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Abstract

Growing and newly emerging computing workloads and markets keep pushing computer
architecture forward. Power limitations and diminishing returns from wider and more par-
allel processors are driving the need for architectural innovations. By reducing overheads
and customizing parallelism, specialized accelerators help to increase the performance of
specific workloads efficiently. However, without programmability, they lack the flexibil-
ity for general-purpose computing and thus can’t profit from shared costs among differ-
ent workloads, users and markets. The architecture of field programmable gate arrays
(FPGAs) combines programmability with a high potential for specialization for different
workloads. The main obstacle for FPGA adoption in general-purpose computing is the lack
of productive methods and tools for designers and maintainers of implementations running
entirely or partially on FPGAs. In this work, by analyzing current approaches to tackle
this productivity challenge along with their conceptual and practical trade-offs, we identify
three pillars that can complement each other to jointly drive general-purpose adoption of
FPGAs. These pillars combine, firstly, synthesis from parallel OpenCL designs, secondly,
fast and automatic compilation targeting overlay architectures on FPGAs, and thirdly,
the encapsulation of hand-optimized FPGA designs into application- or domain-specific
libraries.
In this thesis, we focus on overlay architectures as one of theses paths towards productive

FPGA design processes. A large variety of such architectures have been presented over
the last years, but for most overlays it was poorly understood, which overheads they
involve compared to custom designs implemented directly on FPGA resources. Our work
quantifies such overheads with a diverse set of program loops from a state-of-the-art stereo-
matching application for an instruction-programmable overlay. It demonstrates that the
architecture can, despite overheads, serve as a practically usable accelerator, and identifies
specific differences to fully customized FPGA designs that may help to reduce overheads
through overlay customization. Even though one motivating aspect for related research on
overlay architectures has been their potential for fast compilation or synthesis and for quick
reconfiguration, in order to demonstrate their practical usefulness to raise productivity
when aiming at FPGA acceleration, we had to go one step further with regard to the
design entry. To this end, we present a fast tool flow that automatically extracts suitable
loops from a high-level source or binary code and offloads them to a vector coprocessor
realized as an FPGA overlay.
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Besides the focus on productivity to foster FPGA adoption, in order to fit into established
computing systems and markets, FPGAs need to architecturally coexist and cooperate
with general-purpose processors. With a high-level performance estimation model that
takes into account the interdependency of architectures and program designs, we explore
the design space for such integrated systems. We highlight that integration of the memory
hierarchy is not only helpful to reduce application design efforts, but also has considerable
influence on the acceleration potential of the platform. Recent, high-profile trends in
industry show interesting correspondences to our analysis. When the hardware integration
of FPGA accelerators proceeds on this path, it will be foremost the interplay of design
productivity and performance potential that governs the success of FPGAs in general-
purpose computing. With our analysis and technical contributions in that field, we may
help to shape the outcome of this process.
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Zusammenfassung

Der Bedarf an immer höherer Rechenleistung für wachsende und neu aufkommende Rechen-
lasten und Märkte ist eine Herausforderung für die Rechnerarchitektur. Grenzen bei der
Leistungsaufnahme und sinkende Erträge durch größere und zunehmend parallele Prozes-
soren machen Architekturinnovationen notwendig. Durch Effizienzsteigerungen und durch
individuell angepasste Parallelität können spezialisierte Beschleuniger dazu beitragen, die
Rechenleistung für bestimmte Rechenlasten zu erhöhen. Ohne Programmierbarkeit fehlt
ihnen jedoch die Flexibilität für allgemeine Rechenaufgaben und sie können somit nicht
davon profitieren, Kosten auf verschiedene Nutzungsszenarien und Märkte zu verteilen.
Die Architektur von FPGAs, eine bestimmte Variante programmierbarer Logikbausteine,
kombiniert Programmierbarkeit mit einem hohen Potenzial zur Spezialisierung für ver-
schiedene Rechenlasten. Das größte Hindernis auf dem Weg zu einem verbreiteten Einsatz
von FPGAs für allgemeine Rechenaufgaben ist der Mangel an produktiven Methoden und
Werkzeugen zur Entwicklung und Wartung von Implementierungen, die ganz oder teil-
weise auf FPGAs ausgeführt werden. Wir analysieren in dieser Arbeit aktuelle Ansätze,
die Produktivität bei der Entwicklung von FPGA-Anwendungen zu steigern, und arbeiten
konzeptuelle und praktische Vor- und Nachteile heraus. Darauf aufbauend identifizieren
wir drei Säulen, die einander dabei ergänzen können, die Verwendung von FPGAs für all-
gemeine Rechenaufgaben voranzutreiben. Diese Säulen kombinieren erstens eine Konfigu-
rationsgenerierung ausgehend von parallelen OpenCL-Implementierungen, zweitens eine
schnelle und automatisierte Übersetzung für übergelagerte Architekturen auf FPGAs,
und drittens die Zusammenfassung von manuell optimierten FPGA-Konfigurationen zu
anwendungs- oder bereichsspezifischen Bibliotheken.
In dieser Ausarbeitung konzentrieren wir uns auf übergelagerte Architekturen als Ansatz

für produktive Entwicklungsprozesse für FPGAs. Im Laufe der letzten Jahre wurde eine
Vielzahl solcher Architekturen vorgestellt, die durch eine Zwischenschicht das Abstrak-
tionsniveau von FPGAs erhöhen. Allerdings existierte für die meisten dieser überge-
lagerten Architekturen nur ein unzureichendes Verständnis von Flächenmehrverbrauch
oder reduzierten Rechenleistungen im Vergleich zu spezialisierten Konfigurationen die den
FPGA ohne Zwischenschicht nutzen. Unsere Arbeit quantifiziert für eine instruktions-
basierte übergelagerte Architektur solche Nachteile anhand einer Auswahl unterschied-
licher Programmschleifen, die zu einer modernen Anwendung für stereoskopischen Bild-
abgleich gehören. Wir zeigen, dass diese Architektur trotz dieser Nachteile als praktisch
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nutzbarer Beschleuniger dienen kann und identifizieren verschiede Unterschiede im Ver-
gleich zu vollständig spezialisierten Konfigurationen. Dies könnte zukünftig helfen, durch
Spezialisierung der übergelagerten Architekturen, deren Nachteile weiter zu reduzieren.
Das Potenzial zur schnellen Übersetzung oder Konfigurationsgenerierung für übergelagerte
Architekturen, sowie die Möglichkeit schnell Konfigurationen auszutauschen, war bereits
ein Anreiz für die bestehende Forschung diesem Bereich. Um allerdings zu demonstrieren,
dass sie tatsächlich dazu beitragen, eine erhöhte Produktivität bei der Beschleunigung von
Anwendungen mit FPGAs zu erreichen, mussten wir bezüglich der Ausgangsdarstellung
einen Schritt weitergehen. Dazu stellen wir Werkzeuge vor, die automatisch geeignete
Schleifen aus Hochsprachenquelltexten oder Binärcode extrahieren und auf einem Vektor-
prozessor zur Ausführung bringen, der als übergelagerte Architektur auf FPGAs umgesetzt
ist.
Neben dem Schwerpunkt auf Produktivität zur weiteren Verbreitung von FPGAs, müssen

diese auch in etablierte Rechnersysteme und Märkte integriert werden, und dazu architek-
tonisch mit allgemeinen Prozessoren zusammenpassen und zusammenarbeiten. Mit einem
abstrakten Modell zur Abschätzung von Rechenleistung, das die gegenseitige Abhängigkeit
zwischen Architekturen und Programmierentscheidungen berücksichtigt, erkunden wir sys-
tematisch Alternativen für derartig integrierte Rechnersysteme. Wir arbeiten heraus, dass
die Integration der Speicherhierarchie nicht nur dazu beiträgt, Anwendungsentwicklung
zu erleichtern, sondern auch einen erheblichen Einfluss auf das Beschleunigungspoten-
zial des Rechnersystems hat. Aktuelle, viel beachtete Entwicklungen bei kommerziellen
Rechnersystemen zeigen inzwischen interessante Übereinstimmungen zu unserer Analyse.
Wenn die Integration von FPGA-Beschleunigern in Systeme derartig weitergeht, wird vor
allem das Zusammenspiel von Produktivität und erzielbarer Rechenleistung über den Er-
folg von FPGAs für allgemeine Rechenaufgaben entscheiden. Mit unserer Analyse und
den technischen Beiträgen in diesem Bereich könnten wir den Ausgang dieser Entwicklung
entscheidend mitgestalten.
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CHAPTER 1

Introduction

In more than two decades of research on reconfigurable computing, academia and industry
have shown that field programmable gate arrays (FPGAs) permit huge gains in perfor-
mance and efficiency for a wide range of suitable applications through customization and
exploitation of parallelism on different levels. However, current usage of FPGAs is mostly
confined to individual and specific tasks, for which the FPGAs were selected as most suit-
able or most economic architecture. Even the first large scale deployment of FPGAs in a
data center was driven by a single application scenario [213].
In this thesis, we argue that in the light of current architectural challenges in general-

purpose computing, FPGAs can play a much larger role in this domain. We identify current
limitations and opportunities on this path, primarily in the area of productivity, but also
with regard to system integration. We present original contributions in these two areas.
In order to tackle productivity, we mainly propose and evaluate overlay architectures on
FPGAs. With regard to system integration, we analyze design space options and compare
our results to current trends.
In the remainder of this chapter, we first outline the motivation for this work in some

more detail in Section 1.1. In Section 1.2, we lay out the contributions that this thesis
makes towards general-purpose adoption of FPGAs and to specific technical challenges. In
Section 1.3, we outline how the further thesis structure organizes these contributions.

1.1 Motivation

Computer architecture struggles to keep delivering ever more compute performance for
growing and newly emerging workloads and markets. Well ahead of the eventual end of
Moore’s law [188], power limitations and diminishing returns from wider and more par-
allel processors are driving the need for architecture innovations. By reducing overheads
and customizing parallelism, specialized accelerators help to efficiently increase the perfor-
mance of specific workloads. However, without programmability, they lack the flexibility
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Chapter 1.2. Contributions of this Thesis

for general-purpose computing and thus can’t profit from shared costs among different
workloads, users and markets. The architecture of FPGAs combines programmability
with a high potential for specialization for different workloads.
The main obstacle for FPGA adoption in general-purpose computing is the lack of pro-

ductive formalisms and tools for designers and maintainers of implementations running
entirely or partially on FPGAs. For specific workloads, where performance or efficiency
targets could otherwise not be met, sophisticated designs for FPGAs have been developed
with the corresponding effort [121]. In general-purpose computing, such effort typically
cannot be spent, particularly not for a target architecture that is not yet established in a
wide range of systems. FPGA manufacturers and community have invested lots of effort
in improving the accessibility and productivity of programming models, languages and
tools. In this thesis, we discuss three essential pillars that can trigger a break-through in
FPGA adoption, focus on overlay architectures as insufficiently understood paradigm, and
investigate which overheads and trade-offs they involve.
In order to fit into established computing systems and markets, FPGAs need to coexist

and cooperate with general-purpose processors (GPPs). The architectural integration of
central processing units (CPUs) and accelerators is not only a central factor for performance
and efficiency, but also has a huge impact on the design productivity for such systems.
Industry is actively pursuing the integration of specialized accelerators, graphics-processing
units (GPUs) and recently also of FPGAs with GPPs. In this thesis, we analyze the
potential of such integration and discuss how we can predict it, even though architectures
and workload implementations closely depend on each other.

1.2 Contributions of this Thesis

In pursuit of the main focus of this thesis, we present the following high-level contributions
to promote the adoption of reconfigurable accelerators, in particular FPGAs, in the domain
of general-purpose computing.

1. Based on an analysis of architectures, markets and workloads, we identify opportu-
nities for FPGAs in data center and cloud environments, in high-performance com-
puting (HPC) and mobile computers.

2. We present our vision of a three-pillar approach to FPGA usage with, firstly, accelerator-
friendly Open Compute Language (OpenCL) specifications, secondly, overlay archi-
tectures to flexibly handle the trade-offs between productivity and performance of
reconfigurable computing, and thirdly, libraries of reusable customized designs.

3. Further focusing on insufficiently understood characteristics of overlay architectures,
we present the first broad quantification of the overheads of an instruction-program-
mable vector processor overlay architecture over fully customized kernel designs on
FPGAs. For ten diverse kernels from a stereo-matching application, these overheads
are on average in the range of 2.5x to 3x, which our experiments demonstrate to be
small enough to still enable acceleration over GPPs.
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4. We demonstrate that such an overlay architecture can serve as target for the desired
fast and fully automated acceleration that existing tools didn’t deliver.

5. In order to analyze the architectural integration of reconfigurable accelerators with
CPUs, we present an estimation method that overcomes the interdependency of ar-
chitectures and concrete implementations of workloads.

6. Based on this method, we give an overview of the design space of CPU-accelerator
architectures that was insufficiently understood at the time of our publications.

Besides these high-level contributions, our work advances or complements the state-of-the-
art in several technical aspects.

1. By avoiding optimization-induced reductions of algorithmic quality, we present the
most accurate FPGA-accelerated stereo-matching implementation published to date.

2. Through fully compatible scalable kernel implementations and a memory manage-
ment wrapper library, it runs on two very different hardware platforms with different
programming models.

3. With the systematic variation of kernel patterns and data layouts, we isolate the
effects of outer-loop vectorization for the vector processor overlay architecture and
find measurable, but small effects.

4. Integrating our automation methods into the LLVM1 compiler infrastructure allows
us not only to target different variants of compiled and source code, but also to reuse
components for analysis and offloading.

5. For dynamic code analysis, we found an interesting opportunity space between off-
line profiling and deterministic offloading decisions at program runtime.

We have presented and published peer-reviewed results of this work in nine conference con-
tributions, one workshop, and two journal articles. Tobias Kenter is main contributor and
first author of six of these twelve publications, including the article in one of the two pre-
mier journals on reconfigurable computing [6]. The author’s publications are summarized
starting on page 160, in front of the main bibliography.

1.3 Thesis Structure

The remainder of this thesis broadly follows the sequence of high-level contributions sum-
marized in the previous section. Chapter 2 starts with a general background on computing
terms, concepts and architecture trends. It leads to an analysis of market opportunities of
FPGAs in general-purpose computing. Chapter 3 complements its predecessor by compar-
ing the productivity perspective of FPGAs with established general-purpose computing

1http://llvm.org/
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architectures. After introducing our three-pillar approach for FPGA usage in general-
purpose computing, we review existing research on overlay architectures, which is the
specific pillar we focus on in this thesis. This concludes the focus on backgrounds and
general analysis.
The following three chapters present original research on offloading to overlay architec-

tures and to customized kernels and on system integration of reconfigurable accelerators.
In Chapter 4, we present the overhead analysis of an instruction-programmable vector
processor overlay architecture. For this purpose, we offload ten different kernels from a
general-purpose stereo-matching application to the overlay architecture and alternatively
to fully customized kernel-specific FPGA designs. In the following Chapter 5, we focus
on the productivity aspect when targeting this overlay architecture. While existing tools
required considerable developer efforts and yet had limited coverage of supported kernel
patterns, we demonstrate that the specific features of the overlay architecture can be used
to guide a fully automated offloading process with wide applicability.
In Chapter 6, we focus on the system integration of reconfigurable accelerators with

CPUs. We present firstly an architecture model that allows reconfigurable acceleration
at different granularities, secondly the method of our performance estimation that avoids
mapping-specific predictions and thirdly the design space exploration results for CPU-
accelerator architectures obtained with this method. Chapter 7 concludes this thesis and
points at directions for future research.
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CHAPTER 2

Computing Concepts, Trends and Domains

In this chapter, we present the required background for the vision of FPGAs as acceler-
ators for general-purpose computing. Firstly, in Section 2.1 we introduce basic terminol-
ogy of compute devices and outline basic concepts of such devices, including FPGAs, on
the architectural level. So, from a high-level perspective, this section is centered around
architectural foundations of how computation can be done. The deeper roots of how com-
putation is done, that is the fundamentals of semiconductors and process technology are
out of the scope of this work. However their changes over time are driving factors for
past and current trends in architectures and devices, which are discussed in Section 2.2.
Thirdly, Section 2.3 extends this background by discussing what kind of computation is
done for different purposes and markets, along with some of their requirements. We focus
on the domain of general-purpose computing, designated in the title of this thesis and in
this context introduce the paradigm of On-The-Fly (OTF) Computing, which motivated
large parts of this thesis. Besides data centers and cloud computing, HPC and mobile com-
puters, we identify On-The-Fly (OTF) computing as promising, but particular challenging
target for FPGA acceleration.

2.1 Compute Devices: Basic Terms and Concepts

In this section, we introduce basic concepts of computing and compute devices and along
the way lay out the terminology used throughout this thesis.
In a general sense, a computer is a device that transforms information in a way that

can be described in an algorithmic form. Computation is the direct action of transform-
ing information performed by the computer, whereas the field of computing summarizes
any “goal-oriented activity requiring, benefiting from, or creating computers” [252]. How-
ever, the term computer is often associated with a narrower meaning [271] that implies
the presence of an instruction-programmable processor, also denoted as central processing
unit (CPU) (see Subsection 2.1.2) and some general-purpose computing capabilities (see
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Subsection 2.3.1). In order to differentiate the more general computers that we discuss in
this work form these narrower attributions, we denote them as compute devices or com-
pute systems. The distinction of general-purpose devices to special-purpose or embedded
systems is discussed in Subsection 2.3.1.
On the other hand, in the widest sense, computers encompass digital, analogue and even

mechanical devices, whereas in this thesis, we restrict ourselves to synchronous digital
compute devices implemented as integrated circuits. The basic elements of these digital
circuits are transistors, which, arranged to elementary gates, implement basic logic func-
tions on individual binary digits (bits). Inside a circuit, these bits are also denoted as
signals, which after going through a sequence of combinatorial logic are stored in registers
that keep their state until a clock signal triggers the register to assume the value of the
input signal.
In the following Subsection 2.1.1, we continue the introduction of basic terms, here

regarding target metrics of compute systems. In Subsection 2.1.2, we outline the basic
concepts of computing with instruction-programmable processors and in Subsection 2.1.3
contrast them to concepts of computing in circuits. With FPGAs, a programmable archi-
tecture for computing in circuits is introduced in Subsection 2.1.4.

2.1.1 Target Metrics

Compute systems execute tasks, that can be specified in the form of software or as circuits,
or as a combination of both. In this subsection, we outline target metrics of such systems
as used throughout this work and point to relations between these metrics. The general
goal for compute systems is to achieve high performance at low costs, with low power and
energy consumption and with a low design effort. Those goals often compete with each
other and several of the metrics are interdependent or form combined metrics like efficiency.
There are three typical metrics to characterize performance perf : First, the execution

time texe is the time to execute one specific task or benchmark. Second, the latency λ is the
response time between a specific input and its resulting output. Third the throughput R =
transactions

s is the rate at which similar tasks, in this context often denoted as transactions,
are completed. Performance is proportional to the inverse of execution time perf ∝
1
texe

and proportional to the inverse of latency perf ∝ 1
λ but directly proportional to

throughput perf ∝ transactions
[s] . In synchronous devices, the performance depends on the

clock frequency and the amount of work done per clock cycle.
When only a single task is executed at a time, the execution time is sufficient to charac-

terize the performance a system, whereas for systems which execute more than one task in
any form of concurrency, for example by pipelining, latency and throughput complement
each other to characterize system performance. When comparing two different systems,
a typical metric is speedup, which is the ratio of performance or execution times of the
two systems. The speedup SU of a system Snew with regard to a reference system Sold is
defined as SU = perf (Snew)

perf (Sold)
= texe(Sold)

texe(Snew) .
In the conceptual parts of this thesis, when discussing performance we will have all

of these metrics in mind unless any specific characteristic is highlighted. In our own
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experiments in Chapters 4 and 5, the tasks of our workload are executed sequentially and
therefore we will evaluate performance solely with the means of total execution times.
The manufacturing cost of a compute system is a monetary metric that reflects a com-

plex interplay of aspects like chip area, fabrication process, yield rates during fabrication,
assembly costs of components into a system and all steps of the design process. For com-
parisons, it is often desirable to express cost as per device, but this depends a lot on
the volume of devices produced, since some fraction of costs occurs per device, whereas
fixed costs like for design and mask generation, often denoted as non-recurring engineer-
ing (NRE) cost, can be split among all devices produced. Additionally, the variable costs
per device change through scale effects and maturity of the production process. In this
thesis, we consider general cost aspects within the remainder of this chapter, but don’t
report upon the concrete costs of the systems we used for the experiments in the following
chapters, because the costs of individual low volume systems sold for academic use hardly
reflect the actual costs that such systems would have in any volume market.
The power of a compute system while performing a workload determines both the amount

of electrical power that must be supplied to the system and the amount of thermal power
that must be dissipated, in many systems through active cooling. Both cause additional
costs beyond the acquisition costs of a device. Together, all of those costs are often summa-
rized as total cost of ownership (TCO) over a specified amount of time. Energy is computed
by the integration of power over time, in our context the time to complete a specific task
or set of tasks. Thus, energy puts power in relation to performance. When comparing two
systems, the system with higher power consumption may still use less energy to complete
a task if it has a sufficiently higher performance. Similarly to the costs, power and energy
are a concern in the conceptual parts of this thesis, but due to the different nature of our
hardware platforms are not evaluated in our experiments in Chapters 4 and 5.
Although area contributes to the cost metric as chip surface area, it is often considered

individually, frequently expressed through proxies like number of transistors in a chip or
fractions of utilized FPGAs resources (see Subsection 2.1.4). In the general case, this allows
to abstract away the concrete decision for a specific manufacturing process and enables cost
estimations prior to actual chip production. Similarly, in the FPGA case, this allows with
numbers obtained for one specific FPGA model to estimate whether a design may fit to
another FPGA or how much headroom there is to add additional functionality to the same
FPGA. We use such estimations in Chapter 4 of this thesis.
The term efficiency puts one of the presented performance metrics of a system in relation

to its cost or one of the cost related metrics. Therefore, typical efficiency metrics are energy
efficiency as perf

energy , cost efficiency as perf
cost and area efficiency as perf

area ; when discussing
efficiency throughout this work, we have all of those in mind, unless specified otherwise.
When we further talk about productivity of a design approach or programming model for

a system, we relate either some achieved performance or achieved efficiency, to the design
effort, typically expressed in time spent. Since for a fair assessment of productivity the
required amount of knowledge and experience needs to be taken into account, it is harder
to quantify than the previous metrics. We discuss productivity issues in Section 3.1. Based

7



Chapter 2.1. Compute Devices: Basic Terms and Concepts

on our comparison of two approaches in Chapter 4.7, we report upon the productivity we
experienced during those experiments.
Finally, the flexibility to execute different tasks is an important characterization of a

compute device. This aspect introduced in more depth in Subsection 2.3.1. Even though
for each of the presented metrics a clear optimization goal exists, various trade-offs between
different target metrics and different emphasis on either of the metrics are one contributing
factor to the diversity of compute devices over time and now.

2.1.2 Instruction-Programmable Processors

The concept of instruction-programmable computers, as the first class of compute devices
presented here, goes back to the Von Neumann architecture [263], but has long evolved
since the first draft from 1945. At its core, a CPU contains an arithmetic logic unit (ALU)
that performs the actual computation, registers to hold operands for the ALU, and a
control unit that manages the operation performed by the ALU as well as the operands to
be used. The CPU is connected to a memory, where both instructions forming a program
and data for the computation are stored. Additionally, an interface for external input and
output is part of the concept of any computer.
Instructions can encode the operations to be performed by the ALU and specify the

registers that hold the operands. Other instructions specify data movements between
registers and memory. The control unit decodes an instruction and identifies the operands,
triggers instruction execution for example by the ALU and determines the next instruction
by updating a program counter. In the simplest and typically most common case, the
program counter is just incremented, otherwise a specific control flow instruction needs
to specify, how the program counter it is updated. The next instruction specified by the
program counter is then fetched from memory.
The basic concept of instruction-programmable computers turned out to be extremely

powerful because of the flexibility to express any kinds of computing tasks with programs
made from instructions. However, it also imposes two major drawbacks: firstly, besides the
actual computation performed, there is an overhead, caused for example by the instruction
fetch and decode steps, by instructions that don’t contribute to the actual computations,
or by the repeated movement of operands from and to registers and memory. This over-
head limits both performance and efficiency of computing with processors. Secondly, the
sequentiality of instruction execution facilitates reasoning about program execution, but
also limits performance when each instruction can only be executed after the previous one is
finished. Within the remainder of this subsection, we present some mitigation strategies in
the areas of instruction set architecture (ISA) design, memory hierarchies and parallelism
that are employed in current processors, mostly with regard to performance bottlenecks.
The alternatives presented in Subsections 2.1.3 and 2.1.4 on the conceptual level and with
more concrete architectures in Subsection 2.2.3 often closely combine efficiency and per-
formance aspects.
The area of ISA design investigates, which types of instructions a processor should be

able to execute. In early times of computer architecture, there was a trend to design a
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high number of expressive instructions. Such expressive instructions can provide different
ways to directly or indirectly encode operands in registers or memory, or designate special
operations or groups of operations. With this approach, by getting more work done per
instruction, the overhead of fetching and decoding each instruction can be mitigated and a
compact program representation is achieved. In retrospective this strategy was denoted as
complex instruction set computer (CISC), in contrast to the reduced instruction set com-
puter (RISC) architecture, which was proposed in the 1980s [207, 208]. The latter concept
proposes radically smaller and simpler instruction sets that allow memory operations only
through explicit load and store instructions and have a fixed instruction size. This enables
much simpler and smaller processor designs, which in turn allows to reduce the latency for
executing each individual instruction. Another benefit, outside the processor itself, is that
compilers can much easier generate efficient code for this type of architecture. In many
contemporary GPPs, elements of both competing design approaches, CISC and RISC, have
been combined.
Beyond this general distinction in ISA design approaches, a number of characteristic

instruction set features have been developed to adapt processors to the needs of specific
classes of tasks. For example, digital signal processors (DSPs) are optimized for signal
processing applications and focus on data throughput in regular code. Microcontrollers
on the other hand have very simple designs, optimized for control-dominant code and
supporting only few and often slow arithmetic operations. These observations also point
to the interplay of intended workloads and specialization that is an essential theme of this
thesis and is more systematically approached in Section 2.3.1.
In order to supply a processor with instructions and to hold and supply most input,

intermediate and output data, a word addressable memory is used. The fundamental
challenge posed by such computer memory is that small amounts of memory can be made
fast at the expense of area and power, whereas larger memory is slower. Therefore, a
fundamental concept for memory design is that of a hierarchy, where the so-called main
memory is typically designed to contain the entire program and data and two to four
increasingly smaller and faster caches dynamically replicate transparently selected parts of
the memory address space, so-called cache lines, for faster access. The processor registers
form the fastest and smallest level of memory, but are typically not addressed like main
memory and caches. At the other end of the hierarchy even larger and slower non-volatile
storage like hard disks or flash are up to now not organized in data words, but in blocks
and with file systems. The Von Neumann architecture’s specific memory bottleneck is
that both instructions and data are provided by the same memory and, which can lead
to bandwidths limitations or contribute latency to the execution flow. This has been
addressed by the Harvard architecture and modified Harvard architecture, which provides
separate memory and interfaces for instructions and data. Most modern GPPs implement
a modified Harvard architecture, where the main memory holds both instructions and data
in a common address space, but separate first-level caches provide the processor with a
distinct interface to each of them. Overall, modern memory hierarchies can provide good
performance for many application scenarios, but contribute a significant fraction to the
overall power consumption of the processors that use them.
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After introducing ISA design and memory hierarchies, we now present three concepts
of parallelism inside the area of instruction-programmable computers, that helped to miti-
gate the fundamental issue of program sequentiality over the the course of several decades,
roughly following the structure and terminology of Hennesy and Patterson [118]. In the
following Subsection 2.1.3 we outline how compute circuits that don’t follow the basic prin-
ciples of instruction-programmable processors may improve some of the aspects presented
in this list.

• Instruction-level parallelism (ILP) occurs, when the correct execution of one specific
instruction does not depend on the completed execution of all previous instructions
from the instruction sequence of a program execution. This can be used to increase
performance by executing several instructions in parallel or quasi-parallel. A compiler
can increase the amount of exploitable ILP through instruction scheduling or loop
unrolling. Scheduling can also be performed in hardware, then denoted as dynamic
scheduling and allowing for out-of-order execution. The programmer is typically not
involved in providing or exploiting ILP.

In order to execute independent instructions in parallel, which is also denoted as
horizontal parallelism [216], a processor needs to contain several independent exe-
cution units, either identical or different. When the processor front-end is able to
decode and issue multiple instructions per cycle, the architecture is denoted as super-
scalar. Superscalar architectures aim at getting more work done per cycle, expressed
in terms of instructions per cycle (IPC). There are two main variants of superscalar
architectures. In very long instruction word (VLIW) architectures, multiple instruc-
tions are scheduled together into a single instruction word by the compiler, whereas
in dynamic superscalar architectures, the scheduling of independent instructions to
parallel execution units is performed at runtime in hardware. In order to increase the
usable ILP, speculation is frequently employed, that is instructions after a branch
can be completely executed before the outcome of the branch is fully validated. If it
turns out that the speculatively executed instructions should not have been executed,
their outcomes are rolled back. Also, many dynamic superscalar architectures can
reorder the sequence of instructions, delaying those instructions that need to wait for
dependencies and forwarding those instructions that can already start independently
of all currently executing ones. In order to maintain the correct program behavior
in such out-of-order architectures, the results of all instructions go through reorder
buffers in order to be committed in the correct order.

An orthogonal way to execute instructions partially in parallel is pipelining inside
the processor. With pipelining, the process of executing a single instruction is split
into several stages which overlap, for example while one operation is performed in the
ALU, the next instruction is decoded and a third instruction can already be fetched
from memory. Such pipelining is also denoted as a form of vertical parallelism. Since
each stage can be completed faster than the entire sequence of stages required to ex-
ecute an instruction, clock cycles are shorter, which increases throughput. However,
pipelining does not increase the amount of work done per cycle, expressed as IPC.
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On the contrary, in order to retain the same IPC than without pipelining, firstly
the sequence of instructions to be known soon enough to fetch and decode the right
next instructions. In practice, branch prediction is used to make educated guesses
about the outcome of control flow instructions, and can achieve prediction accuracies
between 80% and more than 99% depending on its design and the benchmark charac-
teristics. Secondly, when the pipelined instructions are not independent, the pipeline
has to deal with data dependencies, which however can for example be tackled by
data forwarding, from one pipeline stage, where an operand is computed to another
stage where the same operand is used by a subsequent instruction. Thus, pipelining
does not necessarily depend on the availability of true ILP, but is easier with it.

• Data-level parallelism (DLP) denotes a form of parallelism, where inside a program
the same operation can be applied independently on different data elements. The
primary source of such DLP are loops without dependencies between subsequent
iterations, so that each instruction of the loop can simultaneously can be performed
on the data of several different loop iterations. Parallelism between different loop
iterations is also denoted as loop-level parallelism (LLP). As indicated earlier, through
loop unrolling LLP can also be used to generate ILP and in that case is not dependent
on fully independent loop iterations.

The general concept of exploiting DLP is denoted as single instruction, multiple data
(SIMD) [82]. In contrast to exploitation of ILP, SIMD concepts not only promise
higher performance, but also better efficiency, because only a single instruction needs
to be fetched and decoded in order to trigger several operations. Conceptually, DLP
can often be automatically inferred, however efficient programs making use of DLP
may still require considerable programmer interaction. This issue is also a subject of
Chapter 5.

Vector computers are the classical computer architecture to exploit DLP. Vector
computers hold many data elements that can be computed in parallel together in
vector registers. A single vector instruction causes the same computation to be
performed on all elements of those vectors, or on a subset of the elements specified
through a bitmask. Computation on the different elements is performed in a pipelined
manner, here employing pipelining to hide the latency of an individual operation. In
addition, several vector lanes can work in parallel on different elements of the same
vector. Important features of those vector computers’ instruction set architectures are
different methods for data transfers between memory and registers and the mentioned
concept of masking operations for some vector elements. Such a vector architecture
is used in Chapter 4 and targeted in Chapter 5.

A more recent way to exploit DLP is presented by SIMD instruction set exten-
sions, sometimes marketed as multimedia instructions, that are integrated into many
modern general-purpose (see Subsection 2.3.1) CPUs. In contrast to classical vec-
tor processors, their vectors registers typically contain less elements and their early
incarnations contain a much less expressive instruction set. On the other hand, a
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typical feature of SIMD instruction set extensions is the ability to treat data in SIMD
registers as differently sized types, that is either as a few elements of a large data
type, e.g. 64 bit integer, or as more elements of a smaller type, e.g. 16 bit integer.

GPUs form a further group of instruction-programmable parallel architectures that
makes havy use of DLP. Instead of using large vector registers, GPUs are predom-
inantly organized into groups of processing cores, which all have a distinct register
file, but execute the same instruction, thus sharing the involved fetch and decode
overheads. This principle is also referred to as single instruction, multiple thread
(SIMT). The roots of GPUs started as fixed function graphics accelerators, which
over time first gained programmability for a more flexible graphics pipeline, and
ended up being increasingly used to and designed for many other tasks with similar
parallelism. In this thesis, GPUs are not investigated in the practical parts, but are
considered in Sections 2.2.3, 2.3.1 and 3.1 as reference for a commercially successful
accelerator architecture with a mix of programmability and specialization.

• Thread-level parallelism (TLP) is a form of parallelism, where multiple instructions
from different program contexts can be executed in parallel, an execution mode
denoted as multiple instruction, multiple data (MIMD) [82]. Following [118], we
distinguish two different types of TLP: in request-level parallelism, different threads
can work relatively independently on separate requests. In parallel processing, several
threads closely collaborate on a single computational task. This is often achieved by
transforming DLP into TLP and distributing parallel work items to different threads.

Considering only single-chip processors, two architectureal approaches to exploit TLP
can be distinguished. In multicore processors, the entire structure of the CPU core,
including control unit, registers and execution units like ALU, is replicated once or
more times, so each core can work on a different thread independently. Often, parts
of the cache hierarchy are shared among several cores in order to make collaboration
between threads on different cores more efficient and in order to save some area.
Systems where several identical processors or processor cores are connected through
a common interface to a shared main memory are also denoted as symmetric multi-
processor (SMP) systems.

Other designs don’t replicate entire CPU cores, but rather just some parts. In a wide-
spread approach, the central register file and parts of the control unit are replicated
to support the parallel or quasi-parallel execution of different threads, whereas the
execution units are shared among these threads. We denote this approach as hardware
multithreading. We choose this terminology to differentiate from the multithreading
term in the operating system context, which can be realized by context switches on a
single processing core. Comparing hardware multithreading to multicore processors,
the shared resources are a way to save area, however they may also turn out to
be a performance bottleneck, so the overall impact on area efficiency depends on
architectural details and workloads.
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Table 2.1: Symbols used by the instruction set for our example.

Symbol Meaning

Ra, Rb, ... General-purpose registers.
R0 Register with fixed value 0.
<var> Location of a variable in memory.
<imm> Immediate operand that is encoded directly into an instruction.
<label> Marker in the instruction sequence that is used as branch target.

In hardware multithreading, the shared resources can be assigned to a different thread
each clock in a round-robin way, skipping stalled threads (fine-grained multithread-
ing), or only when the current thread incurs a costly stall like a cache miss (coarse-
grained multithreading), or even dynamically within the same cycle (simultaneous
multithreading (SMT)). In current processors, either fine-grained multithreading or
SMT can be observed, whereas GPU architectures rely only on fine-grained multi-
threading. [118]

The effectiveness of all these concepts of parallelism depends on the fraction p of a task
that can actually make use of this parallelism and on the remaining fraction 1 − p that
for some reason remains sequential. Following Amdahl’s law, when the parallel fraction p
of the task achieves a parallel speedup SUmax, the speedup SU of the entire task can be
computed as SU = 1

(1−p)+ p
SUmax

. This means that in practice, both the maximal available
parallelism SUmax in the parallel parts of the task and the fraction of sequential parts of
a task put hard limits to the achievable speedups.
In this subsection, fundamental concepts of instruction-programmable processors have

been introduced from a performance-centric perspective. In this spirit, current GPPs
combine essentially all these concepts and more, in order to deliver good performance
for any type of application. However, the means to mitigate performance issues of the
Von-Neumann-based processor architecture don’t necessarily improve efficiency, most of
them leaving the general overhead of instruction fetch and decode unaffected and adding
additional control logic that requires power and space. In this sense, the customizations
of the briefly mentioned DSP and Microcontroller classes are to a large degree a reduction
of features in order to improve efficiency. Microcontrollers are very simple and efficient
designs, because they intentionally neglect arithmetic performance and data throughput,
whereas DSPs with their focus on regular control flow can, for example, with zero-overhead
loops reduce the number of executed instructions and at the same time reduce the need for
sophisticated branch prediction. We illustrate computing with instruction-programmable
processors with an example, before in the following subsection, discussing a computing
approach that takes this customization much further.
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Table 2.2: Selection of instructions for a RISC-like instruction set for our example.

Instruction Meaning

LD <var>(Ra), Rb Load into Rb a value from the memory location of variable <var>,
modified by an offset value in Ra.

ST Ra, <var>(Rb) Store the value of Ra into the memory location of variable <var>,
modified by an offset value in Rb.

ADD Ra, $<imm>, Rb Add <imm> to value from Ra and put the result into Rb.

ADD Ra, Rb, Rc Add value from Rb to value from Ra and put the result into Rc.

BLE Ra, Rb, <label> Branch to label, if the value in Ra is less than or equal to the value
in Rb.

BLT Ra, Rb, <label> Branch to label, if the value in Ra is less than the value in Rb.

Introducing an Example

With an example, we want to illustrate some aspects of computing with instruction-
programmable processors. We focus on some simple instruction set properties and on
what we call instruction overheads. We extend this example in the following subsections
to alternative approaches.
To outline a processor architecture for this example, we first introduce, based on a few

basic symbols (Table 2.1), some instructions for a rudimentary instruction set in Table 2.2.
The separation of memory instructions (load and store) and arithmetic instructions (and
logic instructions not included here) is typical for a RISC architecture. The format of
the memory instructions with a variable name and an offset register follows one of the
addressing modes from the simple target machine model introduced in [15] and also shows
up in the base instruction set of the instruction-programmable coprocessor that we target
in Chapters 4 and 5. Eventually, during machine code generation, the compiler needs to
replace the variable names by actual memory addresses, either in the static data area or
in the stack data area. As branch instructions, we chose a pair of instructions that allows
us to write the following example in a most comprehensible way.
With this instruction set, it is possible to execute a brief code snippet that is a simplified

part of the real code used later in Chapters 4 and 5. Listing 2.1 shows the code snippet
that sums up an input array in and stores the running sums into an output array sum.
Listing 2.2 shows an instruction sequence that can execute this code snippet with the
instruction set from Table 2.2. In order to keep the example simple, we omitted to specify
different data word formats and assume a single, 32-bit (4-byte) integer data type. An
important optimization that is included in this instruction sequence is the reuse of sum[x]
values from the previous iteration as new value sum[x-1] in R4. By transforming the loop
bounds, it would also be possible to remove one of the increment instructions (Lines 7, 8)
inside the loop body, but we omitted this for better readability of the example.
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1 for(int x=1; x<width; x++)
2 sum[x] = sum[x-1] + in[x];

Listing 2.1: Code snippet computing and storing running sums of an input array.

1 ADD R0, $1 , R1 ## init loop counter x to 1
2 LD (width)(R0), R2 ## load loop limit
3 BLE R2, R1 , exit ## branch to exit if width <= 1
4 ADD R0, $0 , R3 ## init array offset to 0
5 LD (sum)(R3), R4 ## load sum[0] into R4
6 loop:
7 ADD R3, $4, R3 ## increment array offset (4 byte word)
8 ADD R1, $1, R1 ## increment loop counter x
9 LD (in)(R3), R5 ## load in[x]
10 ADD R4, R5, R4 ## compute new sum[x] in R4
11 ST R4, (sum)(R3) ## store R4 to sum[x]
12 BLT R1, R2, loop ## branch to loop entry if x < width
13 exit:

Listing 2.2: Assembly code program for the code snippet in Listing 2.2. The actual work of
the code snippet is performed in Lines 9-11.

When investigating this code sequence, one can argue that the instructions in Lines 7
to 9 perform the actual work of loading a new input value, adding it to the running sum,
and storing it to the result location, whereas the other instructions are a form of overhead
that is required to achieve this functionality. Other instruction sets aim to reduce such
overheads. For example with a typical DSP ISA, one would replace the instructions in
Lines 8 and 12 by instructions before the loop body to set up a zero-overhead loop. The ISA
would also support special addressing modes making the instruction in Line 7 superfluous.
A typical CISC-like feature present for example in the x86 ISA are arithmetic instructions
with memory operands. Thus, it could for example replace the two instructions from
Lines 9 and 10 by a single one. Like DSP ISAs, the x86 ISA also has addressing modes
that allow to remove the instruction in Line 7. With such approaches, less instructions
need to be fetched from program memory. However, inside x86 processors, such expressive
instructions often get split again into several so-called micro-operations and thus internally
require similar resources and time as the illustrated instruction sequence.
As platform to further illustrate the execution of the loop body from this instruction se-

quence on an instruction-programmable processor, we use a classic five-stage RISC pipeline
like outlined in [118], with the following pipeline stages.

Instruction Fetch (IF) This stage fetches the instruction that is currently indicated by
the program counter from memory. It also increments the program counter.

Instruction Decode (ID) This stage decodes the fetched instruction from the previous
stage, that is it identifies the operation and the operands with their respective regis-
ters or immediate values. Additionally, it fetches the input operands from registers.
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Table 2.3: Execution of two loop iterations from Listing 2.2 in a five-stage RISC pipeline. This
schedule contains three data hazards (*marked with an asterisk). With data-forwarding,
the value for R3 computed in cycle 3 is already available in the EX stage in cycle 5 (could
even be made available for cycle 4), even though not written back to the register file
before. On the other hand, the result from the load instruction (#9) only arrives during
cycle 6 and cannot be made available to the EX stage of the following instruction in
the same cycle, therefore requiring a pipeline stall. The dependency of instruction #11
can again be resolved by data-forwarding.

Clock cycle

# Instruction 1 2 3 4 5 6 7 8 9 10 11

7 ADD R3, $4, R3 IF ID EX MEM WB
8 ADD R1, $1, R1 IF ID EX MEM WB
9 LD (in)(R3), R5 IF ID EX* MEM WB

10 ADD R4, R5, R4 IF ID stall* EX MEM WB
11 ST R4, (sum)(R3) IF stall ID EX MEM* WB
12 BLT R1, R2, loop stall IF ID EX MEM WB
7 ADD R3, $4, R3 IF ID EX MEM

8 ADD R1, $1, R1 IF ID EX
9 LD (in)(R3), R5 IF ID

10 ADD R4, R5, R4 IF

When operands are not valid, it either sets up data forwarding where possible or
introduces pipeline stalls. Also, the comparison operation for branch instructions
takes place in this cycle and if the branch is taken, the program counter is updated.

