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The Determination of Chemical Concentrations in Nano-scaled Phases 
by Use of Quantitative Anomalous Small-Angle X-ray Scattering  

Synopsis From Anomalous Small-Angle X-ray Scattering experiments precise quantitative 

information about the different chemical constituents in multi-component systems can be 

correlated with structural analysis. 

Abstract In the last years Anomalous Small-Angle X-ray Scattering became a precise 

quantitative method resolving scattering contributions two or three orders of magnitude 

smaller compared to the overall small-angle scattering, which are related to the so-called 

pure-resonant scattering contribution. Additionally to the structural information precise 

quantitative information about the different chemical constituents of multi-component 

systems like the fraction of the chemical components localized in the nanostructure of the 

materials are obtained from these scattering contributions. The application of the Gauss 

elimination algorithm to the vector equation established by ASAXS measurements at three X-

ray energies is demonstrated for three examples from chemistry and solid state physics. All 

examples deal with the quantitative analysis of the Resonant Invariant (RI-analysis). From the 

integrals of the pure-resonant scattering contribution the chemical concentrations in nano-

scaled phases are determined. In one example the correlated analysis of the Resonant 

Invariant and the Non-resonant Invariant (NI-analysis) is employed. The structural and 

quantitative informations are correlated to the macroscopic properties respectively to the 

properties of the phase diagrams of the analyzed materials. 

 
 

1. Introduction 

Small-Angle X-ray Scattering (SAXS) experiments average over a large sample volume and 

give structural and quantitative information of high statistical significance on a mesoscopic 

length scale between 1 and hundreds of nanometers, which can be correlated to the 

macroscopic physical and chemical parameters of the analyzed materials. Detailed 

descriptions of the experimental and theoretical aspects of Small-Angle Scattering can be 

found under [1-3]. By use of synchrotron radiation at suitable storage rings the so-called 

Anomalous Small-Angle X-ray Scattering (ASAXS) can be employed, which is an excellent 

tool for the chemical selective structural analysis of multi-component systems. In the last 
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three decades numerous ASAXS studies on very different systems such as alloys, ceramics, 

magnetic systems, catalysts, semiconductors, glasses, polymers, membranes and other soft 

matter systems have been performed. A review can be found under [4]. These materials show 

strong differences, when analyzed by ASAXS. For instance metal nanoparticles prepared on 

porous support structures show a strong small-angle X-ray scattering predominantly related to 

the small-angle X-ray scattering of the pores, while the scattering of the metal nanoparticles is 

a minor contribution due to their small volume fraction [5,6]. Glasses and alloys especially 

when dealing with metallic glasses show a different behaviour i.e. only a weak SAXS signal 

is originating from small concentration fluctuations of the different constituents [7,S1]. The 

situation is similar for diluted chemical solutions like polyelectrolytes surrounded by counter 

ions, where the overall SAXS signal is weak due to the dilution and small changes occur, 

which are related to specifically interacting counter ions [8].  

This habilitation thesis summarizes the scientific results obtained from the method of 

quantitative Anomalous Small-Angle X-ray Scattering. It outlines more generally the context 

between required accuracies of the measurement techniques and a proper mathematical 

description and is based on the use of the special matrix inversion of Eqs.6-7. The thesis was 

developed in a series of publications documented in a separate list (page 29). 

In more detail this thesis addresses the quantitative analysis of nano-scaled phases and their 

correlation with structural parameters in three different systems: (1) the conformation of 

macromolecules under the influence of counter ions in a highly diluted aqueous solution (2) 

the inhomogeneous distribution of germanium and hydrogen in semiconductor alloys and (3) 

the spinodal decomposition in metallic Ni-Nb-Y glasses. The different systems have in 

common a high degree of dilution and/or homogeneity and thus are weak scattering systems. 

The related scientific problems cannot be addressed by a classical Small-Angle X-ray 

Scattering (SAXS) experiment, because the specific scattering contributions of the different 

chemical components need to be separated. As outlined below an outstanding experimental 

accuracy is needed in order to separate the so-called pure-resonant (element specific) 

scattering contribution. Additionally a suitable mathematical algorithm is employed (the 

Gauss elimination algorithm), which turned out to provide the best results when inverting the 

vector equation introduced by ASAXS measurements. The latter is demonstrated by 

calculations of the so-called Turing numbers of the different systems.  
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In the 2nd chapter a short summary of the related mathematics is given i.e. the inversion of the 

vector equations stated by an ASAXS experiment performed at in minimum three X-ray 

energies with the aim to obtain the so-called basic scattering functions. Moreover a concept is 

explained, which quantifies the errors of the basic scattering functions obtained by matrix 

inversion based on the Turing condition (see below). Special attention will be given to the 

Gauss elimination procedure. The 3rd chapter summarizes the experimental aspects including 

the required measurement accuracies and experimental resolution demands of synchrotron 

radiation based ASAXS measurements followed by some explicit descriptions of the 

accuracies, which have been achieved for the three scientific examples outlined in the 

chapters 4 to 6. Finally in the 7th chapter a detailed discussion of the results will be given in 

the light of the Turing condition. Chapter 8 will summarize and give a short outlook of 

ASAXS experiments at 3rd generation sources.  

 

 

2. Anomalous Small-Angle X-ray Scattering 

The remarkable possibilities of the ASAXS technique are based on the energy dependence of 

the atomic scattering factors giving selective access to the specific SAXS contributions of 

nano-scaled phases, which are built up by different chemical constituents in composites like 

for instance alloys or chemical solutions. In general the atomic scattering factors are energy 

dependent complex quantities:  

                        )()()( ,0 EfiEffEf ZZZZ                                                          (1) 

 

where Z represents the atomic number. When performing ASAXS measurements on multi-

component systems in the vicinity of the absorption edge of one of the sample constituents the 

scattering amplitude is:  

rdrqiErrdrqirEqA

p pV V

R
33

0 )exp(),()exp()(),(
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where q is the magnitude of the scattering vector ]sin)/4([  , 2  is the scattering angle,  λ 

the X-ray wavelength and Vp is the irradiated sample volume. R0 ,   are the differences of 

electron densities of the non-resonant and the resonant scattering atoms, 
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calculated from the electron density, m , and the atomic (molecular) volumes 0V  and RV , 

respectively. In the two cases of an alloy or a diluted solution m  is the electron density of the 

entire alloy or of the solvent respectively. The volume 0V  represents the atomic (molecular) 

volume of the non-resonant scattering atoms or building groups for instance the volume of a 

monomer in a polymer chain in the case of the diluted solutions. RV  corresponds to the atomic 

volumes of the resonant scattering atoms. The functions )r(v),r(u


 are the number densities of 

the non-resonant and the resonant scattering units, respectively and represent their spatial 

distribution in the sample. The atomic (molecular) scattering factor, const)E(f0  , is nearly 

energy independent, while the atomic scattering factor, )()()( ,0 EfiEffEf RRRR  , shows 

strong variation with the energy in the vicinity of the absorption edge of the resonant 

scattering atoms due to the so-called anomalous dispersion corrections )(),( EfEf RR  .  

Calculating the scattering intensity ),(),(),(),( *2
EqAEqAEqAEqI


  by means of Eqs.2-3 

and averaging over all orientations yields a sum of three contributions 
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Eq.4 gives the non-resonant scattering, )(0 qS , the cross-term or mixed-resonant scattering, 

),(0 EqS R , originating from the superposition of the scattering amplitudes of the non-resonant  

and the resonant scattering atoms and finally, ),( EqSR , which contains only the scattering 
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contributions of the resonant scattering atom species. As can be identified in the last line of 

Eq.4 the so-called pure-resonant scattering contribution, 222 )())('')('( qAEfEf R , appears, 

which is the form factor of the spatial distribution of the resonant scattering atomic species 

multiplied with the square of the anomalous dispersion corrections. Additionally there are 

further (mixed resonant and non-resonant) scattering contributions. In what is to follow, it 

will be shown, that the form factor 2
)(qAR  is a measurand gained from the measurement of 

three energy-dependent scattering curves, which carries the complete structural and 

quantitative information about the resonant scattering atomic species. Thus the other 

contributions can be ignored in the analysis and only the pure-resonant scattering 

contribution, more precisely the form factor of it, 2
)(qAR ,will be considered.  

The measurement of scattering curves at three energies in the vicinity of the absorption edge 

of the atoms with atomic number Z constitutes the following vector equation: 
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where 0,0,0 Vff mRZ  . When solving the vector equation by the Gaussian algorithm 

(elimination procedure) the three basic scattering functions can be determined by the 

subsequent vector equation: 
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where F(E1,E2,E3) represents a normalization factor composed of the anomalous dispersion 

corrections at the related three energies E1, E2, E3 [S9]. 2
)(qAR  is the pair correlation 

function of the resonant scattering atoms and thus represents the spatial distribution of the 

resonant scattering atoms. Due to Eq.7 ASAXS provides a technique to access directly the 

small-angle scattering and by this the related structural information of the distribution of the 

Z-atoms. More generally spoken, Eq.7 provides a method, which gives access to the pure-

resonant scattering contribution of the selected constituent of a multi-component system by 

measuring the small-angle scattering at only three suitable energies [S4,S6]. 

 

A system of linear equations is termed ‘well conditioned’ when small errors in the 

coefficients Mij, or in the right hand side vector in Eq.5 have little effect on the solution. If the 

solution is very sensitive to the values of the coefficients, the problem is ‘ill conditioned’. The 

reason for ill conditioning of a system of linear equations is, when the matrix is nearly 

singular or some of the matrix rows are almost linear dependent. From mathematics it is 

known, that all methods of solving an ill-conditioned system of linear equations are generally 

bad [10]. Thus it is necessary to specify a quantitative measure, which gives a realistic 

estimation of how reliable the solutions of a system of linear equations are if obtained by the 

matrix inversion. The latter should be directly related to errors, which occur during the 

measurement process i.e. the error bars of the scattering curves gained from the ASAXS 

measurements. The so-called Turing number of Eq.8 defines such a measure of condition as 

will be shown later.    
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From the matrix (elements) Mij or M’ij respectively of Eqs.5-6 the Turing numbers [10,11] of 

the three different systems (NaPA-solution with Sr2+ counter ions, hydrogenated Si-Ge-alloys 

and metallic glasses of Ni68,Nb16Y16) have been calculated giving a measure of confidence. 

This will be outlined in more detail in the discussion. 
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From 2
)(qAR  and Eq.6 the three basic scattering functions of Eq.4 can be calculated 

analytically as is shown for the energies 1E and 2E  as follows [S6]:  

 

),(),(),()(

)()(

)()(
),(),(),,(),(

)()(),(

11010

2
'

1
'

1
'

,0
212110

22
11

EqSEqSEqIqS

EfEf

EfVf
EqSEqSEEqIEqS

qAEfEqS

RR

RR

RRmR
RRR

RRR










                             (9)                               

 

The basic scattering functions, ),(0 EqS R , )(0 qS , carry important structural and quantitative 

information for instance the sign of the contrast between the nano-phases and the structural 

information of the non-resonant scattering component (see example amorphous Si-Ge). 

 

With the definition of S0R in Eq.4 the three basic scattering functions fulfill the Cauchy-

Schwarz inequality because the integrals in S0 and SR of Eq.10 define a positive definite 

metric in the vector space of functions [S6]:  

),()(4),( 0
2

0 EqSqSEqS RR                                                  (10) 

This criterion is essential but not sufficient for the reliability of the basic scattering functions 

obtained from the matrix inversion. If it is not fulfilled, the basic scattering functions are 

meaningless. 

 

 

3. Experimental 

ASAXS needs a SAXS camera together with synchrotron radiation. In the last three decades 

several ASAXS beam lines have been established with special optics, having easily tuneable 

monochromatic photon energy without degrading the beam alignment or in other words to 

measure the small-angle scattering routinely and avoiding re-alignment of the beam line 

setup. In this respect, it is far easier to align optics with fixed exit double monochromators 

(D22 at former LURE [12] or former JUSIFA at HASYLAB/DESY [13,14]) than optics with 

vertical & horizontal focusing  (D2AM at ESRF [15,16], 7T-MPW-SAXS at BESSY II [17]). 

For a more instrumental based survey see also [18]. 
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Most monochromators are made of Si-111 or Si-311 (the numbers give the Miller indices of 

the defracting planes, which are parallel to the surface of the silicon crystals) in order to 

remove the second order harmonic. The Si-311 with an energy resolution of ΔE/E <5 10-5 

constitutes a narrow bandgap, thus providing an excellent energy resolution for ASAXS 

measurements in the near edge range of the X-ray absorption edges. Special attention has to 

be devoted to the detector concept. Nowadays, all ASAXS beam lines use two-dimensional 

position sensitive detectors, but quantitative measurements clearly benefit from single photon 

counters due to the absence of electronic noise. Because the anomalous variations represent a 

very small fraction of the overall scattered intensity, high stability and linearity are required 

for all experimental components. The most important are: (1) the beam stability of the storage 

ring (beam stabilities better 5 microns are required for high precision measurements see 

below), (2) a high energy resolution, ΔE/E <5 10-5, for instance achieved by the Si-311 

JUSIFA monochromator, (3) the counting assembly (flux monitors, detector, transmission 

measurements), (4) the precise calibration of the scattering curves into scattering cross 

sections for instance in (macroscopic) units of cross section per unit volume [cm2/cm3=cm-1], 

the latter being mandatory for quantitative ASAXS measurements. Special attention must be 

paid to precise transmission measurements (see below). 

Precise quantitative ASAXS measurements in the resolution regime 10-3<ΔI/I<10-2 (separated 

scattering with respect to the overall scattering) have been performed in the last decade [S1-

S4,S6]. Here the term quantitative means the separation of the pure-resonant scattering 

contribution with a subsequent analysis of the invariant, the so-colled Resonant-Invariant (RI-

analysis). These measurements required very precise corrections for background, sensitivity, 

transmission, normalization, dead time correction, subtraction of solvent scattering etc. i.e. the 

corrections should be better by one order of magnitude compared to ΔI/I (the expected 

relative variation of the small-angle scattering signal due to anomalous scattering). In order to 

meet these accuracies the measurements followed the JUSIFA standard procedures as 

following. The detector sensitivity of the 2-dimensional gasdetector (MWPC: Multi-Wire 

Propotional Counter) [19] in the different energy ranges was obtained by measurement of the 

fluorescence of suitable foils (i.e Cu-, Se-, Zr- and Mo-foils with K-α lines at 8, 11.2, 15.8 

and 17.5 keV). The error of these sensitivity measurements due to the counting statistics was 

better 0.5% for each detector pixel. Due to the integration of the scattering curves the 

propagating error is smaller by one to two orders of magnitude. Within an energy range of 2 

keV the sensitivity of the MWPC-detector does not change significantly and thus can be used 
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for corrections within an ASAXS sequence in the related energy ranges of up to 1000 eV. 

Transmission measurements were preformed with a precision of 10-4 using a special 

(windowless) photodiode (Hamamatsu S2387-1010N) [S2,S4,S6]. Corrections of the 

sensitivity of the diode are not necessary because it cancels out in the transmission 

measurement. The dead-time correction of the MWPC-detector was measured for each 

exposure (scattering pattern) and corrected for in the data reduction [14]. The normalization 

of the scattering pattern was performed by measurements of the primary photon flux with a 

Sodium-Iodine scintillation counter with an accuracy of better than 10-4. The background 

scattering and scattering from the solvent (respective substrate) was measured with the same 

exposure times like the samples and subtracted from the sample scattering. The scattering 

curves of all sample measurements (including the solvent and substrate measurements) have 

been calibrated into macroscopic scattering cross section in units of cross-section per unit 

volume ]cm[]cm/cm[ 132   by repeating the calibration measurements (with the JUSIFA 

glassy carbon standards) up to 20 times and averaging over these measurements. The errors 

have been calculated via error propagation law of the statistical errors of the photon counts of 

all contributing measurements (i.e. measurements of sample and solvent or substrate 

scattering, sensitivity, background…). 

From the pure-resonant scattering contribution and the subsequent analysis of the Resonant 

Invariant (RI) the chemical concentrations in the related nano-phases were deduced. 

Additionally from the separated pure-resonant scattering the contributions of the other 

chemical components entering the so-called mixed-resonant and non-resonant scattering can 

be reconstructed. All measurements were carried out at the JUSIFA beam line at HASYLAB, 

DESY Hamburg [13,14]. 

 

4. ASAXS measurements on the distribution of Sr2+ counter ions around polyacrylate 

chains in highly diluted aqueous solution 

4.1. Sample preparation and ASAXS measurements 

The example focuses on the change in size and shape of sodium polyacrylate (NaPA) in 

aqueous solution, followed by the addition of alkaline earth cations. Alkaline earth cations are 

known to specifically interact with the anionic carboxylate residues, located on every other 

carbon atom of the polymer backbone. Formation of complex bonds between the anionic 
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groups and alkaline earth cations neutralizes electric charges and thereby changes the nature 

of the respective chain segments. As a consequence, solubility of the polyelectrolyte is 

lowered which leads to a significant coil shrinking and eventually causes a precipitation of the 

respective alkaline earth salt [20,21]. A first (non-quantitative) ASAXS study on such diluted 

solutions which the above mentioned formalism has been developed for, have been performed 

in 2004 [S9] supplemented by a study combining ASAXS with light scattering [S7]. In the 

next step the formalism was extended to the quantitative aspects of this method, i.e. the 

analysis of the Resonant Invariant (RI-analysis). On four Sr2+ containing solutions of [NaPA] 

with the concentration between [NaPA]=3.232 and 3.326 mM with ratios between 

[ 2Sr ]/[NaPA]=0.451 and 0.464 have been analyzed by ASAXS. The detailed description of 

the sample preparation (4 mm capillaries) and the ASAXS experiment is given in [S4]. Here 

we focus on the separation of the form factor of the spatial distribution of the 2Sr  counter 

ions obtained from Eqs.1-7 and the subsequent RI-analysis of Eqs.11-12. 

 

 

 

 

 

 

 

 

 

The ASAXS measurements were carried out at the JUSIFA beam line at HASYLAB, DESY 

Hamburg [13,14]  covering a q-range between 0.075 and 2.5 1nm at three energies in the 

vicinity of the K-absorption edge of Sr at 16105 eV. The Sr-K-edge was measured from the 

solutions. From the change of the absorption coefficient the Sr-concentration of the solutions 

was confirmed. Figure 1 provides the anomalous dispersion corrections for Sr at the three 

energies used here based on the calculations of Cromer and Liberman [22,23].  
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4.2. Quantitative results from ASAXS measurements on diluted polyelectrolyte solutions 

Figure 2 shows the total (black squares) and the difference (calculated from 2 energies, blue 

triangles) scattering curves and the form factor (red circles) of the Sr-counter ion distribution. 

The shape of the total scattering curve is compatible with the form factor of spherical objects, 

which is modulated by inter-spherical scattering contributions. The latter was already 

suggested by former SANS measurements [24]. This interpretation is strongly confirmed by 

the difference scattering curve (triangles) and the separated form factor (circles) of the Sr-ion 

distribution. Both curves exhibit a number of characteristic structures for q>0.1 nm-1  with 

pronounced maxima, minima and shoulders revealing a scattering function, which is strongly 

influenced by correlation effects between rather mono-disperse sub-domains within the 

collapsing chains. Especially the form factor of the spatial distribution of the Sr-counter ions 

reveals a correlation maximum at 0.1 nm-1. For a counter ion condensation-induced shrinking 

process such a model was first suggested by Rubinstein et al. [25] and was confirmed later by 

computer simulations [26-28]. The model, denoted as pearl-necklace, gives the scattering 

function of N spheres with radius R and with a distance d between the spheres.  

Figure 2: Total  scattering, difference
(separated) scattering and the form factor
of the pure-resonant scattering
contribution of an aqueous polyacrylate
solution with Sr2+-counter ions. The error
bars have been calculated by error
propagation of the statistical errors of the
measured scattering curves. 

Figure 3: The first derivative of the Resonant
Invariant with upper integration limit q (Eq.11) of
sample B. The model function was calculated in
order to estimate the contribution of the missing
scattering to the Resonant Invariant beyond the
resolution of the ASAXS experiment (grey area
on the left). The error bars have been calculated
by error propagation.  
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In addition to the structural information, which can be obtained from 2
)(qAR [S9], important 

quantitative information related to the amount of inhomogeneously distributed Sr-ions can be 

deduced from the integral QZ:  



Q

RZZ qdqAEfEQ 322
)()()(                                                       (11) 

In analogy to the so-called invariant [1,2], we will call QZ(E) the Resonant Invariant (RI) of 

the inhomogeneously distributed resonant scattering Sr-ions. The Resonant Invariant, QZ(E), 

as defined in Eq.11, is related to the number density of inhomogeneously distributed (i.e. 

condensed) Sr-ions, Zv , as was outlined in detail in [S2,S4,S6]: 
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where 33/4 ZZ RV   is the volume of the Z-atoms (here Sr2+-ions) with ion radius RZ and r0 is 

the classical electron radius. In this presentation only one of the two solutions is significant 

i.e. the negative sign. Due to the integral Eq.12 provides the quantitative analysis of chemical 

fluctuations independent of their structural distribution i.e. either in a two phase system or in 

short range order. It should be mentioned that the number density calculated from Eq.12 

includes the Z-atoms, which are homogeneously distributed in the solvent. These Sr-ions 

provide an isotropic scattering contribution at small q-values. As will be shown in more detail 

below, the amount of the isotropic scattering contribution originating from these remaining 

Sr-ions in the solvent can be neglected. 

 

From the RI-analysis performed on ASAXS measurements of four samples with different 

ratios ]/[][ 2 NaPASr   the concentrations of specifically interacting Sr2+-ions were obtained 

(Table 1 and Figure 3). Because the concentration of Sr-ions known from the compositions of 

the as-prepared solutions (and absorption measurements) amounts to 317109  cm  only 

between 8.9 and 22.3% of the Sr-ions condensate on the polymer chains corresponding to 

values between 0.041<r<0.102 of Sr-ions, which condensate per carboxylate residue on the 

polymer backbone for the ratios 0.451< ]/[][ 2 NaPASr  <0.464. As can be seen from the inset 

in Figure 3, the Sr-ions, which remain in the solvent, do not contribute significantly to the 

invariant in the q-regime under consideration and thus can be neglected.  
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Table 1: Structural and quantitative parameters of the four diluted NaPA samples with different concentration 
ratios [Sr2+]/[NaPA] obtained from the ASAXS analysis. v  represents the concentration of Sr-atoms in the 

condensed phase deduced from the experimentally accessible section of the Resonant Invariant. Values of uv  
represent the upper limits of these concentrations calculated with a theoretical model function of the dumb bell for 
details see [S4]. c is the relative amount of Sr-atoms in the condensed phase with respect to the total concentration 
of Sr-ions in the entire solution and r represents the ratio of Sr-cations to carboxylate side groups. Sample A 
represents an outlier possibly due to degradation of the sample. The latter was evidenced by LS-experiments 
showing strong differences of the radius of gyration taken before and after the ASAXS-measurements.   

Sample [Sr2+]/[NaPA] v  uv  c1) r 

  1017[cm-3] 1017[cm-3] [%]  

A 0.464 0.77(14) 0.94 10.5 0.049 

B 0.458 1.50(8) 1.92 21.4 0.097 

C 0.4575 1.73(21) 2.01 22.3 0.102 

D 0.451 0.73(12) 0.80 8.9 0.041 

           1)The values refers to 9.0.1017 Sr2+ cations per cm3 which correspond to 1.5 mM 

 

This result can be compared to a value of r=0.25 extracted from the phase diagram established 

by light scattering in [S7]. The value of r=0.25 indicates the amount which is needed to cross 

the phase border along the collapsed state. For a quantitative discussion of the r values in 

Table I, sample A has to be considered with great care because light scattering of the samples 

performed prior to and after the ASAXS experiments indicated a slight instability [S7]. 

Except for this sample A, the values of r follow our expectations. Samples B and C are close 

together and sample D shows a smaller degree of Sr2+ binding in line with a drop of [Sr2+] / 

[NaPA] from B/C to D. The drastic effect confirms that small changes in [Sr2+] / [NaPA] 

cause strong changes in the conformation and hence in r once we get close to the phase 

boundary, as has been already observed in our preceding experiment [S9]. The closer the 

sample gets to the phase boundary, the higher the degree of Sr2+ binding becomes. 

The discrepancy between the value obtained from the phase diagram and the values deduced 

from the Resonant Invariant can be explained as follows: [i] There is an error of the slope in 

the phase diagram established by light scattering experiments due to the scattering of the 

points, which is fairly large. [ii] At the phase border, an upper limit of Sr2+ ions is considered 

to be captured by the PA coils, while the Sr2+ condensation is a process gradually starting 

before the phase border is reached. Under the assumption that we have not yet reached the 

phase border with our samples B–D, the actual degree of Sr binding may still be considerably 

lower than the characteristic value at the phase boundary. Thus, the discrepancy between 
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r=0.11 and r=0.25 corresponding to the phase boundary implies another steep increase of the 

bound Sr2+, in agreement with the drastic changes observed at the precipitation edge. The 

latter explanation demonstrates that precise quantitative ASAXS measurements employing 

the above mentioned algorithm with the goal to obtain the Resonant Invariant can serve as a 

suitable tool for detailed quantitative analysis of those phase diagrams. 

 

 

 

5. Temperature induced differences in the nanostructure  of hot-wire deposited silicon-

germanium alloys analyzed by Anomalous Small-Angle X-ray Scattering 

5.1. Sample preparation and ASAXS measurements 

Hydrogenated amorphous silicon-germanium alloys are used in solar cell technology, where 

the germanium is added to produce lower band gap material to absorb the longer wavelength 

photons of the solar spectrum and to achieve higher efficiencies in converting solar light into 

electrical energy. Previous small-angle X-ray scattering (SAXS) and anomalous small-angle 

X-ray scattering (ASAXS) studies revealed that, in addition to voids, non-uniformly 

distributed Ge contributes to the material inhomogeneities [29-32], which are strongly related 

to the degradation of the opto-electronic properties. In recent  years there has been a growing 

interest especially in the hot-wire chemical-vapour deposition (HWCVD) technique [33] due 

to evidence of improved stability and improved opto-electronic properties of the material, as 

well as the potentially beneficial manufacturing feature of higher deposition rates than the 

current industrial technique of plasma-enhanced chemical vapor deposition (PECVD) [34,35].  

A group at NREL (National Renewable Energy Laboratory, U.S.A.) found evidence of 

improved photo response from HWCVD a-Si-Ge:H alloys with narrow band gaps deposited 

at different filament temperatures, filament diameters, and optimized substrate temperatures 

[36,37]. In what is to follow results from a series of six alloys of a-SixGex:H (x=0.6-0.69) 

deposited at different substrate temperatures between 130 and 360 °C are presented. The 

experiment demonstrates the determination of the amount of Ge located in mass fractals of 40 

nm size employing the Resonant Invariant (RI) obtained from ASAXS measurements at the 

K-absorption edge of germanium at 11.103 keV over an energy range of more than 1 keV. 

Moreover from the Non-resonant Invariant (NI) the amount of voids was estimated depending 

on the substrate (deposition) temperatures. The correlation between the reduction of 
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(hydrogen containing) voids and enhanced formation of (Ge containing) mass fractals 

explains the improvement of the photo conductivity of the materials at medium deposition 

temperatures by more than half an order of magnitude [S6]. 

5.2. Quantitative results from ASAXS measurements on hot-wire deposited silicon-

germanium alloys – A combined invariant analysis          

Because the properties of the electronic contrast between the analyzed nano-phases were not 

clear (high in case of two phases of Si and Ge, low in case of slight concentration variations) 

the ASAXS measurements were extended over an energy range larger than 1 keV in order to 

reduce the Turing number as far as possible. Figure 4 shows the scattering curves of an alloy 

deposited at a substrate temperature of 305°C. The blue triangles represent the pure-resonant 

scattering of the Ge-containing structures. The solid line passing through the blue symbols 

represent a fractal model function due to the Unified Exponential/Power Law Approach of 

Beaucage [38] giving evidence of Ge-containing mass fractals with a size of about 40 nm. 

Here the term mass fractal means, that the mass of the structure scales with RD where D is the 

fractal dimension with 1<D<3. Figure 5 summarizes the results obtained from the analysis of 

the Resonant-Invariant and the Non-resonant-Invariant (NI) at six different substrate 

temperatures. Figure 5a summarizes the results of the integrated pure-resonant scattering of 

the Ge component normalized to the total (known) amount of Ge i.e. GeGe nv / . At lower 

temperatures (below 250°C) only between 20 and 40% of the Ge-atoms are located in the 

mass fractals, while a dramatic change takes place at temperatures beyond, where more than 

60% of the Ge-atoms are located in fractals. We shall now perform an analysis of the Non-

resonant Invariant. According to Eq.4 the non-resonant term only includes contributions from 

hydrogen. Thus the Non-resonant Invariant addresses the chemical concentration of the 

hydrogen in the ternary alloy. As a result Figure 5b shows the reduction of hydrogen 

containing voids, when the substrate temperature is decreased. The blue triangles represent 

HH nv / , which is the hydrogen quantity calculated from the Non-resonant scattering of Eq.13 

normalized to the known hydrogen content of the alloys nH.  
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Especially for the temperatures beyond 250 ºC the ratio shows values which are far too high, 

i.e. 20, 40 and 60 times higher than expected from the hydrogen concentration. From this the 

conclusion can be drawn that the non-resonant scattering represents not only the scattering of 

hydrogen-filled inhomogeneities but also gives evidence for the existence of voids, which 

dominate the non-resonant scattering contribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the integral intensity of the non-resonant contribution is calculated in the q-range 

between 1 and 3 nm-1  (corresponding to structure sizes between 3 and 1 nm) the integral 

value reaches more than 50% of the value obtained from the overall integration (red symbols), 

while the integration in the q-range between 0.06 and 0.2  (corresponding to structure sizes 

between 50 and 15 nm) shows only a weak dependence on the temperature with clearly lower 

values of HH nv /  (black symbols). So one can conclude that the ratio HH nv /  represents the 

Figure 4: Total  scattering, difference 
(separated) scattering and the pure-resonant 
scattering contribution of Ge-containing 
inhomogeneities of a hot-wire deposited 
hydrogenated Si-Ge-alloy (blue triangles). The 
solid line passing the blue triangles represents a 
mass fractal model function taken from [38]. 

Figure 5: The fraction of Ge-atoms 
implemented in the suggested fractal 
structure (a). The ratio of void scattering 
relative to the scattering expected from the 
hydrogen implemented in the amorphous 
matrix (b). 

a 

b 
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ratio of voids to hydrogen atoms (i.e the volume fractions) and that the non-resonant 

scattering contribution is clearly dominated by the scattering of voids with sizes of about 

several nm at higher substrate temperatures. These voids are strongly reduced when the 

substrate temperature is lowered and the optimum is reached, when the formation of the Ge 

mass fractals reaches a relative maximum in coincidence with a strongly reduced void 

fraction. The two processes cause the structural re-organization of Hydrogen from voids into 

Ge-fractals with enhanced Ge-H bonding, thereby improving the material photoconductivity. 

The latter was confirmed by IR-measurements indicating enhanced GeH bonding for these 

temperatures [36,37]. 

 

 

6. Spinodal decompostion of Ni-Nb-Y metallic glasses probed by quantitative 

Anomalous Small-Angle X-ray Scattering 

6.1. Sample preparation and ASAXS measurements 

The ternary Ni-Nb-Y system exhibits an extended miscibility gap in the liquid [39]. By means 

of rapid quenching technique the decomposed melt can be frozen into a phase separated 

metallic glass [40]. The critical temperature of liquid-liquid decomposition depends on the 

composition. For Ni-content < 60 at% a hierarchical heterogeneous microstructure is obtained 

with size distribution from 10 nm up to 500 nm which can be analyzed by transmission 

electron microscopy (TEM). Such microstructures represent a coarsened state of spinodal 

decomposition, growth of the melts, and secondary decomposition within the liquids. For 

such phase separated Ni-Nb-Y glasses SAXS curves with fractal q-dependence have been 

observed [41]. For alloys with Ni-contents > 60 at% early stages of phase separation can be 

obtained due to reduced critical temperature having fluctuations in nm dimensions with 

almost no contrast in TEM images [42]. By means of ASAXS quantitative parameters of the 

fluctuation can be determined. 

In the following results from a sample with the composition Ni68Nb16Y16 are presented. The 

sample was prepared by single-roller melt spinning under argon atmosphere. The casting 

temperature was 1923 K. Details of sample preparation are published in [39]. Additionally, a 

partly crystallized sample, c-Ni68Nb16Y16, was produced by heating part of the ribbons in a 
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differential scanning calorimeter (DSC 7, Perkin Elmer) just above the temperature of the first 

exothermic crystallization event at 773 K over 30 min. 

ASAXS sequences were performed for both samples with four X-ray energies in the vicinity 

of the K-absorption edges of nickel at 8333 eV, yttrium at 17038.4 eV and niobium at 

18985.6 eV [S2]. For the three very different energy ranges nearly the same q-range was 

covered.  

6.2. The determination of chemical concentrations located in the thermal fluctuations 

caused by spinodal decomposition in ternary Ni-Nb-Y metallic glasses 

The influence of partial crystallization on the SAXS curves is shown in Figure 6 by the 

comparison of the scattering curves of the two alloys. Both samples show a correlation 

maximum corresponding to a correlation length of 12.2 nm, which represents the spatial 

extension (wavelength) of the concentration fluctuations or the distance between the 

crystallized domains in case of the partially crystallized sample. The heat treated sample 

consists of a nanocystalline Ni2Y phase and a remaining amorphous Ni-Nb phase. In the 

SAXS curves a dramatic change takes place for the sample, which was heat treated beyond 

the 1st crystallization temperature. Though the correlation maximum remains unchanged on 

the q-axis, it is shifted on the y-axis by nearly an order of magnitude probably due to a higher 

electron density contrast caused by a larger concentration gradient. Additionally the 

asymptotic behaviour changes from q-2 to q-4 indicating the formation of small crystallites 

with smooth interfaces to the surrounding phase. Obviously the fluctuation length of the as-

Figure 6. Total scattering curves of the alloy Ni68Nb16Y16 with different heat treatments: as-quenched (blue 
circles) and heat-treated above the first crystallization point at 773 K but below the second crystallization 
point (black squares). Above the first crystallization point the asymptotic behavior of the scattering curves 
changes from q-2 to q-4, indicating smooth interfaces probably between the small crystallites and the 
surrounding amorphous phase. 
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quenched state determines the size of the nanocrystals. Because the nickel component serves 

as the matrix, the important quantitative parameters of decomposition are related to the 

concentration fluctuations of yttrium and niobium and thus have been obtained from 

quantitative ASAXS measurements at the K-absorption edges of yttrium and niobium. 

 

Figure 7 shows the first derivative of the Resonant Invariant for yttrium of the as-quenched 

sample (a) and the crystallized sample (b). The grey areas represent the integrals, deduced 

from QZ  (i.e. the Resonant Invariant), which are inserted into Eq.12 for the calculation of the 

amount of yttrium atoms, Yv , which enter the concentration fluctuations of the as-quenched 

sample and the crystallites of the heat-treated sample respectively.  

From Eq.12 an amount of 32110)28(13.2  cm yttrium (excess) atoms, which enter the 

crystallites, was calculated corresponding to about 19% of the Y-atoms in the alloy. A 

completely different result was obtained from the analysis of the Resonant Invariant of the as-

quenched sample. As can be seen already from a simple comparison of the integrals of both 

samples in Figure 7, the amount of yttrium atoms, which enter the concentration fluctuations 

must be smaller. From Eq.12 a concentration of 32110)20(39.0  cm yttrium atoms was 

deduced, which corresponds to an amount of only 4% yttrium atoms.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The first derivative of the Resonant Invariant (Eq.11) of (a) as-quenched and (b) partially 
crystallized Ni68Nb16Y16 obtained from ASAXS sequences at the Y K-edge (17038 eV). The integrals (grey 
area) represent the Resonant Invariant from which the Y concentrations can be calculated. The right inset 
represents the upper limit of 16 at.% homogeneously distributed Y, contributing to the Resonant Invariant. 
The left inset explains the contribution that is missing due to the q-resolution. 



