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Zusammenfassung

Die Probleme, die in dieser Dissertation behandelt werden, haben ihren Ursprung im Gebiet der
verteilten Systeme und insbesondere der Overlay Netzwerke. Genauer gesagt untersuchen wir, wie
wir die dynamische Natur der Overlay Netzwerke ”zähmen” können. Wir fragen uns: ”Wie können
wir es schaffen, dass Teilnehmer ständig das Netzwerk verlassen und eintreten können, ohne dass der
Zusammenhang des Netzwerkes gefährdet ist.” Eine andere Frage bezüglich der dynamischen Natur
der Overlay Netzwerke, die wir uns stellen ist: ”Wie können wir garantieren, dass ein Netzwerk,
was momentan eine schlechte Struktur hat, in eine erwünschte Struktur übergeht, und zwar möglichst
schnell und effizient?” Um diese Frage zu beantworten, untersuchen wir die Eigenschaft der topolo-
gischen Selbststabilisierung in Overlay Netzwerken. Ein Netzwerk besitzt diese Eigenschaft, wenn
es seine Struktur (oder Topologie) anpassen kann und eine erwünschte Struktur erreichen kann, un-
abhängig von der initialen Topologie, die das Netzwerk hat. Dies wird durch bestimmte Protokolle
realisiert (selbststabilisierende Protokolle), die ständig an jeden Teilnehmer des Netzwerkes lokal
laufen, was heißt, dass jeder Knoten Wissen nur über seine direkte Nachbarn im Netzwerk verfügt
und Aktionen gemäß dieses Wissens durchführt.

In dieser Dissertation stellen wir effiziente selbststabilisierende Protokolle für diverse Topologien
vor. Diese Topologien haben gewisse Eigenschaften, die für diverse Anwendungen erwünscht sind.
Die Qualität der Effizienz unser Protokolle messen wir anhand der Anzahl der Bits, die durch das
Protokoll gesendet werden, als auch die Zeit, die benötigt wird, um die erwünschte Topologie zu
erreichen.

Wir haben erwähnt, dass wir auch das Verwalten der Situation untersuchen wollen, in der Teil-
nehmer (oder Knoten) das Netzwerk verlassen wollen. In dieser Dissertation untersuchen wir dieses
Problem und geben eine formelle Definition davon. Wir untersuchen unter welchen Umständen das
Problem lösbar ist und stellen letztendlich ein algorithmisches Framework vor, welches an existieren-
den verteilten Protokollen angewendet werden kann, um dieses Problem zu lösen.
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Abstract

The problems studied in this thesis originate from the field of distributed systems and in particular
overlay networks. More specifically, we study how to handle the dynamic nature of overlay networks.
We ask ourselves the question: ”How can we handle the situation in which participants can constantly
join and leave the network, without endangering that the network disconnects?” Another question we
ask ourselves regarding the dynamic nature of overlay networks is: ”How can we guarantee that a
network which currently has a structure that is in a bad state, recovers to a desired structure quickly
and efficiently?” In order to answer that question, we study topological self-stabilization in overlay
networks. This is a property that a network has, if it is able to adapt its structure (or topology) and
reach a desired topology, independently of the original topology that the network has. This is done by
specific protocols (self-stabilizing protocols), which are run constantly on each network participant
and are local: i.e., each node has knowledge only about its direct neighbors in the network and takes
actions according to that knowledge.

In this thesis we present efficient self-stabilizing protocols for several topologies. These topolo-
gies have specific properties that are desired for various applications. The quality of the efficiency of
our protocols is measured according to communication bits that are sent, due to our protocols, as well
as according to the time needed in order for the desired topology to be reached.

We mentioned above that we want to examine the case of handling participants (or nodes) that
are leaving the network. In this thesis we study this problem and give a formal definition of it. We
investigate under which conditions this problem is solvable and in the end give a framework which can
be applied by existing distributed protocols, with certain prerequisites, in order to solve this problem.
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Prologue

Conducting data storage and computing in a distributed manner has become a common practice, due
to the nature of many applications. The number and variety of client devices is increasing over the
years, which results in an increasingly complex array of end points to serve. The use of social, mobile,
and embedded technology causes the amount and variety of data collected to expand exponentially. So
the need to mine this data for insights -for businesses or other organizations- is becoming imperative.

Distributed systems have applications that vary from Distributed File Systems (Hadoop [85]),
peer-to-peer based protocols (BitTorrent [86]), cloud networks, to volunteer-based projects (Fold-
ing@home, SETI@ home ([64] [74]), to name a few examples.

The peer-to-peer distributed computing model is described by a distributed system, where partic-
ipants are allowed to leave or enter the system at any time and are aware only of their local view of
the system. This model ensures uninterrupted uptime and access to applications and data even in the
event of partial system failure. Vendors guarantee very high availability, a feature which cannot be
easily be matched using centralized computing.

Distributed systems are highly dynamic by nature. In peer-to-peer systems the participants can
join and leave any time and also connections might fail. In cloud-based systems, where different
cloud providers may be used for one application, the unavailability of some providers is also an issue,
due to the dynamic nature of computation or storage needs (scaling up and down over time). This
establishes a high degree of dynamics. The higher this degree is over a period of time, the more
probable it is for undesired situations to occur in the distributed system. The structure of the (overlay)
network of the system might lose its original topology and no longer maintain the desired qualities
such as good expansion, or low diameter, for example. In the worst case, parts of the network can
disconnect from each other.

We therefore need protocols which can adapt to these dynamics and help the system to recover
from such undesired situations. The participants in a distributed system conduct local computations:
i.e., they do not have a global view on the whole system. Thus, protocols are needed that run on the
participants of the system (by considering only the local view of the participant) and can achieve that
the whole system self-recovers from such undesired situations automatically. For that reason we use
self-stabilizing protocols. Self-stabilization is the property of a system to recover from any undesired
state and maintain that state. A more formal definition of self-stabilization will be given in the next
section.

Note that simple self-repairing mechanisms, which are used in many distributed protocols, do
not suffice to ensure recovery out of any undesired state (or network structure in case of overlay
networks). For example, it was shown ([87]) that several invariants presented for the original Chord
protocol ([80]) (one of the most influential papers in the field of overlay networks) are not correct:
i.e., they do not suffice in order for the network to recover out of any faulty state.

In this thesis, several self-stabilizing protocols which maintain certain network structures are
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presented. These structures (or overlay topologies) are useful for implementing DHTs (distributed
hash tables) or for simply providing overlays with some desired properties. We will focus on giving
efficient protocols, concerning the time and communication overhead of these protocols.

We will furthermore focus on one aspect of the dynamics of overlay networks, the exiting of
participants from the system, since this aspect endangers the connectivity if not handled carefully.
We will examine what exactly describes a departure, when is a participant able to leave the system
without endangering connectivity, and how we can solve this problem. Moreover, we will study the
case of constructing an algorithmic framework that can be applied to distributed protocols, in order
for them to be able to handle departures of participants.

1 Preliminaries

1.1 The Model

We assume that a distributed system consists of a fixed set of participants (or nodes) with fixed iden-
tifiers, ids for short, that are globally ordered. We refer to nodes and their identifiers interchangeably.
The system is controlled by an algorithm (or protocol) that specifies the variables, and actions that are
available in each node. In addition to the algorithm-based variables there is a system-based variable
called a channel whose values are sets of messages. The channel message capacity is unbounded,
and messages will never get lost. We consider point-to-point communications (multi-cast and broad-
cast primitives are not considered). We treat all messages sent to a node u as belonging to a single
incoming channel u.C.

The nodes carry out computations and interact with each other by performing actions. There
are two types of actions. The first type of action has the form of a standard procedure 〈label〉
(〈parameters〉) : 〈command〉, where label is the unique name of that action, parameters specifies
the parameter list of the action, and command specifies the statements to be executed when calling
that action. Such actions can be called remotely. In fact, we assume that every message must be of
the form 〈label〉(〈parameters〉), where label specifies the action to be called in the receiving node
and parameters contains the parameters to be passed to that action call. All other messages will
be ignored by the nodes. Apart from being triggered by messages, these actions may also be called
locally by the node, that causes their immediate execution. The second type of action has the form
〈label〉 : 〈guard〉 −→ 〈command〉, where label and command are defined as above and guard is a
predicate over local variables. We call an action whose guard is simply true a timeout action, which
is an action that is executed periodically, with the period being a specific time interval.

Each node stores a number of variables, and the combination of the values of its variables deter-
mines its state. The system state is the combination of the states of all nodes as well as the content
of all channels. An action in some node u is enabled in some system state if its guard evaluates to
true or its guard detects the presence of a particular message type in u.C. The action is disabled
otherwise.

A computation is an infinite fair sequence of states such that for each state si, the next state si+1

is obtained by executing an action that is enabled in si. This disallows the overlap of action execution.
That is, action execution is atomic. We assume two kinds of fairness of computation: weak fairness of
action execution and fair message receipt. Weak fairness of action execution means that if an action is
enabled in all but finitely many states of the computation, then this action is executed infinitely often.

Fair message receipt means that if the computation contains a state where there is a message in a
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channel of a node that is not gone, this computation also contains a later state where this message is
not present in the channel: i.e., the message is received.

A computation suffix is a sequence of computation states past a particular state of this computa-
tion. In other words, the suffix of the computation is obtained by removing the initial state and finitely
many subsequent states. Note that a computation suffix is also a computation.

We consider algorithms that do not manipulate the internals of node identifiers. Specifically, an
algorithm is a copy-store-send algorithm if the only operations that it executes on node ids is copying
them, storing them in local node memory and sending them in a message. That is, operations on ids
such as addition, radix computation, hashing, etc. are not used. In a copy-store-send algorithm, if
a node does not store an id in its local memory, the node may learn this id only by receiving it in a
message. A copy-store-send algorithm cannot introduce new ids to the system. It can only operate on
the ids that are already there. We will use the term algorithm and protocol interchangeably.

We model the network by a directed graph G = (V,E). The set V represents the nodes of
the network. The set of edges E describes the possible communication pairs. E consists of two
subsets: the explicit edges Ee = {(u, v) : v is stored as a variable of u} and the implicit edges Ei =
{(u, v) : v is part of a message in u’s channel (v ∈ u.C)}, So it holds that E = Ee ∪ Ei. Moreover,
we define Ge = (V,Ee).

There are different models of synchronicity for message passing systems. In asynchronous sys-
tems there is no guarantee of when a message sent by a node u will arrive at its destination v. There
exist also partially synchronous message passing system models, where there is usually an upper time
bound on when a message is certain to be delivered, but this time bound is not known to the partici-
pants of the network. In the synchronous case however, the participants have this knowledge. So in
this case the protocols operate in synchronous rounds. We assume that in the time period of one round
a node u can process the messages in u.C and conduct the desired actions. We furthermore assume
that messages sent in one round by the nodes in the network are delivered before the beginning of the
next round. In this thesis we will also refer to rounds as time steps. For the first part of the thesis
we consider the asynchronous message passing model, whereas for the second part the synchronous
message passing model is considered.

1.2 Notation

We denote the id of a node u as u.id. We assume that the ids are values within the interval (0, 1).
More precisely, the id of a node u, u.id is chosen uniformly at random from that interval. Besides
that, a node maintains several variables stored in its local memory. These are called node variables.
A node variable a maintained by a node u is denoted as a.u. Global variables are variables that are
not stored or used by the nodes. Usually, these are state properties of the nodes or the network and
are used for proof purposes. A global variable b that applies to a property of node u is denoted as
b(u). The values of global variables are fixed, whereas the values of node variables can be changed
through the actions of the protocol. The set of all node variables of a node u (i.e., the set of outgoing
explicit edges) is also called the neighborhood of u and is denoted as u.N .

A message in general consists of the following parts: a sender id, which is the id of the node
sending the message, one or more optional additional ids, if the sender wants to inform the receiving
node about another node, and the type of the message. When we want to denote that a node u sends
a message m to node v, we write: u : send message(m.id,m.id2, ...,m.idk,m.type) to v, where
m.id,m.id2, ...,midk are the additional ids sent through the message and m.type is the message
type. We refer to the sender of the message as m.sender. Note that there can be arguments of other
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types in a message, other than ids. The message type is always given as the last argument. Note that
if it holds for the receiver of a message v that v = null, we then consider that no message is sent.

We say that an event happens with high probability (w.h.p.), if it happens with probability p(n),
such that p(n)→ 1 for n→∞.

We say that a node u is greater or at the right (resp. smaller or at the left) of another node v
if u.id > v.id (resp. u.id < v.id). Note that we also may write u < v (resp. u > v) instead of
u.id < v.id (resp. u.id > v.id). The distance between two nodes u and v, (distance(u, v)) with
u.id > v.id is defined as min{|u.id − v.id|, |1 − u.id + v.id|}. We say that a node u is closer to a
node v than to a node w if distance(u, v) < distance(v, w). We say that a node u is between node
v and node w if v.id < u.id < w.id (or w.id < u.id < v.id).

We say that two nodes u and v in a network graph G = (V,E) are contiguous if u = argminw∈V
{w.id > v.id} or if u = argminw∈V {w.id} ∧ v = argmaxw∈V {w.id}.

The length of a path of edges p, i.e. length(p), is equal to the number of nodes it contains
minus one. Let umin = argminv∈p {v.id} and umax = argmaxv∈p {v.id} then the range of a path
(range(p)) is given by range(p) = umax − umin.

We define an undirected path p in a network graph G = (V,E) as a sequence of edges (v0, v1),
(v1, v2), · · · , (vk−1, vk), such that ∀i ∈ {1, · · · , k} : (vi, vi−1) ∈ E ∨ (vi−1, vi) ∈ E.

1.3 Oracles

An oracle O is a predicate that depends on the system state and the node calling it. We restrict
our attention to oracles that only depend on the current network graph: i.e., oracles are of the form
O: GS × V → {true, false} where GS is the set of network graph topologies and V is the set of
nodes. We assume that the oracles we introduce always work correctly when used: i.e. oracle O
answers true iff the property the oracle is queried for indeed holds.

2 Self-Stabilization

The term self-stabilization refers to the property of a system to be able to recover out of any arbitrary
state and eventually converge to a desired state. An algorithm is said to be self-stabilizing if it can
deliver that requirement. More precisely:

A protocol is self-stabilizing if it satisfies the following two properties.

Convergence: starting from an arbitrary system state, the protocol is guaranteed to arrive at a legiti-
mate state.

Closure: starting from a legitimate state, the protocol remains in legitimate states thereafter.

Thus a self-stabilizing protocol is able to recover from transient faults regardless of their nature.
Moreover, a self-stabilizing protocol does not have to be initialized as it eventually starts to behave
correctly regardless of its initial state.

2.1 Topological Self-Stabilization

Topological self-stabilization refers to overlay networks and the goal is to state a protocol that reaches
a desired network topology starting from an (almost) arbitrary initial network topology.
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More formally, we want to construct a protocol P that solves an overlay problem OP starting
from an initial topology of the set IT. A protocol is unconditionally self-stabilizing if IT contains
every possible state. Analogously, a protocol is conditionally self-stabilizing if IT contains only
states that fulfill some conditions. For topological self-stabilization we assume that IT contains any
state as long as GIT =

(
V,EIT

)
is weakly connected: i.e. the combined knowledge of all nodes in

this state covers the whole network, and there are no identifiers that do not belong to existing nodes
in the network. The set of target topologies defined in OP is given by OP =

{
GOPe =

(
V,EOPe

)}
:

i.e. the goal topologies of the overlay problem are only defined on explicit edges and EOPi can be an
arbitrary (even empty) set of edges. We also call the program states in OP legal states or stable states.
We say a protocol P that solves a problem OP is topologically self-stabilizing if for P convergence
and closure can be shown. Convergence means that P started with any state in IT reaches a legal state
in OP. Closure means that P started in a legal state in OP maintains a legal state (see Figure 2.1).
In this thesis only protocols will be considered, where the stable state is unique (i.e. the number of
target topologies is 1).

For each node variable u.a of a node u we define a(u) to be the global variable that has the value
u.a would have at the stable state. Note that a network is in a stable state if for every node variable
u.a of a node u it holds that u.a = a(u).

We say that a node variable a.u is valid if it does not locally violate the restrictions set by the
protocol. For example, if the variable u.successor is defined through the protocol as a node w
such that w.id > u.id, but it currently is the case that (u.successor).id < u.id, then the variable
u.successor is invalid. We also say that a message contains invalid information, if the content in this
message does not depict the truth. For example it contains the information that v.(u.state) = active,
(for some variable of state of a node u), whereas it holds that state(u) = active.

Definition 2.1
We say that an overlay network is in a valid state iff all node variables are valid and there are no
messages containing invaliding information in the system.

2.2 Complexity Measures

In order to study the performance of our algorithms we adopt the complexity measures used in the
literature. The self-stabilization time of a protocol in the synchronous message passing system is the
number of rounds it takes in the worst case for the protocol to reach a stable state. The message com-
plexity of the self-stabilization procedure is the number of messages sent in the network during the
self-stabilization time. The message complexity of the stable state refers to the number of messages
sent in the network per round if the network is in the stable state. The communication complexity
refers to the number of communication bits sent in the network. Note that in our case, the messages
sent through our protocols contain just a constant number of node ids plus some other arguments of
constant size. Since each node id requires O(log n) space, each message contains O(log n) com-
munication bits. We will therefore restrict ourselves to the study of message complexity, since the
communication complexity would just be multiplying the message complexity by log n. In the rare
cases where the messages sent by the protocols contain more than a constant number of ids we will
count just these messages multiple times in order to compute the message complexity.
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Figure 1: Illustration of the convergence and the closure phase. The protocol P eventually reaches the
set of stable states OP, which in this case are states s6 and s7.

2.3 Topological Self-stabilization in the Literature

There is a large body of literature on how to efficiently maintain overlay networks, e.g., [51, 52, 53,
25, 54, 55, 56, 57, 24, 2, 12]. While many results are already known on how to keep an overlay
network in a legal state, far less is known about self-stabilizing overlay networks. The idea of self-
stabilization in distributed computing firstly appeared in a classical paper by E.W. Dijkstra in 1974
[1] in which he looked at the problem of self-stabilization in a token ring. Interestingly, although
self-stabilizing distributed computing has received a lot of attention for many years, the problem
of designing self-stabilizing networks has attracted much less attention. In order to recover certain
network topologies from any weakly connected network, researchers have started with simple line
and ring networks, [26, 37]. The Iterative Successor Pointer Rewiring Protocol [26] and the Ring
Network [37], for example, organize the nodes in a sorted ring. In [27] Dolev and Kat describe a
strategy to build a hypertree with a polylogarithmic degree and search time. In [35], Onus et al.
present a local-control strategy called linearization for converting an arbitrary connected graph into
a sorted list. Various self-stabilizing algorithms for different network overlay structures have been
considered over the years [32, 30, 28, 29, 27]. Jacob et al. [32] generalize insights gained from graph
linearization to two dimensions and present a self-stabilizing construction for Delaunay graphs. In
another paper, Jacob et al. [30] present a self-stabilizing variant of the skip graph and show that
it can recover its network topology from any weakly connected state in O(log2 n) communication
rounds with high probability. In [28] and [29] Dolev and Tzachar show self-stabilizing algorithms for
forming sub-graphs such as clusters or expanders in just a polylogarithmic number of rounds.
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Figure 2: The four primitives. The dashed edges represent implicit edges, whereas the normal edges
represent explicit edges.

3 Basic Overlay Network Operations

Overlay network protocols in general work by manipulating the edges of the network graph in spe-
cific ways. First we will introduce some primitives for edge manipulation in overlay networks. These
primitives (in combination) most importantly ensure the maintenance of weak connectivity, a prop-
erty that is very important for overlay management protocols, and for topological self-stabilization
protocols in particular.

3.1 The primitives for Edge Manipulation

Here we introduce four primitives for manipulating edges in an overlay network that are safe in a sense
that they preserve weak connectivity (as long as there is no fault). This implies that any distributed
protocol whose actions can be decomposed into these four primitives is guaranteed to preserve weak
connectivity. The four primitives are:

Introduction If a node u has a reference to two nodes v and w, u introduces w to v by sending a
message to v containing a reference to w while keeping the reference to w.

Delegation If a node u has a reference to two nodes v and w, then u delegates w’s reference to v by
sending a message to v containing a reference to w and deletes the reference to w.

Fusion If a node u has two references v and w with v = w, then it fuses them by keeping only one
of these references.

Reversal If a node u has a reference to some other node v, then it reverses the connection by sending
a reference of itself to v and deleting the reference to v.

A special case of introduction is the self-introduction, where u sends a reference of itself to v, but
does not delete its reference to v. The four primitives have the advantage that they can be executed
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locally by every node in a wait-free fashion (as none of the primitives requires an acknowledgement).
Also, they just need the ability to check whether two references point to the same node (see the
Fusion) to be implementable. Other than that, access to the contents of the references is not needed,
which is useful, for example, for anonymous networks. Moreover, it holds:

Lemma 3.1 Introduction, Delegation, Fusion, and Reversal preserve weak connectivity.

Proof. The statement obviously holds for Introduction since only additional edges are introduced. In
Delegation an edge (u,w) is deleted, but there still exists a path from u to w via v, so u and w are still
in the same weakly connected component. Fusion deletes an edge only if it is superfluous for weak
connectivity. The Reversal rule deletes an edge (u, v) but replaces it with an edge (v, u), thereby also
preserving weak connectivity. ut

Let P denote the set of all distributed protocols where all interactions between nodes can be
decomposed into the four primitives. Not surprisingly, all of the self-stabilizing topology maintenance
protocols proposed so far (e.g., [65, 66, 69, 73, 30, 2]) satisfy this property (as otherwise they would
risk disconnection). Lemma 3.1 implies that any protocol in P preserves weak connectivity, which
was previously shown individually for each cited protocol. Note that the first three primitives even
preserve strong connectivity in a sense that for any pair of nodes u, v with a directed path in the
network graph G there will always be a directed path from u to v in G when only allowing these
three primitives. We say that a set of primitives is universal if the primitives allow one to get from
any weakly connected graph G = (V,E) to any other weakly connected graph G′ = (V,E′) The set
is weakly universal if G′ is strongly connected.

Theorem 3.2 Introduction, Delegation, Fusion, and Reversal are universal.

Proof. We give a general strategy how to transform an arbitrary weakly connected graphG = (V,E)
into any other weakly connected graph G′ = (V,E′). At first, note that by continuously introducing
all neighbors of every node to each other, including self-introduction, then the topology of G is
eventually transformed fromG into a clique (in fact,O(log n) rounds of communication are sufficient
for that as the distances between the nodes are essentially cut in half in each round).

Next we show that by using Delegation and Fusion, one can transform G from the clique to the
bi-directed extension G′′ = (V,E′′) of G′, i.e., the graph where for any edge (u, v) ∈ E′ there are
edges (u, v), (v, u) ∈ E′′. To do so, we make use of the fact that G′′ is strongly connected. Consider
an arbitrary edge (u,w) in G that is not in E′′. Since G′′ is strongly connected, there exists a shortest
path from u to w in G′′ and therefore also in G (as we first want to keep all edges in G′′). Let v1 be
the first neighbor of u along that shortest path. Then u delegates the reference of w to v1. Now the
node v1 (and all other nodes on the shortest path) proceed similar to u by forwarding the reference
to w along the shortest path up to the last node vk, who is a neighbor of w. Node vk uses Fusion to
merge the edge with (vk, w) ∈ E′′. By applying this procedure to all edges not inE′′, all that remains
is G′′.

At last we can use Reversal and Fusion to get from G′′ to G′. To do so, every edge (u, v) that is
in E′′, but not in E′ is reversed by u. Then the newly created edge (v, u) is fused with the already
existing edge (v, u) ∈ E′. ut

Note that Theorem 3.2 only shows that in principle it is possible to get from any weakly connected
graph to any other weakly connected graph. From the proof we can conclude the following corollary.
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Corollary 3.3 Introduction, Delegation, and Fusion are weakly universal.

Furthermore, Introduction, Delegation, Fusion and Reversal are not only sufficient for universality
but also necessary, i.e., by removing one primitive, universality is lost.

Theorem 3.4 Introduction, Delegation, Fusion and Reversal are necessary for universality.

Proof. To prove the lemma, we show that each primitive has a unique function that cannot be replaced
by the other primitives. Introduction is the only primitive that can create new edges, so without it,
any Graph G′ with |E′| > |E| cannot be reached from G. Fusion is the only primitive that reduces
the overall number of edges. Delegation is necessary, since by using only Introduction, Fusion and
Reversal, a protocol can never locally disconnect two specific nodes. Finally, consider an example
graph G consisting of two nodes u and v and an edge (u, v). Reversal is necessary to reach the goal
topology G′ that consists solely of the edge (v, u). ut

4 Thesis Outline

The thesis is divided into two parts. The first part focuses on the problem of node departures in
distributed systems. We give self-stabilizing solutions for special node departure problems and end
by giving a general self-stabilizing algorithmic framework for solving the Finite Departure Problem,
which we call the FDP. The protocols are developed for the asynchronous message passing system
model. The content of the first part is based on the following papers: ([71, 78])

Dianne Foreback, Andreas Koutsopoulos, Mikhail Nesterenko, Christian Scheideler, Thim Stroth-
mann: On Stabilizing Departures in Overlay Networks. SSS 2014.

Andreas Koutsopoulos, Thim Strothmann and Christian Scheideler: Towards a Universal Approach
for the Finite Departure Problem in Overlay Networks, SSS 2015.

In the second part we study specific self-stabilizing problems for certain goal topologies. We focus
on giving efficient solutions to these problems, in terms of message complexity and self-stabilization
time. The setting considered in this part is synchronous message passing. The content of the second
part is based on the papers we wrote on topological self-stabilization. ([33, 77, 76, 75])

Sebastian Kniesburges, Andreas Koutsopoulos, Christian Scheideler: Re-Chord: a self-stabilizing
chord overlay network. SPAA 2011.

Sebastian Kniesburges, Andreas Koutsopoulos, Christian Scheideler: A Self-Stabilization Process for
Small-World Networks. IPDPS 2012

Sebastian Kniesburges, Andreas Koutsopoulos, Christian Scheideler: CONE-DHT: A Distributed
Self-Stabilizing Algorithm for a Heterogeneous Storage System. DISC 2013

Sebastian Kniesburges, Andreas Koutsopoulos, Christian Scheideler: A Deterministic Worst-Case
Message Complexity Optimal Solution for Resource Discovery. SIROCCO 2013,Theoretical Com-
puter Science 584
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A fundamental problem for peer-to-peer systems is to maintain connectivity while nodes are leav-
ing, i.e., the nodes requesting to leave the peer-to-peer system are excluded from the overlay network
without affecting its connectivity. There are a number of studies for safe node exclusion if the overlay
is initially in a well-defined state initially. Surprisingly, the problem has not been formally studied
yet for the case in which the overlay network is in an arbitrary initial state: i.e., we are looking for a
self-stabilizing solution for excluding leaving nodes.

We begin in the first chapter by formally defining the node departure problem in distributed sys-
tems as the Finite Departure Problem (FDP) and investigate when this problem can be solved.
Unfortunately, in the general case there is no self-stabilizing distributed algorithm for the FDP that
works without using oracles. We give an algorithm that provides a solution with the help of an or-
acle called NIDEC. Note that in this part of the thesis we consider asynchronous message passing
systems.

We then relax the FDP to the FSP (Finite Sleep Problem), in order for it to be solvable without
the use of oracles. In the FSP , the leaving decision does not have to be final: the nodes may resume
computation if necessary.

The results of the first chapter are based on the paper

Dianne Foreback, Andreas Koutsopoulos, Mikhail Nesterenko, Christian Scheideler, Thim
Strothmann: On Stabilizing Departures in Overlay Networks. SSS 2014.

In the second chapter we further investigate the FDP problem. We provide a self-stabilizing
algorithm that solves the problem for the case of anonymous networks and also give a general algo-
rithmic framework which can be applied to a large class of distributed algorithms in order to solve
FDP . The content of the chapter is based on the paper

Thim Strothmann, Andreas Koutsopoulos and Christian Scheideler
Towards a Universal Approach for the Finite Departure Problem in Overlay Networks, SSS 2015.
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Chapter 1

Investigating Departures

1 Introduction

Peer-to-peer systems allow computers to interact and share resources without the need for a central
server or centralized authority. This ability to self-organize has made peer-to-peer systems very pop-
ular. Since participation in such systems is usually voluntary, the peers may arrive and depart at any
time. A peer may even leave the network without notice. Therefore, maintaining a connected overlay
network is a challenging task. Many strategies help to alleviate this problem. They include using an
overlay network with a high expansion or separating the peers into more reliable super-peers forming
an overlay network on behalf of the other peers that just connect to one or more super-peers. While
these strategies may work well in practice, rigorous research on when it is safe to leave the network is
still in its infancy. In this chapter we lay the foundation for a rigorous treatment of node departures in
the context of self-stabilization. In fact, we are the first to provide answers to the following question:

Is it possible to design a distributed algorithm that allows any collection of nodes to eventually
leave a network from any initial state without losing connectivity?

Self-stabilization makes the above question non-trivial. A self-stabilizing algorithm recovers from
an arbitrary initial state. Hence, a self-stabilizing node departure algorithm has to handle the states
where the departing node is about to leave and may disconnect the network.

1.1 Related Work

The difficulty of the Finite Departure Problem resembles that of fault-tolerant agreement in distributed
systems. Fault-tolerant agreement has been studied in the context of the famous Consensus Problem.
It is shown [70] that the problem is not solvable in an asynchronous system even if only a single node
may crash. However, solutions to the stabilizing consensus problem are known [61, 68], in which it
is not required that each node irrevocably commits to a final value but that eventually they arrive at
a common, stable value without being aware of that. The impossibility can also be circumvented by
the use of specialized oracles known as failure detectors [67].

Due to the popularity of peer-to-peer networks, the research literature on this subject is exten-
sive [60, 51, 52, 53, 25, 54, 56, 24, 2]. While departure algorithms have been proposed in these
papers, none of them are self-stabilizing. In fact, a rigorous treatment of when it is safe to leave the
system has not been yet attempted. Cases in which the rate of churn is limited have already been con-
sidered [59, 72, 79]. Kuhn et al [59, 72, 79] handle this limitation by organizing the nodes into cliques
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of Θ(log n) size that they call super-nodes. Hayes et al. [72] handle limited churn with a topological
repair strategy called Forgiving Graph. For the case that the nodes have a sufficient amount of time
to react, Saia et al. [83] propose a network maintenance algorithm called DASH to repair the network
resulting from an arbitrary number of deletions. Limited churn has also been studied in the context
of adversarial nodes [62, 63, 84]. While there is no work on self-stabilizing node departures, several
self-stabilizing peer-to-peer algorithms are proposed. However, none of these provide any means to
exclude nodes that want to leave the network.

2 Formalizing the Problem

Before we define a legitimate state for the problems considered in this chapter, we restrict the set of
initial states to exclude trivially useless parts of that state. But first we introduce some notation, as
well as our specific model.

2.1 Model and Notation

We call nodes that want to depart the network leaving nodes. The rest are staying nodes. Each node
has a read-only boolean variable called leaving. If this variable is true, the node is leaving; the node
is staying otherwise.

We place no bounds on message propagation delay or relative process execution speeds: i.e., we
allow fully asynchronous computations and non-FIFO message delivery.

There are two special commands that are important for the study of our finite departure problem,
exit and sleep. If a node executes exit it enters a designated exit state. We call such a node gone. If a
node executes sleep, it enters a sleep state. Such a node is asleep. If a node never wakes up again, it
is called permanently asleep. A node that is neither gone nor asleep is called awake.

In this part of the thesis, an action in some node p is considered enabled in some system state if
its guard evaluates to true and p is awake, or there is a message in p.C requesting to call it and p is
awake or asleep. In the latter case, p becomes awake again as soon as the corresponding message is
processed (in which case it is removed from p.C). The action is disabled otherwise. Hence, while a
gone node never wakes up again, an asleep node may wake up again when processing an appropriate
message.

A (weakly) connected component in some directed graph G is a sub-graph of G of maximum size
so that for any two nodes u and v in that sub-graph there is a (not necessarily directed) path from u to
v. Two nodes that are not in the same weakly connected component are disconnected. We call a node
p hibernating if p is asleep, p.C is empty, and all nodes q that have a directed path to p in the network
graph (which we here will call PG) are also asleep and q.C is empty.

Proposition 2.1 For any copy-store-send algorithm and any system state of that algorithm in which
node p is hibernating, p is permanently asleep.