Execute (EX) In this stage, an ALU performs either the arithmetic operation specified
by the instruction (in our case only ADD), or it computes the effective address for a
memory instruction by adding the offset to a base address.

Memory access (MEM) This stage uses the effective address to either read a word from
memory, or to write the value from the input register to memory.

Write-back (WB) In this stage, results from an arithmetic instruction or from a load
instruction are written to the specified target register.

Table 2.3 illustrates how the loop body from Listing 2.2 can be executed in this five-stage
pipeline. Due to a so-called data hazard, this schedule requires data-forwarding of the value
for R3 from instruction #7 to instruction #9 and of the value for R4 from instruction #10
to instruction #11. The dependency between instructions #9 and #10 with regard to R5
cannot be fully resolved by data-forwarding and therefore requires a pipeline stall. We
assume no resource constraints between memory operations and instruction fetches, which
would otherwise lead to structural hazards, and furthermore assume a correct branch-
prediction to resolve the control hazard between instructions #12 and #7 in the second
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iteration. In this example, due to the stall, the second loop iteration starts seven cycles
after the first iteration, leading to an IPC value of 6

7 . In practice, further stalls would likely
occur when load operations don’t complete in a single cycle of the memory access stage.
This schedule illustrates how the pipeline of an instruction-programmable processor

works on several instructions during the same cycle. However, the pipeline does not help
to start or complete more than one instruction per cycle, but rather struggles to maintain
this rate. Out-of-order execution can greatly help to keep pipeline throughput high, but
requires additional area and energy for components that don’t participate in the actual
computation specified by the program code and thus are a form of overhead. When differ-
entiating within the depicted five-stage pipeline between the actual computation specified
by the code snippet (Listing 2.1) and overheads, one can argue that only the execute and
memory access stages perform the actual work and the other stages are overhead.

2.1.3 Computing in Circuits

The discussed instruction-programmable processors are all implemented with digital inte-
grated circuits. However, when the task of a compute system is fixed at design time, it
is possible to design a digital integrated circuit that directly executes this task, without
instruction-programmability and with a different structure than that of a processor. Such
specialized compute circuits are often denoted as hardwired logic, or as application specific
integrated circuits (ASICs). In the circuit design community, the term ASIC is co-notated
with a specific computer-aided design method for such a circuit, which involves the use
of standard cells, and is contrasted to custom circuit design, that relies more on manual
layout and optimization [55, 54, 94]. Therefore we stick to the terms compute circuit
and hardwired logic here. Throughout this section, we present compute circuits directly
in contrast to the previously discussed concepts of instruction-programmable processors,
in particular how they can save area or improve performance at a much reduced or even
removed flexibility.
Considering first the functional units that actually perform the computations, for hard-

wired logic, the departure from instructions removes the fixation to the specific operand
sizes and to the specific set of operations specified by the ISA. A functional unit may thus
be optimized exactly for operand sizes required by the compute task and the supported
operations can be just a single one or a subset of the operations provided by general ALUs.
A functional unit in hardwired logic can also execute required operations that are not in-
cluded in a standardized ISA and therefore would in a CPU have to be performed through
a series of other instructions. Contrasting hardwired logic to instruction-programmable
processors, these techniques can be summarized as functional unit customization and can
both save area and improve performance. Note a similar technique is used inside the realm
of instruction-programmable processors to add specialized functional units to so-called
application-specific instruction set processors (ASIPs) [96, 143].
The control information, that otherwise would have been encoded into instructions, is

represented by several different parts of a application specific compute circuit. Fixed
wiring between one functional unit that produces a data element and another functional
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unit that uses this element in the next step can replace the operand encoding and at the
same time obliterate the need for a central register file. Registers can instead be distributed
throughout the circuit, for example as output registers after each functional unit. Wires
can also be used to transmit synchronization signals like valid, acknowledge or reset.
This way, direct wiring can also replace move instructions between different registers. Also
arithmetic operations like shifts can be entirely replaced by wiring, by connecting specific
bits of one source to different, shifted bits of the destination.
Considering the operators encoded in instructions, when a functional unit only has to

perform a single type of operation, the correspondence of an encoded operation is not
be needed at all. However, some control for selecting between different operations or
different inputs is still required in many circuits. This control is typically provided by
state machines (more precisely, but in this context less commonly, denoted as finite-state
machines (FSMs)), described by a finite set of states and transitions between them. The
compute circuit can for example select one of several inputs to a functional unit with
a multiplexer whose control input depends on the current state. To summarize these
two paragraphs, state machines, multiplexers, direct wiring and control signals enable
computing without instructions. Some quantitative effects on efficiency will be presented
in Subsection 2.2.3.
Without instructions, most typical stages of a processor pipeline, like instruction fetch,

decode, operand fetch and write back are not relevant for compute circuits. For operations
with high latencies, internal pipelining of functional units can still be valuable. Beyond
that, pipelining is still a tremendously important concept for hardwired logic as a means
to exploit additional vertical parallelism. The first target here is loop-level parallelism
(LLP), by providing for each operation of a loop body a separate functional unit. These
functional units are connected through wires representing the operand flow, but decoupled
by registers into pipeline stages. For example while the first stage performs the first
operation of the n-th iteration of the loop, the second functional unit can work on the
second operation of the (n − 1)-th loop iteration. Additional instruction-level parallelism
(ILP) can be exploited by different parallel functional units within one stage, whereas
additional data-level parallelism (DLP) often is addressed with entire parallel compute
pipelines.
In between the two differently coupled forms of thread-level parallelism (TLP) introduced

in Subsection 2.1.2 following [118], we denote as task-level parallelism the case, where a
sequence of different tasks needs to be performed on several subsequent data elements or
requests, a denotation used e.g. in [211]. In circuits, this type of parallelism can again be
tackled with pipelining, here with a pipeline stage performing an entire task rather than
an individual operation. Task pipelining is conceptually not limited to circuits [97, 27], but
with customized FIFO buffers, multiplexing and demultiplexing, data width conversion or
deterministic reordering, circuits can support many communication patterns much more
efficiently than for example through shared memory regions.
Unlike the centralized control unit of a CPU, control for all these forms of parallelism can

naturally be distributed over different pipelines and pipeline stages of a compute circuit,
reducing complexity and overheads. The pipelining concepts in circuits are denoted as
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streaming, emphasizing the flow of data through the functional units. A stream of data
typically originates from memory or a device input, passes through several compute stages
and is directed again to memory or to a device output. Thus, with intermediate buffers,
streaming also is a natural form to decouple memory accesses from computation.
Beyond decoupled access to main memory, hardwired logic also has full control to ex-

plicitly manage any local memory. The registers and streaming buffers mentioned in the
previous paragraphs are part of this local memory, but also addressable random access
memory can be integrated into or attached to compute circuits. Optimizations over trans-
parent caches can be achieved for example by adaption to known element sizes and data
set sizes. Also, whenever data usage patterns are known, explicit data movement to and
from local memory can be used to prefetch data ahead of its usage and avoid the overheads
of the speculative prefetching that some transparent caches perform.
To summarize, compute circuits can achieve more performance and more efficiency than

CPUs, through specialization and by removing the overheads involved with execution of
instructions. However, their fixed functionality makes them unsustainable for usage sce-
narios where flexibility to execute different tasks is required. Also, since their fixed costs
can only be distributed among devices for the same task, economically they require suf-
ficient market sizes to pay off. Finally, time-to-market of specialized compute circuits is
high, since it involves a lengthy process including hardware design and mask generation.
In the following subsection, we present a technology that addresses these challenges by
realizing compute circuits in a programmable way. Before, we extend the example from
the previous subsection to a circuit design.

Extending the Example to Circuits

In order to highlight some of the differences between computing in circuits and computing
with processors, we extend the example from Subsection 2.1.2 to a custom circuit with the
functionality defined in Listing 2.1. The circuit is fixed to this specific functionality, but
illustrates the performance and efficiency potential of computing in circuits. Figure 2.1 il-
lustrates a possible design for such a circuit, with gray boxes summarizing the functionality
of different parts of the circuit.
In the upper left corner of the figure, a counter is incremented in every cycle and can be

reset (RST) to the initial value 1. In the lower half of the figure, memory units illustrate
load and store operations from a common random access memory like specified by the
listing. They compute memory addresses based on the counter and on the base address of
their respective arrays and feed them into ports to the actual memory. With FIFO buffers
at the memory ports we illustrate that memory accesses may involve some latency. The
values read by the load unit are fed to the the upper right half of the figure, where an
adder accumulates the inputs into a running sum that in turn is forwarded to the store
unit. In the upper center of the figure, an enable signal (EN) is generated that ensures that
the memory controllers only access data within the loop bounds. Beyond the scope of the
figure, the base addresses for in and sum, as well as the values for sum[0] and width need
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Figure 2.1: Illustration of a circuit that executes the code snippet from Listing 2.1. Blue arrows
indicate wires for single bits, black arrows for entire data words. Circles indicate opera-
tors. Rectangular boxes contain input words, where sum and in are the base addresses
of the respective arrays, whereas width and sum[0] contain the actual variable values.
Trapezoid boxes indicate multiplexers to select one of two possible inputs. Diamond
shaped patterns depict delay elements that may be realized by FIFO buffers. Access
to a common memory is illustrated by a load port that contains an input FIFO for
addresses and an output FIFO for loaded values, and a store port that has two input
FIFOs, for addresses and corresponding values. The enable signal EN ensures that no
memory access takes place outside the loop bounds. In the figure, the signal is split
for clear arrangement.

to be loaded prior to the actual loop execution in the circuit. For this purpose, additional
control logic, most likely in the form of a state machine, and additional wiring is required.
This example gives an impression how pipelining in circuits goes beyond that of a pro-

cessor pipeline and can exploit loop-level parallelism (LLP). For each individual operation
of the loop, the depicted circuit contains dedicated hardware components that each can
process one element per cycle. Thus, the circuit can achieve a throughput of an entire
loop iteration per cycle. To this end, different components may need to be decoupled by
buffers to compensate for latencies in other parts of the pipeline. In our example, the
load unit may have a considerable latency. In the example with the processor pipeline
introduced in Subsection 2.1.2, such a latency would cause additional pipeline stalls and
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significantly reduce performance. In the circuit pipeline in Figure 2.1, the delay elements
denoted with T can fully compensate for this latency, as long as both memory ports can
sustain a throughput of one element per cycle.
The performance potential through exploitation of LLP in this circuit comes at a cer-

tain area cost. For example the circuit contains four distinct adders. In contrast, in the
processor pipeline, the functionality of all these adders is performed by a single adder (or
more generally ALU) in different subsequent cycles. On the other hand, as driver for area
and energy efficiency, the circuit requires no components to fetch or decode instructions
and does not use a central register file, but rather forwards data directly to the compo-
nents were it is used. The further advantage of customizing functional units to specific
operators and data types is not well visible in our example, since we earlier decided that
all adders work on the same 32-bit integer data type. However, the shift unit in our circuit
illustration that transforms counter values to array offsets in bytes was just included for
comprehensibility. In practice, it could be made obsolete by clever wiring.
Depending on the system in which this circuit is to execute the given functionality, the

handling of input and output data could be handled very differently from the presented
approach with a common random-access memory. For example, input data might be
received directly from a sensor and forwarded to the next circuit or to an actuator of a
mechanical device. However, within the practical parts of this thesis, computing is always
performed on data in a memory, just like in this example.

2.1.4 Field-Programmable Gate Arrays

Field programmable gate arrays (FPGAs), are devices that implement compute circuits,
but have no fixed functionality. Instead, they change their circuit behavior according to a
number of configuration bits, which can be programmed and reprogrammed as the name
implies in the field, that is by the user and after fabrication. The structure is denominated
as gate array and describes an array of logic elements with a configurable interconnect.
FPGAs are one architecture in a group of several different programmable logic devices
(PLDs). Architecturally, FPGAs differ from other PLDs by the utilization of lookup tables
(LUTs) and are conceptually more suitable for complex and sequential logic than other
PLDs. Currently, all of the largest PLDs are FPGAs.
The basic logic functionality in FPGAs is provided by LUTs, which can reproduce the

output of any boolean logic function with n-inputs by configuring a small random access
memory (RAM) with the desired result bit for each configuration of input bits. Typical
sizes for input width of FPGA LUTs are 4-6. In order to allow for sequential logic, the
output of a LUT can go to a flip-flop (FF); a configurable multiplexer selects either the
buffered or the unbuffered output. Together, these three components form the basic logic
elements (BLEs) of an FPGA. In the academic view of FPGAs, a number of such BLEs can
be grouped into clusters, internally connected by wires and with additional multiplexers to
configure the BLEs’ inputs as a combination of a cluster’s external inputs and the outputs
of other BLEs inside the cluster, and to configure the cluster’s outputs [14].
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The clusters are interconnected through routing resources in which configurable switch
boxes determine the connections between different wires. The clusters form a first hierar-
chical structure designed to optimize area and delay of the routing network, because signals
that remain inside a cluster don’t need to go through the more costly routing network. The
routing architecture can be further enhanced by providing wires of different length, with
some spanning more than one cluster between two switch boxes [33]. Nevertheless, just like
in ASICs [94], routing consumes most of the area of an FPGA chip and still for a number
of circuits implemented on FPGAs it turns out to be the critical resource.
In commercial FPGAs, both design and naming of basic logic elements and clusters

diverges a bit. The two FPGA vendors with the highest market share are Xilinx and
Altera. In Xilinx Virtex-6 [275] and Virtex-7 [277] FPGAs, each LUT can be configured as
one 6-input LUT or two 5-input LUTs. Four of those LUTs are combined with eight flip-
flops, the required multiplexers and additional arithmetic carry logic into a slice and two
of those slices form a configurable logic block (CLB) as equivalent of a cluster. In Altera’s
Stratix V [20] FPGAs, an adaptive LUT with 8 inputs can implement all 6-input logic
functions, selected 7-input logic functions or be fractured into two smaller independent
LUTs. One such adaptive LUT is combined with two embedded adders and four registers
into an adaptive logic module (ALM), of which 10 are clustered into one logic array block
(LAB).
Beyond the basic logic functionality through LUTs, several more specialized elements

have been added to FPGAs over time. Parts of the first extra design element have been
mentioned along with the vendor specific logic elements in the previous paragraph: In
order to enable the generation of efficient adders on FPGAs, carry-chains and supporting
logic have been added, which enable direct propagation of carry signals to neighboring
logic elements, bypassing the global routing network with its comparably high area us-
age and delay. Additionally, dedicated DSP blocks have been introduced, which provide
fixed function logic, typically for multiplication or fused multiply-accumulate (MAC) op-
erations, often with configurable bitwidth. The functionality they provide can also be
implemented with basic logic elements, but with much lower clock frequency and higher
area consumption.
Another important resource of all current FPGAs is local memory, which is distributed

within the array structure as block RAMs (BRAMs), each of which can typically store
several kBits of data with configurable address depths and data widths. Together with
some logic resources, several BRAMs can be combined together to form larger memory
blocks, both supporting deeper and wider memory. For local RAMs requiring even less
memory bits or less address depths, often the configuration storage of LUTs can also be
used as local memory, denoted as LUT RAM.
Last but not least, FPGAs need to communicate to the outside world or at least other

chips in a system. For this purpose, they all have a number of IO pins, which are connected
to the routing network as IO pads and often denoted as general-purpose input-output pins
(GPIO). Often a significant number of IO pads is available to support parallel interfaces
like for external DDR-memory. Many modern FPGAs also contain a smaller number of
serial transceivers, internally integrated as parallel interfaces but physically transferring
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data serially at much higher frequencies. Those transceivers are used to communicate with
serial interfaces like USB, PCIe or high-speed network links [223].
With this set of logic, interconnect and memory resources, and given a sufficient amount

of resources, FPGAs can implement the functionality of arbitrary compute circuits, from
fully customized ones to instruction-programmable processors. The structure and recon-
figurability of FPGA resources forms a level of indirection and an overhead compared to
circuits directly implemented in hardware, but is a prerequisite for their programmabil-
ity. The process of programming an FPGA has conceptually more resemblances to circuit
design than to software programming.
The classical design approach to implement a desired functionality on an FPGA is to

specify the desired circuit design in a hardware description language (HDL) like VHDL
or Verilog, which then is typically translated by a vendor-specific toolflow to a bitstream.
HDL designs for FPGAs are typically specified on the register-transfer level (RTL), that
is they specify how digital signals buffered in transistors change their state between two
clock cycles. The register-transfer level (RTL) design combines structural information
about the architecture components that are there and how they are connected by signals,
with behavioral information, about how and when the components produce specific output
signals. A bitstream, which is generated from an HDL design, contains all configuration bits
for a specific FPGA, including configurations for LUTs, switch boxes and multiplexers, that
configure the FPGA to behave like the specified design. A bitstream may also include initial
values for BRAMs. The translation process from HDL to bitstream can be subdivided into
several steps, which we only outline on an abstract level here.
In the first step, the HDL design with behavioral descriptions, is synthesized into a purely

structural representation denoted as netlist. The netlist describes the circuit structure in
terms of gates, which not yet need to correspond to the resource types that are actually
available on an FPGA. In the technology mapping step, the appropriate resource types,
excluding routing resources, are selected. In the placement phase, concrete instances of
each resource are selected for each occurrence of a resource type in the technology mapped
netlist. In the routing phase, the placed resources are connected through the wires and
switch boxes of the routing network. Finding the best placement and routing are hard
problems with huge search spaces, so heuristics, often with randomization, are employed
and runtimes of these steps are high. Afterwards, the timing analysis determines the
longest delay, through logic resources and routing, on any connection between a pair of
flip-flops. If the timing analysis meets all previously provided constraints, it is followed
by the final bitstream generation. Otherwise, one or more of the previous steps can be
repeated with different parameters.
Even though strictly speaking the synthesis denotes only the netlist generation [86],

the term is frequently used for the entire translation process from HDL specification to
bitstream generation. We follow the latter, broader designation throughout this thesis. For
the FPGA manufacturers, their closed source synthesis flows are an important part of their
platform ecosystems, however in the academic world, an open source synthesis flow [168]
was developed to enable research on aspects of synthesis as well as of FPGA design. On
top of this basic HDL-based synthesis flow, different high-level synthesis (HLS) approaches
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are building up to offer more abstract, productive and software-like design flows. Such
concepts are presented in more detail in Subsection 3.1.3.
To summarize, FPGAs allow for a circuit-like computing paradigm instead of the instruc-

tion-based computing of processors. Programmability allows FPGAs to mimic very dif-
ferent circuits, but this comes at a hardware overhead that we detail further in Subsec-
tion 2.2.4 and with a programming model that requires structural information and an
extensive synthesis flow.

Mapping Elements from the Example to FPGA Logic

There are several ways to achieve the functionality of the example code snippet from List-
ing 2.1 with an FPGA. Following the motivation to this subsection, one approach is to map
the circuit from Figure 2.1 onto the FPGA and thus profit from the performance potential
and efficiency of computing in circuits. A more indirect alternative approach is to first
implement the five-stage processor pipeline introduced in the example of Subsection 2.1.2
on the FPGA and subsequently execute the assembler code on this processor. Advanced
variants of both approaches are actually used and analyzed in Chapter 4. In the example
at this point, we illustrate the flexibility of FPGAs by mapping three components of the
circuit in Figure 2.1 to FPGA components.
In Subsection 2.1.3, we outlined that four distinct instances of an adder are used in the

circuit in order to achieve a throughput of an entire loop iteration per cycle. On an FPGA,
these adders can be realized by DSP blocks that can not only directly compute the sum or
product of two input words consisting of several bits, but also typically contain accumulator
functionality as required by the counter and running sum units from Figure 2.1. However,
the adders can also be built from LUTs as the most fundamental resource of FPGAs.
In Table 2.4, we illustrate the truth table for a 1-bit full adder that can be used as a
building block to the 32-bit adder [111] required in our example. This truth table can
directly be used to program two 3-input LUTs, one for each output bit. The special carry
chains introduced earlier can be used to connect the carry bits to neighboring LUTs with
low overhead. However, this first approach is not efficient, as current FPGAs have larger
LUTs. In order to adapt to this, the building block for the adder can for example be
modified to a 2-bit full adder, which can exactly be implemented with two 5-input LUTs
that are one of the configuration variants of current Xilinx LUTs. For more details on
adders implemented in FPGAs logic, we refer to [67].
Another component of the circuit in Figure 2.1 are multiplexers. Some small multiplex-

ers are available as dedicated resources within the logic slices of most FPGAs. However,
particularly to generate larger multiplexers, also LUTs are frequently employed. We il-
lustrate the principle in Table 2.5 with the truth table for a multiplexer that selects one
of only two input bits and thus requires only a single select bit Sm. In Section 4.5.1,
we encounter a design that uses multiplexers with up to 35 inputs. A tree structure of
smaller multiplexers can be used to build those. Chapman [51] introduces different design
alternatives for large multiplexers on Xilinx FPGAs.
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Table 2.4: Truth table for a 1-bit full adder with Cin as carry in bit from a previous full adder.
This truth table can directly be used to program two 3-input LUTs, one for each output
bit.

Inputs Outputs

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 2.5: Truth table for a 2-input multiplexer with select bit Sm. This functionality can be
achieved with a single 3-input LUTs.

Inputs Output

I0 I1 Sm

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

As third component from Figure 2.1, we want to map the equality check in the control
unit to FPGA logic. Notably, one of its two inputs is the constant value 1. Hence, no generic
comparison between two inputs is required, but a LUT can directly be programmed to
indicate whether the input variable is equal to 1. In order to keep the table size in check,
we illustrate again a small truth table for a 3-input LUT, which covers the three least
significant input bits of the input value. The comparison with an entire 32-bit input value
can again be performed with a tree of smaller LUTs.
These three components mapped to the same type of FPGA logic resources may give

an idea of the versatility of FPGAs and a glimpse to the amount of implementation deci-
sions that need to be taken when mapping a circuit design to FPGA resources. However,
the most time-consuming phases of most synthesis tool flows, component placement and
routing, have not even shown up in this example.
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Table 2.6: Truth table for the equality check with the fixed value 1. The three least significant
input bits from I2 down to I0 are covered in this table that can be mapped to a 3-input
LUT. Only one of the input combinations corresponds to the binary value 1.

Inputs Output

I2 I1 I0

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

This concludes our section about basic concepts of compute devices, where we have
outlined the fundamental differences between computing with processors and in circuits
as background to understand FPGAs. In the following Section 2.2, we present how the
underlying process technology was and still is a major driver for how these concepts are
combined into actual computer architecture and we again point at the special role of
FPGAs in that context.

2.2 Trends in Technology, Architectures and Devices

In this section, we present how the trends in process technology summarized in Subsec-
tion 2.2.1 are a major driver for changes in processor architecture as outlined in Subsec-
tion 2.2.2. Accelerators are presented as one consequence of the ongoing efficiency challenge
in Subsection 2.2.3, before we discuss in Subsection 2.2.4 how FPGAs architecturally fit
into this trajectory.

2.2.1 Scaling in Process Technology: Continuity and Changes

The history of computing hardware has been governed for more than five decades by
Moore’s law, which predicts exponential growth of transistor counts per chip. From around
50 components in one integrated circuit in 1965, when Moore published his first projec-
tion for the next decade [188] to around 8 billion transistors on a single compute chip
in 2015 [239], the number of components has doubled more than 27 times in 50 years.
Research and industry continue to work new process technology to further increase tran-
sistor density [281, 23, 193]. The recently released International Technology Roadmap for
Semiconductors (ITRS) 2.0 report, 2015 edition [139] projects a possible technology scaling
path up to the year 2030, but contains technical challenges and preconditions that must
be met for that roadmap.
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Over time, the characteristics of this device scaling have significantly changed. The era
of up to the early 2000’s is denoted as classical, geometrically driven scaling [138], char-
acterized by Dennard’s scaling rule [71]. In this era, with decreasing physical dimensions
of a transistor, supply voltage could also be linearly reduced. With this type of scaling,
switching delay can linearly scale down that is clock frequency can linearly scale up and
at the same time, power density, that is power per area, remains constant. This key in-
sight was already qualitatively proposed by Moore [188], but Dennard became known for
backing it up with a model and also quantifying the delay time with regard to the scaling
factor.
The era of classical scaling ended, when supply voltage could no longer linearly reduced

with feature sizes, which is attributed to device characteristics depending on the bandgap
potential of silicon [83] and to thermal noise [152]. This caused a power density problem
and put an abrupt end to frequency scaling. Also static leaking currents through insu-
lating transistor components started to have an impact on the overall power consumption
in addition to the traditional dynamic power for switching transistors [83]. With the in-
troduction of new materials and transistor geometries [238, 131], in the era of so-called
equivalent scaling [138], these challenges are kept under control sufficiently to retain the
exponential growth of transistor counts per chip. However, these techniques mitigate, but
don’t remove the tendency of increasing power per area and absolute power per chip, which
hit practical limitations and became known as power wall. 3D scaling or stacking of several
chip layers, as the next trend in manufacturing that can increase device density, poses even
more power challenges, because thermal power of several layers has to be dissipated from
the same area.
Therefore, additional measures on the device and architectural level need to be employed

to limit power consumption. Important concepts in this regard are to operate devices with
dynamic voltage and frequency scaling [43, 225, 120] and with power gating [130, 13] of idle
components. Complementary architectural concepts like SIMD instructions and multicore
architectures, are introduced in Subsection 2.1.2 and are put into the context of equivalent
scaling in the next subsection. Further steps ahead are proposed as near voltage threshold
computing [75] and approximate computing [260, 105, 109], which encompass more radical
ideas like lowering supply voltage into areas, where absolute performance or correctness
start to degrade.
Beyond the technical concepts for scaling process technology, costs play a major role for

the actual progress of semiconductor technology. The ongoing trend to follow Moore’s law
depends on the fact, that not only the area, but also the cost per transistor decreases expo-
nentially over time. This development is still largely intact, but it requires ever-increasing
production volumes, as one-time costs are growing with every new process generation.
This affects the costs to develop a new process generation up to production level and the
costs to equip each individual foundry with the required tools and environment for this
process. Both costs have gone up to a point, that researchers speculate that not technical
feasibility, but rather costs might put an end to Moore’s law [219, 171]. Along with those
process costs, also the costs for each individual chip design, with an increasing share of
costs required for mask production, have grown considerably [267]. This requires higher

27



Chapter 2.2. Trends in Technology, Architectures and Devices

volumes for each design for amortization, or is forcing designers that expect lower volumes
to resort to older process technology [171].

2.2.2 Impact on Processor Architecture

In this subsection, we put many of the processor design concepts introduced in Subsec-
tion 2.1.2 into the context of technology scaling just introduced in Subsection 2.2.1. Tech-
nology scaling is the enabling factor to — among others — build devices with more compo-
nents. One goal of computer architects and application designers alike, is to transform this
potential into performance scaling, that is the ability to execute given workloads faster or
larger workloads in the same time. In this section, we focus on the computer architecture
perspective, whereas in Section 3.1, the perspective of application developers is taken into
account.
Parts of the increased transistor counts enabled by Moore’s have always been used to

add new features, rather than to boost performance for existing workloads. Such pri-
marily feature oriented architecture innovations are increased bitwidths of data words
and memory addresses, up to 64-bit addresses starting in the early 2000s [147], hard-
ware support for floating point numbers and virtual memory, or more recently the intro-
duction of cryptographic instructions [253, 103] and hardware support for transactional
memory [264, 283, 44].
Performance gains in the era of geometric scaling and Dennard’s scaling rule were mostly

achieved by the pair of frequency scaling and of exploiting the additional transistors avail-
able per area and per chip for increased ILP (see Subsection 2.1.2). These two performance
drivers were perceived as a form of “free lunch” [248], because any program can profit from
them without any effort, just by waiting for the next processor generation. The techniques
of superscalar execution, be it dynamic or explicit, and of out-of-order execution, con-
tributed significantly to the increases in overall compute performance. Further gains are
limited by the existing instruction level parallelism and by efficiency issues when aiming for
wider superscalar execution. Explicit superscalar architectures with VLIW or Explicitly
Parallel Instruction Computing (EPIC) [232] ISAs are particularly limited by the ability
of compilers to fill their functional units with independent instructions based on static
analysis. Dynamic superscalar architectures mitigate this difficulty by employing dynamic
analysis and speculation at runtime in hardware, but may execute speculative instructions
in vain and use much area and power for the required instruction issue logic [118]. To
illustrate the slow pace of ILP scaling, in the era of equivalent scaling, it took 14 years to
go from the AMD K7 architecture [92, 129] introduced in 1999 with 3 address generation
units (AGUs) and 3 integer ALUs to 4 AGUs and 4 integer ALUs in a comparable pro-
cessor class with the Intel Haswell architecture introduced in 2013 [136]. Admittedly, this
comparison disregards significant changes in many other aspects of the architecture. In a
different perspective, based on simulations of instruction traces conducted by Intel, eight
subsequent processor generations to Broadwell architecture released in 2014, achieved a
cumulative increase in IPC of close to 1.8x over the Dothan architecture introduced in
2004 [89, 193].
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Starting during the era of Dennard scaling and continuing during equivalent scaling,
a part of the additional transistors of GPPs were also dedicated to exploitation of DLP
through SIMD instruction set extensions, e.g. Intel MMX [209]. This trend is still ongo-
ing with SIMD units exhibiting ever more parallelism, since this technique can improve
efficiency by getting more computations done per instruction. However, progress in this
domain is also limited by the available DLP in applications and by the ability of develop-
ers and tools to exploit it through SIMD instructions. From MMX introduced in 1996 to
AVX-512, which debuts in 2016, the bitwidth of SIMD has increased from 64 to 512 and
thus doubled 3 times in 20 years, while transistor counts in the same time span doubled
around 11 times. In Chapter 4, we demonstrate that some application patterns can profit
from much wider vector instructions. This functionality is provided by FPGA accelera-
tors, since application coverage is not sufficient to include such very wide SIMD units into
GPPs. Chapter 5 covers aspects of the automatic code vectorization for this target and
of partitioning process required for targeting an external accelerator rather than a tightly
integrated SIMD unit.
With the limitations and efficiency problems of frequency scaling and exploitation of

ILP at the transition from Dennard scaling to equivalent scaling, multicore architectures
became popular [54]. In these architectures, additional transistors are spent to replicate
entire processor cores to make use of TLP, thus avoiding the power limitations of frequency
scaling and the diminishing returns of increasing ILP. Consequently, the usefulness of this
approach is limited by the amount of TLP in the executed programs. In contrast to
ILP, which is exploited by processor hardware or compilers and thus presented itself to
application programmers just like frequency scaling as “free lunch” [248], most TLP has
to be explicitly specified by the programmer. Also, performance scaling of multithreaded
programs is limited according to Amdahl’s law by serial code sections.
The vast majority of multicore processors are built with a single, shared main memory

and a hierarchy of shared and private caches. In order to let the cores communicate and
synchronize through memory accesses to this shared memory, cache coherence protocols
are implemented in hardware to make sure all cores see the same data at identical memory
locations, also through private caches. Scaling the required memory buses and intercon-
nects for coherency traffic poses an ongoing challenge for hardware designers, but appears
to be manageable as of now [173, 193].
Even though the multicore approach avoids the particular efficiency problems of single-

core performance scaling, it is still is subject to power and power density limitations [127].
For the transistors that don’t contribute to overall performance both because of limited
TLP and because of power limits, Esmaeilzadeh et al. [78] have coined the term Dark
Silicon and conclude that “adding more cores will not provide sufficient benefit to justify
continued process scaling” [78]. Heterogeneity in multicore architectures [159], both with
regard to clock frequencies [52] and core microarchitecture [197] helps to mitigate this issue
for workloads with variable TLP during different phases, but ultimately remains limited
with regard to the performance of the fastest core. Such concerns are even more pressing
in the huge emerging field of mobile computing, where both power and energy are much
more constrained than for typical desktop or server compute scenarios.
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2.2.3 Accelerators

The difficulty of transforming more transistors into more usable computing performance
has renewed interest in more specialized architectures to efficiently accelerate specific tasks.
Most prominently, GPUs have evolved from fixed function logic for graphics rendering to
fully programmable graphics pipelines that can also accelerate various other tasks [205, 166]
with massive DLP, predominantly with floating point computations. From a different start-
ing point, but with a similar design philosophy, so-called manycore processors emerged,
which in comparison to multicore processors offer more cores by reducing frequencies and
ILP performance per core, and tackle similar problem classes to GPUs through their strong
emphasis on SIMD execution units [224]. Even more specialized to their specific tasks are
video decoding and encoding blocks, which have been integrated into various CPU and
GPU platforms [233, 135]. As such accelerator blocks, not only fully customized circuits,
but also processors with a specifically specialized ISA, so-called application-specific instruc-
tion set processors (ASIPs) can be used, like demonstrated for video encoding in [74]. In the
POWER8 architecture, IBM integrates a true random number generator, a cryptography
accelerator and a compression accelerator on the same chip with a multicore CPU [242].
Also the datapaths that execute the cryptographic instruction set extensions [253, 103]
introduced as feature extension in the previous subsection can be regarded as specialized
accelerators, just more tightly integrated than the previous examples. Particularly for
mobile computing platforms with their tight power budgets, ever more special function
units are integrated into Systems-on-Chip (SoCs). For example, according to an analysis
of Shao et al. -[231], in several recent Apple SoCs, more than half of the die area is spent
on up to 29 specialized IP blocks. Typical candidates for such special function blocks are
in the domains of image, video, audio and speech processing and of the wireless network
functionality.
Through different degrees and forms specialization, all these accelerators try to reduce

the overheads of instruction-based computing and data accesses through register files and
generic memory hierarchies. Dally et al. [66] quantify these overheads over the actual
arithmetic operations performed to amount for around 94% for embedded processors. For
GPPs, Horowitz [127] illustrates that instruction cache access, register file access and
instruction control together use between one and three orders of magnitude more energy
than individual arithmetic operations of various complexity. Hameed et al. [108] observe
a 500x efficiency gap between a fully customized ASIC and a general-purpose processor.
In order to reduce the relative impact of instruction overheads or “cost of programma-

bility”, Horowitz [127] points out that more operations per instruction can be helpful when
the costs for instruction-cache access and control remain relatively constant, but also that
the energy to access data in the memory hierarchy is important. Dally et al. [66] focus on
the energy needed to move around instructions and data and propose to reduce this energy
mostly through the use of more and better partitioned register files, whereas Hameed et
al. [108] seek to get a higher number of basic operations done per instruction. For their
video processing case-study, they show that SIMD and VLIW enhancements can increase
efficiency by around one order of magnitude and algorithm-specific instructions can yield
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Table 2.7: Power projections for the example loop from Listing 2.1 based on numbers from [127].
Six instructions use 70pJ each, including 6pJ for register file access. This part increases
for SIMD-instructions, which we omitted due to a lack of data. A single 64-bit access to
a 8KB cache uses 10pJ. Our loop example uses two 32-bit accesses. With the estimated
20pJ, we might be able to use a slightly larger cache instead. A single 32-bit add uses
only 0.1pJ.

Design Energy in [pJ] per Iteration

Instructions Data Cache Access Arithmetic
Unaltered 420 20 0.1
8x SIMD 420 160 0.8
32x SIMD 420 640 3.2
1024x SIMD 420 20480 102.4

more than an order of magnitude on top of that, closing most of the gap towards hardwired
logic. We observe that current GPU and manycore architectures mostly revolve around
such SIMD enhancements, whereas more specialized accelerators go more into the direction
of algorithm-specific instructions and circuits.
We briefly illustrate the argument of Horowitz and Hameed et al. with our running

example, based on numbers for simple in-order processor in 45nm technology from [127].
Based on these numbers, we project different components for the power consumption per
iteration of the loop body from Listing 2.1 in the first data row of Table 2.7. Each of the
six instructions uses 70pJ for a total of 420pJ. Each loop iteration requires two 32-bit data
accesses. We approximate these with the values for two 64-bit accesses to a 8KB cache,
which would require 10pJ each. Whereas the smaller data size in our example would likely
save some energy, larger caches or an access to main memory would require much more
energy. In the last column, the energy for the core arithmetic instruction (a 32-bit integer
add) of the loop is outlined. Its contribution to the total energy of the loop iteration is
minimal. Even a hypothetical floating point multiplication at 3.7pJ would be negligible
compared to the involved overheads.
In the next rows of the table, we outline alternative SIMD-variants that would, with the

same number of instructions, work on more data elements per iteration. Note that for the
simple loop from our running example, this is not possible due to the loop-carried depen-
dency. However, in the larger variants of this loop pattern, that we target in Chapters 4
and 5, outer loops enable vectorized execution. In the example here, we see that even
with a huge amount of SIMD parallelism, the energy for arithmetic remains dominated by
instruction overheads. However, unless data can be reused within registers, accesses to the
memory hierarchy start to dominate the overall energy consumption already at a medium
amount of SIMD parallelism. Note however, that due to a lack of data, our example
neglects the energy scaling for accesses to ever larger vector registers.
As a complementary efficiency driver, most accelerators first use abundant parallelism

suitable for their specific task and hence can in turn often be operated in efficient, relatively
low, voltage and frequency ranges and yet provide good performance. Along with the
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concept of simple and power-efficient processing pipelines, this was the guiding idea for
manycore architectures, but also most other accelerators are run at much lower clock
speeds than GPPs. An extreme example for this paradigm, is the IBM TrueNorth [91] chip
designed to execute brain-inspired neural networks. With 5.4 billion transistors, it exceeds
contemporary GPPs and GPUs in size and yet operates at three orders of magnitude lower
power. Note however, that this is not just achieved by conventional voltage and frequency
scaling, but the chip’s computing cores rather operate in an event-driven way.
The trend to integrate different accelerators with processors into SoCs is jointly driven

by efficiency, performance and cost considerations. On-chip communication can at the
same time provide much lower latencies and higher bandwidths and save energy by avoid-
ing physically long communication paths, transitions between different chips and circuit
boards and separate voltage regulation for different distinct components. In many usage
scenarios, heterogeneous SoCs with specialized accelerators are a more profound answer
to the challenge of dark silicon than mere heterogeneous multicores. When all transistors
cannot or even must not be productive at the same time, specialized accelerators can rea-
sonably exist to only execute some very specific parts of the entire workload of the chip
especially fast or efficient and remain unused at other times.
From the economic perspective, different aspects of on-chip integration of accelerators

overlap. Given sufficient volume, a SoC is much cheaper than assembling a comparable
system out of discrete components. However, considering the increasing design and mask
costs, the potential to customize a SoC’s composition for different customer demands
becomes very limited. On the other hand, in a power constrained scenario with dark silicon
characteristics, it can be viable to ship the same SoC with a wide selection of accelerators
to different customers, who each just benefit from a subset of the accelerators and leave
another subset unused as a form of deliberate dark silicon. Finally, while the chance to
differentiate a product with specialized IP blocks form the competitors has contributed to
a vibrant SoC ecosystem, the pressure to reduce time-to-market favors more programmable
accelerators.

2.2.4 FPGA Accelerators

Considering the observations of the previous three subsections, we think that FPGAs can
play an increasing role in the future computing landscape. In particular, the interplay of
two effects leads to this conclusion.

1. The challenge of transforming the transistor budgets into more usable compute per-
formance in the era of dark silicon is ongoing. Specialized accelerators successfully
meet this challenge for specific tasks.

Architecturally, though with a programmability overhead, FPGAs support all the fea-
tures of specialized accelerators that account for their efficiency compared to GPPs,
that is elimination of instruction overheads, task-specific flow of data through the cir-
cuit and customized parallelism that in turn allows efficient voltage/frequency design
points.
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2. When the most frequently executed tasks are covered with specific accelerators,
adding more accelerators suffers from diminishing returns in terms of tasks profiting
from these new accelerators. At the same time, increasing design and mask costs
limit the potential to customize the mix of accelerators in SoCs and similar prod-
ucts. Also, the time consuming process from identifying acceleration demand to an
accordingly specialized accelerator requires considerable time to meet new compute
demands.

With their programmability, FPGAs can be specialized for a large variety of tasks,
either over time in the same device or with different utilization of different devices
using the same FPGA chip, even for tasks that are not even identified during the
design. In Section 2.3.1, we outline how these are characteristics of general-purpose
computing that FPGA shine with.

Compared to circuits directly implemented in ASIC technology, FPGAs suffer from an
efficiency disadvantage of around one order of magnitude. Comparing ASICs to FPGAs
with DSP blocks and BRAM manufactured with the same 90nm process technology, Kuon
and Rose quantify the dynamic power consumption ratio as around 12x, the area gap as
around 21x and the ratio of critical path delay as 3-4x [161].
However, compared to instruction programmable processors, FPGAs still retain a consid-

erable advantage. DeHon [70] quantifies the density advantage of FPGAs over processors
in terms of ALU bit operations per area and time for different generations of FPGAs and
processors as one to two orders of magnitude. Sirowy and Forin [237] compare FPGAs to
a simple RISC processor and investigate with three case-studies how different circuit vari-
ants implemented on FPGAs need several orders of magnitude less cycles than the baseline
processor and even idealized variants of this processor. They conclude that beyond elim-
inating instruction overheads, aligning memory accesses to computations and forwarding
of data throughout compute pipelines have a major impact.
Overall, with an efficiency between that of GPPs and custom logic and the programma-

bility as core advantage over more specialized accelerators, the role of FPGAs somehow
resembles that of GPUs or manycores, yet with very different architectural approach. While
GPUs just avoid parts of the inefficiency sources of GPPs, FPGAs avoid them much more
radically when implementing compute circuits, but introduce programmability overheads
compared to custom logic. We illustrate this correlation qualitatively in Figure 2.2.
Chung et al. [58] study the design space of GPPs, custom logic, GPUs and FPGAs inte-

grated into heterogeneous single-chip architectures qualitatively for three different workload
types. Their results support the joint role of GPUs and FPGAs between GPPs and custom
logic both in terms of efficiency and performance. They also note that in several band-
width limited scenarios both GPUs and FPGAs are performance-wise almost on-par to
custom logic. Even though all applications in this study use floating point computations,
which conceptually favor GPUs, the performance and efficiency relation between GPUs
and FPGAs is a mixed picture. Considering this, there should be room for FPGAs to join
GPUs and possibly match in their actual market role for acceleration.
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Figure 2.2: Illustration of efficiency drivers for different architectures. The relative positions of
GPUs and FPGAs are neither a quantitative nor a qualitative statement and in practice
vary depending on workloads and concrete architectures.

