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Abstract

The thesis at hand deals with the question of how to decide whether two integer
matrices are similar. To answer it, a module-theoretic approach will be pursued.
In the first part of the work, a one-to-one correspondence will be established
between classes of semisimple matrices and classes of modules which are defined
over certain orders. For two such modules it then has to be examined whether
they are isomorphic. In general, this problem can be solved by a principal ideal
test, where the ideal concerned is a right ideal of a typically noncommutative
matrix order. In a first approximation, the problem will be considered over
a maximal order. It is well known how to conduct the test in this situation.
Upon a positive outcome, it can be decided in a finite number of steps whether
the original ideal is principal. Under suitable conditions, this can be done by
methods for finite abelian groups. For instance, the ideal needs to be coprime
to the conductor of an extension of matrix orders. Among other things, it will
be shown how to ensure that this condition is satisfied.

The second part will deal with nilpotent elements of matrix orders. While the
close connection between matrices and modules will not persist in this case, it
will suffice to consider a finite family of modules to decide similarity. Combining
the methods of both parts will result in a complete algorithm.

Die vorliegende Arbeit beschéftigt sich mit der Frage, wie sich entscheiden lésst,
ob zwei ganzzahlige Matrizen dhnlich sind. Zu ihrer Beantwortung wird ein
modultheoretischer Ansatz verfolgt. Im ersten Teil der Arbeit wird eine Eins-
zu-eins-Korrespondenz hergeleitet zwischen Klassen halbeinfacher Matrizen und
Klassen von Moduln, die iiber bestimmten Ordnungen definiert sind. Fiir zwei
solcher Moduln muss anschlieBend untersucht werden, ob sie isomorph sind.
Im Allgemeinen lasst sich dieses Problem mithilfe eines Hauptidealtests losen,
wobei das betreffende Ideal ein Rechtsideal einer typischerweise nicht kommuta-
tiven Matrizenordnung ist. Als erste Anndherung wird das Problem iiber einer
Maximalordnung betrachtet. Es ist wohlbekannt, wie sich der Test in dieser
Situation durchfiihren ldsst. Bei einem positiven Ergebnis kann in endlich vie-
len Schritten entschieden werden, ob urspriinglich ein Hauptideal vorlag. Unter
geeigneten Bedingungen kann dies mit Methoden fiir endliche abelsche Gruppen
bewerkstelligt werden. Beispielsweise muss das Ideal koprim sein zum Fiihrer
einer Erweiterung von Matrizenordnungen. Unter anderem wird gezeigt werden,
wie sich gewéhrleisten lédsst, dass diese Bedingung erfiillt ist.

Der zweite Teil wird sich mit nilpotenten Elementen von Matrizenordnungen
beschéftigen. Zwar wird die enge Verbindung zwischen Matrizen und Moduln in
diesem Fall nicht bestehen bleiben, doch wird es geniigen, eine endliche Familie
von Moduln zu betrachten, um Ahnlichkeit nachzuweisen. Die Kombination der
Methoden aus beiden Teilen wird einen vollstdndigen Algorithmus liefern.
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Introduction

The subject of the thesis at hand is the following problem: Given two integer
matrices A and B, decide whether they are similar, that is, decide whether there
is an invertible integer matrix C' such that

CA = BC.

Our goal is to develop a method by which this question can be answered and
which computes a suitable matrix C' if the outcome is positive.

Over a field, such as the rational numbers, it is well known that this problem can
be solved by comparing the (generalized) Jordan normal forms of both matrices.
For integer matrices, however, this is not true. In fact, there are matrices with
the same Jordan normal form over the rational numbers which are not similar
over the integers. To make things worse, it is uncertain how a canonical form
for similarity classes of integer matrices could look like; it seems rather unlikely
that such a form exists.

It was first shown, independently, by Sarkisjan (1979) and Grunewald (1980)
that the problem of integral similarity is decidable in computational terms.
In their papers, they actually proposed working algorithms, albeit not very
efficient ones. Some more work was done on matrices of the size 2 x 2 and
3 x 3, for instance by Applegate and Onishi (1981, 1982) and Behn and Van der
Merwe (2002), but their methods strongly rely on the given size and cannot be
generalized readily to higher dimensions. As a matter of fact, new difficulties
arise when dealing with matrices of the size 4 x 4.

At the time of writing, there is no implemented algorithm which solves our
problem in general. In the computer algebra system MAGMA, there is a function
called IsGLZConjugate which works for matrices of finite order and matrices
of the size 2 x 2. The first case is based on results by Opgenorth, Plesken and
Schulz (1998), the second case was implemented by the author as part of his
diploma thesis. As we will see, our method will reduce the computational effort
for matrices of finite order by a considerable amount.

The basic strategy of this work will be as follows. By the Jordan—Chevalley
theorem, we have unique decompositions

A=S5S+N and B=S+N'

where S, S’ are semisimple and N, N’ nilpotent matrices satisfying SN = NS
and S'N' = N'S’. Without restriction we may assume that all matrices are
integral. Then, in a first step, we can examine whether S and S’ are similar.
Afterwards, we can pay attention to the nilpotent summands. Accordingly, our
work will be separated into two parts.
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For semisimple matrices, we will show that there is a one-to-one correspondence
between their similarity classes and the equivalence (or isomorphy) classes of
certain modules. To be more precise, if

p=pacopsoand o= ppte

are the minimal and characteristic polynomials of the matrices at hand, we
consider the algebra

K=Ki® - ®Ks; where £, =Q(9,) = Q[X]/(1)-

The similarity classes of our matrices then correspond to the classes of full o-
modules in K™ = K* @ --- @& K2 where 0 = Z[J] = Z[¥1 @ --- ® 9J]. This
theorem was proved by Latimer and MacDuffee (1933) under the assumption
ny =--- =mns = 1, and we will prove its validity in the general case. Deciding
similarity of semisimple matrices will then be equivalent to deciding whether
two full modules are isomorphic.

If the modules are defined over the maximal order Oy, it is well known how
to decide whether they are equivalent, namely by reducing the problem to a
principal ideal test in 0x. However, this special case already illustrates that
deciding similarity has to be considered a hard problem, as principal ideal test-
ing certainly is. If the modules are defined over a nonmaximal order, further
difficulties should be expected, as the theory of finitely generated modules is
much less well understood in this case. For instance, the reduction indicated
over Ox cannot be realized in general. As it turns out, any nonmaximal order
of IC can occur in our context (as multiplier ring of a suitable module).

To find a solution in the nonmaximal case, we will need to decide whether a
right ideal € of a matrix order

ACM(n,K)= @M(nL,ICL)
=1

is principal. Unless ny = --+- = ng = 1, this order is of course noncommutative.
It is also nonmaximal unless its center is equal to Ox. To decide whether € is
principal, we will devise an algorithm which will resemble an approach known
for ideals in number fields. First, we will examine whether €Ay is principal
for a suitable maximal order Ax D A. This is obviously necessary for € to be
principal. If €Ax = I'Ax, checking whether € is principal will become a finite
problem. Given that € is coprime to the conductor § of the extension A C A,
we will have to check whether the residue class [I" + §] belongs to the image of
the canonical map

Ak = (A/Z) \(Are /)™

In good cases, we will be able to solve this problem using standard methods for
finitely presented abelian groups, as it is actually a question about determinants.
However, as we will see in an example, det(A/F) does not have to be a ring.
Naturally, this will complicate things for us. Nevertheless, we can obtain an
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answer by searching the finite codomain of the map above. Unfortunately, it is
not a group in general.

Furthermore, we will explain why it is always possible to assume that € is
coprime to the conductor. Suppose O is the center of A and f the conductor of
the extension © C 0x. Under the assumption that € is invertible (which has to
be met or else € cannot be principal), we will show that € can be made coprime
to § if and only if €, is principal for all prime ideals p of © which contain f.
Here, €, denotes the localization at the set

which coincides with the usual localization at p if IC is a field. If € = ¢ is an
invertible ideal of 0, it can always be made coprime to § because ¢, is principal
for any full prime ideal p. Not so if € is an ideal of A. In this case, it is indeed
possible that €, is not principal, so € cannot be made coprime to §. However, if
this situation occurs, € itself cannot be principal, leading to a negative answer
to our original question. Of course, we will also explain how to decide whether
¢, is principal and how to obtain a generator, if possible.

Having dealt with the semisimple parts, we may assume S = S’. We then need
to find an invertible matrix C' such that

CN = N'C while CS=SC.

Since N and N’ commute with S, they are uniquely related to nilpotent matrices
M, M' € A. As we will see, the conditions above are met if and only if M and
M’ are similar, that is, if there is a matrix I € A* such that

I'M=M'T.

To treat this problem, another module theoretic approach will be discussed,
which mimics the strategy known for nilpotent matrices over a field. For the
modules concerned, we will introduce a new relation, the similarity of mod-
ules, which requires that certain bases are mapped onto each other. This will
constitute a stronger concept than equivalence.

Unfortunately, the close connection between classes of matrices and classes of
modules will break up in the nilpotent case; modules corresponding to the same
matrix might not be similar. This will pose an algorithmic problem, as we will
be forced to consider not just a pair but a whole family of modules. Yet even
deciding similarity for two modules will be hard in general. We will circumvent
this difficulty by focusing on free modules, an idea pursued in Grunewald’s
paper. Examining these modules more closely, we will be able to improve his
strategy significantly in two ways. First, if A € A is nilpotent and & is the
module corresponding to the matrix S, we will show how to enumerate all free
A-modules of minimal index in & efficiently, that is, without repetition and
without encountering any other modules. Second, we will reduce the effort
for deciding similarity of modules by arguing that, essentially, we only need to



12 Introduction

consider a search area of a fairly restrictive structure. In both cases, though,
the number of steps can still grow exponentially fast.

Additionally, we will examine nilpotent matrices over the integer ring (which
corresponds to the situation S = 0). In this special case, we will establish a few
necessary conditions for similarity that can be checked easily. Moreover, we will
simplify the similarity test for certain matrices. For example, it will suffice to
solve a system of linear equations if the kernel of the matrices has dimension 1.

The arrangement of this thesis is as follows.

In the first chapter we will introduce orders and full modules, and we will prove
the theorem by Latimer and MacDuffee in the general setting outlined above.
After discussing how to decide equivalence of modules over a maximal order,
we will address the nonmaximal case. The problem will be reformulated as
a noncommutative principal ideal test. Making use of the conductor, we will
show that this is a finite problem. Also, we will explain how to benefit from
the situation where the ideal in question is coprime to the conductor. At the
end of the chapter, we will note some remarks about the number of module
classes. Most notably, we will give an example of a module class which cannot
be represented by a direct sum of ideals (a problem which does not emerge over
maximal orders).

The main goal of the second chapter will be to prove that ideals can always be
assumed to be coprime to the conductor (or else they cannot be principal). This
will be done with the help of localizations. We will establish a necessary and
sufficient condition for when an ideal can be made coprime to the conductor.
This will be possible if certain local ideals are principal. We will also explain
how to conduct these principal ideal tests. Additionally, we will establish a
decomposition of finite quotient rings into direct sums of smaller rings, also
using the concept of localization.

The third chapter will revolve around the question of how to execute the prin-
cipal ideal test described in the first chapter, provided that we can perform
the test over the maximal order succesfully and that the ideal is coprime to
the conductor. The commutative and the noncommutative case will be dis-
cussed separately. As we will see, the commutative case can be solved mainly
by standard methods for finitely presented abelian groups. In good cases, the
noncommutative test can be reduced to the commutative situation. Moreover,
we will briefly explain how to perform the test without the requirement that
the ideal is coprime to the conductor.

In the fourth chapter we will explain how to make use of the Jordan—Chevalley
decomposition and how to relate the nilpotent parts of our matrices to nilpotent
elements of a suitable matrix order. It will then suffice to decide similarity for
these elements. The concept of similarity will be introduced for modules, and we
will show how the similarity of matrices is connected to finding a pair of similar
modules. Afterwards we will explain how to decide similarity for certain free
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modules and how to enumerate all relevant modules of minimal index. Finally,
some aspects of nilpotent integer matrices will be discussed.

At the end of each chapter, we will outline the previously developed algorithms.
The thesis will be concluded with two detailed examples illustrating the strategy
of our method, accompanied by a few running time examples and an outlook
for further research.






Part 1

Semisimple Matrices






1 Module-Theoretic Approach I

At the beginning of this chapter, we will introduce some basic objects, notations
and concepts, most notably the equivalence of full modules. In the second sec-
tion we will establish a one-to-one correspondence between the similarity classes
of semisimple matrices and the equivalence classes of full modules. Afterwards
we will briefly explain how to decide equivalence over maximal orders. To deal
with the problem of equivalence in the nonmaximal case, we will need to work
with matrix orders and their ideals. Primarily, we need to know how to de-
cide whether a full right ideal is principal. The conductor of a matrix order
will prove a helpful object in this context. Moreover, we will describe units of
matrix orders in terms of their determinants and we will make some remarks
about the number of module classes.

1.1 Full Modules over Orders

Let K be a finite-dimensional Q-algebra (possibly noncommutative). An order
of K is a subring 0 (with the same unit element as ) which is finitely generated
as Z-module and which satisfies

Qo =K.

From the definition it follows that an order has a Z-basis of length dimg K. As
a subring of a Q-algebra, it is torsionfree and therefore free over Z. The fact
about the dimension is a consequence of the condition Qo = K.

An element ¢ of a finite-dimensional Q-algebra is called integral if it is a root
of a monic integer polynomial. This is equivalent to the condition that the ring

Z ={fW) | f € Z[X]}

is finitely generated as a Z-module." For this reason one easily verifies that all
elements of an order are integral.

The ring Z[¥] is a first example of an order of K, the so-called equation order
of ¥, provided that ¥ is integral and K = Q[¥]. If d = dimg K, a Z-basis of Z[V]
is given by 1,9, ...,9¢L.

In particular, we will be interested in the case where K is a number field. Then
the ring of all algebraic integers, denoted by Ok, is an order of &, and it contains
every other order. It is therefore called the maximal order of K.

More generally, we will be interested in the situation where the algebra at hand
is a direct sum K = K1 @ - - - @ K of several number fields.? This is a ring with

1. Cf. Neukirch (1999), p. 6, (2.2).
2. Throughout this work, IC will always have this meaning.
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componentwise addition and multiplication, and it becomes a Q-algebra via
ar=ar1®---®ars foraeQandx=2,@ - P xs in K.

We may regard Q as a subset of IC since we have the embedding a — a&---®a.
Likewise, IC, can be identified in I by means of the obvious injection IC, — K.

Suppose ¥ =91 @ - - - @ Y is an element of I such that I, = Q(¢,) for each .
Let pq, ..., us be the minimal polynomials of ¥4, ..., If the polynomials are
distinct, then IC = Q[¥] because u = pg - - - ps is the minimal polynomial of
and

QX]/ (1) ~ QX]/ (1) & - - - & QLX]/(pes)-

As mentioned above, Z[¥] is an order of IC precisely if ¥ is integral. In general,
though,
Z10] # Z[1] & - - - & Z[Vs].

For example, the order Z[i ® v/2] does not contain the element 1 & 0, as one
easily verifies. In section 1.7 we will give a criterion for when equality holds.

An element of IC is integral if and only if all of its components are integral.
Hence the order

O =0, @+ DOk,

consists of all integral elements of K. It is the maximal order of K.

Let n = (ny,...,ns) be a multi-index, that is, a tuple of nonnegative integers.
We define
Kt'=K{"®---& Kl

where K? = 0. Like KC, this is a vector space over Q. It is also a JIC-module via
r§ = 1161 © - D w585
fore=21@® - PrsinKKand E =& D+ D& in K™

Equipped with this scalar multiplication, we can now deal with modules in KC™.
A finitely generated o-module 21 in IC™ is called full if it satisfies

Q A=K

Since every order is a finitely generated Z-module, the same is true for full o-
modules in ™. As for orders we may conclude that every full ©-module has a
Z-basis of length dimg KC™.

If K is a number field, the full ®-modules in K are the fractional ideals of ©
(except for the zero ideal, of course). The situation is quite the same if 0 is an
order of IC. In this case, the full ©-modules in K are the fractional ideals of ©

which contain a nonzerodivisor.!

1. Fractional ideals are of the form ya where a is an ideal of © and v € IC*.
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As is well known, two fractional ideals a and b in a number field K are called
equivalent if there is a v € K* such that ya = b. We want to generalize this
concept to the case of full modules. Let

M(n,KC) = @ M(n,, KC,).
=1

This is a matrix algebra acting on IC™ via
rEe=n&ae--- el foorlr'=no---aIl;in M(n,K).
Analogously, let
GL(n,K) = ESDGL(nL,ICL).
=1

Two full ©-modules 2 and B in K™ will be called equivalent if there is a
I' € GL(n, K) such that
I'A =°8B.

In this case we will write A ~ B.

Obviously, this condition defines an equivalence relation on the set of all full
o-modules in KC™. In reference to the term ideal class, the equivalence class of
a full module will be called its module class, which, in fact, coincides with its
isomorphy class.

(1.1) Proposition. All homomorphisms between two full ©-modules 2 and B
are of the form
A—-B, {—TI¢

where I' is any matrix in M(n, ) with the property I'%l C 8. The modules
are equivalent if and only if they are isomorphic.

Proof. Clearly, every I" as above defines a homomorphism 2 — 8. Suppose
v: A =B

is an arbitrary homomorphism. First, we observe that ~ can be extended
uniquely to a IC-automorphism K™ — IC™ because v can be regarded as a ho-
momorphism between two free Z-modules. As such, it can be extended uniquely
to a Q-homomorphism Q2 — Q9. Since QA = QB = K™ and Qo = IC, our
assertion follows.

Suppose eq,..., ey, is the standard basis of K*. Write e} for the image of
e; under the natural injection K — KC™. For every e} there are coefficients
v;; € Ky such that

s ny
ye) =D D el
v=1j=1

Let 1, be the unit element in K,. Then 1,e} = ¢,,€¥ where §,, is the Kronecker
delta. Hence

S ny S ny un
e =v(Lep) =1y(e) = 1. D> el =D > i(le)) =Y e,
=1

v=1j=1 v=1j=1
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that is, 77, = 0 if v # ¢. Let I, = [y;]". Then I' = It @ --- @ I’ belongs to
M(n, IC). It satisfies y(e!) = I'et and therefore

I'A =~(2A) C B.
Hence + is of the desired form. Consequently, A ~ B if and only if A ~ 5. H

In the next section we will see that the problem of deciding whether two semi-
simple integer matrices are similar can be translated into the problem of deciding
whether certain ©-modules are equivalent. Before addressing this issue, we will
introduce the notion of a multiplier ring. By this we understand the set

o={zek|zACA}
where 2 C KC™ can be any free Z-module of rank dimg IC"™.
(1.2) Proposition. The multiplier ring is an order of IC.

Proof. Clearly, 0 is a subring of IC containing 1. Let m = dimg /K and let
m: IK™ — K be a surjective homomorphism. Then a = 7(2l) is a free Z-module
of rank m and it contains a nonzerodivisor a. It is also an o-module (since A
obviously is), so

ao C a.

Thereby we see that 0 is a free Z-module of rank at most m, as it is contained

in a~'a. On the other hand, let a1, ..., q, be a Z-basis of a. Let a:élk) denote

the rational coefficients with
m .
Qo = Zxﬁ?ak (1<i,j<m).
k=1
Choose a nonzero integer ¢ such that c:tyk) € Z for all i, j and k. Then
m .
(coy)oyj = Z(cx§2)ak € a for all i and j,
k=1

that is, ca; € o for all 4. Therefore ca C 0, and 0 has rank at least m. |

As mentioned in the proof, if © is the multiplier ring of 2, then 2 is a full o-
module. In fact, 0 is the largest order of K that constitutes a module structure
on 2. Since we can always think of 2 to be defined over its multiplier ring, we
may simply speak of full modules in K™ without referring to a certain order.
Also, if there is no danger of confusion, we will simply speak of full modules
without mentioning K™ either.

We conclude this section with a statement that is easy to prove.

(1.3) Proposition. If 2 ~ B, the modules have the same multiplier ring.
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1.2 The Theorem of Latimer and MacDuffee

In this section we will establish a connection between the similarity classes of
semisimple integer matrices and the equivalence classes of full modules in ™.
Recall that a matrix is semisimple if and only if its minimal polynomial is
square-free. If n = (n1,...,ns) and d = (dy, ..., ds) are multi-indices, we will
write
In| =ny + -+ ng and d-n=dn;+ - +dns.

If d, = [K, : Q] for each ¢, then d - n is the dimension of K™ over Q. We may
imagine IC" as a subset of CI™ and M(n, KC) as a subset of M(|n|,C) by iden-
tifying

&1 I 0
& @B & with | : and [7®---® s with )
55 0 FS

If 2 is a full module in K™, we therefore have a |n| x d - n matrix = such that
= 579%™
that is, the columns of = belong to K™ and they form a Z-basis of 2.

(1.4) Theorem. Suppose 0 = Z[¥] and K = Q[I] where ¢ = 91 @ -+ ® I,
consists of algebraic integers with distinct minimal polynomials p1, ..., us. Let
p=prcccps, X =pyt g and n=(ng,...,n)

with n, > 0. There is a one-to-one correspondence between

e the similarity classes of integer matrices with minimal polynomial p and
characteristic polynomial y, and

e the module classes of full ©-modules in IC™.

This theorem is a generalization of a theorem by Latimer and MacDuffee (1933)
who considered the case x = p (that is, n, = 1 for all ¢). Its proof is significantly
inspired by work of Taussky (1949). She dealt with the special case where y is
irreducible.

The proof is divided into six lemmata. In the following, the requirements of (1.4)
will always hold. Moreover, IC, will be the field Q(9,) of degree d, = deg(u,) (so
that K = K1 @ --- ® Ks), A and B will denote integer matrices with minimal
polynomial p and characteristic polynomial y, 2l and B will be full ®-modules
in K™, and m = diny + - - - + dsns will be the dimension of K™ over Q.

(1.5) Lemma. For each ¢, let zf,...,2;, € K" be a K,-Basis of Eig(4,4,).
Let

[

)

=[x ...z ... A

that is, the rows of = consist of eigenvectors. Then 2 = Z7Z™ is a full ©-module
in IC™.
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Proof. Since A is a semisimple matrix and 1, an eigenvalue of multiplicity n,,
the dimension of Eig(A,v,) over K, is in fact n,. Let = and 2 be as described
above. Write =} = [24, ... x,. |*. To show that 2 is a module over 0 = Z[J],
it suffices to verify that 9¢; belongs to 2 for each column

1 s s ]tr

ol -
fi— [$1l ‘T’nli ...... "'Uli xnsi Of‘_/.

Since zj, is an eigenvector of A = [a;;] corresponding to ¥,, we have the relation
m
L Ll
Vx5, = Z Qi T,
J=1

Therefore ¥¢; = >~ a;;&; belongs to 2.

It remains to show that 2 is full. Suppose this was not the case. Then the
columns of = are linearly dependent over Z. Thus there is a C' € GL(m,Z)
such that EC* = [7 0] where T = [vy ... vy ] consists of linearly independent
columns. Write

Wi)" = [vh1 - Yhx 0 ... 0]
for the rows of [7" 0] and put B = CAC~!. The vectors y; = Cz} then form a
IC,-basis of Eig(B,v,). Write B = [b;;]. For all + and h and for ¢ > k, we have

k
> bijyh; =0,
=1

that is, ) b;;v; = 0. Because of the linear independence, we conclude b;; = 0
for j < k <. Hence we see that

!/
B= ﬁi j where B’ € M(k, Z).

The truncated vectors [y}, ... y. | are eigenvectors of B’ corresponding to 9,.
As the zf, they are linearly independent over K,, so ¥, is an eigenvalue of B’
of multiplicity at least n,. Therefore the characteristic polynomial of B’ has
degree at least dini + - -+ + dsns = m > k, a contradiction. |

(1.6) Definition. A module as in (1.5) will be said to correspond to A.

(1.7) Lemma. The module class of 2 does not depend on the choice of the
bases for the eigenspaces Eig(A,d,).

Proof. Let yi,...,y,, be another basis of Eig(A,,) for each ¢. Let T be the
matrix with columns

_ 1 1 s s
Vi = [yli ceoe Yngg e e Yti -+ Yngi

and B = TZ™. There are matrices I, = [v};] in GL(n,, K,) such that

n,
L Lot
Yi = Z’Yz‘jl”ja
J=1

SO Yip = Z'yfjx;-k. Thus we see that vy = 'y, for all kK where '=11®--- P I%.
In conclusion, I'A = B. |

]tr
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(1.8) Lemma. If A and B are similar, their corresponding modules are equiv-
alent.

Proof. Suppose C' = [¢;;] in GL(n, Z) satisfies B = CAC™!. Let z,..., ! be
a K,-basis of Eig(A,d,). If
yy, = Cxp,

then yi, ...,y forms a basis of Eig(B,v,). Let = and T be as before. We have

L ot
yh’i - Z C’ijhjy

hence v; = Y ¢;;¢;. Therefore the modules 2 = ZZ™ and B = T'Z™ are in fact
equal. Choosing other bases would result in equivalent modules by the previous
lemma. |

(1.9) Lemma. Let 2 = Z7Z™ be a full ©-module in K™ and let A = [a;;] be
the matrix in M(m,Z) with entries satisfying

m
V& =) aié;
j=1
where £1,...,&, are the columns of =. Then p is the minimal and x the

characteristic polynomial of A.

Proof. If (x})" =[x, ... x%,,] is the hth of the K,-rows of =, we have
m
9z, = Z aija:ﬁlj,
j=1

that is, ¥,25, = Axj. Thus zj, is an eigenvector of A corresponding to 9J,. The

vectors 21, ...,z are linearly independent over K, (otherwise there would be a

matrix I" € GL(n, IC) such that the first IC,-row of I'= were zero, so I' would
not be full). Hence the dimension of Eig(A,d,) over K, is at least n,, so

X = ppt e g
divides the characteristic polynomial of A. Since both polynomials have degree
m = diny + -+ dsns,
they must be equal. Therefore the geometric multiplicity of each eigenvalue is
equal to its algebraic multiplicity, implying that g = p1 - - - s is the minimal
polynomial of A. [ ]

(1.10) Definition. A matrix as in (1.9) will be said to correspond to 2.

(1.11) Lemma. The similarity class of A does not depend on the choice of a
Z-basis for 2.
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Proof. Suppose T is another matrix satisfying 2 = 7Z™ with columns

Vi = [y:llz s ynli """ Yii - ynsz] .
Then there is a matrix C' = [¢;;] in GL(m, Z) such that

m
v; = Z Cijfj-
j=1

Let B = CAC™!. The vectors y = [y4 ... Y4, ] = Ozt are eigenvectors of B
corresponding to ¥,. Therefore B = [bij] is the matrix such that

m
’19’U7; = Z bijUj-
J=1

Of course, u is the minimal and x the characteristic polynomial of B. In con-
clusion, B corresponds to L. |

(1.12) Lemma. If 2 and B are equivalent, their corresponding matrices are
similar.

Proof. Let I' € GL(n, ) satisfy I'A = B and let &,...,&, and v1,..., U
be Z-bases of A and B. Suppose C = [¢;;] is the integer matrix with

F&' = Z CijUj
and let A = [a;;] and B = [b;;] be the matrices corresponding to 2 and B. On
the one hand, we have

rwe) = Z aij&) =Y aij(I&;)
J
= Z aij Z CjkVk = Z(Z ;i Cjk) Uk,
J k ko J
and on the other hand,
HIE;) ﬁch]Uj Zcij(ﬂvj)
J

= Z cij y_ biwvr = Y (Y cijbjr) vk
J k ko J
Therefore Y~ a;jcjr = Y cijbj for all i and k, so AC' = CB. |

Not only does (1.4) state a correspondence between similarity and equivalence
classes, its proof also provides us with a strategy for deciding whether two
matrices are similar. Given two matrices A and B, we can compute their cor-
responding modules 2 and B with bases = and 7" as described in (1.5). If
I'd =B for some I' € GL(n, IC), then AC' = CB, where C is the matrix of the
Z-homomorphism

A =B, E—=T¢

with respect to the bases = and T". Moreover, if 2 £ B, then A and B are not
similar. Hence we need to examine how to decide whether two full modules are
equivalent. In the next section we will explain how this can be accomplished
over a maximal order.
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1.3 Equivalence over Maximal Orders

Let & and B be two full 0x-modules in IC™. Our goal is to decide whether
the modules are equivalent. Since O is a direct sum of maximal orders, every
Orc-module is of the form 24y @ - - - & A;. Therefore

A~B < A ~B, forall..

