistanceSensorFailure, syncDrivingAtHighSpeed, and drivingAtNormal-
Speed have been created for synchronizing the parent region with the subport that initially
received this message.

The executor region contains two transitions from Idle to Request that result from the two
messages that are received by the RE port of RailCabDriveControl (cf. Figure 4.14) and prop-
agated by the executor. These are noConvoyMode and enableConvoyMode. Along with the
transitions, we generated two synchronization channels syncNoConvoyMode and syncEnable-
ConvoyMode for synchronizing the executor region and the internal behavior.

The internal behavior regions received five additional states; one for each entry of the man-
ager specification in Figure 4.12 that is treated. These states are CheckBecomeCoordinator,
CheckBecomeMember, CheckNewMember, CheckNoConvoyMode, and CheckEnableConvoyMode.
The transitions from Idle to these states are triggered by synchronizations via the correspond-
ing synchronization channels. In addition, these transitions check the structural condition, if
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any, and whether blockable reconfigurations are indeed blocked. In the example, we replaced
the checkStructuralConditionForX operations by the component SDDs that define the structural
condition. For CheckBecomeCoordinator and CheckBecomeMember, the outgoing transitions
to Plan invoke the planner and have a deadline that corresponds to the time for planning as
specified in the manager specification in Figure 4.12.

Finally, the subport contains six additional states with adjacent transitions. These states
and transitions have been created for messages that may be sent by the RM ports of em-
bedded components. In our example, we need to handle messages that are defined in the
RM port interface specifications of OperationStrategy (cf. Figure A.49) and VelocityController
(cf. Figure A.45). For the four requests becomeCoordinator, newMember, becomeMember, and
distanceSensorFailure, we additionally create an invariant and a transition back to Idle. The
invariant is derived from the expected response time of the child, the time for planning, and
by considering an additional overhead for the internal computation of the manager.

A.6.3.2 Executor RTSC

Figures A.69 and A.70 show the executor RTSC of the component RailCabDriveControl that
has been derived based on the generation template shown in Figure A.69 and the declarative,
table-based specification introduced in Section 4.3. In the following, we briefly describe
how the RTSC resulted from the template and we do not repeat the general behavior of the
RTSC. We reused the color coding of the template in order to relate generated constructs in
the manager RTSC to their corresponding template elements. In addition, we omitted parts
of the RTSCs that only consist of black states and, therefore, do not differ from the template.

The region parent contains two additional states CheckNoConvoyMode and CheckEnableCon-
voyMode that result from the two entries of the RE port interface specification in Figure 4.14.
The parent region receives the corresponding message at the incoming transitions of these
states and tries to synchronize with the events region at the transitions leading to Check-
Self. This results in two synchronization channels checkNoConvoyMode and checkEnableCon-
voyMode that are generated for the RE port interface entries. The invariants of the two states
result from the time for decision given in the RE port interface entries minus the time that
is necessary for checking the request by the manager. If the manager can no longer finish
checking the request on time after waiting for a given amount of time, then parent directly
switches to SendAbort.

The region events contains two additional transitions from Idle to Check that correspond
to the two entries of the RE port interface specification. In particular, these transitions syn-
chronize with the parent and forward the message that has been received by parent to the
manager.

The region internal behavior contains additional constructs for executing the CSDs that are
contained in the executor specification (cf. Figure 4.13). First, the transitions from Idle
to Start are extended by a guard condition that enables to distinguish between reconfigura-
tions that are executed based on single-phase execution and three-phase execution. In our
example, only becomeMember with ID 3 (cf. Figure 4.13) needs to be executed based on
three-phase execution and, thus, we only set singlePhase to false if becomeMember shall be
executed. In addition, we receive four transition from Execute to Report; one for each CSD
that is executed based on single-phase execution. Finally, we receive the hierarchical Lo-

253



A. Complete RailCab Example

Manager

Manager_Main

2

3

channel: reply[boolean], executed[boolean], executeReconf, syncDistanceSensorFailure, syncDrivingAtHighSpeed, syncDrivingAtNormalSpeed, 

syncNoConvoyMode, syncEnableConvoyMode, syncBecomeCoordinator, syncNewMember, syncBecomeMember;

parent

internal behavior

embeddedCI 4

1executor

variable: boolean request;

variable: int reconfiguration, int[] blockedReconfigurations;

variable: boolean request, boolean result;

operation: invokePlanner(int reconfiguration);

variable: boolean executor_request;

Idle

entry/ {request := false;}
AwaitReply

syncDistanceSensorFailure? / distanceSensorFailure()

{request := true;}

success parentReply[true]! /

failed parentReply[false]! /

Propagated
U [request] /

[not request] /

syncDrivingAtHighSpeed? / drivingAtHighSpeed()

syncDrivingAtNormalSpeed? / drivingAtNormalSpeed()

occupied parentReply[false]! /

noConvoyMode  syncNoConvoyMode! / {executor_request := true;}

enableConvoyMode syncEnableConvoyMode! /

{executor_request := true;}

Idle

entry/ 

{executor_request = false;}

ExecuteReconf

executeReconf? / executeReconf(reconfiguration)

Request
executeReconf? / 

confirmRequest(reconfiguration)
WaitForConfirm

reply[false]? /

declineRequest()

failed /

Finished success 

executed[true]! /

failed executed[false]! /

[executor_request] reply[false]? /
U

[not executor_request] /

[executor_request] reply[true]? /

Idle

entry/ {request := false;}

syncBecomeCoordinator? / 

{result := not isBlocked(1) && isStandalone();

reconfiguration := 1;

request := true;}

[request] reply[true]! /

[request] 

reply[false]! /

CheckBecomeCoordinator

[result == true] /

{result := invokePlanner(1);}

U

Fail

U
Success

U

[result == false] /

[not request] /

Plan
U

[not request] /

[result == false] /

Execute
executed[false]? / executed[true]? /

[result == true]

executeReconf! /

[20ms;20ms]

CheckNewMember
U

syncNewMember? / 

{result := isCoordinator();

reconfiguration := 2;

request := true;}

[result == true] /

CheckNoConvoyMode
U

syncNoConvoyMode? / {result := true; 

reconfiguration := 4; request := true;}

[result == true] /

CheckEnableConvoyMode
U

syncEnableConvoyMode? / 

{result := convoyDisabled(); 

reconfiguration := 5;

request := true;}

[result == true] /

[result == false] /

[result == false] /

[result == false] /

CheckBecomeMember
U

syncBecomeMember? / 

{result := not isBlocked(2) 

&& isStandalone();

reconfiguration := 3;

request := true;}

[result == false] /

[result == true] /

{result := 

invokePlanner(3);}
[20ms;

20ms]

5riskManager

Idle

updateRiskData / 

{blockedReconfigurations := updateRiskData.reconfIDs;}

Figure A.67: Generated RTSC of the Manager of RailCabDriveControl (Pt. 1)
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embeddedCI 4

EmbeddedCI_Main

adaptation

subport

2

1

Idle

entry/ {request := false;

propagate := false;}

AwaitReply

becomeCoordinator /

{request := true; reset: c_req;}

reply[true]? / success()

reply[false]? / failed()

ReceivedMsgBecomeCoordinator

c_req ≤ 430ms

[not request] /

variable: boolean request, boolean propagate;

clock: c_req;

Idle

DeliverMsg

[request && not propagate] /

UsyncBecomeCoordinator! /

[c_req = 430ms] / occupied()
newMember /

{request := true; reset: c_req;}
ReceivedMsgNewMember

c_req ≤ 450ms

syncNewMember! /

[c_req = 450ms] / occupied()

ReceivedMsgDistanceSensorFailure

c_req ≤ 200ms

syncDistanceSensorFailure! /
distanceSensorFailure /

{request := true; reset: c_req;}

[c_req = 200ms] / occupied()

ReceivedMsgDrivingAtHighSpeed
drivingAtHighSpeed / syncDrivingAtHighSpeed! /

ReceivedMsgDrivingAtNormalSpeed
drivingAtNormalSpeed / syncDrivingAtNormalSpeed! /

AwaitParentReply
[request && propagate] /parentReply[false]? / failed()

parentReply[true]? / success()

ReceivedMsgBecomeMember

c_req ≤ 430ms

syncBecomeMember! /

becomeMember /

{request := true; reset: c_req;}

[c_req = 430ms] / occupied()

Legend:

Generated only once and are used by all reconfiguration rules  

Generated for each reconfiguration message X that is propagated to the parent

Generated for each reconfiguration message X that is treated.

Generated additionally for each reconfiguration message X that is request from child.

Generated for each reconfiguration message X that is received from child or executor.

Generated additionally for each reconfiguration message X that invokes planning.

Generated additionally for each reconfiguration Y that may be blocked.

Figure A.68: Generated RTSC of the Manager of RailCabDriveControl (Pt. 2)
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Executor

Executor_Main

variable: boolean singlePhase, int reconfiguration, int tmpCommitTime, boolean twoPCResult;

2

1

clock: c2;

channel: checkNoConvoyMode, checkEnableConvoyMode, execute[boolean], startExecution, votingComplete[boolean], doAbort, finished, 

performReconf, finish[boolean], init2PC[int], finished2PC, localSetup, localFading, localTeardown, localFinish;

parent

events

internal behavior

embeddedCI

3

4

variable: int deadline, boolean fromParent, boolean abortedReqWaiting;

clock: c1;

operation: becomeCoordinator(), addConvoyMember(), disableConvoyMode(), enableConvoyMode();

variable: Port subPort, int tmpMsg, boolean tmpCommit, int switchToConvoyMsg := 1, int switchToStandaloneMsg := 2, 

int addConvoyMemberAtPosMsg := 3, int disableConvoyBuildUpMsg := 4, int enableConvoyBuildUpMsg := 5, 

int applyCoordinationStrategyMsg := 6, int applyMemberStrategyMsg := 7;

Idle

CheckNoConvoyMode

c2 ≤ 23ms 
noConvoyMode /

{reset: c2;}

/ abort()

CheckSelf

checkNoConvoyMode! /

execute[false]? /

SendAbort
U

[c2 ≥ 23ms] / 

CheckEnableConvoyMode

c2 ≤ 23ms 

enableConvoyMode /

{reset: c2;}
[c2 ≥ 23ms] / 

checkEnableConvoyMode! /

Idle

entry/  fromParent := {false;}

Check

c1 ≤ deadline 
checkEnableConvoyMode? /

{deadline := 15; reset: c1; fromParent := true}  

enableConvoyMode()
declineRequest

execute[false]! / failed()

TimeOut
[c1 == deadline]

execute[false]! /
confirmRequest /

failed()

declineRequest / failed()

checkNoConvoyMode? /

{deadline := 15; reset: c1; fromParent := true}  

noConvoyMode()

...

...
...

...

...

Idle

[reconfiguration == 1 || 2 || 4 || 5]

startExecution? / {singlePhase := true;}

Start
U

Wait
init2PC[reconfiguration]! /

Execute

finished2PC? /

U
[twoPCResult = false] finish[false]! /

Report
U

[singlePhase && twoPCResult 

&& reconfiguration == 1] / {becomeCoordinator()}
finish[true]! /

LocalExecuteBecomeMember

Setup
localFinish! /

WaitFading
{becomeMember

_setup();}
localFading? /

{becomeMember_fading();}

operation: becomeMember_setup(), becomeMember_fading(), becomeMember_teardown();

[not singlePhase] /

Fading

WaitTeardown

localFinish! /

Teardown
localTeardown? /

{becomeMember_teardown();}
Finish localFinish! /finished2PC? /

[reconfiguration == 3] localSetup? /

[reconfiguration == 3]

startExecution? / {singlePhase := false;}

[singlePhase && twoPCResult 

&& reconfiguration == 2] / {addConvoyMember()}

[singlePhase && twoPCResult 

&& reconfiguration == 4] / {disableConvoyMode()}

[singlePhase && twoPCResult 

&& reconfiguration == 5] / {enableConvoyMode()}

Legend:

Generated only once and are used by all reconfiguration rules  

Generated for each reconfiguration message X that is offered via RE port

Generated for each reconfiguration message Z that is offered by an embedded child

Generated for each reconfiguration rule Y that is executed by the executor

Generated additionally for each reconfiguration Y1/Z1 that is executed using single-phase execution

Generated additionally for each reconfiguration Y2/Z2 that is executed using three-phase execution

Figure A.69: Generated RTSC of the Executor of RailCabDriveControl (Pt. 1)
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embeddedCI 4variable: Port subPort, int tmpMsg, boolean tmpCommit, int switchToConvoyMsg := 1, int switchToStandaloneMsg := 2, 

int addConvoyMemberAtPosMsg := 3, int disableConvoyBuildUpMsg := 4, int enableConvoyBuildUpMsg := 5, 

int applyCoordinationStrategyMsg := 6, int applyMemberStrategyMsg := 7;

embeddedCI_Main

adaptation

subport

2

1

channel: sendRequest[Port], replyReceived, sendCommit[Port], sendAbort[Port], sendSetup[Port], sendFading[Port], sendTeardown[Port], 

reconfFinished;

variable: AffectedComponents ac, int executionTime, int minCommitTime, Port curPort;

operation: Port getNextPortInstanceForAction(AffectedComponents ac), Port allActionsPerformed(AffectedComponents ac), 

void setFinished(AffectedComponents ac, Port port), boolean allEmbeddedFinished(AffectedComponents ac);

variable: int commitTime, int timeForDecision, int timeForExecution, int timeForSetup, int timeForFading, int timeForTeardown;

clock: c2;

Idle

finished2PC! /

init2PC[1]? /

Report
U

finished2PC! /

Abort

Execute_SinglePhase

Vote

WaitForParent
votingComplete[TwoPCResult]! /

{tmpCommitTime := minCommitTime;}

[singlePhase] performReconf?/

doAbort?/

init2PC[2]? /

init2PC[4]? /

init2PC[5]? /

init2PC[3]? /

Execute_ThreePhase
[not singlePhase] 

performReconf?/finished2PC! /

PrepareBecomeCoordinator

Start

/ {ac := computeAffected

ChildrenForBecomeCoordinator(); executionTime := 50;}

U
Finished

U

operation: computeAffectedChildrenForBecomeCoordinator();

PrepareAddConvoyMember

Start

/ {ac := computeAffected

ChildrenForAddConvoyMember(); executionTime := 10;}

U
Finished

U

operation: computeAffectedChildrenForAddConvoyMember();

PrepareDisableConvoyMode

Start

/ {ac := computeAffected

ChildrenForDisableConvoyMode(); executionTime := 5;}

U
Finished

U

operation: computeAffectedChildrenForDisableConvoyMode();

PrepareEnableConvoyMode

Start

/ {ac := computeAffected

ChildrenForEnableConvoyMode(); executionTime := 5;}

U
Finished

U

operation: computeAffectedChildrenForEnableConvoyMode();

PrepareBecomeMember

Start

/ {ac := computeAffected

ChildrenForBecomeMember(); executionTime := 50;}

U
Finished

U

operation: computeAffectedChildrenForBecomeMember();

WaitForResponse

c2 ≤ timeForDecision
Idle

entry/ {commitTime := 0;} [tmpMsg == applyCoordinationStrategyMsg] sendRequest[self]? /

{timeForDecision := 5; timeForExecution := 5; reset: c2;} 

applyCoordinationStrategy()

abort /[c2 ≥ timeForDecision]

VotedAbortAwaitFinish
replyReceived! /

{subPort := self; tmpCommit := false;

tmpCommitTime := 0;}

sendAbort[self]? /

[tmpMsg == applyMemberStrategyMsg] sendRequest[self]? /

{timeForDecision := 5; timeForSetup := 0;  timeForFading := 0; 

timeForTeardown := 0; reset: c2;}   applyMemberStrategy()

[tmpMsg == enableConvoyBuildUpMsg] sendRequest[self]? /

{timeForDecision := 5; timeForExecution := 5; reset: c2;} 

enableConvoyBuildUp()

[tmpMsg == disableConvoyBuildUpMsg] sendRequest[self]? /

{timeForDecision := 5; timeForExecution := 5; reset: c2;} 

disableConvoyBuildUp()

[tmpMsg == addConvoyMemberAtPosMsg] sendRequest[self]? /

{timeForDecision := 50; timeForExecution := 100; reset: c2;} 

addConvoyMemberAtPos()

[tmpMsg == switchToStandaloneMsg] sendRequest[self]? /

{timeForDecision := 20; timeForSetup := 10;  timeForFading := 50; 

timeForTeardown := 5; reset: c2;}   switchToStandalone()

[tmpMsg == switchToConvoyMsg] sendRequest[self]? /

{timeForDecision := 20; timeForSetup := 10;  timeForFading := 50; 

timeForTeardown := 5; reset: c2;}   switchToConvoy()

...

