
Novel Methods for Mining and
Learning from Data Streams

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften

Dr. rer. nat.

der Fakultät für Elektrotechnik, Informatik und Mathematik

der Universität Paderborn

vorgelegt von

Ammar Shaker

Paderborn, Oktober 2016

Abstract

In this thesis we elaborate on knowledge acquisition and learning from

non-stationary data streams. A data stream is formed by consecutively

arriving data examples, whose data generating process may change in the

course of time. Both the cumulative and the non-stationary nature of the

data within a stream create a challenge for traditional machine learning

methods.

Concentrating on adaptive supervised learning from data streams, we in-

troduce two novel learning methods: IBLStreams and eFPT. IBLStreams

is an instance-based learner that shows how instance-based learning ap-

proaches, compared to model-based approaches, are naturally incremental

besides their inherent ability to adapt upon the occurrence of a concept

change.

Evolving fuzzy pattern trees (eFPTs) utilize the potential interpretability

of the fuzzy logic concepts in inducing compact trees; the induced trees

offer the tradeoff between compact interpretable models and generaliza-

tion performance. eFPTs attempt to dynamically evolve the induced tree

in order to reflect any change in the underlying data generating process.

We also introduce “recovery analysis” as a new type of evaluation for

adaptive supervised learners on data streams. It is an experimental pro-

tocol to assess the learner’s ability to learn and recover after a concept

change. The resulting recovery pattern of the learning method can be

analyzed both graphically and numerically using recovery measures.

Apart from the full supervision offered in the streams studied in the previ-

ous approaches, we also consider streams of events: such a stream contains

temporal events emitted from instances under observation. For a given

instance, the survival time is the time this instance spends in the study

until experiencing the event of interest. This survival time, however, is

not always obtainable because some instances become censored by sur-

viving until the end of the study without exhibiting the wanted event. In

this thesis, survival analysis is applied on streams of events by developing

an adaptive variant of the Cox proportional hazard model. Using this

model, the hazard rate, which depends on covariates associated with each

instance, is dynamically modeled such that any change in this dependence

is reflected as a change in the estimated hazard.

iv

Zusammenfassung

Die vorliegende Arbeit befasst sich mit dem Erwerb von Wissen durch

Lernen aus nichtstationären Datenströmen. Ein Datenstrom besteht aus

einer kontinuierlichen Folge von Datenobjekten, wobei sich Eigenschaften

des datengenerierenden Prozesses im Laufe der Zeit ändern können. So-

wohl die Kontinuität und Dynamik als auch die Nichtstationarität von

Datenströmen gehen einher mit neuen Herausforderungen für Methoden

des maschinellen Lernens.

Zwei neue Methoden zum überwachten Lernen (Klassifikation und Regres-

sion) auf Datenströmen werden in der Arbeit vorgestellt: IBL-Streams

und eFPT. IBLStreams ist ein instanzbasiertes Verfahren und als sol-

ches besonders gut geeignet, inkrementell zu lernen und sich adaptiv

an Veränderungen des datengenerierenden Prozesses anzupassen, vor al-

lem im Vergleich zu modellbasierten Ansätzen. Der zweite Ansatz, evol-

ving Fuzzy Pattern Trees (eFPT), kombiniert Konzepte der Fuzzy-Logik

mit der Flexibilität nichtlinearer Aggregationsfunktionen und der Aus-

drucksstärke hierarchischer Strukturen, um interpretierbare Modelle in

Form kompakter Bäume zu induzieren. Für diese sogenannten fuzzy pat-

tern trees werden Lernverfahren entwickelt, die es ermöglichen, Bäume

inkrementell zu lernen und an Veränderungen des Datenstroms anzupas-

sen.

Ein weiterer Beitrag der Arbeit ist ein experimenteller Ansatz, der darauf

abzielt, eine wichtige Eigenschaft von Methoden zum Lernen auf Daten-

strömen zu untersuchen, nämlich die Fähigkeit, auf einen so genannten

concept change zu reagieren. Hierunter versteht man eine plötzliche oder

graduelle Änderung des datengenerierenden Prozesses, der in der Regel zu

einer (temporären) Verschlechterung der Prädiktionsgüte führt. Die hier

vorgestellte Recovery Analysis ist ein Versuch, das Verhalten von Lern-

verfahren in solchen Situationen zu erfassen, grafisch darzustellen und zu

quantifizieren, in welchem Ausmaß und wie schnell sich das Verfahren

erholt.

Schließlich geht die Arbeit über klassische Ansätze des überwachten Ler-

nens hinaus und betrachtet sogenannte Ereignisdaten bzw. (parallele) Er-

eignisströme. Daten dieser Form informieren über die Zeitpunkte des Ein-

tretens gewisser Ereignisse bzw. die Verweildauer (Überlebenszeit) bis zum

Eintreten des Ereignisses. Ereignisdaten sind häufig zensiert, weil das Er-

eignis außerhalb des aktuellen Betrachtungshorizonts (z.B. in der Zukunft)

liegt. Ein zentrales mathematisches Konzept zur statistischen Analyse von

Ereignisdaten ist das der Übergangsrate (Hazardrate). In dieser Arbeit

wird eine adaptive Variante des Cox Proportional Hazard Modells ent-

wickelt, die sich zum Lernen auf kontinuierlichen Datenströmen eignet.

vi

To Damascus, my parents and my wife

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my

supervisor Prof. Eyke Hüllermeier for his invaluable guidance and endless

support throughout this work. Only after having the chance to work

under his supervision and observing the tremendous effort he invests in

his doctoral students, I realized the reason why the German term for the

doctoral adviser is “Doktorvater”, in that his support and care resemble

that of a father. Thank You, Eyke!

I would also like to thank Prof. Jerzy Stefanowski for being the second

reviewer of my thesis; it is a great honor.

I would like to thank all my former colleagues at the Knowledge En-

gineering & Bioinformatics (KEBI) at the Philipps-Universität Marburg

and my current colleagues at the Intelligent Systems (IS) group. Besides

Prof. Eyke Hüllermeier, I had the privilege to co-author papers with Prof.

Jerzy Stefanowski, Dr. Edwin Lughofer, Dr. Robin Senge, Prof. Myra

Spiliopoulou, Prof. Mark Last, Dr. Vincent Lemaire, Dr. Georg Krempl,

Dr. Jean-Luc Bouchot, Dr. Dariusz Brzezinski, Dr. Indrė Žliobaitė, Sonja

Sievi, Tino Noack, Dr. Jöran Beel, Prof. Bela Gipp and Nick Friedrich.

I appreciate the professional support I always received from Dr. Marc

Strickert, the constructive and long discussions about concept change with

Dr. Georg Krempl and the mathematical support with a fuzzy sarcastic

flavor from Dr. Róbert Busa-Fekete.

I would like to give special thanks to my colleagues and friends Dr. Robin

Senge, Dr. Thomas Fober and Dr. Bilal Alsallakh for urging me to finish

the thesis, also for telling me how beautiful life would be when I finish. I

am grateful to all office mates I had in Marburg and Paderborn Dr. Ali

Fallah Tehrani, Patrice Schlegel and Sascha Henzgen.

I appreciate the proficient support from the Marburger RechenCluster 2

(MaRC2), especially from Dr. Thomas Gebhardt, and also the support

I received from the Paderborn Center for Parallel Computing (PC2) and

its technical associate, Axel Keller. I acknowledge the kind administrative

assistance from Elisabeth Lengeling and Christina Lange. Many thanks

to Ludovic Larger for his support in running some experiments and vi-

sualizing their results, and to Rachel Schmidt for proofreading the final

version of this dissertation.

Last but not least, I would like to thank my family in Syria. I give my

sincere appreciation to my parents; their love and support were the torch

that enlightened my way from the moment I decided to study in Germany.

I am full of hope of a reunion with them again in peaceful and safe Syria.

I owe my wife a lot for her patience, unlimited support and reminding me

to sleep every night. To my cousins and friends who lost their lives in the

last five years: You will always be in my mind.

ix

Contents

Contents xv

List of Figures xxi

List of Tables xxiii

1 Introduction 1

1.1 Application Example . 2

1.2 Learning from Data Streams . 3

1.3 Incremental, Adaptive and Evolving Learning 4

1.4 Contribution and Outline of the Thesis 6

2 Background 9

2.1 Machine Learning . 10

2.2 Supervised Learning from Data Streams 11

2.3 Concept Change over Time . 17

2.4 Change Detection Methods . 20

2.5 Adaptive Supervised Learning: Related Work 25

2.5.1 Rule-based learning . 25

2.5.2 Decision trees learning . 27

2.5.3 Instance-based learning . 29

2.5.4 Ensemble methods . 30

3 Instance-Based Classification and Regression 33

3.1 Instance-Based Learning . 33

3.1.1 Classification . 35

3.1.2 Regression . 36

3.2 Instance-Based versus Model-Based Learning 36

3.3 Instance-Based Learning on Data Streams 39

xi

3.4 IBLStreams . 41

3.4.1 Classification . 43

3.4.2 Regression . 44

3.4.3 Parameter adaptation in IBLStreams 47

3.4.4 Implementation issues . 49

3.5 Experiments . 49

3.5.1 IBLStreams versus other instance-based methods 50

3.5.2 Evaluating the parameter adaptation schemes 52

3.5.3 IBLStreams versus state-of-the-art model-based methods . . . 56

3.5.3.1 Classification . 61

3.5.3.2 Regression . 70

3.6 Discussion and Conclusion . 71

4 Evolving Fuzzy Pattern Trees 77

4.1 Introduction to Fuzzy Sets . 78

4.1.1 Operations on Fuzzy Sets . 79

4.1.2 Aggregation Operations on Fuzzy Sets 80

4.2 Data-Driven Fuzzy Modeling . 81

4.2.1 Fuzzy Subsethood-Based Algorithm 81

4.2.2 Fuzzy Decision Trees . 82

4.3 Fuzzy Pattern Trees . 83

4.3.1 Bottom-Up Induction of Fuzzy Pattern Trees 85

4.3.2 Top-Down Induction of Fuzzy Pattern Trees 86

4.4 Evolving Fuzzy Pattern Trees . 88

4.4.1 Performance Monitoring and Hypothesis Testing 89

4.4.2 Summary of the Algorithm . 91

4.4.3 Refinements on the Neighbor Trees Generation 91

4.5 Empirical Evaluation . 94

4.5.1 Performance Comparison . 96

4.5.1.1 Synthetic Data . 96

4.5.1.2 Real Data . 97

4.5.2 Model Size . 97

4.5.3 Sensitivity Towards Significance Levels and Operators Retraining101

4.6 Summary and Conclusion . 103

xii

5 Survival Analysis on Event Streams 107

5.1 Introduction . 107

5.2 Survival Analysis . 109

5.2.1 Censored data . 110

5.2.2 Survival Functions . 111

5.2.3 Estimating the Survival Function 113

5.2.4 Prognostic Factors for Survival 114

5.3 Survival Analysis on Data Streams 118

5.3.1 Left Censoring . 120

5.3.2 Parallel Event Sequences . 120

5.3.3 Adaptive ML Estimation . 121

5.4 Case Study: Earthquake Analysis . 124

5.4.1 Data Generation . 125

5.4.2 Results . 128

5.5 Case Study: Twitter Data . 129

5.6 Conclusion . 134

6 Recovery Analysis for Adaptive Learning 137

6.1 Introduction . 137

6.2 Learning under concept drift . 138

6.3 Recovery Analysis . 139

6.3.1 Main idea and experimental protocol 140

6.3.2 Bounding the optimal generalization performance 142

6.3.3 Recovery measures . 144

6.3.4 Defining pure streams . 145

6.3.5 Further practical issues . 146

6.4 A comparison of algorithms . 147

6.5 Experiments and results . 149

6.5.1 Binary classification . 150

6.5.2 Multiclass classification . 152

6.5.3 Regression . 153

6.5.4 Recovery measures . 154

6.5.5 Summary of the experiments 154

6.6 Conclusion . 155

xiii

7 Conclusion 169

7.1 Original Contributions . 169

7.2 Future Research . 171

A Methods 173

A.1 Adaptive Hoeffding Tree . 173

A.2 Adaptive Model Rules . 174

A.3 Fast Incremental Model Trees with Drift Detection 175

A.4 FLEXible Fuzzy Inference Systems 175

B MOA 179

B.1 Stream Generators . 180

B.2 Online Evaluation . 180

C M-Tree 183

C.1 Distance Function . 183

D Data Sets 185

D.1 Synthetic Data Sets . 185

D.1.1 Hyperplane data . 185

D.1.2 Distance to hyperplane data 186

D.1.3 Random trees data . 187

D.1.4 Radial basis function data . 187

D.1.5 SEA concept functions . 188

D.1.6 STAGGER concept functions 188

D.2 Synthetic Data Manipulation . 189

D.2.1 Concept drift simulation . 189

D.2.2 Sampling drift simulation . 189

D.3 Real Data Sets . 190

D.3.1 Cover type data . 190

D.3.2 Mushroom data . 190

D.3.3 Page blocks data . 191

D.3.4 Letter recognition . 191

D.3.5 StatLog (shuttle) data . 191

D.3.6 Skin segmentation data . 191

D.3.7 MAGIC gamma telescope data 191

D.3.8 Breast cancer Wisconsin . 192

xiv

D.3.9 Parkinson’s telemonitoring data 192

D.3.10 Slice localization data . 192

D.3.11 Bank32h . 192

D.3.12 Census-house . 193

D.4 Event Streams . 193

D.4.1 Earthquake event stream . 193

D.4.2 Twitter stream . 194

E Incremental Statistics 197

E.1 Incremental Moments . 197

E.2 Shifting Moments . 198

Bibliography 199

xv

List of Figures

2.1 The different steps characterizing an adaptive learning system. 15

2.2 The different types of concept change over time. 19

3.1 The instance-based prediction functions for both classification and re-

gression problems. 37

3.2 The IBL approaches that learn from data streams: (a) LWF, (b) TWF

and (c) IBL-DS. 42

3.3 The algorithm for updating the case base in both classification and

regression scenarios. 45

3.4 The algorithm for checking and handling concept drifts in both classi-

fication and regression scenarios. 46

3.5 The algorithm for updating the parameters of IBLStreams. 48

3.6 The change in performance, number of neighbors (k) and kernel width

(σ) when IBLStreams is trained using the different adaptive strategies

on the RBF data. 57

3.7 The decision boundaries of the different IBLStreams’s adaptive strate-

gies on the RBF data. 58

3.8 The change in performance, number of neighbors (k) and kernel width

(σ) when IBLStreams is trained using the different adaptive strategies

on the hyperplane data, with a concept drift. 59

3.9 The decision boundaries of the different IBLStreams’s adaptive strate-

gies on the hyperplane data, with a concept drift. 60

3.10 Classification rate on the pure RBF data set, 2, 3, 4 and 5 classes. . . 64

3.11 Classification rate on the RBF data set, 2, 3, 4 and 5 classes, with a

concept drift. 65

3.12 Classification rate on the pure random trees data set, 2, 3, 4 and 5

classes. 66

3.13 Classification rate on the pure random trees data set, 2, 3, 4 and 5

classes, with a concept drift. 67

xvii

3.14 Classification rate on the real data sets: covertype, MAGIC gamma

telescope and mushroom. 68

3.15 Classification rate on the real data sets: page blocks, StatLog (shuttle)

and skin segmentation. 69

3.16 RMSE for the pure distance to hyperplane data (distance, squared and

cubed distance). 72

3.17 RMSE for the distance to hyperplane data (distance, squared and

cubed distance), with a concept drift. 73

3.18 RMSE for the real data sets: Parkinson’s motor UPDRS, Parkinson’s

total UPDRS and slice localization. 74

4.1 An example of a fuzzy pattern tree, modeling the quality of a red wine

based on its chemical properties, see [145]. 86

4.2 Top-down induction algorithm for learning fuzzy pattern trees, as in-

troduced in [146]. 87

4.3 Algorithm for generating neighbor trees. 92

4.4 The induction algorithm of the evolving fuzzy pattern trees. 93

4.5 Performance comparison between eFPT, Hoeffding trees and IBLStreams

when learning from synthetic data streams. 98

4.6 Performance comparison between eFPT, Hoeffding trees and IBLStreams

when learning from synthetic data streams with simulated concept drifts. 99

4.7 Performance comparison between eFPT, Hoeffding trees and IBLStreams

when learning from real data streams. 100

4.8 Tree size of eFPT and Hoeffding trees when learning from synthetic

data streams. 101

4.9 Tree size of eFPT and Hoeffding trees when learning from synthetic

data streams with simulated concept drifts. 102

4.10 Performance comparison between different eFPT parametrizations (sig-

nificance level and retaining operators) when learning from synthetic

data streams. 103

4.11 Performance comparison between different eFPT parametrizations (sig-

nificance level and retaining operators) when learning from synthetic

data streams with simulated concept drifts. 104

4.12 Number of retrained operators for the different eFPT parametriza-

tions (significance level and retaining operators) when learning from

synthetic data streams. 105

xviii

4.13 Number of retrained operators for the different eFPT parametriza-

tions (significance level and retaining operators) when learning from

synthetic data streams with simulated concept drifts. 106

5.1 The different types of censoring. 112

5.2 Illustration of our setting consisting of a set of J (here J = 6) parallel

data streams: Every stream corresponds to a statistical entity char-

acterized in terms of a vector of covariates. Moreover, each stream

produces a sequence of temporal events (marked by solid squares). A

sliding window (indicated by the grey box) is masking outdated events

that occurred in the past. 118

5.3 Illustration of the shift of the time window: The current window Wt =

[t, t+w] is replaced by the new one Wt+∆t = [t+∆t, t+w+∆t]. While

the status of some of the events changes (filled boxes), the status of the

others (non-filled boxes) remains the same (either outdated or active). 122

5.4 The collected data set of earthquakes, plotted by their geographic co-

ordinates. The data contains earthquakes between the January 1, 2000

until midnight March 27, 2012. (a) earthquakes only; (b) with fuzzy

partitions on the two coordinates; (c) the center longitude fuzzy set af-

ter correction with the haversine formula. The two red lines represent

the Mercator projection of the center latitude fuzzy set. 127

5.5 Coefficients for the areas with significant earthquakes in 2008 and 2011.

The exact date of each earthquake is marked as a dashed vertical line. 130

5.6 The hazard values for the areas with significant earthquakes in 2008

and 2011. The exact date of each earthquake is marked as a dashed

vertical line. 131

5.7 Parameters for the 16 German states together with the base line hazard

α0. BW: Baden-Württemberg, BY: Bavaria, BE: Berlin, BB: Bran-

denburg, HB: Bremen, HH: Hamburg, HE: Hesse, MV: Mecklenburg-

Vorpommern, NI: Lower Saxony, NW: North Rhine-Westphalia, RP:

Rhineland-Palatinate, SL: Saarland, SN: Saxony, ST: Saxony-Anhalt,

SH: Schleswig-Holstein, TH: Thuringia. 135

5.8 Baseline hazard and parameter distinguishing the city of Bremen from

the surrounding state of Lower Saxony. 136

xix

6.1 Schematic illustration of a recovery analysis: The three performance

curves are produced by training models on the pure streams SA and SB,

as well as on the mixed stream SC , each time using the same learner

A. The region shaded in grey indicates the time window in which the

concept drift (mainly) takes place. While the concept is drifting, the

performance on SC will typically drop to some extent. This can be

seen by the drop in the classification accuracy. 141

6.2 Sigmoid transition function modeling different types of concept drift:

slow drift (top), moderate drift (middle), sudden drift (bottom). . . . 150

6.3 Performance curves (accuracy) on the random trees data. The sigmoid

in light grey indicates the range of the drift. The brown line shows the

lower bound on the optimal performance. 157

6.4 Performance curves (accuracy) on the mushroom data. The sigmoid

in light grey indicates the range of the drift. The brown line shows the

lower bound on the optimal performance. 158

6.5 Performance curves (accuracy) on the breast cancer Wisconsin data.

The sigmoid in light grey indicates the range of the drift. The brown

line shows the lower bound on the optimal performance. 159

6.6 Performance curves (accuracy) on the random trees 5-classes data. The

sigmoid in light grey indicates the range of the drift. The brown line

shows the lower bound on the optimal performance. 160

6.7 Performance curves (accuracy) on the page blocks data. The sigmoid

in light grey indicates the range of the drift. The brown line shows the

lower bound on the optimal performance. 161

6.8 Performance curves (accuracy) on the letter recognition data. The

sigmoid in light grey indicates the range of the drift. The brown line

shows the lower bound on the optimal performance. 162

6.9 Performance curves (RMSE) on the distance to hyperplane data, with

a drift from f1 to f3. The sigmoid in light grey indicates the range

of the drift. The brown line shows the lower bound on the optimal

performance. 163

6.10 Performance curves (RMSE) on the distance to hyperplane data, with

a drift from f3 to f1. The sigmoid in light grey indicates the range

of the drift. The brown line shows the lower bound on the optimal

performance. 164

xx

6.11 Performance curves (RMSE) on the bank32h data. The sigmoid in

light grey indicates the range of the drift. The brown line shows the

lower bound on the optimal performance. 165

6.12 Performance curves (RMSE) on the house8L data. The sigmoid in

light grey indicates the range of the drift. The brown line shows the

lower bound on the optimal performance. 166

6.13 Duration versus maximum performance loss of different methods on

the binary classification problems. 167

6.14 Duration versus maximum performance loss of different methods on

the multiclass classification problems. 167

6.15 Duration versus maximum performance loss of different methods on

the regression problems. 168

D.1 The sigmoid function. 189

xxi

List of Tables

3.1 The used data sets with their corresponding parameters for the exper-

iments presented in Tables 3.2-3.5. 53

3.2 Comparing IBLStreams with other IBL approaches on pure data streams. 54

3.3 Comparing IBLStreams with other IBL approaches on streams with a

simulated sampling drift. 54

3.4 Comparing IBLStreams with other IBL approaches on streams with a

simulated concept drift. 55

3.5 Comparing IBLStreams with other IBL approaches on streams with

both simulated drifts: a concept drift and a sampling drift. 55

3.6 The used data sets with their corresponding parameters for the exper-

iments presented in Figures 3.10-3.18. 62

4.1 Fuzzy triangular operators. 81

4.2 The used data sets with their corresponding parameters for the exper-

iments presented in Figures 4.5- 4.13. 95

5.1 A sample earthquake data containing five earthquakes occurred on the

first day of 2012. 125

5.2 A sample Twitter data containing two Twitter messages. 132

6.1 Summary of the learning algorithms and their main characteristics. . 148

6.2 Summary of the data sets used in the experiments. 151

A.1 Summary of the used learning algorithms; with their computational

and structural properties. 177

D.1 A sample earthquake data containing 5 earthquakes occurred on the

first day of 2012. 195

D.2 A sample Twitter data containing two Twitter messages. 195

D.3 Summary of the data sets used in this thesis. 196

xxiii

Chapter 1

Introduction

The information society, in which we are active members, is characterized by the wide

spread of technologies that produce immense amounts of data all the time. These

data emitting technologies are not only limited to expensive machines but range from

cheap sensors and personal smart devices to computer clusters. Artificial intelligence

in general and machine learning in particular are the fields that focus on transforming

data into knowledge through: (i) giving computers the ability to simulate human

intelligence and (ii) utilizing this intelligence to extract forms of knowledge from

data. This learning is achieved by conventional learning techniques that learn from

static data of a limited size, called a batch of data. In order to learn from this static

data, it is assumed that the data is available as a whole and of a size that can be

managed with the available physical resources, i.e., storage, memory and processors.

It is also assumed that the data is created by stationary, not changing with time,

processes.

The need for more practical solutions that can cope with the increasing amount of

generated data has become more present in the last few years. It has been speculated

in [168] that in the year 2020 the size of the generated data would be ten times larger

than what is generated in 2013, namely reaching 44 trillion gigabytes (44 zettabytes).

Learning from such huge amounts of data is clearly not feasible for the conventional

learning methods, which require to learn on the entire data at once. Moreover, relax-

ing both assumptions of availability and stationarity of the data makes conventional

learning approaches deficient to learn models that generalize the data well. This de-

ficiency comes from two reasons: (i) The non-instantaneous availability of the whole

data implies that the data arrives in a continuous manner and forms a stream of

data, often of an infinite length. Therefore, the learner no longer has the freedom

to decide what examples to learn from and how many iterations to perform. Con-

versely, learning from infinite data streams should be performed in a one-pass mode.

1

(ii) When the data generating distribution changes, i.e., learning from non-stationary

environments, the learner becomes challenged by the demand of producing a model

that generalizes the data well at each point in time.

1.1 Application Example

In the following, an example of adaptive learning in a changing environment is illus-

trated.

Imagine an intelligent system called Interesting Topics Only (ITO); as the name

suggests, this system receives news articles and classifies them into interesting and

non-interesting from its user’s point of view. In order to learn the user’s preferences,

the system observes the topics read by the user, learns patterns from them and uses

these patterns to inform the user about interesting articles in the future.

Bob, a 17 years old secondary school student, receives this software from his father

who never had the time to use it. In the following, we depict a hypothetical progress

of how this system could learn, adapt and perhaps react to changes in the user’s

interest.

1. Bob, at this age, reads only news about computer games. Thus, ITO learns to

classify gaming articles as interesting and everything else as not interesting.

2. After half a year, Bob starts thinking about his future career and which uni-

versity to choose after the secondary school; he begins reading articles about

the different career paths and the available undergraduate programs, besides of

course following the news about anything new in the gaming world. ITO now

notices that what it used to predict as interesting remains interesting, whereas

many articles become interesting to Bob despite being classified as not inter-

esting. As a result, the system adapts its learned patterns to integrate the new

type of articles that have become interesting for Bob. This slight change in

Bob’s interest represents what is later on called a “concept drift”; more specif-

ically, it represents an incremental change in the studied concept, i.e., Bob’s

interest.

3. When Bob decides to take a long summer break and stay away from his elec-

tronic devices, his father decides to use the ITO system, which has until now

learned only from Bob’s reading patterns. The father notices that ITO never

suggests articles that are interesting for him; he is not interested in gaming

2

and college programs but in sports and politics. Thus, the father starts reading

what he really cares about, which causes ITO to notice a tremendous change

in the read topics. This change requires a major revision of the learned pat-

terns through learning new patterns about sports and politics and putting aside

previously learned ones. Later on, we call this type of change a concept shift

(sudden/abrupt drift), which causes any previously obtained knowledge to be-

come obsolete.

4. Finally, when Bob comes back and decides to continue using ITO, he realizes

that the system has completely forgotten about his preferences and has become

more personalized to what his father reads. Therefore, Bob starts over by

searching and reading the news he used to read. Similarly, the system also

recognizes a new change from politics and sports to career, universities and

computer games. The recent topics, however, are not ultimately new, but were

already learned in the past. Thus, the system reemploys the patterns already

learned in the past. The type of change, in which the recent problem resembles

some of the learned ones in the past, is referred to as recurrent concept.

1.2 Learning from Data Streams

The learning settings discussed in this thesis differ from the conventional learning

settings. The focus here is on learning from data streams, which have recently gained

an increasing interest by both applied and theoretical computer science, such as infor-

mation theory, statistical learning, distributed and real time systems. A data stream

is a sequence of data items arriving in the course of time [70]. This data is produced

by an underlying hidden process that has a high rate of data generation. Such pro-

cesses include social media and networks, system event logs and sensor networks. The

need to develop new knowledge discovery methodologies to learn from data streams

emerges from the special properties a data stream might exhibit [14]:

� The data samples arrive with a high throughput.

� The continuous arrival of data samples gives them a temporal order. This order

should be respected and taken into consideration, i.e., any shuffling or changing

of the order of the elements would corrupt the temporal relation between them.

� Data streams are by definition massive data, if not even of a limitless length.

This property makes a full storage of the data stream inconceivable.

3

� A single arriving data sample remains transient, i.e. it is discarded after being

processed by the learner, unless a relatively small fraction of the data is explicitly

stored for further inspection.

In order to produce a valid predictive model under such constraints, Domingos

and Hulten [57] describe a number of properties that an ideal stream mining system

should exhibit:

� The learning system should use only a limited amount of memory for processing

each newly incoming data sample, no matter how enormous the already seen

data is.

� The time to process a single sample should be short and ideally constant.

� The stream can be observed only once, i.e., multiple scans of the streams cannot

be realized.

� The incrementally induced model should be equivalent to the model that would

have been obtained through conventional learning (on all data samples seen so

far).

� The learning algorithm should react to concept drift (i.e., any change of the

underlying data generating process) in a proper way and maintain a model that

always reflects the current concept.

1.3 Incremental, Adaptive and Evolving Learning

Learning on data has gained importance in different research areas of artificial in-

telligence. This has led to its independent appearance under different terminologies

based on the nature of the learning methods they emerged in. In the following, we

list the different types of learning and the motivation behind their emergence.

Incremental learning: Incremental learning algorithms try to accomplish a learn-

ing task in an accumulative way. Giraud-Carrier [79] defines a task whose training

examples arrive over time to be an incremental task. A learning algorithm is called

incremental if it produces for the sequence of arriving data examples e1, · · · , en a

sequence of models M1 · · · ,Mn, such that any model Mi+1 is only obtained from

the current observation ei and the previous modelMi−1. Hence, incremental learners

have the memorylessness property [13]. Motivated by this definition, the decision tree

induction algorithm ID5 [169] is an incremental version of the ID3 algorithm [129],

4

due to the way ID5 updates the newly induced tree, by simply updating the counters

kept in the nodes after receiving a new observation.

Adaptive learning: The demand for adaptive learning comes from the need to

update the induced models either upon the arrival of a more recent data [138], or

because of a change in the underlying data generation process, which triggers an

update in the learning strategy as in FLORA [179]. Thus, an adaptive learner,

besides being incremental by nature, should also exhibit the awareness to discover any

potential change in the concept to be learned. Surprisingly, the perceptron learning

algorithm by Rosenblatt [134] would be the first work satisfying the definition of

adaptive learners, due to its iterated adaptation of the learned coefficient vector, thus

diminishing the importance of old observations and increasing the representation of

recent ones. Consequently, any change of the linear decision boundary of a stream

data is guaranteed to be fit.

Evolving learner: The exposure to the same type of problems on data streams has

led to the emergence of the so-called evolving intelligent systems in the research field

of computational intelligence [10, 11]. Soft computing, a paradigm realized in the

form of fuzzy systems, and evolutionary algorithms, realized as genetic algorithms

[80], and genetic programming [101] have incorporated the aspect of evolving the in-

duced systems with time. The term “evolving” should not be confused with the term

“evolutionary”. Evolutionary systems [160] imitate the development of a population

in which the properties of each generation are crossed over, mutated and passed to the

new generation. Only individuals that fit their environment remain to produce the

next offspring, in a way that mimics the natural selection and the survival of the fittest

[44, 162], which takes place in the real world. Evolving systems, on the other hand,

are more concerned about the adaptation of the systems’ structure and parameters

in a non-stationary environment. This learning paradigm mimics the development of

an individual in his environment, by gradually learning from his surrounding. The

concept of evolving systems was first made known in [92, 93] for artificial neural net-

works and in [6, 8] for fuzzy rule-based systems. The notion of evolving fuzzy systems

is used in the field of fuzzy research for learners employing the concepts of fuzzy logic

[12, 110, 11, 111]. Besides being incremental and adaptive, evolving learners allows

for structural adaptation whenever this adaptation improves the performance.

Finally, it is worth mentioning that online learning (OL) is one of the theory-

oriented research areas in machine learning; online learning allows the sequence of

training data to be generated by a deterministic, stochastic or even by an adversarial

process. In the adversarial case, the data generating process is aware of the learners

5

decisions and chooses the true outcome that makes the learner’s prediction incorrect

[158], as in the case of the electronic spamming systems that adapt to spam filters.

In this thesis, we mainly adopt the terminology of both adaptive and evolving

learning.

1.4 Contribution and Outline of the Thesis

The focus of this thesis is on methods for supervised learning on streaming data. In

spite of a significant amount of existing work on this topic, there is arguably a number

of “gaps” to be filled and open questions to be addressed.

First, while model-based approaches to machine learning, such as decision tree

induction, have been explored quite extensively in the context of data streams, com-

paratively little attention has been paid to the paradigm of instance-based learning

so far. In light of a number of potential advantages of the latter, this is indeed

somewhat surprising. In particular, thanks to the “lightweight” nature of instance-

based learning and its conceptual simplicity, instance-based concept representations

are presumably much more flexible and much easier to adapt to changes of a dynamic

environment. Therefore, we develop and implement an instance-based learner called

IBLStreams that is applicable to both classification and regression problems.

In search of experimental procedures that could be used to validate our conjec-

ture and to systematically compare model-based and instance-based methods with

regard to their ability of adapting to concept drift, we found that existing procedures

commonly used in the field are not fully appropriate for this purpose. Therefore, we

propose a new type of experimental analysis, called recovery analysis, which is aimed

at assessing the ability of a learner to discover a concept change quickly, and to take

appropriate actions to maintain the quality and generalization performance of the

model.

Fuzzy machine learning takes advantage of tools and techniques from fuzzy logic

to develop methods for machine learning in general and learning on data streams in

particular. As for the latter, however, the focus has almost been exclusively on the

problem of regression so far. In this thesis, we therefore elaborate on the suitability

on fuzzy methods for classification on data streams. More specifically, we develop

an evolving version of so-called fuzzy pattern tree learning, which has recently been

introduced in [82, 146] as a promising alternative to fuzzy rule models.

Finally, we address so-called survival analysis (also known as event history anal-

ysis) as another data analysis problem that, despite its great popularity in applied

6

statistics, has not been considered in the context of data streams so far. Survival

analysis is about the analysis of temporal “events” or, more specifically, questions

regarding the temporal distribution of (duration between) the occurrence of events

and their dependence on covariates of the data sources. To this end, we develop an

incremental, adaptive version of survival analysis, namely an adaptive variant of a

model that is closely related to the well-known Cox proportional hazard model.

The thesis is outlined in the following way:

� Chapter 2: Background. This chapter offers an introduction to supervised learn-

ing, with focus on learning from data streams; it also presents an overview of

the related work and its development.

� Chapter 3: Instance-Based Classification and Regression. This chapter intro-

duces a nonparametric approach for classification and regression tasks on non-

stationary streams. This approach is an extension of IBL-DS [17], which intro-

duces three important factors that have to be considered when maintaining a

case base of observed examples. These factors are the temporal relevance, the

spatial relevance and the consistency aspect of a training example. Parts of this

chapter were published in [152, 151].

� Chapter 4: Evolving Fuzzy Pattern Trees. This chapter discusses the role of

fuzzy logic in data-driven systems on data streams. Here, we present an evolving

variant of the fuzzy pattern trees which we introduced in [156, 157].

� Chapter 5: Survival Analysis on Event Streams. This chapter introduces a sur-

vival analysis method for streams of events. As a proof of concept, we apply

the proposed method on two types of streams: the stream of occurring earth-

quakes and the stream of Twitter1 data. The work presented in this chapter is

published in [150, 153, 155].

� Chapter 6: Recovery Analysis for Adaptive Learning. This chapter discusses

assessing the learning capability of an adaptive learner; it suggests a new type of

performance comparison based on the learner’s ability to recover after suffering

from a concept drift. Parts of this chapter were published in [154, 149].

The thesis is concluded in Chapter 7, in which we summarize the different methods

developed in the thesis. As a supporting material we add the following appendixes:

1http://www.twitter.com, accessed on October 9, 2015

7

http://www.twitter.com

� Appendix A: Methods. This appendix gives a brief introduction to the ap-

proaches used for comparison throughout the thesis.

� Appendix B: MOA. This appendix introduces the MOA framework, used for

performing the majority of our experiments.

� Appendix C: M-Tree. Here, we introduce the index structure M-Tree.

� Appendix D: Data sets. This appendix explains the utilized real, synthetic and

event data streams, in the thesis. It also explains how the different types of

concept change can be simulated.

� Appendix E: Incremental Statistics. A set of incremental and adaptive descrip-

tive statistical measures are derived in this appendix.

8

Chapter 2

Background

Learning from data streams extends the research area of data mining and machine

learning by forming methods, parallel to the conventional learning methods, that

cover the same topics in the streaming setting.

As previously explained in Section 1.2, streams of data prevail when data sources

cease to generate small amounts of data that can be handled as a single batch and

begin to generate continuous streams of data that are: (i) of a high throughput, (ii)

with an implicit temporal order, (iii) possibility of limitless length and (iv) exhibiting

a potentially changing concept, see [14].

The immense size of the data combined with the changing nature of the learned

concepts lead to the emergence and development of new topics invented to tackle

various learning tasks under the challenge of streamed data. These advancements

lead to the enrichment of machine learning.

Learning from data streams has been considered for many learning tasks such as

supervised learning [67, 1, 69, 106], non-supervised learning [49, 5, 122] and frequent

itemset mining [36, 25, 36, 37]. Many supervised learning methods have been adapted

for the streaming setting such as soft computing [10, 11, 111], active learning [173,

185, 161] and ensemble methods [185, 34, 137, 175].

This thesis mainly develops methods that work in the supervised setting, which

makes other settings less relevant to the discussed topics here, except the work intro-

duced in Chapter 5 which adopts a different type of supervision. For this reason, we

present an overview in Section 2.2 of the related work, with the focus on the super-

vised learning methods on data streams. The work in Chapter 5 develops a survival

analysis method on data streams; this chapter presents its own statistical background

in Section 5.2.

Section 2.1 introduces the definition of a machine learning task and presents the

different types of learning problems. Next, the supervised learning model on data

9

streams is motivated in Section 2.2 and the different types of concept changes are

discussed in Section 2.3. In Section 2.4, an overview of change detection methods is

presented.

2.1 Machine Learning

A non-formal definition of machine learning by Thomas M. Mitchell [119] declares it

as “The field of machine learning is concerned with the question of how to construct

computer programs that automatically improve with experience.” In other words,

for well-defined problems such as matrix multiplication, one can simply design an

algorithm that transforms the two inputs into one output representing the result

of the needed product. Different algorithms may compete in their complexity and

performance, however, they still deliver the same output by definition.

In contrast to the previous problem, the task of recognizing whether an image

depicts an adult male or a female, which is usually simple for humans to solve, is very

hard to transform into a computer program that is able to perform this recognition.

Machine learning aims at granting computers the ability to learn and find suitable

algorithms to solve such problems by only seeing examples and solutions of the studied

problems. The learner should extract knowledge from the presented examples, in

means of the best suitable model, with the aim of producing correct solutions for

similar problems.

For a more formal definition of learning, we use another quote from Thomas M.

Mitchell [119]. “A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P , if its performance at tasks

in T , as measured by P , improves with experience E.” The direct projection of

this definition on the aforementioned example maps the task T to the differentiation

between male and female figures in an image. The experience E is the presented

example image, annotated with the gender of the appearing person. Finally, the

target is to compute predictions, for new images, that are as correct as possible, i.e.

to achieve a high classification rate as a performance measure.

Learning tasks

Machine learning focuses mainly on two tasks, which vary depending on the avail-

ability of a supervision:

Supervised learning: The learner in the supervised setting is expected to model

the relation between an input space X and an output space Y , based on a set of

10

observed examples. The input space serves the role of describing and representing

the experiences to learn from. The output space contains the different values the

prediction can take. A supervised learner tries to model the dependencies between

samples drawn from the space X and their observed target values from Y , i.e. inducing

a model M : X → Y .

In the previous example, the input space X can be the space representing the

n × n pixels in a picture, Y is a dichotomy containing only two values: male and

female. This type of problem is also called classification whenever the prediction

space contains categorical values; the supervised learning task is called regression

when the target space is numerical.

Unsupervised learning: In this setting, the task is to find patterns and relations in

the given data without any awareness of an output, neither in the form of a category

nor in the form of a numeric target value. The most practiced approach of unsuper-

vised learning is clustering. The aim of clustering is to find groupings of the input

data based on different criteria such as their similarity as in k -means [112], density as

in DBSCAN [60], etc. The absence of an objective evaluation criterion of the found

clusters makes clustering of a subjective nature, as stated by [61]: “clustering is in

the eye of the beholder.”

The discussed learning scenarios, most of the time, assume the availability of the

data before initializing the learning process. This assumption enjoys the benefit of

having the whole data set stored on a permanent medium, and fitting it as a whole in

the available memory. This assumption grants the learning process the advantage of

accessing the data multiple times, probably through a number of scans. The resulting

induced model(s) are then validated in order to perform the model selection. Finally,

the selected model is deployed and tested.

2.2 Supervised Learning from Data Streams

This section begins by formally introducing the supervised learning in the batch mode.

Thereafter, we present how the supervised learning should be modeled in the stream-

ing setting.

Supervised learning in the batch setting

In supervised learning, the data space Z is composed of the input space X and the

output space Y , i.e., Z = X × Y . The learning algorithm is then applied to induce

the model M : X → Y , which captures the dependency between the input space

11

and output space. The induction process is carried on a set of training examples

D = {(xi, yi)}Ni=1 ⊂ Z, whose examples are assumed to be independently sampled

and identically distributed. A learning problem is a classification problem when the

space Y is a set of categories, e.g., the supervised problem on the output space

Y = {c1, . . . , ck} defines the k-class classification problem.

With H being the set of all possible hypotheses inducible by a learning algorithm,

the risk of adopting the hypothesis h ∈ H is the expected committed error

R(h) = E[l(h(x), y)] =

∫
l(h(x), y) dP(x, y) ,

such that l : Y × Y → R is a loss function which quantifies the committed failure

when predicting h(x) instead of y. The expectation, in the expected risk, is taken

with respect to an underlying probability measure P on Z = X ×Y . This probability

measure formally specifies the data generating process. A learning algorithm would

optimally aim at finding the hypothesis h∗ at which the risk is at its minimum, i.e.,

h∗ = argminh∈HR(h).

However, h∗ can not be computed mainly because of the unknown probability

measure P(x, y). Therefore, this hypothesis can be approximated by ĥ, the hypothesis

that minimizes the empirical risk (the average loss committed on the training set)

Remp(h) =
1

N

N∑
i=1

l(h(xi), yi) .

The empirical risk minimization, as an induction principle, produces

ĥ = argmin
h∈H

Remp(h)

as a result of minimizing the loss on the training data. This approach might fail

in producing a hypothesis that generalizes well as a result of either overfitting the

training data, which becomes more probable for hypothesis spaces of large capacities,

or underfitting when H is very small.

Other induction principles, such as the structural risk minimization (SRM) [170]

balances between the empirical risk and the complexity of a hypothesis class. The

minimum description length (MDL) principle [132] offers the tradeoff between the

empirical risk and the length of the hypothesis.

Practically, a validation set, sampled according to the same probability measure

P, can be used to produce a more accurate estimate of the generalization performance;

the performance on the validation set can be used for model selection in which the

12

complexity and the parameters of the model can be chosen. A practical realization of

SRM can be achieved using regularization in which both the loss and the complexity

of the model are minimized.

The choice of the loss function l depends mainly on the learning problems. The 0-1

loss is commonly used for classification problems (as long as the classes are balanced

and the cost of a misclassification is the same for all classes), and it is defined for the

example (x, y) ∈ X × Y as

l(h(x), y) =

{
0 if h(x) = y
1 if h(x) ̸= y

. (2.1)

When the output space Y is a totally ordered set, i.e., equipped with the strict

total order relation ≺⊆ Y2, the problem is then called ordinal classification. This

total order relation allows us to write output space as Y = {c1, . . . , cn} where ∀i, j ∈
{1, . . . , |Y|} : ci ≼ cj ⇔ i ≤ j. In the ordinal case, the 0-1 loss can be replaced by the

absolute error loss ℓ(cj, ci) = |i− j| when predicting cj instead of ci for the example

(x, ci) ∈ X × Y .

The supervised problem becomes a regression problem when Y = R; for regression

problems, the squared loss

l(h(x), y) = (h(x)− y)2 , (2.2)

is often utilized.

Supervised learning in the streaming setting

This setting considers that an algorithm A is learning on a time-ordered stream of

examples S = (z1, z2,z3, . . .), where each data item zt is a tuple (xt, yt) ∈ X × Y .

At every time point t, the algorithm A is supposed to offer a predictive model

Mt : X → Y that is learned on the data seen so far, i.e., on the sequence St =

(z1, z2, . . . , zt). Given a query input x ∈ X , this model is used to produce a prediction

ŷ =Mt(x) ∈ Y ;

the committed loss by this prediction is measured by l(Mt(x), y), where the loss

function l is chosen based on the type of the learning problem.

If the algorithm A is truly incremental, it will produce Mt solely on the basis of

Mt−1 and zt, that is,Mt = A(Mt−1,zt). In other words, it does not store the entire

sequence of previous observations z1, . . . , zt−1. Many algorithms, however, store at

least a synopsis of the most recent observed data, which can then be used for model

13

adaptation. In any case, the number of observations that can be stored is normally

assumed to be finite, which excludes the possibility of memorizing the entire stream.

On the other hand, a batch learner AB would produce the modelMt on the basis of

the complete set of data {z1, . . . , zt}. Although A and AB have observed the same

data, AB can exploit this data in a more flexible way. Therefore, the models produced

by A and AB will not necessarily be the same.

Next, driven by the aforementioned difficulties while learning from data streams,

we show how the supervised learning should be performed. The learning process is

optimally defined as a pipeline of modular tasks, in such a way that serves the purpose

of the incremental/adaptive learning, see Figure 2.1. The incremental learning process

[76] is triggered at the arrival of each new instance; this process is characterized by

the following steps:

� Observation: Observing a data sample x for which the target value y is not

known yet.

� Prediction: At this step, the learned model is applied to make the prediction ŷ,

based on the data seen in the past and realized in the learned model’s structure

and parameters.