Proof. Let PG(p) be the sub-graph containing all nodes q with a directed path to p. A node q in
PG(p) can only be woken up by a message, but such a message would have to come from a node q′

outside of PG(p), which would require an edge (q′, q) in PG. Since such an edge does not exist, the
proposition follows. ut
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Initially gone nodes are useless as they will never perform any computation. Hence, we assume
that the initial state only consists of non-gone and non-hibernating nodes. We also restrict the initial
state to contain only messages that can trigger an action since the other messages will be ignored.

2.2 Problem Statement

Since we consider node departures, we define a system state to be legitimate if (i) every staying node
is awake, (ii) every leaving node is gone and (iii) for each weakly connected component of the initial
graph, the staying nodes in that component still form a weakly connected component. To do this the
nodes are allowed to use the exit command described above (the sleep command will be considered
later). Now we are ready to formally state our problem.

Finite Departure Problem (FDP) : Eventually a legitimate state is reached for the case that the exit
command is available to the nodes (and not the sleep command) .

A self-stabilizing solution for this problem must be able to solve it from any initial state and
to satisfy the closure property afterwards. Notice that (i) and (ii) can trivially be maintained in a
legitimate state, so for the closure property one just needs to ensure that (iii) is also maintained.

In the following, a node is called relevant if it is neither gone nor hibernating. Otherwise we call
it irrelevant. Since hibernating and gone nodes will never execute any action, for the self-stabilization
we only consider initial states in which all nodes are relevant. Also we do not consider initial states,
where inactive nodes or ids not corresponding to existing nodes are present. Their handling would
require failure/presence detectors which is beyond the scope of this thesis. From now on, an initial
system state satisfies all of these constraints.

A node p can safely leave a system if the removal of p and its incident edges from PG does not
disconnect any relevant nodes.

3 Investigating the Problem

The question that arises is whether FDP is solvable by a distributed protocol. As we will show, in
the general case not. In fact, in order to make FDP to be solvable, we would have to make many
restrictions to the network graph. It does not suffice to have a strongly connected graph, even in the
synchronous case. It is possible only if we make immensely strong restrictions, for example that
there are no incoming edges to a leaving node u, of which u is to aware of, or that the graph without
the leaving nodes is still connected. Otherwise one could always construct instances, such that the
problem is not solvable.

Theorem 3.1 There is no distributed self-stabilizing solution to the FDP .

Proof. Assume that algorithmA is a self-stabilizing solution to theFDP . We consider the following
counterexample. Consider a system of at least three nodes. The computation of A starts in a state
where all nodes but one, node v, are weakly connected. Hence, v remains disconnected from the
system for the rest of the computation. Among the connected nodes, u is leaving. Since A is a
solution to the FDP , the computation will eventually reach a state s1 in which u calls exit in some
action A enabled in s1.

We take s1 and construct another state s2 where there is a message carrying the id of v in the
incoming channel of node u. In s2, all nodes of the system are weakly connected. Observe that the
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graphs PG1 for state s1 and PG2 for state s2 differ only by the new edge (u, v). Hence, action A
is also enabled in u, and it may execute in the same way in s2 as in s1, which implies that u may
call exit. This would disconnect v from the rest of the system and v remains disconnected from the
system for the rest of the computation.

Hence, contrary to our initial assumption, A is not a self-stabilizing solution to the FDP . A
similar argument applies to the case in which node v or v.C holds an identifier of u. ut

So the problem is not solvable in the general case without the use of oracles.

 

u 

Figure 1.1: In this example node u cannot decide locally weather it is safe to depart the system or
not.

3.1 Oracles

To define the oracles we need to introduce some additional notation.
An edge (v, w) in PG with v 6= w is relevant for some node u if u = w and v is not gone, or it

is implied by a message in u.C carrying the id of w (i.e., u = v). Otherwise, the edge is irrelevant
for u. Note that the edges implied by node ids stored in u are also irrelevant (meaning that u does not
have to learn about them since it already knows them).

An oracle O is id-sensitive for some node u if its output depends on edges relevant for u. An
oracle O is strictly id-sensitive if for every node u the oracle’s output only depends on the edges
relevant for u. Hence, the oracle ignores irrelevant edges. Note that an action that changes the system
state without affecting relevant edges also does not affect the output of a strictly id-sensitive oracle.
Naturally, a strictly id-sensitive oracle is also (regularly) id-sensitive. An oracle is id-insensitive if it
is not id-sensitive. That is, the output of an id-insensitive oracle does not depend on the edges relevant
for the node.

We define the following strictly id-sensitive oracles. Oracle NID (no identifiers) evaluates to
true if the system does not contain an identifier of u in v or v.C for some relevant node v 6= u. Oracle
EC (empty channel) evaluates to true for a particular node u if the incoming channel of u is empty.
Oracle NIDEC is a conjunction of NID and EC. That is, NIDEC evaluates to true if both NID
and EC evaluate to true. Note that NIDEC is less powerful than NID and EC used jointly since
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the algorithm using NIDEC is not able to differentiate between the conditions separately reported
byNID and EC. Oracle SINGLE evaluates to true for a node u if u shares edges with at most one
relevant node.

Within a class of oracles C, an oracleO is necessary for theFDP if for every algorithmA relying
(i.e. needing for the solution) on an oracleO’∈C withO′(s, u) =true whileO(s, u) =false for some
system state s and node u, A cannot be a self-stabilizing solution to the FDP .

An Oracle O is semi-persistent if the actions of other nodes cannot invalidate it. That is, once a
semi-persistent oracle is true for node u, it remains true regardless of actions of nodes other than u.
Out of the oracles we defined, NID and NIDEC are semi-persistent while EC and SINGLE are
not.

In this chapter, we show that without an id-sensitive oracle there is no self-stabilizing solution
for the FDP within our model. Afterwards we show that among all id-sensitive oracles SINGLE
is necessary to solve the FDP . On the other hand, we prove that NIDEC is sufficient to solve the
FDP by providing a self-stabilizing algorithm for the FDP relying on NIDEC.

Problem FSP , in contrast to the FDP , does not require the nodes to irrevocably exit the system.
This will allow us to design a self-stabilizing algorithm for the FSP that does not need any oracle.

4 Basic Properties of the FDP

In this section we show that the FDP in the general case requires an id-sensitive oracle. Moreover, if
only strictly id-sensitive oracles are considered, then SINGLE is necessary. The below proposition
is a restatement of the results obtained in [34, 82]. Intuitively it says that once disconnected, the
system may not be able to reconnect again.

Proposition 4.1 [34, 82] If a computation of a copy-store-send algorithm starts in a state where two
nodes u and v are disconnected in PG, u and v remain disconnected in PG in every state of this
computation.

Theorem 4.2 Any self-stabilizing solution to the FDP has to rely on an id-sensitive oracle.

Proof. In order to show this lemma it suffices to adapt and supplement the proof of Theorem 3.1.
Assume that algorithm A is a self-stabilizing solution to the FDP that relies on an id-insensitive
oracle O. We consider following counterexample. Consider a system of at least three nodes. The
computation of A starts in a state where all nodes but one, node v, are weakly connected. Hence, by
Proposition 4.1, v remains disconnected from the system for the rest of the computation. Among the
connected nodes, u is leaving. Since A is a solution to the FDP , the computation will eventually
reach a state s1 in which u calls exit in some action A enabled in s1.

We take s1 and construct another state s2 where there is a message carrying the id of v in the
incoming channel of node u. In s2, all nodes of the system are weakly connected. Observe that the
graphs PG1 for state s1 and PG2 for state s2 differ only by the new, relevant edge (u, v). Since O
is id-insensitive, both the state of u and the output of O for u are the same for s1 and s2. Hence,
action A is also enabled in u, and it may execute in the same way in s2 as in s1, which implies that
u may call exit. This would disconnect v from the rest of the system. By Proposition 4.1, v remains
disconnected from the system for the rest of the computation.
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Figure 1.2: Illustration for the proof of Theorem 4.2.

Hence, contrary to our initial assumption, A is not a self-stabilizing solution to the FDP . A
similar argument applies to the case in which node v or v.C holds an identifier of u. ut

Theorem 4.2 immediately implies the following corollary.

Corollary 4.3 A self-stabilizing solution to the FDP is impossible without an oracle.

Interestingly, the impossibility even holds in a synchronous communication model. Consider the
model in which each round consists of two stages: in stage 1, every node receives all messages from
the previous round, and in stage 2, every node executes any number of its enabled actions. Let us
transform the state s1 in the proof of Theorem 4.2 into a state s2 in which v has an edge to u. If this is
the state of the initial round, u cannot receive a message from v in that round, since there was no prior
round, so u still executes the exit statement. Hence, the system gets disconnected. We now address
the strict id-sensitivity property of oracles.

Lemma 4.4 If a self-stabilizing solution to the FDP relies on a strictly id-sensitive oracle, then this
oracle evaluates to true only if a node has relevant edges with at most one relevant node.

Proof. Assume there exists an algorithm A that is a self-stabilizing solution to the FDP which uses
a strictly id-sensitive oracle O such that there exists a state s1 where the oracle evaluates to true for
some leaving node u while it shares relevant edges with at least two staying nodes v and w. That is,
either u has an identifier of v or w in its incoming channel or u’s identifier is in the memory of v or
w or their respective incoming channels. We construct state s2 by removing all edges from w except
for the edges to u. Since O is strictly id-sensitive, this does not change the output of O. Notice that
in s2, node w is disconnected from the system except for the edges to u.

Let us now consider a computation σ of A where u is leaving. Since A is a solution to the FDP ,
u should eventually reach a state s3 in σ in which it executes the exit statement in some enabled
action A. Since A relies on O, O must be true in this case.

We construct a system state s4 where the state of u is the same as in s3 while the state of the rest
of the system is the same as in s2. Since this does not change the edges relevant for u compared to s2,
this does not change the output of O compared to s2. On the other hand, the local state of u and the
output ofO for u is the same in s4 as in s3. Hence, actionAmust be enabled in s4, and it may execute
in the same way in s4 as in s3, which implies that u may call exit. This, however, would disconnect
node w from the rest of the staying nodes. According to Proposition 4.1, w remains disconnected
from the system for the rest of the computation. Thus, contrary to the initial assumption, A is not a
self-stabilizing solution to the FDP . ut
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Lemma 4.4 leads to the following theorem.

Theorem 4.5 Among all strictly id-sensitive oracles, the oracle SINGLE is necessary to obtain a
self-stabilizing solution to the FDP .

We conjecture that SINGLE is also sufficient to solve the FDP but it is not semi-persistent.
Semi-persistent oracles have the nice property that the action atomicity may be relaxed without af-
fecting the result of the computation. It is known (cf., for example, [81]) that for oracle-free message-
passing algorithms, for every low-atomicity computation (i.e., atomicity of action execution is only
required within a node) there is an equivalent high-atomicity computation (i.e., only one action may
be executed in the entire system at a time). In general, for a program with oracles this may no longer
be true as the oracle may change its value in a low-atomicity computation due to the actions of other
nodes. This can be particularly critical in an algorithm for the FDP , where a node may think that it
is safe to leave the network because its oracle evaluated to true but at the time when it calls exit the
oracle may be false again. However, a semi-persistent oracle cannot be affected in that way. Actions
of other nodes can only change its value from false to true. Hence the following proposition.

Proposition 4.6 If an algorithm in an asynchronous message-passing system, whose successful per-
formance relies only on the true-value of oracles, uses semi-persistent oracles only, then for every
low-atomicity computation, there is an equivalent high-atomicity computation.

The proof is obvious and is omitted here. Since low-atomicity computation is what happens in
practice, it is therefore preferable to find a solution relying on a semi-persistent oracle like NIDEC.

5 Giving a First Solution

In this section we present a self-stabilizing algorithm called SDA that solves the Finite Departure
Problem with the help of NIDEC. We focus on the case that PG consists of a single connected
component. However, the results transfer to PG being split up into multiple connected components.
The algorithm is shown in Figure 1.3.

In algorithm SDA, to maintain connectivity, each node p contains variables left and right that
store node ids that are respectively less than and greater p. If left or right does not contain an
identifier, it contains −∞ or +∞ respectively. To ensure a safe node departure, SDA uses the
NIDEC oracle.

Algorithm SDA uses two message types: intro and reverse. A message of type intro carries a
single node id and serves as a way to introduce nodes to one another. A message of type reverse does
not carry an id. Instead, this message carries a boolean value denoted as revright or revleft. This
message is a request for the recipient node to remove the respective left or right id from its memory
and send its own id back.

We now describe the actions of the algorithm. Some of the actions contain the sending of mes-
sages involving ids stored in the left and right variables. If the variable contains ±∞, the sending
action is skipped. To simplify the presentation of the algorithm, this is omitted in Figure 1.3.

The algorithm has three actions. The first action is timeout, which is a periodically triggered
action, that has as a general goal to introduce the node to its neighbors. If the node is staying, it sends
its id to its right and left neighbor. If the node is leaving, it sends messages to its neighbors requesting
them to remove its id from their memory. If the node is leaving and the NIDEC oracle signals that
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it is safe to leave, the node introduces its neighbors to each other to preserve system connectivity and
then exits by executing the exit statement. The second action is introduce. It receives and handles
intro messages received by a node. The operation of this action depends on the relation between the
id carried by the message and the ids stored in left and right. The node either forwards intro(id)
to its left or right neighbor to handle it; or, if id happens to be closer to p than left or right, then
p replaces the respective neighbor and instead introduces the old neighbor identifier to id. The third
action, reverse, handles the neighbors’ requests to leave, i.e. the rev messages received by a node.
If p receives this message, it sets the respective variable to +∞ or to −∞ and, to preserve system
connectivity, sends its own id to this node. To break symmetry, if p itself is leaving, it ignores the
request from its left neighbor.

5.1 Correctness Proof

For SDA to be a self-stabilizing solution to the FDP it remains to show two properties. Safety:
SDA never disconnects any relevant nodes. Liveliness: All leaving nodes eventually exit the system.

Lemma 5.1 If a computation of SDA starts in a state where the graph PG of the non-gone nodes is
weakly connected, the graph PG of the non-gone nodes remains weakly connected in every state of
this computation.

Proof. We demonstrate the correctness of the lemma by showing that none of the actions of SDA
disconnects PG. Action timeout only adds edges to PG if NIDEC is false and cannot disconnect
it in this case. If NIDEC is true, PG does not contain edges pointing to p and the only outgoing
edges are (p, left) and (p, right). If p is connected to the rest of PG by at most one edge (i.e., left
or right does not store an id), the departure does not disconnect PG. If both left and right store an
id, the leaving of p does not disconnect PG because p sends intro(left) to right and intro(right)
to left and thereby preserves weak connectivity between the remaining nodes.

Let us consider introduce. If the received id is the same as p or as left or right , the message is
ignored. However, this does not disconnect PG. Let us consider the case of id < p. The case of
id > p is similar. There are two subcases to address. In case id < left , p sends intro(id) to left . That
is, in PG, the edge (p, id) is replaced with (left , id). Since p stores the recipient identifier in left ,
i.e. PG has an edge (id, left), the graph connectivity is preserved. The other case is left < id < p.
In this case, p replaces left with id and forwards the old value to id. That is, the edges (p, id) and
(p, left) are replaced by (p, id) and (id, left). This replacement preserves PG connectivity.

The rev message received by a reverse action may force p to set either right or left to infinity
thus removing an edge from PG. Let us consider the case of right being set to +∞, the other case
is similar. This operation removes (p, right) from PG. However, reverse sends a message intro(p)
to right. That is, it replaces the edge (p, right) with (right, p), so weak connectivity of PG is
preserved. ut

The liveliness part of the correctness proof is more involved. Due to the way ids are handled by
SDA, the development of an edge can be traced over the course of the computation. Recall that an
edge (p, q) is associated with an id of q stored in p or a message in p.C. The actions of SDA may
transform (p, q) into a different edge (p′, q′). Only the following cases can occur:

1. The introduce action stores q in left or right or drops q since it is equal to p, left or right. In
both cases, we stay with the edge (p, q).
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constant p : node identifier
variables leaving : boolean, read only, true when p wants to leave

left : node id less than p, −∞ if undefined
right : node id greater than p, +∞ if undefined
p.C: channel of incoming messages of node p

messages (m.id,intro): introduces node identifier
(direction, rev): requests recipient to reverse edge

direction is revleft or revright

actions
timeout: true −→

if not leaving then
send message(p, intro) to left ,
send message(p, intro) to right

else // leaving
send message(revleft, rev) to right
send message(revright, rev) to left
ifNIDEC then

if left 6= −∞ and right 6= +∞ then
send message(left , intro) to right
send message(right, intro) to left

exit
introduce: intro ∈ p.C −→

receive (m.id, intro)
if m.id < left then

send message(m.id, intro) to left
if left < m.id < p then

send message(left , intro) to m.id
left := m.id

if p < m.id < right then
send message(right, intro) to m.id
right := m.id

if right < m.id then
send message(m.id, intro) to right

reverse: rev ∈ p.C −→
receive rev(direction)
if direction = revleft then

if not leaving then
send message(p, intro) to left
left := −∞

else // direction is revright
send message(p, intro) to right
right := +∞

Figure 1.3: Algorithm SDA for node p.
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2. The introduce action may delegate the id of q to some node p′: then (p, q) changes to (p′, q).
Note that whenever this happens, p′ ∈ [p, q].

3. The reverse action reverses the edge (p, q) to (q, p). Note that whenever this happens, p is
staying or p is leaving and p < q.

The changes (i.e., cases 2 and 3) to an edge (p, q) over time form a sequence of edges (p, q) =
(p0, q0), (p1, q1), (p2, q2), . . . that we call the trace of (p, q). The cases listed above imply the follow-
ing lemma.

Lemma 5.2 (Monotonicity) For every (pi, qi) in the trace of (p, q), pi, qi ∈ [p, q].

This and the fact that we have a finite number of nodes may seem to imply that every trace is
finite, but for now we cannot exclude the case that an edge is reversed infinitely often between two
nodes. It will only be implied later when we know that eventually all leaving nodes will exit the
system.

Consider an arbitrary fixed computation of SDA. An edge that does not change any more is
called stable. A steady chain of nodes xk, . . . , x0 is a sequence of leaving and not yet gone nodes of
increasing order with stable edges (xi, xi−1). A steady chain is maximal if it cannot be extended to
the left or right. Note that at every state of the computation, every leaving node is part of at least one
maximal steady chain (which might just be a chain consisting of itself). Also, the following holds:

Lemma 5.3 A maximal steady chain can only change in two ways: either (1) node xk exits the
system, or (2) the chain is extended to the left or right due to new stable edges.

Since the number of nodes is finite, this means that eventually a maximal steady chain is stable,
i.e., it does not change any more for the rest of the computation. We call this a stable chain. Now, we
can prove the following lemma.

Lemma 5.4 In every computation of SDA, the only stable chain is the empty chain.

Proof. Consider on the contrary that we have a non-empty stable chain xk, . . . , x0. Our goal is to
prove that eventually there is no incoming edge from non-gone nodes in PG to xk.

First, suppose there is an incoming edge (p, xk) with p < xk. If there is a reversal in the trace
of that edge, then we end up with a edge (xk, p

′) with p ≤ p′ < xk. If this causes xk to delegate
p′ away, then due to Lemma 5.2 that edge will never include xk again. Otherwise, xk stores p′ in
left , and since a leaving node never reverses its edge to left , xk either eventually delegates p′ away,
which will mean that the edge never includes xk again, or xk holds on to that edge, which means that
(xk, p

′) can never become an incoming edge to xk again. So suppose that there is no reversal in the
trace of (p, xk). Then its trace is finite, which means that eventually it becomes a stable edge (p′, xk).
We will argue via two cases that this cannot happen.

(1a) If p′ is staying, then p′ will eventually introduce itself to xk. This will create a new edge
(xk, p

′) in PG. If this edge is not delegated by xk, xk will eventually ask p′ to reverse its edge to
xk, which it will do, but that would contradict the assumption that (p′, xk) is stable. If xk delegates
(xk, p

′), then we keep track of that edge until we get to an edge (x, p′) that gets reversed or is stable.
In the former case, p′ would delegate xk to x, and in the latter case, p′ would also either delegate xk
to x or reverse (p′, xk), depending on whether x is staying or leaving. Hence, in any case, (p′, xk)
would not be stable, a contradiction.
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(1b) If p′ is leaving, then we distinguish between two cases. If xk is not aware of p′, then the
chain can be extended to p′ because (p′, xk) is stable, which contradicts our assumption to have a
stable chain. If xk is aware of p′, then xk will eventually ask p′ to reverse its right edge, which will
cause the edge (p′, xk) to be reversed, which again contradicts our assumption that (p′, xk) is stable.

Next, consider the case that there is an incoming edge (p, xk) with p > xk. If there is a reversal in
the trace of that edge, we end up with an edge (xk, p

′) with xk < p′ ≤ p. If this causes xk to delegate
p′ away, then due to the Lemma 5.2 the trace of that edge will never include xk again. Otherwise,
it must hold that xk < p′ ≤ xk−1. If p′ = xk−1, the edge would become stable, and otherwise, xk
would delegate xk−1 to p′, which would contradict the assumption that (xk, xk−1) is stable. So in
any case this edge will eventually not be an incoming edge to xk any more. Thus, suppose that there
is no reversal in the trace of (p, xk). Then its trace is finite, which means that eventually it becomes a
stable edge (p′, xk). We will again argue via two cases that this cannot happen.

(2a) If p′ is staying, then p′ will eventually introduce itself of xk. If xk < p′ < xk−1, then xk
would delegate xk−1 away, contradicting our assumption that (xk, xk−1) is stable. If p′ > xk−1, then
similar arguments as for case (1a) above will show that (p′, xk) is not stable, also contradicting our
assumption.

(2b) If p′ is leaving, p′ will eventually ask xk to reverse its right edge, which it will do, contra-
dicting our assumption that (xk, xk−1) is stable.

Moreover, xk will never create an incoming edge to itself since it would only do that when asked
to reverse (xk, xk−1), but since (xk, xk−1) is stable, this will not happen. Hence, eventually xk has
no incoming edge. This implies that eventually xk has no more messages to process, so NIDEC
will eventually be true. Therefore, xk can exit the system, which contradicts our assumption that the
chain is stable. ut

Lemmas 5.1 and 5.4 lead to the following theorem.

Theorem 5.5 Algorithm SDA and the NIDEC oracle provide a self-stabilizing solution to the
FDP .

6 Relaxing the Problem

Until now we asked ourselves the question, whether a solution for the FDP is possible without using
an oracle, and we have shown that unfortunately that is not the case. As we mentioned the graph
classes where this holds is very limited.

However, avoiding the use of oracles is still desirable. So another approach besides looking into
for which graph classes FDP is solvable without an oracle, is to relax the problem in such a way
that it can be solvable for all graph classes. The idea is that we do not anymore require for the nodes
to completely leave the system, but it suffices for all the leaving nodes to be in sleep state. More
precisely, they should be in the sleep state and never wake up again, i.e permanently asleep. In that
way the departures are simulated, since nodes which are permanently asleep do not participate any
more in the system. That is how we come to introduce the Finite Sleep Problem.

Finite Sleep Problem (FSP) : eventually reach a legitimate state for the case that the exit command
(and therefore the gone state) is not available (but only sleep).

Algorithm SSA, which solves this problem, is almost identical to SDA shown in Figure 1.4. The
only differences are that no oracle is checked and that the sleep command is used instead of exit.



40 CHAPTER 1. INVESTIGATING DEPARTURES

constant p : node identifier
variables leaving : boolean, read only, true when p wants to leave

left : node id less than p, −∞ if undefined
right : node id greater than p, +∞ if undefined
p.C: channel of incoming messages of node p

messages (m.id, intro), introduces node identifier
(direction, rev), requests recipient to reverse edge

direction is revleft or revright

actions
timeout: true −→

if not leaving then
send message(p, intro) to left ,
send message(p, intro) to right

else // leaving
send message(revleft, rev) to right
send message(revright, rev) to left
if left 6= −∞ and right 6= +∞ then

send message(left , intro) to right
send message(right, intro) to left

sleep
introduce: intro ∈ p.C −→

receive (m.id, intro)
if m.id < left then

send message(m.id, intro) to left
if left < m.id < p then

send message(left , intro) to id
left := m.id

if p < m.id < right then
send message(right, intro) to m.id
right := m.id

if right < m.id then
send message(m.id, intro) to right

reverse: rev ∈ p.C −→
receive rev(direction)
if direction = revleft then

if not leaving then
send message(p, intro) to left
left := −∞

else // direction is revright
send message(p, intro) to right
right := +∞

Figure 1.4: Algorithm SSA for node p.
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For the correctness proof of SSA, we show that the safety and liveliness properties hold. We first
define and prove the conditions that must prevail for a node to remain permanently asleep.

Lemma 6.1 In the SSA algorithm, a node p is permanently asleep if and only if p is hibernating.

Proof.
The backwards direction (if p is hibernating then p is permanently asleep) directly follows from

Proposition 2.1. So it remains to prove the other direction.
Suppose that there is a node q that has a directed path to p along the nodes q0 = q, q1, . . . , q` = p

and q is either not asleep, or q.C is non-empty. Without loss of generality, we may assume that for
all other nodes qi with i ≥ 1, q.C is empty (otherwise set q as the node with largest i with non-empty
qi.C). Hence, for all i ≥ 1, qi+1 is initially stored in qi. Since q is either awake and knows q1, or q.C
contains a message with q1, and q can only fall asleep in timeout, q is guaranteed to eventually process
the edge (q, q1) by either calling the timeout (which may contact q1), introduce (which may contact
or delegate q1), or reverse action (which may contact q1). If q1 gets delegated, the receiving node is
also guaranteed to process q1. We continue the trace of (q, q1) in this case (which causes the involved
starting points to be woken up) until we reach a node q′ where q1 is not delegated any more. This
must eventually happen since the number of nodes is finite. Hence, q1 is eventually contacted, which
will wake up q1. Since q1 initially stores q2, q1 is therefore also guaranteed to eventually process the
edge (q1, q2). The same arguments as for q1 then guarantee that also q2 eventually processes the edge
(q2, q3). Hence, by induction, eventually p is woken up, which completes the proof.

ut

The lemma implies that given that our initial state satisfies the conditions in Section 1.2, no node
will initially be permanently asleep. Additionally, the following lemma holds.

Lemma 6.2 If a computation of SDA starts in a state where the graph PG of the non-hibernating
nodes is weakly connected, the graph PG of the non-hibernating nodes remains weakly connected in
every state of this computation.

Proof.
We know from Lemma 5.1 that none of the actions of SSA disconnects the graph PG of the

non-exited nodes. Thus, as long as no node falls asleep after an action (which can only happen if a
leaving node calls timeout), the lemma holds. Suppose now that a leaving node p calls timeout. Our
first goal is to show that no other node can become hibernating in this case. Consider any node q 6= p
that is non-hibernating and that has a directed path from p. We distinguish between two cases.

(1) If the directed path from p to q leads through a node q′ stored in a message in p.C, then p
cannot become hibernating and therefore q cannot become hibernating as well.

(2) If the directed path from p to q leads though left or right of p, then q cannot become hiber-
nating because p will contact left and right in timeout.

Hence, if p does not become hibernating after timeout, weak connectivity is preserved. It remains
to consider the case that p becomes hibernating. In this case, p.C is empty. Also, there cannot be
a path from a non-hibernating node q to p. Hence, NIDEC would be true for p (if evaluated by
it). Since we know from Lemma 5.1 that in this case p may even exit the system without causing
disconnection, we can also allow p to hibernate without risking disconnection for the non-hibernating
nodes.
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ut

Lemmas 6.1 and 6.2 imply safety. So it remains to prove liveliness. Notice that if NIDEC is
true (as a condition, not oracle) for a node p, then p would hibernate in SSA after calling timeout.
Hence, it follows together with the proof of Lemma 6.2 that a node becomes hibernating in SSA
if and only if NIDEC is true for it. On the other hand, a non-hibernating node is not permanently
asleep. Therefore, the liveliness proof is identical to the liveliness proof of SDA, which implies the
following theorem.

Theorem 6.3 SSA provides a self-stabilizing solution to the FSP .

7 Outlook

In this chapter, we showed that an id-sensitive oracle is required for a self-stabilizing solution to the
Finite Departure Problem. We proved that among strictly id-sensitive oracles, SINGLE is necessary
for a solution to the problem. We showed that a more restrictive oracle NIDEC is sufficient by
presenting an algorithm that solves the Finite Departure Problem using NIDEC.

Then we relaxed the Finite Departure Problem to the Finite Sleep Problem, in order to make it
solvable without the use of an oracle.

It would be interesting to study the power of individual components of NIDEC: NID and EC.
Specifically, we would like to determine the extent of the states from which the algorithm using only
one of the components may recover.

Observe that the SDA algorithm (as also the SSA), besides solving the FDP , also organizes the
staying nodes in a sorted list. It would be interesting to solve the FDP and FSP problems for other
structures also. In the next chapter we take on this consideration.



Chapter 2

A General Framework for Dealing with
Node Departures in Overlay Networks

1 Introduction

In the previous chapter we studied the handling of departures in overlay networks and introduced two
problems: the Finite Departure Problem (FDP) and the Finite Sleep Problem (FSP). In the FDP ,
the leaving nodes have to irrevocably decide when it is safe to leave the network; whereas in theFSP ,
this leaving decision does not have to be final: the nodes may resume computation when woken up
by an incoming message. We showed that there is no self-stabilizing local-control protocol for the
FDP . But if an oracle is available, then an appropriate local-control protocol can be constructed.
Moreover, a variant of that protocol can solve the FSP without using an oracle. However, these
protocols require that there is a fixed total order on the nodes (e.g., their names or IP addresses do not
change), and they only work for a specific overlay maintenance protocol that aims at organizing the
nodes in a sorted list.

In this chapter, we present a self-stabilizing protocol for the FDP that can extend a large class
of overlay maintenance protocols so that they are then guaranteed to eventually exclude the leav-
ing nodes without risking disconnection and while the overlay maintenance protocol is operating as
specified for the staying nodes. As a by-product, we present a set of four basic primitives for the
manipulation of edges in overlay networks that are safe and universal in a sense that connectivity is
preserved and that, in principle, one can get from any weakly connected graph to any other weakly
connected graph. This might be of independent interest as we expect our insights to simplify the
design and analysis of overlay maintenance protocols in the future.

1.1 Model and Preliminaries

A node u has a variable u.mode ∈ {leaving, staying} that is read-only. If this variable is set to leaving,
the node is leaving; the node is staying if the variable is set to staying.

1.2 Our Results

Our main result is a self-stabilizing local-control protocol presented in Section 3 that can solve the
FDP when relying on the SINGLE oracle. Compared to the protocols in the previous chapter, this

43
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protocol has the nice property that no fixed order on the nodes is needed. So an underlying layer
may change referencing information about a node like its IP address, web address, port number, or
pseudonym as it likes. The only interface that our protocol needs to that layer is that it can send a
message to a node identified by some reference or by executing v = w or v 6= w to check whether two
references point to the same or different nodes. That does not just allow the actions of the underlying
network layer to be decoupled from the application layer but it also simplifies using our departure
protocol together with other overlay maintenance protocols, as we will demonstrate in this chapter.
In order to simplify the analysis and formally specify the class of overlay maintenance protocols that
can be used in conjunction with our departure protocol, we point out that the solutions in this chapter
require the additional constraint that initially there exists at least one staying node per connected
component of the overlay network.

2 The Basic Algorithm

Our protocol consists of various actions. In the present action, a reference v is introduced to some
node (i.e., whenever it is called for some v, the calling node performs the Introduction primitive for
v). Instead, in the forward action, a reference v is delegated to some node.

We assume that whenever a node a sends a request to call present of forward containing a
reference of a node b to another node c, it automatically sends some relevant information it knows
about b along with it. In this section the only relevant information is the mode of b, which we denote as
a.(b.mode) (i.e. a’s knowledge of b’s mode), which can be staying or leaving. Note that a.(b.mode)
might be incorrect (i.e., a.(b.mode) 6= mode(b)) since b might have a different mode than a thinks it
has.

We denote the set of all references a node u stores in its local memory as the neighborhood set
u.N of u. Note that u.N is not a variable of u but just a notation we use, which simplifies our protocol
description and the proofs. Along with each v ∈ u.N , node u also stores its knowledge of the mode
of v, denoted by u.(v.mode). Our solution makes use of a special variable called anchor whose
reference is the only one not being in u.N . anchor will only be used by the leaving nodes, so in a
legitimate state, the anchor of a staying node is empty, denoted by ⊥. The anchor is a reference of
a node which a leaving node v assumes to be staying. Therefore, each time v gets a message from
a third node w, v forwards w to its anchor by a forward message in the hope of eliminating all
references to itself. Each node has a periodically executed timeout action. In case a node is leaving,
it sends a present message to its anchor in the timeout action (in order to verify it has a staying
anchor). If it is staying, it sends a present message containing its own reference to all neighbors (to
make other nodes aware of it). This is an implementation of our earlier presented self-introduction
primitive. Periodically executed self-introduction can ensure that invalid information vanishes from
the system, as we will show later. Additionally, leaving nodes consult SINGLE in timeout, and
if it evaluates to true, the node is safe to perform exit. The actions of our protocol are presented in
Algorithms 1- 3.