Indicators for such a trend are in fact visible. Considering on-chip integration with
GPPs, both Xilinx with the Zynq series [214] and Altera with their SoC variants [19] are
shipping products, which combine ARM processors and FPGA fabric in order to profit
from the presented SoC integration advantages communication latency, power efficiency
and possibly costs. The amount of integrated special function blocks of these products
is not on par with non-reconfigurable SoCs and it remains to be seen, whether this is
a significant disadvantage on the market, or whether the versatility of the FPGA can
compensate for this. In the datacenter, Microsoft received considerable attention for a
large-scale deployment of FPGAs to boost performance and efficiency of its Bing search
engine and further upcoming workloads [213, 191]. Also, Intel, the world market leader for
GPPs, acquired with Altera one of the two largest FPGA producers and announced first
server products combining GPPs and FPGA.
For some workloads, a particular challenge for FPGA computing platforms is the off-chip

memory subsystem, which trails GPUs in terms of latency, bandwidth, and transparent
integration. Recent developments may help to overcome this issue, like products with
Hybrid Memory Cube (HMC) attached via high-speed serial transceivers, products with
coherent memory interfaces via the CAPI interface developed around IBM, and announced
Intel products that will connect an FPGA to the processor bus. As the much earlier
Convey HC-1 that is introduced in more detail in Subsection 4.3.2 illustrates, memory
performance of FPGA computing products is primarily a matter of cost, volume and added
value considerations and therefore can presumably quickly adapt to market demands.
Up to now, the market share of FPGA compute products in the general-purpose domain

is much lower than the technical arguments in this subsection may suggest. In particular,
there are no popular desktop or laptop or mobile computers with FPGAs, only first, small-
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scale public cloud computing products with explicit FPGA resources12 and only few HPC
installations with FPGAs. In contrast, in all these domains, GPUs are well established,
and manycores, despite sluggish availability, receive significant attention in the HPC and
datacenter domains. In the following section, we have a closer look at computing mar-
kets and domains along with their requirements for compute devices, before in Chapter 3
discussing reasons for this low adoption.

2.3 Computing domains and markets

Computing has always been driven jointly by two factors, on the one hand by the de-
vices themselves, which opened up new usage opportunities and on the other hand by
applications and markets, which demanded and payed for new capabilities and features.
Important conceptual and architectural aspects of the first driver, the device capabilities,
have been mentioned in the two previous Sections 2.1 and 2.2, in particular with regard to
parallelism.
In this section, we focus on the second driver, the markets that govern the economic

development of computing and on application types that represent these markets. We
start with the general distinction of the special-purpose and general-purpose computing
domains (Subsection 2.3.1). We then discuss in Subsection 2.3.2 how current FPGA usage
is mostly focused in the special-purpose domain. In Subsection 2.3.3 subdivide the general-
purpose domain into several markets where we see further potential for FPGA technology.

2.3.1 General-Purpose and Special-Purpose Computing

Computing devices can be grouped into the domains of special-purpose computing and
general-purpose computing, depending on whether at fabrication time, their functionality
is fixed or not fixed, respectively. Most special-purpose computing devices are more com-
monly denoted as embedded systems or embedded computers, utilized in cars, household
machines, photo and video cameras, many industrial machines and technical infrastruc-
ture like network switches. Typical examples for general-purpose computers are devices
like personal computers (PCs) and laptops, servers and mainframes. The markets for
general-purpose computers will be elaborated in more detail in Section 2.3.3.
There are two fundamental advantages of general-purpose compute systems. The eco-

nomic one is that costs can be shared, be it NRE costs that are shared among different
customer groups with different demands or be the individual costs of a specific system that
fulfills different demands of one or several users. The second advantage is a functional one,
the ability to perform computations that are not planned or possibly not even known at the
time when a general-purpose system is designed or deployed. The competing advantages
of special-purpose systems in contrast are, as indicated in the context of accelerators and
specialized processor architectures, efficiency, higher or more predictable performance, and
lower costs when the systems are produced in sufficient volume.

1http://www.xilinx.com/products/design-tools/software-zone/sdaccel/supervessel.html
2https://xilinx-cloud.jarvice.com
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The distinction between general-purpose and special-purpose is not always as clear as it
may appear at the first glance. We first present three criteria for distinction, then relate
them to other definitions, before discussing their limitations at the hand of examples and
drawing conclusions for the way these terms are used within this thesis.

1. Starting with the terms themselves, the purpose, functionality, workload or computa-
tional task itself serves as first criterion. Special-purpose computing here refers to a
single specific task or a narrowly limited set of related tasks, whereas general-purpose
computing implies a wider and more diverse task set.

2. The second aspect is the point in time, when the computational task is defined. If
this fixation takes place before or at fabrication time, this is characteristic for special-
purpose devices, otherwise for general-purpose devices. Note that the fabrication
time of an individual chip is often different from that of the compute system it is
used in, so the two can have different general- or special-purpose characteristics.

3. As third criterion, we summarize aspects of the design process of the devices. Any
form of specialization, e.g. with customized functional units, local memory for specific
access patterns, or interconnects for specific communication patterns, hints towards
special-purpose devices. On the other hand, efforts to reuse components of a circuit
for different functionality hint towards general-purpose devices. We here explicitly
refer to the intent to and effort towards reuse, because any processor, even after
heavy customization, exhibits some temporal reuse of functional components.

As another aspect of the design process, for special-purpose devices, along with the
workload, often a fixed performance goal is set, leaving cost, power and energy as
typical minimization objectives, even though often subject to additional constraints.
In contrast, in general-purpose domains, with explicit or implicit cost and power
constraints given, the typical design objective is to maximize performance.

Looking at distinctions presented in literature, Hennessy and Patterson [118] use the
ability of a device to execute third-party software to separate personal mobile devices like
current smartphones as part of general-purpose domain from embedded systems. This com-
bines the first two of the above criteria: third-party software is deployed after fabrication,
but it is also a means to provide a wide and diverse functionality.
DeHon [69], who focused on the architectural perspective of reconfigurable devices for

general-purpose computing, outlines two characteristics for general-purpose: To “Defer
binding of functionality until device is employed - i.e. after fabrication” directly corresponds
to our second criterion. His second key characteristic, to “Exploit temporal reuse of limited
functional capacity” is one aspect that we included in our third criterion.
In the Berkeley position paper on the landscape of parallel computing research [25], the

authors present the separation between fixed performance goals in embedded systems and
the need for ever higher performance in HPC. They also note, that the separation currently
is weakening, on the one hand because in both types of systems, power limitations already
have become a major design concern, on the other hand because media-oriented server
workloads may adopt more real-time, fixed performance goals from the embedded field.
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In a much earlier consideration of parallel computing in general-purpose domains, Hey [122]
makes an interesting distinction. He asserts that the first criterion for general-purpose com-
puting from our list, in his words the ability “to deliver high-performance on many different
types of problems” is only the view of vendors and enthusiasts. In contrast, the user of
contemporary general-purpose devices expects to have “a very wide range of standard lan-
guages, libraries, applications packages, operating systems and tools at his or her disposal”.
We pick up this aspect later in Chapter 3.
We next look at concrete examples for compute devices or rather classes of such de-

vices. We intentionally chose border cases, where the computing domains overlap and one
criterion hints to one classification and another criterion to the other. We start with au-
tomotive systems and smartphones to illustrate this tension field before proceeding with a
first assessment of the current position of FPGAs in Subsection 2.3.2.

Complex Embedded Systems in Automotive

As first device class, we consider the computer systems used in cars. In 2007, Broy et
al. [41] characterize the hardware and software systems of premium cars built around that
time with some numbers: around 70 electronic control units (ECUs), processors or micro-
controllers of varying complexity, are connected with each other and with a multitude of
sensors and actuators by several different bus systems. This high number of components
is to a large degree caused by the component based design of vehicles, where many sub-
systems, mechanical components, sensors or actuators are developed along with their own
control and compute systems. Together, these connected systems execute tens of millions
of lines of code with up to 2000 distinct software-based functions, which are combined
into around 270 functions that the user interacts with. As such, just on average each ECU
executes around 30 different tasks. Beyond the tendency to bring the functionality of those
systems from the premium segment into cheaper cars, there are two ongoing trends. On
the one hand, on the path to so called smart cars and autonomous cars, ever more software-
based functionality is added. On the other hand, for efficiency, reliability and cost reasons,
system integration needs to be increased, that is ever more functionality is combined into
individual components in order to keep the number of ECUs and the physical wires of the
interconnect in check.
So, considering size and diversity of the workload, one could argue that such automotive

compute systems as a whole already belong to the general-purpose domain. On the other
hand, as of now, the end-users generally can’t run third party software on these systems
and software updates from the manufacturers are well known in the form of bug-fixes, but
rather not to add new features, so functionality is mostly fixed after fabrication time. Also,
most tasks are characterized by hard or soft real-time requirements, exhibiting the fixed
performance targets typical for embedded systems. Therefore, overall we see automotive
computing systems still in the domain of embedded systems, however individual parts, like
subsystems for autonomous driving and infotainment currently seem to be in the process
of adopting more general-purpose characteristics.
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Modern Smartphones

As second device class, we examine current smartphones, which are already introduced
in Subsection 2.2.3 because of their many accelerator components. In contrast to the
automotive compute systems with their many individual components that are physically
distributed all over the car, for smartphones a very high system integration is a governing
design principle. This is caused not only be the form factor requirements, but also by the
energy savings that are possible by the integration of many different compute components
on a single chip into entire SoCs. According to a model in the the system drivers chapter of
the 2011 ITRS roadmap [137], as of 2011, such mobile SoCs combine, along with memory
and peripherals, 2 to 4 main processors and on average 129 additional processing engines,
grouped and customized for a smaller number of specific functions.
As mentioned earlier in this subsection, one defining feature of smartphones is the ability

to run third-party applications on an underlying operating system (OS). The extremely
versatile workload enabled by this ability is not only a driving factor for the success of
smartphones, but also a strong indicator for a classification as general-purpose devices.
The design principles would not allow such a clear classification. The main processing
cores are dedicated to be reused by the multitude of different applications and are adopting
cache hierarchies, superscalar out-of-order execution and SIMD instructions from conven-
tional GPPs, often clocked slower and scaled down for energy-efficiency. Their accelerators
contain highly customized special-purpose processing elements to enable high efficiency. It
is interesting to note, that parts of the functionality of special-purpose processing elements
is exposed via application programming interfaces (APIs) to be used by the third party
applications. Considering the optimization targets, the existence of benchmarking tools for
both performance and battery runtime illustrates that these SoCs combine characteristics
of general-purpose and embedded systems.

2.3.2 FPGAs in Special-Purpose Computing and Beyond

In this subsection, we approach the role of FPGAs as central components of special-purpose
devices and beyond, primarily based on the revenue reports of the two most important
FPGA vendors, Xilinx and Altera [276, 17]. These reports break down revenues into
markets, where FPGAs are currently employed. Looking at FPGA-based devices from
these markets, we can classify the majority of markets into the special-purpose domain,
but also see an emerging general-purpose use-case. Competitors like Lattice are even more
focused on the embedded marked [178]. As a side-note, even though the majority of
FPGAs go into the special-purpose and embedded domain, the majority of those systems
build upon embedded instruction-programmable processors like microcontrollers, DSPs
and ASIPs, and on customized hardware.
FPGA revenue by end markets has traditionally been dominated by the communica-

tions sector, comprising wired and wireless communication infrastructure. In 2012, both
Xilinx and Altera report [276, 17] more than 40% of their net revenue to be from this
domain. Typical systems containing FPGAs are high-end routers and switches as well as
cellular base stations. In these systems, FPGAs typically execute the same very specific
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tasks over the entire lifetime of a device. They are valued for the capability to represent
routing patterns in hardware and to process packets in a pipelined and highly customized
way. Considering this, the role of FPGAs here is clearly that of special-purpose devices.
Their direct competitor are ASICs, which promise lower costs at high volumes and higher
energy efficiency, but incur higher NRE costs and longer times-to-market. However, in this
comparison, FPGAs also excel with capability to fix bugs or even add new features after
fabrication time. In computer networking, the approach of software-defined networking
(SDN), which allows to define or modify network decisions by rules written in software,
may lead to stronger dependence on the programmability of FPGAs in this domain.
Other end markets for FPGAs are industrial automation, the automotive domain par-

ticularly with entertainment and driver assistance subsystems, military applications e.g.
for secure communications, medical imaging, and consumer devices like television set-top
boxes. Overall the importance of these sectors increases, but no single domain matches
the communications sector yet [278, 18]. For the vast majority of applications in these do-
mains, the characterization is similar to that in the communications segment. FPGA-based
systems are marketed as appliances with a fixed and narrow functionality. Their FPGAs
are special-purpose components configured with a customized design and executing a task
that is fixed before system fabrication. The FPGA’s programmability however, is again
valuable to reduce time-to-market and to allow for updates and bug-fixes. Considering
these diverse markets, in contrast to the FPGA-based embedded systems, the FPGAs
themselves, as fabricated chips from Xilinx or Altera, are general-purpose products, which
considerably profit from the opportunity to share NRE costs among different customer
needs. In particular, due to the high volumes of the combined FPGA markets, FPGAs can
be produced with more advanced manufacturing technology than most ASICs and thus
overcome or reduce efficiency and volume cost advantages of custom hardware.
In contrast to the above markets, there are two subdomains showing up in both FPGA

manufacturers’ reports [278, 18], where programmability of FPGAs is not just a bonus, but
a prerequisite for the respective usage scenario. The first market is summarized as testing,
the other one is high-performance computing (HPC). In the testing domain, FPGAs are
used to generate test inputs for other circuits and analyze their outputs, but they are also
employed to emulate or prototype new ASIC products. For these applications, the possi-
bility to program and change the FPGA’s functionality after fabrication time is crucial.
Hence, if the testing domain can be at all characterized as one of the computing domains
introduced above, it falls into the general-purpose realm.
For HPC, FPGA-based compute products have been introduced as accelerator com-

ponents, attached to secondary CPU sockets of multi-socket mainboards [273], as PCIe
accelerator cards in typical external GPU form factors or as addition to customized main-
boards [213]. Two of these FPGA-accelerated compute systems, a Convey HC-1 [40]
with in-socket FPGA accelerator and a Maxeler MPC-X system [175] with PCIe-attached
FPGAs, are the target of the practical evaluations presented in this thesis and will be pre-
sented in more detail in Section 4.3. Architecturally such systems are capable of performing
a wide range of general-purpose tasks, which is reflected by actual usage in academia. Just
in our research group, the two systems have been utilized for diverse tasks like image pro-
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cessing [4, 5, 6, 8], motion estimation for video encoding, finite difference time domain
(FDTD) simulation [184, 90] for nanophotonics, short read mapping in bioinformatics,
heat transfer simulation [8], Markov chain steady state computation [8], correlation matrix
calculations [8], and cryptographic key search [10] and reconstruction [9].
However, it seems that, up to now, the commercial success of many FPGA compute

products is closely linked to focused support for a few application classes and production
systems often get deployed exclusively for one application. For example, in the finan-
cial sector, low-latency packet processing [266, 192] and asset pricing using Monte-Carlo
methods [270] are applications where FPGAs are successfully utilized. Several standard
methods from bioinformatics, such as Smith-Waterman, BLAST and hidden Markov mod-
els are, apart from academic research [287, 141], often marketed as integrated software
and hardware solutions using FPGAs [115, 132, 28]. Stencil computations from seismic
analysis for oil and gas exploration are implemented on FPGA products [84]. Academia
has also presented various cryptographic applications for FPGAs [160, 104] and [10, 9].
We can assume that professional users in this domain have large FPGA installations for
such applications, but prefer to remain unknown. To summarize the commercial usage
of FPGA-based compute products, many systems are used like special-purpose products.
They are purchased for a single task or narrowly defined task set, sometimes even de-
signed for that purpose with specific performance targets. Third-party software often can
be executed, but actually is not. Nevertheless, architecturally, most of these FPGA-based
systems are general-purpose capable, as the academic use-case above underlines.
In contrast to the previous examples for commercial use of FPGA compute products, the

recently emerging Microsoft Catapult system, first presented to accelerate the Bing search
engine [213], is explicitly aimed at a broader range of workloads in the datacenter [191]. In
other words, a key factor for the Catapult system architecture is to leverage the general-
purpose computing capabilities of FPGAs. Research on new application fields for these
systems, for example deep learning, are no longer purely driven by the desire to use the best
available hardware design for an application, which might be a larger GPU installation as
of now. Instead, in order to harvest consolidation benefits in its datacenters, the company
also considers it beneficial to have further useful applications that can efficiently make use
of the existing FPGA accelerators.
To summarize this subsection, we presented our view on the current state of FPGA

markets. In terms of revenue, embedded devices still clearly dominate, but there are
success stories of FPGAs accelerators in HPC. Yet, the trend to fully embrace FPGAs as
general-purpose compute products is still in its infancy. In the next subsection, we further
structure the general-purpose markets, before in Chapter 3, we discuss reasons for the
current low adoption and requirements and our ideas for further adoption of FPGAs in
general-purpose computing.

2.3.3 Markets and Workloads of General-Purpose Computing

In Subsection 2.3.1, we have defined general-purpose computing in contrast to special-
purpose computing. In this section, we now give an overview of the markets for general-
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purpose computing, characterize the workloads encountered there and assess the potential
role of FPGAs.
General-purpose computing can on the highest abstraction level be subdivided into per-

sonal and server usage.

Personal and Mobile Computers

Besides the proverbial PCs, which fall into the categories of desktop and laptop computers,
devices for personal use encompass tablet computers and smartphones. Used both for
professional and consumer purposes, the common characteristic of these devices is that
they are used by one person at a time and typically one or sometimes few persons over
time.
A usage study on Windows 7 systems with Intel CPU, thus covering only PCs, clas-

sifies application domains as “Web, Communication, Office, Media Consumption, Media
Editing, Game, Utility, Network Apps and IT” [215], with usage categories ranked by user
interaction time. The analysis of CPU usage roughly follows this sequence, with gaming
causing disproportionally more and office applications causing disproportionally less CPU
usage than indicated by the interaction time. Additional load is caused by system pro-
cesses and anti-virus software, not detailed further. For the groups of applications the users
deliberately interact with, further descriptions and examples are given, for example “Com-
munication” includes “VOIP, instant messangers [and] email”, “Utiliy” includes “Backup,
archiving, tuning [and] print”, “Network Apps” include “Peer-to-Peer, remote desktop [and]
FTP” and “IT” includes “Software development [and] databases” [215].
The diversity of these groups, which also tend to have very different characteristics in

terms of available parallelism and computational requirements relative to memory and IO
behavior, underline the challenge of general-purpose platforms to provide good performance
for any given workload. The study also identifies distinct clusters of users. The usage
patterns of the four largest groups put special emphasis on web, office, gaming and media
consumption respectively [215]. Next to the challenge of versatility, this also underlines
the value of sharing NRE among different user groups. CPU vendors are successful in this
regard and differentiate between individual user demands and price points by matching
performance classes and features, which are often not inherent to the sold products, but
artificially inflicted. The development of GPUs has been fueled by demand from users with
gaming emphasis, but now also serves other user interests, both within the same device
class, such as media consumption and editing, and beyond. Upcoming FPGAs adoption
in the PC market is unclear and may depend on a single, sufficiently important, usage
scenario, where they provide sufficient added value alone, before being also used for other
purposes. In 2011 and 2012, a small wave of FPGA computing devices was integrated in
or attached to PCs for Bitcoin mining [251], however they were soon surpassed by fully
custom ASICs and never formed a critical mass.
Within the market of personal general-purpose computing devices, there is a strong

trend towards higher mobility of devices, with sales of desktop computers peaking in or
before 2010, laptop computers in 2011, tablet computers in 2014 according to forecasts,
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and smartphone sales still growing [134, 38]. With mobility, the requirements for energy
efficiency are growing and have contributed to the trend to specialized accelerators in
smartphones as discussed in Subsection 2.2.3. For the market of personal mobile devices,
say smartphones and tablets, we have no detailed application domain data as for the PC
market, but we can note that known accelerators can mostly be attributed to the media
consumption and editing and gaming domains, or fall into the system domain. ARM,
licensor for most processors in the mobile domain, predicts a trend towards technologies
enabled by more and more accurate sensor data, such as noise cancellation, location aware-
ness, recognition of gestures and handwriting [24]. Related tasks involve signal processing
workloads, which are well suited for acceleration with custom circuits or FPGAs. NRE
costs and time-to-market can ignite FPGA utilization in this domain. For tasks that don’t
require acceleration at the same time, temporal reuse of the same FPGA accelerator may
provide an additional cost advantage, however in the era of dark silicon needs to take en-
ergy efficiency into account. Whereas FPGA energy efficiency cannot compete to custom
accelerators implemented in the same process technology, it can conceptually do well com-
pared to the general-purpose components of mobile SoCs. In practice, FPGAs may need to
embrace energy savings techniques like power gating more resolutely in order to compete
in this market. However, after FPGAs enter this market as accelerators with limited scope,
there are incentives to use them for further, more general-purpose computing tasks.

Sever Class Computers

In contrast to personal devices, server class computers typically handle requests or tasks
from many users, often concurrently, but also over time. Hennessy and Patterson [118]
distinguish between servers and warehouse-scale-computers, distinguished not only by size,
but also workloads, system architectures, and approaches for failure handling. In the
revenue breakdown of Intel’s data center group, we find as rough correspondences to servers
and warehouse-scale-computers the categories enterprise and cloud and a third category
combining HPC, workstation, networking and storage [190]. According to Intel’s projection
for 2016, each of the three categories will make roughly equal contributions to overall
revenue.
Typical workloads for servers in the enterprise domain contain transactions on databases,

along with business logic and websites. These workloads are dominated by integer opera-
tions and mostly contain thread-level parallelism through different requests, however the
transactional character [107] of operations on the databases and business logic requires
careful synchronization of threads. The three tasks of databases, business logic and web
frontends are often distributed to distinct computers, such that each individual system
often performs just a single task type over time. This offers room for customization [24],
which started with configuring core counts and frequencies, memory hierarchy and storage,
but can also include customization of processor ISAs to ASIPs. However, so far the tasks
for which the systems are specialized seem to be too complex to be entirely performed on
specialized accelerators.
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Warehouse-scale-computers [118], or systems of hyperscalers as they are called by Mor-
gan [190], combine many commodity or server class computers into huge clusters and
achieve availability of services through redundancy of running nodes and management
layers in software. They execute as one part of their workload similar tasks as enter-
prise servers. However, their typical search and social media services use much relaxed
transactional requirements, denoted as eventual consistency [262] and thus can easier ex-
ploit the thread-level parallelism of different requests. Another typical application class
for warehouse-scale-computers are map-reduce [68] algorithms through frameworks like
Hadoop3 and Spark4, now both maintained by the Apache Software Foundation. The
map-reduce pattern is specifically designed to distribute the processing of large datasets
(“big data”) among many server nodes.
Through the paradigms of software as a service (SaaS) and cloud computing, manifold

tasks from personal and mobile computers, as well as from classical servers, have been par-
tially or entirely moved to warehouse-scale-computers. For the hyperscalers, the central
value proposition is consolidation. With resource demands that can be partially steered by
pricing, the systems can run most of the time at the desired load levels that allow for max-
imal efficiency. For users, services running externally, “in the cloud”, open up the chance
to obtain task-specific performance levels without up-front hardware investments and with
little impact on the local power budget. Through SaaS and cloud computing, the workload
of warehouse-scale-computers is very diverse in terms of available parallelism and predom-
inant operations, from integer dominated tasks with high requirements for single-thread
performance over throughput oriented tasks to SIMD-favorable media processing. The
striving for efficiency has led to the customization of warehouse-scale-computers or parts
of them [213, 116, 190], which however somewhat conflicts with the consolidation paradigm.
While GPUs are successful in the media processing domain and recently particularly shine
for neural network processing and deep learning [116, 235], they are hardly suitable for other
cloud workloads with predominantly request-level parallelism [213]. Hence, in retrospec-
tive, it comes as no surprise that such workloads inspired the first large-scale deployment
of FPGAs in the data center [213], as indicated in Subsection 2.3.2. Once such FPGA
installation are available, further workloads can use them, whenever they overcome abso-
lute performance limitations as in [213], or are more cost effective as in [191]. Accordingly
adapted applications can also migrate back to enterprise servers that for other reasons like
privacy are not replaced by cloud solutions.
The paradigm of On-The-Fly (OTF) computing that is proposed and researched in the

collaborative research centre (CRC) 901 “On-the-fly Computing” at Paderborn Univer-
sity goes beyond the established SaaS and cloud computing paradigms. OTF computing
revolves around the idea of individually and automatically configured information technol-
ogy (IT) services, whose components are traded on markets, can be flexibly combined and
executed on-demand [185, 186]. The research of CRC 901 encompasses techniques for con-
figuring and executing these services [110] as well as the required market mechanisms and
infrastructure. Many results presented in this thesis are partially driven by the demand

3https://hadoop.apache.org/
4https://spark.apache.org/
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of efficient execution of services in this context. We expect the workloads of On-The-Fly
(OTF) computing to be at least as diverse as those of warehouse-scale-computers, however
with much more versatility and variations over time because services are not executed as-is,
but configured and adapted based on individual demands.
In order to be commercially successful, the execution such OTF services should not

fall short of the efficiency obtained by established hyperscalers for their less configurable
services and therefore needs to make use of any accelerator technology that is established
there. Hence, as we see FPGAs gaining traction in the cloud, we want to make sure that
the methods to use them can cope with the dynamics and versatility of the OTF paradigm
through fast and automated compilation and offloading techniques. Due to the approach
of decoupling software catalogs, service composition and execution in compute centers
through markets, there is also an increased demand to enable target-specific optimizations
directly prior to execution, at a compute center that may just have compiled binaries at
its disposal.
Finally, HPC is yet a different segment in the market of server class computers. In this

segment, typically compute nodes with higher individual performance than in warehouse-
scale-computers are interconnected with higher bandwidths and lower latencies than in
warehouse-scale-computers. The design goal for these systems is to achieve the highest
possible performance that allows to solve computational problems that can otherwise not
be solved within acceptable time frames. The workloads are mostly numerical simulations
of phenomena from the physical world. These simulations tend to use many more floating
point arithmetic than other workloads and often can and need to exploit DLP through
SIMD instructions and through parallel processing on many nodes to achieve the required
performance. Consequently, many applications from this domain are well suited for GPU
architectures and many early success stories of GPUs as general-purpose devices [201] cover
HPC applications.
When data-parallel floating point performance along with massive off-chip memory band-

width is required, current FPGA computing products can currently not match GPUs.
Similarly, GPPs can be superior when HPC applications map well to their cache hierar-
chies and profit from their SIMD units. In terms of energy efficiency FPGAs can already
be the best platform even in such a domain [149]. As long as it is possible to reach the
performance goals, users of HPC systems in academia, who often don’t pay for power and
cooling, are relatively insensitive to efficiency considerations. However, when HPC systems
hit practical power limitations, more power efficient systems are mandatory and are likely
to make use of FPGAs for their efficiency and versatility [229].
Also, whenever FPGAs can profit from customization of operations, data types or lo-

cal memory reuse, they can already overcome GPUs and GPPs in raw performance [247].
Additionally, recent Altera FPGAs reduce the gap in floating point performance [191].
Even though sometimes bound to existing codes for a long time, computational scientists
are willing to put extensive effort into overcoming performance boundaries, for example
through higher-order methods that reduce communication overheads, as exemplary illus-
trated by [156], so low adoption of FPGAs in the HPC domain is particularly surprising.
Beyond the general considerations around productivity that we introduce in Section 3.1.3
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Table 2.8: Summary of opportunities for FPGAs in general-purpose markets.

Market Drivers for FPGA usage Alternative

Mobile computers NRE costs, time-to-market, reuse Custom accelerators

Energy efficiency, performance Mobile GPPs, GPUs

Datacenter, OTF Energy efficiency, performance GPPs

Energy efficiency, versatility,
performance

GPUs

HPC Practical power limits, GPP, GPU, Manycoreperformance, customization

and tackle within this thesis, a HPC-specific issue may be the focus of the FPGA commu-
nity on strong scaling, that is acceleration of a workload with fixed problem size. Weak
scaling, that is the ability to solve larger problem sizes on larger HPC systems is more
important for many computational scientists, but may have been neglected by FPGA re-
searchers because of the tight links to the embedded community.

Opportunity Matrix

After this brief excursion into markets of the general-purpose computing domain, we sum-
marize the architectural and usage potential for FPGAs in this domain with Table 2.8. For
mobile computers, we see them enter as alternative to a further growing collection of cus-
tom accelerators. In large-scale datacenters, they have recently entered for performance
and energy reasons and seem to fit well to workloads with request-level parallelism. In
the HPC domain, they will be needed under practical power limits and can also increase
absolute performance.
To summarize this section, we have first characterized the distinction between general-

purpose computing and special-purpose, embedded computing. We have outlined how
FPGAs up to now are mostly used in the latter domain, but are architecturally and ac-
cording to individual success stories interesting candidates for general-purpose computing.
Investigating the markets for general-purpose computing in some more detail, we see indi-
cators that FPGAs may be even more promising as accelerators than GPUs.

2.4 Chapter Conclusion

In this chapter, we presented different paradigms of computing and how FPGAs com-
bine the programmability of CPUs with the design concepts of custom circuits. We have
discussed how the technology and architecture trends, with increasing pressure towards effi-
ciency and difficulties to translate more transistors into higher performance, point towards
programmable accelerators, such as GPUs and FPGAs. Investigating computing domains
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and markets, we have presented how FPGAs are up to now mostly used for special-purpose
computing, but how various general-purpose computing markets could profit from their
flexibility as accelerators. We have introduced individual success stories of FPGAs in this
domain, but stated that overall adoption trails that of GPUs and manycore architectures.
We have intentionally not discussed productivity as central reason for this discrepancy

between perceived potential and actual adoption within this chapter. In the following
Chapter 3, we discuss this gap, and present our three-pillar approach to overcome it.
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CHAPTER 3

The Case for general-purpose adoption of FPGAs with the help
of Overlay-Architectures

After focusing in the previous chapter on architectures and their performance drivers for
different usage scenarios, in this chapter, we discuss how well-performing implementations
of general-purpose workloads need to find their way to FPGAs to reach this market. In
Section 3.1, we observe how performance and productivity considerations go hand in hand
for general-purpose architectures and investigate how FPGAs currently fit into this frame.
Based on this analysis, we propose a three-pillar approach to general-purpose adoption of
FPGAs. Besides libraries and accelerator-friendly OpenCL specifications, overlay architec-
tures with accompanying productive design flows can play an interesting, but insufficiently
understood role in this approach. Section 3.2 structures related work on overlays under
this premise. Thus, this chapter combines on the one hand an analysis with own original
positions and on the other hand a broad coverage of related work.

3.1 Between Performance and Productivity Walls

In this section, we first review how productivity, binary- or code-compatibility and perfor-
mance scalability affected the adoption of new architectural paradigms in general-purpose
computing. We briefly touch the effect of system architectures on productivity, before dis-
cussing how FPGAs are only slowly catching up with regard to performance productivity.
Based on this observation, we introduce a three-pillar model for FPGAs in general-purpose
computing, of which our specific focus is on overlay architectures.

3.1.1 Productivity of General-Purpose Architectures

The historic success of general-purpose CPUs largely built upon two pillars: firstly, on
the straight-forward programming model with — from a programmer’s perspective — se-
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quential execution of a single instruction stream, and secondly on the “free lunch” [248] of
performance scaling. In the era of geometric scaling, this “free” performance scaling allowed
to get higher performance for the same applications from every new processor generation
and to a lesser degree from more expensive processor models of the same generation. As
discussed in Subsection 2.2.2, besides frequency scaling, this was achieved through the ex-
ploitation of ILP. Dynamic superscalar architectures achieve performance scaling through
ILP in hardware, thus allowing for binary compatibility, whereas most VLIW architectures
require recompilation to make use increased ILP, but offer performance scaling at code
compatibility.
The comfortable situation of perceived free performance scaling allowed many software

developers in general-purpose computing to focus much more on design productivity and
on introducing new application features, than on low-level performance engineering. Nat-
urally, the high-level runtime complexity of utilized algorithms could hardly be neglected
for most programs running on all but trivial data sizes, but optimizations for specific fea-
tures of processor architectures were often left aside, or even not exposed by high-level
programming languages.
Multicore processors as major architectural paradigm in the era of equivalent scaling

changed this situation. This paradigm essentially offers the choice between either binary
compatibility at roughly stalling performance levels for sequential applications, or perfor-
mance scaling at the expense of redesigning many applications around concurrency. This
was perceived as a shock by the software development community [248, 249] and was dealt
with in very different ways in the various market segments introduced in Subsection 2.3.3.
In the domain of personal computers, acceptance for dual core processors was fueled by
perceived performance gains, when a single interactive application can use all the single-
threaded performance of one processor core while background and system processes run on
the second core. However, individual applications only slowly moved towards exploitation
of several cores, lead by media processing tasks with much DLP. In contrast, many server
workloads contain sufficient request-level parallelism. However, particularly for transac-
tion dominated workloads, programming for concurrency required considerably more effort.
Virtualization and cloud computing facilitated the path to make use of multicore proces-
sors by deploying several service instances per server [193]. The HPC community overall
was probably best prepared for multicore architectures, with established programming pat-
terns for parallel processing. In this domain, shared-memory systems were already known
before they became the dominating architecture for single compute nodes with multicore
processors. For such shared-memory systems, the OpenMP1 API is widely used to han-
dle parallelism. In the most straightforward way, it distributes the iterations of parallel
for-loops to different threads on different cores and thus primarily exploits DLP. More
recent incarnations of the OpenMP standard focus on increased support for TLP through
models for independent [196, 203] and dependent [204, 195] tasks. A particular benefit
of OpenMP runtime system is the ability to specify the number of threads for each exe-
cution, thus for applications with the right form and amount of parallelism, it combines
performance scaling with binary compatibility for multicore architectures. Intel’s Cilk

1http://openmp.org/wp/
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Plus2 language extensions and compiler together follow a similar approach to OpenMP
by exposing parallelism through pragmas and scheduling tasks to different CPU cores at
runtime. Suitable parallelism from for-loops is also translated into SIMD instructions.
SIMD units are, orthogonally to multicores, another architectural feature for parallelism

that often requires to choose between binary compatibility and performance scaling. Be-
tween the fully automated generation of SIMD instructions by compilers, which retains code
compatibility but often yields limited performance gains [172], and the manual specifica-
tion of SIMD instructions in assembly language, different approaches with intrinsics [288],
pragmas [157][4] and code generation [102, 150] have been explored, and generally involve
trade-offs between productivity and resulting performance. Along with partitioning and
offloading aspects, SIMD code generation for an FPGA-based platform is a central theme
in Chapter 5. Hennesey and Patterson [118] note that SIMD architectures are generally
easier to program than MIMD architectures like multicores. This is mainly because they
don’t exhibit possible race conditions between different threads, but are limited to DLP.
Also, many measures to use the SIMD units of general-purpose CPUs can remain local due
to fine granularity and low overheads to switch between SIMD and sequential instructions.
In contrast, GPUs target DLP with SIMD and SIMT paradigms at a much larger scale.

With the emergence of these architectures, binary compatibility and code compatibility to
CPUs has been given up with CUDA as first successful specification language for GPUs as
general-purpose computing devices. Soon after, with OpenCL another specification lan-
guage was developed that promises portability between multicores, manycores and GPUs
for kernels specified with it. Through online compilation, the actually code compatible
kernels can be perceived as binary compatible between different architectures, however
performance portability and scaling between different architectures is highly fluctuating.
Later, with OpenACC, another programming standard has been presented that portably
targets GPUs and manycore architectures through compiler directives. For an intermedi-
ate representation generated from OpenACC code, Sabne et al. [220] evaluated the perfor-
mance portability and show that code variants optimized for one GPU model achieve on a
GPU from a competing manufacturer 85% to 91% of the peak performance on the latter
platform. Between a manycore platform and the GPU platforms, performance portability
is more limited leading to between 65% and 74% of peak performance.
We see three essential factors that contributed to the success of GPUs accelerators in

general-purpose computing despite the need to write new code with a new programming
language or API when starting from a CPU implementation.

1. The promise of significant performance gains with one or two orders of magni-
tude [201] using widely available and competitively priced hardware and compelling
roadmaps towards even faster upcoming GPU generations justified the development
effort. As competitor, it is exactly the magnitude of these performance gains, that
Intel challenged in [166].

2https://www.cilkplus.org/
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2. An educated guess about the applicability of GPUs for an application type is rel-
atively easy [269], for example based on available DLP, simplicity of control flow,
arithmetic intensity and off-chip memory bandwidth.

3. GPU manufacturers, particularly Nvidia, invested heavily into compilers, debuggers,
performance analysis tools, documentation and examples, and made most of these
available free of charge [80, 162, 256]. This allowed for a steep productivity curve
and low entry hurdles for the new architectures.

4. The SIMT programming pattern of CUDA and OpenCL allows to effectively cover
parallelism both for SIMD and multicore execution, whereas with many other for-
malisms established in the CPU domain, these two need to be handled separately.

For many markets, another important consideration was the commercial availability of
general-purpose GPUs from two independent manufacturers and the code compatibility
between the two within the OpenCL language [80] and later on via OpenACC.
In the segment of manycore architectures, the first commercial product generation from

Intel, based on the Knights Corner architecture, offers limited binary compatibility to the
multicore CPU product line. Since the SIMD execution units have different instruction
formats, code compatibility for performance scalability depends on the effectiveness of the
compiler support for specific codes. The code compatibility is however perceived as an
important factor, why manycore accelerators were able to catch up to GPUs in the HPC
domain quickly [256, 162]. With the following Knights Landing architecture, Intel aims
at full binary compatibility to the multicore products, with performance scaling that just
depends on the the degree of exposed SIMD and multicore parallelism.
Beyond this rough overview of compatibility and specification methods between and

for different architectural approaches, it has to be noted that for some applications, effi-
cient utilization of the respective architectures is achieved through underlying libraries with
highly optimized implementations. For example for the Basic Linear Algebra Subprograms
(BLAS)3 library for linear algebra, among other development communities, several hard-
ware manufacturers like Intel, AMD and Nvidia maintain implementations that are tuned
specifically to the respective features of their compute devices. Using libraries to achieve
hardware specific optimized performance is compelling from a productivity perspective,
but limited in scope. Libraries with very fundamental functionality are applicable to many
applications, but often just cover small parts of the overall program runtime. More spe-
cialized libraries have a higher chance to cover more of the performance relevant parts of
an application, but are only applicable within narrow problem domains.
Overall, we conclude that after the end of free performance scaling with binary com-

patibility, developers have taken up the challenge to employ different new programming
techniques and paradigms in order to benefit from the performance opportunities that new
architectural features offer in various domains. However, in order to keep productivity
high, effort and expected gains seem to be carefully traded-off. Many of the successful

3http://www.netlib.org/blas/
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new programming paradigms for parallelism offer not just one-time performance gains,
but after the transition also open up a new path to future performance scaling with code
or binary compatibility.

3.1.2 Impact of System Architectures

Within libraries and beyond, the granularity of individual code segments that can profit
from specific hardware features and architectures tends to increase from SIMD instructions,
which only use different registers within the same CPU core, over homogeneous multi- and
manycore architectures, to heterogeneous architectures, where GPUs, manycores or FPGAs
are used as external accelerators to a general-purpose CPU. The interplay of homogeneous
or heterogeneous resources and functional and efficient memory management between those
can be an additional hurdle for developers.
For homogeneous multicore architectures, the challenge for programmers to ensure cor-

rect functionality with concurrency and synchronization has already been mentioned in
previous sections. In order to optimize performance, tasks and subtasks also have to be
distributed to different cores with patterns that minimize communication and maximize
data locality in memory blocks that are tuned to the specific cache hierarchy of a multi-
core processor. Depending on the applications, this can require significant efforts by the
programmer, or can be automated, for example with polyhedral optimization methods [36].
For many current systems with accelerators, memory placement and synchronization are

not just a performance challenge, but separate memory spaces and the process of offload-
ing tasks outside of the scope of the OS require appropriate solutions already for mere
functionality. Around this challenge, significant activity from hardware manufacturers can
be observed. Nvidia in two steps introduced a runtime system that allows programmers to
use a programming model based on shared memory, even though the underlying hardware
still needs to move data between two distinct memory locations [109]. The Heterogeneous
System Architecture (HSA) foundation4 around AMD and ARM promotes shared mem-
ory architectures for heterogeneous on-chip integrated systems around CPUs, GPUs and
DSPs, and introduced a common intermediate language to program such systems [128].
Similarly, under the roof of the OpenPOWER foundation5, shared memory protocols for
external accelerators are specified, which let IBM POWER CPUs interface with Nvidia
GPU via NVlink and FPGA via Coherent Accelerator Processor Interface (CAPI). With
the upcoming manycore products based on the Knights Landing architecture, Intel moves
the manycore processors back from accelerator boards with an offloading model to homo-
geneous system architectures. The announced Xeon processors with FPGAs will be hetero-
geneous, but are expected to share main memory between CPU and FPGA. In Chapters 4
and 5, our presented solutions deal as one aspect with the challenges of distributed memory
and shared memory with non-uniform memory access (NUMA) characteristics with library
and compilation approaches respectively. Looking further into the future, in Chapter 6,

4http://www.hsafoundation.com/
5http://openpowerfoundation.org/
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we analyze the potential of current trend to integrating reconfigurable accelerators into a
shared memory hierarchy.
Overall, heterogeneity and separate memory spaces are a challenge for FPGA acceler-

ation, and currently integration of FPGAs in heterogeneous systems is trailing that of
GPUs. However, when general-purpose computing with GPUs gained traction, early GPU
accelerators were no more closely integrated into systems than FPGAs are now. Therefore,
the challenge of heterogeneous systems may have slowed, but obviously has not prevented
the success of GPU accelerators in several general-purpose computing markets. In the PC
domain, GPUs may have profited from a dual usage scenario of computing and graphics
rendering, but in the HPC and cloud domains, the impact of graphics rendering capabilities
to GPU adoption is minimal. Therefore, we further need to investigate the programming
models for FPGA accelerators themselves as a major factor that currently limits their
wide-spread adoption.