Thus it suffices to assume that 2 and % are full Ox-modules in K™ where K is
a number field. By a well-known result, 2l and 95 are equivalent to modules of
the form

ad O%_l and b® O,’é‘l

where a and b are ideals of ox and

A~B & a~b.

In the following we will outline the main aspects for proving this theorem.!

To begin with, an ©-module 2 is called projective if it satisfies the following
condition: Every exact sequence

0=-C—=>PB->2A—=0
of o-modules is split, that is, B ~ A § €.

If a is an ideal of 0, it is a projective module if and only if it is invertible. Hence
all nonzero ideals of a maximal order are projective modules. This observation
enables us to transform full Ox-modules into direct sums of ideals. Suppose 24
is a full ox-module in K. Without restriction we may assume that 2 C 0.
Let

m: KP—= K

be the projection onto the first component and let a; = 71(2(). Then a; is a
nonzero ideal of Ok and there is an exact sequence

0—-A >A—a —0 where 2’ = ker(my).

Therefore
A~a A

Next, it is possible to embed 2’ into K"~!, and by induction we may assume
that A ~ as®---PBay,, hence A~ a1 ®---da,. By (1.1) modules are equivalent
precisely if they are isomorphic, thus we may write

A~ap DD ay.

In the case of a nonmaximal order, the situation is more complicated, as not all
nonzero ideals are invertible. In fact, as we will see at the end of this chapter,
there are full ©-modules which cannot be transformed into direct sums of ideals.
However, if the transformation is possible, we have the following result.

1. Apart from (1.14) and (1.15), the results presented here are based on Narkiewicz (2004),
section 1.3.
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(1.13) Proposition. Let A =a; @ --- D a, and B =b; & --- P b, be two full
modules in K. If I € GL(n, K) satisfies I'% = B, then

det(I") -ay---a, =by--- by,
that is, the products of the ideals are equivalent.
Proof. Write I" = [;;]. From I'% = B we obtain
b; = vi1a1 + - - - + yina, forall ¢,

therefore

n
by---b, = H(’yﬂal + - 4+ Yina,) =det() ag - - - a, + further products.

=1

In particular,
det(I)aj---a, Cby---by.

Conversely, we have I'™'8 = 2, implying det(I')~'by---b, C a;---a,. This
establishes the proposition. |

Next we will explain how an Ox-module % = a; & --- P a, can be simplified
to the form a @ Oz_l where a = a7 ---a,. To achieve this, we will apply the
so-called Approximation Theorem.

(1.14) Approximation Theorem. Let B be a finite set of prime ideals of Ox.
Let (vp)pep be a collection of integers and let v, denote the p-adic valuation.
Then there is an a € K* such that

vp(a) =1, forpe’P and vp(a) >0 for p ¢ P.
Proof. We start by choosing elements
yp €p P pT  for p € P with v, < 0.
By the Chinese Remainder Theorem, there is a y € Ok such that, for all p € R,

Y= yp modyp if v, <O,
1 modp ify >0.
In the same fashion we can choose elements
zy € p \pT for p € P with 14, > 0

and
xp € p® p! W) for p ¢ P with vp(y) > 0.

Then there is an element x € Ok such that

1 modyp ifpeP withy <0,
r=<xp, modyp ifpeP withy, >0,
zy modp if p ¢ P with vy(y) > 0.

Put a = x/y. Then vp(a) = vy(x) — vp(y) has the desired properties. [ |
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(1.15) Corollary. Let a and b be two nonzero ideals of 0x. Then there is a
~v € K* such that ya + b = o.

Proof. Write
a:l_[pap and b:Hpb"
p p

where p ranges over all maximal ideals of 0x. By the Approximation Theorem
we can choose a v € K* such that

vp(y) = —ap for all p with b, > 0 and vp(y) > 0 elsewhere.

Then vy(ya) > 0 for all p, that is, ya C 0x. More importantly, va is not
contained in any prime ideal above b, therefore va 4+ b = ok. ]

To prove that

al@"'@ﬂnN(al"‘ﬂn)@o%il,
it obviously suffices to consider the case n = 2. By (1.15) we may assume that
a; +ag = Ok.
Then we have an exact sequence
0—a;Nas—aPa— 0 —0
where the second and third map are given by the rules

a—ad(—a) and a1 @ as — a1 + as.

We already know that the sequence is split, and since the ideals are coprime,
we have a1 Nag = ajas. Therefore a1 S as ~ a® Ok.

Again, the nonmaximal situation is less clear. For example, if f is the conductor
of the extension © C 0k (i.e., the largest Ox-ideal contained in 0), then

fofLtado forall o-ideals a

because the multiplier ring of § & f is Ok, whereas it is © for a & 0. However, if
a; +az = 0, we can deduce a; @ as ~ a® O using the same arguments as before.
Consequently, our problem is that (1.15) cannot be formulated for all ideals of
a nonmaximal order.

Let us summarize our results for the case IK =1 @ --- & Ks.
(1.16) Theorem. Let 2 and B be two full ox-modules in K™. Then there are
Ox-idealsa=a; ®---Dasand b =b; ®--- @ bs such that
S S
A~ Pla, oo™ and B~ P(b, & o).
=1 =1

Moreover, 2 ~ ‘B if and only if a ~ b.
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To decide whether the ideals a and b are equivalent, we can apply a principal
ideal test to each component of

a o= (a7'by) @ @ (a7 'by).
There are well-known algorithms to perform this task.!

Combining theorems (1.4) and (1.16), we see that deciding whether two semisim-
ple integer matrices are similar is equivalent to a series of principal ideal tests,
provided that © = Z[1J] is a maximal order. Since the best known algorithm for
principal ideal testing has subexponential running time?, testing similarity of
semisimple integer matrices has to be considered a hard problem. As our earlier
remarks suggest, there is little reason to be more optimistic in the nonmaximal
case. The remainder of the first part of this work will deal with this situation.

1.4 Matrix Orders

In the previous section we saw how to decide whether two full modules are
equivalent over a maximal order, namely by reducing the problem to a principal
ideal test. We will now see that the problem is closely connected to a principal
ideal test in general. For this we need to deal with orders of M(n, IC). Such
orders will be called matrix orders.

Let A be a matrix order. A subset of M(n,K) is called a fractional right
ideal of A if it is a finitely generated right module over A. The term is defined
accordingly for left or two-sided ideals. Fractional ideals are called full if they
contain an element of GL(n, KC).

Maximal matrix orders will be denoted by Ax. Unlike IC, the algebra M(n, IC)
does not contain a unique maximal order. Instead, there are infinitely many, as
we will see shortly.

If 2 and B are two full modules in IC™, the set
(B:A)={T'eMn,K)|I'ACB}
is called the multiplier ideal of 2l and 8. Moreover, the set
A=(2A:2)

is called the multiplier algebra of 2. Typically, the matrix orders we will
encounter are given in this form.

(1.17) Proposition. With notations as above we observe the following.

(1) A is an order of M(n, IC).

1. For example, see Buchmann (1987).
2. Cf. Cohen, Diaz y Diaz and Olivier (1997).
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(2) (%B:2) is a full fractional right ideal of A.
(3) The center of A is the multiplier ring of 2.
(4) If A ~ B, their multiplier algebras are isomorphic.

Proof. (1) Obviously, A is a subalgebra of M(n, ) containing the identity
matrix. Let

m: K" = K and II,: M(n,K) — M(n,,K,)

be the canonical projections. Let A, = 7, () and A, = II,(A). Then 2, is a free
Z-module and

AA, =2,

Replacing 20 by ¢l for some rational number ¢ (which does not change the
multiplier algebra), we may assume 0% C 2, that is, 2, contains the standard
basis ey, ..., e, of K'*. Because of

ALei C ALQLL = Ql“

we see that A,e, is a free Z-module. Hence A, C Aje; + -+ A,e,, is free, and
SO is
ACA D DA,

Let &1,...,&mn be a Z-basis of A and I7, ..., [y a Q-basis of M(n, K). There are
rational coefficients xif) such that

I8 = Zu’ﬂg)ﬁj-
J

Choose an integer A such that )\mgf) € Z for all i, j and k. Then

AL)& =Y (Aal)g; e A for all i and k,

j
that is, AIY,..., Ay € A. Therefore A is a free Z-module of rank at least

d = dimg M(n, IC).
Since A is a subset of M(n, KC), its rank is exactly d, so A is an order of M(n, K).

(2) Clearly, (%8 :2l) is a fractional right ideal of A. A slight modification of the
previous arguments shows that (5 : ) has full rank.

(3) Since A has full rank, its center lies in the center of M(n,K), so it can
be identified with a subset of K. Therefore the center of A coincides with the
multiplier ring of 2.

(4) Let A’ be the multiplier algebra of B and suppose I' € M(n, IC) satisfies
I'A =*B. Then
A=A, X—IXrt

is an isomorphism. [ |
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Let us consider a first example of a multiplier algebra. If © is an order of a
number field K and A = a1 & --- ® a,, is a direct sum of ideals of ©, then its
multiplier algebra is given by

(ap:a1) -+ (a1:ay)
(ap:ay) - (ap:ap)

that is, A consists of all matrices whose (4, j)-entries belong to (a; : a;). Thus,
if 2 is an ox-module of the form a & (97,%_1, the multiplier algebra is given by

Ox a N a

ail O}C - OIC
(1.18) Ag = | .

-1

a O -+ O

More generally, if

its multiplier algebra is a direct sum
A=A, @+ @ Ak,

of several matrix algebras as specified above. The next theorem states that Ax
is indeed a maximal matrix order, as our notation already indicates. For the
proof, see Reiner (1975), p. 189, theorem (21.6).

(1.19) Theorem. Let A be a matrix order. Then A is a maximal order if and
only if it is the multiplier algebra of a full Ox-module.

A maximal order as in (1.18) will be said to be of standard form. Notice that
we obtain a different maximal order if a is replaced by another ideal. Therefore
M(n, K) contains infinitely many maximal orders.!

Theorem (1.19) states that every maximal matrix order is the multiplier algebra
of a full oxc-module A. Therefore, the center of Ax is always Ox. Since 2 is
equivalent to a module of the form EB(aL@O%L_l), every maximal matrix order is
isomorphic to an order @ Ax, with components in standard form. Even more, as
seen in the proof of (1.17), the isomorphism is given by a matrix I" € GL(n, K)
which satisfies .
ot = Pla, @ oY),
=1

This observation will enable us to assume, without loss of generality, that every
maximal matrix order is given in the simple form described above.

At the beginning of this section, we mentioned that our decision problem is
connected to a principal ideal test. Suppose that A, B C K™ are two full

1. Unless n = (1,...,1), of course.
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modules. If there is a matrix I" € GL(n, ) such that I'% = 9B, it belongs to
the multiplier ideal € = (8 : ), and we observe that

A =B

because B = I'A C €A C B. Therefore it is reasonable to assume that &€
satisfies the equation above. In this situation, 2l ~ B3 is equivalent to € being a
principal ideal of A = (2(: ).

(1.20) Proposition. Let 2, B C K™ be two full modules. Suppose € = (B:2)
satisfies €A = B. Let A = (A:A) and I' € GL(n, ). Then

I'l=% <« C=TIA.
Proof. Suppose I'AU = B. Then we have

CeC & CACTA & (I'''e)ucA
o I''CelN & CerlA.

Conversely, suppose € = I'A. Then I'U = (I'A)A = €A = B. |

We are now left with the task of examining whether € is a principal ideal of A.
To decide this, we may first check if

CAx = '

where Ay is the multiplier algebra of the Ox-module A = Aox. This is a
necessary condition since A is a subset of Ax. The next proposition states that
this weaker condition can be decided by checking whether 2 ~ By, using
methods from the previous section. This is a nontrivial observation because the
equality

CAxc = (Brc : Arc)

is not entirely obvious.

(1.21) Proposition. Let A, B C IC™ be two full modules. Suppose € = (5:2)
satisfies €2 = B. Let Ax = ([Ux : Ax) and suppose there is a I' € GL(n, K)
such that I = By. Then

CAxc = I'Ak.
Proof. From €2 = B it follows that €A = By = [Ax, so
(I teAx) A = I 1eAxe = Agc,
and we may conclude I'"'€Ax = Ay according to the following lemma. |

(1.22) Lemma. Let Ax be the multiplier algebra of a full 0x-module 2 in K™
and suppose € is a full right ideal of Ax satisfying €A = 2. Then € = Ag.
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Proof. Without loss of generality we may assume that I = K is a number
field because, being Ox-modules, 2 and € must be direct sums. Furthermore,
we may assume that 2 is given in the form

A=ad 0%‘1,
so A is of the standard form (1.18). Let ey,...,e, be the standard basis of
K" and FE11, Era, ..., Ey, the standard basis of M(n, ). Since e, ..., e, € 2,
the condition €A = 2A implies the existence of elements C; € € and & € 2
satisfying
Zijj = €; f0r2§z§n
Let 235 =[0...0 & 0...0] be the matrix with ith column (¢ > 1) equal to
&;. Then Z;; belongs to Ax and
> CiE=10...0) Cj& 0...0]=[0...0 ¢ 0...0] = Ey.
Since € is a right ideal of Ax, we have
E;e€ for2<i<n.

Moreover, we have elements a; € a and a; € a~! such that 3 a, al = 1, as well
as elements C;; € € and &;; € 2 with

ZCZ-inj = q;e1 for each i.
J
If Ez‘j = [a;&] 0... 0], then

= Zaia;EH = ZZCZ?E’J eC.
i i
In conclusion, I = E11 + - - - + Epy, belongs to €. Therefore € = Ag. |

From now on we always may assume that our ideal € satisfies €A = I'Ak.
The following proposition gives us a first idea why this is of advantage.

(1.23) Proposition. Let € be a full right ideal of A such that €Ax = I'Ak.
The following statements are equivalent.

(1) € is a principal ideal.

(2) There is a U € Ag such that € = I'UA.

If it exists, such a unit must be among any set of representatives for A /A*.

Proof. Suppose € = I""A for some I'" € A. Then
IAg = €Ax = T,

soU=1I"T"¢ Ag and € = I"A = T'UA. The converse implication is trivial.
To prove the additional statement, suppose there is another U’ € Ag which
satisfies condition (2). Then

TUA=TUAN < (U 'U)A=A
& UTU e A®
& U eUAN™. [ ]
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In general, Ag/A* is not a group, but, as we shall see later, it is a finite set.
Therefore the question whether € is principal is decidable.

1.5 Units of Matrix Orders

The main goal of this section is to prove the following statement.

(1.24) Proposition. If A is the multiplier algebra of a full module in IC™ and
Ay a maximal order above A, then

A = AENA.

While the inclusion A* C Ag N A is obvious, the converse direction requires a
little more effort. First, we need to clarify some notations. If we regard IC™ as a
vector space over Q, the norm of I", denoted by N(I"), will be the determinant
of the homomorphism

Kt — K" €&—T¢.

This defines a map
N: M(n,K) - Q, I'— N(I).

Moreover, we define the determinant of I' =17 @ --- ® [ as its image under
the map

det: M(n,KC) — IC, det(I") = det(I}) & --- & det([)

where each summand is the usual determinant of a matrix over a number field.
If we identify a scalar x € IC with a direct sum of 1 x 1 matrices, we can also
speak of the norm of x and obtain the map

N:K—Q, =z N(z).

Obviously, all these maps are multiplicative. Finally, a matrix I" € M(n, K)
will be called nonsingular if each component I, has full rank.

(1.25) Proposition. If I' € M(n, IC), we have N(I") = N(det I).

Proof. The statement is clear if I' is singular. It is also verified easily if one
I, is an elementary or diagonal matrix while I, = I for v # +. Since every
nonsingular component I, is a product of elementary and diagonal matrices,
this proves the lemma. ]

In the usual way for elements of an algebra, the characteristic polynomial of I
is defined as the characteristic polynomial of the homomorphism

K" — K" ¢ T¢.

Accordingly, I" is a root of its characteristic polynomial.
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(1.26) Lemma. If I' € A, its characteristic polynomial belongs to Z[X].!

Proof. Since A is the multiplier algebra of a full module 2(, we have ' C 2.
If we choose a Z-basis of 2 as a Q-basis of IC™, we see that the matrix of the
homomorphism above is an integer matrix. |

(1.27) Corollary. If I' € A, the norm of I" belongs to Z.

Proof. Up to sign, the norm is equal to the constant term of the characteristic
polynomial. |

(1.28) Lemma. If I" € A, then I' is a unit of A if and only if N(I") = £1.

Proof. Suppose I is nonsingular, which is necessary in either case. If I" is a
unit of A, we observe

1=N{) =N =ND)NI) L
so N(I') = £1 because the norm is an integer. For the other implication, let
X=X"+a X"+ +a,
be the characteristic polynomial of I'. Then each a; is an integer and
NI = +a, I = F(x(I) — ap) Tt
=7 I 4 tan 1) €A
Since N(I') = %1, we see that I'"! € A. [ |

Now we can complete the proof of (1.24). If I' € Ag N A, we have N(I') = +1
because it is a unit of Ax, but then it is already a unit of A by (1.28).

As an application we will obtain the theorem below. First notice the following:
If I € Ag, then
det(I) € ox.

Remember that Ax is isomorphic to a matrix order where each component is
of the standard form (1.18). For such an order, the assertion is clear. Since the
isomorphism in the proof of (1.17) does not alter determinants, the statement
is true in general.

(1.29) Theorem. Let A be the multiplier algebra of a full module in IC™ and
let I' € A. Then
e & det(I) € og.

Proof. Since I" belongs to some maximal matrix order, we have det(I") € ox.
The assertion now follows from (1.25) and (1.28) because the equality

N(I") = N(det I")

forbids that only one argument is a unit while the other is not. |

1. Results (1.26), (1.28) and (1.30) are based on statements by Borevich and Shafarevich
(1966); cf. p. 89, lemma 2 and theorem 4, and p. 126, theorem 2.
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At first glance, one might hope that the theorem could be revised to state the
equivalence

I'e A & det(I') € 0~
where 0 is the center of A, but in general this is not true. For example, suppose
0 is a nonmaximal order of a number field K. Let § be the conductor of © C o.
The multiplier algebra of the module § & o is given by

o
(0:f) o
Then o is the center of A and it does not contain all determinants of matrices
in A.

A:

The following results will be needed in chapter 4.

(1.30) Proposition. Let 20 be a full module in ™ where K is a number field.
Let 2, B C 20 be two Z-modules with I'% = B for some I" € GL(n, ). Then
[0 :B] = N(I)] - [20: .

Proof. The assertion is clear if the index of 2l and 93 is infinite. Suppose both
modules have finite index (a mixed case cannot occur since I'% = B). If = is a
Z-basis of 2, then I'= is a Z-basis of 9. Since = and I'= are both Q-bases of

K", there is a rational matrix C such that

r

[1]
[1]

=Z2C.
By definition of the norm we have
N(I') = det(C).

Let 7 be a Z-basis of 20. Since 20 contains 2 and B, there are integer matrices
A and B such that
Z=7TA and I'Z=7B.

Then we have the equalities [20:2(] = |det A| and [20:B] = |det B|. Because of
TB=TI5=5C=T"AC,
we see that B = AC. In conclusion,
[20:B] = |det B| = |det A| - |det C| = [20: A - [N(I)]. [ |

(1.31) Corollary. Let 20 be a full module in K™ where K is a number field.
Let © be an order of K and suppose that 2, B C 20 are two free ©-modules.
Let X € M(n x m, K) be a matrix of rank m and U € GL(m, K) such that
2A=X0"and B = XUO™. Then

20 8] = [N(U)| - [20: 2.

Proof. If m < n, the statement is clear, so assume m = n (m > n is impossible
by our assumption about X). Let I' = XUX . Then

PB=XU0"=IXo"=T12
The previous proposition yields [20:8] = [N(I")|- [20:2(] and by (1.25) we have
N(I') = N(det I') = N(det XUX 1) = N(det U) = N(U). u
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1.6 The Conductor

As in the previous section, let € = (B : () be the multiplier ideal of two full
modules in /IC™. This is a right ideal of the multiplier algebra A = (2 :2). Let
© denote the center of A. Our goal is to decide whether € is a principal ideal
and we assume that we already know that €A = I'Ax where Ax O A is the
multiplier algebra of Ax = Aox. In section 1.4 we saw that we need to look
for a U € Ag such that € = (I'U)A, and we may restrict our search to a set
of representatives of A /A*. As mentioned before, this is a finite set, and to
prove this, we will use the conductor § of the extension A C Ax. It is defined,
as for orders of IC, as the largest two-sided ideal of Ax contained in A, that is,

F={XeMn,K) | AxXAxc CA}.

The conductor is a full ideal of A and Ax because fAx C A for some positive
integer f. Moreover, we have the equality

§ = fAx

where § is the conductor of © C 0. This is, in part, a consequence of the next
proposition.

(1.32) Proposition. All fractional two-sided ideals of Ax are of the form cAx
where ¢ is a fractional ideal of Ok.

Proof. It suffices to consider the case where IC = K is a number field and
where A is of the standard form (1.18), that is, A is the multiplier algebra
of a ® 0%71 for some ideal a. Moreover, it suffices to examine ideals contained
in Axc. Let € be a two-sided ideal and let ¢ be the ideal of 0y consisting of all
(1,1)-entries of matrices in €, that is, ¢ is given by the equation

cE11 = E11€E .

Here, E;j denotes the matrix with 1 at position (7, j) and zeros elsewhere. For
any matrix C' = [¢;;] in M(n, K) and for a, o’ € K we have

(aEij)C(a'Ege) = (adcji) Eie.
If C € € and aFE\j, a'Ey € Ak, we therefore see that (aa'cjr)E1 € €, that is,
aa’cjk S

1

Choosing a and a’ to be 1 where possible and arbitrarily in a and a~! otherwise,

we obtain
¢ ifj=1, k=1,
cjk € { ca ifj=1,k>1,
ca”l ifj>1, k=1.

Moreover, if j, k > 1, we may choose aq,...,a, € a and da/,...,a. € a~! with
) Js ) y ’ ) 1 y Wp

S aal = 1. Then
CjkEH = Z(aiagcjk)En c Q:,
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so again c¢j; € ¢. In conclusion, € C c¢Ax. Conversely, suppose that ¢ € ¢ and
let C' = [c;;] be a matrix in € with ¢1; = ¢. Then we observe that

(ad'c)Ey = (d'E;)C(aEyy) € €.
Arguing as above, we obtain
By C€¢ acEyC€ and a '¢E; CC
with indices chosen suitably. In summary, cAgx C €. |

(1.33) Corollary. Let § be the conductor of A C Ax and f the conductor of
O C 0y where 0 is the center of A. Then

$ = fAx.

Proof. Again, A is assumed to be the multiplier algebra of a full module 2, so
0 is the multiplier ring of 2. Because of

(FA)2A = (FAxox )2 = (FAx) Rk = A = (for)A = 2 C oA = 2,

we have fAx C A. Since § is the largest two-sided ideal of Ax inside A, we
obtain fAx C §.

By (1.32) we know that § is of the form §'Ax for some ideal f of 0x. Since
§ C A, this ideal must be contained in the center 0. This implies f C f because
f is the largest ideal of Ox inside ©. In conclusion, § C fAk. [ |

The following corollary and the subsequent lemma will be needed in the next
chapter.

(1.34) Corollary. Let C = [¢;] be a matrix of M(n, ) where K is a number
field. Let Ax be of the standard form (1.18). If ¢ is the fractional ideal of ok
satisfying cAx = AxCAg, then

—1
¢ =110k + Z CijOK + Zcﬂa + Z c1ja .
ij>1 i>1 i>1

Proof. As we have seen in the proof of (1.32), ¢ consists of all (1,1)-entries
of matrices in € = AxCAx. Over O, a set of generators of € is given by the
matrices

(aa'cjk)Eig = (aEij)C’(a'Ekg)

where a and a’ are chosen suitably in a, a~! or 0x. Therefore ¢ is generated by
the elements

ci1, acj1, deyy, ad'cjy (a€a, d € a”l g k> 1),
so the ideal is of the desired form. [ |

(1.35) Lemma. Let C, C' be matrices in Ax and let q be a full ideal of ox.
If C = C" mod qAx, then

det(C) = det(C") mod q.
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Proof. Again, it suffices to consider the situation where IC = C is a number
field and Ag is of the standard form (1.18), that is, Ax is the multiplier algebra
of a ® 0! for some ideal a. If C' = [¢;;] and C' = [ci;], we have
a ifi=1, j>1,
cij, ¢ € qat ifi>1, j=1,
O otherwise.
The assumption C' = C" mod qAx implies ¢;; = ¢j; + ¢ij where

qa ifi=1, j>1,
gij €qqal ifi>1, j=1,
q otherwise.
Let C; and C/ be the matrices that emerge if we remove the ith row and the
first column of C' and C’. The determinants of C; and C} belong to ox and are
subject to the following congruences:
det(C,) = det(C1) mod (¢,
det(C;) = det(CY) mod qa ifi > 1,
det(C;) =det(C]) =0 moda ifi> 1.

This is true for 2 x 2 matrices, and the inductive step uses Laplace expansion
similar to the calculation below. Hence we can write

det(C;) = det(C}) + ¢; where ¢; € q and g2, ..., qn € qa.

Expanding the determinant of C' along the first column, we obtain

det(C) =Y (—1)"e;1 det(C;)

-

s
I
—

(=)™ (1 + gin)(det(C)) + ;)

|

.
Il
—

det(C") + Z(—l)iﬂ(qz‘ch + qigi1 + g1 det(C}))
i=1
=det(C’) mod q
because ¢;¢}y, ¢igi1 and g;; det(C!) all belong to q. |

We will now see that the set Ag/A* is finite, as there is an embedding into
(A/F)*\(Axc/§)*. In the proof of theorem (1.39) we will see why it is necessary
to switch from left to right cosets (and also why to take inverses as specified
below).

(1.36) Proposition. The map
ARIN = (A/F)\(Ax/F)*, [U] = U+ 3]

is injective.
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Proof. Suppose
U +3 =V 143 forU VeAf.
Then there is a residue class (F + §) € (A/F)* such that
UrT+5) =E+3HVI+3).
Hence (U™1V + §) = (E + §), which implies
U'WVe(E+73) CA.

Therefore U~V belongs to A N Ax = A*, where the equality is due to (1.24).
This proves our assertion because

UlVeA & VeUN & [V]=[U]. u

Theoretically, we can now search Ag /A in a finite number of steps to decide
whether it contains a coset represented by a matrix as in (1.23). Yet in practice,
it is quite likely that determining a complete set of representatives is anything
but easy. First of all, Ag/A* is not a group in general; just think of the usual
matrix groups over © and Ox where K is a number field. Therefore it should
be no surprise if some difficulties arise. Besides, we need sufficient information
about A* and Ag to begin with; sets of generators for instance. But even for
GL(n,0) it is unknown in general how to determine a finite set of generators.!
In our setting, we can at least assume that each component of Ax is given in the
standard form (1.18). But no such assumption can be made about A. As we will
see in the next section, A does not have to be a direct sum A1 @ --®A,. Even if
it is, not much can be said about the individual components. We know that A,
is the multiplier algebra of a full module 2,, yet this module does not have to be
equivalent to a direct sum of ideals; again, see the next section for an example.
In this unfortunate case, it is not even clear which, if any, elementary matrices
belong to A,. But when it comes to matrix groups, these are the elements one
typically would wish to include in a set of generators.

Given all these obstacles, we will make use of the injection (1.36) and will
examine (A/F)*\(Ax /&)™ instead. This has the advantage that the individual
groups are finite. In chapter 3 we will describe the group (Ax/F)* as well as
the image of the canonical homomorphism

Ag — (Ac/3)™.

Additionally, we will explain how to compute preimages under this map. Unfor-
tunately, just like A, the group (A/F)* appears to elude an explicit description.
So the only strategy on offer seems to be searching (Ax/§)* directly.

We will conclude this section by improving the statement of (1.23), provided
that the ideal € is coprime to the conductor, that is, € + F = A. In the next
chapter we will argue that this condition can always be met or else € cannot be
principal.

1. Swan (1971) and Vaserstein (1972) solved this problem for maximal orders and Liehl (1981)
dealt with a class of nonmaximal orders.
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(1.37) Lemma. If € C D are fractional right ideals of A, then
DNE+F)=C+(DNJF).

Proof. If C € € and F € § with C + F € D, then F belongs to ® because C
already does. Hence C + F € €+ (D NF), that is, DN (C+F) C €+ (D NF).
Conversely, € and ® N § both lie in ® N (€ + §), so the same is true for their
sum. |

(1.38) Lemma. If € +§ = A and €Ax = I'Ag for some I' € GL(n, K), then
¢ =CAcNA.