2.1 Correctness Proof

To show that our proposed protocol is a self-stabilizing solution to the FDP , it remains to show two
properties.

Safety: The protocol never disconnects any relevant nodes.
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Algorithm 1 u.timeout
1: if u.anchor 6= ⊥ and u.(anchor.mode) = leaving then
2: send message(u.anchor,present) to u . ♦
3: u.anchor ← ⊥
4: if u.mode = leaving then
5: if u.N = ∅ then
6: if SINGLE then
7: exit
8: else
9: if u.anchor 6= ⊥ then

10: send message(u,present) to u.anchor . ♦
11: else
12: for all v ∈ u.N do
13: send message(v,forward) to u . ♦
14: u.N := ∅
15: else
16: if u.anchor 6= ⊥ then
17: send message(u.anchor,present) to u . ♦
18: u.anchor ← ⊥
19: for all v ∈ u.N do
20: if u.(v.mode) = leaving then
21: u.N := u.N \ {v}
22: send message(u,present) to v . ♦ or ♣

Algorithm 2 message(v,present) ∈ u.C
1: if v = u.anchor and u.(v.mode) = leaving then
2: u.anchor ← ⊥ . ♠
3: if u.(v.mode) = leaving then
4: if u.mode = leaving then
5: send message(u,forward) to v . ♣
6: else
7: if v ∈ u.N then
8: u.N := u.N \ {v}
9: send message(u,forward) to v . ♣

10: else
11: if u.mode = leaving then
12: if u.anchor 6= ⊥ then
13: send message(u,forward) to v . ♣
14: else
15: u.anchor := v

16: else
17: u.N := u.N ∪ {v} . ♠
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Algorithm 3 message(v,forward) ∈ u.C
1: if v = u.anchor and u.(v.mode) = leaving then
2: anchor ← ⊥ . ♠
3: if u.(v.mode) = leaving then
4: if u.mode = leaving then
5: if u.anchor = ⊥ then
6: send message(u,forward) to v . ♣
7: else
8: send message(v,forward) to u.anchor . ♥
9: else

10: if v ∈ u.N then
11: u.N := u.N \ {v}
12: send message(u,forward) to v . ♣
13: else
14: if u.mode = leaving then
15: if u.anchor 6= ⊥ then
16: send message(v,forward) to u.anchor . ♥
17: else
18: u.anchor := v

19: else
20: u.N := u.N ∪ {v} . ♠

Liveness: All leaving nodes are eventually gone.

Lemma 2.1 If a computation of our protocol starts in a state where the sub-graph PG of relevant
nodes is weakly connected, it remains weakly connected in every state of the computation.

To prove safety we make use of the results from the prologue.
Proof. First of all, note that each relevant node is also awake, since obviously gone nodes cannot
be relevant. The proof of the lemma relies on the fact that our protocol that the (awake) nodes run
is a composition of the four primitives presented in the prologue. To illustrate this, the protocol is
annotated with the symbols♦,♥,♠,♣. Each symbol represents a primitive: ♦ is (Self-)Introduction,
♥ is Delegation,♠ is Fusion and♣ is Reversal. Therefore, we can use the result of Lemma 3.1 and the
fact that SINGLE preserves weak connectivity in the only case in which we do not use a primitive,
(i.e., a node executes exit). This proves the lemma. ut

It remains to show that our protocol makes progress such that all leaving nodes eventually leave
the system.

Theorem 2.2 Leaving nodes eventually execute the exit command, thereby preserving liveness.

Proof.
The first step to prove liveness is to show that eventually all information in the system is valid.

Lemma 2.3 During the execution of the protocol, the system eventually reaches a valid state.



2. THE BASIC ALGORITHM 47

Proof. Let Φt be a potential function that denotes the amount of invalid information present in the
system at some time t, i.e., Φt is equal to the number of edges (x, y), either explicit or implicit, such
that y.mode 6= x.(y.mode).

At first, note that no action conducted by any node can increase Φt. That is because the only way
Φt can increase is if invalid information is copied. In order to do so, a node u has to forward invalid
information about node v to another node w , since the information sent about oneself is always valid.
The only spots in the pseudocode where this can potentially happen are lines 8 and 16 of the forward
action, where u sends (v, forward) to its anchor. However, in that case v is not saved by u. Thus ,
even if u sends invalid information about v to its anchor, the invalid information is not duplicated in
the system. Therefore, Φt ≥ Φt′ for any t′ > t. To conclude the lemma, it suffices to show that as
long as Φt > 0 it holds that for any t there is a t′ > t such that Φt′ < Φt.

First of all, note that whenever a node learns that its anchor is leaving, it immediately changes
the variable u.anchor to ⊥. Let (u, v) be an edge that contains invalid information at time t. We
consider the following four cases.

1. v.mode = leaving, u.(v.mode) = staying, u.mode = leaving.

We can distinguish between two subcases.

(a) In the first sub-case we consider that u has stored v in its local memory (i.e. u.N or
u.anchor). If v is u.anchor then at some point u calls the timeout action and sends
(u, present) to v (or executes exit in case the oracle evaluates to true and the invalid
information vanishes). Eventually, v receives the (u, present) message and answers with
a (v, forward) message to u, so u gets valid information about v. Note that at no point u
propagates the invalid information about v. On the other hand, if v ∈ u.N , then u sends
(v, forward) to itself in the timeout action and as a consequence u sends (u, forward)
to v. Consequently, u no longer maintains invalid information about v.

(b) In the second sub-case v is contained in a message in u.C. We assume that u has another
anchor a. Otherwise, after handling the message, u would set its anchor to v, thereby
saving v in its local memory and this situation is discussed in the previous sub-case. We
also assume that a.mode = staying, since otherwise the edge (u, a) would fit to the
first sub-case and Φt′ would decrease anyway compared to Φt. If (v, present) is in u.C,
(u, forward) is sent back to v and the invalid edge vanishes. In case (v, forward) is
in u.C, then according to the protocol u forwards v to a, thereby pushing the invalid
information to a. The anchor a eventually stores v in a.N and during its timeout action
it sends (a, present) to v. When v receives the (a, present) message, it either sends a
(v, forward) message back in case it already has an anchor, or, if it has no anchor, it sets
v.anchor = a and eventually sends (v, present) to a during the timeout action. One
way or another, a learns the valid information about v and deletes v from a.N .

So all in all we have one less edge with invalid information.

2. v.mode = leaving, u.(v.mode) = staying, u.mode = staying.

If (v, present)/(v, forward) ∈ u.C, then u includes v in u.N in its timeout action, so we
only need to consider the case in which v ∈ u.N . So if v ∈ u.N , u sends (u, present) to v
during the timeout action. Node v either sends (v, forward) back to u if it has an anchor,
or it sets u as its anchor and sends (v, present) back to u during the timeout action. Either
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way u learns the valid information about v, v is deleted form u.N and the amount of invalid
information decreases.

3. v.mode = staying, u.(v.mode) = leaving, u.mode = leaving.

If v = u.anchor, u sets u.anchor to ⊥ during timeout and sends a (v, present) message
to itself. Additionally, if v ∈ u.N , u sends (v, forward) to itself in timeout, therefore we
only need to consider the situations in which (v, present)/(v, forward) ∈ u.C. In this case,
u either sends (u, forward) to v or (v, forward) to its anchor a. In the first sub-case u
no longer maintains invalid information about v. For the second sub-case we assume that
a.mode = staying, because otherwise we are back to case 1 for edge (u, a) (and can show
that Φt′ decreases). As u forwards the invalid information to a, a in its turn sends (a, forward)
to v and deletes v from a.N . So the invalid edge (a, v) vanishes.

4. v.mode = staying, u.(v.mode) = leaving, u.mode = staying.

If v ∈ u.N , u sends (v, forward) to itself in timeout and again we only need to consider
situations in which (v, present)/(v, forward) ∈ u.C. In this case u sends (u, forward) to v
and the invalid edge vanishes.

Therefore, as long as Φt > 0 for any t there is a t′ > t such that Φt′ < Φt and eventually all
invalid information vanishes. ut

Now we are able to prove Theorem 2.2. At first note that at this point we can assume that the
mode information in the whole network is valid. Secondly, as long as there are leaving nodes that
are not yet gone and as long as the network does not consist entirely of leaving nodes, at least one
leaving node has at least one edge with a staying node. Therefore, it suffices to show that eventually a
leaving node which has an edge to or from some staying node u executes exit. By using this argument
inductively we have that eventually all leaving nodes execute exit.

Let v be a leaving node that has at least one explicit or implicit edge to a staying node u. By
definition of PG this means that either (i) v has a message in v.C carrying a reference of u or (ii)
vice-versa or (iii) v stores a reference of u in its local memory or (iv) vice-versa.

Note that in all four situations v eventually gains an anchor. If v has another anchor than u, this
holds trivially. Otherwise, in case (i), v eventually receives the message in v.C and then sets its
anchor to u. In case (ii), u receives the message in u.C and responds with a (u, forward) message
to v, which results in case (i). In case (iii) either u is already the anchor or v sends a (u, forward)
message to itself in timeout, which is again case (i). In (iv) u sends a (u, present) message to v in
timeout, which is again case (i). Therefore, every leaving node that has an edge to a staying node,
eventually stores a valid anchor.

From the actions of our protocol we know that every node reference that is either in the local mem-
ory of v or in a message in v.C is sent to v.anchor in the timeout action and the present/forward
actions respectively. The only nodes that prevent SINGLE from evaluating to true are those which
either store a reference v in their local memory or have a reference to v in a message in their channel,
but not vice-versa. Let x be such a node. We now show that eventually x does not prevent SINGLE
from evaluating to true for v. We consider all possible subcases: x can be staying or leaving and the
reference to v can be in a message or in the local memory.

At first we consider the case that x is staying and has v in its local memory. According to our
protocol x sends (x, present) to v in its timeout action. Once v receives this message it sends
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(v, forward) back to x (because it already has an anchor). This delegation forces x to delete v from
its local memory and to send another (x, forward) back to v. Now x does not have an edge to v
anymore and x cannot prevent SINGLE from evaluating to true. In case x is staying and has a
message containing v in x.C, x does not save v in its local memory, independent of the fact whether
the message is a (v, present) or (v, forward) message. It sends a (x, forward) message back to v,
such that the implicit edge (x, v) is deleted from the PG.

In case x is leaving and has v in its local memory, x creates a (v, forward) message, deletes the
reference to v from the local memory and sends the (x, forward) message to itself in timeout. This
leads us directly to the last case in which x is leaving and has a message containing v in x.C. If the
message is a (v, present) message, x sends a (x, forward) message back to v (which v forwards
to its anchor). If the message is a (v, forward) message, either (x, forward) is sent to v or a
(x.anchor, present) message is sent to v (which v also forwards to its anchor). Again in both cases
the implicit edge (x, v) is deleted from the PG.

Thus, we can conclude that as soon as v has a valid anchor, eventually all leaving nodes and all
staying nodes (except for the anchor) do not have an edge to v. So SINGLE can evaluate to true
and v can execute exit.

Consequently, a leaving node that is not gone yet and has an edge to an awake node, eventually
has a valid anchor and is ultimately able to execute exit. As long as there are not gone leaving nodes,
there exists such a node, which implies that in finite time all nodes eventually execute exit. ut

3 Embedding in Existing Overlay Protocols

In this section we show how the protocol that was developed in Section 2 can be embedded in any
existing distributed overlay protocol. With this general embedding approach, existing overlay man-
agement protocols can be easily modified in order to safely deal with node departures, which stresses
the adaptability of the presented approach. Note that the original protocol does not necessarily have to
be self-stabilizing. However, it must work correctly, i.e., not disconnect the overlay topology through
its actions.

To proceed with this chapter we introduce the notion of safe introduction, i.e., a way for a node
u to send a message m to a node v, such that invalid information is not duplicated and eventually
vanishes, regardless of the structure of the message m. The general idea behind the concept of safe
introduction is to reinforce a message sent from u to v by a number of elementary present mes-
sages sent to the references included in the original message, once v receives the message. In that
way the nodes whose references are contained in m introduce themselves directly to v, in order to
avoid propagation of invalid information about themselves. We show that by using safe introduction
the commands executed by a node can be decomposed into the four primitives and thereby preserve
connectivity. Also when used in combination with the self introduction, we can show that invalid
information eventually vanishes. More specifically, safe introduction guarantees that invalid infor-
mation is not duplicated, whereas self introduction ensures that the valid (correct) information is
periodically forwarded such that invalid information eventually vanishes.

The framework given below is based on these two procedures and, as we show, solves the FDP
or the FSP respectively. The exact details are explained in the following sub-section.
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3.1 FDP for Arbitrary Protocols

In order to embed our protocol into an existing overlay protocol P ∈ P , the only algorithmic re-
quirement P must fulfill is to conduct periodic self introduction, i.e., to have a periodically executed
timeout action, in which a node sends a message with information about itself (reference and mode)
to every node in its neighborhood. Therefore, the timeout action for a node u must contain a com-
mand of the form ∀v ∈ u.N send message(u,present) to v. Note that this does not mean that u has
to be the only argument contained in this self-introduction messages of P . If there are multiple argu-
ments, our approach described below works as desired. However, for simplification, each node u also
sends (u, present) message with u being the only parameter to each node in u.N . This introduces
some minor message overhead (in a worst-case scenario u sends every message twice), but since we
are not concerned with message complexity, this is just a minor issue. To avoid renaming issues, we
assume that P does not already use the names process and forward for its actions, such that those
message type (and action) names are exclusively introduced by the new protocol.

The idea of the general framework is to replace each command in P , in which some node sends
a message to another node, with a series of message sending commands. This ensures that weak
connectivity is not lost and node departures are possible. More specifically, in order to construct the
new protocol P ′, we do as follows: All message sending commands in P where a node u forwards
some node references x1, . . . , xk to a node v are also reinforced by requests for present messages,
in order for message information to be received correctly and the corresponding action to be carried
out.

We construct P ′ by replacing every message of the form ”send message(x1, . . . , xk,m.type) to v”
of P with a message ”send message(m.type,[x1, . . . , xk],process) to v” The process message has the
purpose to inform v about the m.type message. Once the process message is received by a node v,
v contacts the nodes referenced in that message (x1, . . . , xk) by sending present messages to them,
in order to request and receive the valid information (in the current case the valid mode information)
about them. In this specific step we implicitly use the above mentioned idea of safe introduction. We
make sure that m.sender can not spread invalid information about the xi nodes to v.

Another addition is that every node u executing P ′ is required to maintain an additional variable
u.anchor, which (in a valid configuration) has the value ⊥ if u is staying. Moreover, we need a vari-
able called u.mlist for every node u which stores all the m.type commands u received by process
messages. These are executed once the valid information from the xi nodes arrive by (xi, forward)
messages. For each node v stored in u.mlist an additional value u.(v.certainty) is stored, which
can have the values true or false, indicating to whether the mode information about v came from v
itself or not. We assume that a node stored in u.mlist is automatically in u.N , i.e., u.mlist ⊆ u.N .
Remember that the u.anchor variable is not part of u.N .

The framework for constructing the modified protocol P ′ is given here. Note that instead of
writing sendmessage(v,⊥,⊥, forward) and sendmessage(v,⊥,⊥, present) if the last two pa-
rameters are not needed (i.e., we make use of the messages presented in the last section), we stick to
the notation of sendmessage(v, forward) and sendmessage(v, present) .

Correctness Proof

We need to show that protocol P ′ eventually works like P (e.g., reaches the same target topology)
and that all leaving nodes are eventually gone.
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Algorithm 4 u.timeout
1: if u.anchor 6= ⊥ and u.(anchor.mode) = leaving then
2: send message(u.anchor,present) to u . ♦
3: u.anchor ← ⊥
4: if u.mode = leaving then
5: see commands of Algorithm 1.
6: else
7: if u.anchor 6= ⊥ then
8: send message(u.anchor,present) to u . ♦
9: u.anchor ← ⊥

10: Execute P − timeout action of P but:
11: for each [send message(x1, . . . , xk,m.type) to v] ∈ timeout(P) do
12: send message(m.type,[x1, . . . , xk],process) to v . ♦/♥
13: for all v′ in entries m in u.mlist do
14: if u.(v′.mode) = unknown then
15: send message(u,present) to v′ . ♦/♥
16: for all v ∈ u.N do
17: if u.(v.mode) = leaving and v /∈ u.mlist then
18: send message(u,present) to v . ♣
19: u.N := u.N \ {v}

Algorithm 5 (m.type,[x1, . . . , xk],process) ∈ u.C
1: if u.mode = staying then
2: for all xi do
3: u.(xi.mode) := unknown

4: Add [m.type, [xi, . . . , xk]] to u.mlist . (♠)

5: for all xi do
6: send message(u,present) to xi . ♦

Algorithm 6 message(v,present) ∈ u.C
1: if v = u.anchor and u.(v.mode) = leaving then
2: u.anchor ← ⊥
3: if u.(v.mode) = leaving then
4: if u.mode = staying then
5: if v ∈ u.N then
6: u.N := u.N \ {v}
7: else
8: if u.mode = leaving then
9: if u.anchor = ⊥ then

10: u.anchor := v

11: send message(u,forward) to v . ♣
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Algorithm 7 (v,forward) ∈ u.C
1: if v = u.anchor and u.(v.mode) = leaving then
2: anchor ← ⊥
3: if u.(v.mode) = leaving then
4: See commands of Algorithm 3
5: else
6: if u.mode = leaving then
7: if u.anchor 6= ⊥ then
8: send message(v,forward) to u.anchor . ♥
9: else

10: u.anchor := v

11: else
12: u.N := u.N ∪ {v} . ♠
13: if u.mode = staying then
14: for each [m.type[x1, . . . , v, . . . , xk]] ∈ u.mlist do
15: u.(xi.mode) := u.(v.mode)
16: if ∀i, u.(xi.mode) 6= unknown then
17: if ∀i, u.(xi.mode) = staying then
18: execute u.(m.type(x1, . . . , xk)) as in P
19: else
20: for all v′ ∈ [x1, . . . , xk] do
21: send message(u,forward) to v′ . ♣
22: u.N := u.N \ {v′}
23: delete [m.type[x1, . . . , xk]] from u.mlist

24: else
25: for all v′ ∈ [x1, . . . , xk] do
26: send message(u,present) to v′ . ♦
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Theorem 3.1 Let P ∈ P be a distributed overlay protocol which solves some distributed problem
DP and contains a timeout action in the form ∀v ∈ neighborhood(u) send message(u,present) to
v. Then there is another protocol P ′ constructed as described above, such that P ′ eventually solves
the FDP as well as DP .

Proof. At first we show that P ′ still fulfills the safety condition.

Lemma 3.2 If a computation of the protocol P ′ starts in a state where the sub-graph PG of the
relevant nodes is weakly connected, it remains weakly connected in every state of the computation.

Proof. The actions migrated from P preserve connectivity since P ∈ P . The rest of the actions
are adaptions of the protocol of Section 2 (for which we showed in Lemma 2.1 that they preserve
connectivity), with actions that are almost alike. In fact, all the newly introduced commands can be
decomposed to the four primitives presented in the prologue (see annotations on the algorithms in the
pseudocode) Therefore, weak connectivity is preserved. ut

Next we show that eventually we have only valid information in the system (Lemma 3.4 and 3.3).

Lemma 3.3 During the execution of P ′ eventually there is no invalid mode information in the system
(i.e., invalid information regarding the mode variables, all nodes save about other nodes).

Proof. Let Φt be a potential function that denotes the amount of invalid mode information present in
the system at some time t, i.e., Φt is equal to the number of edges (x, y), either explicit or implicit,
such that mode(y) 6= x.(y.mode).

Again, note that no action conducted by any node can increase Φt in the long run. The only
way Φt can increase is if invalid information is copied. In order to do so, a node u has to forward
invalid information about node v to another node w , since the information sent about oneself is
always valid. This could happen is in the forward action, at line 8 of the pseudocode, where u sends
(v, forward) to u.anchor. However, as shown in the proof of Lemma 2.3, this is not the case. The
other possibility where information about a third node is propagated is in the timeout action at line
15. In line 14 a process message is sent to v with mode information of nodes x1, . . . , xk. However,
once v receives this message the mode information is stored in v with v.(xi.certainty) = false, and
the protocol forces v to contact the xis to get their mode information. The m.type action sent within
the process message is only executed if all responses from these nodes in form of a (xi, forward)
messages arrive. Thereby, v learns the valid information about these nodes and eventually the invalid
information about the xi vanishes. Therefore, even though the amount of invalid information at first
can increase, it is corrected eventually.

Note that, if Φt = 0 then ∀t′ > t : Φt′ = 0. To conclude the lemma, it suffices to show that as
long as Φt > 0 there is a t′ > t such that Φt′ < Φt. First of all, note that whenever a node learns that
its anchor is leaving, it immediately changes the variable u.anchor to ⊥. Let (u, v) be an edge that
contains invalid mode information at time t (i.e., u has invalid information about v’s mode).

We consider the following four cases.

1. v.mode = leaving, u.(v.mode) = staying, u.mode = leaving:

We can distinguish between two subcases.
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(a) In the first sub-case u has stored v in u.N ∪ u.anchor. If v is u.anchor then at some
point u calls the timeout action and eventually sends (u, present) to the anchor v (or it
executes exit before that and the invalid information is not present anymore). So even-
tually v receives a (u, present) message and in its turn sends a (v, forward) message
to u, so u eventually gets valid information for v and deletes its anchor. Note that at no
point u propagates the invalid information about v. On the other hand, if v ∈ u.N , then
u sends (v, forward) to itself, and as a consequence u sends (u, forward) to v. Node u
no longer has information about v and the invalid mode information is lost.

(b) In the second sub-case v is contained in a message in u.C. We can assume that u has
another anchor a. Otherwise, after the handling the message, u would set its anchor to
v, thereby saving v in its local memory, which is handled in the previous sub-case. We
also assume that a.mode = staying, since otherwise, the edge (u, a) would fit again
in the first sub-case. If the message is a present/process message, (u, forward) is
sent back to v and the invalid edge vanishes, since v is not stored by u. If the message
is a (v, forward) message, then according to the protocol u sends (v, forward) to a.
Anchor a stores v in a.N , and during its timeout action send (a, present) to v. When
v receives the (a, present) message and it has already an anchor it eventually sends a
(v, forward) message back. If it has no anchor it sets v.anchor = a and eventually
sends (v, present) to a during the timeout action. Either way a learns valid information
about v.

So all in all we have one less edge with invalid information.

2. v.mode = leaving, u.(v.mode) = staying, u.mode = staying:

Again, either v ∈ u.N or a message containing the reference of v is in u.C.

(a) We consider first that v ∈ u.N . It is possible that a command of the form [m.type(x1, . . .
, xk)] is activated by some forward message. This command could include the sending
of various messages of the form [u: send message(. . . , v, . . .,m.type’) to z] in P .
In that case this command is translated in P ′ to a process message, but z stores v as
uncertain (i.e. z.(v.certainty) = false) if z is staying (if z is leaving we are back at
case 1) and eventually receives a (v, forward) message from v itself (by construction of
our protocol). Therefore, z eventually learns valid information about v.
In any case, u eventually sends a (v, present) message to v during the timeout action.
Node v either sends (v, forward) back to u if it v has no anchor, or sets u as its anchor
and sends (v, present) back to u during the timeout action. Eventually u learns valid
information about v.

(b) Now we consider the case that a message containing the reference of v is ∈ u.C. In case
a the message is a (v, present) or (v, forward) message, u includes v ∈ u.N and sends
(u, present) back to v in its timeout action, which is the situation handled in the first
sub-case. Moreover, if (v, forward) ∈ u.C, it can be that a m.type action is triggered,
which is also handled in the first sub-case. In case (. . . , v, . . . , process) ∈ u.C we are
also in the first sub-case, since this specific situation is considered there.

3. v.mode = staying, u.(v.mode) = leaving, u.mode = leaving:
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If v = u.anchor, u sets its u.anchor to ⊥ in timeout and sends (v, present) to itself. Also,
if v ∈ u.N , u deletes v from u.N and sends (v, forward) to itself in timeout (or executes
exit before that, so the invalid information is not present anymore) so we only need to consider
the case in which a message containing the reference of v is ∈ u.C. In this case, u either
sends (u, forward) to v or v to its anchor a. In the first sub-case u maintains no longer invalid
information about v. For the second sub-case we assume that a.mode = staying, otherwise
we are back to case 1 for the edge (u, a) (and can show that Φt decreases). As u forwards
the invalid information to a, a in its turn sends (a, forward) to v and deletes v from a.N .
Therefore, the invalid edge (a, v) vanishes.

4. v.mode = staying, u.(v.mode) = leaving, u.mode = staying:

If v ∈ u.N , u sends (u, present) to v in timeout. Thus, we only need to consider the case in
which a message containing the reference of v is ∈ u.C. In this case, u sends (u, forward) to
v and the invalid edge vanishes.

Accordingly, in all situations the invalid information is corrected. Therefore, as long as Φt > 0
there is a t′ > t such that Φt′ < Φt. and eventually all invalid mode information vanishes. ut

Lemma 3.4 During the execution of P ′ eventually there is no invalid certainty information (i.e.,
invalid information regarding the certainty variables) in the network.

Proof. Let u be a node which contains invalid certainty information about a node x, i.e., u.(x.certainty)
=true, but u.(x.mode) 6= mode(x). There is at least one entry in the u.mlist table in which x ap-
pears. Let (u.mlist).[mh] be one of these entries. First we show that eventually all certainty infor-
mation in (u.mlist).[mh] is set to true. That is due to the periodically executed timeout action in
which a present message is sent to all nodes x′ ∈ [x1, . . . , xk] stored in (u.mlist).[mh] for which
u.(x′.certainty) = false. Eventually, x′ sends a (x′, forward) message and the information be-
comes true. The m.type command which is stored in (u.mlist).[mh] is executed in the forward
action and the entry along with x is deleted from u.mlist, so the invalid certainty information van-
ishes. ut

Next we show that the network eventually reaches a state, in which all the leaving nodes are gone.

Lemma 3.5 All leaving nodes eventually execute exit.

Proof. At this point we can assume that all mode information in the network is valid. It remains to
show that the proof of Theorem 2.2 is still applicable, i.e., show that eventually SINGLE evaluates
to true for a leaving node that has an anchor. Again let x be a node that prevents SINGLE from
doing so, in other words there exists an explicit or implicit edge (x, u). In case the edge is explicit
and x is leaving, x behaves similarly to Algorithm 1 and the proof still holds. If the edge is explicit
and x is staying, x either directly deletes u (in case u /∈ x.mlist) or sends (x, present) to u in
the timeout action. As shown in Lemma 3.4 these present messages make sure that eventually
all certainty information in x.mlist is valid. Once this happens, the entries in which u is stored are
deleted from x.mlist and the edge (x, u) vanishes. In case the edge is implicit, we have to distinguish
between a staying x and a leaving x. If x is leaving, the forward action is similar to Algorithm 3
and the present action is similar to Algorithm 2, therefore the proof is still applicable. If the message
is a process message, u is not saved by x and either a (x, present) or a (x, forward) is sent back
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to u. So independent of the message type, the edge vanishes eventually. If x is staying, then the
present and process actions behave analog to the last sub-case in which x is leaving. The forward
message is extended compared to Algorithm 3, but these changes only fuse the implicit edge (x, u)
with an explicit edge (x, u), because certainty information is validated. Thus, the implicit (x, u) also
vanishes in this case. Therefore, eventually x cannot prevent SINGLE from evaluating to true.
Consequently, a leaving node that is not gone yet and has a valid anchor ,is ultimately able to execute
exit. As long as there are not gone leaving nodes, there exists such a node, which implies that in finite
time all nodes eventually execute exit.

ut

We conclude the proof by showing that P ′ solves DP similar to P .

Lemma 3.6 Once all leaving nodes are gone, P ′ solves DP .

Proof. Since there are only staying nodes, the only difference between P ′ and P is that m.type
messages in P are replaced with process messages.

Let u be a node that sends a (x1, . . . , xk,m.type) message to v in P . Once v receives the mes-
sage it executes the correspondingm.type(x1, . . . , xk) action. In P ′, u sends a (m.type, [x1, . . . , xk],
process) message to v, v saves this information in v.mlist and sends a (v, present) for each xi. The
xi nodes respond by sending with a (xi, forward) message to v. Once the last of these (xi, forward)
messages is received by v (or v learns about the valid xi information by a (xi, forward) mes-
sage received as a response to its own self-introduction), the action corresponding to the original
m.type(x1, . . . , xk) action is executed. Thus, u executes m.type(x1, . . . , xk), as in P . ut

Lemmas 3.5 and 3.6 prove the statement of Theorem 3.1. ut

3.2 FSP for Arbitrary Protocols

Analogous to the results in previous chapter, we can overcome the use of oracles by relaxing the
FDP to the FSP . In order to give a general framework which solves FSP for arbitrary distributed
protocols, we only need to slightly change the protocol framework of Section 3.1. The main dif-
ferences to the protocol of the previous section is that no oracle is checked in the timeout action
and that the exit command is not available. Moreover, the behavior of the protocol changes in the
forward action as well. We add an additional check that examines whether the reference received
in the message is equal to the current anchor. If this is the case, the node falls asleep again by using
the sleep command and does not perform any further commands. This is necessary, in order for the
node to be able to fall permanently asleep, since in that case it will only exchange messages with its
anchor.

Since the protocol framework for solving FSP as well as the correctness proof is very similar to
the one for solving FDP we will omit its detailed description here.

4 Outlook

For future work we definitely see potential in investigating crash failures and message failures. An-
other interesting direction, is to have stronger requirements than the maintenance of connectivity
towards the stabilization process, as for example the guaranty that search and insert node operations
execute correctly.



Part II

Efficient topological self-stabilization
protocols
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In the first part we considered how to handle node departures which happen at some arbitrary time,
and presented a general framework, which can be applied to a large class of distributed algorithms,
in order for these algorithms to be able to handle node departures, without endangering connectivity.
Especially in the case of topological self-stabilizing algorithms, their correctness is not affected at all
by the application of this framework. In this part we will see some of these self-stabilizing algorithms,
in fact the algorithms presented on the first two chapters fulfill the requirements, that the framework
needs in order to be applied.

That fact put aside, in this part our main focus is to develop efficient self-stabilizing protocols
for specific network structures. Efficiency does concern the time, as well as message efficiency.
Load balancing is also an issue: i.e. that the message overhead is distributed fairly among nodes in
the network. The complexity measures we compute hold under the restriction that there is some time
point, after which no node departures (as well as joins) happen until the network has stabilized. In this
part of the thesis (in contrast to the previous) we restrict ourselves only to the synchronous message
passing model, so that we can compute some good upper bounds on the number of steps required for
reaching the stable state.

The goal topologies we consider for our self-stabilizing algorithms are the following. In the first
chapter of this part we consider an algorithm for self-stabilizingly constructing a variance of a Chord-
network, which is a typical network structure used in distributed computing, due to its good routing
and structural qualities (low diameter and low degree). The algorithm we give is based on the fol-
lowing work, which was presented in SPAA (2011) and later (2014) also published in the Journal of
Theory of Computing Systems, 55(3): 591-612.:

Sebastian Kniesburges, Andreas Koutsopoulos, Christian Scheideler: Re-Chord: a self-stabilizing
chord overlay network. SPAA 2011.

However, the algorithm presented here is an improved version of that work and manages to im-
prove the original work’s time complexity from O(n log n) to O(log3 n) time steps. Also, the mes-
sage overhead is improved as well.

In the next chapter we introduce the notion of heterogeneity in distributed systems, since it is
reasonable to assume that in many applications the nodes in a network do not always have similar
characteristics. We give an example of an algorithm for a heterogeneous distributed storage system.
In fact, we focus in this chapter on heterogeneity regarding the node’s storage capacity. This chapter
is based on the work:

Sebastian Kniesburges, Andreas Koutsopoulos, Christian Scheideler: CONE-DHT: A Distributed
Self-Stabilizing Algorithm for a Heterogeneous Storage System. DISC 2013

Again, by combining that work with techniques we used also in Chapter 3 (of this part) and
adding some new elements, we manage to give an algorithm that stabilizes faster (O(log3 n)) in
comparison to the one in our original work (O(n)) and moreover maintains a fair load balancing of
the message overhead due to routing.