21 

 

 

Though this result is significant, it is near the resolution limits of the experiment as can be 

seen from the error bars in Figure 7a. For a more quantitative discussion of the result, the 

limited integration area has to be extended onto the whole regime  q0 . Because no 

comprehensive description of the scattering curves of a ternary alloy undergoing spinodal 

decomposition is at hand, a model function with a q-2-behaviour (Ornstein-Zernike originally 

for binary systems) was employed. The model function serves only as a guide for the eye with 

the aim to estimate the amount of the ‘missing’ scattering contributions at higher and lower q-

values i.e. beyond the resolution of the experiment (left inset in Figure 7a).  

At q=0 the model function reaches a finite value defined by thermodynamic parameters of the 

alloy and the first derivative of the Resonant Invariant approaches 0 with 0q . The amount 

of the missing contribution to the Resonant Invariant can be neglected as can be seen from the 

left inset in Figure 7a, which shows a magnified part of the Resonant Invariant in the low q-

range. The missing part below the resolution at q-values smaller qmin is the area between the 

grey histogram and the solid line of the model function. 

The right inset in Figure 7a represents the contribution of homogeneously distributed Y-atoms 

with a concentration of 16 at% to the Resonant Invariant. Although this corresponds to the 

maximum possible amount – a considerable portion of the Y-atoms are localized in the 

fluctuations – the contribution is many orders of magnitude smaller than the contribution 

detected from the Y-atoms in the concentration fluctuations and thus can be also neglected. 

Considering the scattering contributions beyond the q-resolution at higher q-values the result 

must be interpreted as a lower limit as is demonstrated by the model function (Figure 7a). At 

higher q-values a cut-off of the scattering function is expected, because otherwise the integral 

of Eq.11 would become infinite and no characteristic would ascertainable anymore. As can be 

seen from Figure 7a the cut-off of the pure-resonant contribution cannot be resolved due to 

the large error bars (at 2 nm-1 the error bar is more than an order of magnitude larger 

compared to the value) and if the cut-off is located at q-values beyond 2 nm-1, the 

concentration of yttrium atoms must be higher. An extension of the upper integration limit to 

qmax=15nm-1, which roughly corresponds to the nearest neighbor atomic distance cannot 

provide additional significant contributions. On the other hand recent atom probe 

measurements on similar alloys Ni66Nb17Y17 [43] have confirmed the quantitative results of 
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the RI-analysis outlined in this paper. In the case of the crystallized sample the scattering 

curve at larger q-values extends deeply into the Porod regime and no significant contribution 

can appear in the integral at higher q-values. Similar results were deduced for niobium from 

RI-analysis at the K-absorption edge of niobium [S2]. 

 

7. Discussion 

The central issue solved by this habilitation thesis was the achievement of accuracies of 

ASAXS measurements which enables the separation of the pure-resonant scattering 

contribution of different chemical species in multi-component systems followed by a 

quantitative analysis of the Resonant-Invariant. This was documented by the concentration 

analysis of the Sr-counter ion condensation on polyanions, the analysis of the Ge-content in 

mass fractals of Si-Ge-alloys and finally the determination of the chemical concentrations of 

yttrium respectively niobium atoms in the concentration fluctuations of spinodal decomposed 

metallic glasses of Ni-Nb-Y. The comparison of the three examples shows, that the method of 

quantitative Anomalous Small-Angle X-ray Scattering has been successfully applied to very 

different systems from chemistry and solid state physics. Additionally these selected 

examples were supplemented by ASAXS studies performed on further (again very different) 

systems like highly porous structures with metal components, which serve as catalysts [S3] or 

bio-membranes used for the synthesis of semiconductor colloids [S5]. Another study analyzed 

the localisation of dibromophenol in a multilamellar vesicle system constituted from DPPC 

and water [S8]. The studies [S1-S9] have been the first, making use of the above-mentioned 

Gaussian elimination procedure for separating the pure-resonant scattering, followed by 

subsequent quantitative analysis of the Resonant Invariant (RI-analysis) [S1-S4,S6]. Though 

these systems are physically and chemically very diverse (solid and fluid aggregate states) 

and belong to very different structure classes (sphere-like colloids, spinodal concentration 

fluctuations, mass fractals, metal components on highly porous substrate structures, multi-

lamellar vesicles), precise ASAXS measurements in combination with the Gauss algorithm of 

data analysis turned out to be a very efficient experimental technique, for the combined 

structural and quantitative analysis of the related chemical nano-phases and their correlation 

with the related phase diagrams (i.e. chemical concentrations) or the macroscopic properties 

of the materials. It is worth to shed some light on the mathematics, which give information 
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about the conditioning of the vector equation allowing the matrix to be safely inverted and 

thus rendering the mentioned information. 

 

Of course the Gauss algorithm minimizes the errors when inverting Eq.5, but other methods 

do the same and a more general concept is needed with the aim, to quantify the required 

accuracies in the experiment, which are necessary to successfully separate the pure-resonant 

scattering contribution from measured scattering curves with a relative error of ΔI/I. In other 

words, it is important to analyze weather the matrix is well conditioned (i.e. it can be safely 

inverted), which can be done by the determination of the so-called Turing number, T(M), 

associated with this matrix (Eq.8), where 13/1)(  MMMT  with M  the square root of 

the sum on i and j of Mij
2 and 1M  the same for the inverse matrix of Eq.5 or M  , 1M  

in case of Eq.6 respectively. A pioneering theoretical analysis of the mathematical problem 

related to ASAXS measurements has been done in an early study in 1985 [11] with the 

conclusion that ASAXS with the accuracy of the synchrotron radiation based experiments in 

those days could not cope with the better (concerning the mathematical conditioning) neutron 

experiments. Within the last decade results of synchrotron based ASAXS-experiments (see 

above) became available, which can be directly compared to the theoretical predictions in 

[11] with the following result: Due to the strongly improved accuracy of synchrotron 

radiation experiments mentioned in chapter 3 in combination with a suitable algorithm 

(Gauss) safe matrix inversions have been achieved giving direct access to the basic scattering 

functions especially to the pure-resonant scattering thereby offering a subsequent quantitative 

analysis. The Turing number quantifies the amount of error propagation due to Eq.14 [10]: 
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mean the norm of the vectors (resepectively of the related error vectors) in the Eqs.5-6: 
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II /  and bb /  are the relative errors of the vectors on the right hand (Eq.5) and left 

hand side of Eq.6 respectively, where the vector components bi represent composites of the 

vector components Ii. Thus the right hand side of Eq.14 gives the maximum error of AA / , 

which can occur due to error propagation, when inverting Eq.5 or Eq.6 [10,11]. To calculate a 

simple example let us assume an accuracy of the basic scattering functions of 1.0/  AA  is 

desired. If a Turing number of the system of linear equations amounts 33.3, then an accuracy 

of 310/  II  is required for the scattering curves measured at the three different energies 

in order to achieve the desired accuracy of 10% for the basic scattering functions when 

inverting the matrix. The identity matrix will give the lowest possible Turing number equal to 

1 (i.e. lowest amplification of the errors). The relative errors on the components Aj, when 

inverting Eq.5, are indeed related to this number. The higher it is the higher the amplification 

of the errors will be.  

 

For demonstration the Turing numbers of the three outlined scientific examples are 

summarized in Table 2. It is interesting to compare the Turing numbers of the different matrix 

inversion procedures due to Eq.5 and Eq.6 respectively. As can be seen from the 3rd column 

in Table 2 the Turing numbers T(M’) are much smaller, when the Gauss algorithm is applied. 

Taking example 3 (the Ni-Nb-Y alloy) the Turing number T(M) of the matrix inversion of 

Eq.5 is 7 seven times larger compared to the Turing number T(M’) of the elimination 

procedure represented by the matrix in Eq.6. This suggests that better results can be obtained 

by employing the Gauss algorithm but as can be seen from Eq.14 the Turing condition 

depends not only on the Turing number T(M) but also on the relative error II /  of the 

vector on the right hand side. When changing from T(M) to T(M’) in Eq.14 the relative error 

of the right side vector changes via error propagation to: 
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provided that the scattering curves Ii have nearly the same magnitude and thus nearly the 

same error ΔIi. For details see Eq.7 in [S1]. The factor k is listed in the 5th column of Table 2. 

Now we imagine as a gedankenexperiment two independent measurements of scattering 

curves Ii and Ji. For the 1st set of scattering curves, Ii , we perform the inversion of Eq.5 with 

the Turing number T(M) and for the 2nd set, Ji, we use the inversion due to Eq.6 with Turing 

number T(M’). The relative errors of the basic functions write: 

 

J

J
kMT

b

b
MT

A

A

I

I
MT

A

A














)'(3)'(3
'

'

)(3

                               (18) 

 

In the next step we demand, that the errors of the basic scattering functions calculated from 

both measurements are the same: '/'/ AAAA  . From the latter we obtain: 
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In other words the relative accuracy of the two independent measurements, which lead to the 

same accuracy for the calculated basic scattering functions scale with the ratio 

ε=T(M)/T(M’)/k. in the 6th column of Table 2.  The number ε gives a measure of error 

propagation due to the employed inversion. Eq.19 tells that the same accuracy in the basic 

scattering functions is obtained with less accuracy in the measured scattering curves, when 

the Gauss algorithm is employed. To explain in more detail we take the most striking example 

in Table 2 i.e. the Ni-Nb-Y-alloy with ε=2.4. When using the Gauss algorithm the relative 

accuracy of the measured scattering curves can be 2.4 times smaller, thereby the exposure 

time can be 5.3 (!) times shorter, because the error predominantly is caused by the statistics of 

the count rates i.e. the error reduces with the square root of the measurement time.  

 

When introducing the typical relative error of the scattering curves obtained from the ASAXS 

measurements of chapters 4,5,6, which amounts ΔI/I=10-3, the maximum error of the basic 
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scattering function is estimated to be about 35% (
001.0

/ AA  in the 7th column of Table2). 

These numbers represent upper limits due to the inequality of the Turing condition i.e. the real 

errors are smaller. 

 

The examples demonstrate the decisive relevance of the precise measurement of all related 

experimental parameters entering the ASAXS sequence (see chapter 3) in context with a 

suitable mathematical algorithm, when dealing with the quantitative analysis of the pure-

resonant scattering contribution by analysis of the Resonant-Invariant (q-ASAXS). 

Concerning the mathematical algorithm it is necessary to employ reliable confidence tests in 

order to provide the degree of error propagation introduced by the conducted matrix 

inversion. The Turing number represents in this sense a powerful tool for the ASAXS 

technique not only for the estimation of the error, which must be expected for a given ASAXS 

sequence, but also for planning a complete ASAXS beam time. The required statistical 

accuracies, which have to be achieved for the scattering curves defines important parameters 

of the whole ASAXS sequence like measurement time, the energies to be chosen, accuracies 

of flux and transmission measurements, calibration accuracy etc. Moreover a straight forward 

error calculation, which starts with the (statistical) errors of the measurements and calculates 

the error propagation through the Eqs.6-7 is required. The error bars of Fig.2-7 are the result 

of such straight forward calculations of the error propagation. 

 

Table 2: Comparison of the Turing numbers calculated for the ASAXS sequences of (a) Sr2+ counter ion 
distributions around polyacrylates, (b) amorphous hydrogenated silicon germanium alloys, and (c) metallic glasses 
Ni-Nb-Y. The different Turing numbers T(M) and T(M’) refer to the different matrix inversions due to Eq.5 and 
Eq.6 respectively. T(M’) is the Turing number of the Gauss elimination procedure. In the case of Sr-PAA two 
values are possible because the scattering data are compatible with a positive respectively negative contrast Δf0. 
The negative contrast is confirmed by the negative sign of the Mixed-Resonant scattering term S0R. In the 7th 

columns the worst error AA / for the basic scattering functions after Gauss inversion is listed 

assuming a relative error of 10-3 in the scattering curves. These numbers represent upper limits due to 
the inequality of the Turing condition i.e. the real errors are smaller. 

System T(M) T(M’) T(M)/T(M’) k ε 
001.0

/ AA

SrPAA +/- 158/184 54/52 2.9/3.5 2.6 1.1/1.3 0.42/0.41 

Si-Ge 176 39 4.5 3.0 1.5 0.35 

Ni-Nb-Y 283 38 7.4 3.1 2.4 0.35 
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8. Summary and future perspectives 

In the last decade Anomalous Small-Angle X-ray Scattering became a precise quantitative 

method for element specific structural analysis on the mesoscopic length scale. Due to the 

precision of the techniques small-angle scattering contributions in the resolution regime 10-

3<∆I/I<10-2 can be reliably separated and the pure-resonant scattering of numerous multi-

component systems becomes accessible for quantitative analysis.  

The pure-resonant scattering contributions (1) of a diluted chemical solution of negatively 

charged polyacrylates surrounded by divalent Sr-counter ions, (2) of hydrogenated 

semiconductor (silicon-germanium) alloys and (3) of metallic glasses (Ni-Nb-Y) one of them 

in the state of spinodal decomposition have been analyzed quantitatively. From the 

calculation of the Resonant Invariant (RI) the amount of Sr-ions localized in the partially 

collapsed sub-domains of polyacrylate colloids was deduced. From the RI-analysis of hotwire 

deposited hydrogenated silicon-germanium alloys the amount of germanium atoms located in 

40 nm sized mass fractals was determined. Moreover from the analysis of the Non-resonant 

Invariant (NI-analysis) the structural reorganization of hydrogen from voids into mass fractals 

was deduced. The latter could be correlated to enhanced photo conductivity of the 

semiconductor alloy. In a 3rd example the amount of Y-atoms (respectively Nb-atoms) located 

in concentration fluctuations with a correlation length of 15 nm was determined by RI-

analysis and compared to an alloy of the same composition, after heat treatment causing 

partially re-crystallization. 

For the separation of the basic scattering functions the Gauss algorithm was employed. The 

error propagation of the measurement errors through the vector equation stated by the 

ASAXS measurements of the three different systems was estimated by calculation of the 

Turing number. The estimated errors have been confirmed by subsequent straight forward 

calculations of the error propagation. 

All examples underline that 3rd generation sources with superior beam stabilities and photon 

flux properties are needed to improve the experimental accuracy of ASAXS measurements 

towards ∆I/I=10-4 or even below this value. Moreover the 3rd generation machines with 

sufficient machine energies (> 3 GeV) and an emittance of about 1 nmrad will offer 

extraordinary possibilities for ASAXS for instance (1) access to the K-absorption edges of the 

heavier elements enabling the construction of spatially extended in-situ cell structures for fuel 

cell or catalysis research [44]. (2) In combination with the high photon flux of such machines 
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quantitative time-resolved ASAXS studies below the millisecond regime will become 

possible. (3) The vanishing beam divergence (at high β) gives access to q-values down to 10-3 

nm-1, which correspond to the length scale of large scale structures in the micrometer range. 

This size scale is up to now routinely accessible only for neutron experiments i.e. Very Small-

Angle Neutron Scattering with limited neutron flux (V-SANS) [45]. 
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Abstract. Phase separated Ni-Nb-Y metallic glasses were prepared by means of rapid 
quenching from the melt. Quantitative Anomalous Small-Angle X-ray Scattering experiments 
were performed at the K-absorption edges of Nickel, Niobium and Yttrium. The paper outlines, 
that the separation of the pure-resonant scattering contribution is obtained by employing the 
Gaussian algorithm on a vector equation. Moreover the quantitative analysis of the Resonant 
Invariant at the K-absorption edges of Niobium and Yttrium provided the chemical 
concentrations of Yttrium and Niobium in the random density fluctuations, which are attributed 
to spinodal decomposition. The results are compared to a partially crystallized sample annealed 
at 773 K over 30 minutes.  

1.  Introduction 

In the last 3 decades the Synchrotron Radiation (SR) provided the small-angle X-ray scattering 
technique with major improvements. Among other improvements SR provides a photon flux, which is 
many orders higher compared to classical X-ray sources giving access to systems with only weak 
SAXS contributions like highly diluted chemical solutions or solid state systems like glasses or 
amorphous alloys, which are to a high degree homogeneous. Additionally the continuous energy 
spectrum of SR allows energy tunability in the vicinity of the K- and LIII–absorption edges of most of 
the elements. This technique - known as Anomalous Small-Angle X-ray Scattering (ASAXS) – is based 
on the anomalous variations of the atomic scattering factors near the absorption edges and allows the 
element-specific structural and quantitative characterization of the sample under investigation. After 
the exploratory studies of the 1980s [1-3] ASAXS became in the last decade a precise quantitative 
technique (q-ASAXS), which combines the structural analysis with the quantitative analysis of 
chemical concentrations (i.e. fluctuations) of the different atomic species of a multi-component system 
by addressing the elements via the X-ray absorption edges [4-10].  

The ternary Ni-Nb-Y system exhibits an extended miscibility gap in the liquid [11]. By means of 
rapid quenching technique the decomposed  melt can be frozen in to a phase separated metallic glasses 
[12]. The critical temperature of liquid-liquid decomposition depends on the composition. For Ni 
content < 60 at% a hierarchical heterogeneous microstructure is obtained with size distribution from 
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10 nm up to 500 nm which can be analyzed by transmission electron microscopy (TEM). Such 
microstructures represent a coarsened state of spinodal decomposition, growth of the melts, and 
secondary decomposition within the liquids. For such phase separeated Ni-Nb-Y glasses SAXS curves 
with fractal q-dependence have been observed [13]. For alloys with Ni > 60 at% early stages of phase 
separation can be obtained due to reduced critical temperature having fluctuation in nm dimensions 
with almost no contrast in TEM images. By means of ASAXS quantitative parameters of the fluctuation 
can be determined. 

In this presentation, the application of the Gauss algorithm to the vector equation established by 
ASAXS measurements at three X-ray energies is demonstrated with the aim to separate the pure-
resonant scattering contribution. Moreover the question shall be addressed, how to determine the 
amount of Yttrium respective Niobium atoms localized in the periodic fluctuations of Ni-Nb-Y 
metallic glasses undergoing spinodal decomposition with respect to the total amount of Y- respective 
Nb-atoms in the alloy, by quantitative analysis of what was introduced as the Resonant Invariant in a 
former publication [7]. 

2.  ASAXS measurements 

The remarkable possibilities of the ASAXS technique are based on the energy dependence of the 
atomic scattering factors giving selective access to the specific SAXS contributions of nanophases, 
which are built up by different chemical constituents in composites like for instance metallic glasses. 
In general the atomic scattering factors are complex quantities and energy dependent:  

 
)()()( ,0 EfiEffEf ZZZZ ������                                                      (1) 

 
where Z represents the atomic number. In this presentation we will deal with the atomic scattering 
factors of Ni, Y and Nb: . When performing a SAXS experiment at 
energies in the vicinity of the absorption edge of one of the elements, three different scattering 
contributions can be distinguished as a consequence of Eq.(1)[1]:  
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)(qA represents the scattering amplitude of the non-resonant scattering atoms and  represents 

the scattering amplitude of the resonant scattering atoms in the energy range of the absorption edge. 
The quantity 

)(qB

ZmZZ Vff ���� ,0,0  is the electron density difference between the atom with the 
volume VZ and the surrounding matrix of the alloy with the electron density �m. q is the magnitude of 
the scattering vector ]sin)/4([ �� 	
 , where �2  is the scattering angle and � the X-ray 

wavelength. For instance in the case of the Ni-Nb-Y alloys )(Re)]([ ,0 qBEff YY ���  represents the 
scattering amplitude (real part) of the inhomogeneously distributed Y-atoms in the alloy, when 
performing SAXS measurements in the energy range of the K-absorption edge of Yttrium, while 

represents the scattering amplitude (real part) of the non-resonant scattering atoms i.e. Ni 

and Nb, with the contrast, ,  of the non-resonant scattering atoms with respect to the entire matrix. 

)(Re qAfA�

Af�
When measuring the scattering curves at three energies in the vicinity of the absorption edge of the 

atoms with atomic number Z the following vector equation can be established: 
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 (3b) 

The vector on the right side represents the scattering curves measured at the three different energies 
 while the vector on the left side represents the squared, respectively multiplied, scattering 

amplitudes. The matrix, M
321 ,, EEE

ij(Ei), contains the atomic scattering factors, which are energy dependent in 
case of the resonant scattering atoms. Combining the matrix with the vector on the right side of the 
equal sign yields the so-called extended matrix: 
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When applying the Gaussian algorithm (elimination procedure) to the extended matrix the so-called 

triangle matrix is obtained,  
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When introducing the formula of Eq.(7) into the matrix of Eqs.(5-6) the squared Fourier transform 

(FT) of the form factor, 2)(qB , of the spatial distribution of the atoms with atomic number Z can be 
calculated: 
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For this elimination procedure the matrix element of the starting matrix - the so-called 

Pivotelement – must not be zero. After the first step the new 2x2 submatrix,  with the new 
Pivotelement is obtained. Again the new Pivotelement must be not zero or in 

11M
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other words the difference )()( 1222 EfEfM �����  obtained from Eq.(7) must be large enough to gain 
significant accuracy from the employed algorithm. 

Due to Eq. (8) ASAXS provides a technique to access directly the scattering of the Z-atoms i.e. Ni 
or Y or Nb depending at which X-ray absorption edge the ASAXS measurements are performed. The 
structural information of the distribution of the Z-atoms (Ni or Y or Nb) in the alloy can be obtained 

from the analysis of  2)(qB , which we will call form factor for reason of convenience. More generally 
spoken, Eq. (8) provides a method, which gives access to the pure-resonant scattering contribution of 
the selected constituent of an alloy by measuring the small-angle scattering at only three suitable 
energies [5-10]. 

In addition to the structural information, which can be obtained from 2)(qB , important quantitative 
information related to the amount of inhomogeneously distributed Z-atoms can be deduced from the 
integral QZ:  

 

���
Q

ZZ qdqBEfEQ 322 )()()(                                                       (9) 

In analogy to the so-called invariant [14], we will call QZ(E) the Resonant Invariant of the 
inhomogeneously distributed resonant scattering Z-atoms. The invariant, QZ(E), as defined in Eq. (9), 
is related to the number density of inhomogeneously distributed Z-atoms, Zv , as was outlined in detail 
in a previous publication [7,10]: 
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where  is the volume of the Z-atoms with atom radius R33/4 ZZ RV 
� Z and r0 is the classical electron 
radius. Eq. (10b) represents the first derivative of the resonant invariant with respect to q. Finally from 
the quadratic Eq. (10a) two values for the number density of the Z-atoms can be calculated: 
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In this presentation only one of the two solutions is significant i.e. the negative sign. It should be 

mentioned that the number density calculated from Eq.(11b) includes the Z-atoms, which are 
homogeneously distributed in the alloy. These Z-atoms provide an isotropic scattering contribution at 
small q-values similar to the isotropic scattering of the alloys matrix atoms but with a different 
amount. As will be discussed in more detail below, the amount of the isotropic scattering contribution 
originating from these remaining Z-atoms in the matrix can be neglected. 

 

3.  Experimental 

Pre-alloyed ingots were prepared by arc-melting elemental Ni, Nb and Y with purities of 99.9% or 
higher in a Ti-gettered argon atmosphere. To ensure homogeneity, the samples were remelted several 
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times. From these pre-alloys, thin ribbons (3 mm in width and 30 �m in thickness) with nominal 
compositions Ni68Nb16Y16 were prepared by single-roller melt spinning under argon atmosphere. The 
casting temperature was 1923 K. The chemical compositions were determined by the titration 
technique. The resulting values were Ni67.9Nb17.3Y14.8 for the as-prepared ribbons. These composition 
exhibit only slight deviations from the nominal value of up to ~1 at.%. For convenience, the nominal 
compositions are used in the following sections. Additionally, a partly crystallized sample, c-
Ni68Nb16Y16 , was produced by heating part of the ribbons in a differential scanning calorimeter (DSC 
7, Perkin Elmer) just above the temperature of the first exothermic crystallization event at 773 K over 
30 min. 

Anomalous small angle X-ray scattering (ASAXS) was measured with the JUSIFA beam line 
[15,16] at the DORIS storage ring at HASYLAB/DESY Hamburg. ASAXS sequences were performed 
for both samples Ni68Nb16Y16 and c-Ni68Nb16Y16 with three X-ray energies in the vicinity of the K-
absorption edges of Nickel at 8333 eV and with four X-ray energies at the K-absorption edges of 
Yttrium at 17038.4 eV and Niobium at 18985.6 eV. The tables in Fig.1a-c provide the related 
anomalous dispersion corrections of Nickel, Yttrium and Niobium at the energies used in the 
experiment based on the calculations of Cromer and Liberman [17,18]. These were used to permit the 
separation of the Ni-, Y- and Nb-related pure-resonant scattering described in detail by Eqs. (1)-(8). 
The scattering intensity is calibrated into macroscopic scattering cross sections in units of cross section 
per unit volume [cm2/cm3]=[cm-1]. Transmission measurements were performed with a precision of 
better 10-3 (�t/t=2.8x10-4) using a special (windowless) photodiode (Hamamatsu S2387-1010N).  
 

Figure 1: Anomalous dispersion corrections of Nickel, Niobium and Yttrium obtained by 
Cromer-Liberman calculations [17,18]. The dots represent the X-ray energies, where the 
ASAXS measurements were performed. The minimum distance of 5 eV to the K-
absorption edges was kept, to omit as far as possible the Resonant Raman Scattering, 
which is for all components of the alloys significant, due to the high chemical 
concentrations. 

a b c 

 
Background measurements took 15 min followed by measurements of a calibration standard 

(glassy carbon, 5 min) and subsequent measurements of the sample frames (15 min). This 
measurement cycle was repeated for the four different energies. The measurements were performed at 
two sample-detector distances (935 and 3635 mm) covering a q-range between 0.005 and 0.6 Å-1. 
After the completion of the ASAXS measurements at four energies, the complete cycle of four energies 
was repeated four times for accumulation of intensity. In total for the samples and the background 
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measurements a beam time of 1h and for the related reference measurements a beam time of 20 min 
was accumulated at each energy and distance. This strategy was used in numerous publications 
emerging from the JUSIFA beam line in the last decade (see examples [5-8]) and compromises 
between the goal of accumulating sufficient scattering intensity (reducing the statistical error bars of 
the scattering curves) and reducing the influence of the significant beam instabilities of DORIS (2nd 
generation) as much as possible. 
 

4.  Results and Discussion 

The SAXS curves, d�/d�(q), of the two samples - Ni68Nb16Y16, and c-Ni68Nb16Y16 - measured at the 
energy E=8029 eV,  304 eV below the Ni-K edge are shown in Figure 2. The increasing intensity 
below q < 0.2  nm-1 probably originates from surface scattering also present in the Ni-Nb-Y data. 
Additionally, the presence of a maximum in the curves gives clear evidence for the existence of 
correlated fluctuations in electron density for the Ni-Nb-Y alloys. Variation of the energy at the Y- 
and Nb- K-edges changes the cross section of the SAXS curves in opposite directions indicating that 
the inhomogeneities are related to clusters enriched  in Y or in Nb in agreement with atom probe 
tomography results [19]. The occurrence of the maximum in the SAXS curves is due to the high 
density of electron density fluctuations with a dominant correlation length. Using the relationship 
correlation length � and peak maximum in reciprocal distances � = 2
/qmax one obtains �=12.2 nm. 

 

Figure 2: Total scattering curves of the alloy
Ni68Nb16Y16 with different heat-treatment: as-quenched 
(red circles) and heat-treated above the first 
crystallization point at 773 K but below the second 
crystallization point (blue squares). Above the first 
crystallization point the asymptotic behaviour of the 
scattering curves changes from q-2 to q-4 indicating 
smooth interfaces probably between the small 
crystallites and a surrounding amorphous phase. 

 
 
The influence of partial crystallization on the SAXS curves is shown by the comparison of the 

scattering curves of the alloy Ni68Nb16Y16 far below the K-absorption edge at about 8 keV. 
(Ni68Nb16Y16 as quenched, c-Ni68Nb16Y16: heat treated at 773 K i.e. beyond the 1st crystallization 
event). The heat treated sample consists of a nanocystalline Ni2Y phase and a remaining amorphous 
Ni-Nb phase. The mean crystallite size is about 5 nm as can be seen from the TEM image in Figure 
3b. The lattice parameter of the Ni2Y phase indicates that to some extend Nb is still solved. No 
inhomogeneous structures could be resolved from the TEM image of the as-cast sample (Figure 3a). In 
the SAXS curves a dramatic change takes place for the sample, which was heat treated beyond the 1st 
crystallization temperature. Though the correlation maximum remains unchanged on the q-axis, it is 
shifted on the y-axis by nearly an order of magnitude probably due to a higher electron density 
contrast caused by a larger concentration gradient. Additionally the asymptotic behaviour changes 
from q-2 to q-4 indicating the formation of small crystallites with smooth interfaces to the surrounding 
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phase. Obviously the fluctuation length of the as-quenched state determines the size of the 
nanocrystals. The phase separation of the glass is also the reason for different crystallization steps of 
the two phases (the amorphous Ni-Nb phase crytallizes into NbNi3 at higher a temperature of about 
900K).  The ASAXS sequences of the alloys at three selected X-ray energies in the vicinity of the K-
absorption edge of Ni show systematic but very small declination of the cross section in the range 
between 0.2 and 2 nm-1 indicating small differences of Ni-amount in the concentration fluctuations, 
which constitute the correlation maxima of the alloy. A closer analysis of the resonant invariant 
obtained from the ASAXS sequences near the Ni-K-edge could not provide reliable numbers for a Ni-
gradient (concentration), indicating that the difference of the Ni-concentration in the fluctuations is too 
small i.e. below the resolution of this experiment. Anyway, because the Nickel component serves as 
the matrix, the important quantitative parameters of decomposition are related to the concentration 
fluctuations of Yttrium and Niobium and thus can be only obtained from quantitative ASAXS (q-
ASAXS) measurements at the K-absorption edges of Yttrium and Niobium. 

Figure 3: TEM pictures of the alloy 
Ni68Nb16Y16 as-quenched (a) and 
partially crystallized (b).

a

b 

 
Detailed quantitative information was obtained from the measurements at the K-absorption edges 

of Yttrium and Niobium. Figure 4a-b summarizes the results obtained from the Yttrium K-edge 
(17038 eV) for the two samples Ni68Nb16Y16 and c-Ni68Nb16Y16. The black squares in Figure 4 
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represent the total scattering of the as-quenched sample (a) and the heat-treated sample (b). The 
correlation maximum appears for both samples at about 0.6 nm-1 as known already from the ASAXS 
measurements at the Ni-K-edge. The total scattering curves are superimposed by a strong isotropic 
scattering contribution, which originates mainly from the fluorescence of the Ni-component (68at%). 
By calculating the separated scattering curves, ,  this isotropic fluorescence 
contribution is removed revealing a q

),(),( 31 EqIEqI �
-4 behaviour in the asymptotic part of the separated scattering 

curve (blue triangles) of the heat-treated (crystallized) sample, which is already known from the 
measurements at the Ni-K-edge. As can be seen from the error bars of the separated scattering curve of 
the as-quenched sample (blue triangles) the asymptotic behaviour above 1 nm-1 is not clear i.e. beyond 
the resolution and needs a closer consideration by analyzing the pure-resonant scattering contribution 
with larger q-bins (see below). The solid lines in Figure 4a and 4b represent the q-2 and q-4 behaviour 
respectively.  

Figure 4: Total  scattering curves (squares), separated 
scattering curves (triangles) and the form factors of the 
pure-resonant scattering contribution (circles) of the Y-
related concentration fluctuations. Figures 6a-b represent 
the different heat-treatment: as-quenched (a) and partially 
crystallized (b). Above the first crystallization point the 
asymptotic behaviour of the scattering curves changes 
from q-2 to q-4 indicating smooth interfaces probably 
between the small crystallites and a surrounding 
amorphous phase. The solid line passing through the red 
circles of the pure-resonant scattering in Figure 6a 
represents a model function (see text). 

 
From Eq. 8, the pure-resonant scattering (or more precisely the form factor of the pure-resonant 

scattering) was calculated for both samples. Because the error bars of the pure-resonant scattering 
become rather large at higher q-values, especially for the as-quenched sample, the number of q-bins 
was reduced in comparison to the mixed-resonant and the total scattering curves, with the aim to 
obtain smaller error bars at q-values larger 0.5 nm-1. The procedure was as follows: the cross-section 
of the pure-resonant form factor was averaged over neighbouring q-bins. The result gives the cross-
section at the centre of the averaged q-interval. The error of the averaged cross-section is the averaged 
squared error calculated from the errors of the single q-bins. Though the error bars are still large at 
higher q-values, the pure-resonant scattering for both samples was clearly resolved. Especially at 
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higher q-values of about 1 nm-1 the pure-resonant scattering contribution of the crystallized sample is 
nearly an order of magnitude higher compared to the as-quenched sample, indicating a larger amount 
of Yttrium atoms localized in the crystalline phase. Ni2Y has more Y than the average alloy, even 
when some Nb is solved  

Y-K 

Y-K 

a b 

Figure 5: The first derivative of the Resonant Invariant (Eq.10b) of 
Ni68Nb16Y16 as-quenched (a) and partially crystallized (b) obtained 
from ASAXS sequences at the Y-K-edge (17038 eV). The integrals 
(grey area) represent the Resonant Invariant (Eq.10a) from which the 
Y-concentrations can be calculated. The right inset represents the 
upper limit of 16at% homogeneously distributed Y, contributing to the 
Resonant Invariant. The left inset explains the contribution, which is 
missing due to the q-resolution. For reason of convenience the 
division by 4� is not written at the vertical axis. 

 
The latter was analyzed more precisely by employing the Resonant Invariant of Eq. 10. Figure 5 

shows the first derivative of the Resonant Invariant (Eq. 10b) of the as-quenched sample (a) and the 
crystallized sample (b). The grey areas represent the integrals, QZ  (i.e. the Resonant Invariant), which 
are  introduced into Eq. 11 for the calculation of the amount of Yttrium atoms, Yv , which enter the 
concentration fluctuations of the as-quenched sample and the crystallites of the heat-treated sample 

respectively. From Eq. 11 an amount of  Yttrium (excess) atoms, which enter the 
crystallites, was calculated corresponding to about 19% of the Y-atoms in the alloy.  

32110)28(13.2 �� cm

A completely different result was obtained from the analysis of the Resonant Invariant of the as-
quenched sample. As can be seen already from a simple comparison of the integrals of both samples in 
Figure 5, the amount of Yttrium atoms, which enter the concentration fluctuations must be much more 

smaller. From Eq. 11 a concentration of  Yttrium atoms was deduced, which 
corresponds to an amount of only 4% Yttrium atoms.  

32110)20(39.0 �� cm

Though this result is significant, it is near the resolution limits of the experiment as can be seen 
from the error bars in Figure 5a. For a more quantitative discussion of the result, the limited 
integration area has to be extended onto the whole regime ��� q0 . Because no comprehensive 
description of the scattering curves of a ternary alloy undergoing spinodal decomposition is at hand, a 
model function with a q-2-behaviour (Ornstein-Zernike originally for binary systems, Eq. 12) was 
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employed. The model function serves only as a guide for the eye with the aim to estimate the amount 
of the ‘missing’ scattering contributions at higher and lower q-values i.e. beyond the resolution of the 
experiment.  

)12()( 2qc
constqi
�

�  

At q=0 the model function reaches a finite value defined by thermodynamic parameters of the alloy 
(Eq.12) and the first derivative of the Resonant Invariant approaches 0 with . The amount of 
missing contribution to the Resonant Invariant can be neglected as can be seen from the left inset in 
Figure 5a, which shows a magnified part of the Resonant Invariant in the low q-range. The missing 
part below the resolution at q-values smaller q

0 q

min is the area between the grey histogram and the solid 
line of the model function. 