...

Figure A.70: Generated RTSC of the Executor of RailCabDriveControl (Pt. 2)
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calExecuteBecomeMember state for the reconfiguration becomeMember that is executed based
on three-phase execution.

The adaptation region of embeddedCI contains five additional hierarchical states; one for
each entry of the executor specification (cf. Figure 4.13). In particular, we receive Prepare-
BecomeCoordinator, PrepareAddConvoyMember, PrepareBecomeMember, PrepareDisableConvoy-
Mode, and PrepareEnableConvoyMode. Each of these is connected to Idle and the correspond-
ing transition uses the ID of the reconfiguration in the executor specification as a selector
expression for Idle. Inside each of the hierarchical states, we obtain an operation that is exe-
cuted at the transition from Start to Finished that computes which children are affected by the
reconfiguration. These operations need to be defined for each of the reconfigurations. We
present the specification of computeAffectedChildrenForBecomeMember for the reconfiguration
becomeMember in Section A.6.4.2.

Finally, the subport region of embeddedCI contains seven additional transitions. These tran-
sitions enable to sent messages to children that are defined in the children’s RE port interface
specifications. In our example, the executor of RailCabDriveControl may sent messages to Op-
erationStrategy, to ConvoyCoordination, and to VelocityController. For each of the messages, we
generate a constant in embeddedCI, e.g., switchToConvoyMsg for the message switchToConvoy,
that defines an integer ID for this message. This ID is used by computeAffectedChildrenForBe-
comeMember for denoting that executing becomeMember requires sending switchToConvoy to
the VelocityController. In addition, we store the time for execution that appears in the RE port
interface specification entry of the child in corresponding variables upon firing one of the
seven transitions.

A.6.4 Specification of the Executor Operations

This section presents an implementation of the operations that are contained in the executor
RTSC. Section A.6.4.1 introduces an implementation of the AffectedComponents type. Sec-
tion A.6.4.2 presents an example for the component-specific operation computeAffectedChil-
drenForY. Finally, Section A.6.4.3 introduces story diagrams that specify the behavior of all
other operations that are used in the executor RTSC.

A.6.4.1 Structure Type AffectedComponents

Figure A.71 shows the structure type AffectedComponents. This type is used by the executor
RTSC. The function computeAffectedChildrenForY introduced in the next section instantiates
this type and creates one AffectedComponentEntry for each child that needs to perform a re-
configuration.

AffectedComponents
portInstance

1

entries

0..*
PortInstance

AffectedComponentEntry

action : boolean

reply : boolean

finished : boolean

message : int

request : boolean

voteCommit : boolean

Figure A.71: Definition of the AffectedComponents Data Type
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The AffectedComponentEntry defines an integer ID for the message that needs to be sent to
the child for triggering the required reconfiguration. In addition, it refers via portInstance to
the subport instance of the embeddedCI multi port instance of the executor that is connected to
this child. Finally, the AffectedComponentEntry contains several Boolean attributes for keeping
track of the progress of the interaction with the child.

A.6.4.2 Component-Specific Story Diagrams

The executor RTSC uses one component-specific operation computeAffectedChildrenForX for
each reconfiguration X that appears in the executor specification. Each of these operations
is implemented by a component-specific story diagram and is responsible for creating an
instance of the AffectedComponents structure type introduced in Section A.6.4.1.

Figure A.72 shows a story diagram that implements the operation computeAffectedChildren-
ForBecomeMember for the CSD becomeMember shown in Figure 3.11 on Page 51. The story
diagram consist of three story nodes and returns an instance of AffectedComponents.

The first story node simply creates the result object using the object variable ac.
The second story node is equivalent to the first story node of becomeMember except that the

component story pattern has been translated into a normal story pattern and that all binding
operators have been removed. Removing the binding operators ensures that the story pattern
does not modify the model@runtime. Matching the story pattern to the model@runtime
yields all component instances that will be matched by the component story pattern. In
particular, we match the instances of OperationStrategy and VelocityController that trigger a
child reconfiguration.

The third story node creates the AffectedComponentEntry objects for the two child invoca-
tions. In particular, we create e1 for OperationStrategy and e2 for VelocityController. For each
entry, we need to add the ID of the message that needs to be sent to this particular child. For
OperationStrategy, we need to send the message applyMemberStrategy, which has received ID
7 in the executor RTSC (cf. Figure A.70). Thus, we assign 7 to the attribute message. For
e2, we obtain ID 1 because switchToConvoy has ID 1 in the executor RTSC. Starting from ob-
ject variable os, which has been matched to the ComponentInstance of OperationStrategy in the
second story node, we match the REPortInstance of this ComponentInstance. Then, we traverse
the ConnectorInstance to the REPortInstance re1 that belongs to the executor. Finally, we add
this REPortInstance to the AffectedComponentEntry e1. For vc, we proceed in the same way.

Since the second story node of becomeMember does not contain further invocations of
child reconfigurations, we do not need to evaluate this story node. Thus, we may terminate
computeAffectedChildrenForBecomeMember after the third story node and assign ac to the output
parameter resultAC at the final node.

A.6.4.3 Component-Independent Story Diagrams

The executor RTSC uses ten operations whose behavior we specify using story diagrams.
The story diagrams operate on the AffectedComponents structure and are the same for any
executor RTSC independent of the component. We introduce all story diagrams briefly in the
following.

Figure A.73 shows the story diagram getNextPortInstanceForRequest that returns a subport
instance of embeddedCI that has not yet sent its message to the child. Based on the input
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StructuredComponentInstance::

computeAffectedChildrenForBecomeMember() : 

AffectedComponents resultAC

«create»

resultAC := ac

Create Result Object

ac : AffectedComponents

Match first component story node

◄ 

componentType
rcdc : StructuredComponent this cic : ComponentInstanceConfiguration► 

embeddedCIC

vc : ComponentInstance

pi1 : PortInstance

pi2 : PortInstance

name == „speedProvider“

p1 : Port

name == „maxSpeed“

p2 : Port

con : ConnectorInstance

     embedded

▼ Component

       Instances

dl : ComponentInstance

name == „drive“

drive : ComponentPart

name == „DriveLogic“

driveC : Component

▼ componentType

▼  componentPart

▼  componentType

os : ComponentInstance

name == „strategy“

strategy : ComponentPart

name == „OperationStrategy“

strategyC : Component

▼  componentPart

▼ componentType

▼  componentType

► 

ports

► 

portInstances

portType ▼

► 

ports

► 

portInstances

portType ▼

connector

Endpoint   ▲ 

Instances

connector

Endpoint   ▲ 

Instances

◄ 

embeddedComponentInstances

◄ 

embeddedComponentInstances

► 

embedded

Component

Parts

embedded

Component  ▼

Parts

Create AffectedComponentEntries

ac

▼  entries

«create» «create»

entries  ▼

re1 : REPortInstance

message := 7

e1 : AffectedComponentEntry

«create»

message := 1

e2 : AffectedComponentEntry

«create»

▼  portInstance

re2 : REPortInstance

▼  portInstance

con1 : ConnectorInstance con2 : ConnectorInstance

cic

re3 : REPortInstanceos vcre4 : REPortInstance

connectorEndpointInstances  ▲ ▲  connectorEndpointInstances

connectorEndpointInstances  ▲ ▲  connectorEndpointInstances

► 

portInstances

◄ 

portInstances

«create» «create»

portConnector ▲

Instances

▲ portConnector

Instances

Figure A.72: Story Diagram Implementing the Operation computeAffectedChildrenForBe-
comeMember
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parameter ac, it matches an AffectedComponentEntry where request is false. Then, it sets request
to true and returns the portInstance that belongs to entry.

entry : AffectedComponentEntry

request = false

request := true

pi : PortInstance

ac

portInstance

►

▼  entries

search next unhandled port instance

[success]

getNextPortInstanceForRequest

(AffectedComponents ac) : PortInstance portInst

portInst := pi

portInst := null

[failure]

Figure A.73: Story Diagram Specifying the Behavior of getNextPortInstanceForRequest

Figure A.74 shows the story diagram getMessage that returns the message that needs to be
sent to a child for triggering the required reconfiguration. Therefore, it matches the Affected-
ComponentEntry that belongs to portInst and returns the ID of the message that is stored in the
entry.

entry : AffectedComponentEntry portInst

ac

portInstance

►

▼  entries

retrieve entry for portInst and return message

getMessage(AffectedComponents ac, 

PortInstance portInst) : int msgID;

msgID := entry.message

Figure A.74: Story Diagram Specifying the Behavior of getMessage

Figure A.75 shows the story diagram setReply that stores the voting result of a child in
the corresponding AffectedComponentEntry. Therefore, the inputs are the AffectedComponents
structure, the portInst that has provided its voting result, and the vote itself. Then, the story
diagram simply matches the AffectedComponentEntry that belongs to portInst and assigns the
vote to voteCommit. In addition, it sets reply to true to indicate that the voting result of the
corresponding child has been received.

Figure A.76 shows the story diagram allRepliesReceived that checks whether all affected
children have submitted their result of the voting phase. Therefore, the story diagram matches
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entry : AffectedComponentEntry

reply := true portInst

ac

portInstance

►

▼  entries

mark reply as received and store decision

setReply(AffectedComponents ac, 

PortInstance portInst, boolean vote)

voteCommit := vote

Figure A.75: Story Diagram Specifying the Behavior of setReply

an AffectedComponentEntry where reply is still false. If the matching succeeds, then it returns
false because there still exists at least one child that has not yet submitted the voting result.
Otherwise, it returns true.

entry : AffectedComponentEntry

reply = false

ac

▼  entries

search port instance without reply

[success]

allRepliesReceived

(AffectedComponents ac) : boolean result

result := false

result := true

[failure]

Figure A.76: Story Diagram Specifying the Behavior of allRepliesReceived

Figure A.77 shows the story diagram canCommit that decides whether the executor can
commit the reconfiguration. Therefore, the story diagram matches an AffectedComponentEntry
where voteCommit is false. If the matching succeeds, then at least one child aborted the
reconfiguration. Then, the story diagram returns false to indicate that the reconfiguration
cannot be committed. Otherwise, the story diagram returns true and the reconfiguration will
be executed.

Figure A.78 shows the story diagram getNextPortInstanceForAction that returns a subport
instance of embeddedCI that has not yet sent its execute or abort message to the child. Based
on the input parameter ac, it matches an AffectedComponentEntry where action is false. Then,
it sets action to true and returns the portInstance that belongs to entry.

Figure A.79 shows the story diagram allActionsPerformed that checks whether all affected
children have received their execute or abort message. Therefore, the story diagram matches
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entry : AffectedComponentEntry

voteCommit = false

ac

▼  entries

search port instance without commit

[success]

canCommit(AffectedComponents ac) : 

boolean result

result := false

result := true

[failure]

Figure A.77: Story Diagram Specifying the Behavior of canCommit

entry : AffectedComponentEntry

action = false

action := true

pi : PortInstance

ac

portInstance

►

▼  entries

search next unhandled port instance

[success]

getNextPortInstanceForAction

(AffectedComponents ac) : PortInstance portInst

portInst := pi

portInst := null

[failure]

Figure A.78: Story Diagram Specifying the Behavior of getNextPortInstanceForAction
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an AffectedComponentEntry where action is still false. If the matching succeeds, then it re-
turns false because there still exists at least one child that has not yet received its message.
Otherwise, it returns true.

entry : AffectedComponentEntry

action = false

ac

▼  entries

search port instance without action

[success]

allActionsPerformed

(AffectedComponents ac) : boolean result

result := false

result := true

[failure]

Figure A.79: Story Diagram Specifying the Behavior of allActionsPerformed

Figure A.80 shows the story diagram setFinished that marks that a child has finished its re-
configuration. Therefore, the story diagram matches the AffectedComponentEntry that belongs
to the corresponding subport instance of embeddedCI. Then, it sets finished to true.

entry : AffectedComponentEntry

finished := true
portInst

ac

portInstance

►

▼  entries

mark entry as finished

setFinished(AffectedComponents ac, 

PortInstance portInst)

Figure A.80: Story Diagram Specifying the Behavior of setFinished

Figure A.81 shows the story diagram allEmbeddedFinished that checks whether all children
have finished their reconfigurations. Therefore, the story diagram matches an AffectedCom-
ponentEntry where finished is still false. If the matching succeeds, then there exists at least
one child that has not yet finished its reconfiguration. Then, the story diagram returns false.
Otherwise, it returns true.

Figure A.82 shows the story diagram resetActionPerformed that resets the values of action
and finished back to false for all AffectedComponentEntries. This function enables to reuse
the attributes action and finished for all phases while executing a reconfiguration based on
three-phase execution.
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entry : AffectedComponentEntry

finished = false

ac

▼  entries

search port instance not finished

[success]

allEmbeddedFinished

(AffectedComponents ac) : boolean result

result := false

result := true

[failure]

Figure A.81: Story Diagram Specifying the Behavior of allEmbeddedFinished

reset action and finished to false

[end]

resetActionPerformed

(AffectedComponents ac)

entry : AffectedComponentEntry

action := false

finished := false

ac

▼  entries

Figure A.82: Story Diagram Specifying the Behavior of resetActionPerformed
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A.7 Component SDDs

This section presents the component SDDs that we use in our RailCab model for express-
ing component properties based on the current software architecture of the RailCab and for
defining invariants. We introduce the component SDDs component-wise starting with Rail-
CabDriveControl in Section A.7.1. Thereafter, we describe the component SDDs of ConvoyCo-
ordination (Section A.7.2), VelocityController (Section A.7.3), OperationStrategy (Section A.7.4),
and RefGen (Section A.7.5).