Lastly, we look at one of the simplest network topologies there is, the clique. However, to give
an efficient self-stabilizing algorithm with that goal topology is not simple at all. We present an algo-
rithm which has optimal message complexity. This last chapter is based on the work:
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Sebastian Kniesburges, Andreas Koutsopoulos, Christian Scheideler: A Deterministic Worst-Case
Message Complexity Optimal Solution for Resource Discovery. SIROCCO 2013

which appeared at SIROCCO (2013), won the best student paper award, and also appeared later (2015)
in the Journal of Theoretical Computer Science 584: 67-79.



Chapter 3

Fast-Re-Chord

The first protocol we discuss is called Fast-Re-Chord, which is a protocol for self-stabilizingly con-
structing a Chord-like network graph. This chapter is based on the paper

Sebastian Kniesburges, Andreas Koutsopoulos, Christian Scheideler: Re-Chord: a self-stabilizing
chord overlay network. SPAA 2011.

Whereas in the original paper the protocol and the analysis were based on completely different
techniques, which allowed to show a self-stabilization time of O(n log n) time steps, in this chapter
we give an improved version of this protocol, which allows to conduct an analysis that results in only
O(log3 n) time steps, without increasing the message complexity. So the protocol and the proofs
presented in this chapter are completely new and are firstly presented in this thesis.

1 The Chord Network and Its Variants

The Chord system was introduced in an influential paper by Stoica, Morris, Karger, Kaashoek and
Balakrishnan [2]. Chord is basically a combination of a hypercubic network with an indexing method
called consistent hashing [23], and has the nice property of having logarithmic diameter as well as
degree. The Chord overlay network is defined as follows. Let U be the space of all peer addresses
and V ⊆ U be the current set of peers (also called nodes in the following) with n = |V |. There is
a (pseudo-)random hash function h : U → [0, 1) (in Chord, SHA-1) that assigns to each node v an
identifier h(v) uniformly at random from the [0, 1)-interval. The basic structure of Chord is formed
by a directed cycle, the so-called Chord ring, in which each node connects to its closest successor in
the identifier space, where the [0, 1)-interval is considered to form a ring. In addition to this, every
node v has edges to nodes pi(v), called fingers, with

pi(v) = argmin{w ∈ V | h(w) ≥ h(v) + 1/2i(mod 1)}

for every i ≥ 1. If there is no node w ∈ V with h(w) ≥ h(v) + 1/2i(mod 1), then the node
w ∈ V with smallest identifier is chosen. In order to route a message from node u to node w, the
Chord overlay network uses a path p(u, v) consisting of a sequence of nodes v0, v1, v2, . . . , v` with
the property that v0 = u, for all j ∈ {0, . . . , ` − 1}, vj+1 = pij (vj) where ij is the smallest integer
such that h(vj+1) ≤ h(w), and v`−1 is the first node that has a successor pointer to w. Hence, the
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path basically represents a binary search strategy and can be shown to be of length at most O(log n)
with high probability (given that the nodes have random identifiers).

Several variants of Chord have already been studied since the presentation of the Chord network.
In [88] a variant called EPI Chord is presented that allows the system to do parallel searches for the
best route to the search key. This does not improve the asymptotically worst-case cost of O(log n)
messages of Chord but can achieve O(1) hop lookup performance under lookup-intensive workloads
due to caching. In [89] another modification of Chord is presented. In this approach Chord is extended
by symmetric fingers, hence one can search in both directions of the circle. A similar idea is given
in [90] and [91], where links to the predecessors are stored instead of only links to the successors
of a node. In [91] also the physical distance is taken into account to estimate the shortest route. All
these variants only care about the lookup cost, but present no self-stabilizing process to maintain the
Chord structure. In [92] an algorithm is presented to build a Chord network from scratch in O(log n)
rounds, but still this algorithm is not self-stabilizing.

1.1 Fast-Re-Chord

Here we present Fast-Re-Chord, a self-stabilizing variant of Chord. In the Fast-Re-Chord network,
each node u representing a peer has an identifier u.id ∈ [0, 1), that defines its position in the [0, 1)-
interval. The self-stabilization mechanism is purely local in that a node only has to inspect its local
state in order for the algorithm to work. No global knowledge of the network is needed. Our main
result is the following.

Theorem 1.1 Our proposed protocol stabilizes after O(log3 n) rounds from any weakly connected
state w.h.p. The stable state of the protocol contains Chord as a sub-graph, so it can faithfully emulate
any applications on top of Chord.

Moreover, isolated join and leave requests can be handled in O(log2n) time steps with the self-
stabilization mechanism of Fast-Re-Chord.

More particularly, our goal structure is the Fast-Re-Chord graph, i.e. GFast-Re-Chord, which is a
variant of Chord, where each node additionally contains a few shortcuts to the nearest nodes in the
network. This is done in order to speed up the self-stabilization time, whereas it does not asymptoti-
cally increase the size of the neighborhood.

More specifically, each node u inGFast-Re-Chord maintains a neighborhood consisting of the fingers
and the direct neighbors.

The fingers which u maintains are defined as in the original Chord protocol, with the addition
that they are maintained at both sides (left and right fingers). So the fingers of a node u inGFast-Re-Chord

consist of the nodes

frighti(u) = argminw∈V{w.id ≥ u.id+ 1/2i(mod 1)}

as well as the nodes

flefti(u) = argmaxw∈V{w.id ≤ u.id− 1/2i(mod 1)}

for every i ≥ 1.
Also let Fright(u) =

⋃
i≥0 frighti(u) and Fleft(u) =

⋃
i≥0 flefti(u).
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The direct neighbors also exist on both sides (left and right direct neighbors), and they are defined
as the sets rDirect(u) and lDirect(u) of the closest 6u.mylogn neighbors to the right (resp. to
the left), where u.mylogn is a variable that denotes u’s estimation of log(n), and is computed as
u.mylogn = max{k ∈ N : ∃w ∈ neighborhood of u : |w.id− u.id| ≤ 1/2k}.

So GFast-Re-Chord is defined as

GFast-Re-Chord = (V,E = Ee∪Ei) : Ee = (u, v) : v ∈ Fright(u)∪Fleft(u)∪rDirect(u)∪lDirect(u)

Moreover, for the sake of the analysis, we will need the definition of the sorted-list graph, which
is a graph, where each node stores as a neighbor its closest node from the left as well as from the
right.

GList = (V,Ee∪Ei) : Ee = (u, v) : v = argminw∈V {w.id ≥ u.id}∨v = argmaxw∈V {w.id ≤ u.id}

Chord has two kinds of edges, successor-predecessor edges that form the Chord-ring, as well as
fingers. In the stable state each node in Fast-Re-Chord has an edge to its closest right and closest
left neighbor, which would be the successor and predecessor of that node in Chord. In Chord, each
node u has a finger edge that connects u with the node having a value closest to (and greater than)
u+ 1

2i
( mod 1), in a clockwise direction along a [0, 1) circle, for different values of i. Fast-Re-Chord

achieves the same. Therefore, each edge of Chord is included in Fast-Re-Chord, which implies the
following.

Corollary 1.2 In the stable state, Chord is a sub-graph of Fast-Re-Chord.

    1     0 

 

 

  u 

Figure 3.1: In this picture we depict the [0, 1) interval as a closed circle. A node u maintains in the
Fast-Re-Chord network edges to its fingers, both on the left and on the right, as well as to its closest
u.mylogn nodes, both on the left and on the right of u.
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2 Algorithm

The goal of the algorithm is to reach the desired Chord-structure in a self-stabilizing manner.
Our approach is based on a procedure called linearization, which has been used to form a sorted

list in various papers [35][34]. The basic idea of this procedure is that each node u forwards the
id of each node v it is aware of, but which is not needed for u’s neighborhood to some node in u’s
neighborhood which is closer to v. In addition to this classic linearization technique, we add an
extra rule. If u gains a new neighbor v and stores v in its neighborhood, it also introduces its whole
neighborhood to v. In that way the forming of the correct neighborhood of v is being sped up, without
increasing the message complexity in the stable state. That additional rule is crucial for the analysis
which results in a polylogarithmic number of convergence steps.

The algorithm consists of a series of periodically executed actions, as seen in algorithm 29.
Among these actions is the reading of the channel u.C for incoming messages. If there are any,
then the corresponding methods are executed: for example, if there is an incoming message of the
form (m.id, lin), the method linearize(m.id) is executed.

A technique we use in the algorithm is the probing. Periodically, each node u sends a probing
message (for each direction, left and right) which goes through all of its neighbors. The purpose of
this procedure is to test if u is connected through list-edges to them. Each node u uses a left and a
right probing message. If there is currently no right (resp. left) probing procedure going on, one is
started, as we can see in the actions of the algorithm. The probing procedure continues in each round
as each node u tries to contact the node being closest to the current probing goal, through sending
a requestprobingright and requestprobingleft message respectively through the probingr (resp.
probingl) actions. A node that receives a requestprobingright (or requestprobingleft) message
responds to u by sending the node that is closer to the current probing goal through a probingr
(or probingl) message and the same procedure occurs again until the last probing goal is reached.
Note that a probing procedure is induced every Θ(|fingers of u|) steps, which results in having prob-
ing messages more often when the neighborhood is small, but also not creating too many probing
messages when the neighborhood is large, for example at the stable state, thus keeping the message
overhead low.

As we require a ring as a sub-structure, we need a further operation to form it. The basic idea of
this procedure is that each node maintains the variables u.rring and u.lring to store a ring edge, that
is an edge that connects the minimal node with the maximal node and vice versa. A node u sends
periodically requestleftring (resp. requestrightring) to the node its ring edge is connected to,
which responds such that u can update it by sending a smaller (resp. larger) node.

Moreover, during the periodic actions, u also runs the linearize() method, which updates u’s
neighborhood, keeps the nodes needed as fingers or direct neighbors, and linearizes the nodes that are
not needed by using the forward method.

At last, a validitycheck is made, where it is checked whether the variables maintained by u really
fulfill the restrictions they ought to (for example, the edge to the right ring node of u must be to the
right of u).

2.1 Variables of the Protocol

Here we present the variables each node maintains in our protocol. The fingers of a node u are
stored in the variables u.rfingeri, with u.firstf ≤ i ≤ u.mylogn, where u.firstf is the or-
der of the closest finger to u. More specifically, the order of the closest finger is computed as
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u.firstf = min{k ∈ N : @w ∈ Γ(u) : |w.id− u.id| ≤ 1/2u.mylogn−k+1}. We say that u.rfingeri
(resp. u.lfingeri) is the right (resp. left) finger of u of order i, and this is set as (as we can see in the
pseudocode) u.rfingeri = argminw∈ Γ(u){w.id : w.id ≥ u.id + 1/2u.mylogn−i+1(mod 1)} (resp.
u.lfingeri = argmaxw∈ Γ(u){w.id : w.id ≤ u.id− 1/2u.mylogn−i+1(mod 1)} ).

The list of all variables a node u maintains is

• u.mylogn: The estimation of log(n).

• u.firstf : The order of the first finger, computed respectively to the ”closest” node to u from
u’s neighborhood

• u.rfingeri, ∀i with u.firstf ≤ i ≤ u.mylogn: The right finger of node u of order i.

• u.lfingeri, ∀i with u.firstf ≤ i ≤ u.mylogn: The left finger of node u of order i.

• u.rDirect: The set of nodes in u’s neighborhood, being ”closest” to u from the right.

• u.lDirect: The set of nodes in u’s neighborhood, being ”closest” to u from the left.

• u.rring: The right ring edge of u.

• u.lring: The left ring edge of u.

• u.P : The nodes used for supporting the probing process of u.

• u.nextr A pointer that points to the next node of the right probing process.

• u.nextl A pointer that points to the next node of the left probing process.

• u.rprobcounter Counts the number of steps the right probing process currently lasts

• u.lprobcounter Counts the number of steps the left probing process currently lasts

u.Rfingers (resp. u.Lfingers) is also used to denote the set of all right fingers (resp. left
fingers). Moreover, u.N denotes the neighborhood of u, that includes all the nodes stored in u, i.e.
the nodes in u.Rfingers,u.Lfingers, u.rDirect, u.lDirect, u.P , as well as u.rring and u.lring.
Note also that sometimes instead of a variable u.var in the pseudo-code we also write just var.

2.2 The Protocol

In this sub-section the pseudocode of the protocol is presented.
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Algorithm 8 PERIODIC ACTIONS OF NODE U

true→
u.lprobcounter:=u.lprobcounter+1
u.rprobcounter:=u.lprobcounter+1
if u.rprobcounter > 82u.mylogn then . If the probing ended, start probing

u.probingr(min{w ∈ u.N : w.id > u.id}, u)
u.rprobcounter=0

if u.lprobcounter > 82u.mylogn then
u.probingl(max{w ∈ u.N : w.id < u.id}, u)
u.lprobcounter=0

if u.id ≥ w.id,∀w ∈ u.N then
send message(u,requestleftring) to u.lring

else
linearize(u.lring)
u.lring=null

if u.id ≤ w.id,∀w ∈ u.N then
send message(u,requestrightring) to u.rring

else
linearize(u.rring)
u.rring=null

message m ∈ u.C →
if m.type=lin then

linearize(m.id)
else if m.type=probingr then

probingr(m.id,m.sender)
else if m.type=probingl then

probingl(m.id,m.sender)
else if m.type=requestprobingright then

continueprobingright(m.sender,stage)
else if m.type=requestprobingleft then

continueprobingleft(m.sender,stage)
else if m.type=requestrightring then

rightring(m.id)
else if m.type=requestleftring then

leftring(m.id)
else if m.type=requestneib then

requestneib(m.id)
linearize()
validitycheck() . Check whether the nodes in u.N are within the boundaries they are supposed to,
else linearize them (is a trivial procedure and omitted here)
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Algorithm 9 U.LINEARIZE(V)
if v 6∈ u.N ∨ v = ∅ then

u.Nold = u.N
u.N = u.N ∪ {v}

if u.id ≤ w.id,∀w ∈ u.N then . Update ring edges
u.rring=max{w ∈ u.N}

else
if u.rring 6= null then

u.linearize(u.rring)
u.rring=null

if u.id ≥ w.id,∀w ∈ u.N then
u.lring=maxw ∈ u.N

else
if u.lring 6= null then

u.linearize(u.lring)
u.lring=null

u.mylogn = max{k ∈ N : ∃w ∈ u.N : |w.id− u.id| ≤ 1/2k} . estimate log(n)
u.firstf = min{k ∈ Z :6 ∃w ∈ u.N : |w.id− u.id| ≤ 1/2mylogn−k+1}
for all i : u.firstf ≤ i ≤ mylogn do . compute right and left fingers

u.rfingeri = argminw∈u.N{w.id : w.id ≥ v.id+ 1/2mylogn−i+1(mod 1)}
if u.rfingeri = null then

u.rfingeri = argminw∈u.N{w.id}
u.lfingeri = argmaxw∈u.N{w.id : w.id ≤ v.id− 1/2mylogn−i+1(mod 1)}
if u.lfingeri = null then

u.lfingeri = argmaxw∈u.N{w.id}
u.Rfingers=

⋃
∀firstf≤i≤mylogn u.rfingeri

u.Lfingers=
⋃
∀firstf≤i≤mylogn u.lfingeri

. 6mylogn nodes closest to u from the right and the left
u.rDirect = {w ∈ u.N : |{v ∈ u.N : x ≤ y, where x = min{v.id − u.id, 1 − u.id +

v.id}, y = min{w.id− u.id, 1− u.id+ w.id} ∧ x, y > 0}| ≤ 6mylogn}
u.rDirect = {w ∈ u.N : |{v ∈ u.N : x ≤ y, where x = min{u.id − v.id, 1 − v.id +

u.id}, y = min{u.id− w.id, 1− w.id+ u.id} ∧ x, y > 0}| ≤ 6mylogn}

for all w ∈ u.N : u 6∈ Rfingers∪Lfingers∪rDirect∪ lDirect∪{rring}∪{lring}∪u.P
do

u.forward(w) . get rid of the rest

u.N = Rfingers ∪ Lfingers ∪ rDirect ∪ lDirect ∪ {rring} ∪ {lring} ∪ u.P
if u.N 6= u.Nold then . If v was included in new u.N

for all w ∈ u.N do
send message (w,lin) to v

send message (v, requestneib) to h={u.Nold.fingerj : v = u.fingerj}
else

u.forward(v)
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Algorithm 10 U.PROBINGR(V,M.SENDER)
if v.id > (m.sender).id then

for all w ∈ u.P : (m.sender).id < w.id < v.id do . Update u.P
u.P := u.P/{w}
u.linearize(w)

else
for all w ∈ u.P : ((m.sender).id < w.id) ∨ (w.id < v.id) do

u.P := u.P/{w}
u.linearize(w)

if v 6∈ u.N then
u.P = u.P ∪ {v}
u.linearize(v)

if m.sender 6∈ u.N then
u.P = u.P ∪ {m.sender}
u.linearize(m.sender)

first=min{w ∈ u.N : w.id > u.id}
if first=null then

first=u.lring
u.nextr=min{w ∈ Rfingers ∪ rDirect : w.id > first.id}
if next=null then

u.nextr=min{w ∈ Rfingers ∪ rDirect}
if u.nextr ∈ rDirect then

stage=direct
else

stage=fingers
if v = u.rfingermylogn then . probing ended, restart probing

u.rprobcounter=0
send message (requestprobingright,stage) to first

else if u.rprobcounter > 82u.mylogn then . probing counter reached limit, restart probing
for all w ∈ Rfingers ∪ rDirect do

send message (u,lin) to w
u.rprobcounter=0
send message (requestprobingright,stage) to first

else . continue probing with searching for next node
u.nextr=min{w ∈ Rfingers ∪ rDirect : w.id > v.id}
if next=null then

u.nextr=min{w ∈ Rfingers ∪ rDirect}
if u.nextr ∈ rDirect then

stage=direct
else

stage=fingers
send message (requestprobingright,stage) to v
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Algorithm 11 U.PROBINGL(V,M.SENDER)
if v.id < (m.sender).id then

for all w ∈ u.P : (m.sender).id > w.id > v.id do . Update u.P
u.P := u.P/{w}
u.linearize(w)

else
for all w ∈ u.P : ((m.sender).id > w.id) ∨ (w.id > v.id) do . Update u.P

u.P := u.P/{w}
u.linearize(w)

if v 6∈ u.N then
u.P = u.P ∪ {v}
u.linearize(v)

if m.sender 6∈ u.N then
u.P = u.P ∪ {m.sender}
u.linearize(m.sender)

first=max{w ∈ u.N : w.id < u.id}
if first=null then

first=u.lring
u.nextl=max{w ∈ Lfingers ∪ lDirect : w.id < first.id}
if next=null then

u.nextl=max{w ∈ Lfingers ∪ lDirect}
if u.nextr ∈ lDirect then

stage=direct
else

stage=fingers
if v = u.lfingermylogn then . probing ended, restart probing

u.lprobcounter=0
send message (requestprobingleft,stage) to first

else if u.lprobcounter > 82u.mylogn then . probing counter reached limit, restart probing
for all w ∈ Lfingers ∪ lDirect do

send message (u,lin) to w
u.rprobcounter=0
send message (requestprobingleft,stage) to first

else . continue probing with searching for next node
u.nextl=max{w ∈ Lfingers ∪ lDirect : w.id < v.id}
if next=null then

u.nextl=max{w ∈ Lfingers ∪ lDirect}
if u.nextr ∈ lDirect then

stage=direct
else

stage=fingers
send message (requestprobingleft,stage) to v
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Algorithm 12 U.FORWARD(V)
. forward v to the closest neighbor

if v.id > u.id then
if v.id > z = min{w ∈ u.N : w.id > u.id} then

send message (v,lin) to x=max{w ∈ u.N : w.id < v.id}
send message (min{w ∈ u.N : w.id > u.id},lin) to v

else
send message (u,lin) to v

else if v.id < u.id then
if v.id < z = max{w ∈ u.N : w.id < u.id} then

send message (v,lin) to x=min{w ∈ u.N : w.id > v.id}
send message (max{w ∈ u.N : w.id < u.id},lin) to v

else
send message (u,lin) to v

Algorithm 13 U.CONTINUEPROBINGRIGHT(M.SENDER,STAGE)
. Sends the next probing node to the sender, so that the probing can be continued

if stage=fingers then
goal=min{(m.sender).id+ 1/2i(mod 1)|(m.sender).id+ 1/2i(mod 1) > u.id}
send message(argminw∈u.N/u.P {|w.id < goal|},probingr) to m.sender

else
send message(argmin∀y∈u.rDirect|y.id− u.id|,probingr) to m.sender

Algorithm 14 U.CONTINUEPROBINGLEFT(M.SENDER,STAGE)
. Sends the next probing node to the sender, so that the probing can be continued

if stage=fingers then
goal=max{(m.sender).id− 1/2i(mod 1)|(m.sender).id− 1/2i(mod 1) < u.id}
send message(argminw∈u.N/u.P {|w.id < goal|},v,probingl) to m.sender

else
send message(argmin∀y∈u.lDirect|y.id− u.id|,probingr) to m.sender

Algorithm 15 U.RIGHTRING(V)
send message (max{w ∈ u.N},lin) to v . respond to a rightring request

Algorithm 16 U.LEFTRING(V)
send message (min{w ∈ u.N},lin) to v . respond to a leftring request

Algorithm 17 U.REQUESTNEIB(V)
for all w ∈ u.N do

send message (w,lin) to v . respond to a requestneib
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3 Analysis

In order to show that our protocol is a self-stabilizing algorithm forGFast−Re−Chord, we need to show
two main properties. The convergence, which means that the GFast−Re−Chord is reached out of any
weakly-connected state, and the closure, which means that once a GFast−Re−Chord state is reached,
it also stays that way. We show that the convergence can be achieved in a polylogarithmic number of
time steps. Furthermore, we show the message complexity for both the time of the convergence, as
well as during the closure.

Definition 3.1 First we give the following definitions.

• The distance between two nodes u,v (distance(u, v)) with u.id > v.id is defined as min{u.id−
v.id, 1− u.id+ v.id}.

• We denote as pt(u, v) an undirected path that exists between node u,v at some time step t.

• Let a, b, c be three consecutive nodes of some undirected path pt(u, v). Then b is called a
(left) corner node of pt(u, v) if a.id > b.id and c.id > b.id. It is called a (right) corner node
of pt(u, v) if a.id < b.id and c.id < b.id.

• A linear path between two nodes u,v is an undirected path without any corner nodes (de-
spite possibly the first and last node of the path).

• The right (resp. left) link of u of order i (rlinki(u) (resp. llinki(u) )) is the smallest
(resp. largest) node in u’s neighborhood (u.N ) having larger (resp. smaller) id than u.id +
1/2dlog(n)e−i+1 (mod 1) (resp. smaller than u.id− 1/2dlog(n)e−i+1 (mod 1)).

If there is not such a node then rlinki(u) (resp. llinki(u) ) is equal to rlinki−1(u) (resp.
llinki−1(u) ), and if there does not even exist a node from u to u.id+ 1/2dlog(n)e−i+1 (mod 1)
(resp. u.id − 1/2dlog(n)e−i+1 (mod 1)), then rlinki(u) (resp. llinki(u) ) is equal to u. Note
that the value of rlinki(u) (resp. llinki(u) ) depends on the current values in u.N .

• The correct right (resp. left) finger of u of order i (rfingeri(u) (resp. lfingeri(u) )) is
equal to the value u.rfingeri (resp. u.lfingeri ) would get through the linearize() action if
u.N = V . In other words, the value these variables must have at the stable state.

3.1 Preliminary Properties

Next we show some structural properties of the network.

Lemma 3.2 The number of nodes in an interval of 1/n is at most 6 log n, w.h.p..

Proof. We consider the process of distributing n nodes in the [0, 1) interval (since we assume that
the ids are distributed uniformly at random), as throwing n balls into n bins of size 1/n each. Then
we can use the well-known fact that a bin has at most 8 ln(n)

ln(ln(n)) number of balls w.h.p., from which it

follows that the number of nodes are no more than 8 ln(n)
ln(ln(n)) ≤ 8 ln(n) = 8 log(n)

log(e) ≤ 6 log n w.h.p.. ut

Lemma 3.3 u.mylogn ≤ 3 log n w.h.p. and if u knows at least 1 node within 1/n distance from
itself, then u.mylogn > log n. Moreover, the number of u’s fingers/links is at most 14 log n w.h.p..
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Figure 3.2: We assume that the nodes on the picture are ordered from left to right according to their
ids. let’s consider two consecutive nodes a and b and a possible path between them. The corner nodes
in that path are u and v and for example the undirected path p(u, v) is a linear path, since it does not
contain any corner nodes besides the first and last node.

Proof. According to the protocol u.mylogn is calculated as max{k ∈ N : ∃w ∈ u.N : |w.id −
u.id| ≤ 1/2k}. That means in order for u.mylogn to be larger than 3 log n there must exist a w in
the network which is within the interval I = [u.id− 1/23 logn, u.id+ 1/23 logn]. The probability that
this does not happen is Pr[6 ∃w ∈ I] ≥ 1 − n 2

23 logn = 1 − 2
n2 → 1. The second statement of the

lemma follows directly from the computation of u.mylogn in the linearize action of the algorithm.
Now we consider the third statement. Due to Lemma 3.2 the number of nodes within a range of 1/n
away from u.id are at most 12 log n w.h.p. (6 log n at the right and 6 log n at the left), which means
that the number of fingers of order less than 1 is at most 12 log n w.h.p., so all in all the number of
fingers/links is at most 14 log n w.h.p. (7 log n at each side). ut

Before presenting the next lemma, note that by a successful probing we mean that all nodes in
u.N are reached within a probing procedure, without the u.lprobcounter or u.rprobcounter to reach
its maximum value in the u.probingl or u.probingr action.

Lemma 3.4 In the stable state, the size of the neighborhood of a node u (u.N ) is O(log n) w.h.p.
and the probing succeeds w.h.p.

Proof. Let u be a node in a graph being in the stable state. That means that u maintains its correct
neighborhood, i.e. u.N = N(u) (for example u.rfinger1 = rfinger1(u)).
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LetXi be the random variable that is equal to the number of nodes in u.P between y, the (w.l.o.g.)
right link of u of order i and w, the one of order i+ 1. In order to get from y to w through the probing
process, the closest node to w is continuously sought. More specifically, y delegates the probing
message to its right link of order i, z (if not it means it has a neighbor even closer to w which makes
the probing even faster). In case rlinki+1(u) = z, then the probing from link i to i + 1 just takes
2 rounds. If this is not the case, because z.id > w.id, then we have to count the number of nodes
between z and w.

Now we compute the expected distance between z and w, which is at most the distance be-
tween z (or z.id) and u.id + 1/2log(n)−(i+1)+1 (mod 1). Note that y is the leftmost node after
u.id+ 1/2log(n)−i+1(mod 1) and z the leftmost node after y.id+ 1/2log(n)−i+1(mod 1). That means
that E[z.id] = E[z.id − y.id + y.id] = E[z.id − y.id] + E[y.id]= 1/2log(n)−i+1+1/n + u.id +
1/2log(n)−i+1 + 1/n (mod 1) = u.id + 1/2log(n)−(i+1)+1 + 2/n (mod 1). So the mean length of
the interval [z.id,u.id + 1/2log(n)−(i+1)+1 (mod 1)] is 2/n, in other words, the interval between z
and w has expected size at most 2/n. Due to Lemma 3.2, the number of nodes in this interval is
at most 12 log n w.h.p., and since each node f in this interval has at least one neighbor at distance
≤ 1/n (either that, or there are very few nodes in the interval w.h.p.), due to Lemma 3.3 it holds that
f.mylogn > log n, and the size of f.rDirect and f.lDirect is at least 6 log n. That means that the
probing procedure from z to w takes at most 2 hops at expectation (since at each hop at least 6 log n
nodes are left behind). So all in all, the probing from y = u.rlinki to w = u.rlinki+1 takes at most
3 hops at expectation, i.e. E[Xi] ≤ 3.

Let X be the random variable that denotes the number of probing hops due to the fingers of u.
Summing up over all (w.l.o.g.) right links (which we know are at most 7 log n w.h.p. due to Lemma
3.3), we have that the expected number of probing hops is E[X] ≤ E[

∑
∀iXi] =

∑
∀iE[Xi] =3 ·

7 log n = 21 log n.

By using Hoeffding’s inequality we have that P (X − E[X] ≥ log n) ≤ e
− 2n2 log2 n∑n

j=1
(2 logn−1)2 ≤

e
− 2n2 log2 n∑n

j=1
(2 logn)2 = e

− 2n2 log2 n

4n log2 n = e−
n
2 → 0. So the number of hops due to the fingers is no more

than 22 log n w.h.p., which means that if we take into account that the number of hops is equal to the
number of hops due to the fingers plus the hops due to the nodes in u.rDirect (or u.lDirect) the
total number of probing hops is w.h.p. at most 22 log n + 6u.mylogn ≤ 22 log n + 6(3 log n) (due
to Lemma 3.3) = 40 log n. That means that |u.P | = O(log n) w.h.p., from which we can derive that
|u.N | = O(log n) w.h.p., as due to Lemma 3.3 we also know that u’s fingers are at most 14 log n
w.h.p..

The number of timesteps required for probing is 80 log n (double the number of hops) w.h.p.,
since for each hop there is a probing message sent as well as a response (continueprobing) message.
In our case, according to Lemma 3.3, 80 log n < 80u.mylogn, That means that probing succeds
w.h.p., according to the pseudocode of the probing procedure (Algorithms 10, 11).

ut

3.2 Convergence

The main theorem we need to show is the following.

Theorem 3.5 After O(log3n) steps, the network has reached a state, where the explicit network graph
is a supergraph of GFast-Re-Chord.
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First of all, note that, out of any initial weakly-connected configuration, at most after one round,
after the validitycheck() has been called by each node in the network, all nodes maintain valid neigh-
borhoods. We consider this timestep, in which each node maintains a valid neighborhood as t0.

The analysis of the convergence continues in several phases. Our first goal is to show that the
sorted list is formed as a substructure in the network. We do that by showing that the path length
between two contiguous nodes is halfed every O(log2 n) timesteps. More precisely we show that
each linear subpath of that path is halfed. In order to do that we show that each node on that subpath
maintains its links up to a specific order on that subpath, and this order bound increases every constant
number of rounds.

Next we need to show how the Fast-Re-Chord graph is formed out of the sorted list. It is easy to
show inductively that on the sorted list the correct fingers of a node u are formed, one after the other.
At last, we show that explicit edges that are not part of the Fast-Re-Chord graph disappear, and as a
result the Fast-Re-Chord graph is being formed.
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Figure 3.3: let’s consider the situation on the left. After O(log n) rounds (Lemma 3.6) node u will
have its links u1 and u2 at the path p(u, l) as well as at the path p(u, b). This means that u1 will be
also on p(u, b) (right picture) and the subpath from l to b shrinks.

Phase 1: Reaching the Sorted List

We first show the following lemma.

Lemma 3.6 Let a timestep t ≥ t1 = 82 log n + t0 and a node u being on a linear path ∈ lpt(a, b).
Then at time tj = t1 + i ·h, i > 0 (for a sufficiently large constant h) it holds w.h.p. that u, as well as
its right (resp. left) links (if it has any of them) of order ≤ i such that 1/2dlog(n)e−i+1 (i.e. the length
of the i-th order right, resp. left link) is smaller than b.id−u.id

2 (resp. u.id−a.id
2 ), are on a linear path

between a and b.

Proof.
The proof is done through induction over i.
Induction basis :
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We start the induction at round t1 = 82 log n + t0. As we have shown, after 82 log n rounds
all the nodes will have already had a complete probing procedure and will have reset their probing
procedure, and at least one new has been started. W.l.o.g. we restrict our analysis to the case of the
right links. If u already has a right link of order 1 at a linear path p ∈ lpt1(a, b) we are done. So let
us assume this is not the case.

Let v be the node of p, being the closest one to u from the right. In case u does not have an edge
to v (then obviously v has an edge to u) we consider following subcases. If (v, u) is an explicit edge,
then v will contact u during its next probing procedure, which happens in O(log n) rounds w.h.p. If
(v, u) is an implicit edge, then following cases are possible.

• The edge can be a (u, lin) message, in which case v sends u a lin message with v’s closest
neighbor from the left.

• This edge can be a (u, probingr) message, in which case v would linearize u or contact u
during the next probing otherwise if u is the first argument. If u is the m.sender argument, it
is handled analogously.

• The implicit edge (v, u) could be a requestprobing message then a continueprobing message
is sent back to u.

• The edge can otherwise be a (u, rightring) message, in which case it means that u sent that
message and has a ring edge to v. In case the ring edge was dropped it would have been
linearized before by u.

