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Abstract

This thesis considers two scenarios for self-* algorithms in distributed com-
puting: self-organizing programmable matter and monotonic searchability for
self-stabilizing overlay topologies.

The former topic considers programmable matter that consists of tiny com-
putationally limited units called particles, which can move in two-dimensional
space, bond and communicate with each other. This kind of matter is studied
in the recently introduced amoebot model and we investigate the feasibility of
solving fundamental problems for programmable matter in that model. More
precisely, the focus is on two major problems: coating and shape formation.
In coating, the particles are connected to an unknown object (e.g., it can be
convex or concave) and the ultimate goal is to coat the object as evenly as
possible. We present an algorithmic framework that solves the coating problem
in a worst-case runtime that is linear in the number of particles, which is
shown to be worst-case optimal. In shape formation, we focus on building basic
shapes out of programmable matter where the size of the constructed shape
scales with the number of particles. We introduce an algorithmic framework to
construct various simple geometric shapes, which again has a linear worst-case
runtime. Supplementary to these two central problems we investigate the
ability of constant-size programmable matter that is connected to an unknown
object.
The latter topic focuses on the problem of maintaining searchability in

an overlay topology while that topology is stabilizing. More specifically, we
investigate self-stabilizing protocols for the line topology: i.e., protocols that
are guaranteed to converge from any possible initial state to a desired state in
which the overlay constitutes a line. In addition to the convergence process, the
protocols should also monotonically maintain a property called searchability:
i.e., once a node 𝑎 can send a search message to another node 𝑏 in the topology,
it is always able to do so in the future. We study this problem in two variants:
the strict line topology and the super-line topology. In the first variant the
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ultimate goal topology is a line over all nodes: i.e., each node is only connected
to its predecessor and successor (according to their ID). In the second variant,
we allow the goal topology to have more edges, but the line has to be a subgraph
of it. In both scenarios we present: (i) a protocol that stabilizes to the desired
protocol, (ii) a routing protocol that is able to route search messages, (iii) a
self-stabilization proof and (iv) a monotonic searchability proof.
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Zusammenfassung

In dieser Doktorarbeit werden zwei Szenarien für Self-* Algorithmen in verteil-
ten Systemen betrachtet: selbst-organisierende programmierbare Materie und
monotone Suchbarkeit für selbst-stabilisierende Overlaytopologien.
Das erste Thema betrachtet programmierbare Materie, welche aus kleinen,

in ihren rechnerischen Fähigkeiten beschränkten Einheiten besteht, die Partikel
genannt werden. Diese können sich im zweidimensionalen Raum bewegen, sich
verbinden und miteinander kommunizieren. Programmierbare Materie solcher
Art kann im erst kürzlich eingeführten amoebot Model betrachtet werden. Es
wird eruiert ob programmierbare Materie grundlegende Probleme in diesem
Model lösen kann. Genauer gesagt liegt der Fokus auf zwei Hauptproblem-
stellungen: Coating und Shape Formation. Im Coating sind die Partikel mit
einem statischen, unbekannten Objekt (welches beispielsweise konvex oder
konkav sein kann) verbunden. Hier ist das ultimative Ziel das Objekt gle-
ichmäßig zu ummanteln. Es wird ein algorithmisches Framework präsentiert,
welches das Coating Problem löst. Die worst-case Laufzeit ist dabei linear
in der Partikelanzahl, was worst-case optimal ist. Bei der Shape Formation
soll die Materie einfache Formen konstruieren, wobei die Größe der Form mit
der Anzahl der Partikel skaliert. Auch hier wird ein algorithmisches Frame-
work präsentiert, welches mehrere einfache geometrische Figuren bauen kann.
Die worst-case Laufzeit ist ebenfalls linear in der Partikelanzahl. Ergänzend
zu diesen zwei Problemschwerpunkten wird die Fähigkeit von programmier-
barer Materie konstanter Größe betrachtet, die zu einem unbekannten Objekt
verbunden ist.

Das zweite Thema fokussiert sich auf das Problem die Suchbarkeit monton
in einer Overlaytopologie aufrecht zu erhalten während sich diese stabilisiert.
Konkret werden selbst-stabilisierende Protokolle für die Linientopologie betra-
chtet, also Protokolle die garantiert von einem beliebigen initialen Zustand zu
einem gewünschten Zustand, in dem die Topologie eine Linie ist, konvergieren.
Zusätzlich zu der Konvergenz sollen die Protokolle auch die Eigenschaft der
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Suchbarkeit monoton aufrechterhalten. Dies bedeutet, dass sobald ein Knoten
𝑎 einen anderen Knoten 𝑏 mit einer Suchnachricht erreicht, Knoten 𝑎 dies auch
zu allen zukünftigen Zeitpunkten schafft. Das Problem wird in zwei Varianten
betrachtet: der strikten Linientopologie und der Super-Linientopologie. In der
ersten Variante soll in der Zieltopologie jeder Knoten nur zwei Nachbarn haben,
seinen Vorgänger und seinen Nachfolger (sortiert nach der ID). In der zweiten
Variante werden mehrere Nachbarn in der Zieltopologie erlaubt, aber die Linie
muss ein Subgraph sein. Für beide Szenarien wird: (i) ein selbst-stabilisierendes
Protokoll für die entsprechende Topologie präsentiert, (ii) ein Routing Protokoll
für Suchnachrichten angegeben, (iii) die Selbst-Stabilisierung bewiesen und (iv)
der Erhalt der monotonen Suchbarkeit bewiesen.
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CHAPTER 1

Introduction

” The science of today is the technology of tomorrow.”
Edward Teller, Theoretical Physicist

Ever since computers have been invented, they have been utilized to
simplify tasks for humans. During (and after) World War II computers
had the primary use of cracking military encryption codes (like Colossus,

which was used by the British to crack the German Lorenz SZ 40/42 encryption
machine) or to perform ballistics trajectory calculations (like the American
ENIAC)— both tasks that are almost impossible to do by hand. In the following
70 years computers have become more versatile, powerful and interconnected.
Yet, their main purpose is still to ease work for humans or to facilitate projects
that would be impossible without them. Due to this increased complexity,
the maintenance of computers, their programs and networks has become a
specialized task in itself. For certain programs only experts with years of
experience and accumulated (arcane) knowledge are able to maintain them.
Moreover, the last years have shown that the increasing digitalization of
everyday life also increases the complexity of computer systems. Thus, it is
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Chapter 1. Introduction

not a bold prediction that one day computers and their programs will be too
complex to be maintained by humans only.
One solution to this overarching problem of computer science is to build

programs (and hardware systems) that take care of themselves, i.e., that they
are able to handle failure states without human intervention and are inherently
designed to recover. In the algorithmic community one common buzzword
for such algorithms is self-* algorithms. Here the * is a placeholder for a
multitude of different words: e.g., adjusting, configurating, healing, managing,
optimizing, organizing, protecting and stabilizing. The common theme of
these algorithms is that they are automatically adapting to unpredictable
changes in their environment without external intervention. Especially in
the area of distributed computing these algorithms are highly desirable, since
a distributed scenario is by nature prone to external errors and changes of
environmental parameters that cannot be anticipated beforehand. On a broad
and intuitive level, one can distinguish between self-* algorithms that start
from a correct baseline state and try to improve their behavior according
to some target function (e.g., self-adjusting and self-optimizing algorithms)
and algorithms that can recover from faulty or undesired system states to
correct/desired ones (e.g., self-healing and self-stabilizing algorithms). However,
this distinction is diffuse for some algorithms and thus cannot be treated as a
proper categorization.

In this PhD thesis I investigate two areas of self-* algorithms: self-organizing
programmable matter (see Part I) and self-stabilizing overlay topologies with
a focus on the maintenance of monotonic searchability (see Part II). The
basic premise of both topics is vastly different: The first topic investigates the
abilities of a matter of computationally limited devices, whereas the second
topic considers an overlay network of computers which exchange messages (see
Chapters 2 and 7 for a thorough introduction on both topics). Despite their dif-
ferences in vision and model, as well as the differences in the established results,
both research areas are excellent examples for self-* algorithms. The algorithms
put a heavy emphasize on the absence of user input and autonomously adapt
to changes in their respective execution environments. From an algorithmic
perspective, easy algorithmic primitive are a major building block in both
topics.

Naturally, the two chosen topics are only a selection of possible scenarios for
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1.1. Thesis Overview

self-* algorithms. Nevertheless, I hope this exemplifies that the field provides
a broad research area which bears a lot of potential for the future. During
my PhD phase I had the opportunity to work in both topics for an almost
equal amount of time and even though I was frustrated with each topic at
times, I would not want to trade off one for the other. Both have their inherent
advantages and disadvantages (from a theoretical, practical and visionary
perspective) and both have a reason to be investigated.

1.1. Thesis Overview

As already mentioned, my thesis consists of two different topics, each of which
has a dedicated part. Since each topic from my work is vastly different from
the other, each part of this thesis is absolutely self-contained and can be read
without the other part. In the following, I describe the structure of each
part and briefly explain the content of the chapters within it. Additionally, I
mention the publications which serve as the main basis for the content of each
chapter.

Self-Organizing Programmable Matter Chapter 2 introduces the topic of
self-organizing programmable matter. It discusses the relevant related literature
and establishes the amoebot model which is used in every technical chapter in
Part I. The model assumes that the matter consists of tiny computationally
limited units called particles, which can move in two-dimensional space, bond
and communicate with each other. The model was first established in the
following publication:

2014 (with Z. Derakhshandeh, S. Dolev, R. Gmyr, A. W. Richa and
C. Scheideler). “Brief announcement: amoebot - a new model for
programmable matter”. In: 26th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’14, Prague, Czech Republic
- June 23 - 25, 2014, cf. [Der+14].

Chapter 3 considers the problem of universal coating, in which the pro-
grammable matter has to coat an unknown object uniformly. Throughout the
chapter, I first introduce the universal coating problem and present an algo-
rithm which aims at solving the problem efficiently. I prove the correctness of
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the algorithm and show that the required worst-case time to solve the problem
is linear in size of the programmable matter: i.e., in the number of particles.
This runtime is provably worst-case optimal. Another major advantage of
the algorithm is its simplicity – it is a combination of several algorithmic
primitives that are integrated seamlessly without any explicit synchronization.
The results of the chapter are based on the following two publications:

2017 (with Z. Derakhshandeh, R. Gmyr, A. W. Richa and C.
Scheideler). “Universal Coating for Programmable Matter”. In:
Theoretical Computer Science, cf. [Der+17].

2016 (with Z. Derakhshandeh, R. Gmyr, A. Porter, A. W. Richa
and C. Scheideler). “On the Runtime of Universal Coating for
Programmable Matter”. In: DNA Computing and Molecular Pro-
gramming - 22nd International Conference, DNA 22, Munich,
Germany, September 4-8, 2016, Proceedings, cf. [Der+16a].

Note that an enhanced version of the conference paper, whose results are
already included in this thesis, is submitted to the Natural Computing journal,
see:

to appear (with J. J. Daymude, R. Gmyr, A. W. Richa and
C. Scheideler). “On the Runtime of Universal Coating for Pro-
grammable Matter”. In: Natural Computing, cf. [Day+ar].

In Chapter 4, I investigate the problem of shape formation: i.e., the pro-
grammable matter has to change its shape to a predetermined one. More
precisely, I explore three different basic shape formation problems: the con-
struction of a line, a triangle and a hexagon. The main contribution of the
chapter is an algorithmic framework which is able to build these three shapes
(and potentially many more shapes) by just varying two rules in the framework.
I prove the correctness of the algorithmic framework for all three problems
and show that the time to construct the shape is again linear in the number of
particles. This runtime analysis is original work that has not been published
yet. The remaining results (i.e., the algorithm and its correctness) are based
on the following publication:
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2015 (with Z. Derakhshandeh, R. Gmyr, A. W. Richa and C. Schei-
deler). “An Algorithmic Framework for Shape Formation Problems
in Self-Organizing Particle Systems”. In: Proceedings of the Second
Annual International Conference on Nanoscale Computing and
Communication, NANOCOM’ 15, Boston, MA, USA, September
21-22, 2015, cf. [Der+15a].

Chapter 4 is the last technical chapter of Part I and considers the abilities of
programmable matter of constant size. Naturally, the computational power of
constantly many particles is very limited. I investigate the scenario in which
the matter is connected to a static object and tries to gather information about
the object. For example, the matter wants to evaluate whether the object is
convex and if so, which kind of shape the object has. I can show that a single
particle is not able to solve any of the problems introduced in the chapter,
whereas two particles can determine whether the object is convex and has a
simple shape (i.e., a line, a triangle, a parallelogram or a hexagon). With
three particles one can determine whether the object has two sides of the same
length. All results within the chapter are unpublished. The basic ideas were
discussed informally at the Dagstuhl Seminar 16721 ”Algorithmic Foundations
of Programmable Matter” together with Damien Woods of INRIA Paris.
Part I is completed by Chapter 6 , which contains a conclusion of the first

part. Moreover, it highlights my further research in the area of programmable
matter, which is not part of this thesis and points out directions for future
work.

Monotonic Searchability for Self-Stabilizing Topologies Part II is struc-
tured differently than Part I: i.e., whereas the first part investigates many
different problems in the area of programmable matter, the second part fo-
cuses exclusively on the problem of maintaining monotonic searchability in a
self-stabilizing overlay topology. In simple terms, I investigate whether it is
possible to search successfully (and to maintain the successfulness) in a certain
topology, while the self-stabilizing process of constructing the topology is still
in progress. Chapter 7 follows a similar structure to Chapter 2 and introduces
the topic of monotonic searchability, establishes the standard model used for
topological self-stabilization and discusses the relevant related literature.
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Chapter 8 formally defines the problem statement of monotonic searchability
and introduces some preliminary results that impose restrictions and prerequi-
sites for the initial topology. These first results are based on a section of the
following publication:

2015 (with C. Scheideler and A. Setzer). “Towards Establishing
Monotonic Searchability in Self-Stabilizing Data Structures”. In:
19th International Conference on Principles of Distributed Systems,
OPODIS 2015, December 14-17, 2015, Rennes, France, cf. [SSS15].

Additionally, Chapter 8 presents general results concerning the construction
of overlay networks. These results are independent of the topic of monotonic
searchability. However, they provide a helpful tool for my later investigation.
This analysis is based on the following publication.

2016 (with A. Koutsopoulos and C. Scheideler). “Towards a Uni-
versal Approach for the Finite Departure Problem in Overlay Net-
works”. In: Information and Computation, cf. [KSS16].

The very last theorem is based on:

2016 (with C. Scheideler and A. Setzer). “Towards a Universal Ap-
proach for Monotonic Searchability in Self-stabilizing Overlay Net-
works”. In: Distributed Computing - 30th International Symposium,
DISC 2016, Paris, France, September 27-29, 2016. Proceedings,
cf. [SSS16].

Chapter 9 is the main technical chapter of Part II. It investigates monotonic
searchability for the line topology in two different scenarios. In the first scenario
the goal topology is a strict line (i.e., all nodes in the network are ordered by
their identifier) in which each node has at most two neighbors; its successor
and its predecessor. In the second scenario each node is allowed to have more
neighbors, but the successor and predecessor have to be among them. For both
scenarios I introduce a self-stabilizing protocol for the respective topologies
and a protocol to route search requests in that topology. It is shown that the
respective protocols indeed stabilize to their desired network topologies and
that monotonic searchability is preserved during the self-stabilization process if
the given routing protocol is used. The chapter is concluded by a comparison
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between the two topologies in simulation experiments. The results concerning
the strict line are based on the following publication.

2015 (with C. Scheideler and A. Setzer). “Towards Establishing
Monotonic Searchability in Self-Stabilizing Data Structures”. In:
19th International Conference on Principles of Distributed Systems,
OPODIS 2015, December 14-17, 2015, Rennes, France, cf. [SSS15].

The results of the second scenario have not been published so far. The
simulations of the comparative analysis were conducted by my student assistant
Linghui Luo.

Similar to Part I, Part II finishes with a conclusion chapter. As before, this
chapter highlights my further research in the area of self-stabilizing overlays
that is not included in this thesis and lists possibilities for future work.

In all chapters except for this introductory one, I will adhere to the convention
of the research community that even single authored publications use the first
person plural to refer to the author.

1.2. List of Own Publications

This chapter is concluded by a section that contains all publications that I co-
authored during my PhD phase. Brief announcements are left out deliberately.
The publications are listed in reverse chronological order.

1.2.1. Journal Articles

2016 (with A. Koutsopoulos and C. Scheideler). “Towards a Uni-
versal Approach for the Finite Departure Problem in Overlay Net-
works”. In: Information and Computation, cf. [KSS16].

2017 (with Z. Derakhshandeh, R. Gmyr, A. W. Richa and C.
Scheideler). “Universal Coating for Programmable Matter”. In:
Theoretical Computer Science, cf. [Der+17].

2016. “The Impact of Communication Patterns on Distributed Self-
Adjusting Binary Search Tree”. In: Journal of Graph Algorithms
and Applications, cf. [Str16].
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1.2.2. Conference Publications

2016 (with C. Scheideler and A. Setzer). “Towards a Universal Ap-
proach for Monotonic Searchability in Self-stabilizing Overlay Net-
works”. In: Distributed Computing - 30th International Symposium,
DISC 2016, Paris, France, September 27-29, 2016. Proceedings,
cf. [SSS16].

2016 (with Z. Derakhshandeh, R. Gmyr, A. Porter, A. W. Richa
and C. Scheideler). “On the Runtime of Universal Coating for
Programmable Matter”. In: DNA Computing and Molecular Pro-
gramming - 22nd International Conference, DNA 22, Munich,
Germany, September 4-8, 2016, Proceedings, cf. [Der+16a].

2016 (with Z. Derakhshandeh, R. Gmyr, A. W. Richa and C. Schei-
deler). “Universal Shape Formation for Programmable Matter”.
In: Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 2016, Asilomar State Beach/-
Pacific Grove, CA, USA, July 11-13, 2016, cf. [Der+16b].

2015 (with Z. Derakhshandeh, R. Gmyr, A. W. Richa and C. Schei-
deler). “An Algorithmic Framework for Shape Formation Problems
in Self-Organizing Particle Systems”. In: Proceedings of the Second
Annual International Conference on Nanoscale Computing and
Communication, NANOCOM’ 15, Boston, MA, USA, September
21-22, 2015, cf. [Der+15a].

2015 (with Z. Derakhshandeh, R. Gmyr, R. A. Bazzi, A. W. Richa
and C. Scheideler). “Leader Election and Shape Formation with
Self-organizing Programmable Matter”. In: DNA Computing and
Molecular Programming - 21st International Conference, DNA 21,
Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings,
cf. [Der+15b].

2015 (with C. Scheideler and A. Setzer). “Towards Establishing
Monotonic Searchability in Self-Stabilizing Data Structures”. In:
19th International Conference on Principles of Distributed Systems,
OPODIS 2015, December 14-17, 2015, Rennes, France, cf. [SSS15].
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2015 (with A. Koutsopoulos and C. Scheideler). “Towards a Uni-
versal Approach for the Finite Departure Problem in Overlay Net-
works”. In: Stabilization, Safety, and Security of Distributed Sys-
tems - 17th International Symposium, SSS 2015, Edmonton, AB,
Canada, August 18-21, 2015, Proceedings, cf. [KSS15].

2015. “The Impact of Communication Patterns on Distributed
Self-Adjusting Binary Search Trees”. In: WALCOM: Algorithms
and Computation - 9th International Workshop, WALCOM 2015,
Dhaka, Bangladesh, February 26-28, 2015. Proceedings, cf. [Str15].

2014 (with D. Foreback, A. Koutsopoulos, M. Nesterenko and
C. Scheideler). “On Stabilizing Departures in Overlay Networks”.
In: Stabilization, Safety, and Security of Distributed Systems -
16th International Symposium, SSS 2014, Paderborn, Germany,
September 28 - October 1, 2014. Proceedings, cf. [For+14].
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CHAPTER 2

Prologue

” The applications for this tech are limitless. Construction. What used to
take teams of people working by hand for months or years, can now be
accomplished by one person. And that’s just the beginning. [...] If you
can think it, the microbots can do it. The only limit is your imagination.”

Hiro Hamada, Main Character in the Movie ”Big Hero 6”

Although it is often not stated explicitly in research papers, science
fiction has often been an inspiration for the scientific community,
especially for computer science and engineering. Popular examples of

(scientific) inventions that were inspired by science fiction are the submarine
which was inspired by Jules Verne’s 1870 novel ”Twenty Thousand Leagues
Under the Sea” [Ver70], mobile phones whose development (and looks) were
likely inspired by the communicators of the popular TV series Star Trek,
and virtual reality which can be related to Star Trek’s Holodeck. Lesser
known examples are the taser, which was envisioned in the young adult novel
”Tom Swift and His Electric Rifle, or, Daring Adventures in Elephant Land”
in 1911 [App11] and geostationary satellites for communication which were
introduced by Arthur C. Clarke in his essay ”Extra-terrestrial Relays – Can
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Rocket Stations Give World-wide Radio Coverage?” [Cla45].
In this part of the thesis we investigate a topic that is also imbued by science

fiction: self-organizing programmable matter. The basic idea of programmable
matter is, inter alia, inspired by the T-1000 Terminator in the movie Terminator
2: Judgment Day. In the movie, the T-1000 is described and visualized as
being composed of liquid metal and thus able to assume various shapes and
colors. This idea of a material that is able to change its physical properties is
the main inspiration of programmable matter: i.e., we envision matter that
can change its physical properties such as shape, color, conductivity, material
hardness, etc. in a self-organizing fashion. More explicitly, we assume that the
change is not guided by human intervention, but by the matter itself and its
perception of the environment.
A wide variety of systems could be seen as aligning with the overall vision

of programmable matter; we focus on systems similar to those depicted in Big
Hero 6 which consist of simple computational elements, called particles. These
particles can actively move in a self-organized way and can establish and release
bonds with each other. However, each particle is severely handicapped in its
computational abilities: e.g., it has constant-size memory, can only utilize local
interactions and does not have any global information. Moreover, particles are
completely anonymous and cannot distinguish among each other. We imagine
each particle to be minuscule in size compared to that of the overall matter,
and thus imagine the matter as being composed of a multitude of particles. We
refer to such a programmable matter system as a particle system. It needs to
be mentioned that the particles in Big Hero 6 (called microbots) are controlled
by a neurological sensor that a person has to wear: i.e., the microbots are not
self-organizing.
From a practical point of view, there are numerous scenarios in which

programmable matter can either simplify a task that is hard to perform
without it or even enable an activity that was impossible before. Imagine using
the programmable matter to coat a bridge. Since each particle individually
gathers information about its environment and can perform computations, we
can use the matter to gather structural information about the bridge (e.g.,
stress, fissures, pressure) or the weather (e.g., wind speed, temperature, wet
conditions). This information could then be accumulated and monitored or,
to go even one step further, the programmable matter could react to the
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information and repair cracks in the bridge by filling them up. Furthermore,
one could use programmable matter for minimally invasive surgery. Imagine
injecting the programmable matter into the human body to remove cancer.
Given the ability to identify cancerous cells, the matter could surround them,
isolating them from the healthy, vulnerable cells. A similar approach could
be used to stop internal bleeding by coating arteries from the inside. Finally,
one could use programmable matter as an everyday life product. For example,
imagine a ”multi-tool” that is composed of programmable matter and thus
not only ergonomically adapts to the user, but is also able to perform various
household functions: i.e., a comb that can change into a eating utensil, a
hammer or a screwdriver. By adding and removing particles, the tool could
scale in size to become a broom or even a ladder.
In this part of the thesis we study the possibilities of solving fundamental

problems for programmable matter from a theoretical point of view. In doing
so, we use the amoebot model (see Section 2.1), which is a two-dimensional
abstraction from the vision of programmable matter we just described. We
focus on two problems that are not only inspired by the above mentioned
application scenarios, but also elementary problems that every incorporation of
programmable matter has to face: coating (see Chapter 3) and shape formation
(see Chapter 4). In coating, the programmable matter is connected to an object
and the ultimate goal is to coat the object as evenly as possible. The object’s
shape and size are unknown: i.e., it can be convex or concave and it is possible
that the surface of the object is larger than amount of particles available. In
shape formation, we focus on building basic geometric shapes: e.g., a triangle.
The size of the constructed shape should of course scale with the number of
particles in the system. Supplementary to these two central problems, we
also investigate the ability of small-size programmable matter: i.e., a particle
system that consists of a constant number of particles (see Chapter 5). For all
scenarios we are interested not only in the feasibility of solving problems but
also in the efficiency of our solutions in terms of runtime.

Throughout all scenarios, we imagine that our matter forms one connected
particle system at all times. Thus, particles have a high interest to not
disconnect from the rest of the particle system: i.e., the connectivity of the
particle system is a major concern for all of our results.
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2.1. Model

In this section we present the (geometric) amoebot model as introduced in
our very first publication [Der+14]. We assume that any structure that a
particle system can form can be represented as a subgraph of an infinite graph
𝐺 = (𝑉 , 𝐸), where 𝑉 represents all possible positions the particles can occupy
relative to their structure, and 𝐸 represents all possible atomic transitions that
a particle can perform as well as all places where neighboring particles can
bond to each other. In the amoebot model, we assume that 𝐺 = 𝐺eqt, where
𝐺eqt is the infinite regular triangular grid graph. Figure 2.1 (a) illustrates the
standard planar embedding of 𝐺eqt.

(a) (b) (c)

Figure 2.1.: (a) shows a section of 𝐺eqt. Nodes of 𝐺eqt are shown as black
circles. (b) shows five particles on 𝐺eqt. The underlying graph
𝐺eqt is depicted as a gray mesh. A particle occupying a single node
is depicted as a black circle, and a particle occupying two nodes
is depicted as two black circles connected by an edge. (c) depicts
two particles occupying two non-adjacent positions on 𝐺eqt. The
particles have different offsets for their head port labels.

Each particle occupies either a single node or a pair of adjacent nodes in 𝐺eqt,
and every node can be occupied by at most one particle. Two particles occupying
adjacent nodes are connected, and we refer to such particles as neighbors. The
connections between particles do not just ensure that the particles form a
connected structure; they are also used for exchanging information as explained
below.
Particles move through expansions and contractions: If a particle occupies

one node (i.e., it is contracted), it can expand to an unoccupied adjacent node
to occupy two nodes. If a particle occupies two nodes (i.e., it is expanded), it
can contract to one of these nodes to occupy only a single node. Figure 2.1 (b)
illustrates a set of particles (some contracted, some expanded) on the underlying
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graph 𝐺eqt. For an expanded particle, we denote the node the particle last
expanded into as the head of the particle and call the other occupied node
its tail. For a contracted particle, the single node occupied by the particle
is both its head and its tail. A handover movement allows particles to stay
connected as they move. Two scenarios are possible here: (1) a contracted
particle 𝑝 can “push” a neighboring expanded particle 𝑞 and expand into the
neighboring node previously occupied by 𝑞, forcing 𝑞 to contract, or (2) an
expanded particle 𝑝 can “pull” a neighboring contracted particle 𝑞 to node 𝑣 it
occupies thereby causing 𝑞 to expand into 𝑣, which allows 𝑝 to contract.

Particles are anonymous. Each particle has a collection of ports, one for each
edge incident to the nodes occupied by it, and these ports have unique port
labels from the local perspective of that particle. We assume that the particles
have a common chirality, i.e., they all have the same notion of clockwise
direction. This allows each particle to order the port labels of its head and
tail in clockwise order. However, particles do not have a common sense of
orientation since they can have different offsets of the labels (see Figure 2.1 (c)).
Without loss of generality, we assume that each particle labels its head and
tail ports from 0 to 5 in clockwise order. Whenever a particle 𝑝 is connected
through some port to a particle 𝑞, we assume that 𝑝 knows the label of 𝑞’s port
that lies opposite of the respective port of 𝑝. Furthermore, we assume that 𝑝
knows whether 𝑞’s port belongs to the head or the tail of 𝑞.

Each particle has a constant-size local memory that can be read and written
to by any neighboring particle. This allows a particle to exchange information
with a neighboring particle by simply writing it into the other particle’s memory.
A particle always knows whether it is contracted or expanded, and in the latter
case it also knows along which head port label it is expanded. We assume that
this information is also available to the neighboring particles (by publishing
that label in its local memory). Due to the constant-size memory, particles
cannot know the total number of particles, nor can they have any estimate on
this number.
We assume the standard asynchronous model from distributed computing,

where the particle system progresses through a sequence of particle activations,
i.e., only one particle is active at a time. Whenever a particle is activated,
it can perform an arbitrary bounded amount of computation (involving its
own memory as well as the local memories of its neighbors) and at most one
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movement. We define an asynchronous round to be over once each particle has
been activated at least once.

The configuration 𝐶 of the particle system at the beginning of time 𝑡 consists
of the nodes in 𝐺eqt occupied by the set of particles; in addition, for every
particle 𝑝, 𝐶 contains the current state of 𝑝, including whether the particle is
expanded or contracted, its port labels, and the contents of its local memory.
If not mentioned otherwise, we refer to the particle system with 𝑃 and denote
the size of 𝑃 (i.e., the number of particles in the system) with 𝑛.
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2.2. Related Literature

Before discussing the related literature, we give a short overview of the structure
of this section. Since our line of work in the area of programmable matter
has only recently been established (e.g., the amoebot model was introduced in
2014 [Der+14]), we first give an overview of related models. Afterwards, we
will specifically discuss related literature which focuses on the problems that
we investigate in this thesis: coating and shape formation. Finally, we present
the results that have been established in the amoebot model. The content of
this section is a culmination of all related literature parts within our papers in
the area of programmable matter [Der+14; Der+17; Der+16a; Der+15a].

Related Models Many approaches have already been proposed that could
potentially be used for programmable matter or that share some similarities
with the ultimate vision of programmable matter. Generally, one can distinguish
between active and passive systems. In passive systems the particles either do
not have any intelligence at all (i.e., they just move and bond based on their
structural properties or due to interactions with the environment), or they have
limited computational capabilities but cannot control their movements. In
active systems, computational particles can control the way they act and move
in order to solve a specific task. Note that we do not provide a full exegesis of
the related models, and thus do not present all established results in detail.
Most of them only share an underlying principle or idea with our amoebot
model, but differ vastly in the purpose or the general research direction. We
think that the chosen presentation is an appropriate trade-off between an
in-depth discussion of each model (which is beyond the scope of this thesis)
and simply name-dropping the models.
Prominent examples of research on passive systems are DNA computing,

tile self-assembly systems, a variant of population protocols, and slime molds.
These models are of little relevance to our concrete research since the particles
cannot control the way they move and act by themselves. However, these
models investigate problems that are similar to ours (especially tile assembly).
Moreover, since some of these models have been investigated for decades,
they have a solid body of theoretically founded algorithmic literature. In the
following we will briefly present the four mentioned models.
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The field of DNA computing has a more than 20 years old academic history.
In 1994, Adleman [Adl94] was the first person to demonstrate that computation
can be done with DNA on a molecular level. He was able to encode a graph into
DNA molecules and solve the Hamiltonian path problem with enzymes on it. In
the following years many practical results have been established (see the list of
surveys below). On the theoretical side, [Bon+96] established the first results
concerning the computational power of DNA: e.g., the authors show that DNA
can efficiently compute satisfying assignments for general Boolean circuits and
and that NP-hard problems like MAX-clique and Max-circuit-satisfiability can
be solved. For more information about DNA computing, there is abundance of
survey articles (e.g., [Pis97; DK02; WB08]) that provide an excellent overview.

Study of tile self-assembly systems was started by the seminal PhD thesis of
Erik Winfree [Win98] in 1998 in which he introduced two theoretical models
to investigate the self-assembly of DNA: the abstract Tile Assembly Model
(aTAM) and the kinetic Tile Assembly Model (kTAM). The aTAM is the
more abstract model which, e.g., ignores errors and thus provides a framework
for studying the boundaries of such systems. On the other hand, the kTAM
includes more physical restrictions and has helped to predict and shape the
experimental direction of several laboratory experiments of DNA assembly. In
its basic form, tile self-assembly consists of a set of square tiles which have
labeled sides (called colors) and an initial assembly of tiles (called seed) which
should grow into a predefined structure. This is done by assigning a positive
integer strength value to each edge color and by demanding that when two
tile edges are adjacent and their colors match then the edges bind with force
equivalent to the strength of the color. An assembly then (usually) starts from
the seed and additional tiles can attach, one at a time. A tile is allowed to
attach to the already built assembly only if the sum of the bond strengths
that it makes with the assembly meets a system-wide threshold value called
the temperature. Tile-based self-assembly has proven to be a very rich area of
research and researchers have created numerous submodels and variations of
the aTAM and the kTAM (see the surveys [Dot12; Pat14; Woo13]).

In a distributed computing oriented context, Michail and Spirakis [MS16] re-
cently proposed a model for network construction that is inspired by population
protocols [Ang+06]. The population protocol model relates to self-organizing
particle systems, but is also intrinsically different: agents (which would corre-
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spond to our particles) freely move in space and interact in a pairwise fashion.
Agents establish connections to any other agent in the system at any point in
time, following the respective probabilistic distribution.
Finally, for slime molds, it has been shown that the slime mold Physarum

polycephalum is able to solve the shortest paths problem in practice. There have
been theoretical advances to model this phenomenon in the form of a coupled
system of differential equations [TKN07] and a discretized (more computer
science related) version [BMV12]. In fact, [BMV12] shows that the Physarum
can indeed provably compute an approximation of the shortest path.
Prominent examples of active systems that share some similarities with

our work are robotic swarms and modular self-reconfigurable robotic systems.
Both fields have a seen a broad variety of practical research work as well
as theoretical advances in the last years. Moreover, cellular automata are a
well established model to study biologically inspired systems at a macro level.
Finally, the nubot model is a theoretical framework that allows for algorithmic
research of biomolecular-inspired systems. In the following we will again present
the four models and shortly discuss their differences to the amoebot model.

In the area of swarm robotics, it is usually assumed that there is a collection
of autonomous robots that can move freely in a given area and have limited
sensing, vision, and communication ranges. The field is vast, including con-
ferences that focus solely on swarm robotics and related fields: e.g. ICSRSI
(International Conference on Swarm Robotics and Swarm Intelligence) and
SWARM (Symposium on Swarm Behavior and Bio-Inspired Robotics). Swarm
robots are used in a broad variety of contexts, including graph exploration
(e.g., [Flo+13]), gathering problems (e.g., [AGM13; Cie+12]), shape forma-
tion problems (e.g., [Flo+08; RCN14]), and mimicking the collective behavior
of natural systems to better understand the global effects of local behavior
(e.g., [Cha09]). Surveys of recent results in swarm robotics can be found
in [Ker12; Mcl08; BS13; Tan17]. The analytic techniques developed in swarm
robotics and natural swarms are of some relevance to our work. However, the
individual units in those systems have more powerful communication and/or
processing capabilities than the particles we consider.
The field of modular self-reconfigurable robotic systems focuses on intra-

robotic aspects such as design, fabrication, motion planning, and control of
autonomous kinematic machines with variable morphology (e.g., [Fuk+88]).
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[Yim+07] provides a survey of results that were established until 2007. Meta-
morphic robots form a subclass of self-reconfigurable robots that can dynam-
ically self-reconfigure and share some of the characteristics of our amoebot
model [Chi94] . They can be viewed as a large swarm of physically connected
robotic modules which collectively act as a single entity and are thus to some
relevance for our model. The hardware development in the field has been
complemented by a number of algorithmic advances (e.g., [But+04; WWA04;
Hur+15]), but mechanisms that automatically scale from a few to hundreds or
thousands of individual units are still under investigation. From all mentioned
algorithmic investigations, the most rigorous approach to analyze distributed
and local algorithms for self-reconfigurable robotics has been done by Hurtado
et al. in [Hur+15]. The model used in [Hur+15] shares some interesting simi-
larities with our model: e.g., an underlying grid graph and a relative movement
of robotic modules.
A cellular automaton is one of the classic models to study (biologically

inspired) self-replicating systems. Established by Stanislaw Ulam and John
von Neumann in the 1940s it is one the oldest models of computation and there
is a wide variety of books on the power and applications of cellular automata
(e.g., [Neu66; Wol86; Wol02; Sch11]). A cellular automaton is a (finite or
infinite) collection of cells on a grid of specified shape which evolves through
a number of discrete time steps. This evolution process is guided by a finite
set of rules for each cell, which are based on the neighboring cells. The three
most fundamental properties of a cellular automaton is the type of grid on
which it is computed (e.g., a line in 1-dimensional space or square, triangular,
and hexagonal grids in 2-dimensional space), the number of distinct states a
cell can be in and the initial state of the automaton. Cellular automata differ
vastly from our model since the cells can replicate or die at will and possess a
global compass.

The nubot model (see e.g. [Che+14; CXW15; Woo+13]) by Woods et al. aims
to provide the theoretical framework that would allow for rigorous algorithmic
studies of biomolecular-inspired systems, specifically of self-assembly systems
with active molecular components. Inspired by passive DNA-based tile self-
assembly, molecular motors and molecular circuits, the model aims at capturing
the interplay between molecular structure and dynamics. In it, simple molecular
components form assemblies that can grow and shrink. Individual components
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can undergo state changes and move relative to each other. There are quite
a number of similarities between the nubot and the amoebot model: e.g., an
underlying triangular grid graph, monomers (which correspond to our particles)
with small internal memory and movement of monomers relative to another.
Despite the similarities, key differences prohibit the translation of algorithms
and other results under the nubot model to our systems and vice versa: e.g.,
there is always an arbitrarily large supply of surplus monomers that can be
added to the nubot system as needed, and the nubot model includes a non-local
notion of rigid-body movement. These key differences allow the nubots to form
a line of size 𝑛 in logarithmic time.

Coating To the best of our knowledge, the problem of coating has not been
considered in passive systems.
In active systems, coating has mostly been studied on the practical side of

programmable matter, especially in the area of swarm robotics. In the field,
it is commonly not studied as a stand-alone problem, but is part of collective
transport (e.g., [Wil+14]) or collective perception (see the respective section
of [Bra+13; NM12] for a summary of results). In collective transport a group
of robots has to cooperate in order to transport an object. In general, the
object is heavy and cannot be moved by a single robot, making cooperation
necessary. In collective perception, a group of robots with a local perception
each (i.e., only a local knowledge of the environment) aims at joining multiple
individual perceptions to one big global picture (e.g., to collectively construct a
map). Some research focuses on coating objects as an independent task under
the name of target surrounding or boundary coverage. The techniques used in
this context include stochastic robot behaviors (e.g., [KB14; Pav+13]), rule-
based control mechanisms(e.g., [Blá+12]) and potential field-based approaches
(e.g., [BLF12]).

Shape Formation Shape formation has been studied in almost any of the
already presented models to some degree.
The most prominent examples of research on shape formation in passive

systems appear in tile self-assembly systems, DNA computing and popula-
tion protocols. Especially tile assembly, with its numerous submodels, has
extensively studied the construction of finite, infinite, complex or aperiodic
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shapes. Most interestingly, Soloveichik and Winfree [SW07] prove that any
predetermined shape can be self-assembled with a number of tile types close
to the Kolmogorov complexity of the target shape, if scaling of the shape is
allowed. In general, this scale factor is at least linear in the size of the shape.
An interesting recent result [SW15] combines the tile assembly model with
chemical reaction networks (i.e., it uses chemical reaction networks to provide
non-local control over a tile self-assembly process), which is able to produce
many complex shapes with programs of low complexity. In fact, they can also
bound the complexity of constructing a shape by the Kolmogorov complexity,
but get rid of the dependence on a scale factor. A similar result is achieved
in [Dem+11] in which the authors work in a submodel of tile assembly, which
allows for a special kind of destroy operation. This reduces the scaling of the
shape to only a logarithmic factor. For a general overview on the available
shape formation results, we refer again to the three excellent surveys [Dot12;
Pat14; Woo13]).

In DNA computing, shape formation has been considered in close relation to
the already mentioned tile self-assembly model (see [Win+98] and the already
mentioned tile assembly literature). Additionally, the field of DNA Origami
also studies the formation shapes. Research was initiated by Paul Rothemund
in 2006 [Rot06] in which he presents an approach to fold long single-stranded
DNA molecules into arbitrary 2D shapes. This marks a pivotal point in DNA
nanotechnology, since it enables control over designed molecular structures,
thus opening up a new field which combines computer science, biochemistry
and (bio)engineering as well as applications from medicine and (bio-)physics.
For an overview of the established results in the last years we refer to one of
the survey articles in the field (e.g., [KK10; Nan+10; Cas+11; Cha+16]).

In the population protocols model, network topology and shape construction
problems are studied as well. In [MS16] the authors first consider algorithms
for specific simple structures, such as a spanning line, a spanning star and a
spanning ring. These algorithms do not terminate, but only converge. The
expected time of convergence is analyzed under a uniform random scheduler.
Moreover, the authors show some universal results by presenting a generic
protocol that can simulate a Touring machine and is thus able to construct a
large class of networks. Michail [Mic15] investigates algorithms that terminate
with high probability for the construction of a line and a square. Similarly
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to [MS16], he develops a universal approach that is able to construct a large
class of 2D shapes. In order to achieve termination, Michail exploits the
ability of nodes to self-assemble into larger structures that can then be used as
distributed memories and the assumption that the system is well-mixed. This
leads to a terminating protocol counting the size of the system w.h.p., which is
the main building block for all constructions.

In active systems, shape formation (also called pattern formation) has been
studied in almost every model. Especially in swarm robotics, the problem of
pattern formation has a long history and has been investigated for around 20
years. There is a plethora of results and approaches which (mostly) focus on
the practical side of the field. To the best of our knowledge there is no pattern
formation survey. Thus, we will present some results that stood out to us and
that can been seen as representatives of the achieved results. Most prominently,
in [RCN14], the authors demonstrate that programmable self-assembly of
complex two-dimensional shapes with hundreds or thousands of simple robots
called kilobots is possible. Their algorithms are executed locally, but rely on a
global pre-processing phase for shape formation that directly depends on the
number of robots in the system. However, the dependence on the knowledge
on the number of robots can be circumvented as it has been shown in [RS10].
In [AR10], the authors explore a method for a swarm of simple, physically
identical, identically programmed robots that not only constructs polygonal
approximations of arbitrary structures in the plane, but is also able to repair
them systemetically and is tolerant to robot failures and externally-induced
disturbances. Thus, their algorithm is not only self-assembling but also is
self-healing. The practical work in the field has been complemented by quite a
number of theoretic approaches of pattern formation. For example, in [Flo+08]
the authors study the algorithmic limitations of building a predefined pattern
by a set of asynchronous, anonymous, oblivious, autonomous mobile robots.
The ability to build the shape depends strongly on common agreement about
the environment. More precisely, without any agreement no pattern can be
formed; with one compass needle that indicates north for all robots any odd
number of robots can form an arbitrary pattern, and with two independent
compass needles (e.g., north and east - which implies a common chirality) any
set of robots can form any pattern. The authors of [Das+10] take a similar
approach and investigate under which conditions oblivious robots can form a
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series of geometric patterns even though the robots are oblivious. In particular,
they study series of patterns which can be formed by robot systems under
various restrictions such as anonymity, asynchronicity and a lack of common
orientation.

In modular self-reconfigurable robotic systems the results of [Hur+15] are of
high interest. They present the first distributed and local universal reconfig-
uration algorithm in the field: i.e., an algorithm that reconfigures any robot
shape to any other robot shape with the same number of modules. Previous
known theoretical approaches (e.g., [DP06; AK08]) focused on sequential and
centralized algorithms.
In cellular automata the problem of pattern formation has been studied

extensively. A survey of the early results can be found in [WP94]. Moreover,
cellular automata have also been thoroughly investigated in biological pattern
formation (see e.g. the books [DD05; YY05]). More recently, researchers have
focused on using genetic algorithms to evolve cellular automata to produce
predefined shapes [CD06] or to considered variants of the classic CA for pattern
formation, such as conservative cellular automata [Ima+03] or reversible cellular
automata [IHM02].
In the nubot model, one of the main results of [Woo+13] is to efficiently

construct two-dimensional geometric shapes in polylogarithmic time in the
size of the shape: i.e., they show how to build a computable shape of size
𝑛 × 𝑛 in time polylogarithmic in 𝑛, plus the time needed to simulate a Turing
machine that computes whether or not a given pixel is in the final shape.
In [Che+14] the authors show that this fast construction is, to some degree,
even possible in a stricter model in which uncontrolled random movements, or
agitations, are happening throughout the self-assembly process. More precisely
they present a polylogarithmic expected time construction for squares and a
sublinear expected time construction to build a line.