The right inset in Figure 5a represents the contribution of homogeneously distributed Y-atoms with 
a concentration of 16at% to the Resonant Invariant. Although this corresponds to the maximum 
possible amount – a considerable portion of the Y-atoms are localized in the fluctuations – the 
contribution is many orders of magnitude smaller than the contribution detected from the Y-atoms in 
the concentration fluctuations and thus can be also neglected.  

Considering the scattering contributions beyond the q-resolution at higher q-values the result must 
be interpreted as a lower limit as is demonstrated by of the model function (Figure 5a). At higher q-
values a cut-off of the scattering function is expected, because otherwise the integral of Eq. 11 would 
become infinite and the invariant would not exist. As can be seen from Figure 5a the cut-off of the 
pure-resonant form factor cannot be resolved due to the large error bars and if the cut-off is located at 
q-values beyond 2 nm-1, the concentration of Yttrium atoms must be higher. In the case of the 
crystallized sample the scattering curve at larger q-values is deep in the Porod regime and no 
significant contribution can appear in the integral at higher q-values. 

Sample �  )(Yv Y! cY  )(Nbv Nb! cNb  

 [nm] 1021[cm-3] [%] [%] 1021[cm-3] [%] [%] 

Ni68Nb16Y16 12.2 0.39(2) 4 0.6 1.3(3) 12 1.9 

c-Ni68Nb16Y16 12.2 2.1(3) 19 3.0 1.8(3) 16 2.5 

Table I: Structural and quantitative parameters of the two alloys (one of them with 
different heat-treatment). Column � is the correlation length. )(Yv , )(Nbv  give the amount 
of Yttrium respective Niobium atoms localized in the concentration fluctuations calculated 
from the Resonant Invariant at the related K-absorption edges. The two columns cY and cNb
contain the amount in percent of the complete amount of Yttrium or Niobium atoms 
respectively. The latter concentrations were obtained from the averaged atomic volume, 
which was calculated from  the average atomic weight (68.999 g/mol) and the average 
density (8.147 g/cm3) of the alloy. Additionally the corresponding volume fractions, �Y
and �Nb, have been calculated (see text). 

 
   The same arguments hold for the interpretation of the results obtained from the ASAXS 

measurements at the Nb-K-edge. Again the asymptotic behaviour of the pure-resonant scattering turns 
from q-2 to q-4 , when applying a heat-treatment beyond the 1st crystallization temperature. The amount 
of Niobium atoms in the fluctuations of the as-quenched sample calculated from the Resonant 
Invariant turns out to be higher (with respect to Yttrium) corresponding to about 12% of the complete 
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Niobium amount in the alloy (Table 1). Surprisingly the amount of Niobium atoms is only slightly 
higher for the partially crystallized sample i.e. 16% of the complete Nb-amount, indicating that the 
spatial distribution of Niobium in the alloy does not change much, when the partial crystallization 
(Ni2Y-phase) takes place. This may be attributed to the fact, that the Niobium component crystallizes 
beyond the 2nd crystallization temperature (beyond 900 K), which we have not yet reached. 

a b 

Figure 6: Normalized electron density of the as-quenched sample (a) and the 
partially crystallized alloy (b).The step functions represent the volume fractions 
of the two phases, Y-rich and Nb-rich respectively. The dashed lines show the 
normalized electron density of homogeneously distributed atoms in the two 
alloys. 

 
From the concentrations of Y and Nb deduced from the Resonant Invariant in the as-quenched and 

the partially crystallized state respectively the related volume fractions, �Y and �Nb, can be estimated 
using the averaged atom volumes of the alloy for VY and VNb. In a further step the normalized electron  
densities have been calculated. The results are summarized in Figure 6. In Figure 6a the normalized 
electron density of the as-quenched sample is depicted within one correlation period. The dashed line 
represents the average electron density resulting from homogeneously distributed atoms in the alloy, 
which cover nearly 97% of the entire volume. The step function shows the different volume fractions 
of inhomogeneously distributed Yttrium, 0.6%, and Niobium, 1.9%, respectively. The integral of the 
step function over one correlation period amounts to 1. The inset shows a magnification of the step 
function with the oscillating function giving a more realistic sketch of a continuously changing 
concentration over the correlation length.  

Again the dashed line in Figure 6b represents the average electron density resulting from 
homogeneously distributed atoms in the partially crystallized alloy. Because the amount of 
inhomogeneously distributed Y and Nb increased to 3% and 2.5% respectively (black step function) 
the value of the volume fraction covered by homogeneously distributed material is reduced to about 
93%. The area between the two vertical lines, the step function and the dashed line depicts the volume 
fraction of the additional amount of Yttrium (excess) atoms in the crystallized phase with respect to 
the surrounding matrix, while the intersection of the vertical lines with the x-axis represent the volume 
fraction of the spatial extension of the crystallites, i.e. 55%.  

In both Figures the contrast between the Y-rich and the Nb-rich phases is negative explaining the 
declination of the scattering cross section, when approaching the K-absorption edge of Niobium, while 
the scattering cross section becomes larger, when approaching the K-absorption edge of Yttrium. 
 

5.  Conclusions 
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In the last years Anomalous Small-Angle X-ray Scattering became a precise quantitative method (q-
ASAXS) for element specific structural analysis on the mesoscopic length scale. Due to the precision of 
the techniques small-angle scattering contributions of Ni68Nb16Y16 alloys in the resolution regime 10-3 
< 	I/I < 10-2 were reliably separated from a superimposed, orders of magnitude larger inelastic 
background caused by fluorescence and Resonant Raman Scattering. The separated pure-resonant 
scattering contributions were obtained by employing the Gauss algorithm to a vector equation, which 
represents the ASAXS measurements at different X-ray energies.  

The pure-resonant scattering contributions of inhomogeneously distributed Nickel, Niobium and 
Yttrium atoms in Ni68Nb16Y16 alloys with different heat-treatment have been separated from the total 
scattering SAXS curves. The separated scattering curves obtained from the as-quenched sample, show 
the typical behaviour of concentration fluctuations (Ornstein-Zernike) with a correlation maximum 
corresponding to a correlation length of 12.2 nm. From the Resonant Invariant an amount of 4% and 
12% of the Yttrium atoms and Niobium atoms respectively was found to be localized in the 
fluctuations corresponding to volume fractions of 0.6 and 1.9% respectively. This compares to about 
19% (3% volume fraction) of enriched Yttrium atoms localized in the crystalline phase of the sample, 
which was heat-treated beyond the 1st crystallization temperature. Surprisingly the amount of enriched 
Niobium atoms does not change much due to the latter heat-treatment (from 12% to 16%) indicating 
that the crystallization temperature for the Niobium phases is not yet reached. A model calculation 
suggests a large volume fraction of 55% covered by small crystallites beyond the 1st crystallization 
temperature surrounded by an amorphous shell enriched with Nb with a volume fraction of 45%. 

The example demonstrates the capability to determine quantitatively the extent of spinodal 
decomposition in metallic glasses by Anomalous Small-Angle X-ray Scattering.  

References 

 
[1] Stuhrmann H B 1985 Adv. Polym. Sci.  67, 123 
[2] Simon J P, Lyon O and de Fontaine D  J 1985 Appl. Cryst.  18, 230 
[3] Stuhrmann H B, Goerigk G and Munk B 1991 In: Ebashi S, Koch M, Rubenstein E, editors. 

Handbook on Synchrotron Radiation Vol. 4. Amsterdam: Elsevier;  555. 
[4] Goerigk G and Williamson D L 2001 J. Non-Cryst. Solids 281, 181 
[5] Goerigk G, Schweins R, Huber K and Ballauff M 2004 Europhys. Lett. 66(3), 331 
[6] Goerigk G and Williamson D L 2006  J. Appl. Phys.  99, 084309 
[7] Goerigk G, Huber K and Schweins R 2007 J. Chem. Phys. 127, 154908 
[8] Bota A, Varga Z and Goerigk G 2007 J. Phys. Chem. B 111, 1911 
[9] Bota A, Varga Z and Goerigk G 2008 J. Phys. Chem. C  112, 4427 
[10] Goerigk G and Mattern N 2009 Acta Mater. 57, 3652  
[11] Mattern N, Zinkevich M, Löser W, Behr G and Acker J 2008 J. Phase Equil. Diff. 29, 141 
[12] Mattern N, Kühn U, Gebert A, Gemming T, Zinkevich M, Wendrock H and Schultz L 2005 

Scripta Materialia 53, 271 
[13] Mattern N, Gemming T, Goerigk G and Eckert J 2007 Scripta  Mater. 57, 29 
[14] Glatter O and Kratky O. 1982 Small-Angle X-ray Scattering, Academic Press, London 
[15] Haubold H G,  Gruenhagen K, Wagener M, Jungbluth H, Heer H, Pfeil A, Rongen H, 

Brandenburg G, Moeller R, Matzerath J, Hiller P and Halling H 1989 Rev. Sci. Instrum. 60, 
1943 

[16] Goerigk G 2006 ‘Electronic and Computer Upgrade at ASAXS Beamline JUSIFA’, HASYLAB 
Annual Report p. 77 

[17] Cromer D T and Liberman D 1970 J.Chem.Phys. 53, 1891  
[18] Cromer D T and Liberman D 1981 Acta Cryst.  A37, 267 
[19] Mattern N, Goerigk G, Vainio U, Miller M K, Gemming T and Eckert J 2009 Acta Mat. 57(3), 

903  

XIV International Conference on Small-Angle Scattering (SAS09) IOP Publishing
Journal of Physics: Conference Series 247 (2010) 012022 doi:10.1088/1742-6596/247/1/012022

12



[S2] 

G. Goerigk, and N. Mattern,

Critical Scattering of Ni–Nb–Y Metallic Glasses Probed by Quantitative 

Anomalous Small-Angle X-ray Scattering 

Acta Materialia, 57, 3652-3661 (2009) 





Critical scattering of Ni–Nb–Y metallic glasses probed
by quantitative anomalous small-angle X-ray scattering

G. Goerigk a,*, N. Mattern b

a Institut für Festkörperforschung, Forschungszentrum Jülich, Postfach 1913, D-52425 Jülich, Germany
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Abstract

Phase-separated Ni–Nb–Y metallic glasses were prepared by means of rapid quenching from the melt. Different stages of spinodal
decomposition were obtained for Ni-contents between 66 and 71 at.%. From anomalous small-angle X-ray scattering experiments per-
formed at the K-absorption edges of nickel, yttrium and niobium different correlation lengths, of between 15 and 5.5 nm, were found for
the different concentrations. Moreover, from the quantitative analysis of the resonant invariant the chemical concentrations of yttrium
and niobium in the random density fluctuations were deduced. The results are compared to a partially crystallized sample annealed at
773 K over 30 min.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The investigation of critical phenomena by scattering
methods – formerly named critical scattering – has a long
tradition. In the nineteenth century, after the discovery of
the critical point (1869), Avenarius [1] found a strong
increase in light scattering (LS), especially in the forward
direction, in condensing gas just above the critical point.
The same effect was observed later in binary liquid mix-
tures by several authors [2,3]. The phenomenon – named
critical opalescence – is related to the thermodynamic state
variables as outlined by Travers and Usher [4], and
attracted the interest of numerous theoretical researchers
[5], the most prominent being Einstein [6]. However, these
theoretical papers could not explain the angular depen-
dence of the critical opalescence. Ornstein and Zernike [7]

tried to explain the angular dependence using the concept
of extended correlation lengths.

Until the 1950s the study of critical opalescence was
restricted to fluids and gases, and nothing was known
about analogous phenomena in solids. Theoretical investi-
gations of the diffuse scattering of X-rays from binary
alloys led Krivoglaz [8] and, independently, Münster and
Sagel [9] to conclude that in the neighborhood of the crit-
ical point of decomposition the intensity of small-angle
X-ray scattering (SAXS) should increase. These predictions
were confirmed by SAXS experiments on aluminum–zinc
alloys [10,11]. In a later combined experimental and theo-
retical study by Acuna and Craievich [12] a quasi-binary
glass system was analyzed by numerical integration of the
Cahn–Hilliard–Cook differential equation for SAXS
curves, which includes the contribution of random density
fluctuations. Meanwhile numerous studies on spinodal
decomposition in alloys and polymer blends have been per-
formed, a review of which can be found in Ref. [13].
Though, since Ornstein and Zernike, there is strong sup-
port from theory and experiments for an asymptotic q�2-
dependence of the scattering curves (from LS and SAXS)
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related to the suspected concentration fluctuations occur-
ring in spinodal decomposition, there is still no comprehen-
sive description of the spinodal nanostructure in metallic
alloys, and especially of the related quantitative parameters
like the chemical concentrations amplitudes.

In the last three decades synchrotron radiation (SR) has
provided major improvements to the small-angle X-ray
scattering technique. Among other improvements, SR pro-
vides a photon flux that is many orders higher than classical
X-ray sources, allowing access to systems with only weak
SAXS contributions, like highly diluted chemical solutions,
or solid state systems such as glasses or amorphous alloys,
which to a large degree are homogeneous. Additionally
the continuous energy spectrum of SR allows energy tun-
ability in the vicinity of the K- and LIII-absorption edges
of most of the elements. This technique, known as anoma-
lous small-angle X-ray scattering (ASAXS), is based on the
anomalous variations in the atomic scattering factors near
the absorption edges and allows the element-specific struc-
tural and quantitative characterization of the sample under
investigation. After the exploratory studies of the 1980s
[14–16], ASAXS has become in the last decade a precise
quantitative technique (q-ASAXS), which combines the
structural analysis with the quantitative analysis of chemi-
cal concentrations (i.e. fluctuations) of the different atomic
species of a multi-component system by addressing the ele-
ments via the X-ray absorption edges [17–22].

The ternary Ni–Nb–Y system exhibits an extended mis-
cibility gap in the liquid [23]. By means of a rapid quenching
technique the decomposed melt can be frozen into a phase-
separated metallic glasses [24]. The critical temperature of
liquid–liquid decomposition depends on the composition.
For a Ni content <60 at.%, a hierarchical heterogeneous
microstructure is obtained with a size distribution ranging
from 10 to 500 nm that can be analyzed by transmission
electron microscopy (TEM). Such microstructures repre-
sent a coarsened state of spinodal decomposition, the
growth of melts and secondary decomposition within the
liquids. For such phase-separated Ni–Nb–Y glasses SAXS
curves with fractal q-dependence have been observed [25].
For alloys with Ni > 60 at.% early stages of phase separa-
tion can be obtained, due to reduced critical temperature,
that have fluctuations in nanometer dimensions with almost
no contrast in TEM images. By means of ASAXS, quanti-
tative parameters of the fluctuation can be determined.

In this presentation, we address the question of how to
determine the amount of yttrium (respectively niobium)
atoms localized in periodic fluctuations of Ni–Nb–Y metal-
lic glasses undergoing spinodal decomposition with respect
to the total amount of Y (respectively, Nb) atoms in the
alloy by quantitative analysis of what was introduced as
the resonant invariant in a former publication [20].

2. ASAXS measurements

The exceptional possibilities of the ASAXS technique
are based on the energy dependence of the atomic scatter-

ing factors giving selective access to the specific SAXS con-
tributions of nanophases, which are built up by different
chemical constituents in composites such as metallic
glasses. In general, the atomic scattering factors are com-
plex quantities and energy dependent:

fZðEÞ ¼ f0;Z þ f 0
ZðEÞ þ if 00

ZðEÞ ð1Þ
where Z represents the atomic number. In this presentation
we will deal with the atomic scattering factors of Ni, Y and
Nb: fZðEÞ ¼: fNiðEÞ; f YðEÞ; fNbðEÞ. When performing a
SAXS experiment at energies in the vicinity of the absorp-
tion edge of one of the elements, three different scattering
contributions can be distinguished as a consequence of
Eq. (1) [14]:

Iðq;EÞ ¼ jAðqÞj2 þ 2ReAðqÞ½Df0;Z þ f 0
ZðEÞ�ReBðqÞ

þ ½ðDf0;Z þ f 0
ZðEÞÞ2 þ f 00

Z ðEÞ2�jBðqÞj2 ð2Þ
A(q) represents the scattering amplitude of the non-reso-
nant scattering atoms and ½Df0;Z þ f 0

ZðEÞ�ReBðqÞ represents
the scattering amplitude (real part) of the resonant scatter-
ing atoms in the energy range of the absorption edge. The
quantity Df0;Z ¼ f0;Z � qmV Z is the electron density differ-
ence between the atom with volume VZ and the surround-
ing matrix of the alloy with electron density qm. q is the
magnitude of the scattering vector ½¼ ð4p=kÞ sinH�, where
2H is the scattering angle and k is the X-ray wavelength.
For instance, in the case of Ni–Nb–Y alloys
½Df0;Y þ f 0

YðEÞ�ReBðqÞ represents the scattering amplitude
(real part) of the inhomogeneously distributed Y atoms
in the alloy, when performing SAXS measurements in the
energy range of the K-absorption edge of yttrium, while
ReAðqÞ represents the scattering amplitude (real part) of
the non-resonant scattering atoms, i.e. Ni and Nb.

By measuring the scattering curves at two energies in the
vicinity of the absorption edge of the atom with atomic
number Z and subtracting the two scattering curves
DIðq;E1;E2Þ ¼ Iðq;E1Þ � Iðq;E2Þ, the non-resonant scat-
tering contribution is vanishing:

DIðq;E1;E2Þ ¼ 2ReAðqÞðf 0
ZðE1Þ � f 0

ZðE2ÞÞReBðqÞ
þ ½ðf 0

ZðE1Þ2 � f 0
ZðE2Þ2 þ f 00

Z ðE1Þ2

� f 00
Z ðE2Þ2�jBðqÞj2 ð3Þ

Now the scattering function is reduced to the resonant con-
tributions – the so-called separated scattering – but the
scattering of the non-resonant scattering atoms is still pres-
ent in the cross-term. To overcome this problem, measure-
ment at a third energy is performed. When subtracting the
separated scattering curves obtained at the two energies E1,
E3 from the separated scattering obtained from the two
energies E1, E2 the cross-term is vanishing and the squared
Fourier transform of the form factor, B(q), of the spatial
distribution of the atoms with atomic number Z remains
after normalizing to the energy-dependent anomalous dis-
persion corrections of the related atomic scattering factor
at the three energies:
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jBðqÞj2 ¼ DI0ðq;E1;E2Þ
f 0
ZðE1Þ � f 0

ZðE2Þ �
DI0ðq;E1;E3Þ
f 0
ZðE1Þ � f 0

ZðE3Þ
� �

� 1

F ðE1;E2;E3Þ
F ðE1;E2;E3Þ ¼ f 0

ZðE2Þ � f 0
ZðE3Þ þ f 002

Z ðE1Þ � f 002
Z ðE2Þ

f 0
ZðE1Þ � f 0

ZðE2Þ
� f 002

Z ðE1Þ � f 002
Z ðE3Þ

f 0
ZðE1Þ � f 0

ZðE3Þ ð4Þ
Due to Eq. (4), ASAXS provides a technique to access

directly the scattering of the Z atoms, i.e. Ni, Y or Nb,
depending at which X-ray absorption edge the ASAXS
measurements are performed. The structural information
of the distribution of the Z atoms in the alloy can be
obtained from the analysis of the jBðqÞj2, which we will call
the ‘‘form factor” for convenience. Generally speaking, Eq.
(4) provides a method that gives access to the pure-reso-
nant scattering contribution of the selected constituent of
an alloy by measuring the small-angle scattering at only
three suitable energies [18–22].

In addition to the structural information, which can be
obtained from jBðqÞj2, important quantitative information
relating to the amount of inhomogeneously distributed Z

atoms can be deduced from the integral QZ:

QZðEÞ ¼ jDfZðEÞj2
Z
Q
jBðqÞj2d3q ð5Þ

In analogy to the so-called invariant [26], we will call
QZ(E) the resonant invariant of the inhomogeneously dis-
tributed resonant scattering Z atoms. The invariant,
QZ(E), as defined in Eq. (5), is related to the number den-
sity of inhomogeneously distributed Z atoms, �vZ , as out-
lined in detail in a previous publication [20]:

QzðEÞ ¼ jDfzðEÞj2
Z
Q
jBðqÞj2d3q

¼ ð2pÞ3r20jDfzðEÞj2 �vz
1

V z
� �vz

� �
ð6aÞ

dQzðEÞ
dq

¼ jDfzðEÞj24pjBðqÞj2q2 ð6bÞ
where V Z ¼ 4p=3R3

Z is the volume of the Z atoms with
atom radius RZ and r0 is the classical electron radius. Eq.
(6b) represents the first derivative of the resonant invariant
with respect to q. Finally, from the quadratic Eq. (6a), two
values for the number density of the Z atoms can be
calculated:

�vz � �vz2V z ¼ V z � QZðEÞ
ð2pÞ3 � r20jDfzðEÞj2

¼ V z

ð2pÞ3 � r20

Z
Q
jBðqÞj2d3q

ð7aÞ

�vz ¼ 1

2V z
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4V 2
z

� 1

ð2pÞ3r20

Z
Q
jBðqÞj2d3q

s
ð7bÞ

In this presentation only one of the two solutions is sig-
nificant, i.e. the negative sign. It should be mentioned that
the number density calculated from Eq. (7b) includes the Z

atoms, which are homogeneously distributed in the alloy.
These Z atoms provide an isotropic scattering contribution
at small q-values similar to the isotropic scattering of the
alloys matrix atoms but of a different amount. As will be
discussed in more detail below, the amount of the isotropic
scattering contribution originating from these remaining Z
atoms in the matrix can be ignored.

3. Experimental

Pre-alloyed ingots were prepared by arc-melting elemen-
tal Ni, Nb and Y with purities of 99.9% or higher in a Ti-
gettered argon atmosphere. To ensure homogeneity, the
samples were remelted several times. From these pre-alloys,
thin ribbons (3 mm in width and 30 lm in thickness) with
nominal compositions Ni66Nb17Y17, Ni68Nb16Y16 and
Ni70Nb15Y15 were prepared by single-roller melt spinning
under an argon atmosphere. The casting temperature was
1923 K. The chemical compositions were determined by
the titration technique. The resulting values were
Ni66.1Nb17.6Y16..3, Ni67.9Nb17.3Y14.8 and Ni71.3Nb13.7Y15.0,
respectively, for the as-prepared ribbons. These composi-
tions exhibit only slight deviations from the nominal value
of up to �1 at.%. For convenience, the nominal composi-
tions are used in the following sections. Additionally, a
partly crystallized sample, c–Ni68Nb16Y16, was produced
by heating part of the ribbons in a differential scanning cal-
orimeter (DSC 7, Perkin Elmer) just above the temperature
of the first exothermic crystallization event at 773 K over
30 min.

ASAXS was measured with the JUSIFA beam line
[27,28] at the DORIS storage ring at HASYLAB/DESY
Hamburg. ASAXS sequences were performed for all sam-
ples Ni66Nb17Y17, Ni68Nb16Y16, c–Ni68Nb16Y16 and
Ni70Nb15Y15 with four (respectively, three) X-ray energies
in the vicinity of the K-absorption edges of nickel at
8333 eV. For the samples Ni68Nb16Y16 and c–Ni68Nb16Y16

additional ASAXS measurements with four X-ray energies
were performed at the K-absorption edges of yttrium at
17038.4 eV and niobium at 18985.6 eV. The tables in
Fig. 1a–c provide the related anomalous dispersion correc-
tions of nickel, yttrium and niobium at the energies used in
the experiment based on the calculations of Cromer and
Liberman [29,30]. These were used to permit the separation
of the Ni-, Y- and Nb-related pure-resonant scattering
described in detail by Eqs. (1)–(4). The scattering intensity
is calibrated into macroscopic scattering cross-sections in
units of cross-section per unit volume [cm2/cm3] = [cm�1].
Transmission measurements were performed with a preci-
sion of better than 0.001 using a special (windowless) pho-
todiode (Hamamatsu S2387-1010N).

Background measurements took 30 min followed by
measurements of a calibration standard (glassy carbon,
15 min) and subsequent measurements of the sample
frames (30 min). This measurement cycle was repeated
for the four different energies. The measurements were per-
formed at two sample–detector distances (935 and
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3635 mm) covering a q-range between 0.005 and 0.6 Å�1.
After the completion of the ASAXS measurements at four
energies, the complete cycle of four energies was repeated
seven times for the accumulation of intensity. In total,
for the samples and the background measurements a beam
time of 3.5 h and for the related reference measurements a
beam time of 105 min was accumulated at each energy and
distance. This strategy has been used in numerous publica-
tions emerging from the JUSIFA beam line in the last dec-
ade [18–21], and provides the best compromise between the
goals of accumulating sufficient scattering intensity (reduc-
ing the statistical error bars of the scattering curves) and
reducing the influence of the significant beam instabilities
of DORIS (second generation).

4. Results and discussion

We first discuss the influence of alloy composition on the
microstructure. The SAXS curves, dr/dX(q), of the three
samples – Ni66Nb17Y17, Ni68Nb16Y16 and Ni70Nb15Y15 –
measured at the energy E = 8029 eV, 304 eV below the
Ni K-edge, are shown in Fig. 2. The increasing intensity
below q < 0.2 nm�1 probably originates from surface scat-
tering, which is also present in the Ni–Nb–Y data. Addi-
tionally, the presence of a maximum in the curves gives
clear evidence for the existence of correlated fluctuations
in electron density for the Ni–Nb–Y alloys. Variation of
the energy at the Y and Nb K-edges changes the cross-sec-
tion of the SAXS curves in opposite directions, indicating
that the inhomogeneities are related to clusters enriched
in Y or Nb, in agreement with atom probe tomography
results [31]. The occurrence of the maximum in the SAXS
curves is due to the high density of electron density fluctu-
ations with a dominant correlation length. The correlation
length f clearly varies with the Ni content. The shift in the
position of the maximum with composition from

qmax = 0.42 to 1.14 nm�1 indicates a reduction in f with
increasing Ni content. Using the relationship correlation
length f and peak maximum in reciprocal distances
f = 2p/qmax, one obtains f = 15 nm for Ni66Nb17Y17, f =
12.2 nm for Ni68Nb16Y16 and f = 5.5 nm for Ni70Nb15Y15.

The influence of partial crystallization on the SAXS
curves is shown in Fig. 3 by the comparison of the scatter-
ing curves of the alloy Ni68Nb16Y16 far below the K-
absorption edge at about 8 keV. (Ni68Nb16Y16 as

Fig. 1. Anomalous dispersion corrections of nickel, niobium and yttrium obtained by Cromer–Liberman calculations [29,30]. The dots represent the X-ray
energies at which the ASAXS measurements were performed. The minimum distance of 5 eV to the K-absorption edges was kept to omit as far as possible
the resonant Raman scattering, which is significant for all components of the alloys, due to the high chemical concentrations.

Fig. 2. Total scattering curves of the three alloys Ni66Nb17Y17,
Ni68Nb16Y16 and Ni70Nb15Y15. The correlation peak of the concentration
fluctuations starts to appear at 70 at.% Ni concentration and is fully
developed at 68 at.% while shifting to smaller q-values, i.e. larger
correlation lengths. At 66 at.% (blue triangles) the asymptotic behavior
of the scattering curve already shows slight deviations from q�2. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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quenched, c–Ni68Nb16Y16 heat-treated at 773 K, i.e.
beyond the first crystallization event). The heat-treated
sample consists of a nanocystalline Ni2Y phase and a
remaining amorphous Ni–Nb phase. The mean crystallite
size is about 5 nm, as can be seen from the TEM image
in Fig. 4b. The lattice parameter of the Ni2Y phase indi-
cates that to some extent Nb is still dissolved. No inhomo-
geneous structures could be resolved from the TEM image
of the as-cast sample (Fig. 4a). In the SAXS curves a dra-
matic change takes place for the sample that was heat-trea-
ted beyond the first crystallization temperature. Though

the correlation maximum remains unchanged on the q-axis,
it is shifted on the y-axis by nearly an order of magnitude,
probably due to a higher electron density contrast caused
by a larger concentration gradient. Additionally, the
asymptotic behavior changes from q�2 to q�4, indicating
the formation of small crystallites with smooth interfaces
to the surrounding phase. Clearly the fluctuation length
of the as-quenched state determines the size of the nano-
crystals. The phase separation of the glass is also the reason
for the different crystallization steps of the two phases (the
amorphous Ni–Nb phase crytallizes into NbNi3 at the
higher temperature of about 900 K). The ASAXS
sequences of the three alloys at three selected X-ray ener-

Fig. 3. Total scattering curves of the alloy Ni68Nb16Y16 with different heat
treatments: as-quenched (red circles) and heat-treated above the first
crystallization point at 773 K but below the second crystallization point
(blue squares). Above the first crystallization point the asymptotic
behavior of the scattering curves changes from q�2 to q�4, indicating
smooth interfaces probably between the small crystallites and the
surrounding amorphous phase. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. TEM pictures of the alloy Ni68Nb16Y16 as quenched (a) and partially crystallized (b).

Fig. 5. ASAXS sequence obtained from as-quenched Ni68Nb16Y16. The
correlation peak at 0.52 nm�1 shows systematic energy dependence. When
approaching the K-absorption edge of nickel the cross-section declines,
indicating slight differences in Ni concentration in the fluctuations.
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gies in the vicinity of the K-absorption edge of Ni show
systematic but very small declination of the cross-section
in the range between 0.2 and 2 nm�1 (Fig. 5), indicating
small differences in the amount of Ni in the concentration
fluctuations, which constitute the correlation maxima of
the three alloys. A closer analysis of the resonant invariant
obtained from the ASAXS sequences near the Ni K-edge
could not provide reliable numbers for a Ni gradient (con-
centration), indicating that the difference in the Ni concen-
tration in the fluctuations is too small, i.e. below the
resolution of this experiment. Anyway, because the nickel
component serves as the matrix, the important quantitative
parameters of decomposition are related to the concentra-
tion fluctuations of yttrium and niobium, and thus can be
only obtained from q-ASAXS measurements at the K-
absorption edges of yttrium and niobium.

Detailed quantitative information was obtained from
the measurements at the K-absorption edges of yttrium
and niobium. Fig. 6a and b summarizes the results
obtained from the yttrium K-edge (17038 eV) for the two
samples Ni68Nb16Y16 and c–Ni68Nb16Y16. The black
squares in Fig. 6 represent the total scattering of the as-
quenched sample (a) and the heat-treated sample (b). The
correlation maximum appears for both samples at about
0.6 nm�1, as known already from the ASAXS measure-
ments at the Ni K-edge. The total scattering curves are
superimposed by a strong isotropic scattering contribution,
which originates mainly from the fluorescence of the Ni
component (68 at.%). By calculating the separated scatter-
ing curves (Eq. (3)) this isotropic fluorescence contribution

is removed, revealing a q�4 behavior in the asymptotic part
of the separated scattering curve (blue triangles) of the
heat-treated (crystallized) sample, which is already known
from the measurements at the Ni K-edge. As can be seen
from the error bars of the separated scattering curve of
the as-quenched sample (blue triangles), the asymptotic
behavior above 1 nm�1 is not clear, i.e. it is beyond the res-
olution, and needs closer consideration by analyzing the
pure-resonant scattering contribution with larger q-bins
(see below). The solid lines in Fig. 6a and b represent the
q�2 and q�4 behavior respectively.

From Eq. (4), the pure-resonant scattering (or, more
precisely, the form factor of the pure-resonant scattering)
was calculated for both samples. Because the error bars
of the pure-resonant scattering become rather large at
higher q-values, especially for the as-quenched sample,
the number of q-bins was reduced in comparison to the
mixed-resonant and total scattering curves, with the aim
of obtaining smaller error bars at q-values larger than
0.5 nm�1. The procedure was as follows: the cross-section
of the pure-resonant form factor was averaged over neigh-
boring q-bins. The result gives the cross-section at the cen-
ter of the averaged q-interval. The error of the averaged
cross-section is the averaged squared error calculated from
the errors of the single q-bins. Though the error bars are
still large at higher q-values, the pure-resonant scattering
for both samples was clearly resolved. In particular, at
higher q-values of about 1 nm�1 the pure-resonant scatter-
ing contribution of the crystallized sample is nearly an
order of magnitude higher compared to the as-quenched

Fig. 6. Total scattering curves (squares), separated scattering curves (triangles) and the form factors of the pure-resonant scattering contribution (circles)
of the Y-related concentration fluctuations. (a and b) The different heat treatments: (a) as-quenched and (b) partially crystallized. Above the first
crystallization point the asymptotic behavior of the scattering curves changes from q�2 to q�4, indicating that smooth interfaces probably exist between the
small crystallites and the surrounding amorphous phase. The solid line passing through the red circles of the pure-resonant scattering in (a) represents a
model function (see text). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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sample, indicating a larger amount of yttrium atoms local-
ized in the crystalline phase. Ni2Y has more Y than the
average alloy, even when some Nb is dissolved.

The latter was analyzed more precisely by employing the
resonant invariant of Eq. (6a) and (6b). Fig. 7 shows the
first derivative of the resonant invariant (Eq. (6b)) of the
as-quenched sample (a) and the crystallized sample (b).
The grey areas represent the integrals, QZ (i.e. the resonant
invariant), which are introduced into Eq. (7a) and (7b) for
the calculation of the amount of yttrium atoms, �vY, which
enter the concentration fluctuations of the as-quenched
sample and the crystallites of the heat-treated sample
respectively. From Eq. (7a) and (7b), the number of
(excess) yttrium atoms that enter the crystallites was calcu-
lated to be 2.13(28) � 1021 cm�3, corresponding to about
19% of the Y atoms in the alloy.

A completely different result was obtained from the
analysis of the resonant invariant of the as-quenched sam-
ple. As can be seen already from a simple comparison of
the integrals of both samples in Fig. 7, the number of
yttrium atoms that enter the concentration fluctuations
must be much more smaller. From Eq. (7a) and (7b), a con-
centration of 0.39(20) � 1021 cm�3 yttrium atoms was
deduced, which corresponds to only 4% of the yttrium
atoms.

Though this result is significant, it is near the resolution
limits of the experiment, as can be seen from the error bars
in Fig. 7a. For a more quantitative discussion of the result,
the limited integration area has to be extended over the
whole regime 0 6 q <1. Because no comprehensive
description of the scattering curves of a ternary alloy

undergoing spinodal decomposition is to hand, a model
function with a q�2-behavior (Ornstein–Zernike originally
for binary systems, Eq. (8)) was employed. The model func-
tion serves only as a guide for the eye with the aim of esti-
mating the amount of the ‘‘missing” scattering
contributions at higher and lower q-values, i.e. beyond
the resolution of the experiment:

iðqÞ ¼ const
cþ q2

ð8Þ

At q = 0 the model function reaches a finite value
defined by thermodynamic parameters of the alloy (Eq.
(8)) and the first derivative of the resonant invariant
approaches 0 with q ? 0. The amount of missing contribu-
tion to the resonant invariant can be ignored, as can be
seen from the left inset in Fig. 7a, which shows a magnified
part of the resonant invariant in the low q-range. The miss-
ing part below the resolution at q-values smaller than qmin

is the area between the grey histogram and the solid line of
the model function.

The right inset in Fig. 7a represents the contribution of
homogeneously distributed Y atoms with a concentration
of 16 at.% of the resonant invariant. Although this corre-
sponds to the maximum possible amount – a considerable
portion of the Y atoms are localized in the fluctuations –
the contribution is many orders of magnitude smaller than
the contribution detected from the Y atoms in the concen-
tration fluctuations and can thus be also ignored.