• The edge could be an (u, requestneib) message, in which case v sends v.N to u.

.
Now, either is v the first direct right neighbor of u (the leftmost of u.rDirect) or u maintains

another node which is that, let that be w. Either during the last probing procedure of u, or when u
learns about v, v is introduced to w, which means that after a constant number of rounds the first di-
rect right neighbor of u is at a linear path from a to b. By continuing this argumentation analogously,
we conclude that all nodes in u.rDirect, as well as all nodes in u.P are between u and rlink1(u)
(including rlink1(u) ) are at a linear path from a to b after O(log n) rounds w.h.p. (since there lie
O(log n) nodes between u and rlink1(u) w.h.p.).

Induction step:
According to the induction hypothesis, at time t1 + (i − 1)h, u has already links of order < i at

some px ∈ lpt1+(i−1)h(a, b).
If the link rlinki(u) is already on the path or 1/2dlog(n)e−i+1 > b.id−u.id

2 , then we are done. Else,
we know from the induction hypothesis that u maintains rlinki−1(u) at some py ∈ lpt1+i−1(a, b),
if u was already on such a path. Also, according to the induction hypothesis, rlinki−1(u) maintains
also its link rlinki−1(rlinki−1(u)) on some path ∈ lpt1+i−1(a, b) (see Figure 3.2), if 1/2dlog(n)e−i <
b.id−rlinki−1(u)

2 . (If this is not the case then also 1/2dlog(n)e−i+1 > b.id−u.id
2 , and then we are done.)

Now, one case is if rlinki−1(rlinki−1(u)) and u have been introduced to each other by rlinki−1(u),
at timestep tj > t0 when rlinki−1(u) learned about u (or rlinki−1(rlinki−1(u))), according to
the (rlinki−1(u)).linearize(u) action (or (rlinki−1(u)).linearize(rlinki−1(rlinki−1(u))) action).
Then the two nodes are introduced to each other because (rlinki−1(u)).N would be unequal to
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Figure 3.4: With the help of rlinki(rlinki(u))), rlinki(u)) is reached from u and integrated into the
path from u to l.

(rlinki−1(u)).Nold. In case rlinki−1(rlinki−1(u)) and u have been neighbors of rlinki−1(u) al-
ready at t0, then at most at timestep t1 = 4log(n) + t0 during the probing procedure of u node
rlinki−1(u) will have been reached and rlinki−1(rlinki−1(u)) will have been introduced to u ac-
cording to the action (rlinki−1(u)).continueprobingright or (rlinki−1(u)).continueprobingleft,
where the closest node to the probing goal is sent to u, which in this case is rlinki−1(rlinki−1(u)).
Since (u, rlinki−1(u)) and (rlinki−1(u), rlinki−1 (rlinki−1(u))) have at least 1/2log(n)−(i−1)+1

length each, then the new edge (u, rlinki−1(rlinki−1 (u))) will have length at least 1/2log(n)−i+1

, which means that it is stored as rlinki(u), if u does not already have one. If u did already have
a rlinki(u) l at t0, then the following cases can occur. In case l.id > rlinki−1(rlinki−1(u)).id
then l is dropped as a link and we are done. Otherwise, rlinki−1(rlinki−1(u)) is forwarded to l and
again the lemma holds. Note that the correctness of the lemma is not influenced if during this time
rlinki−1(u) (or analogously/as a consequence rlinki−1(rlinki−1(u))) changes its value. We will
argue here why. Suppose rlinki−1(u) = v until some timestep t, and at the same timestep u learns a
new node w which qualifies better for rlinki−1(u) and sets rlinki−1(u) = w. That means, according
to the linearize action, that u sends a request(w) message to v and v sends v.N to w at timestep
t + 1. At timestep t + 2 w receives v.N and either sets rlinki−1(w) = rlinki−1(v) or forwards
rlinki−1(v) (i.e. what was rlinki−1(rlinki−1(u))) to rlinki−1(w). That happens for all existing
right links of w, so all existing right links with id less than b.id are on a path from a to b at time t+ 2.
Note that the statement of the lemma for u’s link rlinki(u) is also not influenced, since u would still
have its rlinki(u) link on a linear path from a to b.
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That is because in order for the value of rlinki(u) to be changed to rlinki−1(w) either rlinki−1(w)
was introduced to u before t+ 2, or u learned about rlinki−1(w) from w during the probing process.
But in the latter case this cannot happen until t+ 2. That is because at timestep t u learns about w, so
it can at earliest send a continueprobing message to w, which will receive this message at t + 1 and
respond at t + 2 by sending (possibly) rlinki−1(w) to u. Now, let’s consider the other case, where
rlinki−1(w) was introduced to u before t + 2. Here, we consider 2 subcases. In the first subcase u
has already had another rlinki(u) when rlinki−1(w) was introduced, so it just changed the value of
rlinki(u) to rlinki−1(w) and forwarded rlinki−1(w) to the previous rlinki(u), so the lemma still
holds. The second subcase is that u’s rlinki(u) was null when it learned about rlinki−1(w). But that
means that t+ 1 < t1 + i · h, so the lemma holds.

ut
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Figure 3.5: (Lemma 3.7)The distance from u to l1 is halfed every logarithmic number of rounds,
since u maintains its a finger more every logarithmic number of rounds (for example u1) at the path
between u and l1. After O(log2 n) number of rounds l1 will have a linear path to l2 and so there will
exist a new path from a to b, where the subpath from l2 to b has only two cornernodes instead of three.

Further we show following lemma.

Lemma 3.7 At some timestep t2 = t1 + c log3 n, for some constant c, the sorted list (GList) has been
formed as a subgraph of the network graph Gt2 .

Proof. Let a and b be two consecutive nodes from the node set V of the network graph, i.e. a =
max{w ∈ V : w.id > b.id}. Since the graph is weakly connected, there exists at any time an
undirected path from a to b. Let at some timestep t > t1 a (w.l.o.g.) left corner node u on pt(a, b).
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Since u is a corner node, it participates at two linear paths on pt(a, b), (u, l1) and (u, l2), where l1
and l2 are the right cornernodes of the subpaths (u, l1) and (u, l2) and w.l.o.g. l1.id < l2.id. Due to
Lemma 3.6, at most at some timestep t1 + i · h log n, u has all its right links of order i (with the link
of the i-th order being the largest link that is smaller than l1.id−u.id

2 ) on (u, l1) and (u, l2). That means
that rlinki(u) is both on (u, l1) and (u, l2), which means that a new subpath can be formed which is
part of pt′(a, b), having rlinki(u) as a new corner node instead of u. That means that the distance
from the cornernode to l1 has at least halfed after a logarithmic number of rounds. By continuing this
argument we get that afterO(log2 n) timesteps, the corner node is merged with l1 and we get a linear
path from l1 to l2 (Figure 3.2). So we have that for every set of three consecutive corner nodes, after
O(log2 n) timesteps only at most two of them are left. So everyO(log2 n) timesteps a path from a to
b can be constructed, such that the number of corner nodes is reduced by at least 1/3 every time. That
means that after O(log3 n) timesteps there is a path between a and b with no corner nodes, in other
words there is a direct connection from a to b (or from b to a), and thus, O(log n) timesteps later (at
latest when a new probing process is conducted) also a direct connection to a from b (or to b from a).
Since that happens for every pair of consecutive nodes in V , it means that at most at some timestep
t2 = t1 + c log3 n, for some constant c, the sorted list has been formed as a subgraph of the network
graph Gt2 . ut

Phase 2: From the Sorted List to Fast-Re-Chord

Due to Lemma 3.6 we know that at most O(log n) timesteps after t2, each node u on the sorted list
maintains its right (reps. left) fingers of order i such that u.id+ 1/2dlog(n)e−i+1 < b.id, with b being
the rightmost node in the list, i.e. with the maximal id (resp. u.id − 1/2dlog(n)e−i+1 > a.id, with a
being the leftmost node, i.e. with the minimal id).

Next we show that the ring is formed after O(log n) as a subgraph. The ring is the sorted list
graph with two additional edges: the ring edge from the node with the maximum value to the node
with the minimum value and vice versa.

Lemma 3.8 The ring is formed as a subgraph of the network graph at timestep t2 +d log n, for some
constant d.

Proof. Since b is the rightmost node, it has no right neighbor, so it will set its b.lring pointer to
the maximum node in b.N . During the linearize() action, it will request from b.lring to send its
neighbor with the smallest id to b by sending a (b, leftring) message. That procedure happens until
the leftmost node (a) is reached. Since the fingers within the range (a, b) are maintained by each
node, as described above, in each hop the distance to a is at least halfed, until a is within the direct
neighborhood of u.lring and will be returned to u. So a is reached at most after d log n timesteps
after t2. Due to an analogous argument, b is reached within d log n timesteps from a and the ring is
formed. ut

Lemma 3.9 At timestep t3 = t2+c′ log n a node u is connected to its correct right and left u.mylogn
direct neighbors, i.e. u.rDirect = rDirect(u) and u.lDirect = lDirect(u), for a sufficiently large
constant c′.

Proof. W.l.o.g. we consider only u.lDirect. Once a new probing starts u will start propagate the
probing message to the direct right neighbor and that continues until all u.mylogn right neighbors
are reached. Since u.mylogn = O(log n) this happens in a logarithmic number of timesteps. ut
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Lemma 3.10 At timestep t4 = t3 + f log n · i each node u is connected to its correct right (and left)
link of order i (i.e. rlinki(u) = rfingerj(u) = u.rfingerj , for some u.first ≤ j ≤ u.mylogn),
for a sufficiently large constant f .

Proof.
W.l.o.g. we consider the right links. We will show this through induction.
Induction base:
Note that rlink1(u) is the first finger from the right with distance at least 1/n to u. The next

probing message sent after t3 needs only to traverse the linear path between u and the first node in
the sorted list being further away than 1/n and qualifies for a finger, that means it is at most O(1/n)
further away. Note that the maximum number of nodes lying between an interval of length 1/n is
O(log n) w.h.p. (as shown in Lemma 3.2). So, there are at most logarithmic number of nodes to be
traversed through the probing process. So, all in all, after t3 + O(log n) steps, all nodes maintain all
their correct links of order 1.

Inductive step:
Due to the induction hypothesis we have that at timestep t3 + f log ·i each node is connected to

its correct right link of order i. Now, let us show this statement for i + 1. If u is already connected
to rlinki+1(u) (its correct right link of order i + 1) we are done. If not, then at latest during the
next probing rlinki(u) is reached within 80 log n steps. That happens, since we know through the
induction hypothesis that all links of order ≤ i are maintained by all nodes after t3 + f log n · i steps,
and thus we know that due to the same arguments as in Lemma 3.4, the rlinki(u) is reached within
80 log n steps w.h.p.. As a consequence rlinki(rlinki(u)) is introduced to u as a next probing step.
From this point on, as all links of order ≤ i are maintained by all nodes, the distance to rlinki+1(u)
is halfed at each probing hop, so after at most additional 2 log n rounds rlinki+1(u) is reached.

ut

Lemma 3.11 Redundant explicit edges disappear after O(log n) steps.

Proof. Here we show that explicit edges that do not belong to GFast−Re−Chord disappear over time,
so that the set of explicit edges forms the Fast-Re-Chord graph.

So let’s consider the timestep t4 when the graph of the explicit edges G forms a superset of
GFast−Re−Chord. Let an explicit edge (u, v) ∈ G, which is not in GFast−Re−Chord. That means
that v is not a correct finger of u (or does not belong in u.N in any way) and will be forwarded
throught the linearize action to the closest node of u.N , w. Since u maintains all its correct fingers,
distance(w, v) ≤ 1

2distance(u, v). Since this happens continuously the distance of the edge to v
is halfed in each step, thus after O(log n) steps v will be connected with its direct neighbor and the
redundant edge no longer exists. ut

That finishes the proof for Theorem 3.5.

3.3 Closure

Theorem 3.12 If the graph of the explicit edges forms GFast−Re−Chord at time t, then it stills does
that at t′ > t w.h.p. if no node joins/leaves the system.

Proof. The actions conducted periodically are the linearize() and the probing actions. Since the
nodes maintain their correct neighborhoods (due to the fact that no external dynamics occur), the
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linearize() action does not alter the explicit graph. The only way the probing action can add a new
explicit edge is if it fails. However due to Lemma 3.4 this does not happen w.h.p. ut

3.4 Message Complexity

Theorem 3.13 The nodes in the network send (and thus receive)O(n2 log4 n) messages (of logarith-
mic size) during the self-stabilization.

Proof. The self-stabilization process takes O(log3 n) steps. In each step each node can send in the
worst case all of its neighboorhood (O(log n)) to all other nodes in the graph (n − 1). Thus the
Theorem follows. ut

Theorem 3.14 In the stable state, a constant number of messages are sent/received per node per step
on average.

Proof. The only messages that are sent in a stable state are the messages associated with probing.
Obviously a node sends only one probingl, probingr message in each timestep. Also to each node
exactly one continueprobingright and continueprobingleftmessage is sent in each timestep from
some other node. Thus each node sends and receives on average a constant number of messages per
timestep. ut

4 Discussion and Extensions

Note that, as far as the message complexity is concerned, a lower bound for the algorithm (as well as
for any linearization-based algorithm) is Ω(n2) (messages of logarithmic size). That is because at the
worst case the intial graph could be a clique, in which case each node has to forward O(n) nodes to
its neighbors only in the first timestep.

Concerning the time complexity, the only known approaches to achieve better time (O(log n)
number of timesteps) for self-stabilizing topologies are approaches based on all-to-all introduction,
where nodes introduce all their neighbors to all their neighbors at each timestep. However these
approaches are very inefficient in terms of message complexity, since at least Ω(n3) messages of
logarithmic size (or Ω(n3 log n) communication complexity) are needed for the convergence. The
message complexity in the stable state is also large.

So the technique presented in this chapter is the first to achieve polylogarithmic self-stabilization
time without using the message expensive all-to-all introduction procedure, at least in the field of
topological self-stabilization.

Note the protocol presented in this chapter is applicable for the framework presented in the previ-
ous chapter, i.e.: the conditions required are met here. That means that the algorithmic framework of
chapter 2 can be applied to this protocol, which will result to a protocol that solves FDP and reaches
the Fast-Re-Chord topology.



Chapter 4

Introducing Heterogeneity
An efficient self-stabilizing algorithm for a heterogeneous storage
system

In the previous chapter we considered how to self-stabilizingly construct and maintain an efficient
distributed hash table. In this chapter we will add another aspect in this issue, the heterogeneity. Het-
erogeneity can imply many things, but usually in distributed systems we mean heterogeneity at node
level: i.e. nodes can have different capacities, bandwidths, and reliabilities. Here we consider the
nodes’s capacity. As a matter of fact, in this particular chapter we consider the problem of managing
a dynamic heterogeneous storage system in a distributed way so that the amount of data assigned to a
host in that system is related to its capacity.

Three central problems have to be solved for this: (1) organizing the hosts in an overlay network
with low degree and diameter so that one can efficiently check the correct distribution of the data and
route between any two hosts, (2) distributing the data among the hosts so that the distribution respects
the capacities of the hosts and can easily be adapted as the set of hosts or their capacities change
and (3) doing this in an efficient way, regarding the timesteps as well as the messages required. We
present a distributed protocol for these problems that is self-stabilizing and that does not need any
global knowledge about the system such as the number of nodes or the overall capacity of the system.
Prior to this work no solution was known satisfying these properties.

The work presented in this chapter is based on the following paper:

Sebastian Kniesburges, Andreas Koutsopoulos, Christian Scheideler: CONE-DHT: A Distributed
Self-Stabilizing Algorithm for a Heterogeneous Storage System. DISC 2013

In fact, it improves the above paper in certain ascepts, since the presented protocol is a new
version of the original one, which enables fast self-stabilization, and lower message complexity as
well as fairly distributed routing overhead. So part of the protocol as well as the time-complexity
proof presented in this chapter are completely new and are firstly presented in this thesis.

81
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1 Heterogeneous Storage Systems

Many data management strategies have already been proposed for distributed storage systems. If all
hosts have the same capacity, then a well-known approach called consistent hashing can be used to
manage the data [23]. In consistent hashing, the data elements are hashed to points in [0, 1), the
hosts are mapped to disjoint intervals in [0, 1), and a host stores all data elements that are hashed to
points in its interval. An alternative strategy is to hash data elements and hosts to pseudo-random bit
strings and to store (indexing information about) a data element at the host with the longest prefix
match [58]. These strategies have been realized in various DHTs including CAN [24], Pastry [25]
and Chord [2]. However, all of these approaches assume hosts of uniform capacity, despite the fact
that in P2P systems the peers can be highly heterogeneous.

In a heterogeneous setting, each host (or node) u has its specific capacity c(u) and the goal
considered in this chapter is to distribute the data among the nodes so that node u stores a fraction of
c(u)∑
∀v c(v) of the data. The simplest solution would be to reduce the heterogeneous to the homogeneous

case by splitting a host of k times the base capacity (e.g., the minimum capacity of a host) into k
many virtual hosts. Such a solution is not useful in general because the number of virtual hosts would
heavily depend on the capacity distribution, which can create a large management overhead at the
hosts. Nevertheless, the concept of virtual hosts has been explored before (e.g., [43, 41, 44]). In
[43] the main idea is not to place the virtual hosts belonging to a real host randomly in the identifier
space but in a restricted range to achieve a low degree in the overlay network. However, they need
an estimation of the network size and a classification of nodes with high, average, and low capacity.
A similar approach is presented in [44]. In [40] the authors organize the nodes into clusters, where
a super node (i.e., a node with large capacity) is supervising a cluster of nodes with small capacities.
Giakkoupis et al. [20] present an approach which focuses on homogeneous networks but also works
for heterogeneous one. However, updates can be costly.

Several solutions have been proposed in the literature that can manage heterogeneous storage
systems in a centralized way: i.e. they consider data placement strategies for heterogeneous disks
that are managed by a single server [45, 46, 50, 49, 47, 48] or assume a central server that handles
the mapping of data elements to a set of hosts [19, 22, 21]. The only solution proposed so far
where this is not the case is the approach by Schindelhauer and Schomaker [19], which we call cone
hashing. Their basic idea is to assign a distance function to each host that scales with the capacity
of the host. A data element is then assigned to the host of minimum distance with respect to these
distance functions. We will extend their construction into a self-stabilizing DHT with low degree
and diameter that does not need any global information and that can handle all operations in a stable
system efficiently with high probability.

Heterogeneity can be considered in many ways in a DHT. Another kind is bandwidth heterogene-
ity. A self-stabilizing protocol to that problem was given indeed in [31], where the authors give a
variation of a self-stabilizing skip-graph protocol in order to handle routing in a network with nodes
with different bandwidths. Heterogeneity can also affect other aspects, like the reliability in a system
where churn is considered. However, self-stabilizing protocol for that setting was not known until
now.

The problem of self-stabilizingly managing heterogeneous hosts (in terms of capacity) in a DHT
was not considered until now. So, to the best of our knowledge this is the first self-stabilizing ap-
proach for a distributed heterogeneous storage system.
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More specifically, for a solution for a self-stabilizing distributed heterogeneous storage system
the following is derived:

• Fair load balancing: every node with x% of the available capacity gets x% of the data.

• Space efficiency: Each node stores at most O(|data assigned to the node|+ log n) information.

• Time efficiency: The network does not need more than polylogarithmic number of rounds in
order to converge to the stable state

• Routing efficiency: There is a routing strategy that allows efficient routing in at most O(log n)
hops, and the routing message overhead is equally distributed among the nodes

• Low degree: The degree of each node is limited by O(log n). Furthermore, we require an
algorithm that builds the target network topology in a self-stabilizing manner: i.e., any weakly
connected network G = (V,E) is eventually transformed into a network so that a (specified)
subset of the explicit edges forms the target network topology (convergence) and remains stable
as long as no node joins or leaves (closure).

We futher present a protocol that matches these criteria.

2 The CONE-DHT

We present a self-stabilizing algorithm that organizes a set of heterogeneous nodes in an overlay
network such that each data element can be efficiently assigned to the node responsible for it. We
use the scheme described in [19] (which gives us good load balancing) as our data management
scheme and present a distributed protocol for the overlay network, which is efficient in terms of
message complexity and information storage and moreover works in a self-stabilizing manner. The
overlay network efficiently supports the basic operations of a heterogeneous storage system, such as
the joining or leaving of a node, changing the capacity of a node, as well as searching, deleting and
inserting a data element. In fact we show the following main result:

Theorem 2.1 There is a self-stabilizing algorithm for maintaining a heterogeneous storage system
that stabilizes in O(log4 n) number of rounds and achieves fair load-balancing, space efficiency and
routing efficiency, while each node has a degree of O(log n) w.h.p. The data operations can be
handled in O(log n) time in a stable system, and if a node joins or leaves a stable system or changes
its capacity, it takes at mostO(log2 n) structural changes, i.e., edges that are created or deleted, until
the system stabilizes again.

2.1 The original CONE-Hashing

Before we present our solution, we first give some more details on the original CONE-Hashing [19]
our approach is based on. In [19] the authors present a centralized solution for a heterogeneous
storage system in which the nodes are of different capacities. We denote the capacity of a node u
as c(u). We use a hash function h : V 7→ [0, 1) that assigns to each node u a hash value u.id.
A data element of the data set D is also hashed by a hash function g : D 7→ [0, 1). W.l.o.g. we
assume that all hash values and capacities are distinct. According to [19] each node has a capacity
function c(u)(g(x)), which determines which data is assigned to the node. A node is responsible
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for those elements d with c(u)(g(d)) = minv∈V {c(v)(g(d))}, i.e. d is assigned to u. We denote
by R(u) = {x ∈ [0, 1) : c(u)(x) = minv∈V {c(v)(x)}} the responsibility range of u Note that
R(u) can consist of several intervals in [0, 1). In the original paper [19], the authors considered two
special cases of capacity functions, one of linear form C linu (x)and of logarithmic form C logu (x)(these
functions we will discuss later on). For these capacity functions the following results were shown by
the authors [19]:

Theorem 2.2 A data element d is assigned to a node u with probability
c(u)∑

v∈V c(v)−c(u) for linear capacity functions C linu (x) and with probability c(u)∑
v∈V c(v) for logarith-

mic capacity functions C logu (x). Thus in expectation fair load balancing can be achieved by using a
logarithmic capacity function C logu (x).

The CONE-Hashing supports the basic operations of a heterogeneous storage system, such as
the joining or leaving of a node, changing the capacity of a node, as well as searching, deleting and
inserting a data element.

Moreover, the authors showed that the fragmentation is relatively small for the logarithmic capac-
ity function, with each node having in expectation a logarithmic number of intervals it is responsible
for. In the case of the linear function, it can be shown that this number is only constant in expectation.

In [19] the authors further present a data structure to efficiently support the described operations in
a centralized approach. For their data structure they showed that there is an algorithm that determines
for a data element d the corresponding node u with g(d) ∈ R(u) in expected time O(log n). The
used data structure has a size of O(n) and the joining, leaving and the capacity change of a node can
be handled efficiently.

In the following we show that CONE-Hashing can also be realized by using a distributed data
structure. Further the following challenges have to be solved. We need a suitable topology on the
node set V that supports an efficient determination of the responsibility ranges R(u) for each node
u . The topology should also support an efficient Search(d) algorithm, i.e. for a Search(d) query
inserted at an arbitrary node w, the node v with g(d) ∈ R(v) should be found. Furthermore a Join(v),
Leave(v), CapacityChange(v) operation should not lead to a high amount of data movements, (i.e. not
more than the data now assigned to v or no longer assigned to v should be moved,) or a high amount
of structural changes ( i.e. changes in the topology built on V ). All these challenges will be solved
by our CONE-DHT. In the CONE-DHT, the same sets of capacity functions can be used as discussed
here, and thus our system can inherit the same properties.

2.2 The CONE-DHT

In order to construct a heterogeneous storage network in the distributed case, we have to deal with the
challenges mentioned above. For that, we introduce the CONE-graph, which is an overlay network
that combines elements from CONE-DHT and the Fast- Re-Chord protocol, and, as we show, can
support efficiently a heterogeneous storage system.

The network layer

We define the CONE graph, our goal topology, as a graph GCONE = (V,ECONE), with V being the
hosts of our storage system.

For the determination of the edge set, we need following definitions, with respect to a node u:
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Figure 4.1: In this example, the size of the capacity of a node is symbolized by the height of its green
column (i.e. the larger the capacity the higher the column). So, for example in this case u is aware of
v, w and x. In fact, S+(u) = {w, x}, S−(u) = ∅, P+(u) = ∅, P−(u) = {v}
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• succ+
1 (u) = argmin{v.id : v.id > u.id ∧ c(v) > c(u)} is the next node at the right of u

with larger capacity, and we call it the first larger successor of u. Building upon this, we define
recursively the i-th larger successor of u as: succ+

i (u) = succ+
1 (succ+

i−1(u)),∀i > 1, and the
union of all larger successors as S+(u) =

⋃
i succ

+
i (u).

• The first larger predecessor of u is defined as: pred+
1 (u) = argmax{v.id : v.id < u.id ∧

c(v) > c(u)} i.e. the next node at the left of u with larger capacity. The i-th larger predecessor
of u is: pred+

i (u) = pred+
1 (pred+

i−1(u)), ∀i > 1, and the union of all larger predecessors as
P+(u) =

⋃
i pred

+
i (u).

• We also define the set of the smaller successors of u, S−(u), as the set of all nodes v, with
u = pred+

1 (v), and the set of the smaller predecessors of u, P−(u) as the set of all nodes v,
such that u = succ+

1 (v).

Now we can define the edge-set of a node in GCONE .

Definition 2.3 (u, v) ∈ ECONE iff v ∈ S+(u) ∪ P+(u) ∪ S−(u) ∪ P−(u) ∪ ERe−Chord

We define also the neighborhood set of u as Nu = {v : (u, v) ∈ ECONE}. We also consider
S(u) = S+(u) ∪ S−(u) and P (u) = P+(u) ∪ P−(u). In other words, v maintains connections to
each node u, if there does not exist another node with larger capacity than u between v and u (see
Figure 4.1), or if (u, v) is a Fast−Re−Chord edge. We will prove that this graph is sufficient for
maintaining a heterogeneous storage network in a self-stabilizing manner and also that in this graph
the degree is bounded logarithmically w.h.p.. The capacity functions we use are C linu (x) = 1

c(u) |x−
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u.id| andC logu (x) = 1
c(u)(−log(1−|x−u.id|) (Note that the algorithm works forC linu (x) = 1

c(u)((x−
u.id) mod 1) and C logu (x) = 1

c(u)(−log((1− (x− u.id)) mod 1), with slight modifications).

The data management layer

We discussed above how the data is assigned to the different nodes. That is the assignment strategy
we use for data in the CONE-network.

In order to understand how the various data operations are realized in the network, we have to
describe how each node maintains the knowledge about the data it has, as well as the intervals it is
responsible for. It turns out that in order for a data item to be forwarded to the correct node, which is
responsible for storing it, it suffices to contact the closest node (in terms of hash value) from the left
to the data item’s hash value. That is because then, if the CONE graph has been established, this node
is aware of the responsible node for this data item. We call the interval between u.id and the hash
value of u’s closest right node Iu. We say that u is supervising Iu. We show the following theorem.

Theorem 2.4 In GCONE a node u knows all the nodes v with R(v) ∩ Iu 6= ∅.

Proof. We need to show that all these nodes R(v)∩ Iu 6= ∅ are in S+(u)∪P+(u) ∪S−(u)∪P−(u).
W.l.o.g. let us consider only the case of S+(u), S−(u). Indeed, there cannot be a node at the right of
u (u.id < t.id) that has a responsible interval in u’s supervising interval and that is not in S+(u) or
S−(u).We will prove it by contradiction. Let t be such a node. For t not to be in S−(u) or S+(u)
there must be at least one node v larger (in terms of capacity) than t, which is closer to u than t
(u.id < v.id < t.id). Then ∀x < v.id it holds that v.id < t.id =⇒ x − v.id > x − t.id =⇒
|x − v.id| < |x − t.id| (since both sides are negative) =⇒ f(x − v.id) < f(x − t.id), for
f(z) = z and f(z) = −log(1 − z), for the right side of f . Moreover, since c(v) > c(t) we have

1
c(v)f(x− v.id) < 1

c(v)f(x− t.id) =⇒ Cv(x) < Ct(x), so v dominates t for x < v.id. And since
u.id < v.id, it cannot be that t is responsible for an interval in Iu, since in that region t is dominated
(at least) by v. This contradicts the hypothesis and the proof is completed. ut

So, the nodes store their data in the following way. If a node u has a data item that falls into one
of its responsible intervals, it stores in addition to this item a reference to the node v that is the closest
from the left to this interval. Moreover, the sub-interval u thinks it is responsible for (in which the
data item falls) is also stored (as described in the next section, when the node’s internal variables are
presented). In case the data item is not stored at the correct node, v can resolve the conflict when
contacted by u.

Now we can discuss the functionality of the data operations. A node has operations for inserting,
deleting and searching a datum in the CONE-network.

Let us focus on searching a data item. As shown above, it suffices to search for the left closest
node to the data item’s hash value. We do this by using greedy routing. Greedy routing in the CONE-
network works as follows: If a search request wants to reach some position pos in [0, 1), and the
request is currently at node u, then u forwards search(pos) to the node v in Nu that is closest to
pos, until the closest node at the left of pos is reached. Then this node will forward the request to the
responsible node.

In that way we can route to the responsible node and then get an answer whether the data item is
found or not, and so the searching is realized. Note that the deletion of a data item can be realized
in the same way, only that when the item is found, it is also deleted from the responsible node.



2. THE CONE-DHT 87

Inserting an item follows a similar procedure, with the difference that when the responsible node is
found, the data item is stored by it.

Moreover, the network handles efficiently structural operations, such as the joining and leaving
of a node in the network, or the change of the capacity of a node. Since this handling falls into
the analysis of the self-stabilization algorithm, we will discuss the network operations in Section 3,
where we also formally analyze the algorithm.

It turns out that a single data or network operation (i.e greedy routing) can be realized in a log-
arithmic number of hops in the CONE-network, and this happens due to the structural properties
of the network, which we discuss in the next section, where we also show that the degree of the
CONE-network is logarithmic.

2.3 Structural Properties of a Cone Network

In this section we show that the degree of a node in a stable CONE-network is bounded by O(log n)
w.h.p, and hence the information stored by each node (i.e the number of nodes which it maintains
contact to, |Ee(u)|) is bounded by O(log n+ |amount of data stored in a node|) w.h.p..

Theorem 2.5 The degree of a node in a stable CONE network is O(log n) w.h.p.

Proof. First we show following lemma:

Lemma 2.6 In a stable CONE network for each u ∈ V , |S+(u)| and |P+(u)| in O(log n) w.h.p.

Proof. For an arbitrary u ∈ V let W = {w1, w2 · · ·wk} ∪ {w0 = u} = S+(u) ∪ {u} and let W
be sorted by ids in ascending order, such that wi.id < wi+1.id for all 1 ≤ i < k. Furthermore, let
Ŵ (wi) = {w ∈ V : w.id > wi.id ∧ c(w) > c(wi)} be the set of all nodes with larger ids and larger
capacities than wi. So, the determination of W is done by continuously choosing the correct wi out
of Ŵ (wi−1), when w1, w2, ...wi−1 are already chosen. In this process, each time a wi is determined,
the number of nodes from which wi+1 can be chosen is getting smaller, since the nodes at the left of
wi as well as the nodes with smaller capacity than wi can be excluded. We call the choice of wi = ŵj
good, if |Ŵ (wi−1)| > 2|Ŵ (wi)|, i.e. the number of remaining nodes in Ŵ (wi) is (at least) halved.
Let |Ŵ (w0)| = m = O(log n). Since the id/position for each node is assigned uniformly at random,
we can easily see that Pr[wi is a good choice]= 1

2 ,∀i ≥ 1. Then after a sequence of i choices that
contains logm good choices the remaining set Ŵ (wi) is the empty set. Thus there can not be more
than logm good choices in any sequence of choices. So, what we have now is a random experiment,
that is described by the random variable k, that is equal to the number choices we must make, until we
managed to have made logm good ones. Then the random variable k follows the negative binomial
distribution. In order to bound the value of k from above we apply the following tail bound for
negative binomial distributed random variables shown in [38], derived by using a Chernoff bound:

Claim 2.7 Let Y have the negative binomial distribution with parameters s and p, i.e. with probabil-
ity p there is a success and Y is equal to the number of trials needed for s successes. Pick δ ∈ [0, 1]

and set l = s
(1−δ)p . Then Pr[Y > l] ≤ exp( −δ2s3(1−δ))

We apply this claim with p = 1
2 and s = logm and we pick δ = 7

8 . Then Pr[Y > 16 logm] ≤
exp(−δ

22 logm
3(1−δ) ) < m−2. Thus with probability at least 1 −m−2, k = O(logm) as m = O(n) also

k = O(log n). ut
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Lemma 2.8 In a stable CONE network for each u ∈ V , E[|S−(u)|] and E[|P−(u)|] are O(1) and
|S−(u)| and |P−(u)| are O(log n) w.h.p..