A.7.1 RailCabDriveControl

We already introduced three component SDDs for the component RailCabDriveControl, namely
isCoordinator, isStandalone, and convoyOrder, in Section 3.5. We do not repeat these component
SDDs in this section.

Figure A.83 shows the component SDD isMember. The component SDD formalizes the
component property that defines that a RailCab operates as a member of a convoy. There-
fore, the component story pattern in the first pattern node simply matches an instance of
MemberControl. If this instance can be matched, the component SDD is fulfilled, otherwise it
is not fulfilled.

RailCabDriveControl::isMember

$ mc

 this

  

  mc / member : 

      MemberControl

then else

01

Figure A.83: Component SDD isMember for Component RailCabDriveControl that Specifies
that an Instance of the Component Operates as a Convoy Member

Figure A.84 shows the component SDD convoyDisabled. This component SDD formalizes
the property that the instance of RailCabDriveControl will not engage in convoys. Therefore,
the component story pattern in the first story node matches an instance of OperationStrategy
including the broadcast port instances of RailCabaDriveControl and os. If os including the
broadcast port instances and the delegation connector instance could be matched, then the
component SDD is not fulfilled. In this case, the instance of RailCabDriveControl may still en-
gage in convoys via the broadcast port instance. Otherwise, the component SDD is fulfilled.

Figure A.85 shows the invariant component SDD validConvoyState. This component SDD
specifies that a RailCab may not be coordinator and member of a convoy at the same time for
being in a valid convoy state. The component story pattern expresses this fact by matching
instances of both, MemberControl and ConvoyCoordination with the attached PositionSensor. If
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RailCabDriveControl::convoyDisabled

$ os

 this

  

  os / strategy : 

      OperationStrategy

then else

0 1

B

:protocolInst

B

:protocolInst

Figure A.84: Component SDD convoyDisabled for Component RailCabDriveControl that Speci-
fies that an Instance of the Component will not Engage in Convoys

both instances may be matched for an instance of RailCabDriveControl, then the invariant is
violated, otherwise it is fulfilled.

A.7.2 ConvoyCoordination

Figure A.86 shows the invariant component SDD convoyOrder of ConvoyCoordination. This
component SDD defines an invariant that ensures that the subport instances of the refDist-
Provider and the RefGen instances have the same order.

The first pattern node matches the first subport instance of refDistProvider and the first Re-
fGen instance in the sequence of RefGen instances. The first RefGen instance needs to have
an instance of the curPos port that needs to be delegated to the curPos instance of ConvoyCo-
ordination. We require that any instance of ConvoyCoordination contains at least one instance
of RefGen. Therefore, the component SDD is not fulfilled if the first pattern node cannot be
matched.

The second pattern node is a universal pattern node that matches all pairs of subsequent
subport instances of refDistProvider. These are used in the third pattern node for checking the
correct order of the RefGen instances. Therefore, the third pattern node matches two instances
of RefGen using the variables rg1 and rg2. If rdp2 is delegated to rg1 and rdp3 is delegated to
rg2, then rg1 and rg2 need to be connected by an assembly connector instance. The assembly
connector instance needs to connect the next port instance of rg1 to the prev port instance of
rg2. If the third pattern node may be matched for any pair of subsequent subport instances of
refDistProvider, then the invariant holds, otherwise it is violated.

A.7.3 VelocityController

We use three component SDDs for the component VelocityController in our example. We
introduce these in the following.

Figure A.87 shows the component SDD inStandaloneCtrl that formalizes the component
property that the VelocityController executes the feedback controller for driving alone or as a
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$ cc, ps, mc

then

0

«invariant»

RailCabDriveControl::validConvoyState

 this

  

  cc / convoy : 

      ConvoyCoordination

:curPos

  

  ps / pos : PositionSensor

:position

  

  mc / member : 

      MemberControl

1

else

Figure A.85: Invariant Component SDD validConvoyState for Component RailCabDriveControl
that Defines that a RailCab may not be Coordinator and Member at the Same
Time

coordinator. Therefore, the first story node matches an instance of the StandaloneDrive com-
ponent that contains the corresponding feedback controller. In addition, the component story
pattern of the first story node matches an instance of the fading component of type Convoy-
Fading. Finally, it checks whether the instance of StandaloneDrive is connected to the fading
component instance by an assembly connector instance such that the output of sd is forwarded
by the fading component. If the component story pattern can be matched successfully, the
component SDD is fulfilled.

Figure A.88 shows the component SDD inConvoyCtrl that formalizes the component prop-
erty that the VelocityController executes the feedback controller for driving as a member. There-
fore, the first story node matches an instance of the ConvoyDrive component that contains the
corresponding feedback controller. In addition, the component story pattern in the first story
node matches an instance of the fading component of type ConvoyFading. Finally, it checks
whether the instance of ConvoyDrive is connected to the fading component instance by an as-
sembly connector instance such that the output of cd is forwarded by the fading component.
If the component story pattern can be matched successfully, the component SDD is fulfilled.

Figure A.89 shows the invariant component SDD validCtrl. This component SDD consists
of three pattern nodes. The first pattern node is identical to the pattern node of inConvoyCtrl.
Thus, it denotes that the VelocityController executes the feedback controller for driving as a
member. If this pattern node can be matched successfully, the second pattern node at the
lower left denotes that additionally an instance of StandaloneDrive is instantiated and con-
nected to f. This situation may only occur while performing a reconfiguration but it may not
occur before and after a reconfiguration. Therefore, we consider the invariant as violated if
the second story can be matched as well. Otherwise, the invariant component SDD holds.
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 this

«invariant»

ConvoyCoordination::convoyOrder

  

   / refGen : RefGen

:curPos:curPos

:refDistProvider

rdp1:refDistProvider
«first»

 this

$ rdp1

then else

0

then else

01

" rdp2, rdp3

 this

rdp2:refDistProvider

«next»

rdp3:refDistProvider

$ rg1, rg2

  

   rg1 / refGen : RefGen

:prev

:nextrdp2

:refPosProvider

  

   rg2 / refGen : RefGen

rdp3
:refPosProvider

then

Figure A.86: Invariant Component SDD convoyOrder for Component ConvoyCoordination for
Specifying a Correct Order of the RefGen Instances
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$ sd, f

then else

01

VelocityController::inStandaloneCtrl

+ -

 this

  

  sd / standalone_ctrl :

       StandaloneDrive

:refSpeed

:curSpeed

:force:refSpeed

:curSpeed

  

  f / fade :

   ConvoyFading:standalone

Figure A.87: Component SDD inStandaloneCtrl for Component VelocityController for Specify-
ing that an Instance of the Component Executes the StandaloneDrive Controller

$ cd, f

then else

01

VelocityController::inConvoyCtrl

+ -

 this

:curDist

  

  cd / convoy_ctrl :

       ConvoyDrive

:refSpeed

:curSpeed

:refDist

:force

:curDist

:refSpeed

:curSpeed

:refDist

  

  f / fade :

   ConvoyFading:convoy

Figure A.88: Component SDD inConvoyCtrl for Component VelocityController for Specifying
that an Instance of the Component Executes the ConvoyDrive Controller
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$ cd, f

then else

«invariant»

VelocityController::validCtrl

+ -

 this

:curDist

  

  cd / convoy_ctrl :

       ConvoyDrive

:refSpeed

:curSpeed

:refDist

:force

:curDist

:refSpeed

:curSpeed

:refDist

  

  f / fade :

   ConvoyFading:convoy

$ sd

then else

0 1

+ -

 this

  

  sd / standalone_ctrl :

       StandaloneDrive

:refSpeed

:curSpeed

:force:refSpeed

:curSpeed

  

     f 
:standalone

$ sd, f

then else

01

+ -

 this

  

  sd / standalone_ctrl :

       StandaloneDrive

:refSpeed

:curSpeed

:force:refSpeed

:curSpeed

  

  f / fade :

   ConvoyFading:standalone

Figure A.89: Invariant Component SDD validCtrl for Component VelocityController for Speci-
fying that an Instance of the Component does not Execute both Controllers at
the Same Time
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If the first pattern node cannot be matched, the third pattern node at the lower right is
matched. It is identical to the pattern node of inStandaloneCtrl. If this pattern node cannot be
matched, then the instance of VelocityController does not execute any feedback controller. This
situation shall never occur and, thus, we consider the invariant component SDD as violated
if the third pattern node cannot be matched. Otherwise, the invariant component SDD holds.

A.7.4 OperationStrategy

We use two component SDDs for the component OperationStrategy in our example that are
used by the peer region of the component RTSC in Figure A.34. We introduce these in the
following.

Figure A.90 shows the component SDD inCoordinatorMode that formalizes the component
property that the instance of OperationStrategy is executed in a coordinator RailCab. In a co-
ordinator RailCab, the instance of OperationStrategy needs to have instances of speedProvider
and strategySender as shown in Figure A.27. Thus, the component story pattern in the pattern
node matches these two port instances and the component SDD is fulfilled if the matching
succeeds.

$ • 

then else

01

OperationStrategy::inCoordinatorMode

   this

:strategySender

:speedProvider

Figure A.90: Component SDD inCoordinatorMode for Component OperationStrategy for Spec-
ifying that an Instance of the Component Operates in a Coordinator RailCab

Figure A.91 shows the component SDD inMemberMode that formalizes the component
property that the instance of OperationStrategy is executed in a member RailCab. In a member
RailCab, the instance of OperationStrategy may not have an instance of speedProvider as shown
in Figure A.31 because the reference speed is solely defined by the coordinator of the convoy.
Thus, the component SDD matches this port instance and the component SDD is fulfilled if
the matching fails.

A.7.5 RefGen

We use two component SDDs for the component RefGen in our example that are used by the
component RTSC shown in Figure A.38. We introduce these in the following.

Figure A.92 shows the component SDD isFirst that formalizes the component property that
the instance of RefGen is the first one in the sequence of RefGen instances. Since the first
instance of RefGen has an instance of curPos as shown in Figure 3.10, the component story
pattern matches this port instance. The component SDD is fulfilled, if the matching succeeds.
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$ • 

then else

0 1

OperationStrategy::inMemberMode

   this

:speedProvider

Figure A.91: Component SDD inMemberMode for Component OperationStrategy for Specify-
ing that an Instance of the Component Operates in a Member RailCab

$ • 

then else

01

RefGen::isFirst

   this
:curPos

Figure A.92: Component SDD isFirst for Component RefGen for Specifying that an Instance
of the Component is the First One in the Sequence of RefGen Instances
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Figure A.92 shows the component SDD isLast that formalizes the component property that
the instance of RefGen is the last one in the sequence of RefGen instances. Since the last
instance of RefGen has no instance of the next port as shown in Figure 3.10, the component
story pattern matches this port instance. The component SDD is fulfilled, if the matching
fails.

$ • 

then else

0 1

RefGen::isLast

   this

:next

Figure A.93: Component SDD isLast for Component RefGen for Specifying that an Instance
of the Component is the Last One in the Sequence of RefGen Instances

A.8 Excerpt of Generated MATLAB/Simulink Model

This section introduces examples of MATLAB/Simulink models that have been created based
on our generation templates given in Sections 6.3 and 6.5.6. In Section A.8.1, we illus-
trate the result of translating an instance of the atomic component RefGen to Simulink. In
Section A.8.2, we show the result of translating an instance of ConvoyCoordination (cf. Fig-
ure 3.10) to Simulink including the integration of the MATLAB-specific reconfiguration con-
troller.

A.8.1 Simulink Model for Atomic Component Instance of Type RefGen

Figure A.94 shows the subsystem that has been generated for the discrete atomic component
instance rg1 of type RefGen shown in Figure 3.10 on Page 49 using the generation template
shown in Figure 6.6. The resulting subsystem has the same name as the component instance.
The hybrid port instance curPos has been translated to an inport curPos of the subsystem rg1.
The two discrete port instances refDistProvider and profileReceiver have been translated to port
structures consisting of three inports and one outport.

Figure A.95 shows the internal structure of the subsystem rg1 in Figure A.94. The internal
structure has been generated based on the generation template shown in Figure 6.7.

The resulting block diagram contains the chart block RefGen_Statechart and two link layer
subsystems; one for refDistProvider and one for profileReceiver. The link layer subsystems are
connected to the chart block using four signals that are used for transmitting the message
buffers for received and sent messages from the link layer to the chart block and back again.
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profileReceiver port instance

rg1

profileReceiver_send

profileReceiver_recv

profileReceiver_net_addr

profileReceiver_recv_net_addr

refDistProvider port instance

refDistProvider_send

refDistProvider_recv

refDistProvider_net_addr

refDistProvider_recv_net_addr

curPos

Figure A.94: Subsystem corresponding to Component Instance rg1 of Type RefGen

A.8.2 Simulink Model for Structured Component Instance of Type
ConvoyCoordination

Figure A.96 shows the subsystem that has been generated for the structured component in-
stance cc of type ConvoyCoordination shown in Figure 3.10 on Page 49 using the generation
template shown in Figure 6.6. Again, the hybrid port instance curPos has been directly trans-
lated to an inport of the subsystem in Simulink. In addition, we obtain four port structures
corresponding to the four discrete port instances c1, r1, receiver, and speedProvider of cc.

Figure A.97 shows the internal structure of the subsystem cc that results from translating
the embedded CIC of the structured component instance cc. As a result of the first step
of the translation, we obtain embedded subsystems cm and rg1 in Figure A.97 for the two
eponymous embedded component instances. These subsystems have been created based on
the template shown in Figure 6.6. Their internals are created by recursively applying the rule
for translating atomic and structured component instances.

In Step 2 of our translation, we translate all connector instances between continuous and
hybrid port instance by applying the generation template shown in Figure 6.12. As a result,
we connect the inport curPos to the inport curPos of the embedded subsystem rg1 using a
MultiSourceControl block.

In Step 3 of our translation, we translate all connector instances between discrete port
instances. In particular, we translate all assembly connector instances according to the gen-
eration template shown in Figure 6.14 and all delegation connector instances according to
the generation template shown in Figure 6.15. As a result, we obtain the communication
switch shown in the middle of Figure A.96. In addition, all of the discrete port instances of
the embedded component instances are connected to the bus creator and bus selector blocks
that belong to the communication switch. Although all of these lines transport messages and
are, thus, bus signals, we visualize them as normal lines for reducing the visual complexity
of the figure at least a little bit. Finally, we obtain four delegation switch subsystems; one for
each of the four discrete port instances of cc. These are connected, on the one hand, to the in-
ports and the outport of the corresponding port structures. On the other hand, the delegation
switches are connected to the communication switch.