� True outcome: The true target value y may or may not be observed in the fu-

ture. Despite the uncertainty of observing y, this observation could arrive after

a time delay of a variable length, depending on the task the adaptive system is

trying to solve. The existence of the observation x and its corresponding target

value y, constitutes a data sample (x, y) for further processing.

� Loss estimation: The observed data sample (x, y) is a good candidate to judge

the induced model’s performance. This is achieved by calculating the committed

loss by predicting ŷ instead of y. The loss is a measure whose definition varies

depending on the learning task.

� Drift detection: Ideally, change detection methods try to detect a change in

the data generating distribution; this requires the approximation of the entire

probability distribution. Instead, many detection methods try to cumulatively

estimate statistical moments or some of the assumed data generating distri-

bution’s parameters upon observing the stream of (x, y) pairs. A change in

the estimated moments, or parameters, over time supports the learning process

with an indication of a change in the data generating process. This detection

strategy informs the learning process about any change in the observed data.

14

x

y

y

x

y

y

x

y

y

x

y

y

x

y

y

x

y

y

x

y

y

x

y

y

A d a p t iv e L e a rn in g S y s tem

lo
s
s
e
s
ti
m
a
ti
o
n

d
ri
ft
d
e
te
c
ti
o
n

prediction learning

tr
u
e
o
u
tc
o
m
e

o
b
s
e
rv
a
ti
o
n

data generation process

x x

y y

y

y

Figure 2.1: The different steps characterizing an adaptive learning system.

� Learning: Finally, the learner has the chance to incrementally/adaptively learn

from the fully observed new sample (x, y).

The evaluation of an evolving classifier learning from a data stream is clearly a non-

trivial issue. When compared to standard batch learning, single-valued performance

cannot represent the properties of the learned model in a non-stationary environment.

Two different evaluation scenarios can be applied on the previously defined learning

process:

� Holdout evaluation

The holdout technique is a generalization of the cross-validation technique com-

monly used in the batch mode. In this technique, each new example is used

either in the testing or the learning phase. The two phases are interleaved as

follows: the model is trained incrementally on one block of instances and then

evaluated (but no longer adapted) on the next block of instances, then again

trained on the next block and tested on the subsequent block, and so forth. The

training and the testing blocks do not need to be of the same size. The holdout

15

error at the time point i is

erri =
1

M

i∑
j=i−M

l(h(xj), yj) , (2.3)

where M is size of the testing block.

� Test-then-train evaluation

While the holdout technique uses an instance either for training or testing,

test-then-train utilizes each instance for both: First, the model is evaluated

on the instance, and then a single incremental learning step is carried out.

This technique can be applied to compute different evaluation measures: the

prequential error, the prequential error with a fading factor or the error on a

sliding window.

The prequential measure [48] updates the prediction error cumulatively on each

new observation. At the ith time point, the number of committed errors is

Si =
i∑

j=1

l(h(xj), yj) = l(h(xi), yi) + Si−1 . (2.4)

Hence, the average error in erri = 1
i
Si. The prequential error using a fading

factor (exponential weighting) [74] is

erri =
Si

Bi

=
l(h(xi), yi) + αSi−1

1 + αBi−1

, (2.5)

where α ∈]0, 1[is the forgetting factor and B1 = 1.

The advantage of applying the test-then-train evaluation scenario is that all

instances are employed for both testing and training, without any loss of infor-

mation that is being kept in the holdout instances as in the previous evaluation

method. A holdout block does not only hide vital information, that supports in

updating the trained model, but also causes a delay in detecting an occurring

concept change during the holdout phase.

The so far discussed evaluation methods assess the predictive performance of the

supervised learner. This performance depends only on how well the induced model

generalizes and how accurate its predictions are. There are other non-functional prop-

erties that need to be considered by the learner, without which learning would not be

feasible in the streaming setting. These requirements include the run time required

to learn a model, compute predictions and update the learned model. Moreover,

16

the consumed resources such as the needed memory to learn, read/write operations,

network communications and CPU usage (CPU time) are important factors to esti-

mate the cost of each method. Bifet et al. [26], employ the RAM-Hours evaluation

measure of the consumed memory by an adaptive learner. In this thesis however,

we only focus on the predictive performance of the learners and on their ability to

recover their original performance after a concept change. The main reason for not

considering other cost measures is that almost all learning methods offer the tradeoff

between performance on one hand and runtime and utilized resources on the other

hand.

2.3 Concept Change over Time

In the conventional supervised learning setting, the data generating process (the

probability measure P on Z = X ×Y) is assumed to be stationary; it is also assumed

that examples are independently sampled according to P.

Under the assumptions of stationarity and independence, each new observation

zt is generated at random according to P, i.e., the probability to observe a specific

z ∈ Z is given by1

P(z) = P(x, y) = P(x) ·P(y |x) (2.6)

= P(y) ·P(x | y) . (2.7)

P(y) represents the probability distribution in the output space, or the so-called

prior. The conditional probability P(y |x) is the posterior probability, which is the

probability of observing y after observing x.

Giving up the assumption of stationarity (while keeping the one of independence),

the probability measure P generating the next observation may possibly change over

time. Formally, we are not dealing with a single measure P, but with a sequence

of measures (P1,P2,P3, . . .), assuming that z is generated by Pt. One speaks of a

concept change if these measures are not all equal [94]. Gama et al. [76] present in

their survey paper a coherent taxonomy of the different types of concept change and

maps them to the change of the underlying distributions. Thus, we distinguish three

types of concept changes:

� Real concept change is defined by the change in the posterior P(y |x)2.

1We slightly abuse notation by using the same symbol for the joint probability and its marginals.
2This type of change is known as concept shift in [139], despite the fact that recent works preserve

the term shift to indicate the rate of change, and is called a conditional change in [77].

17

� Virtual concept change is the change of the data’s probability P(x) in (2.6),

i.e., the distribution of the inputs [178]. This change may or may not cause a

change in the concept, i.e., the conditional distribution P(y |x) [167, 178]. A

listing of the different definitions of virtual changes in the literature is presented

in [76] as:

– The term “virtual drift” was initially defined in [178] as a phenomenon

caused by the insufficient knowledge about the data distribution and not

by a change.

– A virtual concept change makes the revision of the induced model necessary

due to the change in the data distribution, as proposed by [167].

– A drift is referred to as virtual if its target concept remains unaffected [51].

– A virtual drift is called a sampling shift in [139], a temporary drift in [104]

and a feature change in [77].

� Global and local concept change [167] are properties characterizing the scale

in which the change occurs, independent of its nature (real or virtual). Unlike

global drifts, local drifts occur in a subspace or a partition of the input space

X .

The problem of concept change over time has a second important criteria, namely

the rate of change, at which the new concept appears and replaces the previously ob-

served concept. This thesis relies on the terminology defined in [171], which classifies

the different types of concept change into categories based on the pattern at which

the new concept replaces the old one, as presented in Figure 2.2:

� Concept shift refers to the abrupt/sudden change in the generating process,

that is the probability measure Pt is very different from Pt−1. Hence, the new

concept has to be learned and any learned concept becomes out of date.

� Gradual drift refers to a progressive change of the data generating process, such

as the change from P1 to P2. A gradual drift starts at time t1 and ends at

time t2 when the measures P1 and P2 are sampled at the time t ∈ [t1, t2] with

probabilities λ(t) and 1−λ(t), respectively. The function λ(t) is a monotonically

decreasing sample probability, with λ(t) = 1 for any t ≤ t1 and λ(t) = 0 for any

t ≥ t2.

This gradual change occurs through the increase of the rate at which the second

measure P2 is applied, accompanied by the simultaneous decrease of the rate of

18

ti
m
e

incremental
drift

gradual
drift

concept
shift

recurring
concept

Figure 2.2: The different types of concept change over time.

19

applying the first measure P1. As a result, aged examples may remain partially

consistent with the current measure. The gradual change, from P1 to P2, occurs

by having samples from the first measure P1 with a probability close to 1 at the

beginning of the drift, this probability decreases monotonically until it vanishes

at the end of the drift, causing the measure P2 to be the dominant one.

� Incremental drift refers to the smooth transition between two probability mea-

sures, e.g., change from Pt1 to Pt2 . An incremental drift occurs at time t1 and

ends at time t2 when the intermediate measures Pt1+1,Pt1+2, . . . ,Pt2−2,Pt2−1

are sampled at the times t1+1, t1+2, . . . , t2−2, t2−1, such that the distributions

Pt and Pt−1 are statistically indifferent. As an example, one could imagine the

measures to be the Gaussian distributions Pt1 ∼ N (µ1, σ
2
1), Pt2 ∼ N (µ2, σ

2
2).

The incremental change occurs when generating the data from intermediate dis-

tributions, by shifting the mean slightly from µ1 to µ2 and the variance from

σ2
1 to σ2

2.

� Recurring concept is the concept that occurs at least once after its disappearance

from the data.

Finally, it is worth mentioning that Webb et al. [176] propose the first attempt to

characterize the different types of concept change in a formal framework.

2.4 Change Detection Methods

In order to meet the requirements of learning from non-stationary data streams, a

learning algorithm needs to be aware of any change in the data generating process

that could invalidate the learned model. Such an awareness could be achieved by

either (i) directly inspecting the arriving data and checking them for a change or (ii)

by observing how the performance of the learned model changes in the course of time

and triggering a change whenever this performance significantly deteriorates. In the

following, we describe the most applied change detection methods, as reviewed in the

surveys [76, 106, 53]:

Classifier-dependent detection methods

This type of detectors uses a change detection strategy that compares the perfor-

mance of the current model with the best achieved performance up to now, under

the assumption that the best performance corresponds with no change in the target

concept.

20

� Statistical process control (SPC) is a family of statistical methods that can be

applied to monitor and control processes, such as industrial processes, in order

to keep them in an optimal sustainable operation mode. Different variations of

this method have been adapted and applied for detecting drifts [97, 72, 15].

Drift detection method (DDM), proposed by Gama et al. [72], is one of the

early adaptations of SPC for detecting drifts. For a stream of instances (xi, yi)

and their assigned predictions ŷi, the zero-one loss function l computes the

disagreement between the true class and the prediction, i.e., li = I(yi ̸= ŷi),

where I is the indicator function. The committed error on one example, with

the binary values it takes, forms a Bernoulli trial. As a result, the number of

errors committed on a sample of n instances follows the binomial distribution,

provided they are independent. For the ith sample, pi is the probability of being

assigned the wrong class with the standard deviation σi =
√
pi(1− pi)/i. These

values are incrementally updated on the observed stream. DDM keeps track of

the best observed performance by storing the variables pmin and σmin. These

variables are updated (pmin = pi and σmin = σi) whenever pi +σi < pmin +σmin

is satisfied after observing the ith example. The confidence interval pi ± zσi,
such that z depends on the desired confidence level α, helps in defining the

following three states for change detection:

– In-control state is the state at which the prediction performance does not

seem to exhibit any change. The system is in this state as long as pi +σi <

pmin + 2 · σmin.

– Out-of-control state is the state at which the error has significantly in-

creased, which requires a suitable model adaptation in order to recover

the drop in performance. The system is in this state whenever pi + σi ≥
pmin + 3 · σmin.

– Warning state is the state at which the error has increased without reaching

the critical level. This state occurs when the system’s performance lies

between the two previous states.

� Early drift detection method (EDDM) [15] builds upon the previously discussed

DDM method in order to shorten the temporal gap between the drift and its

detection. The problem with the previous method is that the more we see

data the more resistant becomes pi towards slow and gradual changes. EDDM

on the other hand considers the number of correct predictions between two

21

misclassification cases instead of the error rate. This method uses p
′
i as the

average number of correct predictions between two wrong predictions and σ
′
i is

its standard deviation. Similar to the DDM, the system is in the warning level

when (p
′
i + 2 · σ′

i)/(p
′
max + 2 · σ′

max) < α and in the drift level when (p
′
i + 2 ·

σ
′
i)/(p

′
max + 2 · σ′

max) < β, such that α and β takes the values 0.95 and 0.90

respectively.

� EWMA for concept drift detection (ECDD) [135] employs an idea similar to

SPC for detecting drifts. This is achieved by observing the change in the expo-

nentially weighted moving average (EWMA) [133], which progressively down-

weights older observation in order to form a more recent estimate of the av-

erage Zt = (1 − λ)Zt−1 + λXt, with X0, . . . , Xt, . . . are independent random

variables with a known mean µ0 and standard deviation σX . Roberts [133]

shows that the mean of Zt is µZt = µ0 and the standard deviation is given

by σZt =
√

λ
2−λ

(1− (1− λ)2t)σX . EWMA detects a change in the mean Zt,

from µ0 to the unknown mean µ1, whenever the difference between Zt and µ0

exceeds a certain threshold, i.e., Zt > µ0 + LσZt , where L is the control limit

which determines how sensitive the detection should be.

ECDD changes the EWMA method in order to avoid the assumption of knowing

µ0 before the change. It defines the variable p̂t = t−1
t

ˆpt−1 + 1
t
Xt for the exact

average of all past observations, which weights all observations in the same way.

ECCD assumes that the random variables are Bernoulli random variables repre-

senting a stream of binary prediction errors. A change is detected in this binary

stream whenever Zt > p̂t+Lσ̂Zt , such that σ̂Zt =
√

λ
2−λ

(1− (1− λ)2t)p̂t(1− p̂t).

� Adaptive windowing (ADWIN) [21, 20] is a drift detection method that, in-

stead of sliding a window over only the recent samples, shrinks the window of

observations whenever a change is detected. In this way, the expected value of

the observations in the remaining part and the removed part of the window are

guaranteed to be different, with probability of 1 − δ. ADWIN2 [21, 20] is de-

veloped as an efficient alternative to ADWIN; it needs to check only O(log(n))

sub-windows for the shrinkage, where n is the size of the window. ADWIN2 ac-

complishes this by approximating the window through storing only a variation

of exponential histograms [46].

Classifier-independent detection methods

This category of methods is dominated by parametric statistical tests that put as-

sumptions on the population, from which data is sampled. Many statical hypothesis

22

testing methods can be applied to detect changes in the data generating process. The

choice of the most suitable hypothesis test depends on the wanted change criteria

reflected in the design of the null hypothesis. In the following, we explain a number

of important methods of that kind as reviewed in the survey paper [106], without any

claim to completeness:

� The Welch’s t-test is a two-samples test used to check whether two normally

distributed populations have the same mean. This test differs from Student’s

t-test in that Welch’s t-test allows the population’s variances to be unequal.

From the two samples X1, X2 of different sizes N1 and N2, the test statistic is

t =
X̄1 − X̄2√

s21
N1

+
s22
N2

,

where X̄1, X̄2 are the sample means and s21, s
2
2 are the sample variances ofX1, X2,

respectively. The t-distribution, with a degree of freedom based on the sizes and

the variances of the two samples, is then applied to test the null hypothesis that

the means of the two populations are equal.

� The Kolmogorov-Smirnov test is a two-sample test for the null hypothesis that

two samples are drawn from the same distribution. This is achieved by tak-

ing the supremum distances between the two empirical cumulative distribution

functions. More formally, for the samples X1 and X2 of sizes N1, N2 respectively,

the test statistic becomes

d = sup
x
|F1(x)− F2(x)| .

The null hypothesis is then rejected with confidence α when d > c(α)
√

N1+N2

N1N2
,

where c(α) is found in the Kolmogorov-Smirnov table.

� Sequential probability ratio test (SPRT) [174] is a statistical hypothesis testing

method for sequential data. For the sequence Xn = x0, . . . , xn of the inde-

pendent samples, SPRT tests the null hypothesis that at the sample xw, with

1 < w < n, the data generating distribution does not change from p0 to p1 .

The cumulative variable Sn holds the log ratio of the two likelihoods: the like-

lihood of xw, . . . , xn being generated by the distribution p0 over the likelihood

23

of xw, . . . , xn being generated by the distribution p1. Sn takes the form

Sn = log
P(xw, . . . , xn; p0)

P(xw, . . . , xn; p1)

=
n∑

i=w

log
P(xi; p0)

P(xi; p1)

= Sn−1 + log
P(xn; p0)

P(xn; p1)
.

The incremental observation of the samples is continued as long as Sn remains

in a user-defined interval [a, b]. The stopping rule is then activated whenever

Sn /∈ [a, b]; such that H0 is accepted when Sn ≥ b and H1 is accepted when

Sn ≤ a. The choice of a < 0 < b < ∞ depends on the acceptable type I and

type II errors.

� The cumulative sum (CUSUM) [125] is a method that triggers a change signal

when a parameter of a probability distribution changes. The cumulative variable

Sn is defined as

Sn = max(0, Sn−1 + xn − wn) ,

such that Sn = 0 and wn is the weight for the sample xn. CUSUM resembles

SPRT when wn is chosen to be the likelihood of xn. On the other hand, it

detects the change only in one direction, in the positive direction in the previous

formulas.

� Page-Hinkely test (PH) [125] indicates a change whenever the average of Gaus-

sian random variables significantly changes. This is accomplished through the

continuous update of the variables mn and Mn at the time point n:

mn =
n∑

i=1

(xi − x̄i − δ) = mn−1 + (xn − x̄n − δ)

Mn = min(mn,Mn−1) ,

with x̄i = 1
n

∑n
i=1 xi and δ represents the tolerance towards the allowed change.

The PH test simply monitors the quantity PHn = mn −Mn. A change of the

mean, in the positive direction, is triggered whenever the PHn > λ, where λ

corresponds to the tolerance towards type I error.

24

2.5 Adaptive Supervised Learning: Related Work

In this section, a review of the most relevant work to our thesis is presented and

categorized into four categories: rule-based, tree-based, instance-based and ensemble

methods.

2.5.1 Rule-based learning

Expert knowledge systems often take the form of a set of rules that describe the

behavioral properties of an operational system, in means of a reaction/output for an

action/input. The tremendous increase of the available data and the changing nature

of the data generating processes have led to the need for decision support systems

that can learn, evolve and adapt such rules from the available data autonomously.

In the following, we present a list of adaptive rule-based systems; these systems are

for classification problems, unless otherwise stated. These approaches are given, in

chronological order, by:

� STAGGER [142] is the first approach that addresses a solution for concept drifts

via incremental concept learning. It operates by finding a symbolic represen-

tation of the hidden concept (learning the concept by inspecting the instances

with the positive class label). The concept is represented through a set of rules

with conjunctive and disjunctive operators between their literals. The search

is achieved in a similar way to the search in the version space [120], except

that (i) the starting point here is the single literals, (ii) the generalization is

accomplished by adding more disjunctive conditions and (iii) the specialization

is achieved by adding more conjunctive conditions. Pruning and backtracking

through the search process guarantees to reflect any concept drift on the found

representations.

� Floating rough approximation 4 (FLORA4) [179] is an approach from the family

of rule-based algorithms, which keeps a concept description in means of three

types of propositional predicates: (i) predicates that cover only positive ex-

amples, (ii) predicates that cover only negative examples and (iii) predicates

that cover both types of examples. Predicates of each type are accompanied

by their support, the number of examples covered by each predicate. A predi-

cate is moved from one set to the other depending on the change of its purity.

FLORA2 applies a window adjusted heuristic (WAH) in order to cope with

concept changes in the setting of incremental concept learning from a stream

25

of objects. This heuristic calls for shrinking the window size of the covered

examples whenever a drop in the performance is detected.

� Fast and adaptive classifier by incremental learning (FACIL) [63, 64] introduces

an adaptive method for learning a rule-based system incrementally from a data

stream. Learned rules are handled based on their purity, the ratio between the

number of covered instances belonging to the majority class to the total number

of covered examples. On the arrival of new samples, a decision is made based

on the following ordered criteria:

1. If a consistent rule that covers this sample is found, the purity of this rule

is increased.

2. If no covering consistent rule is found, the consistent rule with the min-

imum generalization cost is chosen and generalized, as long as this cost

does not exceed a given threshold.

3. Otherwise, the purity of inconsistent rules, covering this example, is de-

creased.

4. If none of the past criteria is satisfied, a new rule consistent with this

sample is created. Rules that have purity lower than a predefined threshold

are removed and replaced by less general consistent rules.

� RILL [50] is an adaptive rule-based algorithm that reserves a set of rules and

instances. On the arrival of a new instance, which is not covered yet by any

of the learned rules, the nearest rule is retrieved and generalized until it covers

this instance. The generalized rule is only accepted when this generalization

does not drop the purity of the original rule, otherwise it is retracted and the

new instance is simply added to the set of rules.

� The field of soft computing has also developed its own incremental data-driven

fuzzy rule-based approaches for regression problems, such as FLEXFIS [110] and

eTS+ [7]. These two methods learn the so-called Takagi-Sugeno-Kang (TSK)

fuzzy system [165], which consists of TKS rules, each of which has a linear

function in the consequent part. The rules are learned in an online manner,

after the application of incremental clustering. Despite their similarity in the

learned models, FLEXFIS and eTS+ technically differ in the way they learn

and update the rules’ antecedents and consequent.

26

� In the recent years, adaptive rule learning has witnessed a leap in the complex-

ity of the learned rules. AMRules, for example, is a rule induction method for

regression on data streams [4]. Each rule is specified by a conjunction of literals

on the input attributes in the premise part, and a (linear) function minimiz-

ing the root mean squared error in the consequent. Rules are incrementally

added on the basis of Hoeffding’s bound [81] and their performance is moni-

tored by the Page-Hinkley (PH) test [121], such that a rule is pruned as soon

as its performance drops due to a concept change. AMRules can be seen as

an extension to the very fast decision rules (AVFDR) classifier [99] in order to

solve regression problems with model rules. Very fast decision rules (VFDR)

[71] incrementally induce a compact set of decision rules form a data stream; it

is extended by AVFDR to detect and react to changing data by applying SPC,

see Subsection 2.4.

In this work we choose to compare our proposed methods with AMRules and

FLEXFIS. This choice is based on the following reasons: (i) They are considered

as the state of the art rule-based evolving methods. (ii) The availability of their

implementations. For more details, a comprehensive explanation of AMRules and

FLEXFIS is added in Appendix A.2 and Appendix A.4, respectively.

2.5.2 Decision trees learning

A decision tree is a tree-shaped hierarchical arrangement of conditions that follows the

concept of divide-and-conquer. Each of the tree’s internal nodes contains a condition

or “test” on one of the attributes describing the data; each outcome of the test is

represented by an edge leading either to an internal node or to a leaf node. Each leaf

node is assigned a class label, i.e., the decision on how an example should be classified

if it falls in that leaf node. Common approaches that induce decision trees such as

ID3 [169], CART [31] and C4.5 [130], induce trees by replacing a leaf node with an

internal node, whenever this replacement decreases the information entropy, such as

Shannon entropy [159].

Each new example traverses from the root to one of the leaf nodes, at the evalu-

ation time. The path this traversal takes depends on the satisfaction of the internal

nodes’ conditions.

The following list shows decision tree induction methods, that are scalable for the

large data sets:

27

� SLIQ [117] is a scalable decision tree induction method that is designed for

very large data sets. It optimizes the split tests using a pre-sorted list that is

prepared once for all available data. In addition, SLIQ applies MDL (minimum

description length) pruning strategies.

� SPRINT [148] avoids the drawback of SLIQ when dealing with large amounts

of data by eliminating the need for centralized memory-resident structures and

presenting a parallel classifier as a substitute for the serial execution of the

decision trees.

� RainForest [78] proposes modifications over SPRINT’s approach when learning

the decision tree. The authors replace the sorted list by the statistics of all plau-

sible predicates at each internal node. Consequently, the splitting conditions

can be evaluated and tested more efficiently instead of reiterating the whole

examples. As a result, large data sets can be used for learning by considering

their statistics instead of the sorted list on their attributes as in SPRINT.

The aforementioned approaches may be appropriate for large data sets, however,

they suffer from two problems: (i) they lack the ability to cope with the continual

arrival of infinite streams and (ii) they are incompetent to adapt to concept changes.

The following depicts a description of the state-of-the-art incremental decision tree

induction methods, that are designated for learning on data streams:

� The Hoeffding tree [56] is an incremental decision tree approach, tailored for

classification on data streams. It tries to address the first problem using an

algorithm that meets the decision of replacing a leaf node by an inner node

after seeing an adequate amount of samples, based on statistical hypothesis

testing. More specifically, Hoeffding’s bound [81] is used to check whether the

information gain of an alternative attribute is significantly higher than the gain

of the currently chosen attribute.

Hoeffding’s bound states that with probability 1− δ, the difference between the

empirical mean and the true mean of a random variable r, with P[a ≤ r ≤ b] = 1

and R = b− a, would not exceed

ϵ =

√
R2 ln 1/δ

2n
(2.8)

after observing n samples.

28

Hoeffding tree uses this bound to compare the difference between the informa-

tion gains of the two best splitting attributes Xa and Xb, assuming that Xa is

better than Xb, i.e., ∆Ḡ = Ḡ(Xa)− Ḡ(Xb) > 0.

� An adaptive version of the Hoeffding tree (AdpHoef) is presented in [23]. This

algorithm maintains a drift detection statistic in each node to judge the com-

patibility of the current tree/subtree with the latest seen data. For each of these

nodes, an alternative tree is maintained and learned on the recent data only.

Whenever the drift detector signals a change at a node, the subtree rooted at

that node is replaced by the alternative tree. This variant of Hoeffding trees

employs the ADWIN [22] technique, a parameter-free method for detecting the

rate of change in data streams.

� Rutkowski et al. [136] show that Hoeffding’s bound is misapplied in all Ho-

effding tree approaches, mainly because the bound is not applied on the mean

of the observed samples (the differences between the information gains of two

different attributes), but on a function (the information gain) on the sample

mean. As an alternative, they propose applying a different bound, derived from

the McDiarmid’s inequality [116], for inducing a decision tree on data streams.

The results of the new approach were not satisfactory, as a result of the wide

bound of McDiarmid’s inequality, which led to a fewer number of splits, smaller

trees, under-fitting the data and causing a poor generalization performance.

In our experiments, the Hoeffding tree and its alternative AdpHoef are used for

comparison on classification problems and, therefore, are explained in Appendix A.1.

Rutkowski’s modifications on Hoeffding tree [136] is not considered for comparison as

it never performs better than the Hoeffding tree.

2.5.3 Instance-based learning

Another approach for prediction is to find solutions for new problems based on their

similarity to already known ones, without extracting any dependencies between the

example’s features and the output space. The class of learning methods that fol-

lows this concept is called instance-based learning (IBL), which includes case-based

learning [163, 140, 98] and k-nearest neighbor [40]. Instance-based learning methods

also belong to the lazy learning paradigm [2], mainly because the learner delays the

analysis until the prediction phase.

Nearest neighbor (NN) approaches were first applied as non-parametric statistical

estimators in the field of pattern recognition by [143, 123]. The k-nearest neighbor

29

(k-NN) is a natural generalization of the nearest neighbor approach, in which the

set of the k closest neighbors is consulted for prediction instead of consulting only

the closest neighbor. Although k-NN is a consistent estimator [126, 109] for density

functions (when k is adopted properly as a function k(|D|) of the data size), it cannot

technically cope with infinite data streams nor can it sustain its consistency when the

observed concept changes.

The following is a list of IBL methods that are tailored for adaptive learning on

data streams:

� Locally-weighted forgetting (LWF)[139] is an adaptive instance learning algo-

rithm that considers the spatial aspects during the instance accumulation phase,

such that examples in the neighborhood of a newly added example are weakened

by decreasing their weights. Thereafter, examples with a weight lower than a

predefined threshold are discarded.

� Time-weighted forgetting (TWF)[139] is an instance-based learner that lessens

the weights of examples based on the temporal aspect. An example is removed

when its weight becomes smaller than a predefined threshold.

� Instance-based learning on data streams (IBL-DS)[17] is one of the pioneering

IBL approaches, due to its contribution in coining the guidelines an adaptive

instance-based learner should consider. They introduce three relevance factors

that need to be fulfilled when deciding to keep a new example: (i) the spatial

relevance, (ii) the temporal relevance and (iii) the consistency.

Chapter 3 elaborates more on the approaches above and shows a systematic com-

parison with IBLStreams, our IBL approach for learning on data streams.

2.5.4 Ensemble methods

Ensemble methods train a set of models on the training data set; in this way, a

prediction problem can be solved collectively by consulting the set of learned models

instead of depending on a single model. Training the ensemble on the same data

would lead to an ensemble with clones of the same model, which would make the

ensemble redundant and the training cost non-beneficial. Thus, ensemble learning

focuses mainly on how to obtain a diverse set of trained models. The second focus

concerns the aggregation of the different decisions of the trained models, which is

often solved by simply taking the majority vote.

30

� Bagging [30] is one way of learning a diverse set of models; it maintains a set

of learned models trained by the same base learner. Each model is learned

on a new replication of the training set D, sampled with replacement. Each

replication has the same size M = |D|. In this way, and for a large M , each

training example is chosen with probability 1−(1−1/M)M for each replication.

Similarly, each replication contains k copies of a training sample with probability

of
(
M
k

)
(1
M

)k(1 − 1
M

)M−k. The distribution of k tends to a Poisson distribution

Pois(λ = 1) when M →∞, i.e., P(k) = 1
e·k! . Online bagging [124] uses this fact

by submitting each new example k ∼ Pois(λ = 1) times to each of the adaptive

base learners in the ensemble set.

Saffari et al. [137] apply the online bagging method to learn an online random

forest, an ensemble of decision trees. Each training example is presented k ∼
Pois(λ) times to each tree in the ensemble. Trees, on the other hand, are

trained in an incremental way by allowing the replacement of a leaf node with

an internal node whenever (i) the number of examples observed at that leaf

node exceeds a predefined threshold and (ii) the information gain for one of the

splitting criteria is at least equal to the threshold β.

� Boosting is introduced by Schapire [141] as generic ensemble method that trains

a set of weak learners, by presenting each example sequentially to each learner.

After each learning step, the examples are reweighted based on the performance

of the previous learners. Misclassified examples by the previous learner become

more important and gain a higher weight, whereas correctly classified instances

are down-weighted. For each query sample, the predictions of the weak learners

are aggregated by weighting each prediction according to the performance of its

corresponding learner.

Learn++ [128] applies an idea that is inspired by AdaBoost [65]. Each time

a new block of examples is received, Learn++ trains a set of weak learners on

sampled sets from the block. The sampling scheme chooses examples which are

wrongly classified, by the current models, with a probability higher than that

of the correctly classified ones.

Oza and Russell [124] also propose an online boosting method that trains a set

of adaptive weak learners on a data stream. Similar to the online bagging, each

new example is presented to each learner k times such that k ∼ Pois(λ = 1).

The only difference is that the Poisson’s λ parameter is increased whenever the

previous model misclassifies it, otherwise λ is decreased.

31

� Brzezinski and Stefanowski [33] introduce the accuracy updated ensemble (AUE)

on a stream of blocks; this approach trains a new classifier on the most recent

block and updates the weights of the current classifiers, in the ensemble, based

on their performance on this block. Only base classifiers whose performance

is better than a dynamic threshold are incrementally updated, the others can

still remain in the ensemble for the second round. Accuracy updated ensemble

(AUE2) [35] adds a further improvement to AUE by applying a block-based

test-then-train evaluation scheme to incrementally evaluate and update base

classifiers. Moreover, the ensemble set is pruned whenever the memory con-

sumption exceeds a predefined threshold.

Different strategies for combining block-based and online-based ensembles are

introduced by Brzezinski and Stefanowski [34]. The most prominent one is

the online accuracy updated ensemble (OAUE) which couples the block-based

ensembles with incremental base learners. Online classifiers are incrementally

trained on each newly incoming example, whereas decisions on pruning the

worst performing classifier and training a new classifier is always taken after

fixed intervals, thus simulating a block-based ensemble method.

Finally, Street and Kim [164] proposed streaming ensemble algorithm (SEA), one

of the first ensemble methods on data streams. This work suggests to learn a set

of classifiers in an online manner. On each newly arriving block of data samples a

new classifier is trained. Thereafter, an old classifier with the worst performance,

from the learned ensemble set is replaced with the recently learned classifier if the

latter outperforms the former. Their paper also discusses other decision criteria for

replacing old classifiers, such as considering the diversity over the performance; it

proposes a quality measure which is based not only on the correct predictions, but

also on the confidence of each prediction and the error made by the ensemble. For a

more detailed description of the online ensemble approaches see [68].

32

Chapter 3

Instance-Based Classification and
Regression

Given the existence of numerous sophisticated and quite complicated methods for

learning on data streams, it is surprising that one of the simplest approaches to

machine learning, namely the instance-based (case-based) learning paradigm, has

received very little attention so far; especially because the core principle of this

paradigm, the nearest neighbor principle, is a standard method in machine learn-

ing, pattern recognition, and related fields.

This chapter demonstrates the benefit of applying instance-based learning in the

streaming setting and introduces our instance-based learning algorithm for two pre-

diction tasks: classification and regression. To this end, the work of [17], which offers

a basic classification approach for data streams, is extended and generalized.

The remainder of this chapter is organized as follows: The next section recalls the

basic idea of instance-based learning. In Section 3.2, a comparison of model-based

with instance-based learning is presented with a discussion on their pros and cons

when being used in the streaming setting. Instance-based learning on data streams

is motivated in Section 3.3. In Section 3.4 our approach IBLStreams is introduced.

Experimental results are presented in Section 3.5, prior to concluding the chapter in

Section 3.6.

3.1 Instance-Based Learning

As already explained in Chapter 1, the main goal of machine learning is to extract

knowledge, e.g., induced statistical models, from experiences with the aim of applying

this knowledge to solve future problems.

33

One learning paradigm that does not fit a model during the learning phase is the

instance-based learning (IBL); this paradigm, as the notion suggests, is only concerned

about collecting experience in the learning phase. Since IBL methods do not induce a

predictive model, they perform the required induction and inference at the prediction

phase, hence they are considered as lazy learning methods [2]. IBL methods include

case-based learning [163, 140, 98], k-nearest neighbor [40] and RBF networks [32],

among others.

The nearest neighbor (NN) method is an instance-based learning approach that

tries to solve new problems in a way similar to what people apply in daily life; it sug-

gests to figure out solutions for new problems based on their resemblance to collected

experiences. The first application of the nearest neighbor method, as non-parametric

statistical estimator, in the field of pattern recognition, and especially in classifica-

tion, dates back to the middle of the last century [143, 123]. Moreover, for large

samples NN is shown in [40] to have a misclassification rate R that is bound in the

interval [R∗, R∗(2−mR∗/(m− 1)], where m is the number of classes and R∗ is the

Bayes error, which is the lowest possible error achievable by any classifier, it is also

called the irreducible error [87].

Consider the supervised learning setting (see Section 2.2) where X is the input

space and Y is the output space; and let d denote the distance function d : X×X → R
that measures the dissimilarity d(x1,x2) between two instances x1,x2 ∈ X .

The only awareness the NN learner has about the learning problem is exhibited

through the stored portion of the observed examples so far. The case base M =

{(x1, y1) , . . . , (xn, yn)} preserves only a subset of the whole training set D. The

nearest neighbor principle [45] uses this data whenever a prediction is requested:

Upon receiving the query instance xq, it finds the nearest example

(xNN , yNN) = argmin
(xi,yi)∈M

|d (xq,xi)| ,

in terms of the distance measure d; NN predicts the output ŷq of the query instance

xq to be the same as the output of the nearest neighbor, i.e. ŷq = yNN .

Bhatia and Vandana [19] present an extensive survey of nearest neighbor ap-

proaches, in which NN methods are classified into two categories: structureless and

structure-based techniques. The former methods utilize an additional structure in

order to overcome the memory limitation, reduce the complexity and enhance the

querying efficiency.

The k-nearest neighbor (k-NN) is a natural generalization of the nearest neighbor

approach, in which the set of the k closest neighbors is consulted for prediction. This

34

method is shown to be a consistent estimator for probability density functions when

k is allowed to be adapted properly [126].

For a query instance xq, k-NN retrieves the set of the k nearest neighbors of xq;

this set is denoted as

Nk(xq) = argmink(xi,yi)∈M d(xi,xq) , (3.1)

where argmink returns the k examples that have the smallest distances from xq.

Examples are selected at random in the case of ties. In the following, we explain how

k-NN makes predictions in both classification and regression scenarios.

3.1.1 Classification

In classification, a prediction is usually determined by the majority vote, i.e. the most

common class label in the set of neighbors Nk(xq):

ŷq = argmax
c∈Y

|{(xi, yi) ∈ Nk(xq) | yi = c}| . (3.2)

Noting that ŷq corresponds to the mode of the distribution on Y which is obtained

by counting the frequencies of class labels in the neighborhood of xq; this prediction

can be justified as an empirical risk minimizer of the standard 0/1 loss function.

The estimation (3.1) can be generalized, by weighting examples according to their

distance from xq, forming the so-called weighted k-NN (Wk-NN)[16]:

ŷq = argmax
c∈Y

∑
(xi,yi)∈Nk(xq)

w(xi) · I(yi = c) , (3.3)

where I is the indicator function and

w(xi) =
f(d(xi,xq))∑

(xj ,yj)∈Nk(xq)
f(d(xj,xq))

. (3.4)

Here, f(·) is a decreasing function R+ → R+, which means that the smaller d(xi,xq),

the higher the weight of yi. The denominator in (3.4) normalizes the effect of each

weight.

In the case of ordinal classification (see Section 2.2), the prediction is taken to be

the median after weighting each neighbor in accordance with its distance from xq:

ŷq = argmin
cs∈Y

∑
(x,cj)∈Nk(xq)

w(x) · |s− j| . (3.5)

35

3.1.2 Regression

Like in the case of classification, the basic assumption of NN-based regression ap-

proaches is that the dependency to be learned, in the neighborhood of xq, is locally

constant, or can at least be approximated sufficiently well by a constant function.

More generally, one typically uses the weighted average

ŷq =
∑

(xi,yi)∈Nk(xq)

w(xi) · yi . (3.6)

The choice of the mean of the neighbors’ outputs is a direct consequence of applying

the least squares method, i.e.,

argmin
ŷq

∑
(xj ,yj)∈Nk(xq)

(yi − ŷq)2 .

Relaxing the assumption from locally constant dependency to locally linear de-

pendency gives rise to the idea of locally weighted linear regression. The linear model

takes the form

f(x) = β0 +
m∑
j=1

βj · x[j] = β⊤
[

1
x

]
, (3.7)

with x[j] the jth entry of the vector x and the model is fitted in the neighborhood

of xq. Thus, the vector of coefficients β is estimated by

β̂ =
(
X⊤WX

)−1
X⊤WY , (3.8)

where the k×(m+1) matrix X is composed of the k neighbors (xi, yi) ∈ Nk(xq) (plus

the vector of ones modeling the intercept β0) and Y is the k×1 vector of corresponding

output values yi. Moreover, W is a diagonal weight matrix diag(w1, . . . , wk), which

is determined by means of a kernel function f(·) centered at xq; thus, the weight wi

of the neighbor (xi, yi) ∈ Nk(xq) is of the form (3.4).

Once (3.8) has been computed, the prediction ŷq is obtained by evaluating (3.7)

with x = xq and β = β̂.

The instance-based prediction strategy, both for classification and regression, is

summarized in pseudo-code in Figure 3.1.

3.2 Instance-Based versus Model-Based Learning

The focus of instance-based learning methods lies in the instances as local abstrac-

tions instead of an induced model as a global abstraction, this does not necessarily

36

Procedure Predict

Input: case base M, example e=⟨xq, ?⟩
k number of considered instances
σ kernel width, used in the case of Gaussian or exponential weighting
kernel kernel function (uniform, inverseDistance, linear, Gaussian, exponential)
regression method (Locally Weighted Linear Regression, Weighted Mean)
Output: ŷq

1: Nk(xq) = argmink(xi,yi)∈M d(xi,xq)
2: W = getNormalizedWeightingMatrix(e,Nk(xq), k, σ, kernel)
3: if Classification then
4: if Ordinal Classification then
5: ŷq = argmincs∈Y

∑
(x,cj)∈Nk(xq)

w(x) · |s− j| {Equation (3.5)}
6: else
7: ŷq = argmaxc∈Y

∑
(xi,yi)∈Nk(xq)

w(xi) · I(yi = c) {Equation (3.3)}
8: end if
9: else
10: {Regression}
11: if regression method = Weighted Mean then
12: {solve it as wKNN}
13: ŷq =

∑
(xi,yi)∈Nk(xq)

w(xi) · yi {Equation (3.6)}
14: else
15: {solve it as a locally weighted linear regression}
16: X = [xi 1](xi,yi)∈Nk(xq)

17: Y = [yi](xi,yi)∈Nk(xq)

18: β̂ = (X⊤WX)−1X⊤WY
19: ŷq = [x⊤

q 1]β̂ {Equation (3.7)}
20: end if
21: end if
22: return

Figure 3.1: The instance-based prediction functions for both classification and regres-
sion problems.

37

imply that the examples are simply collected. On the contrary, some instance-based

methods learn the similarity (or the distance) function as in metric learning [103],

others invest the main effort in evaluating the importance of an instance and then

deciding whether it should be stored or not [17].

An instance-based learner as indicated by Aha et al. [3], consists of three main

components and each of these can be subject to learning:

– The similarity function: This function measures the similarity between an ex-

ample and the instances in the concept description (case base).

– The classification function: This function decides, based on the result of the

similarity function, how an instance should be classified.

– Concept description (case base) updater: A concept description is the set of

examples that are maintained, until now, in the case base. The updater is a

process that decides (i) whether a new example should be added to the case

base or not and (ii) whether an example (or a group of examples) should be

removed from the case base. These decisions are utterly based on the similarity

results, classification results and the current state of the case base.

Model-based learners, on the other hand, invest most of their efforts in learning

a model (i.e., abstracting patterns, inducing complex structures, tuning parameters,

etc.) from available examples. This model can then be used whenever a prediction is

required for a new instance.

For a fair comparison between the two paradigms, while learning from a data

stream, we have to analyze the way they perform the learning, update and prediction

processes:

– The learning process: It is clear that an IBL approach has a slightly neglected

cost for simply storing the seen examples, compared to inducing a model, which

usually requires a number of iterations on the data, until some criteria are

satisfied, promising for a good generalization performance.

– The update process: An adaptive learner is expected to have the capability to

perform two types of update operations: (i) An update as a response to observ-

ing a new example (i.e., to incrementally learn) and (ii) an update as a reaction

to a discovered concept change. IBL approaches are inherently incremental [17],

mainly because the update process is reduced to the simple addition or removal

of an example(s) from the case base.

38

Model-based approaches, however, often require complex update procedures on

the induced model, in order to learn or forget an example. Not to mention

that learning methods often need to iterate and evaluate different criteria on

the training data during the induction. For this reason, many model-based

adaptive methods store either a set of the most recent examples (in sliding

window) or try to summarize the recent examples in a form of measures (or

counters) to be later used for the update.

– The prediction process: For this process, in contrast to the previous two pro-

cesses, IBL methods usually require to invest more effort, compared to model-

based approaches which directly consult the induced model. Despite the high

prediction cost for IBL methods, this cost might seem less dramatic when the

predictions are computed only locally (such as finding the k nearest neighbors

or fitting a locally weighted linear function).

In a streaming setting, a model-based approach might be preferable when the

demand for predictions is high and too frequent or when the concept to be learned is

relatively constant, thus making the cost of model updates low. On the other hand,

an IBL approach might be advantageous when the data stream suffers from frequent

concept changes, or when the demand for predictions is low compared to the number

of observed examples, see also [17].

3.3 Instance-Based Learning on Data Streams

Having motivated the intuition behind the IBL methods and having compared them

to the model-based ones, now we discuss how an instance-based approach can be

effectively used to learn from a non-stationary stream of data.

As we already explained, an instance-based learner maintains a case base that

contains the set of collected examples. The capacity of the case base (the number of

examples) is of course limited; the maximum allowed size comes often as a part of the

application’s requirements. Thus, in the streaming setting and while observing the

continuously arriving data, the IBL learner has to decide dynamically which examples

to collect and which to ignore. The simplest strategy would be to maintain only the

recent examples in the case base. To this end, on the arrival of a new example, the

oldest example is removed and the new one is added. This strategy is similar to

sliding a window of a fixed size (number of examples) over the data stream.

39

However, an IBL method that applies a selective strategy could wisely choose the

useful examples, such as keeping examples from unexplored regions of the input space

and avoiding redundant and noisy examples.

In [17], the authors introduce the criteria an adaptive instance-based learner

should consider while maintaining the case base. These criteria are:

� Temporal relevance: Recent examples tend to be more important than older

ones, due to their ability to reflect the current concept.

� Spatial relevance: A balanced coverage of the whole instance space is preferred

over leaving unoccupied regions of the instance space and oversampling from

other regions. In other words, examples in underrepresented regions in the case

base are more relevant than those belonging to over-represented regions.

� Consistency: A data example should only be preserved as long as it is consistent

with the current concept.

As discussed in [17], most of the IBL approaches do not consider all of the afore-

mentioned aspects. Locally-weighted forgetting (LWF) [139] applies only the spatial

relevance, time-weighted forgetting (TWF) [139] considers only the temporal aspect,

and IB3 [3] checks for the consistency before cumulatively adding new examples.

IBL-DS [17], however, applies all the three suggested indicators. In the following, we

explain the main IBL approaches that learn from a data stream.

Locally-Weighted Forgetting (LWF)

LWF [139] is an adaptive instance-based learning algorithm that concentrates on

the spatial aspects during the learning phase. In this approach, examples in the

neighborhood of a newly added example (xnew, ynew) are weakened by decreasing

their weights. An instance (xi, yi), that is the ith of the k nearest examples to

the newly added example (xnew, ynew), suffers a decrease in its weight by a factor

γ = τ + (1− τ)
d2i
d2k

, where di is the distance between the ith nearest neighbor example

and the new example (xnew, ynew). A neighboring example is discarded after reaching

a weight smaller than the threshold θ. It is worth mentioning that LWF employs

an adaptive k, depending on the current size of the case base. The neighborhood is

determined by k = ⌈βL⌉, where 0 < β ≤ 1 and L is the current size of the case base.