Proof. W.l.o.g. we consider only E[|S−(u)|] and |S−(u)| in the proof. For each node x being in an
interval S−(u) it holds u = pred+

1 (x). But since each node has (at most) one pred+
1 , the sum over

all S−(v), ∀v ∈ V must be (at most) n. So we have
∑
∀v∈V S

−(v) = n, so E[
∑
∀v∈V S

−(v)] = n
⇒
∑
∀v∈V E[S−(v)] = n. That means for a node u, E[S−(u)] = 1.

Now we consider the second part of the statement. Let w be the direct right neighbor of u,
i.e. the first (from the left) node in S−(u) (S−(u)[1]). Then we can observe that every node in
S−(u) (expect w) must be in S+(w). Let us assume a node x is in S+(w) but not in S−(u), then
there must be another node y : u.id < y.id < x.id and c(y) > c(x), such that y ∈ S−(u). But
then y would be also in S+(w) instead of x. So, we contradicted this scenario. As a consequence
S−(u)/{w} ⊂ S+(w), but we already shown that |S+(w)| < log n w.h.p., from which follows that
|S−(u)| < log n w.h.p.. ut

We already know from the analysis of the Fast-Re-Chord network, that the number of edges a
node maintains is O(log n). So, combining that fact with the results shown here proves the theorem.

ut

Additionally to the nodes in u.N that lead to the degree of O(log n) outgoing edges w.h.p. a
node u only stores references about the closest nodes left to the intervals it is responsible for, where it
actually stores data. A node u stores at most one reference and one interval for each data item. Thus
the storage only has a logarithmic overhead for the topology information and the following theorem
follows immediately.

Theorem 2.9 In a stable CONE network each node stores at most O(log n+ |amount of data stored
in a node|) information w.h.p.

One last property about the incoming edges of a node.

Theorem 2.10 The number of incoming explicit edges to a node u in the stable state is O(log n)
w.h.p..

Proof. Let’s first consider the nodes having u as a right finger. In order for a node v to have u as
a right link of level i, its must be that there is no other node between u and v.id + 1/2dlog(n)e−i+1.
Obviously the average number of the nodes having this property is 1. Since the number of levels, for
which links exist is O(log n) w.h.p., by simply applying a Chernoff bound we get that the number of
nodes having u as a right finger is O(log n). Symmetrically, the number of nodes having u as a left
finger is O(log n). We also know that the nodes having u as a direct neighbor is O(log n) and the
proof is completed. ut

Once the CONE network GCONE is set up, it can be used as a heterogeneous storage system
supporting inserting, deleting and searching for data.
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3 Self-Stabilization Process

3.1 Formal Problem Definition and Notation

Now we define the problem we solve in this chapter. We provide a protocol P that reaches the overlay
problem CONE and is topologically self-stabilizing.

In order to give a formal definition of the edges inEe,Ei we first describe which internal variables
are stored in a node u, i.e. which edges are in Ee:

• u.S+ = {v ∈ Nu : v.id > u.id ∧ c(v) > c(u) ∧ ∀w ∈ Nu : v.id > w.id > u.id =⇒ c(v) >
c(w)}

• u.succ+
1 = argmin {v.id : v ∈ u.S+}: The first node to the right with a larger capacity than u

• u.P+ = {v ∈ Nu : v.id < u.id∧ c(v) > c(u)∧ ∀w ∈ Nu : v.id < w.id < u.id =⇒ c(v) >
c(w)}
• u.pred+

1 = argmax {v.id : v ∈ u.P+}: The first node to the left with a larger capacity than u

• u.S− = {v ∈ Nu : v.id > u.id ∧ c(v) < c(u) ∧ ∀w ∈ Nu : v.id > w.id > u.id =⇒ c(v) >
c(w)}
• u.P− = {v ∈ Nu : v.id < u.id∧ c(v) < c(u)∧ ∀w ∈ Nu : v.id < w.id < u.id =⇒ c(v) >
c(w)}
• u.S∗ =

{
u.S− ∪

{
u.succ+

1

}}
: the set of right neighbors that u communicates with. We

assume that the nodes are stored in ascending order so that (u.S∗[i]).id < (u.S∗[i+ 1]).id. If
|u.S∗| = k, then u.S∗, u.S∗[k] = u.succ+

1 .

• u.P ∗ =
{
u.P− ∪

{
u.pred+

1

}}
: the set of left neighbors that u communicates with. We assume

that the nodes are stored in descending order so that (u.P ∗[i]).id > (u.P ∗[i+1]).id If |u.P ∗| =
k, then u.P ∗[k] = u.pred+

1 .

• u.DS the data set, containing all intervals u.DS[i] = [a, b], for which u is responsible and
stores actual data u.DS[i].data. Additionally for each interval a reference u.DS[i].ref to the
supervising node is stored

With u.S (rep. u.P ) we also denote the union of u.S+ and u.S− (rep. u.P+ and u.P−).
Additionally each node stores the following variables :

• τ : the timer predicate that is periodically true

• u.Iu: the interval between u and the successor of u. u is supervising u.Iu.

• m: the message in Chu that now received by the node.

Additional to that, each node maintains the same variable set used in the fast Fast-Re-Chord
protocol:

• u.mylogn: The estimation of log(n).

• u.firstf : The order of the first finger, computed respectively to the ”closest” node to u from
u’s neighborhood

• u.rfingeri, ∀i with u.firstf ≤ i ≤ u.mylogn: The right finger of node u of order i.
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• u.lfingeri, ∀i with u.firstf ≤ i ≤ u.mylogn: The left finger of node u of order i.

• u.rDirect: The set of nodes in u’s neighborhood, being ”closest” to u from the right.

• u.lDirect: The set of nodes in u’s neighborhood, being ”closest” to u from the left.

• u.rring: The right ring edge of u.

• u.lring: The left ring edge of u.

• u.Pr: The nodes used for supporting the probing process of u.

• u.nextr A pointer that points to the next node of the right probing process.

• u.nextl A pointer that points to the next node of the left probing process.

• u.rprobcounter Counts the number of steps the right probing process currently lasts

• u.lprobcounter Counts the number of steps the left probing process currently lasts

u.Rfingers (resp. u.Lfingers) is also used to denote the set of all right fingers (resp. left
fingers). Moreover, u.N is the neighborhood of u, which is includes all the nodes stored in u, i.e.
the nodes in u.Rfingers,u.Lfingers, u.rDirect, u.lDirect, u.Pr,u.S,u.P as well as u.rring and
u.lring. Note also that sometimes instead of a variable u.var in the pseodocode we also write just
var, since it is clear that var refers to the node u, which is the node conducting the protocol described
at the pseudocode.

Definition 3.1 We define a valid state as an assignment of values to the internal variables of all nodes
so that the definition of the variables is not violated, e.g. u.S+ contains no nodes w with w.id < u.id
or cw < c(u) or u.id < v.id < w.id and c(v) > cw for any v ∈ Nu.

Now we can describe the topologies in the initial states and in the legal stable state. Let IT ={
GIT = (V,EIT = EITe ∪ EITi ) : GIT is weakly connected

}
and let CONE =

{
GC =

(
V,EC

)}
,

such that for EC the following conditions hold: (1) EC = Ee − {(u, v) : v ∈ u.DS}, (2) EC is in a
valid state and (3) EC = ECONE .

Note that we assume Ee to be a multiset, i.e in EC an edge (u, v) might still exists, although
v ∈ u.DS if e.g. v ∈ u.S+. Further note that, in case the network has stabilized to a CONE-network,
it holds for every node that u.S+ = S+(u), u.P+ = P+(u), u.S− = S−(u) and u.P− = P−(u).

3.2 Algorithm

In this section we give a description of the the distributed algorithm. The algorithm is a protocol that
each node executes based on its own node and channel state. The protocol contains periodic actions
that are executed if the timer predicate τ is true and actions that are executed if the node receives a
message m. In the periodic actions each node performs a consistency check of its internal variables,
i.e. are all variables valid according to Definition 3.1. If some variables are invalid, the nodes causing
this invalidity are delegated.

Furthermore in the periodic actions the same actions are performed as in the Fast-Re-chord proto-
col, in order to form an underlying Fast-Re-chord graph. Moreover, each node periodically introduces
itself to its successor and predecessor u.S∗[1] and u.P ∗[1] by a lin message. u also introduces the
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nodes u.succ+
1 and u.pred+

1 to each other by messages of type lin. By this a triangulation is formed
by edges (u, u.pred+

1 ), (u, u.succ+1 ), (u.succ+
1 , u.pred

+
1 ) (see Figure 4.1). To establish correct P+

and S+ lists in each node, a node u sends its u.P+ (resp. u.S+) list periodically to all nodes v in u.S−

(resp. u.P−) by a message (u.S+ ∪ {u} , list − update) (resp. (u.P+ ∪ {u} , list − update) to v.
Also a node periodically sends a message to each reference in u.DS to check whether u is responsible
for the data in the corresponding interval [a, b] by sending a message ([a, b], u, check − interval).

If the message predicate is true and u receives a message m, the action u performs depends on
the type of the message. If u receives a message (v, lin) u checks whether v has to be included in it’s
internal variables. If u doesn’t store v, v is delegated. If u receives a message (list, list − update),
u checks whether the ids in list have to be included in it’s internal variables u.P+, u.S+, u.P− or
u.S−. If u doesn’t store a node v in list, v is delegated. If u stores a node v in u.S+ (resp. u.P+)
that is not in list, v is also delegated as it also has to be in the list of u.pred+

1 (resp. u.succ+
1 ). There

are also message types that are necessary for the data management.

If u receives a message ([a, b], v, check−interval) it checks whether v is in u.S+ or u.P+ or has
to be included in u.N , or delegates v. Then u checks whether [a, b] is in u.Iu and if v is responsible
for [a, b]. If not, u sends a message (IntervalSet, update − interval) to v containing a set of
intervals in [a, b] that v is not responsible for and references of the supervising nodes. If u receives
a message (IntervalSet, update − interval, ) it forwards all data in intervals in IntervalSet to
the corresponding references by a message (data, forward − data). If u receives such a message
it checks whether the data is in its supervised interval u.Iu. If not u forwards the data according to
a greedy routing strategy, if u supervises the data it sends a message (data, u, store − data) to the
responsible node. If u receives such a message it inserts the data, the interval and the corresponding
reference in u.DS. Note that no identifiers are ever deleted, but always stored or delegated. This
ensures the connectivity of the network.

4 The Protocol

Here we give the pseudocode for the protocol executed by each node.

In Algorithm 18 we can see the periodic action of a node u. Probing is initiated if it is currently
not happening. Moreover, the consistency of the ring edges is checked. Also a consistency check
is included, where all list u.P+, u.S+, u.S−, u.P− are checked and invalid nodes are delegated like
in the ListUpdate/BuildTriangle operation. Furthermore each node sends its lists u.P+, u.S+ to the
next smaller nodes and u.S+ to its direct left neighbor. In the BuildTriangle() u introduces itself to
its neighbors and neighbored nodes in u.P ∗ and u.S∗ and u.pred+

1 and u.succ+
1 to each other and

checks whether the information in u.DS is still up to date.
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Algorithm 18 PERIODIC ACTIONS OF NODE U

true→
u.lprobcounter:=u.lprobcounter+1
u.rprobcounter:=u.lprobcounter+1
if u.rprobcounter > 82u.mylogn then . If the probing ended, start probing

u.probingr(min{w ∈ u.N : w.id > u.id}, u)
u.rprobcounter=0

if u.lprobcounter > 82u.mylogn then
u.probingl(max{w ∈ u.N : w.id < u.id}, u)
u.lprobcounter=0

if u.id ≥ w.id : ∀w ∈ u.N then . ring edge checks
send message(u,requestleftring) to u.lring

else
linearize(u.lring)
u.lring=null

if u.id ≤ w.id : ∀w ∈ u.N then
send message(u,requestrightring) to u.rring

else
linearize(u.rring)
u.rring=null

Do Consistency check for u.P+, u.S+, u.S−, u.P− . trivial check, pseudocode omitted here
readability
if u.counter=u.mylogn then

send message(u.P+ ∪ {u},list-update) to u.S−[1]
send message(u.S+ ∪ {u},list-update) to u.P−[1]
BuildTriangle()
CheckDataIntervals()
u.counter=0

u.counter=u.counter+1
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Algorithm 19 PERIODIC ACTIONS OF NODE U (continued)
message m ∈ p.C → . actions upon receiving a message
if m.type=lin then

linearize(m.id)
else if m.type=probingr then

probingr(m.id,m.sender)
else if m.type=probingl then

probingl(m.id,m.sender)
else if m.type=requestprobingright then

continueprobingright(m.sender,stage)
else if m.type=requestprobingleft then

continueprobingleft(m.sender,stage)
else if m.type=requestrightring then

rightring(m.id)
else if m.type=requestleftring then

leftring(m.id)
else if m.type=requestneib then

requestneib(m.id)
else if m.type=list-update then

ListUpdate(List)
else if m.type=check-interval then

CheckInterval([a,b],m.id)
else if m.type=update-interval then

UpdateInterval(IntervalSet)
else if m.type=forward-data then

ForwardData(data,boolean)
else if m.type=store-data then

StoreData(data,interval)
linearize()
validitycheck() . Check whether the nodes in u.N are within the boundaries they are supposed to,
else linearize them (is a trivial procedure and omitted here)
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Algorithm 20 U.LINEARIZE(V)
if v 6∈ u.N ∨ v = ∅ then

u.Nold = u.N
u.N = u.N ∪ {v}
if u.id ≤ w.id,∀w ∈ u.N then . Update ring edges

u.rring=max{w ∈ u.N}
else

if u.rring 6= null then
u.linearize(u.rring)

u.rring=null
if u.id ≥ w.id,∀w ∈ u.N then

u.lring=maxw ∈ u.N
else

if u.lring 6= null then
u.linearize(u.lring)

u.lring=null
u.mylogn = max{k ∈ N : ∃w ∈ u.N : |w.id− u.id| ≤ 1/2k} . estimate log(n)
u.firstf = min{k ∈ Z :6 ∃w ∈ u.N : |w.id− u.id| ≤ 1/2mylogn−k+1}
for all i : u.firstf ≤ i ≤ mylogn do . compute right and left fingers

u.rfingeri = argminw∈u.N{w.id : w.id ≥ v.id+ 1/2mylogn−i+1(mod 1)}
if u.rfingeri = null then

u.rfingeri = argminw∈u.N{w.id}
u.lfingeri = argmaxw∈u.N{w.id : w.id ≤ v.id− 1/2mylogn−i+1(mod 1)}
if u.lfingeri = null then

u.lfingeri = argmaxw∈u.N{w.id}
u.Rfingers=

⋃
∀firstf≤i≤mylogn u.rfingeri

u.Lfingers=
⋃
∀firstf≤i≤mylogn u.lfingeri

. 6mylogn nodes closest to u from the right and the left
u.rDirect = {w ∈ u.N : |{v ∈ u.N : x ≤ y, where x = min{v.id − u.id, 1 − u.id +

v.id}, y = min{w.id− u.id, 1− u.id+ w.id} ∧ x, y > 0}| ≤ 6mylogn}
u.rDirect = {w ∈ u.N : |{v ∈ u.N : x ≤ y, where x = min{u.id − v.id, 1 − v.id +

u.id}, y = min{u.id− w.id, 1− w.id+ u.id} ∧ x, y > 0}| ≤ 6mylogn}

u.succ+
1 = w ∈ u.N : w.id > u.id∧c(w) > c(u)∧( 6 ∃y : u.id < y.id < w.id∧c(y) > c(u))

u.pred+
1 = w ∈ u.N : w.id < u.id∧c(w) > c(u)∧(6 ∃y : u.id > y.id > w.id∧c(y) > c(u))

update u.S, u.P
for all w ∈ u.N : u 6∈ Rfingers ∪ Lfingers ∪ rDirect ∪ lDirect ∪ {rring} ∪ {lring} ∪

u.Pr ∪ u.P ∪ u.S do
u.forward(w) . get rid of the rest
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u.N = Rfingers∪Lfingers∪ rDirect∪ lDirect∪{rring}∪{lring}∪u.Pr∪u.P ∪u.S
if u.N 6= u.Nold then . If v was included in new u.N

for all w ∈ u.N do
send message (w,lin) to v

send message (v, requestneib) to h={u.Nold.fingerj : v = u.fingerj}
else

u.forward(v)

Algorithm 21 U.PROBINGR(V,M.SENDER)
As in Algorithm 10.

Algorithm 22 U.PROBINGL(V,M.SENDER)
As in Algorithm 11.

Algorithm 23 U.FORWARD(V)
. forward v to the closest neighbor

As in Algorithm 12.

Algorithm 24 U.CONTINUEPROBINGRIGHT(M.SENDER,STAGE)
. Sends the next probing node to the sender, so that the probing can be continued

As in Algorithm 13.

Algorithm 25 U.CONTINUEPROBINGLEFT(M.SENDER,STAGE)
. Sends the next probing node to the sender, so that the probing can be continued

As in Algorithm 14.

Algorithm 26 U.RIGHTRING(V)
As in Algorithm 15.

Algorithm 27 U.LEFTRING(V)
As in Algorithm 16.

Algorithm 28 U.REQUESTNEIB(V)
As in Algorithm 17.

function BUILDTRIANGLE

for all w ∈ u.S− ∪ u.P− ∪
{
u.succ+

1 , u.pred
+
1

}
do

send message(u,lin) to w
send message(u.pred+

1 ,lin) to u.succ+
1 and message(u.succ+

1 ,lin) to u.pred+
1
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function LISTUPDATE(List)
LList+ = z ∈ List : z.id < u.id ∧ c(z) > c(u) . candidates for u.P+

LList− = z ∈ List : z.id < u.id ∧ c(z) < c(u) . candidates for u.P−

RList+ = z ∈ List : z.id > u.id ∧ c(z) > c(u) . candidates for u.S+

RList− = z ∈ List : z.id > u.id ∧ c(z) < c(u) . candidates for u.S−

calculate P+
tmp out ofu.pred+

1 and LList+ . calculate new lists and delegate all nodes not
stored in the new lists

Z = (u.P+ − LList+) ∪ ((u.P+ ∪ LList+)− P+
tmp)

if u.P+ 6= P+
tmp then

for all z ∈ Z do
send message(u,lin) to z

u.P+ = P+
tmp

calculate S+
tmp out of u.succ+

1 and RList+

Z = (u.S+ −RList+) ∪ ((u.S+ ∪RList+)− S+
tmp)

if u.S+ 6= S+
tmp then

for all z ∈ Z do
send message(u,lin) to z

u.S+ = S+
tmp

calculate P−tmp out of u.P− and LList−

for all w ∈ (u.P− ∪ LList−)− P−tmp do
v+(w) = argmin

{
v.id : v ∈ P−tmp ∪

{
pred+

1

}
∧ v.id > w.id

}
send message(w,lin) to v+(w)

u.P− = P−tmp
calculate S−tmp out of u.S− and RList−

for all w ∈ (u.S− ∪RList−)− S−tmp do
v−(w) = argmax

{
v.id : v ∈ S−tmp ∪

{
succ+

1

}
∧ v.id < w.id

}
send message(w,lin) to v−(w)

u.S− = S−tmp

A node checks for each interval it is responsible for, if this is really the case.
function CHECKDATAINTERVALS

for all u.DS[i] do
send message ([a, b] = u.DS[i],u,check-interval) to u.DS[i].ref
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A node receiving a check-interval message, checks if the node which sent it is really responsible for
the interval [a,b].

function CHECKINTERVAL([a,b],x)
if x 6∈ u.P+ ∪ u.S+ ∪ u.S− then

linearize(x)
IntervalSet := ∅
i:=1
if a < u.id then

IntervalSet[i]=[a, u.id] ∩ [a, b] . The interval begins left of u, so u can’t be the supervising
node for the whole interval

IntervalSet[i].ref=u.P ∗[1]
i:=i+1

if b > u.S∗[1] then
IntervalSet[i]=[u.S∗[1], b] ∩ [a, b] . The interval ends right of u.S∗[1], so u can’t be the

supervising node for the whole interval
IntervalSet[i].ref=u.S∗[1]
i:=i+1

[c, d] := Iu(x) . Iu(x) is the sub-interval of u.Iu for which x is responsible for
[e,f]:=([a, b] ∩ u.Iu)/Iu(x)
if e < c then

IntervalSet[i]=[e, c] ∩ [a, b] . u as the supervising node, knows other nodes responsible for
parts of the interval

IntervalSet[i].ref=u
i:=i+1

if f > d then
IntervalSet[i]=[d, f ]∩ [a, b] . u as the supervising node, knows other nodes responsible for

parts of the interval
IntervalSet[i].ref=u

if IntervalSet 6= [a, b] then
send message(update-interval,IntervalSet) to x

for i = 1 : |IntervalSet| do
if IntervalSet[i].ref 6= u then

send message(IntervalSet[i],update-interval) to IntervalSet[i].ref
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By receiving an update-interval message, a node updates the lists of intervals which it is responsible
for, and forwards the data in the deleted intervals to another node, who is possibly responsible.

function UPDATEINTERVAL(IntervalSet)
for all [a, b] ∈ IntervalSet do

for all [c, d] ∈ u.DS do
for all [e, f ] ∈ {[c, d]− [a, b]} do

l:=|u.DS|
u.DS[l+1]=[e,f]
u.DS[l+1].ref=[c,d].ref . references are set to the new supervising node
u.DS:=u.DS − {[c, d]}

for all data ∈ [c, d] ∩ [a, b] do
send message (data,forward-data) to [a, b].ref . data u seems not to be responsible

for or for that the reference changed is deleted
delete(data)
linearize([a,b].ref) . references supervising nodes are forwarded to maintain

connectivity
UpdateDS() . Delete all intervals without data, forward the references of the deleted intervals,

unite all consecutive intervals with the same reference

By receiving a forward-data message, a node checks if it knows which node is responsible for the
data it received, and sends a store-data message to it, in the other case it also forwards the data.

function FORWARDDATA(data)
if data.id 6∈ u.Iu then

if data.id ∈ [u.P ∗[1]], u] then
send message (data,forward-data) to u.P ∗[1]

else
send message (data,forward-data) to
w : (u.id < w.id < data.id ∨ u.id > w.id > data.id) ∧ |data.id − w.id| =

miny∈u.P ∗∪u.S∗{|data.id− y.id|},
else

send message (data,Iu(v),u,store-data) to v : data.id ∈ Iu(v)
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Storing the data received from the node supervising the corresponding interval.
function STOREDATA(data,interval)

if ∃i : interval = u.DS.i then
u.DS[i].data := u.DS[i].data ∪ data.id
linearize(u.DS[i].ref)
u.DS[i].ref=argmaxw.id{w ∈ u.N : w.id < data.id}

else
l:=|u.DS|
u.DS[l+1]=interval
u.DS[l+1].ref=argmaxw.id{w ∈ u.N : w.id < data.id}
u.DS[l+1].data=data
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5 Correctness

In this section we show the correctness of the presented algorithm. We do this by showing that by
executing our algorithm any weakly connected network eventually converges to a CONE network and
once a CONE network is formed it is maintained in every later state. We further show that in a CONE
network the data is stored correctly.

5.1 Convergence

To show convergence we will divide the process of convergence into several phases, such that once
one phase is completed its conditions will hold in every later program state. For our analysis we
additionally define E(t) as the set of edges at time t. Analogous Ee(t) and Ei(t) are defined. We
show the following theorem.

Theorem 5.1 After O(log4 n) steps, the network has reached a state, where the explicit network
graph is a super-graph of GCONE .

We divide the proof into 2 phases. First we show the convergence to the sorted list and eventually
the convergence to the CONE-network.

Phase 1: Towards the Sorted List

For the rest of the analysis we assume that all variables of each node are valid according to Definition
3.1, i.e. we assume that each node has performed one validitycheck() and all nodes maintain valid
neighborhoods. We consider this time step, where each node maintains a valid neighborhood as t0. In
this phase we show that eventually all nodes form a sorted list as a sub-topology. We therefore define

GList = (V,EList), where EList = {(u, v) : (u, v) ∈ Ee ∧ (v = argmin{w.id : w.id >
u.id} ∨ v = argmax{w.id : w.id < u.id})}.

So, we need to prove the following theorem.

Theorem 5.2 After O(log4 n) steps, the network has reached a state, where the explicit network
graph is a super-graph of GList.

In order to do this, we show that the following lemma holds.

Lemma 5.3 Let a time step t ≥ t1 = 82 log n + t0 and a node u being at a linear path ∈ lpt(a, b).
Then at time tj = t1 + i ·h, i > 0 (for a sufficiently large constant h) it holds w.h.p. that u, as well as
its right (resp. left) links (if it has any of them) of order ≤ i such that 1/2dlog(n)e−i+1 (i.e. the length
of the i-th order right, resp. left link) is smaller than b.id−u.id

2 (resp. u.id−a.id
2 ), are on a linear path

between a and b.

Proof.
We prove the lemma by induction over i.
Induction basis :
We start the induction at round t1 = 82 log n + t0. As we have shown, after 82 log n rounds

all the nodes will have already had a complete probing procedure and will have reset their probing
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procedure, and at least one new has been started. W.l.o.g. we restrict our analysis only to the case of
the right links. If u already has a right link of order 1 at a linear path p ∈ lpt1(a, b) we are done. So
let’s assume this is not the case.

Let v be the closest node to u from the right of p. In case u does not have an edge to v (then
obviously v has an edge to u) we consider following subcases. If (v, u) is an explicit edge, then v
will contact u during its next probing procedure, which happens in O(log n) rounds w.h.p. If (v, u)
is an implicit edge, then following cases are possible.

• The edge can be a (u, lin) message, in which case v sends u a lin message with v’s closest
neighbor from the left.

• This edge can be a (u, probingr) message, in which case v would linearize u or contact u
during the next probing otherwise if u is the first argument. If u is the m.sender argument, it
is handled analogously.

• The implicit edge (v, u) could be a requestprobing message then a continueprobing message
is sent back to u.

• The edge can otherwise be a (u, rightring) message, in which case it means that u sent that
message and has a ring edge to v. In case the ring edge was dropped it would have been
linearized before by u.

• The edge could be an (u, requestneib) message, in which case v sends v.N to u.

• The edge could be a (u, checkinterval) message, in which case v would call linearize(u),
which is identical to the previous case of v getting a (u, lin) message.

• The edge could be a update − list(List) message, with u ∈ List. Then if v has not already
saved u in one of its lists, a lin message is sent to u. In case v is in one of u’s lists, a (u, v)
edge exists anyway.

In any case, after O(log n) time steps there exists an edge (u, v).
Now, either is v the first direct right neighbor of u (the leftmost of u.rDirect) or u maintains

another node which is that, let that be w. Either during the last probing procedure, or when u learns
about v, v is introduced to w, which means that after a constant number of rounds the first direct
right neighbor of u is at a linear path from a to b. By continuing this argumentation analogously,
we conclude that all nodes in u.rDirect, as well as all nodes in u.P are between u and rlink1(u)
(including rlink1(u) ) are at a linear path from a to b after O(log n) rounds (since there lie O(log n)
nodes between u and rlink1(u) w.h.p.) w.h.p.

Induction step:
According to the induction hypothesis, at time t1 + (i − 1)h, u has already links of order < i at

some px ∈ lpt1+(i−1)h(a, b).
If the link rlinki(u) is already on the path or 1/2dlog(n)e−i+1 > b.id−u.id

2 , then we are done. Else,
we know from the induction hypothesis that u maintains rlinki−1(u) at some py ∈ lpt1+i−1(a, b),
if u was already on such a path. Also, according to the induction hypothesis, rlinki−1(u) maintains
also its link rlinki−1(rlinki−1(u)) on some path ∈ lpt1+i−1(a, b) (see Figure 3.2), if 1/2dlog(n)e−i <
b.id−rlinki−1(u)

2 . (If this is not the case then also 1/2dlog(n)e−i+1 > b.id−u.id
2 , and then we are done.)
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Now, one case is if rlinki−1(rlinki−1(u)) and u have been introduced to each other by rlinki−1(u),
at timestep tj > t0 when rlinki−1(u) learned about u (or rlinki−1(rlinki−1(u))), according to
the (rlinki−1(u)).linearize(u) action (or (rlinki−1(u)).linearize(rlinki−1(rlinki−1(u))) action).
Then the two nodes are introduced to each other because (rlinki−1(u)).N would be unequal to
(rlinki−1(u)).Nold. In case rlinki−1(rlinki−1(u)) and u have been neighbors of rlinki−1(u) al-
ready at t0, then at most at timestep t1 = 4log(n) + t0 during the probing procedure of u node
rlinki−1(u) will have been reached and rlinki−1(rlinki−1(u)) will have been introduced to u ac-
cording to the action (rlinki−1(u)).continueprobingright or (rlinki−1(u)).continueprobingleft,
where the closest node to the probing goal is sent to u, which in this case is rlinki−1(rlinki−1(u)).
Since (u, rlinki−1(u)) and (rlinki−1(u), rlinki−1 (rlinki−1(u))) have at least 1/2log(n)−(i−1)+1

length each, then the new edge (u, rlinki−1(rlinki−1 (u))) will have length at least 1/2log(n)−i+1

, which means that it is stored as rlinki(u), if u does not already have one. If u did already have
a rlinki(u) l at t0, then the following cases can occur. In case l.id > rlinki−1(rlinki−1(u)).id
then l is dropped as a link and we are done. Otherwise, rlinki−1(rlinki−1(u)) is forwarded to l
and again the lemma holds. Note that the correctness of the lemma is not influenced if during this
time rlinki−1(u) (or analogously/as a consequence rlinki−1(rlinki−1(u))) changes its value. We
will argue here why. Suppose rlinki−1(u) = v until some time step t, and at the same time step u
learns a new node w which qualifies better for rlinki−1(u) and sets rlinki−1(u) = w. That means,
according to the linearize action, that u sends a request(w) message to v and v sends v.N to w at
time step t + 1. At time step t + 2 w receives v.N and either sets rlinki−1(w) = rlinki−1(v) or
forwards rlinki−1(v) (i.e. what was rlinki−1(rlinki−1(u))) to rlinki−1(w). That happens for all
existing right links of w, so all existing right links with id less than b.id are on a path from a to b at
time t+ 2. Note that the statement of the lemma for u’s link rlinki(u) is also not influenced, since u
would still have its rlinki(u) link on a linear path from a to b.

That is because in order for the value of rlinki(u) to be changed to rlinki−1(w) either rlinki−1(w)
was introduced to u before t+ 2, or u learned about rlinki−1(w) from w during the probing process.
But in the latter case this cannot happen until t + 2. That is because at time step t u learns about w,
so it can at earliest send a continueprobing message to w, which will receive this message at t+1 and
respond at t + 2 by sending (possibly) rlinki−1(w) to u. Now, let’s consider the other case, where
rlinki−1(w) was introduced to u before t + 2. Here, we consider 2 subcases. In the first sub-case u
has already had another rlinki(u) when rlinki−1(w) was introduced, so it just changed the value of
rlinki(u) to rlinki−1(w) and forwarded rlinki−1(w) to the previous rlinki(u), so the lemma still
holds. The second sub-case is that u’s rlinki(u) was null when it learned about rlinki−1(w). But
that means that t+ 1 < t1 + i · h, so the lemma holds.

ut

Further we show following lemma, which concludes the proof of the theorem.

Lemma 5.4 At some time step t2 = t1 + c log3 n, for some constant c, the sorted list GList has been
formed as a sub-graph of the network graph Gt2 .

Proof. Same as proof of Lemma 3.7. ut

Phase 2: From the Sorted List to the Desired Topology

In this section we show that once the network has stabilized into a sorted list, it eventually also sta-
bilizes into a legal Cone-network state, that means, each node u maintains a correct set of neighbors,
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so the lists u.P+, u.S+, u.P−, u.S− as well as the fingers maintain the correct nodes, so for example
the list u.P+ maintains the nodes in P+(u).

Due to Lemma 5.3 we know that at most O(log n) time steps after t2, each node u on the sorted
list maintains its right (resp. left) fingers of order i such that u.id + 1/2dlog(n)e−i+1 < b.id, with b
being the rightmost node in the list, i.e. with the maximal id (resp. u.id − 1/2dlog(n)e−i+1 > a.id,
with a being the leftmost node, i.e. with the minimal id).