The Amoebot Model The amoebot model (see Section 2.2) was introduced
in 2014 [Der+14] and is a model for self-organizing programmable matter that
aims to provide a framework for rigorous algorithmic research for nanoscale
systems. Since its introduction it has been utilized in a handful of publications
that we will now briefly present. We will omit the publications [Der+17;
Der+16a; Der+15a] since they are part of this thesis. In [Der+15b], the
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authors describe a leader election algorithm for an abstract (synchronous)
version of the amoebot model that decides the problem in expected linear time.
The algorithm uses an elaborate token passing scheme to transfer information
and makes use of the common chirality of particles. The particles are thus
able to elect a leader particle on the unique outer boundary of the particle
system (see Section 6.1 for a more detailed description). Recently, a universal
shape formation algorithm [Der+16b] was introduced which takes an arbitrary
input shape composed of a constant number of equilateral triangles of unit size
(called faces) and lets the particles build that shape at a scale depending on the
number of particles in the system. The algorithm runs in 𝑂(

√
𝑛) asynchronous

rounds, which is achieved by building an intermediate structure that allows for
an efficient building process (again a more detailed description can be found
in Section 6.1). Additionally, Cannon et al. [Can+16] introduced a Markov
chain algorithm for the compression problem: i.e., the problem of compressing
the particle system as much as possible. Due to its nature, the algorithm is
stateless and oblivious. Together with the results in this thesis, this shows that
there is potential to investigate a wide variety of problems in the model.
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CHAPTER 3

Universal Coating

” Anything one man can imagine, other men can make real. ”
Jules Verne; Novelist, Poet, and Playwright

Self-organizing programmable matter has a variety of problems that
originate from the vision of a malleable material that consists of tiny
moving particles. One of those very natural problems for programmable

matter is the problem of coating. Imagine a ship that should be coated by a
new layer of paint. If that paint consists of programmable matter, the ship
can be painted without ever leaving the water, since the paint itself uniformly
coats the ship with a thin layer of material. There is a plethora of very similar
scenarios in which a coating algorithm for programmable matter facilitates a
heavy duty task or — in the case of coating an object contaminated by nuclear
radiation — enables solving a task that otherwise would be impossible.

Naturally, a coating algorithm for programmable matter should be as general
as possible. It is highly desirable that there is only one universal algorithm that
allows for a coating of a broad class of objects, instead of having one specific
algorithm that has to be adapted every time we want to coat a different object.
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In this chapter we present a worst-case optimal algorithm for universal coating.
Our Universal Coating Algorithm seamlessly adapts to a broad class of objects,
uniformly coating the object by forming multiple coating layers if necessary.

Chapter Outline In Section 3.1 we formally define the problem of universal
coating. Afterwards, we present our coating algorithm in Section 3.2. We
separate the analysis of our algorithm into two parts. Section 3.3 focuses on
the correctness of the algorithm: i.e., we show that the algorithm terminates
and if it does so, the object is coated. Section 3.4 is concerned with analyzing
the worst-case runtime of the algorithm and provides a runtime lower bound
for the coating problem itself.

Chapter Basis The problem statement, the coating algorithm and its correct-
ness analysis are based on the following journal article:

2017 (with Z. Derakhshandeh, R. Gmyr, A. W. Richa and C.
Scheideler). “Universal Coating for Programmable Matter”. In:
Theoretical Computer Science, cf. [Der+17].

The runtime analysis, as well as the evaluation on lower bounds, are based on
the following conference publication:

2016 (with Z. Derakhshandeh, R. Gmyr, A. Porter, A. W. Richa
and C. Scheideler). “On the Runtime of Universal Coating for
Programmable Matter”. In: DNA Computing and Molecular Pro-
gramming - 22nd International Conference, DNA 22, Munich,
Germany, September 4-8, 2016, Proceedings, cf. [Der+16a].

A full version of the paper is currently under submission (see[Day+ar]).

3.1. Problem Statement

In the universal coating problem we consider an instance (𝑃 , 𝑂) where 𝑃
represents the particle system and 𝑂 represents the fixed object to be coated.
Let 𝑉 (𝑃) be the set of nodes occupied by 𝑃, and 𝑉 (𝑂) be the set of nodes
occupied by 𝑂 (when clear from the context, we may omit the 𝑉 (⋅) notation).
For any two nodes 𝑣, 𝑤 ∈ 𝑉eqt (where 𝑉eqtis a shorthand for all the nodes in
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Figure 3.1.: An example object with a tunnel of width 1.

𝐺eqt), the distance 𝑑(𝑣, 𝑤) between 𝑣 and 𝑤 is the length of the shortest path
in 𝐺eqt from 𝑣 to 𝑤. The distance 𝑑(𝑣, 𝑈) between a 𝑣 ∈ 𝑉eqt and 𝑈 ⊆ 𝑉eqt

is defined as min𝑤∈𝑈 𝑑(𝑣, 𝑤). Define layer 𝑖 to be the set of nodes that have
a distance 𝑖 to the object, and let 𝐵𝑖 be the number of nodes in layer 𝑖. An
instance is valid if the following properties hold:

(a) All particles are initially contracted and are in an idle state.

(b) The subgraphs of 𝐺eqt induced by 𝑉 (𝑂) and 𝑉 (𝑃) ∪ 𝑉 (𝑂), respectively,
are connected: i.e., there is a single object and the particle system is
connected to the object.

(c) The subgraph of 𝐺eqt induced by 𝑉eqt\𝑉 (𝑂) is connected: i.e., the object
𝑂 has no holes.

(d) 𝑉eqt\𝑉 (𝑂) is 2(⌈ 𝑛
𝐵1

⌉ + 1)-connected: i.e., 𝑂 does not have tunnels of
width less than 2(⌈ 𝑛

𝐵1
⌉ + 1) (see Figure 3.1 for an example of an object

with a tunnel of width 1).

Concerning property (c), note that in case 𝑂 contains holes, we would consider
the subset of particles in each connected region of 𝑉eqt\𝑉 (𝑂) separately. For
property (d), we remark that a tunnel width of at least 2⌈ 𝑛

𝐵1
⌉ is needed to

guarantee that the object can be evenly coated. The coating of narrow tunnels
requires specific technical mechanisms that complicate the protocol without
contributing to the basic idea of coating, so we ignore such cases in favor of
simplicity.

A configuration 𝐶 is legal if and only if all particles are contracted and

min
𝑣∈𝑉eqt\(𝑉 (𝑃)∪𝑉 (𝑂))

𝑑(𝑣, 𝑉 (𝑂)) ≥ max
𝑣∈𝑉 (𝑃)

𝑑(𝑣, 𝑉 (𝑂)),
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i.e., all particles are as close to the object as possible. Figuratively speaking
they coat 𝑂 as evenly as possible. A configuration 𝐶 is said to be stable if no
particle in 𝐶 ever performs a state change or movement. An algorithm solves
the universal coating problem if, starting from any valid instance, it reaches a
stable legal configuration in a finite number of rounds.

3.2. Universal Coating Algorithm

In this section we present our Universal Coating Algorithm. This algorithm
is constructed by combining a number of asynchronous primitives which are
integrated seamlessly without any underlying synchronization. The spanning
forest primitive organizes the particles into a spanning forest which determines
the movement of particles while preserving system connectivity; the complaint-
based coating primitive coats the surface layer (i.e., layer 1) by bringing particles
not yet touching the object into layer 1 while there is still room; the node-based
leader election primitive elects a node in the surface layer whose occupant
becomes the leader particle used to trigger the general layering process for
higher layers; and the general layering primitive allows each layer 𝑖 (for 𝑖 ≥ 2) to
form once layer 𝑖 − 1 has been completed. All these primitives are described in
detail in Section 3.2.2. However, before we characterize the coating algorithm,
we introduce some preliminary notions in Section 3.2.1.

3.2.1. Notions

We define the set of states that a particle can be in as idle, follower, root, and
retired. In addition to its state, a particle maintains a constant number of
flags, which in our context are constant-size pieces of information visible to
neighboring particles. A flag 𝑓 owned by some particle 𝑝 is denoted by 𝑝.𝑓. In
our algorithm, we assume that every time a particle contracts, it contracts
out of its tail. Therefore, a node occupied by the head of a particle 𝑝 still is
occupied by 𝑝 after a contraction.

A particle keeps track of its current layer number in the flag 𝑝.𝑙𝑎𝑦𝑒𝑟. In order
to respect the constant-size memory constraint of particles, we take all layer
numbers modulo 4. However, for ease of presentation, we omit the modulo
4 computations in the descriptions, except for the pseudocode. Additionally,
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each root particle 𝑝 has a flag 𝑝.𝑑𝑜𝑤𝑛 which stores a port label pointing to a
node of the object if it is on the surface layer, and to an occupied node adjacent
to its head in layer 𝑝.𝑙𝑎𝑦𝑒𝑟 − 1 if it is not.

Moreover, 𝑝 has two additional flags, 𝑝.𝐶𝑊 and 𝑝.𝐶𝐶𝑊, which are also port
labels. Intuitively, a movement in direction 𝑝.𝐶𝑊 (resp., 𝑝.𝐶𝐶𝑊) corresponds
to a clockwise (resp. counter-clockwise) path around the connected structure
consisting of the object and retired particles. A particle 𝑝 can compute 𝑝.𝐶𝑊
in the following way: Starting from port label 𝑝.𝑑𝑜𝑤𝑛, 𝑝.𝐶𝑊 is the first
label of 𝑝 in counter-clockwise order such that (i) the node that the label
points is occupied by a particle with the same layer number or (ii) the node
is unoccupied. Flag 𝑝.𝐶𝐶𝑊 can be computed analogously. Note that since
particles have a common chirality, they share the same notion of clockwise and
counter-clockwise.
We say a layer is filled if all nodes in that layer are occupied with retired

particles. To enhance readability and to avoid confusion with the modulo
computation of particles, we use the term surface layer to refer to layer 1.

3.2.2. Coating Primitives

The spanning forest primitive (see Algorithm 1) organizes the particles
into a spanning forest, which yields a straightforward mechanism for particles
to move while preserving connectivity. As already stated, all particles are
initially idle. A particle 𝑝 touching the object changes its state to root. Any
other idle particle 𝑝 that is activated, evaluates whether it has a root or a
follower in its neighborhood. If so, it stores the direction to one of them in
𝑝.𝑝𝑎𝑟𝑒𝑛𝑡 and changes its state to follower ; otherwise, it remains idle. We say
𝑝 is the child of 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡. A follower particle 𝑝 uses handovers to follow its
parent and updates the direction 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡 as it moves in order to maintain
the same parent in the tree. Note that the particular particle at 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡 may
change since the particle occupying the node might perform a handover with
another of its children. By using handovers as the only kind of movement, the
trees formed by the parent relations stay connected, occupy only the nodes
they occupied before, and do not mix with other trees. A root particle 𝑝 uses
the flag 𝑝.𝑑𝑖𝑟 to determine its movement direction. As 𝑝 moves, it updates
𝑝.𝑑𝑖𝑟 such that it always points to the next node of a clockwise movement
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around the object. For any particle 𝑝, we call the particle occupying the node
that 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡 resp. 𝑝.𝑑𝑖𝑟 points to the predecessor of 𝑝. If a root particle does
not have a predecessor, we call it a super-root.

Algorithm 1 Spanning Forest Primitive for Coating
A particle 𝑝 acts depending on its state as described below:

idle: If 𝑝 is adjacent to the object 𝑂, it becomes a root particle, makes
the current node it occupies a leader candidate node, and starts
running the leader election algorithm. If 𝑝 is adjacent to a retired
particle, 𝑝 also becomes a root particle. If a neighbor 𝑝′ is a root
or a follower, 𝑝 sets the flag 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡 to the label of the port
to 𝑝′, puts a complaint flag in its local memory, and becomes a
follower. If none of the above applies, 𝑝 remains idle.

follower: If 𝑝 is contracted and adjacent to a retired particle or to 𝑂,
then 𝑝 becomes a root particle. If 𝑝 is contracted and has
an expanded parent, then 𝑝 initiates Handover(𝑝) (Algo-
rithm 2); otherwise, if 𝑝 is expanded, it considers the following
two cases: (i) if 𝑝 has a contracted child particle 𝑞, then 𝑝
initiates Handover(𝑝); (ii) if 𝑝 has no children and no idle
neighbor, then 𝑝 contracts. Finally, if 𝑝 is contracted, it runs
the function ForwardComplaint(𝑝, 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡) (Algorithm 3).

root: If particle 𝑝 is in the surface layer, 𝑝 participates in the
leader election process. If 𝑝 is contracted, it first executes
MarkingAndRetiring(𝑝) (Algorithm 5) and can become re-
tired and possibly also a marker, accordingly. If 𝑝 does not be-
come retired, then if it has an expanded root in 𝑝.𝑑𝑖𝑟, it initiates
Handover(𝑝); otherwise, 𝑝 calls LayerExtension(𝑝) (Algo-
rithm 4). If 𝑝 is expanded, it considers the following two cases: (i)
if 𝑝 has a contracted child, then 𝑝 initiates Handover(𝑝); (ii) if
𝑝 has no children and no idle neighbor, then 𝑝 contracts. Finally,
if 𝑝 is contracted, it runs ForwardComplaint(𝑝, 𝑝.𝑑𝑖𝑟).

retired: 𝑝 clears a potential complaint flag from its memory and performs
no further action.

The complaint-based coating primitive is used for the coating of the
surface layer. This is accomplished by having each particle that becomes a
follower generate a complaint flag. Complaint flags are forwarded by particles in
a pipelined fashion from children to parents through the spanning forest. More
precisely, every time a contracted particle 𝑝 holding at least one complaint flag
is activated, it forwards one flag to its predecessor as long as that predecessor
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holds less than two complaint flags (see Algorithm 3). We allow each particle
to hold up to two complaint flags to ensure that flags quickly move from their
origin to the super-roots while respecting the constant-size memory restriction
of particles. A contracted super-root 𝑝 expands to 𝑝.𝑑𝑖𝑟 only if it holds at
least one complaint flag. The super-root consumes one of the complaint flags it
holds in an expansion. All other roots 𝑝 move towards 𝑝.𝑑𝑖𝑟 whenever possible
(i.e., no complaint flags are required) by performing a handover with their
predecessor (which has to be another root) or a successor (which is a root or
follower of its tree). When performing a handover with a successor, preference
is given to a follower in order to allow additional particles to enter the surface
layer (see Algorithm 2). As we will show later, these movement rules ensure
that whenever there are particles in the system that are not yet in the surface
layer, eventually one of these particles moves to the surface layer, unless the
surface layer is already completely filled with contracted particles.

Algorithm 2 Handover(𝑝)
1: if 𝑝 is expanded then
2: if 𝑝 has at least one contracted child 𝑞 such that 𝑞.𝑝𝑎𝑟𝑒𝑛𝑡 points to the

tail of 𝑝 then
3: if 𝑝.𝑙𝑎𝑦𝑒𝑟 = 1 and one child is a follower then
4: 𝑝 performs a handover with a follower child
5: else
6: 𝑝 performs a handover with any of its children
7: else
8: if 𝑝 is a follower and 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡 is expanded then
9: 𝑝 performs a handover with 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡

10: if 𝑝 is a root and 𝑝.𝑑𝑖𝑟 points to an expanded particle 𝑞 then
11: 𝑝 performs a handover with 𝑞

Algorithm 3 ForwardComplaint(𝑝, 𝑖)
1: if 𝑝 holds at least one complaint flag and the particle 𝑞 adjacent to 𝑝 in

direction 𝑖 holds less than two complaint flags then
2: 𝑝 forwards one complaint flag to 𝑞

The leader election primitive runs in parallel to the complaint-based
coating primitive to elect a node in the surface layer as the leader node. This
primitive is similar to the algorithm presented in [Day+17] with the difference
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that leader candidates are nodes instead of static particles. This distinction
is important because in our case particles are moving while leader election is
in progress. The primitive terminates only once all nodes in the surface layer
are occupied. We will explain the leader election primitive more in detail in
Subsection 3.2.3. Once the leader node is determined and all nodes in the
surface layer are filled by contracted particles the particle currently occupying
that node becomes the leader. This leader becomes a special marker particle,
marking a neighboring node in the next layer by a flag as a marker node which
determines a starting point for layer 2, and becomes retired. Once a contracted
root 𝑝 has a retired particle in the direction 𝑝.𝑑𝑖𝑟, it retires as well. This
causes the particles in the surface layer to become retired in counter-clockwise
order. At this point, the general layering primitive becomes active, which
builds subsequent layers until there are no longer followers in the system. If
the leader election primitive does not terminate (which happens only if 𝑛 < 𝐵1

and the surface layer is never completely filled), then the complaint flags ensure
that the super-roots eventually stop, which eventually results in a stable legal
coating.

Algorithm 4 LayerExtension(𝑝)
Calculating 𝑝.𝑙𝑎𝑦𝑒𝑟, 𝑝.𝑑𝑜𝑤𝑛 and 𝑝.𝑑𝑖𝑟

1: The layer number of any node occupied by the object is equal to 0.
2: Let 𝑞 be any neighbor of 𝑝 with smallest layer number (modulo 4).
3: 𝑝.𝑑𝑜𝑤𝑛 ← 𝑝’s label for port leading to 𝑞
4: 𝑝.𝑙𝑎𝑦𝑒𝑟 = (𝑞.𝑙𝑎𝑦𝑒𝑟 + 1) mod 4
5: Computes CW & CCW directions
6: if 𝑝.𝑙𝑎𝑦𝑒𝑟 is odd then
7: 𝑝.𝑑𝑖𝑟 ← 𝑝.𝐶𝑊
8: else
9: 𝑝.𝑑𝑖𝑟 ← 𝑝.𝐶𝐶𝑊

Extending layer 𝑝.𝑙𝑎𝑦𝑒𝑟
10: if the node at 𝑝.𝑑𝑖𝑟 is unoccupied, and either 𝑝 is not on the surface layer

or 𝑝 holds a complaint flag then
11: 𝑝 expands in direction 𝑝.𝑑𝑖𝑟
12: 𝑝 consumes a complaint flag, if it holds one

In the general layering primitive a follower becomes a root, whenever
it is adjacent to a retired particle. Followers follow their parents as before.
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Complaint flags are no longer needed to expand into empty nodes. Root
particles continue to move along nodes of their layer in a clockwise direction (if
the layer number is odd) or counter-clockwise direction (if the layer number is
even) until they reach either the marker node of that layer, a retired particle in
that layer, or an empty node of the lower layer. In the latter case the particles
move in the lower layer, which causes them to change direction. A contracted
root particle 𝑝 may retire if: (i) it occupies the marker node and the marker
particle in the lower layer signals that all particles in that layer are retired
(which it can determine locally), or (ii) it has a retired particle in the direction
𝑝.𝑑𝑖𝑟. Once a particle retires on a marker node, it becomes the marker particle
for that layer and marks a neighboring node in the next layer as a marker
node.

Algorithm 5 MarkingAndRetiring(𝑝)
First Marker Condition:

1: if 𝑝 is the leader then
2: 𝑝 becomes a retired particle
3: 𝑝 sets the flag 𝑝.𝑚𝑎𝑟𝑘𝑒𝑟 to be the label of a port leading to a node

guaranteed not to be in the surface layer — e.g., by taking the average
direction of 𝑝’s two neighbors in the surface layer (by now complete)

Extending Layer Markers:
4: if 𝑝 is connected to a marker 𝑞 and the port 𝑞.𝑚𝑎𝑟𝑘𝑒𝑟 points towards 𝑝

then
5: if both 𝑞.𝐶𝑊 and 𝑞.𝐶𝐶𝑊 are retired then
6: 𝑝 becomes a retired particle
7: 𝑝 sets the flag 𝑝.𝑚𝑎𝑟𝑘𝑒𝑟 to the label of the port opposite the port

connecting 𝑝 to 𝑞

Retiring Condition:
8: if the node in direction 𝑝.𝑑𝑖𝑟 is occupied by a retired particle then
9: 𝑝 becomes a retired particle

3.2.3. Leader Election Primitive

We are now describing the leader election primitive in more detail. As already
stated the primitive is similar to the algorithm presented in [Day+17] and is
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used for electing a leader among the particles that touch the object: i.e., only
particles in the surface layer participate in the leader election process. A leader
only emerges if 𝐵1 ≤ 𝑛.
The leader election algorithm we use in this thesis is a slightly modified

version of the leader election algorithm presented in [Day+17]. The tokens
described in [Day+17] can be seen as flags in our algorithm. However, the
algorithm of [Day+17] cannot be directly applied, since it is executed on a
static particle system: i.e., the particles do not move. Consequently, for the
purpose of universal coating, we abstract the leader election algorithm to
conceptually run on the nodes of the surface layer since these are static. Thus,
we elect a leader node and a contracted particle occupying that node becomes
the leader. Particles on the surface layer provide the means for running the
leader election process on the respective nodes: i.e., they store and transfer all
flags that are needed for the leader algorithm. If a particle is expanded, it is
responsible for both nodes it occupies: i.e., an expanded particle emulates the
leader election process for two nodes simultaneously.

To be more precise, we are now going to specify how the information of the
leader election is transferred if particles move. An expanded particle 𝑝 on the
surface layer, whose tail also occupies a node 𝑣 on the surface layer and that is
about to perform a handover with contracted particle 𝑞, passes all the leader
information associated with node 𝑣 to 𝑞 in that handover. If there is no particle
to perform a handover with, the expanded particle does not contract. If a
particle 𝑝 occupying a node 𝑣 wants to forward some leader election information
to an adjacent node 𝑤 (according to [Day+17]) that is currently unoccupied, it
waits until either 𝑝 itself expands into 𝑤, or another particle occupies node 𝑤.
Note that once a node 𝑣 in the surface layer is occupied at some time 𝑡, then 𝑣
is occupied at all timesteps 𝑡′ > 𝑡.

The leader election can terminate only once all nodes in the surface layer are
occupied. According to [Day+17] it does so w.h.p.1 after 𝒪(𝑛) rounds. Once
the leader node of 𝐵1 is elected, an contracted particle 𝑝 occupying this node
checks whether the surface layer is completely filled with contracted particles.
To do so, it generates a check-flag that is sent along the surface layer in CCW
direction. The flag is forwarded to the next particle only if the neighbor in

1An event occurs with high probability (w.h.p.), if the probability of success is at least
1 − 𝑛−𝑐, where 𝑐 > 1 is a constant.
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CCW direction is contracted. Additionally a particle occupying the leader
node generates a clear-flag every time it expands. The clear-flag is forwarded
in CW direction. Whenever a check-flag and a clear-flag meet they cancel
each other out. Therefore, a check-flag can return back to the contracted
particle 𝑝 occupying the leader node only if all particles on the surface layer
are contracted. In that case 𝑝 declares itself the leader and the general layering
primitive as described in Subsection 3.2.2 starts.

3.3. Correctness

In this section we show that our algorithm eventually solves the coating
problem.
Let an active particle be a particle in either follower or root state. We call

an active particle a boundary particle if it has the object or at least one retired
particle in its neighborhood, otherwise it is a non-boundary particle. By def-
inition, a boundary particle is either a root or a follower, whereas non-boundary
particles are always followers.

Given a configuration 𝐶, we define a directed graph 𝐴(𝐶) over all nodes in
𝐺eqt occupied by active (follower or root) particles in 𝐶. For every expanded
active particle 𝑝 in 𝐶, 𝐴(𝐶) contains a directed edge from the tail to the head
node of 𝑝. For every follower 𝑝, 𝐴(𝐶) has a directed edge from the head of
𝑝 to 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡. For the purposes of constructing 𝐴(𝐶), we also define parents
for root particles: a root particle 𝑝 sets 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡 to be the active particle 𝑞
occupying the node in direction 𝑝.𝑑𝑖𝑟 once 𝑝 has performed its first handover
expansion with 𝑞. For every root particle 𝑝, 𝐴(𝐶) has a directed edge from the
head of 𝑝 to 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡, if it exists. The ancestors of a particle 𝑝 are all nodes
reachable by a path from the head of 𝑝 in 𝐴(𝐶). The super-roots defined in
Section 3.2.2 correspond to the roots of the trees in 𝐴(𝐶). Certainly, since
every node has at most one outgoing edge in 𝐴(𝐶), the nodes of 𝐴(𝐶) can
only form a collection of disjoint trees or a ring of trees (i.e., a connected
graph consisting of a single directed cycle with trees rooted at it) as we show
in Lemma 3.2.

First, we prove several safety conditions (see Subsection 3.3.1), and then we
prove various liveness conditions (see Subsection 3.3.2) that together allow us
to prove that our algorithm solves the coating problem (see Subsection 3.3.3).
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3.3.1. Safety

Suppose that we start with a valid instance (𝑃 , 𝑂): i.e., all particles in 𝑃
are initially contracted, are idle and 𝑉 (𝑃) ∪ 𝑉 (𝑂) forms a single connected
component in 𝐺eqt. In the following we show that 𝑉 (𝑃)∪𝑉 (𝑂) stays connected
at any time. We first start with the retired particles.

Lemma 3.1. If 𝐵1 < 𝑛 the set of retired particles always forms completely
filled layers except for possibly the current topmost layer ℓ, which is filled with
a consecutive row of retired particles.

Proof. From our algorithm and since 𝐵1 < 𝑛, it follows that the first particle
that retires is the leader particle, setting its marker flag in a direction to a node
not in the surface layer. The particles in the surface layer then retire starting
from the leader in CCW direction around the object. Once all particles in the
surface layer are retired, the first particle that occupies the marker node of
layer 2 retires and becomes the marker particle on layer 2, extending its marker
flag in the same direction as the original flag of the leader. Starting from
the marker particle in layer 2, boundary particles can retire in CW direction
along layer 2. Once all particles in layer 2 are retired, the next layer starts
forming. This process continues inductively layer by layer, thereby proving the
lemma.

Next we investigate the active particles, by characterizing the structure of
𝐴(𝐶).

Lemma 3.2. At any time, 𝐴(𝐶) is a forest or a ring of trees. Each super-root
is connected to the object or to a retired particle.

Proof. An active particle can either be a follower or a root. First, we show the
following lemma.

Lemma 3.3. At any time, 𝐴(𝐶) restricted to non-boundary particles forms a
forest.

Proof. Let 𝐴′(𝐶) be the induced subgraph of 𝐴(𝐶) by the non-boundary
particles only. Certainly, when all particles are still idle, the claim holds. So
suppose that the claim holds up to time 𝑡. We show that it then also holds at
time 𝑡 + 1. Suppose that at time 𝑡 + 1 an idle particle 𝑝 becomes active. If 𝑝
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becomes a root, it is by definition not part of 𝐴′(𝐶). If it is a non-boundary
particle (i.e., a follower), it sets 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡 to a node occupied by a particle 𝑞 that
is already active, so it extends the tree of 𝑞 by a new leaf, thereby maintaining
the tree.
Edges of 𝐴′(𝐶) can change only if followers move. If a follower contracts

without performing a handover (i.e., it is a leaf), 𝐴′(𝐶) trivially stays a forest.
If a follower moves in a handover but stays a non-boundary particle, its incident
may change, but 𝐴′(𝐶) also remains a forest. Finally the set of nodes of 𝐴′(𝐶)
may change if a particle becomes a boundary particle. In that case the node
and its incident edges are removed, but the remaining subgraph of 𝐴′(𝐶) stays
a forest.

Next we consider 𝐴(𝐶) restricted to boundary particles.

Lemma 3.4. At any time, 𝐴(𝐶) restricted to boundary particles forms a forest
or a ring.

Proof. The boundary particles always occupy nodes adjacent to retired particles
or the object. Therefore, boundary particles either all lie in a single layer or
in two consecutive layers according to Lemma 3.1 if 𝐵1 < 𝑛 or by a simple
observation if 𝐵1 ≥ 𝑛. Since the layer numbers uniquely specify the movement
direction of the particles, connected boundary particles within a layer can only
form a directed line or a directed cycle in 𝐴(𝐶). Therefore, if all boundary
particles are all in the same layer, the claim holds.
If boundary particles are in in two consecutive layers ℓ and ℓ − 1, then

layer ℓ − 1 has to contain at least one retired particle: i.e., 𝐴(𝐶) restricted to
boundary particles in layer ℓ − 1 can only form one or more directed lines, but
no ring. Note that by definition several lines are also a forest. Furthermore, all
retired particles on layer ℓ − 1 form a consecutive row according to Lemma 3.1.
Therefore, 𝐴(𝐶) restricted to boundary particles in layer ℓ can also only form
one or more directed lines. Finally, one boundary particle on layer ℓ can have
an edge to a particle in layer ℓ − 1, since 𝑝.𝑑𝑖𝑟 of a boundary particle 𝑝 can
only point to the same or the next lower layer of 𝑝. This implies that in this
case 𝐴(𝐶) restricted to the nodes occupied by all boundary particles forms a
forest.
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Since a boundary particle 𝑝 never has an edge to a non-boundary particle
the way 𝑝.𝑑𝑖𝑟 is defined, and a follower without an outgoing edge in 𝐴(𝐶)
restricted to the non-boundary particles must have an outgoing edge to a
boundary particle (otherwise it is a boundary particle itself), 𝐴(𝐶) is a forest
or a ring of trees.

The second statement of the lemma follows from the fact that every boundary
particle must be connected to the object or a retired particle.

Finally, we investigate the structure formed by the idle particles.

Lemma 3.5. At any time, every connected component of idle particles is
connected to at least one non-idle particle or the object.

Proof. Initially, the lemma holds by the definition of a valid instance. Suppose
that the lemma holds at time 𝑡 and consider a connected component of idle
particles. If one of the idle particles in the component is activated, it may
either stay idle or change to an active particle. In both cases the lemma holds
at time 𝑡 + 1. If a retired particle that is connected to the component is
activated, it does not move. If a follower or root particle that is connected to
the component is activated, the particle can move. If it expands or does not
move, it still occupies the node adjacent to the connected component. If it
contracts, according to our algorithm that particle cannot contract outside of
a handover with another follower or root particle. This implies that after the
contraction the node adjacent to the connected component is still occupied.
So in any of these cases, the connected component of idle particles remains
connected to a non-idle particle. Therefore, the lemma holds at time 𝑡 + 1.

The following corollary is consequence of the previous three lemmas.

Corollary 3.6. At any time, 𝑉 (𝑃)∪𝑉 (𝑂) forms a single connected component.

We close this section by proving an equality that relates the number of
complaint flags, expanded boundary particles and number of non-boundary
particles in a connected component of 𝐴(𝐶)

Lemma 3.7. Consider a connected component 𝐺 of 𝐴(𝐶). At any time before
the first particle retires, the number of expanded boundary particles in 𝐺 plus
the number of complaint flags in 𝐺 equals the number of non-boundary particles
in 𝐺.
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Proof. Initially, the lemma holds since all particles are contracted and idle.
Suppose the lemma holds at time 𝑡 and consider the next activation of a
particle. In the following we only discuss relevant cases of the algorithm.

(a) If an idle particle becomes a non-boundary particle (i.e., it is not connected
to the object but becomes a part of a connected component in 𝐴(𝐶)), it
also generates a complaint flag. So both the number of non-boundary
particles and the number of complaint flags increase by one for the certain
component.

(b) If a non-boundary particle expands as part of a handover with a boundary
particle, both the number of expanded boundary particles and the number
of non-boundary particles decrease by one for the component.

(c) If a boundary particle expands as part of a handover, that handover must
be with another boundary particle, so the number of expanded boundary
particles remains unchanged for that component.

(d) By our assumption there are no retired particles, so all boundary particles
are in the surface layer. Hence, a boundary particle can only expand
outside of a handover by consuming a complaint flag. This increases the
number of expanded boundary particles by one and decreases the number
of complaint flags by one.

(e) Finally, an expansion of a boundary particle outside of a handover can
connect two components of 𝐴(𝐶). Since the equation given in the lemma
holds for each of these components individually, it also holds for the
newly formed component of 𝐴(𝐶).

3.3.2. Liveness

We say that the particle system makes progress if (i) an idle particle becomes
active, (ii) a movement (i.e., an expansion, handover, or contraction) is executed,
or (iii) an active particle retires. Before we show under which circumstances
our particle system eventually makes progress, we first show some propositions
of how particles behave during the execution of our algorithm.

Lemma 3.8. Eventually, every idle particle becomes active.

43



Chapter 3. Universal Coating

Proof. As long as an idle particle exists, at least one idle particle 𝑝 is connected
to a non-idle particle or the object according to Lemma 3.5. The next time
𝑝 is activated 𝑝 becomes active according to Algorithm 1. This proves the
statement.

The following statement shows that even though roots of 𝐴(𝐶) can temporar-
ily be followers, they become root particles the next time they are activated.

Lemma 3.9. In every tree of 𝐴(𝐶), every boundary particle in the follower
state enters a root state the next time it is activated.

Proof. Let 𝑝 be a boundary particle in the follower state. By definition 𝑝 must
have a retired particle or the object in its neighborhood. Therefore, 𝑝 immedi-
ately becomes a root particle once it is activated according to Algorithm 1.

The following is a direct consequence of Lemma 3.9.

Corollary 3.10. Every super-root that is in the follower state enters the root
state the next time it is activated.

Furthermore, the following lemma provides a relation between the movement
of super-roots and the availability of complaint flags.

Lemma 3.11. For every tree of 𝐴(𝐶) with at least one complaint flag and
a contracted super-root 𝑝, 𝑝 either eventually retires or expands in direction
𝑝.𝑑𝑖𝑟, thereby consuming a complaint flag, and 𝑝 may cease to be a super-root
after the expansion.

Proof. If 𝑝 is not a root, it becomes one the next time it is activated according
to Corollary 3.10. Therefore, assume 𝑝 is a root. If there is a retired particle
in 𝑝.𝑑𝑖𝑟, 𝑝 retires and the statements hold. If the node in 𝑝.𝑑𝑖𝑟 is unoccupied,
𝑝 can potentially expand. According to Algorithm 3, complaint flags are
forwarded along the tree rooted at 𝑝 towards 𝑝 itself. Once a flag reaches 𝑝,
it expands, thereby consuming the flag. If it does so, it might have an active
particle in its movement direction and thus ceases to be a super-root.

Next, we prove the statement that expanded particles do not starve: i.e.,
they eventually contract.

Lemma 3.12. Eventually, every expanded particle contracts.
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Proof. Consider an expanded particle 𝑝 in a configuration 𝐶. By Lemma 3.8 we
assume w.l.o.g. that all particles in 𝐶 are active or retired. If 𝑝 has no children
in 𝐴(𝐶), then it can contract once it is activated. If there exists at least one
child 𝑞 which is contracted, 𝑝 contracts in a handover (see Algorithm 2). If all
children are expanded, we consider the tree of 𝐴(𝐶) that 𝑝 is part of. Consider
one subpath of this tree that starts in 𝑝 (𝑣1, 𝑣2, … , 𝑣𝑘) such that 𝑣1, 𝑣2 are
occupied by 𝑝 and 𝑣𝑘 is a node that does not have an incoming edge in 𝐴(𝐶).
Let 𝑣𝑖 be the first node of this path that is occupied by a contracted particle.
If all particles are expanded, then clearly the last particle occupying 𝑣𝑘−1, 𝑣𝑘

eventually contracts and 𝑖 = 𝑘−1. Since 𝑣𝑖 is contracted it eventually performs
a handover with the particle occupying 𝑣𝑖−2, 𝑣𝑖−1. Now we move inductively
backwards along (𝑣1, 𝑣2, … , 𝑣𝑖−1). It is guaranteed that a contracted particle
eventually performs a handover with the expanded particle occupying the two
nodes before it on the path. Therefore, a child of 𝑝 is eventually contracted
and performs a handover with 𝑝.

In the following two lemmas we specifically consider the case that 𝐵 ≤ 𝑛:
i.e., the particles can coat at least the complete surface layer.

Lemma 3.13. If 𝐵 ≤ 𝑛, the surface layer is eventually completely filled with
contracted particles.

Proof. Consider a configuration 𝐶 such that the surface layer is not completely
filled with contracted particles. In this case the leader election cannot succeed,
since it requires that all particles on the surface layer are contracted. Con-
sequently, no particle is retired in 𝐶. By Lemma 3.8 we can assume w.l.o.g.
that all particles in configuration 𝐶 are active. Since the surface layer is not
completely filled by contracted particles, there is either at least one unoccupied
node 𝑣 on the surface layer or all nodes are occupied, but there is at least one
expanded particle on the surface layer. We show that in both cases a follower
moves to the surface layer. Thereby, the layer is filled up until all particles on
it are contracted.
In the first case, let 𝑝 be the super-root of a tree in 𝐴(𝐶) that still has

non-boundary particles. Additionally, let (𝑝0 = 𝑝, 𝑝1, … , 𝑝𝑘) be the boundary
particles of the tree, such that 𝑝𝑖−1 occupies the node in 𝑝𝑖.𝑑𝑖𝑟 and let 𝑞 be
a non-boundary particle in the tree that is adjacent to some 𝑝𝑗 ∈ (𝑝0, … , 𝑝𝑘)
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such that 𝑗 is minimal. If a particle 𝑝𝑖 in (𝑝0, … , 𝑝𝑗 = 𝑞.𝑝𝑎𝑟𝑒𝑛𝑡) is expanded, it
eventually contracts by a handover with 𝑝𝑖+1 (Lemma 3.12), and by consecutive
handovers all particles in (𝑝𝑖+1, … , 𝑝𝑗) eventually expand and contract until
the particle 𝑝𝑗 = 𝑞.𝑝𝑎𝑟𝑒𝑛𝑡 expands. According to Algorithm 2, 𝑝𝑗 has to
perform a handover with 𝑞. Therefore, the number of particles on the surface
layer increases. If all particles in (𝑝0, … , 𝑞.𝑝𝑎𝑟𝑒𝑛𝑡) are contracted, then by
Lemma 3.7 a complaint flag still exists in the tree. Thus, 𝑝 eventually expands
by Lemma 3.11. Consequently, we are back in the former case that a particle
in (𝑝0, … , 𝑞.𝑝𝑎𝑟𝑒𝑛𝑡) is expanded.
In the second case, let 𝑝′ be an expanded boundary particle and let 𝑞′ be

the non-boundary particle with the shortest path in 𝐴(𝐶) to 𝑝′. By a similar
argument as for the first case, particles on the surface layer perform handovers
(starting with 𝑝′) until eventually the node in 𝑞′.𝑝𝑎𝑟𝑒𝑛𝑡 is occupied by a tail.
Again, 𝑞′ eventually performs a handover and the number of particles on the
surface layer has increased.

As a direct consequence, we can show the following lemma.

Lemma 3.14. If 𝐵 ≤ 𝑛, a leader particle is eventually elected in the surface
layer.

Proof. According to Lemma 3.13 the surface layer is eventually filled with
contracted particles. Leader election successfully elects a leader node according
to [Day+17]. The contracted particle 𝑝 occupying the leader node creates
and forwards the check-flag and, since all particles on the surface layer are
contracted, eventually receives it back. Consequently, 𝑝 becomes a leader.

Now we are ready to prove the two major statements of this subsection that
define two conditions for system progress.

Lemma 3.15. If there are no retired particles and there is either a complaint
flag or an expanded particle, the system eventually makes progress.

Proof. If there is an idle particle, progress is ensured by Lemma 3.8. If an
active particle is expanded Lemma 3.12 guarantees progress. Finally, in the
last case all particles are active, none of them is expanded and there is a
complaint flag. If the surface layer is completely filled, a leader is elected
according to Lemma 3.14 and as a direct consequence the active particles on
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the surface layer eventually retire, guaranteeing progress. If the surface layer is
not completely filled, there exists at least one tree of 𝐴(𝐶) with a contracted
super-root 𝑝 that has an unoccupied node in 𝑝.𝑑𝑖𝑟 and at least one complaint
flag in the tree. Therefore, progress is ensured by Lemma 3.11.

Lemma 3.16. If there is at least one retired particle and one active particle,
the system eventually makes progress.

Proof. Again, if there is an idle particle, progress is ensured by Lemma 3.8.
Moreover, note that since there is at least one retired particle, we can conclude
that leader election has been successful (since the first particle that retires is
the leader particle) if 𝐵1 < 𝑛. If there is still a non-retired particle on the
surface layer, it eventually retires according to the Algorithm, guaranteeing
progress.

So suppose that all particles in the surface layer are retired. We distinguish
between the following cases: (i) there exists at least one super-root, (ii) no
super-root exists, but there is an expanded particle, and (iii) no super-root
exists and all particles are contracted. In case (i), Corollary 3.10 guarantees
that a super-root eventually enters the root state; therefore it eventually either
expands (if 𝑝.𝑑𝑖𝑟 is unoccupied) or retires (if 𝑝.𝑑𝑖𝑟 is occupied by a retired
particle or 𝑝 occupies a marked node). In case (ii), the expanded particle
contracts according to Lemma 3.12. In case (iii), 𝐴(𝐶) forms a ring of trees,
which can happen only if all boundary particles completely occupy a single
layer, so there is an active particle that occupies the marker node on that layer.
Since it is contracted by assumption, it retires upon activation.

Therefore, in all three cases the system eventually makes progress.

3.3.3. Termination

Finally, we show that the algorithm eventually terminates in a legal configura-
tion: i.e., a configuration in which the coating problem is solved. In order to
show termination, we need the following two lemmas.

Lemma 3.17. The number of times an idle particle turns active and an active
particle becomes retired is bounded by 𝑛.

Proof. From our algorithm it immediately follows that every idle particle is
transformed only once into an active particle, and every active particle is
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transformed only once into a retired particle. Moreover, a non-idle particle can
never become idle again, and a retired particle can never become non-retired
again, which proves the lemma.

Lemma 3.18. The overall number of expansions, handovers, and contractions
in our algorithm is 𝒪(𝑛2).

Proof. We prove the statement by showing that a single particle can only
perform a linear amount of movements as a follower and also only a linear
amount of movements as a root. We need the following observation, which
immediately follows from our algorithm.

Observation 3.19. Only a super-root can expand to a non-occupied node,
and every such expansion triggers a sequence of handovers, followed by a
contraction in which every particle participates at most twice.

Consider any particle 𝑝. Note that only an active particle performs a
movement. Let 𝐶 be the first configuration in which 𝑝 becomes active. If it
is a non-boundary particle (i.e., a follower), then consider the directed path
in 𝐴(𝐶) from the head of 𝑝 to the super-root 𝑟 of its tree or the first particle
𝑟 belonging to the ring in the ring of trees. Such a path must exist due to
Lemma 3.2. Let 𝒫 = (𝑣0, 𝑣1, … , 𝑣𝑚) be the node sequence covered by this
path where 𝑣0 is the head of 𝑝 in 𝐶 and 𝑣𝑚 is the first node along that path
with the object or a retired particle in its neighborhood. By Lemma 3.2 such a
node sequence is well-defined since at least the node occupied by 𝑟 fulfills this
condition. The length of 𝒫: i.e., |𝒫| is at most 2𝑛. According to Algorithm 1,
𝑝 attempts to follow 𝒫 by sequentially expanding into the nodes 𝑣1, … , 𝑣𝑚. In
the worst case, 𝑝 becomes a boundary particle once it reaches 𝑣𝑚. Up to this
point, 𝑝 has traveled along a path of length at most 2𝑛; therefore, the number
of movements 𝑝 executes as a follower is 𝒪(𝑛).

Now suppose 𝑝 is a boundary particle,; therefore in the root state. Let 𝐶 be
the configuration in which 𝑝 becomes a boundary particle and let ℓ = 𝑝.𝑙𝑎𝑦𝑒𝑟.
Suppose that ℓ = 1. From our algorithm we know that at most 𝑛 complaint
flags are generated by the particles; therefore by Lemma 3.11 there are at
most 𝑛 expansions on the surface layer. All other movements are handovers or
contractions. Hence, it follows from Observation 3.19 that 𝑝 can only move
𝒪(𝑛) times as a root on the surface layer.
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Now consider the case that ℓ > 1. Here we need the following observation,
which is a direct consequence of the underlying triangular grid graph.

Observation 3.20. For every 𝑖 and every valid instance (𝑃 , 𝑂) allowing 𝑂 to
be coated by 𝑖 layers it holds that 𝐵𝑖 = 𝐵0 + 6𝑖.

If ℓ = 2, there must be a retired particle in the surface layer, and since the
leader is the first particle that retires, Lemmas 3.13 and 3.14 imply that the
surface layer is completely filled with contracted particles. So 𝑝 can only move
along nodes of layer 2. Since 𝐵1 ≤ 𝑛, it follows from Observation 3.20 that
𝐵2 ≤ 𝑛 + 6. If some particles on the surface layer are not retired, 𝑝 cannot
move beyond the marker node in layer 2. So 𝑝 either becomes retired before
reaching the marker node, or if it reaches the marker node, it has to wait there
until all particles on the surface layer are retired, which causes its retirement.
Therefore, 𝑝 can only move along at most 𝑛 + 6 nodes. If ℓ > 2, we know from
Lemma 3.1 that layer ℓ − 2 is completely filled with contracted particles. Since
𝐵ℓ−2 ≤ 𝑛 and 𝐵ℓ = 𝐵ℓ−2 + 12, it follows that 𝐵ℓ ≤ 𝑛 + 12. Hence, 𝑝 moves
along at most 𝑛 + 12 nodes in layer ℓ before retiring. Alternatively, 𝑝 might
move to layer ℓ − 1, and 𝑝 moves along at most 𝑛 + 6 further nodes in layer
ℓ − 1 before retiring. Thus, in any case, 𝑝 performs at most 𝒪(𝑛) movements
as a root particle.
Putting it all together, any particle makes at most a linear amount of

movements as a follower, followed by at most a linear amount of movements
as a root. Therefore, the number of movements any particle in the system
performs is 𝒪(𝑛).

Lemmas 3.17 and 3.18 imply that the system can only make progress 𝒪(𝑛2)
many times. Hence, eventually our system reaches a configuration in which it
no longer makes progress and the algorithm terminates. It remains to show that
when the algorithm terminates, the particle system is in a legal configuration:
i.e., the algorithm solves the coating problem.

Theorem 3.21. Our Universal Coating Algorithm terminates in a legal con-
figuration.

Proof. From the conditions of Lemmas 3.15 and 3.16 we know that the following
statements hold when the algorithm terminates:
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(a) Either all particles are retired or all particles are active (see Lemma 3.16).

(b) If all particles are active, there is neither a complaint flag nor an expanded
particle in the system (see Lemma 3.15).