Proof. First we prove that
¢F = CAxNF.

The inclusion €F C €A N is trivial. Since €Ay = I'Ax, any element of CAx
is of the form I'X with X € Ax. Let I'X belong to €Ax NF. In particular, we
have

I'X=0 mod§g.

Because of
Ik +3F=CAx+3F=(C+3F)Ax = Ax,

we see that I is a unit modulo §. Consequently, X = 0 mod §, so
I'X eI'§ = (I'\x)T = (CAx)F = €5.
Using (1.37) and the just established equality, we obtain
CAKNA=CAxN(C+F)=C+ (CAxNF) =C+€F=¢C. [ |

(1.39) Theorem. Let € be a full right ideal of A such that € + § = A and
CAx = I'Axc. Let [I" + §] denote the right coset of I' + § in (A/F)*\(Axc/F)*.
The following statements are equivalent.

(1) € is a principal ideal.
(2) There is a U € Ag such that [I'+F] = [U~' +F].
If such a unit exists, then € = I'UA.

Proof. Let € be principal. By (1.23) there is a U € Ag such that € = I'UA.
Furthermore, (I'U + §) belongs to (A/F)* because

TUAN+F=C+F=A.

Hence (I'+F) = (I'U +3) (U1 +3), implying [+ 3] = [U~! +F]. Conversely,
suppose [I'+ §] = [U~! + §), that is,

(F+3)=(E+3) U " +3§) forsome (E+73F) € (A/F)".
Then (I'U 4+ §) € (A/F)™, so T'UA +§F = A. Applying (1.38) twice, we obtain
C=CAxNA=TAxNA=TUAcNA=(TUNAcNA=TUA. |
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If compared to (1.23), the improvement of theorem (1.39) above may appear to
be a minor one. But in chapter 3 we will see that it can have major consequences.
For now, just consider the case where € = ¢ is a fractional ideal of an order .
If c +f= 0 and cox = v0Ox, the theorem states that ¢ is principal if and only
if the coset [y + f], which is also a left coset, belongs to the image of

ox = (ox/H)*/(0/) "

Since all groups involved are abelian, we will be able to actually compute the
image. In good cases it will also be possible to reduce the general problem to
this abelian situation.

1.7 Some Remarks on the Number of Module Classes

In section 1.3 we saw that each full module over a maximal order is equivalent
to a direct sum 2A; & - - - P As where 2, is of the form a, ® O%ﬁl. This yields
the following result.

(1.40) Proposition. Let h, be the class number of K,. Then h; ---hs is the
number of classes of full Ox-modules in IC™.

As a consequence of (1.40), there are integer matrices with the same (general-
ized) Jordan normal form over the rational field which are not similar over the
integers. For example, suppose K = Q(¢) is a number field of class number

h > 1 such that ox = Z[J] (think of the case ¥ = /—5). Let a and b be two
ideals of ©x which are not equivalent. Furthermore, let

M:Xd—l—cd,le_l—i—...ch—i—co

be the minimal polynomial of ¢. If A and B are two integer matrices corre-
sponding to a and b, then they cannot be similar over the integers by (1.4).
Moreover, p has to be the minimal and characteristic polynomial of A and B.
So over the rational numbers, A and B are both similar to the matrix

0 0 —co
1 0 —C1

J = ,
0 1 —Cd—1

the so-called companion matrix of .
We now want to focus on the number of module classes in the nonmaximal case.

(1.41) Proposition. Let © be an order of K. Let 0, be the image of © under
the projection IC — K, and let h, be the number of classes of full ©,-modules
in K. Then the number of classes of full ©-modules in IC™ is at least hj - - - hg
and both values are equal if and only if o =01 ® -+ - D 0.
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Proof. Let 2, be a full ©,-module for each ¢. Then A =% & --- B U is a full
o-module, and it can only be equivalent to another direct sum because

I = (M) & & (N2A,)  for I € GL(n, K).

Moreover, 2 ~ B if and only if A, ~ B,. Thus the number of module classes is
at least hy - hs.

Suppose © = 01 @ --- P 05. Then each 0-module is a direct sum as described
above (with 2, = 1,20 where 1, is the unit element of ©0,). Hence the number of
module classes is equal to hy - - - hs.

Now suppose © # 01 & --- B 0g and let

11
(x,, row vector of length d, = [IC, : Q])

Ts1 -+ Tss

be a matrix whose columns are a Z-basis of ©.! Then at least one z,, is nonzero
for v > 1. We expand this matrix to the form

I11 0

0 11
Tgp -+ 0 Tss 0
Lo - 0 0 Tss |

where x,, is repeated n, times and x,, is used exactly once if v # t. Then
A = ZEZ%™ is a full ©-module in K™ which is not a direct sum of ©,-modules. W

Because of theorem (1.4), we are particularly interested in the equivalence of
full modules over equation orders. The next proposition gives us a criterion for
when an equation order is a direct sum of orders (which then must be equation
orders themselves).?

(1.42) Proposition. Let 91, ..., 9, be algebraic integers with distinct minimal
polynomials pq,...,pus. Put 9 =191 @ --- @95 and i, = (g -+ - ps)/p,. Then

Z[9) = Z[] @ - - - ® Z[V]

if and only if f1,(1J,) is a unit of Z[4,] for each ¢.

1. It is easy to see that such a basis can be computed with methods similar to the Hermite
normal form algorithm.
2. This criterion is mentioned without proof at the end of Latimer and MacDuffee (1933).
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Proof. Suppose Z[J] = Z[V1] & - -- & Z[Ys]. Let 1, be the unit element of 0,.
Making use of the natural embedding K, — IC, we may regard 1, as an element
of Z[Y]. Hence there is an integer polynomial f such that f(J) = 1,. More
precisely, since f(¢) = f(th) ®--- D f(Js), we have

f@,)=1, and f(W,) =0 forv#.
Therefore f is divided by fi,. Let g = f/fi,. Then

L = f(¥.) = g(¥.)fu(V.),

so [1,(¢,) is a unit of Z[9,].

Now suppose fi,(9,) is a unit of Z[¢,] for a fixed ¢. Because of fi,(¢,) = fi,(9),
it is contained in Z[¥]. Since the projection I — K, can be restricted to a
surjection Z[¥] — Z[¥,], there is an . = 1 & - - - B x, in Z[Y] with z, = f,(9,) L.
Then xﬂL(ﬁL) = xL/jLOgL) =1, and

ﬂL(ﬂb)Z[ﬁ] ) xﬂt(ﬁb)z[ﬁ] = 1LZ[19] = Z[ﬁL]'

Hence Z[01] @ - - - ® Z[Vs] C Z]V)] if each f1,(1J,) is a unit. The converse inclusion
is trivial. n

Having seen that the number of module classes is at least hy---hs, we now
want to examine the individual factors.! Let © be an order of a number field K.
For each ideal class of 0, we choose a representative a; (this includes classes of
noninvertible ideals). According to (1.13), the modules a; ® ©"~! define distinct
classes of ©-modules in K. Suppose that © is not maximal and n > 1. Let f be
the conductor of © C 0k and let f @ --- @ § be the module where § is repeated
n times. Then
fe-af g a@o" ! foralli

because the multiplier ring of the first module is Oy, whereas it is © in the other
cases. So in the nonmaximal context, the number of module classes always
exceeds the number of ideal classes (except for n = 1, of course). To make
matters worse, not every module class must be given by a direct sum of ideals,
as the next extensive example illustrates.

Let ¥ be a root of the polynomial X3 — X — 1. The maximal order of X = Q(«})
is the equation order Z[¥]. It contains the order

0 =7, + 207 + 20°7Z.

We want to show that there is a full ©-module in X? which is not equivalent
to a direct sum of two ideals. First, let us determine all ideal classes of ©. In
general, there is an exact sequence?

1= 0" = o8 — (ox/f)*/(0/f)* = Pic(o) = Clxg — 1

1. So far, we have not dealt with the question whether the number of full module classes is
finite. This looks very likely. Indeed, it should be possible to generalize the lattice-theoretic
considerations from chapter 2 in Borevich and Shafarevich (1966), but we have not checked
this rigorously.

2. Cf. Neukirch (1999), pp. 78-80, (12.9) and (12.11).
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where f is the conductor of © C 0k, Clk is the class group of 0k, and Pic(0) is
the Picard group of 0, that is, the group of invertible ideals modulo principal
ideals. In our case, the class group is trivial; in fact, Minkowski’s bound!

n! [4\% 24
M :f(f) JDx| = ——/23
K n" \mw | Dxl 27T

is less than 2. Furthermore,
f=20k

is a prime ideal of 0k because X2 — X — 1 is irreducible modulo 2.2 Thus it is
also a prime ideal of ©. For the residue class fields we obtain

o/f ~Fy and ox/f~Fs.
Hence (ox/f)* is a cyclic group of order 7. Because of
YW?—1)=1 and 9#1 modf,

we see that ¥ is a unit of ok and its residue class generates (0x/f)*. Therefore
the first map in the segment

og — (ox/§)*/(0/f) — Pic(0) = Clg — 1

is an epimorphism, making the second trivial and the third injective. In con-
clusion, the Picard group is also trivial, so all invertible ideals of © are principal
and it remains to determine the classes of noninvertible ideals.

Since the extension Fg/Fy admits no intermediate fields, there are no orders
between © and 0x. Therefore the multiplier ring of a noninvertible ideal can
only be one of these two orders. If it is the maximal order, the ideal can be
regarded as an ideal of O, thus being equivalent to Ox. Since Ox can be seen
as a fractional ideal of ©, we conclude that there is only one class of ideals
with multiplier ring 0x. Thus we can now focus on noninvertible ideals with
multiplier ring 0.

Every ideal class of © contains a fractional ideal a above © such that the index
[a: 0] is subject to another Minkowski bound?, namely

n! [ 4\* 24
Mz—(—) V|D| = =—+/|D
n" \mw 1D 27Tm Dl
where D is the discriminant of ©. In our example, D = —368, so M < 6. Hence
we have to determine fractional ideals a D © with
(a:a)=0 and [a:0]=m form =2 3,4,5.

For such an a we have a D © D ma and [0 : ma] = m?. So instead of fractional
ideals, we may consider ideals a satisfying

(a:a)=0 and [0:a]=m? form=234,5.

1. Ibid., p. 38, exercise 3. Here, n is the degree of IC, 2s is the number of embeddings K — C
and Dy is the discriminant of ox.

2. Ibid., pp. 4748, (8.3).

3. Cf. Borevich and Shafarevich (1966), pp. 127-29, lemma 3, theorem 3 and problem 2.
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If the index is 9 or 25, each prime ideal above a must contain 3 or 5. Then a
is coprime to f = 20k and therefore invertible by (2.30). So only the ideals of
index 4 or 16 are of interest. In order to determine them, we will first enumerate
all Z-modules of index m? = 4 or m? = 16. These are given by bases of the
form

aii,
ag1 + (122(219),
asy + (132(2@) + a33(2192)

where the a;; are nonnegative integers with ai1asas3 = m? and ai; < ajj;, that

is, the matrices [a;;] run through all Hermite normal forms of determinant m?.

Moreover, a11, as1, a3; must be even so that the module is contained in §. These
conditions give us 7 + 155 = 162 submodules in total. But only eight of these
Z-modules are ideals of ©, one with multiplier ring ox which can be discarded.
The remaining seven ideals are
a; = (2, 209, 49?), az = (4, 209, 20?), az = (4, 2+ 20, 20?%),
ag = (4, 24209, 24 29%), a5 = (2, 40, 20 + 20?), ag = (4, 20, 2 + 20?),
ar = (2, 49, 20?).

They are all equivalent because a;; = vai for 1 < k < 6. In summary, there
are three ideal classes of © represented by

0, ox and a= (1,9, 20?).

Now consider the module

A Z-basis of 2 is given by

- (1 290 92 0 0 0
S0 0 91 20 20?7

Suppose this module were equivalent to a direct sum of two ideals. Then there
isa I' € GL(2, K) such that
'l =ay ®ay with a; € {0, Ok, a}.

Because of
FO,QC ="Aook = (1 ® az)ox = OIQC,

we see that I' € GL(2, 0x). Furthermore, 2 and a; @ az both contain § @ f. Let

A=A/(fof) and a; = a;/f.

1. Of course, this statement can be verified by a computer in no time, yet with a little effort,
this can also be done by hand. Taking into account that © must be the multiplier ring, the
number of possible ideals can be reduced further.
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These are vector spaces over Fo = 0/f which are contained in FZ2 = (ox/§)%
Let 9 be the image of ¥ in Fg and I" = [¥;;] the image of I" in GL(2,Fg). Then
I'd=a; @ as.
In particular, A and a; @ as are isomorphic over Fy. Since
dim?l =3, dimFy =1, dimFg=3, dima=2 (a=a/f),

we may assume a; = Fo and as = a. The columns of the matrices

Lo o [1oo
01 9 019

are Fy-bases of 2 and a; @ ay. Therefore I'A = a; @ as is equivalent to

_ 1 0 92 1 0 0|~ =
F{O . @}_{0 . AU for some U € GL(3,Fs).

The first row of the right-hand product solely consists of elements of Fo, hence
the same must be true for the first row of

[ 0 9% _ [fu e
01 9 Vo1 V22 ¥
But the (1, 3)-entry of this product is
19?4 F120

which does not belong to Fy because 1, 9, 92 are linearly independent over Fs.
Therefore I'AU = a; @ as does not hold. In conclusion, 2 cannot be equivalent
to a direct sum of ideals.

1.8 Algorithms

(1.43) Algorithm — Corresponding Module

— A semisimple integer matrix

<+ 2 full module corresponding to A

Suppose that 1 = iy - - - ps is the minimal and x = pj? - - - u2* the characteristic
polynomial of A and that 9, is a root of p,. Let KK = Q[)] where § = 1 ®- - -®Ys.
The module 2 will be a subset of K™ where n = (nq,...,ns). Furthermore, let
m X m denote the size of A.

1) For . =1,...,s, compute a K,-basis x4,...,x4 € K™ of Eig(A, ¢,).
1 n, L

(2) Put &=z} ...z} ... ... T L

(3) Return A = =Z™.
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(1.44) Algorithm — Corresponding Matrix

—» 2, B full modules corresp. to semisimple integer matrices A, B
r element of GL(n, IC) satisfying I'U = B

<+« C invertible integer matrix satisfying CA = BC

2 and B are given by Z-bases = =& ... &n]and T = [v1 ... v .
(1) Compute the the matrix C~! = [¢;;] with entries given by I'¢; = Z CijUj.

(2) Return C.

We will now describe how the multiplier ideal of two full modules 2/, 8 Cc K™
can be computed. Let = = [{1,...,&y,] and T = [v1,...,Upn] be Z-bases of 2
and B, and let I,..., I} be a Q-basis of M(n, IC). For I € M(n, K), we have
the equivalence

re(®:2A) & I&§geB forall k.

Let B*) = [bgc)] be the rational ¢ x m matrix with

k
Ik = Zbgj)vj,
and, for a fixed I, let ¢; denote the rational coefficients with I" = " ¢;I;. Then
ka = Zcif‘igk = Zci Zbgf)vj = Z(Z cibg-g))vj,
i i j i

that is, I" € (B : 2) precisely if >, cibl(?) € Z for all j and k. In other words,

re(®:2) < [e1...c)[BY ... BM]ezm.

Put ¢ =[c; ... ¢g] and B = [BW ... B(™)]. There is an integer matrix B’
and a rational diagonal matrix D such that B = DB’. Choose U € GL(m?,Z)
such that

BU=[HO ...0]

where H is in column Hermite normal form. Then
¢BeZ™ & ¢DH)eZ' < ceZ'(DH) ™.

Put S = (DH)™!. As we have seen, I' = 3" ¢; I} belongs to (%8 : ) if and only
if c=[c1 ... ¢] is a Z-linear combination of the rows of S = [s;;]. Thus the
matrices

form a Z-basis of (B : ).
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(1.45) Algorithm — Multiplier Ideal

- 2A B full modules in K™
<+ (B:2) the multiplier ideal of 2( and B

% and B are given by Z-bases = = [& ... {m]and T = [vy ... vp]. The
multiplier ideal will also be given by a Z-basis.

(1) Choose a Q-basis I7, ..., Iy of M(n, K).
(2) For k=1,...,m, compute B = [bgg)] given by ;& = Zbl(f)vj.
(3) Put B:=[BW ... B(™)],

(4) Choose a diagonal matrix D of full rank such that B’ := D~ B is an integer
matrix.

(5) Compute the column Hermite normal form [H 0 ... 0] of B'.
(6) Put S = (DH)™ L.
(7) Return My, ..., M, where M; =" s;; 1.

Algorithm (1.45) can also be used to compute the conductor § of an extension
A C Ax of matrix orders. First, the conductor § of © C 0x can be computed as
the multiplier ideal (0x : ©) because orders of IC are full modules in K. Second,
if 0 is the center of A, then § = fAx.



2 Localizations of Orders

To decide whether an ideal can be made coprime to the conductor, we will need
to consider localizations of the ideal in question. In the first section we will
specify the sets we intend to localize. As a first application, we will establish
a decomposition of finite quotient rings into direct sums. Afterwards, we will
characterize the units of local matrix orders in terms of determinants. Finally,
we will prove that an ideal can be made coprime to the conductor if and only
if certain local versions are principal. A principal ideal test for local ideals will
be provided, too.

2.1 Basic Properties

Let © be an order of IC and let S be a subset of ® N IC* which contains 1 and
is closed under multiplication. The ring

os={xst|zco,scS}

is called the localization of © at S. More generally, if 9 is a finitely generated
o-module contained in a K-algebra, the set

Mg={ms ' |meM, scS}

is called the localization of 991 at S. Obviously, this is a module over ©g and
we have g = Mog.

The modules we intend to localize will be matrix orders and their ideals. More-
over, we will solely examine localizations at sets of the form

where p is a full prime ideal of 0. We will write 9, for the localization at S,
and will simply call this the localization of 9t at p. If K is a number field, this
coincides with the usual notation, but if IC is a proper direct sum, it does not.!
Still, we will use p as index to keep notation simple.

We will now prove some statements which will be needed in this chapter. Notice
that, since IC is the center of M(n,K), we can identify scalars as elements of
M(n, IC). Therefore expressions like € N © become meaningful.

(2.1) Proposition. Every full ideal of 0 is generated by its nonzerodivisors.

Proof. Let ¢ be a full ideal of © and suppose ¢’ C ¢ is generated by the nonze-
rodivisors of ¢. Let ¢ be a zero- and ¢ a nonzerodivisor of ¢. We have to show

1. Usually, the set Sy, = o \ p is considered where zerodivisors need special treatment.
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that ¢ € ¢/. Because of K* = K@+ @K}, each component of ¢ = @&--- @&,
has to be nonzero. So for each ¢, we have ¢, +r¢, = 0 for at most one integer 7.
Hence ¢ + rc’ is a nonzerodivisor of ¢ for a suitable choice of . The definition
of ¢ now implies ¢ = (¢ +rcd') —rd € ¢. |

(2.2) Corollary. If ¢ is a full ideal of © with ¢ Z p, then ¢ NS, is not empty.

Proof. If ¢ NS, were empty, all nonzerodivisors of ¢ would belong to p, which
implies ¢ C p by (2.1). [

(2.3) Proposition. Let A be a matrix order with center © and let € be a full
right ideal of A. Then ¢ = €N o is a full ideal of ©.

Proof. As a full right ideal, € has finite index in A. Hence there is a positive
integer ¢ such that cA C €. In particular, ¢ € €N o, hence c¢ is full. |

(2.4) Proposition. Every full prime ideal of 0 is a maximal ideal.

Proof. Let p be a full prime ideal of 0. As a finite integral domain, o/p is a
field, and therefore p has to be maximal. |

(2.5) Proposition. Let p be a full prime ideal of © and let Q be the set of
prime ideals of Ox containing p. Then

p=qgno forallqe.

In particular, the prime ideals above a full ©-ideal ¢ can be determined by first
factorizing cx = cOx and intersecting the prime factors with o afterwards.

Proof. Clearly, g N o is a proper ideal above p, hence p = q N o by (2.4). The
second statement follows immediately. |

(2.6) Proposition. Let © be an order of K and p a full prime ideal of 0. Let
£ be the set of prime ideals of 0x containing p. Then all nonzero prime ideals
of (0K )p are of the form q, with g € Q.

Proof. There is a one-to-one correspondence between the prime ideals of (0x),
and the prime ideals of Ox not meeting Sp.l Clearly, the prime ideals meeting
Sp cannot contain p because sO +p = 0 for all s € S,. |

(2.7) Proposition. Let 0 be an order of K and f the conductor of © C ox.
There is a one-to-one correspondence between

o the set J of ideals of © coprime to f and
o the set Jx of ideals of Ox coprime to §.

If p is a full prime ideal of © not containing f, then pox is the only ideal of Oy
above p, and therefore prime.?

1. Cf. Eisenbud (1995), p. 61, proposition 2.2.
2. Result (2.7) is based on propositions 7.20 and 7.22 by Cox (1989).



2.2 Decomposition of Quotient Rings 51

Proof. If a C 0 is coprime to f, then so is aox because
aox + f = aox + fox = (a+ flox = oxk.
Conversely, if ax C O is coprime to f, then
axNo+f=acnNo+fno=(ax+f)No=o.
Consider the maps
J— T, a— a0k and Jx =73, ax —agno.

We will show that they are inverse to each other. Let a € J. Using (1.37), we
obtain

aCaoxNo=aoxN(a+f) = (aoxNa)+ (aox Nf) = a+ (aox NF),

and since, in any ring, the intersection of coprime ideals is equal to their product,
we have
a+ (a0 Nf) = a+ (ao0x)f = a + af = a.

Taken together, we see that aox N © = a. Now let ax € Jx. Then

ax No)(ax + )

arc + (ax NO)f
ax + (ax No)Nf
axc +ac Nf

ax N O)ax + axcf

= ax(ax NoO +¥)

= ax((axc +§) N 0) = ax(0x NO) = ag,

(ax NO)ox

~— — ~— ~—

axnNo

(
(
(axNo
(
(

again using (1.37) at the end. Applying these maps to full prime ideals, we see
that the last assertion is also correct. |

2.2 Decomposition of Quotient Rings

In section 1.6 we realized that we need to closer examine the unit group of A/§
where § is the conductor of some extension A C Ax. From a computational
point of view, it would therefore be desirable to decompose A/§F into a direct
sum of smaller rings using the Chinese Remainder Theorem, which also holds
for noncommutative rings.

(2.8) Chinese Remainder Theorem. Let €;,...,, be pairwise coprime
two-sided ideals of A. Then

i=1 i=1
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For instance, if we regard § as an ideal of Ay, the Chinese Remainder Theorem
yields
AIC/S — AK/fAK; ~ @Ax/qe“l\lc.
q

Here, f is the conductor of © C 0k with factorization [, g% where q runs over
the full prime ideals of Ox. Recall that, by (1.32), the two-sided ideals of Ax
correspond to the ideals of 0x. Therefore

(ITa)Ax =M@ Ak).
q q

Unfortunately, we cannot expect § to be a product of prime powers as an ideal
of A. In general, this is already false for . However, we will be able to prove
the existence of sufficiently large exponents 74, such that

A/F = DA/E +p™A)
p

where p runs over the full prime ideals of ©. Since fA C fAx = §, the quotients
on the right-hand side are trivial for p 2 §.

While it is obvious that the ideals § + p** A are coprime for distinct primes p,
the equality
§=NE+p"A)
p

is less straightforward. Eventually, it will be a consequence of the following
theorem, which employs the concept of localization.

(2.9) Theorem. Let € be a full two-sided ideal of A. Then
p

where p runs over all full prime ideals of ©. If p does not contain ¢ = €N O,
then A,/€, is trivial.!

This theorem is somewhat similar to the Chinese Remainder Theorem, espe-
cially if you consider the next statement.

(2.10) Proposition. Let € be a right ideal of A. Then
¢=¢,
p
where p runs over all full prime ideals of ©.

Proof. The inclusion € C N, &, is clear. Let C' € (N, €,. For every p, there is
an sp € Sp such that s,C € €. Therefore the set
s={sco|sCel}

is a full ideal of © which is not contained in any prime ideal. Hence s = 0.
Taking s = 1, we obtain C' = sC € €. |

1. Results (2.9) and (2.10) are generalizations of statements by Neukirch (1999); cf. (12.3) on
p. 74 and the proof of (11.5) on p. 68.
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Before we can prove (2.9), we need to provide a few lemmata.
(2.11) Lemma. Each s € S, is a unit modulo ¢, N o.

For the proof, see Eisenbud (1995), p. 61, proposition 2.2 (keep in mind that
0/(¢p N 0) is a finite ring, therefore each nonzerodivisor is already a unit). We
want to generalize this lemma slightly.

(2.12) Lemma. Each s € S; is a unit modulo €, NA. Its inverse is represented
by an element of .

Proof. Consider the composition of the canonical maps
o—=A—=A/(C,NA).

The kernel is ¢, N0, for if a belongs to (€, NA)No = €, No, there is an s € S,
such that sa € €N o = ¢. Hence a € ¢, N 0. Therefore we have an injection

o/(egno) = A/(C,NA).

By (2.11) there is an s’ € o for every s € S, such that ss’ = 1 mod ¢, N O.
Because of the embedding above, this congruence also holds modulo ¢,NA. W

The next two lemmata are about prime ideals of A. Since A is noncommutative
(unless A = 0, of course), a prime ideal of A is defined to be a proper two-sided
ideal P satisfying the condition

ABCP = ACPorBCP
where 21 and 2B are two-sided ideals of A. Equivalently, one can require
AABCPB = AcPorBecP forall A, Bc Al

Trying to define primality as in the commutative case would not prove successful,
though. For example, all ideals of A = M(2,0) contain the product [(1] 8] [8 (1)],
but each factor generates A as a two-sided ideal.

Maximal two-sided ideals, however, are defined as in the commutative case, and
they are always prime, for if 2 and 28 both are not contained in the maximal
ideal 901, the inclusion

A= (2A+IM)(B + M) =M + AN + IMDB + AB C M + AB
implies AB ¢ M.

(2.13) Lemma. Let P be a full prime ideal of A. Then p = PN o is a full
prime ideal of 0.

Proof. By (2.3) we know that p is a full ideal of 0. If a, b € © with ab € p, we
have aAb = abA C ‘B, hence a or b belongs to LN o = p. |

1. Cf. Lam (2001), p. 155, proposition (10.2).
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(2.14) Lemma. Let ‘B be a prime ideal above €, N A. Then ‘P no =p.

Proof. Since P lies above €, N A, it is full. By (2.13), g = PN o is a full

prime ideal of ©. Suppose q # p. Choose s € S, N q, which is possible by (2.2).

According to (2.12), there is an s € © such that ss’ =1 mod €, N A. Then
l=ss'+(1—-ss)eP+ (€, NA)

and €, N A ¢ B, a contradiction. Therefore P N o = p. |

Proof of (2.9). First, suppose p does not contain ¢ = €N o. Then S, N ¢ is
not empty by (2.2), so €, contains a unit of A,. Therefore A,/€, can only be
nontrivial if p is one of the finitely many prime ideals above c.

For p D ¢, consider the composition of the canonical homomorphisms

A— Ay — A/

It is surjective because if X € A,, we may choose an s € S, with sX € A and,
by (2.12), an s’ € 0 with ss’ =1 mod €, N A. The matrix ss'X is mapped onto
the residue class X + &, therefore we have A/(€, N A) ~ A, /&,.

Moreover, €, N A and €; N A are coprime for p # q; otherwise their sum were
contained in a maximal two-sided ideal, a contradiction to (2.14). By (2.10) we
have

¢=¢nA=(¢)NA=[)(€NA).
p p

Using this, the Chinese Remainder Theorem and the just established isomorphy,
we obtain

AC=A/ENA) = PA/(€NA) =P A/E,. ]
b b p

(2.15) Corollary. For every p, let v, be an integer with p;‘ﬂ C ¢p. Then

A/C =~ DA€+ p™A).
p

Proof. Since p is the only prime ideal above ¢+ p*» = (€ + p"» A) N 0, we have
AE~PA/C =P A/ (E + 1" Ay) ~ D A/(€+pPA)
p p p

where (2.9) is applied twice. [ |

We are now left with the task of proving the existence of exponents as in (2.15).
The next proposition and the subsequent corollary will give us two lower bounds
for each v, the second one potentially larger but easier to compute. Afterwards,
we will discuss how to obtain the smallest exponent possible.

(2.16) Proposition. Let ¢ be a full ideal and p a full prime ideal of 0. Let p
be the characteristic of the field ©/p and let v be an integer satisfying

> Up [Op : CP]

~ vp[Op : pp]

where v, denotes the p-adic valuation. Then p; C cp.!