The assembly and delegation connectors are defined by the addresses of the port struc-
tures. As an example, consider the assembly between p1 of cm and profileReceiver of rg1 in
Figure 3.10. The port structure for p1 has net_addr 4 in Figure A.97, while the port structure
for profileReceiver has net_addr 6. Then we set the recv_net_addr of the port structure for p1 to
6 and the recv_net_addr of the port structure for profileReceiver to 4 for realizing the assembly
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Link Layer r1

clockSignal

refDistProvider_ReadIn

refDistProvider_ParamReadIn

refDistProvider_WriteIn

refDistProvider_ParamWriteIn...

refDistProvider_ReadOut

refDistProvider_ParamReadOut

refDistProvider_WriteOut

refDistProvider_ParamWriteOut...

RefGen_Statechart

read_event_queue_in

read_event_param_queue_in

read_event_queue_out

read_event_param_queue_out

write_event_queue_in

write_event_param_queue_in

write_event_queue_out

write_event_param_queue_out

refDistProvider

_send

refDistProvider

_recv
refDistProvider

_net_addr
refDistProvider

_recv_net_addr

port_in

net_address

receiver_net_address

port_out

3

4

2 1

12:34

Link Layer profileReceiver

profileReceiver_sendprofileReceiver

_recv
profileReceiver

_net_addr
profileReceiver_

recv_net_addr

port_in

net_address

receiver_net_address

port_out

6

7

5 2

...

...

curPos
curPos

1

curPos_

ZeroOrderHold

Enable

Figure A.95: Subsystem Corresponding to the Internal Structure of Atomic Component In-
stance rg1 of Type RefGen
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r1 subport instance

cc

r1_send

r1_recv

r1_net_addr

r1_recv_net_addr

c1 subport instance

c1_send

c1_recv

c1_net_addr

c1_recv_net_addr

curPos

speedProvider port instance

speedProvider_send

speedProvider_recv

speedProvider_net_addr

speedProvider_recv_net_addr

strategy port instance

strategy_send

strategy_recv

strategy_net_addr

strategy_recv_net_addr

Figure A.96: Subsystem corresponding to Component Instance cc of Type ConvoyCoordination

connector instance in Simulink. Then, the communication switch ensures that all messages
sent by either of the port structures arrives at the other port structure. Delegation connector
instances are defined in the same way by using the local_net_addr of the delegation switch
and the net_addr of the receiving port structure of the embbedded subsystem. As an exam-
ple, consider the delegation from r1 of cc to refDistProvider of rg1. Then, the net_addr of the
refDistProvider port structure, which is 5 in Figure A.97, is used as local_recv_net_addr of the
delegation switch r1_DelegationSwitch and vice versa.

In Figure A.97, the assembly and delegation connectors have been encoded in a fixed,
immutable way by using constant blocks for the recv_net_addrs. In order to obtain a re-
configurable subsystem, we need to apply Steps 1 to 5 of our translation as described in
Section 6.5 and we need to integrate the MATLAB-specific reconfiguration controller into
the Simulink model. Figure A.98 shows the Simulink model that results from adding the
MATLAB-specific reconfiguration controller to the Simulink model shown in Figure A.97
using the generation template shown in Figure 6.31. For reducing the size of the figure, we
omitted the communication switch including all connections from it and to it in the figure.
In addition, we restrict ourselves to translating config1 contained in Figure 6.23 including the
control signals as described in Section 6.5.4.

The subsystem Reconfiguration Controller in Figure A.98 contains the MATLAB-specific
reconfiguration controller. The subsystem has inports and outports that correspond to the
reconfMsg, reconfExec, and embeddedCI port instances of the reconfiguration controller (cf.
Figure 6.24). We directly connect the embeddedCI inports and outports of the reconfigura-
tion controller to their counterparts in cm and rg1. We use a direct connection in this case
because these assembly connector instances are immutable, i.e., as long as cm is executed,
the connection to the reconfiguration controller is active as well.

Furthermore, we obtain one outport at the reconfiguration controller for each control sig-
nal. The control signals cm and rg1 are connected to the enable ports of the subsystems cm and
rg1. By setting a 0 to the control signal, we stop simulating them and emulate their destruc-
tion. By setting a 1 to the control signal, we start simulating them and emulate their creation.
The control signals c1, rg1, receiver, and speedProvider, which correspond to the port instances
of ConvoyCoordination, are connected to the local_recv_net_addr inports of the corresponding
delegation switches. These control signals define the net_addr of the receiving port structure
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Figure A.97: Subsystem corresponding to the Embedded CIC of the Structured Component
Instance cc of Type ConvoyCoordination
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Figure A.98: Subsystem of Figure A.97 Including the Generated MATLAB-specific Recon-
figuration Controller
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A. Complete RailCab Example

for realizing the delegation connector instances. By changing the local_recv_net_addr via the
control signal, we enable that the port instance is delegated to a different port instance of
an embedded component instance. The control signal rg1.curPos is connected to the Multi-
SourceControl block of the curPos inport of rg1. By setting a 0 to the control signal, we stop
delegating the inport curPos of cc to rg1. By setting a 1 to the control signal, we enable
the delegation again. Finally, the control signals cm.c1, cm.p1, cm.strategy, cm.speedProvider,
rg1.refDistProvider, and rg1.profileReceiver are connected to the recv_net_addr inports of the cor-
responding port structures of the subsystems cm and rg1. They define the net_addr of the
receiving port structure. By changing the recv_net_addr, we can redirect assembly connector
instances.

Figure A.99 shows the internal structure of the ReconfigurationController subsystem shown
in Figure A.97. It has three embedded subsystems Manager, Executor, and ConfigurationStore
that correspond to the three elements of the MATLAB-specific reconfiguration controller
shown in Figure 6.24.

The Manager subsystem implements the manager of the MATLAB-specific reconfigura-
tion controller. Therefore, we connect the inports manager_recv, man_embeddedCI1_recv, and
man_embeddedCI2_recv as well as the outports manager_send, man_embeddedCI1_send, and
man_embeddedCI2_send to this subsystem. The Executor subsystem implements the execu-
tor of the MATLAB-specific reconfiguration controller. Therefore, we connect the inports
executor_recv, exec_embeddedCI1_recv, and exec_embeddedCI2_recv as well as the outports ex-
ecutor_send, exec_embeddedCI1_send, and exec_embeddedCI2_send to this subsystem. Finally,
the Configuration Store subsystem implements the configuration store of the MATLAB-specific
reconfiguration controller. Therefore, we connect all outports that correspond to control sig-
nals to the Configuration Store subsystem.

The internal connections resemble the three assemblies that are used by the MATLAB-
specific reconfiguration controller. We use direct connections instead of a communication
switch in this case because all three assemblies are immutable in MECHATRONICUML.
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Figure A.99: Internal Structure of the ReconfigurationController Subsystem Generated for
Component Instance cc of Type ConvoyCoordination
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Appendix B

Formalization of the Real-time Statechart
Semantics

This chapter introduces a formalization of the RTSC semantics that is used by our test
automata-based refinement check in Chapter 5. The formal semantics of RTSCs is imple-
mented by the reachability analysis for RTSCs described in Chapter C.

We formalize RTSCs based on networks of flat timed automata (cf. Section 2.2.1) that
are formally defined by Bengtsson and Yi [BY04]. It is sufficient to consider networks of
flat timed automata because all other features of hierarchical RTSCs can be mapped to this
formalism. Hierarchical states may be flattened to a network of timed automata [DMY02,
DMY03, Ger13]. Asynchronous communication using buffers may be mapped to additional
timed automata representing the connector and buffer using shared integer variables for stor-
ing messages [KMR02, Ger13]. Deadlines as well as entry and exit actions may be resolved
by intermediate states and transitions [GB03, DMY03]. Urgent transitions may be mapped
to urgent channels using an additional automaton [DMY03].

Networks of timed automata as defined by Bengtsson and Yi, however, do not support time
guards for urgent transitions. In addition, urgent transitions do not have precedence over non-
urgent transitions in their approach. These two features are essential for the correctness of
our test automaton construction in Section 5.3.2. Consequently, we need to provide a new
definition of networks of timed automata that was informally introduced by Brenner [Bre10].

We start by defining the syntax of NTAs. First, we define clock constraints that are used
as invariants and time guards.

Definition B.1 (Clock Constraint)
Let C be a set of real-valued clocks and V be a set of integer variables. A clock constraint
ϕ is a conjunctive formula of atomic clock constraints of the form c1 ∼ x or c1 − c2 ∼ x for
c1, c2 ∈ C, ∼∈ {<,≤,=,≥, >} and x ∈ N ∪ V . We use B(C) to denote the set of clock
constraints. [BY04]

Next, we define a simple expression language on integers which is the basis for defining
variable updates and integer constraints that can be used as transition guards.

Definition B.2 (Integer Expression) Let V be a set of integer variables. We defineExp(V )
the set of integer expressions over V . Each exp ∈ Exp(V ) is recursively defined by the
rules:

exp := x|v|(exp)|exp ∼ exp

for x ∈ Z, v ∈ V , and ∼∈ {+,−, ∗, /}. (cf. [HR04, p. 260])
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B. Formalization of the Real-time Statechart Semantics

Definition B.3 (Integer Variable Constraint)
Let V be a set of integer variables. An integer variable constraint ψ is a conjunctive for-
mula of atomic integer variable constraints of the form v ∼ exp for v ∈ V , ∼∈ {<,≤
,=,≥, >} and exp ∈ Exp(V ). We use V(V ) to denote the set of integer variable con-
straints. [BGK+96]

Using the above definitions, we can now define a single timed automaton with urgent
transitions that may be used in a network of timed automata.

Definition B.4 (Timed Automaton with Urgent Transitions)
A timed automaton with urgent transitions is a tuple A = (L, l0, C, V,Σ, E, U, I) where

• L is a finite set of locations

• l0 ∈ L is the initial location

• C = CL ∪CG is a finite set of clocks where CL is a set of local clocks and CG is a set
of global clocks

• V = VL ∪ VS is a set of integer variables where VL is a set of local variables and VS
is a set of shared variables

• Σ = (Ch × {?, !}) ∪ {τ} is a finite set of events where Ch is a set of channels and τ
is the empty event

• E ⊆ L×B(C)×V(V )×Σ× 2C ×U ×L is the set of transitions where ϕ ∈ B(C) is
the time guard, ψ ∈ V(V ) is the transition guard, λ ∈ 2C are the clock resets, U with
(v, exp) ∈ U , v ∈ V , exp ∈ Exp(V ) is a set of assignments

• U ⊆ E is the set of urgent transitions

• I : L→ B(C) assigns clock constraints to locations, the invariants.

We shall write l
ϕ,ψ,σ,λ,u−−−−−−→ l′ when (l, ϕ, ψ, σ, λ, u, l′) ∈ E. (cf. [BY04, BGK+96])

Next, we may define networks of timed automata with urgent transitions which concludes
the definition of the syntax of NTAs.

Definition B.5 (Network of Timed Automata with Urgent Transitions)
A network of timed automata with urgent transitions is a tuple NTA = (A, Ch,CG, VS)
where

• A is a set of n timed automata with urgent transitions A1, . . . , An with n ∈ N and
n ≥ 1

• Ch is a set of channels

• CG is a set of global clocks

• VS is a set of shared integer variables

For all Ai, Aj ∈ NTA with i, j ∈ {1, . . . , n}, i 6= j: Li ∩ Lj = ∅, Ci ∩ Cj = CG,
Vi ∩ Vj = VS and Σi = Σj = Σ. (cf. [BY04])

284



All timed automata in the NTA share the same set of channels and, thus, the same set of
events Σ. In addition, the NTA defines global clocks and shared integer variables that may be
used by each automaton in the network. Moreover, we do not allow time guards at transitions
using an urgent channel [BY04].

We continue with a definition of the operational semantics of an NTA. The semantics of
an NTA is defined by a timed transition system [Alu99]. Since clocks of timed automata are
real-valued, the timed transition system contains infinitely many states [BY04]. Therefore,
we use the symbolic semantics based on clock zones that provides a finite timed transition
system [Alu99, BY04]. We call that timed transition system the zone graph of the NTA.

The formalization of zone graphs requires a formalization of clock zones and federations
which store the possible values of clocks. "A [clock] zone is the solution set of a clock
constraint, that is the maximal set of clock assignments satisfying the constraint" [BY04].

Definition B.6 (Clock Zone, Federation) Let C be a set of clocks and Φ ∈ 2B(C). A clock
zone z is a set of clock interpretations described by conjunction of clock constraints each
of which puts a lower or upper bound on a clock or on the difference of two clocks, i.e.,
z =

∧
ϕ∈Φ ϕ. IfC has k clocks, then z represents a convex set in the k-dimensional Euclidean

space [Alu99]. A federation h is a disjunction of a set χ of convex clock zones, i.e., h =∨
z∈χ z [DHLP06].

In addition, we need integer variable value assignments to keep track of the values of
integer variables in the NTA.

Definition B.7 (Integer Variable Value Assignment, Evaluation) Let V be a set of integer
variables. An integer variable value assignment ν : V → Z is an injective function that
assigns a value out of Z to each variable in V . An evaluation is a function$ : Exp(V )×ν →
Z that evaluates an integer expression exp ∈ Exp(V ) to an integer with respect to the integer
variable value assignment ν.

Using federations, we can define a symbolic state of an NTA.

Definition B.8 (Symbolic State of NTA) LetNTA be a network of timed automata. A sym-
bolic state of NTA is a tuple s = (l, h, ν) where l is a location vector that stores the active
location for each automaton, h is a federation storing the possible clock interpretations, and
ν is an integer variable assignment.

In addition to these definitions, we need a function that returns the set of clock constraints
that any urgent transition leaving a location enabled in a symbolic state uses as a time guard.
At this point, we check whether the transitions are enabled except for their time guards. We
need this function for specifying the delay operation because NTA may only delay until
an urgent transition becomes enabled. In addition, we need this function for detecting time
intervals where no urgent transition is enabled. In these time intervals, non-urgent transitions
may fire. Please note that synchronizing transitions only fire urgently if both transitions are
urgent.