Considering the scattering contributions beyond the q-
resolution at higher q-values, the result must be interpreted
as a lower limit, as is demonstrated by the model function

Fig. 7. The first derivative of the resonant invariant (Eq. (6b)) of (a) as-quenched and (b) partially crystallized Ni68Nb16Y16 obtained from ASAXS
sequences at the Y K-edge (17038 eV). The integrals (grey area) represent the resonant invariant (Eq. (6a)) from which the Y concentrations can be
calculated. The right inset represents the upper limit of 16 at.% homogeneously distributed Y, contributing to the resonant invariant. The left inset explains
the contribution that is missing due to the q-resolution. For convenience, the division by 4p is not written on the vertical axis.
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(Fig. 6a). At higher q-values a cut-off of the scattering func-
tion is expected, because otherwise the integral of Eq. (7a)
and (7b) would become infinite and the invariant would not
exist. As can be seen from Fig. 6a, the cut-off of the pure-
resonant form factor cannot be resolved due to the large
error bars, and if the cut-off is located at q-values beyond
2 nm�1 the concentration of yttrium atoms must be higher.
In the case of the crystallized sample, the scattering curve
at larger q-values is deep in the Porod regime and no signif-
icant contribution can appear in the integral at higher q-
values.

The same arguments hold for the interpretation of the
results obtained from the ASAXS measurements at the
Nb K-edge. Again, the asymptotic behavior of the pure-
resonant scattering turns from q�2 to q�4 when a heat
treatment beyond the first crystallization temperature is
applied. The amount of niobium atoms in the fluctuations
of the as-quenched sample calculated from the resonant
invariant (Fig. 8a) turns out to be higher than that of
yttrium, corresponding to about 12% of the complete nio-

bium amount in the alloy (Table 1). Surprisingly, the
amount of niobium atoms is only slightly higher for the
partially crystallized sample (Fig. 8b), i.e. 16% of the com-
plete Nb amount, indicating that the spatial distribution of
niobium in the alloy does not change much when partial
crystallization (Ni2Y phase) takes place. This may be
attributed to the fact that the niobium component crystal-
lizes above the second crystallization temperature (above
900 K), which we have not yet reached.

From the concentrations of Y and Nb deduced from the
resonant invariant in the as-quenched and partially crystal-
lized states, the related volume fractions, UY and UNb,
respectively, can be estimated using the averaged atom vol-
umes of the alloy for VY and VNb. In a further step, the
normalized electron densities have been calculated. The
results are summarized in Fig. 9. In Fig. 9a the normalized
electron density of the as-quenched sample is depicted
within one correlation period. The dashed line represents
the average electron density resulting from homogeneously
distributed atoms in the alloy, which cover nearly 97% of

Fig. 8. The first derivative of the resonant invariant (Eq. (6b)) of (a) as-quenched and (b) partially crystallized Ni68Nb16Y16 obtained from ASAXS
sequences at the Nb K-edge (18986 eV). The integrals (grey area) represent the resonant invariant (Eq. (6a)) from which the Nb concentrations are
calculated. For convenience, the division by 4p is not written on the vertical axis.

Table 1
Structural and quantitative parameters of the four samples (three alloys, one with two different heat treatments).

Sample f [nm] �vðY Þ 1021 [cm�3] cY [%] UY [%] �vðNbÞ 1021 [cm�3] cNb [%] UNb [%]

Ni66Nb17Y17 15 – – – – – –
Ni68Nb16Y16 12.2 0.39(2) 4 0.6 1.3(3) 12 1.9
Ni70Nb15Y15 5.5 – – – – – –
c–Ni68Nb16Y16 12.2 2.1(3) 19 3.0 1.8(3) 16 2.5

Column f summarizes the increasing correlation length with decreasing Ni concentration. �vðYÞ and �vðNbÞ give the amount of yttrium atoms and niobium
atoms localized in the concentration fluctuations calculated from the resonant invariant at the related K-absorption edges. The columns cY and cNb

contain the amount in percent of the complete amount of yttrium or niobium atoms, respectively. The latter concentrations were obtained from the
averaged atomic volume, which was calculated from the average atomic weight (68.999 g mol�1) and the average density (8.147 g cm�3) of the alloy.
Additionally, the corresponding volume fractions, UY and UNb, have been calculated (see text).
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the entire volume. The step function shows different vol-
ume fractions of inhomogeneously distributed yttrium
and niobium, of 0.6% and 1.9%, respectively. The integral
of the step function over one correlation period amounts to
one. The inset shows a magnification of the step function
with the oscillating function, giving a more realistic sketch
of a continuously changing concentration over the correla-
tion length.

Again, the dashed line in Fig. 9b represents the average
electron density resulting from homogeneously distributed
atoms in the partially crystallized alloy. Because the
amount of inhomogeneously distributed Y and Nb
increased to 3% and 2.5%, respectively (black step func-
tion), the value of the volume fraction covered by homoge-
neously distributed material is reduced to about 93%. The
area between the two vertical lines, the step function and
the dashed line, depicts the volume fraction of the addi-
tional amount of yttrium (excess) atoms in the crystallized
phase with respect to the surrounding matrix, while the
intersection of the vertical lines with the x-axis represent
the volume fraction of the spatial extension of the crystal-
lites, i.e. 55%.

In both Fig. 9a and b the contrast between the Y-rich
and Nb-rich phases is negative, explaining the declination
of the scattering cross-section when approaching the K-
absorption edge of niobium, while the scattering cross-sec-
tion becomes larger when approaching the K-absorption
edge of yttrium.

5. Conclusions

Recently, anomalous small-angle X-ray scattering has
become a precise quantitative method (q-ASAXS) for ele-
ment-specific structural analysis on the mesoscopic length
scale. Due to the precision of the techniques, small-angle
scattering contributions of Ni68Nb16Y16 alloys in the reso-

lution regime 10�3 < DI/I < 10�2 can be reliably separated
from a superimposed, orders of magnitude larger inelastic
background caused by fluorescence and resonant Raman
scattering.

The pure-resonant scattering contributions of inhomo-
geneously distributed nickel, niobium and yttrium atoms
in Ni68Nb16Y16 alloys undergoing different heat treatments
have been separated from the total scattering SAXS curves.
The separated scattering curves obtained from the as-
quenched sample show the typical behavior of concentra-
tion fluctuations (Ornstein–Zernike) with a correlation
maximum corresponding to a correlation length of
12.2 nm. From the resonant invariant, 4% of the yttrium
atoms and 12% of the niobium atoms were found to be
localized in the fluctuations, corresponding to volume frac-
tions of 0.6% and 1.9%, respectively. This compares to
about 19% (3% volume fraction) of enriched yttrium atoms
localized in the crystalline phase of the sample, which was
heat-treated beyond the first crystallization temperature.
Surprisingly, the amount of enriched niobium atoms does
not change much due to the latter heat treatment (from
12% to 16%), indicating that the crystallization tempera-
ture for the niobium phases is not reached. A model calcu-
lation suggests a large volume fraction of 55% covered by
small crystallites beyond the first crystallization tempera-
ture surrounded by an amorphous shell enriched with Nb
with a volume fraction of 45%.

The example demonstrates the capability of quantita-
tively determining the extent of spinodal decomposition
by anomalous small-angle X-ray scattering. Especially with
third-generation synchrotron radiation sources, it will be a
challenging task to perform time-resolved q-ASAXS mea-
surements with the aim of contributing to a comprehensive
theory of spinodal decomposition, e.g. the validation of the
Cahn–Hillliard–Cook equation or extension towards a
non-linear theory of spinodal decomposition in solids.

Fig. 9. Normalized electron density of (a) the as-quenched sample and (b) the partially crystallized alloy. The step functions represent the volume fractions
of the two phases, Y-rich and Nb-rich, respectively. The dashed lines show the normalized electron density of homogeneously distributed atoms in the two
alloys.
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[23] Mattern N, Zinkevich M, Löser W, Behr G, Acker J. J Phase Equil

Diff 2008;29:141.
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The evaluation of the “pure resonant term” of the anomalous small-angle X-ray scattering (ASAXS) and the
exclusive characterization of the spatial distribution of the Ni particles in a Raney-type catalyst are presented.
The ASAXS method not only gives a qualitative characterization of catalytic nanoparticles without any
separation technique but it also provides a quantitative determination of these active particles. By using the
experimentally determined pure resonant term and the linear X-ray absorption of the sample, we got 38.5 (
0.5 mol % nanostructured form of nickel and 40.3 mol % total nickel content, demonstrating a unique further
advantage of ASAXS method.

Introduction

The detailed characterization of catalysts requires applications
of different methods. Among them, the SAXS is an excellent
tool because the description of the solid matrix and the pores is
possible in a very large size range, extending from nanometers
to several hundred nanometers.1 Moreover, the anomalous small-
angle X-ray scattering (ASAXS) gives further advantages
providing selective information about the different parts of the
catalyst.2,3 For example, by choosing a characteristic element
of the catalyst particles or of the support, separate structural
descriptions related to these parts are possible. The theory of
ASAXS is based on the energy dependence of the scattering
factor of atoms. Consequently, this method can only be executed
at synchrotron stations, where the application of the tunable
X-ray radiation is insured. Now, we present the applicability
of the ASAXS technique in the case of a nonpyrophoric nickel
catalyst. This catalyst was thoroughly characterized by different
methods, such as adsorption (nitrogen), X-ray powder diffrac-
tion, small-angle X-ray scattering, transmission electron mi-
croscopy, and scanning electron microscopy.4,5 It consists of at
least four parts: finely dispersed nickel particles and gibbsite
and bayerite as support and pores. The mean crystallite size of
the nickel particles deduced from its (111) wide-angle diffraction
profile is 54 Å, while the anomalous small-angle X-ray
scattering (ASAXS) has provided further information about their
shape, which is cylindrical (17.7 Å radius and 56 Å height), in
good agreement with the transmission electron microscopy study
that also showed stocky shaped particles. In previous studies,
however, a strict condition has been supposed, namely that the
separated ASAXS curves carry the entire structural information

about the catalyst particles and the cross term in the scattering
intensity; the product of the intensity of the considered element
of the catalyst and the intensity of the surrounding matrix can
be neglected. In this work, we present the evaluation of the
“pure resonant term” of the ASAXS whereby the exclusive char-
acterization of the spatial distribution of the Ni particles is given.

Experimental Section

The new, nonpyrophoric Raney-type catalyst was prepared
from Ni-Al alloy powder (for details of preparation see ref 4).
The dried powder sample was placed in a sandwich sample
holder covered with thin foil.

The anomalous small-angle X-ray scattering (ASAXS) mea-
surements were performed at the JUSIFA small-angle scattering
apparatus of the DORIS synchrotron radiation source in DESY
(Hamburg).6 This beamline is designed especially for anomalous
scattering studies and enables XANES and ASAXS studies near
the X-ray absorption edge in a relatively wide energy range
from 4.5 to 35 keV with an energy resolution ΔE/E < 2 ×
10-4.6 For the contrast variation, the SAXS curves were detected
at 8037, 8323, 8332 eV near the nickel X-ray absorption edge
(at 8333 eV). The energy calibration of the beamline was
executed by the measurement of the absorption edge of metal
Ni. The net scattering data collected at different energies were
computed to the same abscissa and were normalized for the
primary beam intensity and corrected for absorption. Finally,
the scattering curves were calibrated to absolute units of macro-
scopic cross sections (cm2/cm3 ) cm-1). The scattering variable,
q, is defined as q ) (4π/λ)sin Θ, where λ is the wavelength of
the beam, and Θ is the half value of the scattering angle. For
data evaluation, the anomalous dispersion corrections of Ni were
calculated according to the method described by Cromer and
Liberman.7 The calculated values of f ′ and f ′′ are also shown
in Figure 1. The fluorescence and the resonant Rahman
scattering were considered as a constant background terms and
were subtracted. The values of f ′ and f ′′ at 8332 eV, the nearest
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energy to the Ni absorption edge, were smeared by the profile
of the energy distribution of the incident beam, which was
approximated by a Gaussian function (σ ) 1 eV).8

Results and Discussion

The unique applicability of the ASAXS method is based on
the energy dependence of the scattering factor of nickel, which
is a complex quantity:9

Consequently, the scattering amplitude of the whole catalyst
can be described as the sum of the terms corresponding to the
energy independent (A) and to the dependent (( f ′ + if ′′)B)
ones.9 It is worth mentioning, that the “A” term is the scat-
tering amplitude of all parts (Ni, matrix, pores) while “( f ′ +
if ′′)B” is only that of Ni. In this case the energy dependent
intensity (ASAXS curve) contains three terms as follows:10

The scattering curve of the nickel catalyst measured at 8037
eV is intense and extends in a wide regime of the scattering
variable (q), from 2 × 10-2 to 0.3 1/Å as is shown in the upper
curve in Figure 2.

Changing the energy of the incident beam near the absorption
edge (from 8037 eV close to 8333 eV) causes a slight difference
in the measured scattering curves that can be characterized by
their difference, known as separated ASAXS curves, shown in
the middle curve of the Figure 2. About 10% effect appears in
the separated curves due to the energy-dependence scattering
factor of Ni. The separated ASAXS curve, however, contains
two terms, the “cross” and the “pure” resonant” ones as is
described by the next equation:

The shapes of the ASAXS (upper in Figure 2) and the
separated (middle in Figure 2) curves, are different indicating

the significant contribution of the scattering of the other
components beside the nickel particles (such as support, pores)
corresponding to the different terms of eqs 2 and 3.

To eliminate the contribution of scattering of the matrix
entirely, the measurements were performed at three different
energies (at 8037, 8323, 8332 eV); thus, we can obtain the
B2(q) “pure resonant” term as is described by the next (eq 4)
equation:

The B2(q) “pure resonant” term is also plotted in the bottom
of Figure 2. The intensity of this curve is extremely reduced
underlining the importance of the measurement with low error
range. The separated and the pure resonant curves exhibit high
similarity supporting our previous assumption that the cross term
can be neglected in a first approximation. However, under a
closer inspection, we can reveal some differences between the
shapes of the separated and the pure resonant curves, which is
also visible in a logarithmic plot. The resonant term has no
straight line section in the regime of the small scattering variable;
its declination is more expressed than that of the separated one,
indicating some differences in the shape of the nickel particles
deduced from the pure resonant term and the separated curve.
This curve was described by the “pearl necklace” model as
meant by Rubinstein et al.11

Figure 1. Energy dependence of the anomalous dispersion corrections
(f ′ and f ′′) for nickel.

fNi(E) ) f0,Ni + f ′Ni(E) + if ′′Ni(E) (1)

I(q, E) ) [A(q)2 + 2 f ′(E) A(q) B(q) +
( f ′2(E) + f ′′2(E))B(q)2] (2)

ΔI(q, E1, E2) ) I(q, E1) - I(q, E2) ) [2( f ′(E1) -
f ′(E2)) A(q) B(q) + ( f ′2(E1) - f ′2(E2) +

f ′′2(E1) - f ′′2(E2))B
2(q)] (3)

Figure 2. ASAXS (squares), separated ASAXS (triangles), and the
pure resonant scattering curve (circles) of Raney-type nickel catalyst.
The pure resonant curve is fitted by the “pearl necklace” model (solid
line).
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This model involves the correlation of the neighboring
spherical compact units (with radius R) that are displaced nearly
in a linear form. The distance between the connecting spheres
(with number of N) is d. The scattering of the spheres and the
correlation are expressed by the second and third terms in eq
5/a, respectively. The size distribution of the spheres is described
by a log-normal function, as is shown in eq 5/b. The best fit
results in a size distribution with a characteristic radius of 20.8
(σ ) 0.24) Å, shown in Figure 3. This characteristic value is
smaller than that determined on the separated ASAXS curves
by the method of Shull and Roess.5 Moreover, the size
distribution derived from the pure resonant curve does not
indicate particles smaller than those with a radius of 10 Å. The
number of the connected spheres is 2, and their distance is 41.6
Å, which is approximately double the value of the characteristic
radius. Therefore, we can suppose that the nickel is present in
the form of particle pairs in the catalyst. It must be mentioned
that Toth et al. have also obtained 2 neighboring spheres by
using a reverse Monte Carlo-type computer simulation of the
SAXS data of this catalyst.12

The anomalous small-angle scattering not only gives a
qualitative characterization of catalytic nanoparticles without
any separation technique but it also provides a quantitative
determination of these active particles. This information about
the Ni content of the catalyst can be deduced from the
experimentally accessible part of the pure resonant term by
calculating the so-called resonant invariant13

where ΔfNi(E) is the contrast of the scattering factor for the Ni
atoms. From the invariant, the nickel content of the sample can
be determined because it is connected to the excess electron
density of the resonant atoms. The number density of the nickel
atoms is as follows

where VNi is the volume of a nickel atom and r0 is the classical
electron radius. For the calculation of these quantities, the

calibration to absolute units of macroscopic cross section and
the small error in the measured intensity is mandatory.

In the present case, by using the experimentally determined
pure resonant term and an approximated specific weight of the
sample of Fcatalyst ) 1.08 g/cm3, we got 38.5 ( 0.5 mol % for
the nickel content in the active, nanostructured form of the
catalyst examined above.

For the determination of the full Ni content, we measured
the linear X-ray absorption of the sample before and after the
nickel edge. By assuming that the atomic absorption cross sec-
tion of the matrix does not change significantly on this energy
range (Δσa(matrix) ≈ 0), the jump in the measured linear
absorption coefficient can be related to the nickel content as
follows:

where NA is the Avogadro number, MW and F are the molar
weight and the specific weight of the catalyst, respectively, xNi
is the molar ratio of nickel in the system, D is the thickness of
the sample, and ΔσNi

a is the change in the atomic cross section
of nickel. Using the tabulated values for the latter14 and the
approximated specific weight described above, we got 40.3 mol
% for the total nickel content. This value, however, is smaller
than that (50%) that was used in the beginning of the preparation
procedure, indicating loss of nickel during the synthesis.4

With the methods described above, one can determine the
ratio of the effectively utilized and the total amount of the active
component of the catalyst, demonstrating a further advantage
of the ASAXS method.

The possibility of a qualitative description and at the same
time a quantitative determination of the catalyst particles by
the ASAXS method can give new perspectives of the tunable
synchrotron radiation in the catalyst research and the scientific
facilities can be utilized more effectively in industrial fields.

Acknowledgment. This work was supported by the Contract
RII3-CT-2004-506008 of the European Community at DESY/
HASYLAB (Hamburg, Germany) and by the Hungarian Sci-
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Figure 3. Log-normal particle size-distribution of the nickel catalyst
nanoparticles.
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The shrinking process of anionic sodium polyacrylate �NaPA� chains in aqueous solution induced by
Sr2+ counterions was analyzed by anomalous small-angle x-ray scattering. Scattering experiments
were performed close to the precipitation threshold of strontium polyacrylate. The pure-resonant
scattering contribution, which is related to the structural distribution of the Sr2+ counterions, was
used to analyze the extent of Sr2+ condensation onto the polyacrylate coils. A series of four samples
with different ratios �Sr2+� / �NaPA� �between 0.451 and 0.464� has been investigated. From the
quantitative analysis of the resonant invariant, the amount of Sr cations localized in the collapsed
phase was calculated with concentrations v̄ between 0.94�1017 and 2.01�1017 cm−3

corresponding to an amount of Sr cations in the collapsed phase between 9% and 23% of the total
Sr2+ cations in solution. If compared to the concentration of polyacrylate expressed in moles of
monomers �NaPA�, a degree of site binding of r= �Sr2+� / �NaPA� between 0.05 and 0.11 was
estimated. These values clearly differ from r=0.25, which was established from former light
scattering experiments, indicating that the counterion condensation starts before the phase border is
reached and increases rather sharply at the border. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2787008�

I. INTRODUCTION

The density of charges along a polyelectrolyte chain
makes the chain conformation sensitive to electric charges.
The two most efficient techniques to control changes in poly-
electrolyte conformation are �i� the screening of electrostatic
interactions among charged polymer segments by adding an
inert salt1 and �ii� the extinction of charges on the polyelec-
trolyte chain by adding specifically interacting
counterions.2,3 Synthetic polyelectrolytes may therefore be
used as simple models for biopolymers, where the role of
electric charges is essential for the proper functioning of
nucleic acids, numerous enzymes, and proteins.

Theoretical understanding of the mechanism underlying
the first technique has made significant progress. With in-
creasing electrostatic screening, the shape of the polyelectro-
lyte gradually changes from a coil to a compact sphere, pass-
ing a cascade of transition states. For these transition states,
cigarlike or pearl necklace structures are discussed. The lat-
ter were predicted in analogy to the Rayleigh instability of
oil droplets while being electrically charged.4,5 Beyond all

doubt, the actual shape depends in a subtle way on the coun-
terion concentration and interactions between solvent and
chain backbone.4–10 Although, the pearl necklace model has
attracted much attention,11–15 a quantitative analysis of the
condensed phase is still lacking.

The present investigation focuses on the behavior of so-
dium polyacrylate �NaPA� chains, subjected to the addition
of alkaline earth cations as an example for technique �ii�.
Alkaline earth cations are known to specifically interact with
the anionic carboxylate residues, located on every other car-
bon atom of the polymer backbone. Formation of complex
bonds between the anionic groups and alkaline earth cations
neutralizes electric charges and thereby changes the nature of
the respective chain segments. As a consequence, solubility
of the polyelectrolyte is lowered, which leads to a significant
coil shrinking and eventually causes a precipitation of the
respective alkaline earth salt.2,3,14,15

The precipitation depends on the concentration of NaPA
and of the alkaline earth cations, denoted as M2+. Beyond a
threshold concentration �M2+�0, an additional stoichiometric
amount of M2+ per NaPA function is required to precipitate
the polycarboxylate chains. This correlation can be repre-
sented in a phase diagram by means of a linear relation of the
form �M2+�c= �M2+�0+r0�NaPA�c which separates the one
phase regime of a dilute solution from the precipitate, thus

a�Author to whom correspondence should be addressed. Also at JCNS-
FRMII, c/o Technische Universität München, Lichtenbergstr. 1, D-85747
Garching, Federal Republic of Germany. Tel: �49-89-28910746. Fax:
�49-89-28910798. Electronic mail: g.goerigk@fz-juelich.de.
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acting as a phase boundary.3,14 Based on light scattering mea-
surements, changes in coil shape and size are expected to be
more pronounced the closer one gets to this phase boundary.
Although the coils adopt a spherelike shape prior to
precipitation,14 the shape of intermediates along the coil-to-
sphere transition and especially the extent of M2+ condensa-
tion close to the phase border is still an unsettled question.

In this presentation, the question of how to determine the
amount of Sr cations localized in the collapsed phase with
respect to the total amount of Sr cations in the solvent, by
precise analysis of what will be introduced below as the reso-
nant invariant, while approaching the phase boundary of
strontium polyacrylate �i.e., M2+=Sr2+� shall be addressed.

Anomalous small-angle x-ray scattering enables the
quantitative and structural characterization of the counterion
distribution around the macroions by tuning the energy in the
vicinity of the absorption edge of the counterion �i.e., Sr2+�
in question. The distribution of the counterions is not acces-
sible by conventional small-angle x-ray scattering measure-
ments because the scattering contributions of the counterions
and the macroions superimpose and cannot be distinguished.
The first anomalous small-angle x-ray scattering �ASAXS�
experiment on counterion distributions was reported by
Stuhrmann.16 Interest in the application of this promising
method to macromolecules only revived at the turn of the
century, propelled by the synthesis of new model
polyelectrolytes.17–21

II. ASAXS MEASUREMENTS

In the case of a dilute solution of negatively charged
polymers, which are surrounded by positively charged Sr
counterions, the scattering amplitude writes

A�q� = �
V

��poly�r� · exp�− iqr�d3r + �
V

��Sr�r�

· exp�− iqr�d3r . �1�

q is the magnitude of the scattering vector �=�4� /��sin ��,
where 2� is the scattering angle and � the x-ray wavelength.
��poly and ��Sr are the excess electron densities of the poly-
electrolyte chains and the counterions,

��poly�r� = �fpoly · u�r� = �fpoly − �mVpoly� · u�r� ,

��Sr�r,E� = �fSr�E� · v�r� = ��f0,Sr − �mVSr� + fSr� �E�

+ ifSr� �E�� · v�r� , �2�

calculated from the electron density �m of the solvent and the
volume of the chain Vpoly and the Sr

2+ ion VSr, respectively,
while u�r� and v�r� are the particle densities of the polymer
chains and the Sr2+ ions, respectively. The molecular scatter-
ing factor �number of electrons� of the chain fpoly�E�
�const is nearly energy independent, while the atomic scat-
tering factor of the counterions fSr�E�= f0,Sr+ fSr� �E�+ ifSr� �E�
shows strong energy dependent variation in the vicinity of
the absorption edge of the Sr2+ ion due to the so-called
anomalous dispersion corrections, fSr� �E� and fSr� �E�. Calcu-
lating the scattering intensity I�q�= �A�q��2=A�q� ·A*�q� by
means of Eqs. �1� and �2� and averaging over all orientations

of the polymer yields a sum of three contributions I�q ,E�
= �Apoly�q��2+2 Re Apoly�q� Re ASr�q ,E�+ �ASr�q ,E��2, with
the integrals16

�Apoly�q��2

= 4��fpoly
2 �

V
� u�r�u�r��

sin�q�r − r���
q�r − r��

d3rd3r�,

2 Re Apoly�q�Re ASr�q,E�

= 4�2�fpoly�f0,Sr − �mVSr

+ fSr� �E���
V
� u�r�v�r��

sin�q�r − r���
q�r − r��

d3rd3r�,

�ASr�q,E��2

= 4���fSr�E��2�
V
� v�r�v�r��

sin�q�r − r���
q�r − r��

d3rd3r�.

�3�

Equation �3� gives the nonresonant scattering of the polymer
chains �Apoly�q��2, the cross-term or mixed-resonant scatter-
ing 2 Re Apoly�q� Re ASr�q ,E� originating from the superpo-
sition of the scattering amplitudes of the polymer and the
Sr2+ ions, and the scattering of the counterions �ASr�q ,E��2,
which contains the so-called pure-resonant scattering. By
measuring the scattering curves at two energies in the vicin-
ity of the absorption edge of the Sr2+ ions and subtracting the
two scattering curves �I�q ,E1 ,E2�= I�q ,E1�− I�q ,E2�, the
nonresonant scattering contribution of the polymer is vanish-
ing:

�I�q,E1,E2� = 4�2�fpoly�fSr� �E1�

− fSr� �E2���
V
� u�r�v�r��

�
sin�q�r − r���
q�r − r��

d3rd3r� + 4����fSr�E1��2

− ��fSr�E2��2��
V
� v�r�v�r��

�
sin�q�r − r���
q�r − r��

d3rd3r�. �4�

Now the scattering function is reduced to the resonant
contributions—the so-called separated scattering—but the
scattering of the polymer is still present in the cross-term.
The significance of this term was outlined by Jusufi and Bal-
lauff, who were able to demonstrate that it may lead directly
to the Fourier transform of the density distribution of the
polyelectrolyte component if the polyelectrolyte component
is a rigid colloid.22,23 However, additional knowledge of the
third integral in Eq. �3� is required. One route to determine
the third integral is to perform measurement at a third en-
ergy. When subtracting the separated scattering curves ob-
tained at the two energies E1 and E3 from the separated scat-
tering obtained from the two energies E1 and E2, the cross-
term is vanishing and the form factor SSr

form�q� of the spatial

154908-2 Goerigk, Huber, and Schweins J. Chem. Phys. 127, 154908 �2007�

Downloaded 05 Nov 2007 to 131.169.252.42. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



distribution of the Sr2+ ions remains after normalizing to the
energy dependent anomalous dispersion corrections of the
atomic scattering factor of the Sr2+ ions at the related ener-
gies:

SSr
form�q� = 4��

V
� v�r�v�r��

sin�q�r − r���
q�r − r��

d3rd3r�

= 	 �I0�q,E1,E2�
fSr� �E1� − fSr� �E2�

−
�I0�q,E1,E3�

fSr� �E1� − fSr� �E3�

 1

F�E1,E2,E3�
,

F�E1,E2,E3� = fSr� �E2� − fSr� �E3� +
fSr�
2�E1� − fSr�

2�E2�
fSr� �E1� − fSr� �E2�

−
fSr�
2�E1� − fSr�

2�E3�
fSr� �E1� − fSr� �E3�

. �5�

Due to Eq. �5�, ASAXS provides a technique to access di-
rectly the scattering of the Sr2+ ions. The structural informa-
tion of the Sr2+ ion distribution surrounding the macroions
can be obtained from the analysis of the form factor SSr

form�q�.
Generally speaking, Eq. �5� provides a method which gives
access to the pure-resonant scattering contribution by mea-
suring the small-angle scattering at only three suitable
energies.15,24,25 An alternative route to separate all three in-
tegrals was achieved by Ballauff and co-workers,26,27 which
could afford to record scattering curves at 4 �Ref. 26� and 13
�Ref. 27� different energies below the absorption edge of the
fluctuating counterions. This enabled them to determine the
three scattering contributions �nonresonant, mixed-resonant,
and resonant terms� by means of a plot of I�q ,E� vs feff� and
a fit with a sum of the integrals of Eq. �3� at variable q.

In addition to the structural information, which can be
obtained from SSr

form�q�, important quantitative information
related to the amount of Sr atoms localized in the collapsed
phase can be deduced from the integral QSr:

QSr�E� =
1

4�
�
Q

�ASr�q,E��2d3q

=
1

4�
��fSr�E��2�

Q

SSr
form�q�d3q . �6�

In analogy to the so-called invariant,28 we will call QSr

the resonant invariant of the inhomogeneously distributed
resonant scattering Sr ions. The invariant QSr, as defined in
Eq. �6�, is related to the averaged squared excess electron
density of the resonant scattering atoms,28 	Sr

2 :

QSr�E� = �2��3V	Sr
2 �E� . �7�

where V is the sample volume. With the averaged squared
excess electron density of the Sr ions, 	Sr

2 �E�
= ��Sr�E�− �̄Sr�E��2=�Sr

2 �E�−�Sr�E�2, Eq. �7� writes

QSr�E� = �2��3V��Sr
2 �E� − �Sr�E�2� . �8�

Introducing �Sr�r ,E�= fSr�E�v�r�, which represents the elec-
tron density distribution of the Sr ions in the solution �Eq.
�2��, into Eq. �8� yields

QSr�E� = �2��3V�fSr�E��2�v2 − v̄2� . �9�

For the subsequent calculations, the calibration of the scat-
tering curves into macroscopic scattering cross sections in
units of cross section per unit volume �cm−1� is mandatory.
To obtain the calibration, Eq. �9� must be multiplied with
r0
2 /V, where r0 is the classical electron radius:

QSr�E� = �2��3r0
2�fSr�E��2�v2 − v̄2� . �10�

Because only the excess electron density of the Sr ions with
respect to the solvent contributes to the scattering, fSr�E� can
be replaced by �fSr�E� from Eq. �2�:

QSr�E� = �2��3r0
2��fSr�E��2�v2 − v̄2� . �11�

The averaged squared number density of Sr ions can be writ-
ten as

v2 =
NSrVSr

V

1

VSr
2 =

v̄
VSr

, �12�

where VSr=4� /3RSr
3 is the volume of a single Sr ion with the

radius RSr=0.126 nm. NSr represents the total number of Sr
ions in the solvent. Inserting Eq. �12� into Eq. �11� yields

QSr�E� = �2��3r0
2��fSr�E��2v̄� 1

VSr
− v̄�

� �2��3r0
2��fSr�E��2

v̄
VSr

. �13�

Combining Eqs. �6� and �13� yields

QSr�E� =
��fSr�E��2

4�
�
Q

SSr
form�q�d3q

� �2��3r0
2��fSr�E��2

v̄
VSr

, �14a�

dQSr�E�
dq

= ��fSr�E��2SSr
form�q�q2. �14b�

Equation �14b� represents the first derivative of the resonant
invariant with respect to q and will be used in Fig. 3. Finally,
from Eq. �14a� the number density of the Sr ions can be
calculated:

v̄ =
VSrQSr

�2��3r0
2��fSr�E��2

. �15�

It should be mentioned that the number density calculated
from Eq. �15� includes the Sr ions, which are homogeneously
distributed in the solvent. These Sr ions provide an isotropic
scattering contribution at small q values similar to the isotro-
pic scattering of the solvent but with a different amount. As
will be discussed in more detail below, the amount of the
isotropic scattering contribution originating from these re-
maining Sr ions in the solvent can be neglected.
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III. EXPERIMENTAL

Preparation of NaPA solutions with Sr2+ in aqueous
NaCl was performed in two steps. In the first step, a solution
of NaPA in bidistilled water with 0.01M NaCl at pH 9 �so-
lution I� was prepared together with another solution of
3 mM SrCl2 and 4 mM NaCl in bidistilled water at pH 9
�solution II�. The pH was set with 0.01M NaOH. It is note-
worthy to mention that both solutions had the same number
of cationic charges, which was 2�Sr2+�+ �Na+�=0.01M. After
3 days of storage, equal volumes of both solutions were
combined. Thus, a stock solution of NaPA in distilled water
with 1.5 mM SrCl2 and 7 mM NaCl with a pH of 9 was
obtained �solution III�. In an analogous way, an amount of
solution II was combined with an equal amount of bidistilled
water with 0.01M NaCl, resulting in a NaPA-free solution of
1.5 mM SrCl2 and 7 mM NaCl at a pH of 9 �solution IV�.
Solution IV is denoted as solvent and served as the solvent
background for all scattering experiments. The phase bound-
ary for Sr2+-PA precipitation was approached by diluting the
stock solution �III� with the solvent �IV�. By means of this
procedure,25 four different ratios of �Sr2+� / �NaPA� were ob-
tained at constant concentrations of �Sr2+� and �Na+�
��Sr2+� / �NaPA�=0.451, 0.4575, 0.458, and 0.464�, denoted
as samples D, C, B, and A, respectively. As the shape of the
polymer chains in solution depends on the extent of com-
plexation, different ratios correspond to different intermedi-
ates, bordering the precipitation threshold of SrPA.

Combined static and dynamic light scattering measure-
ments �ALV 5000E CGS� allowed us to locate the precipita-
tion threshold and to characterize the global dimensions of
the polymer chains in dependence on the ratio of
�Sr2+� / �NaPA�.25

The four samples selected for ASAXS as well as the
solvent were filled into capillaries from Hilgenberg GmbH,
Malsfeld, Germany. The capillaries are made of borosilicate
glass with an inner diameter of 4 mm and a wall thickness of
0.05 mm. The inner diameter of 4 mm is nearly the optimal
size for the energy range of the Sr K edge at 16.105 keV.
The capillaries were closed with a pipette plug fixed by two
component quick setting adhesive.

ASAXS measurements were performed at the JUSIFA
beamline29 at HASYLAB, DESY Hamburg at three different

energies in the energy range of the K absorption edge of
strontium at 16.105 keV. Measurements were made with a
two-dimensional detector at three energies. A q range from
about 0.07 to 2.7 nm−1 was covered. A detailed description
of the experiments can be found in Ref. 25.

The table in Fig. 1 provides the anomalous dispersion
corrections for Sr at the three energies used here based on the
calculations of Cromer and Liberman.30,31 These were used
to permit the separation of the Sr-related pure-resonant scat-
tering described in detail by Eqs. �1�–�5�. Constant back-
ground effects due to resonant raman scattering and fluores-
cence occurring near the K absorption edge at 16.105 keV
have been subtracted from the measured intensities. The
scattering intensity is calibrated into macroscopic scattering
cross sections in units of cross section per unit volume
�cm2/cm3=cm−1�. Transmission measurements were per-
formed with a precision of 0.001 using a special �window-
less� photodiode �Hamamatsu S2387-1010N�. The amount of
the integrated form factors �Eq. �5�� with respect to the inte-
grated total scattering, i.e., 
=
SSr

form�q�d3q /
I�q ,E�d3q, of
the four samples was between 0.25% and 0.60% �last column
in Table I�.

FIG. 1. Anomalous dispersion corrections obtained by Cromer-Liberman
calculations �Refs. 30 and 31�. The values at 16.105 keV result from the
convolution with the energy resolution of the JUSIFA beamline.