Figure 3.2(a) shows how LWF decreases the weights of examples in the neighborhood

of a newly arriving example.

40

Time-Weighted Forgetting (TWF)

TWF [139] lessens the weight of each example in the case base by considering its

temporal relevance. To this end, the weight of each example is decreased by the

factor γ ∈]0, 1[; an example is removed when its weight recedes the threshold θ. As

a result, the TWF approach resembles a queue buffer or a sliding window of length

ℓ = log θ
log γ

. Figure 3.2(b) shows an example case base, in which TWF down-weights

each example whenever a new example arrives.

Instance-Based Learning on Data Streams (IBL-DS)

IBL-DS [17] applies all relevance indicators in the streaming setting for classification.

IBL-DS is the fundamental method and the corner stone on which we build our

approach IBLStreams, introduced in the next section.

On the arrival of a new example zt = (xt, yt), it is at first added to the case base.

Thereafter, IBL-DS tries to make the neighborhood N (xt), whose size is chosen to

be |N (xt)| = (kcand)
2 + kcand, pure by removing incoherent and noisy examples. To

this end, an example (xi, yi) ∈ N (xt) is removed from the case base if (i) its class

yi differs from ymaj (the most frequent class in the neighborhood) and (ii) (xi, yi)

is not one of the kcand most recent examples. In this way, incoherent examples are

only tolerated if they were recent, as they might be the beginning of concept change.

Abrupt concept changes are detected using the statistical process control method

[72, 73], see Section 2.4. Figure 3.2(c) shows how IBL-DS removes an old inconsistent

example and retains a recent inconsistent one in the neighborhood of a newly added

example; in the depicted illustration we set kcand = 2.

3.4 IBLStreams

In this section, we introduce our instance-based learning approach on data streams,

IBLStreams, that considers all the aforementioned relevance factors; it also exhibits

the properties an ideal stream mining system should have. IBLStreams imposes an

upper limit Lmax on the size of the case base. In the following, we explain how

IBLStreams maintains the case base and makes predictions when being applied for

both classification and regression problems; case base maintenance strategies are de-

picted in Figure 3.3 and concept detection strategies are presented in Figure 3.4.

41

(a)

(b)

(c)

Figure 3.2: The IBL approaches that learn from data streams: (a) LWF, (b) TWF
and (c) IBL-DS.

42

3.4.1 Classification

For classification problems, IBLStreams computes the predictions as a weighted voting

(3.3). It maintains the case base in the classification scenario as follows:

� Every incoming example zt = (xt, yt) is at first added to the case base, then its

neighborhood is checked for any incoherencies. Preserving the coherency in the

neighborhood helps maintaining a case base that is consistent with the current

concept to be learned from the data stream. We retrieve the neighborhood

N (xt), which contains |N (xt)| = 2 · k examples. Let A ⊂ N (xt) be the set

of the k closest examples, and let B ⊂ N (xt) be the set of the k most recent

examples.

A match between yt and the most frequent class ymaj in A tells about a local

regularity, i.e., yt = ymaj; this, however, does not mean that all examples have

the same class. One way to purify this neighborhood is to remove an example

z′ = (x′, y′) ∈ A if (i) y′ differs from the majority class yt and (ii) it is not a

recent example (i.e., z′ /∈ B). Although this solution increases the consistency

in the neighborhood, it is too rigid as it handles all examples, even the ones

at the border of the neighborhood, in the same way. One way to increase

the tolerance towards border examples, is to avoid removing an example if its

distance is greater than the 80th percentile p80 of the distances of the examples

in A, where p80 is the 80th percentile of {d(xi,xt)|(xi, yi) ∈ A}.

� Like in IBL-DS, we also impose the upper limit restriction on the size of the

case base, except that we apply a more complex approach than just simply

removing the oldest example in the case base. Our idea is to remove one of

the oldest examples by preferring examples from denser regions over the ones

in sparser regions. Let V = {z1, . . . , zT} ⊂ M be the set of the T oldest

examples in the case base associated with the set U = {d̄z1 , . . . ,
¯dzT
}, such that

d̄zi
= 1

k

∑
(xj ,yj)∈Nk(xi)

d(xi,xj), i.e., each element in U holds the mean distance

d̄zi
between an example zi and its k nearest neighbors. Having computed the

set U , we choose the example z with the densest region (z = argminz∈V d̄z)

to be removed. In this way, we do not only respect the restrictions on the

maximum size of the case base, but also both the spatial and the temporal

relevance factors; we refer to this aspect as the spatio-temporal (ST) aspect.

� Although the first discussed procedure tries to keep local regions consistent

against faulty examples, it cannot cope with concept drifts because it removes

43

only old inconsistent examples in almost pure regions. But how can we adapt to

a changing concept, if it can only be observed through irregularities in impure

regions?

IBLStreams handles concept changes similarly to IBL-DS. To this end, let p

denote the prediction error (when applying the zero-one loss), which we in-

crementally maintain on a sliding window of N examples. In this way, p and

N are the misclassification probability and the number of trials of a binomial

distribution which can be approximated by the normal distribution1 N (p, s2),

with s =
√

p(1−p)
N

. The smallest achieved error rate pmin (along the stream) and

the associated standard deviation smin are preserved and updated whenever

pmin + smin > p+ s. As in IBL-DS, a concept change is detected whenever the

current error rate p significantly exceeds pmin, that is p+ s > pmin + T1−αsmin,

with the significance level α = 0.05 for the (one-sided) Student’s t-test with

N − 1 degrees of freedom.

When a change is detected, a fraction of the case base is removed or “forgotten”.

The portion of the forgotten examples should be proportional to the rate at

which the drift occurs. As a rule of thumb, we forget a percentage equal to

min(p− pmin, 0.5) of the currently preserved examples.

We choose the examples to be forgotten at random with a tendency to remove

older examples rather than recent ones; with t an exponentially distributed

random variable (i.e., t ∼ Exp(λ), with λ = 1.5), the tth oldest example (in

the case base) is chosen for removal.

3.4.2 Regression

Regression in IBLStreams is performed by applying the idea of locally weighted linear

regression as presented in (3.7). In the following, we summarize how IBLStreams

maintains the case base in the regression scenario:

� As in the classification case, a similar coherency strategy is adopted for the re-

gression scenario. Here we also retrieve the neighborhood N (xt) which contains

|N (xt)| = 2 · k examples, upon adding the new training example zt = (xt, yt)

to the case base. From N (xt), we define the two sets: A ⊂ N (xt), the set of

the k closest examples and B ⊂ N (xt), the set of the k most recent examples.

1This approximation is valid as N is large enough, so that p ·N > 5 and (1− p) ·N > 5.

44

Procedure UpdateCaseBase

Input: case base M, example zt = ⟨xt, yt⟩
Output: case base M
1: N2k(xt) = argmin2k(xi,yi)∈M d(xi,xt)
2: {A contains the k nearest neighbors, s.t A ⊂ N2k(xt)}
3: A = argmink(xi,yi)∈N2k(xt) d(xi,xt)
4: {B contains the k recent neighbors, s.t B ⊂ N2k(xt)}
5: B = argmaxkzi∈N2k(xt) time(zi)
6: if Classification then
7: ymaj = argmaxc∈Y |{(xi, yi) ∈ A | yi = c}|
8: if yt = ymaj then
9: p80 = the 80th percentile of {d(xi,xt)|(xi, yi) ∈ A}
10: remove z′ = (x′, y′) ∈ A s.t. (z′ /∈ B) ∧ (y′ ̸= ymaj) ∧ (d(x′,xt) < p80)
11: end if
12: else
13: {Regression}
14: ȳ = 1

|A|
∑

(xi,yi)∈A yi
15: CIoutput = [ȳ − Tα

2

s√
k
, ȳ + T1−α

2

s√
k
]

16: if yt ∈ CIoutput then
17: p80 = the 80th percentile of {d(xi,xt)|(xi, yi) ∈ A}
18: remove z′ = (x′, y′) ∈ A s.t. (z′ /∈ B) ∧ (y′ /∈ CIoutput) ∧ (d(xi,xt) < p80)
19: end if
20: end if
21: M =M∪ {(xt, yt)}
22: {enforce the upper limit Lmax on the size of the case base}
23: if |M| > Lmax then
24: {V contains the T oldest examples}
25: V = argminT(xi,yi)∈M time(xi)
26: remove z′ = (x′, y′) ∈ V s.t. z′ = argminz′∈V

1
k

∑
(xj ,yj)∈Nk(x′) d(x′,xj)

27: end if
28: return
29: {time : X ×Y → N is a function that returns the timestamp of an example in the

case base M.}

Figure 3.3: The algorithm for updating the case base in both classification and re-
gression scenarios.

45

Procedure ConceptDriftDetection

Input: case base M, example zt = ⟨xt, yt⟩
Output: case base M
1: if Classification then
2: {the predicted class for the new example zt given by equation (3.3)}
3: ŷq = argmaxc∈Y

∑
(xi,yi)∈Nk(xq)

w(xi) · I(yi = c)

4: {update the mean error pt and the standard deviation st on a sliding window
of W examples, based on the loss lt caused by predicting ŷt instead of yt}

5: pt = pt−1 + (−lt−W + lt)/W

6: st =
√

pt(1−pt)
W

.

7: if pt + st > pmin + T1−αsmin then
8: τ = min(pt − pmin, 0.5)
9: delete min(τ |M|, |M| − 100) examples, s.t. an example z′ is chosen for re-

moval with (time(z′)− argminzi∈M time(zi)) ∼ Exp(λ = 1.5)
10: end if
11: else
12: {Regression}
13: {the predicted output for the new example zt given by Equation (3.6) or by

(3.7)}
14: ŷt =

∑
(xi,yi)∈Nk(xt)

w(xi) · yi or ŷt =
[
x⊤
t 1

]
· β

15: pt = pt−1 + (−lt−W + lt)/W

16: st =

√
s2t−1 +

W ·p2t−1−W ·p2t−l2t−W+l2t
W−1

.
17: if pt + st > pmin + T1−αsmin then
18: τ = min(pt−pmin

pmin
, 0.5)

19: delete min(τ |M|, |M| − 100) examples, s.t. an example z′ is chosen for re-
moval with (time(z′)− argminzi∈M time(zi)) ∼ Exp(λ = 1.5)

20: end if
21: end if
22: if pt + st < pmin + smin then
23: pmin = pt
24: smin = st
25: end if
26: return
27: {time : X ×Y → N is a function that returns the timestamp of an example in the

case base M.}

Figure 3.4: The algorithm for checking and handling concept drifts in both classifi-
cation and regression scenarios.

46

For the agreement test between yt and its neighborhood, it is obvious that

the mode of the distribution of the target attribute y in the neighborhood

N (xt) is impractical for the real-valued output. Instead, we use the outputs

of the examples in A to determine a two-sided confidence interval CIoutput =

[ȳ − Tα
2

s√
k
, ȳ + T1−α

2

s√
k
], where ȳ is the average output for the examples in

A and s is the associated standard deviation; α = 0.05 is the significance

level for a two-sided t-distribution with k − 1 degrees of freedom. Now, an

agreement between yt and its neighborhood can be tested by checking whether

yt ∈ CIoutput. Only in the case of agreement, we try to purify the neighborhood

by removing examples in A from the case base using the same strategy applied

in the classification scenario.

� We also use the same spatio-temporal aspect, as introduced in the classification

case, to impose the upper limit restriction on the size of the case base.

� The drift detection test in the regression scenario is conducted with the mean

absolute error instead of the classification rate, and the percentage of examples

to be removed is determined by the relative increase of this error.

3.4.3 Parameter adaptation in IBLStreams

Although instance-based learning does not induce a global model, its performance

still depends on several parameters, such as the size of the neighborhood k. Given

its application in an evolving environment, some sort of adaptivity would clearly be

desirable in this regard. In IBLStreams, two approaches for parameter adaptation

are implemented, see Figure 3.5.

In the first approach, we adapt the size k of the neighborhood. To this end, we

continuously check whether it appears beneficial to increase or decrease the current

value by 1. In order to make this decision, we monitor the mean error on a window

formed by the last 100 instances, not only for the current IBLStreams version with

k neighbors, but also the variants with k − 1 and k + 1 neighbors. Whenever one

of these two variants performs better in terms of the mean error, the current k is

adapted correspondingly, see lines 1-10 in the pseudo-code in Figure 3.5.

The second strategy controls the size of the neighborhood indirectly via the weight-

ing function or, more specifically, the corresponding kernel width; this adaptation

strategy can only be used in combination with the Gaussian or the exponential ker-

nel. Like in the previous case, three variants of IBLStreams are compared in terms

of their mean error on the last 100 instances, namely the current variant, the variant

47

Procedure UpdateClassifier

Input: case base M, example zt = ⟨xt, yt⟩
k number of considered nearest neighbors
σ the kernel function’s width, used in the case of Gaussian and exponential kernels
kernel the kernel function (uniform, inverseDistance, linear, Gaussian, exponential)
Output: k, σ
Constants: δ = 0.05

1: if Adaptive k then
2: {p : mean error for the last 100 examples}
3: update p0 by Predict (zt, k − 1, σ, kernel)
4: update p1 by Predict (zt, k, σ, kernel)
5: update p2 by Predict (zt, k + 1, σ, kernel)
6: if p2 < p1 then
7: k = k + 1
8: else if p0 < p1 then
9: k = k − 1
10: end if
11: else if Adaptive σ then
12: {p : the mean absolute error for the last 100 examples }
13: update p0 by Predict (zt, k, σ(1− δ), kernel)
14: update p1 by Predict (zt, k, σ, kernel)
15: update p2 by Predict (zt, k, σ(1 + δ), kernel)
16: if p2 < p1 then
17: σ = σ(1 + δ)
18: else if p0 < p1 then
19: σ = σ(1− δ)
20: end if
21: end if
22: return

Figure 3.5: The algorithm for updating the parameters of IBLStreams.

with a kernel width increased by 5%, and the variant with a kernel width decreased

by 5%, see lines 11-21 in the pseudo-code in Figure 3.5.

48

3.4.4 Implementation issues

IBLStreams is implemented as an extension2 for the MOA3 (Massive Online Analysis)

[24] framework, an open source software for mining and analyzing large data sets in

a stream-like manner, see Appendix B.

The simple value difference metric (SVDM) is used as a distance function, and the

index structure M-Tree [38, 39] is used for indexing and retrieving the instances in

the case base, as suggested in [17], see Appendix C.1 and Appendix C. M-Tree makes

use of the triangle inequality, satisfied by the metric distance4, in order to maintain

the instances in hierarchical hyperspheres in the metric space.

Although the previous works of IBLStreams [151] and IBL-DS [17] were utilizing

the query processing library XXL [52], IBLStreams in this thesis is shifted to a sim-

pler open source implementation of M-tree5, which is hosted in the web-based Git

repository hosting service GitHub6.

Finally, in the locally weighted linear regression case, a solution might not be

derivable when X⊤WX is singular, i.e., it is not invertible; hence, the weighted

average is used for prediction instead. Situations of singularity or close-to-singularity

may also occur if the main diagonal of W is strongly dominated by a single entry;

such situations lead to the problem of numerical instability. To avoid such a problem,

we prevent the kernel width in the exponential or Gaussian weighting to become too

small.

3.5 Experiments

We investigate in our experiments the performance of IBLStreams from three different

points of view:

� In Subsection 3.5.1, we compare the performance of IBLStreams with the widely

used adaptive instance-based approaches.

� In Subsection 3.5.2, we evaluate the different parameter adaptation strategies

used in IBLStreams.

2www.uni-marburg.de/fb12/kebi/research/software/iblstreams, accessed on October 13,
2015

3http://moa.cms.waikato.ac.nz, accessed on October 8, 2015
4The metric distance used by the M-Tree is not necessarily the same as the distance function d

utilized by the IBL method.
5https://github.com/erdavila/M-Tree, accessed on July 13, 2015
6https://github.com, accessed on July 13, 2015

49

www.uni-marburg.de/fb12/kebi/research/software/iblstreams
http://moa.cms.waikato.ac.nz
https://github.com/erdavila/M-Tree
https://github.com

� In Subsection 3.5.3, IBLStreams is compared with the state-of-the-art adaptive

model-based methods.

In the following experiments, we use both synthetic and real data streams. The

used real data sets are standard benchmarks taken from the UCI repository7 [107],

whereas the synthetic data streams are generated using the MOA framework, see

Appendix B.

For each pure synthetic data stream, a generative model is randomly generated and

fixed. Thereafter, 10 streams (repetitions using different seeds) are generated from

the fixed model. In this way, we guarantee that the underlying model of the different

repetitions is identical. More specifically, let the fixed data generating process be

characterized by the probability measure Pθ, where θ is the parameter vector for

that process, and let z = (x, y) be a generated training example. The examples

z(i,1), z(i,2), . . . , z(i,|Si|) in the pure data stream Si and the examples in all pure streams

S1, . . . ,S10 are i.i.d., i.e., z(i,j) ∼ Pθ. Streams with a concept drift, on the other

hand, are generated by processes that are time-dependent such that Pθ is replaced

by Pθ(t). As a result, only the tth examples of the different repetitions are identically

distributed, i.e., z(i,t) ∼ Pθ(t). Appendix D is dedicated to give an overview of

the used data sets. Finally, all experiments are executed using the test-then-train

scenario, see Appendix B.2.

3.5.1 IBLStreams versus other instance-based methods

In the following, we compare the IBLStreams with the other discussed IBL ap-

proaches:

� IBL-DS

� LWF (As suggested by the authors, we let this method choose the number of

nearest neighbors k dynamically during the training time)

� TWF

� Win5k (The standard k-NN approach, in which the case base is restricted to

contain only the examples in a fixed size sliding window)

� Win5kST (The same as Win5k equipped with the proposed spatio-temporal

relevance strategy)

7http://archive.ics.uci.edu/ml/, accessed on October 8, 2015

50

http://archive.ics.uci.edu/ml/

� IBLStreams no ST (As introduced in this chapter without the spatio-temporal

relevance strategy)

� IBLStreams (As introduced in this chapter with the spatio-temporal relevance

strategy)

We compare IBLStreams with the discussed NN approaches on synthetic data

streams. For all methods, we fix the upper limit Lmax of the case base to Lmax = 5,000

and the number of neighbors to k = 5. Only LWF is allowed to choose k freely during

the training phase as proposed by its authors; k is defined as k = ⌈β · L⌉, where L is

the current size of the case base and β = 0.04. As proposed by the authors, IBL-DS

is used with the default parameters, LWF is used with γ = 0.966 and θ = 0.33.

TWF is used with γ = 0.8 and θ = 0.33. IBLStreams is used with T = 100, k = 5

and with the equal weight kernel, which simplifies Wk-NN to the standard k-NN

case. We apply this disadvantageous restriction on IBLStreams in order to remove

any potential benefit that could be gained from the kernel weighting. We also choose

to compare with the basic sliding window approach (Win5k), which is often used as a

baseline approach; we also compare with Win5kST, which combines Win5k with the

spatio-temporal relevance strategy.

The following comparison uses 4 synthetic data sets, presented in Table 3.1, for

four main scenarios: (i) pure data, (ii) data with a concept drift, (iii) data with a

sampling drift (virtual drift) and (iv) data with both a concept drift and a sampling

drift. Methods to simulate concept drifts and sampling drifts are implemented in

MOA, explained in Appendix D.

We present the average and the standard deviation of the accuracy for the four

different scenarios in Tables 3.2-3.5. For each data set, methods with the best results

are highlighted in bold. For the two IBLStreams settings, a setting is marked with •
whenever its result is significantly better than all IBL approaches (excluding the other

IBLStreams setting). Other IBL approaches are marked with ∗ to indicate that their

performance is significantly better than the rest. The test of significance is conducted

by applying the Wilcoxon signed-rank test for the null hypothesis that the median

difference between the pairs of results is zero at the 1� significance level.

Table 3.2 shows that IBLStreams, with and without the spatial relevance, wins

significantly on the majority of the pure data streams and comes second on the random

trees data stream. This experiment also shows how the simple sliding window is often

underestimated and/or used for comparison in a misleading way. IBL-DS, on the other

hand, shows superiority only on the hyperplane and the SEA data streams.

51

For the data with a sampling drift, the completely temporal approach Win5k

seems to be an effective solution when the data sampling distribution shifts in the

input space, but this performance becomes significantly better when accompanying

the sliding window with the proposed spatio-temporal aspect, as shown in Table 3.3,

where both the spatial Win5kST and IBLStreams accuracies are the highest. The

straightforward explanation for this result is that even when abandoned regions be-

come neglected, keeping some examples from these regions is advantageous, for the

time when these regions become active again.

Table 3.4 presents the results when applying a concept drift on the generated data

sets. Again IBLStreams, supported with the different relevance factors, wins on 5 out

of 10 data sets with margin of 3-7% compared to the second best approach, and comes

second on the rest of the data sets with a margin less than 1%.

Finally, the sliding window with the spatio-temporal aspect, Win5kST, shows the

best performance for the data that contains the two types of drifts, see Table 3.5.

In conclusion, IBLStreams shows a superior performance in most of cases, except

for the sampling shift cases where the simple sliding window approach, supported

with our spatio-temporal aspect, achieves the best results.

3.5.2 Evaluating the parameter adaptation schemes

To show the advantage of the proposed parameter adaptation approaches, we design

new experiments on low dimensional data sets, in order to show how the adaptation

strategies affect the decision boundaries of the learned models.

Two synthetic data streams are used for this evaluation, each with two dimensions;

the length of each stream is 125k examples. We compare IBLStreams in four different

settings (i) adaptive k, (ii) adaptive σ, (iii) nearest neighbor (i.e., k = 1) and (iv)

fixed k and fixed σ. In the beginning, k and σ are initialized to k = 5, σ = 0.05 and

Lmax = 5,000.

For each experiment we present four main results with respect to change over

time: the accuracy, the number of neighbors k, the kernel width σ and how the

decision boundary looks like at three specific key points in time (at 25k, 75k and

125k examples).

At first, we use the RBF data (see Appendix D.1.4) with 30 kernels and 4 classes.

Figure 3.6 shows how the adaptive k approach achieves the highest accuracy along

the whole stream, with k varying in the range [4, 25], whereas the adaptive σ and the

fixed (k and σ) approaches seem to have a similar accuracy.

52

#classes #attributes stream 1 stream 2 params
seed seed

hyperplane (HP)
pure binary 10 111
concept drift (CD) binary 10 111 154 t0 = 75 k

w = 10 k
sampling drift (SD) binary 10 111 δ = 0.1233123
CD & SD binary 10 111 154 t0 = 75 k

w = 10 k
δ = 0.1233123

random trees (RT)
pure 2-5 8 111 depth = 15
concept drift (CD) 2-5 8 111 154 depth = 15

t0 = 75 k
w = 10 k

sampling drift (SD) 2-5 8 111 depth = 15
δ = 0.1233123

CD & SD 2-5 8 111 154 depth = 15
t0 = 75 k
w = 10 k
δ = 0.1233123

RBF
pure 2-5 20 111 kernels = 100
concept drift (CD) 2-5 20 111 154 kernels1 = 200

kernels2 = 250
t0 = 75 k
w = 10 k

SEA
pure binary 3 - function = 1
concept drift (CD) binary 3 - - function1 = 1

function2 = 2
t0 = 75 k
w = 10 k

Table 3.1: The used data sets with their corresponding parameters for the experiments
presented in Tables 3.2-3.5.

53

IBL-DS LWF TWF Win5k Win5k IBLStreams IBLStreams
ST no ST

HP .8685∗ .8596 .8346 .8671 .8672 .8657 .8664
binary (.0011) (.0010) (.0013) (.0008) (.0008) (.0009) (.0007)
RBF .9432 .8248 .8687 .9819 .9793 .9865• .9856•

binary (.0024) (.0025) (.0015) (.0002) (.0002) (.0002) (.0002)
RBF .9209 .7258 .7844 .9699 .9654 .9789• .9774•

3 classes (.0014) (.0039) (.0013) (.0004) (.0005) (.0002) (.0002)
RBF .9314 .7367 .7991 .9721 .9683 .9795• .9785•

4 classes (.0028) (.0039) (.0013) (.0003) (.0004) (.0003) (.0002)
RBF .9291 .7037 .7700 .9675 .9631 .9766• .9753•

5 classes (.0053) (.0023) (.0015) (.0004) (.0004) (.0003) (.0002)
RT .6447 .6438 .6288 .6501 .6493 .6485 .6481
binary (.0018) (.0012) (.0014) (.0013) (.0015) (.0012) (.0013)
RT .4778 .4814 .4540 .4872 .4863 .4871 .4862
3 classes (.0017) (.0011) (.0017) (.0011) (.0012) (.0012) (.0012)
RT .4102 .4102 .3821 .4212 .4196 .4210 .4194
4 classes (.0027) (.0019) (.0018) (.0013) (.0021) (.0013) (.0022)
RT .3334 .3426 .3093 .3474 .3459 .3474 .3460
5 classes (.0016) (.0013) (.0012) (.0018) (.0017) (.0019) (.0016)
SEA .9739∗ .9586 .9520 .9703 .9719 .9720 .9734
binary (.0004) (.0005) (.0003) (.0003) (.0004) (.0005) (.0004)

Table 3.2: Comparing IBLStreams with other IBL approaches on pure data streams.

IBL-DS LWF TWF Win5k Win5k IBLStreams IBLStreams
ST no ST

HP SD .8790 .8730 .8703 .8834 .8863 .8855 .8877•

binary (.0189) (.0202) (.0177) (.01567) (.0160) (.0171) (.01719)
RT SD .6616 .6416 .6613 .6737 .6743∗ .6693 .6699
binary (.0197) (.0184) (.0190) (.01806) (.0180) (.0177) (.01765)
RT SD .5280 .5037 .5298 .5475 .5483∗ .5457 .5467
3 classes (.0097) (.0101) (.0106) (.01009) (.0100) (.0103) (.01038)
RT SD .4609 .4304 .4612 .4794 .4804∗ .4780 .4790
4 classes (.0215) (.0206) (.0202) (.01965) (.0196) (.0192) (.01926)
RT SD .4151 .3852 .4159 .4363 .4372∗ .4354 .4364
5 classes (.0198) (.0179) (.0197) (.01902) (.0189) (.0189) (.01887)

Table 3.3: Comparing IBLStreams with other IBL approaches on streams with a
simulated sampling drift.

54

IBL-DS LWF TWF Win5k Win5k IBLStreams IBLStreams
ST no ST

HP CD .8667 .8584 .8335 .8654 .8656 .8641 .8648
binary (.0009) (.0010) (.0015) (.0010) (.0007) (.0008) (.0012)
RBF CD .8698 .6683 .6917 .9124 .8997 .9313• .9259•

binary (.0055) (.0033) (.0009) (.0005) (.0006) (.0008) (.0005)
RBF CD .8367 .5597 .5892 .8778 .8610 .9011• .8947•

3 classes (.0036) (.0032) (.0018) (.0006) (.0009) (.0013) (.0009)
RBF CD .8360 .5085 .5461 .8694 .8509 .8937• .8876•

4 classes (.0032) (.0043) (.0020) (.0007) (.0009) (.0008) (.0010)
RBF CD .8263 .4684 .5041 .8556 .8349 .8816• .8749•

5 classes (.0036) (.0048) (.0027) (.0008) (.0009) (.0008) (.0008)
RT CD .6305 .6319 .6126 .6370 .6362 .6357 .6353
binary (.0011) (.0015) (.0011) (.0013) (.0011) (.0010) (.0012)
RT CD .4823 .4863 .4566 .4911 .4900 .4907 .4899
3 classes (.0021) (.0014) (.0014) (.0016) (.0015) (.0016) (.0015)
RT CD .4084 .4104 .3796 .4185 .4172 .4183 .4171
4 classes (.0036) (.0021) (.0021) (.0019) (.0019) (.0019) (.0019)
RT CD .3598 .3645 .3321 .3681 .3672 .3681 .3672
5 classes (.0020) (.0012) (.0016) (.0015) (.0017) (.0016) (.0018)
SEA CD .9709 .9552 .9485 .9673 .9691 .9690 .9703
binary (.0003) (.0006) (.0004) (.0003) (.0004) (.0003) (.0004)

Table 3.4: Comparing IBLStreams with other IBL approaches on streams with a
simulated concept drift.

IBL-DS LWF TWF Win5k Win5k IBLStreams IBLStreams
ST no ST

HP .8772 .8717 .8682 .8825 .8851 .8842 .8865•

binary (.0145) (.0155) (.0139) (.0118) (.0122) (.0128) (.0128)
RT .6679 .6487 .6674 .6807 .6814∗ .6765 .6775
binary (.0151) (.0152) (.0153) (.0146) (.0146) (.0145) (.0144)
RT .5444 .5186 .5442 .5629 .5636∗ .5607 .5614
3 classes (.0175) (.0176) (.0174) (.0160) (.0159) (.0160) (.0159)
RT .4787 .4484 .4775 .4970 .4980∗ .4954 .4965
4 classes (.0176) (.0177) (.0173) (.0166) (.0168) (.0166) (.0165)
RT .4460 .4157 .4434 .4639 .4650∗ .4624 .4635
5 classes (.0202) (.0183) (.0202) (.0187) (.0187) (.0185) (.0185)

Table 3.5: Comparing IBLStreams with other IBL approaches on streams with both
simulated drifts: a concept drift and a sampling drift.

55

A careful look at the adaptive σ and adaptive k approaches reveals that both

σ and k tend to be decreasing and increasing in an analogous way. Although this

behavior is not in a perfect match, it shows that when the adaptive k scheme decides

to consider more data examples to give a better prediction, the adaptive σ scheme also

tries to do the same by expanding the kernel width aiming to give a greater weight for

more distant neighbors; the adaptive σ, however, gets stuck by encountering the fixed

number of the instances k. Figure 3.7 shows how the decision boundary appears at

three different points in time. It is apparent that the adaptive k has the most regular

decision boundaries followed by the adaptive σ and the fixed σ, k. On the contrary,

the nearest neighbor approach achieves lowest accuracy accompanied by the most

irregular boundaries.

The second data stream uses the hyperplane data with two dimensions, see Ap-

pendix D.1.1. A slight concept drift in the middle of the stream is added, which

makes the data simulate a slight hyperplane rotation, and a percentage of noise equal

to 15% is also added to this stream. Similar to what has been observed in the previous

experiment, we observe the same behavior for the different settings; we also observe

that the adaptive k approach shows superiority during and after the concept drift,

this fact is supported by the higher accuracy in Figure 3.8 and the regular decision

boundary in Figure 3.9.

One may conclude that, despite the analogous performance of both variants, adap-

tive k is superior to adaptive σ. This result is justified as increasing k allows a larger

number of neighboring instances to participate in the decision. Increasing σ, on the

other hand, could just lead to increasing the effect of the neighbors but not the area

of effect, especially when k is fixed.

3.5.3 IBLStreams versus state-of-the-art model-based meth-
ods

In this experiment, we compare IBLStreams with state-of-the-art learners, namely

the Hoeffding tree [56] and the adaptive Hoeffding tree [23] for classification, which

are explained in Appendix A.1. For regression tasks, we compare IBLStreams with

AMRules [4], FIMTDD [86] and FLEXFIS [110], explained in Appendix A.2, Ap-

pendix A.3 and Appendix A.4, respectively.

Experiments are conducted with both real and synthetic data streams. Table 3.6

gives a brief overview of the data sets (and their corresponding parameters) used

in the forthcoming experiments. Performance curves are averaged over 10 folds for

56

20000 40000 60000 80000 100000 120000

45

50

55

60

65

accuracy

20000 40000 60000 80000 100000 120000

5

10

15

20

number of neighbors (k)

20000 40000 60000 80000 100000 120000

0.04

0.05

0.06

0.07

0.08

kernel width (σ)

Adapt k Adapt σ Fixed k=1 Fixed k & σ

#
n

e
ig

h
b

o
rs

 (
k
)

ke
rn

e
l
w

id
th

 (
σ

)
a

c
c
u

ra
c
y

Figure 3.6: The change in performance, number of neighbors (k) and kernel width
(σ) when IBLStreams is trained using the different adaptive strategies on the RBF
data.

57

time = 25000 time = 75000 time = 125000

A
da

pt
 k

A
da

pt
 σ

F
ix

ed
 k

=
1

F
ix

ed
 k

 &
 σ

Figure 3.7: The decision boundaries of the different IBLStreams’s adaptive strategies
on the RBF data.

58

20000 40000 60000 80000 100000 120000

70

75

80

85

accuracy

20000 40000 60000 80000 100000 120000

2

4

6

8

10

12

14

number of neighbors (k)

20000 40000 60000 80000 100000 120000

0.04

0.05

0.06

0.07

kernel width (σ)

Adapt k Adapt σ Fixed k=1 Fixed k & σ

#
n

e
ig

h
b

o
rs

 (
k
)

ke
rn

e
l
w

id
th

 (
σ

)
a

c
c
u

ra
c
y

Figure 3.8: The change in performance, number of neighbors (k) and kernel width (σ)
when IBLStreams is trained using the different adaptive strategies on the hyperplane
data, with a concept drift.

59

time = 25000 time = 75000 time = 125000

A
da

pt
 k

A
da

pt
 σ

F
ix

ed
 k

=
1

F
ix

ed
 k

 &
 σ

Figure 3.9: The decision boundaries of the different IBLStreams’s adaptive strategies
on the hyperplane data, with a concept drift.

60

synthetic data streams, and over 10 randomly shuffled versions of the data for real

data sets.

3.5.3.1 Classification

Classification experiments involve the creation of the accuracy curves. In the follow-

ing experiments, we used both Hoeffding trees and the adaptive Hoeffding trees in

the default parameter setting8. IBLStreams is used in the Wk-NN mode for classi-

fication, for which we set the initial k = 16, the initial kernel width (for exponential

and Gaussian kernels) σ = 0.50 and the maximum case base size Lmax = 5,000.

IBLStreams is applied in three variants:

C1: IBLStreams adaptive kernel width σ, with the Gaussian kernel

C2: IBLStreams adaptive number of neighbors k, with the equal weighting of neigh-

bors

C3: IBLStreams with no adaptivity, i.e. by fixing k and σ, with the equal weighting

of neighbors

Synthetic Data

We use two synthetic data streams, each of which is used twice, once as a pure

stream and the second time with a simulated concept drift in the middle of the

stream; the concept drift is simulated using MOA’s ConceptDriftStream procedure,

see Appendix D.2.1.

The size of each stream is set to be 125k instances, with a sliding window evalua-

tion of the model’s performance on the last 500 instances plotted every 500 instances.

For the simulated drift experiments, we locate the drift at the center of the stream

by setting t0 = 75k and w = 10k.

The first data stream uses the RBF data (see Appendix D.1.4) in four different

difficulties: binary, 3-class, 4-class and 5-class classification problems. On the pure

streams, as expected, Figure 3.10 shows that IBLStreams, in all its variations, is su-

perior to both variations of the Hoeffding trees. Similarly, when simulating a drift

on the RBF data, the adaptive variations of IBLStreams C1 and C2 have the best

performance with almost 100% accuracy along the streams, with a small drop in

8gracePeriod g = 200, splitConfidence c = 0, tieThreshold t = 0.05, numericEstimator
n=GAUSS10 and leafpreiction l= NBAdaptive

61

#classes length #atts. stream 1 stream 2 params
seed seed

RBF
pure 2-5 125k 20 111 kernels = 100
concept drift 2-5 125k 20 111 154 kernels1 = 200

kernels2 = 250
t0 = 75 k
w = 10 k

random trees
pure 2-5 125k 8 111 depth = 15
concept drift 2-5 125k 8 111 154 depth = 15

t0 = 75 k
w = 10 k

dis. hyper.
pure distance 125k 10 111

squared 125k
cubed 125k

concept drift distance 125k 10 111 154 t0 = 75 k
squared 125k w = 10 k
cubed&125k

cover type 7-classes 581,012 12 - -
mushroom binary 8,124 21 - -
page blocks 5-classes 5,473 10 - -
StatLog 7-classes 58,000 9 - -
skin seg. binary 245,057 3 - -
MAGIC binary 19,020 10 - -
Parkinson’s
motor UPDRS regression 5,875 18 - -
total UPDRS regression 5,875 18 - -
slice loc. regression 53,500 384 - -

Table 3.6: The used data sets with their corresponding parameters for the experiments
presented in Figures 3.10-3.18.

62

performance at the center of the drift; the variations C1 and C2 have a better per-

formance and a smooth adaptation pattern compared to the none-adaptive variation

C3. Hoeffding trees, on the other hand, barely manage to learn from this data set,

especially from the non-binary cases. Moreover, Hoeffding trees’ drop in performance,

during the drift, is more pronounced compared to C1 and C2. Finally, the adaptive

Hoeffding tree is performing sightly better than the incremental Hoeffding tree, when

it comes to learning and adapting to concept drifts, see Figure 3.11.

The second data stream uses the random trees data (see Appendix D.1.3) whose

underlying model is a randomly constructed decision tree with class labels randomly

assigned to the leaf nodes.

As depicted in Figure 3.12, the Hoeffding trees are now able to compete with

IBLStreams when learning from pure streams. They reach an accuracy close to 60-

80%, which is not unexpected given that Hoeffding trees are ideally tailored for this

kind of data. Once again, Hoeffding trees are more affected by the concept drift than

all variations of IBLStreams. The three variants of IBLStreams do not show any

drastic decrease in terms of classification rate. In contrast, they continue to improve

the performance during the drift, whereas both the Hoeffding tree and the adaptive

Hoeffding tree lose up to 20% of their accuracy, with a very slow recovery pattern,

see Figure 3.13.

Hence, Hoeffding trees are more affected by the concept drift; this can be observed

by the pronounced valley in the performance curve when the drift occurs and by the

long time they take to recover. IBLStreams recognizes and adapts to the concept

drift quite early, and recovers to its original performance as soon as the drift is over.

Real Data

We use six real data sets for classification: cover type, mushroom, page blocks,

StatLog, skin segmentation and MAGIC gamma telescope data, explained in Ap-

pendix D.3.

The results in Figure 3.14 and Figure 3.15 show that IBLStreams adaptive kernel

width variant C1 is superior on all real streams, followed by the adaptive k variant C2.

Hoeffding trees, on the other hand, either obtain a performance lower than that of C3,

as in the page blocks data, or manage to reach the performance of C2 after at least

seeing more than one third of the stream, as in the cover type, mushroom, StatLog

and skin segmentation data. The adaptive Hoeffding tree manages to overcome the

performance achieved by C1 only on the MAGIC gamma telescope data, close to the

end of the data stream.

63

20000 40000 60000 80000 100000 120000
40
50
60
70
80
90

100

RBF, binary

20000 40000 60000 80000 100000 120000
30
40
50
60
70
80
90

100

RBF, 3 classes

20000 40000 60000 80000 100000 120000
20

40

60

80

100

RBF, 4 classes

20000 40000 60000 80000 100000 120000
20

40

60

80

100

RBF, 5 classes

Hoeffding Adaptive tree

Hoeffding tree

IBLStreams Adapt σ

IBLStreams Adapt k

IBLStreams Fixed k & σ
(C1)

(C3)

(C2)

Figure 3.10: Classification rate on the pure RBF data set, 2, 3, 4 and 5 classes.

64

20000 40000 60000 80000 100000 120000

50
60
70
80
90

100
RBF, binary, concept drift

20000 40000 60000 80000 100000 120000

40
50
60
70
80
90

100
RBF, 3 classes, concept drift

20000 40000 60000 80000 100000 120000
20

40

60

80

100
RBF, 4 classes, concept drift

20000 40000 60000 80000 100000 120000
20

40

60

80

100
RBF, 5 classes, concept drift

Hoeffding Adaptive tree

Hoeffding tree

IBLStreams Adapt σ

IBLStreams Adapt k

IBLStreams Fixed k & σ
(C1)

(C3)

(C2)

Figure 3.11: Classification rate on the RBF data set, 2, 3, 4 and 5 classes, with a
concept drift.

65

20000 40000 60000 80000 100000 120000
40

50

60

70

80

RandomTree, binary

20000 40000 60000 80000 100000 120000

45
50
55
60
65
70

RandomTree, 3 classes

20000 40000 60000 80000 100000 120000

30

40

50

60

70

RandomTree, 4 classes

20000 40000 60000 80000 100000 120000
25
30
35
40
45
50
55

RandomTree, 5 classes

Hoeffding Adaptive tree

Hoeffding tree

IBLStreams Adapt σ

IBLStreams Adapt k

IBLStreams Fixed k & σ
(C1)

(C3)

(C2)

Figure 3.12: Classification rate on the pure random trees data set, 2, 3, 4 and 5
classes.

66

20000 40000 60000 80000 100000 120000
40

50

60

70

80
RandomTree, binary, concept drift

20000 40000 60000 80000 100000 120000
40
45
50
55
60
65
70

RandomTree, 3 classes, concept drift

20000 40000 60000 80000 100000 120000

30

40

50

60

RandomTree, 4 classes, concept drift

20000 40000 60000 80000 100000 120000

30

40

50

60

RandomTree, 5 classes, concept drift

Hoeffding Adaptive tree

Hoeffding tree

IBLStreams Adapt σ

IBLStreams Adapt k

IBLStreams Fixed k & σ
(C1)

(C3)

(C2)

Figure 3.13: Classification rate on the pure random trees data set, 2, 3, 4 and 5
classes, with a concept drift.

67

1e+05 2e+05 3e+05 4e+05 5e+05

65

70

75

Cover Type

5000 10000 15000

72

74

76

78

80

82

84
MAGIC Gamma Telescope

2000 4000 6000 8000

88

90

92

94

96

98

100

mushroom

Hoeffding Adaptive tree

Hoeffding tree

IBLStreams Adapt σ

IBLStreams Adapt k
σ(C1) (C3)

(C2)
IBLStreams Fixed k &

Figure 3.14: Classification rate on the real data sets: covertype, MAGIC gamma
telescope and mushroom.

68

1000 2000 3000 4000 5000
88

90

92

94

96

Page Blocks

10000 20000 30000 40000 50000

80

85

90

95

100

Statlog (Shuttle)

50000 100000 150000 200000
94

95

96

97

98

99

100

Skin Segmentation

Hoeffding Adaptive tree

Hoeffding tree

IBLStreams Adapt σ

IBLStreams Adapt k

σ(C1) (C3)
(C2)

IBLStreams Fixed k &

Figure 3.15: Classification rate on the real data sets: page blocks, StatLog (shuttle)
and skin segmentation.

69

3.5.3.2 Regression

Regression experiments involve the production of error curves, in terms of the root

mean square error (RMSE), when comparing the performance of IBLStreams with

FLEXFIS, AMRules and FIMTDD.

FLEXFIS is implemented in Matlab and offers a function for finding optimal

parameter values. We used this function to tune all parameters except the so-called

“forgetting parameter”, for which we manually found the value 0.999 to perform best;

we also enable the pruning option. AMRules9 and FIMTDD10 were applied with their

default parameters.

For the regression experiments, IBLStreams makes predictions using the locally

weighted linear regression in three variants:

R1: IBLStreams adaptive kernel width σ, with the Gaussian kernel

R2: IBLStreams adaptive number of neighbors k, with the equal weighting of neigh-

bors

R3: IBLStreams with no adaptivity, i.e. by fixing k and σ, with the equal weighting

of neighbors

Synthetic Data

In this experiment, we use the distance to hyperplane generator in MOA, explained in

Appendix D.1.2, which considers the distance to a hyperplane as a target value of the

prediction task. As alternative to the simple distance, squared and cubed distance

can also be considered. The stream size is set to be 125k instances, with a sliding

window-evaluation of the model’s performance on the last 500 instances plotted every

500 instances.

For IBLStreams, we set the initial k = 16, initial kernel width (for exponential

and Gaussian kernels) σ = 0.50 and the maximum case base size Lmax = 5,000.

Figure 3.16 shows the results when learning from the distance, squared and cubed

distance to hyperplane. It is clear that the two variants of IBLStreams R1 and R2

have the smallest error on all streams, regardless of their difficulties. The R3 variation,

however, has a slightly greater error compared to R1 and R2 on the cubed distance,

which is clearly a more challenging task than the simple distance.

9predictionFunctionOption p=Adaptative, PageHinckleyAlpha a=0.005, tieThreshold t=0.05,
splitConfidence c=1.0E-7 and learningRatio l=0.02

10splitCriterion s=VarianceReductionSplitCriterion, PageHinckleyAlpha a=0.005, tieThreshold
t=0.05, splitConfidence c=1.0E-7 and learningRatio l=0.02

70

FLEXFIS and AMRules show a constant error along the streams which is compar-

atively higher than the error committed by IBLStreams’ variations. FIMTDD starts

with a relatively high error, which rapidly decreases to an acceptable performance,

close to what is achieved by AMRules. Thereafter, its error decreases monotonically

showing that it is still improving, yet it remains worse than IBLStreams.

Again, a simulated concept drift is used by mixing two synthetic streams. For the

simulated drift experiments, we locate the drift at the center of the stream and we

set t0 = 75k and w = 10k.

Figure 3.17 shows the results when applying the simulated drift on the distance,

squared and cubed distance to hyperplane. The results show that all learners suffer

from a decrease in their performance (an increase in the root mean square error).

However, only IBLStreams restores its good performance on these problems by re-

covering to the same error level it reached before the drift. FLEXFIS also manages

to restore its initial performance, which was not good in comparison to the other

methods.