Definition B.9 (Clock Constraints of Available Urgent Transitions) Let NTA be a net-
work of timed automata with urgent transitions with Ai ∈ A = (Li, l0,i, Ci,Σ, Ei, Ui, Ii).
Let s = (l, h, ν) be a symbolic state of NTA. The set clock constraints of available urgent
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B. Formalization of the Real-time Statechart Semantics

transitions in s is defined by a function Ξ : S → B(C) where s 7→ Ξτ (s) ∪ Ξσ(s) for s ∈ S
where

• Ξτ : S → B(C) where s 7→ {ϕ|∀li ∈ l,∀ei ∈ Ui with li
ϕ,ψ,τ,λ,u−−−−−−→ l′i where

ψi[v/ν(v), exp/$(exp, ν)] ≡ true} for s ∈ S
• Ξσ : S → B(C) where s 7→ {ϕj ∧ ϕm|∀lj ∈ l,∀lm ∈ l with j 6= m,∀ej ∈
Uj ,∀em ∈ Um with lj

ϕj ,ψjσ?,λj ,uj−−−−−−−−→ l′j , lm
ϕm,ψm,σ!,λm,um−−−−−−−−−−−→ l′m where ψj [v/ν(v),

exp/$(exp, ν)] ∧ ψm[v/ν(v), exp/$(exp, ν)] ≡ true} for s ∈ S

Given Definition B.9, we may now define the operational semantics of NTA based on a
zone graph.

Definition B.10 (Zone Graph of NTA with Urgent Transitions)
Given an NTA with urgent transitionsNTA = (A, Ch, VG, CG) withAi ∈ A = (Li, l0,i, Ci,
Σ, Ei, Ui, Ii), i ∈ N. Its reachable state space is given by a zone graph Z = (S, s0, T ) where
S is the set of symbolic states, s0 is the initial symbolic state, and T ⊆ S × S is the set of
transitions.

For a symbolic state s = (l, h, ν), let li denote the ith element of the location vec-
tor l representing the active location of Ai and l[l′i/li] the vector l with li being substi-
tuted with l′i. In s0 = (linit, hinit, νinit), linit,i = l0,i for all Ai, all clocks c0j ∈ hinit
have value 0, and all integer variables v0j ∈ νinit are set to their initial values. Let
ej = (lj , ϕj , ψj , σj , λj , uj , l

′
j) ∈ Ej and em = (lm, ϕm, ψm, σm, λm, um, l

′
m) ∈ Em with

j 6= m. I(l) =
∧
li∈l I(li) are the invariants of the active locations. dj = (vj , expj) and

dm = (vm, expm) are the assignments of ej and em. The transitions of the zone graph Z are
defined by the rules:

1. (l, h, ν)
δ−→ (l, h′, ν) with h′ = relax(h⇑ − ((

∨
ϕ∈Ξ(l) ϕ)− h⇓)⇑) ∧ I(l)

2. (l, h, ν)
(j,τ)−−−→ (l[l′j/lj ], h

′, ν ′) if ej = lj
ϕj ,ψj ,τ,λj ,uj−−−−−−−−→ l′j and ψj [v/ν(v),

exp/$(exp, ν)] ≡ true where

• h′ = h1 if ej ∈ Uj , h′ = h2 otherwise where

– h1 = ((h ∧ ϕj)[λj 7→ 0]) ∧ I(l[l′j/lj ])

– h2 = ((h ∧ ϕj ∧ (
∨
z∈Ξ(s) ¬z))[λj 7→ 0]) ∧ I(l[l′j/lj ])

• ν ′ = [vj 7→ $(expj , ν)]

3. (l, h, ν)
((j,σ?),(m,σ!))−−−−−−−−−→ (l[l′j/lj ][l

′
m/lm], h′, ν ′) if ej = lj

ϕj ,ψjσ?,λj ,uj−−−−−−−−→ l′j , em =

lm
ϕm,ψm,σ!,λm,um−−−−−−−−−−−→ l′m and ψj [v/ν(v), exp/$(exp, ν)] ∧ ψm[v/ν(v),

exp/$(exp, ν)] ≡ true where

• h′ = h1 if ej ∈ Uj ∧ em ∈ Um, h′ = h2 otherwise where

– h1 = ((h ∧ ϕj ∧ ϕm)[λj ∪ λm 7→ 0]) ∧ I(l[l′j/lj ][l
′
m/lm])

– h2 = ((h ∧ ϕj ∧ ϕm ∧ (
∨
z∈Ξ(s) ¬z))[λj ∪ λm 7→ 0]) ∧ I(l[l′j/lj ][l

′
m/lm])

• ν ′ = [vj 7→ $(expj , [vm 7→ $(expm, ν)])] (cf. [BY04, BGK+96])
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In Definition B.10, Case 1 defines the new delay operation compared to the definition by
Bengtsson and Yi [BY04]. Since urgent transitions do not allow the time to pass if they are
enabled, time may only progress until an urgent transition gets enabled. The function Ξ re-
turns the time guards of all urgent transitions (or pair of synchronizing urgent transitions) that
are enabled, potentially except for their time guards. These clock constraints are combined
into a single federation by disjuncting them. The operation h⇓ removes the lower bounds
from the current federation h. By subtracting this federation from the disjunction of enabled
urgent constraint, we remove all clock constraints that are before h, i.e., they may not be
fulfilled by letting time progress. Then, we let time progress for the resulting federation.
The resulting federation includes the earliest point in time where an urgent transition gets
enabled. By subtracting this federation from the current federation h⇑, we obtain the time
interval where no urgent transition is enabled. The relax operation relaxes strict bounds (<
or >) to non-strict bounds (≤ or ≥) and includes the single point in time where the urgent
transition gets enabled into the federation. This construction only works if we restrict time
guards at urgent transitions to non-strict clock constraints. Finally, we intersect against the
invariants of the active locations.

Case 2 defines the conditions for firing a single transition. In contrast to Bengtsson and
Yi [BY04], we need to give precedence to urgent transitions, i.e., as long as an urgent tran-
sition is enabled, no non-urgent transition is enabled. In general, a transition, either urgent
or non-urgent, may only be fired if the time guard ϕj is true for the current federation h and
if the transition guard ψj is fulfilled for the current integer variable value assignment ν. If
the time guard is not fulfilled, the federation h′ will be false. For urgent transitions, h′ is
defined by h1. If the transition fires, the federation is updated by intersecting it with the time
guard, applying the resets, and intersecting it with the invariants of the target locations. In
addition, the integer variable value assignment is updated by applying the assignments of
the transitions. For non-urgent transitions, we use h2. For computing h2, we first obtain
the time guards of all urgent transitions using the function Ξ. By Definition B.1, these time
guards are conjunctions of atomic clock constraints. Then, we negate each of these clock
constraints for obtaining the time intervals where the urgent transition is not enabled. Then,
we disjunct these negated clock constraints in a single federation. This federation combines
all time intervals where no urgent transition is enabled. This federation is then conjuncted
with the current federation h and the time guard ϕj of the transition ej . As a result, ej is
restricted to time intervals where no urgent transition is enabled as intended.

Case 3 defines the conditions for firing two transitions that synchronize via a channel σ.
Again, we need to distinguish between urgent and non-urgent transitions when computing the
successor federation h′. Both cases, however, are identical to Case 2 but need to consider the
time guards, resets, and integer variable value assignments of both transitions. The integer
variable value assignments of the sending transition (em) are applied prior to the integer
variable value assignments of the receiving transition (ej).

Finally, we may define traces of an NTA that formalize counterexamples produced by a
timed model checker.

Definition B.11 (Trace of NTA) Let Z = (S, s0, T ) be a zone graph of an NTA. A trace ζ is
a path in Z such that s0 →T s1 →T . . . →T sn where ∀i, j ∈ {0, . . . , n − 1} : (si, si+1 ∈
T ) ∧ si = sj ⇒ i = j.
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B. Formalization of the Real-time Statechart Semantics

A trace is a finite path in a zone graph that starts at the initial state and that does not contain
any state twice.
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Appendix C

A Framework for Reachability Analyses

As part of our implementation, we created a framework for conducting reachability analyses.
A reachability analysis computes the state space of a given behavior model. Our framework
consists of two core plugins that are independent of a concrete behavior model. They pro-
vide the basic state space traversal algorithm and a metamodel for storing the state space in a
reachability graph (cf. Section C.1). Based on our framework, we implemented two reacha-
bility analysis algorithms; one for computing the state space of a story diagram specification
(cf. Section C.2) and one for computing the state space of a set of RTSCs (cf. Section C.3)
based on the formal semantics defined in Appendix B. The latter requires an implementation
of clock zones (cf. Definition B.6) based on difference bound matrices (DBMs, [Dil90]) (cf.
Section C.4).

Figure C.1 shows the plugins of the reachability analysis framework and the two reach-
ability analyses that have been created based on the framework. We describe the figure in
detail in the subsequent subsections.
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reachabilityGraph
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Figure C.1: Framework for Reachability Analyses
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C.1 Reachability Analysis Framework

The reachability analysis framework consists of two plugins shown in Figure C.1. The plu-
gin reachanalysis.core contains the main implementation of the algorithm that performs the
state space traversal while reachabilityGraph contains the metamodel for storing the resulting
reachability graph.

C.1.1 Metamodel

Figure C.2 shows a class diagram of the metamodel for storing the reachability graph. The
class ReachabilityGraph represents the reachability graph that contains a set of Reachability-
GraphStates and ReachabilityGraphTransitions. Each ReachabilityGraphState represents one par-
ticular state of the state space of the behavior model. A ReachabilityGraphTransition connects
one source ReachabilityGraphState to one target ReachabilityGraphState. In this case, the tar-
get ReachabilityGraphState has been derived from the source ReachabilityGraphState by a single
execution step of the behavior model. Both classes are abstract. In particular, a concrete
reachability analysis needs to define a concrete ReachabilityGraphState that contains the infor-
mation of a state of the corresponding state space. The ActionTransition is a concrete subclass
of the ReachabilityGraphTransition that may be used for an arbitrary execution step of the be-
havior model.

Figure C.2: Class Diagram of the Core Metamodel of the Reachability Analysis Framework

A ReachabilityGraphState has two attributes that are used by the reachability analysis algo-
rithm. The pathDepth defines how many execution steps have been taken at least for reaching
this ReachabilityGraphState from the startState of the ReachabilityGraph. This attribute is used
for realizing a depth limitation in the state space traversal to ensure termination. The second
attribute is a hash value of the ReachabilityGraphState. Each reachability graph state may re-
ceive a hash value that follows the general hashing constraint. In particular, it must hold for
two ReachabilityGraphStates obj1 and obj2

obj1 ≡ obj2 =⇒ hash(obj1) = hash(obj2)

That means if two ReachabilityGraphStates are considered to be equivalent with respect to
the behavior model, then these ReachabilityGraphStates must have identical hash values. This
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information may be used to speed up the identification of equivalent states. Identifying equiv-
alent states enables to reduce the computation and storage effort and may enable termination
if the behavior model runs in a loop.

For managing the hash values, the ReachabilityGraph additionally contains a map where
the hash value is the key and the value is a list of all ReachabilityGraphStates having this
particular hash value. In EMF, this map is realized by the HashToStateListMapEntry and the
HashToStateList.

C.1.2 Reachability Analysis Algorithm

Based on the metamodel as described above, the main reachability analysis algorithm is
defined as shown in Algorithm 1. In essence, the algorithm is an adapted breadth first search
(BFS, [Pea84, pp. 36-45]) that searches for a state satisfying a solution criterion. The solution
criterion may be used, for example, to check for deadlocks or for identifying the error state
in our refinement check (cf. Section 5.3). By using false as a solution criterion, we may
compute the whole reachability graph of the behavior model. The behavior model to be
explored needs to be set by a custom constructor of a concrete reachability analysis using the
framework.

Algorithm 1 Core Algorithm for Computing the Reachability Graph

1: function COMPUTEREACHABILITYGRAPH

2: reachabilityGraph := createReachabilityGraph() . Initialization Phase
3: initialize()
4: startState := createInitialState()
5: reachabilityGraph.startState := startState
6: computeHashValue(startState)
7: TODO.push(startState)
8:

9: while TODO 6= ∅ do . Expansion Phase
10: curState := TODO.pop()
11: if isPreSolution(curState) then
12: return
13: end if
14: if curState.pathDepth < maxPathLength and not isDeadEnd(curState) then
15: expand(curState)
16: end if
17: if isPostSolution(curState) then
18: return
19: end if
20: end while
21: end function

The algorithm starts with an initialization phase where it first creates the ReachabilityGraph.
The creation has been encapsulated into a function such that concrete reachability analy-
ses may create more specific reachability graphs. Thereafter, the algorithm calls initialize in
Line 3. This function enables concrete reachability analyses to initialize themselves, e.g., by
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initializing further variables or performing a preprocessing. In the next step, the algorithm
creates the initial state for the reachability graph. This function is abstract and needs to be
implemented by a concrete reachability analysis. After creating the initial state, we set it as
a start state for the reachability graph. Finally, we compute the hash value for the start state
and add it to the TODO list. The TODO list contains all states that have not yet been expanded.

Then, the expansion phase starts, which is executed in a loop as long as there exists at
least one state in the TODO list. The algorithm takes the state out of the TODO list and
checks whether the state represents a solution. If so, the algorithm terminates. If not, the
algorithm checks whether exploring the state will exceed the depth limitation and whether
the state is a dead end. A dead end is a state that will not lead to a solution. If both is
not the case, the algorithm expands the state and finally checks once again whether the state
is a solution. We added an additional check for a solution after the expansion because we
may only identify that a state represents a deadlock situation after expanding it. The code
for identifying solutions is encapsulated in a separate class such that different strategies for
identifying solutions may be used in combination with the same reachability analysis.

Algorithm 2 shows the function expand that is used for expanding a state. The expand
function first calls computeSuccessors to obtain all states that may be reached from current
state by a single execution step of the behavior model. Therefore, this function is abstract
and needs to be implemented by a concrete reachability analysis. Thereafter, the function
iterates all successors. First, it sets the path depth and, second, it invokes unifyStates in order
to check whether the reachability graph already contains an equivalent state with respect to
the behavior model.

Algorithm 2 The expand Function
1: function EXPAND(ReachabilityGraphState state)
2: successors := computeSuccessors(state)
3: for all s ∈ successors do
4: s.pathDepth := s.pathDepth + 1
5: unifyStates(s)
6: end for
7: end function

The function unifyStates is given by Algorithm 3. First, unifyStates computes the hash value
for the new state. Since the hash value depends on the behavior model, this function needs to
be implemented by concrete reachability analyses. Then, unifyStates computes all candidates
that might be equivalent to the new state in Line 4. Therefore, it utilizes the hash value
and retrieves all states having the same hash. Then, unifyStates checks for each candidate
whether it is equivalent to newState by calling isIsomorphic in Line 6. This function needs to
be implemented by a concrete reachability analysis and returns true if and only if both states
are equivalent with respect to the behavior model. If the new state is equivalent to an existing
state, then we redirect the transition leading to the new state to the existing state (oldState).