TABLE I. Structural and quantitative parameters of the four diluted NaPA samples with different concentration
ratios �Sr2+� / �NaPA� obtained from the ASAXS analysis. v̄ represents the concentration of Sr atoms in the
condensed phase deduced from the experimentally accessible section of resonant invariant. Values of v̄u repre-
sent the upper limits of these concentrations calculated with the different theoretical model functions of the
dumbbell �PD and PS+D�. c is the relative amount of Sr atoms in the condensed phase with respect to the total
concentration of Sr ions in the entire solution and r represents the ratio of Sr cations to carboxylate side groups
in the collapsed phase. Sample A represents an outlier possibly due to degradation of the sample. The latter was
evidenced by LS experiments showing strong differences of the radius of gyration taken before and after the
ASAXS measurements �Ref. 25�.

Sample �Sr2+� / �NaPA�
v̄

�1017 cm−3�
v̄u �PD�

�1017 cm−3�
v̄u �PS+D�
�1017 cm−3�

ca

�%� r



�%�

A 0.464 0.77�14� 0.94 1.17 10.5–13.1 0.049–0.061 0.30
B 0.458 1.50�8� 1.92 2.09 21.4–23.3 0.097–0.106 0.50
C 0.4575 1.73�21� 2.01 2.09 22.3–23.2 0.102–0.106 0.60
D 0.451 0.73�12� 0.80 ¯ 8.9 0.041 0.25

aThe values refers to 9.0�1017 Sr2+ cations per cm3 which correspond to 1.5 mM.
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IV. RESULTS AND DISCUSSION

The focus of the present work is the development of the
resonant invariant of the Sr2+ ions. A detailed description of
the scattering pattern is given only for sample B with
�Sr2+� / �NaPA�=0.458 in Fig. 2. The shape of the total scat-
tering curve �black squares� is compatible with the form fac-
tor of spherical objects. The latter was already suggested by
former small-angle neutron scattering measurements.32 This
interpretation is strongly confirmed by the separated scatter-
ing curve �blue triangles� and the separated form factor �red
circles� of the Sr ion distribution. The error bars of the sepa-
rated form factor were calculated from the error bars of the
total scattering curves measured at the three energies consid-
ering the error propagation through Eq. �5�. In the q range
between 0.07 and 0.3 nm−1, relative errors between 10% and
40% have been obtained. Both curves exhibit a number of
characteristic structures for q�0.1 nm−1 with pronounced
maxima, minima, and shoulders revealing a scattering func-
tion, which is strongly influenced by correlation effects be-
tween rather monodisperse subdomains within the collapsing
chains. Especially, the form factors of the spatial distribution
of the Sr counterions reveal a correlation maximum at
0.1 nm−1. For a counterion condensation-induced shrinking
process, an appropriate model was first suggested by Dobry-
nin et al.5 which was confirmed later by computer
simulations.7,8,10 The model, denoted as pearl necklace, gives
the scattering function of N spheres with radius R and with a
distance d between the spheres.

Scattering data corresponding to the resonant scattering
curves can also be represented by means of Eq. �14b�. This
representation is shown in Fig. 3 for all four samples. The
area corresponding to these data represents the experimen-
tally accessible portion of the invariant, denoted as QSr�exp�.

Table I summarizes the concentrations v̄ of Sr ions in the
condensed phase obtained from this resonant invariant de-
picted with Eqs. �14b� and �15�.

For a more quantitative discussion of the data, this lim-
ited area has to be extended onto the whole regime of 0
�q
�. Estimation of the extensions �especially to very
small q values, q
0.075 nm−1� will be carried out by three
sphere-based models being capable of reproducing the scat-
tering data under consideration. It has to be emphasized that
the major purpose of these model applications in the present
case is to estimate the contribution of the low and high q
regimes of the SSr

form �q� to the resonant invariant of Eq. �15�,
determined experimentally.

Two models have already been applied to the same data
in a preceding work.25 The model consisting of a polydis-
perse sphere, denoted as the PS model, is the simplest model.
It provided already a good representation of the data.25 The
PS model is based on a Schulz-Flory type of distribution
P�M� of the polymer mass M,25,33

P�M� = � z + 1
Mw

�z+1 Mz

��z + 1�
exp�− �z + 1�M

Mw
� . �16�

In Eq. �16�, the polydispersity is fixed by z=1/ �Mw /Mn

−1�, with Mw and Mn the weight averaged and the number
averaged mass of the spheres. However, the averaged par-
ticle size of this model was considerably smaller than the
respective value established independently by light scatter-
ing. Hence, we added an appropriate portion of monodis-
perse dumbbells, which increased the average size of the
model without significantly affecting the scattering curves at
q�0.1 nm−1. This second model is denoted as the PS+D

FIG. 2. �Color online� Total scattering �squares�, separated scattering �tri-
angles�, and the form factor of the pure-resonant scattering contribution
�circles� of the aqueous polyacrylate solution with Sr ions from sample B
with a concentration ratio �Sr2+� / �NaPA�=0.458.

FIG. 3. The first derivative of the resonant invariant �Eq. �14b�� of the four
samples ��Sr2+� / �NaPA�=0.451 �D�, 0.4575 �C�, 0.458 �B�, and 0.464 �A��.
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model in what follows. In order to provide one more curve,
which is easily accessible from a least squares fit to data, a
third model will be introduced here. This model represents a
pearl necklace with N identical spheres and a distribution of
the sphere size according to the Schulz-Flory type of distri-
bution. The sphere size is R and the distance between two
neighboring spheres on a dumbbell is d.

In Eq. �17�, the form factor of a sphere is multiplied with
the correlations �first bracket� introduced by the interference
of the scattering from the two spheres. Polydispersity of the
pearls is considered by means of a Schulz-Flory type of dis-
tribution P�M�, again following Eq. �16�.25,33 The particle
mass M in Eq. �17� is proportional to 2R3 and the polydis-
persity is fixed by z=1/ �Mw /Mn−1�, with Mw and Mn the
weight averaged and the number averaged mass of the dumb-
bells.

SSr
form�q� = const�

0

�

P�M�R���2 + 2sin�qd�
qd

�
��4�R3

3

3�sin�qR� − qR cos�qR��
�qR�3

�2dR . �17�

This PD model has to provide only an alternative esti-
mation of the portion of the invariant not accessible to the
ASAXS experiment. No further development of a structural
concept of the collapsing PA coils which goes beyond the
interpretation given in Ref. 25 is intended in the present
work. Model parameters for all three models which suc-
ceeded to reproduce the experimentally determined resonant
scattering curves are summarized in Table II.

From the resonant invariant in Figs. 3�a�–3�d�, an
amount between 0.73�1017
 v̄
1.73�1017 Sr atoms per
cm3 was calculated to be in the condensed phase for the four
samples �column 3 in Table I�. An estimation of the amount
of scattering contributions, which could not be detected due
to the limited q resolution of the experiment, is outlined in
Fig. 4 for sample B. The gray area represents this contribu-
tion of the anomalous small-angle x-ray scattering from the q
range below the resolution of the experiment. It has been
extrapolated from the different model functions as mentioned
above. Above the resolution, we integrated up to q

=10 nm−1 obtaining additional contributions, which can be
neglected with respect to the contributions of the gray area.
Addition of the values from the gray area to the respective v̄
values of column 3 derived from QSr�exp� via Eq. �15� re-
sults in estimations of the Sr2+ concentrations shown in col-
umns 4 and 5 of Table I. The numbers in columns 4 and 5 are
considered to be upper limits for the Sr concentration in the
collapsed phase suggested from the different models and are
denoted v̄u. In addition, the inset of Fig. 4 represents the
contribution of homogeneously distributed Sr ions with a
concentration of 1.5 mM to the resonant invariant. Although
this corresponds to the maximum possible amount—a con-
siderable portion of the Sr2+ ions are condensed on the NaPA
chains—the contribution is many orders of magnitude

TABLE II. Model representations have been applied to the scattering curves obtained from ASAXS experiments in order to estimate the extension of these
scattering curves beyond the limits accessible to the experiment. Representation with the PS model and the PS+D model was inferred from Ref. 25.
Representation of the data with the PD model was performed by means of a least squares fit making use of Eq. �17�. The symbols have the following meaning:
The values for Rg in column 3 represent values for the radii of gyration of the polymer particles determined experimentally by light scattering. �Ref. 25�. The
PS model is a polydisperse sphere model where Rz denotes the z-averaged outer sphere radius. In the PS+D model, Rz, d, and RD denote the z-averaged radius
of the outer sphere radius of the sphere component, the distance between two spheres in the dumbbell component, and the outer sphere radius of the
monodisperse spheres in the dumbbell component, respectively. In the PD model, Rz, d, and z denote the z-averaged radius of the outer sphere radius of the
spheres in the dumbbells, the distance between two spheres in the dumbbell component, and the polydispersity parameter z=1/ �Mw /Mn−1� of the spheres of
the dumbbell component, respectively. Model parameters of the models are applied to reproduce the resonant invariants in Fig. 3.

Sample �Sr2+� / �NaPA� Rg
a �nm�

PS model
Rz �nm�

PS+D model PD model

Rz
a d RD Rz d z

A 0.464 17.3 16 16 55 16 15 55 1.30
B 0.458 23.2 15 16 55 16 13 71 1.31
C 0.4575 21.3 15 16 55 16 13 56 1.42
D 0.451 30.7 15 16 55 16 14 67 1.13

aThe sphere fraction is characterized by a polydispersity parameter of z=5.

FIG. 4. �Color online� The first derivative of the resonant invariant �Eq.
�14b�� of sample B compared to three different model functions, PD �solid
red line�, PS+D �black dashed line�, and PS �black solid line�. The different
model functions were calculated in order to estimate the contribution of the
missing scattering to the resonant invariant beyond the resolution of the
ASAXS experiment �gray area on the left�. The inset 4 represents the upper
limit of the scattering from 1.5 mM of homogeneously distributed Sr ions in
the solution, contributing to the resonant invariant.
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smaller than the contribution detected from the Sr ions in the
collapsed phase and thus can be neglected. Hence, the reso-
nant invariant estimated here can be attributed unambigu-
ously to the condensed Sr2+ ions.

As inferred from the preparation, the concentration of Sr
ions of 1.5 mM corresponds to 9�1017Sr2+ ions per cm−3.
Together with the concentration values v̄u deduced from the
resonant invariant, this led to a fraction of condensed Sr ions
lying between 9% and 23% of the total Sr ions in the entire
solution. From the concentrations of condensed Sr2+ ions, v̄u,
the corresponding ratios, r= �Sr2+� / �NaPA�, were calculated
by taking into account the q regimes beyond the experimen-
tal cutoff. The values depend on the ratio of the component
concentrations expressed as �Sr2+� / �NaPA� and fall in a re-
gime of 0.05
0.11 Sr ions, which are bound per carboxylate
residue on the polymer backbone. This result can be com-
pared to a value of r=0.25 extracted from the phase diagram
in Fig. 5 established by Schweins et al.25 The straight line in
Fig. 5 represents the phase border between Sr-polyacrylate
precipitates and the collapsed polymer or partially collapsed
macroions in solution. The value of r=0.25 indicates the
amount which is needed to cross the phase border along the
collapsed state. For a quantitative discussion of the r values
in Table I, sample A has to be considered with great care
because light scattering of the samples performed prior to
and after the ASAXS experiments indicated a slight
instability.25 Except for this sample A, the values of r follow
our expectations. Samples B and C are close together and
sample D shows a smaller degree of Sr2+ binding in line with
a drop of �Sr2+� / �NaPA� from B/C to D. The drastic effect
confirms that small changes in �Sr2+� / �NaPA� cause strong
changes in the conformation and hence in r once we get
close to the phase boundary, as has been already observed in
our preceding experiment.15 The closer the sample gets to the
phase boundary, the higher the degree of Sr2+ binding be-
comes.

Noteworthy, Molnar and Rieger34 published a molecular
dynamics simulation13 of the interaction of NaPA oligomers
with Ca2+ cations. They found an abrupt increase of free Na+

ions if more than three Ca2+ cations have been added to the
“simulated cubic solution box.” This supports the feature of a
rather abrupt increase of the decoration of the PA coils with
Sr2+ if the system gets close to the phase boundary.

The discrepancy between the value obtained from the
phase diagram and the values deduced from the resonant
invariant can be explained as follows: �i� There is an error of
the slope due to the scattering of the points, which is fairly
large. Beyond this, the exact location of the phase boundary
may depend on the molar mass of the polyacrylate sample
actually used.2,14 �ii� At the phase border, an upper limit of
Sr2+ ions is considered to be captured by the PA coils, while
the Sr2+ condensation is a process gradually starting before
the phase border is reached. Under the assumption that we
have not yet reached the phase border with our samples B–D,
the actual degree of Sr binding may still be considerably
lower than the characteristic value at the phase boundary.
Thus, the discrepancy between r=0.11 and r=0.25 corre-
sponding to the phase boundary implies another steep in-
crease of the bound Sr2+, in agreement with the drastic
changes observed at the precipitation edge.

The latter explanation demonstrates that precise quanti-
tative ASAXS measurements employing the algorithm in
Sec. II. with the goal to obtain the resonant invariant could
serve as a suitable tool for detailed quantitative analysis of
those phase diagrams in the future.

V. CONCLUSIONS

In the last years, anomalous small-angle x-ray scattering
became a precise quantitative method for element specific
structural analysis on the mesoscopic length scale. Due to the
precision of the techniques, small-angle scattering contribu-
tions in the resolution regime 10−3
�I / I
10−2 can be reli-
ably separated and the form factor of the pure-resonant scat-
tering of counterion distributions around macroions becomes
accessible, as was demonstrated for Sr-counterion-induced
shrinking of polyacrylates.

The form factor of inhomogeneously distributed Sr
counterions was separated with an amount between 0.3% and
0.6% with respect to the total scattering. The form factor is
attributed to a collapsed phase in a diluted aqueous polyacry-
late solution with the Sr counterions condensing in the col-
lapsed phase. From the integral of the separated form factor
�resonant invariant�, different amounts between 9% and 23%
of the Sr counterions were deduced as being captured in the
collapsed phase. The numbers also indicate a sharp increase
of Sr2+ binding close to the phase border established from
light scattering �LS� measurements. The example demon-
strates the capability to determine quantitatively the extent of
ion binding to polyelectrolytes which condense to or interact
specifically with the polyelectrolyte.
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The formation of cadmium sulfide (CdS) particles in the gaps between the layers of the multilamellar vesicles
is described, introducing a new pathway in the preparation of nanometer-scale particles. The in situ structural
characterization of both the CdS particles and the vesicles as a reaction medium was performed in the early
and final states of the process by using anomalous small-angle X-ray scattering (ASAXS) and freeze-fracture
methods. The ASAXS method provides the separation of the scattering of nanoparticles present in a small
amount, whereby the monitoring of their formation and growth in the whole time range of manufacturing has
become possible.

Introduction

In the last decades, significant research interest has turned to
nanoparticles due to their unusual properties that can be
employed in a great number of applications.1-3 Among the
different nanometer-scale particles, the preparation and the
characterization of the semiconductor particles represent an
important field as a consequence of their potential utilization
in nonlinear optics, photocatalysis, and photodegradation.4-6

Several methods provide the in situ synthesis of these particles
using reverse micelles, Langmuir-Blodget films, clay minerals,
microemulsions, polyelectrolyte/surfactant complexes, ordered
polypeptide or other organic matrixes, hydrated derivates of
polysaccharide prepared from bacteria, vesicles, and very
recently multiwalled carbon nanotubes as reaction mediums.7-16

Due to its optimum characteristics among many semiconductor
nanoparticles, cadmium sulfide (CdS) is the most often studied
and described. Unilamellar vesicles (or in an other word,
liposomes) consisting of natural or artificial amphiphilics are
ideal systems for the synthesis of CdS nanoparticles.17,18 The
unilamellar vesicle preparation, however, requires high-purity
chemicals and very precise processes to ensure the quality of
nanoproducts.

Here, we show that the water shells of multilamellar vesicles
may prove to be adequate reaction compartments instead of the
aqueous core of the unilamellar vesicle. The multilamellar
vesicles are generally used as model systems of biological cell
membranes because of their similarities.19,20 They form spon-
taneously, and they are thermodynamically stable, while the
unilamellar ones are rather metastable. Consequently, the
application of the multilamellar vesicles as nanoreactors insures
more extended versatility for both the particle size modification
and shape modification than that of their unilamellar form.

Especially, the anomalous small-angle X-ray scattering (ASAXS)
can provide information about the matrix and at the same time
about the formation of the nanoparticles. This method gives the
description of local structures induced by different elements,
for example, Cd ions.21,22 The theory of this method is based
on the energy dependence of the scattering factors (fCd) of the
type of the resonant atoms:

Thus, the scattering amplitude of the system can be divided
into an energy-independent term (A) and an energy-dependent
((f ′ + if ′′)V) term. In this case, the total intensity contains three
terms as follows:23,24

The ASAXS study requires measurements at two different
energies at least, at an energy close to the absorption edge of
cadmium and at another one far away from it. The difference
of two ASAXS curves measured at two different energies
(known as separated ASAXS curves) is characteristic of the
structure of the domains having Cd ions. This separated ASAXS
curve, however, contains two terms, the cross-term and the “pure
resonant” term, as is described by the next equation:24,25

Executing the ASAXS measurements at three different
energies, the determination of the pure resonant term (the
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fCd(E) ) f0,Cd + f ′Cd(E) + if ′′Cd(E) (1)

I(q, E))A(q)2+ 2f ′(E) A(q) V(q)+ (f ′ 2(E)+ f ′′ 2(E))V(q)2

(2)

ΔI(q, E1, E2) ) I(q, E1) - I(q, E2) )
2(f ′(E1) - f ′(E2))A(q) V(q)
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scattering of the CdS nanoparticles) is possible by using the
next expressions:

The anomalous method not only gives a qualitative descrip-
tion about the system without any separation technique, but it
also provides a quantitative determination of the nanoparticles
present in very low concentration with a high statistical
significance, providing a precise tool in quantitative chemistry.

Materials and Methods

The fully hydrated DPPC/water vesicles (20 w/w %) contain-
ing Cd2+ ions were prepared from synthetic high-purity 1,2-
dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC, obtained
from Avanti Lipids, AL) and from aqueous Cd(NO3)2 neutral
buffer solution (17 mmol/dm3, insures a 0.05 Cd2+/lipid molar
ratio) by simple mixing and by vortex homogenization. Aqueous
(NH4)2S (20 w/w %) was added to the vesicle system (in a 1.2
(NH4)2S/Cd2+ molar ratio) then mixed by vortex intensively.

The small-angle X-ray scattering (SAXS) and the anomalous
small-angle X-ray scattering (ASAXS) measurements were
carried at the JUSIFA facility (Jülich’s user-dedicated small-
angle scattering facility) at the DORIS synchrotron radiation
source in DESY (German Electron Synchrotron, Hamburg).26

The studies of the vesicles covered a range in real-space
resolution on the length scale from 1 up to 50 nm, corresponding
to a scattering interval of the scattering variable (q) (defined as
(4π/λ) sin Θ, where λ ) 0.464 Å is the wavelength of the
selected X-ray beam and 2Θ is the scattering angle) from 0.013
to 0.6 1/Å. The ASAXS curves were detected at 26 711, 26 653,
and 26 120 eV in the vicinity of the Cd-K absorption edge
(26 711 eV). The intensity is given in absolute units of
macroscopic cross section (cm-1). The anisotropic scattering
patterns were monitored with a two-dimensional position
sensitive detector, a multiwire proportional counter (MWPC)
with 256 × 256 resolution pixels on a 180 × 180 mm2 active
area.

The freeze-fracture electron microscopy was used for the
direct visualization of local structures of vesicles with CdS
nanoparticles.27 The gold sample holders used in freeze fracture
were preincubated at 24 °C at the same temperatures as the
samples. Droplets of about 1 μL from the samples were pipetted
onto the gold holders which were then immediately plunged
into liquid-nitrogen-cooled partially solidified Freon for freezing.
The fracturing was carried out at -110 °C in a Balzers freeze-
fracture device (Balzers AG, Vaduz, Liechtenstein). The freeze-
fractured faces were etched for 30 s at -100 °C followed by
unidirectional platinum/carbon coating at an angle of 45°.
Replicas of the samples were removed by submersion into
distilled water and subsequently cleaned with a detergent
solution; they were then examined using a JEOL JEM-100 CX
II (Japan) electron microscope.

The separation of the CdS nanoparticles was executed after
a gentle drying of the vesicle system, and then, it was kept under
vacuum. The dry sample was dispersed in chloroform and

centrifuged. The CdS particles suspended in chloroform were
placed onto amorphous graphite foil and investigated in a Philips
CM20 (200 kV) (Holland) electron microscope.

Results and Discussion

The fully hydrated DPPC/water vesicles exhibit at least five
Bragg rings in their two-dimensional small-angle X-ray scat-
tering (SAXS) pattern corresponding to a well ordered multi-
lamellar and macroscopically not oriented structure formed in
the gel phase at 24 °C.28,29 The divalent metal ions cause
significant destructions in the layer arrangement of the multi-
lamellar vesicles indicated by their small-angle X-ray scattering,
as the characteristic Bragg reflections of the scattering curve
can only be detected in a reduced order number of diffraction.30-32

This phenomenon occurs if the liposomes contain Cd2+ ions.
The two-dimensional SAXS pattern monitored on the system
shows only one diffuse ring, as presented in Figure 1A. The
ring extends from 0.06 up to 0.24 1/Å in the scattering variable
scale, and it can be interpreted as a sum of the extremely
broadened first and second orders of reflection. This character
of the SAXS pattern indicates that the lamellarity, the correlation
of the bilayers, and the bilayer structure itself are severely
destroyed. More detailed information about the location of the
Cd ions can only be obtained by means of anomalous scattering.

These ASAXS curves exhibit great similarity, but the closer
inspection reveals that their shapes depend on the energy. The
closer the X-ray energy is to the cadmium absorption edge, the
smaller is the intensity. The difference in the ASAXS curves
measured at the two different energies, shown in Figure 1A, is
characteristic of the structure of the domains having the Cd ions
under investigation. Exactly, this difference provides information
about the displacement of the Cd ions. The separated curves
are due to the contrast variation resulting from the change in
energy, and the shape exhibits an inhomogeneous distribution
of Cd ions. It extends up to 5% in the beginning part of the
curve and vanishes at a scattering variable of about 0.05 1/Å,
indicating the formation of domains rich in Cd ions with a
characteristic size in the range of several hundred Å-s. Moreover,
the appearance of the diffuse peak in the separated curves
indicates that Cd ions are partly located in periodical shell forms
corresponding to the diffuse layer arrangement of the destroyed
liposomes.

An independent method, the freeze-fracture method, can
reveal the defects of the centrosymmetrical lamellar arrangement
of the vesicle. In Figure 1B, a vesicle completely broken through
is shown and its cross section exhibits a significant irregularity
between the lamellae. Some stacks of lamellae are crumpled
and gaps are visible between them, which may terminate the
long range periodicity, giving an explanation for the diffuse
character of the scattering pattern of the system having Cd ions.

Adding (NH4)2S to the system, the two-dimensional SAXS
pattern is drastically changed, as shown in Figure 2A. At least
three rings of the Bragg reflections appeared, indicating a
significant reconstruction of the ordered vesicle structure.
Presumably, the collapse of gaps filled with Cd ions occurs
during the formation of compact CdS particles. The position of
the first reflection corresponds to a periodicity of 65.1 Å, which
is slightly longer than that of the pure DPPC/water system (64.2
Å). The formation of the CdS particles with a cubic crystal
structure was confirmed by using wide angle X-ray diffraction
in agreement with the reported results.16 The electron micrograph
of a characteristic vesicle is presented in Figure 2B in which
we can observe the closely packed parallel layers in the outer
leaflets. This is the sign of a rearrangement of a more regular

VCd
2(q) ) 1

C(E1, E2, E3)[ ΔI(q, E1, E2)
f ′(E1) - f ′(E2)

-
ΔI(q, E1, E3)

f ′(E3) - f ′(E3)]
C(E1, E2, E3) ) f ′(E2) - f ′(E3) +

f ′′ 2(E1) - f ′′ 2(E2)
f ′(E1) - f ′(E2)

-

f ′′ 2(E1) - f ′′ 2(E3)
f ′(E1) - f ′(E3)

(4)
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layer structure, giving an explanation for the increased number
of the Bragg rings. What is even more interesting is that many
small grains appear, concentrated locally, in certain layers
between the stacks of lamellae. The characteristic size of these
particles falls into the range of approximately 5-10 nm.
Presumably, these grains are the agglomeration of the CdS
nanoparticles. The anomalous scattering provides more structural
information about these particles. The ASAXS curves measured
at three different energies, plotted in Figure 3A, indicate a trend;

the difference in the ASAXS curves diminishes with increasing
energy in the first part of the scattering variable range and the
differences between them vanish in the scattering variable range
of the first Bragg reflection, indicating that the Cd ions are not
located in a periodic arrangement of the multilayers. To
eliminate the scattering contribution of the vesicles, the mea-
surements were performed at three different energies; thus, we
can obtain the pure resonant term, as is described in the
Introduction.33,34 The separated and pure resonant curves exhibit
different shapes; the latter diminishes in a narrower range of
scattering variables than the former, as is shown in Figure 3B,
representing the importance of the determination of the pure

Figure 1. (A) Two-dimensional SAXS pattern of the multilamellar
dipalmitoylphosphatidylcholine (DPPC)/water vesicles having Cd(NO3)2
(0.05 Cd2+/lipid molar ratio, neutral buffer system, measured at 26 120
eV). The broadened single ring is the consequence of a weakly
correlated lamellar arrangement. The inset plot shows the shape of this
ring in the representation of the one-dimensional scattering intensity
vs the scattering variable (q). Moreover, the difference of two anomalous
small-angle X-ray scattering (ASAXS) curves measured at 26 120 and
26 711 eV is also plotted (blue line). The intense beginning part of
this separated form indicates larger domains rich in Cd2+ ions, and its
broadened peak with reduced intensity corresponds to the diffuse
character of the layer arrangement of the vesicles. (B) Surface
morphology of a giant vesicle broken through, completely. The regular,
periodic arrangement of shells is damaged; gaps between the stacks of
lamellae appear which are especially visible in the outer leaflets.

Figure 2. (A) Two-dimensional SAXS pattern of the multilamellar
DPPC/water vesicles having CdS nanoparticles. The Bragg reflections
appearing in three orders are unambiguous signs of the reconstructed
multilamellar arrangement. The inset plot exhibits the corresponding
one-dimensional scattering intensity vs the scattering variable (q). (B)
Fractured surface of the inert part of a giant vesicle broken through,
completely. Two types of the characteristic morphologies can be
recognized; the regular, periodic multilamellar arrangement in the outer
leaflets and the great number of CdS nanoparticles embedded between
the stacks of lamellae.
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resonant term. From this term, a characteristic average diameter
of 6.9 nm was derived by assumption of a log-normal size
distribution of a spherical form (Figure 4A) corresponding to
the next expressions:25

The characteristic size shows a very good agreement with
the estimation of the freeze-fracture method. Finally, the CdS
nanoparticles were separated from the vesicle system and their
size analysis was carried out by using transmission electron
microscopy (TEM) (Figure 4B). In the electron micrograph, less
spherical but rather squared stocky shaped particles appear and
their sizes (6-7 nm) fall exactly into the range of that deduced

by the freeze-fracture electron microscopy and more precisely
by the ASAXS method.

The application of the ASAXS technique proved to be a
useful tool not only to determine but also to follow the formation
of nanoparticles during their synthesis. This advantage of the
tunable synchrotron radiation may open further new perspectives
in nanotechnology.35 The simultaneous ASAXS studies of the
reaction zones of nanoparticles provide an observation and
regulation technique of the necessary engineering parameters
of synthesis without any separation of the nanoparticles that
are present in low concentration in the reaction medium.

Acknowledgment. We are grateful to T. Kiss and to Gy.
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The nanostructure of hydrogenated amorphous silicon-germanium alloys, a-Si1−xGex :H
�x=0.62–0.70�, prepared by the hot-wire deposition technique applying different substrate and
filament temperatures was analyzed by anomalous small-angle x-ray scattering experiments. The
pure-resonant scattering contribution, which is related to the structural distribution of the Ge
component in the alloy, was separated from the total small-angle scattering for one sample series.
For all alloys the Ge component was found to be inhomogeneously distributed. The shape of the
pure-resonant and the mixed-resonant scattering curves reveal significant differences indicating the
presence of a third phase, probably hydrogen clusters and/or voids. The thin films showed improved
microstructure when lowering the filament temperature to 1800 °C. Additional improvement was
achieved by optimizing the substrate temperature �between 260 and 305 °C� resulting in suggested
mass fractal structures of Ge with the fractal dimension p
1.6 and a size of about 40 nm. The
nature of the microstructural changes induced by changes in filament temperature compared to those
induced by the changes in substrate temperature were clearly different. The improved microstructure
of the alloys could be correlated with improved optoelectronic properties of the material. © 2006
American Institute of Physics. �DOI: 10.1063/1.2187088�

I. INTRODUCTION

Hydrogenated amorphous silicon-germanium alloys are
used in solar cell technology, where the germanium is added
to produce a lower band gap material to absorb the longer
wavelength photons of the solar spectrum and to achieve
higher efficiences. Previous small-angle x-ray scattering
�SAXS� and anomalous small-angle x-ray scattering
�ASAXS� studies revealed that, in addition to voids, nonuni-
formly distributed Ge contributes to the material
inhomogeneities,1–4 which are strongly related to the degra-
dation of the optoelectronic properties. In recent years there
has been a growing interest especially in the hot-wire
chemical-vapor depostion �HWCVD� technique5 due to the
evidence of improved stability and improved optoelectronic
properties of the material, as well as the potentially benefi-
cial manufacturing feature of higher deposition rates than the
current industrial technique of plasma-enhanced chemical-
vapor deposition �PECVD�.6,7 A group at National Renew-
able Energy Laboratory, U.S.A. �NREL� found evidence of
improved photoresponse from HWCVD a-SiGe:H alloys
with narrow bandgaps deposited at different filament tem-
peratures, filament diameters, and optimized substrate
temperatures.8,9 Here we report on ASAXS results from
a series of narrow band gap films �1.21 eV


Tauc gap �ETauc�
1.32 eV� made by HWCVD at differ-
ent filament and substrate temperatures. ASAXS enables the
structural characterization of inhomogeneously distributed
Ge in the material. The distribution of Ge is not accessible by
conventional SAXS measurements, because the scattering
contributions of the Ge-related structures cannot be distin-
guished from those of other inhomogeneities caused by voids
and/or hydrogen clusters.

II. ASAXS MEASUREMENTS

In the case of a ternary silicon-germanium-hydrogen al-
loy the scattering amplitude is

A�q� = �
Vp

��H�r�exp�− iqr�d3r + �
Vp

��Ge�r�

�exp�− iqr�d3r , �1�

where q is the magnitude of the scattering vector
�=�4� /��sin ��, 2� is the scattering angle, � the x-ray
wavelength, and Vp is the irradiated sample volume.
��H,��Ge are the difference electron densities of the hydro-
gen and the Ge atoms,

��H�r� = �fH · u�r� = �fH − �SiVH�u�r� ,
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��Ge�r,E� = �fGe�E�v�r�

= ��f0,Ge − �SiVGe� + fGe� �E� + ifGe� �E��v�r� ,

�2�

calculated from the electron density, �Si, of the silicon and
the atomic volumes of the hydrogen, VH, and the Ge atoms,
VGe, respectively, while u�r� ,v�r� are the number densities of
the H and Ge atoms, respectively. The atomic scattering fac-
tor of H �one electron�, fH�E��const, is nearly energy inde-
pendent, while the atomic scattering factor of the Ge atoms,
fGe�E�= f0,Ge+ fGe� �E�+ ifGe� �E�, shows strong variation with
the energy in the vicinity of the K-absorption edge of Ge due
to the so-called anomalous dispersion corrections
fGe� �E� , fGe� �E�. Calculating the scattering intensity I�q�
= �A�q��2=A�q�A*�q� by means of Eqs. �1� and �2� and aver-
aging over all orientations yields a sum of three contributions
I�q ,E�= �AH�q��2+ �AHGe�q ,E��2+ �AGe�q ,E��2, with the
integrals:10

SH�q� = �AH�q��2

= 4��fH
2�

Vp

� u�r�u�r��
sin�q�r − r���
q�r − r��

d3rd3r�,

SHGe�q,E� = �AHGe�q,E��2

= 4� · 2�fH�f0,Ge − �SiVGe

+ fGe� �E���
Vp

� u�r�v�r��

�
sin�q�r − r���
q�r − r��

d3rd3r�,

SGe�q,E� = �AGe�q,E��2

= 4� · ��fGe�E��2�
Vp

� v�r�v�r��

�
sin�q�r − r���
q�r − r��

d3rd3r�. �3�

Equations �3� give the nonresonant scattering of the H,
SH�q�, the cross-term or mixed-resonant scattering,
SHGe�q ,E�, originating from the superposition of the scatter-
ing amplitudes of the H and Ge atoms and the scattering of
the Ge, SGe�q ,E�, which contains the so-called pure-resonant
scattering. By measuring the scattering curves I�q ,E1�,
I�q ,E2�, and I�q ,E3� at three energies in the vicinity of the
K-absorption edge of Ge the two separated scattering curves
�I�q ,E1 ,E2�= I�q ,E1�− I�q ,E2� and �I�q ,E1 ,E3�= I�q ,E1�
− I�q ,E3� are obtained and from these the form factor,
SGe
form�q�, of the spatial distribution of the Ge component in
the alloy can be calculated as described in more detail in11

SGe
form�q� = 4��

Vp

� v�r�v�r��
sin�q�r − r���
q�r − r��

d3rd3r�

= 	 �I�q,E1,E2�
fGe� �E1� − fGe� �E2�

−
�I�q,E1,E3�

fGe� �E1� − fGe� �E3�



·
1

F�E1,E2,E3�
,

F�E1,E2,E3� = fGe� �E2� − fGe� �E3� +
fGe�2�E1� − fGe�2�E2�
fGe� �E1� − fGe� �E2�

−
fGe�2�E1� − fGe�2�E3�
fGe� �E1� − fGe� �E3�

. �4�

With Eq. �4� ASAXS provides a technique to access directly
the scattering of the Ge component and structural informa-
tion on the Ge distribution in the alloy can be obtained from
the analysis of the form factor SGe

form�q�. More generally, Eq.
�4� provides a method to access directly, by analytical means,
the pure-resonant scattering contribution by measuring the
small-angle scattering at only three suitable energies. From
SGe
form�q� the three basic scattering functions of Eq. �3� can be
calculated as is shown for the energies E1 and E2 as follows:

SGe�q,E1� = ��fGe�E1��2 · SGe
form�q� ,

SHGe�q,E1� = ��I�q,E1,E2� − SGe�q,E1�

+ SGe�q,E2��
�f0,Ge − �SiVGe� + fGe� �E1�

fGe� �E1� − fGe� �E2�
,

SH�q� = I�q,E1� − SHGe�q,E1� − SGe�q,E1� . �5�

In addition to the structural information obtained from the
three basic functions, important quantitatve information re-
lated to the amount of H and Ge localized in different types
of inhomogeneities can be deduced from the integrals of the
basic scattering functions. The integral of the total scattering
curve I�q ,E� �the so-called invariant12� can be correlated to
the photoconductivity as shown later.

Qtot�E� =
1

4�
�
Q

I�q,E�d3q ,

QGe�E� =
1

4�
�
Q

SGe�q,E�d3q ,

QH =
1

4�
�
Q

SH�q�d3q . �6�

III. EXPERIMENT

Two series of HWCVD films �0.60
x
0.70� were
made at NREL applying different filament and substrate tem-
peratures, Tf and Ts, respectively. The deposition conditions
are described elsewhere along with some optoelectronic
properties of the first series of such alloys made by the
HWCVD method.6 For ASAXS, films were deposited on
high purity, 10-�m-thick Al foils, which were then folded
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into four layers �one into eight layers� for the ASAXS mea-
surements. Table I summarizes deposition parameters, film
thickness, and optoelectronic parameters of the samples un-
der investigation.