In these various examples, FLEXFIS, FIMTDD and AMRules are significantly

outperformed by the different versions of IBLStreams. In fact, the RMSE is clearly

lower for IBLStreams, not only under the normal conditions but also in cases of a

concept drift.

Real Data

In this experiment we used two real data sets: the slice localization data and the

Parkinson’s telemonitoring, see Appendix D.3.10 and Appendix D.3.9. The latter is

used twice, the first time by considering “motor UPDRS” as the target output and

the second time by considering the “total UPDRS” attribute.

Figure 3.18 restates that both IBLStreams variants R1 and R2 have competitive

performance, which was overcome by AMRules and FIMTDD only after seeing half

of the stream on the Parkinson’s data set. FLEXFIS, on the other hand, shows the

worst performance on all real data experiments.

3.6 Discussion and Conclusion

This chapter presented our instance-based learner on data streams, IBLStreams, for

tackling the tasks of classification and regression. IBLStreams is, to some extent, a

continuation of IBL-DS; IBLStreams does not only exhibit the desirable properties

of an adaptive system proposed by [57], but it also respects all the relevance factors

71

20000 40000 60000 80000 100000 120000
0.00

0.05

0.10

0.15

Hyperplane, distance

20000 40000 60000 80000 100000 120000
0.0

0.1

0.2

0.3

0.4

Hyperplane, square distance

20000 40000 60000 80000 100000 120000
0.0

0.2

0.4

0.6

0.8

Hyperplane, cubic distance

AMRules

FIMTDD

FLEXFIS
IBLStreams Adapt σ

IBLStreams Adapt k

IBLStreams Fixed k & σ(R1) (R3)
(R2)

Figure 3.16: RMSE for the pure distance to hyperplane data (distance, squared and
cubed distance).

72

20000 40000 60000 80000 100000 120000
0.00

0.05

0.10

0.15

Hyperplane, distance, concept drift

20000 40000 60000 80000 100000 120000
0.0

0.1

0.2

0.3

0.4

Hyperplane, square distance, concept drift

20000 40000 60000 80000 100000 120000
0.0

0.2

0.4

0.6

0.8

Hyperplane, cubic distance, concept drift

AMRules

FIMTDD

FLEXFIS
IBLStreams Adapt σ

IBLStreams Adapt k

IBLStreams Fixed k & σ(R1) (R3)
(R2)

Figure 3.17: RMSE for the distance to hyperplane data (distance, squared and cubed
distance), with a concept drift.

73

1000 2000 3000 4000 5000
0

2

4

6

8

Parkinson’s Motor UPDRS

1000 2000 3000 4000 5000
0

2

4

6

8

10

Parkinson’s Total UPDRS

10000 20000 30000 40000 50000
0

10

20

30

40

50

60

Slice Localization

AMRules

FIMTDD

FLEXFIS
IBLStreams Adapt σ

IBLStreams Adapt k

IBLStreams Fixed k & σ(R1) (R3)
(R2)

Figure 3.18: RMSE for the real data sets: Parkinson’s motor UPDRS, Parkinson’s
total UPDRS and slice localization.

74

introduced by [17] for an IBL approach while maintaining a case base. In addition,

parameter adaptation strategies are suggested for a dynamic fit to the current concept.

The experiments presented here suggest that IBLStreams competes with the

state-of-the-art instance-based and model-based learners on data streams. Indeed,

IBLStreams seems to be less “inert” when a concept drift occurs and, moreover, re-

covers its original performance more quickly when the drift comes to an end. This

is arguably due to the advantage of not having to adapt a possibly complex model.

Additionally, IBLStreams seems to quickly reach a high performance compared to the

other learners, this is seen as a learning curve that rapidly reaches the saturation level.

For these reasons, IBLStreams is comparable, if not superior, to the state-of-the-art

instance-based and model-based learners on data streams

75

Chapter 4

Evolving Fuzzy Pattern Trees

This thesis starts by introducing the aspects of learning and the need to develop

statistical solutions for transforming data to knowledge; it also shows how learn-

ing becomes challenging when the data becomes immense and continuous as in the

streaming settings.

Chapter 3 shows an example of how one of the widely used machine learning

techniques, namely the simple nearest neighbor approach, can be adapted to make

the learning from non-stationary environments possible.

In this chapter, we present a different learning technique that draws its elements

from the theory of fuzzy sets [184]. Fuzzy logic is a multivalued logic in which truth

values go beyond the binary set {true, false} or even the many-valued sets. In this

type of logic, truth values are taken from the unit interval, with the ability to employ

linguistic terms characterizing the space of underlying variables.

Models that utilize the theory of fuzzy sets are capable of expressing more realistic

representation of world’s problems than two-valued logic. Fuzzy logic allows prepo-

sitions to be satisfied, unsatisfied or even partially satisfied; even more, satisfaction

is quantified through the notion of membership degree for an element in a set, or the

satisfaction degree of a proposition.

The advantage of fuzzy modeling becomes more obvious when considering fuzzy

rule-based systems, which allow a fuzzy representation of the data; a fuzzy rules-based

model allows rules to become partially satisfied. Because fuzzy logic allows sets to

be identified with linguistic terms, the set of rules representing a concept becomes a

generalized representation of the concept that is easier to interpret and to understand

due to its expressibility in the natural language.

Hüllermeier [83] refers to the advantage of extending machine learning and data

mining methods with fuzzy concepts. This extension leads to models that are more

comprehensible and less complex; however, it is unlikely that the fuzzy extension

77

would lead to major improvements in the generalization performance, especially be-

cause these fields have reached a mature state.

Motivated by these developments, we propose an extended version of the fuzzy

pattern trees suitable for learning from data streams. More specifically, by building

on the (batch learning) algorithm for pattern tree induction as proposed in [146], we

develop an evolving variant for the problem of binary classification.

This chapter is organized as follows: By way of background, Section 4.1 recalls

some basic information about the theory of fuzzy sets. Section 4.2 presents a few data-

driven approaches that utilize the aspects of fuzzy logic. Section 4.3 introduces the

fuzzy pattern tree and its main induction methods, which we extend to the streaming

setting in Section 4.4. Experimental results are presented in Section 4.5, prior to

concluding the chapter in Section 4.6.

4.1 Introduction to Fuzzy Sets

Proposed as an extension to the set theory, fuzzy sets theory relaxes the crisp defini-

tion of the set membership “∈”. This extension is motivated by the natural way we

represent the continuity of our knowledge and belief, which suffers from information

loss when discretized. Thus, an element now belongs to a set to some degree and is

characterized by the notion of membership. The characteristic function of a subset

A of a reference set Ω is defined as follows:

A(x) =

{
1 if x ∈ A
0 if x /∈ A , (4.1)

whereas, a fuzzy set [184] is defined by a membership function A that assumes values

in the unit interval:

A : Ω→ [0, 1] .

A large number of fuzzy membership functions have been proposed in the literature

[127], such as triangular function, β-function, S-function, trapezoidal, and Gaussian,

among others. The triangular functions take the form of a triangle with the mode at

b and the support at [a, c]:

A(x) =


x−b
c−a

if x ∈ [a, b]
c−x
c−a

if x ∈ [b, c]

0 if x /∈ [b, c]

. (4.2)

78

4.1.1 Operations on Fuzzy Sets

Fuzzy sets require new definitions of three main set operations, intersection, union

and complement in order to fit their multivalued nature. These definitions can be

achieved based on the generalization of the logical operators. Triangular norms were

formally defined as generalization of the triangular inequality in probability metric

spaces [118]. Subsequently, triangular norms [96] were used as a substitute for the

conventional conjunction and disjunction operations as shown in the following two

definitions.

A t-norm is the generalization of the logical conjunction and it is a function

⊤ : [0, 1]× [0, 1]→ [0, 1] that needs to satisfy the following conditions:

• Commutativity: ⊤(a, b) = ⊤(b, a)

• Associativity: ⊤(a,⊤(b, c)) = ⊤(⊤(a, b), c)

• Monotonicity: if a ≤ c and b ≤ d, then ⊤(a, b) ≤ ⊤(c, d)

• Identity element: ⊤(a, 1) = a

A t-conorm is the generalization of the logical disjunction and it is a function

⊥ : [0, 1]× [0, 1]→ [0, 1] that needs to satisfy the following conditions:

• Commutativity: ⊥(a, b) = ⊥(b, a)

• Associativity: ⊥(a,⊥(b, c)) = ⊥(⊥(a, b), c)

• Monotonicity: if a ≤ c and b ≤ d, then ⊥(a, b) ≤ ⊥(c, d)

• Identity element: ⊥(a, 0) = a

Each t-norm has a dual t-conorm for which

⊥(a, b) = 1−⊤(1− a, 1− b) ,

or equivalently

⊤(a, b) = 1−⊥(1− a, 1− b) .

Table 4.1 depicts a group of the most popular triangular norms and conorms.

79

4.1.2 Aggregation Operations on Fuzzy Sets

The rich representation of fuzzy sets allows for a class of operators that aggregate

multiple fuzzy sets into a single set. A fuzzy aggregation operator [127] is an n-ary

ψ : [0, 1]n × [0, 1]→ [0, 1] operator for which the following holds:

• Monotonicity: ψ(a1, . . . , an) ≥ ψ(b1, . . . , bn) if ai ≥ bi, i = 1, . . . , n

• Boundary conditions ψ(0, . . . , 0) = 0 and ψ(1, . . . , 1) = 1

Obviously, the set of fuzzy aggregation operators contains the set of triangular

norms and conorms. The aggregation operators include: the compensatory opera-

tors [186], symmetric sums [58], averaging operators [59] and the ordered weighted

averaging [181]; many data-driven approaches focus and utilize the last two.

The weighted average (WA) operator is an n-ary function WA : [0, 1]n → [0, 1]

identified by the vector w = (w1, . . . , wn) ∈ [0, 1]n with
∑n

i=1wi = 1 such that

WA(a1, . . . , an) =
n∑

i=1

wiai .

Similarly, the ordered weighted average (OWA) [181] is an n-ary function OWA :

[0, 1]n → [0, 1] that takes the weighted average of the n arguments after sorting them;

it is identified by the vector w = (w1, . . . , wn) ∈ [0, 1]n with
∑n

i=1wi = 1 such that

OWA(a1, . . . , an) =
n∑

i=1

wif(i, a1, . . . , an) ,

where the value f(i, a1, . . . , an) is the ith smallest value in the vector (a1, . . . , an).

The OWA operator exhibits the property of generalizing other operators:

• The arithmetic mean: if w = (1/n, . . . , 1/n) then OWA(a1, . . . , an) = 1
n

∑n
i=1 ai

• The minimum operator : if w = (1, . . . , 0) then OWA(a1, . . . , an) = min(a1, . . . , an)

• The maximum operator : if w = (0, . . . , 1) then OWA(a1, . . . , an) = max(a1, . . . , an)

Notably, the t− DRA is the smallest t-norm and the MIN is the largest, whereas

t-conorms are bounded by the MAX and the co− DRA. The averaging operators WA and

OWA take values in the wide spectrum of operators between the least strict t-norm and

the most strict t-conorm:

t− DRA ≤ t− EIN ≤ t− LUK ≤ t− ALG ≤ MIN

≤ WA, OWA ≤

MAX ≤ co− ALG ≤ co− LUK ≤ co− EIN ≤ co− DRA .

80

Operator t-norm t-conorm

Gödel MIN(a, b) = min{a, b} MAX(a, b) = max{a, b}
algebraic t− ALG(a, b) = ab co− ALG(a, b) = a+ b− ab
 Lukasiewicz t− LUK(a, b) = max{a+ b− 1, 0} co− LUK(a, b) = min{a+ b, 1}
Einstein t− EIN(a, b) = ab

2−(a+b−ab)
co− EIN(a, b) = a+b

1+ab

drastic t− DRA(a, b) =


b if a = 1
a if b = 1
0 otherwise

co− DRA(a, b) =


b if a = 0
a if b = 0
1 otherwise

Table 4.1: Fuzzy triangular operators.

4.2 Data-Driven Fuzzy Modeling

The flexibility enjoyed by fuzzy sets made their introduction to engineering processes

reasonable and beneficial; these fuzzy concepts helped many researchers in designing

control systems that are easier to understand and interpret. Fuzzy logic did not re-

main restricted to engineering fields, but it has become a good candidate to transfer

the expert’s knowledge and experience into an expert system with a minimum infor-

mation loss during the knowledge transfer. Such expert systems were mainly focusing

on fuzzy rule-based systems, such as Mamdani controller [114] and Takagi-Sugeno-

Kang Controllers (TSK) [165].

Artificial intelligence, on the other hand, does not only focus on representing the

expert’s knowledge as an intelligent system, but it is also concerned with discovery of

this knowledge from observations, i.e., in a data-driven way, which is the main target

of data mining and machine learning. Over the last three decades, there have been

plenty of approaches that try to harvest interpretable models from data using fuzzy

logic. Based on the supervised learning setting (see Section 2.2), we introduce in this

section the main approaches that led to the idea of fuzzy pattern trees as introduced

in [82].

4.2.1 Fuzzy Subsethood-Based Algorithm

The subsethood S(A,B) [100] is a measure that tells to which degree the fuzzy set A

belongs to the fuzzy set B

S(A,B) =

∑
x∈U min(µA(x), µB(x))∑

x∈U µA(x)
. (4.3)

Subsethood-based algorithm (SBA) is a rule-based framework that induces rules

modeling the training data; it employs the subsethood measure to learn these rules.

81

For a supervised learning problem with m dimensions and l classes C1, . . . , Cl, SBA

creates the set of rules:

Rule1 IF A1 IS (A11 OR . . . OR A1m) AND . . . AND

An IS (An1 OR . . . OR Anm)

THEN predict class C1

...

Rulel IF A1 IS (A11 OR . . . OR A1m) AND . . . AND

An IS (An1 OR . . . OR Anm)

THEN predict class Cl ,

(4.4)

such that Aj1, . . . , Ajm are the fuzzy terms for the variable Aj, the AND and the OR

logical operators are replaced by the t-norm (MIN) and the t-conorm (MAX) operators.

Thereafter, SBA evaluates the similarity between each fuzzy term Aji and each class

Cv according to (4.3); only fuzzy terms Aji whose subsethood S(Aji, Cu) > α ∈ [0, 1]

in the rule Ruleu are kept and the others are removed.

The SBA model (4.4) lacks the ability to take into account the relative contribution

of each term of each variable towards the consequence part. Rasmani and Shen [131]

introduce a weighted SBA (WSBA) to solve this problem by weighting each linguistic

term with its respective contribution. The relative weight for the linguistic term Bi

of the fuzzy variable1 B with respect to the fuzzy set A is given by

w(A,Bi) =
S(A,Bi)

maxj=1...m S(A,Bj)
. (4.5)

The resulting default fuzzy rules take the form

Ruleu IF Au IS (w(Cu, Au1)Au1 OR . . . OR w(Cu, Aum)Aum)

AND . . . AND

An IS (w(Cu, An1)An1 OR . . . OR w(Cu, Anm)Anm)

THEN predict class Cu ,

(4.6)

which are learned similar to those learned in the SBA approach.

4.2.2 Fuzzy Decision Trees

Fuzzy decision trees are the fuzzy variation of the well-known decision trees [129],

which are induced in a recursive manner by replacing a leaf node with an internal

1A linguistic variable is a variable whose values are words (linguistic terms) instead of numbers,
and each linguistic term is characterized by a fuzzy set.

82

node, labeled by an attribute, and number of branches leading to child (leaf) nodes.

Each of these leaf nodes can be reached from the internal node after satisfying a logical

predicate assigned to its corresponding branch; the set of logical predicates (label-

ing all edges) are mutually exclusive, such that for each value of the corresponding

attribute, there is only one branch whose predicate is satisfied.

Fuzzy decision trees while maintaining a tree structure similar to that of decision

trees, differ from decision trees in four important issues: (i) The logical predicates

assigned to the tree’s branches are extended to become fuzzy predicates, i.e., a pred-

icate can be satisfied to some degree u ∈ [0, 1]. (ii) Allowing paths to be partially

satisfied leads to the relaxation of the mutual exclusion condition, which means that

multiple paths can be simultaneously active with different degrees. (iii) Decisions

concluded at the leaf nodes of all active paths need to be aggregated with respect

to their degrees of satisfaction/activation. (iv) The information gain measured in

the decision tree’s induction methods has to be extended to a measure that consid-

ers both the attributes in their fuzzy representation and the graded activation of the

multiple paths. Yuan and Shaw [183] and Janikow [88] propose two different methods

for inducing fuzzy decision trees; these approaches differ mainly in addressing these

four discussed issues.

4.3 Fuzzy Pattern Trees

Fuzzy pattern trees (FPTs) are introduced in [82] as tree-like structures induced to

solve supervised learning problems. This model relaxes the restrictions imposed in

the previously motivated rule-based systems, in which only a conjunction between the

different attributes is allowed. Fuzzy decision trees suffer from the same restriction

because each path from a leaf node to the root is formed as a chain of conjunction

operators, and the different active paths are then distinctively aggregated.

Fuzzy pattern trees, on the contrary, allow the application of arbitrary operators

on the fuzzy representation of the object’s attributes. In this way, a more compre-

hensive space of rules is explored which promises to find a better fit to the training

data.

An FPT is a binary tree that represents one class in the output domain, each of

the tree’s internal nodes contains one fuzzy aggregation operator from the categories:

t-norms, t-conorms, and averaging operators. These operators aggregate the scores

realized in the left and the right sub-trees of an internal node and then propagate

the result to the parent node. Each leaf node contains a fuzzy term on one of the

83

input attributes. In this way, a learning example is observed at all leaf nodes, which

then propagate the fuzzy membership degrees upwards; internal nodes recursively

aggregate their inputs until the final aggregation at the root node. As a result,

each pattern tree forms a hierarchical logical description of the represented class,

and its compact representation offers the tradeoff between the correctness and the

interpretability of the induced model.

For a multiclass learning problem, a standard reduction scheme, such as one-vs-

rest decomposition, can be applied to transform the problem into a set of binary

problems and then solve them using a set of FPTs.

Fuzzy pattern trees allow t-norms and t-conorms to be chosen from the different

types of operators shown in Table 4.1, except the drastic norm. By allowing the

internal nodes to choose averaging operators (WA and OWA) instead of t-/co-norms,

a flexible aggregation of the node’s operands is facilitated through constituting the

possible convex combinations of fuzzy terms.

An alternative to the original pattern trees’ induction algorithm [82] is proposed

and developed by Senge and Hüllermeier in [146]; they also introduce an FPT variant

for regression problems in [145]. Moreover, Senge proves in his thesis [144] that the

fuzzy pattern trees are universal approximators with an infinite VC dimension, i.e.,

for any real-valued function f there is an FPT that approximates it.

Finally, it is worth mentioning that independent of the fuzzy pattern trees, the

same type of fuzzy model structure was introduced in [182] under the name “fuzzy

operator tree”.

In the following, we show the basic concepts of fuzzy pattern trees as presented in

[146, 145]. For a binary classification problem, an instance is a vector x ∈ Xm, and

each domain Xi is discretized through fuzzy partitioning into ni fuzzy sets Fi,j : Xi →
[0, 1]. Each training example is defined as (x, y) ∈ Xm × Y , where y ∈ Y = {⊖,⊕}
is the class label.

Leaf nodes are labeled by the fuzzy sets Fi,j, which is the jth fuzzy set of the ith

attribute. An example (x, y) ∈ X × Y is fuzzified into the vector

(f1,1, . . . , f1,n1 , . . . , fm,1, . . . , fm,nm) ,

such that the fi,j is membership degree of the attribute xi in the fuzzy set Fi,j. Each

internal node contains one operation θ from the set of the allowed operations

Ψ = {MIN, t− ALG, t− LUK, t− EIN, MAX, co− ALG, co− LUK, co− EIN, WA, OWA} .

84

With fuzzy sets residing at the leaf nodes, membership degrees are propagated to par-

ent nodes, which propagate the results on their turn after aggregating them depending

on the operation they hold. The consecutive recursive propagation of internal results

leads the final prediction to reach the root node. This result represents the belief

for an instance to belong to the modeled class. Predictions for binary classification

problems are then determined after thresholding. Figure 4.1 presents an example of

fuzzy pattern trees.

4.3.1 Bottom-Up Induction of Fuzzy Pattern Trees

The original proposal of FPT [82] is accompanied with two algorithms that induce

the FPT in a bottom-up manner. The two methods start by the definition of the

following sets: The set of primitive trees P = {Fi,j}, such that a primitive tree is a

one-node tree labeled by a fuzzy term. The second set is the set of candidate trees Ct

at iteration t. The initial set of candidates C0 contains the primitive trees that are

most similar to the class to be learned. For a given data set, the performance of an

FPT is measured by the similarity between the tree’s outputs and the true outputs

using the Jaccard measure.

The bottom-up induction approach follows one of two algorithms:

• The first approach induces the so-called “simple pattern trees”. It restricts the

candidate set Ct to contain only the best performing current tree. The simple

FPT is generated by extending the current tree in Ct−1 through aggregating it

using all available operators θ ∈ Ψ with all primitive trees S ∈ P. Only when

the new tree improves the performance, i.e., increases the similarity between its

predictions and the target class, the current tree is discarded and the new tree

is adopted for the next iteration. This process ends when further extensions do

not lead to any improvements. Notice that each iteration increases the tree’s

depth by one. As a result, the induced tree is an unbalanced binary tree because

each internal node has at least one leaf node as a child.

• The second approach induces “general pattern trees”. It allows the set of can-

didate trees Ct to contain the best L trees instead of a single candidate tree.

In each iteration, an aggregation is attempted between each candidate tree

C ∈ Ct−1 and each tree in the “slave set” St−1 using all available operators

θ ∈ Ψ. The slave set St−1 contains in addition to primitive fuzzy terms the M

best performing trees from St−2 and Ct−1.

85

alcohol

acidity

acidity sulfatesm
ed

m
ed

lo
w

hi
gh

WA

T-conorm

T-norm

0.20.6

0.7

0.9

0.5

0.8

0.6

Figure 4.1: An example of a fuzzy pattern tree, modeling the quality of a red wine
based on its chemical properties, see [145].

4.3.2 Top-Down Induction of Fuzzy Pattern Trees

This top-down induction method is introduced in [146] as an alternative to the orig-

inal algorithm [82]. This section explains in more detail how the top-down method

works, and how nominal and numerical attributes can be discretized and fuzzified, as

suggested in [146].

This top-down induction method (depicted in Figure 4.2) utilizes two sets of trees,

similar to the bottom-up approach. The first set is the set of primitive trees P, each

of which is a one-node tree labeled by a fuzzy term. The second set is the set of

candidate trees Ct at iteration t. The initial set of candidates C0 contains the best

B primitive trees. The parameter B is set by default to B = 5.

The algorithm iterates over all quadruples

(C, l, θ, P) ∈
(
Ct−1 × leafs (C)×Ψ×P

)
,

each of which corresponds to one possible extension l↙θ↘P . These quadruples cover

the space of trees resulted from replacing each leaf node l, in the set of leaf nodes

leafs (C) of each candidate tree C in the current candidate set Ct−1, with an internal

node that aggregates the leaf l with the primitive tree P ∈ P by means of the

operation θ ∈ Ψ.

After evaluating all possible extensions, only the best B candidates are preserved

for the next iteration. The iterations terminate when the maximum number of itera-

tions tmax is reached or when further extensions cannot improve the performance by

more than ϵ% with ϵ = 0.0025.

86

Procedure Top-DownBatchFPTInduction

1: P = {Fij}, i = 1, ...,m; j = 1, ..., ni

2: C0 = arg maxB
P∈P

[Sim(P,Υ)]

3: for t = 1 to tmax do
4: Ct = Ct−1

5: for all (C, l, θ, P) ∈ (Ct−1 × leafs (C)×Ψ×P) do
6: Ct = Ct ∪ ExtendLeafInTree(C, l, θ, P)
7: end for
8: Ct = arg maxB

C∈Ct

[Performance(C,Υ)]

9: if max
C∈Ct

(Performance(C,Υ)) < (1 + ϵ) · max
C∈Ct−1

(Performance(C,Υ)) then

10: break
11: end if
12: end for
13: return arg maxB

C∈Ct

[Performance(C,Υ)]

Figure 4.2: Top-down induction algorithm for learning fuzzy pattern trees, as intro-
duced in [146].

The performance evaluation of each candidate tree PT is performed based on the

similarity between its predictions and the true outputs of the training data. A fuzzy

pattern tree can be seen as a fuzzy subset, since its output lies in the unit interval;

this tree is then compared with the subset of the training examples Υ, which contains

only examples from the modeled class. For an FPT modeling the positive class ⊕
and for a training example (x, y) ∈ D, the subset Υ is defined as

Υ(x) =

{
1 if y = ⊕
0 otherwise

. (4.7)

To evaluate the performance of a pattern tree PT, its predictions on the examples

(xi, yi) are compared to Υ. The performance measure is given by the additive inverse

of the root mean squared distance, which is shown to yield a reasonable fit [146]:

Performance(PT,Υ) = 1−

√√√√ 1

|D|

|D|∑
i=1

(PT(xi)−Υ(xi))2 . (4.8)

Finally, the tree from the candidate set that achieves the maximum performance,

Equation (4.8), is returned as a result of the induction process.

87

Before the induction, attribute values go through two main operations before play-

ing any role in the induction and prediction processes. The first operation is the dis-

cretization process in order to limit the number of primitive trees per attribute. The

second operation is the fuzzification in which attribute values become membership

values. The top-down induction process simply discretizes each attribute into three

fuzzy sets associated with the linguistic terms “low”, “medium” and “high”, see [146].

The “medium” fuzzy set Fi,medium is a triangular function (4.2) with the parameter

a, b and c found by maximizing the absolute Pearson correlation between Fi,medium, on

the ith attribute, and the subset Υ (4.7). The other two sets “low” and “high” are de-

fined for the ith attribute on the domain Xi = [a, b] as Fi,low(x) = min(max(b−x
b−a

, 0), 1)

and Fi,high(x) = min(max(x−a
b−a

, 0), 1), respectively.

Attributes with nominal domains are modeled by characteristic functions, degen-

erated fuzzy sets, one for each value v of that attribute. The characteristic function

Ai,v(x) for the value v of the ith attribute takes the form:

Ai,v(x) =

{
1 if x = v
0 otherwise

. (4.9)

The top-down induction process is mainly motivated by the advantage of making

small adaptations on the current tree, thus guaranteeing a better coverage and an

extensive exploration of the space of pattern trees. This behavior is especially ad-

vantageous when compared to the bottom-up approach, which merges two candidate

trees with an operator, leading to an arbitrary jump in the search space.

It is worth mentioning that Senge and Hüllermeier [147] propose, in a recent

publication, a modification for the pattern tree’s induction procedure in order to

accelerate the learning process. This acceleration is based on the application of the

Hoeffding race [115] and heuristics similar to our potential refinement, introduced in

Section 4.4.3.

4.4 Evolving Fuzzy Pattern Trees

To meet the requirements of learning from a data stream, we develop an evolving

version of fuzzy pattern tree learning, in which model adaptation is realized by an-

ticipating possible local changes of the current model, and confirming these changes

through statistical hypothesis testing.

The basic idea of our evolving version of fuzzy pattern tree learning (eFPT) is

to maintain an ensemble of pattern trees, consisting of the current (active) model

and a set of neighbor models. The current model is used to make predictions, while

88

the neighbor models can be seen as anticipated adaptations: they are kept ready to

replace the current model in case of a drop in performance, caused, for example, by

a change in the concept to be learned as explained in Section 2.3. More generally,

the current model is replaced, i.e., the anticipated adaptation is realized, whenever

its performance appears to be significantly worse than the performance of one of the

neighbor models; in this case, the set of neighbors is also revised.

More specifically, the set of neighbor models is always defined by the set of trees

that are “close” to the current model. Hence the term “neighbor” refers to the tree

derivable from this model by means of a single “edit operation”, namely an expansion

or a pruning step; a detailed explanation of how the neighbor trees are generated is

given by the algorithm GenerateNeighborTrees shown in Figure 4.3. Like in batch

algorithm, an expansion replaces a leaf l of the current tree by a three-node pattern

tree l↙θ↘R. A pruning step is essentially undoing an expansion. More precisely,

each inner node, except the root, can be replaced by one of its sibling nodes, i.e.,

the subtree rooted by this node is lifted by one level, while the subtree rooted by the

other sibling is pruned.

Looking at the neighbor trees as the local neighborhood of the current model in

the space of pattern trees, the algorithm performs an adaptive local search in this

space and, therefore, is somewhat comparable to a discrete variant of a swarm-based

search procedure. The collective movement of the active model and its “surrounding”

neighbor models in the search space is similar, for example, to the flocking of a group of

birds. Moreover, the pruning step does not necessarily lead to a tree that was already

observed in the induction process, thus allowing the search to be more flexible.

4.4.1 Performance Monitoring and Hypothesis Testing

At each time step t, the error rate of the current model PT and, likewise, of all

neighbors is calculated on a sliding window consisting of the last n training examples

{(xt−i, yt−i)}n−1
i=0 :

τt =
1

n

n−1∑
i=0

(yt−i − ŷt−i)
2 , (4.10)

where ŷi is the prediction of yi. The length of the sliding window, n, is a parameter

of the method; as a default value, we use n = 100, which is large enough from the

point of view of statistical hypothesis testing (see below) and small enough to enable

a fast reaction to changes of the data generating process.

89

Storing the predictions and the true class labels, τt+1 can easily be updated in an

incremental way:

τt+1 ← τt +
1

n

(
(yt+1 − ŷt+1)

2 − (yt−n+1 − ŷt−n+1)
2
)
, (4.11)

where yt+1 and yt−n+1 are the true class labels of the most recent and the oldest

observations in the current window, respectively.

In order to decide whether or not one of the neighbor trees is superior to the

current model, each update of the error rates is followed by a statistical hypothesis

test. Let τ (0) and τ (1) denote, respectively, the error rate of the current model and a

neighbor tree. We then test the null hypothesis H0 : τ (0) ≤ τ (1) against the alternative

hypothesis H1 : τ (0) > τ (1). A suitable test statistic for doing so is

t =
τ (0) − τ (1)

SE

SE =

√
(s(0))2 + (s(1))2

n
,

based on one-tailed Welch’s t-test for two samples with equal size and unequal vari-

ance, where n is the sample size (window length). The statistics s(0), s(1) are the

standard deviations of the error rates τ (0), τ (1), respectively. Standard deviations are

also updated incrementally on the sliding window, as presented in Appendix E. The

test statistic t follows Student’s t-distribution with

d.f. =

((
s(0)
)2

+
(
s(1)
)2)2

(n− 1)

(s(0))
4

+ (s(1))
4

degrees of freedom. The null hypothesis is rejected if t exceeds a critical threshold

Td.f.,α; note that α controls the proneness of the algorithm toward changes of the

model: The smaller α, the less often the model will be changed (by default, we use

α = 0.01).

The above test is conducted for each neighbor tree; if H0 is rejected in at least one

of these tests, the current model is replaced by the alternative tree for which the test

statistic was the highest. In this case, the fuzzy partitions of the numerical attributes

are recomputed and the refinements in Subsection 4.4.3 are applied based on the data

of the current window to the newly selected tree.

A Bonferroni-corrected significance level can also be applied here, however, we

tend to avoid applying such a correction as the multiple tests, associated with the

neighbor trees, are positively correlated. This correlation occurs because each pair of

the neighbor trees differ only with at most two edit operations; thus, such a correction

would increase the Type II error and subsequently decrease the power of the test.

90

4.4.2 Summary of the Algorithm

The algorithm for evolving fuzzy pattern tree (eFPT) learning on data streams is

summarized in Figure 4.4. The main steps of this algorithm are as follows:

1. In the initialization phase, the first pattern tree is learned by applying the top-

down batch induction algorithm Top-DownBatchFPTInduction on a small set

of training examples. The current model is initialized with this tree as shown

in Figure 4.2.

2. The set of neighbor trees is generated for the current model using the Gener-

ateNeighborTrees procedure depicted in Figure 4.3.

3. Upon the arrival of a new example, the sliding window is shifted and the error

rates for the current model and all neighbors are updated, see lines 7 to 12 in

Figure 4.4.

4. The error rates of the neighbors of the current model are compared, see line 14

in Figure 4.4.

5. If a neighbor is significantly better than the current model, the latter is replaced

by the former; in this case,

(a) the primitive pattern trees are reinitialized,

(b) the operators used in the pattern trees are optimized (e.g., by searching

for more fitting triangular norms and conorms, as in the case when only a

representative set of norms is considered),

(c) the set of neighbor trees is again recomputed, see Figure 4.3.

6. Loop at step 3

4.4.3 Refinements on the Neighbor Trees Generation

The computational complexity of our eFPT algorithm critically depends on the size

of the model ensemble, i.e., the number of neighbor trees. While monitoring the

performance of a single tree can be done quite efficiently, the overall costs may become

high due to the potentially large number of trees that have to be monitored and

compared to the current model. More specifically, the number of neighbor trees

resulting from one extension step is thus O(|Ψ| · |P| · |leafs (C) |), and the number of

91

Procedure GenerateNeighborTrees(C)

1: {Initialization}
{Every primitive pattern tree is labeled by a Fuzzy subset Fi,j associated with
attribute Ai}

2: P = {Fij}, i = 1, ...,m; j = 1, ..., ni

3: N = Null
4: {Creating the neighbor extension trees}
5: {Loop on each leaf of the current tree,

on each available operator and on each primitive pattern tree}
6: for all (l, θ, P) ∈ (leafs(C)×Ψ×P\{l}) do
7: N = N ∪ ExtendLeafInTree(C, l, θ, P)
8: end for
9: {Creating the neighbor pruning trees}
10: {Loop on each internal node of the current tree}
11: for all node ∈ internalNodes(C) do
12: {Replacing the chosen node by its children nodes}
13: N = N ∪ReplaceNode(C, node, child1)
14: N = N ∪ReplaceNode(C, node, child2)
15: end for
16: return N

Figure 4.3: Algorithm for generating neighbor trees.

trees resulting from one pruning step is 2 · |internalNodes (C) |. Additional costs are

caused by the re-computation of the neighbor models, which becomes necessary after

the replacement of the current model.

In the following, we propose two refinements of the above algorithm, both of

which are meant to reduce the computational complexity by reducing the number of

neighbor models. Because this number mainly depends on two factors, namely the

number of leaf nodes of the current model and the number of operators, an obvious

solution is to reduce either of these factors.

Selecting Leaf Nodes

The eFPT induction algorithm constructs a neighbor tree by either expanding or

pruning a leaf node of the current model. Here, we try to reduce the complexity by

allowing these edit operations only for a subset of promising candidates. In order to

select this subset, we apply a heuristic that estimates the potential influence of a leaf

on the tree’s output. More specifically, this heuristic tries to give an approximate

answer to the following question: Provided we allow a leaf node L in a pattern tree

92

Evolving Fuzzy Pattern Tree

1: {Initialization}
2: C = Top−DownBatchFPTInduction()
3: N = GenerateNeighborTrees(C)
4: {New instance from the stream is present}
5: while incoming instance t do
6: {Update the error rate for the current tree}
7: τ

(current)
t = τ

(current)
t−1 + 1

n
L(yt, ŷ

(current)
t)− 1

n
L(yt−n, ŷ

(current)
t−n)

8: {Loop on each neighbor tree}
9: for all Nk ∈ N do
10: {Update the error rate for each neighbor tree}
11: τ

(k)
t = τ

(k)
t−1 + 1

n
L(yt, ŷ

(k)
t)− 1

n
L(yt−n, ŷ

(k)
t−n)

12: end for
13: {Testing the null hypothesis that the current error rate is lower than that of

all neighbor trees}
14: if ∃Nk ∈ N : Reject H0(τ

(current)
t < τ

(k)
t) then

15: {A neighbor tree with a lower error rate is found}
16: C = Nk

17: {Recompute all primitive pattern trees}
18: P = {Aij}, i = 1, ...,m; j = 1, ..., ni

19: OptimizeUsedOperator(C)
20: N = GenerateNeighborTrees(C)
21: end if
22: end while

Figure 4.4: The induction algorithm of the evolving fuzzy pattern trees.

PT to be expanded, i.e., to replace L by a subtree N =L↙θ↘R, what improvement

can be expected from this modification?

An optimistic answer to this question can be given by assuming that N will

produce optimal outputs, namely N(x) = 1 for positive and N(x) = 0 for negative

examples. Based on this assumption, the potential of a leaf node L is defined in terms

of its average relative improvement:

POT(L) =
1

|T |
∑

(x,y)∈T


PT′(x)−PT(x)

1−L(x)
if y = ⊕ and L(x) ̸= 1

PT(x)−PT′(x)
L(x)

if y = ⊖ and L(x) ̸= 0

0 otherwise

,

where PT′ is the pattern tree after the expansion of L. Based on this conception of

the potential of a leaf, we modify our algorithm by considering only the p leaf nodes

93

with highest potential; p is a parameter that has to be defined by the user (our default

value is p = 3). As a result, the number of neighbor trees resulting from one extension

step will drop to O(|Ψ| · |P| · p), which becomes a constant number of neighbor trees

along the stream, independent of the size of the current model.

The same heuristic has also been applied in [144] in order to accelerate the induc-

tion process of the fuzzy pattern tree, albeit its application in a batch mode.

Retaining Operators

Another idea to reduce the number of expansions is to restrict the set of operators

θ. More specifically, we provisionally retain some operators: Instead of trying all

logical operators right away, we only try the largest (least extreme) t-norm MIN and

the smallest t-conorm MAX (in addition to the two averaging operators). Only in case

MIN is selected as an optimal operator, we also try the other (more extreme) t-norms;

likewise, if MAX is selected, the other t-conorms are tried, and the best one is adopted.

The basic assumption underlying this procedure is that, if any of the t-norms (t-

conorms) is the most appropriate operator, the algorithm will select MIN (MAX) in the

first step, because this is the “closest” among the available operators.

4.5 Empirical Evaluation

In this section, we compare our evolving fuzzy pattern trees with IBLStreams, de-

scribed in Chapter 3, and with the Hoeffding tree (see Appendix A.1) in terms of

performance, model size, and the handling of concept drift. Both variations of the

Hoeffding tree are used, the incremental [56] and the adaptive version [23].

The empirical evaluation is performed using the MOA framework (see Appendix B),

for which we offer an implementation of both eFPT and IBLStreams. MOA includes

data stream generators, different methods for classifier evaluation and also offers sev-

eral classifiers, including an implementation for both versions of Hoeffding trees.

eFPT is used with the default settings (the size of the sliding window for the

statistical hypothesis testing n = 100 and the number of leaf nodes with highest

potential p = 3), the initial tree is learned in a batch mode on a window of length

eFPTinit = 500, unless stated differently in Table 4.2. IBLStreams is used with

the adaptive k settings with a base size of IBLsize = 5000 instances, unless stated

differently in Table 4.2. Hoeffding trees are used with their default settings.

Our experimental evaluation has three main targets: (i) comparing the perfor-

mance of eFPT with other evolving learners, (ii) comparing the size of the pattern

94

#classes length #atts. stream 1 stream 2 params
seed seed

RBF
pure 2-5 125k 20 111 kernels = 100
concept drift 2-5 125k 20 111 154 kernels1 = 200

kernels2 = 250
t0 = 75 k
w = 10 k

random trees
pure 2-5 125k 8 111 depth = 15
concept drift 2-5 125k 8 111 154 depth = 15

t0 = 75 k
w = 10 k

dis. hyper.
pure distance 125k 10 111

squared 125k
cubed 125k

concept drift distance 125k 10 111 154 t0 = 75 k
squared 125k w = 10 k
cubed 125k

mushroom binary 8,124 21 - - eFPTinit = 200
IBLsize = 200

skin seg. binary 245,057 3 - - eFPTinit = 3000
IBLsize = 3000

MAGIC binary 19,020 10 - - eFPTinit = 500
IBLsize = 500

Table 4.2: The used data sets with their corresponding parameters for the experiments
presented in Figures 4.5- 4.13.

95

tree with that of the induced Hoeffding trees and (iii) studying the effect of the

different parametrization and refinements on the performance of eFPT.

4.5.1 Performance Comparison

In these experiments, the Test-then-train evaluation (see Appendix B.2) procedure

for measuring the prediction accuracy is employed. The performed experiments are

not only conducted with real data sets, but also with synthetic data.

For the performance comparison, we use Lukasiewicz operators as an initial set of

triangular norms and conorms when operator retraining is enabled. A loose signifi-

cance level α = 0.25 is used, which is a justified decision as shown in the following

subsections.

4.5.1.1 Synthetic Data

We use the three data generators offered by MOA: hyperplane, RBF and random

trees, see Appendixes D.1.1, D.1.3 and D.1.4. Similar to the evaluations performed

in Section 3.5, all synthetic experiments are performed by randomly generating the

model underlying each data set and fixing it, thereafter results are averaged over 10

folds. The sampled instances in each of these folds are randomly generated using

different seeds, hence, we generate folds with independent and identically distributed

data samples.

In the first part of the experiments, we use these data generators in their pure

form, without any simulated change, as seen in Figure 4.5.

The first experiment uses data taken from a hyperplane generator. eFPT, as well

as the other approaches, manages to learn the concept behind the hyperplane data

with a relatively good accuracy measure.

RBF data, on the other hand, seems to be difficult to fit, not only for eFPT

but also for the competitive methods. This is not a surprising result because such

a data can be best fit by a generative model or by a local approach such as the

nearest neighbor, as confirmed by the good performance of IBLStreams. In the third

synthetic experiment, we use a random tree generator, which constructs a random

decision tree by making random splits on attribute values, to produce examples.

Obviously, this generator is favorable for the Hoeffding tree, which is confirmed by

the better performance of Hoeffding trees compared to that of eFPT and IBLStreams.

In the second part of the experiments, we use the same synthetic data generators

with a simulated concept drift (see Appendix D.2.1) using the ConceptDriftStream

96

procedure offered by MOA. As depicted in Figure 4.6, although eFPT does not have

the best fit on the three simulated drifts, except for the hyperplane data, it has often

a smaller drop in performance and a better recovery pattern. Despite the visible

drop in performance at the beginning of the concept drift, eFPT is able to recover

quite quickly and reaches the same performance, as before, after a short while. The

Hoeffding tree, on the other hand, needs quite a long time to learn the concept and

is more strongly affected by the drift. IBLStreams seems to have a good fit, minor

drop in performance and perfect recovery patten.

eFPT, compared to the other approaches, shows a relatively good performance;

this performance, however, is not superior mainly because of restricting the search

space with a coarse-grained fuzzification (only three fuzzy sets are defined for each

input attribute). That said, the proposed extension to pattern trees assists them with

the ability to discover a concept change and to recover appropriately.

4.5.1.2 Real Data

In this part of the evaluation, we use three binary real data sets, namely mush-

room (Appendix D.3.2), skin segmentation (Appendix D.3.6) and the MAGIC (Ap-

pendix D.3.7) data sets. Performance evaluations are measured on windows of a

fixed-size, which is chosen based on the size of the data set as shown in Table 4.2.

The real data sets are standard benchmarks taken from the UCI repository [107].

Because they do not have an inherent temporal order, we generate data streams by

randomly sampling, without replacement, instances from each data set. Performance

is computed by taking the average of 10 performance curves of randomly shuffled

versions of each of these data sets.

Figure 4.7 shows the results of the three experiments. As a proof of concept,

eFPT is clearly capable of fitting these static data sets well, after observing a number

of training examples less than what the Hoeffding tree requires. The Hoeffding tree

reaches the performance of eFPT on the MAGIC data set only after observing least

5k examples.

4.5.2 Model Size

Apart from comparing the performance of the methods, we also compare the size of

the learned models. The size of eFPT, in its four different variations, is compared

with that of the incremental and the adaptive Hoeffding trees. eFPT is used with

and without retaining operators (see Subsection 4.4.3) for both significance levels

97

IBLStreams adapt k

eFPT

hyperplane

RBF

random trees

Hoeffding tree

Hoeffding adaptive tree

Figure 4.5: Performance comparison between eFPT, Hoeffding trees and IBLStreams
when learning from synthetic data streams.

α = 0.1 and α = 0.25. The initial set of triangular norms and conorms applied

here contains only the Lukasiewicz operators. Using the same synthetic data sets

employed for the performance comparison in the previous subsection, we present the

size of the compared approaches in Figures 4.8 and 4.9. As a result, one can observe

the following:

• Obviously, a larger significance level corresponds to a less conservative hypoth-

esis test, which leads to larger trees. Trees, built using the significance level

α = 0.25, are almost twice the size of those built with the significance level

α = 0.1.

• For the same significance level, refining the operators often leads to smaller

trees. This is because the non-refined induction procedures try to force-fit some

98

IBLStreams adapt k

eFPTHoeffding tree

Hoeffding adaptive tree

hyperplane, concept drift

RBF, concept drift

random trees, concept drift

Figure 4.6: Performance comparison between eFPT, Hoeffding trees and IBLStreams
when learning from synthetic data streams with simulated concept drifts.

functions through recursive application of a single type of t-norms/t-conorms,

instead of choosing the t-norm/t-conorm that leads to a better fit.

• Hoeffding trees, in its incremental versions, outnumber all variations of eFPT

in size. The adaptive version, on the other hand, shows a continuous increase in

the number of nodes in a linear way, independently whether the stream contains

a concept change or not.

• eFPT does not show a monotone increase in its tree size. On the contrary, some

concept changes are better fit by first pruning and then extending the current

model.

99

IBLStreams adapt k

eFPTHoeffding tree

Hoeffding adaptive tree

MAGIC gamma telescope

mushroom

skin segmentation

Figure 4.7: Performance comparison between eFPT, Hoeffding trees and IBLStreams
when learning from real data streams.