First suppose that all particle are retired. Then it follows directly from
Lemma 3.1 that the configuration is legal. Next, suppose that all particles
are active and contracted, and there is no complaint flag in the system. Then
Lemma 3.7 implies that all active particles must be boundary particles. If there
is at least one boundary particle in a layer ℓ > 1, then there must be at least
one retired particle, contradicting our assumption. Therefore, all boundary
particles are in the surface layer, and since there are no more complaint flags
and all boundary particles are contracted, the particle system is in a legal
configuration, which proves our theorem.

This concludes our correctness analysis of our Universal Coating Algorithm.

3.4. Runtime Analysis

Before we investigate the runtime of our specific coating algorithm, we first
present a lower bound concerning the runtime of any coating algorithm in Sub-
section 3.4.1. Afterwards, we analyze the worst-case runtime of our Universal
Coating Algorithm in Subsection 3.4.2.

3.4.1. Runtime Lower Bounds

Recall that a round is over once every particle in 𝑃 has been activated at
least once. The runtime 𝑇𝒜(𝑃 , 𝑂) of a coating algorithm 𝒜 is defined as
the worst-case number of rounds (over all sequences of particle activations)
required for 𝒜 to solve the universal coating problem (𝑃 , 𝑂). Certainly, there
are instances (𝑃 , 𝑂) where every coating algorithm has a runtime of 𝛺(𝑛) (see
Lemma 3.22), though there are also many other instances where the universal
coating problem can be solved much faster.

Lemma 3.22. The worst-case runtime required by any local-control algorithm
to solve the universal coating problem is 𝛺(𝑛).
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Figure 3.2.: Worst-case configuration concerning the number of rounds. There
are 𝑛 particles (black dots) in a line connected to the object by a
single particle.

Proof. Assume the particles 𝑝1, … , 𝑝𝑛 form a single line of 𝑛 particles con-
nected to the object of the object via 𝑝1 (Figure 3.2). Suppose 𝐵1 > 𝑛. Since
𝑑(𝑝𝑛, 𝑂) = 𝑛, it takes 𝛺(𝑛) rounds in the worst-case (requiring 𝛩(𝑛) move-
ments) until 𝑝𝑛 touches the object’s surface. This worst-case can happen, for
example, if 𝑝𝑛 performs no more than one movement (either an expansion or a
contraction) per round.

Since a worst-case runtime of 𝛺(𝑛) is fairly large, and therefore not very
helpful to distinguish between different coating algorithms, one could study
the runtime of coating algorithms relative to the best possible runtime. Un-
fortunately, a large lower bound also holds for the competitiveness of any
local-control algorithm. A coating algorithm 𝒜 is called 𝑐-competitive if for
any valid instance (𝑃 , 𝑂),

E[𝑇𝒜(𝑃 , 𝑂)] ≤ 𝑐 ⋅ OPT(𝑃 , 𝑂) + 𝑘,

where OPT(𝑃 , 𝑂) is the minimum runtime needed to solve the universal coating
problem (𝑃 , 𝑂) and 𝑘 is a value independent of (𝑃 , 𝑂).

Theorem 3.23. Any local-control algorithm that solves the universal coating
problem has a competitive ratio of 𝛺(𝑛).

Proof. We construct an instance of a coating problem (𝑃 , 𝑂) which can be
solved by an optimal algorithm in 𝒪(1) rounds, but requires any local-control
algorithm to take 𝛺(𝑛) times longer. Let 𝑂 be a straight line of arbitrary
finite length, and let 𝑃 be a set of particles which entirely occupy the surface
layer, with the exception of one unoccupied node below 𝑂 equidistant from its
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Figure 3.3.: The object occupies a straight line in 𝐺eqt. The particles are
all contracted and occupy the nodes around the object, with the
exception that there is one unoccupied node below the object and
one extra particle above the object. Borders 𝐿 and 𝑅 are shown
as red lines.

endpoints and one additional particle above 𝑂 in layer 2 equidistant from its
endpoints (see Figure 3.3).

An optimal algorithm could move the particles to solve the coating problem
for the given example in 𝒪(1) rounds, as shown in Figure 3.4. Note that the
optimal algorithm always maintains the connectivity of the particle system, so
its runtime is valid even under the constraint that any connected component
of particles must stay connected. However, for our local-control algorithms we
allow particles to disconnect from the rest of the system.

Now consider an arbitrary local-control algorithm 𝐴 for the coating problem.
Given a round 𝑟, we define the imbalance 𝜙𝐿(𝑟) at border 𝐿 as the net number
of particles that have crossed 𝐿 from the top of 𝑂 to the bottom until round 𝑟;
similarly, the imbalance 𝜙𝑅(𝑟) at border 𝑅 is defined to be the net number of
particles that have crossed 𝑅 from the bottom of 𝑂 to the top until round 𝑟.

Certainly, there is an activation sequence in which information and particles
can only travel a distance of up to 𝑛/4 nodes towards 𝐿 or 𝑅 within the first
𝑛/4 rounds. Hence, for any 𝑟 ≤ 𝑛/4, the probability distributions of 𝜙𝐿(𝑟) and
𝜙𝑅(𝑟) are independent of each other. Additionally, particles up to a distance of
𝑛/4 from 𝐿 and 𝑅 cannot distinguish between which border they are closer to,
since the node of the gap is equidistant from the borders. This symmetry also
implies that Pr[𝜙𝐿(𝑟) = 𝑘] = Pr[𝜙𝑅(𝑟) = 𝑘] for any integer 𝑘. Let us focus on
round 𝑟 = 𝑛/4. We distinguish between the following cases.
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Figure 3.4.: Each subfigure represents the configuration of the system at the
beginning of a round and are ordered from left to right, top to
bottom. After 5 rounds (i.e., at the beginning of the sixth round)
the object is coated. Note that the implied algorithm can be
adapted to any length of the object and always requires only 5
rounds to solve the coating problem.

(a) 𝜙𝐿(𝑛/4) = 𝜙𝑅(𝑛/4). Then there are more particles than nodes in the
surface layer above 𝑂, so the coating problem cannot be solved yet.

(b) 𝜙𝐿(𝑛/4) ≠ 𝜙𝑅(𝑛/4). From our insights above we know that for any two
values 𝑘1 and 𝑘2, Pr[𝜙𝐿(𝑛/4) = 𝑘1 and 𝜙𝑅(𝑛/4) = 𝑘2] = Pr[𝜙𝐿(𝑛/4) =
𝑘2 and 𝜙𝑅(𝑛/4) = 𝑘1]. Hence, the cumulative probability of all outcomes
where 𝜙𝐿(𝑛/4) < 𝜙𝑅(𝑛/4) is equal to the cumulative probability of all
outcomes where 𝜙𝐿(𝑛/4) > 𝜙𝑅(𝑛/4). If 𝜙𝐿(𝑛/4) < 𝜙𝑅(𝑛/4), then there
are again more particles than nodes in the surface layer above 𝑂, so the
coating problem cannot be solved yet.

Thus, the probability that 𝒜 has not solved the coating problem after 𝑛/4
rounds is at least 1/2; therefore E[𝑇𝒜(𝑃 , 𝑂)] ≥ 1/2 ⋅ 𝑛/4 = 𝑛/8. Since, on the
other hand, OPT = 𝒪(1), we have established a linear competitive ratio.

Therefore, even the competitive ratio can be very high in the worst case.
As a consequence, we will only study the worst-case runtime of our coating
algorithm in the following section. As it turns out, our algorithm is worst-case
optimal up to constant factors and is therefore as performant as possible
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3.4.2. Worst-Case Number of Rounds

In this section, we show that our algorithm solves the coating problem within a
linear number of rounds w.h.p. In doing so, we present a simpler synchronous
parallel model for particle activations that we can use to analyze the worst-
case number of rounds in Subsection 3.4.2.1. Subsection 3.4.2.2 presents the
analysis of the number of rounds required to coat the surface layer. Finally, in
Subsection 3.4.2.3, we analyze the number of rounds required to fill all other
coating layers once the surface layer has been filled.

Recall that 𝐵𝑖 denotes the number of nodes in 𝐺eqt at distance 𝑖 from object
𝑂 (i.e., the number of nodes in layer 𝑖). Let 𝑁 be the layer number of the
final layer for 𝑛 particles: i.e., 𝑁 satisfies ∑𝑁−1

𝑗=1 𝐵𝑗 < 𝑛 ≤ ∑𝑁
𝑗=1 𝐵𝑗. Layer 𝑖 is

said to be complete if every node in layer 𝑖 is occupied by a contracted retired
particle (for 𝑖 < 𝑁), or if all particles have reached a node such that they are
contracted and never move again (for 𝑖 = 𝑁). Throughout the analysis we
revisit the notion of the graph 𝐴(𝐶) as defined in Section 3.3.
In order to precisely argue about the different kind of movements that a

particle can perform, we make our notation of movements a bit more explicit.
A movement executed by a particle 𝑝 can be either a sole contraction in which
𝑝 contracts and leaves a node unoccupied, a sole expansion in which 𝑝 expands
into an adjacent unoccupied node, a handover contraction with 𝑝′ in which
𝑝 contracts and forces its contracted neighbor 𝑝′ to expand into the node
it vacates, or a handover expansion with 𝑝′ in which 𝑝 expands into a node
currently occupied by its expanded neighbor 𝑝′, forcing 𝑝′ to contract.

3.4.2.1. From Asynchronous to Parallel Schedules

In this section, we show that instead of analyzing our algorithm for asynchronous
activations of particles, it suffices to consider a much simpler model of parallel
activations of particles. The idea we use here is an extension of the technique
we developed in [Der+16b]. We define a movement schedule to be a sequence
of particle system configurations (𝐶0, … , 𝐶𝑡).

Definition 3.24. A movement schedule (𝐶0, … , 𝐶𝑡) is called a parallel schedule
if (i) in each 𝐶𝑖 every particle is either expanded or contracted, and every node
of 𝐺eqt is occupied by at most one particle and (ii) for every 𝑖 ≥ 0, 𝐶𝑖+1 is
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reached from 𝐶𝑖 such that for every particle 𝑝 one of the following properties
holds:

(a) 𝑝 occupies the same node(s) in 𝐶𝑖 and 𝐶𝑖+1,

(b) 𝑝 expands into an adjacent node that was empty in 𝐶𝑖,

(c) 𝑝 contracts, leaving the node occupied by its tail empty in 𝐶𝑖+1, or

(d) 𝑝 is part of a handover with a neighboring particle 𝑝′.

While these properties allow at most one contraction or expansion per particle
in moving from 𝐶𝑖 to 𝐶𝑖+1, multiple particles may move in this time.

Consider an arbitrary fair asynchronous activation sequence 𝐴 for a particle
system and let 𝐶(𝐴)

𝑖 , for 0 ≤ 𝑖 ≤ 𝑡, be the particle system configuration at
the end of asynchronous round 𝑖 in 𝐴 if each particle moves according to
Algorithm 1. A forest schedule 𝒮 = (𝐴, (𝐶0, … , 𝐶𝑡)) is a parallel schedule
(𝐶0, … , 𝐶𝑡) with the property that 𝐴(𝐶0) is a forest of trees, and each particle
𝑝 follows the unique path 𝑃𝑝 which it would have followed according to 𝐴,
starting from its node in 𝐶0. This implies that 𝐴(𝐶𝑖) remains a forest of trees
or a ring of trees for every 1 ≤ 𝑖 ≤ 𝑡. A forest schedule is said to be greedy
if all particles perform movements according to Definition 3.24 of a parallel
schedule in the direction of their unique paths whenever possible.
We begin our analysis with a result that is critical to both describing

configurations of particles in greedy forest schedules and quantifying the
amount of progress that greedy forest schedules make over time. Specifically,
we show that if a forest’s configuration is well-behaved at the start, then it
remains so throughout its greedy forest schedule, guaranteeing that progress is
made once every two configurations.

Lemma 3.25. Given any fair asynchronous activation sequence 𝐴, consider
any greedy forest schedule (𝐴, (𝐶0, … , 𝐶𝑡)). If every expanded parent in 𝐶0 has
at least one contracted child, then every expanded parent in 𝐶𝑖 also has at least
one contracted child for 1 ≤ 𝑖 ≤ 𝑡.

Proof. Suppose to the contrary that 𝐶𝑖 is the first configuration that contains
an expanded parent 𝑝 which has expanded children only. We consider all
possible expanded and contracted states of 𝑝 and its children in 𝐶𝑖−1 and show
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that none of them can result in 𝑝 and its children all being expanded in 𝐶𝑖.
First suppose 𝑝 is expanded in 𝐶𝑖−1; then by supposition, 𝑝 has a contracted
child 𝑞. By Definition 3.24, 𝑞 cannot perform any movements with its children
(if they exist), so 𝑝 performs a handover contraction with 𝑞, yielding 𝑝 being
contracted in 𝐶𝑖, which is a contradiction. So suppose 𝑝 is contracted in 𝐶𝑖−1.
We know 𝑝 performs either a handover with its parent or a sole expansion in
direction 𝑝.𝑑𝑖𝑟 since it is expanded in 𝐶𝑖 by supposition. Thus, any child of
𝑝 in 𝐶𝑖−1 — say 𝑞 — does not execute a movement with 𝑝 in moving from
𝐶𝑖−1 to 𝐶𝑖. Instead, if 𝑞 is contracted in 𝐶𝑖−1 then it remains contracted in
𝐶𝑖 since it is only permitted to perform a handover with its unique parent 𝑝;
otherwise, if 𝑞 is expanded, it performs either a sole contraction if it has no
children or a handover with one of its contracted children, which it must have
by supposition. In either case, 𝑝 has a contracted child in 𝐶𝑖, which is also a
contradiction.

As a final observation, two trees of the forest may “merge” when the super-
root 𝑠 of one tree performs a sole expansion into an unoccupied node adjacent
to a particle 𝑞 of another tree. However, 𝑠 is a root and thus defines 𝑞 as its
parent only after performing a handover expansion with it; thus, the lemma
holds in this case as well.

For any particle 𝑝 in a configuration 𝐶 of a forest schedule, we define its head
distance 𝑑ℎ(𝑝, 𝐶) (resp., tail distance 𝑑𝑡(𝑝, 𝐶)) to be the number of edges along
𝑃𝑝 from the head (resp., tail) of 𝑝 to the end of 𝑃𝑝. Depending on whether
𝑝 is contracted or expanded, we have 𝑑ℎ(𝑝, 𝐶) ∈ {𝑑𝑡(𝑝, 𝐶), 𝑑𝑡(𝑝, 𝐶) − 1}. For
any two configurations 𝐶 and 𝐶′ and any particle 𝑝, we say that 𝐶 dominates
𝐶′ w.r.t. 𝑝, denoted by 𝐶(𝑝) ⪰ 𝐶′(𝑝), if and only if 𝑑ℎ(𝑝, 𝐶) ≤ 𝑑ℎ(𝑝, 𝐶′) and
𝑑𝑡(𝑝, 𝐶) ≤ 𝑑𝑡(𝑝, 𝐶′). We say that 𝐶 dominates 𝐶′, denoted 𝐶 ⪰ 𝐶′, if and
only if 𝐶 dominates 𝐶′ with respect to every particle. We now can show the
following lemma.

Lemma 3.26. Given any fair asynchronous activation sequence 𝐴 which begins
at an initial configuration 𝐶(𝐴)

0 in which every expanded parent has at least
one contracted child, there is a greedy forest schedule 𝒮 = (𝐴, (𝐶0, … , 𝐶𝑡)) with
𝐶0 = 𝐶(𝐴)

0 such that 𝐶(𝐴)
𝑖 ⪰ 𝐶𝑖 for all 0 ≤ 𝑖 ≤ 𝑡.

Proof. We first introduce some supporting notation. Let 𝑀(𝑝) = 𝑝(1), 𝑝(2), …
be the sequence of movements 𝑝 executes according to 𝐴. Let 𝑀𝑖(𝑝) denote
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the remaining subsequence of movements in 𝑀(𝑝) if the forest schedule reaches
𝐶𝑖, and let 𝑚𝑖(𝑝) denote the first movement in 𝑀𝑖(𝑝). Moreover, a movement
𝑚𝑝 of a particle 𝑝 is said to be compatible with a movement 𝑚𝑞 of particle 𝑞 if
the execution of 𝑚𝑝 is still possible after 𝑚𝑞 is executed and vice versa.

Lemma 3.27. A greedy forest schedule 𝒮 = (𝐴, (𝐶0, … , 𝐶𝑡)) can be constructed
from configuration 𝐶0 = 𝐶(𝐴)

0 such that, for every 0 ≤ 𝑖 ≤ 𝑡, configuration 𝐶𝑖

is obtained from 𝐶𝑖−1 by executing only the movements of a greedily selected,
mutually compatible subset of {𝑚𝑖−1(𝑝) ∶ 𝑝 ∈ 𝑃}.

Proof. Argue by induction on 𝑖, the current configuration number. 𝐶0 is
trivially obtained, as it is the initial configuration. Assume by induction that
the claim holds up to 𝐶𝑖−1. For 𝑘 ≤ 𝑛, let 𝑀𝑖−1 = {𝑚𝑖−1(𝑝1), … , 𝑚𝑖−1(𝑝𝑘)}
be the greedily selected, mutually compatible subset of movements that 𝒮
performs in moving from 𝐶𝑖−1 to 𝐶𝑖. Suppose to the contrary that a movement
𝑚′(𝑝) ∉ 𝑀𝑖−1 is executed by a particle 𝑝 ∈ 𝑃. It can be easily seen that
𝑚′(𝑝) cannot be 𝑚𝑖−1(𝑝), since 𝑚𝑖−1(𝑝) was excluded when 𝑀𝑖−1 was greedily
selected. Thus, it must be incompatible with one or more of the selected
movements and cannot be executed at this time. So 𝑚′(𝑝) ≠ 𝑚𝑖−1(𝑝), and we
consider the following cases:

(a) 𝑚𝑖−1(𝑝) is a sole contraction. Then 𝑝 is expanded and has no children
in 𝐶𝑖−1, so we must have 𝑚′(𝑝) = 𝑚𝑖−1(𝑝), since there are no other
movements 𝑝 could execute, which is a contradiction.

(b) 𝑚𝑖−1(𝑝) is a sole expansion. Then 𝑝 is contracted and has no parent
in 𝐶𝑖−1, so we must have 𝑚′(𝑝) = 𝑚𝑖−1(𝑝), since there are no other
movements 𝑝 could execute, which is a contradiction.

(c) 𝑚𝑖−1(𝑝) is a handover contraction with one of its children 𝑞. Then at
some time in 𝒮 before reaching 𝐶𝑖−1, 𝑞 became a descendant of 𝑝; thus,
𝑞 must also be a descendant of 𝑝 in 𝐶𝑖−1. If 𝑞 is not a child of 𝑝 in
𝐶𝑖−1, there exists a particle 𝑧 ∉ {𝑝, 𝑞} such that 𝑞 is a descendant of
𝑧, which is in turn a descendant of 𝑝. So in order for 𝑚𝑖−1(𝑝) to be a
handover contraction with 𝑞, 𝑀(𝑧) must include actions which allow 𝑧
to “bypass” its ancestor 𝑝. However, this is impossible according to our
algorithm, since particles follow their predetermined path in the tree. So
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𝑞 has to be a child of 𝑝 in 𝐶𝑖−1 and is contracted at the time 𝑚𝑖−1(𝑝)
is performed. If 𝑞 is also contracted in 𝐶𝑖−1, then once again we must
have 𝑚′(𝑝) = 𝑚𝑖−1(𝑝). Otherwise, 𝑞 is expanded in 𝐶𝑖−1 and must have
become so before 𝐶𝑖−1 was reached. But this yields a contradiction: since
𝒮 is greedy, 𝑞 would have contracted prior to this point by executing
either a sole contraction if it has no children, or a handover contraction
with a contracted child whose existence is guaranteed by Lemma 3.25,
since every expanded parent in 𝐶0 has a contracted child.

(d) 𝑚𝑖−1(𝑝) is a handover expansion with 𝑞, its unique parent. Then we must
have that 𝑚𝑖−1(𝑞) is a handover contraction with 𝑝, and an argument
analogous to that of Case 3 follows.

We conclude our proof by showing that each configuration of the greedy
forest schedule 𝒮 constructed according to Lemma 3.27 is dominated by its
asynchronous counterpart. We argue by induction on 𝑖, the configuration
number. Since 𝐶0 = 𝐶(𝐴)

0 , we have that 𝐶(𝐴)
0 ⪰ 𝐶0. Assume by induction that

for all rounds 0 ≤ 𝑟 ≤ 𝑖 − 1, we have 𝐶(𝐴)
𝑟 ⪰ 𝐶𝑟. Consider any particle 𝑝. Since

𝒮 is constructed using the exact set of movements 𝑝 executes according to 𝐴
and each time 𝑝 moves, it decreases either its head distance or tail distance by
1, it suffices to show that 𝑝 has performed at most as many movements in 𝒮
up to 𝐶𝑖 as it has according to 𝐴 up to 𝐶(𝐴)

𝑖 .
If 𝑝 does not perform a movement between 𝐶𝑖−1 and 𝐶𝑖, we trivially have

𝐶(𝐴)
𝑖 (𝑝) ⪰ 𝐶𝑖(𝑝). Otherwise, 𝑝 performs movement 𝑚𝑖−1(𝑝) to obtain 𝐶𝑖 from

𝐶𝑖−1. If 𝑝 has already performed 𝑚𝑖−1(𝑝) according to 𝐴 before reaching 𝐶(𝐴)
𝑖−1,

then clearly 𝐶(𝐴)
𝑖 (𝑝) ⪰ 𝐶𝑖(𝑝). Otherwise, 𝑚𝑖−1(𝑝) must be the next movement

𝑝 is to perform according to 𝐴, since 𝑝 has performed the same sequence of
movements in the asynchronous execution as it has in 𝒮 up to the respective
rounds 𝑖 − 1, and thus has equal head and tail distances in 𝐶𝑖−1 and 𝐶(𝐴)

𝑖−1. It
remains to show that 𝑝 can indeed perform 𝑚𝑖−1(𝑝) between 𝐶(𝐴)

𝑖−1 and 𝐶(𝐴)
𝑖 .

If 𝑚𝑖−1(𝑝) is a sole expansion, then 𝑝 is the super-root of its tree (in both 𝐶𝑖−1

and 𝐶(𝐴)
𝑖−1) and must also be able to expand in 𝐶(𝐴)

𝑖−1. Similarly, if 𝑚𝑖−1(𝑝) is a
sole contraction, then 𝑝 has no children (in both 𝐶𝑖−1 and 𝐶(𝐴)

𝑖−1) and must be
able to contract in 𝐶(𝐴)

𝑖−1. If 𝑚𝑖−1(𝑝) is a handover expansion with its parent 𝑞,
then 𝑞 must be expanded in 𝐶𝑖−1. Parent 𝑞 must also be expanded in 𝐶(𝐴)

𝑖−1;
otherwise 𝑑ℎ(𝑞, 𝐶(𝐴)

𝑖−1) > 𝑑ℎ(𝑞, 𝐶𝑖−1), contradicting the induction hypothesis.
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An analogous argument holds if 𝑚𝑖−1(𝑝) is a handover contraction with one of
its contracted children. Therefore, in any case we have 𝐶(𝐴)

𝑖 (𝑝) ⪰ 𝐶𝑖(𝑝) and,
since the choice of 𝑝 was arbitrary, 𝐶(𝐴)

𝑖 ⪰ 𝐶𝑖.

We can show a similar dominance result when considering complaint flags.

Definition 3.28. A movement schedule (𝐶0, … , 𝐶𝑡) is called a complaint-based
parallel schedule if each 𝐶𝑖 is a valid configuration of a particle system in which
every particle holds at most one complaint flag and for every 𝑖 ≥ 0, 𝐶𝑖+1 is
reached from 𝐶𝑖 such that for every particle 𝑝 one of the following properties
holds:

(a) 𝑝 does not hold a complaint flag and property (a), (c), or (d) of Def-
inition 3.24 holds,

(b) 𝑝 holds a complaint flag 𝑓 and expands into an adjacent node that was
empty in 𝐶𝑖, consuming 𝑓,

(c) 𝑝 forwards a complaint flag 𝑓 to a neighboring particle 𝑝′ which either
does not hold a complaint flag in 𝐶𝑖 or is also forwarding its complaint
flag.

A complaint-based forest schedule 𝒮 = (𝐴, (𝐶0, … , 𝐶𝑡)) has the same proper-
ties as a forest schedule, with the exception that (𝐶0, … , 𝐶𝑡) is a complaint-
based parallel schedule as opposed to a parallel schedule. A complaint-based
forest schedule is said to be greedy if all particles perform movements according
to the Definition 3.28 in the direction of their unique paths whenever possible.

We can now extend the dominance argument to hold with respect to complaint
distance in addition to head and tail distances. For any particle 𝑝 holding a
complaint flag 𝑓 in configuration 𝐶, we define its complaint distance 𝑑𝑐(𝑓, 𝐶)
to be the number of edges along 𝑃𝑝 from the node 𝑝 occupies to the end
of 𝑃𝑝. For any two configurations 𝐶 and 𝐶′ and any complaint flag 𝑓, we
say that 𝐶 dominates 𝐶′ w.r.t. 𝑓, denoted 𝐶(𝑓) ⪰ 𝐶′(𝑓), if and only if
𝑑𝑐(𝑓, 𝐶) ≤ 𝑑𝑐(𝑓, 𝐶′). Extending the previous notion of dominance, we say that
𝐶 dominates 𝐶′, denoted 𝐶 ⪰ 𝐶′, if and only if 𝐶 dominates 𝐶′ with respect
to every particle and with respect to every complaint flag.
It is also possible to construct a greedy complaint-based forest schedule

whose configurations are dominated by their asynchronous counterparts, as we
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did for greedy forest schedules in Lemma 3.26. Many of the details are the
same, so to avoid redundancy we highlight the key differences here. The most
obvious difference is the inclusion of complaint flags. Definition 3.28 restricts
particles to hold at most one complaint flag at a time, where Algorithm 3 allows
a capacity of two. This allows the asynchronous execution of our algorithm
to not fall behind the parallel schedule in terms of forwarding complaint flags.
Basically, Definition 3.28 allows a particle 𝑝 holding a complaint flag 𝑓 in a
configuration 𝐶𝑖 to forward 𝑓 to its parent 𝑞 in 𝐶𝑖+1 even if 𝑞 also holds a
own complaint flag in 𝐶𝑖, as long as 𝑞 is also forwarding its flag in 𝐶𝑖+1. The
asynchronous execution does not have this luxury of synchronized actions.
Thus, the mechanism of buffering up to two complaint flags at a time allows it
to mimic the pipelining of forwarding complaint flags that is possible within
two configurations of a complaint-based parallel schedule.

Another slight difference is that a contracted particle cannot expand into an
empty adjacent node unless it holds a complaint flag to consume. However,
this restriction reflects Algorithm 4, so once again the greedy complaint-based
forest schedule can be constructed directly from the movements taken in the
asynchronous execution. Moreover, since this restriction can only cause a
contracted particle to remain contracted, the conditions of Lemma 3.25 are
still upheld. Thus, we obtain the following lemma:

Lemma 3.29. Given any fair asynchronous activation sequence 𝐴 which
begins at an initial configuration 𝐶(𝐴)

0 in which every expanded parent has at
least one contracted child, there is a greedy complaint-based forest schedule
𝒮 = (𝐴, (𝐶0, … , 𝐶𝑡)) with 𝐶0 = 𝐶(𝐴)

0 such that 𝐶(𝐴)
𝑖 ⪰ 𝐶𝑖 for all 0 ≤ 𝑖 ≤ 𝑡.

By Lemmas 3.26 and 3.29, we can easily deduce an upper bound for the
number of rounds required by the asynchronous execution, once we have an
upper bound for the time it takes a greedy forest schedule to reach a final
configuration. Hence, the proofs in the remaining two subsections serve to
upper bound the number of parallel rounds (i.e., number of configurations)
any greedy forest schedule would require to solve the coating problem for a
given valid instance (𝑃 , 𝑂). Let 𝒮∗ = (𝐴, (𝐶0, … , 𝐶𝑘)) be such a greedy forest
schedule, where 𝐶0 is the initial configuration of the particle system 𝑃 (of all
contracted particles) and 𝐶𝑘 is the final coating configuration.

In Sections 3.4.2.2 and 3.4.2.3, we upper bound the number of parallel rounds
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required by 𝒮∗ to coat the surface layer and higher layers, respectively. More
specifically, we bound the worst-case time it takes to complete a layer 𝑖 once
layers 1, … , 𝑖 − 1 have been completed. For convenience, we do not differentiate
between complaint-based and regular forest schedules in the following sections,
since the same dominance result holds whether or not complaint flags are
considered. To prove these bounds, we need one last definition: a forest–path
schedule (or short 𝑓𝑝 schedule) 𝒮 = (𝐴, (𝐶0, … , 𝐶𝑡), 𝐿) is a forest schedule
(𝐴, (𝐶0, … , 𝐶𝑡)) with the property that all the trees of 𝐴(𝐶0) are rooted at
a path 𝐿 = (𝑣1, 𝑣2 … , 𝑣ℓ) ⊆ 𝐺eqt, and each particle 𝑝 must traverse 𝐿 in the
same direction.

3.4.2.2. Surface Layer: Complaint-based Coating and Leader Election

Our algorithm must first organize the particles using the spanning forest
primitive, whose runtime is easily bounded. In the following we use the term
asynchronous round to emphasize that we consider the runtime of our Universal
Coating Algorithm, and not the runtime of 𝒮∗.

Lemma 3.30. Following the spanning forest primitive, the particles form a
spanning forest within 𝒪(𝑛) asynchronous rounds.

Proof. Initially all particles are idle. In each round any idle particle adjacent to
(i) the object, (ii) an active (follower or root) particle, or (iii) a retired particle
becomes active. It then sets its parent flag if it is a follower, or becomes the
root of a tree if it is adjacent to the object or a retired particle. In each round
at least one particle becomes active, so it takes 𝒪(𝑛) rounds in the worst case
until all particles join the spanning forest.

For ease of presentation, we assume that the particle system is of sufficient
size to fill the surface layer: i.e., 𝐵1 ≤ 𝑛. The proofs can easily be extended
to handle the case when 𝐵1 > 𝑛. We also assume that the root of a tree
also generates a complaint flag upon its activation (this assumption does not
hurt our argument since it only increases the number of the flags generated in
the system). Let 𝒮1 = (𝐴, (𝐶0, … , 𝐶𝑡1

), 𝐿1) be the greedy 𝑓𝑝 schedule where
(𝐴, (𝐶0, … , 𝐶𝑡1

)) is a truncated version of 𝒮∗, where 𝐶𝑡1
is the configuration of

𝒮∗ in which the surface layer becomes complete, and 𝐿1 is the path of nodes in
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the surface layer. The following lemma shows that the algorithm makes steady
progress towards completing the surface layer.

Lemma 3.31. Consider a configuration 𝑖 of the greedy 𝑓𝑝 schedule 𝒮1, where
0 ≤ 𝑖 ≤ 𝑡1 − 2. Then within the next two configurations of 𝒮1, (i) at least one
complaint flag is consumed, (ii) at least one more complaint flag reaches a
particle in the surface layer, (iii) all remaining complaint flags move one node
closer to a super-root along 𝐿1, or (iv) the surface layer is completely filled
(possibly with some expanded particles).

Proof. If the surface layer is filled, (𝑖𝑣) is satisfied; otherwise, there exists at
least one super-root in 𝐴(𝐶𝑖). We consider several cases:

(a) There exists a super-root 𝑠 in 𝐴(𝐶𝑖) which holds a complaint flag. If
𝑠 is contracted, then it can expand and consume its flag in the next
configuration. Otherwise, consider the case when 𝑠 is expanded. If it has
no children, then within the next two configurations it can contract and
expand again, consuming its complaint flag. Otherwise, by Lemma 3.25,
𝑠 must have a contracted child with which it can perform a handover to
become contracted in 𝐶𝑖+1 and then expand and consume its complaint
flag by 𝐶𝑖+2. In any case, (i) is satisfied.

(b) No super-root in 𝐴(𝐶𝑖) holds a complaint flag and not all complaint flags
have been moved from follower particles to particles in the surface layer.
Let 𝑝1, 𝑝2, … , 𝑝𝑧 be a sequence of particles in the surface layer such that
each particle holds a complaint flag, no follower child of any particle
except 𝑝𝑧 holds a complaint flag, and no particles between the next
super-root 𝑠 and 𝑝1 hold complaint flags. Then, as each 𝑝𝑖 forwards its
flag to 𝑝𝑖−1 according to Definition 3.28, the follower child of 𝑝𝑧 holding
a flag is able to forward its flag to 𝑝𝑧, satisfying (ii).

(c) No super-root in 𝐴(𝐶𝑖) holds a complaint flag and all remaining complaint
flags are held by particles in the surface layer. By Definition 3.28, since
no preference needs to be given to flags entering the surface layer, all
remaining flags move one node closer to a super-root in each configuration,
satisfying (iii).
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We use Lemma 3.31 to show first that the surface layer is filled with particles
(some possibly still expanded) in 𝒪(𝑛) configurations of 𝒮∗. From that point
on, in another 𝒪(𝑛) configurations, one can guarantee that expanded particles
on the surface layer contract in a handover with a follower particle; hence all
particles in the surface layer are contracted, as we see in the following lemma.

Lemma 3.32. After 𝒪(𝑛) configurations of 𝒮∗, the surface layer must be filled
with contracted particles.

Proof. As an intermediate step we first prove the following claim.

Claim. After 8𝐵1 + 2 configurations of 𝒮∗, the surface layer must be filled with
particles.

Suppose to the contrary that after 8𝐵1 + 2 configurations, the surface layer
is not completely filled with particles. Then none of these configurations
satisfied case (iv) of Lemma 3.31. Thus, either case (i), case (ii), or case (iii) is
satisfied every two configurations. Case (i) can be satisfied at most 𝐵1 times
(accounting for at most 2𝐵1 configurations), since a super-root expands into an
unoccupied node of the surface layer each time a complaint flag is consumed.
Case (iii) can also be satisfied at most 𝐵1 times (accounting again for at most
2𝐵1 configurations), since once all remaining complaint flags are in the surface
layer, every flag must reach a super-root in 𝐵1 moves. Thus, the remaining
4𝐵2 + 2 configurations have to satisfy case (ii) for 2𝐵1 + 1 times, implying
that 2𝐵1 + 1 flags reached particles in the surface layer from follower children.
But each particle can hold at most one complaint flag in 𝒮∗, so at least 𝐵1 + 1
flags must have been consumed, in order to provide enough memory space in
particles already on 𝐵1. Therefore the super-roots have collectively expanded
into at least 𝐵1 + 1 unoccupied nodes, which is a contradiction.

By the claim, it takes at most 8𝐵1 + 2 configurations until the surface layer
is completely filled with particles (some possibly expanded). In at most another
𝐵1 configurations, every expanded particle in the surface layer contracts in a
handover with a follower particle (since 𝐵1 ≤ 𝑛), and hence all particles in the
surface layer are contracted after 𝒪(𝐵1) = 𝒪(𝑛) configurations.

Once the surface layer is completely filled, the leader election primitive can
proceed. From [Day+17] we can deduce the following runtime bound, which
can be directly transferred since we assume that the surface layer is filled.
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Lemma 3.33. Within 𝒪(𝑛) asynchronous rounds, a node of the surface layer
has been elected as the leader node, w.h.p.

Once a leader node has been elected and either no more followers exist (if
𝑛 ≤ 𝐵1) or all nodes are completely filled by contracted particles (which can
be checked in an additional 𝒪(𝐵1) asynchronous rounds), the particle currently
occupying the leader node becomes the leader particle. Once a leader has
emerged, the particles on the surface layer retire, which takes 𝒪(𝐵1) further
asynchronous rounds.

3.4.2.3. Higher Layers

We again use the dominance results we proved in Section 3.4.2.1 to focus on
parallel schedules when proving an upper bound on the worst-case number of
asynchronous rounds — denoted by 𝐿𝑎𝑦𝑒𝑟(𝑖) — for building layer 𝑖 once layer
𝑖 − 1 is complete, for 2 ≤ 𝑖 ≤ 𝑁. In doing so, we show the following lemma,
which provides a more general result that can be used for this purpose.

Lemma 3.34. Consider any greedy 𝑓𝑝 schedule 𝒮 = (𝐴, (𝐶0, … , 𝐶𝑡), 𝐿) with
𝐿 = (𝑣1, 𝑣2, … , 𝑣ℓ) and any 𝑘 such that 1 ≤ 𝑘 ≤ ℓ. If every expanded parent in
𝐶0 has at least one contracted child, then in at most 2(ℓ + 𝑘) configurations,
nodes 𝑣ℓ−𝑘+1 … 𝑣ℓ are occupied by contracted particles.

Proof. Let 𝑠 be the super-root closest to 𝑣ℓ, and suppose 𝑠 initially occupies
node 𝑣𝑖 in 𝐶0. Additionally, suppose there are at least 𝑘 active particles in 𝐶0

(otherwise, we do not have sufficient particles to occupy 𝑘 nodes of 𝐿). Argue
by induction on 𝑘, the number of nodes in 𝐿 starting with 𝑣ℓ which must be
occupied by contracted particles. First suppose that 𝑘 = 1. By Lemma 3.25,
every expanded parent has at least one contracted child in any configuration
𝐶𝑗, so 𝑠 is always able to either expand forward into an unoccupied node of 𝐿
if it is contracted or contract as part of a handover with one of its children if
it is expanded. Thus, in at most 2(ℓ + 𝑘) = 2ℓ + 2 configurations, 𝑠 has moved
forward ℓ nodes, is contracted, and occupies its final node 𝑣ℓ−𝑘+1 = 𝑣ℓ.
Now suppose that 𝑘 > 1 and that each node 𝑣ℓ−𝑥+1, for 1 ≤ 𝑥 ≤ 𝑘 − 1,

becomes occupied by a contracted particle in at most 2(ℓ+𝑘−1) = 2(ℓ+𝑘)−2
configurations. It suffices to show that 𝑣ℓ−𝑘+1 also becomes occupied by
a contracted particle in at most two additional configurations. Let 𝑝 be
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the particle currently occupying 𝑣ℓ−𝑘+1 (such a particle must exist since we
supposed we had sufficient particles to occupy 𝑘 nodes and 𝒮 ensures the
particles follow this unique path). If 𝑝 is contracted in 𝐶2(ℓ+𝑘)−2, then it
remains contracted and occupying 𝑣ℓ−𝑘+1, so we are done. Otherwise, if 𝑝 is
expanded, it has a contracted child 𝑞 by Lemma 3.25. Particles 𝑝 and 𝑞 thus
perform a handover in which 𝑝 contracts to occupy only 𝑣ℓ−𝑘+1 at 𝐶2(ℓ+𝑘)−1,
proving the claim.

For convenience, we introduce some additional notation. Let 𝑛𝑖 denote the
number of particles of the system that cannot occupy to layers 1 through 𝑖 − 1
(i.e., 𝑛𝑖 = 𝑛 − ∑𝑖−1

𝑗=1 𝐵𝑗) and let 𝑡𝑖 (resp., 𝐶𝑡𝑖
) be the configuration in which

layer 𝑖 becomes complete.
When coating some layer 𝑖, each root particle either moves either (i) through

the nodes in layer 𝑖 in the set direction 𝑑𝑖𝑟 (CW or CCW) for layer 𝑖, or (ii)
through the nodes in layer 𝑖 + 1 in the opposite direction over the already
retired particles in layer 𝑖 until it finds an empty node in layer 𝑖. We bound
the worst-case scenario for these two movements independently in order to get
an upper bound on 𝐿𝑎𝑦𝑒𝑟(𝑖). Let 𝐿𝑖 = (𝑣1, … , 𝑣𝐵𝑖

) be the path of nodes in
layer 𝑖 listed in the order that they appear from the marker node 𝑣1 following
direction 𝑑𝑖𝑟, and let 𝒮𝑖 = (𝐴, (𝐶𝑡𝑖−1+1, … , 𝐶𝑡𝑖

), 𝐿𝑖) be a greedy 𝑓𝑝 schedule
where (𝐴, (𝐶𝑡𝑖−1+1, … , 𝐶𝑡𝑖

)) is the section of 𝒮∗ in which layer 𝑖 is coated. By
Lemma 3.34, it would take 𝒪(𝐵𝑖) configurations for all case (i) movements to
complete; an analogous argument shows that all case (ii) movements complete
in 𝒪(𝐵𝑖+1) = 𝒪(𝐵𝑖) configurations. This implies the following lemma:

Lemma 3.35. Starting from configuration 𝐶𝑡𝑖−1+1, the worst-case additional
number of configurations for layer 𝑖 to become complete is 𝒪(𝐵𝑖).

Putting it all together, for layers 2 through 𝑁:

Lemma 3.36. The worst-case number of configurations for 𝒮∗ to coat layers
2 through 𝑁 is 𝒪(𝑛).

Proof. Starting from configuration 𝐶𝑡1+1, it follows from Lemma 3.35 that
the worst-case number of configurations for 𝒮∗ to reach a legal coating of the
object is upper bounded by

𝑁
∑
𝑖=2

𝐿𝑎𝑦𝑒𝑟(𝑖) ≤ 𝑐
𝑁

∑
𝑖=2

𝐵𝑖 = 𝛩(𝑛),
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where 𝑐 > 0 is constant.

We can now combine all our results to prove the runtime of our algorithm.

Theorem 3.37. The total number of asynchronous rounds required for the
Universal Coating algorithm to reach a legal coating configuration, starting
from an arbitrary valid instance (𝑃 , 𝑂), is 𝒪(𝑛) w.h.p.

Proof. According to Lemma 3.30 it takes 𝒪(𝑛) asynchronous rounds until the
particles form a spanning forest. It then takes 𝒪(𝑛) configurations of 𝒮∗ to fill
the surface layer with contracted particles according to Lemma 3.32 and by
Lemmas 3.26 and 3.29 this is an upper bound for the runtime of our Universal
Coating Algorithm. After additional 𝒪(𝑛) asynchronous rounds w.h.p. (see
Lemma 3.33) a leader has been elected and the surface is complete. We can then
apply Lemma 3.36 to obtain that it takes an additional 𝒪(𝑛) configurations
to coat all higher layers, which is again an upper bound for our algorithm by
Lemmas 3.26 and 3.29.
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CHAPTER 4

Basic Shape Formation

” It can’t form complex machines. […] But it can form solid metal shapes.”
Scene from Terminator 2

Yielding any imaginable shape, most commonly referred to as shape
formation, is one of the most natural problems for self-organizing
programmable matter. The matter should change its shape based on

either user input or autonomous sensing and the constructed shape should also
scale with the size of the matter: i.e., the number of particles in the system. In
this chapter we focus on the problem of constructing basic geometric shapes.
In doing so, we introduce a general algorithmic framework for basic shape
formation problems. This framework constitutes of two algorithmic primitives:
the spanning forest primitive and the snake formation primitive. In order to
show the variability of this approach we present three concrete applications for
specific shape formation problems, namely the formation of a line, a hexagon
and a triangle.

Chapter Outline In Section 4.1 we formally define the three shape formation
problems that we investigate in this chapter. Section 4.2 introduces the two
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algorithmic primitives that constitute our framework. In the last three sections,
we apply our framework to solve the three different problems, starting with
the simplest shape – the line – in Section 4.3. The hexagon is considered in
Section 4.4 and the triangle in Section 4.5.

Chapter Basis The problem statement of hexagon and triangle shape forma-
tion, as well as the corresponding algorithms and the correctness analysis are
all based on the following publication:

2015 (with Z. Derakhshandeh, R. Gmyr, A. W. Richa and C. Schei-
deler). “An Algorithmic Framework for Shape Formation Problems
in Self-Organizing Particle Systems”. In: Proceedings of the Second
Annual International Conference on Nanoscale Computing and
Communication, NANOCOM’ 15, Boston, MA, USA, September
21-22, 2015, cf. [Der+15a].

The line shape formation problem, together with its algorithm and correctness
analysis, is based on:

2015 (with Z. Derakhshandeh, R. Gmyr, R. A. Bazzi, A. W. Richa
and C. Scheideler). “Leader Election and Shape Formation with
Self-organizing Programmable Matter”. In: DNA Computing and
Molecular Programming - 21st International Conference, DNA 21,
Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings,
cf. [Der+15b].

All runtime proofs in this chapter have not been published before.

4.1. Problem Statements

In the shape formation problem, a particle system has to reconfigure into a given
shape. We formally define a shape formation problem as a tuple 𝑀 = (𝐼, 𝐺)
where 𝐼 and 𝐺 are sets of connected configurations. We say 𝐼 is the set of
initial configurations and 𝐺 is the set of goal configurations. For any initial
configuration we assume that all particles are contracted and in an idle state.

Throughout this section we consider three different shape formation problems:
Line Shape Formation (ℒ𝒮ℱ), Hexagon Shape Formation (ℋ𝒮ℱ) and Triangle
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Shape Formation (𝒯𝒮ℱ). In the first problem, the desired goal shape is a
straight line, in the second one it is a hexagon, and in the third it is a triangle.
Accordingly, for the ℒ𝒮ℱ problem, 𝐺 consists of all configurations such that
the nodes occupied by the particles induce a straight line in 𝐺eqt. Similarly,
for the ℋ𝒮ℱ and the 𝒯𝒮ℱ problem, 𝐺 consists of all configurations that
constitute a hexagon in 𝐺eqt or a triangle in 𝐺eqt, respectively. Note that
depending on the number of particles the constructed shape may not necessarily
be a perfect hexagon or triangle: i.e., the outer layer of the constructed shape
may not be fully complete. We say an algorithm 𝒜 solves a shape formation
problem 𝑀 if for any execution of 𝒜 started on an arbitrary configuration of 𝐼,
𝒜 terminates (i.e., the execution eventually reaches a configuration in which
each particle does not move anymore) in a configuration of 𝐺.