If no equivalent existing state has been found, we execute Lines 13 to 14. These lines add
the new state to the TODO list and to the reachability graph.
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Algorithm 3 The unifyStates Function
1: function UNIFYSTATES(ReachabilityGraphState newState)
2: computeHashValue(newState)
3: isoStateFound := false
4: candidates := reachabilityGraph.getStatesWithHash(newState.hash)
5: for all oldState ∈ candidates do
6: if isIsomorphic(oldState, newState) then
7: trans = newState.incomingTransition
8: redirectTransition(oldState, trans, newState)
9: isoStateFound := true

10: end if
11: end for
12: if not isoStateFound then
13: TODO.add(newState)
14: reachabilityGraph.add(newState)
15: end if
16: end function

C.2 Story Diagram Reachability Analysis

Based on our framework introduced in Section C.1, we implemented a reachability anal-
ysis on story diagrams. The reachability analysis and the accompanying metamodel ex-
tension are contained in the plugins reachanalysis.sdm, reachabilityGraph.sdm, and reachanaly-
sis.sdm.transform in Figure C.1. Our reachability analysis computes all typed attributed graphs
that may be derived from an initial graph based on a set of story diagrams. We use our reach-
ability analysis for computing the possible configurations of a component instance, which
is the basis for checking consistency in our transactional reconfiguration approach (cf. Sec-
tion 4.5.1).

C.2.1 Metamodel Extension

Figure C.3 shows the metamodel extensions for the story diagram reachability analysis. The
metamodel is built based on concepts presented by Zündorf [Zün09] and based on concepts
presented in our previous publications [HSJZ10, HSE10]. The input to the reachability anal-
ysis is given by the GraphTransformationSystem that refers to all story diagrams to be used by
the reachability analysis. Each story diagrams is modeled as an Activity [HRvD+11]. In addi-
tion, the GraphTransformationSystem refers to classes of unchangeableNodes. Objects of these
types will never be modified by the activities.

The SDMReachabilityGraph refers to the unchangeableNodes of the initial graph that is used
for the reachability analysis. The initial graph is given as a set of EObjects including their ref-
erences. As a utility reference, the SDMReachabilityGraph may contain all unchangeableNodes
that are not contained elsewhere.

The states of the SDMReachabilityGraph are given by the StepGraph. Each StepGraph repre-
sents one graph that may be obtained based on the initial graph by applying a story diagram
including the initial graph. The StepGraph refers to all changeable nodes using the change-

293



C. A Framework for Reachability Analyses

Figure C.3: Class Diagram of the Metamodel for Reachability Analysis on Story Diagrams

ableNodes reference. Optionally, it may contains these nodes via containedNodes if they are
not contained elsewhere. In addition, it derives the unchangeableNodes from the SDMReach-
abilityGraph. Finally, contains is the union of changeableNodes and unchangeableNodes. Suc-
cessorStepGraph is a helper class that is used for collecting all successors that have been
computed via the computeSuccessors function in Line 2 of Algorithm 2.

The transitions of the SDMReachabilityGraph are given by the SDMTransition. The SDMTran-
sition refers to the Activity that has been applied for deriving the target StepGraph. In addition,
the SDMTransition contains two maps that may optionally be created. First, the MatchingEntry
objects store the matching of the appliedActivity into the source StepGraph where the name of
the object variable is used as the key. This enables to check which objects have been matched
by which object variable for applying the story diagram. Second, the IndexEntry objects asso-
ciate objects of the source StepGraph to the target StepGraph that are the same with respect to
the underlying graph. In order to compute the whole reachability graph, deriving successors
requires to copy the source StepGraph before applying the story diagram because applying
the story diagram would destroy the source StepGraph otherwise. Then, the key refers to the
object in the source StepGraph while value refers to the object in the target StepGraph that has
been created as a copy. The use of the index has been reused from Zündorf [Zün09].

C.2.2 Functions of the Reachability Analysis

In addition to the metamodel extension, we also implemented the abstract functions of our
reachability analysis framework. The algorithms for copying graphs and for computing
hash values have been obtained from Zündorf [Zün09] but reimplemented using reflection
in EMF [SBPM08]. We will not go into details on these functions but refer to the given
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paper. In the following, we briefly describe our concepts for identifying unchangeable nodes
(Section C.2.2.1), for computing successor graphs (Section C.2.2.2), and for computing iso-
morphisms between two graphs (Section C.2.2.3).

C.2.2.1 Unchangeable Node Detection

We consider a node of a graph as unchangeable if it will never be modified, either directly or
indirectly, by applying a story diagram to the graph. By identifying nodes that will never be
changed, we may remove these nodes from the single StepGraphs and store them only once
for the whole SDMReachabilityGraph. This may reduce the size of the StepGraphs significantly.
This, in turn, improves the performance of the reachability analysis because it requires fewer
objects to be copied and fewer objects to be considered for computing hash values and iso-
morphisms. The computation of unchangeable nodes is performed as a part of the initialize
function (cf. Algorithm 1).

We derive a conservative decision on which nodes are unchangeable by a static analysis of
the story diagrams and the metamodels that are used as type graphs for the story diagrams.
Our decision is conservative in a sense that it marks all nodes typed by the same class as
changeable if one node type by this class might potentially be changed by a story diagram.

In order to define which nodes are unchangeable, we first define the conditions that make a
node changeable. We consider eight conditions that make a node typed by a class A change-
able. Conditions 1-4 provide conditions based on the story diagrams. Conditions 5-8 provide
conditions based on the metamodels and explicitly consider inheritance and EMF’s contain-
ment hierarchy.

1. There exists a story diagram that contains an object variable of type A with a binding
operator «create» or «destroy» in one of its story patterns.

2. There exists a story diagram that contains an object variable of typeA with an attribute
assignment in one of its story patterns.

3. There exists a story diagram that contains a link variable typed by a reference originat-
ing from A that has binding operator «create» or «destroy».

4. There exists a story diagram that contains a link variable typed by a reference target-
ing A that has binding operator «create» or «destroy» and that has an opposite
reference (making it bidirectional).

5. There exists a classB marked as changeable and nodes of typeB (recursively) contain
nodes of type A.

6. There exists a classB marked as changeable and nodes of typeA (recursively) contain
nodes of type B.

7. There exists a class B marked as changeable and A is (direct or indirect) subclass of
B.

8. There exists a class B marked as changeable and A has a bidirectional reference to B.

In our analysis, we first analyze the story diagrams for Conditions 1-4, which gives an
initial set of changeable nodes. Then, we expand this set by analyzing the metamodels used
as type graphs for the story diagrams based on Conditions 5-8. In particular, Conditions 5-7
require the computation of closures on the containment and inheritance hierarchies and must
be applied repeatedly.
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The result is a set of classes where each node type by one of these classes is potentially
changeable by the story diagrams. Then, a node x is unchangeable if x is contained in the
initial graph and if x is typed by a class C that is not considered to be changeable by the
above conditions.

C.2.2.2 Successor Computation

For computing the successors of a StepGraph, we need to apply all story diagrams to any pos-
sible matching that may be obtained for the StepGraph. This does not resemble the semantics
of a regular story diagram, which is only applied to the first matching that can be obtained
(not considering for-each nodes). At this point, we reused the idea by Zündorf [Zün09] also
used in our previous publications [HSJZ10, HSE10] of enhancing the story diagrams such
that they implement the necessary behavior for the reachability analysis. The benefit of this
approach is that we may use any kind of story diagram interpreter [GHS09] or code genera-
tion [GSR05, GBD07, Zün09] as a black box.

The concept for enhancing the story diagrams by Zündorf [Zün09] has been automatized
by a model transformation that is contained in the plugin reachanalysis.sdm.transform shown in
Figure C.1. The transformation is illustrated abstractly in Figure C.4 for a story diagram sd1
shown on the left side of the figure. It contains an arbitrary number of story nodes starting
with the story node A. This story diagram is transformed into the story diagram sd1_forEach
shown on the right side of Figure C.4.

The model transformation works as follows. The first story node A becomes a for-each
story node A_forEach that matches all possible matchings of sd1. This implies the restriction
that the whole application condition for sd1 must be contained in A. A_forEach contains the
LHS of the story pattern contained in A, i.e., all object variables without binding operator and
all object variables with binding operator «destroy». However, the object variables having
binding operator «destroy» in A have no binding operator in A_forEach in order to preserve
step. In addition, A_forEach creates a new SDMTransition for each successful matching.

Then, we insert three additional activity nodes into the story diagram. The first one is
a method call node that passes step and trans to the method copyState that creates an exact
copy of step, called succ, and sets succ as the target of trans. The second one is a story
node called Restore Matching. This node utilizes the index map (cf. Section C.2.1) to restore
the matching that has been obtained based on step in A_forEach on the successor StepGraph
succ. In addition, it adds succ to the set of SuccessorStepGraphs given by the object variable
successors. Finally, the story node Execute A performs the rewrite step of the story pattern
contained in A on succ using the restored matching. Thus, after executing the story pattern in
Execute A, succ is isomorphic to the graph that would have resulted from applying the story
node A of sd1 to step. After Execute A, the remaining activity nodes of sd1 are applied without
modification to succ and the restored matching.

Finally, whenever sd1 enters a final node, we remove the final node and redirect the activity
edge leading to the final node to A_forEach. Thus, after completely computing one successor,
we backtrack to the for-each story node in order to search for another matching of A leading
to another successor.

The model transformation that enhances the story diagrams is invoked as a part of the
initialize function in Algorithm 1. In computeSuccessors, which is called in Line 2 of Algo-
rithm 2, we invoke the story diagram interpreter [GHS09] using the enhanced story diagrams.
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►
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Execute A

Figure C.4: Enhancing Story Diagrams for Computing Successors

After the interpreter finished executing a story diagram, all successors are contained in the
SuccessorStepGraphs and passed to the unifyStates function in Algorithm 3.

C.2.2.3 Isomorphism Computation

The unifyStates function illustrated in Algorithm 3 requires an implementation of the isIso-
morphic function that is invoked in Line 6. In our reachability analysis on story diagrams, this
requires to decide whether two StepGraphs s1 and s2 are isomorphic. This, in turn, requires
to compute a total bijective graph morphism iso that assigns each node of s1 to exactly one
node of s2. In the general case, this computation is NP-hard but the consideration of typed
attributed graphs allows us to reduce the computation effort significantly.

In the first step, we group the nodes of s1 and s2 based on their type such that we obtain
one set for each type. Then, we check whether the number of elements in each set is the same
for s1 and s2. If not, there cannot exist an isomorphism because there exists at least one node
which cannot be mapped to a node of the same type by iso.

In the second step, we derive a partial mapping that contains all nodes where only one
possible mapping exists. Therefore, we check all sets obtained in the first step whether they
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contain only one element. After adding the corresponding pairs of nodes to the mapping, we
evaluate their references whether they refer to a single node.

In the final step, we need to check all possible mappings for the remaining nodes. At this
point, we may utilize the attribute values of the nodes because the attribute values of nodes
that are mapped by iso need to be identical.

C.3 RTSC Reachability Analysis

Based on our framework introduced in Section C.1, we implemented a reachability analy-
sis on RTSCs. The reachability analysis and the accompanying metamodel extension are
contained in the plugins reachanalysis.rtsc and reachabilityGraph.rtsc in Figure C.1. Our reach-
ability analysis computes a zone graph as defined in Definition B.10. We use the reachability
analysis on RTSCs in our refinement check for deciding whether the error state is reachable.

C.3.1 Metamodel Extension

The input for the reachability analysis is an NTA as defined in Definition B.5. We encode
the NTA based on the metamodel of RTSCs (cf. [BDG+14b, pp. 267ff]), i.e., all RTSCs that
are contained in the NTA are contained in a single hierarchical state that defines all shared
integer variables and synchronization channels of the NTA. Figure C.5 shows the metamodel
for storing the resulting zone graph.

Figure C.5: Class Diagram of the Metamodel for Reachability Analysis on RTSCs

The class ZoneGraph represents the zone graph itself. The ZoneGraph refers to the Clocks of
the RTSCs in order to associate them to the clocks of the UDBM library (cf. Section C.4). The
ZoneGraphState inherits from ReachabilityGraphState and represents a single symbolic state of
the NTA (cf. Definition B.8). Therefore, it contains a set of RealtimeStatechartInstances (cf.
Section D.1.4) and refers to their active locations. The RealtimeStatechartInstance contains the
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integer variable value assignments as defined in Definition B.7. In addition, the ZoneGraph-
State contains a federation that stores the values of the clocks of the RTSCs.

Finally, the metamodel defines two additional ReachabilityGraphTransitions, namely, the
ZoneGraphTransition and the DelayTransition. A DelayTransition represents a δ transition of the
zone graph (cf. Definition B.10). A ZoneGraphTransition represents both, τ transitions and
transitions resulting from a synchronization. Therefore, the ZoneGraphTransition refers to the
transitions of the RTSCs that were fired. In case of a τ transition, the firedRTSCTransitions
reference refers to exactly one transition. In case of synchronizing transitions, the firedRTSC-
Transitions reference refers to exactly two transitions.

C.3.2 Functions of the Reachability Analysis

In addition to the metamodel changes, we also implemented the abstract functions of our
reachability analysis framework. We implemented the computeSuccessors function called in
Line 2 by the expand function shown in Algorithm 2. This function implements the three
cases for successor transitions of Definition B.10. Furthermore, we implemented the isIso-
morphic function for two ZoneGraphStates. Two ZoneGraphStates are equivalent if and only
if the same states of the RealtimeStatechartInstances are active and if all variables of the Re-
altimeStatechartInstances have the same value for the integer variable value assignment and
if the federations are equivalent. Two federations are equivalent if they allow for the same
clock values for all clocks. The initialize function in Line 3 of Algorithm 1 converts all time
units of the RTSCs to the smallest time unit in order to ease the computations of the clock
values in the UDBM library (cf. Section C).

For the using the RTSC reachability analysis in our refinement check, we additionally im-
plemented the isPreSolution and isDeadEnd functions used in Lines 11 and 14 of Algorithm 1.
A ZoneGraphState is a solution if the error state of the test RTSC is active. A ZoneGraphState
is a dead end if the neutral state is active.

C.4 UDBM Library

In our reachability analysis on RTSCs, we use DBMs [Dil90] for representing clock zones
and federations (cf. Definition B.6). In particular, we integrated an existing DBM library of
the UPPAAL model checker [Dav06] into our implementation. In Figure C.1, the integration
of the library is given by the udbm plugin.

We chose a client-server architecture for integrating the DBM library [EH11]. The DBM
library resides in a server component implemented in Ruby, called UDBM Server in Figure C.1,
that interacts via sockets with the client that resides in the udbm.ruby plugin. The clock zones
and federations are actually stored on the client side using the metamodel shown in Fig-
ure C.6. Whenever the client is requested to perform an operation on a federation, it encodes
the federation and the requested operation and sends both to the server, which executes the
operation. The resulting federation is sent back to the client and translated back into the
metamodel. We refer to Eckardt and Heinzemann [EH11] for more information on the server
implementation.