3.1.3 FPGA Productivity

On an abstract level, until recently, application developers needed to adopt new program-
ming models to offload code from general-purpose CPUs to FPGA accelerators, just like
for early GPU accelerators. However, the traditional design route via HDL with VHDL
and Verilog, as outlined in Subsection 2.1.4, requires not only to learn new program-
ming languages, but the underlying programming model is very different from software
programming models. The designers not only need to combine structural and behavioral
descriptions, the behavioral description also gives up the sequentiality of most software pro-
gramming models and instead requires the designer to specify anything that can happen in
each cycle [113]. Thus, the move to FPGAs as accelerators is much more time-consuming
and difficult than to multicore and GPUs architectures. Also for experienced develop-
ers, design productivity is arguably lower for circuits and programmable hardware than
for software. In particular, the compilation and synthesis flows takes much longer than
software compilation, and simulation and testing is slower because the simulated target
systems are structurally different from the host systems, on which they are designed.
Code compatibility of HDL designs between different FPGA models, also from different

manufacturers, is conceptually given, but requires the new target FPGA to be sufficiently
large. In practice many more problems can arise, from the availability of compatible
interfaces in hardware and in configurable fabric, over incompatible low-level optimizations
for specific hardware components like LUTs and DSP blocks, to timing issues during the
synthesis phase. Even performance scaling to larger or newer FPGAs can be problematic, as
many design decisions in HDL tend to depend on specific performance targets or resource
constraints and may not be easily parametrized for flexible trade-offs between area and
performance.
FPGA manufacturers, tool designers and academia have long worked on improving de-

sign productivity under the label of high-level synthesis (HLS). The idea of HLS is to
generate FPGA or hardware designs from more abstract and more familiar, software-like
programming models and language constructs. A main challenge for HLS is, that sequen-
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tial, C-like programming models and languages seem to be most appealing to application
programmers that want to accelerate their software with reconfigurable or customized
hardware, but in order to generate efficient hardware, the synthesis tools need information
about concurrency, timing and customized memories or buffers [76].
However, recently, increasing numbers of developers from the FPGA domain consider

tools like Vivado HLS6 (formerly AutoESL [177]) as viable design path that is able to
produce functional FPGA designs from many C and C++ sources out-of-the-box and
provides the designer with effective ways to influence the generated design for performance
or area critical parts of the code through pragmas or directives. Thus, both for experienced
and new FPGA developers, HLS significantly facilitates the steps to a first working design
and opens up a path to incremental improvements. For such optimization steps, a deeper
of understanding of the target architecture is still important.
The HLS tools typically perform source-to-source transformations form C-like languages

to HDL and thus depend upon the HDL synthesis flows. Thus, some of its problems like
less-then-perfect code portability and long tool runtimes can also be observed with HLS.
However, HLS tools like Vivado HLS also support faster simulation on a higher abstrac-
tion level and thus require fewer of the very time-consuming simulation and synthesis steps
of HDL. Compared to bottom-up HDL designs, the approach of incremental design opti-
mizations also greatly increases productivity when design decisions like parallelism or data
buffering need to be changed late in a design. This also brings HLS approaches closer to
performance scalability at the source code level, because in some designs, parallelism can
easily be adapted to the available resources.
One HLS variant, for which both Altera and Xilinx particularly pushed forward their

respective tool chains recently is based on OpenCL as specification language [65]. This
approach is attractive because the language is already designed around parallelism, off-
loading and different memory spaces and thus requires less target specific pragmas to
generate corresponding FPGA designs. The OpenCL synthesis flows offer, within their
respectively supported versions, full code compatibility to other accelerators and thus give
access to existing code bases and to a pool of additional potential FPGA developers. How-
ever, performance portability from other architectures or between different FPGAs, as
well as performance scaling are two more ambiguous properties. Sometimes, the paral-
lelism and memory concepts from OpenCL can with little or no effort lead to efficient
designs on FPGAs, for example when local and private memory regions are a useful way to
use BRAM resources, or when data parallelism can effectively be used for latency hiding
or unrolling. In other situations, the OpenCL code must be considerably re-factored to
transform it from GPU to an efficient FPGA design [257, 148]. Other customizations that
can contribute to the efficiency of FPGA, for example of data types and operations, cannot
be expressed with OpenCL at all.
Orthogonally to HLS, a spatial programming model around the language MaxJ or its

open source variant OpenSPL7, retains much of the structural design aspects of HDL,
but significantly raises the abstraction level. It recently emerged as a more productive

6http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
7http://www.openspl.org/
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alternative to HDL for dataflow-centric computations and is used and evaluated as one
design path in Chapter 4.7. The core of MaxJ is an explicitly structural design approach
with basic elements like directed streams of data, arithmetic or logic operators on these
streams, and constructs to modify the streams, for example delay elements or multiplexers.
However, the synthesis toolchain for MaxJ is currently limited to target FPGA boards from
Maxeler. In our work, we present how parameterizable designs in MaxJ can provide some
performance scalability, but are also constrained by other design considerations.
Despite this manifold progress to increase the productivity with FPGA design flows, we

must note that the value proposition of performance of productivity for FPGAs does not
appear as convincing as for GPUs.

1. Even thought the general performance potential of FPGAs has been demonstrated
extensively, the potential for specific applications is often unclear because of the
multitude of optimization strategies for FPGAs designs. Since FPGA optimization
cannot start from a competitive baseline performance point, but rather first needs
to overcome a large clock speed penalty. Leaving the actual computations aside,
the memory interfaces of many FPGA accelerators neither offer the raw bandwidth
of many GPUs accelerators, nor the convenience of extensive cache hierarchies that
transparently offer reasonably good performance for many different memory access
patterns, and therefore need to be included in the analysis.

2. The programming models for FPGAs involve trade-offs between difficulty, productiv-
ity and performance potential that are hard to grasp for software programmers. The
most accessible ones, HLS and OpenCL are at best not more difficult than software
programming models. Often, in order to come close to the available performance
potential, either sophisticated optimizations for HLS are required, or only low-level
HDL designs are suitable.

3. Once a design is successfully accelerated on an FPGA, portability to other FPGAs is
more restricted than for other architectures. A somewhat limited code compatibility
to other FPGAs exists, but even in the best case requires a new synthesis process that
is orders of magnitude slower than recompilation of OpenCL kernels for a different
GPU. Also performance scaling to newer or larger FPGAs can be difficult.

For the HPC domain, Laakso [162, 256] compares the adoption of manycores, Nvidia
and AMD GPUs and FPGAs as accelerators after their first availability. He postulates
that adoption of these architectures between fast, for manycores, over slower, for Nvidia
and AMD GPUs respectively, to non-existing for FPGAs is closely related to the pro-
gramming paradigms and development tools. The recent progress in synthesis from more
abstract programming models may enable a first entry of FPGAs into this segment, but is
it sufficient to pave considerable adoption in the HPC and other markets?
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3.1.4 Three Pillars for General-Purpose FPGAs

Based on the observations in the previous subsections, we argue that three pillars can com-
plement each other to make FPGA programming flows versatile enough to drive general-
purpose adoption of FPGAs, similar to the general-purpose adoption of GPUs within the
last ten years. Most practical contributions of this thesis pertain to the second pillar.
Progress in HLS and particularly OpenCL synthesis flows put FPGAs closer to other

accelerators in terms of accessibility than they have ever been. Judging by the visible
activity of tool development and documentation, OpenCL seems to be the tool of choice
for Altera to further computing adoption of FPGAs and Xilinx seems to increasingly gear
their HLS effort in this direction. Early case studies [53, 189] indicate, that FPGAs might
be able to play the role of slower, but more energy efficient complement to GPUs with this
approach. However, the OpenCL programming model’s close ties to a GPU-like execution
model limits or obfuscates the further customization and optimization potential of FPGAs.
Also, in direct comparison to other target architectures, tool runtimes are still a huge
disadvantage and are an additional factor that limits performance scaling. Therefore, we
consider OpenCL not as comprehensive path to broad general-purpose adoption of FPGAs,
but rather as the first of three pillars, upon which this outcome can be built.

Hence, as second pillar, we see the need for an approach that allows faster synthesis
or compilation and can exploit other, orthogonal features of computing on FPGAs. For
this approach, we propose to use overlays, that is computing architectures that are imple-
mented as FPGA designs, but retain some programmability or configurability that enables
them to perform different tasks. The indirection of an overlay limits the performance po-
tential, but the abstractions and fixed design aspects of each specific overlay can enable
faster and more automated compilation or synthesis than for the full configuration space
of the underlying FPGA fabric. Such overlays have been researched in academia from
various perspectives, which we discuss in more detail in the upcoming Section 3.2. The
focus of overlay architectures thus far has mostly not been on general-purpose computing
scenarios and the potential seems not yet sufficiently understood to play a major role in
corporate roadmaps for FPGA acceleration. In Chapter 4, we show that the overheads of
such an overlay can be acceptable in a practical application and in Chapter 5 we present
contributions to a compilation flow for an overlay.
As third pillar, we summarize all efforts to encapsulate FPGA designs into reusable li-

braries. As outlined in Subsection 3.1.1 for established general-purpose architectures, this
approach allows easy and fast acceleration for applications that have core functionality
covered by libraries, and also allows highly optimized designs since design efforts can be
shared within developer communities around such libraries, or taken over by hardware
manufacturers. On the other hand, library coverage of applications and within individual
applications is limited. When individual libraries and FPGA accelerator boards are closely
tied together, like for some products in the bioinformatics domain [115, 132], the role of
these boards remains limited to special-purpose acceleration, as discussed in 2.3.2. The ap-

55



Chapter 3.1. Between Performance and Productivity Walls

Application
coverage

Effort, Required
Knowledge

Tool
Runtime

Performance
Potential

FPGAs
as 

general-purpose accelerators

LowHigh

Low

Low

Low
(User)

Medium
- High

Overlays

Low

High

Low

Libraries

Medium

Medium

Medium

OpenCL

Figure 3.1: Illustration of three pillars for FPGAs as general-purpose accelerators. The width of
each pillar segment indicates the suitability of each pillar per category. Note that high
application coverage and performance potential, but low required knowledge and effort
and low tool runtime are the target properties.

plication galleries from Maxeler8 and IBM9 with computational kernels among others from
the domains of bioinformatics, big data analysis, compression cryptography and computa-
tional sciences, in contrast point towards a strategy of diversifying the use of accelerator
hardware through a library approach. Intel is also rumored to work on application libraries
for their upcoming CPU-FPGA products. A similar strategy by Nvidia earlier on played
an important role to pave the way for GPUs in general-purpose computing.
We summarize key properties of these pillars in Figure 3.1. Together, we consider the

three pillars of synthesis of FPGA accelerator designs from OpenCL, overlays with software-
like compilation, and libraries with hand-optimized accelerator designs, as suitable to carry
adoption of FPGA accelerators in general-purpose computing markets. In contrast to
conventional HDL design, neither improves the performance side per-se, but they offer
easier and faster entries to explore FPGAs as target platform and can together cover
many optimization approaches. In case of a successful, wide-spread market penetration of
FPGAs in general-purpose computing, further approaches, possibly more custom-tailored
to the demands of specific application domains, may come up and gain traction. All
three presented pillars can deliver portability and improved scalability to new FPGAs,
the latter two without lengthy tool runtimes. This property is particularly important in
dynamic OTF computing scenarios. Since OpenCL and libraries already seem to have
strong industry backing, we see a particular opportunity for academic research in the
overlay pillar.

8http://appgallery.maxeler.com/#/
9https://cognitive.ptopenlab.com/accelerator
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We consider the combination of low effort and tool runtimes with the potential to cover
many different applications through a few reusable designs, that the overlay pillar con-
tributes, as particularly important for the initial adaption phase. While not many op-
timized library components or OpenCL-based designs exist, broader applicable overlay
libraries can deliver at least some acceleration or efficiency with FPGAs and also offer a
path to further performance scaling, either through better FPGA hardware, or through
more specialized overlays or even hand-optimized designs. In Chapter 4, we quantify the
optimization headroom that a general overlay architecture leaves open in our case-study,
and show that the overlay can still contribute valuable acceleration.

3.2 FPGA Overlays

As FPGA overlay, we consider any configurable or programmable architecture implemented
on top of FPGA fabric. In terms of raw performance or energy efficiency, overlay architec-
tures typically involve overheads compared to direct low-level implementations on FPGA
fabric. In this thesis, we propose to accept some overheads, in order to increase the po-
tential to program FPGAs much faster and in a more automated way. As discussed in
Section 3.1, portability and performance scalability to other underlying FPGAs are fur-
ther important concerns in this regard. Many authors of related work also pursue some of
these goals.
In this section, we present related work on FPGA overlays mainly in two regards, firstly

the architectural approach and secondly the area of programmability, productivity and
performance scaling of these architectures. Existing overlays can be subdivided into two
categories, firstly processor-like instruction-programmable overlays, which we discuss in
Subsection 3.2.1, and secondly structurally programmable or configurable overlays, includ-
ing coarse-grained reconfigurable arrays (CGRAs) and virtual FPGAs, which we discuss in
Subsection 3.2.3. The intermediate Subsection 3.2.2 covers configurable and reconfigurable
processor architectures that are not or only prototypically implemented on FPGAs, but
impact the overlay architectures in both domains.

3.2.1 Instruction-Programmable Overlays

As introduced in Subsection 2.1.4, FPGAs can be configured into arbitrary computing cir-
cuits, including instruction-programmable processors. Processors implemented on FPGA
fabric are also denoted as soft or softcore processors, and can be considered as a form of
overlay that transforms the structurally programmable FPGA to an instruction-programmable
architecture, which can then be targeted by conventional software development methods
and tools.
Softcore processors have been designed with various goals. Commercial designs from

FPGA manufacturers, like Microblaze10 and Nios II11 have been introduced as host pro-
cessor or controller for customized accelerator logic on FPGA [218] or as alternative to

10http://www.xilinx.com/products/design-tools/microblaze.html
11https://www.altera.com/products/processors/overview.highResolutionDisplay.html
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embedded processors in order to increase the longevity of processor-specific software [206].
The LEON series with for example the LEON312 design has been developed as a process-
ing platform for space missions [77] that can both be implemented as custom hardware or
synthesized to FPGAs. Open-source soft processors like OpenRISC13 are used as research
vehicle, for example with regard to fault-tolerance [198, 47] or security [50, 42, 29].
Many soft processor projects consider performance of the instruction-programmable

overlay as a relevant target metric, but don’t try to surpass the performance of conven-
tional processors, but rather focus on adding other additional benefits. For example when
the soft processor is primarily used as control instance for custom logic, the performance
focus is on the latter part, with all the involved performance potential and design chal-
lenges. Many performance optimizations presented for soft processors are only suitable to
reduce the performance gap to hard embedded or general-purpose processors, where the
respective techniques are already integrated. This includes pipelining to enable relatively
high clock frequencies, and superscalar architectures with out-of-order execution [183, 217]
or VLIW instructions [140, 57, 272].
However, there are also attempts to include features that general-purpose processors

didn’t adopt, because only narrowly focused application classes profit from them. For
example with MARC, Lebedev et al. [164] focus on a manycore approach, demonstrated
with the high number 48 processing cores on a single FPGA in 2010. With customized
cores, they achieved one third of the performance of a fully customized FPGA design. The
MARC design also makes use of up to 4-way hardware multithreading, which is common
for many GPU designs. Kingyens and Steffan [151] put a particular emphasis on this design
aspect in their GPU-inspired FPGA overlay by supporting up to 264 concurrent thread
contexts through 64-way hardware multithreading and 4 parallel SIMT execution units.
They show that this approach allows to keep an extremely deeply pipelined ALU with 53
clock cycles almost fully utilized.
Much attention has been given to instruction-programmable overlays that gain their

performance from vector execution units, inspired both by classical vector processors and
by modern SIMD instruction set extensions. The VESPA architecture [282] includes vector
units with up to 256 vector elements and up to 32 lanes that support vector chaining. In
VIPERS, Yu et al. [284, 285] add, in addition to a distributed register file, a local memory
to each vector lane in order to support efficient table lookups, for example needed by
Advanced Encryption Standard (AES) encryption. In the VEGAS architecture, Chou et
al. [56] let the vector units read and write “directly [from and] to a scratchpad memory
instead of a vector register file” and also support variable operator sizes like the SIMD units
of modern general-purpose CPUs. With VENICE, Severance and Lemieux [228] introduce
operations on 3D vectors and on unaligned vectors. They achieve good area efficiency also
for applications with limited DLP and hence were able to implement a multicore design to
exploit additional TLP.
All these vector architectures have been demonstrated in stand-alone embedded systems

and mostly evaluated in comparison to a soft Nios II processor without vector units. For

12http://www.gaisler.com/index.php/products/processors/leon3
13http://braap.org/or1200/lo3/spec.html
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VIPERS, Yu et al. [284, 285] also include a comparison to custom designs created with
Altera’s discontinued HLS tool C2H and found the vector processor to scale to much higher
performance points, whereas HLS achieved better performance per area for small designs.
A single, highly regular matrix multiplication kernel on a VEGAS design [56] was also com-
pared to a contemporary general-purpose processor and achieved a speedup of around 1.5x,
when the general-purpose processor’s SIMD units were not used. On the Convey HC-1,
which will be introduced in more detail in Chapter 4, a similar instruction-programmable
vector overlay, denoted as Vector Personality, is shipped as part of a high-performance
general-purpose and HPC computing system. The vector units are split between four
FPGAs and support double precision floating point operations and vectors of up to 1024 el-
ements. A comprehensive performance comparison to custom designs and general-purpose
processors is the subject of Chapter 4.
The academic vector processor overlays have been programmed with hand-written inline

assembly code [282, 284, 285] or C macros [56, 228], which are formalisms that are more
accessible to software developers than hardware design. However, they lack portability to
other architectures and allow generally much less productivity than high-level language
constructs. For the Vector Personality of the Convey HC-1, a C/C++ compiler is shipped
that compiles suitable pragma-annotated code segments to the vector coprocessor. In
Chapter 5, we present shortcomings of this compiler and our extended toolchain that
covers more suitable code segments and is independent of pragmas.
Beyond the presented parallelization aspects, instruction-programmable overlays can

profit from the versatility of FPGAs by customization to specific applications or applica-
tion domains. For the VESPA architecture, Yiannacouras et al. [282] vary different design
parameters of the vector processor, including support for heterogeneous vector lanes, and
show that choosing the right processor variant per application increases peak performance
per area on average by 13%. Lebedev et al. [164] customize not only the multicore config-
uration, but also the datapaths of their MARC cores for their Bayesian network inference
to achieve around one third of the performance of a manually designed fully custom cir-
cuit on the same FPGA. With the VectorBlox MXP design, Severance et al. [227] have
extended their VENICE approach to support customized vector instructions that can in-
ternally pipeline several operations. With custom instructions for an N-body simulation,
they achieve more than 100x speedup over the 32-lane base design. The VectorBlox MXP
design can be commercially licensed14.
The customization of datapaths along with the integration of custom instructions into

the ISA has also been investigated independently from specific parallelization approaches,
both for hard [96, 26] and soft [59] ASIPs. For example specific instructions for AES
encryption have been integrated into a tiny soft processor to achieve 3x more performance
on this application than a larger non-customized soft processor [95]. As mentioned in
Section 2.2.2, custom instructions for cryptography have also been included into general-
purpose processor designs due to their high performance potential with moderate hardware
investments. However, a soft processor can be customized for each application individually

14http://vectorblox.com/

59

http://vectorblox.com/


Chapter 3.2. FPGA Overlays

with a different instruction set for each application [59], thus exhibiting the reuse of the
same configurable resources for different tasks that is one characteristic feature of general-
purpose computing.

3.2.2 Reconfigurable Hardware beyond FPGAs

Further research in the domain of instruction set extension (ISE) has been conducted
targeting an intermediate architectural approach, where a reconfigurable functional unit
(RFU) for custom instructions is integrated with a conventional general-purpose processor.
The Chimaera architecture features an RFU with FPGA fabric with an array of logic blocks
and routing resources constrained to a downward data flow [114]. Automatically [194] or
by hand [114], the data flow graphs (DFGs) from basic blocks without memory operations
are mapped to this unit. Evans et al. investigate [79] graph coverage for different coarse-
grained RFU designs without memory operations. In the OneChip architecture [48], the
RFU additionally has a memory interface that allows it to perform load and store opera-
tions independently from the host processor.
Other projects like PipeRench [93], MorphoSys [236], GARP [45], MOLEN [258] or

Zippy [210] assume more autonomous reconfigurable units that can execute entire loop
nests instead of mere DFGs. They demonstrate a wide range of speedups over simple RISC
processors, mostly for signal processing and media compression benchmarks. Even though
some prototypes of such architectures were evaluated on FPGAs, the target platforms
are coarse-grained reconfigurable arrays (CGRAs) implemented in hardware. These archi-
tectures contain configurable elements (denoted as configurable function blocks (CFBs),
processing elements (PEs) or functional units (FUs)) and an interconnect fabric that both
operate on data words instead of the individual bits of FPGAs. This higher granularity
reduces the overheads associated with FPGAs, as well as the configuration space, both
in terms of required configuration bits and in terms of design space for placement and
routing. For a survey of early coarse-grained reconfigurable architectures, we refer to
Hartenstein [112].
A number of commercial architectures with configurable or reconfigurable arrays of

coarse-grained processing elements as accelerator units for embedded processors followed [30,
181, 250]. Amano [21] surveys more of these architectures. They had limited success only
in signal and media processing domains, where they were mostly presented as solutions
with fast time-to-market for special-purpose embedded systems [180, 179, 261, 37]. In such
scenarios, CGRAs compete with fully specialized accelerators and the benefit of reconfig-
urability is limited to updates and bug-fixes. When the CGRAs’ structure and FUs need to
be customized for specific tasks in order to achieve competitive performance and efficiency,
this customization needs to happen at the design time of a specific product [180, 37, 234],
with the involved impact on NRE cost, time-to-market and required product volumes.
This is one motivating factor, why CGRA have also been implemented as a form of struc-
turally programmable overlay on FPGAs, with the option for specialization after device
fabrication time.
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3.2.3 Structurally Programmable Overlays

FPGA fabric attached in some form to a processor can be used to implement arbitrar-
ily specialized accelerators. Yet, as discussed, the design of such accelerators is difficult
and hard to automate, requires lengthy synthesis processes and also the actual reconfig-
uration times can turn out as performance issue. Overlay architectures that present a
more restricted structure to designers and tools can facilitate the design and speed-up the
synthesis and reconfiguration times. As outlined in the previous subsection, a commonly
investigated structure is that of CGRAs, which were earlier envisioned as dedicated hard-
ware and sometimes prototyped on FPGAs, but more recently get explicitly designed for
realization on FPGAs.
A wide range of architecture variants for CGRAs on FPGAs has been explored [153, 234,

63, 81, 167, 46, 142, 170]. The predominantly considered execution model for CGRAs is
to configure them to repeatedly execute a specific DFG, be it in a loop or with subsequent
invocations. Considering the mapping of a DFG’s nodes and edges that specify operations
and data flows to a CGRA helps us to discuss many architectural aspects of CGRAs on
FPGAs. PEs can either just cover a single node of the DFG [98, 46, 142], different ones
according to a global schedule [210, 234, 63, 81, 167] or to a local control program [153].
The operations of PEs can be homogeneous [167, 142], heterogeneous [98, 46] or specialized
when the overlay is generated [153, 234, 62]. The interconnects between PEs can be local
or global [81]. They can have configurable buffering capabilities to compensate for non-
balanced datapaths [46].
CGRAs on FPGAs are open to specialization for specific applications or application

groups. Lin and So [167] show that customization of interconnect topologies improves the
engergy-delay product by 9% - 28% for a set of synthetic and real world DFGs with several
thousand nodes, mapped on an array with 16 processing elements. Building mainly upon
DSP blocks as FUs, the intermediate fabrics from Coole and Stitt [63] use only on average
18% more resources than comparable circuits directly mapped to the underlying FPGA.
After additional customization of the interconnect, this overhead is reduced to around 10%.
For applications with several kernel loops, an overlay even uses on average 60% less area
than a direct parallel FPGA implementation of circuits for the respective three to seven
kernels [62]. This is achieved by using common subnets among different kernels.
Ma et al. [170] fix in their design only the routing overlay and advocate the use of

application-specific PEs through partial reconfiguration. The PEs are synthesized accord-
ing to computation patterns expressed in a domain-specific language (DSL) and are mapped
to available slots dynamically at runtime.
For several variants of CGRAs on FPGAs, tool support has been presented for automated

mapping of DFGs to the overlay, including placement, routing and, where applicable,
scheduling. The tool runtimes for these steps are several orders of magnitude lower than
when directly targeting FPGA fabric, in the order of milliseconds to few seconds for the
investigated designs [63, 81, 46]. With little or no manual intervention, these tools also
enable scaling to overlay designs of different sizes. When the tools are extended to support
compatible high-level source formats, this lays out a path to convenient code portability
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between different overlay approaches and different underlying FPGAs. In [61], Coole and
Stitt present a synthesis flow starting from OpenCL specifications, which can both generate
suitable application-specific overlays and generate configurations for existing overlays. The
tool runtime for configuring overlays are short enough to match the just-in-time compilation
paradigm for OpenCL kernels.
Other projects have gone even further, toward transparent just-in-time mapping of run-

time detected DFGs or loops in binary format. For example, Beck et al. [31] and Bispo et
al. [34] map instruction sequences to CGRA architectures, going beyond individual DFGs
by speculation [31] or identification of so-called megablocks that cover typical control flow
inside a loop nest [34]. Grad and Plessl [99, 100] generate for individual DFGs custom
datapaths that are configured into regions for partial reconfiguration. For custom instruc-
tions through partial reconfiguration at runtime, Koch et al. [155] investigate methods to
minimize the hardware overhead of reconfiguration modules.
Partial reconfiguration regions for customized datapaths of custom instructions are just

one example of structurally programmable overlay architectures that do not belong to the
category of CGRAs. We present a short selection of such approaches and their design
goals. With SCORE [49], Caspi et al. investigate partial reconfiguration regions with a
particular focus on scaling with different hardware sizes. Research on overlay architectures
for finite-state machines [243, 60] aims at complementary control regions for the dataflow-
centric CGRA architectures, but may also be useful for independent computing tasks like
complex regular expression matching for security applications [73]. Virtual FPGAs have,
beyond fundamental research questions about architectures and tools, been investigated
as a portable intermediate layer for custom instructions [154] or more generic FPGA cir-
cuits [169, 101, 39]. The area and frequency overheads of fine-grained virtual FPGA seem
prohibitive for general-purpose applicability [39], but customizations like coarse-grained
virtual resources and time-multiplexing of resources may open up a path to lower over-
heads, area scalability and fast synthesis times [101]. Hung and Wilton [133] virtualize
only the interconnect network of FPGA to dynamically insert trace buffers for debugging
into synthesized FPGA designs.
To summarize this section, we conclude that structurally programmable overlays can

have manifold incarnations that exhibit different patterns of computing with FPGA. Design-
time specialization for different applications can reduce the performance and efficiency gap
to fully custom designs. Synthesizing overlay architectures is generally much faster than
to underlying FPGA fabric and some projects have demonstrated favorable scaling proper-
ties. Building upon these properties, a library of overlays with suitable binary or OpenCL
synthesis flows [31, 35, 61] is a promising way to overcome FPGA productivity issues for
general-purpose computing. Instruction-programmable overlays contribute to this mix and
are equally dependent on compilation tools that start from common software or interme-
diate representations.
However, in contrast to the structurally-programmable overlays, where particularly Coole

and Stitt closely investigated the overlay overheads compared to fully customized designs,
these trade-offs are insufficiently understood for instruction-programmable overlays. Lebe-
dev et al. [164] present a single comparison of their manycore overlay MARC with a custom
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design and observe a 3x performance overhead. Yu et al. [285] compare their vector overlay
with results of an early HLS tool and observe up to 8x more performance with their over-
lay, which mainly demonstrates that HLS on unaltered source code was not competitive in
2008.

3.3 Chapter Conclusion

In this chapter, we have analyzed how trade-offs between productivity and performance
potential have mostly prevented FPGAs from entering the general-purpose computing
domain. The integration into a common memory space and hierarchy can increase produc-
tivity, but has not been a prerequisite for GPUs adoption, where software solutions have
masked this challenge. Instead, accessibility of the programming models and tools along
with performance potential, portability and scalability are a major hurdle for FPGAs. Con-
sidering recent progress in FPGA tools and system architectures, we propose three pillars
that jointly can provide beneficial characteristics for different developer requirements.
While with OpenCL and application libraries, two of these pillars already have strong

industry backing, we focus on overlays and reviewed the mostly academic research in
this area in the previous section. The combination of instruction-programmable and
structurally-programmable overlays provides a diverse space of architectural patterns, tool-
ing approaches and specialization opportunities. Based on this analysis, we identify four
research questions around this overlay concept.

1. What amount of overheads do overlays on FPGAs involve when compared to the
implementation of fully customized designs on the same FPGAs? As discussed in
the previous section, this question is not sufficiently investigated, in particular not for
instruction-programmable overlays. Furthermore, can these overheads be attributed
to specific design differences between the computation patterns within the overlay and
without it? On a broader scope, where does the usage of overlay architectures put the
performance and efficiency of FPGAs compared to other architectures? Figure 3.2
takes up the qualitative illustration from Figure 2.2 in Subsection 2.2.4 and illustrates
the context of this research question.

2. Can overlays sufficiently increase the productivity when targeting FPGAs with ap-
plications that originate from the domain of general-purpose computing and are
designed with standard, software-based principles? For many overlays, fast back-end
design tools have been presented that allow fast code generation respectively syn-
thesis compared to the tools targeting FPGAs directly. However, these tools don’t
start from software implementations on abstraction levels typical for general-purpose
computing, but rather require much more target-specific application descriptions.

3. How many of the manifold application patterns that are generally suitable for FPGA
acceleration can be covered with overlay architectures and corresponding tools? The
presented overlay architectures are very diverse, but several of the kernels and appli-
cations that demonstrate their usage either overlap or originate from similar domains.
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Figure 3.2: The usage of overlay architectures on FPGAs involves overheads that need to be quan-
tified and analyzed. It introduces a new area of design points that need to be assessed
in comparison to the existing alternatives, here illustrated with regard to efficiency.

4. How can the customization of overlay architectures, which has been shown to have
great potential for increasing performance and efficiency, be systematically applied
to the diverse set of overlay architectures and be completely or partially automated?

In the next two chapters, we present several contributions to these research questions.
In Chapter 4, we primarily address aspects of the first research question by quantify-
ing performance differences between fully customized FPGA designs and an instruction-
programmable overlay in an extensive case-study. We also discuss design differences that
contribute to these differences. The comparison to other hardware architectures is not
in the focus of our practical work. In Chapter 5, we demonstrate for the instruction-
programmable vector overlay already targeted in Chapter 4, that highly productive compi-
lation flows for such a target architecture are actually possible, even though existing tools
for overlay architectures typically lack a high-level design entry.
With regard to the third research question, we consider our contributions as one com-

ponent to a required large-scale research effort to better understand the interplay of appli-
cation domains and overlay architectures. In order to broaden the scope of this research,
future studies can on the one hand systematically cover more application patterns, for
example by using OpenDwarfs [158] implementations as starting point to target overlays,
or on the other hand evaluate few application patterns with a larger set of overlay architec-
tures and corresponding tool flows, as we propose in our thesis outlook (Section 7.2). The
fourth research question is not practically addressed within this thesis except for the anal-
ysis of overheads that may point towards profitable customization directions. However, the
related work discussed in the previous section outlines the considerable potential of overlay
customization. Between performance and productivity, the actual relevance of overlay ar-
chitectures as path towards FPGA adoption in general-purpose computing depends on the
answers to all four presented challenges. Beyond the scope of these overlay-related research
questions, we finally pick up the issue of system integration of FPGAs in Chapter 6.
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CHAPTER 4

Stereo-Matching Kernels on Overlay and Custom Designs

In this chapter, we present two approaches for accelerating a stereo-matching applica-
tion with general-purpose characteristics on FPGA platforms. Within this application, we
identify and offload ten kernels, all with abundant DLP, but with different dependency pat-
terns and computational intensity. As first solution, we implement individually specialized
dataflow kernels in a spatial programming language for a Maxeler FPGA platform. As sec-
ond approach, we target an instruction-programmable overlay on the application FPGAs
of a Convey HC-1, which implements a vector coprocessor with large vector lengths.
The high-level contribution of this chapter is the demonstration that with average over-

heads of 3x in raw performance over fully customized FPGA designs after compensating
for the different platform characteristics, the overlay architecture can still contribute to
speedups over general-purpose CPUs in a general-purpose computing scenario. When prac-
tical reconfiguration overheads limit the parallelism of customized kernels, the overheads
are reduced to 2.5x. The broad quantification of this overhead over custom designs is a
novel contribution for instruction-programmable overlays. A distinction between different
kernel patterns also allows us to point to possible reasons for these overheads.
This chapter contains also several technical contributions towards this goal. Besides the

actual working kernel designs with state-of-the art optimization for two different FPGA
platforms, a memory management wrapper library is introduced that greatly facilitated
the practical implementation and evaluation with the different memory models of the
platforms. Also, scalable designs for the customized dataflow kernels along with accompa-
nying performance models allowed the guided synthesis of standalone kernels with maximal
parallelism and a fused design with wider functionality. The presented stereo-matching im-
plementation is to date the most accurate one with FPGA acceleration, though admittedly
also slower than the ones running purely on FPGAs.
Most of this chapter was published in [6], supplementing two previous publications that

cover the acceleration of this stereo-matching application on the two individual target
platforms [4, 5]. Beside Tobias Kenter as lead researcher and main contributor to the
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presented implementations and measurements, Henning Schmitz contributed during his
Bachelor’s project and as student assistant to the first implementation of the software
application used in [4] and to parallelization ideas and implementations on both FPGA
targets.
In Section 4.1, we first outline the general stereo-matching task, before presenting in

Section 4.2 the concrete algorithm we accelerate. We then introduce in Section 4.3 the two
accelerator platforms and how they are programmed in this work. Before the concrete ker-
nel implementations are described side-by-side for both platforms in Section 4.5, we outline
the common acceleration principles and memory management concepts in Section 4.4. Sec-
tion 4.6 documents the setup of our experiments. Comparing both systems in Section 4.7
requires some normalization to account for the different hardware platforms, but gives us
insights about the trade-offs in runtime, design effort and tool runtimes. Section 4.8 dis-
cusses related stereo-matching implementations on FPGA platforms, before concluding in
Section 4.9.

4.1 Introduction to the Stereo-Matching Problem

Stereo-Matching is the computation of a disparity map from a pair of stereo images. The
disparity specifies at every position in the image, how far the displayed object or fea-
ture appears displaced between the two images due to the different positions of the two
camera lenses. In earlier work, the term Stereo Correspondence has been used for the
same problem[259, 222]. By inverting the disparity information and scaling it according
to the geometry of the camera system, actual depth information about the scene is ob-
tained, which is denoted as Stereo Vision and is probably the most important method for
computer vision.
Applications for computer vision in general and stereo-matching in particular range from

classical embedded use cases in automotive and industrial contexts or robot navigation [254]
to personal or professional usage on general-purpose hardware for 3D media generation or
3D data acquisition. Common design goals for all types of applications are high matching
quality and high processing speed, yet with varying priorities and additional constraints,
e.g. on image resolution, on latency or throughput, or on power and resource limitations.
Up to now, the most accurate methods like the one employed here, do not match the
typical real-time and power constraints of embedded systems. Of the markets outlined
in Subsection 2.3.3, it fits the personal mobile devices, which may also be used for image
acquisition, but also fits to PCs or cloud datacenters, to which the stereo-matching task
may be offloaded from a camera or mobile device to avoid draining battery and to achieve
higher total performance.
Most stereo-matching algorithms perform so called dense stereo-matching, that is, they

compute a disparity map, containing a disparity value for each pixel. This value represents
how far the object that this pixel belongs to appears shifted between the left and right
stereo image. More formally, a disparity value d = dleft(x, y) for a pixel in the left stereo
image at position (x, y) signifies that the physical feature displayed by this pixel is believed
to be found in the right stereo image at position (x − d, y). If a corresponding right
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disparity image is computed, to be consistent, the corresponding disparity in the right
image, dright(x − d, y) should also contain the same disparity value d, pointing back to
position ([x − d] + d, y) = (x, y). For this definition of disparity and consistency to be
precise, the two images need to be perfectly horizontally aligned.
As auxiliary metric to compute disparities, many algorithms use a cost value, also de-

noted as matching cost, for each pixel at each possible disparity C(x, y, d), thus forming a
three dimensional cost volume, where a low cost signifies that it is plausible that this pixel
should have the corresponding disparity. Throughout this chapter, we use the term cost
purely for this matching cost and not for system cost as introduced in Subsection 2.1.1.
The general sequence of modern stereo-matching approaches comprises three steps [268]:

first, computation of a matching cost volume, second, an optimization method which com-
putes a disparity map from the cost volume and third, post-processing of the disparity
map. For computing the initial cost volume, metrics for local color similarity and for local
structural similarity are commonly employed [182, 123]. To smoothen the cost volume, ag-
gregation techniques can be employed [85, 259]. Optimization in the simplest form, often
called winner takes all (WTA) [123], just selects the disparity with the lowest cost for each
pixel: d(x, y) = argmindC(x, y, d). Other approaches like belief-propagation (BP) and
graph-cuts (GC) seek to combine low matching costs with properties like low energy of the
resulting disparity map. Beyond generic image augmentation approaches, post-processing
often involves consistency checks between the disparity maps generated for left and right
image and handling of the identified inconsistencies [124, 182].
For many stereo methods, there exist variants which incorporate more than two input

images, typically but not necessarily captured from a set of cameras placed along one
horizontal line. The additional viewpoints open up additional opportunities for consistency
checks among derived disparity maps and can particularly help to fill occluded areas, when
they are visible in one of the additional input images. However, these variants still rely on
a good underlying stereo-matching algorithm, like the one utilized as case study here.

4.2 Stereo-Matching Algorithm with Inherent Parallelism

In our work, we algorithmically follow the stereo-matching implementation published by
Mei et al. [182]. It follows the three basic steps outlined in Section 4.1, but splitting the
first step of cost computation into two separate phases, we subdivide it here into a total
of four phases. Figure 4.1 gives a high-level overview of the stereo-matching sequence. In
the first phase, cost initialization, two similarity metrics are applied on the input images
to compute for each pixel and each possible disparity a local cost value, thus forming the
first cost volumes. In the second phase, cost aggregation, the costs of neighboring pixels
of the same disparity are aggregated in adaptive support regions, which are determined
by color differences and absolute distances. This smooths the original cost volumes. In
the third phase, scanline optimization, an energy minimization approach is mimicked by
dynamic programming along 1-dimensional scanlines. This produces a first pair of disparity
maps, but also another pair of cost volumes that are used in the fourth phase, disparity
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Cost Initialization

Cost Aggregation

Scanline Optimization

Disparity Refinement

Figure 4.1: High-level overview of the stereo-matching algorithm following [182]. From a pair of
stereo images, intermediate cost volumes are computed, which are used to generate
disparity maps as final result.

refinement. This fourth phase performs a consistency check between the left and right
disparity maps and applies several local optimizations for pixels which are not classified
consistently.
As the most time consuming parts and parts where the accelerated kernel functions are

located, we present some details about the mechanisms of cost aggregation and scanline
optimization, and briefly outline the two less time consuming steps cost initialization and
disparity refinement, which are executed on CPU in our work.

4.2.1 Cost Initialization

The cost initialization following Mei et al. [182] provides the first cost metric Ci(x, y, d)
for each position and disparity based on two individual components. The first component
is called the absolute difference cost CAD for a pair of left- and right-image pixels in RGB
format. This cost is defined as the difference of pixel intensities I, averaged over the three
color channels: CAD(x, y, d) = 1

3

∑
i=R,G,B

|Ileft,i(x, y)− Iright,i(x− d, y)|

The second component is the census cost Ccensus, computed as the Hamming distance
of the census transforms of a left and corresponding right pixel. This census transform
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Figure 4.2: Illustration of cross-based cost aggregation regions. Left side: projection of horizontal
arms on the vertical arms of a pixel. Right side: projection of vertical arms on the
horizontal arms of a pixel.

captures the local structure in a 9 × 7 window around each pixel. Structural information
is less sensitive to variations in lighting between the left and right image.
These two cost components are individually scaled by an exponential function that also

enables the weighting of outliers and then added up to form the initial cost.

4.2.2 Cost Aggregation

The idea of cost aggregation is to reduce the huge amount of noise contained in the local cost
metrics. Instead of simple smoothing, the costs for each possible disparity are aggregated
over a limited area around each pixel, which likely belongs to the same objects of the
image and therefore should have similar disparity values. Therefore aggregation areas
should track object boundaries in shape and size as good as possible. However, computing
individual aggregation areas for each pixel and summing up the costs inside them can be
very compute intense. The cross-based aggregation method utilized here was first proposed
by Zhang et al [286]. The areas are defined by the length of four arms for each pixel, two
extending to the left and right, two up and down. The arm length are computed prior to
the actual aggregation step depending on color differences and parametrized thresholds.
Two possible aggregation areas are now formed by all vertical arms that belong to pixels
on the horizontal arms of each pixel and respectively the other way round as illustrated in
Figure 4.2. Horizontal first aggregation areas can cover vertical object boundaries better,
vertical first aggregation is more precise for horizontal object boundaries.
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Algorithm 4.1 Horizontal aggregation step. Note: for-all-loops are independent, for-
loops are ordered.
Input: ∀(x, y, d): Ci(x, y, d) = input cost
Input: ∀(x, y, d): Aleft/right(x, y, d) = precomputed horizontal arm lengths
Output: ∀(x, y, d): Ch(x, y, d) = aggregated costs of row segment around position (x, y)

in disparity d
1: for all d ∈ disparities do
2: for all y ∈ rows do {compute integral sums}
3: Cs(0, y, d) ← Ci(0, y, d)
4: for x = 1 to #columns do
5: Cs(x, y, d) ← Cs(x− 1, y, d) + Ci(x, y, d)
6: end for
7: end for
8: for all y ∈ rows do {compute row segment costs}
9: for all x ∈ columns do

10: al ← Aleft(x, y, d)
11: ar ← Aright(x, y, d)
12: Ch(x, y, d) ← Cs(x+ ar, y, d) - Cs(x− al − 1, y, d)
13: end for
14: end for
15: end for

For both aggregation areas, the actual aggregation can be performed in linear time
with the help of integral sums. Pseudocode for the horizontal aggregation step is given in
Algorithm 4.1. As the outer loop indicates, the step is performed independently on each
disparity d. The first loop nest computes for each row the integral sum of costs from the
row’s first element to the current element. In the second nested loop, for each position
(x, y), the difference between two elements of the integral sum is taken, with element
positions defined by the arm lengths at (x, y). This difference is exactly the sum of costs
in the horizontal segment around (x, y) that is specified by the two arms. In Figure 4.2,
aggregation for one disparity is illustrated for the topmost and bottommost rows of the
horizontal first aggregation region, where the horizontally aggregated costs Ch depend on
two elements of integral sums Cs. Afterwards, in the vertical aggregation step, vertically
integral sums (not illustrated in the Figure) are computed and the aggregated costs CA is
computed again as difference between the running costs at two positions, here at the two
positions that are marked with Ch in the example. Note that the left and upper positions,
from which the respective integral sums are taken, are not part of the aggregation area
itself.
A pair of horizontal and vertical aggregation steps forms one aggregation iteration with

the illustrated horizontal first aggregation region. Following Mei et al. [182], we execute
a total of four such aggregation iterations, the first and third one using horizontal first
regions and the second and fourth one using vertical first regions. Not mentioned by Mei
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et al. [182] is a normalization step after each aggregation iteration, where the aggregated
cost is scaled by the respective aggregation area. This was already proposed by Zhang et
al [286], also utilized by Shan et al. [230] and we found it to be important for the result
quality of our implementation.