Throughout our investigation of shape formation we assume that any initial
configuration contains one special particle which we call the seed particle. The
seed provides the starting point for constructing the respective shape. Note
that a seed particle could be established using a leader election algorithm
(e.g., [Der+15b; Day+17]) that is executed before shape formation starts.

4.2. Shape Formation Algorithm

The shape formation algorithm we propose builds upon an algorithmic primitive
that we introduced in Chapter 3. Before explaining the algorithm in detail, we
are going to reiterate some notions that we use in this section.
A particle can be in four different states: idle, follower, root, and retired.

Followers and roots are considered active. Initially, all particles are idle, except
for the seed particle, which is always in the retired state. In addition to its
state, each particle 𝑝 again maintains a constant number of flags (i.e., constant
size pieces of information visible to neighboring particles), in its local memory.
Again, we assume that every time a particle contracts, it contracts out of its
tail. Thus, the node occupied by the head of a particle is still occupied by that
particle after a contraction.
Generally speaking, the shape formation algorithms we propose progresses

as follows. Particles organize themselves into multiple disjoint trees, in which
the roots are non-retired particles adjacent to the partially constructed shape
that consists of retired particles. Root particles lead the way of their tree by
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moving in a predefined direction around the current structure.
The follower particles follow behind the leading root particles, hence the

system flattens out towards the direction of movement. Roots follow the
snake formation primitive to find the next node where the shape can be
extended. Once such a node is reached, they stop moving and become retired.
This process continues until all particles are retired. Note that the spanning
forest component of this general approach is the same for all presented shape
formation problems. The major difference is the rule which determines the
next node to be occupied in the shape structure.

4.2.1. Spanning Forest Primitive

The spanning forest primitive, which we already used in Chapter 3, is a building
block we use for all of our shape formation problems. The basic idea is the
same as before: i.e., particles are organized into a spanning forest to get a
straightforward mechanism for particles to move while preserving connectivity.
Since space is not an issue, we again present the full pseudocode in Algorithm 6.
Each particle continuously runs the spanning forest primitive until it becomes
retired. The major differences to the spanning forest primitive of Chapter 3 is
that root particles do not move around a given object and that there is no need
to have distinct moving directions CW and CCW. Instead, root particles move
around already retired particles in the direction given by RootDirection(𝑝)
(see Algorithm 8), namely in clockwise order, until they find a valid node to
retire on. Moreover, since there is no explicit notion of layers around an object,
the spanning forest itself and the handover (see Algorithm 7) become easier to
describe.

4.2.2. Snake Formation Primitive

Whereas the spanning forest primitive makes sure that particles organize them-
selves, the snake formation primitive is actually responsible for constructing
the desired shape. The snake formation specifies how particles retire, which,
by definition, is heavily dependent on the concrete problem that the shape
formation algorithm should solve. Therefore, we do not give an in-depth
description here, but instead describe the high level idea of the approach. The
concrete versions of the snake formation primitive (including pseudocode) that
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4.2. Shape Formation Algorithm

Algorithm 6 Spanning Forest Primitive for Shape Formation
A particle 𝑝 acts depending on its state as described below:

idle: If 𝑝 is adjacent to a retired particle, 𝑝 becomes a root particle.
If a neighbor 𝑝′ is a root or a follower, 𝑝 sets the flag 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡
to the label of the port to 𝑝′, and becomes a follower. If none
of the above applies, 𝑝 remains idle.

follower: If 𝑝 is contracted and adjacent to a retired particle, then 𝑝
becomes a root particle. If 𝑝 is contracted and has an expanded
parent, then 𝑝 initiates Handover(𝑝) (Algorithm 7). Otherwise,
if 𝑝 is expanded, it considers the following two cases: (i) if 𝑝 has
a contracted child particle 𝑞, then 𝑝 initiates Handover(𝑝);
(ii) if 𝑝 has no children and no idle neighbor, then 𝑝 contracts.

root: If 𝑝 is contracted, it first executes the corresponding snake forma-
tion algorithm (Algorithm 9, 10 or 11, for ℒ𝒮ℱ, ℋ𝒮ℱ or 𝒯𝒮ℱ
resp.) and can become retired, accordingly. If 𝑝 does not become
retired and is contracted, it calls RootDirection(𝑝) (Algo-
rithm 8) and tries to expand in that direction or, in case the node
is occupied by an expanded particle, initiates Handover(𝑝).
If 𝑝 is expanded, it considers the following two cases: (i) if 𝑝 has
a contracted child, then 𝑝 initiates Handover(𝑝); (ii) if 𝑝 has
no children and no idle neighbor, then 𝑝 contracts.

retired: 𝑝 performs no further action.

are used for the ℒ𝒮ℱ, ℋ𝒮ℱ and 𝒯𝒮ℱ, respectively, are explained in detail in
the corresponding sections.
The snake formation gets its name from the way the particles retire. The

seed is already retired in an initial state. It specifies a direction by a flag on a
port label, in which the structure of retired particles should grow. Throughout
this section, we use the flag 𝑝.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 for a retired particle 𝑝 to denote this
specific port and we call the node that this port points to the next valid node
to extend the shape. As soon as a contracted root occupies a valid node, it
retires and specifies the next valid node to grow the structure. Thereby, we get
an approach that scales naturally with the number of particles in the system.
From a global point of view, it seems like the structure is grown as a snake
of particles, since particles retire one-by-one and the 𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 pointers form
a spanning line through the structure of retired particles. Different rules for
snake formation realize different shapes.
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Algorithm 7 Handover(𝑝)
1: if 𝑝 is expanded then
2: if 𝑝 has at least one contracted child 𝑞 such that 𝑞.𝑝𝑎𝑟𝑒𝑛𝑡 points to the

tail of 𝑝 then
3: 𝑝 performs a handover with 𝑞
4: else
5: if 𝑝 is a follower and 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡 is expanded then
6: 𝑝 performs a handover with 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡
7: if 𝑝 is a root and RootDirection(𝑝) points to an expanded particle 𝑞

then
8: 𝑝 performs a handover with 𝑞

Algorithm 8 RootDirection(𝑝)
1: Let 𝑖 be the label of a port connected to a retired particle.
2: while 𝑖 points to a retired particle do
3: 𝑖 ← label of next port in counter-clockwise direction
4: return 𝑖

4.3. Line Shape Formation

As the first shape formation problem we consider the ℒ𝒮ℱ problem. The seed
is used as the starting point for the line of particles and specifies the direction
in which this line will grow.

In order to solve the ℒ𝒮ℱ problem, we use the retiring condition presented
in Algorithm 9 for the snake formation primitive. Particles retire at one
endpoint of the line. Initially, the seed particle 𝑠 sets the flag 𝑠.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟
to an arbitrary port (e.g., the one labeled 0). Following the spanning forest
primitive of Algorithm 6 any particle adjacent to a retired particle becomes a
root. Each root 𝑝 moves in a clockwise fashion around the structure of retired
particles (see Algorithm 8) until it finds the next node to extend the shape
(i.e., a node adjacent to a retired particle 𝑞 by a port flagged with 𝑞.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟)
and becomes retired. Once 𝑝 becomes retired, it sets the flag 𝑝.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 to
the port opposing the port that is connected to 𝑞 (see Algorithm 9). Thereby,
the line grows in one direction starting from the seed. Note that the seed could
also grow the line in two (opposing) directions from the get-go. However, this
neither effects the correctness nor the asymptotic runtime of our approach.

We say that the particle system makes progress if (i) an idle particle becomes
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Algorithm 9 Retirement Condition for ℒ𝒮ℱ
if 𝑝 is a contracted root then

if 𝑝 is adjacent to a retired particle 𝑝′ such that 𝑝′.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 points to 𝑝
then

Let 𝑖 by the port label of 𝑝 that points to 𝑝′

𝑝 sets 𝑝.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 on port (𝑖 + 3) mod 6
𝑝 becomes retired

active, (ii) a movement (i.e., an expansion, handover, or contraction) is executed,
or (iii) an active particle retires. To prove the correctness of our algorithm
we need the following lemma as an intermediate step. The lemma guarantees
progress throughout the execution of our algorithm.

Lemma 4.1. If a root particle exists, the system eventually makes progress.

Proof. If there exists an expanded root it eventually contracts according to
Lemma 3.12 of Subsection 3.3.2. If there is a contracted root 𝑝 that has an empty
node in RootDirection(𝑝) it expands as soon as it is activated. So assume
that all roots are contracted and that for every root RootDirection(𝑝)
points to an occupied node. By construction of our algorithm this means
that the whole structure of retired particles is surrounded by a layer of roots.
Consequently, one root occupies the node that is specified to be the continuation
of the snake formation (i.e., the node that 𝑞.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 points to, where 𝑞 is the
particle that retired last or the seed). This root eventually retires.

Theorem 4.2. The spanning forest primitive together with the snake formation
for the line solve the ℒ𝒮ℱ problem.

Proof. We need to show that the algorithm terminates and that when it does,
the formed shape is a straight line.
First, we show that the system eventually makes progress as long as non-

retired particles exist. According to Lemma 3.8 in Subsection 3.3.2, every
particle eventually becomes active. So assume that all particles are either active
or retired. If there exists at least one root, progress is guaranteed by Lemma 4.1.
Consider the case in which no root exists. According to the spanning forest
primitive, there exists at least one follower that is either adjacent to the seed
or to a retired particle. The next time this particle activates, it becomes either
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a root (i.e., Lemma 4.1 can be applied) or retired, which guarantees progress.
Thus the algorithm terminates.

Initially, the structure of retired particles contains only the seed particle
and the claim holds. By induction, we assume that 𝐶 is the first configuration
in which the current formed structure of retired particles contains 𝑘 retired
particles. By induction hypothesis, assume that those particles form a line
using 𝑘 particles. According to Algorithm 9, the only way a root 𝑝 can become
the (𝑘 + 1)th retired particle in or after 𝐶 is if it occupies the node that
𝑞.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 points to, where 𝑞 is the 𝑘-th retired particle in the line shape. By
construction the flag 𝑞.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 points to the node that extends the straight
line. Consequently, 𝑝 retires on node such that the retired structure is a line of
(𝑘 + 1)th particles.

We now want to bound the worst-case runtime of our algorithm. In doing so
we make use of the notions and results established in Chapter 3. Especially
the results of Subsection 3.4.2.1 are applicable for the ℒ𝒮ℱ and also for our
shape formation approach in general. We make use of Lemma 3.26: i.e.,
each configuration of a greedy forest schedule 𝒮 constructed according to
Lemma 3.27 is dominated by its asynchronous counterpart. Therefore, we
can use the dominance results and focus on parallel schedules when proving
an upper bound on the worst-case number of rounds. We will again use an
arbitrary fair asynchronous activation sequence 𝐴 for the particle system. Let
𝐿ℒ𝒮ℱ = (𝑣1, 𝑣2, … , 𝑣𝑛−1) ⊆ 𝐺eqt denote the unique path of nodes given by the
snake formation primitive for the ℒ𝒮ℱ, such that 𝑣1 is adjacent to the seed.

Lemma 4.3. Consider any greedy forest schedule 𝒮 = (𝐴, (𝐶0, … , 𝐶𝑡)) the
path 𝐿ℒ𝒮ℱ and any 𝑘 with 1 ≤ 𝑘 ≤ 𝑛. If every expanded parent in 𝐶0 has
at least one contracted child, then in at most 4𝑘 + 14 configurations, nodes
𝑣1 ⋯ 𝑣𝑘 are occupied by retired particles.

Proof. Let 𝑠 be the root that retires in 𝑣1 ∈ 𝐿ℒ𝒮ℱ according to 𝐶0, which is
well defined. Without loss of generality suppose there are at least 𝑘 active
particles in 𝐶0. We will prove by induction that after 2𝑘 + 𝛷(𝒮) configurations
the first 𝑘 nodes of 𝐿ℒ𝒮ℱ are occupied by a retired particle, where 𝛷(𝒮) is
shorthand for a term to collect any additional configurations that are required.
We later show how 𝛷(𝒮) can be upper bounded.
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First suppose that 𝑘 = 1. By Lemma 3.25, every expanded parent has at
least one contracted child in any configuration 𝐶𝑗, so 𝑠 is always able to either
expand forward into an unoccupied node if it is contracted or contract as part
of a handover with one of its children if it is expanded. If 𝑠 occupies 𝑣1 or is
adjacent to 𝑣1, it retires on 𝑣1 after at most 2 configurations. If this is not the
case we put the number of additional configurations needed in 𝛷(𝒮). Thus, in
at most 2(𝑘) + 𝛷(𝒮) configurations, 𝑠 is contracted, occupies 𝑣1 and retires.

Now suppose that 𝑘 > 1 and that each node 𝑣𝑖, for 1 ≤ 𝑖 ≤ 𝑘 −1, is occupied
by a retired particle in at most 2(𝑘 − 1) + 𝛷(𝒮) configurations. Let 𝑝 be the
particle that retires on 𝑣𝑘. Such a particle must exist since we supposed we had
sufficient active particles to occupy 𝑘 nodes and 𝒮 ensures that the particles
follow the unique path to valid nodes. If 𝑝 either occupies 𝑣𝑘 or a node adjacent
to 𝑣𝑘 and is contracted in 𝐶2(𝑘−1)+𝛷(𝒮) the induction follows immediately
similarly to the proof of Lemma 3.34: i.e., 𝑣𝑘 also becomes occupied by a
retired particle in at most two additional configurations. Otherwise, we again
add the additional configurations needed to 𝛷(𝒮).

Consequently, our induction is successful and we simply need to upper bound
𝛷(𝒮). For a configuration 𝐶𝑖 we define the distance between two nodes 𝑢, 𝑣
adjacent to the structure of retired particles (short 𝑑𝑖(𝑢, 𝑣)), or the particles
occupying those nodes, to be the number of edges on the path around the
structure of retired particles in clockwise order (i.e., their direction of travel).
Note that in the induction base we need to use 𝛷(𝒮) only if 𝑠 cannot occupy 𝑣1

in two configurations: i.e., 𝑑0(𝑠, 𝑣1) > 1. Additionally, 𝑑0(𝑠, 𝑣1) < 5, since 𝑠 is
connected to the seed in 𝐶0. In the induction step, we also add configurations
to 𝛷(𝒮) only if the particle 𝑝 that retires on 𝑣𝑘 cannot occupy 𝑣𝑘 in two
configurations. There are two scenarios in which this is possible, since 𝒮 is a
greedy schedule: (i) 𝑝 was not in the tree of 𝑠, but a root itself in 𝐶0 with
𝑑0(𝑝, 𝑠) > 1 or (ii) 𝑝 was in the tree of 𝑠 or another root in 𝐶0, but the tree
was structured in such a way that once 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡 retired, 𝑝 has to traverse the
whole structure of retired particles. We investigate both scenarios separately.

Let us consider the first scenario. Since only 6 particles can be adjacent
to the seed, one can easily show that the sum of 𝑑0(𝑠, 𝑣1) plus the distances
of consecutive particles around the seed in 𝐶0 is also upper bounded by 5.
Since, root particles in 𝐶0 can expand and contract until they merge with
another tree, they need at most two configurations to travel a distance of 1.
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Consequently, this part of 𝛷(𝒮) is upper bounded by 10.
For the second scenario, assume w.l.o.g. that 𝑝 is the 𝑘-th particle that retires

and that 𝐶𝑗 is the configuration in which 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡 retired. By assumption of
the scenario, 𝑑𝑗(𝑝, 𝑣𝑘) is at most the circumference of the retired structure: i.e.,
2𝑘 + 4 (since we construct a line) which we add to 𝛷(𝒮). Moreover, there is no
root between 𝑝 and 𝑣𝑘, since 𝑝 is the particle that retires next. Thus the tree
rooted at 𝑝 is the only tree in 𝐶𝑗. In all configurations after 𝐶𝑗 the tree will
flatten out along the structure of retired particles. Therefore, all followers in
the tree also move along the structure of retired particles before retiring. As a
consequence, the second scenario can occur only once, and a term linear in the
length of the retired structure is added only once to 𝒮.
Therefore, 𝛷(𝒮) is upper bounded by 2𝑘 + 14 and we get that in at most

4𝑘 + 14 configurations, nodes 𝑣1 ⋯ 𝑣𝑘 are occupied by retired particles.

Given any fair asynchronous activation sequence 𝐴, let 𝒮∗ = (𝐴, (𝐶0, … , 𝐶𝑘))
be a greedy forest schedule, where 𝐶0 is the initial configuration of the particle
system and 𝐶𝑘 is the final line configuration. We can now prove the following
theorem.

Theorem 4.4. The total number of asynchronous rounds required by our
algorithm to solve the ℒ𝒮ℱ problem is 𝒪(𝑛).

Proof. First note that Lemma 3.30 of Subsection 3.4.2.2 also holds for the ℒ𝒮ℱ:
i.e., the particles form a spanning forest within 𝒪(𝑛) rounds. Lemma 3.30
and Lemma 4.3 imply that 𝒮∗ requires 𝒪(𝑛) rounds to solve the ℒ𝒮ℱ. By
Lemmas 3.26, the worst-case behavior of 𝒮∗ is an upper bound for the runtime
of our asynchronous algorithm.

4.4. Hexagon Shape Formation

We now investigate the ℋ𝒮ℱ problem. The hexagon is constructed around
the seed particle. Note that a hexagon actually represents a disk in 𝐺eqt, since
it can be defined by the set of all nodes of 𝐺eqt within a certain distance 𝑟 from
the seed. Remember that depending on the number of particles, the outmost
layer of the final hexagon is not necessarily completely filled. Here, a layer
refers to all the particles in the hexagon that have the same distance to the
seed.
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Figure 4.1.: Snapshots of an execution of the ℋ𝒮ℱ algorithm. The seed is
green, retired particles are black, roots are red and followers are
blue.
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For the ℋ𝒮ℱ, particles retire around the seed in an outwards growing spiral
which incrementally adds new layers to the hexagon. Initially, the seed particle
𝑝 sets the flag 𝑝.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 to an arbitrary port (e.g., the one labeled 0). Again,
any particle adjacent to a retired particle becomes a root and a root 𝑝 moves
in a clockwise fashion around the structure of retired particles until it finds the
next node to extend the hexagon snake and becomes retired. Once 𝑝 becomes
retired, it sets the flag 𝑝.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 to the port that extends the hexagon by
forming an outward spiral (see Algorithm 10). More precisely, 𝑝 computes
𝑝.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 in the following way: Starting from the port which connects 𝑝
to the retired particle 𝑝′ (i.e. 𝑝′.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 points to the node occupied by
𝑝), 𝑝 sets 𝑝.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 to the port of the first unoccupied node in clockwise
order. Thereby, the hexagon grows in a counter-clockwise spiral around the
seed. Figure 4.1 depicts some snapshots of a run of the ℋ𝒮ℱ algorithm on an
example instance.

Algorithm 10 Retirement Condition for ℋ𝒮ℱ
if 𝑝 is a contracted root then

if 𝑝 is adjacent to a retired particle 𝑝′ such that 𝑝′.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 points to 𝑝
then

while port 𝑖 is connected to a retired particle do
𝑖 ← label of next port in clockwise direction

𝑝 sets the flag 𝑝.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 for port 𝑖
𝑝 becomes retired.

Theorem 4.5. The spanning forest primitive together with the snake formation
for the hexagon solve the ℋ𝒮ℱ problem.

Proof. Again, we need to show that the algorithm terminates and that when
it does, the system has the shape of a hexagon. The termination part of this
theorem is analogous to the proof presented in Theorem 4.2 (we just have to
use Lemma 4.1, which also holds for the ℋ𝒮ℱ). Hence it remains to prove
that the structure of retired particles is indeed a hexagon.
Initially, the structure of retired particles contains only the seed particle,

therefore the claim holds trivially. By induction, we assume that 𝐶 is the first
configuration in which the current formed structure of retired particles contains
𝑘 retired particles. By induction hypothesis, assume that those particles form
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a (possibly partial) hexagon using 𝑘 particles. According to Algorithm 10, the
only way a root 𝑝 can become the (𝑘 + 1)th retired particle in or after 𝐶 is
if it occupies the node that 𝑞.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 points to, where 𝑞 is the 𝑘-th retired
particle in the hexagon. By construction the flag 𝑞.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 points to the
node that either extends the current outer layer of the hexagon or starts the
next layer if the current layer is full. Consequently, 𝑝 retires on node such that
the retired structure is a hexagon of (𝑘 + 1)th particles.

By an argument similar to the proof of Theorem 4.4 we can conclude the
following theorem.

Theorem 4.6. The total number of asynchronous rounds required by our
algorithm to solve the ℋ𝒮ℱ problem is 𝒪(𝑛).

4.5. Triangle Shape Formation

We finally investigate the 𝒯𝒮ℱ problem. The triangle is constructed using the
seed particle as one vertex of the triangle. Again note that depending on the
number of particles, the outmost layer of the final triangle is not necessarily
completely filled. Again, a layer of the triangle refers to all particles in the
triangle with the same distance to the seed vertex.

In order to solve the 𝒯𝒮ℱ, one needs to set up the correct rules for retiring
particles, which is accomplished by Algorithm 11. The retirement rules for
𝒯𝒮ℱ are more complex than the ones we established for ℒ𝒮ℱ and ℋ𝒮ℱ. This
is due to the fact that we need to explicitly take into account the formation of
different layers of the triangle as we build it, whereas this was implicitly taken
care of by the spiral formation in the ℋ𝒮ℱ algorithm.
The construction again starts from the seed particle 𝑝, which occupies one

of the triangle vertices. The seed marks two consecutive port labels as the
directions along which two edges of the triangle are formed. It uses the flag
𝑝.𝑒𝑑𝑔𝑒 which can be of type 𝑙𝑒𝑓𝑡 and 𝑟𝑖𝑔ℎ𝑡 to mark the corresponding ports. We
arbitrarily pick the ports with labels 0 and 1. These directions are propagated
further by the particles that retire on the nodes that the ports point to. The
seed starts the snake formation by setting the flag 𝑝.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 on the port with
the flag 𝑝.𝑒𝑑𝑔𝑒[𝑙𝑒𝑓𝑡]: i.e., its port with label 0. From there on, Algorithm 11
constructs the triangle layer by layer. Layers are filled with retired particles in
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an alternating fashion, going ”from right to the left” on odd and ”from left to
the right” on even layers. Every time the snake of retired particles touches one
of the edge markers (i.e., a layer is completely filled), it starts a new layer by
setting the 𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 flag accordingly. Otherwise, particles simply retire in the
current topmost layer extending the snake. Figure 4.2 illustrates this approach
through some snapshots of the execution of the 𝒯𝒮ℱ algorithm.

Algorithm 11 Retirement Condition for 𝒯𝒮ℱ
1: if 𝑝 is a contracted root then
2: if 𝑝 is adjacent to a retired particle 𝑝′ such that 𝑝′.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 points to

𝑝 then
3: Let 𝑖 by the port label of 𝑝 that points to 𝑝′

4: if no adjacent edge is flagged as edge then
5: 𝑝 sets 𝑝.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 on port (𝑖 + 3) mod 6
6: else
7: Let 𝑗 be the port label of 𝑝 that contains the edge flag
8: 𝑝 sets the same edge flag on port (𝑗 + 3) mod 6
9: if 𝑖 ≠ 𝑗 then ▷ 𝑝 is the last particle of the layer

10: 𝑝 sets 𝑝.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 on port (𝑗 + 3) mod 6
11: else ▷ 𝑝 is the first particle of the new layer
12: if 𝑒𝑑𝑔𝑒.𝑡𝑦𝑝𝑒 = 𝑙𝑒𝑓𝑡 then
13: 𝑝 sets 𝑝.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 on port (𝑖 + 2) mod 6
14: else
15: 𝑝 sets 𝑝.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 on port (𝑖 + 4) mod 6
16: 𝑝 becomes retired

We now show that our algorithm solves the 𝒯𝒮ℱ problem. Similarly to the
result of the last sections, we can conclude the following theorem.

Theorem 4.7. The spanning forest primitive together with the snake formation
for the triangle solve the 𝒯𝒮ℱ problem.

Proof. Again, we need to show that the algorithm terminates and that when
it does, the system has the shape of a triangle. The termination part is again
analogous to the proof presented in Theorem 4.2. Hence it remains to prove
that the structure of retired particles is indeed a triangle.
Assume we have three particles as the base case (to build the smallest

size perfect triangle on 𝐺eqt). The seed 𝑝∗ sets the 𝑝∗.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 flag and the
𝑝∗.𝑒𝑑𝑔𝑒[𝑙𝑒𝑓𝑡] flag on its port with label 0. A root particle 𝑞 might have to move
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around the seed 𝑝∗ until it connects to the port 0 of the seed. Since 𝑞 sees both
(edge and retirement) flags coming from the same particle, 𝑝 becomes retired
and it starts constructing a new layer of the triangle by setting its 𝑞.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟
flag such that the next retiring particle continues filling this new layer. Particle
𝑞 also sets 𝑝.𝑒𝑑𝑔𝑒[𝑙𝑒𝑓𝑡] appropriately to propagate the inherited direction of
the edge from the seed to next layer. The only node that the third particle
can retire on is the one pointed to by 𝑞.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟 and it is easy to see that the
resulting structure of the first three retired particles is a triangle.
Let 𝐶 be the first configuration in which the current formed structure of

the retired particles contains 𝑘 retired particles, and let 𝑞′ denote the (𝑘)th

retired particle. By induction hypothesis, assume that those 𝑘 particles form a
(possibly partial) triangle. According to Algorithm 11, the only way a root
𝑟 can become the (𝑘 + 1)th retired particle in or after 𝐶 is if it occupies the
node pointed to by flag 𝑞′.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟. Depending on the location of 𝑞′ in the
triangle, three cases may arise: (i) 𝑞′ is part of the left edge, (ii) it is part of
the right edge or (iii) it is neither of the two. First, consider the case when 𝑞′

is on the left edge (an analogous argument works if 𝑞′ is on the right edge).
Since 𝑞′ is the last particle added to the current valid triangle, this results
either in a perfect equilateral triangle or in a perfect equilateral triangle plus
particle 𝑟 as the leftmost particle on a newly created layer. In the former case,
𝑟 retires on the leftmost valid node on the next layer of the triangle structure,
pointed by 𝑞′.𝑒𝑑𝑔𝑒[𝑙𝑒𝑓𝑡]. In the latter, 𝑟 simply fills another node of the current
topmost layer next to 𝑞′. In both cases the resulting retired structure forms a
valid triangle. Second, consider the situation where 𝑞′ is not an edge particle.
Therefore, 𝑞′ is located on the topmost (partially filled) layer and 𝑞′.𝑟𝑒𝑡𝑖𝑟𝑒𝐷𝑖𝑟
is set to point to the next unoccupied node to continue the layer, which is
then filled by 𝑟, correctly extending the triangle structure and proving the
claim.

Again, we can conclude the following theorem as done in the last two sections.

Theorem 4.8. The total number of asynchronous rounds required by our
algorithm to solve the 𝒯𝒮ℱ problem is 𝒪(𝑛).
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Figure 4.2.: Snapshots of an execution of the 𝒯𝒮ℱ algorithm. The seed is
green, retired particles are black, roots are red and followers are
blue.
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CHAPTER 5

Constant Size Particle Systems

” If size really mattered, the whale, not the shark, would rule the waters.”
Matshona Dhliwayo; Philosopher

An important basic characteristic of programmable matter is the ability
of scaling with its size. For example, the more particles there are in the
system, the larger the constructed shape can be. If we imagine that

each particle is of microscale or nanoscale size, one clearly needs an abundance
amount of particles to construct a shape of visible size. Moreover, aiming at
an enormous quantity of particles is one of the reasons to create algorithms
with linear or even sublinear runtime.

However, there is also a different perspective on particles. Due to their
limited computational power and limited maneuverability a constant number
of particles cannot perform complicated tasks. Yet, from a complexity point of
view, it is interesting to investigate which tasks can be performed by constant
size particle systems and whether there are negative results concerning certain
tasks. In this chapter we investigate the power of a single particle, two particles
and three particles. Since these particles themselves cannot do much except
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construct all possible shapes that consist of one, two and three particles, we
attach the particle system to a static object. The particles have to gather
information about the object to decide whether the object fulfills certain
geometric properties (e.g., a convexity test). In total we investigate seven
geometric property tests of varying difficulty for the particle systems.
This chapter is not meant as a complete complexity theory analysis on

the power of constant size particle systems. We merely want to provide an
interesting different point of view on programmable matter outside of its original
vision (which caters to large scales), inspired by the intellectual challenge of
doing “something with almost nothing”.

Chapter Outline In Section 5.1 we define the seven problems that we are
going to investigate throughout this chapter. The following three sections
investigate particle systems of increasing size. Section 5.2 focuses on the
smallest possible particle system (i.e., a single particle) and shows that it
cannot solve any of the problems. Section 5.3 doubles the number of particles
in the system, which allows us to solve five out of the seven problems. Finally,
Section 5.4 considers particles systems of size three for which we can devise
algorithms for all seven problems.

Chapter Basis All the results of this chapter are unpublished. The problem
statements and basic ideas were discussed informally at the Dagstuhl Seminar
16721 ”Algorithmic Foundations of Programmable Matter”. The proof of The-
orem 5.1 is a straightforward adaption a proof in a different model and context
in our short abstract [Gmy+17] submitted to the 33rd European Workshop on
Computational Geometry (a workshop without any formal publications).

5.1. Problem Statements

Similarly to the universal coating problem we consider an instance (𝑃 , 𝑂)
where 𝑃 represents the particle system and 𝑂 represents a fixed object. Again,
let 𝑉 (𝑃) be the set of nodes occupied by 𝑃, and 𝑉 (𝑂) be the set of nodes
occupied by 𝑂. An instance is valid if the following properties hold:

(a) All particles are initially contracted and are in an idle state.
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5.2. One Particle

(b) The subgraphs of 𝐺eqt induced by 𝑉 (𝑂), 𝑉 (𝑃) and 𝑉 (𝑃) ∪ 𝑉 (𝑂), are
connected: i.e., there is a single object, all particles are connected and
the particle system is connected to the object.

(c) The subgraph of 𝐺eqt induced by 𝑉eqt\𝑉 (𝑂) is connected: i.e., the object
𝑂 has no holes.

Let 𝑚 be the length of the surface of 𝑂: i.e., the number of nodes in 𝑉 (𝑂) that
are adjacent to node not in 𝑉 (𝑂). Throughout this chapter, we investigate
problems in which the particle system has to decide whether 𝑂 fulfills certain
geometric properties. A particle system 𝑃 decides such a problem if, starting
from a valid instance, all particles agree whether the object fulfills the property.
To be more precise, we consider the following problems.

Convexity Test: 𝑃 has to decide whether the object is convex.

Line Test: 𝑃 has to decide whether the object is a line.

Triangle Test: 𝑃 has to decide whether the object is a triangle.

Parallelogram Test: 𝑃 has to decide whether the object is a parallelogram.

Rhombus Test: 𝑃 has to decide whether the object is a rhombus.

Hexagon Test: 𝑃 has to decide whether the object is a hexagon.

Regular Hexagon Test: 𝑃 has has to decide whether the object is a regular
hexagon.

We refer to the last six problems as shape tests. The convexity test is a
subproblem of all shape tests. Moreover, the parallelogram test is a subproblem
of the rhombus test and the hexagon test is a subproblem of the regular hexagon
test. Note that there is no necessity for an equilateral triangle test, since every
triangle is equilateral in 𝐺eqt.

5.2. One Particle

In this section we consider a particle system that consists of one single particle.
Obviously, the power of a single particle is very limited, in fact we can show
the following result.
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Lemma 5.1. A single particle cannot decide the convexity test.

The proof of the lemma is a straightforward adaptation of the proof of a similar
statement done by Robert Gmyr in [Gmy+17]. For the sake of completeness,
we briefly sketch the high level idea of the proof in the following.

The basic idea is that we can construct an object such that any algorithm 𝐴
that supposedly decides the convexity test has to fail. More specifically, one can
show that the single particle is only able to distinguish between a finite number
of solid hexagons (which have to pass the convexity test by definition), since 𝐴
only uses a constant amount of states. However, there is an infinite number of
solid hexagons (since there is an infinite number of side lengths). Consequently,
there is an infinite set of hexagon side lengths that are indistinguishable for
the particle.

From this observation we can construct an object 𝑂′ that is a spiral of lines
whose lengths are indistinguishable for the particle (see Figure 5.1 for a sketch
of 𝑂′). The size of the spiral (i.e., the number of lines) and the starting position
of the particle depends on the number of states that the particle requires to
supposedly solve the convexity test. The particle traverses 𝑂′ similarly to solid
hexagons with the corresponding side length. Since the number of sides and
their lengths are chosen appropriately, the single particle has to decide that 𝑂′

is convex, which is clearly a contradiction to the assumption that it decides
the convexity test.

Figure 5.1.: Sketch of an example for 𝑂′. The black dot marks the initial
position of the particle.
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This implies that a single particle cannot solve any of the problems in this
chapter.

5.3. Two Particles

Now consider a particle system of size two. Even though the computational
power increased only marginally, two particles can decide quite a number of
tests for the object.
The algorithm to solve the convexity test is straightforward. One particle

remains idle at a position adjacent to the object. The other particle traverses
the surface of the object in one direction, starting at a node adjacent to the
other particle. During its traversal it counts the angles of the turns it makes
at the vertices and (implicitly) the number of vertices of the object. Note that
this counting is not conflicting with the constant-size memory of particles, as
we will see shortly. For the algorithm, it is sufficient that the angles of the
turns are computed according to the local orientation of the particle (i.e., its
port labels). Without loss of generality assume that the particle considers a
clockwise turn as a positive angle and a counter-clockwise turn as a negative
angle.
Due to the geometric properties of 𝐺eqtthere are only four convex shapes:

the line, the triangle, the parallelogram and the hexagon. Consequently, the
moving particle only needs to store whether it sees at most 6 vertices of the
object before it returns to the static particle (i.e., if there are more vertices,
there is no need to store the exact amount of them). Additionally, it checks
whether the angles of the object are either all positive or all negative. If so,
the object is convex, otherwise it is not.

Theorem 5.2. Two particles can decide the convexity test in time 𝒪(𝑚).

Proof. Since one particle remains static, the moving particle 𝑝 can determine
that it has traversed the surface of the object. It is easy to see that an
object is not convex if 𝑝 sees clockwise and counter-clockwise angles on its
traversal. Since the algorithm exactly tests this property the correctness follows
immediately.

The moving particle has to traverse the whole surface of 𝑂 before returning
to the static one. Thus, the algorithm requires 𝒪(𝑚) rounds.
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The algorithm to decide the convexity test can easily be adapted to decide
the line test, the triangle test, the parallelogram test and the hexagon test.
The major variation is the number of vertices that the moving particle 𝑝 counts
and the test for the angles at each vertex of the object. For example, in the
triangle test, 𝑝 needs to check whether the object has exactly three vertices
and if it turns 120∘ at each vertex. Similar adaptions have to be done for the
other three tests. In fact, we can combine all four shape test algorithms and
the convexity test algorithm into one algorithm that decides all five problems
at once. As a consequence, we can conclude the following corollary.

Corollary 5.3. Two particles can decide the line test, the triangle test, the
parallelogram test and the hexagon test in time 𝒪(𝑚).

We conclude this section by showing a negative result concerning the last two
remaining shape tests. In order to show that two particles cannot decide the
rhombus test and regular hexagon test, we investigate an essential subproblem:
the ability to decide whether two adjacent line segments of a given object are
of equal length. The length of a line in 𝐺eqt refers to the number of nodes
the line occupies. Formally, in the line length comparison test, for a given
object 𝑂∗ that consists of two straight lines of lengths 𝑙1, 𝑙2 which meet at one
of their endpoints the particle system decides, whether |𝑉 (𝑙1)| = |𝑉 (𝑙2)|. See
Figure 5.2 for an example instance. As an intermediate step we first show that
it is impossible for one particle to decide the line length comparison test.

Figure 5.2.: An example instance of an object for the line length comparison
test. The object fails the test.

Lemma 5.4. A single particle cannot decide the line length comparison test.

The proof of Lemma 5.4 is straightforward adaption of the proof of Lemma 5.1
as presented in [Gmy+17]. To enhance clarity and readability, we present a
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full proof here, since some of the main techniques are used and enhanced in
the upcoming proof for the two particle case.

Proof. Suppose that there is an algorithm that allows a single particle to decide
the line length comparison test and let 𝑘 be the number of states used by the
algorithm. Consider the execution of the algorithm on an instance where the
object consists of two lines of the same length ℓ and the particle is initially
adjacent to one endpoint of a line. We subdivide the execution of the algorithm
into phases. A new phase of the execution starts whenever the particle is
contracted and adjacent to one of the endpoints of the line or the node where
the lines meet. Observe that the algorithm runs for at most 3𝑘 phases before the
particle decides that the lines have the same length. Otherwise, the algorithm
would again enter an infinite loop, which is a contradiction to the supposition.

To capture the path of the particle, we define the traversal sequence of the
particle associated with line length ℓ as ( (𝑣1, 𝑞1), (𝑣2, 𝑞2), … , (𝑣𝑡, 𝑞𝑡) ), where
𝑡 is the number of phases the algorithm takes until the decision is made, 𝑣𝑖

is the vertex occupied by the particle at the beginning of phase 𝑖, and 𝑞𝑖 is
the state of the particle at the beginning of phase 𝑖. Since the algorithm takes
at most 3𝑘 phases to make its decision (independently of ℓ), there is a finite
number of traversal sequences. Moreover, there is an infinite number of line
lengths ℓ. Thus, there exists an infinite set of line lengths ℒ which have the
same traversal sequence by the pigeonhole principle. Consequently, all objects
with line lengths in ℒ are indistinguishable for the particle.

Thus, we can define an object 𝑂′ for which the algorithm fails. The object
consist of two lines, one of length 𝑙′ and one of length 𝑙″ such that 𝑙′ ≠ 𝑙″

and 𝑙′, 𝑙″ ∈ ℒ. When our algorithm is executed on 𝑂′ we can again subdivide
execution of the algorithm into phases (as defined above). Each phase of the
execution corresponds to a traversal sequence for an object whose lines are of
equal length and whose line length is in ℒ. Consequently, the algorithm has
to decide that both lines are of equal length, which is a contradiction to the
assumption that the algorithms works correctly.

Lemma 5.5. Two particles cannot decide the line length comparison test.

Proof. For contradiction, suppose that there is an algorithm that allows two
particles to decide the line length comparison test. For convenience we explicitly
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name the particles 𝑝𝑎 and 𝑝𝑏. Let 𝑘𝑎 be the number of states used by 𝑝𝑎 and 𝑘𝑏

be the number of states used by 𝑝𝑏: i.e., we explicitly allow each particle to have
its own algorithm. Without loss of generality let 𝑝𝑎 be the particle that makes
the ultimate decision whether the object passes the line length comparison test.
There are three general cases that are possible for our algorithm:

(a) Both particles always stay connected until 𝑝𝑎 makes its decision.

(b) One particle moves while the other one remains static.

(c) Both particles execute individual algorithms.

In the first case, we can interpret both particles as one super particle since
they always stay connected. This super particle of course has more memory
than just one single particle. Nevertheless, we can apply Lemma 5.4.

In the second case, only one of the particles moves. It can use the other static
particle as a checkpoint and as an external memory. However, Lemma 5.4 is
still applicable, since we can treat the static particle as just another starting
point for a phase of the moving particle: i.e., the number of traversal sequences
remains finite.
Therefore, it remains to consider the last case and an execution of the

algorithm on the instance where the object consists of two lines of the same
length ℓ, and both particles are initially adjacent to one endpoint of a line and
adjacent to each other. For the particle system we subdivide the execution of
its algorithm into combined phases where a new phase of the execution starts
whenever one of the particles is contracted and adjacent to one of the endpoints
of the line, the node where the lines meet or the other particle. The algorithm
runs for at most 4(𝑘𝑎 + 𝑘𝑏) combined phases before 𝑝𝑎 decides that the lines
have the same length.

In order to show the desired result we need to extend the concept of traversal
sequences and extend the proof of Lemma 5.4 . We define the combined
traversal sequence of the particle system associated with ℓ as a sequence of
quintuples ( (𝑝, 𝑣𝑎

1 , 𝑞𝑎
1 , 𝑣𝑏

1, 𝑞𝑏
1), (𝑝, 𝑣𝑎

2 , 𝑞𝑎
2 , 𝑣𝑏

2, 𝑞𝑏
2), … , (𝑝𝑎, 𝑣𝑎

𝑡 , 𝑞𝑎
𝑡 , 𝑣𝑏

𝑡 , 𝑞𝑏
𝑡 ) ), where 𝑡

is the number of combined phases the algorithm takes until the decision is
made, 𝑝 is in {𝑝𝑎, 𝑝𝑏} and denotes the particle who entered a new phase, 𝑣𝑎

𝑖
and 𝑣𝑏

𝑖 are the vertices occupied by 𝑝𝑎 and 𝑝𝑏 at the beginning of the combined
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phase 𝑖, and 𝑞𝑎
𝑖 , 𝑞𝑏

𝑖 are the states of the particles at the beginning of phase 𝑖.
Note that this notion clearly allows that the occupied vertex and the state of
one of the particles stays the same for multiple consecutive combined phases:
i.e., it is possible that only one particle moves while the other one remains
static. Additionally, it is possible that 𝑣𝑎

𝑖 or 𝑣𝑏
𝑖 might contain two nodes, since

one particle can be expanded while the other one starts a new phase. Again,
the number of combined traversal sequences is finite, whereas the number of
line lengths is infinite. Therefore, we can apply the pigeonhole principle again,
which implies that there is an infinite set of line lengths ℒ with the same
combined traversal sequence. Similarly to the proof for the single particle case,
we can construct an object for which the algorithm fails.

From Lemma 5.5 we can easily conclude the following theorem, which
concludes our analysis of the two particle scenario.

Theorem 5.6. Two particles cannot decide the rhombus test and the regular
hexagon test.

5.4. Three Particles

We conclude our analysis of constant size particle systems, by showing that a
particle system of size three can decide both the rhombus test and the regular
hexagon test. In the following we describe the algorithm for the rhombus test.
The algorithm for the regular hexagon is a straightforward adaption: i.e., we
simply have to compare three side lengths instead of two.
The algorithm to decide the rhombus tests compares two adjacent side

lengths of a parallelogram. Indeed, we assume that the particle system already
decided that the object is a parallelogram and, thus, knows that it needs to
compare two side lengths in order to decide the problem. Moreover, we assume
that the three particles are all adjacent to one vertex of the parallelogram: i.e.,
they form a curved line that is bent around one of the vertices. For convenience,
we name the particles 𝑝𝑙𝑒𝑓𝑡, 𝑝𝑐𝑒𝑛𝑡𝑒𝑟 and 𝑝𝑟𝑖𝑔ℎ𝑡. Note that it is not important
whether 𝑝𝑙𝑒𝑓𝑡 is really to the left of 𝑝𝑐𝑒𝑛𝑡𝑒𝑟 from a global point of view, it is
simply sufficient that 𝑝𝑐𝑒𝑛𝑡𝑒𝑟 is indeed the particle in the middle and it can
distinguish between the two other particles.
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Initially, 𝑝𝑐𝑒𝑛𝑡𝑒𝑟 aims at moving in the direction of 𝑝𝑙𝑒𝑓𝑡. Since it is adjacent
to 𝑝𝑙𝑒𝑓𝑡, it makes 𝑝𝑙𝑒𝑓𝑡 move up one node along one side of the parallelogram.
Then 𝑝𝑐𝑒𝑛𝑡𝑒𝑟 switches directions and moves to 𝑝𝑟𝑖𝑔ℎ𝑡. Once it is adjacent to
𝑝𝑟𝑖𝑔ℎ𝑡, it pushes 𝑝𝑟𝑖𝑔ℎ𝑡 one node along the other side of the parallelogram as
well. Now 𝑝𝑐𝑒𝑛𝑡𝑒𝑟 again makes the switch and moves back to 𝑝𝑙𝑒𝑓𝑡. This process
continues: i.e., 𝑝𝑐𝑒𝑛𝑡𝑒𝑟 always alternates directions and pushes the two other
particles along their side of the parallelogram such that they always move up
one node.
The algorithm can decide the test once one of the two outside particles is

adjacent to another vertex of the parallelogram. If 𝑝𝑟𝑖𝑔ℎ𝑡 is the first particle
to fulfill this property, the parallelogram is not a rhombus, since we initially
started moving in the direction of 𝑝𝑙𝑒𝑓𝑡. If 𝑝𝑙𝑒𝑓𝑡 is the first particle adjacent to
another parallelogram vertex, 𝑝𝑐𝑒𝑛𝑡𝑒𝑟 has to do one last run to 𝑝𝑟𝑖𝑔ℎ𝑡. In case
𝑝𝑟𝑖𝑔ℎ𝑡 is then also adjacent to a vertex once it has been pushed by 𝑝𝑐𝑒𝑛𝑡𝑒𝑟, the
parallelogram is a rhombus; otherwise it is not. We can conclude the following
theorem.

Theorem 5.7. Three particles can decide the rhombus test in time 𝒪(𝑚2).