100

hyperplane

RBF

random trees

Hoeffding tree

Hoeffding adaptive tree LUK Opt, α=.1

LUK Opt, α=.25

LUK, α=.1

LUK, α=.25

Figure 4.8: Tree size of eFPT and Hoeffding trees when learning from synthetic data
streams.

4.5.3 Sensitivity Towards Significance Levels and Operators
Retraining

As confirmed in the previous subsection, one can see that a larger significance level

leads to larger trees which correspond with a better fit to target concept. In this

subsection, the effect of the initial operator set of triangular norms and conorms

on the tree’s performance and size is investigated. To this end, we compare the

accuracy and the number of retraining steps during the induction of an eFPT in its

four different variations. eFPT is used with two initial sets for retaining operators

(see Subsection 4.4.3), Gödel and Lukasiewicz, for both significance levels α = 0.1

and α = 0.25.

Employing the same synthetic data sets used in the previous subsections, we

present the performance in Figures 4.10 and 4.11, and the number of times an operator

was retrained in Figures 4.12 and 4.13. As a result, one can observe the following:

101

Hoeffding tree

Hoeffding adaptive tree LUK Opt, α=.1

LUK Opt, α=.25

LUK, α=.1

LUK, α=.25

hyperplane, concept drift

RBF, concept drift

random trees, concept drift

Figure 4.9: Tree size of eFPT and Hoeffding trees when learning from synthetic data
streams with simulated concept drifts.

• As expected, a larger significance level corresponds to larger trees (see Fig-

ures 4.10 and 4.11) and thus a better performance, provided the complexity

and stability of the target concept to be learned.

• A small significance level leads to fewer changes and a smaller number of suc-

cessful operator retrainings.

• From Figures 4.10 and 4.11, one can see that the set of Gödel operators seems

to be outperformed by the other type of operators.

• For the significance level α = 0.25, Gödel operators are more prone to be

outperformed by other operators, and thus being replaced. This phenomena

can be explained by the fact that Gödel operators just consider the MIN/MAX

values, which ignore any possible interactions between the operands.

102

LUK, α=.1

LUK, α=.25

Gödel, α=.1

Gödel, α=.25

hyperplane

random trees

RBF

Figure 4.10: Performance comparison between different eFPT parametrizations (sig-
nificance level and retaining operators) when learning from synthetic data streams.

4.6 Summary and Conclusion

In this chapter, an evolving version of the fuzzy pattern tree classifier is proposed;

this eFPT meets the requirements of adaptive learning on data streams. The key

idea of eFPT is to maintain the current model and a set of neighbor trees that can

replace the current model if the performance of the latter is no longer optimal. Thus,

a modification of the current model is realized implicitly in the form of a replacement

by an alternative tree. A replacement decision is made on the basis of the performance

of all models, which is monitored continuously on a sliding window of fixed length.

Fuzzy pattern trees form an attractive model class of interpretable representation,

besides the fact that they are universal approximators [144].

In an experimental study, we compared eFPT with the two versions of the Ho-

effding trees and with IBLStreams on real and synthetic data. The obtained results

103

LUK, α=.1

LUK, α=.25

Gödel, α=.1

Gödel, α=.25

hyperplane, concept drift

RBF, concept drift

random trees, concept drift

Figure 4.11: Performance comparison between different eFPT parametrizations (sig-
nificance level and retaining operators) when learning from synthetic data streams
with simulated concept drifts.

are quite promising, despite the failure to learn on the RBF data. They suggest that

eFPT is competitive in terms of accuracy, while being less affected by concept drift

and producing smaller, more compact models. These criteria are of course interre-

lated: The smaller a model is, the more easily and quickly it can be adapted in the

case of a concept drift; besides, compactness of a model is of course desirable from

an understandability point of view. On the other hand, producing large models can

be advantageous in cases where the target concept to be learned is complex and the

data generating process sufficiently stable; in our experiments, Hoeffding trees and

IBLStreams performed comparatively well, especially in these cases.

104

LUK, α=.1

LUK, α=.25

Gödel, α=.1

Gödel, α=.25

hyperplane

RBF

random trees

Figure 4.12: Number of retrained operators for the different eFPT parametrizations
(significance level and retaining operators) when learning from synthetic data streams.

105

LUK, α=.1

LUK, α=.25

Gödel, α=.1

Gödel, α=.25

hyperplane, concept drift

RBF, concept drift

random trees, concept drift

Figure 4.13: Number of retrained operators for the different eFPT parametrizations
(significance level and retaining operators) when learning from synthetic data streams
with simulated concept drifts.

106

Chapter 5

Survival Analysis on Event
Streams

This chapter introduces a method for survival analysis on data streams; survival

analysis is an established statistical method for the study of temporal events or,

more specifically, questions regarding the temporal distribution of the occurrence of

events and their dependence on the features of the data sources.

To the best of our knowledge, survival analysis has not yet been considered in the

stream setting so far. This is arguably surprising for several reasons. Most notably,

the temporal nature of event data naturally fits the data stream model and event data

is naturally produced by many data sources. Moreover, survival analysis is widely

applicable and routinely employed in many application fields. Survival analysis, a

term commonly used in medical studies, is also referred to as event history analysis

in sociology, reliability analysis in engineering and duration analysis in economics.

5.1 Introduction

The introduced learning methods so far focus on the supervised learning from ex-

amples, observed in a stream of data, by inducing models that capture the condi-

tional dependency between the examples’ features and target values. The supervi-

sion, granted by the data, allows the learner to observe the properties and the target

value of each example. This supervision is weakened when the target value becomes

partially known, such as only knowing an interval containing that target value. Sur-

vival data is one example of weakly supervised data: (i) It is supervised because an

individual, in clinical studies, (with his/her characteristics) forms a learning example

and the time he/she survives (before experiencing a specific event) is the target value.

107

(ii) It is weakly supervised because an individual may leave the study or get lost be-

fore experiencing the target event; this makes his/her survival time only partially

known, by knowing that the smallest value it could take is equal to the length of the

period spent in the study. Such individuals are called censored as explained later in

Subsection 5.2.1.

Survival analysis (SA) is a statistical method for modeling and analyzing the tem-

poral distribution of events in the course of time or the duration before the occurrence

of an event of interest. The notion of an event is completely generic and may indicate

important information such as the failure of an electrical device. The event of interest

is usually associated with a special cause, such as the death of a patient caused by a

specific infection.

One learning task that could benefit from such data is the task of learning the

dependencies between the life span and the features of these examples. The life span

of each example is realized by the time interval [tstart, tevent], where tstart is the time

point when the study becomes aware of the example and tevent is the time when the

event occurs and the example leaves the study.

The motivation behind this work is to bring both aspects closer together: the well-

established statistical methods of survival analysis on event data and the learning from

data streams. In particular, applying survival analysis becomes challenging when the

event data ceases to remain small and easy to handle and starts to become immense

and continuously arriving, i.e., forming an event stream. This event stream resembles

the previously studied data streams by their immensity and time invariability, due to

possible changes in a dynamic environment.

To make survival analysis applicable in the setting of data streams, an adaptive

(online) variant of a model that is closely related to the well-known proportional

hazard model proposed by Cox [42] is developed. In this model, the hazard rate may

depend on one or more covariates associated with a statistical entity; more specifically,

the effect of an increase of a covariate by one unit is multiplicative with respect to

the hazard rate.

The proposed approach adopts the sliding window approach, which is a common

technique in data stream analysis; in order to estimate the influence of the covariates,

the hazard rate is assumed to be constant on the current window. The estimate

then depends on the frequency and temporal distribution of events falling inside the

window, and sliding the window calls for adapting the estimate in an incremental

(and as efficient as possible) manner.

108

The remainder of this chapter is organized as follows: By way of background,

Section 5.2 recalls some basic information about survival analysis. Section 5.3 is

devoted to our extension of survival analysis and describes the main adaptations

realized to make this method applicable in a streaming setting. Finally, to evaluate

our approach and as a proof of principle, two case studies are presented in Sections 5.4

and 5.5. In both studies, our method is used for a specific type of spatio-temporal

data analysis, namely the analysis of earthquake data (Section 5.4) and of Twitter

data (Section 5.5). In an attempt to explain the frequency of events by the spatial

location of the data source, both studies use the location as covariates of the sources.

5.2 Survival Analysis

Survival analysis, as the name suggests, originates from medical researches, where

survival data is derived from clinical and epidemiological researches of humans and

laboratory studies of animals. Nonetheless, survival analysis includes a broader scope

of studies, such as the lifetime of electrical products in reliability engineering or the

duration of a marriage in event history analysis in sociology.

In a clinical study, the death of a patient under observation can be the event

of interest and the survival time, or the time to event, is the time duration s =

tevent− tstart between tstart, the time of the patient entering the study, and tevent, time

at which the event occurred.

The motivation behind analyzing survival data, instead of simply applying regres-

sion models with the survival time as a target value, is that the target events of some

objects are not observed. These objects are called censored data. Censoring occurs

when an object is lost before the planned end of the study, as in the case when a

patient decides to leave the study for personal reasons. An object is also censored

when the event occurs caused by a reason different from the targeted one, such as

the death of a patient by a car accident in a study on leukemia, instead of dying as

a result of leukemia.

Although the survival times for the censored objects are not known, the minimum

time they spent in the study before being censored gives a lower bound of their

survival times. This makes the survival data less applicable to regression models,

unless the censored data is ignored, thus valuable information is lost.

Since a statistical entity is not always a person as indicated by the term “indi-

vidual”, the more neutral term “instance” is subsequently used. Suppose such an

instance can be described in terms of the feature vector

109

x = (x1, . . . , xn)⊤ ∈ Rn, (5.1)

where xi is the value of the ith property of the instance (for example, the age of a

patient in a medical study).

5.2.1 Censored data

Censored data can be categorized into three main types [105]:

• Type I censoring: When the experimenter fixes a predetermined time T at

which he plans to end the study, instances that remain in the study past this

time without experiencing the target event are considered type I censored. For

these instances, it is known that their survival time is at least T . Figure 5.1(a)

shows how the Instances 2 and 4 become type I censored after surviving until

time T without experiencing the target event.

• Type II censoring: Starting the study with N instances, the experimenter might

decide to end the study after observing a fixed percentage of events r/N . In

this case, animals that experienced the events at times t1 ≤ · · · ≤ tr have clear

survival times, whereas cases that are still alive have a survival time that is at

least tr. Figure 5.1(b) shows how the Instances 2 and 4 become type II censored

only after Instance 5 has experienced the event, by which the fixed percentage

3/5 is reached.

• Type III censoring: In more realistic clinical studies, instances do not enter the

study at the same time. Some remain until experiencing the event and others

get lost or survive until the end of the study. Instances of the last two cases are

considered censored. Figure 5.1(c) shows the type III censored Instances 2 and

4; Instance 4 is either lost or left the study before its planned end. Instance 2,

besides being type III censored, is also referred to as right censored.

• Left censoring: This type of censoring results when an instance experiences the

targeted event even before entering the study, at an unknown time point. This

type of censoring is only relevant when multiple events, for the same instance,

are allowed to take place; as will become clear in Section 5.3. Figure 5.1(d)

shows the left censored Instances 2 and 5, as they experience the event at times

before the starting time T0 of the experiment.

110

Type I and type II are also referred to as right censoring, whereas type III is also

known as random censoring. Data sets with no censored instances, as in the case

when event times are known for all studied instances, are called complete data.

5.2.2 Survival Functions

The survival time is a random variable, whose distribution can be described by three

functions: (i) the probability density function, (ii) the survival function and (iii) the

hazard function. By determining one of these functions, the other two functions can

be derived.

Consider the time for an event to occur as a real-valued random variable T with

probability density function f(·), which models the instantaneous probability for an

event to take place in the infinitesimal interval [t, t+ ∆t], and defined as

f(t) = lim
∆t→0

P {t < T ≤ t+ ∆t}
∆t

. (5.2)

The cumulative distribution function F (·),

F (t) = P {T ≤ t} =

∫ t

0

f(x) dx , (5.3)

is the probability of an event to occur before the time t. The survival function S(·)
is then defined as

S(t) = P {T > t} = 1− F (t) =

∫ ∞

t

f(x) dx , (5.4)

where S(t) is the probability that an instance survives at least until the time point

t. The survival function can also model the probability of an instance to be right

censored, i.e., S(t = Tend), where Tend is the end time of the study. Unlike the

cumulative function F (·), the survival function is a decreasing function with S(0) = 1

and limt→∞ S(t) = 0.

Finally, the hazard function or hazard rate h(·) is defined as follows:

h(t) = lim
∆t→0

P {t < T ≤ t+ ∆t |T > t}
∆t

(5.5)

=
f(t)

S(t)
. (5.6)

Generally, h(t) is the conditional probability that the event will occur within a small

time interval after t, given that it has not occurred until t. More specifically, h(t) is

the limit of this probability when the length of the time interval tends to 0. Mathe-

matically, it is hence a kind of density (and not a probability) function, which means

111

(a) Type I censoring

(b) Type II censoring

(c) Type III censoring

(d) Left censoring

Figure 5.1: The different types of censoring.

112

that it may thoroughly assume values larger than 1. The hazard function is also

known as the conditional failure rate, which makes the density function to be the

unconditional failure rate.

By knowing one of the three functions, the other two can be easily derived. The

density function f(·) can be derived from the survival function S(·) in (5.4) as

f(t) =
d

dt
[1− S(t)] = −S ′(t) . (5.7)

The hazard function h(·) can also be derived from (5.6) and (5.7) as

h(t) =
f(t)

S(t)
=
−S ′(t)

S(t)
. (5.8)

5.2.3 Estimating the Survival Function

As previously explained, analyzing survival data faces the challenge of the missing

event times for the censored instances. However, the censored instances can still

contribute to the study through the minimum time they survive. The product limit

approach for estimating the survival function S(·), derived by Kaplan and Meier [91],

estimates the survival function using both (i) the survival times for instances that

experienced the target event and (ii) the minimum time spent by censored instances

in the experiment.

The Kaplan-Meier method is one of the most commonly applied non-parametric

methods because it can be easily computed for a moderate size data set and it is

supported by a graphical interpenetration. Imagine a set of m instances under obser-

vation whose event/censoring times are t1 ≤ t2 ≤ · · · ≤ tm. The index set I contains

the indices of event times only, i.e., I = {i : ti is an event time}. The Kaplan-Meier

survival function is:

Ŝ(t) =
∏

ti<t∧i∈I

m− i
m− i+ 1

, (5.9)

where the product considers only the event times {ti : i ∈ I}, not the censoring

times. The denominator represents the count of instances in the risk set R(ti), the

instances that survived until time ti, regardless of whether they will become censored

or experience the event in the future. In the complete data set case, when censoring

does not occur, the estimation in (5.9) becomes simply

Ŝ(ti) =
m− i
m

. (5.10)

113

As an alternative to the Kaplan-Meier method, the life table [18, 43] methods can

also be applied on the survival data. Life table methods are suited for a large number

of observations, whose survival times are grouped into intervals.

Supported by physical explanations, failures (events) occur at distinct times fol-

lowing some probability distribution. Hence, parametric approaches for survival anal-

ysis try to fit well-known distributions to the survival data. These distributions have

most of the time an analytical solution for the maximized likelihood of both instances,

censored and failed ones. It is shown in [47] that the failure times of radar compo-

nents follow the exponential distributions. Weibull distribution is shown to model

the failures in electron tubes by [90]. Considering the many applications in biology

and economics, the lognormal distribution is shown by [62] to closely fit the survival

times of chronic leukemia patients, for more examples see [105].

5.2.4 Prognostic Factors for Survival

Although the main concern of survival analysis lies in estimating the survival functions

for a group of individuals under study and probably the expected survival time or

the expected time to failure, another important concern seeks the identification of

the prognostic factors (variables and attributes) and their relation to the expected

survival [105].

The simplest way of identifying the prognostic variables can be achieved by ap-

plying a nonparametric approach (such as the Kaplan-Meier method) on the survival

data. This application can be either repetitively applied on univariate problems by

investigating one variable at a time, each time the observed instances are grouped

based on different breakdowns of that variable. Thereafter, survival functions of each

group of each variable can be estimated by applying the Kaplan-Meier method, which

can then be statistically compared to identify the prognostic factors. Alternately, the

nonparametric approaches can consider multiple variables simultaneously by strati-

fication, which defines multiple strata each of which contains a group of instances

that share similar values for the considered variables. The univariate and the multi-

variate approaches require the construction of a large number of problems (O(n) for

the univariate and up to O(2n) for the multivariate where n is the number of covari-

ates/dimensions) that need to be solved in order to find the prognostic variables. In

the following we describe the semi-parametric and the parametric approaches, which

fit a single regression model, independently of the survival data’s dimensionality.

114

The multivariate semi-parametric approach

Parametric regression approaches attempt to model the relation between the indepen-

dent prognostic variables and the survival times. The semi-parametric approaches,

on the other hand, do not try to fit the whole model. Instead, they assume the

proportionality of hazards, that is the hazard ratio

HR = h(t|x1)/h(t|x2)

between the instances x1 and x2 is constant. This leads to writing the hazard function

of an instance x in the form

h(t|x) = h0(t) · r(x) , (5.11)

where r(x) is a time-independent function that depends only on x. h0(t) is the

baseline hazard that depends only on the time t; it is also the remaining hazard for

an instance when r(x) = 1, i.e., the baseline hazard is the hazard when all variables

are set to zero [105].

Equation (5.11) defines the so-called proportional hazard (PH) assumption; this

assumption is made in the Cox proportional hazard model [42], in which the hazard

rate is modeled as a log-linear function of the covariates xi:

h(t|x) = h0(t) · exp
(
β1x1 + β2x2 + · · ·+ βnxn

)
(5.12)

= h0(t) · exp

(
n∑

i=1

βi · xi

)
. (5.13)

In the Cox model, the effect of an increase of an independent variable by one unit

is multiplicative with respect to the hazard rate; i.e., the hazard rate is proportional

to each variable, therefore increasing xi by one unit increases h(t|x) by a factor of

αi = exp(βi).

The coefficients of the Cox model can be estimated by maximizing the likelihood

function, whose formulation requires knowing the distribution of the study’s outcomes

(the time to event). However, the Cox model does not assume any distribution for the

dependent variable; it only assumes the proportionality of hazards. Therefore, the

likelihood of the Cox model depends on the ordering of events instead of their joint

probabilities. This can be realized by applying the partial likelihood (PL) estimation,

which considers the conditional probability of the event only for the instances that

experience the event, given the risk set. For the m distinct event times t1 < t2 < · · · <

115

tm, the probability for an instance xo to have an event at the time to, conditionally

on the risk set R(to), is

Lo(β) =
exp (

∑n
i=1 βi · xoi)∑

l∈R(to)
exp (

∑n
i=1 βi · xli)

. (5.14)

The partial likelihood considers a censored instance to be in the risk set R(to) only

if it was not censored yet by the time to. Finally, the partial likelihood function is

written as the product of the probabilities of the m events:

PL(β) =
m∏
o=1

Lo(β) . (5.15)

Maximizing the partial likelihood can be obtained by maximizing its log-likelihood

LPL(β) =
m∑
o=1

n∑
i=1

βi · xoi −
m∑
o=1

ln

 ∑
l∈R(to)

exp

(
n∑

i=1

βi · xli

) ; (5.16)

this maximum can be numerically approximated using the iterative Newton-Raphson

method [28].

The semi-parametric property of the Cox model formulation comes from the fact

that the baseline hazard remains unspecified. This property makes the PH models

more favorable in comparison to fully parametric models that require the hazard

functions to be specified. Factors for the Cox model’s popularity are: (i) it requires

minimum assumptions, (ii) it is robust in that it closely approximates the correct

parametric model as in the case when the parametric model follows the exponential

or the Weibull distribution and (iii) the estimated hazard will always be non-negative

due to the exponential part in (5.12)[95].

The approximated coefficients of the Cox model can be further employed to es-

timate a survival curve that is adjusted with the found coefficients. This survival

function is called the adjusted survival curve [113], motivated by the need to make

the visual representation of survival curves more consisted with the induced semi-

parametric models; it is written as

S(t|x) = [S0(t)]
exp(

∑n
i=1 βi·xi) , (5.17)

with S0(·) the baseline survival function, which has a closed form solution [89].

Statistical methods for survival analysis, such as Cox regression [41], provide esti-

mates of the model parameters βi and, therefore, of the hazard rate itself (given that

the baseline hazard rate is known or can be estimated). The latter can be used, for

116

example, for prediction purposes. Given an estimate of the hazard rate, one can pre-

dict the time span until the next event will occur, both in terms of point predictions,

e.g., the expected survival time of a patient, and confidence sets, e.g., a confidence

interval for the survival time. The estimations of the parameters βi are as interesting

as the hazard rate itself; they inform about the influence of different covariates on the

hazard rate. For example, if βi = log(2) is the parameter modeling the influence of

the covariate smoking (a binary attribute with value 1 if the patient is a smoker and

0 otherwise) in a medical study, it means that—under the model (5.12) and ceterus

paribus, i.e., all other covariates being equal—smoking doubles the hazard rate, thus

cutting the expected survival time1 in half.

The multivariate parametric approach

Some survival data tends to follow some known distributions and, therefore, allows

us to put some model assumptions on the outcome (the survival time). Parametric

survival models make use of such assumptions, that the survival times follow a given

distribution, and find the distribution’s parameters that make the current data most

likely. The commonly assumed survival distributions are the exponential, the Weibull,

the log-logistic and the log-normal.

Some survival models satisfy the PH property, such as the exponential and the

Weibull distributions. Other parametric models are accelerated failure time (AFT)

models instead [177], such as the log-normal and the gamma distributions.

The AFT property is a useful property for comparing survival times, unlike the

PH property which is used for comparing hazards. Consider a study claiming that the

people who smoke develop health problems α > 1 times faster than nonsmokers, i.e.,

a (t)-years-old smoking person x1 would develop health problems as much as an older

(α · t)-years-old nonsmoking person x2. For this example, the AFT assumption states

that S(t|x1) = S(αt|x2) for t ≥ 0, with α the acceleration factor, which describes

how the survival time stretches or contracts as a function of the independent variables

[95]. Distributions such as the log-normal and the gamma distributions can only be

used in AFT models, whereas the exponential and the Weibull distributions can be

used in both PH and AFT models [177]. The next section introduces our adaptive

approach to survival analysis, in which we assume an exponential hazard model;

hence, accommodating both the PH and the AFT properties.

1This is true only in the case when the baseline hazard h0(·) is a time-independent constant; i.e.,
the survival times follow the exponential distribution.

117

Figure 5.2: Illustration of our setting consisting of a set of J (here J = 6) parallel
data streams: Every stream corresponds to a statistical entity characterized in terms
of a vector of covariates. Moreover, each stream produces a sequence of temporal
events (marked by solid squares). A sliding window (indicated by the grey box) is
masking outdated events that occurred in the past.

5.3 Survival Analysis on Data Streams

The survival analysis setting here assumes a fixed set of J data streams to be given,

each of which corresponds to an instance x characterized in terms of a vector of

covariates (x1, . . . , xn)⊤. Moreover, each stream produces a sequence of temporal

events, i.e., events that are associated with a unique time of occurrence; see Figure 5.2

for an illustration. For simplicity, we assume the underlying time scale to be discrete,

i.e., time progresses in discrete steps (such as seconds or minutes).

Imagine a case where each stream corresponds to a book offered by an online book

store and the covariates are properties of the book (price, genre, etc.). In this example,

an “event” occurs whenever a client purchases a book. The hazard rate associated

with a book can then be interpreted as a measure of the propensity of people to

buy this book. Obviously, this propensity will change over time and for each book;

therefore it is interesting to monitor the evolution of its hazard rate. Apart from that,

it is interesting to determine the influence of the covariates on the buying behavior of

the clients and, perhaps even more importantly, how this influence changes over time.

One may expect, for example, that the price of a book will become more important

in times of an economic crisis and will hence have a stronger influence on the hazard

rates of all books.

The previous example has made clear that, when looking at a single data stream,

we are interested in events that can occur repeatedly (for the same instance x) in the

course of time. Such events are called recurrent events and need to be distinguished

118

from events that can occur at most once (like the death of a patient in a medical

study). More specifically, we are interested in the time duration between the occur-

rence of two events. Assuming that the hazard rates for the set of streams can be

modeled as a Cox proportional hazard model (5.13) with a constant base line hazard

h0(t), the hazard rate for a fixed instance (data stream) x becomes

h(t|x) = h0(t) · exp

(
n∑

i=1

βixi

)

= exp

(
n∑

i=0

βixi

)
= hx , (5.18)

by extending the covariate of x in (5.1) by a constant entry x0 ≡ 1, leading to a

compact hazard of the form hx = exp
(
x⊤ · β

)
, and let t1 < t2 < . . . < tk denote

the time points at which an event has been observed for this instance; moreover, let

a = t0 < t1 and b = tk+1 > tk denote the start and the end of the observation interval

[a, b]. The probability of the observation sequence T (x) = {tτ}kτ=1 is then given by

P(T (x)) =

(
k∏

τ=1

fx(tτ−1, tτ)

)
· Sx(tk, tk+1) (5.19)

= hkx ·
k+1∏
τ=1

exp
(
− hx · (tτ − tτ−1)

)
where

fx(t′, t) = hx · Sx(t′, t)

= hx · exp
(
− hx · (t− t′)

)
(5.20)

is the probability that an event occurs usually at time t for an instance x; having

survived at least until time t′.

Notably, the non-constant hazard functions h(t|x), in which the rate does not only

depend on covariates x but also changes with time t, have been studied extensively

in the statistical literature and many parameterized families of functions have been

proposed for modeling the influence of time on the rate [42]. However, we later

explain how the constant model hx is sufficient for our purpose, or at least provides a

sufficiently good approximation. This is due to the use of a sliding window approach:

The assumption of a constant rate does not refer to a data stream as a whole but only

to the current time window. Therefore, by sliding the window, the hazard rate may

119

actually vary in the course of time, too. Overall, our model becomes very flexible,

especially given time-dependence is modeled in a non-parametric way.2

5.3.1 Left Censoring

Suppose that for an instance x surviving until time t1, the first event occurred at

an unobserved time t prior to t0, the time at which the sliding window starts; this

is a left censoring situation faced when applying the sliding window approach. The

probability to observe the duration from t0 to t1 is then given by the conditional

probability of the event at time t1 given survival until t0, i.e., by the expression

fx(t, t1)

Sx(t, t0)
=
hx · exp

(
− hx · (t1 − t)

)
exp

(
− hx · (t0 − t)

)
= hx · exp

(
− hx · (t1 − t0)

)
= fx(t0, t1) .

Thus, we eventually obtain the same expression (5.20). This is due to the fact that a

process with a constant hazard rate is “memoryless”.

5.3.2 Parallel Event Sequences

In a streaming setting, we assume to observe a sequence of recurrent events T (x) =

{tτ}kτ=1 not only for a single instance x but for a fixed set of J instances {x1, . . . ,xJ},
with xj = (xj1, . . . , xjn)⊤. Thus, the data relevant to a time window [a, b] is given in

the form of J parallel event sequences

D =
(
T (x1), . . . , T (xJ)

)
(5.21)

=
(
{t1τ}k1τ=1, . . . , {tJτ}

kJ
τ=1

)
,

where kj is the number of events for xj and {tjτ}
kj
τ=1 the corresponding time points.

Assuming independence, the probability of D is

P(D) =
J∏

j=1

P(T (xj))

=
J∏

j=1

(hxj
)kj ·

kj+1∏
τ=1

exp
(
− hxj

· (tjτ − tjτ−1)
)

=
J∏

j=1

[
(hxj

)kj · exp
(
− hxj

· (b− a)
)]
,

2To some extent, this is comparable with statistical methods like kernel density estimation or
locally weighted linear regression.

120

and the logarithm of this probability is

log

(
J∏

j=1

P(T (xj))

)
=

J∑
j=1

kj log
(
hxj

)
−

kj+1∑
τ=1

hxj
· (tjτ − tjτ−1)


=

J∑
j=1

[
kj log

(
hxj

)
− hxj

· (b− a)
]
. (5.22)

Notice that this likelihood differs from the partial likelihood (5.15), the likelihood

used to estimate the parameters of the Cox model. Recall that in the streaming

setting, events are assumed to be recurrent and instances never leave the risk set,

thus the risk set in the denominator of (5.15) becomes constant for all events. Hence,

the partial likelihood fails to maximize the probability it was originally designed to

maximize, namely the probability of the observed order of events.

For the model (5.18), the expression in (5.22) yields the following log-likelihood

function for the parameter vector β:

LL(β) =
J∑

j=1

kj (n∑
i=0

βixji

)
−

kj+1∑
τ=1

exp

(
n∑

i=0

βixji

)
(tjτ − tjτ−1)


=

J∑
j=1

[
kj

(
n∑

i=0

βixji

)
− exp

(
n∑

i=0

βixji

)
(b− a)

]
. (5.23)

5.3.3 Adaptive ML Estimation

Parameter estimation on a time window [a, b] can now be done by means of maximum

likelihood estimation (MLE), i.e., by finding the maximizer of the above likelihood

function:

β∗ = (β∗
0 , β

∗
1 , . . . , β

∗
n) = argmax

β
ℓ(β) (5.24)

Unfortunately, there is no analytical expression for β∗, so that the estimator needs

to be found by means of numerical optimization procedures. Nevertheless, because the

log-likelihood function LL(β) is concave (which is proven at the end of this subsection

by showing that the corresponding conditions on the second derivatives are satisfied),

simple gradient-based optimization techniques and online versions of gradient descent

[29] can be applied and turned out to work rather well.

The use of local optimization techniques is also reasonable as it can be transformed

quite naturally into an incremental learning algorithm, applicable in our streaming

121

Figure 5.3: Illustration of the shift of the time window: The current window Wt =
[t, t+w] is replaced by the new one Wt+∆t = [t+ ∆t, t+w+ ∆t]. While the status of
some of the events changes (filled boxes), the status of the others (non-filled boxes)
remains the same (either outdated or active).

setting. Recall that we slide a time window of fixed length w along the time axis. More

specifically, the window is repeatedly moved in discrete steps, each time replacing the

current window Wt = [t, t+w] by the shifted one Wt+∆t = [t+∆t, t+w+∆t]. A shift of

this kind also changes the parallel event sequences (5.21) associated with the current

time window and, therefore, demands a re-estimation of the parameter vector β.

Typically, the event sequences T (xj) will change slightly because most of the current

events tjτ will remain inside the window—only those close to the lower boundary t

will fall out (namely those with t ≤ tjτ < t+ ∆t), while new events observed between

t + w and t + w + ∆t will be added, see Figure 5.3 for an illustration. In any case,

the new ML estimate of β will normally be found in close proximity to the old one.

Therefore, the current estimate β∗
t , i.e., the ML estimate for the current time window

Wt = [t, t+w], will provide a good initial solution for the re-estimation problem to be

solved by our gradient-based optimizer. Indeed, in practical experiments, we found

that only a few adaptation steps are generally needed to reach the new ML estimate

β∗
t+∆t (with sufficient accuracy).

This adaptive estimation procedure eventually produces a sequence of parameter

estimates that (implicitly) represents the evolution of both the parameter β and the

hazard rates hxj
= h(t|xj) over time. More specifically, for a fixed time point τ , let

Wτ denote the set of all time windows covering this time point:

Wτ =
{
Wt | τ ∈ [t, t+ ∆t]

}
Moreover, let β∗

t denote the ML estimation of β on Wt. Parameter β at time τ is

122

then defined by averaging:

β(τ) =
1

|Wτ |
∑

Wt∈Wτ

β∗
t (5.25)

Correspondingly, the hazard rate h(τ |x) for the instance x at time τ is given by

h(τ |x) = exp
(
x⊤ · β(τ)

)
. (5.26)

Finally, one may wonder whether a simple count of events on a sliding window

would conclude the same observations and results. This is a justified question; es-

pecially given that the only parameter of the exponential distribution, the rate λ, is

found to be the inverse of the mean time between the events (by maximizing the like-

lihood of the data), i.e., for the k events at times t1, . . . , tk the rate is λ = 1∑k
i=2(ti−ti−1)

.

This is true when events occur either to a single instance or to identical copies of the

same instance, which makes all covariates superficial and redundant. However, in our

setting, instances differ greatly based on their covariates; from these covariates, we

discover the prognostic covariates and build a model that captures the dependencies

in local subspaces.

Claim. The log-likelihood function LL(β) (5.23) is a concave function.

Proof. We show that the log-likelihood function LL(β) is concave by showing that

its Hessian matrix H, the matrix of the second-order partial derivatives s.t. Hv,u =
∂2LL(β)
∂βv∂βu

, is negative-semidefinite, i.e., ∀z ∈ Rn : z∗Hz ≤ 0, where z∗ is the conjugate

transpose of z. Each entry Hv,u of the Hessian matrix can be written as

Hv,u =
J∑

j=1

[
−xjuxjv exp

(
n∑

i=0

βixji

)
(b− a)

]
(5.27)

=
J∑

j=1

[−xjuxjvQj] , (5.28)

such that Qj = exp (
∑n

i=0 βixji) (b− a) ≥ 0. As a result, the Hessian matrix can be

123

written as a sum of J matrices Hj:

H =


∑J

j=1

[
−x2j1Qj

]
· · ·

∑J
j=1 [−xj1xjnQj]

...
. . .

...∑J
j=1 [−xjnxj1Qj] · · ·

∑J
j=1

[
−x2jnQj

]

 (5.29)

= −
J∑

j=1

Qj ·


x2j1 · · · xj1xjn

...
. . .

...

xjnxj1 · · · x2j,n

 (5.30)

= −
J∑

j=1

Qj ·Hj (5.31)

The matrix Hj is clearly positive-semidefinite because it is the Gram matrix for the

vector xj:

Hj =


x2j1 · · · xj1xjn

...
. . .

...

xjnxj1 · · · x2j,n

 = xjx
⊤
j (5.32)

Consequently, Qj ·Hj is positive-semidefinite in that Qj ≥ 0; the matrix
∑J

j=1Qj ·Hj

is also positive-semidefinite as it is a sum of positive-semidefinite matrices. Thus, the

matrix −
∑J

j=1Qj ·Hj is negative-semidefinite, which leads to the conclusion that the

function LL(β) is concave.

5.4 Case Study: Earthquake Analysis

We conduct two case studies, for a proof of concept, in which our streaming version of

survival analysis is used for spatio-temporal data analysis. While the temporal aspect

is naturally captured by the hazard rate model, the spatial aspect is incorporated

through the use of spatial information as covariates of the data streams. This suggests

that the vector (5.1) of covariates describes the spatial location of a data source.

In the first study, our method is applied to the analysis of earthquake data. The

data is collected from the USGS3 (United States Geological Survey), specifically from

the catalog of NEIC4 (National Earthquake Information Center). The mission of

3http://www.usgs.gov, accessed on October 8, 2015
4http://earthquake.usgs.gov/contactus/golden/neic.php, accessed on October 8, 2015

124

http://www.usgs.gov
http://earthquake.usgs.gov/contactus/golden/neic.php

these organizations is to quickly discover the most recent destructive earthquakes in

terms of location and magnitude and then broadcast this information to international

agencies and scientists.

5.4.1 Data Generation

The earthquake data was collected in the time period between January 1, 2000 and

March 2, 2012. Because entries in the USGS/NEIC catalog can be added or modified

at any time, only the data in the catalog at the time of exportation is used, namely

April 12, 2012. Table 5.1 presents an example of earthquake data, in which a list of

five earthquakes with their occurrence time and attributes is shown; these earthquakes

are the first to occur on January 1, 2012.

The online catalog of USGS/NEIC retains only significant earthquakes with a

magnitude bigger than 2.5, though very few micro-earthquakes (with a magnitude less

than 1) could be found. There are even a few earthquakes with missing magnitudes.

In total, we collected the data of 319,884 earthquakes throughout the globe in the

given time period.

Year Month Day UTC Time Latitude Longitude Mag. Depth Catalog
hhmmss.mm

2012 01 01 003008.77 12.008 143.487 5.1 35 PDE-W
2012 01 01 003725.28 63.337 -147.516 3.0 65 PDE-W
2012 01 01 004342.77 12.014 143.536 4.4 35 PDE-W
2012 01 01 005008.04 -11.366 166.218 5.3 67 PDE-W
2012 01 01 012207.66 -6.747 130.007 4.2 145 PDE-W

Table 5.1: A sample earthquake data containing five earthquakes occurred on the
first day of 2012.

Every earthquake is identified by its geographic coordinates, the exact time of

occurrence (up to the second), the magnitude and the depth. Figure 5.4(a) depicts a

plot of the collected earthquakes, each of which is represented as a point at the place

of its geographic location.

Recall that in the setting introduced in Section 5.3, we assume to observe event

sequences for a fixed set of instances. In order to define these instances, we discretize

the globe, both in terms of latitude and longitude, and associate one instance with

each intersection point. More specifically, with ϕ ∈ {−90,−89, . . . , 90} for latitude

and with λ ∈ {−180,−179, . . . , 180} for longitude, the total number of instances

becomes 181 × 361 = 65, 341. The regions produced are obviously not equal in

125

area because longitudes are not parallel lines like latitudes; therefore, areas near the

equator are larger than those closer to the poles.

Furthermore, recall that each instance is described in terms of features (covariates)

xi, which, according to (5.18), have a proportional effect on the hazard rate. In order

to account for possibly nonlinear dependencies between spatial coordinates and the

risk of an earthquake, we define these features in terms of a fuzzy partition; a partition

defined in terms of fuzzy sets [184]. In contrast to a standard partition defined in

terms of intervals, this allows for a smooth transition between spatial regions. More

specifically, we discretize both latitude and longitude by means of triangular fuzzy sets

as shown in Figure 5.4(b). A two-dimensional (fuzzy) discretization of the globe is

defined in terms of the Cartesian product of these two one-dimensional discretizations,

using the minimum operator for fuzzy set intersection. The covariates of an instance

x associated with coordinates (ϕ, λ) are then simply given by the membership degrees

in all these two-dimensional fuzzy sets, i.e., the covariates are of the form

xi,j = min
(
Ai(ϕ), Bj(λ)

)
,

where Ai is one of the 10 fuzzy sets for latitude and Bj one of the 12 fuzzy sets for

longitude; thus, each instance is of the form

x =
(
x1,1, x1,2, . . . , x1,12, . . . , x10,12

)
∈ [0, 1]120 .

The Mercator projection, used to project both coordinates in Figure 5.4(b), is meant

to preserve angles and the shapes of small objects. As a result, distances of objects

are distorted and lines meeting at the poles become parallel. For this reason, we

attempt to keep the fuzzy partition as coherent as possible, i.e., fuzzy sets defined on

the longitudes should have the same width, independent of their latitude. This can

be realized by applying the haversine formula to preserve the distances on the Earth’s

surface (approximated as a sphere with a radius of 6371 km), as opposed to applying

the Euclidean distance between the geometric coordinates. The vertical fuzzy set at

the longitude λ = 0 is shown in 5.4(c), projected with the Mercator projection.

The distance d between two points, with the coordinates (ϕ1, λ1) and (ϕ2, λ2), on

the globe with radius r can be derived from the haversine formula and is given by

d = 2r arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) cos(ϕ2) sin2

(
λ2 − λ1

2

))
. (5.33)

126

(a)

(b)

(c)

Figure 5.4: The collected data set of earthquakes, plotted by their geographic coor-
dinates. The data contains earthquakes between the January 1, 2000 until midnight
March 27, 2012. (a) earthquakes only; (b) with fuzzy partitions on the two coordi-
nates; (c) the center longitude fuzzy set after correction with the haversine formula.
The two red lines represent the Mercator projection of the center latitude fuzzy set.

127

5.4.2 Results

Given the data produced in this way and after sorting all earthquakes by their time

of occurrence, we are able to apply our method as outlined in Section 5.3. We set

the length of the time window to three months and the shift parameter ∆ to one

week. The results we obtain in terms of time-dependent estimates of the parameters

βi,j, each of which is associated with a covariate xi,j and hence with a spatial (fuzzy)

region Ai × Bj, appear to be quite plausible. Several interesting observations can

be made for data from the last decade. We focus on three of the most significant

earthquakes that occurred in 2008 and 2011:

• The May 2008 Great Sichuan earthquake5 occurred on Monday, May 12, 2008

at 06:28:01 UTC. At a magnitude of 7.9 (Mw) and an epicenter 30.986◦ N,

103.364◦ E. This event can be assigned to the nearest instance whose sparse

feature vector has the following nonzero entries x⊤ = [x7,10 = 0.63, x7,11 =

0.51, x8,10 = 0.05, x8,11 = 0.05].

• The February 2011 Christchurch earthquake6 occurred on Monday, February

21, 2011 at 23:51:42 UTC. At a magnitude of 6.1 (Mw) and an epicenter

43.583◦ S, 172.680◦ E. The instance whose sparse feature vector has the following

nonzero entries x⊤ = [x3,1 = 0.65, x3,2 = 0.07, x3,12 = 0.46, x4,1 = 0.35, x4,2 =

0.07, x4,12 = 0.35] is the nearest to the epicenter.

• The March 2011 earthquake7 off the Pacific coast of Tōhoku occurred on Fri-

day, March 11, 2011 at 05:46:24 UTC. At a magnitude of 9.0 (Mw) and an

epicenter 38.297◦ N, 142.372◦ E. The instance whose sparse feature vector has

the following nonzero entries x⊤ = [x7,1 = 0.002, x7,11 = 0.42, x7,12 = 0.6, x8,1 =

0.002, x8,11 = 0.4, x8,12 = 0.4] is the nearest to the epicenter.

As can be seen in Figure 5.5, the occurrence of the three earthquakes is accompa-

nied with a significant increase in the coefficients of the fuzzy sets covering these areas.

The higher the fuzzy membership of an instance in a given two-dimensional fuzzy set,

the more relevant the coefficient, associated with the fuzzy set, to the overall hazard.

For this reason, we present only the relevant coefficients in Figure 5.5. Notably, the

5http://earthquake.usgs.gov/earthquakes/eqinthenews/2008/us2008ryan/, accessed on
October 9, 2015

6http://earthquake.usgs.gov/earthquakes/eqinthenews/2008/us2008ryan/, accessed on
October 9, 2015

7http://earthquake.usgs.gov/earthquakes/eqinthenews/2008/us2008ryan/, accessed on
October 9, 2015

128

http://earthquake.usgs.gov/earthquakes/eqinthenews/2008/us2008ryan/
http://earthquake.usgs.gov/earthquakes/eqinthenews/2008/us2008ryan/
http://earthquake.usgs.gov/earthquakes/eqinthenews/2008/us2008ryan/

coefficients as given by (5.18) are logarithmically inversely proportional, indicating

that, an increase in one coefficient is calibrated by a decrease in other coefficients

(without changing the estimated hazard). Although the different coefficients can be

used as prognostic factors, the real change of the hazard can be better observed in

the estimated hazard (5.18), which is shown in Figure 5.6 as hazard curves for the

three studied areas. The figure reveals how the hazard rate significantly increases

even before the occurrences of these earthquakes.

5.5 Case Study: Twitter Data

Our second case study is based on data collected from Twitter8, which is an online

microblogging web site. Twitter is a service that allows users to send short messages

of up to 140 characters known as tweets. Every tweet is attributed by some meta data,

including the ID of the user who wrote it and the time the tweet was sent. Further

attributes can be extracted from the tweet with the permission of the user. Those

attributes indicate the user’s geolocation when the tweet was posted; this is supported

by a GPS (Global Positioning System) functionality embedded in a mobile device or a

tablet PC. The geolocation is represented as a tuple (lat, long) with an entry for the

latitude and for the longitude. Table 5.2 gives an example of Twitter data, written in

Json9 format. The table contains two Twitter messages, after removing unimportant

attributes, whereas important ones are written in bold. The shown messages are

artificially created with no real user information.

We collected tweets generated inside the bounding box of Germany, which is deter-

mined by the corner points (lat, long) = (47◦16′N, 5◦52′E) and (55◦03′N, 15◦02′E).

This data was collected during a two months period; from March 20, 2012 until May

27, 2012. In total, we collected about 4.9 million tweets originating from Germany

and its surrounding countries (Denmark, Poland, Czech Republic, Austria, Switzer-

land, France, Belgium and the Netherlands). Germany accounted for only 1.8 million

of these tweets.

Similar to the previous study on earthquakes, we apply a discretization on the

area of Germany, considering every intersection point of the two coordinates with ϕ ∈
{47.1, 47.2, . . . , 55.1} for latitude and λ ∈ {5.5, 5.6, . . . , 15.2} for longitude, provided

the intersection lies inside the borders of Germany. As a result, we maintain 5, 013

intersection points pj = (ϕj, λj).

8http://www.twitter.com, accessed on October 9, 2015
9http://json.org, accessed on October 9, 2015

129

http://www.twitter.com
http://json.org

−
2

0
2

4

2000Mar 2001Jan 2001Nov 2002Aug 2003Jun 2004Apr 2005Jan 2005Nov 2006Sep 2007Jun 2008Apr 2009Feb 2009Nov 2010Sep 2011Jul

2008 Sichuan earthquake

FS_7,10

FS_7,11

(a)

−
10

−
5

0
5

10

2000Mar 2001Jan 2001Nov 2002Aug 2003Jun 2004Apr 2005Jan 2005Nov 2006Sep 2007Jun 2008Apr 2009Feb 2009Nov 2010Sep 2011Jul

2011 Christchurch earthquake

FS_3,1

FS_3,12

FS_4,1

FS_4,12

(b)

−
15

−
10

−
5

0
5

10
15

2000Mar 2001Jan 2001Nov 2002Aug 2003Jun 2004Apr 2005Jan 2005Nov 2006Sep 2007Jun 2008Apr 2009Feb 2009Nov 2010Sep 2011Jul

2011 Tohoku earthquake

FS_7,11

FS_7,12

FS_8,11

FS_8,12

(c)

Figure 5.5: Coefficients for the areas with significant earthquakes in 2008 and 2011.
The exact date of each earthquake is marked as a dashed vertical line.