4.2.3 Scanline Optimization

The scanline optimization follows Hirschmüller’s [124] semiglobal matching strategy. Global
matching would perform a 2-dimensional energy minimization for the entire image, min-
imizing the weighted sum of the energy in the final disparity image and of the involved
matching costs for this disparity image. The scanline optimization mimics this idea along
1-dimensional lines, but avoids costly minimization steps and instead uses a dynamic pro-
gramming approach, where the previous disparity decisions along the scanline are fixed and
only the energy trade-off for the current step is considered. Equation 4.1 outlines the basic
recursion equation and Algorithm 4.2 illustrates pseudocode for one scanline direction.

Cr(x, y, d) = CA(x, y, d) + min [Cr(x− rx, y − ry, d), (4.1)
Cr(x− rx, y − ry, d± 1) + P1(x, y),

min
k
Cr(x− rx, y − ry, k) + P2(x, y) ]

−min
k
Cr(x− rx, y − ry, k)

r ∈ {right, left, down, up}
(rx, ry) ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}

The scanline cost Cr in the equation is computed along a scanline path that depends
on the direction r = (rx, ry), which in the pseudocode example is right = (1, 0) to define
a scanline to the right, with accordingly denoted scanline cost Cright. The scanline cost
depends on the aggregation cost CA and a term requiring all scanline costs at the previous
pixel position along the scanline path. This previous pixel position is given by (x−rx, y−ry)
in the equation and by (x− 1, y) in the pseudocode example. This term depending on the
previous position reflects the energy minimization concept, selecting either the scanline cost
from the previous position at the same disparity, or the scanline cost from the previous
position at a neighboring disparity plus a small penalty P1(x, y), or the minimal scanline
cost of all disparities at the previous position plus a larger penalty P2(x, y). These paths
trade-off energy components added by the matching costs with energy components from
the disparity profiles represented by the penalties P1(x, y) and P2(x, y). Both penalty
values are chosen for each specific position based on the color differences of the original
images. Finally, for normalization, the minimal scanline cost at the previous position is
subtracted.
Figure 4.11, shown later in Section 4.5.2 on page 89, serves us mainly to illustrate the

compute and parallelization pattern of our implementations, but also contains a numeric
example of a scanline computation, here of a downward scanline. For simplicity, costs are
represented as integer values and with an aggregation cost of 0 for the second line. Green
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Algorithm 4.2 Scanline optimization step in left to right orientation (denoted as
ScanRight). Note: for-all-loops are independent, for-loops are ordered.

Input: ∀(x, y, d): CA(x, y, d) = aggregated cost
Output: ∀(x, y, d): (x, y, d) = right scanline cost
1: for all y ∈ rows do
2: for all d ∈ disparities do
3: Cright(0, y, d)← CA(0, y, d)
4: end for
5: Cmin(0, y)← min

k
Cright(0, y, k)

6: for x = 1 to #columns do
7: for all d ∈ disparities do
8: c0 ← Cright(x− 1, y, d)
9: c−1 ← Cright(x− 1, y, d− 1) + P1(x, y)

10: c1 ← Cright(x− 1, y, d+ 1) + P1(x, y)
11: ck ← Cmin(x− 1, y) + P2(x, y)
12: Cpath ← min(c0, c−1, c1, ck)
13: Cright(x, y, d)← CA(x, y, d) + Cpath − Cmin(x− 1, y)
14: end for
15: Cmin(x, y)← min

k
Cright(x, y, k)

16: end for
17: end for

arrows indicate the minimization paths taken to compute the scanline costs in the second
row depending on the previous row and the input aggregation costs. These green arrows
reflect the best trade-off between minimization of the input costs and the scanline energy
for any given position.
In the abstract description of stereo-matching approaches in Section 4.1 the optimization

step was described to yield a disparity map. In the more elaborate approach we use, the
scanline equation for each direction produces a new cost volume, now incorporating a trade-
off between raw matching costs and energy of the disparity map. This is convenient, as now
the results of scanline optimization steps along different directions can simply be combined
into an average cost volume, instead of having to combine different discrete disparity maps.
On the combined scanline costs, now a WTA optimization selects the actual disparity for
each pixel.
We use four directions, right, left, down and up, like proposed by Mei et al. [182].

Each scanline by itself produces some streaking artifacts in the direction of the scanline,
because the penalty values only favors persistence of previously optimal disparities along
the scanline, but not in the reverse direction. Therefore it is important to utilize not
only several different scanlines like in [265], but also to have pairs of reverse scanlines to
symmetrically offset the streaking.
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4.2.4 Disparity Refinement

The previous three phases are executed for both the left and right image, producing one
disparity image for each side. As indicated earlier, their computed disparity values should
match: dleft(x, y) = dright(x − dleft(x, y), y). Pixels for which this is not the case are
classified as outliers and are treated with the refinement steps Iterative Region Voting
and Proper Interpolation from Mei et al. [182]. Due to insufficient details given, we skip
their Depth Discontinuity Adjustment step, but again perform the subsequent Sub-pixel
Enhancement step, which aims to reduce errors caused by the discrete disparity levels.

4.2.5 Software Implementation

As starting point for our acceleration, we use our own software implementation for stereo-
matching, which follows these concepts, but offers additional features, such as different,
parametrizable cost initialization metrics (for more metrics see e.g. [125]), an adjustable
sequence of aggregation steps, and an optional OpenGL visualization of aggregation areas,
cost volumes and cost metric profiles. The precision of intermediate cost values required
for stable results depends highly on the actual images processed. In general, quality degra-
dation with reduced precision is graceful, but in some cases with single precision floating
point, costs after computing differences in the aggregation step can falsely get values of
0, leading to artifacts. Therefore, we use in our software implementation double precision
and also require this from the FPGA acceleration. The extensible, feature-rich software
implementation with an algorithmic structure driven by runtime complexity and result
quality, but not by low-level performance optimizations, are characteristic for general-
purpose applications as outlined in Subsection 3.1.1. With the settings of Mei et al. [182],
our implementation reaches an accuracy in the Middlebury benchmark [222] of average
5.73% bad pixels and we make sure during our acceleration process to still produce the
same results.

4.3 Utilized FPGA Platforms and Programming Models

In this section, we introduce the two hardware platforms we target and outline how they
are programmed in this work. We conclude the section with a brief comparison of the
accelerator resources as used in our experiments.

4.3.1 Maxeler Platform and Programming Paradigm

The Maxeler MPC-X platform we use [175] is illustrated in Figure 4.3. It comprises two
6-core (12 threads) Intel Xeon X5650 (Westmere microarchitecture) CPUs, running at
2.66 GHz, as host platform and is equipped with four MAX3424A Vectis PCIe accelerator
cards, of which in this work only one is used. Each card contains a large Xilinx Virtex-6
SX475T [275] FPGA for user logic, a smaller, non-user-programmable FPGA for the PCIe
interface, and 24GB of local SDRAM memory. This local memory is called LMem and
has to be read or written in bursts of 384 adjacent bytes. However, in order to come
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Figure 4.3: Illustration of the Maxeler MPC-X platform with only one of four MAX3 Vectis ac-
celerator card shown.

close to the possible bandwidth of around 30 GB/s (with memory controllers synthesized
at 300 MHz; up to 400 MHz are supported by the DDR3 DIMMs), several bursts, either
adjacent or with a fixed stride, should be accessed with a single memory command. For
example, commands with only 1 burst each lead to an efficiency of only 11%, whereas with
8 consecutive bursts, an efficiency of 80% is reached. The PCIe interface on the other hand
can be used to stream data from or to host memory and reaches a bandwidth of 2 GB/s.
Note that the memory controller is synthesized by the Maxeler tools onto the user FPGA
alongside the custom logic.
The distinctive feature of the Maxeler systems is their development environment [176],

which allows programming the FPGAs with a spatial programming language, denoted as
MaxJ and realized as a Java extension. The kernel functionality implemented on FPGA is
integrated with the host (CPU) part of an application through calls to an API automat-
ically generated for the specified functionality. The MaxJ language offers a much higher
abstraction than HDL languages like VHDL and Verilog, but much finer control on the de-
sign than when generating hardware via HLS. Conceptually, MaxJ is built around streams
of data, where typically one data element per cycle is processed in a so-called hardware ker-
nel. A sequence of operations on one or several streams is automatically translated into a
corresponding compute pipeline, where pipelining may also happen inside individual oper-
ations, in particular when they utilize DSP blocks. The streams can be connected to other
kernels or to LMem or via PCIe to host memory and the Maxeler toolflow automatically
generates the required buffers and interfaces.
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Figure 4.4: Illustration of the Convey HC-1 platform.

4.3.2 Convey HC-1 Platform with Vector Processor Overlay

The Convey HC-1 [40], illustrated in Figure 4.4, is a dual socket server system, where one
socket is populated with a dual core Intel Xeon 5138 (Core microarchitecture) CPU, run-
ning at 2.13 GHz, while the other socket is connected to a stacked coprocessor board. The
two boards communicate using the Intel Front-Side Bus (FSB) protocol. Both processing
units have their own dedicated physical memory, which can be transparently accessed by
the other unit through a common cache-coherent virtual address space, which distinguishes
this platform from the Maxeler system. The coprocessor consists of multiple, individually
programmable FPGAs. One FPGA implements the infrastructure that is shared by all co-
processor configurations. These functions include the physical FSB interface and cache co-
herency protocol as well as configuration and execution management for user programmable
FPGAs. For implementing the application-specific functionality, four high-density Xilinx
Virtex-5 LX330 [274] FPGAs are available. Eight memory controllers are implemented
on one distinct Virtex-5 LX150 [274] FPGA per memory controller. Each of them ac-
cesses two DIMMs, which leads to an aggregated bandwidth of close to 80 GB/s with 16
memory modules. In our system configuration, custom-made scatter-gather DIMMs are
installed, which allow accessing memory efficiently in 8-byte data blocks, while standard
modules are designed for 64-byte block access. The memory controllers implemented on
dedicated FPGAs and the custom-made DIMMs of this platform are, with reference to Sub-
section 2.2.4, indicators of a platform with high performance along with low volume and
high unit-cost. For a high-volume product with similar performance characteristics, lower
unit-cost and higher efficiency could be achieved with fixed-function memory controllers
as present in every commodity GPP and GPU.
The user FPGAs can be configured with different fixed-function designs or programmable

overlays. Fixed-function, problem-specific designs can be fully customized by developers
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and integrated into the rest of the system by interface libraries written in Verilog. Convey
also offers a number of synthesized, ready-to-use designs, so-called Personalities, that offer
a fixed functionality with few configuration options, for example for graph traversal or local
string alignment. On the other hand, the so-called Vector Personality, which we use in
this work, is an instruction-programmable overlay. It represents a highly optimized design
that contains the type of abstraction benefits and overheads that we want to quantify in
this work.
The Vector Personality provides the functionality of a vector coprocessor that executes

programs targeting its vector instruction set. It comes in two variants, optimized for single-
or double-precision floating point operations; both also support integer operations, e.g. for
vectorized address calculations. According to our application, we use the double-precision
Vector Personality. The vector instructions are implemented for up to 1024 elements. A
total of 64 vector registers are available and each can store such a set of 1024 elements.
Besides the usual element-wise arithmetic vector operations, the vector instruction set
contains memory instructions that distinguish it from typical SIMD vector instruction set
extensions for general-purpose CPUs. It can load and store vectors where the elements are
individually indexed and do not need to be aligned in a continuous memory location.
Convey includes a compiler to target this vector personality by annotating source code

with pragmas, however we found it to be limited to simple array data structures and simple
loop nesting patterns, which often requires significant code adaptations besides adding the
vectorization pragmas. We fixed many of these shortcomings with the toolflow proposed
in [7] and discussed in Chapter 5, however for the comparison of architectural overheads
of the overlay, we wanted to achieve the best possible performance. Therefore for the work
in this chapter, we designed all kernels by hand in assembly code, particularly exploiting
on top of the capabilities of the automated toolflow additional opportunities as vector
partitioning, vector register rotation and enhanced reuse of partially computed addresses.

4.3.3 Comparison of FPGA Platforms

Comparing the two hardware platforms, the Convey HC-1 is a few years older, with the
utilized FPGAs being one generation behind, and the CPUs being two process shrinks
(Intel Tick) and one microarchitectural change (Intel Tock) behind. On the other hand,
when we compare a single Maxeler MAX3424A Vectis accelerator card to the coprocessor
of the Convey HC-1, the latter incorporates a lot more hardware resources. Table 4.1
gives an overview of the accelerator hardware as used in our experiments. Together, the
four FPGAs for the HC-1’s application logic contain almost 3x more LUTs and some
more BRAM resources than the single application FPGA of the MAX3424A. Similarly,
the peak memory bandwidth of the Convey HC-1’s coprocessor is around 2.5x higher than
that of the Maxeler MAX3424A accelerator. This is essentially achieved by using more
memory modules. Additionally, the Convey HC-1’s memory controllers are implemented
on dedicated FPGAs, in contrast to the Maxeler MAX3424A platform, where the memory
controller is synthesized along with the application logic onto the same FPGA. For the
Convey platform, this saves space on the application FPGAs and avoids timing issues
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Table 4.1: Hardware resources of the two FPGA platforms as used in our experiments. *Maxeler
MAX3424A memory clock and bandwidth depend on user design.

Platform Maxeler MAX3424A Convey HC-1

Application FPGAs 1× Virtex-6 SX475T 4× Virtex-5 LX330
#6-input LUTs 297600 4× 207360 = 829440
#36Kb BRAMs 1064 4× 288 = 1152

#DIMMs 6 16
Memory controllers on User FPGA 8 dedicated FPGAs
Memory Clock 300 MHz*, variable 300 MHz, fixed
Peak Bandwidth 28.8 GB/s* 74.4 GB/s
Min. Access Size 384 bytes 8 bytes

when synthesizing new user designs. Finally, even though both platforms come closest
to their peak bandwidth with linear access patterns, physically a much smaller access
granularity is supported in the Convey HC-1 configuration we utilize.
In Section 4.7, where we assess the effects of the two different approaches to kernel

design, we need to compensate for the outlined differences of the hardware platforms.

4.4 Kernel-Centric Acceleration

The general idea of kernel-centric acceleration as followed here, is to identify runtime
intense kernels with acceleration potential and execute them on FPGA, and to keep other,
possibly complex parts of the application with small contributions to the overall runtimes
on CPU. This is a typical approach for accelerating existing software solutions on general-
purpose accelerators like GPUs.
In order to identify the candidate kernels, we first performed profiling on CPU. The

runtimes of all kernel functions with non-negligible runtimes, aggregated over all their in-
vocations when they are executed more then once, are illustrated in Figures 4.5 and 4.6 for
a FullHD input image pair on both CPU platforms. The kernels are sorted by the time of
their first invocation, which reflects the overall sequence of cost initialization, aggregation,
scanline optimization and disparity refinement, however there are repetition patterns span-
ning several of those kernels. Based on this result, we selected the 5 aggregation kernels
from horSum to scale and the 5 scanline kernels from scanUp to sumScanlines. They
cover 87% of the total program runtime, which permits by Amdahl’s law a speedup of at
most 7.8x.
Since both platforms investigated in this work have physically distinct accelerator mem-

ory, whenever possible, we want to leave data in this accelerator memory when it is read or
modified by several different kernels or several invocations of the same kernel. Therefore
beyond the raw execution times, possible data reuse between the kernels was considered.
In case of our stereo-matching implementation, the selected kernels cover all cost-volume
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Figure 4.5: Runtimes that different kernels contribute to overall runtime on the Maxeler platform’s
host CPU for a FullHD image pair (1920x1080) with a maximal disparity of 80. Yellow
and red bars indicate kernels in aggregation and scanline phase respectively.

related compute steps of aggregation and scanline optimization, thus maximizing the reuse
potential of data in accelerator local memory. Based on pure profiling runtimes, the final
step of scanline optimization, sumScanlines, would be a less worthwhile acceleration tar-
get then e.g. the computation of census costs, but it reduces the amount of data to be
transferred from accelerator memory to host memory significantly from four cost volume
instances to a single one.
Both utilized target platforms require data to be moved between CPU and accelerator

memory, but in different ways. The Maxeler platform [175] requires explicit data move-
ment functionality added to each design by the designer and the accelerator memory space
is entirely managed by the developer [176]. The Convey platform [40] provides a shared
memory space and different API functions for allocation on and movement between phys-
ical memory locations. In order to abstract these differences away from the application
side, we modified and extended the memory manager presented in [5] for the Maxeler plat-
form. An important feature of the memory manager, particularly useful during accelerator
kernel development, is to support easy switching between CPU and accelerator execution
of individual kernels with all required, but no unnecessary data movements.
Our means to achieve this was to express at the beginning of every kernel, which data

structure it uses, whether it uses it at the host CPU or the accelerator and whether it
reads or writes to this data structure. With this information, the memory manager keeps
track of all data locations and initiates all required transfers prior to actual data accesses.
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Figure 4.6: Runtimes that different kernels contribute to overall runtime on the Convey platforms
host CPU for a FullHD image pair (1920x1080) with a maximal disparity of 80. Yellow
and red bars indicate kernels in aggregation and scanline phase respectively.

In our new, extended memory manager concept, we applied these kernel annotations to
both the kernels remaining on CPU and the wrappers for kernels executing on FPGAs.
This goes beyond the modifications required for the methods presented in [5], where only
data usage on FPGAs was indicated. The extension is however advantageous to the kernel
centric acceleration concept, because it removes the only high-level application knowledge
required for the previous version, where transfers from accelerator memory back to CPU
had to be initiated manually, requiring changes for each accelerator kernel that is enabled
or disabled during development.
Listing 4.3 illustrates some kernel functions using the memory manager interface. Before

they actually use data, they indicate by calls to the memory manager API how (mm.reads,
mm.writes) and where (locations CPU, ACC) they are going to use it. When a kernel both
reads and writes data, or when it doesn’t completely overwrite a structure, so previous
data may still exist after writing, this has to be stated explicitly like in this example for
the first function, using b both as input and output. The accelerator kernels (starting with
cny for Convey, max for Maxeler) are mere wrappers and subsequently invoke execution
on the respective accelerator. Due to the shared address space, the Convey kernel uses
the original addresses, whereas the locations in Maxeler local memory are provided by the
memory manager (mm.getLMem). Just like in [5], a memory region in Maxeler local memory
is allocated lazily before the first usage of some data structure in this memory.
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1 cpuABtoB(double* a, double* b){
2 mm.reads(CPU , a);
3 mm.reads(CPU , b);
4 mm.writes(CPU , b);
5 // CPU kernel code here
6 }
7 cnyAtoB(double* a, double* b){
8 mm.reads(ACC , a);
9 mm.writes(ACC , b);
10 callCnyKernel(a, b);
11 }
12 maxAtoB(double* a, double* b){
13 mm.reads(ACC , a);
14 mm.writes(ACC , b);
15 callMaxKernel(mm.getLMem(a), mm.getLMem(b));
16 }

Listing 4.3: Different kernel functions using Memory Manager.

Listing 4.4 now illustrates usage of two of those kernels. First, dynamic arrays are
allocated through the memory manager, per default in host CPU memory. Then, for the
first kernel call on CPU in Line 4, the memory manager determines at runtime that both
arrays are already in the right location and no movement is required. In this example,
the second kernel, Line 5, is executed on the Maxeler accelerator. For the data it reads,
c_init, accelerator memory is lazily allocated and data is moved there from host. c_agg
on the other hand is only written to, so it gets allocated in accelerator memory, but no
data is actually moved. Line 6 now performs another kernel call on the host CPU. c_init
was not modified in accelerator memory, so the memory manager internally still has it in a
shared state and no data needs to be moved. c_agg however was modified in accelerator
memory and on CPU it will now be read before it is possibly overwritten, so its data is
transferred back by the memory manager.

1 double* c_ad = (double *) mm.alloc(size);
2 double* c_init = (double *) mm.alloc(size);
3 double* c_agg = (double *) mm.alloc(size);
4 cpuABtoB(c_ad , c_init);
5 maxAtoB(c_init , c_agg);
6 cpuABtoB(c_init , c_agg);

Listing 4.4: Code sequence using Memory Manager with Maxeler kernel.

Listing 4.5 repeats the same kernel pattern, just with the accelerated kernel being ex-
ecuted on the Convey platform instead of Maxeler. This time at the coprocessor kernel
call in Line 5 no more memory is allocated since host CPU and accelerator share the same
memory space. For the input data c_init, a similar data transfer is initiated as on the

80



Maxeler platform, just using a different API with different arguments internally. For the
output data c_agg, again no physical data transfer is required. For this purpose, the Con-
vey API contains a migrate_virtual function, which doesn’t actually move any data, but
just lets the affected shared memory area point now to the physical accelerator memory.
This function comes in two flavors, one that touches all affected memory pages to update
internal state such as the TLB (Translation Lookaside Buffer) and the other one with-
out this touching. The version with page touching guarantees the fastest raw execution
time of subsequently executed accelerator kernels and therefore is important for the later
evaluation of kernel acceleration. On the other hand, we found the no-touch version in
combination with allocation on host to yield fastest overall matching performance, because
it partially overlaps the page touching effort with actual computation. It is even slightly
faster than the alternative direct allocation as accelerator memory, even though the lat-
ter would require additional a-priori knowledge about the first usage location of a data
structure. Therefore we measure and evaluate both versions in our experimental section.

1 double* c_ad = (double *) mm.alloc(size);
2 double* c_init = (double *) mm.alloc(size);
3 double* c_agg = (double *) mm.alloc(size);
4 cpuABtoB(c_ad , c_init);
5 cnyAtoB(c_init , c_agg);
6 cpuABtoB(c_init , c_agg);

Listing 4.5: Code sequence using Memory Manager with Convey kernel.

These examples conclude this section on the selection of kernels for acceleration and the
concepts and infrastructure to support memory management for both platforms through
a common interface.

4.5 Kernel-Designs for two FPGA platforms

In this section we present the compute and data-access patterns of the identified time-
consuming kernels and outline their parallelization opportunities, taking dependencies and
data locality into account. Subsequently, we discuss the compute and memory access and
data reuse patterns we implemented on the two accelerator platforms. The kernels for the
Maxeler platform [176] are designed with a flexible amount of parallelism, which is specified
by an unrolling factor fu prior to synthesis. The actually utilized amount of parallelism,
typically low two-digit numbers, is either limited by resource or timing limitations during
synthesis (HorDiff and Scanline kernels) or by the known limits of the memory interface to
feed the compute pipeline (all other kernels). In order to hide feedback latencies in some
kernels, in addition to this explicitly utilized parallelism, we also loop through different
groups of work items in different clock cycles. For the Convey vector coprocessor [40], the
desired amount of parallelism to be expressed by our kernel implementations is given by
the size of the vector registers with up to 1024 elements. It internally contains 32 parallel
function pipes and additionally makes use of further elements for latency hiding. We
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present for each kernel the designs for both platforms side-by-side to emphasize similarities
and differences. We outline the designs of the first kernel in some detail whereas for the
other kernels we restrict ourselves to noteworthy aspects.

4.5.1 Aggregation Kernels

The cost aggregation involves five different kernels: horizontal integral sums and differ-
ences, vertical integral sums and differences and scaling. All aggregation steps are inde-
pendent for each different disparity value and also for at least one of the image dimensions.
For the Maxeler platform, the independent image dimension suffices to support the re-

quired parallelism and latency hiding, so we restrict ourselves to unrolling in this dimension.
The work of Shan et al. [230] suggests that utilizing disparity level parallelism in addition
to image dimension parallelism might allow to save BRAM resources at the expense of
additional logic utilization, which we did not investigate further for our kernels.
On the Convey platform, the image dimensions of small images do not suffice to make

best use the available vector width. With the feature vector partitioning, loops can be
partially unrolled in a second dimension to increase the exploitation of DLP. For vector
partitioning, addressing requires, besides the address stride of the primary vector dimen-
sion, so-called partition offsets for the second dimension. For the aggregation kernels, we
use this feature to exploit both parallelism in image dimensions inside each partition and
parallelism in disparity dimensions by multiple vector partitions.

Horizontal Integral Sums

After Section 4.2 already presented simplified pseudocode for the horizontal aggregation
step, Listing 4.6 presents the corresponding function with the actual indexing used in our
software implementation. There are dependencies along the rows, but we can parallelize
computation by vertical unrolling, that is computing several rows in parallel, and addi-
tionally work on independent disparity dimensions for Convey vector partitions.

1 void horSum(double *in, double *out){
2 long slice = height * width;
3 for(int d=0; d<=maxD; d++){
4 for(int y=0; y<height; y++){
5 out[d*slice + y*width] = in[d*slice + y*width] ;
6 for(x=1; x<width; x++){
7 out[d*slice + y*width + x] =
8 out[d*slice + y*width + x-1] + in[d*slice + y*

width + x];
9 }
10 }
11 }
12 }

Listing 4.6: Horizontal integral sums.
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Figure 4.7: Illustration of compute order for horizontal sums on Maxeler. Here, an unrolling factor
fu = 2 and a feedback latency lf = 4 are illustrated.

Figure 4.7 illustrates the computation pattern implemented on the Maxeler platform.
The product of unrolling factor fu and feedback latency lf determines the number of rows
that are in-flight at the same time as one common block. The latency is given by estimates
from the Maxeler tools, whereas fu is limited either by bandwidth estimations or synthesis
results. More than fu∗lf rows in the same block are possible, but require larger buffers and
provide no further advantages. After an entire block of rows is computed, the next block
of rows, not shown in the illustration, is started. Finally, also not illustrated, after one
entire image (a slice of the cost volume) is finished, computation continues with the next
disparity. In this description, the presented compute pattern now governs the required
memory access pattern, however in practice both are closely codesigned.
In memory, elements are arranged in row-major order, which means that entire rows

are stored in continuous memory locations one after the other, because LMem uses the
same data layout as the host application to allow for the memory management outlined
in Section 4.4. Thus each burst of 384 bytes reads 48 subsequent double values from each
row. Figure 4.8 illustrates the way data is read from LMem with an appropriate memory
command generator. We see that inside each block, between memory accesses and compute
step, the data needs to be reordered from horizontal to vertical order. This is relatively
easy to do with the MaxJ concept of stream offsets, however the actual design may need
considerable amounts of BRAM. Additional simpler, non-reordering buffers are required
to keep the memory and compute pipelines fed.
The implementation for the Convey vector coprocessor, as indicated in the introduction

to this section, not only uses the same unrolling into the independent image dimension,
here vertically, but additionally can work on more than one disparity dimension in different
vector partitions. Figure 4.9 illustrates this pattern with 4 partitions and 256 rows covered
by each partition. The innermost loop runs horizontally inside the rows to reuse the vector
register containing the previous integral sum as one of the two inputs for the next step.
Before entering this innermost loop, for each group of rows, the number of partitions and
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Figure 4.8: Illustration of memory accesses pattern for horizontal sums on Maxeler. Each burst
spans 48 elements, every command generates accesses for an entire block of data. Inside
each block, data needs to be reordered for the compute pattern.

size of the partitions is computed based on remaining dimensions and two offsets are written
into configuration registers. One is the row offset between two consecutive vector elements
inside each partition, the other one the image slice offset between two consecutive disparity
levels in the cost volume. Vector load and store instructions use these offsets to determine
the memory addresses of each vector element and, in this loop profiting from the small
access granularity of the scatter-gather RAM, only access the specified vector elements in
memory.

Vertical Integral Sums

The vertical integral sum kernel (VerSum) is orthogonal to the HorSum kernel and con-
tains vertical dependencies. Consequently, we now unroll computation horizontally for the
implementations on both platforms.
Our Maxeler compute kernel combines the same combination of unrolling and feedback

latency hiding as the HorSum kernel illustrated in Figure 4.7, just horizontally. When
we buffer entire rows instead of blocks inside each row, the compute pattern exactly fits
the data layout in memory, so we can use a linear memory access pattern instead of a
customized memory command generator.
Similarly, the Convey VerSum vector kernel contains the same features, vector parti-

tioning and data reuse in the innermost loop, as the HorSum kernel, but with vectors in
horizontal image dimensions. Now the memory accesses inside each vector partition are
continuous, which is beneficial for effective memory performance. In the vector processor
instruction set, the only difference is, that the element stride is now set to the element size
of 8 bytes.

Horizontal Differences

After the computation of the horizontal integral sums (HorSum) follows the step of com-
puting horizontal differences (HorDiff). For each pixel, a left and a right arm length are
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Figure 4.9: Illustration of compute order for horizontal sums on Convey vector coprocessor. Here,
4 vector partitions with 256 elements each are illustrated.

required, which define the two positions in the integral cost rows to access, before the
corresponding cost values are subtracted from each other. So in this kernel we have data
dependent memory accesses, however only with bounded offsets from a given position,
which are limited by the maximal arm lengths. There are no dependencies in this kernel,
so both horizontal and vertical unrolling are possible.
Since this kernel does not contain feedback, latency hiding as used on the Maxeler

platform for the integral sum kernels is not needed here. With the burst oriented Maxeler
memory interface, we need to have the window of possibly required integral cost data
available in local buffers. This seems straightforward when unrolling horizontally, since
neighboring pixels in one row require largely overlapping areas of possible input values
defined by the arms. Figure 4.10 illustrates the use of multiplexers for the selection of the
position specified by right arms for an unrolling factor fu of 4 and with possible values for
the arm length of 0 to 4 (in practice we use the a length of up to 34 as proposed in [182]).
Figure 4.10 illustrates, that the overlapping of the possible access windows makes the

buffer very space efficient, in the example actually using only 8 registers to buffer the
possible inputs for 4 parallel access operations with 5 different input options each. However,
even though resource utilization would permit it, the synthesis tools were not able to
route such a design with more than fu = 8 anywhere near 100 MHz. The illustration in
Figure 4.10 may give an intuitive idea that high number of overlapping signal routes to
the different multiplexers causes this problem.
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Figure 4.10: Illustration of the selection of the integral sum element specified by a right arm.
Together with the left arm counterpart and computation of the difference of their
values, this forms a HorDiff kernel. From the left side of the illustration, integral
sum values and arm lengths are streamed in in groups of 4 according to the unrolling
factor fu and per cycle 4 selected values are output (to the right). In this example we
limited the arm length to between 0 and 4, such that a multiplexer of size 5 suffices
to select an integral sum element from the group streamed in during the same cycle
or from the group of previous cycle.

As an alternative, we tried vertical unrolling like in the previous kernel. Here, in addi-
tion to the resource consumption of reordering between row oriented memory access and
column oriented compute step, for each parallel row a buffer for the possibly accessed
input elements needs to be instantiated. With this approach, unrolling was limited by
resource consumption after synthesis. Therefore, specifically for this kernel, in our final
Maxeler design we combined horizontal and vertical unrolling, achieving the largest syn-
thesizable design with overall parallelism of 16 through horizontal and vertical unrolling
factors fuh = 4 and fuv = 4.
On the Convey vector processor platform, conceptually the vector registers might provide

a similar line buffer for input cost values selected by arms. However, the instruction set
does not support any form of parallel access to specific indexed elements of the vector, so
this is not possible. Instead, we resort to computing the address of each element of the
horizontal integral sums that needs to be accessed by adding the arm length value to each
respective base address. Then these addresses are used for indexed vector load operations,
which are however less efficient then the accesses with regular strides as outlined for the
previous kernel.
We again use multiple vector partitions covering several disparity values in each compu-

tation step for efficient utilization of the vector size with small images. Since there is no
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dependency of the two inner loops, the parallelism in each partition can be provided either
by horizontal or by vertical vectors. After implementing and measuring both alternatives,
we use vertical unrolling to form the vectors. When forming horizontal vectors, several
loads of input cost values inside a vector load may point to the same location. This works
functionally correct, but apparently causes additional latencies in the memory interface.

Vertical Differences

Similarly to the HorDiff kernel, the computation of vertical differences (VerDiff) does not
contain any dependencies. On the Maxeler platform, horizontal unrolling does not suffer
from the routing and timing difficulties of the HorDiff kernel, because now selection of arm
positions is realized independently for each column. Thus, we can restrict unrolling to the
horizontal dimension here and still reach unrolling values up to fu = 24. On the Convey
platform, we again use vector partitioning and this time unroll the vectors horizontally,
following the data access pattern of the vertical summation and again avoiding indexed
vector loads to contain several instances of the same address.

Scaling

Finally in the scaling kernel (Scale), each aggregated value is scaled, that is divided by
the size of its specific aggregation region. It is a straightforward streaming kernel without
dependencies and on both platforms can be readily unrolled horizontally, following a linear
memory access pattern. On the other hand, the division of a double precision floating
point values is neither easy nor efficient to implement on the Maxeler platform and not
supported in the vector instruction set of the Convey coprocessor. Fortunately, there is
a only fixed number of discrete sizes Aa that any aggregation region can have, so we can
precompute the inverse values 1/Aa and replace division operations by multiplications with
the inverse values. On the Maxeler platform, those precomputed factors are stored in
BRAM and looked up locally. For each parallel function pipe, a separate block of BRAM
is instantiated. Due to the indexed access pattern, the Convey vector coprocessor again
cannot use the vector registers to hold those values, but instead reads them with indexed
vector loads from memory. Again, lookups to the same address impair performance, so on
this platform we replicate the block of lookup values in memory and use the vector indices
to distribute lookups to different blocks.

4.5.2 Scanline Kernels

In contrast to the aggregation, the scanline optimization is not independent for different
disparity values. On the contrary, for the computation of the scanline costs of a new pixel,
the minimal scanline costs of the previous pixel over all disparities need to be known.
There is also a dependency along the scanline direction, such that unrolling can only be
performed orthogonal to the scanline direction.
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Vertical Scanlines

On the Maxeler platform, we implemented a common vertical scanline compute kernel
(ScanVer), suitable both for the ScanUp and ScanDown kernels of the host application,
switching between both modes by configuring the accompanying memory command gen-
erator for different access directions. Figure 4.11 illustrates the dependency pattern for a
downward scanline computation and how it can be unrolled horizontally, here with boxes
of size 4. All yellow boxes are required as inputs to compute the red boxes. The aggre-
gation costs are read in in the required pattern as inputs, as well as the color difference
information (not illustrated in the Figure) needed to determine the penalty values for each
row (boxes P1 and P2). The resulting scanline costs are written out to LMem, but for an
entire disparity range also buffered locally in BRAM for reuse in the next row. Therefore,
computation is performed in blocks, but not in entire rows, as this would require excessive
buffer space or additional read-backs.
In our actual Maxeler implementation, due to the burst size of the LMem interface,

actual data blocks of 48 horizontal elements are loaded from memory and computed in
48/fu cycles before proceeding to the next line. Since the previous minimum from step 0 is
required to update the minimum for step 1, we reordered the datapath for the recursion
of Equation 4.1 to have a deeper pipeline for the computation of the individual scanline
costs and a simple comparison for the selection of the current minimal scanline value.
Nevertheless, similar to the integral sum kernels, we incur a feedback latency lf of four
cycles, which for the block size of 48 limits the possible unrolling in space with unrolling
factor fu to 12 (lf ∗ fu = 48). We also tried out larger block sizes to obtain more possible
compute throughput, but the resulting large designs failed to meet timing.
On the Convey vector processor platform, we implemented two individual assembly ker-

nels for ScanUp and ScanDown to save unnecessary selection instructions for the direction,
but both implementations have identical structures. According to the dependence pattern,
vectors cover entire rows or parts of rows, depending on image sizes. In contrast to the
aggregation kernels, vector partitioning into different disparity dimensions is not possible.
The compute order looks very similar to the one illustrated for Maxeler in Figure 4.11,

just with much larger blocks formed by the vectors. On this platform, the scanline costs
of the previous line can’t all be buffered for the next line, so they are read back at every
iteration of the vertical loop. However, only one disparity block needs to be read for
every newly computed block, the other two are reused from the previous iteration of the
innermost loop, the disparity loop. E.g. in the Figure 4.11, the yellow block with scanline
cost 3 was newly read for the current compute step, the other two yellow scanline costs are
reused, which is done efficiently by using the vector register rotation feature of the vector
instruction set. Also, our code makes heavy use of vector mask generation and vector
element selection to find the different possible scanline paths inside one single vector,
which can be used by the vector internal streaming of the coprocessor to skip masked out
elements.
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Figure 4.11: Illustration of downward scanline compute pattern. Arrows indicate dependencies.
In x-dimension there are no dependencies, blocks of width 4 indicate unrolling in
this dimension. For the computation of the red boxes (scanline cost is computed,
minimum is updated after every disparity steps), data from all yellow boxes is re-
quired. The penalty values P1 and P2 additionally depend on pixel color differences
not shown here. Green arrows indicate, which paths are chosen to compute the
illustrated scanline costs for y = 1.

• Red box (value 0): previous scanline cost (value 0) at the same disparity without
any penalty.

• Neighboring white boxes (value 1): previous scanline cost (value 0) at neighboring
disparity plus penalty P1 (value 1).

• Outer white boxes (value 3): minimum over all disparities of previous scanline
cost (value 0) plus penalty P2 (value 3).

Horizontal Scanlines

On Maxeler, for horizontal scanlines (ScanLeft and ScanRight) the orthogonal unrolling
concept from vertical scanlines with buffering the entire previous scanline costs was not
applicable due to prohibitive BRAM requirements. This is because bursts were still aligned
horizontally, but unrolling would have to be done vertically and additionally the buffers
would have to cover all disparity dimensions. Therefore we decided to implement an
auxiliary turn kernel (Turn) that reads cost arrays in row-major data layout and writes
them back to LMem in column-major data layout, or vice-versa. Now we can execute
horizontal scanlines by a sequence of turning input aggregation data, applying vertical
scanlines and turning scanline result data back. The overhead of this turning steps gets
mitigated, because both horizontal scan kernels use the same turned input data by utilizing
the ScanUp and ScanDown variants of the vertical scan kernels.
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The Turn kernel uses 48 BRAM blocks in which data is written to and read from with
a diagonally shifted addressing scheme, which provides the flexibility that either an entire
row or column of 48 values can be accessed. The size of blocks to be turned has to match
at least the 48 elements per burst from the LMem interface, so in contrast to all other
kernels we implemented this with a fixed unrolling factor fu of 48.

On the Convey coprocessor platform, the finer grained access capabilities of the memory
interface allow direct implementation of the horizontal scanline kernels without prior turn-
ing. The kernel structure is very similar to the vertical one, just using row strides between
the vertically unrolled vector elements as for the HorSum and HorDiff kernels.

Average over Scanline Directions

After computing the costs along all scanline directions, the final scanline costs for each
position and disparity is computed by averaging the values of all directions. On both
platforms, the resulting ScanAvg kernel is a straightforward streaming kernel with four
linear input and one linear output streams. As outlined in Section 4.4, its particular value
for the overall implementation lies in the reduction of output data size that has to be
transferred back from accelerator memory to host memory.
This concludes the part of this section covering kernel designs for both platforms. On the

Convey platform, the kernels were directly integrated into an heterogeneous executable by
filling empty proxy kernels with the proper signature compiled by the Convey compiler with
the actual assembly code providing the described functionality. On the Maxeler platform,
the kernels defined in the MaxJ language are synthesized to kernel-specific FPGA dataflow
designs. The results of the synthesis process are summarized in the following subsection.

4.5.3 Synthesis and Integration

As indicated, most Maxeler dataflow kernel designs are parametrizable at synthesis time
with an unrolling factor fu, which is often constrained by several rules. It must be a whole
number divisor of burst sizes, the product of fu and feedback latency lf must not exceed
burst or block sizes. The Turn kernel has a fixed size for the diagonal buffer addressing
scheme. The practically possible unrolling factors are further constrained by resource
utilization and our decision to aim for a clock frequency of at least 100 MHz for the
datapath. We furthermore analyzed the bandwidth requirements and did not investigate
unrolling factors which would exceed those by much. The first data column of Table 4.2
summarizes the final unrolling factors utilized for individual kernels. Out of eight individual
kernels, six were able to reach or exceed the bandwidth limit. Details of this analysis can
be found in [5].
Anticipating some performance results from Section 4.7, in the aggregation phase, there

is a high overhead for reconfiguring the FPGAs for the sequence of kernels. Hence, for
the five aggregation kernels that are repeated in different cycles during the application, we
created a common design (denoted as MaxFused) implementing all of their functionality
in the same FPGA configuration and thus saving the reconfiguration overhead. We had
some headroom for this integration, because not all of the individual kernels hit resource
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Table 4.2: Unrolling factors fu of synthesized kernels. *Asterisks mark unrolling that suffices to
reach bandwidth limits. For the aggregation phase, an alternative multi-kernel design
(MaxFused) with reduced fu was synthesized.

Kernel fu Reduced fu

HorSum 24* 12
VerSum 24* 12
Scale 24* 12
HorDiff 16 4
VerDiff 24* 12

Turn 48* —
Scan 12 —
SAvg 12* —

Table 4.3: Resource utilization of the implemented kernels. Suffixes denote unrolling factors of
individual kernels. Critical resources are highlighted.