The ASAXS measurements were carried out at the
JUSIFA beamline at HASYLAB, DESY Hamburg.13 Mea-
surements were made for each sample with a two-
dimensional detector at four energies. A q range from about
0.06–7 nm−1 �fix exponent—note� was covered. Table II
provides the anomalous dispersion corrections for Si and Ge
at the four energies used here based on the calculations of
Cromer and Liberman.14,15 These were used to permit the
separation of the Ge-related pure-resonant scattering de-
scribed in detail by Eqs. �1�–�5�. From the four energies dif-
ferent combinations, E1, E2, and E3 and E1, E2, and E4, were
used to calculate the form factor of the spatial Ge distri-
buiton in the alloy. Constant background effects due to dif-
fuse scattering1 and due to resonant Raman scattering occur-
ing near the K-absorption edge at 11.103 keV have been
subtracted from the measured intensities. The scattering in-
tensity is calibrated into macroscopic scattering cross section
in units of cross section per unit volume �cm2/cm3�
= �cm−1�.

IV. RESULTS

Figures 1�a� and 1�b� show the total �a� and separated �b�
scattering curves of the series 1 of HWCVD-alloys prepared

at different Tf between 1750 and 2150 °C and a fixed Ts of
180 °C. The separated scattering curves were obtained by
subtracting the total scattering curves measured at the ener-
gies 11 083 and 10 053 eV. The SAXS curves strongly de-
pend on the filament temperature especially in the q range
between 0.2 and 5 nm−1. The integrated SAXS Qtot

�invariant—Eq. �6�� shows a monotonic increase with the
filament temperature �Fig. 2 left ordinate� and is correlated
with a strong decrease of the photoconductivity of the films
�Fig. 2 right ordinate�. No pure-resonant scattering contribu-
tion could be obtained from this series. When calculating the
SGe
form�q� of the pure-resonant scattering contribution �Eq. �4��
the data points scatter along the abscissa indicating little or
no pure-resonant contribution �probably less than 0.001 of
the total scattering�.

The second series �variable Ts� shows a completely dif-
ferent behavior. Figures 3–5 show the scattering curves of
three samples from the second series prepared at a fixed Tf

and the three substrate temperatures, Ts=360, 305, and
210 °C. The circles represent the total scattering curves mea-
sured at 10 053 eV, while the squares show the separated
scattering curves �mixed resonant� obtained from SAXS
measurements at the two energies 10 053 and 11 083 eV.
When calculating the SGe

form�q� of the spatial distribution of
Ge �Eq. �4�� for all six samples, significant scattering cross
sections were obtained �triangles�. The integrated form factor
amounts to between 0.4% and 5% of the integrated total
scattering intensity �last column in Table III�. From the dif-
ferent combinations of the energies E1, E2, and E3 and E1,
E2, and E4, form factors with the same shape within the error
bars were obtained and for the further calculations the aver-
aged form factor of the two calculations was employed. The
triangles in Figs. 3–5 represent the form factors of three
samples and the solid lines passing through the data points
are fitted model functions according to the following q de-
pendence:

TABLE I. Amorphous silicon-germanium alloys a-SixGe1−x :H prepared by the HWCVD technique at different
filament and substrate temperatures Tf and TS. CH is the hydrogen content and ETauc the materials band gap and
d the thickness of the films. In the eighth column the calculated atomic number densities of Ge in the alloys are
listed assuming a mass density of 96% that of c-Si1−xGex. The last two columns give the photoconductivities
�PC� and the deposition rates �DR�, respectively.

Sample
series

Tf

�°C�
TS

�°C� x
CH

�at %�
ETauc

�eV�
d

��m�

nGe
1022

�cm−3�

PC
10−6

�Ohm cm�−1
DR

�nm/sec�

L990 2150 180 0.62 15.0 1.30 0.53 2.611 0.239 0.89
L991 2065 180 0.63 15.2 1.29 0.51 2.653 0.28 0.75
L992 1975 180 0.64 15.5 1.28 0.54 2.695 0.356 0.64
L993 1885 180 0.64 15.8 1.28 0.44 2.695 0.751 0.46
L994 1800 180 0.67 14.5 1.25 0.33 2.821 6.11 0.27
L995 1750 180 0.70 12.5 1.22 0.32 2.948 5.11 0.14

Series
L998 1800 360 0.60 3.0 1.21 0.45 2.527 0.353 0.37
L999 1800 305 0.63 5.0 1.24 0.42 2.653 0.898 0.32
L1000 1800 260 0.64 9.5 1.27 0.48 2.695 1.95 0.33
L1001 1800 210 0.66 12.0 1.29 0.49 2.779 2.10 0.33
L1002 1800 159 0.68 19.0 1.31 0.49 2.864 0.825 0.33
L1003 1800 130 0.69 21.0 1.32 0.48 2.906 0.965 0.32

TABLE II. Anomalous dispersion corrections of Si and Ge �Refs. 14 and
15�.

No.
E

�keV� fGe� fGe� fSi� fSi�

1 10.053 −2.093 0.592 0.181 0.215
2 10.996 −4.005 0.504 0.158 0.180
3 11.083 −5.996 0.495 0.155 0.176
4 11.098 −7.458 0.493 0.155 0.176

084309-3 G. J. Goerigk and D. L. Williamson J. Appl. Phys. 99, 084309 �2006�

Downloaded 28 Apr 2006 to 131.169.66.231. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



SGe
form�q� = A exp�− q2Rg

2

3
� + B exp�− q2Rsub

2

3
�

�� �erf�qRg/�6��3

q
�p

. �7�

Equation �7� represents the Unified Exponential/Power-
Law Approach of Beaucage16 and can be used for the analy-
sis of small-angle scattering curves from complex systems
that contain multiple levels of related structural features such
as mass fractals, where two structural levels are the overall
radius of gyration Rg and a substructural length Rsub. The
fractal nature of the system can be deduced from the power-
law exponent p. If I�q� varies as q−p in a q range with qRg

�1, then p
3 denotes a system that may be a mass fractal
and 3
p
4 corresponds to a surface fractal. As can be seen
from Figs. 3 and 5, relatively large error bars and scattering
of the data points occur for the curves representing the form
factor of the Ge component. Due to this it was not possible to
obtain a reliable value of Rsub for the sample prepared at the
substrate temperature of 360 °C. Furthermore the Ge form
factors of the three samples with the lower substrate tem-
peratures �130, 159, and 210 °C� show a strong decrease
with the result of statistically noisy data �Fig. 5�. Especially
at q values beyond 3 nm−1 the data points scatter around zero
causing strong variations of the fitted power-law exponent.
This is demonstrated in Fig. 5 by the two solid lines, which
represent different fits of the model function, when the fitting
procedure is restricted to different q intervals. From the form
factors of these three samples no reliable structure informa-
tion concerning the power-law exponent could be obtained.
Table III summarizes the results for the samples of the sec-
ond series obtained from the fitting procedure. Beaucage’s
model is used in the following course of the paper for a
quantitative description of suggested fractal structures, be-
cause other models such as a bimodal size distribution of

FIG. 1. �Color� SAXS curves obtained from hot-wire deposited Si1−xGex
alloys. The scattering curves of Fig. 1�a� show the total scattering measured
at 10.053 keV from the samples of the first series, which was prepared at
different filament temperatures. Figure 1�b� shows the separated scattering
curves obtained from the total scattering of Figure 1 and a second SAXS
measurement at 11.083 keV. The cross section of the total �a� and the sepa-
rated �b� scattering curves is consequently reduced over the entire q range
with each temperature step. The alternating color sequence �black, red,
black, red, black, and red� in both fig. ��a� and �b�� from the top to the
bottom curve follows the temperature sequence.

FIG. 2. Total integrated scattering and photoconductivities �right ordinate�
of the filament samples plotted vs the filament temperature.

084309-4 G. J. Goerigk and D. L. Williamson J. Appl. Phys. 99, 084309 �2006�

Downloaded 28 Apr 2006 to 131.169.66.231. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



spherically shaped clusters or a size distribution of cylinders
failed, when employed to fit the form factors of the Ge com-
ponent. Definitive proof of fractal structures in these alloys
will require further research.

V. DISCUSSION

As mentioned in the previous chapter the data points
scatter around zero when calculating the form factor,
SGe
form�q�, of the Tf series indicating that the variation of the
scattering curves due to the pure-resonant scattering contri-
bution is so small it cannot be resolved. On the other hand
the separated scattering curves �Fig. 1�b�� from two energies
show clearly that the Ge must be inhomogeneously distrib-
uted in the alloy. Additionally one can note that the separated

TABLE III. Fit results of the six substrate alloys based on Eq. �6�. The fitted
scattering curves of the alloys with TS=360, 305, 210 °C are plotted in Figs.
3–5. The parameters with quotation mark indicate the fits to the form factors
with poor or no statistical significance at the higher q values. The last col-
umn gives the amount of the integrated form factor to the integrated total
scattering.

TS

�°C�
A

�cm−1�
Rg

�nm�
Rsub

�nm�
B�10−4

�cm−1� p
QGe
form/Qtot

�%�

360 88.3 22.3 ¯ 14.26 1.58 1.07
305 185.9 19.3 0.4 21.91 1.56 3.92
260 177.6 18.9 0.3 20.03 1.37 4.87
210 106.0 19.2 ¯ 0.02�?� 3.4 �?� 0.41
159 316.7 18.9 ¯ 0.18�?� 2.8 �?� 0.68
130 119.5 21.0 ¯ 1.08�?� 1.9 �?� 0.75

FIG. 3. Total scattering, separated scattering and the form factor of the
pure-resonant scattering contribution of one sample from the second series
prepared at the substrate temperature of 360 °C. The solid line represents
the fractal model function. The origin of the peaklike structure at 4.5 nm−1

in the total scattering curve is unknown.

FIG. 4. Total scattering, separated scattering, and the form factor of the
pure-resonant scattering contribution of one sample from the second series
prepared at the substrate temperature of 305 °C. The solid line represents
the fractal model function.

FIG. 5. Total scattering, separated scattering, and the form factor of the
pure-resonant scattering contribution of one sample from the second series
prepared at the substrate temperature of 210 °C. The solid line represents
the fractal model function.
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scattering curves have similar or identical shape compared to
the related total scattering curves. The most probable expla-
nation for this behavior is the presence of voids or a two-
phase mixture in the alloys especially at the temperatures
beyond Tf=1800 °C as discussed in an earlier paper.3 It is
noteworthy that the asymptotic behavior of the scattering
curves change from a q−4 behavior �smooth interfaces� to a
different power law with an exponent smaller than 4 at the
two lower filament temperatures, where the invariant is di-
minished by an order of magnitude. Due to the minimum of
the integrated intensity at the lowest filament temperature the
film reaches a minimum of inhomogeneity at 1750 °C.

The scattering curves of the second sample series show a
significantly different behavior. Again the scattering curves
strongly depend on the preparation parameters, here the
variation of the substrate temperature. But in contrast to the
Tf series the form factor, SGe

form�q�, can be extracted for all
samples of the Ts series. The shape of the separated �mixed
resonant� and the pure-resonant �Ge form factor� scattering
curves reveal significant differences indicating the presence
of a third phase probably voids or hydrogen clusters. From
three phases—for example, a region in the alloy with Si con-
taining only a small amount of Ge and H, a second region
with a higher amount of Ge and additional H, and finally
voids with only small amount of H—the two difference elec-
tron densities ��H,��Ge of Eq. �2� originate. Because the
functions u�r� ,v�r�, which describe the spatial distributions
of H and Ge atoms, respectively, are different, the shape of
the separated scattering curve changes with the energy, be-
cause it is composed of the two contributions, SHGe�q ,E�,
SGe�q ,E�, which contribute differently at different energies.
Due to this the separated scattering curves and the form fac-
tors of Figs. 3–5 show different shape. In the case of a two-
phase mixture �only one contrast� the functions, u�r� ,v�r�,
are linearly dependent and the basic functions of Eq. �3�
simply scale.

Figure 6�a� shows on the left ordinate the integrated in-
tensity �invariant� of the Ts series with a minimum at
260 °C. For comparison the integrated intensity of the pure-
resonant scattering, which was calculated from the Ge form
factor �Eqs. �5��, divided by the invariant QGe/Qtot �Eqs. �6��
is plotted on the right ordinate. While the invariant reaches a
minimum the ratio of integrated pure-resonant and total scat-
tering reaches a maximum at the same Ts=260 °C. The
mixed-resonant and the nonresonant scattering contributions
were calculated from Eqs. �5�. The integrals of Eqs. �3� de-
fine a symmetric, positive definite bilinear form in the space
of functions. Due to this the Cauchy-Schwarz-Inequation
must be valid SHGe

2 �4·SGe·SH. The basic functions calcu-
lated from Eqs. �5� fulfill this inequation within the error
bars. From these scattering curves the integrated scattering
QHGe, QH and subsequently the ratios QHGe/Qtot and QH/Qtot

were calculated. The results are shown in Fig. 6�b�. The sign
of the mixed-resonant scattering contribution �right ordinate
of Fig. 6�b�� is negative due to the negative sign of the elec-
tron density difference caused by the hydrogen atoms in the
amorphous Si matrix �Eqs. �3� and �5��. The absolute units of
the three scattering contributions can be obtained by multi-
plying the normalized values with the related values of the

invariant, which can be read on the left ordinate of Fig. 6�a�.
From Figs. 6�a� and 6�b� it is obvious that the total small-
angle scattering reaches a minimum while the ratio of inte-
grated pure-resonant and total scattering QGe/Qtot reaches a
maximum at 260 °C, i.e., the formation of Ge-related �frac-
tal� structures reaches a relative maximum while the degree
of total inhomogenity in the film is declining as Ts ap-
proaches this intermediate substrate temperature.

This can be expressed more quantitatively. Because
voids contribute to the scattering nearly in the same way as
H �Ref. 17� the following argumentation will hold for hydro-
gen clusters and voids. The integrated intensities of Eqs.
�6�12 are

QGe�E� = �2��3r0
2 · �fGe

2 �E��nGe
2 · �Ge�1 − �Ge� ,

QH = �2��3r0
2 · �fH

2 · �nH
2 · �H�1 − �H� , �8�

where �nGe, �nH are the excess atomic number densities of
Ge and hydrogen �and/or voids� with respect to the surround-
ing matrix and �Ge,�H are the volume fractions of the in-
homogeneities caused by Ge and hydrogen clusters �and/or
voids�, respectively. r0=2.82�10−13 cm is the classical elec-
tron radius. From the integrated intensities QGe, QH the quan-
tities nGe

f ,nH
f can be calculated, where the index f indicates a

FIG. 6. The integrated intensities �invariant� of: �a� the total scattering Qtot

�left ordinate�, �a� the normalized pure-resonant scattering QGe/Qtot �right�,
�b� the normalized nonresonant scattering QH/Qtot �left� and �b� the normal-
ized mixed-resonant scattering QHGe/Qtot �right�. Note the negative sign of
the mixed-resonant contribution. The absolute units of QGe, QHGe, and QH

can be obtained by multiplying with the related total scattering in Fig. 6�a�.
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fraction of Ge and H atoms �and/or voids�, respectively

nGe
f = �nGe��Ge�1 − �Ge� =� QGe�E�

�2��3r0
2 · �fGe

2 �E�
,

nH
f = �nH��H�1 − �H� =� QH

�2��3r0
2 · �fH

2 . �9�

The product between the equal signs is composed from
the contrast between the atomic number densities in the in-
homogeneities and the surrounding matrix and the volume
fractions of inhomogeneities caused by Ge and H �and/or
voids�, respectively. For the determination of both—contrast
and volume fraction—SAXS measurements at more than
three or four energies are neccessary as was outlined in a
previous publication.3 This is beyond the scope of the
present investigation but nevertheless the quantities nGe

f , nH
f

give the number densities of Ge and H atoms �and/or voids�
in the sample, which contribute to the small-angle scattering,
i.e., nGe

f , nH
f give the numbers of Ge and H atoms �and/or

voids� which are inhomogeneously distributed.
Figure 7�a� shows nGe

f normalized to the atomic number
density of Ge atoms in the sample nGe �eighth column of
Table I� plotted versus the substrate temperature. In this dia-

gram two groups of samples can be distinguished, which
correspond to the sharp decrease in Fig. 7�a� at a substrate
temperature below 260 °C. At Ts=260 °C and beyond, more
than 60% of the Ge atoms are localized in the fractal struc-
tures, while at the lower Ts the amount of Ge atoms incor-
porated into the fractals is strongly reduced. This can be due
to the reduction of the volume fraction �less fractals� or due
to the reduction of the contrast between the fractals and the
surrounding matrix by reducing the number of Ge atoms in
the fractals, or due to both. As a consequence a larger
amount of Ge atoms remains homogeneously distributed in
the matrix for the lower substrate temperatures.

Finally, it should be possible to gain structural and quan-
titative information about the hydrogen clusters or voids
from the analysis of the nonresonant scattering contribution
and the quantity nH

f . Again, it is not possible to distinguish
between the contrast of the atomic number densities and the
volume fraction filled by hydrogen or voids, but the normal-
ization to the hydrogen concentration in the alloys can give
interesting information as is shown in Fig. 7�b�. The triangles
in Fig. 7�b� represent nH

f /nH, which is the quantity nH
f of Eq.

�9� normalized to the hydrogen concentration nH, which was
calculated from the fifth column in Table I. Especially for the
temperatures beyond 250 °C the ratio shows values which
are far too high, i.e., 20, 40, and 60 times higher than ex-
pected from the hydrogen concentration. From this the con-
clusion can be drawn that the nonresonant scattering repre-
sents not only the scattering of hydrogen-filled
inhomogeneities but also gives evidence for the existence of
voids, which dominate the nonresonant scattering contribu-
tion. When the integral intensity of the nonresonant contri-
bution is calculated in the q range between 1 and 3 nm−1

�corresponding to structure sizes between 3 and 1 nm� the
integral value reaches more than 50% of the value obtained
from the overall integration, while the integration in the q
range between 0.06 and 0.2 nm−1 �corresponding to structure
sizes between 50 and 15 nm� shows only weak dependence
on the temperature with clearly lower values of nH

f /nH. So
one can conclude that the ratio nH

f /nH represents the ratio of
voids to hydrogen atoms �i.e., the volume fractions� and that
the nonresonant scattering contribution is clearly dominated
by the scattering of voids with sizes of about several nanom-
eters at higher substrate temperatures. These voids are
strongly reduced when the substrate temperature is reduced
and the optimum is reached, when the formation of the Ge
mass fractals reaches a relative maximum in coincidence
with a strongly reduced void fraction.

This can be demonstrated by the correlation of the inte-
grated total scattering Qtot with the measured values of the
photoconductivity of the Ts series shown in Fig. 8. The pho-
toconductivity reaches maximum values where the integrated
total intensities Qtot reaches minimum values at Ts=210 and
260 °C. The minimum value at 260 °C is produced by the
high amount of the mixed-resonant contribution SHGe�q ,E� at
this temperature �Fig. 7�b� right ordinate� caused by a large
value of the convolution integral in Eq. �3� with respect to
the total scattering. Note that the negative sign is introduced
by the negative sign of the contrast �fH. The large value of
the convolution integral indicates a strong overlap in space

FIG. 7. The fraction of Ge atoms implemented in the suggested fractal
structure �a�. The ratio of void scattering relative to the scattering expected
from the hydrogen implemented in the amorphous matrix �b�.
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of the two number density functions u�r� ,v�r� of H and Ge
atoms and from this it can be concluded that a larger amount
of H atoms is probably bonded to Ge atoms. This is con-
firmed by IR results, which show a maximum of Ge–H bond-
ing fraction at 260 °C.8,9 At 210 °C the photoconductivity is
still high though the amount of the mixed-resonant contribu-
tion is strongly reduced. Here the competing influence of the
voids comes into play. Because a strong reduction of the void
fraction is still going on when Ts is reduced to 210 °C �Fig.
7�b�� the photoconductivity remains high though the fraction
of Ge–H bonding starts to decline �known from IR
measurements8,9� due to the reduced number of Ge atoms
incorporated in the fractals. For the two lowest values of Ts

159 and 130 °C no further reduction of voids takes place and
the number of Ge atoms incorporated in the fractals remains
on a low level with the result of low photoconductivities.

VI. CONCLUSIONS

ASAXS measurements obtained from hot wire deposited
a-Si1−xGex :H alloys with x between 0.6 and 0.7 reveal clear
evidence of nonuniformly distributed Ge. Due to the prepa-
ration parameters strong differences of the material nano-
structures were found. From the separation of the pure-
resonant scattering contribution, the alloys Ge component is
suggested to be mainly distributed in mass fractals with the
fractal dimension between 1.3 and 1.6 and sizes of about
40 nm. More than 60% of the Ge atoms are incorporated in
these structures at substrate temperatures beyond 250 °C.

This amount is drastically reduced when lowering the sub-
strate temperature. From the nonresonant scattering, evi-
dence for the existence of voids with a size of a few nanom-
eters was found. The scattering of the voids exceeds the
scattering expected from hydrogen clusters by more than one
order of magnitude. Improved material properties are
reached at a substrate temperature of 260 °C, where the for-
mation of the suggested mass fractals caused by nonuni-
formly distributed Ge reaches a relative maximum in coinci-
dence with a strongly reduced void fraction, and increased
H–Ge bonding.

The effect of the Tf reduction at fixed Ts was to dramati-
cally reduce the voids and Ge nonuniformity and thereby
improve the photoconductivity by about a factor of 20. A
further optimization by varying Ts at fixed Tf produced dif-
ferent changes in the Ge substructure indicative of enhanced
Ge mass fractals, in addition to void reduction, that also
improved the photoconduvtivity by about a factor of 5.
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Abstract. Anionic polyacrylate chains (NaPA) form precipitates if alkaline earth cations are added in stoi-
chiometric amounts. Accordingly, precipitation thresholds were established for three different alkaline earth
cations Ca2+, Sr2+ and Ba2+. Close to the precipitation threshold, the NaPA chains significantly decrease
in size. This shrinking process was followed by means of combined static and dynamic light scattering.
Intermediates were generated by varying the ratio [MCl2]/[NaPA] with M denoting the respective alkaline
earth cation. All experiments were performed at an inert salt level of 0.01 M NaCl. Similar coil-to-sphere
transitions could be observed with all three alkaline earth cations Ca2+, Sr2+ and Ba2+. Based on these
findings, supplementary conventional and anomalous small-angle X-ray scattering experiments using se-
lected intermediates close to the precipitation threshold of SrPA were performed. The distribution of Sr
counterions around the polyacrylate chains in aqueous solution provided the desired scattering contrast.
Energy-dependent scattering experiments enabled successful separation of the pure-resonant terms, which
solely stem from the counterions. The Sr2+ scattering roughly reflects the monomer distribution of the
polyacrylate chains. Different ratios of the concentrations of [SrCl2]/[NaPA] revealed dramatic changes
in the scattering curves. The scattering curve at the lowest ratio indicated an almost coil-like behaviour,
while at the higher ratios the scattering curves supported the model of highly contracted polymer chains.
Most of X-ray scattering experiments on intermediate states revealed compact structural elements which
were significantly smaller than the respective overall size of the NaPA particles.

PACS. 61.10.Eq X-ray scattering (including small-angle scattering) – 82.35.Rs Polyelectrolytes – 78.35.+c
Brillouin and Rayleigh scattering; other light scattering

1 Introduction

Polyelectrolytes are electrically charged, water soluble
macromolecules. Due to intramolecular electrostatic in-
teractions, the dissolved chains are highly extended. Ad-
dition of an inert salt screens these interactions and mod-
ifies the solubility and conformation of the polyelectrolyte
chains. If the inert salt level is high enough, the chains
can be described by the model of a random walk, also de-
noted as unperturbed or Θ-dimensions of the chain [1,2].
For sodium polyacrylate (NaPA) in water, this state is
achieved by addition of roughly 1.5 moles of alkali halo-
genides per liter [3–5].

Contrary to this non-specific screening with inert salts,
earth alkaline cations strongly interact with the carboxy-
late functions of the anionic PA-backbone. The largest

a e-mail: klaus.huber@upb.de

body of evidence, provided for such specific interactions,
also denoted as complex bonding, deals with the inter-
action between Ca2+ and anionic acrylates. This specific
bond formation is driven partly by the liberation of wa-
ter molecules from the hydration shells around the ionic
residuals [6,7]. Complex bonding of the Ca2+ also neu-
tralizes the NaPA chains [8–12], increases the hydropho-
bic nature of the backbone and eventually leads to a chain
collapse [11–13]. The chain collapse borders precipitation
of the resulting CaPA [8–10]. Therefore, investigation of
the collapse mechanism is most promising close to the pre-
cipitation threshold [11–13].

By means of combined light scattering and small-angle
neutron scattering (SANS), it was possible to present first
evidence for the existence of CaPA intermediates with
pearl-necklace–like structures [14] in solution. Agreement
between scattering experiments and model scattering
curves was best under the assumption that intermediates
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comprise a mixture of single spheres and pearl necklace
chains with a very low average number of pearls per poly-
electrolyte chain [14–16]. The shrinking process ended
with the approach of a compact sphere-like shape [13].
Further indication for highly dense domains within poly-
electrolyte chains was provided by NMR experiments [17],
by ellipsometry [18], by small-angle X-ray [19–22] and
anomalous small-angle X-ray scattering [11,23], by small-
angle neutron scattering [24–26] and by AFM [20,27]. Part
of the results refers to single-chain behaviour under dilute-
solution conditions [11,17,18,21–24,27]. Various SAXS
and SANS experiments, however, predominantly deal with
semi-dilute solutions of the polyelectrolyte [19,20,25,26],
which makes conclusions on single-chain behaviour in di-
lute solution difficult. In most cases, the impact of specif-
ically interacting cations was investigated [11,17,22,23,
25,26]. In other cases, contraction of the polyelectrolyte
was induced by chemical variation of the charge frac-
tion on the polyelectrolyte chains [18–20], by lowering the
pH [21], by addition of an organic solvent to aqueous so-
lutions [24] or by addition of an inert salt [27]. Only some
of those authors attempted to explicitly discriminate be-
tween compact spheres and pearl necklace chains [18,23,
24,27], or at least considered their results to be a conse-
quence of pearl necklace chains [17,20,21]. Although, the
AFM technique revealed the first direct evidence of pearl
necklace chains [27], results measured with dried films can-
not be unambiguously transferred to the original solution.
The same principal reservation holds for the ellipsometric
study [18]. Thus, the body of experimental evidence on
pearl necklace chains and conditions under which pearl
necklace chains may exist is still extremely poor.

Pearl necklace structures are introduced as interme-
diates of collapsing polyelectrolyte chains by theoretical
calculations by Kantor and Kardar [28] and Rubinstein et
al. [29]. The pearl necklace shape resulted from an anal-
ogy between the shrinking polyelectrolyte chain and the
Rayleigh instability of charged oil droplets. The collapse
could be induced by a subtle interplay of changes of the
solvent quality, of the number of charges per chain and of
the strength of electrostatic interactions. A crucial part of
the process is the condensation of counterions. However,
the range of parameters, where pearl-necklace–like shapes
are likely to occur is fairly narrow [15,30,31]. A neces-
sary prerequisite for the generation of pearl-necklace–like
transition states is a hydrophobic backbone and a possi-
bility to tune the charge of the chains [15,30,31], e.g. by
addition of specifically interacting counterions.

If specific interactions between anionic polyacrylate
in solution and alkaline earth cations or transition metal
cations are to be investigated, small-angle X-ray scattering
(SAXS) is a highly promising method. Complex bonding
fixes the counterions at COO− residuals and decorates the
shrinking chain with a component of high electron density.
Thus, the chains act as a template and may provide access
to their shape. Above this, anomalous small-angle X-ray
scattering (ASAXS) offers additional information if the
wavelength of the scattered X-rays is varied [32–38]. This
enabled Goerigk et al. [23] and Ballauff et al. [37,38] for

the first time to isolate the scattering factor of the counte-
rions condensing on polyelectrolytes. In the present case,
variation of the wavelength changes the scattering con-
trast of divalent strontium cations at a roughly constant
scattering contrast of the anionic chains, which host the
cations. However, this requires the extension of preceding
results [12–14] on heavier alkaline earth cations.

Thus, the phase behaviour and shrinking process
established for the precipitation of NaPA with Ca2+

ions [12–14] shall be extended to Ba2+ and Sr2+ in the
present investigation. Combined static and dynamic light
scattering is applied to locate the phase boundary of the
respective M2+-PA precipitation and to characterize the
global dimensions of the chains while approaching the
phase boundary [13]. The use of three different alkaline
earth cations allows for a comparison of cations within
the homologous series of alkaline earth cations. At the
same time the phase behaviour of the cations with the
higher-order number allows to design SAXS and ASAXS
experiments of the PA shrinking. Hence, sets of solutions
with Sr2+ including two different NaPA samples were se-
lected for further SAXS and ASAXS experiments. Results
are expected to yield new insight into the shape of the PA
chains collapsing near the phase boundary.

2 Experimental

2.1 Materials

The NaPA samples were purchased from Polysciences, Ep-
pelheim (Germany). Two NaPA samples with different
molar mass were used. Light scattering revealed a weight
averaged molar mass Mw = 950 kDa (PA1) and 3300 kDa
(PA2). The polydispersity index is Mw/Mn = 1.2 for both
samples, where Mn and Mw is the number averaged and
weight averaged molar mass, respectively [5]. The inor-
ganic salts, NaCl and CaCl2, SrCl2 and BaCl2 were pur-
chased from Fluka, Buchs (Switzerland) with puriss. p. a.
grade.

2.2 Preparation of solutions for light scattering

Preparation of the solutions for light scattering was per-
formed according to two different procedures (route 1 and
route 2 ). The procedure was introduced elsewhere [13] and
will be outlined by means of Sr2+.

Route 1. Preparation of NaPA solutions with Sr2+ in aque-
ous NaCl was performed in two steps. In the first step, a
solution of NaPA in bidistilled water with 0.01M NaCl at
pH 9 (solution I) was prepared together with another so-
lution of 3mM SrCl2 and 4mM NaCl in bidistilled water
at pH 9 (solution II). The pH was set with 0.01M NaOH.
It is noteworthy to mention that both solutions had the
same number of cationic charges, which was

2[Sr2+] + [Na+] = 0.01M. (1)
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After 3 days of storage, equal volumes of both solutions
were combined. Thus, a stock solution of NaPA in dis-
tilled water with 1.5mM SrCl2 and 7mM NaCl with a pH
of 9 was obtained (solution III). In an analoguous way,
an amount of solution II was combined with an equal
amount of bidistilled water with 0.01M NaCl, resulting in
an NaPA-free solution of 1.5mM SrCl2 and 7mM NaCl at
a pH of 9 (solution IV). Solution IV is denoted as solvent
and served as the solvent background for all scattering
experiments.

The phase boundary for Sr2+-PA precipitation was ap-
proached by diluting the stock solution (III) with the sol-
vent (IV). By means of this procedure [13], different ratios
of [Sr2+]/[NaPA] were obtained at constant concentrations
of [Sr2+] and [Na+]. As the shape of the polymer chains in
solution depends on the extent of complexation, different
ratios correspond to different intermediates, bordering the
precipitation threshold of SrPA.

Route 2. In the first step, three different solutions were
generated. A NaPA solution was prepared with 0.01M
NaCl and a pH of 9 (solution I). A second solution with
pure SrCl2 at pH of 9 was set to [SrCl2] = 0.005mM, ready
to provide the Sr2+ ions. A third solution at pH = 9 con-
tained only NaCl at [NaCl] = 0.01M (solution III). Finally
10mL of solution I was combined with X ml of solution
II in a 20ml graduated flask. The flask was filled to the
mark with (10 − X)mL of solution III. The correspond-
ing solvent background was generated in the same way
with 10mL of solution III instead of solution I. The phase
boundary was approached by increasing X in the range of
0mL < X mL < 10mL.

2.3 Light scattering

An ALV 5000E Compact Goniometer System with a
100mW Nd:YAG laser as a light source was used. The
scattering intensity was recorded with a photomultiplier
in an angular range of 30◦ to 150◦ in steps of 10◦. Net
scattering intensities of polymers were expressed in terms
of the Rayleigh ratio ΔRθ with ΔRθ referring to the
Rayleigh ratio of the standard toluene at 298.15K, R =
2.737∗10−5 cm−1. Data from static light scattering (SLS)
were extrapolated to zero scattering angle according to

K · c
ΔRθ

=
1

Mw
+

R2
g

3Mw
· q2 (2)

with K being the contrast constant, c the polymer
concentration in g/mL, Mw the apparent molecular
weight, R2

g the z-averaged squared radius of gyration and
q the momentum transfer

q =
4πn

λ0
sin

(
θ

2

)
. (3)

In equation (3), n is the refractive index at 532 nm of
0.01M NaCl being 1.336, λ0 is the laser wavelength in
vacuum being 532 nm and θ is the scattering angle.

Correlation functions from dynamic light scattering
(DLS) were evaluated by application of the cumulant
method [39] with linear and quadratic terms of the corre-
lation time t. The resulting diffusion coefficients D(q) were
extrapolated to zero momentum transfer according to

D(q) = DZ

(
1 + CR2

gq
2
)
. (4)

Here, C denotes a dimensionless shape sensitive constant
and DZ is the extrapolated diffusion coefficient. The lat-
ter can be transformed into a hydrodynamically effective
radius Rh by use of the Stokes-Einstein equation:

Rh =
kB · T
6π · η · 1

DZ
(5)

with kB being the Boltzmann constant, η = 890.37μPas
the solvent viscosity of 0.01M NaCl and T the absolute
temperature.

All samples were located close to the phase bound-
ary where the intramolecular shrinking process may in-
creasingly compete with the onset of precipitation. Thus,
care had to be taken to identify and discard samples with
aggregates. Identification of the onset of aggregation was
achieved by using two criteria, evaluated with LS. The first
criterion was a significant increase of the apparent molar
mass detected by SLS. The second criterion was based on
the CONTIN analysis of the correlation functions from
DLS. The CONTIN method [40] allows for distinguish-
ing different diffusive modes, therefore directly indicating
aggregation if a mode in addition to the diffusion of the
single chains became observable.

2.4 Preparation of solutions for SAXS and ASAXS
experiments

SAXS and ASAXS experiments were performed with two
NaPA samples, PA1 and PA2. A series denoted SAXS-2
with two different ratios [Sr2+]/[NaPA] was prepared for
the higher molar mass sample PA2, at [Sr2+] = 1mM, ac-
cording to route 2. Both solutions were fully characterised
by LS prior to the SAXS experiment. The solutions were
denoted SAXS-2A and SAXS-2B. Solution SAXS-2B was
further apart from the phase boundary than SAXS-2A.

Two series with varying ratio [Sr2+]/[NaPA], denoted
as SAXS-1 and ASAXS-1, were prepared with sample
PA1. Both series were generated according to route 1 at
a level of alkaline earth cations of [Sr2+] = 1.5mM. Se-
ries SAXS-1 was originally investigated at three differ-
ent energies to additionally account for anomalous scat-
tering. Corresponding ASAXS results have already been
published [23] and we only review the total SAXS curves
of series SAXS-1. SAXS-1A thereof, was selected on the
basis of detailed LS results. This solution was directly
transferred from the light scattering cell into the cap-
illary. A second NaPA solution (SAXS-1B) was inves-
tigated without being characterized by LS prior to X-
ray scattering experiments. The ratio [Sr2+]/[NaPA] of
SAXS-1B was smaller than the one of SAXS-1A. There-
fore, SAXS-1B was further apart from the phase boundary
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Table 1. Specifications of the NaPA solutions used for SAXS experiments. The molar mass of SAXS-1A and -1B is 950 kDa
(PA1) and of SAXS-2A and -2B 3300 kDa (PA2), respectively.