Proof. The algorithm decides that the parallelogram is a rhombus only if
𝑝𝑟𝑖𝑔ℎ𝑡 and 𝑝𝑟𝑖𝑔ℎ𝑡 traveled the same distance to the respective vertices of
the parallelogram. Consequently, this can happen only if both sides of the
parallelogram indeed have the same length. If the parallelogram is not a
rhombus, one of two adjacent sides has to be longer than the other. Since
𝑝𝑐𝑒𝑛𝑡𝑒𝑟 alternates its direction and pushes each of the outside particles one
node at a time, it can detect that one side is longer.
The distance particle 𝑝𝑐𝑒𝑛𝑡𝑒𝑟 traverses can be upper bounded by the sum

∑𝑘
𝑖=0 𝑖 + 1, where 𝑘 is the length of the shorter side of the parallelogram. This

side length is at most 𝑚
4 . Therefore, algorithm requires 𝒪(𝑚2) rounds.

As a corollary from the theorem, we get the following result which concludes
our analysis in this section.

Corollary 5.8. Three particles can decide the regular hexagon test in time
𝒪(𝑚2).

This concludes our investigation on constant size particle systems.
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CHAPTER 6

Conclusion of Part I

” It is change, continuing change, inevitable change, that is the dominant
factor in society today. No sensible decision can be made any longer
without taking into account not only the world as it is, but the world as
it will be. ”

Isaac Asimov, Writer and Professor of Biochemistry

Let us conclude the first part of this thesis by subsuming all technical
results of the previous chapters. As an addendum, we will also mention
further additional results and future work directions.

Throughout the first part we investigated three different problem scenarios in
the field of self-organizing programmable matter. In Chapter 3, we investigated
the universal coating problem, in which the particle system has to uniformly
cover a given static object. The Universal Coating Algorithm is a combination
of different asynchronous primitives which are integrated seamlessly without
any underlying synchronization. This algorithm provably solves the universal
coating problem and requires 𝒪(𝑛) asynchronous rounds in the worst case.
This runtime is worst-case optimal.

Chapter 4 focused on building basic geometric shapes from programmable
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matter. More specifically, we aimed at building a line, a triangle and a hexagon.
We presented an algorithmic framework which can construct all three shapes
in 𝒪(𝑛) asynchronous rounds by just varying two rules in the algorithms.

In Chapter 5 we investigated the power of constant-size programmable matter.
In doing so, we concentrated on the scenario in which the matter is attached to
a static object and needs to evaluate various tests concerning the shape of the
object. We provided some negative results concerning programmable matter
that consists of only a single particle or two particles. This was contrasted by
positive results (i.e., explicit algorithms) for different shape properties which
are indeed decidable by two or three particles.
The remainder of this chapter is dedicated to further results and future

work. In Section 6.1 we explain some of our related results in the area of
programmable matter. These findings provide a nice contrast to the technical
results of the first part and provide some insight into the algorithmic work we
have done in the last years. Section 6.2 considers different directions for future
results in the field.

6.1. Further Results

In this section we present two of our results in the area of programmable
matter. Even though these results are not included in the technical parts of
this thesis, they are closely related to the investigated problems. The high level
algorithmic descriptions in this section are directly taken from their respective
papers [Day+17] and [Der+16b].
The first major result concerns the problem of leader election [Day+17]:

i.e., all particles start in the same state and an algorithm elects one particle
as the leader while all others are non-leaders. The algorithm requires a linear
number of asynchronous rounds with high probability. It operates on a static
particle system – throughout the whole execution of the algorithm the particles
do not move. Solving leader election is necessary for our universal coating
algorithm in Chapter 3, since we need a specific leader particle on the surface
layer. Moreover, the shape formation algorithms of Chapter 4 require a specific
seed particle to form any kind of shape. Such a seed particle could be chosen
by a leader election algorithm.
In the following we briefly describe the leader election algorithm. The
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algorithm consists of six phases. These phases are not strictly synchronized
among each other: i.e., at any point in time, different parts of the particle
system may execute different phases. In the first phase each particle checks
whether it is part of a boundary of the particle system (i.e., it is not completely
surrounded by particles). Only boundary particles participate in leader election
and the remaining five phases are executed on each boundary individually.
In the second phase boundaries are subdivided into segments. In order to
do so each particle flips a coin: particles that flip heads become leadership
candidates, whereas particles that flip tails become non-candidates. A segment
of a boundary consists of a candidate and all subsequent non-candidates up to
the next candidate (in a pre-given direction of that boundary). In the third
phase candidates are assigned a random identifier that is stored distributively
in the particles of its segment. These identifiers are used in the fourth phase,
in which candidates compete for leadership. To do so, we use an intricate
token passing scheme that forwards all identifiers on a boundary along that
boundary. If a candidate sees an identifier that is higher than its own, it revokes
its candidacy. If it sees a lower identifier it stays a candidate. Whenever a
candidate sees its own identifier the fifth phase is triggered in which it checks
whether it is the last remaining candidate on its boundary. In that case,
the remaining candidate initiates the final phase to determine whether it
occupies the unique outer boundary of the system. If so, it becomes the leader.
Otherwise, it revokes its candidacy.
As already mentioned this algorithm elects a leader in a linear number of

rounds with high probability. In fact, the runtime is linear in the length of the
outer boundary and we need a number of rounds that is linear in the diameter
of the particle system to distribute the result of leader election to all particles.
Most parts of the algorithm are deterministic, only phase two and phase three
use randomness. The runtime is worst-case optimal.

The second result that we want to highlight is an algorithm to solve universal
shape formation [Der+16b]. This algorithm takes an arbitrary input shape
composed of a constant number of equilateral triangles of unit size (called faces)
and lets the particles build that shape at a scale depending on the number of
particles in the system. Our algorithm runs in 𝒪(

√
𝑛) asynchronous rounds,

where 𝑛 is the number of particles in the system, provided we start from a
well-initialized configuration of the particles (i.e., they form a giant equilateral
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triangle). This is optimal in a sense that for any shape deviating from the
initial configuration, any movement strategy would require 𝛺(

√
𝑛) rounds in

the worst case. This result is an interesting contrast to the shape formation
algorithms of Chapter 4. Our universal algorithm seems to be more powerful
due to its universality. However, the universal shape formation algorithm
cannot construct certain basic shapes, since they cannot be described by a
constant number of equilateral triangles of unit size: e.g., it cannot build a
thin line as done in Section 4.2.2.
Again, we are describing the general idea of the algorithm in the following.

The underlying principle to achieve the desired runtime of shape formation is
to move triangles of particles (which correspond to the unit size triangles in
the input shape) en bloc in a parallel fashion. This can be achieved in 𝒪(ℓ)
asynchronous rounds, where ℓ is the side length of the triangle. Before the final
shape is constructed, a preprocessing phase transforms the initial equilateral
triangle of all particles into an intermediate structure. This structure is a giant
line of smaller triangles whose size is small enough to have enough triangles
for the latter shape formation but large enough to consume all particles in the
final shape. This structure is not perfect and the number of smaller triangles
does not exactly match the number of input faces. After the intermediate
structure is built, one particle (i.e., one elected by leader election) computes a
construction plan of the input shape: i.e., a permutation of the unit size input
faces that dictates the chronological order in which the corresponding triangles
are placed. This computation is far from trivial since one has to account for
connectivity constraints, the possibility of walling in and imprecisions that are
introduced in the construction of the intermediate structure. The process of
building the shape itself is relatively straightforward: i.e., the triangles are
moved in their position according to the construction plan.

6.2. Future Work

We conclude the first part of this thesis by pointing out interesting directions
for future work. Since the area of programmable matter is relatively young,
one can imagine a multitude of directions that allow for interesting research
questions. Therefore, we focus on the future work possibilities that are geared
towards the bigger picture of programmable matter, instead of focusing on
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specific open algorithmic problems in the current state of the amoebot model.
One of the biggest challenges is to transfer the amoebot model from two-

dimensional to three-dimensional space. This requires some adoption of the
model, especially of the underlying grid graph, which has to allow for three-
dimensional movement. Once this modeling step has been done, all algorithmic
challenges that are solved in the current model are open in 3D: i.e., coating,
shape formation and leader election need a thorough re-investigation. It seems
plausible that some of our developed primitives do in fact work (e.g., the
spanning forest), however most problems should indeed become harder in three
dimensions.

Another interesting possibility is to make the amoebot model more realistic
in terms of failures. In the current state of the model, everything works as
intended — communication never fails, movements always succeed and particles
always behave predictably. However, real-life programmable matter would not
have the luxury of performing in a perfect world. One minor step to get to
a more realistic model is to allow for particle failures that are detectable by
other (correctly working) particles. Accordingly, the correctly working particles
could try to solve their original problem and either ignore failed particles or
exclude them from the system. Additionally, one could think about models
in which movements are not perfect: i.e., instead of moving exactly to a node
in 𝐺eqt, particles can deviate by an 𝜀 factor which is not under their control.
Finally, one could envision a more adversarial model in which a failure leads
to faulty particle behavior that is non-detectable.
Lastly, one could envision a model in which active particles and passive

tiles are mixed: i.e., particles which are (similar to) amoebots that can carry
passive tiles which cannot move, but be used as an external storage. An
interesting problem for such a model is tile shape formation. The particles
aim at restructuring a fixed tile set and one can study whether increasing the
number of particles leads to a construction time speed-up. Problems similar to
our investigation in Chapter 5 can also become interesting in this scenario.
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CHAPTER 7

Prologue

” We are all now connected by the Internet, like neurons in a giant brain.”
Stephen William Hawking; Theoretical Physicist and Cosmologist

Life in the 21st century seems almost unimaginable without the Internet.
In fact, the Internet is, without any doubt, one of the major accom-
plishments of computer science in the last decades, maybe even of the

last century. It has grown from something that was coined an “information
management system” by its inventor, the 2017 ACM Turing Award winner
Tim Berners-Lee [Ber89] into a juggernaut of information, communication and
(social) networks. Almost every part of modern life is directly or indirectly
influenced by the Internet. And even though one might easily argue that not
all (side-) effects of the Internet are beneficial for society (e.g., the recent
“fake news” controversy of Donald Trump, various bugging scandals, illegal file
sharing, etc.) on a larger scale the benefits seem to outweigh the detriments.
From a scientific point of view, the Internet is an interesting phenomenon that
can be investigated from different scientific disciplines and research angles.

Throughout the second part of this thesis we focus on a very technical part
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and point of view of the Internet — overlay networks. An overlay network – or
short overlay – is a virtual computer network that is built on top of another
virtual or physical network. Abstractly speaking, nodes in the overlay network
(which usually correspond to computers or users) can be thought of as being
connected by virtual or logical links. These links might coincide to a path in
the underlying network, perhaps through many physical links. Examples for
overlays occur in different sizes and varieties throughout the Internet. Even
the Internet itself can be seen as an overlay that is established on top of the
physical network cables and routers. Any modern communication platform
(e.g., WhatsApp, Skype, Discord) creates its own virtual overlay network to
allow for communication between users. Early-day file sharing platforms (e.g.,
Gnutella, eDonkey, BitTorrent) heavily relied on peer-to-peer overlays to share
files among their users. Even social networks like Facebook, Twitter, Instagram,
etc. can be seen as overlays in which nodes of the overlay correspond to users
and a link corresponds to a friendship.

For this thesis we are most interested in peer-to-peer overlays, i.e., networks
in which each user has a bit of control over the overlay network, instead of
having one server as the de facto ruler. In these networks nodes are allowed to
change the links of the network and are therefore able to change the topology of
the network. (In-)famous examples from the past for this kind of overlay are the
already mentioned file sharing platforms, as well as Spotify and Skype, which
have been using peer-to-peer overlays to enhance their streaming or phone call
services. The most prominent current examples are digital cryptocurrencies
like Bitcoin.
For large-scale peer-to-peer overlays unforeseen changes and faults are not

an exception but the rule. Consequently, mechanisms are needed which ensure
that whenever there are problems they are quickly repaired, and that all parts
of the system, which are still functional are not negatively affected by the repair
process. One class of protocols that is tailored to this task are self-stabilizing
protocols. These protocols have the major advantage that they do not have to
be well initialized in order to function properly. In fact, they are guaranteed to
converge from any possible initial state to a desired state (called a legitimate
state). Moreover, once a legitimate state has been reached, a self-stabilizing
protocol always stays in that state as long as no faults occur. Self-stabilizing
protocols for many different distributed computing problems have been studied
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in the last four decades and there is a wide range of existing self-stabilizing
overlay protocols (see Section 7.2 for a review on related literature).
From the presented practical examples for overlays one can clearly identify

a common theme: an overlay does not serve as an end in itself, but as a means
for purpose that is in close relation to the specific application. Throughout
this thesis we want to focus on one specific purpose for an overlay that is
highly inspired by one of the most popular online activities: searching. In the
2015 statistic “Most popular online activities of adult Internet users in the
United States as of July 2015” of the NTIA (National Telecommunications
and Information Administration) [TAB16] at least five of the ten most popular
activities involve searching in some way or another. However, since searching is
a very broad term that carries many different meanings, we want to concentrate
on a very specific search – searching for other participants in the network, i.e.,
a participant 𝑎 of the overlay knows the name (or an identifier) of another
possible participant 𝑏 and wants to know whether 𝑏 is present in the overlay.
If 𝑏 is present and 𝑎 is able to find 𝑏 with a search message we say that 𝑏 is
searchable for 𝑎.

In this part of the thesis we investigate self-stabilizing overlay protocols which
maintain searchability in a monotonic fashion. Consequently, our protocols
not only converge from any initial state that is weakly connected to the desired
topology, but also have to make sure that once searchability between two
nodes is established it is preserved during self-stabilization: i.e., once 𝑏 is
searchable for 𝑎 it is always searchable in the future. This task is in general
highly non-trivial and one has to reinvestigate existing self-stabilizing overlay
protocols. More specifically, we concentrate on monotonic searchability for
linear topologies (see Section 8.1 for the precise problem statement), since they
yield a straightforward routing protocol and provide the perfect starting point
to investigate the feasibility of monotonic searchability.
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7.1. Model

We consider a distributed system consisting of a fixed set of nodes in which
each node has a unique immutable numerical identifier (ID, for short) that
serves as a reference for other nodes. The system is controlled by a protocol
that specifies the variables and actions that are available in each node. In
addition to the protocol-based variables there is a system-based variable for
each node called channel whose value is a set of messages. We denote the
channel of a node 𝑢 as 𝑢.𝐶ℎ and it contains all incoming messages for 𝑢. The
message capacity of each channel is unbounded and we assume no message
loss. A node 𝑣 can send a message to 𝑢 by adding a message to 𝑢.𝐶ℎ. This
is possible only if 𝑣 knows the reference of 𝑢. Besides these channels there
are no further communication means, so only point-to-point communication is
possible.

There are two types of actions that a protocol can execute. The first type has
the form of a standard procedure ⟨𝑙𝑎𝑏𝑒𝑙⟩(⟨𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠⟩) ∶ ⟨𝑐𝑜𝑚𝑚𝑎𝑛𝑑⟩, where
𝑙𝑎𝑏𝑒𝑙 is the unique name of that action, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 specifies the parameter
list of the action, and 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 specifies the statements to be executed when
calling that action. Such actions can be called locally (which causes their
immediate execution) and remotely. In fact, we assume that every message
must be of the form ⟨𝑙𝑎𝑏𝑒𝑙⟩(⟨𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠⟩), where 𝑙𝑎𝑏𝑒𝑙 specifies the action to
be called in the receiving node and 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 contains the parameters to
be passed to that action call. All other messages are ignored by nodes. The
second type has the form ⟨𝑙𝑎𝑏𝑒𝑙⟩ ∶ ⟨𝑔𝑢𝑎𝑟𝑑⟩ ⟶ ⟨𝑐𝑜𝑚𝑚𝑎𝑛𝑑⟩, where 𝑙𝑎𝑏𝑒𝑙 and
𝑐𝑜𝑚𝑚𝑎𝑛𝑑 are defined as above and 𝑔𝑢𝑎𝑟𝑑 is a predicate over local variables.
An action whose guard is simply true can be executed any time and is called
a timeout action.
The system state is an assignment of values to every variable of each node

and messages to each channel. An action in some node 𝑢 is enabled in some
system state if its guard evaluates to true, or if there is a message in 𝑢.𝐶ℎ
requesting to call it. In the latter case, when the corresponding action is
executed, the message is processed (in which case it is removed from 𝑢.𝐶ℎ). An
action is disabled otherwise. Receiving and processing a message is considered
an atomic step.

A computation is an infinite fair sequence of system states such that for each
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state 𝑠𝑖, the next state 𝑠𝑖+1 is obtained by executing an action that is enabled
in 𝑠𝑖. This disallows the overlap of action execution, i.e., action execution
is atomic. We assume weakly fair action execution and fair message receipt.
Weakly fair action execution means that if an action is enabled in all but finitely
many states of a computation, then this action is executed infinitely often.
Note that a timeout action of a node is executed infinitely often. Fair message
receipt means that if a computation contains a state such that there is a
message in a channel of a node which enables an action, then the corresponding
action is eventually executed with the parameters of that message: i.e., the
message is eventually processed. Besides these fairness assumptions, we place
no bounds on message propagation delay or relative execution speeds of nodes:
i.e., we allow fully asynchronous computations and non-FIFO message delivery.
A computation suffix is a sequence of computation states past a particular state
of this computation. In other words, any suffix of a computation is obtained
by removing the initial state and finitely many subsequent states. Note that
a computation suffix is also a computation. For a given computation we call
the first state of the computation the initial state. For two states 𝑠, 𝑠′, we say
𝑠′ is reachable from 𝑠 if starting in 𝑠 there is a sequence of action executions
such that we end up in state 𝑠′. Additionally, we use the notion 𝑠 < 𝑠′ as a
shorthand to indicate that 𝑠 happened chronologically before 𝑠′.

We consider protocols that do not manipulate the internals of node identifiers.
Specifically, a protocol is compare-store-send if the only operations that it
executes on identifiers is: (i) comparing them, (ii) storing them in local memory
and (iii) sending them in a message. Therefore, operations on identifiers such
as addition, radix computation, hashing, etc. are not used. In a compare-store-
send protocol, a node may learn a new identifier of a node only by receiving it
in a message. A compare-store-send protocol cannot create new identifiers and
can only operate on the identifiers given to it.
The overlay network of a set of nodes is determined by their knowledge of

each other. We say that there is a (directed) edge from node 𝑢 to node 𝑣,
denoted by (𝑢, 𝑣), if node 𝑢 stores a reference (i.e., the ID) of 𝑣 in its local
memory or has a message carrying the reference of 𝑣 in 𝑢.𝐶ℎ. In the former
case, the edge is called explicit; in the latter case, the edge is called implicit.
As already stated, messages can only be sent via explicit edges. We denote the
directed network (multi-)graph given by the explicit and implicit edges with
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𝐺. Additionally, 𝐺𝐸 is the subgraph of 𝐺 induced by only the explicit edges.
A weakly connected component of a directed graph 𝐺 is a subgraph of 𝐺 of
maximum size such that for any two nodes 𝑢 and 𝑣 in that subgraph there is
a (not necessarily directed) path from 𝑢 to 𝑣. Two nodes that are not in the
same weakly connected component are disconnected.

In this part of the thesis we are particularly concerned with search requests,
i.e., Search(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷) messages that are routed along 𝐺𝐸 according to a
given search protocol, where 𝑣 is the sender of the message and 𝑑𝑒𝑠𝑡𝐼𝐷 is the
identifier of a node we are looking for. We assume that Search() requests
are initiated locally by a (possibly user controlled) application operating on
top of the network. Note that 𝑑𝑒𝑠𝑡𝐼𝐷 does not need to be the identifier of
an existing node 𝑤, since it is also possible that we are searching for a node
that is not in the system. If a Search(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷) message reaches a node 𝑤
with 𝑖𝑑(𝑤) = 𝑑𝑒𝑠𝑡𝐼𝐷, the search request succeeds; if the message reaches some
node 𝑢 with 𝑖𝑑(𝑢) ≠ 𝑑𝑒𝑠𝑡𝐼𝐷 and cannot be forwarded anymore according to
the given search protocol, the search request fails. For a given identifier 𝐼𝐷,
each node 𝑢 can decide for each neighbor 𝑣 whether 𝑣 is closer to the node 𝑤
with 𝑖𝑑(𝑤) = 𝐼𝐷 if such a node exists (we also say that 𝑖𝑑(𝑣) is closer to 𝐼𝐷
than 𝑖𝑑(𝑢)).
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7.2. Related Literature

The idea of self-stabilization in distributed computing was introduced in the
seminal paper by E.W. Dijkstra in 1974 [Dij74], in which he investigated the
problem of a self-stabilizing token ring. Even though the paper is incredibly
short and concise compared to scientific papers that appear today, it has created
its own research field in the last four decades. Consequently, it is beyond the
scope of this thesis to cover literature of the whole self-stabilization field. In
fact, to the best of our knowledge there is no comprehensive up-to-date survey
article that is able to cover the full spectrum of self-stabilization. Readers
that want to familiarize themselves with basics of self-stabilization are referred
to the book of Shlomi Dolev from 2000 [Dol00]. Additionally, the survey of
Jerzy Brzezinski and Michal Szychowiak from the same year [BS00] provides
one possible starting point for an in-depth literature review. In the last 15
years, surveys have only specialized on certain subfields of self-stabilization: e.g,
algorithms for independent set, dominating set, coloring, and matchings [GK10]
or scheduling hypotheses for self-stabilization [DT11]. As a consequence, we
focus on the two subfields of self-stabilization that are most important for
the results in this part of the thesis: topological self-stabilization and safety
property maintenance during the convergence phase of self-stabilization. Note
that we exclude the vast amount of P2P literature from this section, since it
is our ultimate goal to create self-stabilizing protocols. Again. the content of
this section is a culmination of all related literature parts within our papers in
the area of self-stabilization [SSS15; KSS16; SSS16].

Topological Self-Stabilization The basic idea of topological self-stabilization,
is to apply the concept of self-stabilization on graph topologies: i.e., an
overlay network is initially in an arbitrary weakly connected state and the
aim is a protocol that recovers to a certain predefined network topology. The
first topologies that researchers investigated were rings [CF05; SR05] and
lines [Ang+05; ORS07; Gal+14]. The basic idea for these topologies is that
nodes always keep those edges that are needed for the list/ring (from its local
point of view) and linearizes all other edges by sending them to its neighbors.
It needs to be noted that some of these early protocols (e.g., [ORS07; Ang+05])
investigate a synchronous setting, instead of the asynchronous setting that is
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commonly used today. Moreover, the protocol of [Ang+05] is not self-stabilizing
in the classical sense. However, it was shown in a follow-up paper [AW07]
that it can be made self-stabilizing if one assumes that nodes initially have an
out-degree of 1.
Over the years more complex network topologies were investigated which

are either inspired by the self-stabilizing list or use it as a subroutine. Richa
et al. [RSS11] investigate a self-stabilizing De Bruijn network. They first
present a transformation how a classical De Bruijn graph can be linearized
such that all nodes of the network are sorted on a line and then use the
techniques of [ORS07] to construct the line topology. In order to do so, each
node in the network emulates two virtual nodes that are linearized as well. One
consequence of their approach is the fact that the graph of the real nodes is
not weakly connected even though the graph of real and virtual nodes is. They
circumvent this problem by using a light-weight probing algorithm that checks
whether each node is in a connected component with its virtual nodes. Nor et
al. [NNS13] considered a self-stabilizing version of the skip list of Pugh [Pug90]
peer-to-peer topology. As the name suggests, the techniques of [ORS07] can be
used to stabilize the topology. In addition, the paper investigates the necessary
conditions on initial states that hold in general for topological self-stabilization.
Jacob et al. [Jac+] investigate self-stabilizing skip+ graphs, which are an
extension of the classic skip graphs of Aspnes and Shah [AS07]. This extension
is necessary since the correctness of a skip graph cannot be checked locally.
Intuitively, their protocol uses the linearization technique on each level of the
skip+ graph. Kniesburges et al. [KKS12] use the self-stabilizing line as the
major building block to present a protocol that stabilizes to the 1-dimensional
version of the small-world network of Chaintreau et al. [CFL08]. The key idea
of the protocol is to establish a ring network that is enhanced with long-ranged
links. These links are forwarded over time and can be forgotten by a node
with a certain probability. Finally, there exists a self-stabilizing version of the
popular Chord protocol called Re-Chord [KKS14]. The authors also use the
linearization technique to achieve the desired protocol, which is in essence a
careful reconsideration of the original Chord protocol that respects arbitrary
initial states.
In [Jac+12] Jacob et al. present a self-stabilizing protocol for Delaunay

graphs. In order to do so, each node computes a local Delaunay graph from its
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knowledge and sends all non-Delaunay edges to its Delaunay neighbors. This
is, in substance, the 2-dimensional interpretation of the linearization technique
for the list.

Dolev et al. [DT13] give a self-stabilizing algorithm for spanders. A spander
is a subgraph of an expander graph 𝐺 such that it is an expander using a
subset of the edges of 𝐺. The key components of the protocol is an algorithm
that chooses edges that should be in the expander, a monitoring technique
that ensures the desired result and a self-stabilizing reset algorithm, which is
used by the monitor.
Another direction of investigated topologies are tree-like structures: i.e.,

spanning trees [Hér+06; Clé+08], hypertrees [DK08] and a variant of radix trees
called double-headed radix trees [AW07]. The main differences between the
three topologies is the in-degree and out-degree of nodes in the final topology,
the length of the longest path, and the construction time of the topology. More
specifically, hypertrees have a fixed log𝑏(𝑛) bound on the in- and out-degree
(where 𝑏 is a parameter of the network) and also a longest path of length
log𝑏(𝑛), whereas the spanning trees also have a bound on the degree, but no
bound on the path length. Double-headed radix trees are balanced search trees
which support search, predecessor and successor operations in time proportional
to the length of identifiers of the nodes. Conceptually, the tree can be thought
of as a radix trees in which the leaves have been removed (i.e., their keys are
propagated to some ancestor) and the root has been split into two (the “double
head”).

In contrast to these very specific topologies, Berns et al. [BGP13] introduced
the general transitive closure framework, which is able to build a broad variety
of overlay networks. One key idea of the framework is to build a supertopology
of the end topology (e.g., the clique) and then remove the unnecessary edges.
This protocol suffers from being very space inefficient:, i.e., during execution
node degrees can grow to 𝛺(𝑛) even though the target topology has a constant
degree.

Safety Property Maintenance In the last 20 years many approaches have
been investigated that focus on maintaining safety properties during the conver-
gence phase of self-stabilization. The most prominent examples from the related
literature are snap-stabilization [Bui+07; Del+10], safe convergence [KK07],
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super-stabilization [DH97] and self-stabilization with service guarantee [JM14].
A protocol is snap-stabilizing if it always behaves according to its specification

independent of its initial configuration. Snap-stabilization has a user-centric
safety property (whereas the other approaches are system-centric): i.e., it
ensures that the answer to a properly initiated user request by the protocol is
correct. Safe convergence ensures that the system quickly converges from an
initial state to a safe state (i.e., a configuration in which a predefined safety
property is fulfilled). Afterwards it quickly converges to a legitimate state while
maintaining the safety property during the stabilization. However, external
disruptions are not handled in safe convergence. Self-stabilization with service
guarantee fixes this drawback: i.e., such a protocol quickly converges to a safe
state (in their words “the protocol quickly provides a minimal service”), and it
maintains the safety properties during stabilization despite the occurrence of
some disruptions. A super-stabilizing protocol guarantees that (i) starting from
a legitimate configuration, a safety property is preserved after only one specific
topology change, and (ii) the safety property is maintained during recovering
to a legitimate configuration assuming that no more topology change occurs
during the stabilization phase.
Close to our notion of monotonic searchability is the work by Yamauchi

and Tixeuil [YT10] in the area of monotonic convergence. A self-stabilizing
protocol is monotonically converging if every change done by a node 𝑝 makes
the system approach a legitimate state and if every node changes its output
only once. Consequently, the system makes monotonic progress towards a
legitimate state. The authors investigate many monotonically converging
protocols for different classical distributed problems (e.g., leader election and
vertex coloring). However, their approach is more complexity analysis based
than ours: i.e., they focus on the amount of non-local information that is
needed to solve the above mentioned problems in a monotonic way.

Note that none of the concepts for safety property maintenance specifically
investigated topological self-stabilization. However, in general the basic ideas
and design principles could be used for protocols that stabilize topologies.
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CHAPTER 8

Problem Statement, Preliminaries & Primitives

” Everything should be made as simple as possible, but not simpler.”
Albert Einstein; Theoretical Physicist

In this chapter we first want to create a solid basis of understanding for the
problem of monotonic searchability by introducing the problem statement
and some preliminary results. These results impose some restrictions

concerning the problem itself: i.e., in general, monotonic searchability is
impossible to achieve. However, we can deduce some prerequisites for initial
states that are necessary in order to achieve our desired goal and that provide a
starting point for our results of Chapter 9. Moreover, we present some general
results concerning the construction of overlay networks. We introduce four
simple atomic actions (called primitives) and show that they are useful for
maintaining an overlay. These results are independent of the idea of monotonic
searchability. However, they provide a solid basis of understanding and can be
taken advantage of in the upcoming Chapter 9.

Chapter Outline In Section 8.1 we formally define the problem statement for
monotonic searchability in self-stabilizing overlay networks. Subsequently, in
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Section 8.2 we introduce some preliminary results for monotonic searchability.
Finally, in Section 8.3, we present our analysis of the aforementioned primitives.

Chapter Basis Section 8.1 and 8.2 are based on the following publication:

2015 (with C. Scheideler and A. Setzer). “Towards Establishing
Monotonic Searchability in Self-Stabilizing Data Structures”. In:
19th International Conference on Principles of Distributed Systems,
OPODIS 2015, December 14-17, 2015, Rennes, France, cf. [SSS15].

The majority of Section 8.3 is based on the following journal article:

2016 (with A. Koutsopoulos and C. Scheideler). “Towards a Uni-
versal Approach for the Finite Departure Problem in Overlay Net-
works”. In: Information and Computation, cf. [KSS16].

The very last theorem is based on:

2016 (with C. Scheideler and A. Setzer). “Towards a Universal Ap-
proach for Monotonic Searchability in Self-stabilizing Overlay Net-
works”. In: Distributed Computing - 30th International Symposium,
DISC 2016, Paris, France, September 27-29, 2016. Proceedings,
cf. [SSS16].

8.1. Problem Statement

First, let us formally define what it means for a protocol to be self-stabilizing,
and, moreover, what it means if a self-stabilizing protocol satisfies monotonic
searchability.

A protocol is self-stabilizing if it satisfies the following two properties.

Convergence: Starting from an arbitrary system state, the protocol is guaran-
teed to arrive at a legitimate state.

Closure: Starting from a legitimate state the protocol remains in legitimate
states thereafter.

The definition of a legitimate state is highly dependent on the goal of the
protocol. In topological self-stabilization we allow self-stabilizing protocols to
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perform changes to the overlay network. Thus, a legitimate state may then
include a particular graph topology or a family of graph topologies. We say
that a self-stabilizing protocol stabilizes to a certain graph topology, if in every
legitimate state 𝐺𝐸 is a graph of the chosen topology . By definition a self-
stabilizing protocol is able to recover from transient faults regardless of their
nature. Moreover, a self-stabilizing protocol does not have to be initialized as
it eventually starts to behave correctly regardless of its initial state.
One goal of this thesis is to design a self-stabilizing protocol for the line

graph topology. That is, the nodes are sorted by identifier and each node has
an edge to the two nodes with the closest preceding and succeeding identifier.
We investigate two different scenarios. We first focus on the case in which each
node stores only two references in a legitimate system state: its closest successor
and its closest predecessor. Thereafter, we weaken this restriction and allow
nodes to have multiple successor and predecessor references. However, the
closest successor and the closest predecessor have to be among them, i.e., the
resulting topology is a supergraph of the line. To clearly distinguish between
the two topologies, we use the term strict line to refer to the first case and
super-line for the second.

One major advantage of the line topology is that searching for identifiers is
easy once a legitimate state has been reached. However, searching reliably while
stabilization is still in progress is much more involved. We say a self-stabilizing
protocol satisfies monotonic searchability according to some routing protocol
𝑅 if it fulfills the following two properties:

Monotonicity: For any pair of nodes 𝑣, 𝑤 it holds that once a Search(𝑣, 𝑖𝑑(𝑤))
request initiated in state 𝑠 succeeds, any Search(𝑣, 𝑖𝑑(𝑤)) request initi-
ated in a state 𝑠′ > 𝑠 succeeds.

Non-Triviality: In every computation of the protocol there is a suffix such that
for each pair of nodes 𝑣, 𝑤 for which there is a path from 𝑣 to 𝑤 in the
target topology Search(𝑣, 𝑖𝑑(𝑤)) requests succeed.

We do not mention 𝑅 if it is clear from the context.
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8.2. Restrictions and Preliminary Results

We now introduce some restrictions from the related literature that are nec-
essary for topological self-stabilization. Moreover, we present some general
statements concerning monotonic searchability which are independent of the
topology. These statements result in general restrictions concerning monotonic
searchability.

The following propositions are restatements of results of [NNS13] and imply
necessary conditions on initial system states.

Initial Weak Connectivity: If a self-stabilizing (compare-store-send) protocol
stabilizes to a given connected graph topology, each computation starts
in a weakly connected initial state.

Validity of Identifiers: If a self-stabilizing (compare-store-send) protocol sta-
bilizes to a given connected graph topology, each computation starts in a
state in which all identifiers stored in messages or on local memories of
nodes belong to existing nodes.

Furthermore, we restrict the initial state to contain only a finite number of
messages that can trigger actions specified by our protocol. An infinite number
of messages could easily prevent the convergence of any self-stabilizing protocol.
From now on, an initial system state satisfies all of these constraints.

A message invariant is a property of the following form: If there is a message
𝑚 in the incoming channel of a node, then a predicate 𝑃 must hold. A protocol
may specify one or more message invariants. A message 𝑚 in some system
state is called corrupt if its existence violates one or more message invariants.
A state 𝑠 is called admissible if there are no corrupt messages in 𝑠. We say
a protocol admissibly satisfies monotonic searchability if the following two
conditions hold:

(a) In all computation suffixes of the protocol that start from admissible
states monotonic searchability is satisfied.

(b) Every computation of the protocol contains at least one admissible state.

Otherwise, we say that the protocol unconditionally satisfies monotonic search-
ability.
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With this notion, we can show that admissible satisfiability is necessary for
monotonic searchability for any routing algorithm 𝑅.

Lemma 8.1. If a (compare-store-send) self-stabilizing protocol satisfies mono-
tonic searchability then this protocol cannot be unconditionally satisfying.

Proof. Assume there is a compare-store-send self-stabilizing protocol 𝒫 that
unconditionally satisfies monotonic searchability. First of all, note that if
𝒫 violates only the second condition of admissible satisfiability, then by def-
inition computations exist in which monotonic searchability is never satisfied,
implying that 𝒫 cannot satisfy monotonic searchability in the first place.
Thus, assume that the first condition is violated: i.e., the protocol satisfies
monotonic searchability in computations with arbitrary messages, regardless
of any invariants. Consider the network graph given in Figure 8.1: i.e., node 𝑢
and 𝑣 are connected by an explicit edge and there is an implicit edge (𝑣, 𝑤) (a
message containing the reference of 𝑤 in 𝑣.𝐶ℎ).

𝑢 𝑣 𝑤

Figure 8.1.: Graph Instance for the Proof of Lemma 8.1

We carry out the proof as a game between the protocol and an adversary:
On the basis of the decisions of the protocol, the adversary can decide on the
delivery speed of messages, and may insert additional messages at each node.
The latter is possible since nodes can not distinguish between these messages
and messages that already existed in an initial state, which have not been
received yet. Furthermore, the adversary may set the internal initial state of
the nodes.
At first, we issue a 𝑠𝑒𝑎𝑟𝑐ℎ(𝑢, 𝑖𝑑(𝑤)) request in 𝑢 that we denote by 𝑎. We

argue that the adversary can force 𝑢 to forward 𝑎 to 𝑣. Therefore note the
following:

(a) As long as 𝑢 does not receive any further messages, 𝑢 does not know any
other node, so 𝑣 is the only possible next hop for 𝑎.

(b) If 𝑢 tries to wait for a fixed amount of time before sending 𝑎, the adversary
simply halts the system for that time: i.e., no messages are delivered in
that time frame and the system state stays the same.
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(c) If 𝑢 requires the receipt of another message in order to forward 𝑎, the
adversary makes sure that this message is never received, which contra-
dicts the assumption that monotonic searchability is satisfied. Therefore,
𝑢 does not rely on another message to forward 𝑎.

(d) If 𝑢 relies on its internal state to forward 𝑎, the adversary changes the
initial internal state of 𝑢 such that it never forwards any message, which
again contradicts the assumption that monotonic searchability is satisfied.
Hence, 𝑢 does not rely on its state to forward 𝑎.

(e) There are no other conditions that 𝑢 can wait on.

Consequently, 𝑢 sends 𝑎 to 𝑣 eventually. At the point in time we issue a second
𝑠𝑒𝑎𝑟𝑐ℎ(𝑢, 𝑖𝑑(𝑤)) request in 𝑢, which we denote by 𝑏. For similar reasons as
stated above, 𝑏 is eventually sent to 𝑣 as well.

Since both messages are now in 𝑣.𝐶ℎ and the adversary is allowed to decide
on message speeds, it forces 𝑣 to receive 𝑏 first. Node 𝑣 has no explicit edge
to 𝑢. Moreover, the adversary can enforce that the implicit edge (𝑣, 𝑤) is not
received by 𝑣 until 𝑣 handles 𝑏. Therefore, 𝑏 must be answered with a failure
at some point in time (since the 𝑏 cannot be forwarded anymore) and 𝑢 is
informed about that.
Next, the adversary causes the implicit edge (𝑣, 𝑤) to arrive at 𝑣. Since

the protocol must stabilize to the line topology, at some point in time, the
edge (𝑣, 𝑤) is established. Until then, the adversary withholds message 𝑎 in
𝑣.𝐶ℎ. Afterwards, when 𝑎 arrives at 𝑣, it can be forwarded to 𝑤 and the search
request succeeds.
As a consequence 𝑎 succeeds, whereas 𝑏, which was initiated after 𝑎, fails.

This is a contradiction to the assumption that the protocol satisfies monotonic
searchability.

Consequently, to prove that a protocol satisfies monotonic searchability we
have to define invariants, which capture the validity of messages for searchability.
Afterwards it is sufficient to show that: (i) the protocol guarantees monotonic
searchability according to 𝑅 in admissible states and (ii) the protocol has a
computation suffix in which every state is admissible

We want to conclude this section by showing that the original self-stabilizing
protocol for the line topology [ORS07; Gal+14] cannot satisfy monotonic
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searchability. We refer to the original protocol with the term Build-Line. In
the following, we briefly sketch the protocol itself and present the corresponding
pseudocode. The notation we use is not exactly congruent with the original
literature, simply due to differences in the model. However, one can easily
verify that the protocols do not differ in their essence.

In Build-Line, every node only maintains a single 𝑙𝑒𝑓𝑡 and 𝑟𝑖𝑔ℎ𝑡 neighbor.
The protocol consists of two actions: a Timeout action and a Linearize()
action. In its Timeout action a node periodically sends its own reference in a
Linearize() message to its neighbors (see Algorithm 12). The Linearize()
action is triggered by a Linearize() message which contains the reference of
a single node. Once a node 𝑢 receives a Linearize(𝑣) message that contains
the reference of a node 𝑣 with 𝑖𝑑(𝑢) < 𝑖𝑑(𝑣) (𝑖𝑑(𝑢) > 𝑖𝑑(𝑣), respectively), 𝑢 (i)
either saves 𝑣 as its new right (left) neighbor if 𝑣 is closer to 𝑢 than the current
right (left) neighbor 𝑤 and delegates the reference of 𝑤 to 𝑣 or (ii), in case 𝑣 is
not closer than 𝑤, 𝑣 is not saved and delegated to 𝑤 (see Algorithm 13). Here,
delegation means that the reference of 𝑣 is sent in a Linearize(𝑣) message to
𝑤 and not kept in the local memory of 𝑢.
To enhance the readability, the pseudocode omits the cases in which a

neighbor does not have a left or right neighbor. Note that this protocol is easily
extendable to the case that a node might have more than just two references
in an initial state. In its Timeout action a node simply has to check which
two references are its closest left and right neighbors and linearize the other
references accordingly.

A natural routing protocol for search requests for this topology is to always
forward search requests to the neighbor in direction of the desired target ID,
or to abort the search request in case no such neighbor exists.

We now show the following lemma.

Lemma 8.2. Build-Line cannot satisfy monotonic searchability.

Proof. Consider the topology given in Figure 8.2. Node 𝑢 has an explicit edge
to node 𝑤 and an implicit edge to node 𝑣, i.e., a Linearize(𝑣) message in
𝑢.𝐶ℎ. In this system state 𝑠 node 𝑢 can successfully search for node 𝑤, since
there is a direct connection.
Now consider the state 𝑠′ in which 𝑢 receives the Linearize(𝑣) message.

According to the Linearize() action, 𝑢 sets 𝑣 as its new right neighbor and
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Algorithm 12 Timeout action of Build-Line
1: if 𝑖𝑑(𝑙𝑒𝑓𝑡) < 𝑖𝑑(𝑠𝑒𝑙𝑓) then
2: send Linearize(𝑠𝑒𝑙𝑓) to 𝑙𝑒𝑓𝑡
3: else
4: send Linearize(𝑙𝑒𝑓𝑡) to 𝑠𝑒𝑙𝑓
5: 𝑙𝑒𝑓𝑡 ← ⊥
6: if 𝑖𝑑(𝑟𝑖𝑔ℎ𝑡) > 𝑖𝑑(𝑠𝑒𝑙𝑓) then
7: send Linearize(𝑠𝑒𝑙𝑓) to 𝑟𝑖𝑔ℎ𝑡
8: else
9: send Linearize(𝑟𝑖𝑔ℎ𝑡) to 𝑠𝑒𝑙𝑓

10: 𝑟𝑖𝑔ℎ𝑡 ← ⊥

Algorithm 13 Linearize(𝑣) action of Build-Line
1: if 𝑖𝑑(𝑣) < 𝑖𝑑(𝑙𝑒𝑓𝑡) then
2: send Linearize(𝑣) to 𝑙𝑒𝑓𝑡
3: if 𝑖𝑑(𝑙𝑒𝑓𝑡) < 𝑖𝑑(𝑣) < 𝑖𝑑(𝑠𝑒𝑙𝑓) then
4: send Linearize(𝑙𝑒𝑓𝑡) to 𝑣
5: 𝑙𝑒𝑓𝑡 ← 𝑣
6: if 𝑖𝑑(𝑠𝑒𝑙𝑓) < 𝑖𝑑(𝑣) < 𝑖𝑑(𝑟𝑖𝑔ℎ𝑡) then
7: send Linearize(𝑟𝑖𝑔ℎ𝑡) to 𝑣
8: 𝑟𝑖𝑔ℎ𝑡 ← 𝑣
9: if 𝑖𝑑(𝑟𝑖𝑔ℎ𝑡) < 𝑖𝑑(𝑣) then

10: send Linearize(𝑣) to 𝑟𝑖𝑔ℎ𝑡

sends a Linearize(𝑤) message to 𝑣. Similarly to the proof of Lemma 8.1 a
Search(𝑢, 𝑖𝑑(𝑤)) request that is initiated in 𝑠′ is bound to fail, since there is
no explicit path between 𝑢 and 𝑤 anymore. This proves the statement.

𝑢 𝑣 𝑤

Figure 8.2.: Graph Instance for the Proof of Lemma 8.2

Note that Lemma 8.2 focuses on the line, since this part of the thesis
specifically considers monotonic searchability for that topology. However,
the general idea of the proof does in fact generalize to most self-stabilizing
protocols that stabilize to a certain topology. The main problem is the use of
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the aforementioned delegation, i.e., the sending a reference to another node
without keeping it in the local memory. This delegation, which is one of the
major obstacles for searchability, is more concretely defined in the upcoming
section.

8.3. Primitives for Overlay Networks

An important property for any protocol that manages the topology of an
overlay network is the fact that weak connectivity is never lost by its own
actions. Therefore, it is highly desirable that every node only executes actions
that preserve weak connectivity. In this section we introduce four primitives,
i.e., simple atomic actions for manipulating edges in an overlay network that
are safe in the sense that they preserve weak connectivity as long as there
is no fault. This implies that any distributed protocol whose actions can
be decomposed into these four primitives is guaranteed to preserve weak
connectivity. Throughout this section we not only prove that the primitives
preserve weak connectivity, but also that they are also universal: i.e., by
using the primitives only we can in principle transform any weakly connected
graph into any other weakly connected graph. We conclude this section by
showing that we can even go beyond this abstract notion of universality and
show that almost any existing (self-stabilizing) overlay protocol can be easily
transformed to use the primitives only. It needs to be noted that the results
from Lemma 8.3 to Lemma 8.6 have also been introduced in the PhD thesis of
Andreas Koutsopoulos [Kou16]. However, both theses do not put the primitives
and their properties in the focus of their investigation. Instead, they are
used as a tool to show that overlay protocols maintain weak connectivity.
Therefore, the results can be seen as supplementary material, to get a better
understanding of the power of the primitives. Theorem 8.7 has not been part
of the investigations in [Kou16].
The four primitives are depicted in Figure 8.3. We define them in the

following:

Introduction If a node 𝑢 has references of two nodes 𝑣 and 𝑤 with 𝑣 ≠ 𝑤, 𝑢
introduces 𝑤 to 𝑣 if 𝑢 sends a message to 𝑣 containing a reference of 𝑤
while keeping the reference.
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Delegation If a node 𝑢 has a reference of two nodes 𝑣 and 𝑤, then 𝑢 delegates
𝑤’s reference to 𝑣 if 𝑢 sends a message to 𝑣 containing the reference of 𝑤
while deleting the reference of 𝑤 from the local memory.