Lemma 5.5 The ring is formed as a sub-graph of the network graph at time step t2 + d log n, for
some constant d.

Proof. Same as proof of Lemma 3.8. ut

Lemma 5.6 At time step t3 = t2+c′ log n a node u is connected to its correct right and left u.mylogn
direct neighbors, i.e. u.rDirect = rDirect(u) and u.lDirect = lDirect(u), for a sufficiently large
constant c′.

Proof. Same as proof of Lemma 3.9. ut

Lemma 5.7 At time step t4 = t3 + f log n · i each node u is connected to its correct right (and left)
link of order i (i.e. rlinki(u) = rfingerj(u) = u.rfingerj , for some u.first ≤ j ≤ u.mylogn),
for a sufficiently large constant f .

Proof.
Same as proof of Lemma 3.10.

ut

We proceed with the following definition.

Definition 5.8 We say that a node u has right (resp. left) level i (rlevel(u)=i (resp. llevel(u)=i)),
if it is i steps away from the node on its right with the largest capacity, i.e. |P+(u)| = i (resp.
|S+(u)| = i).

We now need to show the following lemma.

Lemma 5.9 At time step t2 = t1 + d log4 n for some constant d, it holds that every node u knows its
correct S+ and P+ lists.

Proof.
Let us first show that at time step t1 + d · i · log3 n for some constant d, it holds for every node u

of right and left level ≥ i that u.succ+
1 = succ+

1 (u) and pred+
1 (u) = u.pred+

1 .
We will show that statement by induction.

W.l.o.g. we conduct the induction for the case of the right level.
The induction starts for imax = max∀w{level(w)} and is done backwards (from i to i− 1).

Induction basis: At t1, for each node u of right level imax = max∀w{level(w)} it must hold
that u and succ+

1 (u) are direct neighbors on the sorted list. That is because there cannot be another
node between u and succ+

1 (u) with less capacity than u, otherwise u would not be of right level
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imax = max∀w{level(w)}. Also, there cannot be another node between u and succ+
1 (u) with larger

capacity than u, otherwise that node would be succ+
1 (u).

Inductive step: We argue that if at some time step every node with right level i knows u.succ+
1 ,

then after O(log3 n) steps each node u with right level i− 1 knows also succ+
1 (u). That is due to the

following:
Note that succ+

1 (u).P−[1] = P−[1](succ+
1 (u)), since it is its direct neighbor. We will further

argue that P−[1](succ+
1 (u)) = x and P−[2](succ+

1 (u)) = y are connected at that time point. let’s
take a look at y.S−. Note that all nodes in y.S− are of right level ≥ i, so they are connected with
their capacity successors, according to the induction hypothesis. The first one (from the left) of these
nodes is y.S−[1], which is connected to y (as they are direct neighbors) and to y.S−[2] (according
to the induction hypothesis). At most after O(log n) time steps y.S−[1] will introduce y to y.S−[2]
during its (y.S−[1]).BuildTriangle() call and y.S−[2] will set y as (y.S−[2]).pred+

1 . Analogously,
after O(log n) rounds y.S−[3] will set y as (y.S−[3]).pred+

1 and within O(log2 n) rounds x will set
also y as x.pred+

1 (since |y.S−| = O(log n) w.h.p.) and so x will introduce x.succ+
1 (which also is

succ+
1 (u)) to y during its periodic x.BuildTriangle() call, at most after O(log n) time steps.

Analogously P−[2](y = succ+
1 (u)) will introduce succ+

1 (u) to P−[3](succ+
1 (u)) within the next

O(log2 n) steps, and so on, until after O(log3 n) steps (since |succ+
1 (u).P−| = O(log n) w.h.p.)

the last node in u.S−, let’s call it z, will also be introduced to succ+
1 (u) (since it is also part of

P−(succ+
1 (u))). So z will set z.succ+

1 = succ+
1 (u). In its periodic z.BuildTriangle() action, after

at most O(log n) time steps, z will introduce z.succ+
1 = succ+

1 (u) to u and the induction statement
holds.

Now, since we have seen that the number of levels isO(log n) w.h.p., it holds that afterO(log4 n)
after t1, every node u knows its correct right and left direct successor/predecessor (succ+

1 (u)/
pred+

1 (u)).
Now, once each node umaintains its correct right and left direct successor/predecessor (succ+

1 (u)
/pred+

1 (u)), it periodically (at most every O(log n) time steps during the periodic action) receives
a list − update message from them. So the correct right and left lists are propagated from the top
capacity nodes to the low capacity nodes everyO(log n) time steps, which means that afterO(log2 n)
(since the length of the P− and S− sets are also O(log n) w.h.p.) time steps all nodes have been
informed about their correct S+ and P+ lists.

And so the lemma holds. ut

Lemma 5.10 If every node knows its correct closest larger right (resp. left) node succ+
1 (u) (resp.

pred+
1 (u)) stored in u.succ+

1 (resp. stored in u.pred+
1 ) then for all nodes x which are in the correct

right (resp. left) internal neighborhood of u, S−(u) (resp. P−(u)), it holds that u will learn x (and
store it in u.S− (resp. u.P−) after O(log2 n) time steps w.h.p..

Proof. W.l.o.g. we consider only the proof for u.S−.
We will prove it by induction over the nodes x ∈ S−(u) (in ascending order of their x.id values).

Induction basis: x is the direct right neighbor of u. In that case u already knows x, since we
assumed the presence of the sorted list, and the statement holds.

Inductive step: We need to show that if u knows the next node ∈ S−(u) to the left of x (let this
be y), then u learns x after O(log n) time steps.

In this case, x is the closest larger right node of y. That is because x must be larger (in terms
of capacity) than y, since else x would not be in S−(u). So, by hypothesis, y knows about x (so
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y.succ+
1 = x). So, when y conducts its periodic y.BuildTriangle() call afterO(log n) time steps, it

will introduce u and x to each other (as they are y.pred+
1 and y.succ+

1 respectively) and u will learn
about x.

Now, since the size of S−(u) is O(log n) w.h.p. the lemma holds. ut

Combining the previous lemmas,we can show that Theorem 5.1 holds, and by our protocol each
weakly connected network converges to the CONE network.

Lemma 5.11 Redundant explicit edges disappear after O(log n) steps.

Proof. Here we show that explicit edges that do not belong to GCONE disappear over time, so that
the set of explicit edges forms the GCONE .

So let’s consider the time step t4 when the graph of the explicit edges G forms a super-set of
GCONE . Let an explicit edge (u, v) ∈ G, which is not inGCONE . That means that v does not belong
in the correctN(u) in any way and will be forwarded through the linearize action to the closest node
of u.N , w. Since u maintains all its correct fingers, distance(w, v) ≤ 1

2distance(u, v). Since this
happens continuously the distance of the edge to v is halfed in each step, thus after O(log n) steps v
will be connected with its direct neighbor and the redundant edge no longer exists. ut

5.2 Closure and correctness of the data structure

We showed that from any initial state we eventually reach a state in which the network forms a correct
CONE network. We now need to show that in this state the explicit edges remain stable and also that
each node stores the data it is responsible for.

Theorem 5.12 If Ge = GCONE at time t then for t′ > t also Ge = GCONE .

Proof. The actions conducted periodically are the on the one hand linearize() and the probing ac-
tions. Since the nodes maintain their correct neighborhoods (due to the fact that no external dynamics
occur), the linearize() action does not alter the explicit graph. The only way the probing action can
add a new explicit edge is if it fails. However due to Lemma 3.4 this does not happen w.h.p.. ut

Theorem 5.13 If Ge = GCONE then after O(log n) time steps each node stores exactly the data it
is responsible for.

Proof. According to Theorem 2.4 each node knows which node is responsible for parts of the interval
it supervises. In our described algorithm each node u checks whether it is responsible for the data it
currently stores by sending a message each Θ(log n) time steps to the node v that u assumes to be
supervising the corresponding interval. If v is supervising the interval and u is responsible for the
data, then u simply keeps the data. If v is not supervising the data or u is not responsible for the
data then v sends a reference to u with the id of anode that v assumes to be supervising the interval.
Then u forwards the data to the new reference and does not store the data. By forwarding the data by
Greedy Routing it reaches after O(log n) time steps a node supervising the corresponding interval.
This node then tells the responsible node to store the data. Thus all data is stored by nodes that are
responsible for the data. ut
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6 Performance Results

6.1 Message Complexity

Theorem 6.1 The nodes in the network send (and thus receive) O(n2 log5 n) messages (of logarith-
mic size) during the self-stabilization.

Proof. The self-stabilization process takesO(log4 n) steps. In each step each node can send at worst
case all of its neighborhood (O(log n)) to all other nodes in the graph (n − 1). Thus the Theorem
follows. ut

Theorem 6.2 In the stable state, O(d/ log n) number of messages are sent/received per node per
time step on average, where d is the number of data assigned to a node.

Proof. In the stable state, first of all messages associated with probing are sent. Obviously a
node sends only one probingl, probingr message in each time step. Also to each node exactly
one continueprobingright and continueprobingleft message is sent in each time step from some
other node. Thus each node sends and receives on average a constant number of messages per time
step.

Moreover, in the stable state, each node u sends two (List, list − update) messages every
Θ(log n) number of rounds. However in the stable state a list − update message received does
not cause any further messages to be sent, since the maintained lists are correct. The argument List
in a list−updatemessage is of sizeO(log n) (since this is the size of u.P+, u.S+) w.h.p., so at aver-
age, the communication complexity caused by the (List, list− update) messages is O(1) messages
(of logarithmic size) per node per time step.

Moreover, in the stable state, u calls the BuildTriangle() function every Θ(log n) number of
rounds. This causes to sending a (u, lin) message to all nodes in u.S−∪u.P−∪{u.succ+

1 , u.pred
+
1 }.

However, since all these nodes also maintain u in their neighborhood in the stable state, this does not
cause any further messages to be sent. Also, a (u.pred+

1 , lin) message is sent to u.succ+
1 and vice

versa. Again, u.succ+
1 and u.pred+

1 maintain each other in their neighborhoods, so this does not
cause any further messages to be sent. Since the size of u.S− and u.P− isO(log n) w.h.p., if follows
that the BuildTriangle() function results to O(1) messages at average per node per time step.

Moreover, in the stable state, u calls the CheckDataInterval() function every Θ(log n) number
of time steps. Then, a check− interval message is sent to all the intervals u (thinks it) is responsible
for. In the stable state, u is indeed responsible for these intervals, so no further messages will be
sent. This results to an average of O(d/ log n) messages sent per node per time step due to the
CheckDataInterval() function, and the proof is concluded.

ut

7 External Dynamics

Concerning the network operations in the network, i.e. the joining of a new node, the leaving of a
node and the capacity change of a node, we show the following:

Theorem 7.1 In case a node u joins a stable CONE network, or a node u leaves a stable CONE
network or a node u in a stable CONE network changes its capacity, we show that in any of these
three casesO(log2 n) structural changes in the explicit edge set are necessary to reach the new stable
state.
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Proof.
We show the statement by considering the 3 cases separately.

7.1 Joining of a Node

When a new node u enters the network, it does so by maintaining a connection to another node v,
which is already in the network. u is forwarded due to the periodic actions in the network until it
reaches its right position, as it takes part in the linearization procedure.

Theorem 7.2 If a node u joins a stable CONE network O(log2 n) structural changes in the explicit
edge set as well as O(log2 n) time steps are necessary to reach the new stable state.

Proof. We show that there is at most a constant number of temporary edges, i.e. edges that are
not in the stable state. u stores v in u.N as v is the only node u knows. In its periodic action u
after O(log n) time steps (either through probing, through a list − update message or through the
BuildTriangle() call) sends a message to v containing its own id creating an implicit edge (v, u).
Now there can be two cases: Either u is in v.N in a stable state then v stores u’s identifier or u is not
stored and delegated to another node w creating the implicit edge (w, u). Thus only explicit edges
pointing to u are created that are in the stable state and only the explicit edge (u, v) is temporary.
Each time u is delegated the distance to its direct neighbors is at least halfed, due to the routing
structure (use of the fingers) of the network. Thus after O(log n) time steps u will have reached
its directs neighbors. Then u will periodically conduct probing and maintain its fingers. For each
finger to reach its correct position at most one probing is sufficient (again due to the distance-halfing
network structure). So after O(log2 n) time steps u will maintain its correct fingers. Due to the
BuildTriangle() call conducted by the nodes in S−(u) and P−(u) u learns every O(log n) time
steps at least one of these nodes, so afterO(log2 n) time steps u maintains its correct u.S− and u.P−

lists as well as its correct u.succ+
1 and u.pred+

1 . Through the periodic list − update messages of
u.succ+

1 and u.pred+
1 u also learns its correct u.S+ and u.P+ lists. Every Θ(log n) time steps u will

check the correctness of its data intervals and in case they are wrong it receives the correct ones.
Note here that after the joining of u in the network also edges that have been before in the stable

state no longer exist in the new stable state. E.g. let w ∈ x.S+ and x.id < u.id < w.id and
c(u) > c(w) then w is not longer stored in x.S+ as soon as u is integrated in the network. According
to Theorem 2.5 there is at most O(log n) w.h.p. such nodes x, as each node x has to store u in its
lists, and also at most O(log n) w.h.p. nodes w, as u has to store each w in its lists. Therefore there
are at mostO(log2 n) edges that have to be deleted. The nodes which have lists that are affected from
u’s arrival are the ones being in u.S− and u.P−, which will learn u after O(log2 n) time steps and
get their corresponding correct lists from u at most O(log n) time steps after that. So all in all we
showed that O(log2 n) structural changes in the explicit edge set as well as O(log2 n) time steps are
necessary to reach the new stable state. ut

7.2 Node Departures

In contrast to the previous chapter, in this chapter we cannot directly apply the algorithmic framework
of chapter 2 for solving the FDP because the protocol does not fulfill the requirements. However we
will show that despite that the framework still works.



108 CHAPTER 4. INTRODUCING HETEROGENEITY

Theorem 7.3 If the algorithmic framework for solvingFDP of chapter 2 is applied to to the protocol
presented in this chapter, then as a result we get a protocol that solves FDP .

Proof. We can overcome the unfulfilled requirement that the protocol does not include self-introduction
of a node to all of its neighbors periodically. Note that a node u does introduce itself to all its neigh-
bors, but not to the ones in u.S+ and u.P+. W.l.o.g. we consider u.S+. We will show that if there
is a node v in u.S+ which is leaving, then u is been eventually informed about that and dissolves the
edge to v.

u gets periodically informed by u.succ+
1 about (u.succ+

1 ).S+. Now there are two cases. Either
u.succ+

1 = v or not. In the first case we know that eventually u will contact v and so v will respond
that it is leaving, which means that u will give up v and reverse its edge to it.

Now in case that u.succ+
1 6= v we can distinguish between two subcases. Either v is included in

(u.succ+
1 ).S+ or not. If v is not included, then u updates u.S+ (not including u) and forwards itself

to v, which means that u no longer points to v. If on the other hand v is included in S, then we are
back to same situation and the arguments for u above apply to u.succ+

1 . However this situation can
occur only a finite number of times, since the number of nodes is finite. ut

Note that in addition to the framework we also include an extra action that forwards the data
stored in u to one of its neighbors, before a node u leaves.

After the leaving, the network must stabilize again. This means that u.S−[1] and u.P−[1] must
connect to each other. let’s consider u.P−[1]. Since it won’t have a direct right neighbor after the
leaving of u, the linearization process will take place again until u.P−[1] learns u.S−[1].

Theorem 7.4 If a node u leaves a stable CONE networkO(log2 n) structural changes in the explicit
edge set as well as O(log2 n) time steps are necessary to reach the new stable state.

Proof. The proof is analogous to the proof in the case of a joining node. Obviously according to
Theorem 2.5 w.h.p. O(log n) edges are deleted that start at or point to the leaving node u. By deleting
u further edges have to be created. E.g. let w ∈ u.S− and u ∈ x.S+ and c(u) > c(w) then w might
now be stored in x.S+ or x.S− and the edge (x,w) has to be created. Again according to Theorem
2.5 there are w.h.p. at most O(log n) such nodes x and O(log n) such nodes w, thus in total at most
O(log2 n) edges have to be created.

Analogously to the previous proof, due to theBuildTriangle() and list−update calls conducted
by these nodes, each of them needs O(log n) structural changes in order to maintain its correct lists
as well as O(log2 n) time steps.

Moreover, nodes that had u as a finger or direct neighbors must renew their neighborhood. These
areO(log n) w.h.p., according to Lemma 2.10. Let a node y which had u as a finger. AfterO(log n)
time steps the probing will find a new finger, which is will be one of the former direct neighbors of
u. So after each probing at least one correct finger is found by a node, which means that at most after
O(log2 n) time steps all correct fingers are found. ut

7.3 Capacity Change

If the capacity of a single node u in a stable CONE network decreases we can apply the same ar-
guments as for the leaving of a node, as some nodes might now be responsible for intervals that u
was responsible for. Additionally u might have to delete some ids in u.S− ∪ u.P− and add ids in
u.S+ ∪ u.P+. If a node increases its capacity we can apply the same arguments as for the joining
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of a node, as some nodes might not longer be responsible for intervals that u is now responsible for.
Additionally u might have to add some ids in u.S− ∪ u.P− and delete ids in u.S+ ∪ u.P+. Thus the
following theorem follows.

Theorem 7.5 If a node u in stable CONE network changes its capacityO(log2 n) structural changes
in the explicit edge set as well as O(log2 n) time steps are necessary to reach the new stable state.

ut

8 Outlook

In this chapter we considered heterogeneity in a DHT, utilized as a distributed storage system. More
specifically, the heterogeneity concerned the storage capacity of the nodes. We gave a self-stabilizing
algorithm for a heterogeneous overlay network, and by doing this we used an efficient network struc-
ture. The network fairly distributes the data load to the nodes according to their storage capacity. The
algorithm is based on the one presented in DISC 2013, but improves it by removing the previous
unequally distributed load balance due to routing. Improvement is also done in the self-stabilization
time, since the new algorithm only needs a polylogarithmic number of steps. We proved the correct-
ness of our protocol, also concerning the functionality of the operations done in the network, data
operations and node operations. This was the first attempt to present a self-stabilizing method for a
heterogeneous overlay network and it works efficiently regarding the information stored in the hosts.
Furthermore our solution provides low degree, fair load balancing, and polylogarithmic update cost
in case of joining or leaving nodes. More work in this field can be done by examining heterogeneous
networks in the two-dimensional space and considering heterogeneity in other aspects than only the
capacity, e.g. bandwidth, reliability or heterogeneity of the data elements.
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Chapter 5

The Self-Stabilizing Resource Discovery
Problem
A Deterministic Worst-Case Message Complexity Optimal Solution

Until now we considered specific network topologies, as goal topologies of the self-stabilizing pro-
cess. In this chapter we consider a pretty straight forward topology as our goal topology, the clique,
or as it is called in the field of distributed systems, the problem of resource discovery. In particu-
lar we give an algorithm, such that each node in a network discovers the address of any other node
in the network. Although there are several solutions for resource discovery, our solution is the first
that achieves worst-case optimal work for each node, i.e. the number of addresses (O(n)) or bits
(O(n log n)) a node receives or sends coincides with the lower bound, while ensuring only a linear
run time (O(n)) on the number of rounds.

1 Introduction

To perform cooperative tasks in distributed systems the network nodes have to know which other
nodes are participating. Examples for such cooperative tasks range from fundamental problems such
as group-based cryptography [9], verifiable secret sharing [6], distributed consensus [10], and broad-
casting [11] to peer-to-peer (P2P) applications like distributed storage, multiplayer online gaming, and
various social network applications such as chat groups. To perform these tasks efficiently, knowledge
of the complete network for each node is assumed. Considering large-scale, real-world networks this
complete knowledge has to be maintained despite high dynamics, such as joining or leaving nodes,
that lead to changing topologies. Therefore, the nodes in a network need to learn about all other nodes
currently in the network. This problem called resource discovery, i.e. the discovery of the addresses
of all nodes in the network by every single node, is a well studied problem and was firstly introduced
by Harchol-Balter, Leighton and Lewin in [16].

1.1 Resource Discovery

As mentioned in [16] the resource discovery problem can be solved by a simple swamping algorithm
also known as pointer doubling: in each round, every node informs all of its neighbors about its entire
neighborhood. While this just needsO(log n) communication rounds to inform every node about any
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other node in every weakly connected network of size n, the work spent by the nodes can be very
high and far from optimal. We measure the work of a node as the number of addresses each node
receives or sends while executing the algorithm. Moreover, in the stable state (i.e., each node has
complete knowledge) the work spent by every node in a single round is Θ(n2), which is certainly
not useful for large-scale systems. Alternatively, each node may just introduce a single neighbor to
all of its neighbors in a round-robin fashion. However, it is easy to construct initial situations in
which this strategy is not better than pointer doubling in order to reach complete knowledge. The
problem in both approaches is the high amount of redundancy: addresses of nodes may be sent to
other nodes that are already aware of that address. In [16] a randomized algorithm called the Name-
Dropper is presented that solves the resource discovery problem within O(log2 n) rounds w.h.p. and
work of O(n2 log2 n). In [17] a deterministic solution for resource discovery in distributed networks
was proposed by Kutten et al. Their solution uses the same model as in [16] and improves the
number of communication rounds which takes O(log n) rounds and O(n2 log n) amount of work.
Konwar et al. presented solutions for the resource discovery problem considering different models,
i.e. multicast or unicast abilities and messages of different sizes, where the upper bound for the
work is O(n2 log2 n). In their algorithms they also considered when to terminate, i.e. how can a
node detect that its knowledge is already complete. Recently, resource discovery has been studied by
Haeupler et. al. in [13], in which they present two simple randomized algorithms based on gossiping
that need Ω(n log n) time and Ω(n2 log n) work per node on expectation. They only allow nodes to
send a single message containing at most one address of size log n in each round. Thus their model
is more restrictive compared to the model used in [16, 17] and leads to an increased run time in the
number of rounds. We present a deterministic solution that follows the idea of [13] and limits the
number of messages each node has to send and the number of addresses transmitted in one message.
Our goal is to reduce the number of messages sent and received by each node such that we avoid
nodes to be overloaded. In detail, we show that resource discovery can be solved in O(n) rounds
and it suffices that each node sends and receives O(n) messages in total, each message containing
O(1) addresses. Our solution is the first solution for resource discovery that not only considers the
total number of messages but also the number of messages a single node has to send or receive. Note
that Ω(n) is a trivial lower bound for the work of each node to gain complete knowledge: starting
with a list, in which each node is only connected to two other nodes, each node has to receive at least
n− 3 ids. So our algorithm is worst-case optimal in terms of message complexity. Furthermore, our
algorithm can handle the deletion of edges and joining or leaving nodes, as long as the graph remains
weakly connected. Modeling the current knowledge of all nodes as a directed graph, i.e. there is
an edge (u, v) iff u knows v’s id, one can think of resource discovery as building and maintaining
a complete graph, a clique, as a virtual overlay network. If the overlay can be recovered out of
any (weakly connected) initial graph, the corresponding algorithm can be considered to be a self-
stabilizing algorithm. More precisely, an algorithm is considered self-stabilizing if it reaches a legal
state when started in an arbitrary initial state (convergence) and stays in a legal state when started in
a legal state (closure).

1.2 Related Work

In [28] the authors use a self-stabilizing algorithm in which they collect snapshots of the network
along a spanning tree, which could also be used to form a complete graph. However, the authors give
no bounds on the message complexity of their algorithm. In [3] the authors present a general frame-
work for the self-stabilizing construction of overlay networks, which may involve the construction of
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the clique. The algorithm requires the knowledge of the 2-hop neighborhood for each node and may
involve the construction of a clique. In that way, failures at the structure of the overlay network can
easily be detected and repaired. However, the work in order to do that when using this method is too
high as they essentially use pointer doubling: i.e. in each round a node sends the information about
its neighborhood to all its neighbors.

One could use the distributed algorithms for self-stabilizing lists and rings to form a complete
graph, but all algorithms proposed so far for these topologies involve a worst-case work of Ω(n2) per
node in order to form the list or ring. Hence, these algorithms cannot be used to obtain an efficient
algorithm for the clique.

Alternatively, a self-stabilizing spanning tree algorithm could be used. A large number of self-
stabilizing distributed algorithms has already been proposed for the formation of spanning trees in
static network topologies, [5], [4], [8]. For example, in [5] the authors present a self-stabilizing span-
ning tree with minimal degree for the given network and in [4] a fast algorithm for a self-stabilizing
spanning tree is presented, which reaches optimal convergence time O(n2) in an asynchronous set-
ting. However, these spanning trees are either expensive to maintain or the amount of work in these
algorithms is not being considered.

However, these spanning trees are potentially expensive to maintain as a high degree cannot be
avoided in general (consider, for example, the extreme case of a star graph in which a single node
is connected to all other nodes). For the case that the network topology is flexible and potentially
allows every node to connect to any other node, self-stabilizing algorithms are known that construct
a bounded degree spanning tree (e.g., [8]). The algorithm in [8] also has a very low overhead in the
stable state. But no formal result is given on the work to establish the spanning tree. Also, an outside
rendezvous service, called an oracle, is used to introduce nodes to other nodes, which is not available
in our model.

In summary, no self-stabilizing algorithm has been presented for the formation of a bounded
degree spanning tree if the network topology is under the control of the nodes and there are no outside
services for the introduction of nodes.

1.3 Our Contributions

In this chapter we present a distributed algorithm for resource discovery. We will describe the algo-
rithm as a self-stabilizing algorithm that forms and maintains a clique as a virtual overlay network,
out of any weakly-connected initial state. In particular, we show that our algorithm is worst-case
optimal in terms of message complexity. More specifically we show that for any initial state in which
the network is weakly connected, our algorithm requires at most O(n) rounds and O(n) work per
node until the network reaches a legal state in which it forms a clique.

We further show that the maintenance cost per round is O(1) for each node once a legal state
has been reached. We also consider topology updates caused by a single joining or leaving node and
show that the network recovers in O(n) rounds with at most O(n) messages over all nodes besides
the maintenance work. Note that we use a synchronous message passing model to give bounds on
the message complexity of our algorithm, but our correctness analysis can also be applied to an
asynchronous setting.
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2 A Distributed Self-Stabilizing Algorithm for the Clique

In this section we give a general description of our algorithm. First we introduce the variables being
used, and then the actions the nodes take, according to our rules. To each node x corresponds a
channel x.C of incoming messages from the previous round. We do not require any particular order
in which the messages are processed in B(x). Moreover, each node x stores the following internal
variables: its predecessor x.p , its successor x.s, its current neighborhood x.N in a circular list, the
nodes received by messages from the predecessor in another circular list x.L, the set of nodes x.S
that are received through scanning messages (defined below), its own identifier x.id and its status
x.status, which is by default set to ’inactive’ and can be changed to ’active’. The current network
G = (V,E) formed by the nodes is defined by their current neighborhoods v.N . We only require that
v.N does not contain false ids. By that we mean ids of nodes that do not exist. If we would allow
this, stabilization time could be delayed, since there would be additional ids which would have to be
propagated by the algorithm.

A message in general consists of the following parts: a sender id, which is the id of the node
sending the message, an optional additional id, if the sender wants to inform the receiving node about
another node, and the type of the message.

Each node has two different kinds of actions that we call receive actions and periodic actions. A
receive action is enabled if there is an incoming message of the corresponding type in x.C. There are
the following types of messages: pred-request, pred-accept, new-predecessor, deactivate, activate,
forward-from-successor, forward-from-predecessor, forward-head, scan, scanack, delete-successor.
A periodic action is enabled in every state, as its guard is simply true. Therefore there can be no state
in the computation in which no action is enabled. Each enabled action is executed once every step.

We can now formally state our main result as following:

Theorem 2.1 For any initial state in which the network is weakly connected, our algorithm requires
at mostO(n) rounds andO(n) work per node until the network reaches a legal state, in which for all
x in the system, x.N is equal to the set of all nodes in the system.

2.1 Definitions

In order to describe the algorithm formally and prove its correctness later on, we need the definitions
given below. We assume that a predecessor of a node is a node with the next larger identifier in its
neighborhood. Therefore for all x.p links, (x.p).id > x.id. Then all nodes in a connected component
considering only x.p links form a rooted tree, where for each tree the root has the largest identifier.
Note here that the heap H (defined below) is not a data structure or variable stored by any node. It is
a notion used just for the purpose of the analysis.

Definition 2.2 We call such a rooted tree formed by x.p links a heap H . We further call the root of
the tree the head h of the heap H . We further denote with heap(x) the heap H such that x ∈ H .

Definition 2.3 A sorted list is a heap H with head h, such that ∀v ∈ H − {h} : (v.p).id > v.id and
∀v ∈ H − {h} : (v.p).s = v. We call a heap linearized w.r.t. a node u ∈ H , if ∀v ∈ H − {h} :
(v.p).id > v.id and ∀v ∈ H − {h} ∧ v ≥ u : (v.p).s = v. We further call the time until a heap is
linearized w.r.t. a node u the linearization time of u. We say that two heaps Hi and Hj are merged if
all nodes in Hi and Hj form one heap H .
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2.2 Description of our Algorithm

We only present the intuition behind our algorithm. The full pseudocode is in Appendix 2.3. Our
primary goal is to collect the addresses of all nodes in the system at the node of maximum id, which
we also call the root. In order to efficiently distribute the addresses from this root to all other nodes
in the system (so that all ids are known to every node and a clique is formed), we aim at organizing
them into a spanning tree of constant degree, which in our case is a sorted list, ordered in descending
ids. The root would then be the head of the list. In order to reach a sorted list, we first organize the
nodes in rooted trees satisfying the max-heap property, i.e. a parent (also called predecessor in the
following) of a node has a higher id than the node itself. The rooted trees will then be merged and
linearized over time so that they ultimately form a single sorted list.

Since we want to minimize our message complexity, we had to look for a technique other than
the linearization technique presented in [35]. So in our protocol, in order to minimize the amount of
messages sent by the nodes, we allow a node in each round to share information only with its imme-
diate successor x.s (which is one of the nodes that considers it as its predecessor) and predecessor
x.p. More precisely, in each round a node forwards one of its neighbors (i.e. the nodes it knows
about) in a round-robin manner to its predecessor. The intuition behind this is that if every node does
that sufficiently often, eventually the root will learn about all ids in the system and will forward this
information in a round-robin manner to its successor, who will then forward it to its successor, and so
on.

In order for this process to work, each node must repeatedly compute and update its successor and
predecessor. This is done as follows: Each node chooses the smallest node in its neighborhood that
is larger than itself as its predecessor and requests from it to accept it as successor (pred − request
message). Each node also looks at the nodes which requested to be its successor, assigns the largest
of them as its successor (pred−accept) and forwards the rest to it (new−predecessor). In that way
each node has at most one predecessor and one successor at the end of one round.

We also need to ensure that there exists a path of successors from the root to all other nodes so that
the information can be forwarded to all. This is initially not the case since there exist many nodes that
are the largest in their known neighborhood, thinking they are the root. We call these nodes heads.
All the nodes having the same head as an ancestor form a heap. The challenge is to merge all heaps
into one, since then we have only one head, the root. In order to enable the merging of the heaps,
the heads continuously scan their neighborhood. A node that receives a scan message responds by
sending the largest node in its neighborhood through a scanack message to the node that sent that
scan message (could be possibly more than one). Moreover, in each round, the largest node is also
forwarded to its predecessor (forward − head), which in turn forwards it again to its predecessor,
and so on.

We further discuss the process of forwarding an id to a node’s predecessor/successor. Note that
when a node forwards an id through a forward − from − successor resp. forward − from −
predecessor message, the id sent is the one at the head of the list x.N resp. x.L. Then the head shifts
to the next element of the (circular) list. When a node receives an id through a forward− from −
successor resp. forward − from − predecessor message, it stores it at the head of its list. That
way we ensure that once a node is forwarded it will not be delayed by other nodes being forwarded
on its way to the root or the head of the heap. When a node is inserted into a list, the insert operation
is used. The insert(< list >,< node >,< place >) operation works as follows. It checks whether
< node > is already in < list > and if not, it is inserted at < place >, where < place > can be
either head or tail (by head here the head of the list is meant, not the head of a heap as defined above).
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Figure 5.1: Here we depict the nodes by height according to their ids, i.e. nodes with larger id are
depicted higher than nodes with smaller id. Our first goal is to form the sorted list as a sub-graph
of the network graph (middle part of the picture; the root node is highlighted). Once this has been
achieved, the forwarding of the ids through the list (due to the forward-from-successor and forward-
from-predecessor messages) will lead to the construction of the clique (right part of the picture).