1. Result (2.16) is based on proposition 4.2 by Kliiners and Pauli (2005).
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Proof. First, if ¢ ¢ p, then ¢, = 0p, and the assertion is obvious. So for the
rest of the proof assume ¢ C p.

By (2.9) the quotient ring 0y/c, is finite. As an 0p-module it is annihilated by
some power of pp,l hence py C ¢ for a suitable n. Choose n as small as possible
and consider the sequence

(2.17) Op/cp D (cp +pp)/cp D (cp ‘HJg)/Cp DD (ep+pp)/ep =0.
We will show that each quotient

(cp + Pﬁ_l)/cp 9t Plﬁ_l
(cp +1F)/cp Cp + by

(k <n)

is nontrivial. By our choice of n, this is clear for £ = n. For the remaining
quotients (i.e., if n > 1), we reduce all modules in (2.17) by (¢, + pp~')/cy,
obtaining

Op/(cp + 077 ) D (cp+0p)/(cp+0p ) DD (ep+py ")/ (cp+ 07 1) =0.
This is essentially sequence (2.17) where ¢, is replaced by ¢, + p{}_l because
o+ pp=(co+pp ) +py fork<n.

Notice that the new sequence contains one module less. Moreover, n — 1 is the
smallest integer such that pg_l C e+ pg_l. So by induction we may assume
that each quotient

(ep +p5 )/ (o +pp ) o +py!
(cp +05)/(cp + 05" ¢p + Py

(k <n)

is nontrivial, establishing our statement.
We will now refine our original sequence to a composition series

Op/ep=mgDOmy D---DOm, =0,

that is, each module in (2.17) is equal to some m; and the quotients m;_;/m;
are simple nonzero 0y-modules. Since the modules in (2.17) are all distinct, we
have v > n and therefore py C cp.

To complete the proof, we will show that v is equal to the stated lower bound.
Since 0y is a local ring, the only nontrivial simple 0p-module is 0y /p,, so

mi_l/mi ~ Op/pp for 1 <3<
Applying v, to the left- and right-hand side of
[Op tep] = [mo:my] -+ [my_q :m,] = [0y : pp]”,

we obtain vp[0y 1 ¢p] = v - vp[0y : Pyl |

1. Cf. Eisenbud (1995), p. 77, corollary 2.17.
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(2.18) Corollary. If v > v,[0: c]/vp[0 : p], then py C cp.t

Proof. Since 0/p ~ 0,/p, by (2.9), we see that v,[0: p] = vp[0p : py]. So by
(2.16) it suffices to show that v,[0: ¢] > vp[0, : ¢p]. Let v be any integer with
py C cp. As p is the only prime ideal above ¢+ p”, (2.9) yields

0/(c+p") = 0p/(ep +py) = Op/p.
Therefore [0y : ¢p] divides [0:¢] = [0: ¢+ p”][c +p” : ] |

(2.19) Proposition. Let n be any integer with py C ¢, and let v be the
smallest integer with p” C ¢+ p™. Then v is the smallest integer with p; C ¢;.

Proof. First, let v be any integer not surpassing n. If p¥ C ¢+ p", then
py C ¢+ py = ¢p. Conversely, let py C ¢p. Since py and ¢, both contain py, we
have the inclusion

Py/py C /by = (6 +by) /by
By (2.9) we know that the canonical map o/p"™ — 0p/py is an isomorphism,
hence
pr e C (et p")/p",
which implies p¥ C ¢+ p”.
In conclusion, if v is the smallest integer with p* C ¢ + p”, it is also minimal
under the condition py; C ¢y, and vice versa. ]

Using (2.18) and (2.19), we can compute the smallest exponent v satisfying
py C ¢p. The next proposition exhibits an alternative approach, provided that
¢ has the property

O NO =c.

Clearly, the conductor satisfies this condition, and so do all ideals coprime to f§

by (2.7).

(2.20) Proposition. Let ¢ be a full ideal of 0 such that cox N o = ¢. Let p be
a full prime ideal of © and let 9 be the set of prime ideals of Ox containing p.
Let

poKc = H g and cox = (H g7
qeQ qeN

where ¢ is not divided by any q € Q. Then v = maxq[vg/eq] is the smallest
integer satisfying p; C cp.

Proof. For all q € Q, we have
veq > [vg/eqleq 2 (vq/eq)eq = va,

and therefore

pu C pVOK: — Hqueq C quq‘
q q

1. Results (2.18) and (2.20) are based on statements 4.2 and 7.4 by Kliiners and Pauli (2005).
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Furthermore, ¢, = (cOx), N 0p, for if ¢ € (cOx)p N Oy, then sc € (cox)NoO =¢
for a suitable s € Sy, so ¢ € ¢, and (cOx )y N Op C ¢y. The converse inclusion is
trivial.

Taken together, we obtain

¢ = (o) NOp = (H qp')NOop D Py
q

It remains to show that v is minimal. Choose q € 9 such that v = [v4/eq].
Then

(v —1)eq = ([vg/eq] — L)eq < (vq/eq)eq = vgs

SO

(p"Tox)p = [Lab " ¢ [ ape-
q q

In conclusion, py ~! cannot be contained in ([Tqy") N Op = cp. [ |

2.3 Characterization of Units

At the the end of section 1.5, we characterized the units of a multiplier algebra
in terms of determinants. Our next goal is to obtain an analogous result for
localizations. Recall that the determinant of a matrix in M(n, IC) is defined as
its image under the map

det: M(n,K) = K, det(I') =det(I1) @ - & det([})

where each summand is the usual determinant of a matrix over a field. Also
remember that I is called nonsingular if each component has full rank.

As usual, A will be the multiplier algebra of a full module . In complete
analogy to the definition in section 1.4, the set of all matrices I' € M(n, K)
with

A, C Ay

will be called the multiplier algebra of 2, which, in fact, coincides with A,.

(2.21) Lemma. Let 0 be the center of A and let p be a full prime ideal of o.
Then A, is the multiplier algebra of 2,. Moreover,

Proof. Suppose I' € M(n, K) satisfies I', C A,. Let &,...,&y, be a set of
generators of 2(. These vectors also generate 2, as an 0y-module, thus we have
coefficients «;; € 0p with I'§; = 3~ 7;;§;. Choose s € S, such that svy;; € o for
all 7 and 5. Then

sl'¢; = Z(S’yij)fj el for all 4,

so sI' € A and I' € A,. Conversely, each I' € A, satisfies I, C A,. Hence A,
is the multiplier algebra of 2.
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Now let I'" € A;. Then

so I'A, = A,. On the other hand, if I'A, = 2A,, then I' has to be nonsingular
due to Q - A, = KC™. Thus we may conclude I’_lle = 2y, so I and I'! both
belong to Ay. |

(2.22) Theorem. Let A be the multiplier algebra of a full module 2 in ™.
Let © be the center of A and let p be a full prime ideal of ©. Then

redy <« det(I') € (ox)y -

Proof. We will prove that
ApX =Ap N (A;C)pX

where Ay is the multiplier algebra of i = A0x. From this the assertion will
follow immediately.

Without restriction we may assume that dx = 2, ©- - - DA, is a subset of O
n,—1

and that each component of is of the form a, ® 0*™". Applying (1.15) to each
a,, we further may assume that a = a; & --- @ as is coprime to the product of
all prime ideals of o) containing p. By (2.6), a, is not contained in any prime
ideal of (0x),. Write © = 0. Then

(Arc)p =0y and  (Ax), = M(n, Oy).
Let f be the conductor of © C 0. Put
Ay = Ap /Ay
Due to f2l, = fO2U, = fOy', this is a subset of
Oy /f0y = (Op/fp)™,

which is finite by (2.9). Obviously, (Ax)," = GL(n,0y/f,) acts faithfully on
(Op/fp)™ via I'€ = T'€. Let I € Ay N (Ax)). Then

A, C Ay

Since I" represents a bijection of (Op/f,)™, the sets T2, and 2, contain the
same number of elements, hence they are equal. Therefore

and we conclude

This implies I" € A by (2.21), so Ay N (Ax); C A;. The converse inclusion is
trivial. |
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2.4 Making Ideals Coprime to the Conductor

In this section we will explain how to make ideals coprime to the conductor,
if possible. This is motivated by our considerations at the end of section 1.6.
Again, € = (B :2) will be the multiplier ideal of two full modules and § will be
the conductor of A C Ax where A and Ax are the multiplier algebras of 2l and
A = Aox. Making € coprime to § means finding a I' € GL(n, IC) such that

e +§ =A.

If no such I' exists, € clearly cannot be principal. However, if € = I'A, then
¢ = AI'"! is a full fractional left ideal of A and

e =A.

Hence it makes sense to say that ¢’ is an inverse of €. More generally, any full
right ideal € will be called invertible if there is a full fractional left ideal ¢’
such that €€ = A. Since we actually want to examine whether € is principal,
we may assume that € is invertible.

Unlike for ideals of orders of IC, the inverse of a right ideal of a matrix order has
not to be unique. For example, let © be an order in a number field, ¢ a proper
ideal of © and A = M(2,0). Then

c ¢
o o

¢ =

is a full right ideal of A and

¢ =

(c:0) g} aswellas ¢’ =A

are inverses of ¢ because both ideals contain I = [(1) ﬂ and J = [(1] (1)], and

I¢+ JC =A.

Nonetheless, if € is an invertible right ideal, we always have a largest inverse
(containing all the others), namely

¢ l={reM(n,K)|I¢CA}.

Therefore we can speak of the inverse of € in reference to ¢~!. In the example
above, €71 = ¢’

We now come to the main result of this section. As usual, § is the conductor
of © C 0 where 0 is the center of A, so § = fAx. In addition, p will always
denote a full prime ideal of 0.

(2.23) Theorem. Let € be an invertible right ideal of A. Then € can be made
coprime to § if and only if €, is a principal ideal for each p DO f.
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To prove this theorem, we need to combine the statements (2.24), (2.26) and
(2.28) below. The first statement will translate the property € + § = A into
local terms.

(2.24) Proposition. An ideal € C A satisfies € + §F = A if and only if
¢y =A, forallpDi.

Proof. Let p be a prime ideal above f and suppose € is coprime to §. Then we
have a C' € € and an F' € § such that C'+ F = I, that is,

C=1 mod3.
Since § = fAx, (1.35) yields
det(C) =det(I) =1 mod f.

Therefore det(C') is not contained in any prime ideal of Ox containing f. In
particular, the determinant does not belong to any prime ideal above p. Hence
det(C) is a unit of (o), by (2.6), which implies C' € Ay by (2.22). Therefore

¢, =A, forallpDi.
Conversely, suppose €, = A, for all p D §. Then, for every p D §, we can write
1= Cpsp_l with Cy € € and s; € 5.
Let ¢ be the largest ideal of © with the property ¢A C €. Because of
spA = (sp])A = C,A C €,

we have s, € ¢. Thus ¢ cannot be contained in any prime ideal above §. From
this we conclude
CH+FDOA+FA=(c+f)A=A,

that is, € is coprime to §. |

By (2.24), I'€ + § = A implies €, = I'"'A, for each p D f, so one implication
of theorem (2.23) is established. The converse direction requires a little more
effort.

(2.25) Proposition. Let C, C' € A be nonsingular matrices. Let p be a full
prime ideal of © and let Q be the set of prime ideals of Ox containing p. For
q € Q, let vq = vq(det C') where vy denotes the g-adic valuation. Choose v large
enough so that p¥A, C CA, and v > v, for all q. If C' = €’ mod p”A, then

Proof. By our assumptions, there is a P € p”A such that C’ = C'+ P. Because
of p¥Ap, C CAy, we have C" € CAy, so C' = CU for some nonsingular U € A,.
We want to show that U is a unit of Ay, for this will imply

C'Ay = CUA, = CA,.
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Let g € Q. Then C" = C mod q”Ax. By (1.35), this implies
det(C) det(U) = det(C’) = det(C) mod q”.
In particular,
det(C)det(U) 0 mod g*a+?

because by our assumptions det(C) ¢ ¢o™! and v > vy + 1. We claim that
det(U) does not lie in qy,. Suppose it did. Put ¢ = det(C) and u = det(U).
Also, choose s € S, such that us € q. Then

vqt+1 vq+1
b

and cu ¢ q

cus €

that is, s lies in q N © = p, a contradiction. In conclusion, det(U) does not
belong to any q,. But these are all prime ideals of (0x), by (2.6). Therefore
det(U) is a unit of (0x)p. By (2.22), U is a unit of A,. [ |

(2.26) Corollary. If € satisfies €, = CpA, for all p D f, there is a C' € A with
¢, =CA, forallpDi.
Proof. Apply (2.25) and the Chinese Remainder Theorem. |

(2.27) Lemma. Let p be a full prime ideal of ox and p = pNo. If p does not
contain f, then

Ay = (Axc)p-

Proof. First we prove that 0, = (0x)s.! Choose a nonzerodivisor f € f \ p,
which is possible by (2.2). If z € ox and s € S, then zf € 0, sf € S, and

T E— (:Uf)(sf)_1 € Oy,

0 (0x)s C 0p. The converse inclusion is obvious.
Since f, and fz both contain ff 1 =1, we observe that

fp = 0p = (0x)5 = T5-

Hence
By = (FAx)p = foAx = fsAx = (FAx); = 5.
Since §p contains (fA), = fpAp = 0pAy = Ay, the identity matrix belongs to §p.
Therefore
Ap =3Fp =T = (A)p- ]

(2.28) Proposition. Let € be a full right ideal of A and let C' € A satisfy
¢, = CA, for all p D §. Then € can be made coprime to §.

1. Cf. Neukirch (1999), p. 79, (12.10).
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Proof. By our assumptions, C' is nonsingular. With regard to (1.32), let ¢ be
the fractional ideal of Ox satisfying

A = A;(;C_lAK.

Let

e = ([T5)¢

p2f

be a partial factorization of ¢. If p is a full prime ideal of © not containing f,
then p lies in exactly one p by (2.7). Therefore we can choose an s € © such
that
|1 modyp ifp DT,
N {O mod p~% ifp=pno.

Adding a suitable integer to s, we may assume that s is a nonzerodivisor. Put
I' = sC~!. We claim that I'¢ + § = A. First of all, if p D f, then s € Sp and

By (2.24) it remains to show that I'¢ C A to prove our claim. For the rest of
the proof, suppose p = pN o where p 2 §. To prove the stated inclusion, we will
show that I" belongs to Ax. If this true, we see that

using (2.27) for the last equality, and we may conclude that I'€ = ), I'€, lies
in A =, Ap, where the equalities are due to (2.10).

Since Ay is a direct sum of maximal matrix orders, it suffices to consider the
case where IC = I is a number field. Furthermore, we may assume that Ag is
of the standard form (1.18), that is,

O a - a

a~! Ok -+ O
A= .

a_l Ok -+ O

Write C~1 = [¢;;]. Then (1.34) yields

-1
¢ =110 + Z CijOK + Zcﬂa + Z cr;a .
i,j>1 i>1 j>1
By our choice of s, we obtain s¢ C sp» C Ox. Therefore
a iti =1, 7 >1,
scij € qat ifi>1, j=1,

Ok otherwise.

In conclusion, I' = sC~! is an element of Ax. |
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Theorem (2.23) is now established, because if ¢, = CyA, for all p O f, we can
determine a matrix C such that €, = CA, for all p, and I' = sC~!, with s
chosen as in the proof above, satisfies I'€ + § = A.

In the remainder of this section, we will explain how to decide whether €, is
principal and, if so, how to obtain a generator. First, suppose that € = ¢ is an
invertible ideal of 0. In this case, ¢, is always principal, that is, all invertible
ideals of © can be made coprime to the conductor.

(2.29) Proposition. An ideal ¢ of 0 is invertible if and only if ¢, is principal
for every full prime ideal p.!

Proof. Let ¢ be invertible. Then © = ¢c™! is generated by a finite number of

products ¢ with ¢ € ¢ and ¢ € ¢~!. By (2.1) all factors can be chosen as
nonzerodivisors. Given a prime ideal p, at least one product cc¢’ does not belong
to p. Therefore cc’ is a unit of 0y. If © € ¢y, then dz € ¢c7le, = 0p, s0

z = c(ed) Iz € cop.

Hence ¢, C coy. The converse inclusion is trivial.
Now suppose ¢, = ¢,0p for each p. We may choose ¢, in ¢. Because of ¢ C ¢y,
every c € ¢ is of the form

c=cprp Wwith 2 € 0.
Since ¢ is finitely generated, there is an s, € S, for every p such that
Spc C Cp(’).

Then s, = (s,¢, '), is an element of (0 : ¢)¢, which means (0 : ¢)c cannot be
contained in any p. Thus (0: ¢)c = 0, that is, ¢ is invertible. [

From the proof of (2.29) we can extract a simple method for determining a
principal generator of ¢,. Among the generators of ¢ and ¢!, chosen as nonze-
rodivisors, we just need to find a pair ¢, ¢’ such that ¢’ ¢ p. Then ¢, = co,.

(2.30) Corollary. If ¢ is a full ideal of © coprime to f, then ¢ is invertible.

Proof. Let p be a full prime ideal of 0. If p D §, then ¢, = 0p. If p 2 §, then
O, is a discrete valuation ring by (2.27). In any case, ¢, is a principal ideal, so
¢ is invertible. u

Unfortunately, (2.29) cannot be generalized to the case of matrix orders. In fact,
there are invertible right ideals that cannot be made coprime to the conductor.
For example, suppose 0 is a nonmaximal order in a number field such that the
conductor f of © C O is a prime ideal of © (as in the case of © = Z[2i]). Let

for

o 0

¢ =

)

1. For integral domains, result (2.29) can be found in Neukirch (1999), p. 74, (12.4).
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which is the multiplier ideal of © @ © and § ® ©. Then € is an invertible right
ideal of A = M(2,0). As mentioned before, the inverse is given by

¢l =

(0:f) o]

Let Ax = M(2,0x). The conductor of A C A is § = M(2,f). We claim that
I'e+3#A forall I' e GL(2,K).

First, let us prove that

O O
Ok O

¢l =

Since f is assumed to be prime, the chain § C (0: f)f C © implies

(0:f)f=f or (0:pj=o.

In the second case, f would be an invertible ideal of ©, which cannot be true
because its multiplier ring is 0x. Hence (0 : f)f = f, that is,

(0:f) € (F:f) = ok

Conversely, oxf = f C 0, therefore (0: f) = ok is established.
Now suppose there was a matrix

I {m yl}
T2 Y2

such that I'¢+F = A. Then, in particular, I'¢ C A, thatis, I' € €1, Therefore
x; € 0 and y; € 0. Moreover, I'C + § = A implies the existence of a matrix
C € € such that

I'C=1 mod3.

But all elements of € are of the form
{fl fﬂ with f; €f and 2z €o0.
Z1 22

Thus we observe

[=rc= |Phitna nhtyzn_\na nznl e (T )
xofi + Y221 xafo+ y2zo Y221 Y222 fof

Therefore y1, y2, 21, 22 are a units as well as a zerodivisors modulo f, a contra-
diction. Consequently, I'€ + § # A for all I" € GL(2, K).

As remarked earlier, if € cannot be made coprime to §, we may conclude that €
is not principal. Hence a negative outcome poses no problem for our purposes.

What the example also illustrates is that we cannot expect ¢ = € N © to be
invertible simply because € is (in the setting above we have ¢ = f). This is
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unfortunate because below we will show that €, is principal if and only if €
contains a nonsingular matrix C' such that

clonNK* ¢ .
If, however, ¢ = € N 0 is invertible and ¢~' C €~ N IC, we can choose C to be
a scalar ¢ with ¢, = cop, which can be found easily as already explained.
(2.31) Proposition. Let € be an invertible right ideal of A and let C' be a
nonsingular matrix in €. The following properties are equivalent.
(1) € = CA,.
(2) eTlCNK* ¢ p.
(3) €71C contains a unit of A,.
Proof. The second property implies the third because it states that ¢~*C con-

tains an element of S,. Notice that ClICNKCANK =o.
Suppose there is a ¢’ € €1 such that C'C € Ay If X € €, then

X =C(C'C)'C'X € CA,

because C'X belongs to €71¢€, = A, and so does (C'C)~1. Hence €, C CA,,
and the converse inclusion is trivial.
Now suppose €, = CAp. We will show that

(€ )y = (€)= A0,

which is not completely trivial since €, can have several inverses. If the stated
equalities hold, we obtain

(€710)p = (€710 = A,071C = Ay,

so we can write I = C'C's™! with ¢’ € € and s € S,. Then s = C'C belongs
to €710 N K™, which implies (2).
So let us prove the asserted equalities. First, (€p)_1 contains the exterior ideals
because

(€€ = (ApC1)(CA) = Ay
and

(ApC™HE = (A, C71H(CAp) = Ay

Second, A,C~! is the largest inverse of C'A,, and it contains (€,)~! because

(€)1 (CAy) C (€))1¢, = A,
Thus it remains to show that (€,)~1 C (€71),. Let Cy,..., C, be generators of
¢. Since C; € €, = CAy, we have

C_IC’j =X, s}l with X; € A and s; € ;.

Put s = s1---s,. Then sC’*le € A for all j, so sC~'¢ c A. Therefore
sC~t e et and C7t € (€71),. This proves

(€) P = A0 C (€7, n
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Making use of (2.31), it is possible (at least in a finite number of steps) to decide
whether €, is principal, as the next theorem states. Unfortunately, the method
based on the theorem will come down to a search of exponential complexity. So
in practice, it might be worthwhile to use a random procedure before working
deterministically.

(2.32) Theorem. Let € be an invertible right ideal of A and let C1,...,Cy,
be a set of representatives of €/p€. Then &, is principal if and only if

¢, = C;A,  for some Cj.

Proof. Suppose €, = CA, for some matrix C. Then C can be chosen in A.
We have to show that

¢, = (C+ P)A, forany P € pc.

By (2.31) there is a C" € € ! such that C'C' = s is an element of S,. Let q be a
prime ideal of Ox containing p. As element of the maximal order, s = s1®- - -Ds,
can be written as the product

SZH(l@...@sb@...@l)'

L

None of these factors belongs to q (or else s € ¢ N © = p), therefore

det(s) = det(s1) @ --- @ det(s,) =s1' D--- D"
=[[Qe--®s @ --®1)#0 modq.

If P € p&, then C’P belongs to €1 (p€) = pA C qAx. By (1.35) we have

det(C'(C + P)) = det(s + C'P) = det(s) 20 mod q.

By (2.6) this determinant cannot belong to any prime ideal of (0x)p, hence it is
a unit. Therefore C'(C + P) € A by (2.22) and €, = (C'+ P)A, by (2.31). H

2.5 Algorithms

(2.33) Algorithm — Minimal Exponent v

— ¢ full ideal
p  prime ideal

< v minimal integer satisfying p; C ¢,
The ideals ¢ and p both belong to an order © of K.
(1) Choose an integer n exceeding v,[0 : ¢]/vp[O : p].

(2) Determine the smallest integer v with p¥ C ¢ + p™. Return v.
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If ¢ satisfies the condition cox N O = ¢, we can use the following method (which
is worthwhile if the occurring factorizations have already been computed).

(1) Compute the factorization pox = []q.
(2) Compute a partial factorization cox = ([]q*)¢’.

(3) Put v :=maxq[vy/eq]. Return v.

The algorithm can also be used to compute the smallest integer v satisfying
pYAp C €. Simply call it with ¢ = €N o.

(2.34) Algorithm — Is Locally Coprime

—» € invertible right ideal of a matrix order A
p  full prime ideal of the center of A

< T true/false
C  element of M(n, K) satisfying €, = CA,

(1) Compute the set Q of all prime ideals of Ox containing p.

(2) For every C in a set of representatives of €/p€, check whether
det(C) ¢ q for all g € Q.1

If so, return true and C. If no such C exists, return false.

If A is an order IC, that is, we can avoid the cumbersome search of €/p&. Write
¢ = € and suppose ¢y, .. ., ¢, are generators of ¢, all of which can be chosen to be
nonzerodivisors by (2.1). By (2.29) it is already guaranteed that ¢, is principal.
To obtain a generator of ¢y, execute the following commands.

(1) Compute a set of nonzerodivisors ¢}, ..., c,, which generates ¢~1.

(2) Fori=1,...,nand j=1,...,m: Ifcicg- ¢ p, return true and ¢;.

(2.35) Algorithm — Make Coprime

—» € invertible right ideal of a matrix order A
§ conductor of A C Ax

< T true/false
I' element of GL(n, K) satisfying I'¢ +F = A

Suppose © = AN K and § = fAx.

(1) If A = Ax (that is, § = Ax), return true and I.

1. Then C is a unit of A, by (2.6) and (2.22). Hence it generates €, by (2.31).
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Compute all prime ideals p of © above f.

For each p D f, try to compute a matrix C, with ¢, = CyA, using algo-
rithm (2.34). If not all €, are principal, return false.

Compute a matrix C' with ¢, = CA, for all p O § using (2.25) and the
Chinese Remainder Theorem.

Compute an element s as in the proof of (2.28).

Put I" := sC~!. Return true and I.



3 Principal Ideal Testing

In this chapter we will explain how to perform a principal ideal test when deal-
ing with ideals of nonmaximal orders, provided that we can execute the test in
the maximal order successfully. Furthermore, we will assume that the ideal in
question is coprime to the conductor. The commutative and the noncommuta-
tive case will be discussed separately. In good cases, the noncommutative test
can be reduced to the commutative setting.

3.1 The Commutative Case

Let © be an order of IC and let ¢ be a full ideal of © for which we want to
decide whether it is principal. Suppose we already know that ¢x = vyox for
some v € 0k and that ¢ is coprime to the conductor § of © C 0x. By (1.39) it
then suffices to check whether the image of

ox = (ox/f) /(o/F)*

contains the residue class of 7. Once all groups have been determined effectively,
this can be decided by solving a system of linear equations.

Let us assume that the groups 0% and (0x/f)* have already been computed.
To compute (0/f)* as a subgroup of (0x/f)*, we only have to bother about
generators, not about relations. Once we possess a set of generators, we can
compute the quotient of both groups—as well as preimages of residue classes—
using standard methods for finitely presented abelian groups.?

By (2.15) we have a decomposition

(0/D)* = P(o/(F+p"))*

b

with suitable positive integers 1, where the isomorphism is induced by the
canonical map 0 — @(0/(f + p**)). It therefore suffices to determine genera-
tors of (0/(f +p**))* for each p D f. Afterwards, we obtain the corresponding
classes in (0/f)* using the Chinese Remainder Theorem. Another decomposi-
tion enables us to find the desired generators. Before we begin, let us remark
that the set

(1+p)/(1+F§+p"),
consisting of the classes [1 + 7] = (1 4+ m)(1 + f + p"), is a multiplicative group
with multiplication inherited from o. Notice that, since (1 +p”) C (1 + f+p¥),
the inverse of [1 + 7] is given by [1 — 7 + -+ + (—7)" 1.

1. There are well-known algorithms to compute the components of 0 ~ &b o;éL. Moreover,
we can compute the components of (ox/f)* ~ @(ok, /f.)* as described by Cohen (2000),
section 4.2; also see Hess, Pauli and Pohst (2003).

2. Cf. Cohen (2000), section 4.1.
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(3.1) Proposition. Let p D f be a prime ideal of © and v > 0. Then
(0/(F+9")* = (o/p)* & (1 +p)/AL+]+p").!

The proof of (3.1) relies on Hensel’s lemma. Below, we state a special version of
the lemma which is sufficient for our purposes. For the proof, in a more general
setting, see Pohst and Zassenhaus (1989), pp. 301-302.

(3.2) Hensel’s lemma. Let p be a full prime ideal of 0. Let f be a monic
polynomial over © and ¢ € o such that

f(€)=0 modp and f(¢)#0 mod p.

For each v > 0 there is an 1 € 0 such that f(n) = 0 mod p” and n = ¢ mod p.