Logic LUTs Primary FFs DSP BRAMs
Available 297600 297600 297600 2016 2128
HorSum24 27% 19% 23% 1% 39%
VerSum24 30% 21% 25% 0% 18%
Scale24 23% 15% 19% 6% 22%
HorDiff16 38% 27% 33% 1% 48%
VerDiff24 47% 40% 42% 1% 23%
MaxFused 63% 50% 57% 8% 77%
Turn48 32% 23% 27% 3% 29%
Scan12 53% 42% 46% 1% 31%
SAvg12 35% 25% 30% 0% 23%

limitations, but still we had to decrease the unrolling factors. The final integrated aggre-
gation design was chosen as the optimal trade-off between unrolling and achievable timing
and runs at 130 MHz. The second data column of Table 4.2 summarizes the decreased
unrolling factors for MaxFused. For the scanline phase, no integrated design was found
that increased overall performance, not even for small images. In this phase, less recon-
figurations are required, so the overhead that can be saved is much smaller. On the other
hand, severe reductions of the unrolling factors were required to get routable designs.
In Table 4.3, we finally summarize the resource usage of all used dataflow kernel de-

signs. The table highlights that the individual kernels don’t hit hard limits in resource
consumption, however for HorDiff and Scan, no larger design with valid unrolling factor
could successfully be synthesized. The critical resources of all kernels are either logic slices
or BRAMs.
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4.5.4 Kernel Summary

In Subsections 4.5.1 and 4.5.2, the kernels and their implementations are introduced in
the order they are used throughout the stereo-matching application. In this subsection,
we summarize the kernels based on the encountered computation and data access patterns
and identify three groups based on common features. In Subsection 4.7.4, we refer to
these groups when analyzing the overheads of the overlay architecture or the advantages
of customized kernels.
In the first group, we combine the kernels with a Regular Streaming pattern, HorSum,

VerSum, Scale and SumScanlines. In each of these kernels, there is a common streaming
pattern for input and output data, either governed by dependencies (HorSum, VerSum), or
fully unrestricted (Scale, SumScanlines). Also, the kernels share a low arithmetic intensity
and offer no specific data reuse opportunities beyond the simple reuse of the sum value from
the previous iteration that was already introduced in the example in Subsection 2.1.2 and
is used in both applicable kernels on both platforms. In the individual kernel designs on the
Maxeler platform, all kernels of this group are sufficiently unrolled to reach the platform’s
bandwidth limits. In the Scale kernel, the multiplication by inverse values of the region
size looked up from different memory locations on the two different platforms is an outlier
within this group, however because of the other correspondences, we decided to group it
here.
In contrast, a second group, denoted as Complex Streaming is formed by the four directed

scanline kernels (ScanUp, ScanDown, ScanLeft, ScanRight). They require to simultane-
ously stream data from different iteration spaces and have a higher arithmetic intensity
on both platforms, because different alternative scanline paths are computed from reused
data. With customized block buffers, the customized kernels for the Maxeler platform
achieve additional data reuse over those for the instruction-programmable overlay. On the
vector overlay, the higher number of operations per volume element compared to the first
group of kernels is executed sequentially, whereas the customized kernels pipeline these
instructions like introduced in Section 2.1.3 and compute alternative scanline paths in par-
allel. However, as disadvantage, the customized kernels also use an auxiliary Turn kernel
and we were not able to unroll them sufficiently to fully saturate the memory bandwidth.
The particular feature of the third group, Irregular Index Offsets, is shared by the

HorDiff and VerDiff kernels. By exploiting the known limits of the offsets, we were
able to transform this data access pattern into streaming kernels with customized buffers
on the Maxeler platform. Due to a combination of resource consumption and routing prob-
lems around this buffer, one of the customized kernel designs could not be fully unrolled
to saturate the platform’s bandwidth limits. In contrast, the instruction set of the vector
coprocessor requires and allows us to use indexed vector load instructions to fetch data for
each specified offset location from main memory.
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In this section, we first present the setup and notation for the evaluated systems and their
configurations. We then discuss the generation and selection of our input data.

4.6.1 Evaluated Systems

After implementing and testing all described kernels on both accelerator platforms intro-
duced in Section 4.3, we integrated them into our stereo-matching application and tested it
in a total of six different configurations. All host code was generated with the latest GCC
versions available as packages for the respective CentOS installations of the two systems,
GCC 4.4.6 on the Convey platform and GCC 4.4.7 on the Maxeler platform. Both versions
vectorize some simple loops to generate SIMD instructions for the Xeon CPU, but due to
limitations of the instruction set and of the analysis don’t come close to the vectorization
potential manually exploited on the instruction-programmable vector coprocessor of the
Convey platform. Our stereo-matching implementation does not support multithreading.
Earlier experiments with OpenMP showed a mix of speedups and slowdowns, depending
on kernel patterns and utilized CPUs. The coprocessor of the Convey HC-1 is configured
with the double precision Vector Personality in version 1.1.1.3 and the Maxeler kernels
were designed with MaxCompiler 2013.3 and executed running MaxelerOS 2014.2.

Host CPU of Maxeler platform (CPU1)

The entire execution is performed on the 6-core Intel Xeon X5650 CPU with Westmere mi-
croarchitecture, running at 2.66 GHz, which is the host CPU of the Maxeler platform [175].

Host CPU of Maxeler platform (CPU2)

The entire execution is performed on the dual-core Intel Xeon 5138 CPU with the older Core
microarchitecture, and running at only 2.13 GHz, as host CPU of the Convey platform [40].

Kernels with Maximal Parallelism on Maxeler Platform (MaxKern)

The first accelerated configuration executes the individual, maximally unrolled dataflow
kernels on the Maxeler accelerator card. This design point guarantees the highest raw
kernel performance, but induces considerable configuration overheads, in particular during
the aggregation phase. The parts of the application that are not accelerated are executed
on CPU1 and the memory manager presented in Section 4.4 handles transfers between
host and accelerator memory.

Multi-Kernel Design on Maxeler Platform (MaxFused)

The second configuration using Maxeler accelerator card uses the integrated aggregation
design, containing five kernels with less unrolling and thus reduced parallelism. The re-
mainder of the execution is identical to MaxKern, including utilization of individual kernels
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for the scanline phase. This configuration saves a lot of reconfiguration overhead during
the aggregation phase in exchange for reduced raw kernel performance.

Coprocessor on Convey platform (CnyVecTouch)

On the Convey platform, the host parts of the application are executed on the slower
CPU2 and the accelerated kernels are executed on the vector processor overlay on the
FPGA accelerator. Thus, no bitstream reconfigurations are required during application
runtime, but only the much smaller kernel code executed on the coprocessor is changed in
the different matching phases. As coprocessor memory interleaving mode, we use a 31-31
interleaving mode, which maps memory addresses to the individual memory banks in a
way that allows near peak throughput for most possible stride patterns. For our tests,
we setup the 24 GB of physical host memory and 16 GB of physical accelerator memory
with a windowed memory mode with an 12 GB window of mapped coprocessor memory,
12 GB of pure host memory and 4 GB of pure coprocessor memory. As suggested in
Section 4.4, when no actual data has to be transferred, we use two different strategies to
migrate allocated memory areas between the distinct physical memory locations. Here,
with the first one, all involved pages are touched on the new location to guarantee best
raw kernel performance.

Alternative Coprocessor Usage on Convey platform (CnyVecNt)

With the second strategy, no-touch, the migration step is much faster and overall matching
performance is a bit higher, at the expense of some increased kernel runtimes. All other
settings are identical to CnyVecTouch.

4.6.2 Input Data

Conceptually, all accelerated configurations profit from larger image sizes and higher max-
imal disparity values, as parallelism and pipelining can be exploited better and overheads
are amortized better by longer computation times, whereas smaller sizes may help the
pure host execution by better caching opportunities. Beyond this general rule of thumb,
there are different characteristics specific to either the Maxeler or the Convey accelerator
platform. On Maxeler, all LMem accesses need to be 384 byte aligned, so in practice we
pad all data structures and memory accesses to fit these requirements. This padding is
an overhead that doesn’t occur for multiple-of-384 dimensions. On the Convey platform,
for best performance it is important to fill the 1024 vector elements. This is trivially the
case for multiple-of-1024 dimensions, but in the aggregation phase can also be achieved by
nicely fitting vector partitions, e.g. for horizontal sums with height 256 and multiple-of-
4 disparities as in our earlier illustration in Figure 4.9. Additionally more subtle effects
occur when the image sizes interfere with the memory interleaving mode which defines
distribution of memory space to different memory bank. However, the mentioned 31-31
interleaving mode makes our experiments relatively robust in this regard.
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Table 4.4: Dimensions of low-disparity image series generated from Tsukuba image pair.

Name Width Height Disparity Pixels Volume Elements
[×106] [×106]

Tsukuba 384 288 16 0.11 1.77
HVGA 480 320 20 0.15 3.07
Macintosh LC 512 384 22 0.20 4.33
EGA 640 350 27 0.22 6.05
VGA 640 480 33 0.31 8.29
WVGA 768 480 32 0.37 11.80
SVGA 800 600 34 0.48 16.32
DVGA 960 640 40 0.61 24.58
XGA 1024 768 43 0.79 33.82
XGA+ 1152 864 48 1.00 47.78
SXGA 1280 1024 54 1.31 70.78
UXGA 1600 1200 67 1.92 128.64
FullHD 1920 1080 80 2.07 165.89
TXGA 1920 1400 80 2.69 215.04

To summarize, absolute and relative performance significantly depend on the input di-
mensions for our stereo-matching systems. We therefore decided to perform our measure-
ments with a series of different input dimensions and to use standardized real-world image
sizes or screen resolutions, regardless of their suitability for either architecture. In order to
generate the input images, we scaled image pairs from the Middlebury benchmark set [222]
to the desired resolution with cubic scaling in Gimp. The number of disparity steps to
investigate is scaled according to the scaling factor of image width. This is important,
because with a too low limit to the possible disparities, matching artifacts occur, which
lead to dis-proportionally longer runtimes of the disparity refinement step.
We created two test series, one starting from the Tsukuba image pair, which has a low ra-

tio of maximal disparity to image width and one starting from the Cones image pair, which
has a high ratio of maximal disparity to image width. Tables 4.4 and 4.5 show the two series
of input dimensions we investigated. We scaled the two image pairs to different commonly
used sizes with pixel ratios between 5:4 (SXGA) and 64:35 (EGA), most of them at 4:3 like
the original Tsukuba pair. We selected the set of sizes in a way that the number of pixels
between two consecutive sizes increases by factors between 1.08 (from UXGA to FullHD)
and 1.46 (from SXGA to UXGA) and the number of elements in a cost volume increases
by factors between 1.29 (from UXGA and FullHD) and 1.82 (from SXGA to UXGA). In
the remainder of this chapter, we reference inputs with <width>x<height>x<disp>, for
example 1920x1080x80 for FullHD images from the low-disparity image series. This series
are currently limited by two aspects. Firstly, a maximal line width of 1920 is synthesized
in one of our Maxeler kernels. Secondly, for larger input dimensions, total memory usage
starts to become an issue. On the Maxeler platform, with our current implementation of
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Table 4.5: Dimensions of high-disparity image series generated from Cones image pair.

Name Width Height Disparity Pixels Volume Elements
[×106] [×106]

Cones 450 375 60 0.17 10.13
Macintosh LC 512 384 68 0.20 13.37
EGA 640 350 85 0.22 19.04
VGA 640 480 85 0.31 26.11
WVGA 768 480 102 0.37 37.60
SVGA 800 600 107 0.48 51.36
DVGA 960 640 128 0.61 78.64
XGA 1024 768 137 0.79 107.74
XGA+ 1152 864 154 1.00 153.28
SXGA 1280 1024 171 1.31 224.13

the MemoryManager, the 24GB of accelerator memory put a hard limit to the maximal
input dimensions. On the Convey platform, we were able to execute tests with larger input
dimensions than in tables 4.4 and 4.5, but performance was impaired by the Linux kernel
starting to swap data between main memory and hard disk.

4.7 Evaluation and Comparisons

We first present overall system performance for both platforms. For the main comparison
between the approaches of specialized kernels and the reusable vector processor overlay,
we focus on the raw kernel performance with both methods and abstract the underlying
hardware away as far as possible. Finally, we give some estimates of the design efforts for
both approaches.

4.7.1 Stereo-Matching System Performance

Our first charts present speedups for the execution of the entire stereo-matching process
for different image sizes compared to pure host execution. For the two respective image
series, Figures 4.12 and 4.13 show the speedups of the four configurations with accelerators,
MaxKern, MaxFused, CnyVecTouch and CnyVecNt, compared to the host execution on the
faster CPU1. Since the host components of the two CnyVec versions are executed on CPU2,
we also exemplarily include Figure 4.14, where CPU2 is used as baseline for speedups of
the low-disparity test series. Speedups of a hypothetical platform with the Convey HC-1’s
coprocessor and the faster Xeon X5650 host CPU from the Maxeler platform should be
somewhere in between the values from Figures 4.12 and 4.14.
For both test series, we see that both CnyVec configurations on the Convey HC-1 [40] can

achieve speedups, already at small image sizes which don’t fully fill the vector registers.
In both series, 512x384 is the first image size, where CnyVec achieves little speedups

96



4.7.1. Stereo-Matching System Performance

384x
288x

16

480x
320x

20

512x
384x

22

640x
350x

27

640x
480x

27

768x
480x

32

800x
600x

34

960x
640x

40

1024
x768

x43

1152
x864

x48

1280
x102

4x54

1600
x120

0x67

1920
x108

0x80

1920
x140

0x80
0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

vs
.

CP
U

1

CnyVecTouch
CnyVecNt
MaxFused
MaxKern

Figure 4.12: Low-disparity image series: Speedups of accelerated configurations compared to faster
CPU1. CnyVec versions are at disadvantage because their host parts run on slower
CPU2.
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Figure 4.13: High-disparity image series: Speedups of accelerated configurations compared to
faster CPU1. CnyVec versions are at disadvantage because their host parts run
on slower CPU2.
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Figure 4.14: Low-disparity image series: Speedups of accelerated configurations compared to
slower CPU2. Max versions have an additional advantage because their host parts
run on the faster CPU1.

over CPU1. The speedups increase slightly with increasing image sizes, but show some
variations for specific sizes fitting vector register sizes or memory interface a bit better or
worse. At 1280x1024x171, CnyVecNt reaches a peak speedup of 1.9x over CPU1. With
the slower CPU2 as baseline, the speedups are around 3x.
On the Maxeler platform [175], the MaxFused configuration with a common design for

all aggregation kernels persistently outperforms the MaxKern configuration, with its indi-
vidual, maximally parallel aggregation kernels. However, for small image sizes, MaxFused
is still slower than CPU1 and both CnyVec configurations. In the low-disparity test series,
it takes the lead over all other designs for the first time at 960x640x40. In this test series,
its speedup peaks at 1920x1400x80 with 2.4x compared to CPU1. MaxFused profits from
the higher disparities of the second test series, achieving a first speedup over CPU1 already
at 512x384x68 and a peak speedup of 2.8x at 1280x1024x171.
Figure 4.15 displays some additional details of the underlying data for CPU1 and the

respective faster versions for both accelerators, now showing absolute execution times and
subdividing them into aggregation phase, scanline phase and all remaining parts of the
application. We see that in the aggregation phase, only MaxFused outperforms CPU1 by
a small margin. However, execution of this phase on the accelerator has the additional
benefit that afterwards, intermediate results are already in accelerator memory for the fol-
lowing scanline phase. During this scanline phase, now both accelerators achieve significant
speedups compared to CPU1. During the execution phases remaining on the respective
host, CnyVecNt notably loses some of its earlier speedups compared to CPU1, because its
host code is executed on the slower CPU2.
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Figure 4.15: Low-disparity image series. Execution times with three different platform configura-
tions (CPU1, CnyVecNt, MaxFused) next to each other for each input size. Stacked
bars are divided into aggregation phase (yellow), scanline phase (red) and all remain-
ing parts on host (grey).

4.7.2 Platform Overheads

All further comparisons are only performed with regard to the faster CPU1. We proceed
with the analysis of the two accelerated phases, in this subsection on the basis of results
from 1920x1400x80, and compare CPU1 to all accelerated designs. Figure 4.16 breaks
down the total execution time of the aggregation phase, splitting the entire yellow blocks
from Figure 4.15 into individual components. The first component is the raw execution time
of the five described aggregation kernels, still summed up together. We see that this raw
kernel execution time is significantly reduced on all accelerator platforms and configurations
compared to CPU1, down from 47s to between 15s and 24s on the accelerators, with the
design with highest parallelism, MaxKern executing fastest.
The next component is the total time of all data transfers between host and accelerator

memory, that are initiated through our memory manager. For pure CPU execution, nat-
urally no such transfers are needed. Here we see that part of the lower execution times
observed on the Maxeler platform in comparison to the Convey platform, are caused by
lower transfer times, either because of faster physical interconnect, or because of the over-
head incurred for the realization of the shared memory space on Convey. Masking some of
this overhead in the CnyVecNt configuration overcompensates for the increased raw kernel
runtimes compared to CnyVecTouch. As third component, we summarized the time spent
outside of the five kernels selected for acceleration. In the aggregation phase, this Host
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Figure 4.16: Breakdown of aggregation phase into raw kernel execution times and overhead com-
ponents for different platforms for 1920x1400x80 input image pair.
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Figure 4.17: Breakdown of scanline phase into raw kernel execution times and overhead compo-
nents for different platforms for 1920x1400x80 input image pair.

Setup time includes for example the time to initialize the aggregation regions needed for
scaling. This phase is notably slower on the Convey platform again because of the slower
host CPU2.
The fourth component, reconfiguration times, only occur on the Maxeler platform. We

see that for the MaxFused design, this overhead is negligible as only one reconfiguration is
performed, whereas for the individual aggregation kernels in MaxKern, it more than eats
up the additional speedups achieved in raw kernel execution times. As final component,
we measured the time spent in platform specific allocation and free API calls on Convey,
which turns out to be relatively minor in the two configurations observed.
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Figure 4.18: Execution times of individual aggregation kernels.
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Figure 4.19: Execution times of individual scanline kernels.

Figure 4.17 displays the same components for the scanline phase. In this phase, both
Maxeler configurations execute the identical designs and thus perform identically. Due
to higher computational intensity and higher data reuse, all accelerator platforms in all
configurations reduce the raw kernel execution times much more than in the aggregation
phase. Compared to its kernel execution times, CnyVecTouch incurs a huge overhead for
data transfers, which CnyVecNt can again partially mask during kernel execution. Com-
pared to the CPU execution times, these overheads are smaller than during the aggregation
phase, thus allowing considerable overall speedups.

4.7.3 Kernel Performance

In order to compare the kernel specific dataflow design approach with the vector processor
overlay in regard to their suitability for kernel-centric acceleration, we now look at individ-
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ual kernel execution times and disregard the platform overheads discussed in the previous
subsection. Figures 4.18 and 4.19 show the raw kernel execution times of the aggregation
and scanline phases, again for the largest image pair, now separated into individual kernels,
but summing up the execution times of all invocations of the same kernel to be comparable
to the previous plots.
Like in the previous subsection, we compare the faster CPU1 with all accelerated ver-

sions. Since the goal in this step is to assess raw performance potential without platform
overheads of instruction-programmable overlay and specialized dataflow designs, on the
Convey platform we focus on the faster CnyVecTouch variant, since with CnyVecNt, some
of the data transfer overheads are contained within the kernel execution times. These
transfer overheads are not related to the overlay approach as such. For the Maxeler plat-
form with specialized dataflow designs on the other hand, we consider both design points.
TheMaxKern implementation is designed to maximize raw performance, whereas theMax-
Fused implementation is designed to mitigate a particular overhead, the reconfiguration
step, that the alternative overlay approach deliberately avoids.
For the aggregation kernels in Figure 4.18, we see quite diverse results, with either

MaxKern or CnyVecTouch achieving the best kernel runtimes. Furthermore, we see an
unexpected artifact for HorSum, where MaxFused in spite of less compute parallelism is
faster than MaxKern. Presumably both kernels are limited by effective memory band-
width, with MaxFused generating a slightly more favorable memory access pattern. The
HorDiff kernel, in turn, was already projected to be compute bound for the MaxKern. The
MaxFused design with four times less compute parallelism is around 4x slower, supporting
this assumption. The verSum and scale kernels seem to have become compute bound for
the MaxFused design, showing smaller slowdowns compared to MaxKern.
A detailed discussion on the underlying effects for the comparison of dataflow and vec-

torized kernels needs to take into account the achieved compute parallelism, memory reuse
properties as outlined in Section 4.5, bandwidth requirements and the impact of memory
access patterns on the achieved bandwidths. Also, during our optimizations of the vector
overlay kernels, we saw that performance cannot be easily modeled as a function of com-
pute throughput or of effective memory bandwidth, as it also depends on latencies and
sequence of dependent instructions. Therefore, a detailed attribution of certain results
to possibly dominating performance factors would be mostly speculation without addi-
tional measurements. However, the effects of sensitivity to latencies and those of different
arithmetic intensities caused by data reuse and design of operations are attributable to
the kernel design paradigm and thus form the actual subject of our comparison. On the
other hand, effects of different amounts of available compute resources and memory band-
widths distort this comparison. Hence, in the following subsection, we try to extract the
design effects of instruction-programmable overlays versus customized dataflow kernels by
compensating for the performance effects purely attributable to the underlying hardware
platforms. However, first we proceed with the comparison of kernel performance.
Comparing the runtimes of scanline kernels in Figure 4.19, we see a more homogeneous

result pattern, with the most notable observations the difference in CPU performance
in horizontal and vertical directions and that the specialized kernels dominate for the
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Table 4.6: Kernel-Ratios (geometric mean of all kernel speedups) relative to CPU1 for the SXGA
image with high disparity (1920x1400x80) and for the geometric mean over all sizes.

Architecture Speedup over CPU1

All Sizes SXGA-high
MaxKern 6.59 9.86
MaxFused 5.20 7.76
CnyVecTouch 5.80 8.37
CPU2 0.40 0.38

actual scanline computation whereas the vector overlay takes the lead for the subsequent
summation step.
In our concrete stereo-matching application, the various kernels do have their individual,

well defined contributions to the overall runtime. However, when comparing the two de-
sign methods in regard to their general suitability for kernel-centric acceleration, we want
to abstract from these individual kernel weights and just profit from the variety of com-
pute and data-usage patterns represented by different kernels. Therefore, we consolidate
these results into a single metric, the geometric mean of individual kernel speedup factors
that each approach achieves over the reference CPU execution. We denote this metric as
Kernel-Ratio, analogical to the similarly computed SPECRatio1. This metric has the nice
property that the choice of reference platform doesn’t impact relative ratio between two
other platforms.
Table 4.6 summarizes those Kernel-Ratios for three accelerated designs with reference

to CPU1 for the geometric mean of all input sizes and individually for largest problem
size tested, SXGA with high disparity (1920x1400x80). The reference invariance of the
Kernel-Ratios metric allows to directly derive additional ratios between the platforms in
the list. So, considering the comparison of the two kernel design approaches, for all image
sizes the Kernel-Ratios of MaxKern with reference to the slower CPU2 is computed as
MaxKern
CPU2 = 9.53

0.38 = 24.84. Similarly, the kernel acceleration methods can be compared
directly to each other without any CPU implementation as reference, e.g. again for TXGA
resolution the the Kernel-Ratio of MaxKern with reference to CnyVecTouch is computed
as MaxKern

CnyV ecTouch = 6.59
5.80 = 1.14. Similarly, for SXGA high-disparity test, it is computed as

MaxKern
CnyV ecTouch = 9.53

8.37 = 1.18.
The results, when comparing the Kernel-Ratios of the two specialized dataflow kernel

approaches on Maxeler with the vector overlay on Convey, are surprising. In the geometric
mean, the specialized kernels are just marginally faster than the vector overlay. When
trading off parallelism for the integration of several specialized kernels in MaxFused, the
specialized kernels are even slightly slower than the overlay, for all image dimensions with
MaxKern

CnyV ecTouch = 5.20
5.80 = 0.90 and for high-disparity SXGA with MaxKern

CnyV ecTouch = 7.76
8.37 = 0.93.

However, as indicated above, these numbers do abstract away the data transfer and re-

1https://www.spec.org/spec/glossary/#specratio
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Table 4.7: Hardware-Normalized Kernel-Ratios (geometric mean of all kernel speedups, normal-
ized with regard to compute resources and bandwidths) relative to CnyVecTouch for
the SXGA image with high disparity (1920x1400x80) and for the geometric mean over
all sizes.

Architecture Hardware-Normalized
Speedup over CnyVecTouch

All Sizes SXGA-high
MaxKern 3.04 3.16
MaxFused 2.41 2.48

configuration overheads, but still contain the mismatch in available compute resources and
memory bandwidths.

4.7.4 Quantifying Overlay Overheads through Hardware-Normalization

We try to extract the effects of different design approaches, that is the overhead of the vector
overlay over custom kernel designs, on the two platforms by compensating for the effects
of underlying hardware. For this, we need metrics to compare the hardware platforms
and approach this by looking at compute resources and memory bandwidth. When we
compare basic compute resources in terms of 6-input LUTs, which are common to Virtex-5
and Virtex-6 FPGAs, we can observe a ratio of Maxeler to Convey hardware of 297600

829440 =
0.359. Similarly, the ratio of theoretical peak memory bandwidth can be computed as
28.8 GB/s
74.4 GB/s = 0.387. For a somewhat sophisticated compensation of hardware configurations,
we would like to offset each observed kernel speedup with one of those factors, depending
on whether the kernel is compute or bandwidth bound. However, since the factors are
similar, we just average those two ratios to 0.373. We multiply Maxeler to Convey Kernel-
Ratios by the inverse of the combined hardware ratio in order to normalize performance
to comparable hardware platform characteristics. This leads to a metric we denote as
Hardware-Normalized Kernel-Ratio and present in Table 4.7. We can summarize these
results as central contribution of this chapter as follows:

In a diverse set of compute kernels with data parallelism, specialized dataflow ker-
nel implementations on FPGAs are on average around 3x more efficient in terms
of performance than a reusable vector processor overlay implemented on compa-
rable hardware. In a concrete scenario, due to trade-offs between reconfiguration
overheads and exposed parallelism, this advantage shrinks to around 2.5x.

The 3x performance overhead notably corresponds to the comparison of the manycore
overlay MARC to a single customized FPGA design in [164], however this agreement may
well be coincidental. We here need to discuss the circumstances and limitations that govern
the general applicability of our results. First of all, the utilized method of normalizing for
different hardware platforms by a single compensation factor depends on the similar ratios
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of compute resources and bandwidths. Once those differ considerably, such scaling needs to
be done on a per-kernel basis after an analysis whether compute or bandwidth would be the
limiting factor. For the dataflow kernels, the foundations for such work are present in [5],
but for the vector overlay, the performance bounds are hard to quantify since all our kernels
are actually constrained by a combination of computation, latencies and bandwidth. Also,
after migration from one hardware platform to the other, the performance bounds can be
different, requiring a more elaborate compensation step.
Secondly, we need to discuss aspects of memory bandwidth. The peak bandwidth data we

utilized for our normalization already incorporates two aspects from our practical results.
On the Maxeler platform, the memory controller is part of the synthesized FPGA design.
The theoretical bandwidth maximum can be achieved with the memory controller clocked
at 400 MHz. Due to difficulties to meet the timing of this controller after synthesis, we
targeted 300 MHz in our experiments and the peak bandwidth value used in our calculation
reflects this. On the Convey platform, the memory controllers are implemented in separate
FPGAs and their design is fixed, running at 300 MHz. As reported, we utilize a 31-
31 interleaving scheme, which maximizes actual performance in our measurements, but
technically reduces peak bandwidth to 31

32 of the physical interface capabilities, which we
also included in our numbers.
The practically realizable bandwidths of both memory interfaces depend, beyond those

peak numbers, on additional influence factors, like burst sizes, strides and granularity,
which are hard to quantify without extensive tests on both platforms. However, we can
qualitatively state, that the efficient support for element-wise vector memory operations, in
particular indexed ones, of the vector overlay depend on the capability to access individual
8-byte blocks enabled by the scatter-gather RAM modules of the Convey platform we use.
So we need to constrain our Hardware-Normalized Kernel-Ratio results for this design
approach with:

The vector processor overlay requires a memory interface with sufficiently fine access
granularity in order to achieve the indicated performance efficiency.

Thirdly, we want to discuss the compute resources. Our scaling method depends on
the implicit assumption, that performance scales linearly with available hardware. When
it comes to parallel execution units that operate on unrolled data and are implemented
primarily with LUTs, this assumption makes sense. However, other aspects of resource
usage often doesn’t scale linearly with compute throughput. On the one hand, some parts
of the designs remain constant, e.g. in our experiments the control logic of the dataflow
kernels and the scalar processing units of the vector overlay. On the other hand, resource
demands of some components grow more than linearly, e.g. those of some data reordering
buffers or input selection multiplexers.
Also, the FPGAs of the two utilized platforms have different ratios of additional resources

as BRAMs and DSP-blocks to LUTs, which the scaling in terms of raw logic resources
neglects. In particular, as seen in Table 4.3, the current designs of several of our dataflow
kernels rely on the high ratio of BRAMs to LUTs on the Maxeler platform’s Virtex-6

105



Chapter 4.7. Evaluation and Comparisons

SX475T FPGA, which is #36Kb−blocks
#LUTs = 1064

297600 ≈
1

280 . On the Virtex-5 LX330 FPGAs of
the Convey platform, this ratio is lower: #36Kb−blocks

#LUTs = 288
207360 = 1

720 . However, again as
a qualitative statement from our design experience of the dataflow kernels, we note that
many of the BRAM resources are directly dedicated to buffering or reordering kernel inputs,
outputs and intermediate results in order to properly utilize the burst-oriented memory
interface of the Maxeler platform. So, the second addendum to our Hardware-Normalized
Kernel-Ratio result now states more precisely for the other design approach:

Dataflow kernels can achieve the indicated performance efficiency even with a burst-
oriented memory interface, but require FPGAs with a sufficiently high ratio of
BRAMs to LUTs for this.

Finally, we need to discuss clock frequencies and low-level optimization. Our data-flow
kernels are generated with the Maxeler design flow, which enhances design productivity
by transparently applying a number of best-practice decisions, e.g. to pipelining or or-
ganization of buffers. Many of these can be modified manually, but in our designs such
optimizations were mostly performed demand driven, in response to specific timing or re-
source problems. In order to relax the need for deep pipelining and along with it the need
to very carefully optimize the balancing of pipeline stages and their physical layout, most
compute paths of our dataflow kernels run at modest 100-130 MHz. For the much more
widely distributed and reused vector overlay on the Convey platform on the other hand,
common sense and anecdotal evidence suggest, that a huge amount of effort and expertise
was invested into low-level optimizations. Consequently, this design runs at 300 MHz,
which has a large impact on the performance we measured and compared in this work.
We do consider this difference as characteristic for the relationship between reusable and
problem-specific designs and as such not as a weakness of the comparison, but nevertheless
want to state this in a third addendum to our overall findings:

Our comparison premises that much more manual low-level optimization effort is
put into a reusable overlay design than into problem-specific dataflow kernels.

4.7.5 Overheads by Kernel Groups

In order to proceed from the quantification of overlay overheads in a practical application
with diverse kernel patterns, towards insights into the nature of these overheads, we apply
the hardware-normalization step from the previous subsection to the three distinct groups
of kernel types as identified in Subsection 4.5.4. Table 4.8 presents the results for both
design alternatives of customized kernels.
When analyzing the custom kernel designs with highest parallelism as represented by

MaxKern, we observe a bipartition of results. For the Regular Streaming kernels, the
customized kernel designs are on average just slightly faster than the kernels running on
the vector coprocessor overlay. As the custom variants of these kernels are sufficiently
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unrolled to reach the bandwidth limits, we may attribute the small performance difference
to improved overlapping of memory access and computation compared to the instruction-
programmable overlay and to the more local table lookup for the Scale kernel.

For both other kernel groups, we observe similar speedups slightly above 5x. This illus-
trates that different customization aspects can increase performance over a reusable overlay,
or to put it the other way round, that the fixed structure of the instruction-programmable
overlay incurs different forms of overheads. In the Complex Streaming group, the cus-
tomization allows for internal pipelining of operations, the parallel execution of different
branches and improved data reuse through a blocking-optimized compute order. In the
group with Irregular Index Offsets, the central customization advantage is the data buffer-
ing and reordering that on the one hand improves effective memory bandwidth through
long bursts instead of individual word reads, and on the other hand avoids latency-induced
limitations by decoupling memory accesses from computations.
For some of these differences, there are approaches to reduce vector overlay overheads

through architectural enhancements or customization. With scratchpad memory instead
of vector registers, like included in VEGAS [56] and VectorBlox MXP [226], the improved
data reuse in our Complex Streaming kernels would likely be possible, but might involve
compromises on the size of vector instructions that could mitigate the benefits of large
vector instructions on the instruction overhead. The Irregular Index Offsets of the other
kernel group, in contrast, could likely not be supported efficiently by banked scratchpad
memories like proposed in the VEGAS and MXP designs. The custom vector instructions
introduced for the VectorBlox MXP design [227] additionally aim at transferring the ad-
vantages of data pipelining, like exhibited in the Complex Streaming kernel group, from
custom designs to vector processor overlays. The performance results of their research
are very promising, however it remains unclear, how this approach can be combined with
toolflows for high productivity.

4.7.6 Estimates on Design Efforts

As final step of our comparison of the two design approaches, we want to present some
empirical data about our experienced productivity when performing kernel-centric accel-
eration with two different design philosophies and targets. This subsection contains a
subjective assessment from the perspective of developers with special interest in reconfig-
urable architectures and designs and does not correspond to the perspective of software
developers from the general-purpose domain, as discussed in Section 3.1. Also, as we did
not systematically track the design process and many factors which are hard to quantify
impact the perceived productivity, these results need to be contemplated with at least a
grain of salt. The design and implementation results presented in this work were done in
several disjunct phases and with different levels of experience gained from other projects.
Overall we would describe the dataflow kernel design process as two phases, the first

starting with some limited amount of experience in dataflow kernel design with the Maxeler
toolflow, spanning the equivalent of 8-10 full-time developer weeks for conceptualization of
kernels and their unrolling patterns, implementation and many stand-alone tests in simu-
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Table 4.8: Grouped Hardware-Normalized Kernel-Ratios (geometric mean of all kernel speedups,
normalized with regard to compute resources and bandwidths) relative to CnyVecTouch
for the SXGA image with high disparity (1920x1400x80) and for the geometric mean
over all sizes. The results from Table 4.7 are now split into the three groups of kernel
types identified in Subsection 4.5.4. The Regular Streaming group contains the kernels
HorSum,VerSum,Scale and SumScanlines. The group Complex Streaming consists of
the four directed scanline kernels that combine different streaming patterns with data
pipelining opportunities. The group with Irregular Index Offsets combines the HorDiff
and VerDiff with their irregular, but bounded index offsets. *The Complex Streaming
kernels are identical in the MaxKern and the MaxFused configurations.

Architecture Kernel Pattern Hardware-Normalized
Speedup over CnyVecTouch

All Sizes SXGA-high

MaxKern
Regular Streaming 1.28 1.36
Complex Streaming* 5.50 5.84
Irregular Index Offsets 5.27 4.99

MaxFused
Regular Streaming 0.98 1.04
Complex Streaming* 5.50 5.84
Irregular Index Offsets 2.79 2.60

lation, along with early synthesis results to get a feeling the resource usage characteristics.
The second phase, conducted with much additional background of the Maxeler platform,
took another 6-8 weeks with focus on integration, synthesis and optimization.
This phase was in practice prolonged by the process of waiting for synthesis results,

which we tried to exclude from the above reported time span, because it to some degree
depends on the amount of parallel synthesis resources and to some degree can be covered
organizationally, e.g. by running synthesis over night. As an illustrative number: the total
tool runtime for the final design of MaxFused was reported as 22 hours, 5 mins, 11 secs.
Within this time, for the place and route step, a total of 11 different guiding parameter
sets (denoted as cost tables by the toolflow) were explored, with four parallel instances
running concurrently. Another special challenge was posed by one kernel instance, where
the Maxeler simulation tool was not able to reproduce a memory interface related error
actually encountered in hardware.
The design of the vector coprocessor kernels was also performed in two major phases.

An equivalent of 4-6 full-time developer weeks was spent for first concepts and prototyp-
ical implementations with no preliminary knowledge of the concrete vector ISA, but with
some general background in assembly programming. With a lot more experience with the
architecture, another 6-8 weeks was spent for the final kernel designs and optimizations,
including a considerable fraction of the time that was spent in exploring performance
impacts of memory settings and data transfer patterns triggered through our memory
manager. On this platform, assembly of a kernel design and integration into an executable
was completed within seconds, allowing for much faster optimization iterations. A special
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challenge was posed by repeated crashes of the accelerator hardware that occurred when
using the debugger for the vector coprocessor.
To summarize our concrete experience with both design approaches, designing specialized

dataflow kernels with Maxeler’s spatial programming language and design flow requires
some more time and some more expertise than developing assembly code for a vector
coprocessor, but not a whole lot. However, the time-consuming synthesis adds some tedious
waiting to the process.
From the perspective of suitability for general-purpose computing, as contemplated in

Section 3.1, the assessment is very different. Designing dataflow kernels is hard with a pure
software background, whereas a number of software developers are to some degree familiar
with assembly code. However, the design of low-level assembly code is not a promising
option with regard to productivity and portability. Hence, in order to serve as a path
towards general-purpose computing, the speed of the compilation flow for the instruction-
programmable overlay needs to be combined with a high-level design entry and a high
degree of automation, as we present it in Chapter 5.

4.7.7 Limitations of the Comparison

The presented comparison leaves out two important aspects of the broader computing
landscape as outlined in Chapters 2 and 3, a comparison to GPUs and evaluation of
energy efficiency.
GPUs are left out here to restrict the scope of the comparison and because of limited

development resources. However, it is clear from the characteristics of the workload with
abundant DLP and bandwidth sensitivity, that GPUs with sufficient double precision float-
ing point units fit the application demands very well. The orthogonal data access pattern
in successive aggregation steps are likely to also impact the memory and cache efficiency of
GPUs, but the raw bandwidths of high-end GPU computing products is still useful. The
well performing single precision GPU implementation for small images in [182] underlines
this. Without further customization of algorithms, data types or operators, for this type
of application, FPGA accelerators are generally not likely to surpass GPUs in terms of
performance.
Considering a GPU comparison, but also from a general perspective, an evaluation of

the energy efficiency of stereo-matching on the two FPGA platforms would be extremely
interesting. The accelerator boards of the Maxeler platform, with a peripheral component
interconnect express (PCIe) form factor that appears close to commodity hardware, show
a with peak power consumption of around 60W when running our kernels, which is much
lower than high-end GPU computing products. On the other hand, they are much less
optimized for idle power, drawing around 50W when a kernel design is loaded and around
25W when an explicit idle bitstream is loaded. For the Convey platform, we have not
performed corresponding measurements. However, the concrete platform characteristics as
laid out in Section 4.3 would heavily restrict the validity of any energy measurements. Be-
side the generational difference of utilized FPGAs, the higher number of individual FPGAs
and DIMMs, as well as the customized DIMM modules themselves, of the Convey platform
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cause overheads for off-chip communication that are hard to quantify. These may or may
not easily overshadow any energy differences caused by the different design approaches,
including clock frequencies, instruction overheads and activity rates of functional units.

4.8 Related Work

In this section we present related work on stereo-matching systems on FPGAs. Related
work in systems and overlays is discussed in Chapters 2 and 3 and compilation for vector
architectures is the topic of Chapter 5.
Apart from our own previous work in [5] and [4], stereo-matching on FPGAs has been

tackled with co-design of algorithm and hardware, typically implementing the entire pro-
cessing pipeline without off-chip memory accesses. Different algorithmic approaches have
been explored with different design goals in mind. For example Tippetts et al. [254] present
a complete stereo-matching system with less than 10,000 LUTs and 30 BRAMs, at much
lower result quality, but robust in respect to uncalibrated and unrectified images. Apart
from simple pre- and post-processing steps, their approach employs an intensity profile
shape matching algorithm, that directly works on row-local intensity data.
The FPGA implementations with highest matching accuracy reflect more of the matching

patterns utilized in this work. Shan et al. [230] implemented a slightly modified variant
of the presented cost aggregation for adaptive support regions on FPGAs. By aggregating
only once and in a fixed order, first vertically and then horizontally, they are able to
stream the required data only through on-chip buffers. Wang et al. [265] try to follow the
algorithm of Mei et al. [182] in their FPGA implementation more closely. In addition to the
aggregation technique of Shan et al. [230], they propose a reduced scanline optimization
which runs in three downward directions, following the order the data is generated in the
previous aggregation stage. Both implementations try to exploit parallelism both in the
spatial domain of the images, working on several rows at once, and in the disparity domain
of the cost volume, working on several disparity images at once.
Jin et al. [144, 145] use a similar single-pass aggregation phase and winner-takes-all

disparity selection and combine it with a voting scheme, denoted fast locally consistent
(FLC) [174], which is more sophisticated than the one utilized in the post-processing step
we employ. Between these two phases, intermediate disparity results are actually buffered
off-chip, but require much less bandwidth than for our approach, since no volume data is
stored.
These implementations come quite close to our results in terms of matching quality,

with Wang et al. [265] reaching an average of 6.17% bad pixels and Jin et al. [145] of
only 5.86% bad pixels, compared to 5.73% of our implementation. They are more limited
in problem dimensions than our approach that works on blocks of memory, with Jin et
al. [144, 145] projecting a design that supports our largest test inputs to exceed the LUT
and BRAM resources of their and our current hardware platform, but may be suitable for
large Virtex-7 FPGAs. In terms of performance, these co-designed implementations are
orders of magnitude faster than our implementation, by executing less computation steps
on volume data and by integrating the compute pipelines more tightly. Therefore, these
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approaches are superior when algorithmic trade-offs can be made, whereas our approach
is justified, when exact reproduction of results or a simpler, structured design process are
required.