Fusion If a node 𝑢 has two references of nodes 𝑣 and 𝑤 with 𝑣 = 𝑤, then 𝑢
fuses the two references if it only keeps one of these references.

Reversal If a node 𝑢 has a reference of some other node 𝑣, then 𝑢 reverses the
edge if it sends a reference of itself to 𝑣 while deleting its reference of 𝑣
from the local memory.

𝑢

𝑣

𝑤

𝑢

𝑣

𝑤

(a) Introduction primitive

𝑢

𝑣

𝑤

𝑢

𝑣

𝑤

(b) Delegation primitive

𝑢 𝑣 𝑢 𝑣

(c) Fusion primitive

𝑢 𝑣 𝑢 𝑣
(d) Reversal primitive

Figure 8.3.: The Four Primitives

Note that we assume that 𝑢, 𝑣, 𝑤 are pairwise distinct. The only exceptions
are Fusion and Self-Introduction, a special case of the Introduction primitive
in which 𝑢 sends a reference of itself to 𝑣 while keeping its reference to 𝑣. The
four primitives have the advantage that they can be executed locally by every
node in a wait-free fashion (as none of the primitives requires any feedback).
Also, they just require the ability of nodes to check whether two references
point to the same node (see Fusion) to be implementable. Other than that,
access to the contents of the references is not needed: i.e., the primitives do not
require numerical identifiers. Most importantly, all four primitives maintain
weak connectivity, as we show in the following Lemma.

Lemma 8.3. Introduction, Delegation, Fusion, and Reversal preserve weak
connectivity.

Proof. The statement obviously holds for Introduction since it only adds
additional edges to 𝐺. In Delegation an edge (𝑢, 𝑤) is deleted, but there still
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exists a path from 𝑢 to 𝑤 via 𝑣, so 𝑢 and 𝑤 are still in the same weakly
connected component. Fusion deletes an edge only if it is superfluous in terms
of connectivity. The Reversal rule deletes an edge (𝑢, 𝑣) but replaces it with
an edge (𝑣, 𝑢), thereby preserving weak connectivity as well.

Let 𝒫 denote the set of all distributed protocols, such that all interactions
between nodes can be decomposed into the four primitives. Lemma 8.3 implies
that any protocol in 𝒫 preserves weak connectivity, which was previously shown
individually for each cited protocol of Section 7.2. Note that the first three
primitives even preserve strong connectivity: i.e., if a protocol is restricted to
use the first three primitives only, for any pair of nodes 𝑢, 𝑣 with a directed
path in 𝐺 there is always a directed path from 𝑢 to 𝑣 in 𝐺. To the best of
our knowledge, all self-stabilizing overlay protocols proposed so far (e.g., the
line [SR05; ORS07; Gal+14], the Delaunay graph [Jac+12], etc.) are in 𝒫. We
say that a set of primitives is universal if the primitives allow one to get from
any weakly connected graph 𝐺 = (𝑉 , 𝐸) to any other weakly connected graph
𝐺′ = (𝑉 , 𝐸′). The set is weakly universal if 𝐺′ is strongly connected.

Theorem 8.4. Introduction, Delegation, Fusion, and Reversal are universal.

Proof. In order to prove the theorem, we give a general strategy how to
transform an arbitrary weakly connected graph 𝐺 = (𝑉 , 𝐸) into any other
weakly connected graph 𝐺′ = (𝑉 , 𝐸′). At first, note that if every node
continuously introduces all neighbors to each other, including self-introduction,
then the topology of 𝐺 is eventually transformed into a clique.
Let 𝐺″ = (𝑉 , 𝐸″) be the bidirected expansion of 𝐺′: i.e., for each edge

(𝑢, 𝑣) ∈ 𝐸′ there are edges (𝑢, 𝑣), (𝑣, 𝑢) ∈ 𝐸″. Next we show that by using
Delegation and Fusion, one can transform the clique to 𝐺″. To do so, we
make use of the fact that 𝐺″ is strongly connected by construction. Consider
an arbitrary edge (𝑢, 𝑤) of the clique that is not in 𝐸″. Since 𝐺″ is strongly
connected, there exists a shortest path from 𝑢 to 𝑤 in 𝐺″ that we maintain
as we first want to keep all edges in 𝐺″. Let (𝑢, 𝑣1, 𝑣2, … , 𝑣𝑘, 𝑤) be this path:
i.e., 𝑣1 is the first node on the path and adjacent to 𝑢 and 𝑣𝑘 is the last node
on the path and therefore adjacent to 𝑤. In order to get rid of the edge (𝑢, 𝑤),
𝑢 uses the Delegation primitive and delegates the reference of 𝑤 to 𝑣1. Now
node 𝑣1 (and all other nodes on the path) proceed similar to 𝑢 by forwarding
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the reference of 𝑤 along the path up to the last node 𝑣𝑘. Node 𝑣𝑘 finally uses
Fusion to merge the edge with the already existing edge (𝑣𝑘, 𝑤). By applying
this procedure to all edges not in 𝐸″, all that remains is 𝐺″.
At last we can use Reversal and Fusion to transform 𝐺″ to 𝐺′. To do so,

every edge (𝑢, 𝑣) that is in 𝐸″, but not in 𝐸′ is reversed by 𝑢. The newly
created edge (𝑣, 𝑢) is fused with the already existing edge (𝑣, 𝑢) ∈ 𝐸′.

The following corollary follows directly from our proof of Theorem 8.4.

Corollary 8.5. Introduction, Delegation and Fusion are weakly universal.

Note that the results of Theorem 8.4 and Corollary 8.5 are not constructive,
since we only show that in principle it is possible to get from any weakly
connected graph topology to any other weakly connected graph topology.
At the end of this section, we show how to give a more constructive result
concerning the universality of the primitives. Furthermore, we can show
that Introduction, Delegation, Fusion and Reversal are not only sufficient
for universality but also necessary, in a sense that any proper subset of the
primitives is not universal.

Lemma 8.6. Any proper subset of the primitives Introduction, Delegation,
Fusion and Reversal is not universal.

Proof. To prove the statement, we show that each primitive has a unique
function that cannot be replaced by the other primitives. Again let 𝐺 = (𝑉 , 𝐸)
be the weakly connected graph that we want to transform into another weakly
connected graph 𝐺′ = (𝑉 , 𝐸′).

Introduction: It is the only primitive that can create new edges: i.e., any
Graph 𝐺′ with |𝐸′| > |𝐸| cannot be reached from 𝐺 without it.

Fusion: It is the only primitive that reduces the overall number of edges: i.e.,
any Graph 𝐺′ with |𝐸′| < |𝐸| cannot be reached from 𝐺 without it.

Delegation: Consider two nodes that are connected by an edge in 𝐺 but not
in 𝐺′. By using Introduction, Fusion and Reversal only a protocol can
disconnect these two nodes.
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Fusion: Consider that 𝐺 consists of only two nodes 𝑢 and 𝑣 and an edge (𝑢, 𝑣).
Reversal is necessary to reach the goal topology 𝐺′ that consists solely
of the edge (𝑣, 𝑢).

We conclude the results of this chapter by strengthening our result concerning
weak universality by showing that we can decompose an existing protocol for a
strongly connected overlay topology into a new protocol that uses our primitives
only.

Theorem 8.7. Any compare-store-send protocol that stabilizes to a strongly-
connected topology and preserves weak connectivity can be transformed such
that all interactions between nodes can be decomposed into the primitives
Introduction, Delegation and Fusion.

We say that a node 𝑢 deletes a reference of another node 𝑣 if there exists an
explicit non-multi-edge (𝑢, 𝑣) and 𝑢 executes an action such that 𝑢 removes
the reference from its local memory without sending it to another node. Before
we are able to prove Theorem 8.7, we need to show the following lemma.

Lemma 8.8. Any compare-store-send protocol which stabilizes to a strongly-
connected topology and contains an action such that a node 𝑢 deletes a reference
cannot preserve weak connectivity

Proof. Assume for contradiction that the protocol preserves weak connectivity
and there is an action in which 𝑢 deletes a reference. Consider the left graph
depicted in Figure 8.4 and assume that 𝑢 aims at deleting the edge (𝑢, 𝑣).
Obviously, 𝑢 can delete the reference of 𝑣 without disconnecting the graph.
However, since the protocol presumably preserves weak connectivity, 𝑢 may not
delete the edge immediately, but could perform other actions. However, since
the graph is still connected without (𝑢, 𝑣), 𝑢 eventually decides that it can
delete (𝑢, 𝑣) safely and executes an action that ultimately deletes the reference
of 𝑣. Let 𝑠𝑢 be the internal state of 𝑢 before it deletes the edge, i.e., the values
of all variables of 𝑢 and messages in 𝑢.𝐶ℎ. We construct a new system state
by taking the graph depicted on the right in Figure 8.4 and setting the internal
state of 𝑢 to 𝑠𝑢. Naturally, this is a valid initial state for a computation. Since
the internal state of 𝑢 has not changed, it still makes the decision to delete
its reference of 𝑣. This disconnects 𝑢 and 𝑣, which is a contradiction to the
assumption that the protocol preserves weak connectivity.
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𝑢

𝑤

𝑣 𝑢

𝑤

𝑣

Figure 8.4.: Graph Instances for the Proof of Lemma 8.8.

Now we can prove Theorem 8.7.

Proof of Theorem 8.7. Let 𝐴 be a compare-store-send protocol that stabilizes
to a strongly-connected topology and preserves weak connectivity. Moreover,
let 𝑢 be a node that acts according to 𝐴. Since 𝐴 is a compare-store-send
protocol we focus only on the actions of 𝐴 that specifically handle references
of nodes.

At first consider all actions of 𝐴 that are executed because a local predicate
becomes true: i.e., 𝑢 does not receive any message. Node 𝑢 has three options:
(i) it does not interact with its references, (ii) it sends one or multiple references
to one or multiple nodes, or (iii) it deletes one or multiple references. In case
(i) there is no interaction between nodes. In case (ii) 𝑢 sends references and
either keeps them in its memory or does not keep them. The first subcase can
be transformed such that the Introduction primitive is used. For the second
subcase we can use the Delegation primitive. Case (iii) is not allowed, due to
Lemma 8.8.

Next consider all actions of 𝐴 that are triggered by a message that contains
at least one reference: i.e., the message is received by 𝑢 and has to be processed.
Node 𝑢 has multiple options for each reference in the received message: (i)
keep the reference, and/or (ii) send the reference to one or multiple nodes, or
(iii) delete the reference (i.e., neither save the reference nor send it to another
node). Case (i) is either the Fusion primitive (in case 𝑢 already has a reference
of that node) or does not need to be handled by a primitive, since keeping
an edge replaces an implicit edge with an explicit edge. Case (ii) is again
Introduction or Delegation, depending on whether 𝑢 keeps the reference. As
before case (iii) is not allowed. Moreover, 𝑢 has the aforementioned option of
sending one or multiple references of nodes that are not in the message to one
or multiple nodes.
Finally, consider all actions of 𝐴 that are triggered by a message that does
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not contain any references. This case basically reduces to the case in which a
predicate triggers action execution because node 𝑢 has the same options for
interaction with its references.

This concludes this chapter and we now turn to the main topic of this part
of the thesis: monotonic searchability.
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CHAPTER 9

Monotonic Searchability

” For there is nothing lost, that may be found, if sought. ”
Edmund Spenser; Poet

Elaborating on the topic of monotonic searchability (as introduced in
the previous chapters), this chapter investigates concrete protocols that
maintain monotonic searchability for the strict line and the super-line.

The line topology was chosen deliberately as a starting point to investigate
monotonic searchability, since it yields a straightforward routing protocol for
searching. Moreover, a line is not only one of the simplest imaginable topologies,
but has also proven a useful tool in the context of topological self-stabilization.
Many of the results of the related literature (see Section 7.2) either use a
self-stabilizing line as an underlying principle (e.g., the De-Bruijn graph and
skip graphs) or are heavily inspired by the ideas of the self-stabilizing line (e.g.,
Delaunay graphs and small-world graphs).

The self-stabilizing strict line (Section 9.1) was our earliest result in the area
of monotonic searchability. While we achieved our goal to design a protocol
that maintains monotonic searchability for the line topology, the protocol itself
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was suffering from (i) a lot of overhead (since it cannot use the Delegation
primitive) and (ii) a slow and inefficient routing protocol. These drawbacks
were the main driving factors for investigating the super-line topology (see
Chapter 8 for the concrete problem statement), since we can circumvent both
of these issues. With both protocols established it is the most natural question
to ask how they compare to each other. We opted for a practical approach by
implementing both protocols and comparing them in simulations. This is due
to the fact that the asynchronous message passing model that we utilize in this
thesis is not tailored for an in-depth theoretical efficiency comparison.

Chapter Outline In Section 9.1 we investigate a solution for monotonic
searchability in the scenario where the topology is the strict line. Section 9.2
focuses on the super-line topology. We conclude this chapter in Section 9.3 by
comparing the performance of both protocols in simulations.

Chapter Basis The results of Section 9.1 are based on the following publica-
tion:

2015 (with C. Scheideler and A. Setzer). “Towards Establishing
Monotonic Searchability in Self-Stabilizing Data Structures”. In:
19th International Conference on Principles of Distributed Systems,
OPODIS 2015, December 14-17, 2015, Rennes, France, cf. [SSS15].

All results of Section 9.2 and Section 9.3 are unpublished. The basic algo-
rithmic ideas of the super-line topology were first partially discussed in the
lecture ”Distributed Algorithms and Datastructures” by my supervisor Prof.
Dr. Christian Scheideler. The simulations for the analysis in Section 9.3 were
conducted by my student assistant Linghui Luo.

9.1. Monotonic Searchability for the Line Topology

In this section, we present the Build-Line+ protocol and the Search+
protocol. Build-Line+ stabilizes to the strict line topology and admissibly
satisfies monotonic searchability according to Search+. This section is
organized as follows: First, we describe Build-Line+ and Search+ in
detail (Subsection 9.1.1). Then, we prove that the Build-Line+ protocol
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stabilizes to the line topology (Subsection 9.1.2). Last, we show that the
Build-Line+ protocol satisfies monotonic searchability according to Search+
(Subsection 9.1.3). For the remainder of this section, we drop the ”according
to Search+” clause, since we only consider searchability for Search+.

9.1.1. Description of Build-Line+ and Search+

Our solution to achieve monotonic searchability for the strict line builds
upon the original solution for the line topology as introduced in [ORS07] (see
Section 8.2 for the full description). As we have shown, this easy and elegant
protocol cannot guarantee monotonic searchability. Throughout, this subsection
we first introduce the Build-Line+ protocol that builds the topology and
then introduce the Search+ protocol for searching. Note that each line of
pseudocode that explicitly handles references of nodes is labeled with either
ℑ, 𝔇, 𝔉, ℜ or 𝔖. The first four letters refer to the four primitives for overlay
networks of Section 8.3 (i.e., Introduction, Delegation, Fusion and Reversal), 𝔖
is meant as an abbreviation for Storing a reference. We use these annotations
later to prove that Build-Line+ preserves weak connectivity.

The Build-Line+ protocol introduces the following changes to the original
protocol [ORS07] in order to satisfy monotonic searchability: Instead of having
a single left and right neighbor, a node 𝑢 has sets of neighbors 𝐿𝑒𝑓𝑡 and
𝑅𝑖𝑔ℎ𝑡 (which it sorts according to ID). In the following, we use the notation
𝐿𝑒𝑓𝑡(𝑢)/𝑅𝑖𝑔ℎ𝑡(𝑢) to refer to these sets of neighbors. The main design principle
is that a node 𝑢 never delegates a reference (i.e., an edge to a node 𝑣) stored in
𝐿𝑒𝑓𝑡(𝑢) or 𝑅𝑖𝑔ℎ𝑡(𝑢) directly to another node 𝑤. Instead it first introduces this
node to 𝑤 with an Introduce(𝑣, 𝑢) message (see Algorithm 15). It waits for
an acknowledgement that the reference has been added to 𝐿𝑒𝑓𝑡(𝑤) or 𝑅𝑖𝑔ℎ𝑡(𝑤)
(i.e., a Linearize(𝑣) message – see Algorithm 16), and afterwards delegates
𝑣 using a TempDelegate(𝑣) message (see Algorithm 17). More specifically,
whenever a node 𝑢 has multiple neighbors to one side, it does not delegate
edges to the closest neighbor directly, but does the following. W.l.o.g. assume
that 𝑢 has multiple neighbors 𝑣1, … , 𝑣ℓ to the right with 𝑖𝑑(𝑣𝑖) < 𝑖𝑑(𝑣𝑖+1).
In the Timeout action (see Part 1 of Algorithm 14) 𝑢 introduces 𝑣𝑖 to 𝑣𝑖−1,
with an Introduce(𝑣𝑖, 𝑢) message. Thereby, 𝑣𝑖−1 knows that it received the
message from 𝑢. Node 𝑣𝑖−1 saves the reference to 𝑣𝑖 in its local memory, sends
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a Linearize(𝑣𝑖) message back to 𝑢 and a TempDelegate(𝑢) to itself (the
latter is only necessary to preserve weak connectivity). Node 𝑢 can now react to
that Linearize(𝑣𝑖) message, by removing 𝑣𝑖 from its memory and sending the
reference to the closest node to the left of 𝑣𝑖 in 𝑅𝑖𝑔ℎ𝑡 (which is not necessarily
𝑣𝑖−1 anymore). Thereby, 𝑢 preserves a path of explicit edges between 𝑢 and
𝑣𝑖. Additionally, 𝑢 sends its own reference to the closest neighbors with an
Introduce(𝑢, ⊥) message in its Timeout action.
In general, the TempDelegate(𝑢) action is used to delegate an implicit

edge as long as it is not made explicit. Note that implicit edges are not used
for searching, thus we do not have to apply the principle of introducing first
and delegating afterwards for this kind of edges. However, we have to delegate
them properly in order to preserve weak connectivity and to stabilize to the
line. Note that a node temporarily stores more references than necessary for
the final line. However, our protocol still eventually stabilizes to the strict
line, as we show later. Throughout the pseudocode, we use the expression 𝑠𝑒𝑙𝑓
whenever a node refers to itself. Additionally, keep in mind that the timeout
action is the only action that is not triggered as a result of another action, but
is executed regularly.

Algorithm 14 Build-Line+: Timeout
Part 1: Self-Stabilization of Topology

▷ Let 𝐿𝑒𝑓𝑡 = {𝑣1, 𝑣2, … , 𝑣𝑘} with 𝑖𝑑(𝑣1) < 𝑖𝑑(𝑣2) < ⋯ < 𝑖𝑑(𝑣𝑘)
1: for all 𝑣𝑖 ∈ 𝐿𝑒𝑓𝑡 with 1 ≤ 𝑖 < 𝑘 do
2: send Introduce(𝑣𝑖, 𝑠𝑒𝑙𝑓) to 𝑣𝑖+1 ▷ ℑ

▷ Let 𝑅𝑖𝑔ℎ𝑡 = {𝑤1, 𝑤2, … , 𝑤𝑙} with 𝑖𝑑(𝑤1) < 𝑖𝑑(𝑤2) < ⋯ < 𝑖𝑑(𝑤𝑙)
3: for all 𝑤𝑖 ∈ 𝑅𝑖𝑔ℎ𝑡 with 1 < 𝑖 ≤ 𝑙 do
4: send Introduce(𝑤𝑖, 𝑠𝑒𝑙𝑓) to 𝑤𝑖−1 ▷ ℑ
5: send Introduce(𝑠𝑒𝑙𝑓, ⊥) to 𝑣1 ▷ ℑ
6: send Introduce(𝑠𝑒𝑙𝑓, ⊥) to 𝑤1 ▷ ℑ

Part 2: Monotonic Searchability
7: for all 𝑑𝑒𝑠𝑡𝐼𝐷 ∈ 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 do ▷ Regularly send out probes
8: send 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑃𝑟𝑜𝑏𝑒(𝑠𝑒𝑙𝑓, 𝑑𝑒𝑠𝑡𝐼𝐷, {𝑠𝑒𝑙𝑓}, 𝑠𝑒𝑙𝑓.𝑠𝑒𝑞) to 𝑠𝑒𝑙𝑓 ▷ ℑ

The Search+ protocol works in the following way: Whenever a node 𝑢
wants to initiate a new search request, the InitiateNewSearch(𝑑𝑒𝑠𝑡𝐼𝐷)
action of 𝑢 is called (see Algorithm 18). In this action, node 𝑢 creates and
stores a new Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) message and starts to periodically initi-
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Algorithm 15 Build-Line+: Introduce(𝑣, 𝑤)
1: if 𝑖𝑑(𝑣) < 𝑖𝑑(𝑠𝑒𝑙𝑓) then
2: if 𝑤 ≠ ⊥ then
3: 𝐿𝑒𝑓𝑡 ← 𝐿𝑒𝑓𝑡 ∪ {𝑣} ▷ 𝔖 / 𝔉
4: send Linearize(𝑣) to 𝑤 ▷ 𝔇
5: send TempDelegate(𝑤) to 𝑠𝑒𝑙𝑓 ▷ 𝔇
6: else ▷ 𝑤 = ⊥
7: send TempDelegate(𝑣) to 𝑠𝑒𝑙𝑓 ▷ 𝔇
8: else if 𝑖𝑑(𝑣) > 𝑖𝑑(𝑠𝑒𝑙𝑓) then ▷ Analogous to the previous case.

Algorithm 16 Build-Line+: Linearize(𝑣)
1: send TempDelegate(𝑣) to 𝑠𝑒𝑙𝑓 ▷ 𝔇
2: if 𝑖𝑑(𝑣) < 𝑖𝑑(𝑠𝑒𝑙𝑓) then
3: if 𝐿𝑒𝑓𝑡 ≠ ∅ then
4: 𝑥 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑖𝑑(𝑥′)|𝑥′ ∈ 𝐿𝑒𝑓𝑡}
5: if 𝑣 ≠ 𝑥 then
6: 𝑤 ← 𝑎𝑟𝑔𝑚𝑖𝑛{𝑖𝑑(𝑤′)|𝑤′ ∈ 𝐿𝑒𝑓𝑡 𝑎𝑛𝑑 𝑖𝑑(𝑤′) > 𝑖𝑑(𝑣)}
7: 𝐿𝑒𝑓𝑡 ← 𝐿𝑒𝑓𝑡\{𝑣}
8: send TempDelegate(𝑣) to 𝑤 ▷ 𝔇
9: else if 𝑖𝑑(𝑣) > 𝑖𝑑(𝑠𝑒𝑙𝑓) then ▷ Analogous to the previous case.

ate ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷, {𝑢}, 𝑠𝑒𝑙𝑓.𝑠𝑒𝑞) messages that it sends to itself
(see Part 2 of Algorithm 14)). In the following, assume 𝑖𝑑(𝑢) < 𝑑𝑒𝑠𝑡𝐼𝐷
(the other case is analogous). Each ForwardProbe() message has a set
of nodes 𝑁𝑒𝑥𝑡 attached to it, which contains nodes that the message visits
in the future. It also stores a sequence number counter 𝑠𝑒𝑞, whose mean-
ing we will explain later. Whenever a ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞)
message is received by a node 𝑣 (see Algorithm 19), 𝑣 removes itself from
𝑁𝑒𝑥𝑡 and adds all its right neighbors 𝑥 with 𝑖𝑑(𝑥) ≤ 𝑑𝑒𝑠𝑡𝐼𝐷 to 𝑁𝑒𝑥𝑡. Then
the ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞) message is forwarded to the node
with minimal ID in 𝑁𝑒𝑥𝑡. If a ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞) mes-
sage arrives at a node 𝑣 with 𝑖𝑑(𝑣) = 𝑑𝑒𝑠𝑡𝐼𝐷, it directly responds with a
ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑣) message to 𝑢. If 𝑁𝑒𝑥𝑡 is empty at a node 𝑣
with 𝑖𝑑(𝑣) ≠ 𝑑𝑒𝑠𝑡𝐼𝐷 (after 𝑣 has added the aforementioned right neighbors),
the ForwardProbe() message cannot reach its target and is answered with
a ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message. In any case, as soon as 𝑢 receives a
response, it acts accordingly. If a ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞) mes-
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Algorithm 17 Build-Line+: TempDelegate(𝑣)
1: if 𝑖𝑑(𝑣) < 𝑖𝑑(𝑠𝑒𝑙𝑓) then
2: if 𝐿𝑒𝑓𝑡 = ∅ then
3: 𝐿𝑒𝑓𝑡 ← 𝐿𝑒𝑓𝑡 ∪ {𝑣} ▷ 𝔖
4: else ▷ 𝐿𝑒𝑓𝑡 ≠ ∅
5: 𝑥 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑖𝑑(𝑥′)|𝑥′ ∈ 𝐿𝑒𝑓𝑡}
6: if 𝑖𝑑(𝑥) < 𝑖𝑑(𝑣) then
7: 𝐿𝑒𝑓𝑡 ← 𝐿𝑒𝑓𝑡 ∪ {𝑣} ▷ 𝔖
8: else if 𝑖𝑑(𝑥) > 𝑖𝑑(𝑣) then
9: TempDelegate(𝑣) to 𝑥 ▷ 𝔇

10: else if 𝑖𝑑(𝑣) > 𝑖𝑑(𝑠𝑒𝑙𝑓) then ▷ Analogous to the previous case.

sage is answered by a ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message (see Algorithm 21), it
drops the corresponding Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) message completely. Otherwise
(i.e., the probe is answered by a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑣) message), the
Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) message waiting at 𝑢 are directly sent to 𝑣 (see Algo-
rithm 20).

Whenever additional Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) messages are created at 𝑢 while 𝑢
is still waiting for an answer to an earlier initiated ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷),
these messages simply wait together with the previous request (realized by
simple 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] field) and are aborted or dispatched together
as soon as the ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷) or ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑣) response
arrives: i.e., search requests to the same destination are sent out in batches.
Furthermore, note that nodes do not memorize whether they have already sent
a ForwardProbe() message to a certain destination. Due to corrupt initial
states, this knowledge could be wrong and nodes relying on this knowledge
would wait forever. Therefore, nodes periodically send ForwardProbe()
messages in the Timeout action, instead of only once. Since we make no
assumptions on the delivery speed of messages and since channels are not
FIFO, it is possible that a ProbeFail() message arrives at a node 𝑢 that
is an answer to a ForwardProbe() message that was initiated long ago.
However, in the meantime, there might have been a successful response. To
deal with this situation, each node 𝑢 stores a sequence number counter 𝑠𝑒𝑞.
Whenever InitiateNewSearch(𝑑𝑒𝑠𝑡𝐼𝐷) is executed by 𝑢 and there is no
Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) that waits for an answer to a ForwardProbe() message,
𝑢 increments 𝑢.𝑠𝑒𝑞 and stores the value with the Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝑑) request.
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The current sequence number is always attached to each ForwardProbe()
message 𝑢 sends. Responses to probes (success and failure) also contain this
sequence number. Whenever a response is sent back to 𝑢, 𝑢 checks whether
the sequence number of the response is at least the sequence number stored for
𝑑𝑒𝑠𝑡𝐼𝐷. If that is not the case, it simply drops the message, since the answer
belongs to a batch of Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) messages that have already been
processed.

Algorithm 18 Search+: InitiateNewSearch(𝑑𝑒𝑠𝑡𝐼𝐷)
1: create new message 𝑚 = Search(𝑠𝑒𝑙𝑓, 𝑑𝑒𝑠𝑡𝐼𝐷)
2: if 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] = ∅ then
3: 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] ← {}
4: 𝑠𝑒𝑙𝑓.𝑠𝑒𝑞 ← 𝑠𝑒𝑙𝑓.𝑠𝑒𝑞 + 1
5: 𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] ← 𝑠𝑒𝑙𝑓.𝑠𝑒𝑞

▷ Store 𝑚 in 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟
6: 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] ← 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] ∪ {𝑚}

In order to not blow up the pseudocode unnecessarily , we intentionally left
out a sanity check for each node: i.e., before executing each action, each node 𝑢
makes sure that 𝐿𝑒𝑓𝑡 contains only nodes 𝑣 with 𝑖𝑑(𝑣) < 𝑖𝑑(𝑢) and that 𝑅𝑖𝑔ℎ𝑡
contains only nodes 𝑣 with 𝑖𝑑(𝑢) < 𝑖𝑑(𝑣). If this is not the case for some node
𝑣, 𝑢 rearranges the reference to 𝑣 accordingly. This way, in every computation,
the following lemma holds:

Lemma 9.1. For every node 𝑣 it holds: For all 𝑥 ∈ 𝐿𝑒𝑓𝑡, 𝑖𝑑(𝑥) < 𝑖𝑑(𝑣), and
for all 𝑦 ∈ 𝑅𝑖𝑔ℎ𝑡, 𝑖𝑑(𝑣) < 𝑖𝑑(𝑦).

9.1.2. Build-Line+ Stabilizes to the Line Topology

The main goal of this section is to prove the following theorem:

Theorem 9.2. Build-Line+ stabilizes to the strict line topology.

We prove the theorem in three steps: First, we show in Lemma 9.3 that
starting from any initial state in which 𝐺 is weakly connected, 𝐺 is always
weakly connected. Second, we show that starting from any initial state, there
eventually is a state in which 𝐺𝐸 is a supergraph of the line graph and that
the explicit edges corresponding to the line are never removed (see Lemma 9.4
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Algorithm 19 Search+: ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞)
1: if 𝑑𝑒𝑠𝑡𝐼𝐷 = 𝑖𝑑(𝑠𝑒𝑙𝑓) then
2: if 𝑁𝑒𝑥𝑡 ≠ ∅ then
3: for all 𝑢 ∈ 𝑁𝑒𝑥𝑡 do
4: send TempDelegate(𝑢) to 𝑠𝑒𝑙𝑓 ▷ 𝔇
5: send ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑠𝑒𝑙𝑓) to 𝑠𝑜𝑢𝑟𝑐𝑒 ▷ ℑ
6: send TempDelegate(𝑠𝑜𝑢𝑟𝑐𝑒) to 𝑠𝑒𝑙𝑓 ▷ 𝔇
7: else ▷ 𝑑𝑒𝑠𝑡𝐼𝐷 ≠ 𝑖𝑑(𝑠𝑒𝑙𝑓)
8: for all 𝑢 ∈ 𝑁𝑒𝑥𝑡 with 𝑖𝑑(𝑢) > 𝑑𝑒𝑠𝑡𝐼𝐷 do ▷ Remove wrong nodes
9: 𝑁𝑒𝑥𝑡 ← 𝑁𝑒𝑥𝑡\{𝑢}

10: send TempDelegate(𝑢) to 𝑠𝑒𝑙𝑓 ▷ 𝔇
11: if 𝑑𝑒𝑠𝑡𝐼𝐷 > 𝑖𝑑(𝑠𝑒𝑙𝑓) then
12: 𝑁𝑒𝑥𝑡 ← 𝑁𝑒𝑥𝑡\{𝑠𝑒𝑙𝑓} ∪ {𝑤 ∈ 𝑅𝑖𝑔ℎ𝑡|𝑖𝑑(𝑤) ≤ 𝑑𝑒𝑠𝑡𝐼𝐷}
13: if 𝑁𝑒𝑥𝑡 = ∅ then
14: send ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) to 𝑠𝑜𝑢𝑟𝑐𝑒
15: send TempDelegate(𝑠𝑜𝑢𝑟𝑐𝑒) to 𝑠𝑒𝑙𝑓 ▷ 𝔇
16: else ▷ 𝑁𝑒𝑥𝑡 ≠ ∅
17: 𝑢 ← 𝑎𝑟𝑔𝑚𝑖𝑛{𝑖𝑑(𝑢)|𝑢 ∈ 𝑁𝑒𝑥𝑡}
18: if 𝑖𝑑(𝑢) < 𝑖𝑑(𝑠𝑒𝑙𝑓) then
19: send TempDelegate(𝑢) to 𝑠𝑒𝑙𝑓 ▷ 𝔇
20: else if 𝑖𝑑(𝑢) < 𝑖𝑑(𝑎𝑟𝑔𝑚𝑖𝑛{𝑖𝑑(𝑣)|𝑣 ∈ 𝑅𝑖𝑔ℎ𝑡}) then
21: 𝑅𝑖𝑔ℎ𝑡 ← 𝑅𝑖𝑔ℎ𝑡 ∪ {𝑢} ▷ 𝔖
22: send ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞) to 𝑢 ▷ 𝔇
23: else if 𝑑𝑒𝑠𝑡𝐼𝐷 < 𝑖𝑑(𝑠𝑒𝑙𝑓) then ▷ Analogous to the previous case.

to Corollary 9.9). Third, we prove in Lemma 9.10 that all superfluous explicit
edges eventually vanish.

The first step of our proof is encapsulated by the following lemma:

Lemma 9.3. If a computation of Build-Line+ starts from a state where 𝐺
is weakly connected, then in every state 𝐺 remains weakly connected.

Proof. The proof of the lemma relies on the fact that the Build-Line+ protocol
is, at its core, a composition of storing references and the four primitives
presented in Section 8.3, which is illustrated by the letters ℑ, 𝔇, 𝔉, ℜ and 𝔖 in
the pseudocode. Every line that is not annotated by a letter, is not concerned
with node references. Therefore, we can use the result of Lemma 8.3 which
proves the lemma.
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Algorithm 20 Search+: ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑑𝑒𝑠𝑡)
1: if 𝑠𝑒𝑞 ≥ 𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] then ▷ The message belongs to currently stored

search requests to 𝑑𝑒𝑠𝑡.
2: send all 𝑚 ∈ 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] to 𝑑𝑒𝑠𝑡
3: 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] ← ∅
4: send TempDelegate(𝑑𝑒𝑠𝑡) to 𝑠𝑒𝑙𝑓 ▷ 𝔇

Algorithm 21 Search+: ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞)
1: if 𝑠𝑒𝑞 ≥ 𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] then ▷ The message belongs to currently stored

search requests to 𝑑𝑒𝑠𝑡.
2: 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] ← ∅

For the second step of the proof of the theorem, we introduce the notation
𝑝𝑟𝑒𝑑(𝑢) ∶= 𝑎𝑟𝑔𝑚𝑎𝑥{𝑖𝑑(𝑣)|𝑣 ∈ 𝐿𝑒𝑓𝑡(𝑢)} and 𝑠𝑢𝑐𝑐(𝑢) ∶= 𝑎𝑟𝑔𝑚𝑖𝑛{𝑖𝑑(𝑣)|𝑣 ∈
𝑅𝑖𝑔ℎ𝑡(𝑢)}. Furthermore, let 𝑑𝑖𝑠𝑡(𝑢, 𝑣) for two nodes 𝑢 and 𝑣 denote the hop
distance in the (ideal) line topology between 𝑢 and 𝑣. We define 𝑟𝑣(𝑣) for
a node 𝑣 as 𝑑𝑖𝑠𝑡(𝑣, 𝑠𝑢𝑐𝑐(𝑣)) if 𝑅𝑖𝑔ℎ𝑡(𝑣) ≠ ∅ or as 𝑛 otherwise. We define
𝑙𝑣(𝑣) analogously for 𝑝𝑟𝑒𝑑(𝑣). Using this notion we define a potential function
𝛷 ∶= ∑𝑛−1

𝑖=1 𝑟𝑣(𝑣𝑖) + ∑𝑛
𝑖=2 𝑙𝑣(𝑣𝑖) where 𝑣1 < 𝑣2 < ⋯ < 𝑣𝑛 are all nodes ordered

by their ID increasingly. Notice that 𝛷 is bounded from above by 2𝑛(𝑛−1) and
from below by 2(𝑛 − 1). Also notice that according to the protocol, 𝑝𝑟𝑒𝑑(𝑣)
(𝑠𝑢𝑐𝑐(𝑣)) can change only if 𝑣 stores a new node that is closer to 𝑣 than 𝑝𝑟𝑒𝑑(𝑣)
(𝑠𝑢𝑐𝑐(𝑣)) in 𝐿𝑒𝑓𝑡 (𝑅𝑖𝑔ℎ𝑡). Thus, 𝛷 never increases. We define the closest
neighbor graph as the graph 𝐺𝑁𝐵 = (𝑉 , 𝐸𝑁𝐵), where 𝑉 is the set of all nodes
and (𝑥, 𝑦) ∈ 𝐸𝑁𝐵 if and only if 𝑦 = 𝑠𝑢𝑐𝑐(𝑥) ∨ 𝑦 = 𝑝𝑟𝑒𝑑(𝑥). Furthermore, we
say an edge is temporary if it is an implicit edge due to a TempDelegate()
message. All other types of implicit edges are called non-temporary. With this
notion established we aim at showing the following lemma.

Lemma 9.4. Consider a system state 𝑠∗ of the computation of Build-Line+
such that 𝛷 does not decrease in the computation suffix starting in 𝑠∗, then
𝐺𝑁𝐵 is bidirected and strongly connected.

We prove this lemma step-by-step with the Lemmas 9.5 to 9.8, starting with
the following lemma:

Lemma 9.5. Consider a system state 𝑠∗ of the computation of Build-Line+
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such that 𝛷 does not decrease in the computation suffix starting in 𝑠∗, then
𝐺𝑁𝐵 is bidirected.

Proof. Assume for contradiction there exists an edge (𝑥, 𝑦) ∈ 𝐸𝑁𝐵 such that
(𝑦, 𝑥) ∉ 𝐸𝑁𝐵 and w.l.o.g. assume 𝑖𝑑(𝑥) < 𝑖𝑑(𝑦). This implies 𝑠𝑢𝑐𝑐(𝑥) = 𝑦
and 𝑥 ≠ 𝑝𝑟𝑒𝑑(𝑦). Since 𝛷 does not change anymore, 𝑦 remains 𝑠𝑢𝑐𝑐(𝑥) and
eventually by the fair action execution assumption, Timeout is executed in 𝑥
and it sends an Introduce(𝑥, ⊥) to 𝑦, which is eventually delivered to 𝑦 by the
fair message receipt assumption. This implicit edge turns into a temporary edge
(𝑦, 𝑥). Note that if 𝐿𝑒𝑓𝑡(𝑦) = ∅ or 𝑖𝑑(𝑝𝑟𝑒𝑑(𝑦)) < 𝑖𝑑(𝑥), then 𝑝𝑟𝑒𝑑(𝑦) is replaced
by 𝑥 according to the protocol and because 𝑖𝑑(𝑥) < 𝑖𝑑(𝑦). This causes 𝛷 to
decrease, which contradicts to the initial assumption. Therefore, 𝐿𝑒𝑓𝑡(𝑦) ≠ ∅
and 𝑖𝑑(𝑥) < 𝑖𝑑(𝑝𝑟𝑒𝑑(𝑦)) < 𝑖𝑑(𝑦) must hold. According to the protocol, (𝑦, 𝑥) is
delegated (first to 𝑝𝑟𝑒𝑑(𝑦), then possibly further) until it reaches a node 𝑧 that
either has no left neighbor or it holds that 𝑖𝑑(𝑝𝑟𝑒𝑑(𝑧)) < 𝑖𝑑(𝑥) < 𝑖𝑑(𝑧). Here
similar arguments as above yield a contradiction. Thus, 𝐺𝑁𝐵 is bidirected in
𝑠∗.

The definition of a closest neighbor graph and Lemma 9.1 imply the following:

Corollary 9.6. If 𝐺𝑁𝐵 is bidirected and disconnected, every connected com-
ponent forms a line.

To show that 𝐺𝑁𝐵 is also strongly connected if 𝛷 is at its minimum value,
we need two additional lemmas. First, we consider the non-temporary edges.

Lemma 9.7. Consider a state 𝑠∗ of the computation of Build-Line+ such
that 𝐺𝑁𝐵 is bidirected and disconnected. If there is a non-temporary edge (𝑤, 𝑣)
with 𝑤 ∈ 𝐶1, 𝑣 ∉ 𝐶1 for a connected component 𝐶1, then eventually there is an
explicit or a temporary edge (𝑥, 𝑦) with 𝑥 ∈ 𝐶1 and 𝑦 ∉ 𝐶1 or 𝛷 decreases.

Proof. W.l.o.g., assume 𝑖𝑑(𝑤) < 𝑖𝑑(𝑣). First of all, note that according to the
protocol, if the graph 𝐺𝑁𝐵 changes, 𝛷 must decrease. In that case we are done,
so in the following we assume that 𝐺𝑁𝐵 does not change in the computation
suffix starting in 𝑠∗. Furthermore, each connected component of 𝐺𝑁𝐵 forms a
line by Corollary 9.6. We now make a case distinction over all possible types
for the edge (𝑤, 𝑣). We note that this analysis is an exhaustive and tedious
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task, but since we aim for through proof, there is no way to circumvent this
exercise in case distinctions.

(a) (𝑤, 𝑣) is an implicit edge from a ForwardProbe() message in which
𝑣 = 𝑠𝑜𝑢𝑟𝑐𝑒 or 𝑣 ∈ 𝑁𝑒𝑥𝑡 and 𝑖𝑑(𝑤) = 𝑑𝑒𝑠𝑡𝐼𝐷. Then once the message is
received, (𝑤, 𝑣) is turned into a temporary edge and the claim follows.

(b) (𝑤, 𝑣) is an implicit edge from a ForwardProbe() message in which
𝑣 = 𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑑𝑒𝑠𝑡𝐼𝐷 > 𝑖𝑑(𝑤). Consider the state in which this
message is received and the corresponding action is executed. Then
𝑁𝑒𝑥𝑡 is updated according to the protocol. If 𝑁𝑒𝑥𝑡 is empty after
this operation, a temporary edge (𝑤, 𝑣) is established and the claim
holds. Otherwise, let 𝑢 ∶= 𝑎𝑟𝑔𝑚𝑖𝑛{𝑖𝑑(𝑢)|𝑢 ∈ 𝑁𝑒𝑥𝑡} after the update.
If 𝑖𝑑(𝑢) > 𝑖𝑑(𝑤) we have two sub-cases: 𝑖𝑑(𝑚𝑖𝑛𝑅𝑖𝑔ℎ𝑡(𝑤)) > 𝑖𝑑(𝑢) or
𝑖𝑑(𝑚𝑖𝑛𝑅𝑖𝑔ℎ𝑡(𝑤)) ≤ 𝑖𝑑(𝑢). In the former case, 𝑢 is added to 𝑅𝑖𝑔ℎ𝑡(𝑤),
causing 𝛷 to decrease, and the claim holds. In the latter case, due to
the way 𝑁𝑒𝑥𝑡 was updated, 𝑚𝑖𝑛𝑅𝑖𝑔ℎ𝑡(𝑤) = 𝑢 must hold. Applying the
previous arguments recursively yields that the message reaches a node
𝑥 ∈ 𝐶1 at some point in time where either 𝑑𝑒𝑠𝑡𝐼𝐷 = 𝑖𝑑(𝑥) or 𝑁𝑒𝑥𝑡 = ∅
after the update. In this case, a temporary edge (𝑥, 𝑣) is established.
Now, consider the case 𝑖𝑑(𝑢) < 𝑖𝑑(𝑤). Again, we have two sub-cases:
Either 𝑢 ∉ 𝐶1 or 𝑢 ∈ 𝐶1. In the former case, since the protocol establishes
the temporary edge (𝑤, 𝑢), the claim follows. In the latter case, the
message is forwarded to 𝑢 ∈ 𝐶1. Let 𝑢′ ∶= 𝑎𝑟𝑔𝑚𝑖𝑛{𝑖𝑑(𝑢′)|𝑢′ ∈ 𝑁𝑒𝑥𝑡}.
After the update of 𝑁𝑒𝑥𝑡 according to the protocol, it holds 𝑖𝑑(𝑢′) >
𝑖𝑑(𝑢). Thus, this case reduces to the other case above.

(c) (𝑤, 𝑣) is an implicit edge from a ForwardProbe() message in which
𝑣 = 𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑑𝑒𝑠𝑡𝐼𝐷 < 𝑖𝑑(𝑤). This case is analogous to the previous
one.

(d) (𝑤, 𝑣) is an implicit edge from a ForwardProbe() message in which
𝑣 ∈ 𝑁𝑒𝑥𝑡 and 𝑑𝑒𝑠𝑡𝐼𝐷 > 𝑖𝑑(𝑤). If 𝑖𝑑(𝑣) > 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑣 is removed from
𝑁𝑒𝑥𝑡 and a temporary edge (𝑤, 𝑣) is established. Otherwise, it holds
that 𝑖𝑑(𝑤) < 𝑖𝑑(𝑣) < 𝑑𝑒𝑠𝑡𝐼𝐷: i.e., the ForwardProbe() is forwarded
and will visit 𝑣 on its path before it reaches its target (or fails to reach
it). If the node with minimal ID in 𝑁𝑒𝑥𝑡 is 𝑣 or another node ∉ 𝐶1 then
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the statement holds because 𝑤 either saves that node locally or creates a
temporary edge to that node. If the node with minimal ID in 𝑁𝑒𝑥𝑡 is in
𝐶1 we consider that node together with the ForwardProbe() message.
Applying the previous arguments recursively yields that the message has
to reach a node 𝑥 ∈ 𝐶1 at some point in time such that the node 𝑦 with
minimal ID in 𝑁𝑒𝑥𝑡 is ∉ 𝐶1, since 𝑣 obviously fulfills that condition.
Consequently, 𝑥 saves 𝑦 locally or creates a temporary edge to 𝑦, which
again shows the statement.