Proof of (3.1). Choose ¢ € o such that its residue class generates (0/p)*. Let
f = X711 —1 where q denotes the number of elements in ©/p. Then

f(()=0 modp and  f(¢)Z0 mod p,

so by Hensel’s lemma there is an 7 € © with n9~! = 1 mod p* and 1 = ¢ mod p,
that is, n is a unit modulo § + p” of order ¢ — 1. Therefore the canonical map

(0/(F+9")" = (0/p)"

is an epimorphism. Elements in the kernel are represented by elements in 1+ p,
and 1+ 7 represents the unit element precisely if it belongs to 1+ §f + p”. Thus
we have an exact sequence

L= (1+p)/(L+F+p") = (0/(F+9)" = (0/p)* = 1.
The sequence is split because

(o/p)* = (0/(F+9"))", CH+p—=n+i+p”

defines a suitable injection. Hence (0/(f+p¥))* is isomorphic to the direct sum

(o/p)* @ (1+p)/A+F+p"). u

By (3.1) we are left to compute generators of (0/p)* and (1 +p)/(1+f+ p¥).
According to the proof, generators of (1 +p)/(1+ f+ p¥) can be used directly
as part of a generating set of (0/(f + p¥))*. Moreover, we need to compute
a (¢ — 1)-th root of unity modulo p¥. This second step can be simplified to
computing a generator of (0/p)*, for if ( € o represents such a generator, we
have (97! = 1 + 7 with 7 € p. Hence ( represents a generator of

(0/(f+p)*
(I+p)/(T+F+pY)

Now we will explain how to compute a generator of the cyclic group (o/p)*.
Let g =q1@---@qs be a prime ideal of 0x above p (which we need to compute

~ (0/p)*.

1. Result (3.1) is stated in Kliiners and Pauli (2005) for orders of number fields, cf. lemma 4.3.
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in the first place to obtain p as the intersection q N ©). There is exactly one ¢
such that q, is a prime ideal of ox,, while q, = ok, for v # ¢ (otherwise, q
would not be maximal). Hence

oK /9 = Ok, /q.,

so the residue class field stems from a maximal order in a number field. The
composition of the canonical maps

0 — O — 0x/q

induces an injection 0/p — Ox/q, thus 0/p can be realized as a subfield of
0K, /q.- By choosing elements at random, we eventually find a generator of

(o/p)*.
Finally, we need to examine the group (14 p)/(1+ f+ p*). The canonical map
(L+p)/A+p") = A +p)/(L+F+p")

is surjective, and since we are only interested in a set of generators, it suffices

to deal with the group (1 +p)/(1+ p¥).

(3.3) Proposition. Let m < v be positive integers with v < 2m. The map

(T+p™)/(T+p") = p™/p", [D+7]—=7+p”

is an isomorphism.!

Proof. The map is well-defined, for if
1+m)Q+p)=14+7+p+mp (pep”)

is another representative of [1 4 ], it is also mapped onto 7w + p”. It is a
homomorphism because the image of (1 + 7)(1 + 7’) is

(m+ 7' +an’) + 9" = (7 +p) + (7' +p"),

taking into account that w7’ € p?™ C p”. Clearly, the map is surjective, and
it is injective because the image of [1 + 7| is trivial precisely if = € p¥, that is,
(147 el+yp”. |

By (3.3) we can easily determine generators of the group (1 + ka)/(l + p2k+1)

)

simply by choosing generators of ka. Furthermore, we have an exact sequence

Lo (L+p2)/(L+p2) = @+p)/ L+ = W +p)/Q+p2) = 1,

and by induction we may assume that we are in possession of generators of
(I+p)/(1+ p2k). Combining the generators of the kernel and the image, we
obtain generators of (1+ p)/(1+ p2"""). If 2¥ > v, the map

(1+p)/(1+p¥) = (L+p)/(1+p")

is surjective. So by choosing k large enough, we can also compute generators of
(1+p)/(1+p).
1. Again, cf. Kliiners and Pauli (2005), lemma 4.3.
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3.2 The Noncommutative Case

In this section we will describe two approaches for a principal ideal test in the
noncommutative context. Let € = (B : 2() be the multiplier ideal of two full
modules in IC™. Let A be the multiplier algebra of 2l and let © denote the center
of A. Our goal is to decide whether € is a principal right ideal of A. Suppose we
already know that €Ax = I"'Ax where Ax = (Ui : Ax) and that € is coprime
to the conductor § = fAx of A C Axc. By (1.39) we then need to check whether
the image of
A% = (A/F)\(Axc/F)"

contains the residue class of I'. Since the groups involved are nonabelian and
the codomain has not to be a group at all, this problem is more challenging
than the commutative case of the previous section. In a first approximation,
we will determine the image of A — (Ax/F)*. Clearly, the map above is the
composition of

Aig = (Me/8)™ = (A/F) \(Arc/T) ™
As usual, we may assume that each component of Ax is of the standard form
(1.18). At the beginning of section 1.5, we defined the determinant as the
multiplicative map
det: A — o, det(I') =det(I) & --- @ det([).
This yields an epimorphism det: Ag — 0. Let SL(Ax) be the kernel of this
map. Then we have a split exact sequence
1 — SL(Ax) = A = o — 1,
therefore
A;é ~ SL(AK) A O;é.
Moreover, the determinant induces an epimorphism
det: (Axc/T)* — (0oxc /)™, det(I') = det(I)
which is well-defined by (1.35). Let SL(Ax/§) denote its kernel. As above, this
gives us a split exact sequence from which we deduce
(Axc/T)™ ~ SL(Axc/3) x (0K /F)”-
In the following we will show that the canonical map

SL(Ax) — SL(Ax/3)

is surjective. Once this is proved, it follows that the image of Ax — (Axc/F)*
is isomorphic to the semidirect product

SL(Ax/3) x det(AY)

where det(Ag) denotes the image of Ag — 0x — (0xc/f)*. To simplify things,
we will first show that, essentially, Ax/F is the same as M(n, ok /f).

(3.4) Lemma. Let a be a full fractional ideal of 0x. Then oy /f and a/af are
isomorphic as modules over oOx/f.!

1. Lemma (3.4) is based on lemma 4.2.9 by Cohen (2000), p. 193.
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Proof. It suffices to consider the case where IC = K is a number field and
a C 0k. Let B be the set of prime ideals p with

vp(a) 0 or () #£0

where v, denotes the p-adic valuation. We can choose an a € Ox such that
vp(a) = vp(a) for all p € P. In particular, we have a € a. The homomorphism

ox/f — a/af, Tr—ax

is well-defined since af C af. Let x € o with az = 0 mod af. Then, for all
p € P, we have

vp(a) + vp(x) = vp(ax) > vp(af) = vy(a) + vy(f) = vp(a) + vp(F),

so vp(x) > vy(f) for all p. Hence x = 0 mod § and the map is injective. Since
the norm of ideals is multiplicative, we have

o /alla/af| = |ox/af] = [ox/al|ox /1l
Therefore the map is surjective, too. |
(3.5) Proposition. The ox-algebras Axc/§ and M(n, 0x /f) are isomorphic.

Proof. As usual, it suffices to consider the case where K = K is a number
field and where A is of the standard form (1.18), that is, A is the multiplier
algebra of a® O%fl for an ideal a C 0x. Let B be the set of prime ideals p with

vp(a) #0 or wp(f) #0.

Choose a € a such that vy(a) = vy(a) for all p € P. As seen in the proof
of (3.4), the residue class of a generates a/af as a module over ok /f. Using the
Approximation Theorem, we can choose an @’ € a~! such that

vp(a’) = —vy(a) forallp e P and vp(a’) >0  elsewhere.
Then o represents a generator of a~!/a~!f and aa’ is a unit modulo f because
vp(aa’) =0 forall p D .

Choose x € ok such that zaa’ = 1 mod §, so x ¢ p for all p D §. By the Chinese
Remainder Theorem, we may assume z ¢ p for all p € . Then

vp(za) =vy(a) for all p € P,

so the residue class of za is also a generator of a/af. Replacing a with za we
may assume aa’ = 1 mod f.
Since § = fAx, each element of Ax/§F is represented by a matrix of the form

C11 acig -+ GCin
/
a C21 €22 e Con
I'= . . . . (Cij € O/C).

/
A Cnl Cp2 - Cpn
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o _|la O , a0
C = [cij], A—{O I} and A—{O I}

Then AA" =1 and A'T’'A = C mod f. Therefore
(3.6) Ak /T — M(n, o /f), I+ ATA
defines an isomorphism of Oy -algebras. |

Next, we will show that SL(Ax) — SL(Ax/F) is surjective, essentially by prov-
ing that SL(n,0x/f) is generated by elementary matrices (i.e., matrices with
ones on the diagonal and exactly one nonzero entry above or below the diago-
nal). Remember that a vector [x; ... x,] over a commutative ring R is called
unimodular if

$1R+"'+$nR=R.

If A is an invertible matrix over R, all rows of A are unimodular.

(3.7) Lemma. Let © be an order of a number field and a a full ideal of o.
Let [z1 ... z,] be a unimodular vector over ©/a. Then there are coefficients
€2, ...,Cn € 0/a such that

21+ coro + -+ cpy € (0/a)* 0

Proof. Suppose z; is not a unit or else nothing is to show. Let p be a prime
ideal of ©/a with z1 € p. Since [z ... x,] is unimodular, z; ¢ p for some
j > 1. Suppose q varies over all prime ideals of ©/a. By the Chinese Remainder
Theorem we may choose an element ¢; € 0/a such that
{1 mod q if x; €qorzx;€q,
Cj =

0 mod q otherwise.

Then x1 + ¢;jz; only belongs to the prime ideals containing both x1 and z;. In
particular, x; + ¢jz; ¢ p. Repeating the process for 1 + c¢jz;, we ultimately
obtain an element of the form x1 + coxs + - - - + cpx, which only belongs to the
prime ideals containing x1,...,2,. Since no such prime ideal exists, we have
found a unit. |

From (3.7) it follows that each element of SL(n,0/a) is a product of elementary
matrices. In fact, the lemma shows how to reduce a matrix A = [a;;] to the
identity matrix using elementary operations: Once we have computed coefhi-
cients ca,...,c, such that ajq + ceai12 + -+ 4+ cpa1, is a unit, we can replace
a1 with this unit. Afterwards we can delete all other entries in the first row.
If a11 # 1, we replace a12 and a1 with ones successively and delete a1o again.
Finally, we delete all other entries in the first column. Repeating this procedure
for the remaining rows will transform A into the identity matrix.

1. Results (3.7) and (3.8) are based on statements K.11 and K.14 by Jantzen and Schwermer
(2006), pp. 322-23.
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(3.8) Theorem. Let © be an order of a number field and a a full ideal of o.
Then SL(n,0/a) is generated by elementary matrices. As a consequence, the
canonical map

SL(n,0) — SL(n,0/a)

is an epimorphism.

Proof. As explained above, each element of SL(n,0/a) is a product of elemen-
tary matrices. This proves the theorem because every elementary matrix over
o/a can be lifted to an elementary matrix over o. |

(3.9) Corollary. The canonical map
SL(Ax) — SL(Ax /%)
is an epimorphism.

Proof. As usual, we may assume that IC = K is a number field because SL(Ax)
and SL(Ax/§) are direct sums. Furthermore, we may assume that Ax is of the
standard form (1.18). By (3.5),

Ak /§ ~ M(n,or /).

Consider the isomorphism (3.6). It preserves determinants, therefore it can be
restricted to a group isomorphism

SL(A;C/S) — SL(TL, O}C/f).

Also, it maps elementary matrices onto elementary matrices. Hence SL(Ax /%)
is generated by elementary matrices because SL(n,0x/f) is by (3.8). Each of
these generators has a preimage in SL(Ax), which establishes the corollary. W

3.10) Corollary. The image of Ay — (Axc/F)* is isomorphic to
I

SL(Ax/5) x det(AY)
where det(A) denotes the image of A — 0% — (0x/f)*.
Proof. Since SL(Ax) — SL(Ax /%) is surjective and because of
Ag ~SL(Ax) x o and  (Ax/3)* =~ SL(Ax/T) % (ox /)",

an element of (Ax/§)* has a preimage in Ag if and only if its determinant
stems from a unit in Ox. |

Let us return to the question whether a residue class [I" + §| belongs to the
image of

Ac = (Ae/3)* — (A/F) " \(Ax /)™
By our considerations so far, we can easily decide whether I" + § belongs to the
image of Ax — (Axc/§)* (in which case [I"+§] certainly is hit by the composite
map). We simply need to check whether

det(I)=u modf  for some u € 0f.
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If the result is negative, one possibility remains for [I" 4+ §] to have a preimage
in Ax, namely if there is a U + § € (A/F)* such that

det(UI') =u mod f  for some u € 0.

Hence our decision mainly depends on knowledge about the group det((A/F)™).
If we are able to compute det((A/F)*), we can actually reduce our problem to
the commutative case because we simply need to check whether det(I") belongs
to the image of

o = (0 /) / det((A/) ).
Unfortunately, we cannot expect that

det((A/3)7) = (o/f)*

where © is the center of A. For instance, if © is an order of a number field, the
multiplier algebra of © @ f, given by

ok f

(0:) o

is a counterexample. However, in this case we obviously have

det((A/F)*) = (ox/F)*.

The next proposition deals with situations where det((A/F)*) can be computed
just as easily. On top of that, it will also be clear how to select a matrix U with
a suitable determinant (which is important if we want to compute a preimage
of UT" + ).

A=

9

(3.11) Proposition. Let 2 = a; & --®a,, be a full module in " where K is a
number field. Let A the multiplier algebra of 2 and let ©; denote the multiplier
ring of a;. Put © = 01 and suppose 0; C o for all i. Then

det(A) = o.

Furthermore, if Ax is the multiplier algebra of 20 and § the conductor of
A C Ax, then

det((A/F)") = (o/f)".
Here, § is the conductor of 01 N ---No, C Ok
Proof. The multiplier algebra of 2 is given by
(ag:ay) -+ (ap:ap)
A= : : :
(ap:ay) -+ (ap:ay)

and (a; : a;) is the multiplier ring ©0;. By the Leibniz formula, the determinants

of matrices in A belong to
n

> (i ap))

i=1



3.2 The Noncommutative Case 77

where o runs over all permutations of the set {1,...,n}. If o = (i1 ... is) is a
cycle, then

n

[T a0i) = (aiy i) - (i, s i) - ] 04,

i=1 o(i)=i

and (a;, s a;,)---(a;, :a;,) C 05, because
(@i = @iy) - (ag, s aqy) agy C (@ agy) - (@, s ag) @, Coo- C gy

Therefore

n

H(ai : aa(i)) C o.

i=1
Since all permutations are products of disjoint cycles, we see that det(A) C o.

Conversely, © & I,,_; is a subset of A, so © C det(A). The second assertion is a
consequence of

(A/T)* C (A/F)* and  det((Ax/T)) = (ox/f)*
Notice that o1 N --- N o, is the center of A. |

By the previous proposition, it is particularly easy to examine whether a full
o-module B is free, provided that By is free and that € = (B : 0") is coprime
to the conductor of A = M(n,0) and Ax = M(n,Ok), because in this case we
have

det((A/F)*) = (o/f)".
Testing whether an ©-module is free is interesting in itself, but will also be
crucial in the next chapter.

Unfortunately, the set of all determinants cannot always be determined as easily
as in (3.11). In fact, det(A) and det(A/F) do not have to be rings at all-—not
even if A is the multiplier algebra of a direct sum of fractional ideals. This is
illustrated by the following example.

Let ¥ = /—2. The maximal order of K = Q(?) is the equation order Z[J]. It
contains the suborders ©; and ©o generated by

1,79,79%, 03,794, 79° and 1,709, 02,793, o4 7.

A basis of the intersection © = ©1 N ©y is given by 1,79, ..., 79°. Consider the

o-module 01 @ 05. Its multiplier algebra is given by
Ao 01 (01:02)
((’)2 : (91) O9

and o is the center of A. Let § be the conductor of © C 0. It is equal to 7ok,
which is a prime ideal of ©x because X% + 2, the minimal polynomial of ¥, is
irreducible modulo 7.! Thus it is also a prime ideal of 0, ©; and 0. Since

o/f ~F7, 01/f =2Fp, 03/f~F and ox/f~Fre,

1. Cf. Neukirch (1999), pp. 4748, (8.3).
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we see that Oy is the smallest order which contains both ©; and ©5 because
F6 /Fr2 and Fre /Frs admit no intermediate fields. If if det(A) were a ring, it
had to be equal to Ok because

01, 02 C det(A) C ok.

In particular, the composite map

Aﬂo;c—uo;c/f

would be surjective. We will argue that this is not true. The set (01:02)(02:01)
is an ideal of 01 and 09, hence of Ok, and because of
(Oi : Oj)(Oj : Oi) = (Oi : (’)j)(@j : Oi)Oi C (Oi : Oj)Oj C 0y,

it is contained in ©; N 02 = ©. Since f is the largest ideal of Ok inside 0, we
conclude (01 :02)(02:01) C f. So if

F:Pl | e,

* 2

we have
det(I") = y1y2 mod f.

This implies

|det(A)] < |o1/flloz/fl = 7° < 7° = |ox /.

Consequently, det(A) is not a ring. Furthermore, the maximal order above A
we have to consider in our example is

A;C = M(Q, O}C)
because (01 @ 02)0x = Ok @ Ox. Hence the conductor of A C Ag is given by
§ = M(2,§).

Arguing as above, we see that det(A/F) cannot be a ring either, because the
inclusions

01/f, 02/f C det(A/F) C ox/f
would imply det(A/F) = ok /f, yet again, |det(A/F)| # |ox/f|.

In the light of these difficulties, a reduction to the commutative situation might
not always be feasible, all the more if A is the multiplier algebra of a module

which cannot be transformed into a direct sum of ideals. Further problems
emerge if we turn towards the general case of orders of M(n, IC), for instance if

A#£A & & A,

Of course we can search (A/§)* directly for a matrix of a suitable determinant.
As seen in section 2.2, we have a decomposition of the form

(A/F) = DA/(F +p )"

pOf
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It would be desirable to determine generators for the groups on the right. Yet an
attempt to generalize the method for the commutative situation seems unlikely
to succeed. One reason is that §F -+ p*? A, in contrast to f 4+ p*?, can be contained
in several maximal two-sided ideals of A. For instance, if © is an order of a
number field, the multiplier algebras of l = 0 ® © and UAx = O P Ok are
given by

Ok Ok

f

so the conductor of A C A is given by § = M(2,f). Suppose that § is a prime
ideal of 0k (as in the case of © = Z[3i]). Then f also is a prime ideal of ©. Since
§ = fAx contains fA, the decomposition above becomes trivial. The sets

A= and Ax = M(2,0k),

Ok Ok

foo

are two-sided ideals of A above §. Since 1 + P2 = A, they are contained in
distinct maximal ideals. Consequently, the same holds for §.

f ok
f o

B = and Py =

What is more, the above example also illustrates that the maximal two-sided
ideals above § cannot be determined in the fashion familiar from the commu-
tative situation, that is, by factorizing § as an ideal of Ax and intersecting
the prime factors with A. Indeed, § = fAx is a maximal two-sided ideal of
Ak by (1.32), so the only intersection we can obtain is § itself. Moreover, P
and Po disappear if we lift them upwards because § C AxP;Ax C A implies
AcBiA = Ak

As a last resort, we can still search the additive structure

A/F=DA/F+p™A)
p

with the disadvantage of encountering non-units, too. However, all methods
considered so far depend on the assumption that the ideal € is coprime to the
conductor. Of course, this can be guaranteed with the algorithm developed in
section 2.4, but this procedure already relies on a search of exponential com-
plexity. As an alternative, we can decide whether € is principal on the basis
of (1.23). Then we do not have to ensure that € is coprime to the conductor.
Instead, we can simply search Ag/A* for a unit U satisfying € = I'UA. Since
the map
AL/ (A \Ax/F)S, U] [0 + 3]

is injective by (1.36), this can be done in finite time. Unfortunately, it is unclear
how to determine the respective cosets efficiently. Still we can search (Ax/§)*
directly. This approach has its disadvantages, most notably that (Ax/§)* is
larger than (A/F)*. On top of that, not every class in (Ax/F)™ stems from a
unit in Ag. On the plus side, we know a lot more about this group than about
the subgroup (A/§)*. By (3.5), we have

(Axc/S)* = GL(n, 0k /f) ~ D GL(n, 0x/q")  where f =[] q",
q q
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and every element of GL(n,0x/q") can be represented by a sum
U=U;+U; with U € GL('I’L,OK/C[) and U; € M('I’L, q/qy)

because U represents a unit over 0y /q” if and only if det(U) #Z 0 mod q.

3.3 Algorithms

(3.12) Algorithm — Generators of (o0/f)*

— | conductor of © C 0k

<« G set of representatives generating (0/f)*
(1) Compute all prime ideals p of © above f as explained in (2.5).
(2) For each p D f:

e determine a (, € 0 generating (0/p)* by selecting elements at random;
e compute a minimal integer v, with p;" C fp using algorithm (2.33);

e put k:=1and G, :={( };

e while k < v,

— compute generators 71, ..., T, of p¥:
—put Gy :=GyU{l+m,...,1+m,} and k := 2k.

(3) Put G := @, Gp. Then G represents a generating set of @, (0/(f +p™»))*.

(4) Apply the Chinese Remainder Theorem to the elements of G' to obtain the
desired subset of 0; cf. (2.15). Return G.

(3.13) Algorithm — Is Equivalent (Ideal Case)

—» a,b full ideals in IC

<« T true/false
v element of KC* satisfying ya = b

Compute © = (a: a) using algorithm (1.45). If © # (b: b), return false.
Compute an a € KC* with ab C a. Put b := ab.

Compute ¢ = (b : a) using algorithm (1.45). Then ¢ C © because of (2).

If cox is not principal, return false. Otherwise, obtain v with cox = yox.

(1)

(2)

(3)

(4) If ¢ is not invertible or if ca # b, return false.

(5)

(6) Compute the conductor § of © C O using algorithm (1.45).
(7)

Compute an z € IC* with z¢ + f = 0 using algorithm (2.35).
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Put ¢ := zc and v := zv.
Compute the groups o and (o /f)*.
Compute generators of (0/f)* using algorithm (3.12).

Compute the image of ox — (0x/f)*/(0/f)* and check whether [y + f]
belongs to the image. If so, compute a preimage u € 0x.. Otherwise, return
false.

(12) Put v := y(uwa)~!. Return true and 7.

(3.14) Algorithm — Is Equivalent (General Case)

—» 2, %5 full modules in K™

<« T true/false
r element of GL(n, IC) satisfying I'A = B

(1) Compute A = (A :2) using algorithm (1.45) as well as 0 = AN K.
(2) If 0 is not the multiplier ring of B, return false.

(3) Compute E, I' € GL(n, K) with

Edx =Pla,®of) and I'Bx =D, @ og)

L L
(cf. section 1.3). Put a:=a; @ ---Pasand b:=b; ©--- D bs.

(4) Check whether a='b is principal. If so, obtain v with a='b = yox. If not,
return false.

(5) Put A := EA, A := EAE~! and I' := ', Multiply the first column of I’
with vy (then I'x = Br).

(6) Compute a € K* with a®B8 C 2. Put B :=a®B and I :=al .

(7) Compute € = (B : A) using algorithm (1.45). Then € C A because of (6)
and Q:A;C = FAK;.

(8) If € is not an invertible right ideal of A or if €A # B, return false.

(9) Compute f = (0x : 0) and A = (Ui : Ax); then each component of Ay is
of the standard form (1.18). Put § := fAx.

(10) Try to compute an X with X€ + § = A using algorithm (2.35). If no such
matrix exists, return false.

(11) Put € := X€ and I" := XT.

(12) Let G be the image of 05 — (0xc/f)*.
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For each Y € A/§, put C := Y I and check whether ¢ := det(C') represents
an element of G. If so, go to the next step. If no such Y exists, return
false.

Compute u = u; @ - - @ uy in 0 with u = ¢ mod f.
For.=1,...,s:

e multiply the first row of C, with u,!;

e compute U, € SL(Ax,) with U, = C, mod f, using algorithm (3.16);
pay attention to the remark following the algorithm;

e multiply the first row of U, with w,.
PuU:=U1® - ®Usand I':= X 'TU'E/a.

Return true and I'.

(3.15) Algorithm — Is Free

— 2 full module in K"

o order of £

<4 T true/false

A element of GL(n, K) satisfying A = Ao"

Put € := (A:0"), A := M(n,0) and Ax := M(n,0x). Without loss of
generality we may suppose € C A.

Compute a I satisfying € = I"Ax and ensure that € + F = A as explained
in algorithm (3.14).

Put v := det(I).

Check whether [y + f] belongs to the image of o — (ox/f)* /(0/f)*. If so,
compute a preimage ¢ € 0. Otherwise return false.

Compute an z € 0 satisfying 2(ye~!) = 1 mod f. Put

T 0
el 0]

Then det(X ") = £ mod f.

Compute a matrix U~! € Ag satisfying U ~1 = XTI mod g, basically using
algorithm (3.16); pay attention to the remark at the end.

Put A :=I'U. Return true and A.
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(3.16) Algorithm — Lift Matrix

— (' matrix in SL(n, ©/m) where o is an order of a number field
<4 U matrix in SL(n, 0) satisfying U = C' mod m.

Suppose the entries of C' = [¢;;] are elements of 0, that is, det(C) = 1 mod m.
The ith column of C will be denoted by C;.

(1) Put U := I,,.
(2) Compute all prime ideals p of © above m.

(3) The following loop will turn C' into a lower triangular matrix modulo m.
For:=1,...,n—1:

e put P:={pOm|cpep};
e while P is not empty:
— select p € PB;
— determine an index j € {i,...,n — 1} with ¢;; ¢ p;

— compute an element x; € O satisfying

{1 mod q if ¢;; € qor ¢y € q,
IEJ'E

0 mod q otherwise

where q runs over all prime ideals above m;

put Uy, := U, + z;U; and C,, := C,, + z;C; (then ¢, ¢ p);
put P:={peP|cnep}

e compute an z € 0 with z¢;, =1 mod m and put z,, := z(1 — ¢);
e put U; := U; + 2,U,, and C; := C; + x,C,, (then ¢;; = 1 mod m);
o for j=1+1,...,n, put U; :=U; — ¢;;U; and C; := C; — ¢;;C;.

(4) Reduce the entries of C' modulo m. Then C is a lower triangular matrix
with diagonal entries equal to 1.

(5) Put U := CU~! and return U.

With a slight modification, the algorithm can also compute preimages under
the epimorphism
SL(Ax) — SL(Ax/fAk)

where Ak is a maximal matrix order of the standard form (1.18), that is,
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If C € Ak represents an element of SL(Ax/fAx), we can write

C11 acia -+ AaCip
/

a C21 C22 e Con
/

acCnl Cp2 - Cpn

with ¢;; € 0, a € a,d € a~! and aa’ = 1 mod f. This was shown in the proof
of (3.5). To compute U € SL(Ax) with U = C mod fAx, we have to take into
account that all column operations must stem from elementary matrices in Ag.
This requires a modification when dealing with the first row of C'. As soon as

10 - 0
/
acz1 C22 -+ Co2p
c=1] . . s
/
A Chl Cp2 - Cpn

we can obviously proceed as described before. Thus let us consider the main
loop of the algorithm for i = 1. Again we put

P={pDflamep}

and we enter the loop over B. If we find an index j > 2 with ¢i; € p, we
can execute all commands of the inner loop as before, but if j = 1, we have to
change the second last line to

- put U, := U, + ax1Uy and C,, := C,, + ax1C1.

Having left the inner loop, we compute x and x, as before. The last two lines
of the main loop then must be changed to

e put Uy := Uy +d'z,U, and Cy := Cy + d'x,,Cy;

o for j =2,...,n, put U; ;= U; — acy;Uy and C; := C;j — acy,;Ch.

(3.17) Algorithm — Is Similar (Semisimple Matrices)

—» A, B semisimple integer matrices

<« T true/false
C invertible integer matrix satisfying CA = BC

(1) Compute the minimal and the characteristic polynomial ;1 and x of A.

(2) If p is not the minimal polynomial or x not the characteristic polynomial
of B, return false.

(3) Compute the factorizations p = pj - - s and x = py* -+ - pu2s.
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(4) Put n := (ny,...,ng), ¥ := Y1 @ --- @ Y where 9, is a root of p, and
K :=Q[].

(5) Compute full modules 2 and B in K™ corresponding to A and B using
algorithm (1.43).

(6) Check whether 2 and B are equivalent. If so, obtain a matrix I € GL(n, K)
with ' = 8. If not, return false.

(7) Use algorithm (1.44) to obtain the desired matrix C. Return true and C.
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To solve the problem of similarity in general, it will become necessary to deal
with nilpotent elements of suitable matrix orders. For such matrices, we will
present another module-theoretic approach. Our strategy will be based on ideas
by Grunewald (1980), enhanced with some significant improvements. The spe-
cial case of nilpotent integer matrices will be dealt with at the end of the chapter.

4.1 Nilpotent Matrices over Orders

The following theorem is the starting point of our considerations.

(4.1) Jordan—Chevalley decomposition. Suppose M is a square rational
matrix. Then there are rational matrices S and N satisfying

M=S+N and SN=NS

where S is semisimple and N nilpotent. Both matrices are uniquely defined by
these properties.