To avoid accumulation of unsent ids in the lists (which would have an effect on the time and mes-
sage complexity) maintained by the nodes, the following rules are used. When x has no predecessor
that it can send a forward-from-successor message to, although it has neighbors greater than itself (so
x is not a head), it changes its status to inactive, and then informs its successor through a deactivate
message in order for x.s not to send its forward-from-successor to x, until x has a predecessor (in that
case an active message is sent to x.s) to which it can forward the message. x.s then changes its status
to inactive and forwards the deactivate message to its successor (x.s).s, and so on. In that way no
messages that are forwarded to x accumulate at x.N before being forwarded again and we ensure that
once a node is forwarded, it will not be delayed by other nodes being forwarded. When x obtains
a predecessor, it will change its status to active and inform through a message of type activate x.s
about that and the information flow can start again.

In order to repair faulty configurations, where a node is thought to be a successor of more than
one node, we introduce the following rule. If a node receives messages sent by a node that is not
its predecessor although the sending node should be the predecessor, then a node will send a delete-
successor message, correcting the wrong x.s link.
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2.3 Pseudo-Code

In this last section we will present the pseudo code for the described and analyzed algorithm on the
next page. The pseudo code starts with the periodic actions (Algorithm 29) and then shows the re-
ceive actions (Algorithm 30), in which every incoming message is handled according to the specific
message type.

3 Correctness

In this section we show the correctness of our approach for the self-stabilizing clique.
At first we show some basic lemmas. We then show that in linear time all nodes belong to the

same heap. Then we show that the head of this heap (node with the maximal id) is connected with
every node and vice versa after an additional time of O(n). From this state it takes O(n) more time
until every node is connected to every other node and the clique is formed. We give a formal definition
of the legal state.

Definition 3.1 Let G be a network with node set V and max = max {v ∈ V } be the node with the
maximum id. Then G is in a legal state iff ∀v ∈ V : v.N = V − {v} and ∀v ∈ V − {max} :
(v.p).id > v.id and ∀v ∈ V − {max} : (v.p).s = v (i.e. v.p = p(v) and v.p = s(v)).

Note that the legal state contains the clique and also a sorted list over the nodes. In this section
we will prove the following theorem.

Theorem 3.2 After O(n) rounds the network stabilizes to a legal state.

3.1 Phase 0: Recovery to a Valid State

In this phase we show that the network can recover if the internal variables x.p and x.s are undefined
or set to invalid values, e.g (x.p).id < x.id. We therefore define in this case a state as valid state, if
the nodes in a connected component given by x.p links form a tree and the successor’s predecessor
has to be the node itself.

Definition 3.3 We say that the network G is in a valid state if (x.p).id > x.id and (x.s).id < x.id
for all x ∈ V whenever x.p and x.s are defined and if y = x.s, then x = y.p.

Theorem 3.4 It takes at most 2 rounds until the network is in a valid state.

Proof. The network may be at an invalid state at the first round we consider. That means that
the variables x.p, x.s can have invalid values. So x could have set a node u as its predecessor (i.e.
u = x.p) with u.id < x.id, which is not valid according to our protocol. Despite the presence of this
invalid state, our protocol can recover from it very fast, so that the actual stabilization procedure can
start. So if a variable is set invalid, that is (x.p).id < x.id or (x.s).id > x.id, it will be set to null
after the first round, once the periodic actions will have been executed, as it is tested in the actions
checkifhead and forwardtosuc if (x.p).id < x.id and if (x.s).id > x.id. Once each node has
computed a valid predecessor, it will request it to accept it as a successor. So after the next round
each node will (if possible) also have a valid successor, Moreover if x notices that it is contacted from
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Algorithm 29 ACTIONS OF NODE X AT EACH ROUND

forwardtopred: true→
if x.status 6= inactive ∧ x.p 6= null then . x is not a head

send message(x.id, (x.N).head, forward-from-successor) to x.p . forward node to predecessor
(x.N).head:=((x.N).head).next . shift head to next element in circular list

checkifhead: true→
if x.p = null ∨ (x.p).id < x.id then . x is a head or x.p is invalid

x.p := argminv∈x.N{v.id > x.id}
if x.p 6= null then

send message(x.id,pred-request) to x.p
x.status:=inactive

else . x is a head, scan a node
send message(x.id,scan) to (x.N).head
insert(x.L,(x.N).head,tail) . a copy of (x.N).head is inserted at the end of x.L
(x.N).head:=((x.N).head).next

else
send message(x.id,pred-request) to x.p

forwardtosuc: true→
if x.s 6= null then

if (x.s).id < x.id then . test if x.s is valid
send message(x.id, (x.L).head, forward-from-predecessor) to x.s . forward node to successor
(x.L).head:=((x.L).head).next

else
x.s=null

forwardmax: true→
if x.S 6= null then

maxN := argmaxu∈x.N{u.id}
x.N := x.N ∪ x.S
maxS := argmaxu∈x.S{u.id}
if maxS > maxN ∧ x.p 6= null then . forward largest node

send message(x.id,maxS , forward-head) to x.p
S := S \ {maxS}
maxN = maxS

for all u ∈ x.S do . send the maximum to the nodes of x.S
send message(x.id,maxN,scanack) to u
delete(x.S,u)
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Algorithm 30 ACTION OF NODE X UPON RECEIVING A MESSAGE

process: message m ∈ x.C →

if m.type = forward− head then . insert the head forwarded from x.s to x.N, x.S
if m.id = x.s then

if m.id 6∈ x.N then
insert(x.S,m.id)

insert(x.N,m.id,tail)

if m.type = scan then . x has been scanned by a head m.id
insert(x.S,m.id)

if m.type = scanack then
if m.id 6∈ x.N then

insert(x.S,m.id)

if m.type = delete− successor then
if m.id = x.s then

x.s = null
if m.type = pred− request then

if (m.id).id < x.id then
if x.s 6= null then . renew successor if necessary, and rearrange old successor

grandson:=min{m.id, x.s)}
x.s:=max{m.id, x.s}
send message(x,pred-accept) to x.s
send message(x,x.s,new-predecessor) to grandson

else
x.s:=m.id
send message(x,pred-accept) to x.s

if m.type = new − predecessor then . renew predecessor
if m.id = x.p then

if (m.id2).id > x.id ∧ (m.id2).id < (x.p).id then
x.p=m.id2
send message(x,pred-request) to x.p
x.status=inactive
if x.s 6= null then

send message(x,deactivate) to x.s

if m.type = pred− accept then . the predecessor has accepted x as its successor
if m.id = x.p then

x.status=active
if x.s 6= null then

send message(x,activate) to x.s
else

send message(x,delete-successor) to m.id

if m.type = deactivate then
if m.id = x.p then

x.status:=inactive
if x.s 6= null then

send message(x,deactivate) to x.s . forward the deactivation message to successor
else

send message(x,delete-successor) to m.id
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Algorithm 31 ACTION OF NODE X UPON RECEIVING A MESSAGE (CONTINUED)
if m.type = activate then

if m.id = x.p then
x.status:=active
if x.s 6= null then

send message(x,activate) to x.s . forward the activation message to successor
else

send message(x,delete-successor) to m.id

if m.type = forward− from− successor then . insert the node forwarded from x.s to x.N
if m.id = x.s then

insert(x.N, m.id2, head)

if m.type = forward− from− predecessor then . insert the node forwarded from x.p to x.N, x.L
if m.id = x.p then

insert(x.N, m.id2, tail)
insert(x.L, m.id2, head)

else
send message(x,delete-successor) to m.id

multiple nodes that think that x has stored them as successors, x contacts all these nodes but one (its
true successor) through delete-successor messages so at next round x has no multiple successors. In
other words it always holds that if y = x.s, then x = y.p. ut

For our further analysis we assume that the initial state is valid, since we do not take into account
the first 2 rounds it takes to reach a valid state. So we consider the first round in which we have a
valid state as the round t = 0. Note that due to the periodic actions (Algorithm 29) the network stays
in a valid state in every round afterwards.

3.2 Phase 1: Connect all Heaps by s-edges

In this phase we show that starting from a valid state all existing heaps will eventually be connected
by s-edges (defined below), so that they will merge afterwards.
First we give following definitions.

Definition 3.5 We distinguish between two different kinds of edges that can exist at any time in our
network, the edges in the set E and the ones in the set Es. We say that (x, y) is in E, if y ∈ x.N and
(x, y) in Es if y ∈ x.S, resulting from a scan from y. We will call the latter ones s-edges and denote
them by (x, y)s.

Definition 3.6 In the directed graph we define an undirected path as a sequence of edges (v0, v1),
(v1, v2), · · · , (vk−1, vk), such that ∀i ∈ {1, · · · , k} : (vi, vi−1) ∈ E ∨ (vi−1, vi) ∈ E.

Definition 3.7 We say that two heaps H1 and H2 are s-connected if there exists at least one undi-
rected path from one node in H1 to one node in H2 and this path consists of either s-edges or edges
having both nodes in the same heap.
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Figure 5.2: The goal of phase 1 of the proof is to show that all heaps are connected through s-edges
after O(n) rounds (middle part of the picture, the light-colored edges depict the s-edges). In phase 2
we show that one heap is been formed after anotherO(n) rounds (right part of the picture). From that
point on it is not hard to show that a sorted list will be formed as a sub-graph of the network graph
and after O(n) rounds the clique will also be formed (phase 3).

Definition 3.8 We say that a subset of s-edges E′s ⊆ Es is a s-connectivity set at round t if all heaps
in the graph are s-connected to each other through edges in E′s at round t.

In the first phase we will show that after O(n) rounds all heaps have been connected by s-edges.
Let E0 be the set of edges (u, v) ∈ E at time t = 0. We then show that all these edges are scanned in
O(n) rounds, giving us the connections via s-edges.

Theorem 3.9 AfterO(n) rounds the heaps Hi and Hj connected by (u, v) ∈ E0 have either merged
or been connected by s-edges .

To prove the theorem we firstly show some basic lemmas needed in the analysis.

Lemma 3.10 Let u1, · · ·u|H| be the elements in a heap H in descending order. Then it takes at most
i rounds till H is linearized w.r.t ui.

Proof. We prove the lemma by induction on the number of rounds i. Note that all nodes are connected
by the x.p links only to nodes with larger ids.

Induction base (i = 0): The head of the heap is the node with the maximal id therefore trivially,
∀v ∈ H − {h} : (v.p).id > v.id and ∀v ∈ H − {h} with v.id ≥ h.id : (v.p).s = v.

Induction step (i → i+1): By induction the heap is linearized w.r.t. ui after i rounds, thus ui+1

has to be connected to ui by a x.p link. In the i+1th round ui sends new−predecessor messages to
all other nodes with x.p = ui, such that ui.s = ui+1 and ui+1 becomes the only node with x.p = ui.
Then ∀v ∈ H − {h} : (v.p).id > v.id and ∀v ∈ H − {h} with v ≥ ui+1 : (v.p).s = v. ut
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Lemma 3.11 Once one head learns about the existence of another head, two heaps are merged.

Proof. Let hi be the head of heap Hi. Also, let hj be the head of heap Hj scanning hi. There can be
two cases.

• hi < hj : In this case, hi will no longer be a head once hj scans it and sends it own id.

• hi > hj : In this case, hj will no longer be a head and will send an pred-request to hi.

ut

In case of a merging of two heaps Hi, Hj , the time it takes until the new heap H is linearized
w.r.t. a node u can increase with respect to the linearization time of u in the heap before the merging.

Lemma 3.12 If two heaps Hi and Hj merge to one heap H , the linearization time of a node u ∈ Hi

(resp. u ∈ Hj) can increase by at most |Hj | (resp. |Hi|).

Proof. Without loss of generality let u ∈ Hi. By Lemma 3.10 we know that the linearization time
depends on the number of nodes with a larger id in the heap. The number of nodes with a larger id can
increase by at most the size of the other heap Hj . Thus, also the linearization time can only increase
by at most |Hj |. ut

From Lemma 3.10 and Lemma 3.12 we immediately get via an inductive argument:

Corollary 3.13 For any heap H of size |H| in round t it takes at most |H| − t rounds until it forms
a sorted list.

Lemma 3.14 If a node sends an idwith a forward-from-successor message, the idwill not be delayed
by other forward-from-successor messages on its way to the head.

Proof. Once a node sends a message to its predecessor through a forward-from-successor message,
the number of rounds it takes to reach the head of its heap depends only on the path to the head and the
linearization steps. When a node x receives a forward-from-successor message, it stores the received
id at the head of its neighborhood list x.N . So this id will be forwarded immediately, if x is active.
If it cannot be forwarded because x is inactive, the node will inform its successor about its inactive
state and as a consequence no more forward-from-successor messages will be sent to x. That means
that no other id can take the place of the one present at the head of x.N . So, once x is active again,
the id will be sent immediately. ut

As a consequence of the observation of Lemma 3.11 we introduce some additional notation to
estimate the time it takes until any id is scanned by a head of a heap.

For any edge (u, v) ∈ E0 with u ∈ Hi and v ∈ Hj , where hi and hj denote the corresponding
heads of the heaps, we define the following notation in a round t: Let P t(u) be the length of the path
from u to hi, once Hi is linearized w.r.t. u. Let IDt(u, v) be the number of ids u forwards or scans
before sending or scanning v the first time. Let LT t(u) be the time it takes until the heap is linearized
w.r.t. u , i.e. on the path from the head hi to u each node has exactly one predecessor and successor.
Corollary 3.13 shows that LT t(u) is bounded by |Hi|.
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Let φt(u, v) = P t(u)+IDt(u, v)+LT t(u). We call φt(u, v) the delivery time of an id v because
if φt(u, v) = 0, the id is scanned in round t or has already been scanned by hi. We then denote by
Φt(u, v) = min{φt(w, v) : heap(u) = heap(w)} the minimal delivery time of v for any node in the
same heap as u.

For any edge (u, v) ∈ E0, with u ∈ Hi and v ∈ Hj , (i.e. u and v are in different heaps)
and Φt(u, v) = 0 the head of Hi scans or has scanned v ∈ Hj resulting in the s-edge (v, hi)s.The
following holds:

Lemma 3.15 If (u, v) ∈ E0 is an edge between two heapsHi andHj , then Φt(u, v) ≤ max{2|Hi|+
n− t , 0} ≤ max {3n− t, 0} for all rounds t.

Proof. We will show the lemma by induction on the number of rounds. For the analysis we divide
each round t→ t+ 1 into two parts: in the first step t→ t′ all actions are executed and in the second
step t′ → t + 1 all network changes are considered. Thus, we assume that all actions are performed
before the network changes. This is reasonable as a node is aware of changes in its neighborhood
only in the next round, when receiving the messages. By network changes we mean the new edges
that could be created in the network. These new edges could possibly lead to the merging of some
heaps at time t+ 1.

Induction base(t = 0):
For any edge (u, v) ∈ E0 between Hi and Hj let x ∈ Hi be the node such that Φ0(u, v) =

φ0(x, v). Then P 0(x) ≤ Hi as the path length is limited by the number of nodes in the heap,
ID0(x, v) ≤ n as not more than n ids are in the system, and following from Lemma 3.13, LT (x) ≤
|Hi|. Then Φ0(u, v) ≤ φ0(x, v) ≤ 2|Hi|+ n ≤ 3n.

Induction step(t → t′): For any edge (u, v) ∈ E0 between Hi and Hj let x ∈ Hi be the node such
that Φt(u, v) = φt(x, v).

Then in round t the following actions can be executed.

• x is inactive and can not forward an id. Then the heap is not linearized w.r.t. x, which implies
that the linearization time decreases by one, i.e. LT t

′
(x) = LT t(x) − 1 and φt

′
(x, v) =

φt(x, v)− 1 ≤ 2|Hi|+ n− t− 1 as all other values are not affected.

• u is active, but does not send v by a forward-from-successor message, then the number of ids
that u is sending before v decreases by 1. Note that according to Lemma 3.14, x hasn’t sent
a forward-from-successor message with v in a round before, as then there would be another
node y ∈ Hi with φt(y, v) < φt(x, v). Then IDt′(x, v) ≤ IDt(x, v) − 1 and φt

′
(x, v)) =

φt(x, v)− 1 ≤ 2|Hi|+ n− t− 1.

• u sends a forward-from-successor message with v, then the length of the path for v to the head
hi decreases by 1 and φt+1(x.p, v) ≤ P t(x) − 1 + IDt(x, v) + LT t(x) = φt(x, v) − 1 ≤
2|Hi|+ n− t− 1

Thus, in total Φt′(u, v) ≤ Φt(u, v)− 1 ≤ 2|Hi|+ n− t− 1 ≤ 3n− (t+ 1).

Induction step(t′ → t + 1): Now we consider the possible network changes and their effects on
the potential Φt+1(u, v). Let again x ∈ Hi be the node such that Φt(u, v) = φt(x, v) for an edge
(u, v) ∈ E0 between Hi and Hj . The following network changes might occur:
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• some heaps Hk and Hl with k 6= i and l 6= i merge. This has no effect on Φt′(u, v). Thus,
Φt+1(u, v) = Φt′(u, v) ≤ 2|Hi|+ n− t− 1 ≤ 3n− (t+ 1).

• Heaps Hi and Hk merge to H ′i. Obviously the length of the path of x can increase and
P t+1(x) ≤ P t

′
(x) + |Hk|. According to Lemma 3.12 also the linearization time of x can

increase and LT t+1(x) ≤ LT t
′
(x) + |Hk|. In total Φt+1(u, v) ≤ Φt′(u, v) + 2|Hk| ≤

2|H ′i|+ n− t− 1 ≤ 3n− (t+ 1).

Thus, in round t+ 1, Φt+1(u, v) ≤ 2|Hi|+ n− t− 1 ≤ 3n− (t+ 1). ut

Hence for every edge (u, v) ∈ E0 with u ∈ Hi and v ∈ Hj , Φt(u, v) = 0 after 3n rounds, which
means that the head of Hi scans or has scanned v ∈ Hj resulting in the s-edge (v, hi). Thus, we
immediately get Theorem 3.9.

3.3 Phase 2: Towards one Heap

Based on the results of Phase 1, we will prove that after O(n) further rounds a clique is formed. For
the purpose of the analysis below, we use the following definitions:

Definition 3.16 Let ord(x) be the order of a node x, i.e. the ranking of the node if we sort all n nodes
in the network according to their id ( i.e. the node with the largest id m has ord(m) = 0, the second
largest has order 1, and so on).

Definition 3.17 We define the potential λ(x, y) of a pair of nodes x and y to be the positive integer
equal to ω(x, y) = 2 · ord(x) + 2 · ord(y) + K(x, y), where K(x, y) = 1 if x.id > y.id and 0
otherwise. Also, let for a set of edges E′ ⊆ E, Λ(E′) = max(u,v)∈E′{ω(u, v)}, if E′ 6= ∅ and 0
otherwise.

We proceed by showing the following lemma.

Lemma 3.18 Two heaps Hi, Hj that are connected by an s-edge (x, y)s at time t will either stay
connected via s-edges (xi, yi)s at time t + 1 with the property that, ∀(xi, yi), the potential ω(xi, yi)
of the edges we consider at time t + 1 is smaller that the potential ω(x, y) of the edge (x, y)s we
considered at time t, or x and y will be in the same heap.

Proof. Let (x, y)s be a s-edge connecting Hi and Hj , i.e. x ∈ Hi, y ∈ Hj . Then according to our
algorithm the following actions might be executed.

• x is the head of Hi and y.id > x.i then y = x.p and x sends a pred-request message to y,
resulting in a merge of Hi and Hj .

• x is the head of Hi and x.id > y.id and y is a new id, then x sends a scan-ack to y with its own
id and the edge (y, x)s is created connectingHi andHj . Then ω(y, x) = 2ord(x)+2ord(y)+
0 < 2ord(x) + 2ord(y) + 1 = ω(x, y).

• x forwards y to x.p by a forward-head message, such that y ∈ (x.p).S and Hi and Hj are
connected by (x.p, y)s. Then ω(x.p, y) = 2ord(x.p) + 2ord(y) + K(x.p, y) < 2ord(x) +
2ord(y) +K(x, y) = ω(x, y).
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• x receives a new id z ∈ x.S with z = max {v ∈ x.N}, such that z.id > y.id and z.id > x.id.
Then x sends a scan-ack containing z to y and the s-edge (x, y)s is substituted by s-edges
(x, z)s and (y, z)s. And Hi and Hj are connected via s-edges. Note that since (x.p).id > x.id
and z.id > x.id, y.id , ord(x.p) < ord(x), ord(z) < ord(x) and ord(z) < ord(y). The
potential of the new edges is: ω(x.p, z) = 2ord(x.p) + 2ord(z) + K(x.p, z) < 2ord(x) +
2ord(y) + K(x, y) = ωt(x, y). ω(y, z) = 2ord(y) + 2ord(z) + 0 < 2ord(x) + 2ord(y) +
K(x, y) = ωt(x, y).

• x knows an id z ∈ Hk with z = max {v ∈ x.N} , z.id > y.id and z /∈ x.S. Then one of the
following cases hold:

1. (x, z) ∈ E0, then according to Lemma 3.15 a node u with u.id > x.id and u ∈ Hi has
scanned z resulting in the s-edge (z, u)s s-connecting Hi and Hk.

2. x has received z by a forward-from-predecessor message. Then a node uwith u.id > x.id
with u ∈ Hi has scanned z resulting in the s-edge (z, u)s s-connecting Hi and Hk.

3. z was in x.S in a previous round, then the edge (x, z)s existed s-connecting Hi and Hk.

4. x has received z by a forward-from-successor message. Then there is a node v with
v.id ≤ x.id in the sub heap rooted at x such that (v, z) ∈ E0. Then according to Lemma
3.15 a node w ∈ Hi with w.id > v.id has scanned z and the s-edge (z, w)s existed s-
connecting Hi and Hk. If w.id > x.id, Hi and Hk are s-connected by s-edges (xi, yi)s
with ∀(xi, yi) : (x.id < w.id < xi.id ∧ x.id < w.id < yi.id ∧ z.id ≤ xi.id ∧ z.id ≤
yi.id) ∨ (x.id < w.id ≤ xi.id ∧ x.id < w.id ≤ yi.id ∧ z.id < xi.id ∧ z.id < yi.id).
If w.id < x.id then at least as many rounds have passed since w has scanned z as there
are nodes on the path from w to x, because z has to be forwarded as many times. Then
the edge (z, w)s has been forwarded or substituted t times or Hi and Hk have merged.
Then Hi and Hk are s-connected by s-edges (xi, yi)s with ∀(xi, yi) : (x.id < w.id <
xi.id∧x.id < w.id < yi.id∧z.id ≤ xi.id∧z.id ≤ yi.id)∨(x.id < w.id ≤ xi.id∧x.id <
w.id ≤ yi.id ∧ z.id < xi.id ∧ z.id < yi.id).

In each case x sends a scan-ack containing z to y and the s-edge (y, z)s is created. And Hi

and Hj are s-connected over s-edges and in all cases the potential shrinks, since for each new
s-edge it holds that at least one node is greater and the other node not smaller than the nodes in
the edge they replace.

• x is the head of Hi and x.id < y.id, then Hi and Hj merge to one heap.

• x is the head of Hi and x.id > y.id and y was in x.N in a previous round, then Hi and Hj are
already s-connected by s-edges (xi, yi)s with greater ids by the same arguments as in the case
before. Since the ids are greater, the potential shrinks also here.

ut

Lemma 3.19 If Et is an s-connectivity set at round t, there exists an s-connectivity set Et+1 at round
t+ 1 such that Λ(Et+1) < Λ(Et).

Proof. Let Et be an s-connectivity set a round t. We replace every edge (x, y)s ∈ Et with the
edges (xi, yi)s as described in the lemma above. For every pair of heaps that were s-connected at t
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through an edge in Et, there exists a set of s-edges of smaller potential that s-connects the two heaps
at t + 1. We include these edges in Et+1. But at round t all pairs of heaps are s-connected through
Et, which means that at round t+ 1 all pairs of heaps are also s-connected through Et+1. So, Et+1 is
an s-connectivity set at round t + 1. Also since all the edges in Et+1 have less potential as the ones
the replaced in Et, Λ(Et+1) < Λ(Et). ut

Theorem 3.20 After at most 4n+1 rounds, all heaps have been merged into one.

Proof. From Theorem 3.9 we know that all heaps are s-connected after O(n) rounds. So after
O(n) rounds there exists the first s-connectivity set, E0, with Λ(E0) = max(u,v)∈E0

{ω(u, v)} =
max(u,v)∈E0

{2ord(u) + 2ord(v) + K(u, v)} ≤ 2n + 2n + 1 = 4n + 1. Since for each round
t and an s-connectivity set Et, an s-connectivity set Et+1 for round t + 1 can be found, such that
Λ(Et+1) < Λ(Et), (i.e. the potential of the s-connectivity set shrinks by every round) after at most
4n+1 rounds (after the existence ofEs) there exists an s-connectivity setE∞, such that Λ(E∞) = 0.
This means that E∞ is the empty set. Since E∞ is an empty s-connectivity set connecting all the
heaps of the graph, we know that the graph has only one heap. ut

3.4 Phase 3: Sorted List and Clique

Theorem 3.21 If all nodes form one heap, it takes O(n) time until the network reaches a legal state.

Proof. Since at this point we only have one head the heap will be linearized after O(n) rounds. This
follows directly from Lemma 3.13. Once the heap is linearized and forms a sorted list, each node’s
id will be sent to the root, the remaining head, after at most n rounds. So the root will be aware of
every id. The root, as it sends according to the round-robin process all its information to its successor,
will send after n rounds all the ids to it, and the successor will do the same. As a consequence, all
nodes will receive all ids at O(n) rounds. Adding all this together, after O(n) all nodes will know
each other and a clique will be constructed. ut

Combining Theorem 3.4, Theorem 3.9, Theorem 3.20 and Theorem 3.21 our main theorem Theo-
rem 3.2 holds.

4 Message Complexity

In this section we give an upper bound for the work spent by each node. We already mentioned that
we will distinguish two types of work. The stabilization work, that is spent until a clique is formed,
and the maintenance work, that is spent in each round in a legal state. We count the work of a node
in the number of messages sent and received.

4.1 Stabilization Work

According to Theorem 3.2 it takes O(n) rounds to reach a legal state. In each round each active
node sends a message to its predecessor and its successor (forward-from-successor, forward-from-
predecessor) and receives a message from them (forward-from-successor, forward-from-predecessor).
Also, a node sends at most one activate/deactivate message to its successor at each round. This gives
a resulting work of O(n) for each node or O(n2) in total. By the following lemmas we show that the
additional messages sent and received during the linearization are at most O(n) for each node.
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Lemma 4.1 Each node sends and receives at mostO(n) pred-request, pred-accept and new-predeces-
sor messages during the linearization phase.

Proof. In each round each node sends at most one pred-request and one pred-accept message and
receives at most one pred-accept or new-predecessor message. It remains to show that each node
receives at most O(n) pred-request and sends at most O(n) new-predecessor messages. Note that it
suffices to show that each node receives at mostO(n) pred-request, as the number of new-predecessor
messages directly depends on the number of received pred-request messages, to each node, that sends
a pred-request to u that is not u’ successor, u sends a new-predecessor message. A node u only sends
at most one new-predecessor message to each other node v. By receiving this message v changes
its predecessor. Thus before u sends another new-predecessor message to v, v has to change its
predecessor back to u. A predecessor is only changed if a root receives an id greater than its own id,
or if the predecessor of a node sends a new-predecessor. v cannot be a head, thus v’s predecessor is
only changed by another new-predecessor message. But v’s predecessor can not be changed back to
u as the id of the new predecessor is strictly decreasing. By this monotonicity it follows that a node u
only sends at most one new-predecessor message to each other node v. Thus, every node only sends
and receives O(n) pred-request and new predecessor messages. ut

Lemma 4.2 Each node sends and receives at most O(n) scan and scan-ack messages during the
linearization phase.

Proof. Only heads of heaps send scan messages. In each round each head sends exactly one scan
message. Each scanned node sends a scanack message back or stores the id of the head in x.S.
Obviously a node can be scanned by up to n different heads in one round. Which would lead to a work
ofO(n2) by receiving these messages. But as a node sends the maximal id in its neighborhood with a
scanack message, it is scanned at most once by heads with an id smaller then max. By receiving this
id the scanning node recognizes, if it is still a head, that it is not the largest id and cannot be a head of
the heap and sets its predecessor and stops scanning. So a node can be scanned byO(n) heads before
the heads stop scanning, because they received a scanack. A head that is not the maximal head, that
scanned the node so far, will only scan the node one more time and then stop scanning. So a node
receives at most O(n) scan messages from a new maximal head, O(n) messages from the current
maximal head, as each head only sends one scan message per round, and all other scans increase the
number of inactive heads, which is limited by O(n). Regarding the scanack messages, since each
head scans only once in each round, it receives also at most one scanack (that result from sent scan
messages) message in each round. A node x can also receive a scanack message when sending a
scanack message, but this happen only the if the node to which the scanack was sent does not know
x, so all in all at most n times. So, all in all, a node receivesO(n) at the whole linearization phase. ut

Lemma 4.3 Each node sends and receives at most O(n) forward-head messages through the lin-
earization phase.

Proof. Moreover, a node sends at most one forward-head message per round. The number of
forward-head messages it receives during the linearization phase is limited by O(n). That is because
each node x receives one forward-head message from its successor in a round, and possibly from
other possible successors, let u be such one, for which u.p = x. But u can only be once a possible
successor of x, since at the next round it either will be forwarded to x.s and will never have x as its
predecessor again, or it becomes x.s. Since each node can be only once a possible successor for x,
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the number of forward-head messages sent through all possible successors is limited by n. So, the
number of forward-head messages it receives during the linearization phase is limited by O(n). ut

4.2 Maintenance Work and Closure

Lemma 4.4 As soon as the network forms a stable clique with a stable list as a spanning tree, i.e.
the network is in a legal state, each node sends and receives at most O(1) messages in each round,
and it stays at a legal state at any round in the future .

Proof. In a legal state all nodes form a sorted list. Thus, each node has exactly one stable successor
and one stable predecessor. Then each node sends and receives one pred-request and one pred-accept
message. Each node sends one forward-from-successor and one forward-from-predecessor message.
Moreover there is one head that sends one scan message, which is received by one other node, and
receives one scanack, sent by the scanned node. Thus, each node sends and receives O(1) messages
in a stable state. Since at no place at the pseudocode any edge is deleted, each node at any future round
still maintains at its neighborhood all the nodes in the network and the legal state is maintained. ut

5 Single Join and Leave Event

The case of arbitrary churn is hard to analyze formally. Thus, we will show that the clique can
efficiently recover considering a single join or leave event in a legal state.

Theorem 5.1 In a legal state it takesO(n) rounds and messages to recover and stabilize after a new
node joins the network. It takes O(1) rounds and messages to recover the clique after a node leaves
the network.

Proof. If a node u joins the network it creates an edge (u, v) to a node v in the clique. If v.id > u.id,
u sends a pred-request to v, v then either accepts u as its successor or creates an edge from u to v’s
successor. It takes at mostO(n) rounds until v reaches its final position in the sorted list. Additionally
v sends u’s id to its predecessor, and after O(n) rounds the head inserts u to its neighborhood. If
v.id < u.id v sends u’s id to its predecessor, because it is a new id. Then it takes at most O(n)
rounds until the head receives u’s id and scans u, then u assumes the head to be its predecessor and
case 1 holds. After O(n) further rounds each nodes receives u’s id and u receives the id of all other
nodes in the network. Thus, after O(n) rounds after a join the nodes form a clique and the sorted list
is linearized.

Obviously a clique remains a clique in case a node u leaves the network. Also the sorted list
is immediately repaired, as the successor of the removed node, assumes u’ predecessor to be its
predecessor and sends a pred-request, which will be accepted as the node has no other successor.
Note that if u is the head of the list, u’s successor will recognize that there is no node with a larger id
in its neighborhood and will correctly assume to be a head of a list and proceed the scanning. ut

6 Outlook

In this chapter we gave a local self-stabilizing time- and work-efficient algorithm that forms a clique
out of any weakly connected graph. By forming a clique our algorithm also solves the resource
discovery problem, as each node is aware of any other node in the network. Our algorithm is the first
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algorithm that solves resource discovery in optimal message complexity. Furthermore, our algorithm
is self-stabilizing and thus can handle deletions of edges and joining or leaving nodes.

However, our algorithm does not fulfill the requirements in order to incorporate the general frame-
work presented in part 1, which handles node departures. It would be possible to alter the algorithm
in order to achieve that, but can probably not be done without affecting the self-stabilization time.
However, this assumption has not been proven formally and would be interesting to investigate in the
future.
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