130

0e
+

00
1e

−
07

2e
−

07
3e

−
07

4e
−

07

2000Mar 2001Jan 2001Nov 2002Aug 2003Jun 2004Apr 2005Jan 2005Nov 2006Sep 2007Jun 2008Apr 2009Feb 2009Nov 2010Sep 2011Jul

2008 Sichuan earthquake

(a)

0.
0e

+
00

5.
0e

−
08

1.
0e

−
07

1.
5e

−
07

2.
0e

−
07

2000Mar 2001Jan 2001Nov 2002Aug 2003Jun 2004Apr 2005Jan 2005Nov 2006Sep 2007Jun 2008Apr 2009Feb 2009Nov 2010Sep 2011Jul

2011 Christchurch earthquake

(b)

0.
0e

+
00

1.
0e

−
06

2.
0e

−
06

3.
0e

−
06

2000Mar 2001Jan 2001Nov 2002Aug 2003Jun 2004Apr 2005Jan 2005Nov 2006Sep 2007Jun 2008Apr 2009Feb 2009Nov 2010Sep 2011Jul

2011 Tohoku earthquake

(c)

Figure 5.6: The hazard values for the areas with significant earthquakes in 2008 and
2011. The exact date of each earthquake is marked as a dashed vertical line.

131

favorited:false, text:’Stau: A8 München Richtung Stuttgart 6 km zur Ausfahrt im
Schneckentempo..’, truncated:false, created at:Fri Feb 10 10:38:47 +0000 2012,
retweeted:false, retweet count:0, coordinates:type:Point, coordinates:[9.55755,
48.6333], ..., entities:user mentions:[], urls:[], hashtags:[], geo:type:Point, co-
ordinates:[48.6333, 9.55755], ..., place:bounding box:type:Polygon, coordi-
nates:[[[9.534815, 48.616779], [9.594667, 48.616779], [9.594667, 48.640891],
[9.534815, 48.640891]]], place type:city, ..., country code:DE, attributes:,
full name:Aichelberg, Göppingen, name:Aichelberg, id:29ef9f01a553e601, coun-
try:Germany, ..., id str:###, user:default profile:true, notifications:null, ...,
time zone:Berlin, created at:Fri Sep 03 14:25:38 +0000 2010, verified:false,
geo enabled:true..., favourites count:0, lang:de, ..., followers count:335,
..., location:Karlsruhe, ..., name:###, ..., listed count:21, following:null,
screen name:###, id:###, ..., statuses count:10935, utc offset:3600,
friends count:0, ..., id:###, ...
text:’top atmosphere in Weserstadion today, a very good match...’, ..., cre-
ated at:Tue Apr 10 21:37:28 +0000 2012, place:bounding box:type:Polygon,
coordinates:[[[8.481599, 53.011035], [8.990593, 53.011035], [8.990593, 53.228969],
[8.481599, 53.228969]]], country:Germany, attributes:, full name:Bremen,
Bremen, .., country code:DE, name:Bremen, id:9467fbdc3cdbd2ef,
place type:city, coordinates:type:Point, coordinates:[8.837596, 53.06693]
, retweeted:false, in reply to status id:null, ..., truncated:false, contribu-
tors:null, possibly sensitive:false, in reply to screen name:null, favorited:false,
user:default profile:false, follow request sent:null, lang:de, friends count:200, ...,
is translator:false, created at:Sat May 23 13:01:45 +0000 2009, id str:###, ...,
url:null, following:null, verified:false, ..., location:Germany, ..., statuses count:4537,
..., time zone:Berlin, .., utc offset:3600, followers count:432, ..., id:###,
retweet count:0

Table 5.2: A sample Twitter data containing two Twitter messages.

132

The next step is to find a proper representation of the intersection points in terms

of covariates; we describe every instance (data streams) xj by the normalized vector

of Mahalanobis distances to the center of each of the 16 German states. Thus, each

instance is represented in terms of a vector

xj = (xj,1, . . . , xj,16)
⊤ ∈ R16 ,

where xj,i is the distance of the intersection points pj from the geometric center of the

ith German state. By sorting the tweets according to their creation times, considering

only those originating from Germany and assigning every tweet to the closest instance

xj, we obtain a parallel stream of events that can again be processed by our method

described in Section 5.3. The reason for applying the Mahalanobis distance

dMahalanobis(x, c) =
√

(x− c)TS−1(x− c)

is that states differ in the size of the area they occupy and how they are spread

along the two coordinates, causing points further from the center of a large state to

gain a smaller weight compared to points that are close but not in small states. This

influence of smaller states is weakened by the covariance matrix S in the denominator.

The vector c is the geometric center of the state and S is the covariance matrix, which

describes the spread of the state along the coordinates.

We fix the window size to three days and the shift parameter ∆t to one day. As a

result, we again obtain time-dependent estimates (5.25) of the parameters β1, . . . , β16

associated with the 16 German states. Figure 5.7 shows how the estimated parameters

change over time, compared with the base line hazard α0 that is also plotted in each

subfigure. An increasing parameter βi can be interpreted as follows: The closer a

location xj is to the corresponding state, the higher the hazard becomes, or in this

case the propensity of users to send a tweet from that location. Conclusively, users

within that state or nearby are more active in the sense of sending more tweets.

In Figures 5.7(a) and (d), the parameter for the state of Berlin is increasing in

the time between May 2 and May 5, while the parameter for the state Brandenburg

is decreasing. In search for an explanation for this observation, we found that the

conference re:publica10 took place during that time. This is a conference for bloggers

from Germany and all around the world. Consequently, one can expect that more

bloggers were in Berlin and less in the surrounding areas, including the state of

Brandenburg.

10http://re-publica, accessed on October 5, 2012

133

http://re-publica

The opposite can be said about Saxony-Anhalt, which was seen as a gateway for

travelers, so its parameter was also increasing during that time. The parameters

associated with the mentioned states are marked by the ’∗’ symbol in Figure 5.7.

Similarly, Figure 5.7(d) shows how the hazard associated with the state Schleswig-

Holstein, marked by the ’+’ symbol, has increased on April 28. This was supposedly

a direct effect of hosting a conference for the “Piratenpartei”, a political party in

Germany.

In a second experiment with the same stream of events, our aim was to observe

changes between the city and the countryside. This was done by considering only

instances located inside the states of Bremen and Lower Saxony11. Instances are now

described only by a single binary covariate, indicating whether an instance is located

in Bremen or not. Figure 5.8 shows how the corresponding parameter changes on a

weekly basis. Interesting patterns can be observed especially for the weekends. First,

there are normal weekends where people move from the condensed area of Bremen to

the surrounding state, causing a decrease in the hazard (less tweets sent from inside

Bremen and more from outside); this pattern is marked by the ’+’ symbol. Second,

the weekends on which the local soccer club (Werder Bremen) has hosted a soccer

match in the German soccer league (Bundesliga), causing an increase in the hazard;

this group is marked by ’∗’ symbol.

5.6 Conclusion

In this chapter, an adaptive approach to survival analysis on data streams is intro-

duced. To this end, we adopt a sliding window approach and propose an adaptive

(online) variant of a model that is closely related to the well-known Cox proportional

hazard model. In this approach, maximum likelihood estimation of the model param-

eters is performed repeatedly, adapting the estimates whenever the time window has

been shifted.

The assumption of a constant hazard rate (5.18) has led to an exponential model

which exhibits both properties: the proportional hazard and the accelerated failure

time, explained in Section 5.2.4. The model’s coefficients vector β∗ (5.24) is estimated

by means of maximizing the likelihood of the distribution of events and the time spent

between events; unlike the partial likelihood that maximizes the likelihood of the order

of events. As a result, this coefficients vector also includes the baseline hazard h0.

11Bremen is the smallest state in Germany, containing only two cities. It is surrounded by the
larger state of Lower Saxony.

134

−10 −5 0 5 10 15 20

2012−03−23

2012−03−26

2012−03−29

2012−04−01

2012−04−04

2012−04−07

2012−04−10

2012−04−13

2012−04−16

2012−04−19

2012−04−22

2012−04−25

2012−04−28

2012−05−01

2012−05−04

2012−05−07

2012−05−10

2012−05−13

2012−05−16

2012−05−19

2012−05−22

2012−05−25

baseline
B

W
 01

B
Y

 02
B

E
 03

B
B

 04

(a)
**

−10 −5 0 5 10 15 20

2012−03−23

2012−03−26

2012−03−29

2012−04−01

2012−04−04

2012−04−07

2012−04−10

2012−04−13

2012−04−16

2012−04−19

2012−04−22

2012−04−25

2012−04−28

2012−05−01

2012−05−04

2012−05−07

2012−05−10

2012−05−13

2012−05−16

2012−05−19

2012−05−22

2012−05−25

baseline
H

B
 05

H
H

 b06
H

E
 07

M
V

 08

(b
)

−10 0 5 10 20

2012−03−23

2012−03−26

2012−03−29

2012−04−01

2012−04−04

2012−04−07

2012−04−10

2012−04−13

2012−04−16

2012−04−19

2012−04−22

2012−04−25

2012−04−28

2012−05−01

2012−05−04

2012−05−07

2012−05−10

2012−05−13

2012−05−16

2012−05−19

2012−05−22

2012−05−25

baseline
N

I 09
N

W
 10

R
P

 11
S

L 12

(c)

−10 0 5 10 20

2012−03−23

2012−03−26

2012−03−29

2012−04−01

2012−04−04

2012−04−07

2012−04−10

2012−04−13

2012−04−16

2012−04−19

2012−04−22

2012−04−25

2012−04−28

2012−05−01

2012−05−04

2012−05−07

2012−05−10

2012−05−13

2012−05−16

2012−05−19

2012−05−22

2012−05−25

baseline
S

N
 13

S
T

 14
S

H
 15

T
H

 16

(d
)

*
+

Figure 5.7: Parameters for the 16 German states together with the base line hazard α0.
BW: Baden-Württemberg, BY: Bavaria, BE: Berlin, BB: Brandenburg, HB: Bremen,
HH: Hamburg, HE: Hesse, MV: Mecklenburg-Vorpommern, NI: Lower Saxony, NW:
North Rhine-Westphalia, RP: Rhineland-Palatinate, SL: Saarland, SN: Saxony, ST:
Saxony-Anhalt, SH: Schleswig-Holstein, TH: Thuringia.

135

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Bremen vs Lower Saxony

baseline

city

20
12

−
03

−
23

20
12

−
03

−
26

20
12

−
03

−
29

20
12

−
04

−
01

20
12

−
04

−
04

20
12

−
04

−
07

20
12

−
04

−
10

20
12

−
04

−
13

20
12

−
04

−
16

20
12

−
04

−
19

20
12

−
04

−
22

20
12

−
04

−
25

20
12

−
04

−
28

20
12

−
05

−
01

20
12

−
05

−
04

20
12

−
05

−
07

20
12

−
05

−
10

20
12

−
05

−
13

20
12

−
05

−
16

20
12

−
05

−
19

20
12

−
05

−
22

20
12

−
05

−
25

*

*

*

*

+

+

+

+

Figure 5.8: Baseline hazard and parameter distinguishing the city of Bremen from
the surrounding state of Lower Saxony.

As a first proof of concept, we used our method for studying the occurrence

of significant earthquakes during the last decade. Here, an event is an earthquake

and a statistical entity is a two-dimensional region on the globe characterized by its

spatial coordinates; more specifically, we make use of fuzzy discretization techniques

in order to capture the influence of the spatial location on the hazard rate in a flexible

way. The results we obtain are plausible and agree with expectation. For a region

such as Tohoku, Japan, one can observe a significant increase in the hazard rate

prior to the disastrous earthquake in 2011. Similar observations can be made for

other significant earthquakes such as Sichuan’s in 2008 and Christchurch’s in 2011.

Plausible results could also be obtained in a second study using streams of almost 5

million Twitter messages. Interesting patterns or irregularities in the time-dependent

parameter estimations of our hazard model could be explained by massive events,

such as conferences or soccer matches.

136

Chapter 6

Recovery Analysis for Adaptive
Learning

Chapters 2, 3 and 4 present examples of how machine learning methods can be ex-

tended to learn adaptively from data streams in non-stationary environments.

Adaptive learners are often compared based on their empirical generalization per-

formance, with the focus on their ability to properly react to concept changes. In

this chapter, we develop a new type of experimental analysis called recovery analysis,

which aims at assessing the ability of a learner to quickly discover a concept change

and to take the appropriate actions to maintain the quality and generalization perfor-

mance of the model. We develop recovery analysis for two types of supervised learning

problems: classification and regression. As a practical application, we employ the re-

covery analysis in order to assess the recovery pattern of the state-of-the-art adaptive

methods, with focus on comparing model-based and instance-based approaches.

6.1 Introduction

As explained in Chapter 1, learning from data streams has been a topic of active

research in the recent past [66, 70]. Motivated by the idea of building a system that

learns incrementally on a continuous and endless stream of data, this system should

also be able to cope with changes in the data generating process.

Applying standard machine learning approaches in a data stream setting faces sev-

eral challenges. Above all, the learner should react to a concept change in a proper

way and should maintain a model that always reflects the current concept. Conse-

quently, adapting to concept changes is often emphasized as a key feature of learning

algorithms, because non-stationarity is arguably the most important difference be-

tween static and dynamic environments. While the idea of incremental learning is

137

crucial in the setting of data streams, it is not an entirely new problem and has

been studied for learning from static data [142]. The ability of a learner to maintain

the quality and generalization performance of the model in the presence of a con-

cept drift is a property that becomes truly important when learning under changing

environmental conditions.

In this chapter we propose recovery analysis ; with the help of this analysis, we

aim to assess a learner’s ability to maintain its generalization performance in the

presence of a concept drift. Roughly speaking, recovery analysis suggests a specific

experimental protocol and a graphical presentation of the learner’s performance that

provides an idea of how quickly a drift is recognized, to what extent it affects the

prediction performance, and how quickly the learner manages to adapt its model

to the new condition. Our method utilizes real data in a modified and specifically

prepared form, which is a main prerequisite for conducting controlled experiments

under suitable conditions; therefore, it could be considered as a “semi-synthetic”

approach.

Another contribution of the chapter is an experimental study, which illustrates

the usefulness of recovery analysis by comparing different types of learning meth-

ods with regard to their ability to handle concept drift. In particular, we focus on

the comparison of instance-based and model-based approaches for learning on data

streams.

The remainder of the chapter is organized into the following sections: the next

section recalls some important aspects of concept change. Our method of recovery

analysis is introduced in Section 6.3. In Section 6.4, we contrast model-based with

instance-based learning approaches and motivate their comparison, prior to describing

the experiments and results in Section 6.5. The chapter closes with some concluding

remarks in Section 6.6.

6.2 Learning under concept drift

In Chapter 2, we define a learning algorithm A (learning on a time-ordered stream

of data S = (z1,z2,z3, . . .), where zt = (xt, yt) ∈ X × Y) to be incremental, if it

produces the predictive model Mt : X → Y solely on the basis of Mt−1 and zt,

that is, Mt = A(Mt−1,zt). For reference, we briefly recall some of the main ideas

discussed in Section 2.3.

The data generating process, according to which the sequence S is generated, is

characterized by the probability measure P on Z = X×Y. Under the stationarity and

138

independence assumptions, each new observation zt is generated at random according

to P, i.e., the probability to observe a specific z ∈ Z is given by P(z) = P(x, y) =

P(x) ·P(y |x).

Giving up the assumption of stationarity (while keeping the one of independence),

the probability measure P generating the next observation may possibly change over

time. Thus, instead of a single measure P, there is now a sequence of measures

(P1,P2,P3, . . .), assuming that zt is generated by Pt. This is considered a concept

change if these measures are not all equal [94].

Concept change [76] can be categorized into three types of change: (i) real concept

change caused by the change of the conditional distribution P(y |x), (ii) virtual

concept change caused by the change in the data’s probability P(x) and (iii) global

and local concept change, independent of the change’s nature (real or virtual). The

other important aspect when analyzing concept changes is the rate of change, which

can also be categorized into (i) a concept shift caused by the abrupt change in the data

generating process which makes the concept to be learned (Pt) very different from the

learned concept Pt−1, (ii) a gradual change occurs when two different data generating

processes, P1 and P2, are active at the same time, and the rate of their activation

changes over time from favoring P1 to favoring P2 [171], (iii) an incremental change

and (iv) the recurring concept.

Learning algorithms can handle concept change in an active or passive way. Pas-

sive approaches try to continuously utilize the most recent examples in updating the

learned model, regardless of whether a concept drift has occurred or not. Active ap-

proaches, on the other hand, apply change detection techniques [76] as an indicator

for concept drifts, see Section 2.4. Upon discovering a change, the learner decides on

how the model should be updated; an update may often be drastic in order to forget

the old concept and rapidly learn the emerging one.

6.3 Recovery Analysis

In practical studies, data streams are never truly infinite. Instead, the term “stream”

indicates a large data set in the form of a long, yet finite sequence S = (z1, z2, . . . , zT).

In experimental studies, such streams are commonly used to produce a performance

curve showing the generalization performance of a model sequence (Mt)
T
t=1 over time.

Although many of these studies are interested in analyzing the ability of a learner to

deal with concept drift, such an analysis is inhibited by at least two problems:

139

• Ignorance about drift: For a real data stream S, it is normally not known

whether it contains any concept drift, let alone when such a drift occurs.

• Missing baseline: Even if a concept drift is known to occur, it is often difficult

to assess the performance of a learner or to judge how well it recovers after the

drift, simply because a proper baseline is missing: The performance that could

theoretically be reached, or at least be expected, is not known.

These problems are less of an issue if data is generated synthetically; for synthetic

data, the “ground truth” is always known. Moreover, synthetic data has the big

advantage of enabling controlled experiments. For example, one may be interested in

how an algorithm reacts to a drift depending on certain characteristics of the drift,

such as its strength and duration. While real data will contain a single drift, at most,

these characteristics can easily be varied in experiments with synthetic data.

On the other hand, purely synthetic data begs the danger of being unrealistic

or overly idealized. Therefore, in our approach to recovery analysis, we attempt to

find a reasonable compromise by using a setting that qualifies as “semi-synthetic”.

The following section details how we use real data in a “manipulated” form that

circumvents the above problems and allows us to conduct controlled experiments.

6.3.1 Main idea and experimental protocol

Instead of using a single data stream, our idea is to employ three streams in parallel,

two “pure streams” and one “mixture”. The pure streams

SA = (za
1,z

a
2, . . . , z

a
T)

SB = (zb
1, z

b
2, . . . , z

b
T)

are supposed to be stationary and generated, respectively, according to distributions

PA and PB; in the case of real data, stationarity of a stream can be guaranteed, for

example, by permuting the original stream at random.1 These two streams must also

be compatible, in the sense they are sharing a common data space Z = X× Y. The

mixture stream SC = (zc
1,z

c
2, . . . , z

c
T) is produced by randomly sampling from the

two pure streams:

zc
t =

{
za
t with probability λ(t)

zb
t with probability 1− λ(t)

(6.1)

1Permutation of data streams is also used in [172], albeit in a different way and for a different
purpose.

140

For example, a concept drift can then be modeled by specifying the (time-dependent)

sample probability λ(t) as a sigmoidal function:

λ (t) =

(
1 + exp

(
4(t− t0)

w

))−1

. (6.2)

This function has two parameters: t0 is the mid point of the change process, while

w is the length of this change. The length of the drift is related to the tangent of

the sigmoid function at the center of the drift by tan θ = 1
w

. Using this transition

function, the stream SC is obviously drifting “from SA to SB”: In the beginning, it is

essentially identical to SA, in a certain time window around t0, it moves away from

SA toward SB. In the end, it is essentially identical to SB. Thus, we have created a

gradual concept drift with a rate of change controlled by w.

Figure 6.1: Schematic illustration of a recovery analysis: The three performance
curves are produced by training models on the pure streams SA and SB, as well as on
the mixed stream SC , each time using the same learner A. The region shaded in grey
indicates the time window in which the concept drift (mainly) takes place. While the
concept is drifting, the performance on SC will typically drop to some extent. This
can be seen by the drop in the classification accuracy.

Now, suppose the same learning algorithm A is applied to all three streams SA, SB

and SC . Since the first two streams are stationary, we expect to see a standard learning

curve when plotting the generalization performance (for example, the classification

accuracy) as a function of time. In the following, we denote the performance curves

for SA and SB by α(t) and β(t), respectively. These curves are normally concave,

showing a significant increase in the beginning before reaching a certain saturation

level later on; see Figure 6.1 for an illustration. The corresponding saturation levels

α∗ and β∗ provide important information about the best performance that can be

expected by the learner A on the pure streams SA and SB, respectively.

The performance curve γ(t) is interesting for this analysis because it is a result

of learning from the stream SC , which exhibits a concept drift. In the beginning,

141

this curve will be essentially identical to the curve for SA, so that the learner A
should reach the level α∗. Upon the beginning of the concept drift, the performance

is expected to drop and this decrease is supposed to continue until the drift ends and

the learner A starts to recover. Eventually, A may or may not reach the level β∗.

This level is indeed an upper bound on the asymptotic performance, since A cannot

do better even when being trained on SB from the very beginning. Thus, reaching

this level indicates an optimal recovery.

Obviously, the performance curve for SC provides vital information about the

ability of A to deal with concept drift. In particular, the minimum of this curve

indicates how stronglyA is affected by the concept drift. Moreover, the curve provides

information about how quickly the performance deteriorates (giving an idea of how

sensitive A is). It also reveals how much time A needs to recover and whether or not

it manages to recover optimally.

6.3.2 Bounding the optimal generalization performance

As explained above, the performance curve produced by a learner A on the stream

SC is expected to decrease while this stream is drifting from SA to SB. In order to

judge the drop in performance, not only relatively in comparison to other learners

but also absolutely, it would be desirable to have a kind of reference performance as

a baseline. This leads to an interesting question: Is it possible to quantify our ex-

pectations regarding the drop in performance? More specifically, what is the optimal

generalization performance

γ∗(t) = sup
M∈M

γM(t) (6.3)

we can expect on the stream SC at time t? Here M is the underlying model class (i.e.,

the class of models that A can choose from), and γM(t) denotes the generalization

performance of a model M∈M on the mixture distribution (6.1), i.e.,

PC(t) = λ(t)PA + (1− λ(t))PB .

Our experimental setup allows for answering this question by exploiting knowledge

about the performance levels α(t) and β(t) that can be reached on SA and SB, respec-

tively. Thus, there are models MA,MB ∈ M whose performance is αMA
(t) = α(t)

and βMB
(t) = β(t). Now, suppose we were to apply the modelMA on the stream SC .

What is the expected generalization performance? Consider the case of classification,

with the classification rate as a performance measure, which assumes values in the

unit interval, with 0 and 1 indicating the worst and best performance, respectively.

142

If an example (x, y) on SC is generated according to PA, the generalization per-

formance of MA on this example is the same as on SA, namely αMA
(t). Otherwise,

if the example is generated according to PB, nothing can be said about the perfor-

mance of MA; thus, we can only assume the worst case performance of 0. Because

the first case occurs with a probability of λ(t) and the second one with a probability

of 1− λ(t), the overall expected performance of MA is given by

λ(t) · αMA
(t) + (1− λ(t)) · 0 = λ(t) · αMA

(t) .

Following this same line of reasoning, the performance of the modelMB on the stream

SC is given by (1−λ(t))βMB
(t). Choosing optimally from the two candidate models,

MA and MB, can at least guarantee the performance

γ•(t) = max
{
λ(t) · αMA

(t), (1− λ(t)) · βMB
(t)
}
. (6.4)

Because the supremum in (6.3) is not only considered over {MA,MB} but over the

entire model class M, γ•(t) is only a lower bound on the optimal performance γ∗(t),

that is, γ•(t) ≤ γ∗(t). If the performance levels α(t) and β(t) are already close enough

to the optimal levels α∗ and β∗, respectively, then (6.4) can be written more simply

as

γ•(t) = max
{
λ(t) · α∗, (1− λ(t)) · β∗} . (6.5)

Strictly speaking, this estimation is not correct, since α∗ and β∗ are only limit values

that will not necessarily be attained; however, this is of no importance, because we

have to work with estimations of these values anyway.

The above estimation can be generalized to other performance measures or loss

functions in a straightforward way, provided these measures assume values in a

bounded range (not necessarily [0, 1]). As soon as the range is bounded, the worst

performance can easily be derived. For example, consider the case of regression with

the root mean squared error as a loss function and assume that Y = [ymin, ymax]. The

bound on the worst performance of an optimal model, analogous to (6.5), is

γ•(t) = min

{√
(α∗)2 · (1− λ (t)) + l2 · λ (t),√

(β∗)2 · (λ (t)) + l2 · (1− λ (t))

}
,

(6.6)

where l = |ymin − ymax|, (α∗)2 is the mean squared error of MA on SA and (β∗)2

the mean squared error of MB on SB. In contrast to the (the-higher-the-better)

143

classification rate, we are now estimating a (the-less-the-better) loss. Therefore, (6.6)

is an upper bound on the optimal performance: γ∗(t) ≤ γ•(t).

Practically, the above estimate is not unproblematic. First, the output variable in

regression does normally not have natural bounds ymin and ymax. Even if such limits

can be established, the bound (6.6) will be very loose. A more realistic bound can be

obtained by estimating the true performance ofMA on SB and the true performance

ofMB on SA. In our experimental setting, this can be done by computing the average

performance α̃ of the modelMA (once it has stabilized and reached the performance

α∗ on SA) on the data SB. Likewise, the average performance β̃ of MB can be

obtained on SA. Replacing l2 in (6.6) by these estimates then yields

γ∗(t) ≤ min

{√
(α∗)2 · (1− λ (t)) + (α̃)2 · λ (t),√

(β∗)2 · (λ (t)) + (β̃)2 · (1− λ (t))

}
.

(6.7)

6.3.3 Recovery measures

The major goal of our recovery analysis is to provide insight into how an algorithm

behaves in the presence of a concept drift. This behavior is most clearly represented

by the recovery curves that are produced as a graphical output, see Figure 6.1. Yet,

in some cases, it may also be desirable to have a more quantitative summary of the

algorithms’ recovery, similar to the use of metrics for performance evaluation [75],

even if a quantification in terms of a scalar measure will necessarily come along with

a certain loss of information. In this section, we propose concrete examples of these

types of measures.

The duration measures the (relative) length of the recovery phase or, more specif-

ically, the suboptimal performance of the algorithm. It is defined as

t2 − t1
T

∈ [0, 1] ,

where t1 is the time at which the curve SC drops below 95% of the performance curve

SA, t2 the time at which SC recovers up to 95% of the performance of SB and T the

length of the entire stream.

The maximum performance loss measures the maximal drop in performance. In

the case of the classification rate, it compares SC with the pointwise minimum

S(t) = min{SA(t), SB(t)}

144

as a baseline and derives the maximum relative performance loss

max
t∈T

S(t)− SC(t)

S(t)
(6.8)

as compared to this baseline. In the case of regression, the measure is defined analo-

gously as

max
t∈T

SC(t)− S(t)

S(t)
= max

t∈T

SC(t)−max{SA(t), SB(t)}
max{SA(t), SB(t)}

.

6.3.4 Defining pure streams

The two previously constructed streams SA and SB have to be compatible in the

sense of sharing a common data space Z = X × Y. An important practical question

is: where are these streams coming from? Ideally, two separate data sets of this kind

are directly available. An example is the wine data from the UCI repository [107],

with input attributes describing a wine in terms of physicochemical properties and

the output, a quality level between 1 and 10. This data comes in two variants, one

for red wine and one for white wine. Thus, using the first data set for SA and the

second one for SB, one can simulate a transition from rating red wine to rating white

wine.

If ideal data of that kind is not available, it needs to be produced in one way or

another, preferably on the basis of a single source data stream S. In the following,

we suggest a few possibilities for such a construction. However, we would not like to

prescribe one specific way of data generation. Even in reality, there is not only one

type of concept drift or a single source for a drift. Instead, concept drift can occur

for many reasons, which one may attempt to mimic.

In the example of wine data, one can also imagine a single data set in which the

type of wine (red or white) is added as a binary attribute. Conversely, instead of

merging two data sets into a single one, one can split a data set S on the basis of a

binary attribute X, using those examples with the first value for SA and those with

the second value for SB (and removing X itself from both data sets). Again, the idea

is to have a hidden variable that defines the context. Obviously, this approach can

be generalized from binary to any type of attributes, simply by using appropriate

splitting rules.

In some data sets S, the role of the attributes as either input (predictor) variable

or output (response) variable is not predetermined. If the data contains two attributes

A and B that are both of the same kind and can both be used as outputs, then SA and

SB can be obtained, respectively, by using these attributes as a target for prediction.

145

There are many other ways of “manipulating” a data set S in order to simulate a

concept change, such as changing the order of some of the input attributes. In later

experiments, we also apply another simple idea: SA is given by the original data S,

while SB is constructed by copying S and reversing or shifting the output attribute.

6.3.5 Further practical issues

Our discussion of recovery analysis so far has left open some important practical issues

that need to be addressed when implementing the above experimental protocol. An

obvious question is: how to determine the generalization performance of a modelMt

(induced by the learner A) at time t, which is needed to plot the performance curve?

First of all, it is clear that this generalization performance can only be estimated on

the basis of the data given, just like in the case of batch learning from static data.

In Section 2.2, we show how an evolving classifier can be evaluated using one of the

procedures: (i) the holdout approach and (ii) the test-then-train approach. The

test-then-train procedure has clear advantages over the holdout approach. It makes

better use of the data, because each example is used for both training and testing.

More importantly, it avoids “gaps” in the learning process. In the holdout approach,

A only learns on the training blocks but stops adaptation on the evaluation blocks

in-between. Such gaps are especially undesirable in the presence of a concept drift,

because they may bias the assessment of the learner’s reaction to the drift. For this

reason, we prefer the test-then-train procedure for our implementation of recovery

analysis.

The second practical issue concerns the length of the data streams. To implement

recovery analysis in a proper way, the streams should be long enough in order to

ensure that the learner A will saturate on all streams. First, it should reach the

saturation levels α∗ and β∗ on SA and SB, respectively. Moreover, the streams should

not end while A is still recovering on SC ; otherwise one cannot decide whether or not

an optimal recovery (reaching β∗) is accomplished.

Finally, to obtain smooth performance curves, we recommend repeating the same

experiment with many random permutations SA and SB of the original streams and

averaging the produced curves. In this case, averaging is legitimate because the results

are produced for the same data generating processes (specified by the distributions

PA, PB and their mixture PC). This can be easily performed for the experiments

on synthetic data. For a given synthetic data generator, we first generate a random

model RA and then fix it, i.e., RA is the data generating process that produces the

146

pure stream SA. Random permutations of SA can be obtained by draining different

sequences from the fixed model RA, each time with a different seed.

6.4 A comparison of algorithms

The remainder of the chapter is devoted to a case study, in which we compare a

number of different learning algorithms with respect to their ability to handle con-

cept drift. A main goal of this study is to determine whether there are important

differences between these methods and whether recovery analysis helps uncover them.

In particular, we focus on the comparison between model-based and instance-based

approaches to learning on data streams.

While a model-based approach focuses on inducing a model that fits the training

data well, an instance-based approach focuses on the instances as local abstractions.

In Section 3.2, we compare instance-based and model-based approaches in terms of

their ability to learn and adapt in a streaming context.

IBL methods are inherently incremental [17]; their adaption is simply achieved by

the addition or removal of examples. On the contrary to IBL methods, model-based

approaches require a more difficult and careful adaptation strategy depending on the

type of the induced models and their learned structures and parameters.

The most important aspect of adaptive learning is the adaptation of the learn-

ing process to any change in the learned concept in the course of time. Here, IBL

approaches have the advantage of applying a simple adaptation strategy, which is

basically reduced to the forgetting of old examples either globally or in some local re-

gions after discovering a change. Model-based methods, however, might not have the

ability to unlearn outdated examples, such as forgetting the influence of an example

after learning a set of rules or after updating the weights in a neural network.

Table 6.1 provides a summary of the methods that we include in our study, as well

as their main properties. Our selection was based on the following considerations:

• Because one of our main goals is to compare model-based and instance-based

learning, we include both types of algorithms. Because the former clearly pre-

vails in the literature, there are five model-based and only one instance-based

approach.

• The algorithms should be representative and reflect the state-of-the-art. Many

of the methods are therefore based on tree induction or rule learning.

147

Learning problem Model type Approach Change detection

B
in

ar
y

C
la

ss
ifi

ca
ti

on

M
u

lt
ic

la
ss

C
la

ss
ifi

ca
ti

on

R
eg

re
ss

io
n

T
re

e
S

tr
u

ct
u

re

R
u

le
-b

as
ed

In
st

an
ce

-b
as

ed

F
u

zz
y

H
o
eff

d
in

g
B

ou
n

d

P
ag

e-
H

in
k
le

y

S
ta

t.
H

y
p

ot
.

T
es

ti
n

g

eFPT X X X X
IBLStreams X X X X X
FLEXFIS X X X
AdpHoef X X X X X
AMRules X X X X
FIMTDD X X X X

Table 6.1: Summary of the learning algorithms and their main characteristics.

• The idea of adaptive learning in dynamical environments has not only received

attention in machine learning but also in computational intelligence, where it is

intensively studied under the notion of “evolving fuzzy systems” [9]. Therefore,

we also include methods for the adaptive incremental learning of fuzzy systems

on data streams.

The following is a brief description of each of the algorithms, for more technical

details see Appendix A:

• Adaptive Hoeffding trees (AdpHoef) [22]: This method is an adaptive version

of the Hoeffding Tree (an incremental decision tree approach). It mainly differs

from the incremental version by maintaining drift detection indicators in each

node in order to judge the compatibility of the current tree/subtree with the

data, see Appendix A.1.

• Adaptive model rules (AMRules) [4]: This approach is a rule-based induction

method for regression on data streams, see Appendix A.2.

• Fast incremental model trees with drift detection (FIMTDD) [86]: This tree-

based approach induces model trees for regression on data streams, see Ap-

pendix A.3.

148

• Flexible fuzzy inference systems (FLEXFIS) [110]: This system learns TSK

fuzzy rules [165] for modeling regression tasks on data streams, see Appendix A.4.

• Instance-based learner on data streams (IBLStreams) [151]: This method is our

instance-based learner, which we introduce in Chapter 3.

• Evolving fuzzy pattern trees (eFPT) [157]: This method is an evolving vari-

ant of fuzzy pattern trees for binary classification problems, as introduced in

Chapter 4.

Lastly, the availability of implementations is an important criterion as well. All

approaches, except FLEXFIS, are implemented and executed under MOA [24], see

also Appendix B. IBLStreams and eFPT can be downloaded as extensions of MOA,

while the other methods can be acquired from the 2013.11 release of MOA.

Regarding the detection and the reaction to concept drifts, most of the used

approaches apply drift detection techniques (see Section 2.4) which help the learner

in becoming “drift-aware”. Two main change detection methods are employed: the

Page-Hinkley (PH) test [121] and the statistical hypothesis testing.

6.5 Experiments and results

All real data sets are collected from the UCI2 repository [107] unless otherwise stated,

as in the case of two data sets acquired from the DELVE3 repository. Synthetically

generated data, on the other hand, is produced using MOA’s data stream genera-

tors, see Appendix B.1. Table 6.2 provides a summary of the data sets and their

main properties (attributes, size, nature and source). Appendix D is devoted for the

detailed description of the used real and synthetic data sets.

We conduct experiments with three different drift settings. The speed of change

is varied by modifying the width parameter w in the sigmoid function (6.2). More

specifically, we control the angle θ of the tangent of this function at t = t0. Figure 6.2

depicts the three drift velocities:

• θ = π
75

for a slow concept drift,

• θ = π
30

for concept drift with a modest speed,

• θ = π
2

for a sudden concept change (concept shift).

149

2000 4000 6000 8000 10000
0.

0
0.

6

θ
=

 π 75

2000 4000 6000 8000 10000

0.
0

0.
6

θ
=

 π 30

2000 4000 6000 8000 10000

0.
0

0.
6

θ
=

 π 2

Figure 6.2: Sigmoid transition function modeling different types of concept drift: slow
drift (top), moderate drift (middle), sudden drift (bottom).

Table 6.2 also contains the size of the evaluation window, which is always adapted

to the size of the data set. Because the real data sets do not share the same size, we

define the length of the window as w = ℓ
100 tan(θ)

, where ℓ is the size of the data set.

Given the drift angle θ, the proportion of the entire stream that is subject to drift is

the same for all data sets.

The results are generated by plotting the average evaluation, accuracy for clas-

sification and the root mean squared error for regression, on each data chunk; this

is achieved through utilizing the test-then-train approach, which works in a sample

by sample way. For generating a concept drift, MOA’s drift simulation procedure is

applied as illustrated in Appendix D.2.1.

6.5.1 Binary classification

Random trees This is a synthetic data set offered by MOA (see Appendix D.1.3),

for which we use 4 numerical attributes to describe each instance. Different streams

2http://lib.stat.cmu.edu/, accessed on October 8, 2015
3http://www.cs.utoronto.ca/~delve/data/datasets.html, accessed on October 8, 2015

150

http://lib.stat.cmu.edu/
http://www.cs.utoronto.ca/~delve/data/datasets.html

Learning Problem Properties Source

B
in

ar
y

C
l.

M
u

lt
ic

la
ss

C
l.

R
eg

re
ss

io
n

#
A

tt
ri

b
u

te
s

#
In

st
an

ce
s

#
E

va
l.

W
in

d
ow

T
ar

ge
t

A
tt

ri
b

u
te

O
ri

gi
n

R
ea

l/
A

rt
if

./
S

im
.

mushroom X 22 8,124 100 2-Class UCI R
breast X 9 699 25 2-Class UCI R
page blocks X 10 5,473 100 5-Class UCI R
letter X 16 20,000 200 26-Class UCI R
bank32h X 32 8,192 100 [0,0.819665] DELVE S
house8L X 8 22,784 200 [0,500001] DELVE R
random trees

binary X 4 125,000 500 2-Class MOA A
5-classes X 4 125,000 500 2-Class MOA A

dis. hyper.
distance X 4 125,000 500 [0.0388,1.7016] MOA A

cubed distance X 4 125,000 500 [0.0001,4.9271] MOA A

Table 6.2: Summary of the data sets used in the experiments.

151

of this data are produced using different random seeds. These streams define our

pure streams SA and SB.

Figure 6.3 shows the recovery curves for different drift velocities. The different

approaches reach different saturation levels α∗ and β∗ on the pure streams. Despite

showing different “recovery patterns”, they all manage to recover from level α∗ to level

β∗. For example, eFPT exhibits a rather smooth recovery with almost no drop in per-

formance, whereas AdpHoef deteriorates quite significantly. Notably, all approaches

seem to perform better than the estimated lower bound.

Mushroom This real data set represents a binary classification problem with the

objective of predicting whether a given mushroom is edible or poisonous, see Ap-

pendix D.3.2. The original data is used as a first pure stream SA and an “inverted

copy” as a pure stream SB; for the stream SB, we simply invert the target attribute.

Thus, the problem on the mixture stream SC changes from predicting whether a

mushroom is edible to predicting whether it is poisonous.

Figure 6.4 shows that both IBLStreams and AdpHoef recover quickly and very

well to the optimal performance curve. Nonetheless, AdpHoef shows a drastic drop

in performance during the drift. This could be explained by the cost for repairing

the model: The original tree becomes invalid and needs to be transformed into a

valid one through successive replacements of internal nodes or complete subtrees. For

eFPT, on the other hand, it seems that the more drastic the change, the better the

recovery. This may be due to the use of statistical tests for discovering changes: the

more obvious the change, the easier it can be detected.

Breast cancer Wisconsin This is another real data set with the aim of classifying

clinical reports as benign or malignant, see Appendix D.3.8. Like for the mushroom

data, we produce a stream SB by “inversion” of the original stream.

This problem appears to be quite difficult. Figure 6.5 depicts that only IBLStreams

recovers well, but even this learner shows a significant drop in performance (below

the estimated bound) during the drift. The tree-based methods eFPT and AdpHoef

never manage to recover. Apparently, the data stream is too short to accomplish the

complex process of tree reconstruction.

6.5.2 Multiclass classification

5-class random trees This data is used in the same way as for binary classification,

but now with five classes; two versions of the stream are created using different random

152

seeds.

Figure 6.6 shows that both IBLStreams and AdpHoef recover well, although Ad-

pHoef is a bit slower. It seems that the quicker the drift, the deeper the performance

drop for IBLStreams. One explanation for this observation is that, in the case of a

(detected) drift, IBLStreams removes an amount of data from the case base propor-

tional to the error rate. However, this removal can harm its predictive performance

during the drift, especially when the case base becomes almost empty.

Page blocks The task in this data set is to classify blocks in an image into one of

five classes: text, horizontal line, picture, vertical line or graphic, see Appendix D.3.3.

We simulate a drift by means of a cyclic shift of the class labels, replacing label i by

1 + i mod 5.

Figure 6.7 shows that only IBLStreams recovers, whereas AdpHoef remains on a

very low level of performance after the drift occurred.

Letter recognition The task in this data set is to recognize the 26 English letters,

see Appendix D.3.4. We simulate a drift by shifting the class labels in a circular

manner.

The result in Figure 6.8 appears to be qualitatively similar to the results on the

5-class random trees data. In particular, only IBLStreams is able to recover.

6.5.3 Regression

Distance to hyperplane data This is another synthetic data set that we pro-

duced by modifying the HyperplaneGenerator (for classification data) in MOA, see

Appendix D.1.2. The output for an instance x is determined by the distance y =

f1(x) = |w⊤x| from the hyperplane (defined by the normal vector w). Different

output values can also be computed by this generator, such as the cubed distance

y = f3(x) = |w⊤x|3.
In a first experiment, we generated SA using f1 and SB using f3; thus, the drift

is from the simpler to the more difficult problem. Figure 6.9 shows the recovery

curves of the learning methods. Both IBLStreams and FLEXFIS have a relatively

small error on the first problem, compared to AMRules and FIMTDD. During the

drift, both suffer from a high drop in performance, which is visible as a bell-shaped

peak. Nonetheless, IBLStreams recovers quite well, whereas FLEXFIS fails to do so.

AMRuless and FIMTDD, on the other hand, show very similar performance curves,

and both manage to recover in a comparable way.

153

In a second experiment, we change the order of the problems: SA was generated

using f3 and SB using f1; thus, the drift is now accompanied with a change in the

problem’s difficulty, from the more difficult to the less difficult one. As shown in

Figure 6.10, IBLStreams and FLEXFIS suffer from the same drop in performance.

However, in this experiment they both succeed to recover. AMRules and FIMTDD

share the same performance, with the exception that FIMTDD smoothly and perfectly

recovers without any loss in the end.

Bank32h This is a simulation data from DELVE repository, see Appendix D.3.11.

It represents how customers select and reject banks. The second pure stream SB is

created by “inverting” the target values: For an example (x, y), the original output

y is replaced by ymax + ymin − y, where ymin and ymax are the smallest and largest

target values in the data set.

Figure 6.11 shows that all methods manage to recover quite well on this data,

despite a visible drop in performance in the middle of the drift region.

Census-house This data is also from the DELVE repository with the task of pre-

dicting the median price of houses in different regions, see Appendix D.3.12. The

second stream SB was created by inverting the original outputs in the same way as

in the previous data set.

Again, Figure 6.12 shows that all approaches recover quite well, except for FIMTDD

which has a comparatively long recovery phase.

6.5.4 Recovery measures

For the above experiments, the quantitative recovery measures are computed. Fig-

ures 6.13, 6.14 and 6.15 plot the duration against the maximum performance loss for

the different learning algorithms on the different data sets. IBLStreams is often better

than the other methods in terms of both the duration and the maximum performance

loss measures, at least for classification problems.

6.5.5 Summary of the experiments

Although our experimental study is quite comprehensive, it is neither complete nor

fully conclusive. The main goal of this study is not to “prove” the superiority of one

method over another, but rather to illustrate the potential of our recovery analysis.

Nevertheless, from the results we obtained, we can extract some trends and draw

some preliminary conclusions, which are summarized in the following observations:

154

• For classification problems, eFPT, IBLStreams and Hoeffding trees recover quite

well on the synthetic data sets. On the real data sets, eFPT achieves a partial

recovery on the mushroom data set and does not manage to recover on the

cancer data. This problem is caused by the slow discovery of the change till

it is statistically significant after observing enough amounts of data. Similarly,

Hoeffding trees recover less quickly and tend to require a larger amount of data.

While they successfully recover on the large streams (see Figure 6.4), they do

not completely recover on relatively short ones, see Figures 6.5, 6.7 and 6.8; it

is also observed that the larger the number of classes in the problem, the more

data the Hoeffding trees need to recover. This is exemplified by comparing

the good recovery on the binary data (8K instances) in Figure 6.4 with the

incomplete recovery on the 26 classes problem (20K instances) in Figure 6.8.

• For regression problems, FLEXFIS and IBLStreams are quite strong in terms of

absolute accuracy, compared to the other methods (FIMTDD and AMRules).

Nevertheless, they tend to have slightly higher peaks (maximum performance

loss) in the area of drifts.

• In terms of recovery, IBLStreams appears to be the strongest method and it

recovers well in all experiments.

• FLEXFIS tends to have difficulties with adapting to problems with increasing

hardness: When the second stream is more complex than the first one, it often

fails to recover, see Figure 6.9.