4.9 Chapter Conclusion

In this chapter, we have presented and compared two design approaches for kernel-centric
acceleration of a general-purpose application on FPGAs, specialized dataflow kernels ver-
sus an instruction-programmable vector processor. We have shown that the fixed vector
overlay can be used to achieve actual speedups over GPPs, but compared to specialized
dataflow kernels incurs around 3x slower raw kernel execution times. By distinguishing dif-
ferent groups of kernels, we were also able to point towards design aspects that cause this
performance gap. Due to trade-offs between reconfiguration overheads and exposed par-
allelism, in our concrete scenario the advantage of specialized dataflow kernels is reduced
to around 2.5x, which may be an interesting indicator for particularly dynamic workload
characteristics like in OTF computing.
Also not explicitly designed for it, this work may also serve as starting point for a

stereo-matching library on various interface levels. In compiled binary, for the Maxeler
platform along with synthesized designs, it can be exposed as entire application that gets
fed a pair of input images and outputs a resulting disparity map, or as the two sets of
kernel implementations that are encapsulated behind common interfaces. For different
Maxeler platforms, a library maintainer might be requested to provide synthesized designs
to ensure sufficient resources and a working placement, routing and timing. For different
ISA and management interface compatible vector overlays, note that none is known to us,
the assembly code would be sufficient to ensure quick portability.
The vector assembly code uses a built-in constant register that specifies the maximal

vector length and thus can transparently scale to designs with different vector lengths,
however, some design decisions may then be non-optimal, for example with regard to
vector partitioning. As discussed, the spatial dataflow kernels also have parameterizable
parallelism, but require lengthy re-synthesis, possibly several runs to find the best fitting
resource consumption and timing.
We have furthermore reported on the design efforts for these solutions. While the run-

times for compilation for the overlay vs. synthesis of the fully custom designs are vastly
different and did have practical impact on overall productivity, the assembly-language
implementations for the vector overlay were chosen to come as close as possible to the
maximal performance of each platform, but does not represent a high-productivity ap-
proach as proposed in Chapter 3 as overlay pillar. Towards such productivity, compilation
from high-level source code is required, which we show in Chapter 5 is possible, but was
lacking heavily in features and performance in the tool chain shipped with the Convey
HC-1. The spatial programming model for the Maxeler platform on the other hand al-
lowed to generate kernel specific FPGA designs at a reasonably high abstraction level.
However, with a design paradigm that is unfamiliar to software developers and as of now
not compatible with targets outside the Maxeler ecosystem, we see it suitable for a number
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of special-purpose computing [10, 9] and selected HPC scenarios, but not as major driver
of FPGA adoption in general-purpose computing, were we see OpenCL as more familiar
and more portable alternative.
With a focus on structured and productive offloading, this project intentionally left out

manual customizations on the algorithmic level, or of data types and operations. Irrespec-
tive of these considerations, a very attractive subject of future work is the customization
of a vector overlay to more efficiently execute the offloaded kernels. For example when
not all vector registers are used, their number could be reduced, freeing resources towards
larger vector registers. Also, after analysis of the used vector operators, the functional
units of the vector lanes can be customized, possibly even as heterogeneous vector lanes
as proposed in [282]. Other customizations require a more active codesign of kernel
and overlay architecture. For example a local memory for each vector lane, as included
in VIPERS [284, 285] may significantly boost the performance of the lookup operation
of scaling kernel described in Subsection 4.5.1. Similarly the vector registers could be
used as local buffers for the two difference kernels from the same subsection, requiring
a non-straight-forward ISA extension before being targeted by manual assembly code or
compilation.
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CHAPTER 5

Compilation and Runtime Techniques for FPGA Accelerators

At the core of this chapter, we address the challenges of productive tool flows targeting
instruction-programmable overlay architectures, using the example of the vector coproces-
sor implemented on the FPGAs of a Convey HC-1. In [4], we encountered shortcomings
of the compiler shipped with the Vector Personality in terms of supported code constructs
and in terms of performance of generated coprocessor code. We have developed a com-
pilation flow that addresses these shortcomings and additionally provides fully automatic
offloading without being guided by pragma annotations.
Thus, as high-level contribution, this work shows that highly productive compilation is

possible for instruction-programmable overlay architectures, where encountered shortcom-
ings of existing solutions are not inherent to the approach, but a matter of engineering
resources. Through fully automatic detection of suitable code segments, along with highly
productive offloading decisions at runtime, the initial effort to create an FPGA accelerated
variant of some application is minimal, similar to using accelerated variants of commonly
used libraries. Since our tool flow works on compiled code in LLVM1 intermediate repre-
sentation (IR) format, it is particularly suited for OTF computing scenarios as introduced
in Subsection 2.3.3, where source code may not be available at the data center that tries
to execute the workload as efficiently as possible.
As technical contributions of this chapter, we focused on code generation for outer-

loop vectorization and on support for pointer-based addressing of data structures, which
were both not possible with the previously existing toolflow. With a set of benchmark
kernels that systematically varies these properties, we quantify, beyond the value of added
functionality, the performance impact of these features.
Most of this chapter has been presented and published at ARC 2014 [7]. Beside Tobias

Kenter as lead researcher, Gavin Vaz greatly contributed to the implementation and many
design choices. Joint follow-up research with Gavin Vaz and Heinrich Riebler around im-
proved solutions for and broader potential of deferring offloading decisions to application

1http://llvm.org/
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runtime has been presented and published at ReConfig 2014 [11] (Received Best Paper
Award) and in a much extended version in [12]. Complementary joint research, lead by
Achim Lösch and Tobias Beisel, investigates runtime management of heterogeneous re-
sources on a system level in scenarios with several competing tasks.
In the remainder of this chapter, we firstly in Section 5.1 present the motivation and goals

of the presented work in more detail. Section 5.2 presents the approach and implementation
ideas of our solution. In Section 5.3, we discuss the design of our test suite that we use for
the evaluation in Section 5.4. Section 5.5 presents related work specific to this chapter. In
Sections 5.6 and 5.7, we give a summary of the joint research that builds upon respectively
complements the ideas from this chapter, before we conclude in Section 5.8.

5.1 Motivation

The results from Chapter 4 have not only demonstrated that instruction-programmable
overlay architectures with wide vector instruction sets can be used to achieve speedups over
CPU implementations, but also for the first time quantified the involved overheads in a
general-purpose computing scenario. In Chapter 3, we have argued based on observations
from other target architectures, that such overheads can be acceptable if they go along with
sufficient gains in productivity. In our approach from Chapter 4, one aspect of productivity,
the execution times of design tools, was clearly superior to the alternative approach that
involves lengthy synthesis processes. However, with regard to required developer expertise
and effort, the value proposition of the vector coprocessor design was much weaker due
to the chosen low level assembly implementation. As discussed in Subsection 3.2.1, aca-
demic projects on vector processor overlays on FPGAs are either programmed on the same
abstraction level [282, 284, 285], or slightly above with C macros that generate assembly
instructions [56, 228].
The vectorizing Convey Compiler shipped along with the Vector Personality promised a

much more productive design entry with compilation from C/C++ source code that only
needs to be annotated with pragmas to guide the offloading and vectorization process. We
built upon this compiler in our first work on stereo-matching [4] and our expectations were
deeply disappointed. In order to vectorize promising loop nests, significant refactoring and
annotation efforts were required. Some transformation steps, for example the consolidation
of multi-dimensional data structures into flat arrays, were familiar from other acceleration
and offloading paradigms and reproducible improved the chances for successful vectoriza-
tion. For other design decisions, like the order of loops in loop nests or the computation of
array indexes, the impact on vectorization was more erratic and required to try out many
different variants, often along with significant code-bloat, before finding a code representa-
tion suitable for compiler vectorization. Finally, for the generated vector code, performance
was far below expectations, often exhibiting slowdowns compared to pure host execution.
A recurring pattern we observed during our analysis was, that the compiler only performed
inner-loop vectorization, which often lead to data accesses in non-favorable stride patterns
and also missed data reuse opportunities.
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Given this experience and considering the very limited tool support for other academic
vector overlays on FPGAs, there are two possible explanations. Either, automatic vector-
ization is inherently too hard to cover more than just a few basic computation patterns
in canonical representation, or the available compilers are just not suitably engineered to
handle the more complex computation patterns with dependencies, indirect indexing and
multi-dimensional data structures beyond flat arrays. Depending on the correct answer
to this choice, instruction-programmable overlays with vector execution units are either
disqualified as productive path towards FPGA computing in general-purpose scenarios, or
can still fill this role. Based on the observations during manual design of stereo-matching
kernels and considering that vector supercomputers were fairly successful for a decade, we
assumed the latter and for this chapter set out to demonstrate this. We aimed to design a
compilation flow that

1. functionally supports a wide range of dependency and indexing patterns and flexible
multi-dimensional data structures.

2. generates well-performing vector code that is not limited to inner-loop vectorization
and smartly reuses data in its vector registers.

3. requires no refactoring or user guidance through pragma annotations.

5.2 Approach

We decided to build our tool flow upon the LLVM compiler infrastructure. It starts with
binary applications in the form of LLVM IR. LLVM provides front-ends to generate IR
from several source languages, which gives access to many active developers and legacy
applications in the general-purpose domain and beyond. Even though IR is no machine
code, it is a binary format in which applications can be distributed or it can be generated
from machine code [22]. Thus, the toolflow can even be applied in OTF scenarios where
source code is not available [110]. Beyond this very wide base of design entries, the LLVM
infrastructure provides us with an extensive set of code analysis methods, encapsulated in
so-called passes, on which we build our methods for identifying hotspots to move to the
coprocessor and to perform suitable and valid vectorization.
In the remainder of this section, we first present our overall toolflow to generate hetero-

geneous executables for CPU and coprocessor. After this general overview, we discuss in
more detail the extraction of code parts for execution on the coprocessor, the actual vec-
torization and our approach to runtime checks to guide the execution and data movement.

5.2.1 Toolflow for Heterogeneous Executables

Since we use and extend the LLVM compiler infrastructure in this project, we use its
terminology. In particular, a module denotes the top level compilation unit, e.g. an entire
program or a library that will be linked with the main executable later. A module contains
a set of functions which consist of basic blocks. Control flow between basic blocks is denoted
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Figure 5.1: Toolflow for generating heterogeneous binaries for execution on Convey HC-1 copro-
cessor and host. Blue: our implementation; yellow: Convey Compiler infrastructure;
green: LLVM infrastructure

by edges. Figure 5.1 depicts our overall toolflow for generating heterogeneous binaries for
execution on the host CPU and coprocessor. The toolflow integrates some existing LLVM
and Convey Compiler tools, but most of the partitioning-related aspects, as well as the
vectorization and coprocessor code generation are new contributions for this work.
We start with LLVM IR code, which we generated for our tests in Section 5.4 with the

Clang compiler frontend. In our PartitionPass, we then split the module into code that is
to remain on host and code that is to be executed on the coprocessor. The details of this
phase will be presented in Subsection 5.2.2. The PartitionPass also includes the planning of
a vectorization strategy described in Subsection 5.2.3 and the inclusion of runtime decisions
as detailed in Subsection 5.2.4. The modified host code is then translated by the LLVM
backend to x86 assembly code. Note that, where applicable, this will generate short vector
instructions for the host CPU’s SIMD units.
For generating the interface between the host and coprocessor code, we use the Convey

Compiler to match Convey’s calling conventions and to avoid reimplementing that func-
tionality. For that purpose, the PartitionPass additionally emits a .cpp file containing
stubs of all the functions we want to implement on the coprocessor along with their signa-
ture of arguments. We also generate pragmas indicating to the Convey Compiler that those
functions are to be executed on the coprocessor. The Convey Compiler then generates an
x86 function entry, which contains a runtime check for availability of the coprocessor and
puts all arguments properly on the coprocessor stack. Then control is handed over to
the coprocessor entry of this function, where arguments are loaded from the stack into
coprocessor registers.
From the code extracted for the coprocessor, we generate vectorized coprocessor as-

sembly code in our CodeGenPass following the vectorization strategy determined by the
PartitionPass. With the help of a Python script we then merge this code with the headers
including function arguments of the function stubs compiled by the Convey Compiler. Fi-
nally we assemble and link the generated assembly and object files, again using the Convey
Compiler tools.
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5.2.2 Code Extraction

We want to identify parts of the code that can be executed on the coprocessor and are
likely to yield a speedup. This subsection focuses on the feasibility whereas the performance
depends on the outcome of the subsequently described steps.
On our platform, the control flow between host CPU and coprocessor is based on function

calls. The only way to transfer control from the CPU to the coprocessor is to call a function
that is compiled for the latter; the only regular way to transfer control back is to return
from the called function. The coprocessor may call other coprocessor functions but it
cannot call functions on the host. The following process identifies coprocessor suitable
code regions in two phases, before the actual extraction starts.
In the first phase, we identify all function calls to libraries on the host CPU, e.g. I/O,

as direct incompatibilities. The basic blocks containing these calls cannot be moved to
the coprocessor, except for a few selected functions, for which we can generate coprocessor
code directly, e.g. a std::min() with appropriate data types can be directly translated
into assembly functions later. In the second phase, we search for indirect incompatibilities,
where function calls inside the compilation module point to functions that need to be at
least partially executed on the host. We repeat this second phase until no new incompat-
ibilities are detected. The outcome of these two phases are functions that can be entirely
moved to the coprocessor and functions that are only partially coprocessor feasible.

1 // Integral horizontal sums
2 for(int y=0; y<HEIGHT; y++)
3 sum[y][0] = in[y][0];
4 for(int x=1; x<WIDTH; x++)
5 sum[y][x] = sum[y][x-1] + in[y][x];
6 writeIntermediateResult(sum); // call with IO
7 // Horizontal differences
8 for(int y=0; y<HEIGHT; y++)
9 for(int x=0; x<WIDTH; x++)
10 right = rightArms[y][x];
11 left = leftArms[y][x];
12 diff[y][x] = sum[y][x+right];
13 if(left > 0)
14 diff[y][x] = diff[y][x] - sum[y][x-left -1];

Listing 5.1: Example for loops that can be extracted for coprocessor execution. Note: for a
more visible representation of the dependencies, we chose a two-dimensional array
indexing in contrast to Listing 4.6.

For those latter functions, we want to extract the basic blocks that can be executed
on the coprocessor into new functions. For this extraction to be possible, a set of blocks
must have a single entry edge and a single exit edge [146]. Some sets of basic blocks may
not have this property, but can be transformed to satisfy it. In particular this is the case
if they have a single basic block as target for all entry edges and a single basic block as
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source for all exiting edges. As such, all loops in any nesting level have this property. As
speedups are only expected from vectorizing loops, we restrict our toolflow to extract only
sets of basic blocks that form a loop. We proceed from outer to inner nested loops, so if
all basic blocks of an outer loop are marked as coprocessor feasible, the outer loop gets
extracted, otherwise inner loops are tested in the order of their nesting level until we reach
the innermost loop. We use LLVM’s refactoring capabilities to perform this extraction
after a suitable loop is detected.
The implementation variant of vertical differences in Listing 5.1 shows a simple code

example where this function splitting is required. After the first vectorizable loop nest,
some intermediate result is written to a file, before a second vectorizable loop nest follows.
Our toolflow will extract the two loop nests into two new coprocessor functions, leaving
the calls to those functions along with the other call inside the original function on the
host. Note that we chose the source code listing just for illustration purposes, whereas
internally our tools operate on LLVM IR.

5.2.3 Vectorization

The vectorization phase checks for two important conditions on each loop nest level. Firstly,
dependencies between loop iterations are detected, which would prevent vectorization of
this loop. The example from Listing 5.1 computes integral horizontal sums and differences
respectively, thus the inner loop from the first loop nest has a dependency, leaving only the
outer loop for vectorization. Secondly, the dimensions of the loops are checked, whether
they permit any speedup. As heuristic, we use an iteration count of 100, when plain ar-
ray data structures are detected and 500, when following pointers to inner dimension, as
threshold below which vectorization often isn’t sufficient to allow speedups on the copro-
cessor. When the iteration count of loops is constant, like indicated by capitalized loop
bounds in our example, this decision can be made at compile time. However, often those
counts can only be determined at runtime, which will be covered in Subsection 5.2.4.
When the conditions for vectorization specify, that only an outer loop can be vectorized,

many compilers, including the Convey Compiler will try to interchange the loop nests and
afterwards vectorize the inner loop. Depending on the compute and data access pattern,
this may be inefficient, or infeasible, e.g. if the loops are not perfectly nested. Therefore
we prefer to vectorize the outer loop directly.

1 for(int y=0; y<HEIGHT; y+= VL_max)
2 VL = min(VL_max , HEIGHT -y)
3 out[y:y+VL][0] = in[y:y+VL][0];
4 for(int x=1; x<WIDTH; x+= VL_max)
5 out[y:y+VL][x] = out[y:y+VL][x-1] + in[y:y+VL][x];

Listing 5.2: Vectorized loop nest from horizontal integral sums. Note: for a more visible
representation of the vectors, we chose a two-dimensional array indexing in
contrast to Listing 4.6.
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Listing 5.2 illustrates the outer-loop vectorization of the first loop nest from Listing 5.1,
using the array index notation from Cilk Plus2, where a [a:b] statement indicates, that
the elements from a to b will be processed in parallel. The outer loop is strip-mined. It
now increments by the size of the vector registers VL_max. The actually used vector size
VL is computed in line 2, because in the last iteration, there will often be less than VL_max
elements left.
Our toolflow does not actually produce code like shown in this listing, but rather the

PartitionPass plans vectorization and marks the identified loops for vectorization. When
mapping the LLVM IR instructions to Convey coprocessor assembly code, the CodeGen-
Pass then replaces all instructions involving the induction variable of the vectorized loop,
in this case y, by corresponding vector instructions. This can in turn require to vectorize
further instructions and variables, even if they are scalars independent of y. We support
this scalar expansion, but no vector code generation of reduction operations.
In this simple example, loop exchange with inner-loop vectorization would easily be

possible as well. However we can note, that the computation of VL with outer-loop vec-
torization is executed only HEIGHT

V Lmax
times, whereas after loop interchange and inner-loop

vectorization it would take place in the inner loop WIDTH ∗ HEIGHTV Lmax
times. Additional

benefits can be exploited when loop-invariant instructions from the inner loop can be
moved to the outer loop. For example an address calculation or pointer load for an outer
dimension of an array, like out[y:y+VL] in Listing 5.2 can be moved to the outer loop,
which may not be possible after a loop interchange.
Note, that the pattern of vectorized memory operations is independent of the decision

between outer-loop vectorization and inner-loop vectorization after loop interchange. In
this example, assuming C-like row-major order, vectorization requires strided or indexed
loads, which impose an overhead compared to continuous loads. When manually optimizing
an application for vectorization, adapting the data layout, also combined with tiling, can
be a major source of speedups. However for our automated acceleration approach, we leave
the data layout unchanged.

5.2.4 Runtime Decisions

When the iteration space of a loop nest is known at compile time and promises speedups
according to our heuristic threshold, we statically replace the execution on the host with
execution on the coprocessor. This method is sufficient for the experiments presented
in Section 5.4. However, often the iteration space depends on concrete input data to
an application or on unknown function arguments when accelerating a library. In many
of those cases, the iteration space can be determined at runtime of the program at the
entry of the actual loop. In this case, we generate code to compute the iteration space
before executing the actual loop, using LLVM’s ScalarEvolution analysis. Then we add a
comparison instruction to compare this value to the threshold for coprocessor execution.
If the threshold is not met, a branch instruction will point to the original entry of the loop

2https://www.cilkplus.org/
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on the host, otherwise to a new basic block where we generate data movement statements
and a call to the according coprocessor function. If the iteration space cannot be computed
at this point, e.g. when following a linked list, execution will remain on the host.
For achieving best performance on the NUMA architecture of our platform, data should

be migrated to the physical memory location where it is most frequently accessed. There-
fore we insert calls to Convey’s data movement API to transfer data to coprocessor memory,
before transferring control to the coprocessor. For these data movement statements, we
need the data space of the accessed data structures. Similar to the iteration space, it can
either be statically computed at compile time, dynamically at runtime before execution of
the loop or it is uncomputable at this point. If it is computable, we add the according
data movement statements, either with static size arguments or with runtime computed
size arguments. After the coprocessor function execution, similar statements could move
the data back to host memory. However, we would need to analyze the further control flow
of the application to determine whether the next intensive data access will happen on the
host or the coprocessor. Currently we don’t support this, so we optimistically assume that
typically the runtime relevant code sections will be executed on the coprocessor and leave
the migrated data in coprocessor memory. Thus, subsequent coprocessor loops working on
the same data will still have calls to migrate data to coprocessor memory, but will need
very little time because no data actually needs to be moved.

5.3 Experimental Setup

In order to assess the impact of different dependency patterns, vectorization strategies and
data layouts systematically, we designed a synthetic loop test suite. As base, we used
the fundamental compute patterns, which we observed during our practical work with the
vector coprocessor overlay of the Convey HC-1, in [4] and Chapter 4. We started off with
three base patterns of nested loops.

1. A simple loop carried dependency in one loop nest, realized through an array offset
of −1. Variants of this basic pattern, as presented in Listing 5.3 show up with the
horizontal and vertical sum kernels and are one incarnation of the Regular Streaming
kernels identified in Section 4.5.4.

1 for(int i=0; i<HEIGHT; i++)
2 for(int j=1; j<WIDTH; j++)
3 arr[i][j] = arr[i][j] + arr[i][j-1] * scalar;

Listing 5.3: Basis pattern with simple loop carried dependency.

2. A simple loop carried dependency in one loop nest, realized through an array offset of
−1, that is combined with access to another array with different iteration space. This
base pattern as presented in Listing 5.4 exhibits simplified features of the scanline
kernels from Subsection 4.5.
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1 for(int i=0; i<HEIGHT; i++)
2 for(int j=1; j<WIDTH; j++)
3 arr[i][j] = arr[i][j] + arr[i][j-1] * vec[j];

Listing 5.4: Extended pattern with loop carried dependency.

3. No loop carried dependencies, but indirect indexing in one loop nest, as presented
in Listing 5.5. This corresponds to the group of Irregular Index Offsets with the
difference kernels of the aggregation phase.

1 for(int i=0; i<HEIGHT; i++)
2 for(int j=0; j<WIDTH; j++)
3 arr1[i][j] = arr1[i][j] + arr2[i][j + vec[j]];

Listing 5.5: Basis pattern with irregular index offsets.

Building upon these three base patterns, we systematically generated additional variants.

1. We varied the nesting level of the loop nest between two and three. Two loop nests
correspond to kernels that work on individual images or slices of a 3D cost volume,
whereas three loop nests work on an entire 3D cost volume.

2. We varied the layout of the multidimensional data structures. Multi-dimensional
data structures are either put into a flat Array or are accessed by following a Pointer
for every dimension to a dynamically allocated memory location. Note that for the
implementation in Chapter 4, only flat arrays are used, following a general design
principle for external acceleration, to offload computations and data in as large chunks
as possible.

3. We further varied on which loop nest’s induction variable the loop carried depen-
dency respectively the indirect indexing depends. Thus, for the loops with dependen-
cies, this variation enforces either direct inner-loop vectorization (denoted as Inner)
respectively direct outer-loop vectorization (denoted as Outer), or requires active
loop-interchange. Straight-forward implementations of the summation and scanline
kernels from Subsection 4.5 exhibit such pairs of opposite dependencies between the
respective horizontal and vertical variants, however it is at the programmers dis-
cretion to interchange the loop nests. For the loops with indirect indexing without
dependencies, we created a third variant with offsets in both loop dimensions as moti-
vated for example by a census transformation that remained on the host in Chapter 4
as result of the profiling phase.

4. Finally, for each of these loops, we generate one data layout which is Favorable
for vectorization by enabling continuous vector loads and one Transposed layout,
which requires strided or indexed vector loads. In the stereo-matching algorithm of
Chapter 4, the same data structures are accessed in two orthogonal directions and
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thus, independent from loop orders decided by designers or compiler optimizations,
form the pair of horizontal and vertical steps with dependencies, necessarily one step
accesses a favorable layout and the other a transposed layout. For the loops without
dependencies, we didn’t generate transposed layouts, since the indexing variations
from the previous step already cover the risk of working on a transposed layout
because of limited knowledge. In the absence of dependencies, there is no further
reason beyond limited knowledge to iterate over data in a transposed layout.

For the two basis patterns with loop carried dependencies, these four variations result
in a total 2 × 2 × 2 × 2 × 2 = 32 loop nests generated. For the basis pattern without
dependency, the only the first three variations are applied, with three variants for the
dimension in which indirect indexing points. This results in 1 × 2 × 2 × 3 = 12 variants.
Additionally we evaluate two simple test patterns for the generation of mask instructions,
which run on linear loops without dependencies.
We integrate all these loop patterns into a single test application, where all required

data structures are allocated and filled with reproducible sequences of random data. Sub-
sequently, all loop patterns are executed with 5000 iterations for each of the two inner loop
nests and five repetitions through an additional outer loop for the 3D patterns. In the
presented evaluation, all trip counts can be statically determined by the compiler. Thus,
each non-vectorized loop executes for 5000 sequential iterations, whereas vectorized loops
on the coprocessor need only five iterations, where the final iteration is using less than the
maximum possible width of 1024 vector elements in order to demonstrate correct function-
ality of this feature. For each loop, the execution time is determined by calling a timer
function before loop invocation and after loop termination. These timing measurements
serve as natural border for the offloading mechanism. After the time measurement, from
the output arrays of each loop, a checksum is computed.

5.4 Evaluation

We evaluate our approach by comparing for each loop pattern the performance achieved
after applying our toolflow and running the heterogeneous executable on host CPU and
coprocessor together, to the baseline performance when compiling to pure host code with
the Clang backend and executing only on the host CPU. In terms of tool productivity, our
entire toolflow just adds a few seconds to the default Clang compilation time. A comparison
of the checksums demonstrates the correct functionality of the entire test setup.
In our first experiment, all measurements are performed with data already present in

local memory of the target platform, in host memory for the baseline measurements and in
coprocessor memory for the offloaded loops. This setup is close to the practical performance
if our optimistic data movement strategy works out and corresponds to the raw kernel
performance as analyzed in Subsection 4.7.3.
Table 5.1 summarizes the geometric mean speedups of our toolflow compared to pure

host execution, for all loop nests together and in individual groups. According to the
systematic from Section 5.3, we group our total of 46 benchmark loops into five times two
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Table 5.1: Observed speedup as geometric means for different groups of loops. Subscripts indicate
the size of each group. Note that identical loops show up in the Inner/Outer and
Favorable/Transposed column pairs.

Inner Outer Favorable Transposed Independent Geomean
Array 6.5108 6.6708 13.1008 3.3108 2.0508 4.4624
Pointer 2.0008 2.0108 2.6208 1.5208 0.8806 1.5222

Geomean 3.6016 3.6616 5.8616 2.2516 1.3514 2.6146

groups in Table 5.1, with subscripts indicating the size of each group. The 32 loops with
dependencies can be found in their corresponding line of either column Inner or column
Outer and in order to enable a different point of view they are contained again either in
column Favorable or in column Transposed. Additionally, there are ten Independent Array
loops (including two vector mask patterns) and eight Independent Pointer loops, where
the vectorization target and utilization of data layout solely depends on compiler decisions.
Like in Chapter 4, we use geometric means within each group and beyond because of
the scale invariance of this metric. Since geometric means weight positive outliers less,
the values are a bit lower than published in [7], where arithmetic means are used. We
summarize the geometric means of groups by columns and rows, with the overall mean in
the lower right corner.
We see that the automatic compilation flow is not only functional, but is also able to

achieve speedups for all but one of the investigated groups of loop patterns. The geometric
mean of speedups of all 46 kernels is 2.6x and the eight kernels in the best performing
group of flat arrays with favorable data layout achieve a speedup ratio of more than one
order of magnitude.
Investigating the influencing factors individually, we firstly see that Array data struc-

tures allow much higher speedups then Pointer data structures, around 3x higher in many
groups. To ensure correct functionality, we make no assumptions about the actual data
layout of dynamically allocated partial arrays and thus need to load many different base
addresses that can be computed as offsets in the loops with flat arrays. There may be
some improvement potential through more clever reuse of once loaded base addresses, but
a gap to the Array groups will definitely remain unless additional knowledge about the
allocation process can be gathered by the compiler, from the developer, or dynamically at
runtime. Outer-loop vectorization (Outer), that we implemented as alternative to loop in-
terchanges with the goal of inner-loop vectorization (Inner) yields slightly higher speedups
for Array data structures. Based on earlier experiments with hand-written code, we had
hoped for a higher impact, but were not able to separate out the effects of data layout. The
systematic variation of data layout between Favorable for vectorization and Transposed to
it reveals that the impact of this factor by far dominates the vectorization strategy, par-
ticularly in Array loops, were a favorable layout enables around 4x higher speedups than
a transposed one. Nevertheless, even all groups with transposed layouts were able to gain
some speedups. Only in the group of Pointer data structures with indirect indexing the
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high number of irregular memory operations causes a slight slowdown compared to the
host CPU. In these cases, the vector overlay can no longer compensate its clock frequency
disadvantage and lack of a generic cache hierarchy with increased parallelism.

5.4.1 Comparison to Hand-Written Kernels of Chapter 4

When comparing these results with the results in Table 4.6, were kernels with hand-written
assembly code run actual stereo-matching tasks on the same platform, we first need to
summarize common features and differences. Both speedup numbers refer to raw kernel
execution times with data present at the coprocessor. The input sizes of the synthetic
tests are larger in the two inner dimensions, but much smaller in the third dimension of
the 3D kernels. This has an impact on the comparison, but reduces the effect of vector
partitioning, that is used in the hand-written kernel but not generated by our compilation
flow. All hand-written stereo-matching kernels use flat arrays and fall into the first row
of Table 5.1. The summation and directed scanline kernels fall into the Outer group,
with a forced variation between Favorable and Transposed data layouts. The other kernels
fall into the Independent group, even though the sumScanlines requires neither indirect
indexing nor select operations and hence would performance-wise be best represented by
the Favorable group.
The kernel-ratio of 5.80 in Table 4.6 is computed with reference to the host CPU of

the Maxeler platform, there denoted as CPU1 and therefore needs to be divided by the
kernel-ratio of CPU2 to obtain results comparable to those in Table 5.1. Thus, a kernel-
ratio of 14.50 would represent the hand-written kernels for all input sizes from Chapter 4
as most comparable number to the results from this chapter. It is much higher than
the speedups of the group with Array and Outer kernel variants, to which six of its ten
kernels belong. We attribute this difference mostly to three reasons. Firstly, knowledge
of the application allowed higher data-reuse in the hand-written kernels than the compiler
could prove. Secondly, the actual computational intensity of the scanline kernels is higher
than covered by the basic data access pattern in the synthetic test suite. Thirdly, manual,
measurement-driven optimization of the instruction sequences of some hand-written kernels
yielded additional speedups for which we were not able to find any design rules applicable
to an automatic code generation.

5.4.2 Further Experiments

As shortcomings of the shipped Convey Compiler motivated this work, we compared our
results to the ones generated with the latest version of this compiler. When testing it on
the same benchmark in its fully unguided mode, it produces wrong results, probably due to
some unsafe optimizations. However, according to the documentation, the unguided mode
is mainly intended for finding possible vectorization candidates. Hence, we next added the
applicable pragmas about data layouts, vectorization goals and hints about dependencies
or their absence in each loop nest. After experimenting with the most suitable compiler
options, we were finally able to vectorize and offload 20 of the 24 loops with array data
structures, but none of the pointer variants. This outcome is a notable progress over the

124



older internal vectorizer of the Convey Compiler that motivated our project when we used
it in [4] and that can only vectorize four of the array loop patterns without further manual
extraction of index computation and manual loop-interchanges. However, our contribution
both significantly increases the functionality and reduces the effort for targeting a vector
coprocessor overlay compared to all tested variants of the Convey Compiler.
When comparing the runtimes after applying our toolflow to those from the loops suc-

cessfully vectorized with the Convey Compiler, in nine of those 20 loops, our generated
kernels are faster between 2.88x and 10.05x, mostly because our more direct vectoriza-
tion approach allows higher data reuse. For seven loops, the runtimes are almost identical
(speedups of 1.00x to 1.06x). In four examples, we have slowdowns of 0.44 to 0.49, because
our compiler misses a data reuse opportunity by a loop interchange the Convey Compiler
performs. Thus, our contribution reveals considerable additional speedup potential for
automatically generated code for vector coprocessor overlays, but is not optimal for all
investigated patterns.
In practical applications as in Chapter 4, there is a mix of required data transfers between

host and coprocessor and reuse of data residing in coprocessor memory. As complementing
experiment to our optimistic scenario from Table 5.1, we measured the performance impact
when all used data needs to be migrated to the coprocessor prior to each actual invocation
of a loop vectorized with our toolflow. The geometric mean of all speedups in this scenario
is 0.85, which corresponds to a slight slowdown. Looking at individual loops, we found 21
loops with speedups and 25 loops with slowdowns, in both categories between a few percent
and around one order of magnitude. Reusing the same data from coprocessor for further
loop invocations reduces these overheads until the speedups asymptomatically approach
the results in Table 5.1.

5.5 Related Work

In this section, we give an overview of related work on compilation for vector architectures.
This work was motivated by serious gaps between what can be achieved using the Convey
vectorizing compilers and what is possible by making best use of the vector instruction
set. Maleki et al. [172] have investigated similar problems for compilers targeting vec-
tor extensions for current general-purpose CPUs. Our work underlines that overall such
shortcomings can be addressed, but the details can be challenging.
The foundations of automated loop vectorization driven by data dependency analysis

were established during the era of vector supercomputers in the ’80s, first by Allen and
Kennedy [16]. In their source-to-source compilation system they apply loop interchange
and then vectorize inner loops or entire loops nests that are fully vectorizable from the
innermost loop on. Later on, the vectorizing Fortran compiler by Scarborough et al. [221]
also featured direct outer-loop vectorization, like Ngo’s [200] compiler framework integrated
into the “Cray Fortran-90 compiling system”. More recently, outer-loop vectorization has
also gained interest for SIMD instruction sets with short vector units [202] as present in
modern GPPs.
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Other test suites for automatic vectorization, like the one from the GCC auto-vectorization
project 3 and PolyBench [212] contain some additional code patterns, but lack the system-
atic variations of our test suite and thus don’t allow to isolate effects of the vectorization
strategy from the data layouts.

5.6 Excursion to Offloading Decisions at Runtime

In this work, we have introduced, but not evaluated the concept of embedding offloading
decisions into application code, where they often have access to the runtime variables that
determine the iteration counts of loops and loop nests. The joint follow-up research in [11]
and [12] improves the implementation of offloading decisions at runtime and demonstrates
their effectiveness in scenarios where an actual mix of input data sizes requires dynamic
decisions for or against offloading at runtime. For this evaluation, we furthermore improve
the selection of data to be transferred between host and coprocessor memory and depart
from the optimistic approach of lazily leaving data in coprocessor memory.
In [11, 12], we also investigate the potential of offloading decisions at runtime beyond

the compilation for this concrete FPGA overlay target. Firstly, we analyze all loops from
the common benchmarks SPEC CPU2006 [119], MiBench [106] and MediaBench [165] to
find out, whether the trip count to guide an offloading decision can be determined at
compile time, or later at runtime when the loop is entered, or cannot be determined with
the means of the LLVM compiler framework at all. It turns out that the trip counts of 40%
of all loops identified in the code or 26% of all loops that are executed at least once can
be determined at runtime, but not before. These loops account for 53% of all cumulative
loop iterations in all benchmarks. These numbers show, together with more detailed per-
benchmark analysis in [12], that offloading decisions that are automatically inserted into
program code and take deterministic decisions based on actual runtime data, can have a
great impact beyond the case-study within this chapter.
Compared to decisions based on expert knowledge from the application developer, or

based on profiling results, runtime decisions require much less effort at compile time and
thus are much more productive as postulated in Section 3.1. Conceptually, they however
incur a performance overhead compared to statically taken decisions at compile time. In
order to assess this overhead, as second experiment we insert such runtime decisions at the
entry blocks of every applicable loop of the SPEC CPU2006 benchmark, without actually
generating corresponding accelerator code and ensuring with an according threshold pa-
rameter, that all execution actually remains on the host CPU. With an impact on overall
benchmark execution time of less than 1%, we found the performance trade-off of such
runtime decisions to be negligible.
As third new contribution beyond [5], we introduce and analyze in [12] the decision slack

as the distance between the earliest program position or point in time, where a runtime
decision can be computed based on all required input data, and the program position
or point in time, when the potentially to-be-offloaded loop starts. We found that in the

3http://gcc.gnu.org/projects/tree-ssa/vectorization.html
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SPEC CPU2006 benchmarks, 88% of all loops applicable for runtime decisions exhibit such
a decision slack. Evaluating in a conservative analysis only the shortest possible control
flow path, we found the average decision slack in SPEC CPU2006 to span 80 instructions
within 10 basic blocks. The resulting time span may be used for small configuration or
data transfer tasks of an accelerator or for taking scheduling decisions on the system level
like the ones outlined in the following section.

5.7 System-Level Scheduling and Task Migration

Up to now, we have within this chapter and in Chapter 4 only investigated how to optimize
the performance of a single application at a time with exclusive usage of a heterogeneous
system with host CPU(s) and an FPGA accelerator. This is similar to the scenario ana-
lyzed in [215] for the PCs market, where emphasis was given to one application running
interactively in the foreground. However, particularly for the consolidated execution of
cloud and OTF workloads in datacenters, at the same time the performance of many tasks
may need to be optimized. These tasks then compete for host and accelerator resources,
which is the perspective we jointly investigate in [8]. Instead of individual offloading deci-
sions embedded into application code, here a system scheduler controls the assignment of
tasks to host and accelerator resources.
In order to demonstrate the importance of this perspective, we present three techni-

cal contributions in [8], extending earlier work of Beisel et al. [32]. Firstly, we introduce
a programming pattern around checkpoints within the kernels of our target applications.
This allows us to interface different kernel implementations for multicore CPUs, GPUs and
Maxeler FPGA accelerators with common functions to setup and retrieve intermediate ap-
plication status and to trigger the next computation step. In contrast to the automated
toolflow presented in this chapter, the checkpoint-centric programming pattern allows to
voluntarily generate repeated decision points at which computation can be migrated be-
tween arbitrary resources. Secondly, we characterize the performance of different kernels
with a range of different input dimensions on all three resources and transform the concrete
measurement results into a more abstract affinity metric. This measurement-based affinity
metric can be considered as the counterpart of the target architecture specific threshold
used throughout this chapter. Thirdly, we present a heterogeneous scheduler that assigns
tasks to their most suitable resource whenever possible, but also tries to fully utilize all
resources in order to maximize the total task progress of the system. This can involve
executing tasks on a non-optimal resource that would otherwise fall idle. When a new,
better suited task for this resource arrives, or when the optimal resource of the running
task becomes available, the scheduler can update an assignment decision and migrate a
task at any checkpoint.
For the evaluation in [8], we generate different task sets with 32 to 72 tasks from the

applications Gaussian blur, heat transfer simulation, Markov chain and correlation matrix
with different input sizes. The sets contain for each resource some tasks that are most
affine to it and the distribution of task execution times mimics large-scale datacenter
workloads [187, 72]. For these task sets, we compare the total completion time with our
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heterogeneous scheduler with task migration to two alternatives without migration. The
first alternative, denoted as affinity-conserving, executes all tasks on the most suitable
resource and thus may leave other resources idle, whereas the second alternative, denoted
as workload-preserving, also assigns non-optimal tasks to otherwise idle resources and thus
corresponds to the heterogeneous scheduler without migration capabilities.
It turns out that the second alternative on average does not deliver competitive per-

formance because it sometimes causes long-running tasks to execute on a non-optimal
resource with large slowdowns. The heterogeneous scheduler can recover from such situ-
ations and compared to the first alternative provide an average speedup of 7% through
better resource utilization. This shows that offloading decisions at the system level can be
superior to decisions on the application level, when the system has sufficient capabilities
to correct non-beneficial decisions.
In the current implementation of offloading decisions embedded into application code as

presented throughout this chapter, execution falls back to the host, when the coprocessor is
not available at the decision point. In a multi-tasking scenario, this is conceptually similar
to the workload-preserving alternative from the previous paragraph, but with less degrees
of freedom. Considering the above results, it might be better to retry the coprocessor
allocation after a brief waiting period, in particular when iteration counts well above the
threshold hint towards high speedup potential.

5.8 Chapter Conclusion

In this chapter, we have presented an automated, unguided acceleration process for bi-
nary applications targeting a heterogeneous platform with a coprocessor realized with an
instruction-programmable FPGA overlay. Our toolflow introduces decisions made at ap-
plication runtime and beats existing pragma-based tools in versatility and in many cases in
performance. This shows that with the help of overlays, acceleration with FPGAs can be
achieved not only without the lengthy synthesis processes, but also without difficult and
time-intensive application refactoring. Even though the presented design flow seems to
involve additional performance overheads on top of the overlay-inherent ones analyzed in
Chapter 4, with its extremely high productivity, it provides an interesting entry point for
FPGA acceleration. The automation and the independence from source code availability
can be particularly important in OTF computing scenarios. A possible next step is to
exploit the fast acceleration process by moving it from compile time as presented here to
the actual runtime of the program, e.g. by running the program in LLVM’s just-in-time
execution engine and then accelerating applications fully transparently to the user.
The presented thresholds for our offloading decisions work in our scenario, but are con-

ceptually a rather rough heuristic. An interesting starting point for future work can be to
either refine these thresholds through a learned model based on code-features as presented
in [269] for OpenCL kernels, or to use auto-tuning techniques [255] to at the same time
find good-performing kernel variants and characterize their performance for different input
dimensions. Similar to the hand-written assembly code from Chapter 4, the generated code
is scalable to overlay architectures with different vector lengths. Either of the two tech-
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niques to automatically find more accurate thresholds would be particularly important for
scaling overlay variants. As discussed in Sections 3.2 and 4.9, customization of the overlay
architecture can be an approach to reduce the involved overheads. Some customizations
proposed in Section 4.9 can easily been applied after kernel code generation, whereas others
are challenging, because of the interdependence of the compilation flow and the overlay
architecture.
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CHAPTER 6

CPU-accelerator System Integration

In this chapter, we broaden the view from concrete systems and solutions to design options
for future system architectures combining GPPs and reconfigurable accelerators including
FPGAs. For this purpose, we not only depart from the constraints imposed by existing
hardware platforms, like the Convey and Maxeler systems targeted in the two previous
chapters, but also from the design methodology aiming for concrete solutions. Instead, we
use an abstract model of computation that is necessarily less accurate, but that overcomes
the limitations to concrete architecture features, parallelism types and sources of efficiency
for FPGAs.
The high-level contributions of this chapter are on the one hand a new approach for

fast and fully automated performance estimation of CPU-accelerator architectures and on
the other hand high-level design insights for such architectures based on the estimation
method. The technical contributions around an LLVM-based analysis tool flow combining
static and dynamic code analysis have influenced the solutions presented in Chapter 5 and
the joint work in [1].
The core of this chapter has been published in [3], extending the design space explo-

ration and improving the partitioning method introduced in [2]. The presented work is
based on the Intel funded project Multimodal Reconfigurable Processing Unit (MM-RPU)
and beneath the main research conducted by Tobias Kenter contains ideas from Michael
Kauschke, Marco Platzner and Christian Plessl, mainly on the architecture model.
In Section 6.1, we present the challenge of design space exploration for the integration of

heterogeneous architectures that motivates our work in this chapter. In Section 6.2 we in-
troduce the type of architectures we investigate. Section 6.3 contains our new performance
estimation method and the partitioning approach used in our framework. In Section 6.4
we discuss selected results of our design space exploration. In Section 6.5 we compare
our framework to related work, before giving a conclusion and outlook to future work in
Section 6.6.
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6.1 Motivation

The integration of accelerators with CPUs into heterogeneous systems is not only a techni-
cal challenge, but it also offers many design alternatives with regard to data transfers, com-
munication and synchronization. In particular, the characteristics of a given interface have
a major impact on the granularity of functions that can be offloaded to the accelerator, on
feasible execution models, and on the achievable performance or performance or efficiency
benefits. As outlined in Sections 2.2.3 and 2.2.4, both GPU and FPGA accelerators have
entered the general-purpose computing domain as loosely coupled architectures with sepa-
rate physical memory and memory space, but are more recently also integrated with CPUs
into common memory spaces, cache hierarchies and SoC products (see Subsection 3.1.2).
This tighter coupling has been driven by performance and efficiency considerations, but
also to increase the productivity of application designers targeting accelerators.
However, as illustrated in the domain of GPU accelerators, where the HSA foundation

tries to shape the integration process [240], the progress towards tightly coupled hetero-
geneous systems is slow. Additionally, the programming models and tools need time to
follow architecture innovations before their benefits can be harvested beyond case stud-
ies. Of course, all previously possible coarse-grained offloading concepts still work with
and often profit from tighter integration, but it takes time to make best use of new, more
fine-grained offloading opportunities. This observation is even more applicable for hetero-
geneous systems with reconfigurable accelerators, due to the more numerous ways they
can increase performance through different forms of parallelism and customization. In
this chapter, we attempt to gain insights about the potential integration of reconfigurable
accelerators independent of these limitations.
In this work we focus on a subclass of CPU-accelerator architectures, where the accelera-

tor has both a direct low latency interface to the CPU and independent access to the mem-
ory hierarchy. We discuss this architecture and its motivation in Section 6.2. Performance
estimation and design space exploration for this and other classes of CPU-accelerator ar-
chitectures are challenging problems. Simulation is the most common approach to evaluate
the architectural integration of reconfigurable accelerators before prototyping. For exam-
ple, Garcia et al. [87, 88] rely on co-simulation to evaluate an architecture where CPU and
accelerator work on the same memory hierarchy. While such a pure co-simulation approach
provides some insight, its time-consuming design process often limits it to assume a specific
interface and a hardware/software partitioning that is custom-tailored to the character-
istics of this interface. The challenge for an automated design space exploration is that
the specifications of the interface affect what parts of the application can be mapped to
the accelerator during hardware/software partitioning. We consider this interdependency
between interface and partitioning the reason why the systematic exploration of the de-
sign space for the architectural integration has so far not received significant attention in
research.
In this chapter, we present a new approach for fast and fully automated performance esti-

mation of CPU-accelerator architectures. By combining high-level analytical performance
modeling, code analysis and profiling and automated hardware/software partitioning we
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Figure 6.1: Reconfigurable accelerator with dual interface in an architecture with shared L2 and
two private L1 caches. The two interface components (to adjacent general-purpose
CPU and to memory hierarchy) are highlighted in yellow.

can estimate the achievable speedup for arbitrary applications executed on a wide range of
CPU-accelerator architectures. The intended use of our method is to quickly identify the
most promising areas of the large CPU-accelerator design space for subsequent in-depth
analysis and design studies. Consequently, we emphasize modeling flexibility and speed of
exploration rather than a high accuracy of the estimation method. The main benefit of
our method is that it needs only the application source code or LLVM binary and does not
require the user to extract any application-specific performance parameters by hand.