As stated in the theorem, if M and M’ are integer matrices, we can decompose
them into sums

M=S+N and M =S5+ N’

and by multiplying M and M’ with a suitable integer, we may assume that
all summands are integer matrices. Suppose M and M’ are similar. Then, for
some invertible matrix C', we have

S+ N =M =CMC™ =(CSC™) + (CNC™).

Since CSC~! is semisimple and commutes with the nilpotent matrix CNC ™1,
this gives us another Jordan—Chevalley decomposition of M’. But the decom-
position is unique, so

S'=0CcSC™! and N =CNC .

In particular, S and S’ are similar. So if we want to decide whether M and M’
are similar, we can first examine whether this is true for their semisimple parts.
This can be accomplished by the methods developed in the first three chapters.
Hence, without loss of generality, we may assume that

S =9
We are thus left to decide whether there is an invertible matrix C such that

CN = N'C while CS=SC.
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As in the first chapter, we will translate this problem into a question about full
modules. First, we will explain how to relate N and N’ to nilpotent elements
of a suitable matrix order.

For the remainder of this chapter, S will be a semisimple integer matrix with
minimal polynomial = p - - - s and characteristic polynomial xy = py* -« - .
As before, 9, will be a root of u, and

K=Ki& &K, withK, =Q(J,).

Let

S =0n7"
be a full module in IC™ corresponding to S, where 2 = [w; ... wy, ] is a matrix
construed as in (1.5), so we have n = (ny,...,ns) and

m=diny +---+dsns ford, =[K, :Q].

Then m is the dimension of K™ over Q and & is a full module over Z[¢)] where
Y= - DYs. As usual,
A=(6:6)

will denote the multiplier algebra of &.

(4.2) Proposition. Let M = [m;;] be an integer matrix satisfying SM = M S
and let 0: & — & be the Z-homomorphism given by

m
o(w;) = Zmija)j for 1 <i<m.
j=1

Then o is a homomorphism over Z[¢]. Conversely, if 0: & — & is a Z[J)]-
homomorphism, the coefficients m;; given by the equations above define a ma-
trix M = [m;;] commuting with S.

Proof. Write S = [s;;]. As shown in the proof of (1.5), we have

ﬁwi = Z sijwj.

Let o be the Z-homomorphism given by M. Then, on the one hand, we have
o(Vwi) = 0 (D sijwj) = 3 510 (w))
J J
= s > mygwr = (O simi)w,
J k kE
and on the other hand, we obtain
Po(w;) =0 Zmijwj = Zmijﬁwj
J J

= Zmij Z SjkWE = Z(Z mijsjk)wk-
J k ko j
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Since SM = M S, we see that o(Jw;) = Jo(w;) for all basis vectors w;. Thus o
is a homomorphism over Z[?].

Conversely, every Z[¢]-homomorphism o: & — & can be regarded as a homo-
morphism over Z. Let M = [m;;] be the matrix of o with respect to the basis
w1, ... ,wn. Reading the chains of equations above in reverse order, we see that
M commutes with S. |

By (1.1) we know that any homomorphism o: & — & over Z[{] is given by
multiplication with a matrix A € M(n, KC), that is,

o(w)=Aw forallwe 6.

As seen in the proof of (1.1), A is the matrix of ¢ with respect to the standard
bases of K*,..., K. Since o is an endomorphism, A belongs to the multiplier
algebra A = (&: 6).

If M is the matrix as in (4.2), we will say that A is related to M. This defines
a one-to-one correspondence between integer matrices commuting with S and
elements of A. Obviously, A is invertible or nilpotent precisely if M is.

We will now prove that there is an invertible matrix C' with the properties
N =CNC™' and CS=SC

precisely if the matrices related to N and N’ are similar. As for integer matrices,
two elements A, B € A will be called similar if there is a I" € A* such that
I'A = BI'. This is a direct generalization of the original concept for integer
matrices where A = M(n, Z).

(4.3) Theorem. Let N, N’ be two nilpotent integer matrices commuting with
S and let A, B € A be the matrices related to N, N’. The following statements
are equivalent.

(1) S+ N and S + N’ are similar.
(2) A and B are similar.

Proof. Suppose S+ N and S + N’ are similar. Choose an invertible matrix C
such that
S+N=C(S+N)ct=csc t+cN'c L.

As described at the beginning of this section, this implies
S=CSC™!' and N=CN'C™.

By (4.2), C defines an isomorphism & — & which is given by multiplication
with a matrix I' € A according to (1.1). Write N = [n;;] and N’ = [n;;]. On
the one hand, we observe

(FA)CL)/L = ani]’w]’ = Znijfwj
j J

J
= Z Nij Z CikWk = Z(Z ngjcji)wy  for all 4,
J k ko J
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and on the other hand, we have
(BF)wZ- = BZcijwj = Zciijj
J J
= Z Cij Z n;kwk = Z(Z cijn;k)wk.
J k kg

Since wi, . ..,w, forms a Q-basis of K™ and NC = CN’, we obtain I'A = BT,
that is, A and B are similar.

Conversely, suppose there is a matrix I" € A* such that I'A = BI'. Then I is
related to an invertible matrix C' which commutes with S. Again, reading the
chains of equations above in reverse order, we obtain CN’ = NC, hence S + N
and S + N’ are similar [ |

According to the just established theorem, we are confronted with the task of
deciding whether two nilpotent matrices in A are similar. Below we will define
modules corresponding to such matrices by imitating the strategy applied to
nilpotent matrices over a field. Let us briefly recall this procedure.! Suppose
A € M(n, K) is nilpotent and v is the smallest integer such that A¥ = 0. First,
choose a vector v € K™ with the property AY~'v # 0. Then the vectors

v, Av, ..., A"l

are linearly independent. Next, choose a vector v’ with the same property such
that
v, Av, ... AV o, W AV AV

are linearly independent. If no such vector exists, repeat the search for v' with
v replaced by v — 1. Ultimately, we obtain a basis of the form

v, Av, ... A" o, W AV, W A
Another matrix B is similar to A if and only if there is a basis
w,Bw,...,B" 'w, ', Buw,..., w' Buw,...
of the same form. The matrix C satisfying CA = BC'is given by the conditions
Cv=w, CAv=Bw, ..., CA"'v=B""lu,

(4.4) Definition. Let A € A be a nilpotent matrix. A full module 2 in K™ is
called an A-module if there are matrices =1, ..., =), such that

e the columns of = =[Z7 ... 5,] form a Z-basis of 2,
e the columns of 5}, belong to the kernel of A*, and

o = =[AE) 4 *] for k <w.

Furthermore, a matrix = as above is called an A-basis of 2 over Z.

1. For more detail, see how to compute the Jordan normal form of a nilpotent matrix.
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Clearly, not every full module is an A-module, but it is easy to construct such
a module following the requirements of the definition. Henceforth the notation
= =1[Z1 ... 5] shall always indicate that the individual blocks satisfy these
requirements. Usually we will drop the addition “over Z” if it is clear that = is

a Z-basis.

From the definition it follows that the columns of =3 belong exactly to the
kernel of A, that is, not to the kernel of A*~!. Also, the definition implies that
v is the smallest integer such that A¥ = 0. Otherwise 2 would not be a full
module.

To make things more clear, let us consider an example. Suppose A = M(5,7Z)
and

00 2 00
00020
A=10 0 0 0 2
00 00O
00 0 0O
Then v = 3 and
Z3=es], Sy =[AZ3 eq] =[2e3 eq], =1 = AEy = [4de; 2eq]

are suitable choices for an A-basis = = [Z] Zy Z3].

Our next goal is to explain how an examination of A- and B-modules can answer
the question whether the respective matrices are similar. For this we need a
stronger concept than equivalence because the matrix I" we are looking for must
belong to A*, not merely to GL(n, IC). For example, suppose A = M(2,7Z). If

0 1 0 2
A—{O O} and B—{O 0},

then 2 = Z2 is an A-module and

2 0],
m=p 1

a B-module. These modules are equivalent because I'% = B for ' = [3 (1)], but
there is no matrix in A* = GL(2,Z) satisfying this equation. In fact, A and B
are not similar, as one easily verifies.

Yet even the existence of a matrix I' € A* with ' = B may not be enough.
For example, suppose

A= and B =

o O O

1
0
0

S = O
o O O
o O O

1
0].
0

Then Z3 is an A- and a B-module. But again, the matrices are not similar.
This time, the Jordan normal forms of A and B are different.
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Of course, if the matrices are to be similar, their Jordan normal forms (over
the complex numbers, say) must coincide. In terms of A- and B-bases, we can
formalize this requirement in the following way. The bases

= |

are said to be of the same block structure if v = v/ and if the blocks =} and
T;. have the same size for all k. Indeed, finding A- and B-bases of the same
block structure is equivalent to obtaining the same Jordan normal form for both
matrices.

[
[n

1. 5] and Y= ... 7,]

(4.5) Definition. Let 2 be an A-module and 8 a B-module where A, B € A
are nilpotent matrices with the same Jordan normal form. The modules are
called similar if there is

e an A-basis = of A,
e a B-basis T of B, and
e a matrix I" € A~

such that I'= =

Obviously, two modules are equivalent if they are similar. This new and stronger
concept is the key to solving our problem.

(4.6) Theorem. Let A, B € A be nilpotent. Let 2 be an A- and B a B-module.
Then the following statements hold.

(1) If 2 and B are similar, so are A and B.
(2) If B=T'AI'"! for some I' € AX, then I'? is a B-module.

Proof. Suppose 2 and B are similar. Let = =[Z] ... 5, ] be an A-basis of
QAand T =[71 ... 7, ] a B-basis of B. Then the bases must have the same
structure. Let I' € A* satisfy I'= = 7T, that is, I'=, = 1} for all k. Since
Zk = [AZEg41 x| and 1, = [ BYj41 *] for k < v, this implies

[TAZ 1 %] = [BYgy1 x| for k <uw.
Since A= = BY7 = 0, we obtain
FAEk = BFEk for all k.

Therefore I'A = BI" because the columns of =1,..., 5, form a Q-bases of K™.
This proves the first statement.

Next suppose B = I'AI'"!. Obviously, 'S = [['Z; ... I'Z,] is a Z-basis of
I'. The columns of "=}, belong to the kernel of B¥ = I'A*I"~1, and

I'sy=[TI'AZy 1 x| = [BI'Zk41 x| for k <wv.

Hence I'= is a B-basis and thus I'2l is a B-module. [ |
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Notice that the theorem explicitly does not state that 20 and 9B are similar if A
and B are. In fact, even if A = B, the modules do not have to be similar. For
example, suppose

0 2
0 0

(' a

A= 1
a O

} and A=

where ox = Z[i] and a = 20x. Then

2 20 0 0], , (202 1 i),
Ql_{()()lz}z andm_{()()lz}z

are two A-modules in K2. All A-bases of 2 and 2’ are of the form

= _ 2¢1 2x9 a; a9 and = — 20y 2zl o e
- 0 0 Tr1 T2 - 0 0 :L'll :L'IQ

where 1, 29 and 2, 2}, are bases of 0 and aq, ag € a, but ¢1, ¢y ¢ a. If A and
A" were similar, there would be a matrix

F:{C
ES

and suitable A-bases = and =’ such that I'= = Z’, that is,

e A*

% % cap+ary cax+axe|  |2x] 2xh o
* * * I A
This leads to the contradiction that ¢; = ca; 4+ ax; would belong to a.

Nevertheless, the theorem makes it possible to switch from matrices to modules
when dealing with the problem of similarity. Remember that A is the multiplier
algebra of a full module & which was fixed at the beginning of the section. If
2 is an A-module, we may assume that 2 C &. Suppose B = I'AI'"! for some
I' € A*. Then I' is a B-module. Moreover,

IMIcré=6 and [6:7U=[6:2.

Yet there are only finitely many submodules of the same index in &; in par-
ticular, only finitely many B-modules. So either 2l is similar to one of these
B-modules or the matrices are not similar. This leaves us with two tasks:

(1) Enumerate all B-modules B C & with [&:B] = [6: 2];
(2) decide whether 2 is similar to one of these modules 8.

In the next two sections, we will solve these problems under the assumption that
the modules are free. Fortunately, this simplification will mean no restriction to
the matrices concerned. Furthermore, we will explain how to determine modules
of minimal index in order to keep their number as low as possible.
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4.2 Similarity of Free Modules

Let 2 be an A- and B a B-module where A, B € A are nilpotent matrices
with the same Jordan normal form. Our goal is to decide whether 21 and B are
similar, that is, if there is an A-basis = of 2l and a B-basis 1" of B such that

E =7 forsome '€ A*.

In this section we will explain how to decide whether 2l and B are similar if the
modules are free. First, let us illustrate which problems can arise in the general
case. To begin with, we should at least be able to decide whether 2 and B are
equivalent, that is, whether

I'?A =B for some I' € GL(n, K).

In a next step we could try to decide whether I" can be chosen in A*. If I" ¢ A,
we must find a U such that UI' € A* and UI'( = B. Since I'A = B, this means
U belongs to A* where A = (28:98). In other words, we are looking for a matrix

Fe{U'S|SeA*, UecA*} with I'f=DB.

Yet this set of products might not be contained in any matrix order (for example,
if A and A are different maximal orders) and it might not be a group either.
This definitely complicates the search for I'. And even if we find such a matrix,
the original question is still unanswered.

Let us briefly consider the case A = M(n,Z). In this situation, all modules are
free, as they are finitely generated Z-modules in Q7, so = and T are square
matrices. Then

rs=r &« I=7rz".
We therefore have to examine whether there are A- and B-bases = and 7" such

that ="' belongs to A*. In fact, as we will see, = can be held constant, thus
we only have to look for a suitable basis 7.

In general, the matrices = and 1" are rectangular, with more columns than rows.
However, we actually want to decide whether A and B are similar, and we may
choose the modules 2 and B as we desire. In particular, we can choose them
to be free.

For the main part of this section, and if not stated otherwise, A will be an
order of M(n,K) where K is a number field. Later on, we will see that our
considerations can be transferred to the general case without much difficulty.
Let © be an order of K. In reference to (4.4), a full ©-module A C K™ will be
called a free A-module over o if there are matrices X1, ..., X, such that

e X =[X; ... X,]isan o-basis of 2,
e the columns of X, belong to the kernel of A*, and
o X} = I:AXk-Jrl *] for k < v.

A matrix X as above will be called an A-basis of 2 over 0.
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Notice that we made no further assumptions about ©. In fact, we can choose
the order just as we desire. This will be important later, when we will specify
convenient choices for ©. For now, the order can be assumed to be arbitrary.
Again, we will often drop the addition “over 0”.

(4.7) Proposition. Let A C K" be a free A-module over ©. Then 2 is an
A-module in the sense of (4.4).

Proof. Let X = [X; ... X, ] be an A-basis of 2 over 0 and let wy,...,wy be
a Z-basis of 0. Write

X =[AXp1 Xj] fork<v and X, =X,.

Put =} = [wi X} ... wgX] ] for all £ and
Zr=[AEk 5] for k < v where =, = =)
Then = is an A-basis of 2 over Z. |

We also want to transfer the concept of similarity to free A-modules. Again, it
will be important that A and B have the same Jordan normal form. We will
ensure this by requiring that the matrices have the same structure. By this
we understand a descending sequence

ny>...>2nNy

of integers with the property that ny + - -+ + ng is the dimension of the kernel
of A* over K. In particular, we have

n=ny+---+ny.

If X =[X; ... X,]is an A-basis over some order of K and if n; > ... >n, is
the structure of A, then the block X} has the size n x ny.

Let A, B € A be two nilpotent matrices of the same structure and let © be an
order of IC. Let 2 be a free A-module and B a free B-module, both defined
over 0. The modules are called similar if there is

e an A-basis X of 2,

e a B-basis Y of 2, and

e and a matrix I' € A*
such that I'X =Y.

Just as free A-modules are A-modules in the original sense, free A- and B-
modules are similar if and only if they are similar in the sense of (4.5). Moreover,
theorem (4.6) can be translated in the following way (with practically the same
proof).
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(4.8) Theorem. Let A, B € A be nilpotent and let © be an order of K. Let
2 be a free A-module and B a free B-module, both defined over ©. Then the
following statements hold.

(1) If A and B are similar, then A and B are.
(2) If B=TAI'"! for some I' € AX, then I'% is a free B-module.

According to the theorem, we can restrict ourselves to free A- and B-modules
to decide whether the matrices are similar. As outlined in the case © = Z at the
beginning of this section, this comes down to the question whether Y X~ € A
for suitable A- and B-bases X and Y.

From now on, suppose all matrices have the same structure ny > ... > n,.
Furthermore, let
0 Jio 0
J =
Jufl,u
0 0
be the n x n matrix with blocks
1 0
Jr-1,6 = |0 1
0 0

of the size ny_1 x ng. Clearly, J is nilpotent with structure ny > ... > n, and
o™ is a free J-module. As a first result, we will determine all J-bases of 0™.

(4.9) Proposition. A matrix U € GL(n,0) is a J-basis of 0" if and only if
Un - U
U= .o
0 Uvy
where Uy is of the size ngi X ny and

Up_1.0-1 = m“ ﬂ for £ >k > 1.

Before proving this proposition, let us consider two examples. First, suppose
ny=...=mn,. Then

0 I 0 v, Uy, --- U,
J = R and U = U1

0 0 0 Ui
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where I is the identity matrix of size ny X ng.
3 > 2 > 1. In this case,

0 0 01 0 07 [u11 w12 U1z U1g
0O 00 0O 1O 0 uU22 U23 0
. 000 0 O0O0 . 0 0 uss 0
J = 00 1 and U = iy
0 0O 0
L 0] L
(with emphasis simply to distinguish blocks).
Proof. Let U be a J-basis of ©". Write
Un Uy Ui
U= and Uj =
Un U Uvk
with ng x ny blocks Ugy. By our assumptions we know that
Uk_lz[JUk *] for k > 1.
‘We have to show that
| Uke =
Uk-1,0-1 = { 0 J for £ > k> 1.
This is true, indeed, because
0 Ji2 0 Utk J12Uz
JU, = R T = :
' Jy—l,l/ JV_LVUVk
0 0 U 0
and
| U
Jo—1,0Un, = {O}Uék = { 0 }

Uuis
Uuzs

U2
U22

99

Second, consider the structure

Notice that the last block in the product JUj vanishes, so k-fold multiplication

with J leaves us with at most v — k nonzero blocks of the form

ot —k—1y -+ Jo—1,0Uk (€ > k).

Yet the columns of Uy, belong to the kernel of J*, so these products have to be
zero, too. As seen above, left multiplication with J;_1 ; simply attaches zero

rows to a matrix, thus we must have

Uy, =0 for l > k.

In conclusion, U is of the desired form. Conversely, the calculations above also
serve as a proof that any matrix U of the stated form is a J-basis of 0™.
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(4.10) Proposition. A matrix U € GL(n,0) is of the form as in (4.9) if and
only if JU =UJ.

Proof. Suppose U is of the form as in (4.9). On the one hand, we have

0 JioUzo J12Uoz -+ J12Usy
0 JogUszz -+ Jo3Usy
0 Jl/*l,VUl/l/
0 0

and on the other hand, we obtain

0 UnJiz Uiedoz -+ Up-1dv—1w
0 Usadog -+ Usp_1dv—1,v

UJ = SN :
0 Ul/—l,l/—lﬂ]l/—LV

0 0

Comparing the blocks, we see that

I, U, U, x| I,
Ji—1,6Uke = { Ok}Uké = { 51 = { (I;Z *H O“} =Up—1,0-1J0—-1,0

hence JU = UJ. Now suppose

is a matrix that commutes with J. Then U also commutes with

0 -+ 0 Jikt 0 ]

Jk: Jufk,u
0

L0 0 |

where Jy g4 is the (¢, ¢ + k)-block of J*. We have

I,
Jo vk = Jo o041 Jogh—1,04k = { 6““ .
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Comparing the blocks of

(1 k+1Uk+11 - 0 Ju e Uk, ]
krr Ju—k,uUu,l oot Jy—k,uUu,V
JU = 0 el 0
- 0 O -
and ) }
0 -+ 0 UnJiks1 - Up—rdv—iy
Ut = | P : :
_O - 0 UV1J17k+1 Uy,u—kJV—k,V_
we see that
Uik, k

OZJg,e+kUg+k,k= forl<k<vandl</{<yp-—k.

0

Hence Uy, = 0 for £ > k. In particular, JU and UJ are of the form as at the
beginning of the proof. Since these products are equal, we obtain

U,
Uk-1,0-1J0-1,0 = Jp-1,1Upe = { (ﬂ for ¢ > k > 1.

This implies
| Uge *
Uk—1,0-1 = { 0 *}

because right multiplication with J,_1 s extracts the first n, columns of a matrix.
Therefore U is of the form as in (4.9). [

(4.11) Corollary. The set U of all matrices as in (4.9) forms a group.
Proof. By (4.10) we have Y = {U € GL(n,0) |UJ = JU }. |
We will now describe the A-bases of an arbitrary free A-module over o.

(4.12) Proposition. Let 2 be a free A-module over © with A-basis X. Any
other ©-basis of 2 is an A-basis if and only if it is of the form XU with U € Y.

Proof. Since right multiplication with Jj ;41 extracts the first n; columns of
a matrix, we have

Xka7k+1 = [AXk—H *] Jk7k+1 = AXk—H for k < wv.
Therefore

XJ=[0X1J12 ... Xp1Jyo1,,]=[0AX, ... AX,] = AX.
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Suppose Y is another A-basis of 2. Then X 'Y belongs to GL(n,0) because
X190 = 0o". Moreover, by the calculation above,

(X 'VJx'y)t=x"YyJy HXx = Xx1AX = J,
that is, X 'Y commutes with J. This implies X 'Y € U, so
Y = XU for some U € U.
Conversely, assume Y = XU with U € Y. Then Y is an 0-basis of 2. Write
Y=V ...Y]
with blocks of the size n x ng. Then
Yi = XaUig + - + XU,

and the columns of Y}, belong to the kernel of A* because the columns of X, do
for £ < k. Moreover, for £ < k < v, we have

XoUn, = [AXp11 ] +6’ o= { +10 e
hence Y = [ AYy 11 ] for k < v. Therefore Y is an A-basis of 2. [ |

As explained before, our goal is to decide whether there are suitable A- and
B-bases X and Y belonging to modules 2 and 8 such that

YX1eAX.

If X and Y are fixed, all other A- and B-bases are of the form XU and YV
with U, V € U by (4.12). Hence we need to check whether

Y(VUHX e AX

for suitable choices of U and V. Since U is a group, this comes down to the
question whether
YUX e A* forUecl.

Let us explain how this can be decided in a finite number of steps. Recall that
in the previous section we fixed a module & with the property that

A=(6:6).

By multiplying X and Y with suitable scalars, we may assume that 2 and B
are contained in G.
Let A\ € 0 be nonzero such that A& C 2. As we will see, it suffices to solve our
problem modulo A. If 2 and B are similar, then, in particular, I'% = B for
some I' € A*, so

AG = \I'6)=T'(\&) C I'A="3B.
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Hence AG is also contained 9. Let us assume that this is the case, so we have
the inclusions
AG C, BCG.

Pay attention to the fact that & does not have to be an ©-module since © can
be any order of K.

Our strategy will be based on the observation that any matrix I" € M(n, K)
satisfies the equivalences

reN & 1I'6=6 < TI'(A6)=)6.
As described above, for 2 and B to be similar, I" needs to be of the form
I'=YUX ' withU eU.

Let
C=X"1\&) and D =Y"'(\&).

If ' =YUX™!, then
IrAe)=X\6 & Uc=29.
For these modules we have the inclusions
ot ce D co”

because
C=X'N&)c X A=X"1X0"=0"

and
C=X"1\&) > X 1(\A) = o™
Consequently, we can deal with submodules of 0™ instead of &.
Let M be the set of all matrices M € M(n,0) of the form as in (4.9), that is,
My -+ My
M= P and My _1¢1= {

ng *}
0 M,

0
Wherf My is a block of size ny x ny. Then M is an algebra with unit group U.
Let U be the image of U under the homomorphism
M — M  where M= M/IM.
Clearly, this is a finite group acting on ©"/\o™ via U¢ = UE. Moreover, let
C=¢/A0" and D =D/ 0"

Again, € and © do not have to be ©-modules. Nevertheless, all modules can be
considered over Z, so the reduction above poses no problem. The next theorem
summarizes the significant aspects of our considerations.
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(4.13) Theorem. With notations as above, the following statements are equiv-
alent.

(1) A and B are similar.
(2) There is a U € U such that U€ = D.

Proof. As explained above, if 2 and 9B are similar, there is a matrix U € U
such that U€ = ©, implying UC = D.

Conversely, suppose there is a U € U such that UC = ©. Let U € U be a
preimage of U. For every d € © there is a ¢ € € such that Uc = d mod \o™.
Since € and ® both contain A0™, we obtain

UC=UC+X0") =UCH+UN"=UC+\o" =D.
Hence 2 and B are similar for reasons given above. ]

By the theorem we only need to search the group U for a suitable element.
In practice, we can search the algebra M which has a considerably smaller
dimension than (0/Ao)".

(4.14) Proposition. The dimension of M over 0 is n? + --- + n2. The same
is true for M over 0/\o.

Proof. The blocks My, of elements in M contribute to the dimension of M
by adding ngn,. Furthermore, the blocks

My, *
*

My_1,0-1 = { 0

l1<k<t<v)

contribute by adding np_1(ng_1 — ng). All in all, M has dimension
(n1 4 +ny)ny + (14 +ny_1) (-1 —ny) + - +ni(ng —na)
which is equal to n? + - -- +n2. The proof also works modulo . |

In addition, we can reduce the number of steps in our search further because we
only need to pay attention to the submodule of all matrices M € M satisfying

Mc=2.

Finally, two things remain to be explained. First, how to decide whether a
residue class U € M has a preimage in U, and second, how to compute a
preimage. In principle, these problems can be solved with the same strategy as
described in section 3.2. Let

Ull o Ull/
U= . with ng =

0 U

Uk11,041

7 <
0 U[;J for1 <k f<v

and put UW_: U¥,. Clearly, U is a unit precisely if each U »x 1s invertible over
o/Xo, and U has a preimage in U if and only if each U}, can be lifted to an
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invertible matrix over 0. If @ € (0/A0)* is the determinant of U}, (where the
determinant of an empty block is assumed to be 1), we can write

. . 0 =

Here, I is an identity matrix of appropriate size and S), has determinant 1.
Then Si can be lifted to a matrix with determinant 1 using algorithm (3.16),
and uy has a preimage if and only if it belongs to the image of

0™ = (0/)o)*.

Both the domain and the codomain of this map can be computed using algo-
rithms described by Kliiners and Pauli (2005), so the image—as well as preim-
ages of elements—can be determined with standard methods for finitely pre-
sented abelian groups. Thus we can lift all the crucial blocks of U, if possible.
For blocks above the diagonal, any preimage will do. Of course we need to make
sure that identical blocks of U are lifted in the same way to ensure that the
repetitive structure of elements in U/ is preserved.

Having explained how to decide similarity of free modules in the number field
case, we will now deal with the general situation of a direct sum

K=Ki® - &K

Let © =01 ® - & 05 be an order of IC. Then 0, is an order of K, for each &.
First of all, an o-module 2, which is always of the form

A=U & - D Us,
will be called free if 2, is a free module over ©, for each ¢.

Let A be an order of M(n, ) and suppose A = A1 & --- @ A is a nilpotent
element of A. This is precisely the case if each A, is nilpotent. A full ©-module
2l in IC™ will be called a free A-module over o if 2, is a free A,-module over
o, for each ¢. Moreover,

X=X1® - ©X;

will be called an A-basis of  over 0 if X, is an A,-basis of %, over 0,. In this
case we can write

A=Xo0" where 0" =0"® - - ®0OL.

Finally, suppose that 2 is a free A-module and B a free B-module over © and
that A, and B, are of the same structure for each ¢. In this case 2 and ‘B are
called similar if there is an A-basis X of 2, a B-basis Y of 8B and a matrix
I' € A* such that I'’X =Y. Obviously, 2, is similar to 28, for each ¢ if 2 is
similar to B because I'X =Y implies I, X, = Y, for each .. However, this is
not a sufficient condition if A is not a direct sum A1 @ --- P Ag.
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As before, one easily sees that free A-modules are A-modules in the original
sense and that is suffices to consider free A- and B-modules to decide whether
two nilpotent matrices are similar. In fact, (4.8) can be translated to the current
situation almost word by word. Making use of our option of choice, we will
therefore require © to be a direct sum of orders if /C consists of several number
fields. In the next section we will also specify how to choose the individual
components of O.