• Overall, FIMTDD and AMRules perform quite similarly, regardless of the prob-

lem and the type of drift (slow or sudden). This is expected in that both meth-

ods are quite comparable in terms of their model structure (trees and rules

are closely related). Moreover, both are using the Hoeffding bound for model

adaptation and PH for drift detection, see Figures 6.9–6.12.

• Notably, FIMTDD recovers especially smoothly and with almost no drop in

performance when drifting from a difficult concept to a simpler one, see Fig-

ure 6.11.

6.6 Conclusion

We have introduced recovery analysis as a new type of experimental analysis in the

context of learning from data streams. The goal of recovery analysis is to provide an

155

idea of a learner’s ability to discover a concept drift quickly and to take appropriate

actions to maintain the quality and generalization performance of the model.

To demonstrate the usefulness of this type of analysis, we have presented an

experimental study, in which we analyzed different types of learning methods on

classification as well as regression problems.

Our results clearly reveal some qualitative differences in how these methods react

to concept drift, how much they are affected and how well they recover their original

performance. The results affirm some important factors that seem to be responsible

for these differences, such as the number of classes (in classification problems) and

whether the drift is from a simpler to a more difficult problem or the other way

around.

Overall, our results also provide evidence in favor of our conjecture that instance-

based approaches to learning on data streams are not only competitive to model-

based approaches in terms of performance, but also advantageous with regard to

the handling of concept drift. This is arguably due to their “lightweight” structure;

removing some outdated examples is more simple than completely reconstructing a

possibly complex model.

156

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100
θ = π75

IBLStreams

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100

θ = π30

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100

θ = π2

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100

eFPT

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100

AdpHoef

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100

drift
stream

1
stream

2
low

er−
bound optim

al
stream

1=
>

stream
2

Figure 6.3: Performance curves (accuracy) on the random trees data. The sigmoid
in light grey indicates the range of the drift. The brown line shows the lower bound
on the optimal performance. 157

2000
4000

6000
8000

0 20 40 60 80 100

θ = π75

IBLStreams

2000
4000

6000
8000

0 20 40 60 80 100

θ = π30

2000
4000

6000
8000

0 20 40 60 80 100

θ = π2

2000
4000

6000
8000

0 20 40 60 80 100

eFPT

2000
4000

6000
8000

0 20 40 60 80 100

2000
4000

6000
8000

0 20 40 60 80 100

2000
4000

6000
8000

0 20 40 60 80 100

AdpHoef

2000
4000

6000
8000

0 20 40 60 80 100

2000
4000

6000
8000

0 20 40 60 80 100

drift
stream

1
stream

2
low

er−
bound optim

al
stream

1=
>

stream
2

Figure 6.4: Performance curves (accuracy) on the mushroom data. The sigmoid in
light grey indicates the range of the drift. The brown line shows the lower bound on
the optimal performance. 158

100
200

300
400

500
600

0 20 40 60 80 100

θ = π75

IBLStreams

100
200

300
400

500
600

0 20 40 60 80 100

θ = π30

100
200

300
400

500
600

0 20 40 60 80 100

θ = π2

100
200

300
400

500
600

0 20 40 60 80 100

eFPT

100
200

300
400

500
600

0 20 40 60 80 100

100
200

300
400

500
600

0 20 40 60 80 100

100
200

300
400

500
600

0 20 40 60 80 100

AdpHoef

100
200

300
400

500
600

0 20 40 60 80 100

100
200

300
400

500
600

0 20 40 60 80 100

drift
stream

1
stream

2
low

er−
bound optim

al
stream

1=
>

stream
2

Figure 6.5: Performance curves (accuracy) on the breast cancer Wisconsin data. The
sigmoid in light grey indicates the range of the drift. The brown line shows the lower
bound on the optimal performance.

159

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100

θ = π75

IBLStreams

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100

θ = π30

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100

θ = π2

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100

AdpHoef

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100

20000
40000

60000
80000

100000
120000

0 20 40 60 80 100

drift
stream

1
stream

2
low

er−
bound optim

al
stream

1=
>

stream
2

Figure 6.6: Performance curves (accuracy) on the random trees 5-classes data. The
sigmoid in light grey indicates the range of the drift. The brown line shows the lower
bound on the optimal performance. 160

1000
2000

3000
4000

5000

0 20 40 60 80 100

θ = π75

IBLStreams

1000
2000

3000
4000

5000

0 20 40 60 80 100

θ = π30

1000
2000

3000
4000

5000

0 20 40 60 80 100

θ = π2

1000
2000

3000
4000

5000

0 20 40 60 80 100

AdpHoef

1000
2000

3000
4000

5000

0 20 40 60 80 100

1000
2000

3000
4000

5000

0 20 40 60 80 100

drift
stream

1
stream

2
low

er−
bound optim

al
stream

1=
>

stream
2

Figure 6.7: Performance curves (accuracy) on the page blocks data. The sigmoid in
light grey indicates the range of the drift. The brown line shows the lower bound on
the optimal performance. 161

5000
10000

15000
20000

0 20 40 60 80 100

θ = π75

IBLStreams

5000
10000

15000
20000

0 20 40 60 80 100

θ = π30

5000
10000

15000
20000

0 20 40 60 80 100

θ = π2

5000
10000

15000
20000

0 20 40 60 80 100

AdpHoef

5000
10000

15000
20000

0 20 40 60 80 100

5000
10000

15000
20000

0 20 40 60 80 100

drift
stream

1
stream

2
low

er−
bound optim

al
stream

1=
>

stream
2

Figure 6.8: Performance curves (accuracy) on the letter recognition data. The sigmoid
in light grey indicates the range of the drift. The brown line shows the lower bound
on the optimal performance. 162

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4

θ = π75

IBLStreams

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4

θ = π30

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4

θ = π2

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4

AMRules

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4

FIMTDD

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4

FLEXFIS

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4

drift
stream

1
stream

2
low

er−
bound optim

al
stream

1=
>

stream
2

Figure 6.9: Performance curves (RMSE) on the distance to hyperplane data, with a
drift from f1 to f3. The sigmoid in light grey indicates the range of the drift. The
brown line shows the lower bound on the optimal performance.

163

20000
40000

60000
80000

100000
120000

0.0 0.2 0.4 0.6
θ = π75

IBLStreams

20000
40000

60000
80000

100000
120000

0.0 0.2 0.4 0.6

θ = π30

20000
40000

60000
80000

100000
120000

0.0 0.2 0.4 0.6

θ = π2

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

AMRules

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

FIMTDD

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

FLEXFIS

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

20000
40000

60000
80000

100000
120000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

drift
stream

1
stream

2
low

er−
bound optim

al
stream

1=
>

stream
2

Figure 6.10: Performance curves (RMSE) on the distance to hyperplane data, with
a drift from f3 to f1. The sigmoid in light grey indicates the range of the drift. The
brown line shows the lower bound on the optimal performance.

164

1000
2000

3000
4000

5000
6000

7000
8000

0.0 0.2 0.4 0.6

θ = π75

IBLStreams

1000
2000

3000
4000

5000
6000

7000
8000

0.0 0.2 0.4 0.6

θ = π30

1000
2000

3000
4000

5000
6000

7000
8000

0.0 0.2 0.4 0.6

θ = π2

1000
2000

3000
4000

5000
6000

7000
8000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

AMRules

1000
2000

3000
4000

5000
6000

7000
8000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1000
2000

3000
4000

5000
6000

7000
8000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1000
2000

3000
4000

5000
6000

7000
8000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

FIMTDD

1000
2000

3000
4000

5000
6000

7000
8000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1000
2000

3000
4000

5000
6000

7000
8000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1000
2000

3000
4000

5000
6000

7000
8000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

FLEXFIS

1000
2000

3000
4000

5000
6000

7000
8000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1000
2000

3000
4000

5000
6000

7000
8000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

drift
stream

1
stream

2
low

er−
bound optim

al
stream

1=
>

stream
2

Figure 6.11: Performance curves (RMSE) on the bank32h data. The sigmoid in light
grey indicates the range of the drift. The brown line shows the lower bound on the
optimal performance.

165

5000
10000

15000
20000

0 100000 250000
θ = π75

IBLStreams

5000
10000

15000
20000

0 100000 250000

θ = π30

5000
10000

15000
20000

0 100000 250000

θ = π2

5000
10000

15000
20000

0 100000 200000 300000

AMRules

5000
10000

15000
20000

0 100000 200000 300000

5000
10000

15000
20000

0 100000 200000 300000

5000
10000

15000
20000

0 100000 200000 300000

FIMTDD

5000
10000

15000
20000

0 100000 200000 300000

5000
10000

15000
20000

0 100000 200000 300000

5000
10000

15000
20000

0 100000 200000 300000

FLEXFIS

5000
10000

15000
20000

0 100000 200000 300000

5000
10000

15000
20000

0 100000 200000 300000

drift
stream

1
stream

2
low

er−
bound optim

al
stream

1=
>

stream
2

Figure 6.12: Performance curves (RMSE) on the house8L data. The sigmoid in light
grey indicates the range of the drift. The brown line shows the lower bound on the
optimal performance.

166

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

breast

d
u
ra

ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

mushroom

maximum performance loss

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

hyperplane, binary

IBLStreams eFPT AdpHoef

Figure 6.13: Duration versus maximum performance loss of different methods on the
binary classification problems.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

page blocks

d
u
ra

ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

random trees

maximum performance loss

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

letter recognition

IBLStreams AdpHoef

Figure 6.14: Duration versus maximum performance loss of different methods on the
multiclass classification problems.

167

0 5 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

bank32h

du
ra

tio
n

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

house8L

maximum performance loss

0 5 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HypCD−>D

0 5 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HypD−>CD

IBLStreams
AMRules

FIMTDD
FLEXFIS

Figure 6.15: Duration versus maximum performance loss of different methods on the
regression problems.

168

Chapter 7

Conclusion

In this thesis, we developed novel adaptive approaches for learning on non-stationary

data streams. These adaptive approaches do not only generalize the observed data

through the extracted abstractions, but also enforce the durable validity of the ob-

tained knowledge with the recently observed data. With focus on supervised learning

methods, two adaptive learners are introduced and evaluated: (i) an instance-based

learning approach for regression and classification and (ii) a model-based approach

which utilizes the fuzzy concepts in representing the data and propagating informa-

tion in a tree-like structure called evolving fuzzy pattern trees. Moreover, a new type

of performance comparison for adaptive learners is introduced in order to asses the

learner’s ability to learn in the presence of concept change and the ability to recover

after the change; this comparison method is referred to as recovery analysis. We also

tackled a special type of streams, namely streams of events, for which we develop an

adaptive survival analysis method.

7.1 Original Contributions

The contribution of this thesis is manifold:

• Instance-based learners have the advantage of investing minor effort during the

training time, with the focus on collecting observations instead of abstract-

ing knowledge in the form of induced models. In Chapter 3, IBLStreams, an

IBL approach that considers all relevance criteria as suggested by Beringer and

Hüllermeier [17], is introduced and developed. This approach is competitive in

terms of the generalization performance and the recovery of its performance af-

ter a concept change by repairing its case base. This repairment comes down to

169

the removal of a fraction of the case base. IBLStreams, compared to other super-

vised IBL approaches, shows superiority in many experiments. IBLStreams does

not only have a competitive performance when compared with the state-of-the-

art classification and regression methods on synthetic and real data streams,

but also shows a relatively smooth recovery to its supposed performance on

newly emerging concepts.

• Evolving fuzzy pattern trees is introduced as an extension to the fuzzy pattern

tree induction methods [82, 146]. eFPT exhibits the interpretability and trans-

parency properties enjoyed by fuzzy systems; it actually offers a tradeoff between

compact interpretable models and strong generalization performance. The ex-

periments show that eFPT is competitive in terms of accuracy and compactness

of the induced models; the experimental evaluation in the recovery study also

shows that eFPT recovers well, after a concept change, with a smooth recovery

pattern, most of the time, compared to the Hoeffding tree.

• Recovery analysis, as a new type of analysis for adaptive models, is established

in Chapter 6. The aim of this experimental protocol is to assess the ability of a

learner to discover and to adapt to a concept change in the observed stream. Re-

covery analysis, supported with recovery measures, is introduced for two types

of supervised learning problems: classification and regression. The conducted

study shows that recovery analysis can help in understanding how the various

learning methods detect, adapt and recover after the occurrence of a concept

change.

• Event data are often produced, temporally, from many data sources; the consec-

utive temporal generation of events makes them naturally fit the stream model.

In Chapter 5, an adaptive survival analysis for learning from streams of events

is introduced. To the best of our knowledge, our approach is the first to consider

survival analysis in the streaming setting; this approach adapts a variant of the

Cox proportional hazard model using the sliding window technique. Under the

assumption of a constant hazard rate (with time), the likelihood function, which

we prove to be concave, is maximized to find the model’s parameters. More-

over, the assumption of a constant hazard rate has led to an exponential hazard

model which exhibits both properties: the proportional hazard and the acceler-

ated failure time. The proposed model is evaluated, as a first proof of concept,

on two real event streams. The obtained results are plausible and agree with

170

our expectation. The introduced approach also helped in promoting adaptive

survival analysis in [102] as one of the open challenges on data streams.

7.2 Future Research

• Although IBLStreams has achieved satisfying results, in terms of performance

and recovery, IBL methods still have the potential for tremendous improve-

ments. One may think of constructing a hybrid approach in which the case

base does not only contain instances but also induced rules; such an approach

has the potential to improve IBL methods for two reasons: (i) rules can better

summarize well occupied regions of the instance space, thus removing the need

to keep numerous redundant examples from the same region and (ii) rules can

be used as a temporal substitute for the case base when drifts occur and a large

portion of examples is removed from the case base.

• Evolving fuzzy pattern trees, proposed in this thesis, focus only on binary clas-

sification problems; this calls for an extension that learns from streams of re-

gression or multiclass classification problems. Motivated by the modification on

the pattern tree’s induction method proposed by Senge and Hüllermeier [147],

we plan to induce an ensemble of trees, a forest, in parallel using techniques

similar to the Hoeffding race [115], besides trying to enforce the diversity of the

induced trees. In such a way, drifts can be handled through the removal and

addition of trees in an adaptive way; trees in this ensemble remain interpretable

when inspected individually.

• The proposed recovery analysis shows the potential toward discovering the hid-

den resemblance between different learning methods based on their recovery pat-

tern; such a similarity is discovered when comparing AMRules with FIMTDD,

which can only be explained by the equivalence between the tree, induced by

FIMTDD, and the rules, induced by AMRules. This equivalence becomes more

obvious when knowing that both methods use Hoeffding’s bound and the Page-

Hinkley test in the same way during the induction. We recommend a further

application of the recovery analysis on more learning paradigms and methods

in order to discover the points of strength and weakness in the ability of each

approach to adapt and recover. Recovery analysis also shows the potential to

171

be extended for unsupervised learning methods in general and clustering in par-

ticular in order to evaluate the capability of a clustering method to recover after

a change in the data generating distribution.

• The proposed survival analysis approach assumes a fixed set of parallel event

streams, i.e., events are emitted from a fixed set of objects; this restriction

causes the streams of events to contain recurrent events only.

One may consider the case where the stream emitting objects are allowed to be

removed, after an event, or to be censored, after being lost. In such a setting,

the risk set becomes changing with time and events are not any more restricted

to be recurrent. This requires a new formulation of the likelihood function in

order to allow the risk set to be dynamically changing.

Another extension of survival analysis on data streams may consider the charac-

teristic properties of the events, e.g., the magnitude of an earthquake; utilizing

these properties in survival analysis may have a positive effect on finding the

prognostic factor.

172

Appendix A

Methods

In this thesis, we compare different adaptive learning algorithms for different learning

tasks; each of these methods belongs to a paradigm that exhibits unique learning

and recovery patterns, see Table A.1 for a brief summary of the studied methods. All

used approaches, except FLEXFIS which is implemented using the fuzzy logic toolbox

provided in Matlab, are implemented and offered by the MOA framework, which is

described in Appendix B. IBLStreams and eFPT can be downloaded as extensions

for the framework, whereas the rest of the methods can be acquired from the 2013.11

release of MOA.

A.1 Adaptive Hoeffding Tree

The Hoeffding tree [56] is an incremental decision tree approach, tailored for classi-

fication on data streams. Upon the arrival of a new training example, the algorithm

examines each inner node of the tree and decides whether the current split (attribute)

is still optimal, or whether an alternative split appears to be advantageous. The de-

cision, made while choosing the optimal splitting attribute, is based on statistical

hypothesis testing. More specifically, Hoeffding’s inequality [81] is used to check

whether the information gain of an alternative attribute is significantly higher than

the gain of the currently chosen attribute.

Hoeffding’s inequality states that, with probability 1 − δ, the difference between

the observed mean and the true mean, for a random variable r of the range R, would

not exceed ϵ after seeing n observations, such that

ϵ =

√
R2 ln 1/δ

2n
. (A.1)

173

The Hoeffding tree uses this bound to compare the difference between the infor-

mation gains Ḡ(Xa) and Ḡ(Xb) of the two best splitting attributes Xa and Xb, respec-

tively. Assume that the attributeXa is better thanXb with ∆Ḡ = Ḡ(Xa)−Ḡ(Xb) > 0.

On the arrival of new data samples, Hoeffding’s bound guarantees that the true differ-

ence (in information gain) ∆G and the empirical difference ∆Ḡ satisfy the inequality

∆G > ∆Ḡ − ϵ, with probability 1 − δ. Observing ∆Ḡ > ϵ at any time means that

∆G > 0, thus selecting the attribute Xa is now guaranteed to cause the largest

information gain.

An adaptive version of the Hoeffding tree (AdpHoef) has been presented in [23].

This algorithm maintains a drift detection statistic in each node to judge the com-

patibility of the current tree or subtree with the recently received data. For each of

these nodes, an alternative tree is maintained and learned on the recent data only;

this alternative subtree replaces the initial subtree, rooted at that node, whenever

the node’s drift detector signals a change. This variant of Hoeffding trees uses the

ADWIN [22] technique, a parameter-free method for detecting the rate of change in

data streams. In this thesis, AdpHoef algorithm is applied for binary and multiclass

classification problems.

A.2 Adaptive Model Rules

Adaptive model rules (AMRules) [4] is an induction method for rules on regression

data streams. Each rule is specified by a conjunction of literals on the input attributes

in the premise part and a linear function, which minimizes the root mean squared

error, in the consequent part. Adaptive statistical measures are maintained in each

rule in order to describe the instance subspace covered by that rule. Moreover, the

performance of each rule is monitored by Page-Hinkley (PH) test [121], such that a

rule is pruned as soon as its error significantly increases due to a concept change.

Each rule is initialized with a single literal and successively expanded with new

literals. The best literal to be added, if any, is chosen on the basis of Hoeffding’s

bound, in a manner that is similar to the expansion of a Hoeffding tree. The linear

function in the consequent part is learned online by applying the stochastic gradient

descent method; to this end, the delta rule

wi = wi + η(y − ŷ)xi (A.2)

updates the weight wi associated with the ith attribute, where η is a small positive

learning rate and (y − ŷ) is the committed prediction error.

174

A.3 Fast Incremental Model Trees with Drift De-

tection

The fast incremental model trees with drift detection (FIMTDD) [86] is a tree-based

approach for inducing model trees for regression on data streams. It combines prop-

erties of Hoeffding trees and AMRules. Similar to Hoeffding trees, it uses Hoeffding’s

bound (A.1) to choose the best splitting attribute. Since FIMTDD tackles regression

problems, attributes are evaluated in terms of the achieved reduction in standard

deviation of the target attribute at the new subtree.

Each leaf node of the induced tree contains a linear function, which is learned in the

subspace covering the instances that fall into that leaf node; this function is learned

using stochastic gradient descent. Similar to AMRules, FIMTDD employs Page-

Hinckley (PH) test for change detection at each internal and leaf node. A significant

increase in the error indicates a concept change, which triggers the replacement of a

subtree by an alternative subtree, learned from the recently observed data.

A.4 FLEXible Fuzzy Inference Systems

The flexible fuzzy inference systems (FLEXFIS) [110] learns the so-called Takagi-

Sugeno-Kang (TSK) fuzzy system [165]. A fuzzy TSK system contains a set of rules,

each of which has the form:

Rulei : IF (x1 IS µi1) AND ... AND (xp IS µip) (A.3)

THEN li(x) = wi0 + wi1x1 + wi2x2 + ...+ wipxp , (A.4)

where (x1, . . . , xp)
⊤ is the vector representation of the instance x and µij is a fuzzy

set characterizing the jth component of the ith rule’s premise.

The premise part of Rulei determines the fuzzy membership degree at which the

instance x belongs to the rule Rulei. By modeling the AND operator as a t-norm [96],

each premise propagates a membership degree by applying the t-norm operator on

the p-dimensional fuzzy membership degrees vector. The conclusion part is a linear

function li(x) of the input vector’s components.

The final prediction of a TSK system, with C rules, is produced by the weighted

average of the outputs of the single rules. To this end, each output is weighted by

the normalized fuzzy memberships produced by the rules’ antecedents. Consequently,

175

the prediction for the instance x is

ŷ =
C∑
i=1

Ψi(x) · li(x) , (A.5)

s.t. µi(x) is the activation degree of the ith rule and Ψi(x) is the normalized activation

degree

Ψi(x) =
µi(x)∑C
j=1 µj(x)

. (A.6)

In summary, a TSK fuzzy system models the mapping from the p-dimensional

input space to the output space, through the application of both components (i) the

fuzzy sets µij and (ii) the weight vector wi = (wi0, wi1, . . . wip)
⊤.

FLEXFIS allows the learning and the adaption of these components incrementally

and makes use of online clustering techniques (that allow for the dynamic creation,

merge and removal of clusters) in order to specify each rule’s antecedents. FLEXFIS

starts by clustering the incoming stream of examples using an incremental vector

quantization (VQ) method. In this way, a distance-based clustering is performed,

such that a new instance is added to the nearest cluster only if its distance is smaller

than a predefined threshold; otherwise a new cluster is created for the new instance.

Whenever an example is added to the nearest cluster, the cluster’s center and statistics

are updated. The resulting clusters are projected onto all input dimensions and the

result of the projection defines the centers and the width of the Gaussian fuzzy sets;

these fuzzy sets form the literals of the TKS rule’s premise. The linear function

in the consequent parts is learned by applying the recursive weighted least squares

estimation (RWLS) [108].

FLEXFIS employs both passive and active adaptation strategies. The passive

adaptation strategy occurs when the cluster statistics are continuously adapted and

when the linear function’s coefficients are learned in an online manner. The active

adaptation is performed by checking the homogeneity of the induced clusters, such

that two similar clusters can be merged and a large cluster can be split into two

clusters if it potentially covers more than one concept. FLEXFIS is implemented in

Matlab and offers a function for finding the optimal values of the different parameters

and thresholds.

176

Learning Problem Model Approach Change Detection

B
in

ar
y

C
la

ss
ifi

ca
ti

on

M
u

lt
ic

la
ss

C
la

ss
ifi

ca
ti

on

R
eg

re
ss

io
n

T
re

e
S

tr
u

ct
u

re

R
u

le
-b

as
ed

In
st

an
ce

-b
as

ed

F
u

zz
y

H
o
eff

d
in

g
B

ou
n

d

P
ag

e-
H

in
k
le

y

S
ta

t.
H

y
p

ot
.

T
es

ti
n

g
eFPT X X X X
IBLStreams X X X X X
FLEXFIS X X X
AdpHoef X X X X X
AMRules X X X X
FIMTDD X X X X

Table A.1: Summary of the used learning algorithms; with their computational and
structural properties.

177

Appendix B

MOA

A few frameworks and software systems for mining data streams have been released

in recent years, including VFML1 [84] and the MOA2 (Massive Online Analysis) [24]

framework. VFML is a toolkit for mining high-speed data streams and very large

data sets. MOA is an open source software for mining and analyzing large data

sets in a stream-like manner; it is implemented in Java and is closely related to

WEKA3 [180], the Waikato Environment for Knowledge Analysis, which is currently

the most commonly used machine learning software. MOA contains a large collection

of machine learning algorithms for classification, regression, clustering, outlier and

concept drift detection. For supervised learning, it supports the development of

classifiers that can learn either in a purely incremental mode, or in batch mode first

(on an initial part of a data stream) and incrementally afterward. The development

of an evolving classifier can be achieved by implementing a Java interface called

Classifier. This operation simulates the case of online learning, which implies that

each instance is accessed only once for learning and then discarded. A few incremental

classifiers are already included in MOA, notably the Hoeffding tree [85] and the

Adaptive Hoeffding Trees [23], a state-of-the-art classifier often applied as a baseline

in experimental studies. Some meta learning techniques are implemented, too, such

as online bagging and boosting both for static [124] and evolving streams [27].

MAO allows and supports other researches to add their approaches through what

is called MOA extensions4. Our instance-based learner IBLStreams is also publicly

available as a MOA extension.

1http://www.cs.washington.edu/dm/vfml/, accessed on July 13, 2015
2http://moa.cms.waikato.ac.nz, accessed on November 18, 2015
3http://www.cs.waikato.ac.nz/ml/weka, accessed on May 23, 2015
4http://moa.cms.waikato.ac.nz/moa-extensions, accessed on May 23, 2015

179

http://www.cs.washington.edu/dm/vfml/
http://moa.cms.waikato.ac.nz
http://www.cs.waikato.ac.nz/ml/weka
http://moa.cms.waikato.ac.nz/moa-extensions

B.1 Stream Generators

MOA supports the incremental learning from data streams, which is maintained as

a Stream object. This stream can either be attached to a real-world data set and

serialized as a stream, or synthetically generated in an online manner. MOA supports

the simulation of data streams by means of synthetic stream generators. An example

is the hyperplane generator that was originally used in [85]. It generates data for a

binary classification problem, taking a random hyperplane in d-dimensional Euclidean

space as a decision boundary. Another important stream generator is the random

trees generator whose underlying model is a decision tree for a desired number of

attributes and classes.

Besides offering synthetic data generators, MOA offers the ability to simulate

a concept drift through instantiating the class ConceptDriftStream. Appendix D

elaborates more on the synthetic data stream generators offered by MOA; it also

explains how a concept drift or a sampling drift can be simulated.

B.2 Online Evaluation

The evaluation of an evolving classifier learning from a data stream is clearly a non-

trivial issue. Compared to standard batch learning, single-valued performance cannot

represent the properties of the learned model in a non-stationary environment. MOA

offers different solutions for this problem.

Holdout Evaluation

The holdout procedure is a generalization of the cross-validation procedure commonly

used in batch learning. The training and testing phase of a classifier are interleaved

as follows: the classifier is trained incrementally on a block of M instances and then

evaluated (but no longer adapted) on the next N instances, then again trained on

the next M and tested on the subsequent N instances, and so forth.

Test-then-train Evaluation

While the holdout procedure uses an instance either for training or for testing, each

instance is used for both in the test-then-train approach: First, the model is evaluated

on the instance and then a single incremental learning step is carried out. The

advantage of applying this evaluation scenario is that all instances are utilized for

both testing and training, without any loss of information present in the holdout

180

instances such as in the previous evaluation method. A holdout block does not only

hide vital information, that could help in updating the trained model, but also causes

a delay of any detecting of an occurring concept change during the holdout phase.

181

Appendix C

M-Tree

M-tree [38, 39] is an index structure that supports the storage and the retrieval of

data objects based on their similarities. This is accomplished using a metric distance

d in the metric space of the data objects. M-tree is a tree-like structure with internal

nodes that are hyperspheres in the metric space; the hypersphere of an internal node

n has the radius rn and is centered by the data object on, whose distance to the

parent node’s center is known and maintained.

An M-tree is built in an cumulative way through the successive insertion of new

data objects in a top-down manner. In order to insert a new data object on, the M-tree

finds the node u, with the center ou and the radius ru, which satisfies d(ou, on) ≤ r(ru).

For a given query object oq, M-tree supports two search strategies (i) range queries

and (ii) k-NN queries. By applying the triangular inequality, multiple paths can be

pruned during the search for objects that resemble the query oq.

Although the previous works of IBLStreams (see Chapter 3) and IBL-DS [17] were

utilizing the Query processing library XXL [52], IBLStreams is shifted in this thesis

to a simpler implementation of M-tree1 that is hosted in the web-based Git repository

hosting service GitHub.

IBLStreams approach utilizes an M-Tree index structure for indexing inserted

samples into the case base. The employed metric distance is the SVDM, which is

introduced in the next subsection.

C.1 Distance Function

The key assumption behind the nearest neighbor principle lies in the conjecture that

similar objects tend to belong to the same class; this assumption leads to results that

highly depend on the employed similarity or distance metric.

1https://github.com/erdavila/M-Tree, accessed on July 13, 2015

183

https://github.com/erdavila/M-Tree

We utilize a modified incremental version of the simple value difference metric

(SVDM) [54, 55] to construct the M-tree index, as suggested in [17]. SVDM is a

simplified version of the VDM distance measure [163]. The similarity between two

vectors x = (x1, · · · , xd, Cx)⊤,y = (y1, · · · , yd, Cy)
⊤ ∈ Dd × C depends on the simi-

larities between the vectors’ components, where C is the output space and Di is the

input space for the ith feature which can be either numeric or nominal.

The distance δi for a numerical feature is normalized by the support of that feature:

δi(xi, yi) =

∣∣∣∣ xi − yi
maxDi

−minDi

∣∣∣∣ ,
with minDi

and maxDi
are the minimum and maximum observed values for the ith

feature. In this way, features of large support are not over-weighted when calculating

the distance. For nominal features, SVDM suggests a similarity based the conditional

probability of the target feature given the nominal feature:

δi(xi, yi) =

∣∣∣∣∣
c∑

l=1

P (Cl|xi)− P (Cl|yi)

∣∣∣∣∣ .
The distance between the two vectors x and y is given by aggregating the fea-

turewise distances on all features:

d(x,y) = SV DM(x,y) =
1

d

d∑
i=1

δi(xi, yi)
2.

184

Appendix D

Data Sets

This appendix presents the data sets used for all empirical evaluations throughout

the thesis; data sets vary in different aspects:

• Type: (i) synthetic and (ii) real-world data.

• Learning task: (i) binary classification, (ii) multiclass classification and (iii)

regression.

• Nature: (i) stream of examples versus (ii) stream of events.

Table D.3 gives an overview of the used data sets and summarizes their attributes,

size and origin.

D.1 Synthetic Data Sets

The usage of synthetic data offers the flexibility in designing guarded experiments,

with the aim of evaluating the model’s performance in a particular environment under

particular circumstances. Above all, synthetic data is useful for simulating a concept

drift.

D.1.1 Hyperplane data

Learning task: Binary classification.

An example of the hyperplane data generator was originally used in [85]. It generates a

binary classification data by taking a random hyperplane in a d-dimensional Euclidean

space as a decision boundary.

The output for an instance x ∈ Rd is determined by the sign of w⊤x, where w

is the normal vector of the hyperplane. In other words, the problem is to predict in

185

which of the two half spaces, defined by the cutting hyperplane, the instance x resides.

The coefficient vector w is produced once randomly and then fixed for further usage,

thus fixing the concept to be learned; whereas the learning examples are sampled

uniformly from the input space.

A hyperplane data generator is implemented in MOA and can be used by in-

stantiating the class HyperplaneGenerator. This generator creates data samples with

only numerical attributes; it allows a percentage of noisy examples, by simply in-

verting the assigned class label. The following list describes the important attributes

characterizing the hyperplane data:

• The seed according to which the coefficient vector w is generated.

• The seed according to which each new instance x is generated.

• The number of dimensions d.

• The allowed percentage of noise.

D.1.2 Distance to hyperplane data

Learning task: Regression.

This is another synthetic data set that we created by modifying the HyperplaneGen-

erator in MOA as follows: The output for an instance x is not determined by the sign

of w⊤x, where w is the normal vector of the hyperplane, but by the absolute value

y = f1(x) = |w⊤x|. Hence, the problem is to predict the distance from x to the hy-

perplane. Similarly, one can also generate the squared distance y = f2(x) = (w⊤x)2

and the cubed distance y = f3(x) = |w⊤x|3, which are arguably more difficult to

learn than the absolute distance.

We added the implementation of the distance to hyperplane data in MOA in the

class HyperplaneGeneratorReg ; this generator allows a certain percentage of instances

to be intentionally corrupted to simulate noisy samples, by adding a random ϵ to the

distance. The following list describes the important attributes characterizing this

data generator:

• The seed according to which the coefficient vector w is generated.

• The seed according to which each new instance x is generated.

• The number of dimensions d.

• The allowed percentage of noise.

186

• The type of the distance applied Distance, SquaredDistance or CubedDistance.

D.1.3 Random trees data

Learning Task: Binary and multiclass classification.

Another important stream generator is the random trees generator. Its underlying

model is a decision tree for a desired number of attributes and classes. The tree is

built by forming internal nodes with conditions on randomly chosen attributes; after

building the random tree, class labels are assigned randomly to leaf nodes. Instances

are sampled uniformly from the input space, while class labels are determined by

the tree. Both types of attributes, numerical and nominal, can be employed in this

synthetic data.

This data can be generated for an arbitrary number of attributes and classes

using the RandomTreeGenerator class offered by MOA. The following list describes

the important attributes characterizing the random trees data:

• The number of classes to be generated.

• The seed according to which the decision tree is randomly generated.

• The seed according to which each new instance x is generated.

• The maximum depth of the random tree.

• The number of dimensions.

D.1.4 Radial basis function data

Learning Task: Binary and multiclass classification.

This data is of a nature complexer than the previously described ones. The data

generating process starts by choosing random centroids for multivariate Gaussian

distributions and randomly assigning class labels to them. Moreover, each centroid is

assigned a random covariance matrix and a weight. A new data sample is generated

by first choosing a random centroid, with respect to its weight, and then by sampling

an instance from the Gaussian distribution associated with the chosen centroid.

An RBF data generator is implemented in MOA and can be used by instantiating

the class RandomRBFGenerator, which allows numeric attributes only. The following

list describes the important attributes characterizing the RBF data:

• The number of classes to be considered.

187

• The seed according to which the centroids are generated.

• The seed according to which each new instance x is generated.

• The number of dimensions d.

• The number of centroids in the model.

D.1.5 SEA concept functions

Learning Task: Binary classification.

SEA concept functions are decision rules with three numeric attributes a, b, c ∈
[0, · · · , 10]. The binary decision is made based on the first two attributes and ig-

noring the third one; the binary class label is assigned according to the inequality

a + b ≤ θ. This data set was introduced in [164] with four decision functions each

with a different threshold θ, such that θ ∈ {7, 8, 9, 9.5}. A certain percentage of in-

stances can be intentionally corrupted to simulate noisy samples, by simply inverting

the class label.

An SEA concept functions data generator is implemented in MOA; it can be used

by instantiating the class SEAGenerator. The following list describes the important

attributes characterizing the SEA data:

• The seed according to which each new instance x is generated.

• The decision function to be considered, i.e the value of the threshold θ.

• The allowed percentage of noise.

D.1.6 STAGGER concept functions

Learning Task: Binary classification.

Initially introduced by Schilmmer in [142], the STAGGER functions are Boolean

functions based on three nominal attributes: size, shape and color. MOA’s data

generator can be used by instantiating the class STAGGERGenerator which imple-

ments the three Boolean functions, as defined in the original paper. The following

list describes the important attributes characterizing the STAGGER data:

• The Boolean function to be considered.

• The seed according to which each new instance x is generated.

188

1.0

0.5

1.0t
0

w

θ

Figure D.1: The sigmoid function.

D.2 Synthetic Data Manipulation

Not only data sets can be synthetic, but also synthetic effects can be integrated into

real-world and synthetic data sets. In this section, we present two such methods to

simulate a change in a data generating process.

D.2.1 Concept drift simulation

As explained in Chapter 2, a concept change occurs when the so far observed concept

becomes obsolete and a new concept begins to emerge. This scenario can be simulated

using the functionality of the class ConceptDriftStream offered by MOA. The idea

underlying this procedure is to mix two pure distributions in a probabilistic way,

through gradually varying the corresponding probability degrees. In the beginning,

examples are taken from the first pure stream with probability 1, this probability is

decreased in favor of the second stream in the course of time. More specifically, the

probability is controlled by means of the sigmoid function

f(t) =
(
1 + e−4(t−t0)/w

)−1
.

This function has two parameters: t0 is the mid point of the change, while w is the

length of this change. The length of the drift is related to the tangent of the sigmoid

function at the center of the drift by tan θ = 1
w

, as explained in Figure D.1.

D.2.2 Sampling drift simulation

Instead of assuming that the data is always uniformly sampled from each dimension

of the input space, other sampling distributions can be applied. When the properties

189

of the sampling distribution change over time, e.g., by gradually adjusting its pa-

rameters, a change in the sampling distribution occurs, leading to a virtual drift, see

Section 2.3. We added this ability to MOA by implementing the class SamplingDrift-

Stream which uses a Gaussian sampling distribution on each dimension ∼ G(µ, 0.1).

A change can be realized by either continuously changing µ by adding a small fraction

δ ∈ [0.0001, 0.001] after each data sample, or in a discrete manner by adding a larger

δ ∈ [0.1, 0.3] after each N sampled instances.

D.3 Real Data Sets

Most of the real data sets used in this thesis are standard benchmarks taken from

the UCI repository1 [107]. Two of the real data sets are acquired from the DELVE2

repository.

D.3.1 Cover type data

Learning Task: Multiclass classification.

The aim of this data set is to predict the forest cover type from cartographic obser-

vations. Observations, 30× 30 meter cells, are labeled from the data provided by the

USFS (US Forest Service). It contains 581,012 instances, each of which is described

by ten numeric attributes and 44 binary attributes. The binary attributes are worth-

less, as they represent a binarization of two nominal attributes. Thus, the binary

attributes are replaced by two nominal attributes Wilderness Area and Soil Type,

which have now 4 and 40 nominal values respectively. The target attribute, cover

type, is categorical and takes one of seven unique values.

D.3.2 Mushroom data

Learning Task: Binary classification.

The objective of this data set is to predict whether a mushroom is edible or poisonous.

The data takes samples from 23 species of gilled mushrooms; each mushroom is

described by 21 nominal attributes, after removing one attribute which has missing

values in 30% of the cases. In total, this data set contains 8,124 data samples.

1http://archive.ics.uci.edu/ml/, accessed on October 8, 2015
2http://www.cs.utoronto.ca/~delve/data/datasets.html, accessed on October 8, 2015

190

http://archive.ics.uci.edu/ml/
http://www.cs.utoronto.ca/~delve/data/datasets.html

D.3.3 Page blocks data

Learning Task: Multiclass classification.

The aim of this data set is to classify blocks of an image into one of five classes:

text, horizontal line, picture, vertical line and graphic. The blocks are segmented

and described by various attributes and pixel information. In total, the data contains

5,473 blocks, each described by ten numerical attributes.

D.3.4 Letter recognition

Learning Task: Multiclass classification.

The problem here is to recognize 26 English letters, which are written using 20 dif-

ferent fonts. After the post-processing of the original graphical representation, each

letter is described by 16 primitive numerical features. In total, the data set comprises

20,000 examples.

D.3.5 StatLog (shuttle) data

Learning Task: Multiclass classification.

The objective of this data set is to learn the mapping between the various types of

shuttles and their nine numeric attributes. One of the classes is dominant and covers

about 80% of the data set. The total number of shuttles is 58,000; with seven different

shuttle types to be distinguished.

D.3.6 Skin segmentation data

Learning Task: Binary classification.

The target of this data set is to distinguish skin from non-skin samples, based on

their numeric color (Blue, Green and Red) attributes. Samples are randomly selected

from images of people; the group of people varies in terms of age, race and gender.

The total number of samples is 245,057.

D.3.7 MAGIC gamma telescope data

Learning Task: Binary classification.

This is a simulation data set for modeling the registration of gamma particles using

the imaging technique, in a ground-based atmospheric Cherenkov gamma telescope.

Depending on the energy, the task is to distinguish the collected photons, in the

shower image, caused by primary gammas from those caused by the cosmic rays in

191

the upper atmosphere. This data set contains 19,020 data samples, described by ten

numeric attributes.

D.3.8 Breast cancer Wisconsin

Learning Task: Binary classification.

This data comprises a set of reported clinical cases with the task of classifying them

as benign or malignant. Each case is described by nine integer attributes. We remove

the cases with missing values which form about 2% of the whole data; the number of

remaining cases is 683.

D.3.9 Parkinson’s telemonitoring data

Learning Task: Regression, multi-target prediction.

This data set consists of biomedical voice measurements from 42 Parkinson patients

at an early stage of the disease. There are 18 numerical measurements for each

recording, and the total number of recordings is 5,875. The target of this data set is

to predict the attribute “motor UPDRS” or the attribute “total UPDRS”, thus this

data set can be either split into two independent regression problems or be studied

as a multi-target problem.

D.3.10 Slice localization data

Learning Task: Regression.

The target here is to predict the relative location of computed tomography (CT) slices

on axial axis. This data set is extracted from 53,500 images taken for 74 patients,

43 males and 31 females. Each CT image is described in terms of 384 features, after

removing the patient’s ID. The target attribute is the relative location of the CT slice

on the axial axis of the human body; this attribute is a numeric value in the range

[0, 180], where 0 denotes the top of the head and 180 is the soles of the feet.

D.3.11 Bank32h

Learning Task: Regression.

This data is acquired from the DELVE repository. It is generated by simulating

the way in which customers, from different rural areas, select and reject banks; this

selection is based on the waiting queues in a series of banks successfully visited in

order to accomplish different tasks. The data set contains 8,192 cases, each of which

has 32 numeric attributes.

192

D.3.12 Census-house

Learning Task: Regression.

This data is also obtained from the DELVE repository; it is a collection of data sets

designed on the basis of the US census data of the year 1999. The purpose of this

data set is to predict the median price of houses in different regions based on the

demographic properties. Each house has eight attributes and total number of 22,784

houses.

D.4 Event Streams

In this section, we present two types of event streams; the focus of these streams is

not the instances but the events they emit, exhibit or suffer from. The event streams

presented here are used as a proof of concept for our survival analysis approach, see

Chapter 5.

D.4.1 Earthquake event stream

A stream of earthquakes can be obtained from the United States Geological Survey

(USGS)3, specifically from the catalog of the National Earthquake Information Center

(NEIC)4 whose mission is to quickly discover the most recent destructive earthquakes,

in terms of location and magnitude, and to broadcast this information to international

agencies and scientists.

Entries in the USGS/NEIC catalog can be added or modified at any time, as

they are under continuous auditing to maintain their correctness and coherency; the

online catalog retains only significant earthquakes with a magnitude5 larger than 2.5,

despite the very few micro-earthquakes with a magnitude less than one.

This data set can be observed as a stream of events, in which each event is an

earthquake identified by its geographic coordinate, the exact time of occurrence, up to

the second, the magnitude and depth. Table D.1, which is also presented in Chapter 5,

depicts five earthquakes with their occurrence time and attributes; these earthquakes

occurred on the 1st of Jan 2012.

3http://www.usgs.gov, accessed on October 8, 2015
4http://earthquake.usgs.gov/contactus/golden/neic.php, accessed on October 8, 2015
5We quote the USGS Earthquake Magnitude Policy: “Typical additional information can include

that the magnitude was estimated using an extension of the concept originally developed by Richter,
and/or that there are several different methods for estimating the size of an earthquake, all of which
are consistent with the Richter scale, and a description of the measurement technique used.” http:

//earthquake.usgs.gov/aboutus/docs/020204mag_policy.php, accessed on October 8, 2015

193

http://www.usgs.gov
http://earthquake.usgs.gov/contactus/golden/neic.php
http://earthquake.usgs.gov/aboutus/docs/020204mag_policy.php
http://earthquake.usgs.gov/aboutus/docs/020204mag_policy.php

D.4.2 Twitter stream

Twitter6 is an online microblogging web site; it is a service that allows users to send

short messages of up to 140 characters known as tweets. Every tweet is attributed

by some meta data, including the ID of the user who wrote it and the time at which

the tweet was sent. Further attributes can also be extracted from the tweet with

the permission of the user, such as the user’s geolocation from which the tweet was

posted. The geolocation is acquired from the embedded GPS functionality in the

mobile device; it is represented as a tuple (lat, long) with entries for the latitude and

the longitude. Table D.2 shows an example of Twitter data written in Json7 format;

this example contains two Twitter messages after obfuscating some attributes and

removing unimportant ones; important attributes are written in bold. The shown

messages are artificially created without any real user information.

Twitter streams can form the source of topic-based and spatial-based event streams,

either by restricting the messages to contain specific keywords, or to be produced from

a certain country/city/geolocation.