In the following, we give a brief description of the metamodel. Although the metamodel
is visualized as a class diagram based on EMF, it is a plain Java library and independent
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Figure C.6: Class Diagram of the Interface of the UDBM Library

of EMF. The basis of the metamodel is given by Federation that represents a federation of
ClockZones that it contains. In addition, it contains a map of UDBMClocks that represent the
clocks that are used in the clock zones. The clocks are identified by a unique key and may be
shared among all federations.

A clock zone contains a set of ClockConstraints that represent the inequalities that put lower
and upper bounds on each clock. We distinguish four kinds of clock constraints. These
are the TrueClockConstraint, FalseClockConstraint, and two kinds of ComparativeClockConstraints,
namely the SimpleClockConstraint and the DifferenceClockConstraint. The TrueClockConstraint
represents a true value. It is only used for clock zones that do not restrict the values of the
clocks at all. Analogously, the FalseClockConstraint represents a false value. It is used for
empty clock zones that cannot be fulfilled by any assignment of values to the clocks. The
ComparativeClockConstraints compare the values of clocks to an integer value using one of
the RelationalOperators. A SimpleClockConstraint compares the value of a single clock to the
value. A DifferenceClockConstraint put a condition on the difference of two clocks. It compares
minuend − subtrahend to the value. Finally, the FederationFactory is used for creating new
Federations and ClockZones.
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Metamodels

In this chapter, we present the metamodels that we created as part of our implementation. Our
metamodels provide a formal specification of the abstract syntax and the static semantics of
our modeling languages. The abstract syntax has been specified using EMF [SBPM08]. The
static semantics has been defined by OCL constraints [Gro12] that are contained in the EMF
model. The operational semantics of RTSCs and CSDs, which are the two behavioral models
of MECHATRONICUML, is defined based on timed automata and graph transformations as
described in Chapter 3 and Appendix B.

In the following, we present our metamodels using class diagrams that visualize the ab-
stract syntax. In particular, Section D.1 introduces the metamodel of the MECHATRON-
ICUML component model for specifying components and components instances that do
not employ runtime reconfiguration. Section D.2 introduces the metamodel for specifying
reconfigurable components (cf. Chapter 3.6) including transactional execution of reconfig-
urations (cf. Section 4.6). Finally, we present the metamodels for MATLAB/Simulink and
Stateflow that we created as part of our translation of MECHATRONICUML models to MAT-
LAB/Simulink models (cf. Chapter 6.6). We refer to the MECHATRONICUML language
specification [BDG+14b] for a listing of the OCL constraints that define the static semantics.

D.1 MechatronicUML Component Model

The metamodel of the MECHATRONICUML component model is separated into different
packages. In this section, we present class diagrams for three of these packages. We first
introduce several core classes in Section D.1.1 that provide a common basis for components
and component instances. Thereafter, Sections D.1.2 and D.1.3 introduce the metamodels for
specifying components and component instances that do not employ runtime reconfiguration.

D.1.1 Core

The classes shown in the class diagram in Figure D.1 are the super classes for all classes in
the MECHATRONICUML metamodel. These classes have been developed as part of the new
metamodel for story diagrams [HRvD+11]. We refer to them as core in the following. The
classes shown in the class diagram in Figure D.2 form the basis for modeling components and
component instances. They inherit from the core classes and we refer to them as component
core in the following.

The root element of the core is the class ExtendableElement that, in combination with the
class Extension, defines an extension mechanism. Each ExtendableElement may be extended
by an arbitrary number of Extensions. An Extension enables to store additional information in
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Figure D.1: Class Diagram of the Abstract Super Classes used by the MECHATRONICUML
Metamodel

the metamodel without modifying it. The four operations of ExtendableElement have not been
formalized based on OCL but implemented in Java. Although this contradicts with the aim of
formally specifying the metamodel, we consider the extension mechanism to be useful. By
using extensions, our metamodel is upward compatible, i.e., we may specify new modeling
features and algorithms that require additional classes in the metamodel without needing to
modify the existing metamodel and, thereby, breaking compatibility to older versions of our
tooling.

In addition, the core package defines subclasses NamedElement and CommentableElement
of ExtendableElement. These are used for all modeling elements of MECHATRONICUML
that have a name or may be commented by the user. The class Expression is the root for
the MECHATRONICUML action language that is used for specifying guards and actions in
RTSCs (cf. Section 2.4.2). We refer to the MECHATRONICUML specification [BDG+14b]
for a detailed overview of the action language metamodel. The TextualExpression enables
to store expressions in an arbitrary textual language, e.g., Java or MATLAB Script, in a
MECHATRONICUML model.

The component core shown in Figure D.2 defines ConnectorEndpoints and Connectors. Con-
nectorEndpoint is the super class for all metamodel elements that may be connected by Connec-
tors such as roles or ports. Any ConnectorEndpoint has an arbitrary number of Connectors. In
MECHATRONICUML, examples of connectors include assembly and delegation connectors.
As a special type of ConnectorEndpoint, the component core defines DiscreteInteractionEndpoints.
This type of ConnectorEndpoint has a Behavior (via super class BehavioralElement) and it sends
or receives asynchronous messages. Therefore, it has a set of MessageBuffers where each Mes-
sageBuffer may store received messages of particular MessageTypes. The size of the message
buffer is given as a NaturalNumber. In MECHATRONICUML, examples of DiscreteInteraction-
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Figure D.2: Class Diagram of the Abstract Super Classes of Components and Component
Instances
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Endpoints are roles and discrete ports. Both have a Cardinality that defines a lower and upper
bound based on a NaturalNumber.

In addition, the component core defines ConnectorEndpointInstances and ConnectorInstances.
They are the super classes for all instances of ConnectorEndpoints and Connectors. Similar to
components, we use DiscreteInteractionEndpointInstance as a special type of DiscreteInteraction-
Endpoint. For instances, we additionally need to distinguish between DiscreteSingleInteraction-
EndpointInstances and DiscreteMultiInteractionEndpointInstances. The former is the super class
for single port instance and subport instances. The latter is the super class for multi port
instances. Consequently, a DiscreteMultiInteractionEndpointInstance refers to a set of subInterac-
tionEndpointInstances, which are the subport for a discrete multi port instance. In addition, we
use references first, last, next, and previous that are used for specifying the order of a multi role
or multi port (cf. Figure 2.13 on Page 28).

D.1.2 Components

Figure D.3 shows a class diagram of the component package. The component package de-
fines the classes for modeling Components that are not reconfigurable. In the metamodel,
they are referred as StaticComponents. In addition, we have abstract subclasses of Com-
ponent for AtomicComponents and StructuredComponents. Finally, StaticAtomicComponent and
StaticStructuredComponent represent non-reconfigurable atomic and structured components.
A StructuredComponent contains a set of ComponentParts while a ComponentPart is typed over
a Component.

Any Component has a set of Ports. In our metamodel, we distinguish betweeen DiscretePorts
and DirectedTypedPorts. DirectedTypedPort is the super class for HybridPorts and ContinuousPorts.
Both have a kind that defines their direction (either in-port or out-port), a type (via super class
TypedNamedElement), and they may be optional. Furthermore, out-ports may be initialized
by an initializeExpression using the MECHATRONICUML action language that defines a sane
initial value that is emitted after instantiated the port. HybridPorts additionally define a sam-
plingInterval based on TimeValue that provides a value and a TimeUnit.

ComponentParts refer to the Ports of the componentType by PortParts. Any PortPart is typed
by a Port. Additionally, StructuredComponents embed a set of PortConnectors for connecting
Ports and PortParts. We distinguish DelegationConnectors that connect a Port with a PortPart
and AssemblyConnectors that connect two PortParts.

D.1.3 Component Instances

Figure D.4 shows a class diagram of the instance package. The instance package defines the
classes for specifying CICs. Thus, the root class for the package is ComponentInstanceConfigu-
ration that contains a set of ComponentInstances. As on the type level, we distinguish between
AtomicComponentInstances and StructuredComponentInstances. However, we do not need to
distinguish between static components and reconfigurable components on the instance level
because this is already defined by the component type of the instance.

The metamodel for ComponentInstances is structured recursively. Any StructuredCompo-
nentInstance contains a ComponentInstanceConfiguration, again, that defines its embedded com-
ponent instances and their connections.
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Figure D.3: Class Diagram of the Component Metamodel
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Figure D.4: Class Diagram of the Component Instance Metamodel
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A ComponentInstance contains a set of PortInstances. As on the type level, we distin-
guish between HybridPortInstances, ContinuousPortInstances, and DiscretePortInstances. Further-
more, we distinguish DiscretePortInstances into DiscreteSinglePortInstances and DiscreteMulti-
PortInstances that inherit from DiscreteSingleInteractionEndpointInstance and DiscreteMultiInterac-
tionEndpointInstance, respectively, of the component core.

In addition to the ComponentInstances, a ComponentInstanceConfiguration contains the set of
PortConnectorInstances that connect the ComponentInstances. A PortConnectorInstance always
connects two PortInstances, while a PortInstance may be attached to multiple PortConnectorIn-
stances. A PortInstance of a StructuredComponentInstance typically has two PortConnectorIn-
stances. One of these is a DelegationConnectorInstance that connects the PortInstance with a
PortInstance of an embedded ComponentInstance. The other one is either a DelegationConnec-
torInstance to a PortInstance of the parentStructuredComponentInstance or it is an AssemblyCon-
nectorInstance that connects it with another ComponentInstance in the same ComponentInstance-
Configuration.

D.1.4 Runtime Model

Figure D.5 shows a class diagram of the runtime package. The runtime package defines the
classes for capturing a symbolic state of a MECHATRONICUML model. Thus, it forms the
basis for a model@runtime of MECHATRONICUML. Therefore, the runtime package extends
the instance package introduced in Section D.1.3 by additional runtime information such as
variable values and the active states of the RTSCs.

The base classes of the runtime package are RuntimeBehavioralElement and RealtimeState-
chartInstance. The RuntimeBehavioralElement is the super class for all metamodel elements
that execute an RTSC at runtime. It refers to the RealtimeStatechartInstance that it executes.
The RealtimeStatechartInstance has an active State that is located in the RTSC. In addition, it
contains a set of VariableBindings that assign a concrete value to a Variable of the RTSC. Since
RTSCs may contain hierarchical states, we enable that a RealtimeStatechartInstance contains
subRealtimeStatechartInstances if a hierarchical state is currently active. The values of the
clocks of the RealtimeStatechartInstance are not stored as part of the runtime metamodel but
using the udbm library (cf. Section C.4). The clocks of the RealtimeStatechartInstance are
associated to the clocks of the udbm library by a name mapping.

In accordance to the instance package, we distinguish between different types of Run-
timeBehavioralElements. First, we distinguish between RuntimeComponentInstances and Run-
timeDiscreteInteractionEndpointInstances. The latter are further distinguished into RuntimeDis-
cretePortInstances and RoleInstances. Both classes have subclasses for single and multi role/-
port instances that inherit from DiscreteInteractionEndpointInstance and DiscretePortInstance, re-
spectively.

In addition to the RealtimeStatechartInstance, a RuntimeBehavioralElement contains a Run-
timeMessageBuffer with a bufferSize. The RuntimeMessageBuffer contains the RuntimeMessages
that have been received from a communication partner and that need to be processed by the
RealtimeStatechartInstance. A RuntimeMessage is typed by a MessageType and contains a set of
RuntimeParameters that assign concrete values to the parameters of the MessageType.

Finally, the runtime package defines a RuntimeConnectorInstance with subclasses for Run-
timeAssemblyConnectorInstances, which connect two RuntimeDiscretePortInstances, and Run-
timeRoleConnectorInstance, which connect two RoleInstances. Since role connectors and as-
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Figure D.5: Class Diagram of the Runtime Metamodel
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sembly connectors have a delay, messages need time for being transmitted from the sender
to the receiver. Therefore, each RuntimeConnectorInstance contains a set of transientMessages
that are stored by the class MessageOnConnector. In addition to the RuntimeMessage, the Mes-
sageOnConnector defines the receiver of the RuntimeMessage, which is a RuntimeBehavioralEle-
ment in any case.

D.2 MechatronicUML Reconfiguration

This section introduces the metamodels for specifying reconfigurable components (Section
D.2.1), component story patterns (Section D.2.2), component story diagrams (Section D.2.3),
and component SDDs (Section D.2.4).

D.2.1 Reconfigurable Components

Figure D.6 shows a class diagram of the metamodel for reconfigurable components that is
part of the reconfiguration package. The upper part of the figure shows the classes for the
different component kinds. First, we have a new subclass of Component called Reconfig-
urableComponent. This is the super class for all kinds of reconfigurable components. Based
on this, we define classes for ReconfigurableAtomicComponents and ReconfigurableStructured-
Components that inherit from the corresponding abstract super classes AtomicComponent and
StructuredComponent of the component metamodel (cf. Figure D.3).

The FadingComponent on the right side of Figure D.6 is used for defining fading com-
ponents. It is a special kind of AtomicComponent and defines a set of FadingFunctions. Each
FadingFunction, in turn, defines a fading from one port (the fromPort) to another port (the toPort)
of the FadingComponent.

In addition, the metamodel defines an abstract class ReconfigurationRule that serves as a
super class for all kinds of reconfiguration rules that specify a modification of a Reconfig-
urableComponent. As part of this thesis, we only use CSDs (cf. Section D.2.3) as a subclass
of ReconfigurationRule. Each reconfiguration rule has a Signature that defines it name as well
as its input and output parameters.

Finally, we define special ports and connectors for ReconfigurableComponents. The class
ReconfigurationPort serves as a super class for all kinds of ports that may only be used for
ReconfigurableComponents. We use three subclasses. First, ReconfigurationMessagePort de-
fines RM ports of ReconfigurableComponents and of the reconfiguration controller. Second,
ReconfigurationExecutionPort defines RE ports in the same fashion. Third, InternalReconfigu-
rationCommunicationPort is used for connecting manager and executor inside the reconfigu-
ration controller. In addition, we define PortConnectors for connecting ReconfigurationPorts.
A ReconfigurationPortAssemblyConnector connects two reconfiguration ports. We cannot use
an AssemblyConnector of the component package because an AssemblyConnector connects two
PortParts instead of two Ports. However, since the reconfiguration controller belongs to the
ReconfigurableComponent instead of referring to another component, we do not use PortParts
for referring to the ports of manager and executor. For the same reason, we need to de-
fine a ReconfigurationPortDelegationConnector for delegating the RM ports and RE ports of a
ReconfigurableStructuredComponent to manager and executor, respectively.
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Figure D.6: Class Diagram of the Metamodel for Reconfigurable Components
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Figure D.7 shows the metamodel for specifying the reconfiguration controller including
the declarative, table-based specification of manager, executor, RM ports, and RE ports.
Each ReconfigurableStructuredComponent contains at most one Controller. In future works, this
reference may be used for integrating additional controllers into ReconfigurableStructuredCom-
ponents, for example, for performing monitoring. At present, our metamodel only supports
ReconfigurationControllers and, in particular, the RuleBasedReconfigurationController that exe-
cutes reconfigurations according the the 2-phase-commit protocol. The RuleBasedReconfigu-
rationController contains the Manager and the Executor. Both are BehavioralElements, i.e., their
behavior is defined by an RTSC.