Continuing with our generalizations, (4.12) can be left almost unchanged as
well: If X = X1 @ --- P X, is an A-basis of 2 over 0, then any other o-basis of
2 is an A-basis if and only if it is of the form XU where U = U; & ---® U is a
direct sum of matrices as in (4.9). Let

U=U & DU

be the group of all these matrices U. The rest of our previous discussion can
now be read as an instruction to solve the problem of similarity in general. We
are equipped with a fixed module & with multiplier algebra A and we may
assume that

A& CU,BCE

where A is a suitable nonzerodivisor in ©. The matrix I" we are looking for has
to be of the form I' = YUX ! with U € U and

reN & I'6=6 & I'\6)=X6 & Uc=9
where ¢ = X 1(A&) and ® = Y1 (\&), which are subject to the inclusions
A0" CE D Cc o™

Again,_ the search for U can be accomplished modulo A, and if a suitable residue
class U = Uy @ --- & Us has been found, a preimage U € U can be determined
by lifting the individual components of U as described before.

4.3 Enumerating Free Modules of Minimal Index

As in the previous sections, let & be a full module in K™ with multiplier algebra
Aandlet A=A ®--- & A be a nilpotent matrix in A. Moreover, let

O=01D---DOg

be an order of IC. Given that o satisfies some extra conditions specified below,
we will see how to enumerate all free A-modules 2 over © with minimal index in
S. Since all modules can be considered over Z, the index [ : 2] is well-defined
although & might not be an ©-module.

For each ¢, let &, be the image of & under the projection IC™* — K. Put

=696, and &' =(6NG)D---(6,NG),
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where we make use of the natural embedding K* — K™. Then we have the
inclusions

&"cecda.

Let '=11®---® I be an element of A and let 1, denote the unit element of
KC, (which can be identified as a subset of IC). Then

6, =I,(1,6)=([1)6=(1)6=1(I'&)C16=86,

hence I'&’ C &', that is, I' belongs to the multiplier algebra of &’. The same
is true for the multiplier algebra of &” because

I'ec6 and I,6,C6, implies [,(6,N6)C 6, NG.

In particular, A, belongs to the multiplier algebra of &, NS for each . Let © be
the multiplier ring of &”, that is, 0, is the multiplier ring of &, N &. Moreover,
let A =2A; D--- DA be a free A-module over 0, that is, 2, is a free A,-module
over 0, for each ¢. As usual, we may assume that 2l is contained in &. Since

WA =ACBCE =6,¢---06,,
we see that A, C &, N & for each ¢, so
AC G’ C6.

Clearly, the index [& : 2] = [&: &”][&" : ] is minimal precisely if

(& :2A] = ﬁ[GLHG 2,

=1

is minimal, and this is the case if and only if each [6, N & : 2] is minimal. So
henceforth we may assume the following;:

e G is a full module in K™ where K is a number field,
e A is a nilpotent element of A = (&: &), and
e 0 is the multiplier ring of &.

Under these assumptions we will show how to enumerate all free A-modules
over © with minimal index in &. From now on we will skip the addition “over
0” and will simply speak of free A-modules.

Remember that a full module 2 is a free A-module if it has an o-basis
X=[X1 ... X,]
where the columns of X}, belong to the kernel of A* and
X =[AXg1 Xj] fork <w.

As a convention, we assume that Xj is an empty block for £ > v and we put
X, = X,. The blocks X will play an important role in this section.
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Before we can start, we need to define some modules and vector spaces. Let
Vi={zeKk"|A*z =0} and &,=V,NG& fork>0.
This gives us an ascending chain of ©-modules
0=60C...C6,=6,41=...=06.
(Do not confuse & with the modules &, discussed before.) Furthermore, let
T =Vic1 +AVpi1) NG for 1 <k <.

Then ¥, is a submodule of &j. Therefore we can define the quotient module

Wi = Sk /%Fk.

Finally, let
Wi =Vi/(Vike1 + AViyq) for 1 <k <w.

If X is an A-basis, the columns of X} represent a K-basis of W}, (to see this,
recall how to compute the Jordan normal form of a nilpotent matrix). Through-
out this section we will assume that the columns of all A-bases belong to &.
This is equivalent to 21 = X 0" being a submodule of & and implies that X
generates a submodule of &y.

(4.15) Proposition. There is a canonical injection 20 — Wj. In particular,
;. is torsionfree and can be regarded as a full ©-module in W.

Proof. The kernel of the composition & — Vi, — Wy is given by

(Vi1 + AV 1) NG = (Vi1 + AVi) N (VN G)
= (Vi1 + AVi1) NS
= Tk

As a result, 20; can be regarded as a subset of the vector space Wy. Therefore
it is torsionfree. Since &y is full in V}, the same is true for 20;, in Wj. |

(4.16) Proposition. The columns of X represent a basis of a free 0-module
of finite index in 27y.

Proof. As mentioned before, X; represent a K-basis of W}, hence it also rep-
resents a basis of a free submodule in 20;. Moreover, X is an empty block
if and only if Wj, = 0. Since the nullspace is generated by the empty set, the
statement is true in this case.

So let us suppose X is a nontrivial block. By the way X is construed, the
columns of

(X1 ... Xp]=[X1 ... X1 AXppy X7

generate an 0-module A, C &, of finite index. Hence, the columns of

[AX1 ... AXpi1] =10 AXy ... AXji1]
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generate
AQlk_H C AG]H_l C %

Taken together, the columns of
[ X1 oo Xpo1 AXp ] = [AXo X5 .0 AXy Xy AXpp ]
generate an 0-module
3k C (A1 + ARUpey1) C Ty

of finite index in ¥j. Furthermore, the columns of X; are linearly independent
of vectors in 3j and they generate a free submodule of finite rank in /3,
which, in turn, has finite index in &y /3. Since 3j has finite index in Ty, the
columns of X are also linearly independent of elements in T;. In conclusion,
they generate a free submodule of finite index in 2. |

The next theorem tells us how to construct free A-modules of minimal index.

(4.17) Theorem. Let 2A C & be a free A-module with A-basis X and let
X C 2 be the free 0-module generated by X;. The following statements are
equivalent.

(1) A is a free A-module of minimal index in &.
(2) X is a free module of minimal index in 20, for each k.

Proof. For every k, let Y} represent a basis of a free 0-module 2);, C 20;, with
minimal (and thus finite) index. Then the columns of ¥;* need to belong to &.
Let Y =[Y; ... Y, ] be the A-basis obtained from Y}*,...,Y}", that is,

Y, =Y and Y, =[AY,11 Y] fork<w.

Since A is an element of A, which is the multiplier algebra of &, the columns of
AY}, also belong to &. Consequently, 2 = Y 0" is another free A-module over
o contained in G.

Recall that Y;* represents a K-basis of Wy, = V},/(Vi—1 + AVj41). Hence we can
write

X;: = Yk*U,;k mod (Vk—l + AVk_H)

where U} is a square matrix over K. The reduction modulo (Vy—1 + AVjy1)
works columnwise. Identifying W} with a suitable power of I, we may apply
(1.31) to obtain

(Wi : Xx] = [N(Ug)| - [k : D]

Here, the norm of an empty matrix is considered to be 1. Since [0y : Yy is
minimal, we have |[N(U})| > 1. Let

Us Uy
Uy = and U=
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We want to prove that (S : 2] = [N(U)| - [& : 2']. The congruence X} = YU}
can be translated into the equality

X; =Y Uf + Z

where Zj is a matrix with columns belonging to Vi1 + AVj.1. Consider the
submatrix

(X1 . Xpo1 Xi] = [ X1 .. Xeor AXpr X7
= [Xl . ¢ AXk-i-l Yk*U]: +Zk]

Since [ X7 ... Xk—1 AXky1] is a basis of the vector space Vi1 + AViy1, we
can eliminate Zj, using elementary column operations over /C, that is,

[ X1 o0 X1 Xi] ~ [ Xy oo X1 AXp Y UL
Furthermore,
AXppr = [A2Xppo AXG | = [APXppo AU + Zien) ],
and the columns of AZj,, are linearly dependent of
AX1 ... X AXpy2] = [0 AXy ... AX) A?Xpi0).

The nonzero blocks of this matrix appear in [X; ... Xp_; A?Xjp o] since
X¢o—1 =[AXy X; | ]. Therefore

(X1 ... Xpo1 AXpp1 YU
=[X1 .. Xy A2Xp2 AU + Zi) Y UR
~ X X A2 Xy AV U YU
Continuing in this fashion, we see that
X=[X ... X, ]~ [Vl ... Y,U,]=YU.
More precisely, we have
X =YUS for some S € SL(n, K).
Applying (1.31) and (1.25), we obtain
[6: %] = NUI)|-[6: U] = NU)| - [&: 2],
Since [N(Uy)| > 1 for all k, we see that

IN(O)| = [T INWUR)| = TT INWH* > 1.
k=1 k=1

Therefore

[6:2A > [&:A].
This inequality holds for any free A-module 2, hence 2’ is a free A-module of
minimal index in &. We conclude

[&: 2] is minimal < |[N(U)| =1
< IN(Uy)| =1 for all k
< [2W, : X is minimal for all k. |
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The just established theorem tells us that each free A-module of minimal index
can be constructed from blocks X representing bases of free submodules of
minimal index in 20;,. We simply need to combine the blocks X7,..., X} to an
A-basis in the usual way. Thus we must ponder how to determine all these free
submodules.

Since G is a free Z-module, we certainly can compute Z-bases of
G.=V.NG and T = (Vk,1 + AVk+1) neG

as well as a Z-basis = of the torsionfree quotient module 20, = & /%). Suppose
m is the number of columns of = and d a nonnegative integer. Let us explain
how to determine all free submodules X C 20;. of index d. First, the Z-modules
in Wy, of index d are given by

where H runs through all m x m integer matrices in Hermite normal form with
determinant d, that is, all matrices of the form

with
hi; > hij >0 and hi1 - hmm = d.

Clearly, the number of possibilities for H is finite. Yet not all Z-modules must
be 0-modules. We can discard all modules that are not. For the remaining
ones we need to examine whether they are free over ©. A small problem arises
at this point. In general, § is not a full module in K™ (this is only the case if
v =1). However, $) is free if and only if I'§) is for any I" € GL(n, ). Thus we
may choose I'" such that

=/

[(ZH) = h }

where =/ has full rank over K. Then ' = Z'Z™ is a full module in X! where
' and § is free precisely if §’ is. Therefore we
can check whether $)' ~ 0f as explained in the first three chapters (pay special
attention to (3.11) and the subsequent remark). In doing so, we will end up
with a list of all free submodules of ) with index d. Letting d run through
the positive integers, we will ultimately find all free submodules of the smallest
index possible.

¢ is the number of rows of =

Next, we want to obtain a list of all free A-modules of minimal index in &. So
far, we know how to construct A-modules from the blocks X}. We still need
to clarify when our list is complete. To begin with, we make a rather evident
observation.
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(4.18) Proposition. Let 2, 2" C & be two free A-modules with A-bases X
and Y. If A =2, then X} and Y;* generate the same submodule of 20y.

Proof. Let
A = Vi N

This is a submodule of &. Suppose v = Xjv1 + - - -+ X, v, is an element of 2.
Here, each vy, is a vector over © of suitable length. Then

0= Aky = (Aka+1)Uk+1 + -+ (AkXV)vV.

Since the columns of [A*X,,.; ... A*X,] appear in the basis X, they are
linearly independent over ©. We conclude v, = 0 for £ > k. Thus 2 is
generated by the columns of

(X1 ... Xpo1 Xl =[X1 ... Xeo1 AXgn X7

The module Xj, C 20y, which is generated by X;, is equal to the image of the
composition
Qlk — Gk — an = Gk/zk

because the columns of [ X1 ... X1 AXk41] vanish modulo
T = Vie1 + AV ) NG,
Analogously, the image of
A, — S — Wy, with A = Ve nA

is generated by Y;*. So if A = 2, then A, = A, that is, X}’ and Y,* generate
the same submodule of 20;. |

In order to compile a complete list of free A-modules of minimal index in &, we
still need to solve one problem. Suppose 2 is a module with A-basis X and let
X be the module with a basis represented by X};. If we change the columns of
X, by adding elements of T, we still obtain a basis of X; modulo €. Over 0,
however, the new A-basis X might generate a different module 2’. Hence we
need to examine how many modules can be obtained this way.

Let us be more exact. Suppose that 2 and 2" are free A-modules with A-bases
X and Y such that X[ and Y} represent bases of the same free submodule of
27, for all k. In this case we have the relation

where Uy is invertible over © and the columns of Z; belong to ¥;. Replacing
Y by YU, 1 does neither change X, nor 2’. Moreover, the columns of Z WU !
still belong to T. Therefore we may assume

Vi =X+ 7.

The next theorem tells us precisely when 2 and 21" are equal in this situation.
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(4.19) Theorem. Let 2l and A’ be two free A-modules of minimal index in &
with A-bases X and Y such that

Yi'=X;+2Z, foralk

where the columns of Z;, belong to Ty. Let 3, C ¥) denote the module generated
by [X1 ... Xk—1 AXj11]. The following statements are equivalent.

(1) A is equal to A'.
(2) The columns of Zj belong to 3 for each k.

Proof. Suppose 2 = 2'. Then each column of Y is a linear combination of
the columns of X, in particular each column of Y};*. Thus there are matrices
T1,...,T, over o0 such that

X7+ -+ X, T, :Yk*
Multiplying both sides with A, we see that
(A Xy )Ty + -+ (AFX)T, = 0.

Since the columns of A*X;,..., A*X, appear in the basis of A, they are
linearly independent over ©. We conclude T; = 0 for ¢ > k, so

X+ -+ X T = Y
Since Xy, = [AXj4+1 X} ] and Y} = X} + Zj, this equation can be written as
X+ + Xp 1 Te1 + AX 1 T4 + X0TY = Xf + Zy

where T} and 7T} are the upper and lower rows of Tj. Reducing all columns
modulo Ty, we obtain
X1 = X; mod Tg.

This implies 7}/ = I because the columns of X} remain linearly independent
modulo Ty, by (4.16). Therefore

XiTh+ -+ X1 Tym1 + AX 1 T), = Zg,

that is, the columns of Zj, can be generated by [ X; ... Xp_1 AXj1] and thus
they belong to 3.
Now assume the columns of Zj belong to 3 for each k. We want to show that
we can transform Y into X using elementary column operations over © because
this implies

A =Yo0" = X0o" =

First we will prove that Y7 ~ X;. Since the columns of Z,, belong to

31/ C ‘3:1/ - Vufl + AVI/Jrl = Vl/*l + AVZ/ = Vufb
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we know that A¥~1Z, =0, so
ATYY, =AY = AV NX 4 7)) = AVTIX = AVTX,

Let us assume that A*~1Y;, ~ AF~1 X} has already been proved for 1 < k < v.
Then

AkiQkal — Ak:fQ[AYk Yk*fl] _ [Ak:flyk Ak72Yk*71]
~ [Ak—le Ak_2Yk*_1]
= [AF1X, ARA(XF 4+ Zi)).

By our assumptions, the columns of A¥2Z;_; belong to A*723,_, which is
generated by the columns of

AR2(X) L Xpo AXp] =10 ... 0 AF1X, .
Performing elementary column operations over 0, we can erase A*=2Z;,_1, so
ARy~ [ARTLXG ART2XG 1= ARTPAX X ) = ARTEXG .

By backward induction this proves A* 'Y, ~ A*"1X; for 1 < k < v. In
particular, Y7 ~ Xj.
To finish the proof, we will use forward induction. We now may assume that

Y=[X1 ... Xp Y1 ...Y] forl1<k<uw

If we can show that Yy, can be transformed into Xjii, we may conclude
Y ~ X and the theorem is established. Observe that

Vi1 = [AY%y2 Yy |
= [A%Yiys AV}, Vi ]

= [AVRY LAY, Vi
= [AMUXS 4 2)) o AX e+ Zig2) (X + Zik) ]

The columns of A¥~*~1Z, belong to A*~*~13, which is generated by
AU X X, g =0 . 0 ATTRTIX, o AVTRLX, )
The nonzero blocks of this matrix appear in [ X7 ... X} | because
Xp=[AXp %] == [AVF1X,y 41 %] for1<(<k.

Hence, performing elementary column operations on Y, we can erase AV "%=17,
in Yi4;. Now assume

Vi1 = [AVF7y) LAY, Vi
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with
Y =X, forv>{>k+m for some fixed m.

‘We have
AP = AN+ D).

The columns of A™~'Z;,,, belong to A™ '3, which is generated by

A™MUXy o Xme1 AX a1 ]
= [0 OAm_le Am_le-_;’_m_]_ Aka+m+1].

This time the nonzero blocks appear in
(X1 .0 Xp AVRIX AKX ]
because
Xp=[AXp %] = = [A" X1 %] for 1 <0<k

and
A" Xy = [AFIX AT )

Hence we can erase Am_lZ;Hm in Yx41. By induction we obtain
YN[Xl ...Xk+1 Yk+2 Yl,],
and ultimately this yields Y ~ X. |

(4.20) Corollary. Let wy be the number of free modules of minimal index
in Q. The number of free A-modules of minimal index in & is equal to the
product

H wi(ng — ngs1) [Tk 1 3] where n,41 = 0.
k=1

Proof. Let X represent a basis of a free module X3, C 20; of minimal index.
Let X be the A-basis obtained from X7,..., X, and A = X0". Then 2 is an
A-module of minimal index in & by (4.17). Each column of X can be altered
modulo Ty without changing X, and by (4.19) 2 will stay unchanged precisely
if we alter each column modulo 3;. Hence there are [T} : 3;] ways of altering
a column of X; that will change 2l but not X;. In total, X; has n; — njq1
columns. Finally, if we choose X to represent a basis of another free module
X}, # X of minimal index, this will also lead to a new A-module by (4.18).
Since there are wy, different choices for X, this establishes the corollary. |

4.4 Nilpotent Integer Matrices

In this section we will study some aspects of nilpotent matrices over the integers.
Since we examine the similarity of integer matrices in general, nilpotent integer
matrices naturally arise as a special case. Beyond that, if

A=S4+N and B=S+N’
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are two similar matrices in Jordan—Chevalley decomposition, we saw at the
beginning of the chapter that their nilpotent parts have to be similar, too. So
before running the procedure for deciding whether A and B are similar, it might
be worthwhile to examine N and N’ in a first step.

The main goal of this section will be to develop conditions which have to be met
for N and N’ to be similar and which can be checked easily. Later on, we will
investigate two special cases where it is rather easy to actually prove similarity.

Beforehand, let us briefly describe a major improvement of the general procedure
in the case of nilpotent integer matrices. In this situation, S = S’ is the zero
matrix, which has minimal polynomial X, so

o =7Z[X]/(X) =Z.

A full Z-module corresponding to S is given by & = Z". So if A C & is an
A-module, it is always free. Moreover, each quotient

Wy, = S /%

is free and a Z-basis can be found without difficulty. Therefore we can avoid the
cumbersome search for the free submodules of minimal index in . Still, the
number of free A-modules of minimal index in Z™ may grow arbitrary large and
so does the effort for deciding whether A- and B-modules are similar. Hence it
is desirable to establish some criteria which can lead to a negative result quickly.
First we will show that every nilpotent integer matrix can be transformed into
a simpler form.

(4.21) Proposition. Let ny > ... > n, be positive integers. If A € M(n,Z) is
a nilpotent matrix with structure ny > ... > n,, then A is similar to a matrix

of the form
0 A -+ Awn

Au—l,u

0 0
where Ay is a block of the size nj x ny and each Aj_; ; has full rank n.
Conversely, every block matrix as above is nilpotent and n; > ... > n, is its

structure. In particular, the stated form is uniquely determined by the structure
of the matrix.

Proof. Let
Ap, = ker(AFYNZ" for 0 <k < v.

Then each quotient 2j/2Ax_1 is torsionfree; otherwise there would be a vector
x € A\ Ai_1 such that ax € Ap_1 for some integer a # 0, that is,

ARl £ 0 and a(AF 1) = 0.
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Consequently, Ay /x_1 is a free Z-module. Let Xj_1 be a basis of 2A;_1 and
let X} represent a basis of 2y /x—1. Then [ X;_1 X ] is a basis of 2. We can
thus construct a basis

X=[X1...X,]

of Z™ where each X}, represents a basis of 2 /_1. It follows that ny is the
number of columns of X}, and that X 1 AX is of the desired form because the
columns of AX}j belong to 2x_1, which means they can be expressed as linear
combinations of the columns of [ Xy ... Xj_1].

Now suppose the rank of A;_; ; were not full. Then the rank of

A12 *

0 A1k

is not full. If x # 0 belongs to the kernel of this submatrix, then the vector
[0 2™ 0], with ny leading and ngi1 + --- + n, trailing zeros, belongs to the
kernel of X 1 AX. But all elements of this kernel are of the form [x 0 0]%.
Finally, suppose A is of the stated block form. As one easily sees, we have
AY =0, and if k£ < v, then A* is of the form

/
Al,k+1 *

A/

v—Fk,v

where
Ap o = Ag g1 Arri—1,040k # 0.
Since the rank of each Aj_; ; is full, and thus equal to ng, the rank of A/MHc

is also full and equal to ng4x. In conclusion, ngy1 + - - - + n, is the rank of Ak,
that is, nq + - -+ 4+ ny is the dimension of its kernel. Hence n1 > ... > n, is the
structure of A. ]

If a matrix is given in the form as in (4.21), we say it has the block form
ny > ...>mn,. If Aand B are nilpotent integer matrices, we may assume that

they are given in the same block form. Otherwise, they cannot be similar.

(4.22) Proposition. Let A and B be two nilpotent integer matrices with block
form n; > ... >n,. If C € GL(n,Z) satisfies CA = BC, then

Cn - Cu
C = )
0 Cuv

where each block Cy, has the size ng X ny.
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Proof. Let
Ci1 - Cu
C=|: :
CI/]. : Cl/I/
Then
0 Cinidie -+ -+ Cudu+--+0C 141,
CA=
0 CI/].A].2 CV1A1V+"'+CV,V—1AV—1,V
and
B12Co1 + -+ B1,Cp1 -+ B12Cy + -+ + B1,Cyy
BC = : 5
Bu—l,ucul tee BV—I,VCVV
0 0

If CA = BC, we first observe that
Cy1A12 = 0.
Since A1s has full rank, we conclude C,q = 0. Next we obtain
CuaAaz = Cp1 A1z + Cradaz = 0,
implying Ce = 0. Proceeding like this, we see that C,y, = 0 if v > ¢. Therefore
Cy-1,1A12 = B,_1,,C2 = 0,
so Cy—1,1 = 0. Ultimately, this reasoning shows Cj, = 0 if k > £. [ |

If C' is given in the form as above, we will also say that C' has the block form
ny > ... >n,. If we want to see whether two matrices are similar, making use
of the the block form provides us with a first set of necessary conditions. If A
and B are similar and have the block form ny > ... > n,, the submatrices

0 Ay -+ Ay 0 Bez --- By,

and
Al/—l,z/ Bl/—l,l/
0 0 0 0

(obtained by deleting the first n; rows and columns) are similar, too. Thus we
can perform v — 1 successive tests, starting with

0 AV_LV and 0 BV—I,V
0 0 0 0 ’

to decide whether A and B are similar.
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We will now introduce further necessary conditions which have to be met and
which can be verified easily. First of all, if A and B are similar, they are also
equivalent, that is, there are invertible matrices C' and D such that CA = BD.
If A and B have the same block form, there are more conditions of this sort.

(4.23) Proposition. Let A and B be two nilpotent integer matrices with block
form nqy > ... > n,. If A and B are similar, the submatrices

Ap k1 o Ape Bik+1 - DBre
. : and ] :
0 Ag_Lg 0 Bé—l,Z
are equivalent for 1 < k </ <w.

Proof. Let C € GL(n,Z) have the block form n; > ... > n,. Then

0 Cndiy - CnAu+--+C—14v-1,
CA=
. CV—I,V—IAV—LV
0 0
and
0 BioCo% -+ B1aCoy+---+ B1,Cpy
BC =
. Bufl,yczw
0 0
A careful observation of these two matrices reveals that the products
Ckk - Cru—1 |[Akg+1 0 Ape
0 Cr—1,0-1 0 A1,
and
Byk+1 -+ Bre [|Ck+1,6+1 - Cokn
0 Bo-1, 0 Cu
are different expressions for the same submatrix, given that CA = BC. |

The previous proposition equips us with v(v + 1)/2 necessary conditions for
similarity, all of which can be verified by comparing the Smith normal forms of
the respective submatrices. In contrast to the expensive test for similarity, this
can be done considerably fast.

Unsurprisingly, there are matrices where the Smith normal forms of all subma-
trices coincide, yet the matrices are not similar. For example, consider

0 31 0 3 -1
A=|0 0 3| and B=1|0 0 3
0 0O 00 O
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The Smith normal forms of the respective submatrices are

3], 3] and B g}

Suppose
C11 C12 €13
C=|0 co c2
0 0 C33

were an invertible matrix (i.e., ¢;; = £1) with CA = BC. Then we obtain
3c11 = 3ca9, 3co9 = 3c33, and c11 + 3ci12 = 3c13 — c33.
The first two equations yield ¢11 = c29 = ¢33 and the third one states
+2=1c11+c33=0 mod 3.
Hence A and B cannot be similar.

There are, however, two situations in which similarity itself can be confirmed
quickly. The first one is given by the condition v = 2.

(4.24) Corollary. Let

_0A12 _OBI2
A—{O O} and B—{O O}

be two nilpotent integer matrices with block form ny > no. Then A and B are
similar if and only if A12 and Bjs are equivalent.

Proof. By (4.23), Aj2 and By are equivalent if A and B are similar. Con-
versely, suppose there are invertible matrices C11 and Cas such that

C11A12 = B12C2.
Then

0 0 0 0
for C'= C11 & Cao. [ |

CA — {0 0111412} _ {0 B12C9

|- zc

Unfortunately, the result of the corollary cannot be generalized for higher values
of v. For example, suppose

0 A12 0 0 BlQ 0
A=10 0 A23 and B= |0 0 ng
0 O 0 0 O 0

and let C' be an invertible matrix of the same block form. In this situation, we

have CA = BC if and only if

C11A12 = B12Cy and (A3 = Bo3(Css.
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Since C9y appears in both equations, these requirements are not independent.
Also, if no > 1, the number of choices for Cs is potentially infinite.

The second rather easy situation for testing similarity is given by nilpotent
matrices of the structure ny = --- = n, = 1. In this case, the respective block
form is given by an upper triangular matrix

0 a1 -+ awn

ay—1,v

0 0

As we will see, similarity of such matrices can be proved by solving a system
of linear equations. We will examine this situation as a special case of a more
general context.

A structure ny > ... > n, will be called unitarily decreasing if the following
conditions are satisfied:

e n,=1and
e npi1 >ng,— 1 fork <vw.

In other words, the values of the structure are decremented by 0 or 1 in each
step until they hit 1 eventually. For example, the structure

3=3>22=2=2>1=1

is unitarily decreasing.
Before we occupy ourselves with matrices of unitarily decreasing structure, we
will show that any block form ny > ... > n, can be simplified further.

(4.25) Proposition. Let A be a nilpotent integer matrix given in block form
niy > ... >n,. Then each submatrix [Ag_;1 ... Ar_1,,] can be chosen in row

Hermite normal form.

Proof. Let H,_; be the row Hermite normal form of A,_; , and let C,_; be
an invertible matrix such that H,_1 = C,—1A,_1,,. Put

C=1,,® &1, ,2C,_1D1,,.

Then ) -
0 A - A, * A

CAO—l — Auf?),y72 * Al/73,1/

* Azx—2,1/

Hl/—l
0
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Replacing A by CAC™!, we thus may assume that A,_1 , is in row Hermite
normal form. Notice that, apart from A,_; ,, only the (k, v — 1)-blocks of A
are affected by conjugation with C.

Next, let H,_ be the row Hermite normal form of [A, 2,1 A,—2, ] and

C:InIED"'@ITLV,;g@C—2@IV—1EDI7IV

where H,_o = Cy_3[Ay_2,,-1 Ay_2,]. Switching from A to CAC™! leaves
A,_1,, unaffected and transforms [A, 5,1 A,—2 .| into row Hermite normal
form. Proceeding in this manner, we will obtain the desired result. |

(4.26) Theorem. Let A and B be two nilpotent integer matrices of unitarily
decreasing structure n; > ... > n, given in block form as in (4.25). Then the
following statements hold.

(1) If A and B are similar, the diagonals of Ay ; and Bj_1 j are equal for
1<k<wvw.