6.2 Proposed Architecture

In this section we present the general model for an integrated CPU-accelerator architec-
ture that we investigate with our estimation and partitioning framework in this chapter.
The focus of this work is on the interface of the architecture and its impact on the hard-
ware/software partitioning. Therefore we intentionally leave the internal architecture of the
reconfigurable accelerator relatively open to allow for flexible execution models adapted to
the needs of different applications. The model conceptually covers FPGAs as fine-grained
reconfigurable accelerators, as well as coarse-grained architectures, either implemented di-
rectly in hardware as introduced in Section 3.2.2 or as structurally programmable overlays
on FPGAs as introduced in Section 3.2.3. We abstract the internal details of these ar-
chitecture variations away in this work by using a general efficiency metric as presented
in Section 6.3.1. With an explicitly spatial interpretation of compute resources, this es-
timation method does not cover instruction-programmable overlays. Instead, our model
allows to map the customized datapaths of soft processors onto the reconfigurable overlay,
whereas the remainder of the execution would remain on the GPP.
Our interface template is specifically designed to enable both such tight coupling of com-

putations and more independent execution of entire loops or kernels on the accelerator.
Subsection 3.2.2 introduces some proposed architectures that focus on only one of these
two options. In our architecture concept, in order to achieve higher flexibility, the acceler-
ator is embedded into the compute system through two interfaces, illustrated in yellow in
Figure 6.1. First a direct low latency interface to an adjacent general-purpose CPU allows
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Figure 6.2: Possible integration of the proposed architecture into a multicore CPU.

fine grained interaction mainly on control level like activating a particular configuration of
the accelerator, triggering its execution and synchronizing with its results. This may also
include the exchange of small data entities like predicates, flags and small scalars from and
to CPU registers. The second interface gives the accelerator access to the memory hierar-
chy independently from the CPU and can have different contact points to this hierarchy.
In order to support virtual memory, the accelerator needs either a replicated memory man-
agement unit (MMU) or access to the CPU’s MMU, possibly through the first interface
element.
The dual interface simplifies the overall design, as the accelerator’s memory interface may

be tailored to the needs of the accelerator without compromising the CPU architecture.
It comes at the possible cost of integrating shared caches, which we consider in our design
space exploration in Section 6.4.2. The distinctive feature of this coupling with a dual
interface is the support of a wide range of granularities of accelerated code parts, reaching
from custom instructions, across kernel loops up to functions or threads. Although the
proposed interface does not require a complete CPU redesign, it still allows for the acceler-
ation of fine grained tasks and, thus, can also increase single-thread performance, an area
where current CPU designs face diminishing returns.
The configuration in Figure 6.1 with private L1 caches for both CPU and FPGA and

a shared L2 cache is one possible configuration of the memory hierarchy integration. It
requires a coherency mechanism between the private caches. In our general interface tem-
plate, the private caches on the accelerator side are optional and can either be omitted,
which we investigate in this chapter, or replaced by other forms of local memory like
scratchpad memory or buffers, which are not evaluated here. As a further degree of free-
dom, we vary the point, where private and shared caches are split, up to the extreme points
where either no private or no shared caches exist.
There are various options to integrate our proposed architecture into a multicore system.

Due to the proposed direct coupling of a CPU core and an accelerator, the most straightfor-
ward integration into a multicore system would be to pair individual CPU cores, either all
or only a subset of the multicore CPU, each with a private accelerator. A possible configu-
ration of such a multicore CPU with accelerators is illustrated in Figure 6.2. Depending on
the accelerator’s internal architecture, resource sharing between several accelerators on the
same chip is an additional option. In our design space exploration in Section 6.4, we only
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Figure 6.3: Illustration of Xilinx Zynq memory hierarchy.

evaluated single-threaded workloads and hence just investigate a single CPU-accelerator
pair.

6.2.1 Relation to Existing Architectures

At the time of our original publications in [2, 3], the most closely related available systems
had integrated FPGA accelerators in CPU sockets on dual or multi socket mainboards.
Examples of such systems are the XtremeData In-Socket Accelerators [280], [279] with
Altera FPGAs which communicate with the CPU via the Intel Front Side Bus or via
HyperTransport respectively. Similarly, the Nallatech FPGA Socket Fillers [199] use the
Intel Front Side Bus and contain Xilinx FPGAs. The Convey HC-1 targeted in Chapters 4
and 5 and illustrated in Figure 4.4 is another representative of this system class and has
the distinctive feature of a coherent memory space realized with a sophisticated mix of
software on the CPU side and hardware support on the host interface FPGA.
Meanwhile, first available products more directly exhibit individual aspects of our pro-

posed architecture pattern. The Xilinx Zynq product line [214] and the Altera SoC product
line [19] integrate a dual core ARM Cortex-A9 processor with FPGA fabric into a single
SoC. These processors use out-of-order execution, speculation and superscalar execution
and thus belong to the class of mobile processors that brought general-purpose computing
characteristics into mobile devices, as outlined in Section 2.3.1. In Figure 6.3, we give a
simplified illustration of the Zynq architecture in comparison to our architectural template.
The FPGA logic has direct access to off-chip main memory through so-called high perfor-
mance ports and to the shared L2 cache through the so-called Accelerator Coherency Port
(ACP), and thus is similar to our hierarchy template without private L1 on the accelerator
side. Additionally, not depicted in the figure, the Zynq architecture contains a scratchpad
memory that is like the L2 cache accessible both by the CPU cores and the FPGA fabric.
The FPGA of the Zynq has no fine-grained interface to a CPU core, but through its general
purpose ports can for example trigger interrupts on the processor.
With the CAPI interface, more recently also the POWER8 architecture for high-end

server processors provides hardware support for cache coherent accelerators [242, 246],
which are however not integrated on the same chip. One supported accelerator class are
PCIe attached FPGA boards. Figure 6.4 illustrates a simplified view on the architecture,
where directly adjacent boxes are integrated on one chip and gray arrows indicate off-

135



Chapter 6.3. Method and Framework

FPGA
Logic

(Banked) Shared L3

PSL Cache

L4 (on Memory Chips)

Main Memory

CPU

Private L1
Private L2

CPU

Private L1
Private L2

CPU

Private L1
Private L2

CPU

Private L1
Private L2

CPU

Private L1
Private L2

CPU

Private L1
Private L2

Cache Agent

Figure 6.4: Illustration of POWER8 memory hierarchy with Coherent Accelerator Processor In-
terface (CAPI).

chip communication. On behalf of the external accelerator, a cache agent is attached to
the common on-chip coherence and data interconnect. The much more complex memory
hierarchy of this architecture compared to Zynq in particular also includes a private cache
implemented in the FPGA’s BRAMs.
While these architecture innovations focus on the integration of accelerators into memory

hierarchies and don’t exhibit the fine grained synchronization and register exchange of our
first proposed interface component, there is also a project that can illustrate this aspect
of our concept. The proposed and successfully prototyped VISC (no acronym) architec-
ture [64] is purely a multicore processor architecture without reconfigurable accelerators.
However, it proposes the close collaboration of several (in the first design two) CPU cores
on a single task and software thread, just like in our architecture approach CPU and ac-
celerator can jointly work on the same task and thread. Consequently, the designers of
VISC focused on the tight coupling of a pair of cores and implemented a dual interface
that enables the direct exchange of register values in a single cycle and also features a
partitioned shared L1 cache. With a working prototype aiming at 2GHz clock frequency,
this illustrates that the tight coupling proposed by our architecture is possible on the CPU
side.

6.3 Method and Framework

In this section, we lay out the details of our performance estimation method and present
our partitioning method, which is inspired by the work of Spacey et al. [241] (see also
Section 6.5).

6.3.1 Estimation Model

In this section, we present the basic terms and definitions of our model as summarized
in Table 6.1. The architecture-independent characterization of each benchmark depends
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Table 6.1: Basic symbols of the model.

Instruction Ik
Basic Block Bk

CPU, Accelerator CPU, ACC
Memory Hierarchy L1, L2, L3, MEM

jth execution of instruction Ik Ijk

Table 6.2: Data obtained by profiling and static code analysis.

Execution count of instruction Ik, basic block Bk n(Ik), n(Bk)
Count of control flow from Bl to Bm n(Bl, Bm)

Register value used or produced by Bl Ru(Bl), Rw(Bl)
Virtual cache level that executes a load/store V (Ijk)

Dependency pointer for a load/store P (Ijk)

on these symbols and gathers the values summarized in Table 6.2 by a combination of
static code analysis and profiling with code instrumentation. A concrete incarnation of
our architecture template is characterized by a set of architecture parameters, which are
summarized in Table 6.3. The default parameters of our design space exploration are
presented in Section 6.4 in Table 6.5. Based on the benchmark characterization and the
architecture parameters, our framework computes a specific execution profile that adds up
the values summarized in Table 6.4.
Like the tool flow presented in Chapter 5, our estimation framework is based on the

LLVM compiler infrastructure [163]. The investigated software is compiled into LLVM
assembly language, which is the intermediate code representation on which LLVM’s anal-
ysis and optimization passes work. We model a program as a set of instructions I =
{I1, I2, . . . , Inins}, and classify the instructions into memory dependent operations (e. g.,
load/store) and independent operations: Ik ∈ {ld/st, op}. The program structure groups
the instructions into a set of basic blocks B = {B1, B2, . . . , Bnblks}. The basic blocks form
a control flow graph where an edge Bl → Bm denotes that block Bm might be executed
directly after block Bl. The instructions of Bl use a set of register values Ru(Bl) and
produce a set of register values Rw(Bl).

Table 6.3: Architecture parameters of the model.

Execution efficiency ε(CPU) and ε(ACC)
Communication latencies λc, λr,push, λr,pull

Cache latencies λm(L1), λm(L2), λm(L3), λm(MEM)
Accelerator size A
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Table 6.4: Solution-specific data depending on architecture.

Mapping of basic block or instruction p(Bl), p(Ik)
Architectural cache level that executes a load/store v(Ijk)

The architecture comprises two processing units, the CPU and the accelerator (ACC), and
a memory hierarchy consisting of L1, L2 and optional L3 caches, and main memory (MEM).
The caches can be private for each processing unit, like the L1 cache in Figure 6.1 or shared
between both units like the L2 cache in the same figure. We model the execution efficien-
cies ε(CPU) and ε(ACC) of the processing units through the average number of clock cycles
spent per instruction (CPI), thus as inverse to the IPC metric mentioned in Chapter 2.
The efficiency reflects on the one hand raw execution times of instructions and on the
other hand parallel execution units and pipelining effects, which increase the throughput.
We see this as a means to cover the various architectural opportunities discussed in Sec-
tion 6.2, without making strict assumptions about the accelerators internal details. Thus,
in contrast to the efficiency term introduced in Section 2.1.1, the execution efficiency ε in
this model has no common denominator and is rather a consolidated performance metric.
The model efficiencies can vary for different instruction classes, but lacking more accurate
data for both processing units, in this work we use identical efficiency for all instructions
except for two instruction classes. First, we assume that LLVM typecast instructions are
implemented on the accelerator through wiring and thus are executed in zero execution
time. Second, load/store instructions are also considered in a different way, because their
execution time depends on the level in the memory hierarchy that they access. We describe
the corresponding access latencies with λm(L1), λm(L2), λm(L3) and λm(MEM), expressed
in clock cycles. When a processing unit requires data resident in the private cache of the
other processing unit we include a latency penalty for writing back the data to the shared
cache.
For communication between the CPU and the accelerator, we define λc as latency for

transferring control between the processing units. This control latency also covers the
efficiency losses that may occur, when the pipelining of instructions is reduced by control
changes. Furthermore, we denote λr as latency for transferring a register value. Refining
the register value transfer model, we foresee a push method with a low latency of λr,push
for actively sending a register value from one location to the other and a somewhat slower
pull method with latency λr,pull for requesting a register value from the other location
and receiving it. Since the analysis of register dependencies is based on the code in LLVM
intermediate representation, no register allocation has taken place, so all values are treated
as available in an infinite register file after their first occurrence.
The partitioning process maps each basic block to either the CPU or the accelerator.

We denote the mapping of block Bl as p(Bl) with the two possible values p(Bl) = CPU or
p(Bl) = ACC. Obviously, the partitioning of basic blocks also implies a partitioning p(Ik) of
instructions Ik into p(Ik) = CPU or p(Ik) = ACC, since ∀k, l : Ik ∈ Bl ⇒ p(Ik) = p(Bl). At
this time we do not assume a concurrent execution on both CPU and accelerator, so the
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execution order of the program remains unchanged regardless of the mapping. One way to
establish concurrent execution could be through thread level parallelism by adding multi-
threading support to CPU and accelerator which does not impact the analysis presented
here.
Our model limits the total number of instructions mapped to the accelerator and ac-

counts for a unit area for each such instruction, thus modeling a structurally programmable
accelerator without temporal reuse of functional units through time-multiplexing. The size
A of the accelerator denoted in area units is part of the architecture parameters. An al-
ternative model is to limit the size of each basic block mapped to the accelerator and to
utilize dynamic reconfiguration between consecutive execution of different basic blocks on
the accelerator. While such an approach would allow us to map an arbitrary number of
instructions to the accelerator, it would also require a more involved modeling of the con-
figuration process, including, for example, the number of configuration bits per instruction,
the size and latency of the configuration memory and the required reconfiguration time.
It would thus either significantly increase the design space to explore, or limit the model
to a specific setup of an accelerator architecture.
Using the LLVM compiler infrastructure to instrument the benchmark codes and profile

program executions, we determine the execution count for an instruction Ik as n(Ik), for
a basic block Bl as n(Bl), and the number of control flows over an edge Bl → Bm of the
control flow graph as n(Bl, Bm). Furthermore, we denote the jth execution of instruction
Ik as Ijk and use this separation to determine the level accessed in the memory hierarchy
for each load/store instruction as v(Ijk), with the possible values L1, L2, L3 and MEM.
These values v(Ijk) are determined in two steps. First, during the benchmark char-

acterization phase we add a memory profiling pass to LLVM and perform a functional
simulation of a deep virtual cache hierarchy consisting of many levels of inclusive, direct
mapped caches with sizes increasing by a factor of two for every level. This simulation
maps each memory access to a virtual cache level V (Ijk) and additionally annotates it with
a dependency pointer P (Ijk), referring to the previous memory instruction that accessed
the same cache line. In the performance estimation phase, the virtual cache hierarchies
are collapsed to the physically existing caches, which hence need to have power-of-two size.
Given a concrete mapping of each load/store instruction to CPU or accelerator, the de-
pendency pointer allows to determine in which private or shared cache the first valid cache
line for this memory access is located. Thus, we can compute the memory access time for
each partitioning step without a repeated cache simulation, which would otherwise slow
down the partitioning process significantly. At this point we also profit from the missing
register allocation in that no register spills occur, which would change the memory access
patterns for different mappings.
Finally, for each architecture-specific execution profile that includes a complete mapping

of each basic block to a processing unit, we estimate the total program runtime as the sum
of four components: the execution time te of instructions with only register operands, the
memory access time tm for load and store instructions, the time tc for transferring control
between successive basic blocks mapped to different processing units, and the time tr for
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exchanging register values between CPU and accelerator:

t = te + tm + tc + tr

Execution time:
te =

∑
k:Ik=op

n(Ik) · ε(p(Ik))

Memory access time:

tm =
∑

k:Ik=ld/st

n(Ik)∑
j=1

λm(v(I
j
k))

Control transfer time:

tc =
∑
(l,m)

n(Bl, Bm) · λc

∀(l,m) : (Bl → Bm) ∧ p(Bl) 6= p(Bm)

Register value transfer time:

tr =
∑
R

min (n(Bl) · λr,push, n(Bm) · λr,pull)

∀R : R ∈ Rw(Bl) ∧R ∈ Ru(Bm) ∧ p(Bl) 6= p(Bm)

6.3.2 Partitioning Approach

We utilize a greedy partitioning algorithm that starts with all blocks at the CPU and
iteratively moves partitioning objects po to the accelerator, as long as the cumulative area
of all moved blocks fits the size of the accelerator. At each step, the partitioning object with
the highest attractiveness, which is the ratio of estimated speedup to area requirements,
is chosen. An overview of the partitioner is given in Algorithm 6.1. As presented in the
previous section, we assume that each instruction in the mapped basic blocks requires one
area unit on the accelerator.

Algorithm 6.1 multi-level partitioning
Input: BasicBlocks initialized with mapping to CPU
Input: A = size of total accelerator resources
Output: partitioned BasicBlocks
1: Next ← getBestPartitionObject(A)
2: while Next 6= null do
3: moveToAccelerator(Next)
4: A ← A - computeArea(Next)
5: Next ← getBestPartitionObject(A)
6: end while
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Function 6.2 getBestPartitionObject
Input: A = size of currently available accelerator resources
1: Objects ← getMultiLevelPartitioningObjects()
2: BestObject ← null
3: BestAttractiveness ← 0
4: for all Object ∈ Objects do
5: Attractiveness ← computeSpeedup(Object) / computeArea(Object)
6: if Attractiveness > BestAttractiveness ∧ A > computeArea(Object) then
7: BestAttractiveness ← Attractiveness
8: BestObject ← Object
9: end if

10: end for
11: return BestObject

As partitioning objects, we use not only all single basic blocks but additionally all loops
(inner as well as nested loops) and all functions. Furthermore, whenever the partitioner
moves part of a loop or function to the accelerator, the remaining basic blocks of the loop
or function form another new partitioning object. In contrast to the partitioning method
from Chapter 5 that focused solely on loops because of the accelerator architecture, we
now include smaller and larger partitioning objects to cover different accelerator execution
models. Hence, we denote this heuristic asmulti-level partitioning. Beyond individual basic
blocks, loops and functions, other beneficial partitioning objects may exist, like subsets of
loops or functions, or like a pair of basic blocks with dependent memory accesses. However,
we restricted the search space to the described categories, because the total number of all
possible partitioning objects grows exponentially with the number of basic blocks. We have
exemplarily validated the quality of this partitioning method with exact solutions obtained
through integer linear programming. The results show that most solutions generated by
the heuristic partitioner are identical or very close to the optimal solutions. Due to lengthy
execution times of the exact method, the design space exploration in the following section
builds upon results from the heuristic method.

6.4 Design Space Exploration

Based on this estimation method and framework, we now explore the potential and design
space of our architecture model for the integration of CPUs with reconfigurable acceler-
ators. All presented experiments are obtained with the partitioning approach introduced
in the previous section and use the default parameters listed in Table 6.5, unless stated
otherwise. The default memory hierarchy is a configuration with shared L2 and private L1
caches as depicted in Figure 6.1 and its size and latency properties mimic those of early
dual core GPPs. The accelerator size is expressed by the number of LLVM instructions Ik
that can be mapped to the reconfigurable hardware processing unit. The chosen accelerator
efficiency models a rather modest speedup potential of up to 2x, because we don’t limit the
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Table 6.5: Default model parameters for design space exploration.

Description Symbol Value

Execution efficiencies ε(CPU) 1.0 cycles
ε(ACC) 0.5 cycles

Communication latencies
λc 2 cycles
λr,push 1 cycles
λr,pull 3 cycles

Cache latencies
λ(L1) 3 cycles
λ(L2) 15 cycles
λ(MEM) 200 cycles

Cache sizes L1 32KB
L2 4MB

Accelerator size A 128

accelerator model to extreme parallelism or customization that would justify much higher
speedup potentials.
We investigate a set of 13 benchmarks that represent compute intense kernels from var-

ious application domains. Most of the benchmarks are taken from the MiBench suite [106]
which contains six categories. The automotive, consumer, network and office domains are
covered by the Susan, JPEG, Djikstra and Stringsearch applications respectively. From the
telecommunications domain, we have included ADPCM, CRC32 and fast Fourier transform
(FFT). From the security area, we use Blowfish and SHA from MiBench and add MD5
and AES. Furthermore we use the Whetstone benchmark and a SOR implementation rep-
resenting the field of numerical analysis.

6.4.1 Speedups per benchmark

Figure 6.5 shows the speedup potential that our estimation method predicts for our archi-
tecture model for the presented benchmarks with an accelerator size of 128 as specified in
Table 6.5 and with a large accelerator size of 2048. The speedups range from 1x to 1.78x
at a size of 128 and from 1.28x to 1.91x for a size of 2048. As mentioned, the acceler-
ator efficiency of the baseline model limits speedups to at most 2x. Code remaining on
the CPU, communication overheads and memory limitations contribute to the observed
speedups below this limit.
We note that for a number of benchmarks the default accelerator size of 128 already suf-

fices, whereas the cryptographic benchmarks require a larger size to show notable speedups
at all. A more detailed analysis of accelerator sizes follows in Subsection 6.4.3. Aside from
the size requirements of the cryptographic benchmarks, their speedups are notably slower
than those of fully custom cryptographic implementations on FPGAs. Both effects can
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Figure 6.5: Speedups for 13 benchmarks with two different accelerator sizes. Further architecture
parameters as specified in Table 6.5.

Table 6.6: Alternative parameters used for three level cache hierarchy.

Cache latencies

λ(L1) 4 cycles
λ(L2) 11 cycles
λ(L3) 39 cycles
λ(MEM) 150 cycles

Cache sizes
L1 32KB
L2 256KB
L3 8MB

be attributed to the fact that our estimation method does not capture the bit level par-
allelism that is typically exploited to accelerate cryptographic functions on reconfigurable
hardware.

6.4.2 Memory integration

We investigate the impact of different models for integrating the accelerator into the mem-
ory hierarchy. As starting points we use the two-level cache configuration specified in
Table 6.5 and a three-level cache configuration that mimics more recent general purpose
CPUs with smaller and faster L2 cache and an additional L3 cache as specified in Table 6.6.
In both hierarchies we integrate the accelerator with five different design points: shared
L1 data cache (SL1 ), shared L2 cache where both CPU and accelerator have private L1
caches (SL2+) (shown in Figure 6.1), shared L2 cache where only the CPU has a private
L1 cache and the accelerator has no local memory at all (SL2-), shared main memory or
shared L3 cache with private caches for both components (SMM+ or SL3+), and shared
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Table 6.7: Investigated cache configurations. Cache sizes follow Tables 6.5 and 6.6 respectively.

two level cache hierarchy three level cache hierarchy

shared CPU private ACC private shared CPU private ACC private
SL1 L1 – MM — — L1 – MM — —
SL2+ L2, MM L1 L1 L2 – MM L1 L1
SL2- L2, MM L1 — L2 – MM L1 —
SMM+ MM L1, L2 L1, L2
SMM- MM L1, L2 —
SL3+ L3 L1, L2 L1, L2
SL3- L3 L1, L2 —

main memory or shared L3 cache with private caches only for the CPU (SMM- or SL3-).
We summarize these configurations in Table 6.7. They cover different aspects of available
and announced architectures mentioned in Subsection 6.2.1. The SL1 design points are
very similar to the closely coupled VISC processor cores. Zynq and Altera SoC devices
resemble a SL2- configuration and POWER8 with CAPI accelerator represents something
between SL3+ and SL3-, with a private cache on the FPGA side, but not symmetric to
the private CPU caches.
For each of these configurations, we evaluate two parameter variants, one with the un-

altered parameters from Tables 6.5 and 6.6, and the other one with an increased latency
of the first shared cache by one cycle. This penalty is to reflect the increased complexity
of a shared cache over a private one. Overheads for coherency that occur at private caches
are not separately modeled. Figures 6.6 and 6.7 show the results averaged over all 13
benchmarks for the two-level and three-level cache hierarchies respectively. It turns out
that even though the results of the different cache hierarchies show some differences, the
big picture remains the same for both.
We note that without penalty, a shared L1 cache (SL1 ) delivers the best performance.

However, this architectural design point turns out to be highly sensitive to latency penal-
ties. Overall, the shared L2 cache with private L1 caches for both CPU and accelerator
(SL2+) is a well-performing and also robust design point since it retains most of its speedup
potential when applying the latency penalty to the shared L2 cache. Design points with
private caches on both sides and shared main memory or shared L3 caches (SMM+ and
SL3+) show lower but still notable speedups and a similar robustness. When the pro-
posed architecture gets integrated into a multicore CPU, SL2+ might also be the best
design for architectural integration, sharing the memory between an accelerator and its
controlling CPU on L2 and between multiple CPU-accelerator pairs on L3, like illustrated
in Figure 6.2.
The memory hierarchies where the accelerator does not have a private cache, exhibit a

much lower performance, with similar values for the two- and three-level hierarchy and for
SL2-, SMM- and SL3-. While this experiment underlines the necessity for the accelerator
to have access to low latency memory, they do not prove that this memory actually needs
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Figure 6.6: Speedups for different memory integrations into a two level cache hierarchy, with and
without a 1 cycle latency penalty for shared caches, averaged over 13 benchmarks.
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Figure 6.7: Speedups for different memory integrations into a three level cache hierarchy, with and
without a 1 cycle latency penalty for shared caches, averaged over 13 benchmarks.

to be a cache, but explicitly managed scratchpad memory or BRAM resources might be
a viable alternative. However, targeting explicitly managed local memory requires more
development effort from application developers, so private caches on the accelerator side
seem much more attractive for general-purpose adoption of reconfigurable accelerators.
Our practical experiences with the Convey HC-1 platform, which lacks such a private
accelerator cache underline this, as the kernels turned out to be highly sensitive to data
reuse in registers. Thus, from this perspective, the POWER8 with CAPI architecture is a
promising step in the right direction from the Zynq and Altera SoC architectures.

6.4.3 Accelerator Size

After our first overview of speedup numbers in Figure 6.5 already gave a glimpse at the
impact of accelerator sizes, we now vary this parameter systematically. Figure 6.8 shows
that increasing the size of the accelerator causes the average speedups to grow with steadily
diminishing returns. Note that the x-axis is already exponentially scaled and the y-axis
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Figure 6.8: Speedups for different accelerator sizes, averaged over all 13 benchmarks and with
selected single benchmarks.

is linearly scaled and still the graph of the average speedup becomes flatter and almost
saturates at a size of 1024.
A more detailed investigation of selected individual benchmarks shows that the speedup

does not grow smoothly with increasing accelerator size. Instead, most benchmarks show a
phase transition behavior, that is, the speedup increases significantly when the accelerator
size exceeds a certain threshold that allows mapping a beneficial selection of basic blocks
to the accelerator. When further increasing the accelerator size, the speedups flatten
out. The location of this phase transition threshold depends strongly on the application.
We have selected some benchmarks to clearly illustrate this effect in Figure 6.8. While
the Stringsearch benchmark already shows a phase transition between a size of 4 and 8,
Whetstone profits in a range of 4 to 64 and FFT from 32 to 128. The cryptographic
benchmarks SHA, Blowfish and MD5 show a very pronounced phase transition behavior
when reaching an accelerator size of 128, 256, and 512 respectively.
This behavior is a problem when determining the size of an accelerator for general-

purpose computing. On the one hand, it reflects a limitation of our estimation method
that does not assess the potential for temporal reuse of accelerator resources. However,
given the wide range of transition points observed, we don’t expect this effect to entirely
disappear with temporal reuse. Thus, on the other hand, it underlines the general impor-
tance of scalable methods to program reconfigurable accelerators, either with configuration
parameters as demonstrated in Chapter 4, or by automated methods that work for different
accelerator sizes.
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Figure 6.9: Speedups for different accelerator execution efficiencies, averaged over all 13 bench-
marks and with selected single benchmarks.

6.4.4 Execution Efficiency

Next we investigate the effect of the execution efficiency of the accelerator. We vary this
value between 0.9 and 0.1 cycles per instruction (CPI), while the efficiency of the CPU
remains constant. For the majority of benchmarks, in Figure 6.9 exemplarily represented
by Whetstone and JPEG, already for minor differences between the execution efficiencies
of accelerator and CPU, a partitioning is found that generates speedups. For Whetstone
and several other benchmarks, this partitioning remains to a large degree unchanged (not
visible in the Figure), while the model parameters are changed towards a more efficient
accelerator and yield almost linear savings in total execution time. Since the computation
of speedups puts these savings in relation to the final execution time, the graphs grow
more than linearly the larger speedups become. For other benchmarks, most pronouncedly
JPEG, the resulting partitioning differs significantly for different accelerator efficiencies,
nevertheless the resulting speedups after considering computational gains and communi-
cation overheads, grow quite regularly. The FFT benchmark shows an exception: here a
certain difference in execution efficiencies is required, before the potential savings in com-
putation time overcome the communication penalties and enable speedups at all. Therefore
the speedup graph for FFT grows irregularly.
We conclude that for the majority of investigated benchmarks, already moderate differ-

ences in computation times overcome the communication latencies for the selected archi-
tecture parameters and continue to investigate this observation from another point of view
in the next subsection.

6.4.5 Interface Latency

Figure 6.10 depicts the relative performance over the latency of the interface between
CPU and accelerator. We apply one scaling factor to all three parameters of the interface
latency, λc, λr,pull and λr,push, and investigate both lower and higher latencies than the
default settings of Table 6.5. Even though it might be architecturally infeasible to reach
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Figure 6.10: Speedups for different interface latencies, averaged over all 13 benchmarks and with
selected single benchmarks.

the lowest studied latencies, the experiment provides insights into the nature of the design
space.
A number of benchmarks, represented by Whetstone, has very stable partitioning re-

sults not only for varying execution efficiencies as discussed in the previous section, but
also for varying interface latencies. This is enabled by program parts that can be moved
to the accelerator with minimal communication requirements. Other benchmarks, again
represented by JPEG, change their partitioning results with increasing latency factors, but
still show relatively stable speedups. Again, FFT is most sensitive to increased latency
factors and looses a significant portion of its speedups when the factor grows from 8 to 16.
Yet overall the results are remarkably stable for long communication latencies. We con-
clude that our current selection of benchmarks do not significantly profit from fine-grained
acceleration. This coincides with the discussed architecture trends with the exception of
the VISC processors, which however promote concurrent execution on collaborating cores,
whereas our model dedicatedly passes control between CPU and coprocessor.
In figure 6.10 we also observe two slightly anomalous results, which can be attributed to

our greedy partitioning approach. For the extremely low latencies obtained with a factor
of 0.25, the results for FFT are much worse than for the following latency factors. Also
the JPEG result for factor 64 is a little bit worse than that for 128. In both cases, the
partitioning results require a lot more communication than the ones for larger latencies.
Clearly, the latter results would also have been superior for lower latencies, but are not
found due to the greedy nature of our partitioning algorithm.

6.5 Related Work

Among known high level estimation methods, the approach of Spacey et al. [241] is most
closely related to our work. There are, however, three important differences. First, in
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contrast to the estimation method of Spacey et al. which models the memory subsystem
with a single bandwidth parameter, our framework includes cache models and thus more
realistically mimics relevant architectures. Second, their partitioning approach is limited
to the basic block level, whereas for our experiments the multi level partitioning technique
was required to obtain good partitioning results. Finally, whereas the system of Spacey et
al. is x86 assembly based and can therefore be applied to x86 binary code, our framework
leverages the LLVM infrastructure [163] which allows us to extend the framework towards
automated code generation for various targets. A first step in this direction is presented
in [1], whereas the work in Chapter 5 represents a more advanced evolution of this concept,
yet with practical restrictions to a specific acceleration target.
The field of binary level partitioning has been investigated by Stitt et al. [244], who

initially rely on analysis of block sizes and iteration counts of small kernel loops. In [245],
they incorporate alias information to identify and group together regions of code that access
the same memory locations, but without using a model for data flow and communication
latencies.
The work of Holland et al. [126] provides a method for analyzing algorithms on a more

abstract level in order to estimate how they can perform on CPU-accelerator architectures.
In contrast to our work, their method requires user interaction for example to identify data
elements and their communication patterns. It incorporates measured throughput values of
existing architectures, which can increase accuracy compared to our latency based model,
but limits the applicability for design space exploration of new architectures.
Henkel et al. [117] present a partitioning approach with partitioning objects with a

flexible granularity ranging from one to many basic blocks. This approach is potentially
more powerful than ours, but also requires more in-depth analysis both for the creation
and for the selection of appropriate partitioning objects.

6.6 Chapter Conclusion

This chapter presents our high-level performance estimation method and framework for
static and dynamic code analysis and multi-level hardware/software partitioning. The
capability of our framework to provide fully automated estimation and partitioning results
can be used for a systematic design space exploration that was previously hard to undertake
for new architectures. We demonstrate this by applying our framework to a proposed
class of CPU-accelerator architectures with a dual interface that aims to overcome the
limitations of previously proposed architectures that were tailored to specific granularities
of acceleration targets.
Our results indicate that the memory integration of CPU and accelerator is a very im-

portant design aspect. Within our model, either private caches on the accelerator side or a
technically challenging shared L1 cache are required to achieve reasonable speedups. Vari-
ous case studies have demonstrated that the not covered alternative of explicitly managing
local memory can yield competitive performance, but it is much less productive for appli-
cation designers. Compared to the high importance of memory integration, our results are
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much less sensitive to the latency of the direct communication interface. In contrast to our
earlier assumptions, the distinctive potential of fine-granular acceleration did not show up
within our performance model for the set of analyzed benchmarks.
The recent industry trends for the integration of FPGAs with general-purpose processor

systems show a remarkable correspondence. While earlier systems like the Convey HC-1
focused on the functional integration of memory spaces, the Xilinx Zynq and Altera SoC
brought a much closer coupling with shared access to an L2 cache. More recently, POWER8
and CAPI take up the idea of a private cache on the FPGA side. On the other hand, none
of these architectures took up the idea of a low-latency direct interface, out of technical
infeasibility for Convey and POWER8, but for Xilinx Zynq and Altera SoC maybe also
because of the limited potential like indicated by our experiments. With their acquisition
of Altera in 2015, Intel placed a 17 billion dollar bet on FPGA acceleration. Although first
server processor products with CPU and FPGA chips in the same package are announced,
it remains to be seen which path towards further integration Intel will pursue.
Overall, our performance model makes many abstractions in order to provide the flexi-

bility and speed that we aimed for. We have not been able to quantify the accuracy of the
model or to demonstrate that the abstraction-induced inaccuracies somehow even out on
average. However, qualitatively, concrete architecture trends seem to vindicate our results,
which were unseen in this generality before.
The LLVM-based analysis and partitioning infrastructure used for the experiments in this

chapter has been evolved into further offloading and analysis projects [1, 7, 11, 12] presented
within this thesis (mostly Chapter 5) to different extends. As curious observation, while
we found the mix of instrumentation and profiling necessary to extend static code analysis
for application characterization in [11, 12], we demonstrated that by deferring concrete
offloading decisions to application runtime, the same dynamics can often be covered more
precisely and with minimal overhead without profiling [7, 11, 12].
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CHAPTER 7

Conclusion

In this chapter, we briefly summarize the results of this thesis, before discussing next steps,
future trends and research opportunities, first concretely around overlays and then with a
broader scope.

7.1 Summary

In this thesis, we have investigated if and how FPGAs can play a bigger role in general-
purpose computing. We have started with an overview on fundamental approaches to and
trends in computing. From an architectural perspective, we see FPGAs with their ability
to customize computations and parallelism for different workloads as promising candidates
for several general-purpose computing markets.
We identified design productivity, including portability and scalability, as central chal-

lenge for more wide-spread adoption of FPGAs in these markets. We propose to supple-
ment current industry efforts on OpenCL and application libraries with overlay architec-
tures on FPGAs as targets for fast and automated compilation. However, for instruction-
programmable overlays, neither the involved overheads nor the practicability as compilation
target were sufficiently investigated.
In order to quantify such overheads, we extracted ten kernels from a stereo-matching ap-

plication with high accuracy and general-purpose characteristics and ported them both to a
vector coprocessor as overlay architecture and to fully customized FPGA implementations.
We demonstrate that both targets enable speedups for the overall stereo-matching tasks,
and compensate for hardware platform specific effects to quantify the overlay overhead as
around 3x for a diverse set of kernels. On a detailed look, this number is much smaller
for regular streaming kernels, and higher for kernels with different forms of customization
potential.
The productivity of available compilation tools targeting this overlay did hardly justify

such overheads. However, with our work we demonstrate that the knowledge of overlay
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Chapter 7.2. Outlook

architecture can indeed enable fully automatic offloading processes with versatile and effi-
cient code generation from software source code or binaries. In two excursions, we discuss
that deferring offloading decisions to program runtime can often enable fast and precise
decisions from the application perspective, whereas decisions on the system level can lead
to overall better utilization of heterogeneous resources.
Furthermore, we have investigated the system integration of reconfigurable accelerators

with GPPs. Based on an estimation method that overcomes the interdependency between
architectures and application design, we explored the design space for such heterogeneous
systems. Our proposed tighter integration into a common memory hierarchy is now re-
flected by actual products that recently emerged.

7.2 Outlook

Our outlook is subdivided into next steps and future directions in the area of overlay
architectures on the one hand, and a broader view on future computing systems and their
execution models. In our ongoing research in the area of OTF computing, we continue to
focus on the conceptional questions around overlay architectures, without loosing touch to
the dynamic evolution of industry developed hardware architectures and tools.

7.2.1 Towards a Library of Overlay Architectures and Tools

Our concrete work has demonstrated the feasibility of one type of instruction-programmable
overlay architectures as a means of highly productive FPGA acceleration and comple-
ments similar related work for structurally-programmable overlays, in particular in the
form of intermediate fabrics [63]. More overlays, like instruction-programmable manycore
or GPU-like architectures, or like structurally-programmable architectures with decoupled
functional units and local control, need to be understood on a comparable level with re-
gard to overheads and compilation support. Also, it is not sufficiently clear to which
degree different overlays complement each other for different workloads, or compete for a
few particularly well-suited application patterns.
For a larger practical impact, such overlay research needs to be consolidated in two

regards. Firstly, we need a library of different overlays synthesized for many FPGA types
and ready-to-use with the according software interfaces in the relevant current systems
with FPGA accelerators. Secondly, compilation tools targeting these overlays need to be
systematically brought to production quality. Not all overlays and tools need to support
the same set of source languages and program patterns, but for an application developer
it needs to be either very clear which one to use, or he needs a common design entry point
behind which the further selection of overlays and tools can be hidden. It remains an
open research question, how many of the manifold application patterns that are generally
suitable for FPGA acceleration can be efficiently covered with overlay architectures and
corresponding tools.
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7.2.2. And Beyond

When a first small library of overlays and compilation tools is established, further re-
search needs to focus on scalability of overlay architectures and execution models, and
on increasing efficiency through customization. While examples for successful customiza-
tion have been demonstrated both for instruction-programmable and for structurally-
programmable overlays, it is unclear how customization can be applied systematically, both
with regard to the extraction of workload characteristics and with regard to common refine-
ment methods for different overlay architectures. The generation of workload-customized
overlay variants poses further questions concerning the prediction of customization effects
and practical strategies for the local or centralized synthesis and deployment of designs.
In the longer run, an ecosystem around overlay libraries on FPGAs may not only comple-

ment OpenCL-based synthesis and application libraries, but provide further synergies. For
example, when a specific kernel or application is running frequently on some overlay archi-
tecture, the next step after specialization of this architecture can be a fully custom design.
Thus, the overlay would help to find the most promising workloads for application libraries
on FPGAs and characterize the required degrees of flexibility that a custom design may
need to exhibit. With regard to the other pillar, instruction-programmable overlays may
serve as intermediate compilation target for OpenCL code, whenever the lengthy synthesis
process is not acceptable, or when quickly changing kernels prefer a reusable configuration
of the FPGA, like in our case-study in Chapter 6.

7.2.2 And Beyond

Beyond the productivity-driven research on overlay architectures on FPGAs, further re-
search on architectures and execution models can contribute to reach new dimensions in
absolute performance in HPC, in energy constrained performance mobile devices, and in
highest efficiency for scaling workloads in cloud and OTF data centers. Particularly for the
consolidated execution of diverse workloads in data centers, the interaction between hetero-
geneous scheduling decisions from a system perspective and application internal knowledge
need to be further investigated.
Our work and most related work on offloading to accelerators leaves the high-level pro-

gram structure intact. In order to harvest additional parallelism on thread and task lev-
els, programming models for asynchronous task execution are actively researched in sev-
eral computing domains. Heterogeneous architectures with reconfigurable accelerators can
profit from such approaches on different granularity levels.
Concerning heterogeneity, we focused in this thesis on the system integration of FPGAs

with CPUs. The most prominent driver for integrated heterogeneous systems have been
GPUs. From a performance and efficiency perspective, the trends go towards ever more
heterogeneity between general-purpose and differently specialized components. We be-
lieve that the wide success of systems with extreme heterogeneity depends on productive
programming models and tools.
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