(e) (𝑤, 𝑣) is an implicit edge from a ForwardProbe() message in which
𝑣 ∈ 𝑁𝑒𝑥𝑡 and 𝑑𝑒𝑠𝑡𝐼𝐷 > 𝑖𝑑(𝑤). This case is analogous to the previous
one.

(f) (𝑤, 𝑣) is an implicit edge from a ProbeSuccess() message (in which
𝑖𝑑(𝑣) = 𝑑𝑒𝑠𝑡𝐼𝐷) and a temporary edge (𝑤, 𝑣) is established.

(g) (𝑤, 𝑣) is an implicit edge from an Introduce() message. Note that
according to the protocol, all edges in an Introduce() message are
added either as explicit edges or as temporary edges.

(h) (𝑤, 𝑣) is an implicit edge from a Linearize() message and (𝑤, 𝑣) is turned
into a temporary edge.

Now we focus on the explicit edges and temporary edges.

Lemma 9.8. Consider a state 𝑠∗ of the computation of Build-Line+ such
that 𝐺𝑁𝐵 is bidirected and disconnected. If there is an explicit or a temporary
edge (𝑤, 𝑣) with 𝑤 ∈ 𝐶1 and 𝑣 ∉ 𝐶1 for a connected component 𝐶1, then
eventually there is an explicit or temporary edge (𝑥, 𝑦) with 𝑥 ∈ 𝐶1, 𝑦 ∉ 𝐶1 and
𝑑𝑖𝑠𝑡(𝑥, 𝑦) < 𝑑𝑖𝑠𝑡(𝑤, 𝑣), or 𝛷 decreases.

Proof. W.l.o.g., assume 𝑖𝑑(𝑤) < 𝑖𝑑(𝑣). First, assume (𝑤, 𝑣) is an explicit edge.
If 𝑣 = 𝑠𝑢𝑐𝑐(𝑤), we have a contradiction to the assumption 𝑤 ∈ 𝐶1 and 𝑣 ∉ 𝐶1.
Thus 𝑖𝑑(𝑤) < 𝑖𝑑(𝑠𝑢𝑐𝑐(𝑤)) < 𝑖𝑑(𝑣) must hold. In this case, in Timeout
a new edge (𝑥, 𝑣) with 𝑖𝑑(𝑤) < 𝑖𝑑(𝑥) < 𝑖𝑑(𝑣) is introduced and the claim
holds. Second, assume that (𝑤, 𝑣) is an implicit edge from a TempDelegate()
message. Then either 𝑖𝑑(𝑣) < 𝑖𝑑(𝑠𝑢𝑐𝑐(𝑤)) and (𝑤, 𝑣) turns into an explicit edge
and 𝑣 becomes 𝑠𝑢𝑐𝑐(𝑤) which causes 𝛷 to decrease, or a TempDelegate(𝑣)
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message is sent to 𝑠𝑢𝑐𝑐(𝑤), resulting in a shorter edge (𝑠𝑢𝑐𝑐(𝑤), 𝑣). This
completes the proof of the second claim.

We are now ready to prove Lemma 9.4:

Proof of Lemma 9.4. Consider the state 𝑠∗ of the computation of Build-Line+
such that 𝛷 does not decrease in the computation suffix starting in 𝑠∗. Fur-
thermore, assume that the closest neighbor graph 𝐺𝑁𝐵 is disconnected. First,
Lemma 9.5 guarantees that 𝐺𝑁𝐵 is bidirected. Furthermore, by Lemma 9.3,
there must be at least one (implicit or explicit) edge (𝑤, 𝑣) between a connected
component 𝐶1 and another connected component. Together with Lemma 9.7
this implies that at some point there must be a temporary or explicit edge
(𝑥, 𝑦) with 𝑥 ∈ 𝐶1 and 𝑦 ∉ 𝐶1. However, then Lemma 9.8 can be applied.
Since there is only a finite number of times that there can be a shorter edge,
in some state 𝑠′ > 𝑠∗ 𝛷 has to decrease which yields a contradiction. Thus
𝐺𝑁𝐵 must be weakly connected. Note that Lemma 9.5 implies that 𝐺𝑁𝐵 is
also strongly connected, yielding the claim of Lemma 9.4.

Note that since 𝛷 can never increase and since 𝛷 is bounded from below,
𝛷 can decrease for only a finite number of states: i.e., once we are in a suffix
in which 𝛷 remains constant, the conditions of Lemma 9.4 are fulfilled. This
lemma and Corollary 9.6 imply the following corollary:

Corollary 9.9. For any computation of Build-Line+, there is a state in
which 𝐺𝐸 is a supergraph of the line topology.

For the third step of the proof of the theorem, we have the following lemma:

Lemma 9.10. If a computation of Build-Line+ contains a state in which
𝐺𝐸 is a supergraph of the line topology, then the computation contains a suffix
in which 𝐺𝐸 is just the line topology and no new explicit edges are ever created
again.

Proof. For the proof, we introduce the following notation: We say an implicit
edge (𝑢, 𝑣) is right-relevant if 𝑖𝑑(𝑢) < 𝑖𝑑(𝑣) and the implicit edge (𝑢, 𝑣) is due
to an Introduce(𝑣, 𝑤) message in 𝑢.𝐶ℎ for 𝑤 ≠ ⊥. Accordingly, we say an
edge (𝑢, 𝑣) is left-relevant if 𝑖𝑑(𝑣) < 𝑖𝑑(𝑢) and the implicit edge (𝑢, 𝑣) is due
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to an Introduce(𝑣, 𝑤) message in 𝑢.𝐶ℎ for 𝑤 ≠ ⊥. Additionally, we call an
explicit edge (𝑢, 𝑣) superfluous if 𝑣 ≠ 𝑠𝑢𝑐𝑐(𝑢) ∧ 𝑣 ≠ 𝑝𝑟𝑒𝑑(𝑢).
Consider a state in which the graph formed by the explicit edges is a

supergraph of the line topology. First of all, notice that according to the
protocol an explicit edge that belongs to the line topology is never removed,
because this would require a node 𝑢 to get acquainted with a node 𝑣 that is
closer than 𝑚𝑖𝑛𝐿𝑒𝑓𝑡(𝑢) or 𝑚𝑖𝑛𝑅𝑖𝑔ℎ𝑡(𝑢), which is not possible. In addition,
notice that according to the protocol, in every state (right-/left-)relevant edges
are the sole implicit edges that can be turned into an explicit edge. Notice
that a right-relevant edge (𝑢, 𝑣) can only be created by a node 𝑖𝑑(𝑤) < 𝑖𝑑(𝑢)
with a superfluous explicit edge to 𝑣. Thus, for every node 𝑢 it holds: if there
is a state 𝑠′ such that no node 𝑖𝑑(𝑤) < 𝑖𝑑(𝑢) with a relevant or superfluous
edge (𝑤, 𝑢) exists, then there is no relevant or superfluous edge (𝑥, 𝑢) with
𝑖𝑑(𝑥) < 𝑖𝑑(𝑢) in the computation suffix starting 𝑠′.

Consider the leftmost node 𝑢 that either has at least one right-relevant edge or
at least one superfluous right neighbor. Note that once all right-relevant edges
have been received by 𝑢, no node with 𝑖𝑑(𝑥) ≤ 𝑖𝑑(𝑢) ever adds a superfluous
right neighbor again. Furthermore, notice that right-relevant edges are turned
into explicit edges upon receipt. Now, for every superfluous right neighbor 𝑣
of 𝑢, 𝑢 sends an Introduce(𝑣, 𝑢) to some node 𝑤 ∈ 𝑅𝑖𝑔ℎ𝑡(𝑢). Each of these
messages is eventually received and is answered with by Linearize(𝑣) message
according to the protocol. This causes 𝑢 to delegate 𝑣 to a node 𝑖𝑑(𝑥) > 𝑖𝑑(𝑢).
After the last superfluous edge has been delegated, no node with 𝑖𝑑(𝑥) ≤ 𝑖𝑑(𝑢)
will ever have a superfluous right neighbor again.

Continuing this approach, we can show that all superfluous right neighbors
eventually vanish. Using analogous arguments, we can also show that all
superfluous left neighbors eventually vanish. Thus, the lemma follows.

Note that Corollary 9.9 and Lemma 9.10 imply that Build-Line+ converges
to the line topology. Moreover, the second part of Lemma 9.10 yields the
closure property. This finishes the proof of Theorem 9.2.

9.1.3. Build-Line+ Satisfies Monotonic Searchability

In this subsection we prove the following theorem:
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Theorem 9.11. Build-Line+ admissibly satisfies monotonic searchability
according to Search+.

We start with some preliminaries. First we define 𝑅(𝑣) as the set of all nodes
𝑥 with 𝑖𝑑(𝑣) < 𝑖𝑑(𝑥) for which there is a directed path from 𝑣 to 𝑥 consisting
solely of explicit edges (𝑦, 𝑧) with 𝑖𝑑(𝑦) < 𝑖𝑑(𝑧). Furthermore, we define
𝑅(𝑣, 𝐼𝐷) ∶= {𝑥 ∈ 𝑅(𝑣)|𝑖𝑑(𝑥) ≤ 𝐼𝐷}. For a set 𝑈, 𝑅(𝑈) ∶= 𝑈 ∪ ⋃𝑢∈𝑈 𝑅(𝑢)
and 𝑅(𝑈, 𝐼𝐷) ∶= {𝑥 ∈ 𝑅(𝑈)|𝑖𝑑(𝑥) ≤ 𝐼𝐷}. Similarly, we define 𝐿(𝑣) as the
set of all nodes 𝑥 with 𝑖𝑑(𝑥) < 𝑖𝑑(𝑣) for which there is a directed path from 𝑣
to 𝑥 consisting solely of explicit edges (𝑦, 𝑧) with 𝑖𝑑(𝑧) < 𝑖𝑑(𝑦). Accordingly,
𝐿(𝑈) ∶= 𝑈 ∪ ⋃𝑢∈𝑈 𝐿(𝑢) and 𝐿(𝑈, 𝐼𝐷) ∶= {𝑥 ∈ 𝐿(𝑈)|𝑖𝑑(𝑥) ≥ 𝐼𝐷}.

In order to have a clear definition of admissible states we define the following
message invariants:

Invariant 1 If there is an Introduce(𝑣, 𝑤) message with 𝑤 ≠ ⊥ in 𝑢.𝐶ℎ, then
𝑣 ≠ 𝑤, and 𝑢 ∈ 𝑅(𝑤) (or 𝑢 ∈ 𝐿(𝑤)).

Invariant 2 If there is a Linearize(𝑣) message in 𝑤.𝐶ℎ, then there is a node
𝑢 ≠ 𝑣 with 𝑢 ∈ 𝑅𝑖𝑔ℎ𝑡(𝑤) and 𝑣 ∈ 𝑅(𝑢) if 𝑤 < 𝑣 (or 𝑢 ∈ 𝐿𝑒𝑓𝑡(𝑤) and
𝑣 ∈ 𝐿(𝑢) if 𝑣 < 𝑤).

Invariant 3 If there is a ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞) message
in 𝑢.𝐶ℎ with 𝑖𝑑(𝑠𝑜𝑢𝑟𝑐𝑒) < 𝑑𝑒𝑠𝑡𝐼𝐷 (respectively 𝑑𝑒𝑠𝑡𝐼𝐷 < 𝑖𝑑(𝑠𝑜𝑢𝑟𝑐𝑒)),
then

(a) ∀𝑥 ∈ 𝑁𝑒𝑥𝑡 ∶ 𝑖𝑑(𝑥) ≥ 𝑖𝑑(𝑢) and 𝑢 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢{𝑖𝑑(𝑢)|𝑢 ∈ 𝑁𝑒𝑥𝑡} (re-
spectively ∀𝑥 ∈ 𝑁𝑒𝑥𝑡 ∶ 𝑖𝑑(𝑥) ≤ 𝑖𝑑(𝑢) and 𝑢 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑢{𝑖𝑑(𝑢)|𝑢 ∈
𝑁𝑒𝑥𝑡}).

(b) 𝑅(𝑛𝑒𝑥𝑡) ⊆ 𝑅(𝑠𝑜𝑢𝑟𝑐𝑒) (respectively 𝑢 ∈ 𝐿(𝑠𝑜𝑢𝑟𝑐𝑒)).

(c) if 𝑣 with 𝑖𝑑(𝑣) = 𝑑𝑒𝑠𝑡𝐼𝐷 exists and 𝑣 ∉ 𝑅(𝑁𝑒𝑥𝑡, 𝑑𝑒𝑠𝑡𝐼𝐷) (respec-
tively 𝑣 ∉ 𝐿(𝑁𝑒𝑥𝑡, 𝑑𝑒𝑠𝑡𝐼𝐷)) then for every state which this Invariant
was true with 𝑠𝑜𝑢𝑟𝑐𝑒.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] < 𝑠𝑒𝑞, 𝑣 ∉ 𝑅(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷) (or
analogously 𝑣 ∉ 𝐿(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷)).

Invariant 4 If there is a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑑𝑒𝑠𝑡) message in 𝑢.𝐶ℎ,
then 𝑖𝑑(𝑑𝑒𝑠𝑡) = 𝑑𝑒𝑠𝑡𝐼𝐷 and 𝑑𝑒𝑠𝑡 ∈ 𝑅(𝑢) if 𝑑𝑒𝑠𝑡𝐼𝐷 > 𝑖𝑑(𝑢) (or 𝑑𝑒𝑠𝑡 ∈
𝐿(𝑢) if 𝑑𝑒𝑠𝑡𝐼𝐷 < 𝑖𝑑(𝑢)).
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Invariant 5 If there is a ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message in 𝑢.𝐶ℎ, then
either there is no node with the ID 𝑑𝑒𝑠𝑡𝐼𝐷, or for every state with
𝑢.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] < 𝑠𝑒𝑞, there is no node 𝑣 with 𝑖𝑑(𝑣) = 𝑑𝑒𝑠𝑡𝐼𝐷 in 𝑅(𝑢)
(and 𝑣 ∉ 𝐿(𝑢)).

Invariant 6 If there is a Search(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷) message in 𝑢.𝐶ℎ, then 𝑖𝑑(𝑢) =
𝑑𝑒𝑠𝑡𝐼𝐷 and 𝑢 ∈ 𝑅(𝑣) if 𝑖𝑑(𝑣) < 𝑑𝑒𝑠𝑡𝐼𝐷 (or 𝑢 ∈ 𝐿(𝑣) if 𝑑𝑒𝑠𝑡𝐼𝐷 < 𝑖𝑑(𝑣)).

Intuitively, the message invariants aim at making sure that each message
that exists in some state 𝑠 has either been sent out before 𝑠 or at least looks like
it has been sent out before. Invariant 1 and 2 ensure that an Introduce(𝑣, 𝑤)
message corresponds to an explicit edge (𝑣, 𝑤) and that a Linearize() message
is an answer to a previously sent matching Introduce() message. The third
Invariant is concerned with ForwardProbe() messages and guarantees that
such a message 𝑚: (i) has a correct 𝑁𝑒𝑥𝑡 set, (ii) has been following an existing
explicit path in the past and (iii) is consistent with past ForwardProbe()
messages (i.e., if 𝑚 fails to reach 𝑑𝑒𝑠𝑡𝐼𝐷, all past valid ForwardProbe()
messages failed to reach that target via an explicit path). Invariant 4 and 5 are
concerned with ProbeSuccess() and ProbeFail() messages and basically
state that a ProbeSuccess() message implies an explicit path to the target,
whereas a ProbeFail() message implies either the non-existence of such
an explicit path or the absence of a node with the corresponding 𝑑𝑒𝑠𝑡𝐼𝐷.
Finally, Invariant 6 ensures that a Search() message is sent only if there is
indeed an explicit path to the node with 𝑑𝑒𝑠𝑡𝐼𝐷. Before we can prove that
our protocols satisfies monotonic searchability, we need to show that every
computation contains a suffix that consists of admissible states only. The
following Lemma 9.12 is a first step to show our desired result.

Lemma 9.12. If a computation of Build-Line+ contains an admissible state,
then all subsequent states are admissible.

In order to prove Lemma 9.12, we need the following four lemmas:

Lemma 9.13. If a computation of Build-Line+ contains a state such that
the first two invariants hold, then the first two invariants hold in all subsequent
states.

Proof. Assume for contradiction there is a state 𝑠1 in which the first two
invariants hold and in the (directly) subsequent state 𝑠2 one of the first two
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invariants does not hold. This can only be due to one of the following three
reasons:

(a) A new Introduce(𝑣, 𝑤) message with 𝑤 ≠ ⊥ was sent to a node 𝑢 with
𝑢 ∉ 𝑅(𝑤) (or 𝑢 ∉ 𝐿(𝑤)) in 𝑠1.

(b) A new Linearize(𝑣) message was sent to a node 𝑤 in 𝑠1, but there is
no node 𝑢 ≠ 𝑣 with 𝑢 ∈ 𝑅𝑖𝑔ℎ𝑡(𝑤) and 𝑣 ∈ 𝑅(𝑢) (or 𝑢 ∈ 𝐿𝑒𝑓𝑡(𝑤) and
𝑣 ∈ 𝐿(𝑢)).

(c) A node 𝑦 was removed from a set 𝑅𝑖𝑔ℎ𝑡(𝑤) (or 𝐿𝑒𝑓𝑡(𝑤)).

We show that all three cases cannot happen.
For the first case, notice that according to the protocol, the only occasion

where an Introduce(𝑣, 𝑤) message with 𝑤 ≠ ⊥ is sent is in the Timeout
action of a node 𝑤. However, it is only sent to nodes in 𝑅𝑖𝑔ℎ𝑡(𝑤) (or 𝐿𝑒𝑓𝑡(𝑤))
and only with a first parameter 𝑣 ≠ 𝑤.

For the second case, notice that according to the protocol, the only occasion
where a Linearize(𝑣) message is sent to a node 𝑤 is in the Introduce(𝑣, 𝑤) ac-
tion of a node 𝑢′. This action must have been triggered by an Introduce(𝑣, 𝑤)
message with 𝑤 ≠ ⊥. Thus, before the action was executed 𝑢′ ∈ 𝑅(𝑤) (or
𝑢′ ∈ 𝐿(𝑤)) and 𝑣 ≠ 𝑤 were both fulfilled since the first invariant holds in 𝑠1.
This implies that there must be a node 𝑢 ∈ 𝑅𝑖𝑔ℎ𝑡(𝑤) – i.e., 𝑤 < 𝑢 – such that
𝑢′ ∈ 𝑅(𝑢) or 𝑢′ = 𝑢 (or a node 𝑢 ∈ 𝐿𝑒𝑓𝑡(𝑤) – i.e., 𝑢 < 𝑤 – such that 𝑢′ ∈ 𝐿(𝑢)
or 𝑢′ = 𝑢). During the execution of the action, 𝑣 was added to 𝑅𝑖𝑔ℎ𝑡(𝑢′) (or
𝐿𝑒𝑓𝑡(𝑢′)), which implies 𝑣 ∈ 𝑅(𝑢) (or 𝑣 ∈ 𝐿(𝑢)).

For the third case, note that a node 𝑦 is removed from 𝑅𝑖𝑔ℎ𝑡(𝑤) (or 𝐿𝑒𝑓𝑡(𝑤))
only if the Linearize(𝑦) action has been executed by 𝑤 in 𝑠1. However, by the
second invariant, there must be a node 𝑢 ≠ 𝑦 with 𝑢 ∈ 𝑅𝑖𝑔ℎ𝑡(𝑤) and 𝑦 ∈ 𝑅(𝑢)
(or 𝑢 ∈ 𝐿𝑒𝑓𝑡(𝑤) and 𝑦 ∈ 𝐿(𝑢)). Thus, after the removal, 𝑦 ∈ 𝑅(𝑤) still holds.

Therefore, in all three cases the first two invariants cannot be violated and
have to hold in 𝑠2, too.

Lemma 9.14. Consider a state in which the first two invariants hold, if for
two nodes 𝑥, 𝑣 it holds that 𝑥 ∈ 𝑅(𝑣) (respectively 𝑥 ∈ 𝐿(𝑣)), then in every
subsequent state, 𝑥 ∈ 𝑅(𝑣) (𝑥 ∈ 𝐿(𝑣)).
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Proof. We only consider the case 𝑥 ∈ 𝑅(𝑣), as 𝑥 ∈ 𝐿(𝑣) is completely analogous.
Obviously, adding additional edges does not remove elements from 𝑅(𝑣). Let

𝑦, 𝑧 be two nodes in 𝑅(𝑣) such that 𝑧 ∈ 𝑅𝑖𝑔ℎ𝑡(𝑦) and 𝑖𝑑(𝑦) < 𝑖𝑑(𝑧) The sole
action that delegates the explicit edge (𝑦, 𝑧) and hence could remove nodes
from 𝑅(𝑣) is the Linearize(). Therefore, consider an arbitrary Linearize(𝑧)
action executed by 𝑦. Note that since we assumed that the first two invariants
hold, right before Linearize(𝑧) is executed it has to hold that there is a node
𝑢 ≠ 𝑧 with 𝑢 ∈ 𝑅𝑖𝑔ℎ𝑡(𝑦) and 𝑧 ∈ 𝑅(𝑢), by the second invariant. Consequently,
after 𝑧 is removed from 𝑅𝑖𝑔ℎ𝑡(𝑦), 𝑧 ∈ 𝑅(𝑦) ⊂ 𝑅(𝑣) still holds.

Lemma 9.15. If a computation of Build-Line+ contains a state such that the
first three invariants hold, then the first three invariants hold in all subsequent
states.

Proof. Assume for contradiction that there is a state 𝑠1 in which the first three
invariants hold and in the (direct) subsequent state 𝑠2 one of the first three
invariants does not hold. Note that by Lemma 9.13 the first two invariants
cannot be violated in 𝑠2. Furthermore, by Lemma 9.14 and the fact that
𝑢.𝑠𝑒𝑞[𝑖𝑑] is monotonically increasing (according to the protocol), one can
easily show that the sole reason why Invariant 3 is invalidated is if a new
ForwardProbe() message is sent. Without loss of generality, we consider
only the case 𝑖𝑑(𝑠𝑜𝑢𝑟𝑐𝑒) < 𝑑𝑒𝑠𝑡𝐼𝐷.

Assume a node 𝑥 sends a ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞) mes-
sage to a node 𝑦. This may happen in two cases: Either in the Timeout action
of 𝑥, or if 𝑥 receives another ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡′, 𝑠𝑒𝑞) mes-
sage and executes the corresponding action. In the first case, 𝑁𝑒𝑥𝑡 = {𝑥} and
it is easy to see that part a) and b) of the third invariant are trivially fulfilled. In
the second case, both ∀𝑧 ∈ 𝑁𝑒𝑥𝑡′ ∶ 𝑖𝑑(𝑧) ≥ 𝑖𝑑(𝑦) and 𝑦 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢{𝑖𝑑(𝑢)|𝑢 ∈
𝑁𝑒𝑥𝑡′} hold, since for state 𝑠1 :(i) ∀𝑧 ∈ 𝑁𝑒𝑥𝑡′ ∶ 𝑖𝑑(𝑧) ≥ 𝑖𝑑(𝑥) (by the third
invariant) and ∀𝑧 ∈ 𝑅𝑖𝑔ℎ𝑡(𝑥) ∶ 𝑖𝑑(𝑧) ≥ 𝑖𝑑(𝑥) (by Lemma 9.1), (ii) only nodes
from 𝑅𝑖𝑔ℎ𝑡(𝑥) are added to 𝑁𝑒𝑥𝑡, (iii) 𝑥 was 𝑎𝑟𝑔𝑚𝑖𝑛𝑢{𝑖𝑑(𝑢)|𝑢 ∈ 𝑁𝑒𝑥𝑡} and
is not added to 𝑁𝑒𝑥𝑡′, and (iv) 𝑦 is selected as the minimum node from
𝑁𝑒𝑥𝑡′. Since the third invariant holds in 𝑠1, 𝑥 ∈ 𝑅(𝑠𝑜𝑢𝑟𝑐𝑒), which implies
𝑅𝑖𝑔ℎ𝑡(𝑥) ⊆ 𝑅(𝑠𝑜𝑢𝑟𝑐𝑒). Now, since 𝑅(𝑁𝑒𝑥𝑡′) ⊆ 𝑅(𝑠𝑜𝑢𝑟𝑐𝑒) (again by the third
invariant) and 𝑁𝑒𝑥𝑡 = 𝑁𝑒𝑥𝑡′\{𝑥} ∪ 𝑅𝑖𝑔ℎ𝑡(𝑥), 𝑅(𝑁𝑒𝑥𝑡) ⊆ 𝑅(𝑠𝑜𝑢𝑟𝑐𝑒). Thus
Invariant 3b) holds afterwards.

144



9.1. Monotonic Searchability for the Line Topology

For the third part of the third invariant, we again distinguish between the
two cases that the message was either sent in the Timeout action or in the
ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡, 𝑁𝑒𝑥𝑡′, 𝑠𝑒𝑞) action. In the former case, notice
that 𝑅(𝑁𝑒𝑥𝑡, 𝑑𝑒𝑠𝑡𝐼𝐷) = 𝑅(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷). Assume there has been a state
in which 𝑠𝑜𝑢𝑟𝑐𝑒.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] < 𝑠𝑒𝑞 and 𝑣 ∈ 𝑅(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷) hold. Since
𝑠𝑜𝑢𝑟𝑐𝑒.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] is monotonically increasing, this must have been a previous
state. By Lemma 9.14, 𝑣 ∈ 𝑅(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷) = 𝑅(𝑁𝑒𝑥𝑡, 𝑑𝑒𝑠𝑡𝐼𝐷) must still
hold, yielding a contradiction. In the latter case, assume 𝑣 ∈ 𝑅(𝑁𝑒𝑥𝑡′, 𝑑𝑒𝑠𝑡𝐼𝐷)
(otherwise, Invariant 3c) trivially holds). Notice that due to Invariant 3b),
𝑥 ∈ 𝑅(𝑠𝑜𝑢𝑟𝑐𝑒). Since the only node that is in 𝑅(𝑁𝑒𝑥𝑡′, 𝑑𝑒𝑠𝑡𝐼𝐷) but not in
𝑅(𝑁𝑒𝑥𝑡, 𝑑𝑒𝑠𝑡𝐼𝐷) is 𝑥, 𝑣 ∈ 𝑅(𝑁𝑒𝑥𝑡, 𝑑𝑒𝑠𝑡𝐼𝐷) follows.

Thus, the first three invariants still hold in 𝑠2.

Lemma 9.16. If a computation of Build-Line+ contains a state such that
the first five invariants hold, then the first five invariants hold in all subsequent
states.

Proof. Assume for contradiction that there is a state 𝑠1 in which the first five
invariants hold and in the (direct) subsequent state 𝑠2 one of the first five
invariants does not hold. Note that by Lemma 9.15 none of the first three
invariants can be violated in 𝑠2. Furthermore, by Lemma 9.14 and the fact
that according to the protocol, 𝑢.𝑠𝑒𝑞[𝑖𝑑] is monotonically increasing, one can
check that the sole reason why Invariant 4 or 5 are invalidated is that a new
ProbeSuccess() or ProbeFail() message is sent. Again, we only consider
the case, 𝑖𝑑(𝑢) < 𝑑𝑒𝑠𝑡𝐼𝐷 as the other cases are completely analogous.
First, we consider ProbeSuccess() messages. Assume that a node 𝑥

sends a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑑𝑒𝑠𝑡) message to a node 𝑢. According
to the protocol, this may only be in a ForwardProbe() action, when a
ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞) message arrives at 𝑥 with 𝑖𝑑(𝑥) =
𝑑𝑒𝑠𝑡𝐼𝐷 and 𝑢 = 𝑠𝑜𝑢𝑟𝑐𝑒. By case b) of the third invariant, 𝑑𝑒𝑠𝑡 ∈ 𝑅(𝑢).
For ProbeFail() messages, assume that a node 𝑥 sends the message to a

node 𝑢. This happens only if a ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞)
message arrives at 𝑥 with 𝑖𝑑(𝑥) ≠ 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑢 = 𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑁𝑒𝑥𝑡 = {𝑥} and
there is no 𝑦 in 𝑅𝑖𝑔ℎ𝑡(𝑥) with 𝑖𝑑(𝑦) ≤ 𝑑𝑒𝑠𝑡𝐼𝐷. If no node with the ID 𝑑𝑒𝑠𝑡𝐼𝐷
exists, we are done. Otherwise, we have that 𝑣 ∉ 𝑅(𝑁𝑒𝑥𝑡, 𝑤). By case c) of
the third invariant, which implies the claim.
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Therefore, the first five invariants have to hold in 𝑠2, too.

Using these lemmas, we can prove Lemma 9.12:

Proof of Lemma 9.12. Assume for contradiction there exists an admissible
state 𝑠1 such that in the (direct) subsequent state 𝑠2 is not admissible. Note
that by Lemma 9.16, none of the first five invariants can be violated in 𝑠2.
Furthermore, by Lemma 9.14 the sole reason why Invariant 6 can be invalidated
is that a new Search() message is sent. Again, without loss of generality
𝑖𝑑(𝑢) < 𝑑𝑒𝑠𝑡𝐼𝐷.

Assume a node 𝑥 sends a Search(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷) message to a node 𝑢. According
to the protocol, 𝑥 = 𝑣 and 𝑣 has received a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑢)
for which, by Invariant 4 𝑖𝑑(𝑢) = 𝑑𝑒𝑠𝑡𝐼𝐷, and 𝑢 ∈ 𝑅(𝑣) hold: i.e., the sixth
invariant holds. Therefore, all invariants have to hold in 𝑠2.

It remains to show that each computation contains an admissible state.

Lemma 9.17. In every computation of Build-Line+ there is an admissible
state.

Proof. According to Theorem 9.2, each computation contains a state 𝑠1 such
that in the suffix starting in 𝑠1 every node 𝑥 has at most one node in 𝑅𝑖𝑔ℎ𝑡(𝑥)
and at most one node in 𝐿𝑒𝑓𝑡(𝑥). Note that according to the protocol, any
Introduce(𝑣, 𝑤) message with 𝑣 ≠ 𝑤 is sent only from a node 𝑤 with
more than one node in 𝑅𝑖𝑔ℎ𝑡(𝑤) or 𝐿𝑒𝑓𝑡(𝑥). Thus, by the fair message re-
ceipt assumption, the suffix starting in 𝑠1 contains a state 𝑠2 in which all
Introduce(𝑣, 𝑤) messages have been received. Furthermore, notice that
any Linearize(𝑣) message is sent only from a node 𝑢 if 𝑢 received an
Introduce(𝑣, 𝑤) message. Thus, by the fair message receipt assumption,
the suffix starting in 𝑠2 contains a state 𝑠3 in which all Linearize() messages
have been received. This implies that the first two invariants hold in 𝑠3. By
Lemma 9.13, they do so in every subsequent state.
Consider the computation suffix starting in 𝑠3. We show that in this

suffix every ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞) violating the third
invariant vanishes eventually. Without loss of generality we consider only
ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞) messages with the property that
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𝑖𝑑(𝑠𝑜𝑢𝑟𝑐𝑒) < 𝑑𝑒𝑠𝑡𝐼𝐷. First, notice that any ForwardProbe() message initi-
ated in a Timeout action by a node 𝑥 cannot violate the third invariant. This
is obvious for a) and b). For c), notice that if 𝑣 with 𝑖𝑑(𝑣) = 𝑑𝑒𝑠𝑡𝐼𝐷 exists and
𝑣 ∉ 𝑅(𝑁𝑒𝑥𝑡, 𝑤) and there is an admissible state with 𝑥.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] < 𝑠𝑒𝑞 and
𝑣 ∈ 𝑅(𝑥), then according to the protocol this state must have been an earlier
state and Lemma 9.14 implies that 𝑣 ∈ 𝑅(𝑥) in the current state, yielding a
contradiction.

Second, note that any existing ForwardProbe() message 𝑚 can trigger the
creation of at most one other ForwardProbe() message 𝑚′ when 𝑚 is received
by a node 𝑥. If 𝑚 does not violate the third invariant, 𝑚′ also does not violate
the third invariant (for reasons similar to those in the proof of Lemma 9.15).
Thus, we show that every ForwardProbe() message that violates the third
invariant can only cause a finite number of ForwardProbe() messages that
violate the third invariant (which are eventually received and thus disappear).
First of all, note that every ForwardProbe() message 𝑚 violating Invari-
ant 3a) cannot cause a ForwardProbe() message 𝑚′ violating Invariant 3a)
according to the protocol. Thus, after all initial ForwardProbe() messages
have been received, Invariant 3a) holds for every ForwardProbe() message.
Now, observe that any such ForwardProbe() message which is received by a
node 𝑥 can only initiate a new ForwardProbe() message to a node 𝑦 with
𝑖𝑑(𝑦) > 𝑖𝑑(𝑥), according to the protocol. Since there is only a finite number of
nodes, this implies that all ForwardProbe() messages violating Invariant 3
eventually disappear.
Now, consider a state of the computation 𝑠4 in which all of the first three

invariants hold. Note that by Lemma 9.15, they hold for all subsequent states,
too. The sole action in which a new ProbeSuccess() or ProbeFail() message
is sent is in the ForwardProbe() action of a node. Such an action requires
the receipt of a ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞) message 𝑚 for
which, by definition of 𝑠4, the third invariant holds. Note that according to the
protocol 𝑚 can only trigger a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑑𝑒𝑠𝑡) message 𝑚′

that is sent to a node 𝑥 if 𝑖𝑑(𝑢) = 𝑑𝑒𝑠𝑡𝐼𝐷 (i.e., 𝑑𝑒𝑠𝑡 = 𝑢) and 𝑥 = 𝑠𝑜𝑢𝑟𝑐𝑒. By
Invariant 3b), 𝑢 ∈ 𝑅(𝑠𝑜𝑢𝑟𝑐𝑒), implying 𝑑𝑒𝑠𝑡 ∈ 𝑅(𝑥): i.e., the fourth invariant
holds regarding 𝑚′. Similarly, a ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑑𝑒𝑠𝑡) message 𝑚′ to
a node 𝑥 can be caused by 𝑚 only if 𝑖𝑑(𝑢) < 𝑑𝑒𝑠𝑡𝐼𝐷 and 𝑁𝑒𝑥𝑡\{𝑢} ∪ {𝑤 ∈
𝑅𝑖𝑔ℎ𝑡|𝑖𝑑(𝑤) ≤ 𝑑𝑒𝑠𝑡𝐼𝐷} = ∅, implying that 𝑣 ∉ 𝑅(𝑁𝑒𝑥𝑡, 𝑑𝑒𝑠𝑡𝐼𝐷) for a node 𝑣

147



Chapter 9. Monotonic Searchability

with 𝑖𝑑(𝑣) = 𝑑𝑒𝑠𝑡𝐼𝐷. By Invariant 3c), for every state in which Invariant 3
holds with 𝑠𝑜𝑢𝑟𝑐𝑒.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] < 𝑠𝑒𝑞, 𝑣 ∉ 𝑅(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷): i.e., the fifth
invariant holds regarding 𝑚′. All in all, the computation suffix starting in 𝑠4

contains a state 𝑠5 such that all ProbeSuccess() and ProbeFail() messages
that were in the incoming channel of nodes in 𝑠4 have been received and
consequently, for all ProbeSuccess() and ProbeFail() messages the fourth
and fifth invariant holds. By Lemma 9.16, they hold for all subsequent states,
too.
Consider the suffix starting in state 𝑠5. Notice that a Search(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷)

message is sent only to a node 𝑢 in the ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑢) action
of 𝑣, which requires the receipt of a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑢) message
for which, by definition of 𝑠5, the fourth invariant holds. This implies 𝑑𝑒𝑠𝑡𝐼𝐷 =
𝑖𝑑(𝑢) and 𝑢 ∈ 𝑅(𝑣), yielding Invariant 6 for the new message. Thus, after
all Search() messages that were in the incoming channel of nodes in 𝑠5 are
received, the computation contains a state 𝑠6 such that all invariants hold: i.e.,
𝑠6 is an admissible state.

Note that Lemma 9.12 and Lemma 9.17 imply the following corollary:

Corollary 9.18. Every computation of Build-Line+ contains a suffix in
which every state is admissible.

For the rest of this subsection, we assume that every computation starts in an
admissible state, since we want to show that monotonic searchability is satisfied
in admissible computation suffixes. Furthermore, without loss of generality, we
only consider Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) messages with 𝑖𝑑(𝑢) < 𝑑𝑒𝑠𝑡𝐼𝐷.

Before we can prove Theorem 9.11, we need to prove the following lemma.

Lemma 9.19. For any ForwardProbe(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞) message 𝑚
with 𝑖𝑑(𝑢) < 𝑑𝑒𝑠𝑡𝐼𝐷 in 𝑢.𝐶ℎ, it holds that if there exists a node 𝑤 with
𝑖𝑑(𝑤) = 𝑑𝑒𝑠𝑡𝐼𝐷 and 𝑤 ∈ 𝑅(𝑢), then computation contains a state such that a
message 𝑚′ = ForwardProbe(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡′, 𝑠𝑒𝑞) is in 𝑤.𝐶ℎ.

The following Lemma is an intermediate step to prove Lemma 9.19.

Lemma 9.20. Consider a ForwardProbe(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡, 𝑠𝑒𝑞) message
𝑚 ∈ 𝑥.𝐶ℎ and a node 𝑢 ∈ 𝑅(𝑁𝑒𝑥𝑡, 𝑑𝑒𝑠𝑡𝐼𝐷). Either 𝑢 = 𝑥 or the computation
contains a state in which a ForwardProbe(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡′, 𝑠𝑒𝑞) message
is in 𝑦.𝐶ℎ for some node 𝑦 with 𝑖𝑑(𝑦) > 𝑖𝑑(𝑥) and 𝑢 ∈ 𝑅(𝑁𝑒𝑥𝑡′, 𝑑𝑒𝑠𝑡𝐼𝐷).
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Proof. Note that when 𝑚 is received by 𝑥, a new message with 𝑁𝑒𝑥𝑡′ =
𝑁𝑒𝑥𝑡\{𝑥}∪𝑅𝑖𝑔ℎ𝑡(𝑥) is sent. According to the third invariant, for all nodes 𝑧 in
𝑁𝑒𝑥𝑡, 𝑖𝑑(𝑧) ≥ 𝑖𝑑(𝑥) holds: i.e., 𝑥 is the node with minimum ID among all nodes
in 𝑁𝑒𝑥𝑡. By Lemma 9.1, 𝑖𝑑(𝑧) ≥ 𝑖𝑑(𝑥) also holds for the nodes 𝑧 in 𝑅𝑖𝑔ℎ𝑡(𝑥).
Thus, 𝑥 is the node with minimum ID among all nodes in 𝑅(𝑁𝑒𝑥𝑡, 𝑑𝑒𝑠𝑡𝐼𝐷) and
the new ForwardProbe(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡′, 𝑠𝑒𝑞) message is sent to a node 𝑦
with 𝑖𝑑(𝑦) > 𝑖𝑑(𝑥). Furthermore, 𝑅(𝑁𝑒𝑥𝑡, 𝑑𝑒𝑠𝑡𝐼𝐷)\{𝑥} ⊆ 𝑅(𝑁𝑒𝑥𝑡′, 𝑑𝑒𝑠𝑡𝐼𝐷).
Thus, also 𝑢 ∈ 𝑅(𝑁𝑒𝑥𝑡′, 𝑑𝑒𝑠𝑡𝐼𝐷) and the claim follows.

Using this, we can prove Lemma 9.19:

Proof of Lemma 9.19. Note that when 𝑚 arrives at a node 𝑢, 𝑁𝑒𝑥𝑡 is changed
such that 𝑅(𝑁𝑒𝑥𝑡, 𝑤) = 𝑅(𝑢, 𝑤). If 𝑤 ∈ 𝑅(𝑢), then 𝑤 ∈ 𝑅(𝑁𝑒𝑥𝑡, 𝑤) after-
wards. Thus, we can apply Lemma 9.20 recursively. This results in a state in
which a ForwardProbe(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡′, 𝑠𝑒𝑞) is in 𝑤.𝐶ℎ, which is eventually
received according to the fair message receipt assumption.

We are now ready to prove Theorem 9.11:

Proof of Theorem 9.11. Let 𝑚, 𝑚′ be two Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) messages ini-
tiated by node 𝑢 in admissible states, such that 𝑚 was initiated before
𝑚′ and assume for contradiction that 𝑚 is delivered successfully, whereas
𝑚′ is not. Let 𝑣 be the node with 𝑖𝑑(𝑣) = 𝑑𝑒𝑠𝑡𝐼𝐷. Note that if 𝑚′ is
added to the set 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] while 𝑚 is in the set, then the pro-
tocol handles both messages identically: i.e., if 𝑚 is successfully delivered
to 𝑣 due to an ProbeSuccess() message, 𝑚′ is delivered as well. There-
fore, 𝑚′ is added to 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] when 𝑚 ∉ 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷],
which implies 𝑢.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] has increased since the successful delivery of
𝑚 according to the protocol. Since we assume that 𝑚′ is not delivered
successfully, either a ProbeFail(𝑑𝑒𝑠𝑡, 𝑠𝑒𝑞) message eventually arrives at
𝑢 with 𝑠𝑒𝑞 ≥ 𝑢.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷], or no ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑑𝑒𝑠𝑡) with
𝑠𝑒𝑞 ≥ 𝑢.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷], 𝑑𝑒𝑠𝑡 = 𝑑𝑒𝑠𝑡𝐼𝐷 ever arrives at 𝑢. We consider both cases
individually. In the first case, by the fifth invariant, 𝑣 ∉ 𝑅(𝑢) has to hold
even though 𝑚 was already successfully delivered. By the sixth invariant,
𝑣 ∈ 𝑅(𝑢) when 𝑚 was delivered, which is a contradiction to Lemma 9.14. In
the second case, note that ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷, {𝑢}, 𝑠𝑒𝑞) messages are
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regularly initiated by 𝑢 with 𝑠𝑒𝑞 ≥ 𝑢.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] (since 𝑢.𝑠𝑒𝑞 is monotonically
increasing). Again, due to the successful delivery of 𝑚, the sixth invariant and
Lemma 9.14, 𝑣 ∈ 𝑅(𝑢) when 𝑚′ was initiated, and therefore, by Lemma 9.19,
a ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑁𝑒𝑥𝑡′, 𝑠𝑒𝑞) message with 𝑠𝑒𝑞 ≥ 𝑢.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷]
is eventually in 𝑣.𝐶ℎ, which is answered by a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑣)
message, causing 𝑚′ to be delivered to 𝑣. This contradicts our initial assump-
tion.

9.2. Monotonic Searchability for the Super-Line
Topology

In this section, we present the Build-SuperLine protocol and the Greedy-
Search protocol. Build-SuperLine stabilizes to the super-line topology and
it admissibly satisfies monotonic searchability according to Greedy-Search.

This section has a similar structure to Section 9.1: First, we describe Build-
SuperLine and Greedy-Search in detail in Subsection 9.2.1. Then, in
Subsection 9.2.2 we prove that the Build-SuperLine protocol stabilizes to
the line topology and in Subsection 9.2.3 that the Build-SuperLine protocol
satisfies monotonic searchability according to Greedy-Search. We conclude
in Subsection 9.2.4 by presenting an extension of Build-SuperLine that allows
for short routing paths of search messages . Again, we drop the ”according
to Greedy-Search” clause for the remainder of this section, since we only
consider searchability for Greedy-Search.

9.2.1. Description of Build-SuperLine and Greedy-Search

Similarly to the Build-Line+ protocol, the Build-SuperLine protocol uses
the original solution for the line topology [ORS07] as its basis. The major
difference between Build-Line+ and Build-SuperLine is the way multiple
neighbors are handled. In Build-Line+ a node can have multiple neighbors
to the left and to the right, but ultimately the node aims at having only one
neighbor to each side: i.e., it eventually delegates all explicit edges with the
exception of the closest neighbors. In our Build-SuperLine protocol nodes
do not delegate explicit edges, but keep the corresponding neighbors in their
memory. Consequently, the protocol solely relies on Linearize() messages.
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In the Timeout action (see Part 1 of Algorithm 22) a node introduces itself
to its closest left and right neighbor by a Linearize() message. Moreover,
it introduces the neighbors among each other in a linear fashion: i.e., the
closest neighbor to the left/right is introduced to the second closest neighbor,
which is introduced to the third closest, and so on. Whenever a node 𝑢 gets a
Linearize(𝑣) message with 𝑢 < 𝑣 (see Algorithm 23), it first tests whether 𝑣
is closer to itself than its current right neighbor, if so, 𝑣 is stored in 𝑅𝑖𝑔ℎ𝑡(𝑢).
Otherwise, 𝑢 sends a Linearize(𝑣) message to two nodes in 𝑅𝑖𝑔ℎ𝑡(𝑢): (i)
the node whose identifier is closest to 𝑣 from below and (ii) the node whose
identifier is closest from above.

Note that this simple protocol has the major disadvantage that a node may
send a numerous Linearize() messages in a single Timeout action. One
can easily circumvent this by using two self-stabilizing counters, one each for
𝐿𝑒𝑓𝑡(𝑢) and 𝑅𝑖𝑔ℎ𝑡(𝑢). Whenever Timeout is executed, only the 𝑖-th neighbor
to the left is introduced to the 𝑖 + 1-th neighbor to the left, where 𝑖 is the value
of the counter for the left neighbors. Afterwards, the counter is incremented or,
in case the increment would yield a higher value than the number of nodes in
𝐿𝑒𝑓𝑡(𝑢), reset to 1. The same is done with the counter for the right neighbors.
It is not hard to see that this change essentially leads to the same behavior
as the original protocol, with a drastic decrease of message overhead. In this
Section we stick to our original protocol, since it simplifies the correctness
analysis.