6http://www.twitter.com, accessed on October 9, 2015
7http://json.org, accessed on October 9, 2015

194

http://www.twitter.com
http://json.org

Year Month Day UTC Time Latitude Longitude Mag. Depth Catalog
hhmmss.mm

2012 01 01 003008.77 12.008 143.487 5.1 35 PDE-W
2012 01 01 003725.28 63.337 -147.516 3.0 65 PDE-W
2012 01 01 004342.77 12.014 143.536 4.4 35 PDE-W
2012 01 01 005008.04 -11.366 166.218 5.3 67 PDE-W
2012 01 01 012207.66 -6.747 130.007 4.2 145 PDE-W

Table D.1: A sample earthquake data containing 5 earthquakes occurred on the first
day of 2012.

favorited:false, text:’Stau: A8 München Richtung Stuttgart 6 km zur Ausfahrt im
Schneckentempo..’, truncated:false, created at:Fri Feb 10 10:38:47 +0000 2012,
retweeted:false, retweet count:0, coordinates:type:Point, coordinates:[9.55755,
48.6333], ..., entities:user mentions:[], urls:[], hashtags:[], geo:type:Point, co-
ordinates:[48.6333, 9.55755], ..., place:bounding box:type:Polygon, coordi-
nates:[[[9.534815, 48.616779], [9.594667, 48.616779], [9.594667, 48.640891],
[9.534815, 48.640891]]], place type:city, ..., country code:DE, attributes:,
full name:Aichelberg, Göppingen, name:Aichelberg, id:29ef9f01a553e601, coun-
try:Germany, ..., id str:###, user:default profile:true, notifications:null, ...,
time zone:Berlin, created at:Fri Sep 03 14:25:38 +0000 2010, verified:false,
geo enabled:true..., favourites count:0, lang:de, ..., followers count:335,
..., location:Karlsruhe, ..., name:###, ..., listed count:21, following:null,
screen name:###, id:###, ..., statuses count:10935, utc offset:3600,
friends count:0, ..., id:###, ...
text:’top atmosphere in Weserstadion today, a very good match...’, ..., cre-
ated at:Tue Apr 10 21:37:28 +0000 2012, place:bounding box:type:Polygon,
coordinates:[[[8.481599, 53.011035], [8.990593, 53.011035], [8.990593, 53.228969],
[8.481599, 53.228969]]], country:Germany, attributes:, full name:Bremen,
Bremen, .., country code:DE, name:Bremen, id:9467fbdc3cdbd2ef,
place type:city, coordinates:type:Point, coordinates:[8.837596, 53.06693]
, retweeted:false, in reply to status id:null, ..., truncated:false, contribu-
tors:null, possibly sensitive:false, in reply to screen name:null, favorited:false,
user:default profile:false, follow request sent:null, lang:de, friends count:200, ...,
is translator:false, created at:Sat May 23 13:01:45 +0000 2009, id str:###, ...,
url:null, following:null, verified:false, ..., location:Germany, ..., statuses count:4537,
..., time zone:Berlin, .., utc offset:3600, followers count:432, ..., id:###,
retweet count:0

Table D.2: A sample Twitter data containing two Twitter messages.

195

Learning Task Properties Source

B
in

ar
y

C
l.

M
u

lt
ic

la
ss

C
l.

R
eg

re
ss

io
n

#
A

ll
A

tt
ri

b
u

te
s

#
N

u
m

er
ic

A
tt

ri
b

u
te

s

#
N

om
in

al
A

tt
ri

b
u

te
s

#
In

st
an

ce
s

T
ar

ge
t

A
tt

ri
b

u
te

O
ri

gi
n

R
ea

l/
A

rt
if

./
S

im
.

cover type X 12 10 2 581,012 7-classes UCI R
mushroom X 21 - 21 8,124 binary UCI R
breast X 9 9 - 699 binary UCI R
page blocks X 10 10 - 5,473 5-classes UCI R
letter X 16 16 - 20,000 26-Classes UCI R
StatLog X 9 9 - 58,000 7-classes UCI R
skin seg. X 3 3 - 245,057 binary UCI R
MAGIC X 10 10 - 19,020 binary UCI S
Parkinson’s tel.

motor UPDRS X 18 18 - 5,875 [5.0377,39.511] UCI R
total UPDRS X 18 18 - 5,875 [7,54.992] UCI R

slice loc. X 384 384 - 53,500 [0,180] UCI R
bank32h X 32 32 - 8,192 [0,0.819665] DELVE S
house8L X 8 8 - 22,784 [0,500001] DELVE R
hyperplane X X X - ∞ binary MOA A

X X X - ∞ distance MOA A
X X X - ∞ squared dis. MOA A
X X X - ∞ cubed dis. MOA A

random trees X X X X X ∞ multi MOA A
RBF X X X X - ∞ multi MOA A
SEA X 3 3 - ∞ binary MOA A
STAGGER X 3 - 3 ∞ binary MOA A

Table D.3: Summary of the data sets used in this thesis.

196

Appendix E

Incremental Statistics

Based on the formal definitions of the sample mean

x̄n =
1

n

n∑
i=1

xi (E.1)

and the unbiased variance

s2n =

∑n
i=1(xi − x̄n)2

n− 1
=

∑n
i=1 x

2
i − (

∑n
i=1 xi)

2/n

n− 1
=

∑n
i=1 x

2
i − nx̄2n

n− 1
, (E.2)

for a sample data of size n, we derive the sample mean and variance on both an

incremental sample and on a sliding window of samples.

E.1 Incremental Moments

In the case where the data sample’s size n is increasing with time, as a result of

accumulating data, the incremental sample mean becomes

x̄n =
1

n

n∑
i=1

xi ,

x̄n+1 =
n

n+ 1
x̄n +

1

n+ 1
xn+1 . (E.3)

The incremental variance is derived in [166] by defining M2,n, which for simplifi-

cation holds the nominator of (E.2)

M2,n =
n∑

i=1

(xi − x̄n)2 . (E.4)

197

The difference of M2,n between two consecutive samples n and n+ 1 is then

M2,n+1 −M2,n =
n+1∑
i=1

(xi − x̄n+1)
2 −

n∑
i=1

(xi − x̄n)2 (E.5)

=
n+1∑
i=1

x2i − (n+ 1)x̄2n+1 −
n∑

i=1

x2i + (n)x̄2n

· · ·

= (xn+1 − x̄n)(xn+1 − x̄n+1) . (E.6)

The incremental variance is then derived by substituting (E.4) and (E.6) in (E.2)

s2n+1 =
M2,n+1

n
(E.7)

=
M2,n + (xn+1 − x̄n)(xn+1 − x̄n+1)

n

=
(n− 1)s2n + (xn+1 − x̄n)(xn+1 − x̄n+1)

n
. (E.8)

E.2 Shifting Moments

In the case of a sliding window, of fixed-size n, over data samples, the shifting sample

mean x̄t+1 at the instance t+ 1 is derived from the shifting sample mean found at the

previous instance t

x̄t =
1

n

t∑
i=t−n+1

xi

x̄t+1 =
1

n

t+1∑
i=t−n+2

xi = x̄t +
xt+1 − xt−n+1

n
. (E.9)

Similarly, the shifting variance at the instance t+ 1 is

s2t =

∑t
i=t−n+1(xi − x̄t)2

n− 1
=

∑t
i=t−n+1 x

2
i − nx̄2t

n− 1

s2t+1 =

∑t+1
i=t−n+2(xi − x̄t+1)

2

n− 1
=

∑t+1
i=t−n+2 x

2
i − nx̄2t+1

n− 1
(E.10)

s2t+1 = s2t +
nx̄2t − nx̄2t+1 − x2t−n+1 + x2t+1

n− 1
. (E.11)

198

Bibliography

[1] Charu C. Aggarwal. A survey of stream classification algorithms. In Charu C.

Aggarwal, editor, Data Classification: Algorithms and Applications, pages 245–

274. CRC Press, Boca Raton, FL, USA, 2014.

[2] David W. Aha, editor. Lazy Learning. Kluwer Academic Publishers, Norwell,

MA, USA, 1997.

[3] David W. Aha, Dennis F. Kibler, and Marc K. Albert. Instance-based learning

algorithms. Machine Learning, 6(1):37–66, 1991.

[4] Ezilda Almeida, Carlos Abreu Ferreira, and João Gama. Adaptive model rules

from data streams. In ECML PKDD 2013, Machine Learning and Knowledge

Discovery in Databases European Conference, pages 480–492, Prague, Czech

Republic, 2013.

[5] Amineh Amini, Teh Ying Wah, and Hadi Saboohi. On density-based data

streams clustering algorithms: A survey. Journal of Computer Science and

Technology, 29(1):116–141, 2014.

[6] Plamen P. Angelov. Evolving Rule-based Models: A Tool for Design of Flexible

Adaptive Systems. Springer-Verlag, London, UK, 2002.

[7] Plamen P. Angelov. Evolving takagi-sugeno fuzzy systems from data streams

(ets+). In Plamen P. Angelov, Dimitar P. Filev, and Nik Kasabov, editors,

Evolving Intelligent Systems: Methodology and Applications. John Wiley &

Sons, Inc., Hoboken, NJ, USA, 2010.

[8] Plamen P. Angelov and Dimitar P. Filev. An approach to online identifica-

tion of takagi-sugeno fuzzy models. IEEE Transactions on Systems, Man, and

Cybernetics, Part B, 34(1):484–498, 2004.

199

[9] Plamen P. Angelov, Dimitar P. Filev, and Nik Kasabov, editors. Evolving

Intelligent Systems: Methodology and Applications. John Wiley & Sons, Inc.,

Hoboken, NJ, USA, 2010.

[10] Plamen P. Angelov and Nikola K. Kasabov. Evolving computational intelligence

systems. In Proceedings of the 1st International Workshop on Genetic Fuzzy

Systems, pages 76–82, Granada, Spain, 2005.

[11] Plamen P. Angelov and Nikola K. Kasabov. Evolving intelligent systems, eIS.

IEEE SMC eNewsLetter, 15:1–13, 2006.

[12] Plamen P. Angelov, Edwin Lughofer, and Xiaowei Zhou. Evolving fuzzy classi-

fiers using different model architectures. Fuzzy Sets and Systems, 159(23):3160–

3182, 2008.

[13] Martin Anthony and Norman Biggs. Computational Learning Theory: An In-

troduction. Cambridge University Press, Cambridge, UK, 1992.

[14] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer

Widom. Models and issues in data stream systems. In Proceedings of the

Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, PODS ’02, pages 1–16, Madison, WI, USA, 2002.

[15] Manuel Baena-Garcıa, José del Campo-Ávila, Raúl Fidalgo, Albert Bifet, Ri-

card Gavaldà, and Rafael Morales-Bueno. Early drift detection method. In

Fourth international workshop on knowledge discovery from data streams, vol-

ume 6, pages 77–86, 2006.

[16] T. Bailey and A. K. Jain. A note on distance-weighted k-nearest neighbor rules.

IEEE Transactions on Systems, Man and Cybernetics, 8(4):311–313, 4 1978.

[17] Jürgen Beringer and Eyke Hüllermeier. Efficient instance-based learning on

data streams. Intelligent Data Analysis, 11(6):627–650, 2007.

[18] Joseph Berkson and Robert P. Gage. Calculation of survival rates for cancer.

In Proceedings of the staff meetings. Mayo Clinic, volume 25, pages 270–286,

1950.

[19] Nitin Bhatia and Vandana. Survey of nearest neighbor techniques. CoRR,

abs/1007.0085, 2010.

200

[20] Albert Bifet and Ricard Gavaldà. Kalman filters and adaptive windows for

learning in data streams. In The 9th International Conference on Discovery

Science (DS-2006), pages 29–40, Barcelona, Spain, 2006.

[21] Albert Bifet and Ricard Gavaldà. Learning from time-changing data with adap-

tive windowing. In Proceedings of the Seventh SIAM International Conference

on Data Mining, pages 443–448, Minneapolis, MN, USA, 2007.

[22] Albert Bifet and Ricard Gavaldà. Mining adaptively frequent closed unlabeled

rooted trees in data streams. In Proceedings of the 14th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pages 34–42,

New York, NY, USA, 2008.

[23] Albert Bifet and Ricard Gavaldà. Adaptive learning from evolving data streams.

In Proceedings of IDA 2009, the 8th International Symposium on Intelligent

Data Analysis, pages 249–260, Lyon, France, 2009.

[24] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. MOA:

massive online analysis. Journal of Machine Learning Research, 11:1601–1604,

2010.

[25] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, and Ricard Gavaldà. Mining

frequent closed graphs on evolving data streams. In Proceedings of the 17th

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’11, pages 591–599, San Diego, CA, USA, 2011.

[26] Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, and Eibe Frank. Fast

perceptron decision tree learning from evolving data streams. In Advances in

Knowledge Discovery and Data Mining, 14th Pacific-Asia Conference, Proceed-

ings., pages 299–310, Hyderabad, India, 2010.

[27] Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, and Ri-

card Gavaldà. New ensemble methods for evolving data streams. In Proceedings

of the 15th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 139–148, Paris, France, 2009.

[28] J. Frédéric Bonnans, Gilbert J. Charles, Claude Lemaréchal, and Claudia A.

Sagastizábal. Numerical Optimization: Theoretical and Practical Aspects.

Springer-Verlag New York, NY, USA, 2006.

201

[29] Léon Bottou. On-line learning in neural networks. chapter On-line Learning

and Stochastic Approximations, pages 9–42. Cambridge University Press, Cam-

bridge, UK, 1998.

[30] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140.

[31] Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classifica-

tion and regression trees. Wadsworth and Brooks, Monterey, CA, USA, 1984.

[32] David S. Broomhead and David Lowe. Radial basis functions, multi-variable

functional interpolation and adaptive networks. Technical Report 4148, RSRE,

1988.

[33] Dariusz Brzezinski and Jerzy Stefanowski. Accuracy updated ensemble for data

streams with concept drift. In Hybrid Artificial Intelligent Systems - 6th Inter-

national Conference, HAIS 2011, Proceedings, Part II, pages 155–163, Wroclaw,

Poland, 2011.

[34] Dariusz Brzezinski and Jerzy Stefanowski. Combining block-based and online

methods in learning ensembles from concept drifting data streams. Information

Sciences, 265:50–67, 2014.

[35] Dariusz Brzezinski and Jerzy Stefanowski. Reacting to different types of concept

drift: The accuracy updated ensemble algorithm. IEEE Transactions on Neural

Networks and Learning Systems, 25(1):81–94, 2014.

[36] Toon Calders, Nele Dexters, Joris J.M. Gillis, and Bart Goethals. Mining

frequent itemsets in a stream. Information Systems, 39:233 – 255, 2014.

[37] James Cheng, Yiping Ke, and Wilfred Ng. A survey on algorithms for min-

ing frequent itemsets over data streams. Knowledge and Information Systems,

16(1):1–27, 2007.

[38] Paolo Ciaccia, Marco Patella, Fausto Rabitti, and Pavel Zezula. Indexing metric

spaces with m-tree. In Matteo Cristani and Letizia Tanca, editors, Atti del

Quinto Convegno Nazionale su Sistemi Evoluti per Basi di Dati (SEBD’97),

pages 67–86, Residenza di Costagrande, Verona, Italy, 1997.

[39] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access

method for similarity search in metric spaces. In Matthias Jarke, Michael J.

Carey, Klaus R. Dittrich, Frederick H. Lochovsky, Pericles Loucopoulos, and

202

Manfred A. Jeusfeld, editors, Proceedings of 23rd International Conference on

Very Large Data Bases, VLDB’97, pages 426–435, Athens, Greece, 1997.

[40] Thomas M. Cover and Peter E. Hart. Nearest neighbor pattern classification.

IEEE Transactions on Information Theory, 13(1):21–27, 01 1967.

[41] David Roxbee Cox. Regression models and life tables. Journal of the Royal

Statistical Society B, 34:187–220, 1972.

[42] David Roxbee Cox and David Oakes. Analysis of Survival Data. Chapman &

Hall, London, UK, 1984.

[43] Sidney J. Cutler and Fred Ederer. Maximum utilization of the life table method

in analyzing survival. Journal of chronic diseases, 8(6):699–712, 1958.

[44] Charles Darwin. On the Origin of Species by Means of Natural Selection, or the

Preservation of Favoured Races in the Struggle for Life. John Murray, London,

UK, 1859.

[45] Belur V. Dasarathy, editor. Nearest Neighbor (NN) Norms: NN Pattern Clas-

sification Techniques. IEEE Computer Society Press, Los Alamitos, CA, USA,

1991.

[46] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Main-

taining stream statistics over sliding windows. SIAM Journal on Computing,

31(6):1794–1813, 2002.

[47] D. J. Davis. An analysis of some failure data. Journal of the American Statistical

Association, 47(258):113–150, 1952.

[48] A. P. Dawid. Present position and potential developments: Some personal

views: Statistical theory: The prequential approach. Journal of the Royal

Statistical Society. Series A (General), 147(2):278–292, 1984.

[49] Jonathan de Andrade Silva, Elaine R. Faria, Rodrigo C. Barros, Eduardo R.

Hruschka, André Carlos Ponce Leon Ferreira de Carvalho, and João Gama.

Data stream clustering: A survey. ACM Computing Surveys, 46(1):13:1–13:31,

2013.

203

[50] Magdalena Deckert and Jerzy Stefanowski. Rill: Algorithm for learning rules

from streaming data with concept drift. In Troels Andreasen, Henning Chris-

tiansen, Juan-Carlos Cubero, and Zbigniew W. Raś, editors, Foundations of

Intelligent Systems - 21st International Symposium, ISMIS 2014, Proceedings,

pages 20–29, Roskilde, Denmark, 2014.

[51] Sarah Jane Delany, Pádraig Cunningham, Alexey Tsymbal, and Lorcan Coyle.

A case-based technique for tracking concept drift in spam filtering. In Ann

Macintosh, Richard Ellis, and Tony Allen, editors, Applications and Innovations

in Intelligent Systems XII, pages 3–16. Springer London, UK, 2005.

[52] Jochen Van den Bercken, Björn Blohsfeld, Jens-Peter Dittrich, Jürgen Krämer,

Tobias Schäfer, Martin Schneider, and Bernhard Seeger. XXL - A library ap-

proach to supporting efficient implementations of advanced database queries.

In Peter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kota-

giri Ramamohanarao, and Richard T. Snodgrass, editors, Proceedings of 27th

International Conference on Very Large Data Bases, VLDB 2001, pages 39–48,

Roma, Italy, 2001.

[53] Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. Learning

in nonstationary environments: A survey. IEEE Computational Intelligence

Magazine, 10(4):12–25, 2015.

[54] Pedro Domingos. Rule induction and instance-based learning: A unified ap-

proach. In Proceedings of the 14th International Joint Conference on Artificial

Intelligence, volume 2, pages 1226–1232, Montreal, QC, Canada, 1995.

[55] Pedro Domingos. Unifying instance-based and rule-based induction. Machine

Learning, 24(4):141–168, 1996.

[56] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Pro-

ceedings of the sixth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 71–80, Boston, MA, USA, 2000.

[57] Pedro Domingos and Geoff Hulten. A general framework for mining massive

data streams. Journal of Computational and Graphical Statistics, 12(4):945–

949, 2003.

[58] Didier Dubois and Henri Prade. Fuzzy sets and systems: Theory and applica-

tions. Academic Press, Inc., Orlando, FL, USA, 1980.

204

[59] Harald Dyckhoff and Witold Pedrycz. Generalized means as model of compen-

sative connectives. Fuzzy sets and Systems, 14(2):143–154, 1984.

[60] Martin Ester, Hans peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-

based algorithm for discovering clusters in large spatial databases with noise. In

Evangelos Simoudis, Jiawei Han, and Usama M. Fayyad, editors, Proceedings of

the Second International Conference on Knowledge Discovery and Data Mining

KDD-96, pages 226–231, Portland, OR, USA, 1996.

[61] Vladimir Estivill-Castro. Why so many clustering algorithms: A position paper.

ACM SIGKDD Explorations Newsletter, 4(1):65–75, 2002.

[62] Manning Feinleib. A method of analyzing log-normally distributed survival data

with incomplete follow-up. Journal of the American Statistical Association,

55(291):534–545, 1960.

[63] Francisco J. Ferrer-Troyano, Jesús S. Aguilar-Ruiz, and José Cristóbal Riquelme

Santos. Incremental rule learning and border examples selection from numerical

data streams. Journal of Universal Computer Science, 11(8):1426–1439, 2005.

[64] Francisco J. Ferrer-Troyano, Jesús S. Aguilar-Ruiz, and José Cristóbal Riquelme

Santos. Data streams classification by incremental rule learning with param-

eterized generalization. In the 2006 ACM Symposium on Applied Computing

(SAC), pages 657–661, Dijon, France, 2006.

[65] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of Computer and System

Sciences, 55(1):119–139, 1997.

[66] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Min-

ing data streams: A review. ACM SIGMOD Record, 34(2):18–26, 2005.

[67] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. A

survey of classification methods in data streams. In Charu C. Aggarwal, editor,

Data Streams: Models and Algorithms, pages 39–59. Springer US, Boston, MA,

USA, 2007.

[68] João Gama. Knowledge Discovery from Data Streams. Chapman & Hall/CRC,

London, UK, 1st edition, 2010.

205

[69] João Gama. A survey on learning from data streams: current and future trends.

Progress in Artificial Intelligence, 1(1):45–55, 2012.

[70] João Gama and Mohamed Medhat Gaber. Learning from Data Streams.

Springer-Verlag Berlin Heidelberg, Germany, 2007.

[71] João Gama and Petr Kosina. Learning decision rules from data streams. In Pro-

ceedings of the 22nd International Joint Conference on Artificial Intelligence,

Barcelona, Catalonia, Spain, 2011.

[72] João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning with

drift detection. In Advances in Artificial Intelligence - SBIA 2004, 17th Brazil-

ian Symposium on Artificial Intelligence, Lecture Notes in Computer Science,

pages 286–295, São Luis, Maranhão, Brazil, 2004.

[73] João Gama, Pedro Medas, and Pedro Rodrigues. Learning decision trees from

dynamic data streams. In Proceedings of the 2005 ACM Symposium on Applied

Computing (SAC), pages 573–577, Santa Fe, NM, USA, 2005.

[74] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. Issues in evalua-

tion of stream learning algorithms. In Proceedings of the 15th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 329–

338, Paris, France, 2009.

[75] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. On evaluating

stream learning algorithms. Machine Learning, 90(3):317–346, 2013.

[76] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. A survey on concept drift adaptation. ACM Computing Surveys,

46(4):44:1–44:37, 2014.

[77] Jing Gao, Wei Fan, Jiawei Han, and Philip S. Yu. A general framework for

mining concept-drifting data streams with skewed distributions. In Proceedings

of the Seventh SIAM International Conference on Data Mining, pages 3–14,

Minneapolis, MN, USA, 2007.

[78] Johannes Gehrke, Raghu Ramakrishnan, and Venkatesh Ganti. Rainforest - a

framework for fast decision tree construction of large datasets. Data Mining

and Knowledge Discovery, 4(2-3):127–162, 2000.

206

[79] Christophe Giraud-Carrier. A note on the utility of incremental learning. AI

Communications, 13(4):215–224, 2000.

[80] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1st edition, 1989.

[81] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-

ables. Journal of the American Statistical Association, 58(301):13–30, 1963.

[82] Zhiheng Huang, Tamás D. Gedeon, and Masoud Nikravesh. Pattern trees induc-

tion: A new machine learning method. IEEE Transactions on Fuzzy Systems,

16(4):958–970, 2008.

[83] Eyke Hüllermeier. Fuzzy methods in machine learning and data mining: Status

and prospects. Fuzzy Sets and Systems, 156(3):387–406, 2005.

[84] Geoff Hulten and Pedro Domingos. VFML – a toolkit for mining high-speed

time-changing data streams. 2003.

[85] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data

streams. In Proceedings of the 7th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 97–106, San Francisco, CA, USA,

2001.

[86] Elena Ikonomovska, João Gama, and Saso Dzeroski. Learning model trees from

evolving data streams. Data Mining and Knowledge Discovery, 23(1):128–168,

2011.

[87] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An

Introduction to Statistical Learning: With Applications in R. Springer-Verlag

New York, NY, USA, 2014.

[88] Cezary Z. Janikow. Fuzzy decision trees: Issues and methods. IEEE Transac-

tions on Systems, Man, and Cybernetics, Part B, 28(1):1–14, 1998.

[89] John D. Kalbfleisch and Ross L. Prentice. The statistical analysis of failure time

data, volume 360. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2nd edition,

2011.

207

[90] John H.K. Kao. Computer methods for estimating weibull parameters in reli-

ability studies. IRE Transactions on Reliability and Quality Control, PGRQC-

13:15–22, 1958.

[91] Edward L. Kaplan and Paul Meier. Nonparametric estimation from incomplete

observations. Journal of the American Statistical Association, 53(282):457–481,

1958.

[92] Nikola K. Kasabov. Evolving fuzzy neural networks for supervised/unsupervised

online knowledge-based learning. IEEE Transactions on Systems, Man, and

Cybernetics, Part B, 31(6):902–918, 2001.

[93] Nikola K. Kasabov. Evolving Connectionist Systems: Methods and Applications

in Bioinformatics, Brain Study and Intelligent Machines. Springer-Verlag, Lon-

don, UK, 1st edition, 2003.

[94] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change in data

streams. In Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J.

Miller, José A. Blakeley, and K. Bernhard Schiefer, editors, Proceedings of the

Thirtieth International Conference on Very Large Data Bases, VLDB ’04, pages

180–191, Toronto, ON, Canada, 2004.

[95] David G. Kleinbaum and Mitchel Klein. Survival Analysis A Self-Learning Text.

Springer-Verlag New York, NY, USA, 2nd edition, 2005.

[96] Erich Peter Klement, Radko Mesiar, and Endre Pap. Triangular Norms. Kluwer

Academic Publishers, Dordrecht, The Netherlands, 2000.

[97] Ralf Klinkenberg and Ingrid Renz. Adaptive information filtering: Learning

in the presence of concept drifts. In Workshop Notes of the ICML/AAAI-98

Workshop Learning for Text Categorization, pages 33–40, 1998.

[98] Janet L. Kolodner. Case-based Reasoning. Morgan Kaufmann Publishers, Inc.,

San Francisco, CA, USA, 1993.

[99] Petr Kosina and João Gama. Handling time changing data with adaptive very

fast decision rules. In Proceedings of the European Conference on Machine

Learning and Principles and Practice of Knowledge Discovery in Databases,

Bristol, UK, 2012.

208

[100] Bart Kosko. Fuzzy entropy and conditioning. Information Sciences, 40(2):165–

174, 1986.

[101] John R. Koza. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[102] Georg Krempl, Indrė Žliobaitė, Dariusz Brzezinski, Eyke Hüllermeier, Mark

Last, Vincent Lemaire, Tino Noack, Ammar Shaker, Sonja Sievi, Myra

Spiliopoulou, and Jerzy Stefanowski. Open challenges for data stream min-

ing research. SIGKDD Explorations Newsletter, 16(1):1–10, 2014.

[103] Brian Kulis. Metric learning: A survey. Foundations and Trends in Machine

Learning, 5(4):287–364, 2013.

[104] Mihai M. Lazarescu, Svetha Venkatesh, and Hung H. Bui. Using multiple

windows to track concept drift. Intelligent Data Analysis, 8(1):29–59, 2004.

[105] Elisa T. Lee. Statistical Methods for Survival Data Analysis. John Wiley &

Sons, Inc., Hoboken, NJ, USA, 2nd edition, 1992.

[106] Vincent Lemaire, Christophe Salperwyck, and Alexis Bondu. A survey on su-

pervised classification on data streams. In Business Intelligence - 4th European

Summer School, eBISS 2014, volume 205 of Lecture Notes in Business Infor-

mation Processing, pages 88–125, 2014.

[107] Moshe Lichman. UCI machine learning repository, 2013.

[108] Lennart Ljung. System Identification: Theory for the User. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 2nd edition, 1999.

[109] D. O. Loftsgaarden and C. P. Quesenberry. A nonparametric estimate of a mul-

tivariate density function. The Annals of Mathematical Statistics, 36(3):1049–

1051, 1965.

[110] Edwin Lughofer. FLEXFIS: A robust incremental learning approach for

evolving takagi-sugeno fuzzy models. IEEE Transactions on Fuzzy Systems,

16(6):1393–1410, 2008.

[111] Edwin Lughofer. Evolving Fuzzy Systems: Methodologies, Advanced Concepts

and Applications. Springer-Verlag Berlin Heidelberg, Germany, 2011.

209

[112] James B. MacQueen. Some methods for classification and analysis of multivari-

ate observation. In Proceedings of the Fifth Berkeley Symposium on Mathemat-

ical Statistics and Probability, volume 1, pages 281–297, Berkeley, CA, USA,

1967.

[113] Robert W. Makuch. Adjusted survival curve estimation using covariates. Jour-

nal of chronic diseases, 35(6):437–443, 1982.

[114] Ebrahim H. Mamdani. Application of fuzzy algorithms for control of sim-

ple dynamic plant. Proceedings of the Institution of Electrical Engineers,

121(12):1585–1588, 1974.

[115] Oded Maron and Andrew W. Moore. Hoeffding races: Accelerating model se-

lection search for classification and function approximation. In Advances in

Neural Information Processing Systems 6, Proceedings of the 7th NIPS Confer-

ence, pages 59–66, Denver, CO, USA, 1993.

[116] Colin McDiarmid. On the method of bounded differences. In J. Siemons, editor,

Surveys in combinatorics, volume 141 of London Mathematical Society Lecture

Note Series, pages 148–188. Cambridge University Press, Cambridge, UK, 1989.

[117] Manish Mehta, Rakesh Agrawal, and Jorma Rissanen. Sliq: A fast scalable

classifier for data mining. In Proceedings of the 5th International Conference

on Extending Database Technology: Advances in Database Technology, pages

18–32, Avignon, France, 1996.

[118] Karl Menger. Statistical metrics. Proceedings of the National Academy of Sci-

ences of the United States of America, 28(12):535–537, 1942.

[119] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,

USA, 1st edition, 1997.

[120] Tom M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203–

226, 1982.

[121] H. Mouss, D. Mouss, N. Mouss, and L. Sefouhi. Test of Page-Hinkley, an ap-

proach for fault detection in an agro-alimentary production system. In Proceed-

ings of the Asian Control Conference, volume 2, Melbourne, Australia, 2004.

210

[122] Hai-Long Nguyen, Yew-Kwong Woon, and Wee-Keong Ng. A survey on data

stream clustering and classification. Knowledge and Information Systems,

45(3):535–569, 2014.

[123] Nilsson Nils. Learning Machines. McGrwa-Hill, New Yowrk, NY, USA, 1965.

[124] Nikunj C. Oza and Stuart J. Russell. Online bagging and boosting. In Pro-

ceedings of the Eighth International Workshop on Artificial Intelligence and

Statistics, Key West, FL, USA, 2001.

[125] E. S. PAGE. Continuous inspection schemes. Biometrika, 41(1-2):100–115,

1954.

[126] Emanuel Parzen. On estimation of a probability density function and mode.

The Annals of Mathematical Statistics, 33(3):1065–1076, 09 1962.

[127] Witold Pedrycz and Fernando Gomide. An introduction to fuzzy sets: analysis

and design. Mit Press, London, UK, 1998.

[128] Robi Polikar, Lalita Upda, Satish S. Upda, and Vasant Honavar. Learn++: an

incremental learning algorithm for supervised neural networks. IEEE Transac-

tions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),

31(4):497–508, 2001.

[129] John Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,

1986.

[130] John Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1993.

[131] K. A. Rasmani and Q. Shen. Weighted linguistic modelling based on fuzzy

subsethood values. In Proceedings of the 12th IEEE International Conference

on Fuzzy Systems, volume 1, St. Louis, MO, USA, 2003.

[132] Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–

471, 1978.

[133] S. W. Roberts. Control chart tests based on geometric moving averages. Tech-

nometrics, 42(1):97–101, 1959.

[134] Frank Rosenblatt. The perceptron — a perceiving and recognizing automaton.

Technical Report 85-460-1, Cornell Aeronautical Laboratory, 1957.

211

[135] Gordon J. Ross, Niall M. Adams, Dimitris K. Tasoulis, and David J. Hand. Ex-

ponentially weighted moving average charts for detecting concept drift. Pattern

Recognition Letters, 33(2):191–198, 2012.

[136] Leszek Rutkowski, Lena Pietruczuk, Piotr Duda, and Maciej Jaworski. De-

cision trees for mining data streams based on the mcdiarmid’s bound. IEEE

Transactions On Knowledge And Data Engineering, 25(6):1272–1279, 2013.

[137] Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, and Horst

Bischof. On-line random forests. In Proceedings of the 12th IEEE Interna-

tional Conference on Computer Vision Workshops (ICCV Workshops), pages

1393–1400, Kyoto, Japan, 2009.

[138] Marcos Salganicoff. Density-adaptive learning and forgetting. In Proceedings

of the Tenth International Conference on Machine Learning, pages 276–283,

University of Massachusetts, Amherst, MA, USA, 1993.

[139] Marcos Salganicoff. Tolerating concept and sampling shift in lazy learning using

prediction error context switching. Artificial Intelligence Review, 11(1-5):133–

155, 1997.

[140] Steven Salzberg. A nearest hyperrectangle learning method. Machine Learning,

6(3):251–276, 1991.

[141] Robert E. Schapire. The strength of weak learnability. Machine Learning,

5(2):197–227, 1990.

[142] Jeffrey C. Schlimmer and Richard H. Granger. Incremental learning from noisy

data. Machine Learning, 1(3):317–354, 1986.

[143] George S. Sebestyen. Decision-Making Processes in Pattern Recognition.

Macmillan, New Yowrk, NY, USA, 1962.

[144] Robin Senge. Machine Learning Methods for Fuzzy Pattern Tree Induction.

PhD thesis, Philipp University of Marburg, 2014.

[145] Robin Senge and Eyke Hüllermeier. Pattern trees for regression and fuzzy

systems modeling. In Proceedings of FUZZ-IEEE 2010, the IEEE International

Conference on Fuzzy Systems, pages 1–7, Barcelona, Spain, 2010.

212

[146] Robin Senge and Eyke Hüllermeier. Top-down induction of fuzzy pattern trees.

IEEE Transactions on Fuzzy Systems, 19(2):241–252, 2011.

[147] Robin Senge and Eyke Hüllermeier. Fast fuzzy pattern tree learning for classi-

fication. IEEE Transactions on Fuzzy Systems, 23(6):2024–2033, 2015.

[148] John C. Shafer, Rakesh Agrawal, and Manish Mehta. Sprint: A scalable parallel

classifier for data mining. In Proceedings of the 22th International Conference

on Very Large Data Bases, VLDB ’96, pages 544–555, San Francisco, CA, USA,

1996.

[149] Ammar Shaker and Eyke Hllermeier. Recovery analysis for adaptive learning

from non-stationary data streams: Experimental design and case study. Neu-

rocomputing, 150, Part A(0):250 – 264, 2015.

[150] Ammar Shaker and Eyke Hüllermeier. Hazard analysis on data streams. In

Proceedings of the 22th Workshop Computational Intelligence, Dortmund, Ger-

many, 2012.

[151] Ammar Shaker and Eyke Hüllermeier. IBLStreams: a system for instance-based

classification and regression on data streams. Evolving Systems, 3(4):235–249,

2012.

[152] Ammar Shaker and Eyke Hüllermeier. Instance-based classification and regres-

sion on data streams. In Moamar Sayed-Mouchaweh and Edwin Lughofer, edi-

tors, Learning in Non-Stationary Environments, pages 185–201. Springer New

York, 2012.

[153] Ammar Shaker and Eyke Hüllermeier. Event history analysis on data streams:

An application to earthquake occurrence. In Georg Krempl, Indrė Žliobaitė,

Yin Wang, and George Forman, editors, Proceedings of RealStream 2013, the

1st International Workshop on Real-World Challenges for Data Stream Mining.,

pages 43–46. Otto-von-Guericke University Magdeburg, Magdeburg, Germany,

Prague, Czech Republic, 2013.

[154] Ammar Shaker and Eyke Hüllermeier. Recovery analysis for adaptive learning

from non-stationary data streams. In Robert Burduk, Konrad Jackowski, Marek

Kurzyǹski, Micha ll Woz̀niak, Andrzej, and Żo llnierek, editors, Proceedings of

the 8th International Conference on Computer Recognition Systems CORES

213

2013, volume 226 of Advances in Intelligent Systems and Computing, pages

289–298, Milkow, Poland, 2013.

[155] Ammar Shaker and Eyke Hüllermeier. Survival analysis on data streams: An-

alyzing temporal events in dynamically changing environments. International

Journal of Applied Mathematics and Computer Science, 24(1):199–212, 2014.

[156] Ammar Shaker, Robin Senge, and Eyke Hüllermeier. Evolving fuzzy pattern

trees for binary classification on data streams. In Proceedings of the 20th Work-

shop Computational Intelligence, Dortmund, Germany, 2010.

[157] Ammar Shaker, Robin Senge, and Eyke Hüllermeier. Evolving fuzzy pattern

trees for binary classification on data streams. Information Sciences, 220:34–45,

2013.

[158] Shai Shalev-Shwartz. Online learning and online convex optimization. Founda-

tions and Trends in Machine Learning, 4(2):107–194, 2012.

[159] Claude E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27(3):379–423, 1948.

[160] Dan Simon, editor. Evolutionary Optimization Algorithms. John Wiley & Sons,

Inc., Hoboken, NJ, USA, 2013.

[161] Jasmina Smailović, Miha Grčar, Nada Lavrač, and Martin Žnidaršič. Stream-

based active learning for sentiment analysis in the financial domain. Information

Sciences, 285:181–203, 2014.

[162] Herbert Spencer. The Principles of Biology. Williams and Norgate, London,

UK, 1864.

[163] Craig Stanfill and David Waltz. Toward memory-based reasoning. Communi-

cations of the ACM, 29:1213–1228, 1986.

[164] William N. Street and YongSeog Kim. A streaming ensemble algorithm (SEA)

for large-scale classification. In Proceedings of the Seventh ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, KDD ’01,

pages 377–382, San Francisco, CA, USA, 2001.

[165] Tomohiro Takagi and Michio Sugeno. Fuzzy identification of systems and its

applications to modeling and control. IEEE Transactions on Systems, Man,

and Cybernetics, 15(1):116–132, 1985.

214

[166] Katharina Tschumitschew and Frank Klawonn. Incremental statistical mea-

sures. In Moamar Sayed-Mouchaweh and Edwin Lughofer, editors, Learning in

Non-Stationary Environments, pages 21–55. Springer New York, 2012.

[167] Alexey Tsymbal. The problem of concept drift: definitions and related work.

Technical report, Department of Computer Science, Trinity College Dublin,

Ireland, 2004.

[168] Vernon Turner, John F. Gantz, David Reinsel, and Stephen Minton. The digital

universe of opportunities: Rich data and the increasing value of the internet

of things. White Paper, International Data Corporation (IDC), sponsored by

EMC Corporation, April 2014.

[169] Paul E. Utgoff. ID5: an incremental ID3. In Proceedings of the Fifth Interna-

tional Conference on Machine Learning, Ann Arbor, MI, USA, 1988.

[170] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag

New York, NY, USA, 1995.

[171] Indrė Žliobaitė. Learning under concept drift: an overview. Technical report,

Vilnius University, Lithuania, 2009.

[172] Indrė Žliobaitė. Controlled permutations for testing adaptive learning models.

Knowledge and Information Systems, 39(3):565–578, 2014.

[173] Indrė Žliobaitė, Albert Bifet, Bernhard Pfahringer, and Geoff Holmes. Active

learning with drifting streaming data. IEEE Transactions on Neural Networks

and Learning Systems, 25(1):27–39, 2014.

[174] Abraham Wald. Sequential tests of statistical hypotheses. The Annals of Math-

ematical Statistics, 16(2):117–186, 06 1945.

[175] Boyu Wang and Joelle Pineau. Online ensemble learning for imbalanced data

streams. CoRR, abs/1310.8004, 2013.

[176] Geoffrey I. Webb, Roy Hyde, Hong Cao, Hai-Long Nguyen, and François Pe-

titjean. Characterizing concept drift. Data Mining and Knowledge Discovery,

30(4):964–994, 2016.

[177] L. J. Wei. The accelerated failure time model: a useful alternative to the cox

regression model in survival analysis. Statistics in medicine, 11(14-15):1871–

1879, 1992.

215

[178] Gerhard Widmer and Miroslav Kubat. Effective learning in dynamic environ-

ments by explicit context tracking. In Proceedings of the European Conference

on Machine Learning, Vienna, Austria, 1993.

[179] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift

and hidden contexts. Machine Learning, 23(1):69–101, 1996.

[180] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools

and Techniques. Morgan Kaufmann, San Francisco, CA, USA, 2nd edition,

2005.

[181] Ronald R Yager. On ordered weighted averaging aggregation operators in multi-

criteria decision making. IEEE Transactions on Systems, Man and Cybernetics,

18(1):183–190, 1988.

[182] Yu Yi, Thomas Fober, and Eyke Hüllermeier. Fuzzy operator trees for model-

ing rating functions. International Journal of Computational Intelligence and

Applications, 8(4):413–428, 2008.

[183] Yufei Yuan and Michael J. Shaw. Induction of fuzzy decision trees. Fuzzy Sets

and Systems, 69(2):125–139, 1995.

[184] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

[185] Xingquan Zhu, Peng Zhang, Xiaodong Lin, and Yong Shi. Active learning from

stream data using optimal weight classifier ensemble. IEEE Transactions on

Systems, Man, and Cybernetics, Part B, 40(6):1607–1621, 2010.

[186] H-J Zimmermann and P Zysno. Latent connectives in human decision making.

Fuzzy sets and systems, 4(1):37–51, 1980.

216

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Application Example
	1.2 Learning from Data Streams
	1.3 Incremental, Adaptive and Evolving Learning
	1.4 Contribution and Outline of the Thesis

	2 Background
	2.1 Machine Learning
	2.2 Supervised Learning from Data Streams
	2.3 Concept Change over Time
	2.4 Change Detection Methods
	2.5 Adaptive Supervised Learning: Related Work
	2.5.1 Rule-based learning
	2.5.2 Decision trees learning
	2.5.3 Instance-based learning
	2.5.4 Ensemble methods

	3 Instance-Based Classification and Regression
	3.1 Instance-Based Learning
	3.1.1 Classification
	3.1.2 Regression

	3.2 Instance-Based versus Model-Based Learning
	3.3 Instance-Based Learning on Data Streams
	3.4 IBLStreams
	3.4.1 Classification
	3.4.2 Regression
	3.4.3 Parameter adaptation in IBLStreams
	3.4.4 Implementation issues

	3.5 Experiments
	3.5.1 IBLStreams versus other instance-based methods
	3.5.2 Evaluating the parameter adaptation schemes
	3.5.3 IBLStreams versus state-of-the-art model-based methods
	3.5.3.1 Classification
	3.5.3.2 Regression

	3.6 Discussion and Conclusion

	4 Evolving Fuzzy Pattern Trees
	4.1 Introduction to Fuzzy Sets
	4.1.1 Operations on Fuzzy Sets
	4.1.2 Aggregation Operations on Fuzzy Sets

	4.2 Data-Driven Fuzzy Modeling
	4.2.1 Fuzzy Subsethood-Based Algorithm
	4.2.2 Fuzzy Decision Trees

	4.3 Fuzzy Pattern Trees
	4.3.1 Bottom-Up Induction of Fuzzy Pattern Trees
	4.3.2 Top-Down Induction of Fuzzy Pattern Trees

	4.4 Evolving Fuzzy Pattern Trees
	4.4.1 Performance Monitoring and Hypothesis Testing
	4.4.2 Summary of the Algorithm
	4.4.3 Refinements on the Neighbor Trees Generation

	4.5 Empirical Evaluation
	4.5.1 Performance Comparison
	4.5.1.1 Synthetic Data
	4.5.1.2 Real Data

	4.5.2 Model Size
	4.5.3 Sensitivity Towards Significance Levels and Operators Retraining

	4.6 Summary and Conclusion

	5 Survival Analysis on Event Streams
	5.1 Introduction
	5.2 Survival Analysis
	5.2.1 Censored data
	5.2.2 Survival Functions
	5.2.3 Estimating the Survival Function
	5.2.4 Prognostic Factors for Survival

	5.3 Survival Analysis on Data Streams
	5.3.1 Left Censoring
	5.3.2 Parallel Event Sequences
	5.3.3 Adaptive ML Estimation

	5.4 Case Study: Earthquake Analysis
	5.4.1 Data Generation
	5.4.2 Results

	5.5 Case Study: Twitter Data
	5.6 Conclusion

	6 Recovery Analysis for Adaptive Learning
	6.1 Introduction
	6.2 Learning under concept drift
	6.3 Recovery Analysis
	6.3.1 Main idea and experimental protocol
	6.3.2 Bounding the optimal generalization performance
	6.3.3 Recovery measures
	6.3.4 Defining pure streams
	6.3.5 Further practical issues

	6.4 A comparison of algorithms
	6.5 Experiments and results
	6.5.1 Binary classification
	6.5.2 Multiclass classification
	6.5.3 Regression
	6.5.4 Recovery measures
	6.5.5 Summary of the experiments

	6.6 Conclusion

	7 Conclusion
	7.1 Original Contributions
	7.2 Future Research

	A Methods
	A.1 Adaptive Hoeffding Tree
	A.2 Adaptive Model Rules
	A.3 Fast Incremental Model Trees with Drift Detection
	A.4 FLEXible Fuzzy Inference Systems

	B MOA
	B.1 Stream Generators
	B.2 Online Evaluation

	C M-Tree
	C.1 Distance Function

	D Data Sets
	D.1 Synthetic Data Sets
	D.1.1 Hyperplane data
	D.1.2 Distance to hyperplane data
	D.1.3 Random trees data
	D.1.4 Radial basis function data
	D.1.5 SEA concept functions
	D.1.6 STAGGER concept functions

	D.2 Synthetic Data Manipulation
	D.2.1 Concept drift simulation
	D.2.2 Sampling drift simulation

	D.3 Real Data Sets
	D.3.1 Cover type data
	D.3.2 Mushroom data
	D.3.3 Page blocks data
	D.3.4 Letter recognition
	D.3.5 StatLog (shuttle) data
	D.3.6 Skin segmentation data
	D.3.7 MAGIC gamma telescope data
	D.3.8 Breast cancer Wisconsin
	D.3.9 Parkinson's telemonitoring data
	D.3.10 Slice localization data
	D.3.11 Bank32h
	D.3.12 Census-house

	D.4 Event Streams
	D.4.1 Earthquake event stream
	D.4.2 Twitter stream

	E Incremental Statistics
	E.1 Incremental Moments
	E.2 Shifting Moments

	Bibliography