Solution
Rg Rh qMin

ρ αs
α(1) [NaPA]

[Sr2+]/[NaPA]
(nm) (nm) (nm−1) (DLS) (mM)

SAXS-1A 15.9 15.0 0.25 1.06 0.32 0.52 3.25 0.46

SAXS-1B – – – – – – 3.61 0.42

SAXS-2A 22.2 18.2 0.3 1.22 0.275 0.33 1.4997 0.667

SAXS-2B 31.2 21.1 0.3 1.48 0.387 0.38 1.5346 0.651

(1) Calculated with the corresponding hydrodynamic radii from DLS.

than SAXS-1A. The parameters of all solutions selected
for SAXS experiments are summarized in Table 1.

A second series of the same sample PA1 included four
different ratios [Sr2+]/[NaPA]. Each solution was inves-
tigated at three different energies. It is this series by
means of which we are able to present new ASAXS ex-
periments on the system SrPA. The solutions are denoted
ASAXS-1X with X = A,B,C and D indicating increas-
ing distances from the phase boundary. Each solution was
carefully characterized by means of light scattering prior
and after X-ray scattering. Characterisation before and af-
ter the ASAXS experiment allows us for the first time to
demonstrate long-term stability of the four samples under
investigation.

2.5 SAXS and ASAXS measurements

SAXS and ASAXS experiments were performed in capil-
laries from Hilgenberg GmbH, Malsfeld (Germany). NaPA
solutions and solvent was measured in glass capillaries.
The solvent was 0.01M in Cl− and contained the same
amount of Sr2+ ions as the respective NaPA solutions.
The capillaries were made of borosilicate glass with an
inner diameter of 4mm and a wall thickness of 0.05mm,
specially designed for ASAXS experiments in the energy
range of the K-absorption edge of Sr at 16.105 keV. They
were filled through the open end and sealed by fixing an
appropriate piece of glass with glue on top of the open
end. This glass cap was made from an adequately cut Pas-
teur pipette which was melted off at the conical end. The
sealed capillaries were horizontally mounted onto a sample
holder which was screwed into the sample area.

All experiments were performed at the JUSIFA beam-
line [41] at HASYLAB, DESY Hamburg. The energies
used for all three series are summarized in Table 2. The
lowest energy of each series was significantly below the
K-absorption edge of strontium at 16.1046 keV and was
considered to provide the respective conventional scatter-
ing curves (SAXS) referring to the total scattering of the
SrPA complex. The columns f ′

eff(E) and f ′′
eff(E) in Table 2

represent the effective anomalous dispersion corrections
calculated from the convolution with the energy resolu-
tion of the slit system and the monochromator (Si-311) at
the JUSIFA experiment. The values at the energy of the
Sr-K-edge are significantly changed compared to the the-

Table 2. Energies and anomalous contributions to the scatter-
ing factor fIon for the three series of [Sr2+]/[NaPA] investigated
by SAXS and ASAXS. The f ′

Ion, f ′′
Ion are the theoretical val-

ues obtained from the Cromer-Liberman calculations [42,43]
without taking the limited energy resolution of the experiment
into account. The f ′

eff , f ′′
eff represent the effective anomalous

dispersion corrections estimated form the convolution with the
energy resolution of the slit system and the monochromator at
the JUSIFA experiment [41].

Series E (keV) ΔE(1) (eV) f ′
Ion f ′

eff f ′′
Ion f ′′

eff

SAXS-1 15.506 599 −2.75 −2.75 0.56 0.56

15.507 598 −2.75 −2.75 0.56 0.56

ASAXS-1 16.093 12 −6.66 −6.66 0.53 0.53

16.105 0 −11.66 −10.3 3.77 2.08

SAXS-2 15.512 593 −2.90 −2.90 0.56 0.56

(1) Difference of the energy of the incident beam and the absorption

edge.

oretical values obtained from the Cromer-Liberman cal-
culations without taking the limited energy resolution of
the experiment into account.

The focus of the present work lies on series ASAXS-1
with sample PA1. For ASAXS-1, the energy dependence
of the small-angle X-ray scattering near the K-absorption
edge of Sr was measured in order to isolate the scattering
from the Sr ions. Measurements were made with a two-
dimensional detector at three energies. A q-range from
about 0.075 to 2.5 nm−1 was covered. Table 2 provides
the anomalous dispersion corrections for Sr at the ener-
gies used here based on the calculations of Cromer and
Liberman [42,43]. These were used to permit the separa-
tion of the Sr-related pure-resonant scattering described
in detail in [23,44]. Constant background effects due to
diffuse scattering of the solvent and due to resonant Ra-
man scattering occuring near the K-absorption edge at
16.105 keV have been subtracted from the measured in-
tensities before separating the pure-resonant scattering.

The ASAXS data were processed with the software
available at the beamline. The program was used to in-
tegrate, to correct for transmission and detector sensitiv-
ity, to subtract the background and the dark current. All
scattering curves have been calibrated into absolute units
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(i.e. macroscopic scattering cross-sections in units of cross-
section per unit volume cm2/cm3 = cm−1).

3 Evaluation of ASAXS measurements

In the case of a dilute solution of polymers the scattering
curve of the polymer is given by [45]

I(�q ) =
N

V
· I0(�q ) · ψ(�q ), (6)

where N/V is the number of dissolved polymers per vol-
ume. ψ(�q ) is the structure factor, which describes the in-
fluence of interparticle correlation and will not be con-
sidered further here (ψ = 1) due to the dilute solution
of the polymers. The second angular dependent term in
equation (6)

I0(�q ) = |A(�q )|2 = A(�q ) · A∗(�q ) (7)

is the scattering function of a single particle. In equa-
tions (6) and (7) q is the absolute value of the momentum
transfer �q (cf. Eq. (3) for light waves). A(�q ) is the scat-
tering amplitude of the particle. In the case of negatively
charged polyelectrolytes surrounded by positively charged
counterions in dilute solution, the scattering amplitude of
a single polymer chain writes

A(�q ) =
∫

ΔρPoly(�r ) · exp(−i�q �r )d3r

+
∫

ΔρIon(�r ) · exp(−i�q �r )d3r (8)

with

ΔρPoly(�r ) = ΔfPoly · u(�r ) =
(
fPoly − ρmVPoly

) · u(�r ),

(9)
ΔρIon(�r,E) = ΔfIon(E) · v(�r ) =

((
f0,Ion − ρmVIon

)
+f ′

Ion(E) + if ′′
Ion(E)

) · v(�r ).

ΔρPoly, ΔρIon are the excess electron densities of the poly-
electrolyte chains and the counterions calculated from
the electron density ρm of the solvent and the volumes
VPoly and VIon of the chains and the counterions, while
u(�r ), v(�r ) are the particle densities of the polymer chains
and the counterions, respectively. The molecular scatter-
ing factor (number of electrons) of the chain fPoly is nearly
energy independent, whereas the atomic scattering factor
of the counterions shows strong variations with the energy
in the vicinity of the absorption edge of the counterion
which are taken into account by the so-called anomalous
dispersion corrections f ′

Ion(E), f ′′
Ion(E):

fPoly(E) ≈ const,

fIon(E) = f0,Ion + f ′
Ion(E) + if ′′

Ion(E).
(10)

Calculating the scattering intensity due to equations (7–9)
and averaging over all orientations of the polymer yields

I0(q, E) = 4πΔf2
Poly

∫∫
Vp

u(�r )u(�r ′)
sin(q|�r − �r ′|)

q|�r − �r ′| d3rd3r′

+4π · 2ΔfPoly

(
f0,Ion − ρmVIon + f ′

Ion(E)
)

×
∫∫
Vp

u(�r )v(�r ′)
sin(q|�r − �r ′|)

q|�r − �r ′| d3rd3r′

+4πΔf∗
Ion(E) · ΔfIon(E)

×
∫∫
Vp

v(�r )v(�r ′)
sin(q|�r − �r ′|)

q|�r − �r ′| d3rd3r′. (11)

Equation (11) is composed of three terms: i) the scattering
of the polymer chains; ii) the cross-term originating from
the superposition of the scattering amplitudes of the poly-
mer and the counterions; iii) the scattering of the counte-
rions, which contains the so-called pure-resonant scatter-
ing of the counterions. By measuring the scattering curves
at two energies in the vicinity of the absorption edge of
the counterions and subtracting the two scattering curves
the non-resonant scattering contribution of the polymer is
vanishing:

ΔI0(q, E1, E2) = I0(q, E1) − I0(q, E2) =

4π · 2ΔfPoly

(
f ′
Ion(E1) − f ′

Ion(E2)
)

×
∫∫
Vp

u(�r )v(�r ′)
sin(q|�r − �r ′|)

q|�r − �r ′| d3rd3r′

+4π
(
Δf∗

Ion(E1) · ΔfIon(E1) − Δf∗
Ion(E2) · ΔfIon(E2)

)
×

∫∫
Vp

v(�r )v(�r ′)
sin(q|�r − �r ′|)

q|�r − �r ′| d3rd3r′. (12)

Now the scattering function is reduced to the resonant
contributions —the so-called separated scattering— but
the scattering of the polymer is still present in the cross-
term. To overcome this drawback, a measurement at a
third energy can be performed and when subtracting the
separated scattering obtained at the two energies E1, E3

from the separated scattering obtained at the two en-
ergies E1, E2 the cross-term is vanishing and only the
pure-resonant scattering contribution of the counterions
remains:

ΔI0(q, E1, E2)
f ′
Ion(E1) − f ′

Ion(E2)
− ΔI0(q, E1, E3)

f ′
Ion(E1) − f ′

Ion(E3)
=

4π
[
f ′
Ion(E2) − f ′

Ion(E3) +
f ′′2
Ion(E1) − f ′′2

Ion(E2)
f ′
Ion(E1) − f ′

Ion(E2)

−f ′′2
Ion(E1) − f ′′2

Ion(E3)
f ′
Ion(E1) − f ′

Ion(E3)

]

×
∫∫
Vp

v(�r )v(�r ′)
sin(q|�r − �r ′|)

q|�r − �r ′| d3rd3r′. (13)
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Due to equation (13) ASAXS is a technique to ac-
cess directly the scattering of the counterions. From
equation (13) the structural information of the counterion
distribution surrounding the macroions can be obtained.

4 Results and discussion

4.1 Location of the phase boundary by light scattering

Fully dissociated sodium salts of polycarboxylates can
be precipitated by addition of low amounts of an alka-
line earth cation. The amount of alkaline earth cations
[M2+]c required for precipitation follows a linear relation-
ship [9,12] with the polymer concentration expressed in
terms of the molar concentration of anionic charges COO−
expressed as [NaPA]c,

[M2+]c = m + r0[NaPA]c. (14)

The intersection m corresponds to a lowest critical con-
centration threshold [M2+]c necessary to precipitate the
polyelectrolyte at infinite dilution. Beyond the threshold
m, a slope r0 points to a stoichiometric amount of M2+ per
COO− function, necessary to precipitate polycarboxylate
chains. Addition of an inert salt increases the intersection
m and gradually decreases [9,13] the slope r0. The latter
effect was compatible with the recent findings [10] that
the precipitates included a fraction of monovalent cations
in addition to M2+. This fraction obviously increases with
increasing [NaCl].

In a first step, a concentration regime close to the pre-
cipitation line of M2+-PA has to be identified at a given
inert salt level. This concentration regime was expected
to provide the most significant conformational changes
of the M2+-PA chains. Identification of the appropriate
concentration regime was performed by means of com-
bined SLS and DLS. SLS yielded z-averaged radii of gyra-
tion Rg characterizing the geometric size of the shrinking
coils. Supplementary DLS data led to a distribution of hy-
drodynamically effective radii and a z-averaged value Rh

thereof. With a set of samples at varying [M2+]/[NaPA],
the point with the minimum value in Rg was located and
interpreted as the precipitation threshold. The threshold
coordinates ([M2+]c, [NaPA]c) were confirmed by DLS. As
soon as aggregation sets in, SLS exhibited an increase of
the apparent molar mass and DLS revealed a second par-
ticle fraction with an Rh value much larger than the one
of the single chains.

For the system under investigation, the inert salt level
was set to [NaCl] = 0.01M. In order to evaluate the im-
pact of cation variation within a homologuous series, a
comparative investigation was performed with Ca2+, Sr2+
and Ba2+ added to PA2. All data are established along
route 1. Results are summarized in Figure 1 and Table 3.
Clearly, the phase boundaries lie on top of each other.
A closer look reveals a slight decrease of the slope r0 of
equation (1) according to Ca2+ > Sr2+ > Ba2+, which in-
dicates that the larger the divalent earth alkaline cation is,
the smaller is the stoichiometric amount of M2+ necessary
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Fig. 1. Phase boundaries for three different earth alkaline
cations in 0.01 M [NaCl]: Ca2+ (�); Sr2+ (�); Ba2+ (•). The
polymer is PA2. For better clarity, the phase boundary of Sr2+

is shown by itself in the inset.

Table 3. Parameters of equation (1) for phase boundaries of
the system PA2 with M2+ denoting earth alkaline cations at
T = 25 ◦C.

[NaCl] (M) M2+ m (mM) r0

0.01 Ca2+ 0.549 0.345

0.01 Sr2+ 0.563 0.249

0.01 Ba2+ 0.622 0.160

to precipitate NaPA. The trend is opposite to the obser-
vations of Pochard et al. [10] who found an increase of the
amount of M2+ per COO− groups required to precipitate
NaPA if Ba2+ ions are used instead of Ca2+.

Once the precipitation line with its adjoining one-
phase regime was established, structural changes of dilute
PA chains close to the precipitation threshold were charac-
terized in a second step. Combined SLS and DLS, revealed
a decrease of the radius of gyration Rg and the hydrody-
namically effective radius Rh when the precipitation line is
approached. From both radii, two dimensionless parame-
ters can be calculated which are extremely valuable for the
investigation of shape transformations along the shrinking
process [13].

The first parameter αs is the ratio of the radius of gy-
ration Rg of any intermediate along the approach to the
phase boundary and the radius of gyration Rg(Θ) under
Θ-conditions. The value for Rg(Θ) was determined exper-
imentally [5] in 1.5M NaCl:

αs = Rg/Rg(Θ). (15)

This ratio quantifies the extent of expansion or shrinking
of the intermediates in terms of the unperturbed chain.
The second parameter ρ compares [46] the radius of gy-
ration Rg of any intermediate along the approach to the
phase boundary with the corresponding hydrodynamic ra-
dius Rh:

ρ = Rg/Rh. (16)
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Fig. 2. ρ-ratios versus extent of shrinking αs for three
different earth alkaline cations: Ca2+ (a), Sr2+ (b) and Ba2+

(c). Different approaches to the phase boundary are denoted
in panel a: [Ca2+] = 0.6 mmolL−1 (�); [Ca2+] = 0.8 mmolL−1

(�); [Ca2+] = 1mmolL−1 (�); [Ca2+] = 0.7 mmolL−1

(�); [NaPA] = 0.803 mmolL−1 (•); panel b: [NaPA] =
0.957 mmolL−1 (�); [NaPA] = 0.559 mmolL−1 (•); [Sr2+] =
1.0 mmolL−1 (�); [NaPA] = 0.9 mmolL−1 (�); [NaPA] =
1.5 mmolL−1 of PA1 (�); panel c: [NaPA] = 0.55 mmolL−1

(�); [NaPA] = 1.13 mmolL−1 (�); [NaPA] = 1.76 mmolL−1

(•); [Ba2+] = 0.95 mmolL−1 (�). The curve represents the
literature data for a coil-globule transition of neutral polymers
below Θ-temperature [36]. Specification of [M2+] or [NaPA]
corresponds to route 1 or to route 2, respectively [11]. Unless
otherwise stated, PA2 was used as NaPA sample.

The ρ ratio is expected to be highly sensitive to the shape
of the shrinking coil.

In a preceding paper [5], detailed molar-mass–depend-
ent experiments with NaPA were performed at various
inert salt levels. The resulting averages were ρ = 1.84
and ρ = 1.53 at [NaCl] = 0.1M and [NaCl] = 1.5M, re-
spectively. A similar drop in ρ was observed with neutral
polymers when decreasing the solvent quality from good
to Θ-conditions [47–49]. The small discrepancies in the
absolute values may at least in part be due to the differ-

ent polydispersities. For the NaPA samples under present
investigation, the ratio of the weight averaged and num-
ber averaged molar mass is Mw/M n = 1.2 which is larger
than the polydispersity of the investigated neutral poly-
mers [47–49].

Specific interactions of M2+ ions with the carboxylate
functions are expected to cause drastic changes in the
conformation of NaPA chains, which have to be distin-
guished from the regular screening effects imposed by an
inert salt [5]. Isolation of these specific interactions could
be achieved by introducing the M2+ ions via replacing the
corresponding amount of inert Na+ ions at constant over-
all concentration of cationic charges. Thus, regular screen-
ing could be kept constant while inserting the specifically
interacting M2+ ions.

As is outlined in Figure 2, results on the homologu-
ous series of M2+ in 0.01M NaCl confirmed earlier find-
ings [13] on Ca2+. Constant ρ ratios were observed over
a regime of shrinking of 1.0 > αs > 0.4 for all three
cations. Only when the shrinking ratios αs dropped be-
low 0.4, the sphere limit of 0.77 was approached in a steep
descent. In all three data sets of Figure 2 an additional
curve is included. This curve corresponds to a plot derived
from experimental data of poly-(N-isopropylacryamide)
(PNIPAM) in water [50]. At T = 30.6 ◦C, water is a Θ-
solvent for PNIPAM and the resulting curve represents
the collapse of a neutral-polymer chain if the Θ-point is
crossed. The curve begins with ρ = 1.5 at αs = 1, gradu-
ally decreasing to a value of ρ = 0.77 at shrinking ratios
close to αs = 0.2, which is compatible with a coil-to-sphere
transition. PNIPAM thus provides an excellent reference
system. This indicates a mechanism of NaPA coil shrink-
ing in 0.01M NaCl, which deviates from the mechanism
for neutral PNIPAM in a Θ-solvent and which is inde-
pendent of the type of alkaline earth cation in the first
place. In principle, ρ values, which are independent of αs

over a large regime of shrinking down to αs ∼ 0.4, are
compatible with self-similar intermediates or increasingly
anisotropic intermediates. In the latter case, the impact
of shrinking on the value of ρ would be balanced by an
increasing anisotropy. [51,52]

Unfortunately, data of the homologous series of M2+

under present investigation were of changeable quality.
Data from Sr2+ ions scattered slightly more than those
of Ca2+ (Figs. 2a and b). Barium as the largest cation in
the row exhibited a trend (Fig. 2c) which was of even bet-
ter quality than Ca2+. Yet, SAXS experiments were only
feasible at the K-edge of Sr2+.

4.2 Total SAXS curves

In order to select appropriate solutions for SAXS exper-
iments, three series of solutions of NaPA with Sr2+ were
generated along approaches to the corresponding phase
boundary. Approaches were performed with two different
molecular weights (PA1 and PA2). Solutions where the
collapse was not yet completed, i.e. where the limit of a
spherical shape was not yet reached, were considered to
be highly interesting shapes. Such shapes were signified
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Fig. 3. Differential X-ray scattering cross-sections for series
SAXS-2 (A) and SAXS-1 (B). All scattering curves stem from
energies far apart from the absorption edge of Sr2+ corre-
sponding to total scattering curves of the SrPA adducts. The
symbols denote: SAXS-1A with [Sr2+]/[NaPA] = 0.46 (�);
SAXS-1B with [Sr2+]/[NaPA] = 0.42 (�); SAXS-2A with
[Sr2+]/[NaPA] = 0.667 (�); SAXS-2B with [Sr2+]/[NaPA] =
0.651 (�). Vertical arrows indicate estimates for qMin used to
calculate R according to equation (17).

by a large degree of shrinking, i.e. by values of αs signifi-
cantly smaller than 1.0 but with ρ values still larger than
1.0. In principle, both parameters were accessible by light
scattering.

Figure 3A shows the SAXS curves of series SAXS-2
close to the phase boundary of PA2 with a molar mass
of 3300 kDa. Both curves almost lie on top of each
other. They exhibit a shoulder bordering a steep descent
which can be well described by a power law according
to Porod [53]. This is a characteristic feature of compact
objects with smooth surfaces. Interpretation in terms of
spherical particles is at hand. A shallow kink can be dis-
cerned at qMin = 0.3 nm−1, which may correspond to
the first minimum of the particle scattering factor of a
sphere [16], blurred by polydispersity effects and irregu-
larities in shape. Using the well-known relationship

R = 3π/2qMin, (17)

a sphere radius R = 15.7 nm can be estimated for both in-
termediates [16,54]. This value has to be compared with
the radii of gyration Rg = 22.2 nm and 31.2 nm and

the hydrodynamically effective radii Rh of 18.2 nm and
21.1 nm, respectively, which characterize the overall size
of the polymer chains. Noticeably, hydrodynamic radii as
well as radii of gyration are larger than the estimated
sphere radius thus indicating particles with larger over-
all dimensions than the spherical element revealed by the
SAXS curves.

A further series of solutions was selected from sample
PA1 with a molar mass of 950 kDa denoted SAXS-1. The
series SAXS-1 includes the total SAXS curves of two con-
centrations. Sample properties from both selected concen-
trations are summarized in Table 1. Both SAXS curves
were recorded [23] at the energy of 15.507 keV and are
shown in Figure 3B. Unlike sample PA2, the comparison
of the two curves of sample PA1 indicates striking differ-
ences between the corresponding shapes.

In the solution SAXS-1B, the scattering curve follows a
power law close to I0(q, E1) ∼ q−2, typical for a structure
with a Gaussian density profile. The latter profile has been
well established for flexible polymer coils. The solution
SAXS-1A shows a much steeper descent. As in the case of
series SAXS-2 (sample PA2), a decay close to a q−4 power
law suggests a structure with a sharp surface. A value of
qMin = 0.25 nm−1 for SAXS-1A (Fig. 3B) inserted in equa-
tion (17) yields a value of R = 19.0 nm. The differences
observed for the two solutions SAXS-1A and -1B are in
line with the anticipated shrinking process. In SAXS-1B,
the ratio [Sr2+]/[NaPA] is lower than in SAXS-1A which
locates SAXS-1A closer to the phase boundary. As ex-
pected, the estimated size of 19 nm is in agreement with
the pearl size extracted from the resonant part in a pre-
ceding work [23].

At this point, we have to stress two drawbacks of the
preceding experiments [23]: i) radii of gyration measured
by LS exhibit uncertainties which significantly exceed 10%
once they approach values of 20 nm; ii) characterisation by
LS was performed a few days before the ASAXS experi-
ment and slight changes between LS and ASAXS experi-
ments cannot be fully excluded.

In order to consider these drawbacks and to put the
findings on a broader base, four additional intermedi-
ate states were generated with PA1 in series ASAXS-1
and investigated at three different energies. This time,
the selected concentrations were characterised by means
of LS prior to and after the SAXS and ASAXS experi-
ments. Crude interpretation of the respective total scat-
tering curves at E = 15507 keV with equation (17) and
qMin ≈ 0.3 nm−1 in all four cases led to R close to 16 nm.
As with series SAXS-2, the respective size is significantly
smaller than the overall size of the polyelectrolyte chains
estimated by light scattering (Table 4).

4.3 ASAXS at the phase boundary

In the case of series ASAXS-1, separation of the pure-
resonant curves could be successfully carried out. The
pure-resonant curves can unambiguously be attributed to
the Sr2+ counterions. Figure 4 compares the total scat-
tering curves with the corresponding mixed resonant or
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Table 4. Size parameters of series ASAXS-1. Radii of gyration Rg and hydrodynamic radii stem from light scattering experi-
ments prior to (1) and after (2) ASAXS experiments. The radius Rz corresponds to the averaged outer sphere radius extracted
from curve fitting with equation (18). All radii are given in nm. All experiments were performed at [Sr2+] = 1.5 mM.

Solution [Sr2+]/[NaPA] Rg(1) Rh(1) Rg(2) qMin (nm−1) Rz

ASAXS-1A 0.464 17.3 19.3 24.4 0.38 16

ASAXS-1B 0.458 23.2 23.2 23.0 0.33 15

ASAXS-1C 0.4575 21.3 21 24.0 0.32 15

ASAXS-1D 0.451 30.7 25.2 30.7 0.33 15

 

 

 

 

 

 

 

 

1E-5

1E-4

1E-3

0.01

0.1

1

10

0.01 0.1
1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

0.01 0.1

 

q  [ Å
-1

]

 

 

A

 

 

B

 

d
Σ

/d
Ω

  [
c

m
-1

]

 
 

D

 

  

 

C

Fig. 4. SAXS and ASAXS measurements of the series ASAXS-1 on sample PA1 with [Sr2+] = 1.5 mM at variable ratio
[Sr2+]/[NaPA]. (A) [Sr2+]/[NaPA] = 0.464; (B) [Sr2+]/[NaPA] = 0.458; (C) [Sr2+]/[NaPA] = 0.4575; (D) [Sr2+]/[NaPA] = 0.451.
The symbols denote (�) total scattering from the polymer and the Sr2+ ions at E = 15.507 keV; (�) mixed resonant curve
according to equation (12); (•) form factor of the Sr2+ ions according to equation (13). The solid line indicates a q−4 power
law typical for compact solid particles with smooth surfaces.

separated scattering curves (Eq. (12)) and the form fac-
tor of the pure-resonant curves (Eq. (13)). Qualitatively
speaking, the trends of all three curves are similar confirm-
ing our expectation that the Sr counterions densely stick
to the polyanionic chains thus reflecting essential features
of the chain structure.

In order to interpret the pure-resonant curves, model
fits were performed with theoretical curves for polydis-
perse spheres

SIon(q) =

const

∞∫
0

P (M) ·
(

4πR3

3
3(sin(qR)−qR cos(qR))

(qR)3

)2

· dR.

(18)

The bracket in the integral contains the form factor of a
single sphere of size R [54]. Polydispersity was considered

by means of a Schulz-Flory type of distribution P (M) [55],

P (M)=
(

z + 1
Mw

)z+1
Mz

Γ (z + 1)
exp

(
− (z + 1)M

Mw

)
. (19)

The particle mass M in equations (18) and (19) is propor-
tional to R3. Polydispersity is fixed by z = 1/(Mw/Mn−1)
with Mw and Mn the weight averaged and number av-
eraged particle mass and Rz is the mean radius of the
spheres calculated from the z-averaged radius of gyration
according to R2

z = R2
g5/3. As is demonstrated in Figure 5

for ASAXS-1B and ASAXSA-1C, the resulting curves sat-
isfactorily describe the experiments. Values for Rz are
summarized in Table 4. All Rz values lie close to the results
obtained with qMin in equation (17) and are significantly
smaller than the overall size of the collapsing chains. This
clearly supports the fact that the objects indicated by the
total scattering curves and by the pure-resonant curves
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Fig. 5. Form factor of the Sr2+ ions according to equa-
tion (13) corresponding to the pure-resonant curve for samples
ASAXS-1B (top) and ASAXS-1C (bottom). The theoretical
curve is a model fit with a polydisperse sphere based on equa-
tions (18) and (19) with z = 5 and Rz = 15 nm.

correspond to spherical sub-particles formed within the
larger PA chains.

In order to further support this statement, experimen-
tal scattering curves shall be described with particle scat-
tering factors which are capable to reproduce the trend of
scattering curves and at the same time are consistent with
particle size values established by light scattering. The lat-
ter condition requires particle sizes which are significantly
larger than the size from the fit with model spheres. To
this end we used the model of a dumb-bell as the short-
est representative for pearl necklace chains [16]. The same
concept has already been applied to SANS data on the
same system [14].

This goal was achieved by using 16 nm for the
pearl size in the first place and by applying a distance
A = 40nm between two connected pearls which results in
a radius of gyration identical to the one provided by light
scattering. Although this procedure has been applied to
all four solutions, we confined explicit representation to
ASAXS-1B and ASAXS-1C because results are essentially
the same in all four cases. As is clearly demonstrated
by Figure 6, the theoretical curve of a monodisperse
dumb-bell correctly reproduces the section between
0.07 nm−1 < q < 0.2 nm−1. At higher q the theoretical
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Fig. 6. Form factor of the Sr2+ ions according to equa-
tion (13) corresponding to the pure-resonant curve for sam-
ples ASAXS-1B (top) and ASAXS-1C (bottom). The two the-
oretical curves are model curves of a dumb-bell with pearl
size R = 16 nm and a pearl-to-pearl distance A = 40nm
leading to an overall size of Rg = 23.6 nm (- - -) and of a
mixture of monodisperse spheres (weighting factor 0.4) with
monodisperse dumb-bells with a pearl size R = 12.7 nm and a
pearl-to-pearl distance A = 50nm leading to an overall size of
Rg = 22.1 nm (—).

curve exhibits sharp minima caused by the regular spher-
ical pearls, which are smeared in the real system due to
shape irregularities and a polydispersity of the sphere size.

Significant improvement is achieved if the dumb-bell
is mixed with spheres. In the examples of Figure 6, this
is performed by mixing a monodisperse dumb-bell with a
monodisperse sphere. The pearl size in the dumb-bell was
set to R = 12.7 nm and its distance to the neighbouring
pearl to A = 50nm. The size of the sphere was chosen
to be R = 16nm resulting in the same volume as the
dumb-bell. Weighting factors of the scattering curves of
the dumb-bells and spheres were 0.6 and 0.4, respectively.
This composition, together with the pearl distance A was
selected to yield a radius of gyration in line with the light
scattering results from the respective concentrations. Al-
though the theoretical curves deviate slightly more in the
intermediate regime of q = 0.2 nm−1 a qualitative descrip-
tion of the experiment is now extended to q = 0.5 nm−1,
covering a regime of 0.07 nm−1 < q < 0.5 nm−1.

In a final attempt, monodisperse dumb-bells are mixed
with a polydisperse spherical component. Similar mixtures
were found already by Limbach and Holm with computer
simulations [15]. The z-averaged radius of gyration of the
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Fig. 7. Form factor of the Sr2+ ions according to equa-
tion (13) corresponding to the pure-resonant curve for sam-
ples ASAXS-1B (top) and ASAXS-1C (botom). The theoret-
ical curve is a model curve of a polydisperse sphere based
on equations (18) and (19) with z = 5, Rg = 12.4 nm and
Rz = 16 nm (weighting factor 0.5) mixed with a monodisperse
dumb-bell (weighting factor 0.5) with a pearl size R = 16nm
and a pearl-to-pearl distance A = 55 nm leading to an averaged
particle size of Rg = 23nm.

spheres is Rg = 12.4 nm. This Rg value corresponds to
an averaged value of the sphere radius Rz = 16nm. The
polydispersity is determined by z = 5. Pearl size R and
pearl distance A in the dumb-bell are 16 nm and 55 nm,
respectively. In calculating the total scattering curve, both
component scattering curves are weighted with 0.5. Again
weight factors and pearl distance A are selected to re-
produce the correct overall size of the particles predeter-
mined by light scattering. In comparison to the binary sys-
tem with monodiperse components, the theoretical curves
based on a polydisperse spherical component improve the
description in the intermediate regime. Thus, a description
of persisting quality is provided, now over the extended
regime of 0.07 nm−1 < q < 0.5 nm−1 (Figure 7).

Real fits with model mixtures have been deliber-
ately avoided in the above-described procedure for
the following reasons: Aside from pearl size and pearl
distance, additional parameters like the composition
of multi-component structures, size polydispersity and
shape irregularities have an influence on the system.
The fact that experimental curves start at a q value

which is too high to include the essential aspects of
the overall shape [16] renders such a fit almost useless.
However, SAXS and ASAXS curves provide several
interesting features of the collapsing polyacrylate chains:
i) condensation leads to dense structures with spherical
(sub-)particles; ii) SAXS and ASAXS provide an indirect
indication of the existence of an elongated second com-
ponent explaining the large overall particle size. Such a
component may be a pearl necklace structure. Possibly
the form factor of the pure-resonant scattering, indicates
a higher correlated structure, which is suggested from a
small correlation maximum at 0.01 Å

−1
and the shoulders

in the q-range between 0.02 and 0.03 Å
−1

(Fig. 4).

5 Summary

The present work extends earlier findings [13] of the
phase behaviour of NaPA chains in the presence of var-
ious amounts of Ca2+ cations and conformational changes
of those chains in the proximity of the phase boundary.
Extension considers Sr and Ba cations making accessi-
ble a comparison of precipitation thresholds in 0.01M
NaCl following equation (14). Although the phase bound-
aries lie on top of each other, the amount of M2+ re-
quired to precipitate the PA chains slightly decrease along
Ca2+ > Sr2+ > Ba2+. Light scattering at these phase
boundaries lead to normalised plots of the dimension-
less size parameters ρ versus α which exhibit the same
trend for all three cations. This common trend suggests
an anisotropic shape over a large regime of shrinking turn-
ing abruptly to a compact sphere at the respective phase
boundary. At the same time light scattering enabled selec-
tion of intermediates for SAXS and ASAXS experiments.

We succeeded to separate the pure-resonant curves for
a series of samples with varying ratio [Sr2+]/[NaPA] from
energy-dependent scattering experiments. Results from
this separation fully confirmed the expectation, that the
specifically interacting Sr2+ counterions adopt a similar
spatial distribution as the monomer segments. All but
one of the SAXS curves reflecting total scattering exhib-
ited a steep descent and a shallow kink, located at a mo-
mentum transfer denoted as qMin. Under the assumption
that this feature can be attributed to compact spherical
structures with a finite polydispersity, the following fea-
ture appears for most of the solutions under investigation.
Size parameters extracted from SAXS and ASAXS are
smaller than the overall size of the corresponding poly-
acrylate chains. A simple explanation of this difference
in size is that SAXS and ASAXS refer to substructures
rather than the overall size. As anticipated in the the-
ory [15], one way to realize substructures is the (partial)
formation of pearl-necklace–like particles as possible in-
termediates in the vicinity of the precipitation threshold.
These arguments are supported by a successful descrip-
tion of experimental scattering curves by means of model
mixtures of spheres and dumb-bells. These mixtures re-
produce the separated ASAXS curves as well as spheres
do but at the same time they also result in the correct
overall size values of the particles.
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Finally, pure-resonant scattering ASAXS curves of
Sr2+ ions could successfully be isolated, in line with an
earlier attempt on the same system [23]. These curves in-
dicate a high degree of condensation of the Sr2+ ions on
length scales related to PA chains which are also present
in the same solution. The curves clearly demonstrate that
ASAXS can be used to reflect the essential features of a
collapsing PA chain if decoration with Sr2+ ions can be
achieved.

Financial support of the Deutsche Forschungsgemeinschaft,
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D-52425 Jülich, Germany

ReceiVed: March 21, 2006; In Final Form: April 27, 2006

The localization of 2,4-dibromophenol molecules along the bilayer normal was investigated by anomalous
small-angle X-ray scattering (ASAXS) with synchrotron radiation. The ASAXS measurements, executed at
three different energies, provide the separation of the scattering of the bromine atoms of dibromophenol
molecules from that of the whole system. Using a full q-range model, the localization of the dibromophenol
molecules was characterized at a lower (0.1) and a higher (1) dibromophenol/lipid molar ratio corresponding
to the gel and to the interdigitated phases of the vesicle matrix, respectively.

Introduction

In recent years, the effect of brominated phenol compounds
on living organisms has become a field of interest.1-7 It is known
that bromophenols are present in a wide range of different kinds
of environment. For example, these chemicals occur in sponges
and algae and also in other marine organisms, and they can be
found in the blood of fishes and mammals, too.

The ecological role of these molecules is still not clear, but
it has been shown that they have hormone-like effects and
disrupt the cellular Ca2+ homeostasis in endocrine cells.6,7

Recently, the importance of the elucidation of the brominated
phenols’ effect has been increased not only by their natural
occurrence in the organisms but also by their industrial
application as fungicides and flame retardants (e.g., 2,4,6-
tribromophenol, tetrabromobisphenol A). These brominated
contaminants act on basic cellular functions via complex
interactions, which depend on many parameters; thus, it is worth
examining the effect of bromophenols on separated components
of the real cells. Consequently, vesicles (or liposomes) are
frequently used as model membranes to study the effect of guest
molecules on biological membranes.