(2) If C € GL(n,Z) satisfies CA = BC, then C' is of the form
Cui - Cu
0 CZ/I/
where each block Cpi is an upper triangular matrix of the size n; X ng.

Moreover, for k£ > 1, the first nj, diagonal entries of C;_1 ;—1 coincide with
the diagonal entries of Cy.

Proof. Suppose C is an invertible matrix such that CA = BC. By (4.22) we
already know that C has the block form ny > ... > n,. Suppose Cii is an
upper triangular matrix. Since n, = 1, this is true for k = v. Write

C/
Cr—1,k—1 = {C” *}

where C' is an ny x ng matrix and C” is a block of size (nx_1 — ng) x ng, that
is, either a row vector or nonexistent. Furthermore, we have

Al B’
Ap_1k = {O} and By = {0}

where A’ and B’ are square upper triangular matrices in row Hermite normal
form of full rank. Again, the zero rows might be nonexistent. As seen in the
proof of (4.23), we have the relation

Cr-1,k-1A%-1,k = Bi—1,kCri
and in our case it reads

C'A']  [B'Cr
crAl T o |
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This implies C” = 0 because A’ has full rank. Since A’, B’ and Cy; are upper
triangular matrices, the same is true for

Cl — (Al)le/Ckk

and thus for Cj_1 1. With obvious notations, the ith diagonal entry of C’ is

of the form
/

_ i, /
Ci; = —-ci; where ¢;,

Ci; = +1.

i
Since A’ and B’ are in Hermite normal form, the entries on their diagonals
are positive. Consequently, ¢/, = ¢;;, and therefore al, = bf,. This proves all
statements of the theorem. |

(4.27) Corollary. Let A and B be two nilpotent integer matrices of unitarily
decreasing structure nq > ... > n, and let £ be the number of all indices k < v

with ng > ngyq. If the matrices are given in the form of (4.25), similarity can
be decided by solving at most 2¢ systems of linear equations.

Proof. If C is an invertible matrix satisfying CA = BC, then it is an upper
triangular matrix by (4.26). Therefore the entries on its diagonal are equal to
+1. If a diagonal is fixed, the remaining entries of C' can be obtained as a
solution of the system C'A = BC'. If none of these systems can be solved, A
and B are not similar.

Because of the repetitive structure of the diagonal of C' described in (4.26), the
number of possible diagonals is less than 2”. For all k£ with n; = 1, we have

Cyr =+ =Cp = £1,

giving us two possibilities for these entries. Suppose k < v and let [c1 ... ¢up ;]
be the diagonal of Cyy1 g+1. If ng > ngyq, then

C1 *

Cir =
an+1

0 *

where the last diagonal entry can be chosen freely among +1. So every k < v
with ng > ng1 increases the number of diagonals by the factor 2. If ny = ng1,
we have
C1 *
Crr = ;
0

an+1

leaving us no choice. Taken together, there are 21 diagonals. But half of them
can be discarded (in effect, by fixing C,,, = 1), because if C satisfies CA = BC,
then so does —C. |
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As a consequence of the corollary, the case ny = --- = n,, = 1 can be handled by
solving a single system of linear equations. Yet even in the case ny > ... > n,,
where ¢ = v — 1, the number of systems will be considerably smaller than 27~
In this situation, we have

np=v—~k+1

since n, = 1 and ng = ngy1 + 1 for k < v. Therefore
n=n1+--+n,=v+---+1>yp,

given that v > 1, of course. In practice, the case ny > ... > n, can actually be
handled better than n; = --- =n, = 1, if compared for a fixed n =ni1+---+n,.
This is because the systems on linear equations contain a lot more zero rows in
the first case. See the next chapter for concrete running times.

Let us describe one last improvement. As mentioned before, if we want to see
whether A and B are similar, we may assume that the submatrices

0 Apkyr - Awp 0 Bggy1 -+ B

Ak = B - : and Bk =
' Aufl,u Bufl,u
0 0 0 0

are similar. So instead of testing similarity directly, we can successively de-
termine all possible diagonals for Cj such that the system CpAr = BiC} is
solvable, thereby ruling out incorrect diagonals with less effort.

4.5 Algorithms

(4.28) Algorithm — Related Matrix I

—» S semisimple integer matrix
M  integer matrix commuting with S
(2 Z-basis of a full module & corresponding to S

<4 A the matrix in A = (& : G) related to M (see p. 91)

The basis {2 must have the form as in (1.5), i.e., the rows are eigenvectors of S.
Suppose M = [m;] and 2 = [wy ... ws].

(1) Compute the matrix A of the homomorphism o: K™ — K™ given by
a(wi) = Z mGjwsg
with respect to the standard basis of K™; cf. (4.2) and the proof of (1.1).

(2) Return A.
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(4.29) Algorithm — Related Matrix II

— S semisimple integer matrix
{2 Z-basis of a full module & corresponding to S
A element of A = (6:6)

<« M the integer matrix related to A (see p. 91)

The basis {2 must have the form as in (1.5), i.e., the rows are eigenvectors of S.
Suppose 2 = [w] ... ws].

(1) Compute the integer matrix M = [m;;] given by Aw; = Zmijwj.

(2) Return M.

(4.30) Algorithm — Is Similar (Modules)

—+ G full module in IC™
A free A-module over ©
B free B-module over 0

< T true/false
I'  matrix proving the similarity of 2 and %5

The matrices A and B belong to A = (6 : &), I" will be a unit of A. The order
0 is a direct sum 01 & - -- ® 05. The modules 21 and B are given by A- and
B-bases X and Y. The modules are contained in &. For each ¢, the components
A, and B, have the same structure.

If [ : 2] # [&:B], return false.

)
2) Compute a nonzerodivisor A € 0 with A& C . If A& ¢ B, return false.
) Put & := Y 1AX. Then & is the multiplier ideal (D : ).

)

For . =1,...,s, compute the algebra M, of all matrices M € M(n,,0,) of
the form as in (4.9); also see p. 103. The structure referred to in (4.9) is
the structure of A, and B,.

(5) Pt M= M1 @& Mg and M :=(MNS)/(AMNBSG).

(6) For each M € M, check whether M is a unit of M /XM which stems from
an element of U = M. If so, go to the next step. If no such M exists,
return false.

(7) Compute a preimage U € U of M, basically using algorithm (3.16); also
pay attention to the remarks on p. 104.

(8) Put I' = YUX . Return true and I



126 Module-Theoretic Approach II

(4.31) Algorithm — All Free A-Modules (Number Field Case)

—+ & full module in K"
A nilpotent matrix in A = (&: 6)

<« A list of all free A-modules of minimal index in &

The modules in A will be defined over © = A N K, the multiplier ring of &.
Suppose v is the smallest integer such that AY = 0.

(1) For k=1,...,v, compute
Sr=ViNG, Tp=Vio1+AViy1) and Wi = &;/%y.
(2) For each k =1,...,v, compute all free modules X, C 20, of minimal index

as explained on p.111. Let A} be a list of matrices X; with columns
belonging to &, such that each X is represented by exactly one X;.

3) Put X" := &7 x--- x &J.
1 v
(4) For each X* = (X7,..., X}) in A*:

e compute the A-basis X =[X; ... X, ] constructed from X*;

e for each K = 1,...,r, compute the o-module 3; generated by the
columns of [ X7 ... X1 AXpi1];

e collect all modules 2 = Yo" with A-bases Y constructed from blocks
Y =Xp+ 2k
where the columns of Zj, individually vary over a set of representatives

of Ty /3g; cf. (4.19).

(5) Return the list of all modules 2 collected in (4).

(4.32) Algorithm — All Free A-Modules (General Case)

—+ & full module in K™
A nilpotent matrix in A = (& : 6)

<+ A list of all free A-modules of minimal index in &
The modules in A will be defined over 01 & - - - & 05 where 0, is the multiplier
ring of &, N &; see step (1).
(1) For t=1,...,s:

e compute &, N & where &, is the image of & under the projection
K" — Kl

e compute a list A, of all free A,-modules of minimal index in &, N &
using algorithm (4.31).
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(2) Return a list A consisting of all modules 2 =20; @ --- ® A; with A, € A,.

With a minor adjustment, algorithm (4.32) can also be used for computing a
single free A-module of minimal index. When calling algorithm (4.31), it suffices

to compute only one free module X, for each k in step (2). Afterwards, return
A= Xo"

(4.33) Algorithm — Is Similar (Nilpotent Matrices)

— A, B nilpotent matrices belonging to a matrix order A
G} full module in K™ with multiplier algebra A

<« T true/false
r unit of A satisfying I'A = BI"

(1) For . = 1,...,s, check whether A, and B, have the same structure. If not,
return false.

(2) Compute a free A-module 2 of minimal index in &, basically using algo-
rithm (4.32) as explained in the remark that followed.

(3) Compute a list B of all free B-modules B of minimal index in & using
algorithm (4.32).

(4) For each B € B, check whether 2 and B are similar using algorithm (4.30).
If so, a matrix I is being computed; return true and I". If no such module
B exists, return false.

The algorithms in this section especially work for A = M(n,Z). In this case,
step (2) of algorithm (4.31) becomes trivial since each 20y is a free Z-module.
Additionally, we can compute the block forms of A and B and perform the
test based on (4.23) before dealing with A- and B-modules. If v = 2, this test
is also sufficient by (4.24). Furthermore, if the matrices’ structure is unitarily
decreasing, we can dispense with A- and B-modules altogether.

(4.34) Algorithm — Block Form

— A nilpotent integer matrix

<+ B the block form of A
C invertible integer matrix with CA = BC

Suppose that n; > ... > n, is the structure of A. The matrix B will be of the
form described in (4.21) together with (4.25).

(1) For k = 1,...,v, compute an n X np matrix Uy representing a basis of
2Aj. /Ap_1 where A, = ker(A*) N Z".

(2) Put U :=[U; ... U,] and A:=UTAU. Then A is of the form in (4.21).
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(3) Compute a matrix C = C; & --- & C,, as explained in the proof of (4.25).
(4) Put B:= CAC~'and C := CU™'. Return B and C.

(4.35) Algorithm — Is Similar (Unitarily Decreasing Structure)

—» A, B nilpotent integer matrices

<« T true/false
C invertible integer matrix satisfying CA = BC

Suppose that n1 > ... > n, is the structure of A and B. Both matrices have to
be given in block form as computed by algorithm (4.34).

(1) For k =2,...,v, check whether the diagonals of Aj_1 ;, and Bj_1 j coincide.
If not, return false.

(2) For each (cy,...,c,) € {£1}™:

e define C to be the upper triangular matrix with diagonal (¢1,...,¢,)
and variable entries ¢;; for j > i;

e try to solve the system of linear equations CA = BC, if there is a
solution, return true and C.

(3) Return false.

To complete things, let us outline how the individual algorithms add together
to a function for general integer matrices.

(4.36) Algorithm — Is Similar (General Case)

— M, M' integer matrices

<« T true/false
C invertible integer matrix satisfying CA = BC

(1) If M and M’ do not have the Jordan normal form over Q, return false.
(2) Compute the Jordan—Chevalley decompositions
M=S+N and M =S+ N

Multiplying the matrices with a suitable positive integer, we may assume
they are all defined over Z.

(3) Check whether S and S’ are similar using algorithm (3.17). If not, return
false. Otherwise we now may assume S = 5.

(4) Compute the module & corresponding to S using algorithm (1.43).

(5) Compute the multiplier algebra A = (& : &) using algorithm (1.45).
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(6) Compute the matrices A, B € A related to M, M’ using algorithm (4.28).

(7) Decide whether A and B are similar using algorithm (4.33). If not, return
false. Otherwise obtain a matrix I" € A* satisfying I'A = BI".

(8) Compute the matrix C related to I" using algorithm (4.29).

(9) Return true and C.






5 Examples and Running Times

In this section we will illustrate the workings of our algorithm with two extensive
examples, one for semisimple and one for nilpotent matrices.! Afterwards, we
will examine the running time of the algorithm, partly in comparison to the
current method in MAGMA for matrices of finite order.

Let us start with the semisimple matrices

0 1 0 0 0 1 4 0
40 0 0 40 0 -4
A=19 0 o 1 @™ B=|y ¢ o 1
0 0 —4 0 0 0 —4 0

To decide whether these matrices are similar, we need to determine full modules
corresponding to them and check whether these modules are equivalent. The
minimal polynomial of both matrices is X2 + 4, hence 2i is an eigenvalue. Let
0 = Z[2i{] and K = Q(7). Over K, the eigenspaces of A and B with respect to
2¢ are given by

Eig(A,2i) =K[12i00]" +K[001 2",
Eig(B,2i) =K[402 —4"+K[04 —1 — 24",

Therefore

1 2 0 O

_ g4
A==7 _{0 0 1 2¢

}24 and ‘B:TZ“:F 0 2 _4}24

0 4 -1 =29

are full o-modules corresponding to A and B by (1.5). Our examination will
start over the maximal order. Since ox = Z[i] is a principal ideal domain, we
can already say that 2Ax and B are equivalent. Concretely, we have

1

1 i 0 0], B
QlK_OOlz}Z and B =1 5 o,

2 2 0 O}Z{

and it is easy to see that I'Ax = B for

20
e[t
But I'% # 9B, so we must continue our examination. By (2.28) we need to
check whether the multiplier ideal € = (8 : Q) is a principal right ideal of the

multiplier algebra
A= (2A:2)=M(2,0).

1. Recall that, in general, it suffices to deal with semisimple matrices first and to examine
nilpotent elements of a suitable matrix order afterwards.
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The ideal € is given by the Z-basis

4 0 0 4 2 0 0 2

0 0" |0 of 3 0" |0 3}

0 0 0 0 0 0 0 0

4 01" |0 4”7 {2¢ 0" |0 2|
Moreover, € is invertible and satisfies €2l = 8. In order to apply (1.39), we need
to check whether € can be made coprime to the conductor § of the extension

A C A where
A}C = (Q(}C : Ql;g) = M(Q,O}C)-

Since § = M(2,f) for f = 20k, we see that

f

_ f
C+F=|) LI#A

To make € coprime to §, we need to check whether €, is principal for each
prime ideal of © containing f according to (2.23). Since f is prime, we only have
to examine €, for p = §. To find a principal ideal generator, it suffices to search
¢/p¢ for an element C satisfying € *C N K ¢ p by (2.31) and (2.32). Such an

element is given by
2t 0
¢= {3 22}'

Moreover, C~'¢ +F = A, so further adjustments are not necessary. Instead, we
can now examine whether C~'¢ is principal by checking whether the residue

class of
14 |—1 0
= { 2 —z}

belongs to the image of
A = (A/F)\(Ax/3) ™

This is obviously true because C~1I" is invertible.! Put U = (C~'I")~!. By
(1.39) we have
Cle=C7'TUA = A,

so € = CA and thus C2l = B. It remains to determine the matrix of the
homomorphism

A—B, (= C¢

with respect to the Z-bases = = [§; ... &) and ¥ = [v1 ... v4] chosen at the
beginning. Since

C& =va 3, C& =—4v —3vy, C&=—vi —vy, C& = —wo,

1. In a less fortunate case it would suffice to check whether there is a class E € (A/F)* such
that det(EC—1I") belongs to the image of ox — (ox/f)*. In practice, we could simply
search A/F, which contains 16 elements.
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it is given by

0O 1 1 o0
-4 0 0 -3
= -1 0 0 -1
0 -1 0 0
Indeed, AT = TB.
For the nilpotent case, consider the matrices
0 0 1 0 0 0] 0 0 1 0 1 0]
000100 0 00101
00 20 00 20
A= 000 2 and - B = 000 2|
00 0 0
L 0 0l L 0 0

To decide whether they are similar, we first need to determine a free A-module
of minimal index in Z°® (notice that A = 0 + A is the Jordan-Chevalley decom-
position of A and that & = Z° corresponds to S = 0). One such module is
given by A = X7Z° where X = [ X; X3 X3] consists of the blocks

X3 =[es eq], Xo = AX3, X1 =AXo,
that is,

2 0 0 0 0 0

02 0 0 0 O

2 0 0 0
X = 0 2 0 0|

1 0

L 0 1]

Likewise, any free B-module of minimal index in Z is of the form B = Y75
where

2 0 y1+1 yo+1 21 297
0 2 y3+1 ya+1 23 24
2 0 vy v
Y = .
0 2 Y3 Y4
1 0
L 1]

Performing elementary column operations on Y, which does not change the
module B, each entry above the diagonal can be reduced modulo 2, that is,
they can be chosen in {0,1}. This gives us 256 modules in total. By (4.8) we
need to decide whether 2 is similar to one of them. If
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this will be the case, indeed. To verify this claim, we need to find an invertible
matrix of the form C = YUX ! where

(U1 w9 wyp wy % *
us U4 w3 W4
Uy Uz Wi W2

U= € GL(6,7)
us U4 w3 W4
(75} u9
L U3z Uq

(see p. 103). Clearly, 2 and B both contain 275, so by (4.13) we can restrict
our search to residue classes U € GL(6,7Z/2Z) which map

¢ =(2x12% /275 onto ® = (2Y'z°%)/27°

and which can be lifted to GL(6,Z). In this example, € =D, so U = I will do.
Put U = 1. Then

10 1 0 0 0]
010100

B 4 1010
C=YUxT = 0101
10

I 0 1]

satisfies CA = BC.

Next, let us examine the running time of our algorithm. By the time of writing,
we had only implemented the semisimple case for matrices with an irreducible
minimal polynomial and the nilpotent case for integer matrices. Nevertheless,
the advantages (and limitations) of our method can be illustrated well enough in
these special cases. All functions were implemented in MAGMA (version 2.22-2)
and were run on a computer with 3.16 GHz (Intel Core 2 Duo E8500) and 4 GB
of memory.

To begin with, we will compare our algorithm to the current procedure in
MAGMA, invoked by the function IsGLZConjugate. It works for matrices of
finite order, that is, matrices A with the property A¥ = I for some v. It is easy
to see that such matrices are semisimple and that their complex eigenvalues are
roots of unity. So in the case of an irreducible minimal polynomial, the matrices
correspond to full modules over Z[(] according to (1.4). As is well known, Z[(] is
the maximal order of the cyclotomic field Q(¢).! Hence, to decide similarity, we
basically need to apply a principal ideal test in Z[(] as explained in section 1.3.

Let us start with 4 x 4 matrices. In this case, the minimal polynomial can have
degree 1, 2 or 4. Therefore

(=¢, formedl,2 3,4,5,6,8, 10, 12}

1. Cf. Neukirch (1999), p. 60, (10.2).
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because

[Q(¢n): Q= @(n) =[p* '(p—1) forn=]]p>

pln pln

where ¢ denotes Euler’s totient function. Since Q((,) has class number 1 for
all the values given above,! all finitely generated modules over Z[(,] are free.
Therefore any pair of 4 x 4 matrices of finite order has to be similar, provided
the matrices share the same minimal polynomial.

To compare our method to the current algorithm, we randomly generated a few
4 x 4 matrices of finite order with entries in {0,+1}. For each matrix A we
chose a random element C' € GL(4,7) and handed A and B = CAC~! over to
the functions IsSimilar and IsGLZConjugate. In the case

0 0 0 1 00 1 1
0 0 -1 0 000 —1

A=11 og o 1| aad B=|y 1 4 1|
0 -1 1 0 111 0

both functions needed 0.01 seconds to confirm the similarity of A and B. If

1 -1 0 0 6 -9 -1 1

1 1 -1 1 4 6 1 -1
A=117 o o g & B=| 4 ¢ |

1 0 0 0 1 -1 0 0

our method was even a bit slower (0.06 versus 0.01 seconds). Yet when calling
Random (GL (4,27) ) repeatedly, the entries of C', and thus of B, grow dramatically
over time and, as it turns out, the function IsGLZConjugate seems to be quite
sensitive towards this growth. For example, if

1 0 -1 O
00 -1 0
A= 10 0 -1
01 0 -1

and
—390935360 —458926807 —73468877 —178210853
B 167383377 196494855 31456483 76302942
423585561 497257356 79604400 193094258 |’
251911603 295722847 47342306 114836105

our function confirmed the similarity of A and B in 0.06 seconds in contrast to
4 hours and 20 minutes needed by IsGLZConjugate.?

1. Cf. Washington (1997), pp. 205-06, theorem 11.1. Notice that Q({2,) = Q(¢») if n is odd.

2. In all fairness, Markus Kirschmer, who implemented IsGLZConjugate, told the author in
March 2014 that the algorithm was only a byproduct of the results by Opgenorth, Plesken
and Schulz (1998) and that no good performance should be expected of the function.
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As a last example for finite order matrices, consider the case

O 0 0 -1 -1 0 0 O
-1 -1 0 0 0 0 1 -1

0O 0 O o0 0 1 0 1

A 1 O 0 -1 0 0 1 1
0 O 1 0 0 -1 -1
-1 -1 -1 0 -1 0 0 -1

0 -1 0 1 0 0 1 0
| 1 1 0 O 1 0 0 1 ]

and

([0 0 -1 -1 0 0 0 0]

-1 0 0 1 00 0 O

1 1 1 1 00 0 O

B_ 0O -1 -1 -1 00 O O

O 0o O 0 00 -1 o0

o o O O o0O0 0 -1

O 0 O O 1 0 O O

L0 0 0 O 01 0 0]

Both matrices have minimal polynomial X2 + 1, so they correspond to full
modules over Z[i] and thus are similar. Our function finds a solution

S o oo oo o
(=lelelolalal s
S oo +r OO oo
oS o R OO o oo
_ o O O = O
S O O O oo
—_

in 0.03 seconds, whereas IsGLZConjugate worked for about 10 days until the
computer ran out of memory.!

Now let us consider arbitrary matrices with irreducible minimal polynomial,
that is, not necessarily of finite order. If the characteristic polynomial coincides
with the minimal polynomial, the matrices correspond to ideals of an order in
a number field. Therefore the performance of our algorithm will be as good (or
as bad) as the respective principal ideal test.

If the characteristic polynomial is a proper power of the minimal polynomial,
we will have to deal with modules in ™. For this case, consider the following
example. Let IC = Q(¢9) where 9 is a root of the polynomial X — X — 1 and let

0 =17+ 207 + 29%7.

1. This example was communicated to the author by Mathieu Dutour in May 2013.
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At the end of section 1.7, we showed that

1290 920 0 0

6
1000 19127921922

2

is an ©-module which cannot be transformed into a direct sum of ideals. By the
proof of (1.9), 2 corresponds to the 6 x 6 matrix

0 1 0 0 0 0]
0040 =220
2100 0 1
A= 0000 1 O
0000 0 2
0 0 0 4 2 0l

when regarded as a module over Z[2¥], which is a suborder of 0. To test our
algorithm, we randomly chose 100 matrices I" € GL(2,K) with entries of the
form

Yij =1+ o + 63’192 with ¢, € {0, :i:l}

and compared 2 to ' using the function IsEquivalent. On average, it took
the computer 0.05 seconds to confirm the equivalence of both modules. All in
all, the computation time ranged from 0.04 to 0.15 seconds.

In a next step, we took A @ 2, which corresponds to the 12 x 12 matrix A® A,
and compared it to I'(A$HA) for 100 matrices I" € GL(4, K) with entries chosen
as above. This time, the computer worked for 2.39 seconds on average, with
0.99 seconds in the best and 11.94 seconds in the worst case.

Finally, consider ' = A & A @ 2. When dealing with this module, our algo-
rithm will reach its limits because the number of potential tests will explode.
Given 2’ and B, the computer will first check whether 2} and B are equiv-
alent. This will pose no problem because this question can be reduced to a
principal ideal test in ox. Having found a matrix I" € GL(6, ) which satis-
fies I'A}- = By, we must decide whether € = (B : ') is a principal ideal of
A= (2:2). As explained at the beginning of this section, this comes down to
searching A/§ for an element of a suitable determinant. In our example,

|A/F| = 227 = 134,217,728,

so the search would be feasible, if need be. However, if choosing this approach,
our method requires that € is coprime to §. If it is not, we first have to make
it coprime. Since f = 20k is a prime ideal of 0k and thus of 0 (again, see
section 1.7), this requires searching for a suitable element in €/p€ for p = f§.
But

¢ /pe| = 28! ~ 2.42 x 10%,

so we shouldn’t expect a solution any time soon. Alternatively, we could adopt
the approach of searching

(Ax/8)" = GL(6, 01 /f)
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as explained at the end of section 3.2 (the equality above is due to A} = of.).
Then there is no need to ensure that € is coprime to §. Yet ox/f is a field with
8 elements, so

|GL(6, 05 /)| = (8% — 1)(8% —8) .- (8% — 8%) ~ 2.79 x 10%2,
rendering this approach even more futile.

To conclude our examination, let us evaluate the running times for some nilpo-
tent matrices, with the main focus on unitarily decreasing structures. Let us
begin with the simplest unitarily decreasing structure, namely

ny=ng=---=mn, = 1.

In this case we can find matrices of any size n because n = ny + -+ + ny.
For each given n, we generated 1,000 matrices A in block form with structure
ny =---=n, = 1 and entries randomly chosen in {0,1,...,9}. For each A, we
generated a matrix

1 *

C= .
0 1
with entries above the diagonal randomly chosen in {0, £1}. Then we compared

A to CAC~!'. Table 1 contains the minimal, maximal and average running
times.

n avg. min. max.
2 0.001 0.000 0.010
3 0.001 0.000 0.010
4 0.002 0.000 0.010
5 0.003 0.000 0.010
6 0.004 0.000 0.010
7 0.006 0.000 0.010
8 0.009 0.000 0.020
9 0.013 0.010 0.020
10 0.020 0.010 0.030
11 0.033 0.020 0.050
12 0.056 0.030 0.100
13 0.106 0.050 0.190
14 0.201 0.060 0.410
15 0.394 0.110 0.880
16 0.693 0.140 1.680
17 1.811 0.280 6.490
18 4.877 0.540 15.640
19 15.323 0.800 57.680
20 37.826 2.770 149.420
21 84.869 9.330 437.650
22 185.767 13.300 815.680

Table 1
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Next, consider the other extreme case in the unitarily decreasing context, that
is, structures of the form

n1>n1—1>...>2>1,

The possible sizes of matrices with such a structure are given by

1
"= m(n +1) (n1 > 1).
2
Again we generated 1,000 pairs of matrices with structure n; > ... > 2 > 1 as
described before and handed them over to our algorithm. Table 2 contains the

minimal, maximal and average running times in these cases.

n avg. min. max.
3 0.001 0.000 0.010
6 0.002 0.000 0.010
10 0.007 0.000 0.010
15 0.056 0.030 0.100
21 1.671 0.570 4.010
28 119.550 21.840 1014.420
Table 2

To conclude this section, let us consider the matrices

00 2 0 0 0 00 2 2 6 —6]
000400 0004 —4 0
006 0 00 6 2

A= 000 8 and B = 00 0 8
0 0 0 0

I 0 0 i 0 0.

whose structure is not unitarily decreasing, as they consist solely of 2 x 2 blocks.
In this rather innocent looking example our algorithm needs more than 10 hours

to find a matrix
1 1 9 1 -5 7

0 1 16 4 —28 -28
1 1 -1 =5

¢= 1 25 9
1 1
0 1]

which satisfies CA = BC. Yet if we compare A to the matrix

00 22 4 27
0004 -4 -8

, 00 6 2
B = 00 0 8
0 0

I 0 0]




140 Examples and Running Times

it takes merely 0.01 seconds to compute a solution

1 1 1 1 0 0

010 1200

, 1 1 00
¢ = 0 1 1 1|°

11

L 0 1]




Final Remarks

To conclude this work, let us address some potential starting points for fu-
ture research, which could lead to an improvement of our algorithm. In the
semisimple case, it would be worthwhile to solve the following problems.

e Come to a better understanding of full modules over nonmaximal orders.
This should include necessary and sufficient criteria for when a module
can be transformed into a direct sum of ideals.

e Find an efficient way to decide whether an invertible right ideal € can be
made coprime to the conductor. To accomplish this, it would suffice to
find an efficient way for deciding whether €, is principal for each p D ¥.

e Improve the principal ideal test for multiplier ideals €. Given that € is
coprime to §, this can be solved by computing the group det((A/F)*) and
providing an element of a suitable determinant.

Up to now, our methods for solving the second and third problem have expo-
nential complexity, hence it would be desirable to find a better algorithm.

In the nilpotent case, our method requires doubly exponential time in general
because the number of A-modules and the number of steps in the similarity
test can grow exponentially fast. The only exception are integer matrices with
unitarily decreasing structure, where the algorithm lies in between polynomial
and exponential time. Because of the difficulties in the general case, it might
be the best to develop a completely new approach for nilpotent matrices.
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