The Manager contains a set of ManagerSpecificationEntry objects. Each ManagerSpecification-
Entry defines one row of the table that defines the behavior of the Manager (cf. Section 4.3.2).
The ManagerSpecificationEntry contains Boolean attributes treat, propagate, invokePlanner, and
blockable for the four Boolean columns treat, progate to parent, invoke planner, and safety
relevant. In addition, it refers to a ReconfigurationRule, a StructuralCondition, a MessageType,
and a TimeValue that defines the timeForPlanning.

The interface of the ReconfigurationMessagePort is defined by ReconfigurationMessagePortIn-
terfaceEntry. Each ReconfigurationMessagePortInterfaceEntry specifies one row of the table that
defines the interface of the RM port (cf. Section 4.3.1). It inherits from ReconfigurationPort-
InterfaceEntry which defines the common features of the interface specification of RM ports
and RE ports. These are a MessageType and a description. In addition, the ReconfigurationMes-
sagePortInterfaceEntry specifies whether it defines an info message or a request and it contains
a TimeValue for specifying the expectedResponseTime.

The Executor contains a set of ExecutorSpecificationEntry objects. Each ExecutorSpecification-
Entry defines one row of the table that defines the behavior of the Executor (cf. Section 4.3.3).
An ExecutorSpecificationEntry defines an id and refers to a ReconfigurationRule.

The interface of the ReconfigurationExecutionPort is defined by ReconfigurationExecutionPort-
InterfaceEntry that, in turn, inherits from ReconfigurationPortInterfaceEntry. Each Reconfigura-
tionExecutionPortInterfaceEntry defines one row of the table that defines the interface of the RE
port (cf. Section 4.3.4). In addition to the feature of its super class, ReconfigurationExecu-
tionPortInterfaceEntry contains a TimeValue for defining the timeForPlanning and an Execution-
TimingSpecification. The ExecutionTimingSpecification defines the time that is necessary for the
execution phase of the 2-phase-commit protocol. It has two subclasses ExecutionTimingSpecifi-
cationSinglePhase, which contains the timing specification for single-phase execution, and Ex-
ecutionTimingSpecificationThreePhase, which contains the timing specification for three-phase
execution. Both classes contain TimeValues for defining the corresponding times for execu-
tion.

D.2.2 Component Story Patterns

The class diagram in Figure D.8 shows the metamodel for component story patterns. It
transfers the metamodel by Tichy [Tic09] to the new MECHATRONICUML metamodel as
introduced in Section D.1 and D.2.1 and reuses concepts from the new story diagram meta-
model [HRvD+11] where possible.

A ComponentStoryPattern always contains exactly one ComponentVariable, which is the this-
variable. The ComponentVariable contains a set of PortVariables, PartVariables, and Connector-
Variables. The common superclass for these three types of variables is ComponentStoryPattern-
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Figure D.7: Class Diagram of the Metamodel for Transactional Execution
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Figure D.8: Class Diagram of the Component Story Pattern Metamodel
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Variable. It has three attributes for modifying the variable. First, the bindingSemantics defines
whether the variable is mandatory for the matching or whether it is optional or negative.
The bindingOperator defines whether the variable only matches or whether the matched object
is created or destroyed. Finally, the bindingState defines whether it is a bound or unbound
variable.

The PortVariables are typed by the ports of the component that is used as type of the this-
variable. Similar to port instances, we distinguish between SinglePortVariables and MultiPort-
Variables, where each MultiPortVariable has a set of subPortVariables. Each SinglePortVariable
contains a set of MultiPortPositionContraints that enable to define that a subPortInstance is the
FIRST or LAST one in the MultiPortVariable. The MultiPortInstance contains a set of MultiPort-
OrderConstraints that specify that the tgtSubPortVariable is the successor (NEXT) or predecessor
(PREV) of the srcSubPortVariable.

A PartVariable is typed over a component part of the component that is used as type of the
this-variable. We distinguish two types of PartVariables: ComponentPartVariables and Fading-
ComponentVariables. A ComponentPartVariable refers to a normal component part and contains
a set of PortVariables that refer to the ports of the component part. In addition, it optionally
specifies a TriggerEmbeddedComponentExpression that enables to trigger a reconfiguration of
the component instance that is matched by the ComponentPartVariable. A FadingComponent-
Variable is typed by a component part that is, in turn, typed by a fading component. We
use an additional class for FadingComponentVariables for integrating the particular syntactical
constraints of fading components into the metamodel by means of OCL constraints.

ConnectorVariables connect the PortVariables. As on the type level, we distinguish between
AssemblyVariables and DelegationVariables that both have a corresponding type.

D.2.3 Component Story Diagrams

The class diagram in Figure D.8 shows the metamodel for CSDs. It is based on the new
metamodel for story diagrams [HRvD+11] but introduces additional classes for integrating
component story patterns.

The class ComponentStoryRule represents the CSD. It inherits from ReconfigurationRules and
contains an Activity from the story diagram metamodel [HRvD+11]. The Activity contains the
ActivityNodes and ActivityEdges that constitute the control flow of the CSD. Each ActivityEdge
connects two ActivityNodes and may specify a guardExpression for adding a Boolean condition
to the ActivityEdge.

The CSD metamodel defines several ActivityNodes. These are StatementNode, JunctionNode,
InitialNode, ActivityFinalNode, ComponentStoryNode, and ControllerExchangeNode. Only the lat-
ter two a specific for CSDs. The ComponentStoryNode contains a ComponentStoryPattern. The
ControllerExchangeNode specifies the replacement of continuous component instances as de-
scribed in Section 3.3.2.

Finally, the CSD metamodel defines a SendReconfigurationMessageExpression that refers to
a MessageType and contains a set of ParameterBindings. It is contained in a ComponentPart-
Variable and enables to invoke a reconfiguration on an embedded component by sending a
reconfiguration message to the component. The reconfigurationMessageType specified by the
SendReconfigurationMessageExpression must be contained in the RE port interface specifica-
tion of the component that is used as a type of the ComponentPartVariable.
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Figure D.9: Class Diagram of the Component Story Diagram Metamodel
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D.2.4 Component Story Decision Diagrams

The class diagram in Figure D.10 shows the metamodel for component SDDs. The meta-
model reuses concepts of the metamodel by Stallmann [Sta08] and integrates it with the
metamodel for component story patterns (cf. Section D.2.2).

Figure D.10: Class Diagram of the Component Story Decision Diagram Metamodel

The ComponentStoryDecisionDiagram inherits from StructuralCondition such that it may be
used in the ManagerSpecificationEntry (cf. Section D.2.1). In addition, it inherits from Ab-
stractStoryDecisionDiagram that defines the Nodes and Edges that constitute the structure of an
SDD. In addition to the LeafNodes of normal SDDs, the component SDD metamodel uses
ComponentStoryPatternNodes that contain a ComponentStoryPattern.
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Finally, the component SDD metamodel defines an EvaluateComponentSDDExpression that
inherits from TriggerEmbeddedComponentExpression. It enables to refer to a componenSDD
that is defined by a embedded component. It is contained in a ComponentPartVariable of the
ComponentStoryPattern.

D.3 MATLAB/Simulink and Stateflow

This section introduces the metamodel for MATLAB/Simulink and Stateflow that we use
as an intermediate model in our transformation of MECHATRONICUML models to MAT-
LAB/Simulink. The metamodel reflects the model structure of Simulink and Stateflow, but is
restricted to those language features of Simulink that we need for our transformation. In the
following, we first present the metamodels for Simulink (Section D.3.1) and Stateflow (Sec-
tion D.3.2). Thereafter, we introduce two utility metamodels for realizing message-based
communication (Section D.3.3) and reconfiguration in Simulink (Section D.3.4). These util-
ity metamodels do not reflect the Simulink model structure but ease the transformation and
are translated to complex Simulink subsystems.

D.3.1 Simulink

The class diagram in Figure D.11 shows the core of the Simulink metamodel. The metamodel
has been derived by reverse engineering the Simulink model structure, but includes several
optimizations that ease the specification of a model transformation.

The root of a Simulink model is the SimulinkContainer that contains a set of SimulinkModels
and SimulinkLibrary objects, both of which are SimulinkFiles. This enables to split a model over
several files and libraries.

A Simulink model and everything that is contained therein is an Element. Besides the
SimulinkContainer, the metamodel defines three types of Elements. These are Block, Line, and
Bus. Each element has an id and a set of Parameters that define the properties of the Element.
Parameters are specified as name/value pairs where the data type of the Parameter is given by
an additional type attribute.

The basic building block of a Simulink model or library is the Block. SubSystems are spe-
cial Blocks that contain further Blocks and thereby enable to structure the model hierarchically.
Each SubSystem has a set of PortBlocks, which are either InPortBlocks where information en-
ters the SubSystem or OutPortBlocks where information leaves the SubSystem. By adding an
EnablePort to a SubSystem, the SubSystem becomes an enabled subsystem. In the same way, a
SubSystem becomes a triggered subsystem by adding a TriggerPort. The TriggerPort also spec-
ifies whether it triggers the execution of the triggered subsystem when the input signal rises
or falls or in either case by the TriggerEvent enum.

Two special kinds of Blocks are the LibraryReference and the ChartBlock. A LibraryReference
enables to include a Block or even a complete Subsystem from a SimulinkLibrary. We utilize this
feature for including an implementation of the link layer blocks (cf. Section 6.3.3.2) from a
library.

The ChartBlock enables to include a Stateflow chart into a Simulink model. The ChartBlock
provides the InPortBlocks and OutPortBlocks for connecting the ChartBlock with the remaining
Simulink model. The ChartBlock refers to the Chart which contains the Stateflow chart. We
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Figure D.11: Class Diagram of the Simulink Metamodel
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introduce the Stateflow metamodel in detail in Section D.3.2. The Charts are contained in a
StateflowMachine that is part of the SimulinkFile.

A SubSystem contains a set of Lines that connect the Blocks. Each Block may have several
outgoingLines and incomingLines, but each Line connects exactly two Blocks. A Line refers to a
Bus if it represents a bus signal.

A Bus has a name and contains a set of named BusElements, each having a DataType and
a dimension. In addition, our metamodel contains two Blocks for handling Busses. These are
BusSelector for retrieving a signal from the Bus and BusCreator for creating a Bus from a set
of signals.

Figure D.12 shows additional types of Blocks. These are ZeroOrderHold, Constant, Digital-
Clock, UnitDelay, and EmbeddedMatlabFunction. All of these Blocks have the intended function-
ality as described in Chapter 6. The EmbeddedMatlabFunction specifies the code that defines
its behavior as an attribute.

Figure D.12: Class Diagram of Additional Blocks of the Simulink Metamodel

A special case is given by the MiscBlock. The MiscBlock enables to represent any type of
Block that may occur in a Simulink, but which is not explicitly represented in our metamodel.

D.3.2 Stateflow

The class diagram in Figure D.13 shows the Stateflow metamodel. The root of the metamodel
is the StateflowElement. It is the super class for all elements of a Stateflow chart.

A Stateflow chart consists of Nodes and Transitions that connect the Nodes. Stateflow charts
support three types of Nodes. These are States, Junctions, and History elements. States may
again contain further Nodes, which enables to specify hierarchical state machines. The Chart
itself is a special State. The subStateType defines whether a hierarchical State is an EXCLUSIVE
or a PARALLEL State. In addition, States may be marked as initial and have a priority that defines
the execution order for PARALLEL States.

A State contains a set of Data elements that enable to define local variables and constants
for a State. A Data element has a name, a type, an initial value, and a size that defines whether
the Data element is an array. A Chart additionally defines input and output Data elements. They
have a 1:1 correspondence to the InPortBlocks and OutPortBlocks of the ChartBlock in Simulink.
As a result, the signals that are received from and send to the Simulink model are used as
regular variables in the Stateflow chart.
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Figure D.13: Class Diagram of the Stateflow Metamodel
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In addition, a State may define a set of EmbeddedFunctions. Each EmbeddedFunction has a
name and a behavior specification that is given by the code. The input and output parameters
of the EmbeddedFunction are specified by Data elements.

States and Transitions may contain a set of Actions. In a State, the Action is used for defining
entryActions, exitActions, and duringActions. The initialGuard enables to select an initial State in
case that the Stateflow chart contains more than one initial state, which is supported. For a
Transition, an Action is used for defining the transition guard as well as the transition action.

Finally, a State defines a set of Events and a Transition may specify a received event. Sending
an Event is an Action that is defined by a special expression String.

D.3.3 Message-Based Communication

The class diagram in Figure D.14 shows the metamodel for realizing message-based com-
munication in Simulink. The metamodel only contains two classes that both inherit from
Block. These are CommunicationSwitch and LinkLayer. Both are specific for our approach and
have no direct correspondence to a block in Simulink, but are implemented by subsystems in
Simulink.

Figure D.14: Class Diagram of the Simulink Message Metamodel

The CommunicationSwitch represents a communication switch as defined in Section 6.3.3.3.
The LinkLayer represents a link layer block as defined in Section 6.3.3.2. The LinkLayer speci-
fies attributes for all QoS assumptions of MECHATRONICUML that we support in our trans-
formation as described in Section 6.3.4.

The class diagram in Figure D.15 shows the metamodel for realizing message-based com-
munication in Stateflow. In particular, message-based communication is realized by three
BufferFunctions that are special EmbeddedFunctions. These functions realize the enqueue, de-
queue, and checkQueue functions as defined in Section 6.4.2.

The subclasses of BufferFunction define two sets of buffer functions for realizing two vari-
ants of message buffers. The classes on the left side of Figure D.15 realize the Enqueue, De-
queue, and CheckQueue functions if there exists a separate message buffer for each message
type. The classes on the right side of Figure D.15 realize the SharedEnqueue, SharedDequeue,
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Figure D.15: Class Diagram of the Stateflow Buffer Metamodel

and SharedCheckQueue functions if all message types share the same buffer, i.e., there exists
one message buffer that contains all message types.

D.3.4 Reconfiguration

The class diagram in Figure D.16 shows the metamodel that enables to emulate reconfigura-
tion of continuous components in Simulink. The reconfiguration of discrete components is
solely realized by features of Simulink already introduced in Section D.3.1.

Figure D.16: Class Diagram of the Simulink Reconfiguration Metamodel

The metamodel defines three additional types of Blocks: MultiSourceControl, MultiTargetCon-
trol, and FadingComponent. MultiSourceControl and MultiTargetControl enable to reconfigure sig-
nals between continuous ports (cf. Section 6.3.2.1). The FadingComponent block represents a
fading component. We provide a separate class for fading components because they have a
fixed internal structure as defined in Section 6.3.1.3.
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