In this paper, the localization of 2,4-dibromophenol in a
multilamellar vesicle system constituted from 1,2-dipalmitoyl-
sn-glycero-3-phosphatidylcholine (DPPC) and water is studied
at 0.1 and 1 DBP/DPPC molar ratios. It was previously reported
that the accumulation of lipophilic compounds like dichlorophe-
nols causes lateral heterogeneity and cluster formation in the
double lipid layers.8,9 Presumably, the localizations of the
dichloro- and dibromophenol molecules in the vesicle system
are the same because of their similar chemical behavior.10 We
have studied the distribution of DBP molecules in vesicles with
the anomalous small-angle X-ray scattering (ASAXS) method,
which proved to be an excellent technique to determine the
localization of atoms/molecules in a surrounding media. In other

words, by using ASAXS one can overcome the problem of
separating the small-angle scattering of the guest molecules from
that of the whole system. The basis of the method is the energy
dependency of the scattering factors of the atoms, which are
complex quantities and show a strong variation with the X-ray
energy in the vicinity of the absorption edge of the atom under
consideration, which is the bromine in our case.

Experimental Section

The method of anomalous small-angle X-ray scattering has
been used in a great variety of fields, e.g., in the study of
alloys,11 examining thin films of electrocatalysts,12 protein
research,13,14 and describing the distribution of counterions
around macroions and polyacrylate chains.15-17 In the latter
paper, a method was introduced to separate the scattering of
the guest atoms from that of the whole system. Hereinafter, this
method will be reviewed with the specification for radially
ordered systems.

From the small-angle X-ray scattering’s point of view, a
multilamellar vesicle can be considered as a stack of layers
averaged over all orientations in the three-dimensional space;
consequently, the scattered intensity can be expressed as

where q denotes the magnitude of the scattering variable, q )
4π sin θ/λ; F(q) is the bilayer form factor, and S(q) is the
structure factor of the layers.18,22,23 S(q) represents the contribu-
tion of the layer structure, while F(q) is the Fourier transform
of the bilayer electron density (ED) profile.

Generally, the form factor of a bilayer with additive guest
atoms can be written as F(q) ) Fvesicle(q) + Fguest(q) where

Here, d is the bilayer repeating unit, and ΔFvesicle(z) and
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I(q) ) S(q)|F(q)|2/q2 (1)

Fvesicle(q) )∫-d/2

d/2
ΔFvesicle(z)‚e-iqz dz

Fguest(q) )∫-d/2

d/2
ΔFguest(z)‚e-iqz dz (2)
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ΔFguest(z) are the average excess electron densities of the lipid
layers and the guest molecules along the bilayer normal

Here, Fwater is the electron density of the solvent; Vlipid and Vguest

are the volumes of the lipid layers and the guest molecules,
while u(z) and V(z) are the radial average of the particle densities
of lipids and guest molecules. For the sake of simplicity in the
following, we will denote f ′guest and f ′′guest with f ′ and f ′′,
respectively, since we only have to consider the anomalous
dispersion corrections of the guest molecules, or more precisely
of their resonant atoms. The molecular scattering factor of lipids,
flipid, is nearly energy-independent, but that of the atoms of the
guest molecules shows a strong variation with the energy in
the vicinity of the absorption edge of the atom under consid-
eration.

With the introduced quantities, one can rewrite the form factor
of the system as a sum of a resonant, energy-dependent, and a
nonresonant, energy-independent term: F(q) ) U(q) + (f ′ (E)
+ if ′′(E))V(q), where V(q) ) ∫V(z) exp(-iqz) dz is the
geometrical part of the form factor of the bromine atoms of the
bromophenol molecules. Then, the measured intensity can be
calculated as follows:

From this, the difference of two scattering curves, measured at
two different energies, will be the following:

To eliminate the mixed term, a measurement at a third
different energy should be performed, and the separated
scattering of bromine atoms can be expressed as follows:

According to eq 6, with ASAXS technique one can access
the scattering of the guest atoms, so the distribution of these
molecules in the vesicles can be directly observed.

Sample Preparation. Synthetic high-purity 1,2-dipalmitoyl-
sn-glycero-3-phosphatidylcholine (DPPC) and 2,4-dibromophe-
nol (DBP) were obtained from Avanti Polar Lipids (U.S.A.)
and from Sigma (Germany), respectively. The pure DPPC
without further purification was mixed with crystallized DBP
in conformity with the different DBP/DPPC ratios, and then,
deionized, triple quartz-distilled water was added to the system
to gain a lipid concentration of 20 w/w %. The mixtures were

kept at 45 °C and vortexed intensively, then quenched to 4 °C.
This process was repeated 40 times to get a homogeneous
liposome system. The X-ray measurements were performed
using Plexiglas-walled (without significant small-angle scatter-
ing) sample holders; for precise incubation, thin water flow in
front of the walls was used.

ASAXS Experiments. Anomalous small-angle X-ray scat-
tering (ASAXS) measurements were carried out at the Jusifa
(B1) beamline19 at HASYLAB (DESY, Hamburg) in the
scattering variable (q ) 4π sin θ/λ) regime of 0.02-0.4 Å-1.
The measurements were made with a two-dimensional detector,
at the energies 12 970, 13 434, and 13 470 eV, close to the
absorption edge of bromine at 13 474 eV. These energies were
chosen on the basis of an absorption measurement on DBP
crystal. The net scattering data collected at different energies
were computed to the same abscissa, normalized to the primary
beam intensity, and corrected for transmission. Finally, the
scattering curves have been calibrated to absolute units of
macroscopic cross sections (e.u./nm3). For data evaluation, the
anomalous dispersion corrections of Br were calculated accord-
ing to Cromer and Liberman20,21 (Figure 1). The values of f ′
and f ′′ at the energies used are also shown in Figure 1.

Results and Discussion

By dispersing DPPC molecules in water, centrosymmetric
multilamellar vesicles are formed spontaneously. According to
the one-dimensional order (in radial direction), the scattering
pattern of the system exhibits at least five Bragg peaks. In the
case of the DPPC/water system doped with DBP molecules,
depending on the concentration, the regular structure is damaged,
but the periodicity is still present. As a result of the guest
molecules, only two Bragg reflections can be observed on the
scattering patterns. In Figure 2, scattering curves of the systems
with 0.1 and 1 DBP/DPPC molar ratios are shown. All the
measurements were carried out at T ) 20 °C, which corresponds
to the nonrippled gel phase (L�′) of the pure DPPC/water system.
The squares denote the total scattering of the system measured
at 12 970 eV, the farthest energy from the absorption edge of
bromine (there is almost no anomalous effect from DBP
molecules at this energy). Comparing the total scattering curves,
one can identify drastic changes, which originate in the different
phases of the systems induced by the different ratios of DBP
molecules. At the lower concentration, DBP has a perturbation
effect on the correlation of lamellae. The average periodicity
(d) is 67.8 Å, which is larger than that of the regular nonrippled
gel phase (64.2 Å). At higher concentration, the interdigitated
form of the gel phase has appeared, as it can be recognized
from the d ) 50.7 Å repeating distance. In that phase, the

Figure 1. Anomalous dispersion corrections for bromine obtained by
Cromer-Liberman calculations.20,21

ΔFvesicle(z) ) (flipid - FwaterVlipid)u(z)

ΔFguest(z) ) [(f0,guest - FwaterVguest) + f ′guest(E) +
if ′′guest(E)]V(z) (3)

I(q, E) ) {U2(q) + 2f ′(E)U(q)V(q) + [f ′2(E) +

f ′′2(E)]V2(q)}
S(q)
q2 (4)

ΔI(q, E1, E2) ) {2[f′(E1) - f ′(E2)]U(q)V(q) + [f ′2(E1) -

f ′2(E2) + f ′′2(E1) - f ′′2(E2)]V
2(q)}

S(q)
q2 (5)

V2(q)
S(q)
q2 ) 1

C(E1, E2, E3)[ ΔI(q, E1, E2)
f ′(E1)- f ′(E2)

-
ΔI(q, E1, E3)

f ′(E3) - f ′(E3)]
C(E1, E2, E3) ) f ′(E2) - f ′(E3) +

f ′′2(E1) - f ′′2(E2)
f ′(E1) - f ′(E2)

-

f ′′2(E1) - f ′′2(E3)
f ′(E1) - f ′(E3)

(6)
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hydrocarbon chains of the two lipid layers are fused, making it
possible to form tighter packing. The ratios of the maximal
intensities of the Bragg peaks are also different in the cases of
the two DBP concentrations as a consequence of the changes
in the radial electron densities of the bilayers (i.e., on one hand,
the geometrical arrangement of the lipids and also the DBP
molecules is changed, and on the other hand, drastic local
enlargement in the electron density has been occurred by the
DBP molecules).

The separated intensities of DBP molecules for the two DBP/
DPPC ratios, derived from measured data by using the right-
hand side of eq 6, are shown in Figure 2. Bragg reflections can
be observed on these separated curves at the same position as
on the total scattering curves, which provides clear evidence of
the periodic displacement of DBP molecules corresponding to
the periodicity of the vesicles.

To get more detailed information about the localization of
DBP molecules in the bilayers, we performed a simple model
fitting.22,23 For these calculations, the structure factor from
paracrystalline theory was used, which takes the packing
disorder into account

where N is the number of layers and Δ is the mean square
fluctuation of the bilayers. The latter originates from the Debye-
Waller temperature factor, but now, we consider it as the effect
of the guest molecules.

The conventional way to determine the bilayer ED profile is
to use Fourier synthesis on the Bragg intensities, which were
previously corrected for S(q) and the Lorentz factor q2 according

to eq 1. This method, however, can be used only if the scattering
pattern shows at least four diffraction orders. In our case, we
have to consider a model ED profile because of the reduced
number of Bragg peaks.

For modeling the ED profile along the bilayer normal, we
have used a Gaussian model, which is based on describing the
electron density as a sum of Gaussian functions. We have used
only two Gaussian functions per bilayer located symmetrically
to the center of the bilayer, because only the contribution of
the guest molecules is present on the separated scattering curves.
In the adumbrated case, the geometrical part of the form factor
of the guest molecules will be the following:

where σ and zG are the width and the position from the bilayer
center of the Gaussian function. The model fitting was
performed using lsqcurvefit routine of MATLAB (The Math-
Works, Inc.).

The fitted model functions agree convincingly with the
measured data as can be seen in Figure 2 (The results of the
fits are summarized in the Table 1). According to the form factor
in eq 8, the distributions of the guest molecules along the bilayer
normal are shown in Figure 3.

These results clearly show that the DBP molecules are
embedded in the lipid layers. In the case of the lower DBP/

Figure 2. ASAXS measurements of DBP/DPPC systems at 0.1 (top)
and 1 (bottom) molar ratios. Left ordinate belongs to the total scattering
curves; right ordinate belongs to separated scattering curves from
bromine atoms of DBP molecules.

SPT(q) ) N + 2∑
k)1

N-1

(N - k) cos(kqd) exp(-k2q2Δ2/2) (7)

Figure 3. Particle densities along the bilayer normal at 0.1 (top) and
1 (bottom) DBP/DPPC molar ratio. The positions of the lipid molecules
are also shown in the figure.

TABLE 1: Fitting Results: Number of Bilayers N,
Repeating Unit d, Mean Square Fluctuation of the Bilayers
Δ, Width and Position (from the bilayer Center) of the
Gaussian Function σ and zG, Respectively

DBP/DPPC N d Δ σ zG

0.1 25 ( 1 67.8 (87) 5.4 (33) 9.1 (59) 12.9 (74)
1 19 ( 1 50.7 (67) 1.4 (44) 2.6 (99) 15.8 (28)

V(q) ) �2π[2σ exp(-σ2q2/2)cos(qzG)] (8)
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DPPC ratio, the localization of the guest molecules is less
determined than in the case of the higher ratio, where their
positions are more localized to the vicinity of the headgroups.

Conclusions

The location of 2,4-dibromophenol molecules in DPPC/water
liposomes was studied by the ASAXS technique at 0.1 and 1
DBP/DPPC molar ratios. The ASAXS curves measured at three
different energies provided the derivation of the scattering
contribution of the guest molecules. On the basis of a Gaussian
model, these separated curves were interpreted, giving the
possibility to determine the distributions of the bromophenols
along the bilayer normal. In the case of the higher DBP
concentration, the displacement of the guest molecules is
characterized by a sharp distribution function pointing out the
essential role of these molecules in the formation of the
interdigitated phase.

This study reveals the utility of the ASAXS method in
examining the distribution of a third component in a lamellar
system, in the concrete case, in DPPC/water liposomes.
However, this method can be applied in a great variety of these
kinds of systems, such as diblock copolymers, which have high
interest in nanoindustry.
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PACS. 82.35.Rs – Polyelectrolytes.

Abstract. – The distribution of Sr counterions around negatively charged sodium polyacry-
late chains (NaPA) in aqueous solution was studied by anomalous small-angle X-ray scattering.
Different ratios of the concentrations of SrCl2/[NaPA] reveal dramatic changes in the scattering
curves. At the lower ratio the scattering curves indicate a coil-like behavior, while at the higher
ratio the scattering curves are contracted to smaller q-values, caused by the collapse of the NaPA
coil. The form factor of the scattering contribution of the counterions was separated and ana-
lyzed. For the scattering curves of the collapsed chains, this analysis agrees with the model of a
pearl necklace, consisting of collapsed sphere-like subdomains which are connected by stretched
chain segments. An averaged radius of the pearls of 19 nm and a distance between neighbouring
pearls close to 60 nm could be established for the collapsed state of the NaPA chains.

Introduction. – The density of charges along a polyelectrolyte chain makes it accessible
to a wide variety of conformations. The two most efficient techniques to control changes in
polyelectrolyte conformation are: i) the screening of electrostatic interactions among charged
polymer segments by adding an inert salt [1]; ii) the extinction of charges on the polyelectrolyte
chain by adding specifically interacting counterions [2, 3]. Synthetic polyelectrolytes may
therefore be used as simple models for biopolymers, where the role of electric charges is
essential for the proper functioning of nucleic acids, numerous enzymes and proteins.

Theoretical understanding of the mechanism underlying the first technique has made sig-
nificant progress. With increasing electrostatic screening, the shape of the polyelectrolyte
gradually changes from a coil to a compact sphere, passing a cascade of transition states.
For these transition states, cigar-like or pearl necklace structures are discussed. The latter
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E-mail: guenter.goerigk@desy.de
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were predicted in analogy to the Rayleigh instability of oil droplets while being electrically
charged [4, 5]. Beyond all doubt, the actual shape depends in a subtle way on the coun-
terion concentration and interactions between solvent and chain backbone [4–10]. Although
the pearl necklace model has attracted much attention [11–14], direct prove of its existence is
still lacking.

The present investigation focuses on the change in size and shape of sodium polyacrylate
(NaPA), followed by the addition of alkaline earth cations as an example for technique ii).
Alkaline earth cations are known to specifically interact with the anionic carboxylate residues,
located on every other carbon atom of the polymer backbone. Formation of complex bonds
between the anionic groups and alkaline earth cations neutralizes electric charges and thereby
changes the nature of the respective chain segments. As a consequence, solubility of the
polyelectrolyte is lowered, which leads to a significant coil shrinking and eventually causes a
precipitation of the respective alkaline earth salt [3, 14].

The precipitation depends on the concentration of NaPA and of the alkaline earth cations,
denoted as M2+. Beyond a threshold concentration [M2+]0, an additional stoichiometric
amount of M2+ per COO− function is required to precipitate the polycarboxylate chains. This
correlation can be represented in a phase diagram by means of a linear relation of the form
[M2+]c = a + r0[NaPA]c which separates the one-phase regime of a dilute solution from the
precipitate, thus acting as a phase boundary [3,14]. Based on light scattering measurements,
changes in coil shape and size are expected to be more pronounced the closer one gets to this
phase boundary. Although the coils adopt a sphere-like shape prior to precipitation [14], the
shape of intermediates along the coil-to-sphere transition is still an unsettled question.

In the present letter, two questions will be addressed: i) the structure of collapsing
polyacrylate chains while approaching the phase boundary of strontium polyacrylate (i.e.
M2+ = Sr2+); ii) an evaluation of the potential offered by the technique of anomalous small-
angle X-ray scattering (ASAXS) to characterize the conformation of polyelectrolyte coils dec-
orated with specifically interacting counterions.

Anomalous small-angle X-ray scattering enables the structural characterization of the
counterion distribution around the macroions by tuning the energy in the vicinity of the
absorption edge of the counterion (i.e. Sr2+) in question. The distribution of the counterions
is not accessible by conventional SAXS measurements, because the scattering contributions
of the counterions and the macroions superimpose and cannot be distinguished. The first
ASAXS experiments of counterion distributions were reported by Stuhrmann [15] and more
recent results are published in [16–21].

ASAXS measurements. – In the case of a dilute solution of negatively charged polymers,
which are surrounded by positively charged counterions, the scattering amplitude —neglecting
interparticle correlation— writes

A(�q ) =
∫

Vp

ΔρPoly(�r ) · exp[−i�q �r ]d3r +
∫

Vp

ΔρIon(�r ) · exp[−i�q �r ]d3r, (1)

q is the magnitude of the scattering vector [= (4π/λ) sin Θ], where 2Θ is the scattering angle
and λ the X-ray wavelength. ΔρPoly, ΔρIon are the excess electron densities of the polyelec-
trolyte chains and the counterions,

ΔρPoly(�r ) = ΔfPoly · u(�r ) = (fPoly − ρmVPoly) · u(�r ),
ΔρIon(�r,E) = ΔfIon(E) · v(�r ) =

(
(f0,Ion − ρmVIon) + f ′

Ion(E) + if ′′
Ion(E)

) · v(�r ), (2)

calculated from the electron density ρm of the solvent and the volumes of the chains VPoly

and of the counterions VIon, while u(�r ), v(�r ) are the particle densities of the polymer chains
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and the counterions, respectively. The molecular scattering factor (number of electrons) of
the chain fPoly(E) ≈ const is nearly energy independent, while the atomic scattering factor
of the counterions fIon(E) = f0,Ion + f ′

Ion(E) + if ′′
Ion(E) shows strong variation with the

energy in the vicinity of the absorption edge of the counterion due to the so-called anomalous
dispersion corrections f ′

Ion(E), f ′′
Ion(E). Calculating the scattering intensity I(�q ) = |A(�q )|2 =

A(�q ) ·A∗(�q ) by means of eqs. (1)-(2) and averaging over all orientations of the polymer yields
a sum of three contributions: I(q, E) = |APoly(q)|2 + |Amix(q, E)|2 + |AIon(q, E)|2, with the
integrals [15]

|APoly(q)|2 = 4πΔf2
Poly

∫
Vp

∫
u(�r )u

(
�r ′) sin

(
q|�r − �r ′|)

q|�r − �r ′| d3r d3r′,

|Amix(q, E)|2 = 4π ·2ΔfPoly ·
(
f0,Ion−ρmVIon+f ′

Ion(E)
)∫

Vp

∫
u(�r )v

(
�r ′) sin

(
q|�r−�r ′|)

q|�r−�r ′| d3rd3r′,

|AIon(q, E)|2 = 4π · |ΔfIon(E)|2
∫

Vp

∫
v(�r )v

(
�r ′) sin

(
q|�r − �r ′|)

q|�r − �r ′| d3r d3r′. (3)

Equation (3) gives the non-resonant scattering of the polymer chains |APoly(q)|2, the cross-
term or mixed-resonant scattering |Amix(q, E)|2 originating from the superposition of the
scattering amplitudes of the polymer and the counterions and the scattering of the counte-
rions |AIon(q, E)|2, which contains the so-called pure-resonant scattering. By measuring the
scattering curves at two energies in the vicinity of the absorption edge of the counterions and
subtracting the two scattering curves ΔI(q, E1, E2) = I(q, E1) − I(q, E2), the non-resonant
scattering contribution of the polymer is vanishing:

ΔI(q, E1, E2) = 4π · 2ΔfPoly

(
f ′
Ion(E1)−f ′

Ion(E2)
)∫

Vp

∫
u(�r )v

(
�r ′) sin

(
q|�r−�r ′|)

q|�r−�r ′| d3r d3r′ +

+4π
(|ΔfIon(E1)|2−|ΔfIon(E2)|2

)∫
Vp

∫
v(�r )v

(
�r ′) sin

(
q|�r−�r ′|)

q|�r−�r ′| d3r d3r′. (4)

Now the scattering function is reduced to the resonant contributions —the so-called separated
scattering— but the scattering of the polymer is still present in the cross-term. To overcome
this problem, the measurement at a third energy can be performed and when subtracting the
separated-scattering curves obtained at the two energies E1, E3 from the separated scattering
obtained from the two energies E1, E2, the cross-term is vanishing and the form factor SIon(q)
of the spatial distribution of the counterions remains after normalizing to the energy-dependent
anomalous dispersion corrections of the atomic scattering factor of the counterions at the
related energies:

SIon(q) = 4π
∫

Vp

∫
v(�r )v

(
�r ′) sin

(
q|�r − �r ′|)

q|�r − �r ′| d3r d3r′ =

=
[

ΔI0(q, E1, E2)
f ′
Ion(E1) − f ′

Ion(E2)
− ΔI0(q, E1, E3)

f ′
Ion(E1) − f ′

Ion(E3)

]
· 1
F (E1, E2, E3)

,

F (E1, E2, E3) = f ′
Ion(E2)−f ′

Ion(E3)+
f ′′2

Ion(E1)−f ′′2
Ion(E2)

f ′
Ion(E1)−f ′

Ion(E2)
− f ′′2

Ion(E1)−f ′′2
Ion(E3)

f ′
Ion(E1)−f ′

Ion(E3)
. (5)

Due to eq. (5) ASAXS provides a technique to access directly the scattering of the counterions
and the structural information of the counterion distribution surrounding the macroions can
be obtained from the analysis of the form factor SIon(q). More generally speaking, eq. (5)
provides a method which allows to access directly by analytical means the pure-resonant
scattering contribution by measuring the small-angle scattering at only three suitable energies.
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Fig. 1 – Anomalous dispersion corrections obtained by Cromer-Liberman calculations [24, 25]. The
values at 16.105 keV result from the convolution with the energy resolution of the JUSIFA beamline.

Experimental. – First, a stock solution of NaPA (supplier: Polysciences, Eppelheim,
Germany) was prepared in bidistilled water with 0.007M NaCl, 0.0015M SrCl2 and pH 9.
After 3 days, this solution was combined with a SrCl2 solution with 0.0015M SrCl2, pH 9 and
2[Sr2+]+[Na+] = 0.01M [14,22]. In order to approach the precipitation limit, several polymer
concentrations were produced by diluting with a solution with 1.5mM SrCl2, pH 9 and [Sr2+]+
[Na+] = 0.01M, i.e. with a constant concentration of cationic charges. Combined static and
dynamic light scattering measurements (ALV 5000E CGS) allowed us to locate the precipita-
tion threshold and to get first information on the shape of the polymer chains in dependence on
the ratio of [Sr2+]/[NaPA] [22]. Finally, two samples differing in the polymer concentration
were chosen: P4KE corresponds to [NaPA] = 3.61mM, i.e. [Sr2+]/[NaPA] = 0.42, P4KU2
corresponds to [NaPA] = 3.25mM, i.e. [Sr2+]/[NaPA] = 0.46 with P4KU2 lying closer to the
borderline of phase separation than P4KE. Compared to coiled chains in Sr2+-free solutions,
the polyanion dimensions of both samples are significantly shrunken. The two samples as well
as the solvent (containing the same amount of Sr2+) were filled into capillaries from Hilgenberg
GmbH, Malsfeld, Germany. The capillaries are made of borosilicate glass with an inner diame-
ter of 4mm and a wall thickness of 0.05mm. The inner diameter of 4mm is nearly the optimal
size for the energy range of the Sr-K edge at 16.105 keV. The capillaries were closed with
a pipette plug fixed by two-component quick-setting adhesive. ASAXS measurements were
performed at the JUSIFA beamline [23] at HASYLAB, DESY, Hamburg in the energy range
of the K absorption edge of strontium at 16.1046 keV. Measurements were made with a two-
dimensional detector at three energies. A q-range from about 0.075 to 2.5 nm−1 was covered.

Results. – Figure 1 shows the anomalous dispersion corrections of Sr based on the calcu-
lations of Cromer and Liberman [24, 25]. The circles represent the X-ray energies, where the
SAXS measurements were performed. The table in fig. 1 provides the anomalous dispersion
corrections for Sr at the three energies. In the energy range between 16.103 and 16.107 eV, the
energy dependence of the anomalous dispersion corrections was convoluted with the energy
resolution of the JUSIFA beamline. The value at the energy 16.105 eV in fig. 1 is the result
obtained from this convolution. The anomalous dispersion corrections were used in eq. (5) to
permit the separation of the form factor of the pure-resonant scattering contribution of the Sr
counterions. All scattering curves have been calibrated into absolute units (i.e. macroscopic
scattering cross-sections in units of cross-section per unit volume cm2/cm3 = cm−1). For all
energies the scattering of the solvent was measured with the same statistical accuracy and
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Fig. 2 – ASAXS measurements of the shrinking NaPA chains ([NaPA] = 3.61 mM; [Sr2+]/[NaPA] =
0.41) at the Sr-K absorption edge at 16.105 keV. The symbols denote: � total scattering from
the polymer and the Sr2+ ions; � mixed-resonant curve according to eq. (4); ◦ form factor of the
distribution of the Sr2+ ions; — power law q−2.

Fig. 3 – ASAXS measurements of the shrinking NaPA chains ([NaPA] = 3.25 mM; [Sr2+]/[NaPA] =
0.46) at the Sr-K absorption edge at 16.105 keV. The symbols denote: � scattering from the polymer
and the Sr2+ ions; � mixed-resonant curve according to eq. (4); ◦ form factor of the Sr2+ ions. The
solid line is a fitted model function (eq. (6)) with a predefined number of pearls N = 3. The inset
compares fitted model functions with N = 2 (blue), 3 (black), 4 (red) and 5 (green), respectively.

was removed from the scattering curves of the sample before applying eq. (5). In figs. 2 and 3
the scattering curves of P4KE and P4KU2 are shown. The squares show the total-scattering
curves comprising both polymer chains and counterions measured at the energy 15.507 keV.
The triangles at medium scattering cross-sections show the separated (mainly mixed-resonant)
scattering, which corresponds to the superposition of the scattering from the polyacrylates
and the Sr counterions. The separated-scattering curves were obtained from measurements
at the two energies 15.507 and 16.105 keV and the separation was performed due to eq. (4).
The circles represent the form factors of the distributions of the Sr counterions. The separa-
tion of the form factors was obtained from measurements at the three energies 15.507, 16.093
and 16.105 keV due to eq. (5). In the case of N scattering curves measured at N different
energies M = N(N − 1)/2 separated-scattering curves can be obtained and M independent
combinations of the M separated-scattering curves can be used in eq. (5) for the calculation
of the form factor. The form factors in figs. 2 and 3 represent the averaged curves, which were
obtained from the three (M = 3) independent separations. The number of q-bins in the Sr2+

form factor curves of both samples was reduced in comparison to the mixed-resonant and the
total-scattering curves, with the aim to obtain smaller error bars at q-values larger 0.2 nm−1.
The procedure was as follows: the cross-section of the form factor curves, which represent the
Sr2+ counterions, was averaged over neighbouring q-bins. The result gives the cross-section at
the center of the averaged q-interval. The error of the averaged cross-section is the averaged
squared error calculated from the errors of the single q-bins.
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Discussion. – In fig. 2 the scattering curves of NaPA chains at [NaPA] = 3.61mM
(P4KE) obtained from SAXS measurements are shown. The total as well as the separated
(mixed-resonsant) scattering curve and the form factor of the distribution of Sr counterions
follow a power law of dσ/dΩ ∼ q−α. The exponent α is close to 2 for the three curves,
indicating a coil-like behavior [26]. However, it is worth mentioning that the separated curve
reveals undulations which points to the occurrence of spherical subdomain formation.

The scattering curves (total, separated and form factor of Sr ion distribution) of the second
sample (P4KU2) with a smaller concentration of NaPA ([NaPA] = 3.25mM), but the same
SrCl2 content as P4KE show a different behavior. The total-scattering curve is contracted
to smaller q-values and shows several shoulders. This behavior is compatible with the form
factor of spherical objects, which is modulated by interspherical scattering contributions.
The latter was already suggested by former SANS measurements [27]. This interpretation is
strongly confirmed by the separated-scattering curve (triangles) and the separated form factor
(circles) of the Sr ion distribution. Both curves exhibit a number of characteristic structures for
q > 0.1 nm−1 with pronounced maxima, minima and shoulders revealing a scattering function,
which is strongly influenced by correlation effects between rather monodisperse subdomains
within the collapsing chains. Especially the form factor of the spatial distribution of the Sr
counterions reveals a correlation maximum at 0.1 nm−1. The solid line in fig. 3 represents
a fitted model function to the form factor of the Sr ion distribution. For a counterion-
condensation–induced shrinking process (technique i)) such a model was first suggested by
Rubinstein et al. [5] and was confirmed later by computer simulations [7, 8, 10]. The model,
denoted as pearl necklace, gives the scattering function of N spheres with radius R and with
a distance d between the spheres. For the size distribution of the spheres, a log-normal size
distribution P (R) was assumed (eq. (6)):

SIon(q) = const
∫ ∞

0

P (R)·
(

4πR3

3
3(sin(qR)−qR cos(qR))

(qR)3

)2

·
(
N+2

N−1∑
n=1

(N−n)
sin(nqd)

nqd

)
dR,

P (R) =
1√
2π

· 1
σR

· exp

[
− ln2 R

R0

2σ2

]
. (6)

In eq. (6), R0 is the mean radius of the spheres, σ is the second moment of the log-normal
size distribution and d is the distance between neighbouring spheres. The first bracket in
the integral contains the form factor of a single sphere multiplied by the correlations (second
bracket) introduced by the interference of the scattering from the N spheres. An increase
of the number of spheres N at constant d i) increases the overall size of the pearl necklace;
ii) has small but significant effects in the regime of 0.06 nm−1 < q < 0.12 nm−1, where a
minimum and a maximum occur (inset of fig. 3); iii) does not significantly affect the three
fit parameters σ, d and R0; iv) does not affect the scattering curve for q > 0.14 nm−1. The
maximum appears only for N ≥ 3. Although eq. (6) accounts for a polydispersity, the model
is still rather crude due to the assumption of a regular sphere-like structure for the pearls and
due to neglect of a polydispersity of the pearl size within each necklace chain, respectively.

In the light of these trends and simplifications, we kept the fit as simple as possible,
predefining the number of pearls at N = 3. As a result, we found: R0 = 19.2(3) nm for
the mean radius of the spheres, σ = 0.088(24) for the second moment of the log-normal size
distribution, which corresponds to a FWHM in the size distribution of 4 nm and, finally, d =
60.8(20) nm for the distance of the spheres. In this interpretation, the fitted model function
points into the direction of scattering originating from more than two pearls (dumb-bell).
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Conclusions. – From anomalous small-angle X-ray scattering experiments on diluted
polyacrylate solution in water with Sr counterions the form factor of the spatial distribution
of the Sr counterions was separated. The counterions were found to be located in sphere-
like clusters of 19 nm radius which are compatible with collapsed subdomains within the
polyacrylate macroions. Assuming a pearl-necklace–like structure an averaged distance of
about 60 nm could be established for neighbouring spheres. The distance of the spheres are
formed by non-collapsed polyacrylate chain segments. The fitted log-normal size distribution
of the spheres revealed a narrow-size distribution with a FWHM value of 4 nm.
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Erklärung 

 

Die vorgelegte Zusammenfassung wissenschaftlicher Resultate ging überwiegend aus den 

wissenschaftlichen Veröffentlichungen [S1-S9] hervor, welche mit Anomaler Röntgen-

Kleinwinkelstreuung gewonnen wurden. Diese spezielle Anwendung der 

Kleinwinkelstreuung unter Einsatz der Synchrotronstrahlung ist ein Arbeitsgebiet, auf dem 

ich seit fast 30 Jahren wissenschaftlich arbeite und dessen Weiterentwicklung ich maßgeblich 

beeinflusst habe. Entsprechend waren meine Beiträge in den Publikationen [S1-S9] im 

Hinblick auf die Kleinwinkelstreuung überwiegend, sofern ich Hauptautor war bzw. 

unverzichtbar sofern ich als Co-Autor in der Autorenliste auftrete. Meine persönlichen 

Beiträge zu den einzelnen Publikationen [S1-S9] werden im Folgenden kenntlich gemacht. 

 

In [S1] wurde von mir gezeigt, dass das in den vorangehenden Publikationen verwendete 

mathematische Verfahren zur direkten Darstellung der Basisstreufunktionen dem Gauß’schen 

Eliminationsverfahren, angewendet auf ein durch die ASAXS-Messtechnik vorgegebenes 

lineares Gleichungssystem entspricht. [S1] baut dabei auf den Ergebnissen von [S2] über die 

Untersuchung der spinodalen Entmischung in ternären Legierungen auf. Die in [S2] 

untersuchten Legierungen wurden im IFW-Dresden hergestellt und anschließend von mir am 

JUSIFA-Messstand  mit Anomaler Röntgen-Kleinwinkelstreuung untersucht. Die 

Datenanalyse basiert auf dem von mir für ASAXS entwickelten Zerlegungsverfahren und 

wurde von mir durchgeführt. In [S3] wurden unter meiner Leitung am JUSIFA-Messstand 

ASAXS-Messungen nach der von mir entwickelten Zerlegung quantitativ untersucht. Die 

hochporösen Katalysatorproben wurden an der Universität Budapest hergestellt. In [S4] 

wurden unter meiner Leitung am JUSIFA-Messstand ASAXS-Messungen an verdünnten 

chemischen Lösungen der Universität Paderborn nach der von mir entwickelten Zerlegung 

quantitativ untersucht. In [S5] wurde an multi-lamellaren bio-kompatiblen 

Membransystemen, die von der Universität Budapest für die Herstellung nano-strukturierter 

Halbleiterkolloide funktionalisiert wurden, unter meiner Leitung am JUSIFA-Messstand 

ASAXS-Messungen nach der von mir entwickelten Zerlegung untersucht. In [S6] wurde der 

von mir entwickelte Zerlegungsalgorithmus erstmals auf eine Halbleiterlegierung 

angewendet. Die Legierungen wurden vom NREL (National Renewable Energy Laboratory) 

bzw. an der Colorado School of Mines hergestellt. Die ASAXS Messungen bzw. die 

nachfolgende Datenanalyse wurden von mir durchgeführt. Die in [S7] mit Ergebnissen der 



 

 

Lichtstreuung verglichenen ASAXS-Messungen wurden unter meiner Leitung am JUSIFA-

Messstand durchgeführt und nach dem von mir entwickelten Zerlegungsverfahren analysiert. 

Die verdünnten chemischen Lösungen wurden an der Universität Paderborn hergestellt und 

dort mit Lichtstreuung untersucht. In [S8] wurden unter meiner Leitung am JUSIFA-

Messstand ASAXS-Messungen an multi-lamellaren Vesikeln durchgeführt und nach dem von 

mir entwickelten Zerlegungsverfahren analysiert. Die Vesikelproben wurden an der 

Universität Budapest hergestellt. In [S9] habe ich erstmals den beschriebenen 

Zerlegungsalgorithmus auf ASAXS-Messungen, die unter meiner Leitung am JUSIFA-

Messstand durchgeführt wurden, auf verdünnte chemische Lösungen mit Sr-Gegenionen 

angewendet. Diese Publikation hat die nachfolgenden Publikationen [S2-S8] initiiert. Die 

Proben wurden an der Universität Paderborn präpariert. 

 

Für alle Publikationen [S1-S9] waren neben der Entwicklung eines geeigneten 

mathematischen Algorithmus meine stetig vorangetriebenen Verbesserungen der Messtechnik 

am JUSIFA-Messstand mit dem Ziel einer Messgenauigkeit von ΔI/I=10
-3

 unerlässliche 

Voraussetzung. 
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