Algorithm 22 Build-SuperLine: Timeout
Part 1: Self-Stabilization of Topology

▷ Let 𝐿𝑒𝑓𝑡 = {𝑣1, 𝑣2, … , 𝑣𝑘} with 𝑖𝑑(𝑣1) < 𝑖𝑑(𝑣2) < ⋯ < 𝑖𝑑(𝑣𝑘)
1: for all 𝑣𝑖 ∈ 𝐿𝑒𝑓𝑡 with 1 ≤ 𝑖 < 𝑘 do
2: send Linearize(𝑣𝑖) to 𝑣𝑖+1 ▷ ℑ

▷ Let 𝑅𝑖𝑔ℎ𝑡 = {𝑤1, 𝑤2, … , 𝑤𝑙} with 𝑖𝑑(𝑤1) < 𝑖𝑑(𝑤2) < ⋯ < 𝑖𝑑(𝑤𝑙)
3: for all 𝑤𝑖 ∈ 𝑅𝑖𝑔ℎ𝑡 with 1 < 𝑖 ≤ 𝑙 do
4: send Linearize(𝑤𝑖) to 𝑤𝑖−1 ▷ ℑ
5: send Linearize(𝑠𝑒𝑙𝑓) to 𝑣1 ▷ ℑ
6: send Linearize(𝑠𝑒𝑙𝑓) to 𝑤1 ▷ ℑ

Part 2: Monotonic Searchability
7: for ∀ 𝑑𝑒𝑠𝑡𝐼𝐷 ∈ 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 do ▷ Regularly send out probes
8: send ForwardProbe(𝑠𝑒𝑙𝑓, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑙𝑓.𝑠𝑒𝑞) to 𝑠𝑒𝑙𝑓 ▷ ℑ
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Algorithm 23 Build-SuperLine: Linearize(𝑣)
1: if 𝑖𝑑(𝑣) < 𝑖𝑑(𝑠𝑒𝑙𝑓) then
2: if 𝐿𝑒𝑓𝑡 ≠ ∅ then
3: 𝑥 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑖𝑑(𝑥′) |𝑥′ ∈ 𝐿𝑒𝑓𝑡};
4: if 𝑖𝑑(𝑣) > 𝑖𝑑(𝑥) then
5: 𝐿𝑒𝑓𝑡 ← 𝐿𝑒𝑓𝑡 ∪ {𝑣} ▷ 𝔖
6: else
7: 𝑦1 ← 𝑎𝑟𝑔𝑚𝑖𝑛{𝑖𝑑(𝑦′) |𝑦′ ∈ 𝐿𝑒𝑓𝑡 𝑎𝑛𝑑 𝑖𝑑(𝑦′) > 𝑖𝑑(𝑣)}
8: if 𝑦1 exists then
9: send Linearize(𝑣) to 𝑦1 ▷ 𝔇

10: 𝑦2 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑖𝑑(𝑦′) |𝑦′ ∈ 𝐿𝑒𝑓𝑡 𝑎𝑛𝑑 𝑖𝑑(𝑦′) < 𝑖𝑑(𝑣)}
11: if 𝑦2 exists then
12: send Linearize(𝑣) to 𝑦2 ▷ 𝔇
13: else
14: 𝐿𝑒𝑓𝑡 ← 𝐿𝑒𝑓𝑡 ∪ {𝑣}; ▷ 𝔖
15: else ▷ Analogous to 𝑖𝑑(𝑣) < 𝑖𝑑(𝑠𝑒𝑙𝑓)

The Greedy-Search protocol works similarly to Search+: i.e., whenever
a node 𝑢 initiates a new search request, the InitiateNewSearch(𝑑𝑒𝑠𝑡𝐼𝐷)
action of 𝑢 is called (see Algorithm 18). In this action node 𝑢 creates and
stores a new Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) message and starts to periodically initiate
ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑙𝑓.𝑠𝑒𝑞) messages that it sends to itself (see
Part 2 of Algorithm 22). The major advantage of Greedy-Search is the
fact that the set of nodes 𝑁𝑒𝑥𝑡 is not required anymore, since we exploit
the non-line edges of the super-line topology. We keep the sequence num-
ber counter 𝑠𝑒𝑞 of Search+ and use them in the same way. In the fol-
lowing, assume 𝑖𝑑(𝑢) < 𝑑𝑒𝑠𝑡𝐼𝐷 (the other case is analogous). Whenever
a ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message is received by a node 𝑤 with
𝑖𝑑(𝑤) ≠ 𝑑𝑒𝑠𝑡𝐼𝐷 (see Algorithm 19), 𝑤 sends the message to the rightmost
neighbor whose ID is still smaller than 𝑑𝑒𝑠𝑡𝐼𝐷: i.e., the message is greedily for-
warded to node that is closest to the desired destination ID without surpassing
it. If 𝑤 has no right neighbor, it answers with a ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) mes-
sage. If a ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message arrives at a node 𝑣 with
𝑖𝑑(𝑣) = 𝑑𝑒𝑠𝑡𝐼𝐷, it directly responds with a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑣)
message to 𝑢. As soon as 𝑢 receives a response, it acts accordingly. In
case a ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message is successfully answered by a

152



9.2. Monotonic Searchability for the Super-Line Topology

ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message (see Algorithm 21), it drops the correspond-
ing Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) messages completely. Otherwise, Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷)
requests waiting at 𝑢 are directly delivered to 𝑣 (see Algorithm 20).
Mimicking the Search+ protocol, we save Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) message

in batches at the initiating nodes: i.e., whenever a new Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷)
message is created by 𝑢 and there are already Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) messages
that wait for an answer to a ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) message, the new
Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) message waits together with these previous requests. These
batched messages are aborted or delivered as soon as a ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷)
message or a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑣) message arrives at 𝑢.

Algorithm 24 Greedy-Search: InitiateNewSearch(𝑑𝑒𝑠𝑡𝐼𝐷)
1: create new message 𝑚 = Search(𝑠𝑒𝑙𝑓, 𝑑𝑒𝑠𝑡𝐼𝐷);
2: if 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] = ∅ then
3: 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] ← {}
4: 𝑠𝑒𝑙𝑓.𝑠𝑒𝑞 ← 𝑠𝑒𝑙𝑓.𝑠𝑒𝑞 + 1
5: 𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] ← 𝑠𝑒𝑙𝑓.𝑠𝑒𝑞

▷ Store 𝑚 in 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟
6: 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] ← 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] ∪ {𝑚}

9.2.2. Build-SuperLine Stabilizes to the Super-Line Lopology

In this subsection we prove the following theorem.

Theorem 9.21. Build-SuperLine stabilizes to the super-line topology.

We intentionally omit to prove that our protocol maintains weak connectivity:
i.e., starting from any initial state in which 𝐺 is weakly connected, 𝐺 is always
weakly connected. The explicit edges are never delegated and connectivity is
maintained trivially. Moreover, the implicit edges are delegated as in Build-
Line+, for which we have already shown the maintenance of weak connectivity.

First we prove that Build-SuperLine fulfills the convergence property. For
a node 𝑣 let 𝑠𝑢𝑐𝑐(𝑣) denote the node in 𝑅𝑖𝑔ℎ𝑡(𝑣) that has the smallest 𝑖𝑑 (i.e., it
is the closest current successor). Analogously, we define 𝑝𝑟𝑒𝑑(𝑣) to be the node
in 𝐿𝑒𝑓𝑡(𝑣) with highest 𝑖𝑑. Furthermore, the potential of a node 𝜙(𝑣) is 𝜙(𝑣) ∶=
|𝑖𝑑(𝑠𝑢𝑐𝑐(𝑣)) − 𝑖𝑑(𝑣)| + |𝑖𝑑(𝑣) − 𝑖𝑑(𝑝𝑟𝑒𝑑(𝑣))|. In case 𝑠𝑢𝑐𝑐(𝑣)/𝑝𝑟𝑒𝑑(𝑣) does not
exist (since 𝑅𝑖𝑔ℎ𝑡(𝑣)/𝐿𝑒𝑓𝑡(𝑣) are empty) we replace 𝑖𝑑(𝑠𝑢𝑐𝑐(𝑣))/𝑖𝑑(𝑝𝑟𝑒𝑑(𝑣))
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Algorithm 25 Greedy-Search: ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞)
1: if 𝑑𝑒𝑠𝑡𝐼𝐷 = 𝑖𝑑(𝑠𝑒𝑙𝑓) then
2: send ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑠𝑒𝑙𝑓) to 𝑠𝑜𝑢𝑟𝑐𝑒 ▷ ℑ
3: send Linearize(𝑠𝑜𝑢𝑟𝑐𝑒) to 𝑠𝑒𝑙𝑓 ▷ 𝔇
4: else
5: if 𝑑𝑒𝑠𝑡𝐼𝐷 < 𝑖𝑑(𝑠𝑒𝑙𝑓) then
6: if 𝐿𝑒𝑓𝑡 = ∅ then
7: send ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) to 𝑠𝑜𝑢𝑟𝑐𝑒
8: send Linearize(𝑠𝑜𝑢𝑟𝑐𝑒) to 𝑠𝑒𝑙𝑓 ▷ 𝔇
9: else

10: 𝑦 ← 𝑎𝑟𝑔𝑚𝑖𝑛{𝑖𝑑(𝑦′) |𝑦′ ∈ 𝐿𝑒𝑓𝑡 𝑎𝑛𝑑 𝑖𝑑(𝑦′) ≥ 𝑑𝑒𝑠𝑡𝐼𝐷}
11: send ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) to 𝑦 ▷ 𝔇
12: send Linearize(𝑠𝑜𝑢𝑟𝑐𝑒) to 𝑠𝑒𝑙𝑓 ▷ 𝔇
13: else
14: if 𝑅𝑖𝑔ℎ𝑡 = ∅ then
15: send ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) to 𝑠𝑜𝑢𝑟𝑐𝑒
16: send Linearize(𝑠𝑜𝑢𝑟𝑐𝑒) to 𝑠𝑒𝑙𝑓 ▷ 𝔇
17: else
18: 𝑦 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑖𝑑(𝑦′) |𝑦′ ∈ 𝑅𝑖𝑔ℎ𝑡 𝑎𝑛𝑑 𝑖𝑑(𝑦′) ≤ 𝑑𝑒𝑠𝑡𝐼𝐷}
19: send ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) to 𝑦 ▷ 𝔇
20: send Linearize(𝑠𝑜𝑢𝑟𝑐𝑒) to 𝑠𝑒𝑙𝑓 ▷ 𝔇

by an 𝑖𝑑 value that is bigger/smaller than the maximal/minimal 𝑖𝑑 in the
network. The potential of the network 𝐺𝐸 = (𝑉 , 𝐸𝐸) in state s (or short 𝐺𝐸(𝑠))
is simply the sum over all node potentials: i.e., 𝜙(𝐺𝐸(𝑠)) = ∑𝑣∈𝑉 𝜙(𝑣). Note
that the potential is minimal if 𝐺𝐸 contains the line topology as a subgraph.
This is even correct when the IDs of nodes are not consecutively numbered.
For convenience we use 𝜙∗ to denote the minimal possible value of 𝜙(𝐺𝐸)

Lemma 9.22. If a computation of Build-SuperLine starts from a state
where 𝐺𝐸 is weakly connected, the computation contains a state such that 𝐺𝐸

Algorithm 26 Greedy-Search: ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑑𝑒𝑠𝑡)
1: if 𝑠𝑒𝑞 ≥ 𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] then ▷ The message belongs to currently stored

search requests to 𝑑𝑒𝑠𝑡.
2: send all 𝑚 ∈ 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] to 𝑑𝑒𝑠𝑡
3: 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] ← ∅
4: send Linearize(𝑑𝑒𝑠𝑡) to 𝑠𝑒𝑙𝑓 ▷ 𝔇
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Algorithm 27 Greedy-Search: ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞)
1: if 𝑠𝑒𝑞 ≥ 𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] then ▷ The message belongs to currently stored

search requests to 𝑑𝑒𝑠𝑡.
2: 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] ← ∅

is a supergraph of the line topology.

Proof. To show that Build-SuperLine always converges to a topology that
contains the line topology as a subgraph, we simply need to show that for any
state 𝑠 if 𝜙(𝐺𝐸(𝑠)) ≠ 𝜙∗ then 𝜙(𝐺𝐸) decreases eventually.
Assume for contradiction that there is a state 𝑠1 such that for all 𝑠′ >

𝑠1 ∶ 𝜙(𝐺𝐸(𝑠1)) = 𝜙(𝐺𝐸(𝑠′)) ≠ 𝜙∗. Consequently, the line topology is not
a subgraph of 𝐺𝐸(𝑠1). We can subdivide 𝐺𝐸(𝑠1) into maximal components
𝐶1, 𝐶2, … , 𝐶𝑘 with the property that inside each component all line-subgraph
edges have been established. Note that the numbering of the components is
consecutive: i.e., 𝐶1 contains the node with minimal 𝑖𝑑, 𝐶2 contains the node
with minimal 𝑖𝑑 that is not in the line component of 𝐶1, and so on. Note that
in case no line edges are established, each component consists of only a single
node.
Consider two of these components 𝐶𝑖, 𝐶𝑗, 𝑖 < 𝑗 with the properties that (i)

∃(𝑢, 𝑣) ∈ 𝐸𝑒 ∶ 𝑢 ∈ 𝐶𝑖, 𝑣 ∈ 𝐶𝑗 or vice versa and (ii) |𝑗 −𝑖| is minimal. Informally
stated, we chose the two closest components that are connected by at least one
explicit edge. Without loss of generality assume that 𝑢 ∈ 𝐶𝑖, 𝑣 ∈ 𝐶𝑗. If there
are multiple explicit edges between 𝐶𝑖 and 𝐶𝑗 that fulfill this property we pick
the unique edge with the property that 𝑖𝑑(𝑢) is maximal and 𝑖𝑑(𝑢) − 𝑖𝑑(𝑣) is
minimal.

In case 𝑣 = 𝑠𝑢𝑐𝑐(𝑢), 𝑢 introduces itself to 𝑣 in the timeout action; otherwise
it introduces a node 𝑤 from 𝑅𝑖𝑔ℎ𝑡(𝑢) to 𝑣 such that 𝑖𝑑(𝑤) < 𝑖𝑑(𝑣) with 𝑖𝑑(𝑤)
being maximal with that property. In either case, 𝑣 eventually receives this
Linearize() message. If 𝑣 makes this edge explicit (i.e., the reference is stored
in 𝐿𝑒𝑓𝑡(𝑢)) we are done, since 𝜙(𝑣) decreases, which is a contradiction to the
assumption that the potential remains constant. Now consider the case that
the reference of 𝑢/𝑤 is forwarded to another node 𝑥1 ∈ 𝐿𝑒𝑓𝑡(𝑣). If 𝑥1 stores
the reference and makes the edge explicit, then analogously to 𝑣 storing the
edge we end up with a contradiction. Consequently, consider the delegation
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path of the message (𝑥1 = 𝑣, 𝑥2, … , 𝑥ℎ): i.e., the nodes the message visits
before it either becomes explicit or merges with an existing edge. Note that
𝑖𝑑(𝑥1) > 𝑖𝑑(𝑥2) > … > 𝑖𝑑(𝑥ℎ). Moreover, all of the nodes on the delegation
path have to be in component 𝐶𝑗 due to the way we picked the edge (𝑢, 𝑣): i.e.,
if a node 𝑥𝑖 in the delegation path is not in 𝐶𝑗 but in some other component
𝐶𝑘, our initial choices for 𝐶𝑖, 𝐶𝑗 and 𝑢, 𝑣 would have been different. Therefore,
𝑥ℎ is also in 𝐶𝑗 and the edge (𝑥ℎ, 𝑢) becomes explicit in some state 𝑠∗ > 𝑠1.
This leads to a decrease of 𝜙(𝑥ℎ) (and also of 𝜙(𝐺𝐸(𝑠∗))), contradicting our
initial assumption.

Finally, consider the case that there is no explicit edge (𝑢, 𝑣) that connects
two components 𝐶𝑖, 𝐶𝑗: i.e., all connected components are connected by implicit
edges There are two cases: (i) there is at least one implicit edge connecting
two components that is induced by a Linearize() message and (ii) all implicit
edges that connect two components are induced by ForwardProbe() and
ProbeSuccess() messages. In the first case, we can apply our above approach:
i.e., we simply follow the delegation path of the Linearize() message in order
to get a contradiction. In the second case, we have to handle the two message
types separately. In case a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑑𝑒𝑠𝑡) message in
the channel of some node 𝑢 connects two components 𝐶𝑖, 𝐶𝑗, it holds that
𝑑𝑒𝑠𝑡 ∈ 𝐶𝑖 and 𝑢 ∈ 𝐶𝑗 or vice versa. Once the message is received by 𝑢, it sends
a Linearize(𝑑𝑒𝑠𝑡) message to itself and we can again use our delegation path
argument to show a contradiction. If a ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞)
message in the channel of some node 𝑢 connects two components 𝐶𝑖, 𝐶𝑗, it
holds that 𝑠𝑜𝑢𝑟𝑐𝑒 ∈ 𝐶𝑖 and 𝑢 ∈ 𝐶𝑗 or vice versa. Once the message is received
by 𝑢, it sends a Linearize(𝑠𝑜𝑢𝑟𝑐𝑒) message to itself: i.e., the delegation path
argument is again applicable, thus, proving the theorem.

The closure property follows trivially from the proof of Lemma 9.22, since
explicit edges are never delegated.

Corollary 9.23. If a computation of Build-SuperLine starts from a state
where 𝐺𝐸 is a supergraph of the line topology, then in every state of the
computation 𝐺𝐸 is a supergraph of the line topology.

The proof of Theorem 9.2 directly follows from Lemma 9.22 and Corol-
lary 9.23.
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9.2.3. Build-SuperLine Satisfies Monotonic Searchability

The following theorem towers over this subsection and is our major result:

Theorem 9.24. The Build-SuperLine protocol admissibly satisfies mono-
tonic searchability according to Greedy-Search.

In order to prove Theorem 9.24, we define some preliminary notations. A
directed path of explicit edges (𝑢 = 𝑣1, 𝑣2, … , 𝑣𝑘 = 𝑤) between two nodes 𝑢, 𝑤 is
a greedy path if (i) the node identifiers on the path are monotonically increasing
or decreasing and (ii) for all nodes 𝑣𝑖 it holds that there does not exist a
node 𝑥 ∈ 𝑅𝑖𝑔ℎ𝑡(𝑣𝑖)/𝐿𝑒𝑓𝑡(𝑣𝑖) such that 𝑖𝑑(𝑥) is in [𝑖𝑑(𝑣𝑖+1), 𝑖𝑑(𝑤)]. Informally
speaking a path is a greedy path if each edge (𝑣𝑖, 𝑣𝑖+1) minimizes the distance
to the final node from the local view of 𝑣𝑖. Similarly to the 𝑅(𝑣) notion of the
last section, we define 𝑅𝐺(𝑣) as the set of all nodes 𝑥 with 𝑖𝑑(𝑣) < 𝑖𝑑(𝑥) for
which there is a greedy path from 𝑣 to 𝑥. 𝐿𝐺(𝑣) is defined correspondingly.
Analogously, we also reuse the notion 𝑅𝐺(𝑣, 𝐼𝐷) ∶= {𝑥 ∈ 𝑅𝐺(𝑣)|𝑖𝑑(𝑥) ≤ 𝐼𝐷}
(analogously for 𝐿𝐺(𝑣, 𝐼𝐷)).

Similarly to Subsection 9.1.3 we first define the following message invariants
that have to hold in an admissible state:

Invariant 1 If there is a ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message in
𝑢.𝐶ℎ 𝑖𝑑(𝑠𝑜𝑢𝑟𝑐𝑒) < 𝑑𝑒𝑠𝑡𝐼𝐷 (respectively 𝑑𝑒𝑠𝑡𝐼𝐷 < 𝑖𝑑(𝑠𝑜𝑢𝑟𝑐𝑒)) , then

(a) 𝑅𝐺(𝑢) ⊆ 𝑅𝐺(𝑠𝑜𝑢𝑟𝑐𝑒) (or 𝐿𝐺(𝑢) ⊆ 𝐿𝐺(𝑠𝑜𝑢𝑟𝑐𝑒)).

(b) if 𝑣 with 𝑖𝑑(𝑣) = 𝑑𝑒𝑠𝑡𝐼𝐷 exists and 𝑣 ∉ 𝑅𝐺(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) (respectively
𝑣 ∉ 𝐿𝐺(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷)) then for every state which this Invariant was
true with 𝑠𝑜𝑢𝑟𝑐𝑒.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] < 𝑠𝑒𝑞, 𝑣 ∉ 𝑅𝐺(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷) (or
analogously 𝑣 ∉ 𝐿𝐺(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷)).

Invariant 2 If there is a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑑𝑒𝑠𝑡) message in 𝑢.𝐶ℎ,
then 𝑖𝑑(𝑑𝑒𝑠𝑡) = 𝑑𝑒𝑠𝑡𝐼𝐷 and 𝑑𝑒𝑠𝑡 ∈ 𝑅𝐺(𝑢) if 𝑑𝑒𝑠𝑡𝐼𝐷 > 𝑖𝑑(𝑢) (or 𝑑𝑒𝑠𝑡 ∈
𝐿𝐺(𝑢) if 𝑑𝑒𝑠𝑡𝐼𝐷 < 𝑖𝑑(𝑢)).

Invariant 3 If there is a ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message in 𝑢.𝐶ℎ, then
either there is no node with the ID 𝑑𝑒𝑠𝑡𝐼𝐷, or for every state with
𝑢.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] < 𝑠𝑒𝑞, there is no node 𝑣 with 𝑖𝑑(𝑣) = 𝑑𝑒𝑠𝑡𝐼𝐷 in 𝑅𝐺(𝑢)
(and 𝑣 ∉ 𝐿𝐺(𝑢)).
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Invariant 4 If there is a Search(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷) message in 𝑢.𝐶ℎ, then 𝑖𝑑(𝑢) =
𝑑𝑒𝑠𝑡𝐼𝐷 and 𝑢 ∈ 𝑅𝐺(𝑣) if 𝑖𝑑(𝑣) < 𝑑𝑒𝑠𝑡𝐼𝐷 (or 𝑢 ∈ 𝐿𝐺(𝑣) if 𝑑𝑒𝑠𝑡𝐼𝐷 <
𝑖𝑑(𝑣)).

These four invariants correspond to the Invariants 2 to 6 of Subsection 9.1.3
in which an intuitive description of all invariants is presented. Next we show
that every computation contains a suffix that consists solely of admissible
states. The following Lemma 9.25 is a first step to show our desired result.

Lemma 9.25. If a computation of Build-SuperLine contains an admissible
state, then all subsequent states are admissible.

In order to prove Lemma 9.25, we need the following corollary and lemmas.

Corollary 9.26. If for two nodes 𝑥, 𝑣 it holds that 𝑥 ∈ 𝑅𝐺(𝑣) in some
state 𝑠 (respectively 𝑥 ∈ 𝐿𝐺(𝑣)), then in every subsequent state, 𝑥 ∈ 𝑅𝐺(𝑣)
(𝑥 ∈ 𝐿𝐺(𝑣)).

The corollary trivially holds since each node always keeps its explicit edges and
adds an edge to 𝑅𝑖𝑔ℎ𝑡(𝑤) (𝐿𝑒𝑓𝑡(𝑤)) if the identifier of the received node is
smaller (bigger) than the smallest (biggest) identifier in 𝑅𝑖𝑔ℎ𝑡(𝑤) (𝐿𝑒𝑓𝑡(𝑤)):
i.e., we only add nodes to 𝑅𝐺(𝑣) and 𝐿𝐺(𝑣).

We now consider the first invariant.

Lemma 9.27. If a computation of Build-SuperLine contains a state such
that the first invariant holds, then the first invariant holds in all subsequent
states.

Proof. Assume for contradiction that there is a state 𝑠1 in which the first
invariant holds and in the (direct) subsequent state 𝑠2 it does not hold any-
more. Note that by Corollary 9.26 and the fact that sequence numbers are
monotonically increasing (according to the protocol), one can easily show that
only the sending of a new ForwardProbe() message is able to invalidate
Invariant 1. Without loss of generality we only consider the case, where
𝑖𝑑(𝑠𝑜𝑢𝑟𝑐𝑒) < 𝑑𝑒𝑠𝑡𝐼𝐷.
Assume a node 𝑥 sends a ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message

to a node 𝑦. This can happen in two cases: Either in the Timeout action
of 𝑥, or if 𝑥 receives another ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message
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and executes the corresponding action. In the first case, 𝑥 sends the message
to itself and it is easy to see that part a) of the first invariant is fulfilled. In
the second case, we know that the message that triggered the action fulfilled
the first invariant: i.e., 𝑅𝐺(𝑥) ⊆ 𝑅𝐺(𝑠𝑜𝑢𝑟𝑐𝑒). Moreover, 𝑦 ∈ 𝑅𝑖𝑔ℎ𝑡(𝑥) which
yields that 𝑅𝐺(𝑦) ⊆ 𝑅𝐺(𝑠𝑜𝑢𝑟𝑐𝑒). Thus Invariant 1a) still holds afterwards.

For the second part of the first invariant, assume that 𝑣 ∈ 𝑅𝐺(𝑥, 𝑑𝑒𝑠𝑡𝐼𝐷) in
𝑠1 (otherwise, Invariant 1b) trivially holds). Again, we distinguish between
the two cases that the message was either sent in the Timeout action or in
the ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡, 𝑠𝑒𝑞) action. In the former case, notice that
𝑅𝐺(𝑥, 𝑑𝑒𝑠𝑡𝐼𝐷) = 𝑅𝐺(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷) and due to Corollary 9.26 Invariant 1b)
still holds in 𝑠2. In the latter case, 𝑥 ∈ 𝑅𝐺(𝑠𝑜𝑢𝑟𝑐𝑒) due to Invariant 1a)
and 𝑦 ∈ 𝑅𝑖𝑔ℎ𝑡(𝑥) by definition. Consequently, it is not possible that 𝑣 ∉
𝑅𝐺(𝑦, 𝑑𝑒𝑠𝑡𝐼𝐷).

Thus, the first invariant still holds in 𝑠2.

Let us now consider the first three invariants.

Lemma 9.28. If a computation of Build-SuperLine contains a state such
that the first three invariants hold, then the first three invariants hold in all
subsequent states.

Proof. Assume for contradiction that there is a state 𝑠1 in which the first
three invariants hold and in the (direct) subsequent state 𝑠2 one of the first
three invariants does not hold. Note that by Lemma 9.27 the first invariant
cannot be violated in 𝑠2. Furthermore, by Corollary 9.26 and the fact that
according to the protocol sequence numbers are monotonically increasing, one
can check that the sole reason why Invariant 2 or 3 are invalidated is that
a new ProbeSuccess() or ProbeFail() message is sent. Without loss of
generality we assume 𝑖𝑑(𝑢) < 𝑑𝑒𝑠𝑡𝐼𝐷.

First, we consider ProbeSuccess() messages. Let 𝑥 be the node that sends
a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑑𝑒𝑠𝑡) message to a node 𝑦 in 𝑠1. According
to the protocol, this happens in the ForwardProbe() action only when a
ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message arrives at 𝑥 such that 𝑖𝑑(𝑥) =
𝑑𝑒𝑠𝑡𝐼𝐷 and 𝑦 = 𝑠𝑜𝑢𝑟𝑐𝑒. Since 𝑠1 is an admissible state, case a) of the first
invariant holds: i.e., 𝑑𝑒𝑠𝑡 ∈ 𝑅𝐺(𝑦).
For the ProbeFail() messages, let again 𝑥 be the node that sends the

ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message to a node 𝑦. This happens only in a
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ForwardProbe() action in case a ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞)
message arrives at 𝑥 such that 𝑖𝑑(𝑥) ≠ 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑦 = 𝑠𝑜𝑢𝑟𝑐𝑒 and there is no
node 𝑧 in 𝑅𝑖𝑔ℎ𝑡(𝑥) with 𝑖𝑑(𝑧) ≤ 𝑑𝑒𝑠𝑡𝐼𝐷. If no node with the ID 𝑑𝑒𝑠𝑡𝐼𝐷 exists,
we are done. Otherwise, we have that 𝑣 ∉ 𝑅𝐺(𝑢) with 𝑖𝑑(𝑣) = 𝑑𝑒𝑠𝑡𝐼𝐷. By
case b) of the first invariant, this implies the claim.
Consequently, Invariants 2 and 3 still have to hold in 𝑠2, which is a contra-

diction to the initial assumption and the first three invariants have to hold in
𝑠2, too.

Now we can plug together Lemma 9.27 and 9.28.

Proof of Lemma 9.25. Assume for contradiction there exists an admissible
state 𝑠1 such that in the (direct) subsequent state, 𝑠2 is not admissible. Note
that by Lemma 9.28, none of the first three invariants can be violated in 𝑠2.
Furthermore, by Lemma 9.14 the sole reason why Invariant 4 can be invalidated
is that a new Search() message is sent. Without loss of generality we only
consider the case 𝑖𝑑(𝑢) < 𝑑𝑒𝑠𝑡𝐼𝐷.

Assume a node 𝑥 sends a Search(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷) message to a node 𝑦. According
to the protocol, 𝑥 receives a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑢) in 𝑠1, for which
Invariant 2 holds: i.e., 𝑖𝑑(𝑢) = 𝑑𝑒𝑠𝑡𝐼𝐷, and 𝑢 ∈ 𝑅𝐺(𝑥). Accordingly, the
fourth invariant holds. Therefore, all invariants have to hold in 𝑠2, too.

It remains to show that each computation contains an admissible state.

Lemma 9.29. In every computation of Build-SuperLine there is an admis-
sible state.

Proof. According to Theorem 9.21, each computation contains a state 𝑠1 such
that in the suffix starting in 𝑠1 the line is a subgraph of 𝐺𝐸. We show
that in this suffix every ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) violating the
first invariant vanishes eventually. Without loss of generality we consider
only ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) messages with the property that
𝑖𝑑(𝑠𝑜𝑢𝑟𝑐𝑒) < 𝑑𝑒𝑠𝑡𝐼𝐷. First, notice that any ForwardProbe() message
initiated in a Timeout action by a node 𝑥 cannot violate the first invariant.
This is obviously true for case a) and holds for case b) by Corollary 9.26.

Moreover, note that any existing ForwardProbe() message 𝑚 can trigger
the creation of at most one new ForwardProbe() message 𝑚′ when 𝑚
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is received by a node 𝑥. If 𝑚 does not violate the first invariant, 𝑚′ also
does not violate it (for reasons similar to those in the proof of Lemma 9.27).
Consequently, we just need to show that every ForwardProbe() message that
violates the first invariant can only cause a finite number of ForwardProbe()
messages that violate the first invariant (which is eventually received and thus
disappears). Since there is only a finite number of nodes, this implies that all
ForwardProbe() messages violating Invariant 1 eventually disappear.

Now, consider a state of the computation 𝑠2 in which the first invariant holds.
Note that by Lemma 9.27, they hold for all subsequent states. The sole action
in which a new ProbeSuccess() or ProbeFail() message can be sent is in
the ForwardProbe() action of a node. Such an action requires the receipt of
a ForwardProbe(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message 𝑚 for which, by definition of
𝑠2, the first invariant holds. Note that according to the protocol 𝑚 can only
trigger a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑑𝑒𝑠𝑡) message 𝑚′ that is sent to a node
𝑥, if 𝑖𝑑(𝑢) = 𝑑𝑒𝑠𝑡𝐼𝐷 (i.e., 𝑑𝑒𝑠𝑡 = 𝑢) and 𝑥 = 𝑠𝑜𝑢𝑟𝑐𝑒. By Invariant 1a), 𝑢 ∈
𝑅𝐺(𝑠𝑜𝑢𝑟𝑐𝑒), implying 𝑑𝑒𝑠𝑡 ∈ 𝑅𝐺(𝑥): i.e., the second invariant holds regarding
𝑚′. Similarly, a ProbeFail(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑑𝑒𝑠𝑡) message 𝑚″ to a node 𝑥 can
be caused by 𝑚 only if 𝑖𝑑(𝑢) < 𝑑𝑒𝑠𝑡𝐼𝐷 and there is no node in 𝑅𝑖𝑔ℎ𝑡(𝑢) with
an ID lower than destID, implying that 𝑣 ∉ 𝑅𝐺(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷) with 𝑖𝑑(𝑣) =
𝑑𝑒𝑠𝑡𝐼𝐷. By Invariant 1b), for every admissible state with 𝑠𝑜𝑢𝑟𝑐𝑒.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] <
𝑠𝑒𝑞, 𝑣 ∉ 𝑅𝐺(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝐼𝐷): i.e., the third invariant holds regarding 𝑚″.
Consequently, all ProbeSuccess() and ProbeFail() messages created in the
suffix starting in 𝑠2 do not violate admissibility. Moreover, by the fair message
receipt assumption the computation suffix starting in 𝑠2 contains a state 𝑠3

such that all ProbeSuccess() and ProbeFail() messages that were in the
incoming channel of nodes in 𝑠2 have been received. Consequently, for all
ProbeSuccess() and ProbeFail() messages the second and third invariant
holds. By Lemma 9.28, they hold for all subsequent states, too.
Consider the suffix starting in state 𝑠3. Notice that a Search(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷)

message is only sent to a node 𝑢 in the ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑢) action
of 𝑣, which requires the receipt of a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑢) message for
which, by definition of 𝑠3, the second invariant holds. This implies, 𝑑𝑒𝑠𝑡𝐼𝐷 =
𝑖𝑑(𝑢) and 𝑢 ∈ 𝑅𝐺(𝑣), yielding Invariant 4 for the new message. Thus, after
all Search() messages that were in the incoming channel of nodes in 𝑠3 are
received, the computation contains a state 𝑠4 such that all invariants hold: i.e.,
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𝑠4 is an admissible state.

Note that Lemma 9.25 and Lemma 9.29 imply the following corollary:

Corollary 9.30. Every computation of Build-SuperLine contains a suffix
in which every state is admissible.

For the rest of this subsection, we assume that every computation starts in an
admissible state, since we want to show that monotonic searchability is satisfied
in admissible computation suffixes. Furthermore, without loss of generality, we
again only consider Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) messages with 𝑖𝑑(𝑢) < 𝑑𝑒𝑠𝑡𝐼𝐷.

Before we can prove Theorem 9.24, we need to prove the following lemma.

Lemma 9.31. For any ForwardProbe(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) message 𝑚 with
𝑖𝑑(𝑢) < 𝑑𝑒𝑠𝑡𝐼𝐷 in 𝑢.𝐶ℎ, it holds that if a node 𝑤 with 𝑖𝑑(𝑤) = 𝑑𝑒𝑠𝑡𝐼𝐷
exists and 𝑤 ∈ 𝑅𝐺(𝑢), then the computation contains a state such that a
message 𝑚′ = ForwardProbe(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) is in 𝑤.𝐶ℎ.

Proof. Consider the unique greedy path induced by the fact that 𝑤 ∈ 𝑅𝐺(𝑢).
By the definition of a greedy path and the way new nodes are added to
𝑅𝑖𝑔ℎ𝑡(𝑤)/𝐿𝑒𝑓𝑡(𝑤) in Build-SuperLine, the path persists throughout the
computation. Moreover, Greedy-Search is designed in such a way that it
forwards 𝑚 along the greedy path. Due to the fair message receipt assumption
ForwardProbe() messages cannot be stalled forever: i.e., each node on the
path receives a ForwardProbe() that corresponds to 𝑚. This results in a
state in which a ForwardProbe(𝑣, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) is in 𝑤.𝐶ℎ, which is received
eventually.

We can now prove the main theorem of this subsection.

Proof of Theorem 9.24. Let 𝑚, 𝑚′ be two Search(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷) messages ini-
tiated by node 𝑢 in admissible states, such that 𝑚 was initiated before 𝑚′.
Assume for contradiction that 𝑚 is delivered successfully, whereas 𝑚′ is not.
Let 𝑣 be the node with 𝑖𝑑(𝑣) = 𝑑𝑒𝑠𝑡𝐼𝐷. Note that if 𝑚′ is added to the set
𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷] when 𝑚 is already in the set, then the protocol handles
both messages identically: i.e., both are successfully delivered, which contra-
dicts our assumption. Therefore, 𝑚′ has to be added to 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷]
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when 𝑚 ∉ 𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐹𝑜𝑟[𝑑𝑒𝑠𝑡𝐼𝐷], which implies 𝑢.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] has increased
since the successful delivery of 𝑚.
Since we assume that 𝑚′ is not delivered successfully, two cases can oc-

cur: (i) a ProbeFail(𝑑𝑒𝑠𝑡, 𝑠𝑒𝑞) message eventually arrives at 𝑢 with 𝑠𝑒𝑞 ≥
𝑢.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷], or (ii) no ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑑𝑒𝑠𝑡) message with
𝑠𝑒𝑞 ≥ 𝑢.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] and 𝑖𝑑(𝑑𝑒𝑠𝑡) = 𝑑𝑒𝑠𝑡𝐼𝐷 ever arrives at 𝑢. We consider both
cases individually. In the first case, by the third invariant, 𝑣 ∉ 𝑅𝐺(𝑢) has to hold
even though 𝑚 was already successfully delivered, contradicting Corollary 9.26.
In the second case, note that ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞) messages are
regularly initiated by 𝑢 in the Timeout action with 𝑠𝑒𝑞 ≥ 𝑢.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷]
(since 𝑢.𝑠𝑒𝑞 is monotonically increasing). Again, due to the successful deliv-
ery of 𝑚, the fourth invariant and Lemma 9.26, 𝑣 ∈ 𝑅𝐺(𝑢) when 𝑚′ was
initiated, and therefore, by Lemma 9.31, a ForwardProbe(𝑢, 𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞)
message with 𝑠𝑒𝑞 ≥ 𝑢.𝑠𝑒𝑞[𝑑𝑒𝑠𝑡𝐼𝐷] is eventually in 𝑣.𝐶ℎ. Node 𝑣 answers with
a ProbeSuccess(𝑑𝑒𝑠𝑡𝐼𝐷, 𝑠𝑒𝑞, 𝑣) message, causing 𝑚′ to be sent to 𝑣. This
contradicts the assumption that 𝑚′ is not successfully delivered.

This concludes our analysis of monotonic searchability for the super-line
topology.

9.2.4. An Extension with Short Routing Paths

An interesting side effect of the super-line protocol is that it should have a
sublinear diameter with high probability. This follows from the basic fact
that the topology can have a linear diameter only if the initial graph is a line
or close to the line: i.e., there are almost no short-cutting edges that could
decrease the diameter drastically. It would be highly desirable to show that
Build-SuperLine stabilizes to a topology that has a polylogarithmic diameter
with high probability. However, since the final topology of a computation
heavily depends on the initial graph and the activation order of nodes, this
problem seems hardly tractable in our setting. Instead, we present an extension
of Build-SuperLine that uses ideas developed in the area of small-world
networks, especially the formidably written chapter of the book Networks,
Crowds, and Markets: Reasoning about a Highly Connected World [EK10] that
builds up on the work of Jon Kleinberg in [Kle00].
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In the one-dimensional setting, a small-world network is envisioned in the
following way in [EK10]: Each node has an identifier in the interval [0, 1]. We
then arrange the nodes on a one dimensional ring according to their identifier.
Each node is connected by directed edges to its immediately preceding neighbor
and succeeding neighbor. This includes an edge between the node with highest
ID to the node with lowest ID and vice versa. Additionally, each node 𝑣 also
has a single directed edge to some other node, which is called a shortcut. The
probability that 𝑣 links to some node 𝑤 is 1

𝑍𝑑(𝑣, 𝑤)−1, where 𝑍 is a normalizing
constant and 𝑑(𝑣, 𝑤) is the distance between 𝑣 and 𝑤 on the ring. Note that
1
𝑍𝑑(𝑣, 𝑤)−1 can be lower bounded by 1

2 log 𝑛𝑑(𝑣, 𝑤)−1 as it is shown in [EK10].
The overall structure of the network is a ring that is augmented with random
shortcut edges. For this kind of network [EK10] shows that a simple myopic
greedy search protocol takes 𝒪(log2 𝑛) hops in expectation.

We want to embed the structure of this small-world network into our Build-
SuperLine protocol. Consequently, we assume that the IDs of our nodes are
in [0, 1] as well. Analogous to the consistent hashing approach [Kar+97], we
assume that the nodes are assigned to IDs in [0, 1] in a pseudorandom manner.
Thus, we can assume that the nodes are distributed uniformly at random over
the interval [0, 1]. In order to emulate the shortcut edge of a node, we allow each
node to create a virtual node. The ID of this virtual node is chosen similarly to
the way the shortcuts are created in the original protocol: i.e., for a real node
𝑣 and its virtual node 𝑣𝑣𝑖𝑟𝑡𝑢𝑎𝑙 the probability that the ID of the virtual node
has a distance 𝑑 to 𝑖𝑑(𝑣) is proportional to 1

𝑍𝑑(𝑣, 𝑣𝑣𝑖𝑟𝑡𝑢𝑎𝑙)−1. The IDs of nodes
will not be variables in our self-stabilizing protocol: i.e., they do not change
throughout a computation. This approach is inspired by the self-stabilizing
protocols of [RSS11; Jac+] which also use pseudorandom IDs in [0, 1] and
virtual nodes. In contrast to these approaches, in our protocol a real node will
always have an edge to its virtual node and vice versa. This virtual edge is
treated like an explicit edge: i.e., it can be used to route messages along it.
With these changes in place, we use the already established Build-SuperLine
protocol to stabilize the system to the super-line topology with 2𝑛 nodes. Note
that, contrary to the original small-world network, we do not build a ring
among the nodes: i.e., there is not necessarily an explicit edge between the node
with the highest and the lowest ID. In addition, we use the Greedy-Search
protocol for searching which can now make use of the shortcuts established by
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the virtual nodes. In fact, Greedy-Search is similar to the myopic greedy
search protocol described by Kleinberg, with the exception that we disallow
Greedy-Search to perform a hop that overshoots the target ID.

It remains to show that we achieved our goal of building a protocol such that
the final topology yields short routing paths for search messages. The proof of
the following theorem is a reevaluation of the proof in [EK10] for our topology.

Theorem 9.32. The above described Build-SuperLine protocol yields a
topology such that Greedy-Search needs 𝒪(log2 𝑛) hops in expectation.

Proof. Let 𝑠 be a randomly chosen start node and 𝑡 be a random target.
Throughout the proof we assume that we search for an ID of a node that
actually exists in the network. This is not a severe restriction since the routing
paths for search messages that target non-existing IDs terminate at some
existing node, for which our statement will hold as well. Without loss of
generality let 𝑖𝑑(𝑠) < 𝑖𝑑(𝑡).
Let 𝑋 denote the number of hops required by Greedy-Search to reach

𝑡. For two nodes 𝑢, 𝑣 with 𝑖𝑑(𝑢) < 𝑖𝑑(𝑣), we say 𝑢 has a distance of 𝑘 to 𝑣, if
there are 𝑘 many nodes whose ID is between 𝑖𝑑(𝑢) and 𝑖𝑑(𝑣). We subdivide
the path from 𝑠 to 𝑡 into phases and the message is in phase 𝑖 if it is at a node
whose distance to the target is in between 2𝑖 and 2𝑖+1. As a consequence, there
are at most log (2𝑛) = log (𝑛) + 1 phases and we can express 𝑋 by the sum of
the number of hops taken in each phase: i.e., 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋log (𝑛)+1

and, due to linearity of expectation, 𝐸[𝑋] = 𝐸[𝑋1]+𝐸[𝑋2]+⋯+𝐸[𝑋log (𝑛)+1].
Thus, all it remains to show is that the expected value of each 𝑋𝑖 is at most
proportional to log 𝑛.

We fix a phase 𝑗 of the path and a node 𝑣 who currently holds the message
and whose distance 𝑑 to the target is between 2𝑗 and 2𝑗+1. Naturally, phase 𝑗
ends once the message reaches a node whose distance to 𝑡 is below 2𝑗. Let 𝑉𝑑/2

denote the set of nodes which have a distance of at most 𝑑
2 from 𝑡 and whose

ID is in between 𝑖𝑑(𝑣) and 𝑖𝑑(𝑡). There are 𝑑
2 + 1 nodes in 𝑉𝑑/2 and each node

𝑤 in 𝑉𝑑/2 has a probability of at least

1
2 log 𝑛

𝑑(𝑣, 𝑤)−1 ≥ 1
2 log 𝑛

⋅ 1
𝑑

= 1
2𝑑 log 𝑛

of being the virtual node of 𝑣. Therefore, the probability that one of them is
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the virtual node of 𝑣 is at least 𝑑
2 ⋅ 1

2𝑑 log 𝑛 = 1
4 log 𝑛 . Consequently, in each step

phase 𝑗 has a probability of 1
4 log 𝑛 of ending. Conversely, the probability that

phase 𝑗 runs for at least 𝑘 steps (i.e., the message performs 𝑘 hops in it) is at
most (1 − 1

4 log 𝑛)𝑘−1.
We are now able to give an upper bound for 𝐸[𝑋𝑗], which can be expressed

by the formula 𝐸[𝑋𝑗] = 𝑃𝑟[𝑋𝑗 ≥ 1] + 𝑃𝑟[𝑋𝑗 ≥ 2] + 𝑃𝑟[𝑋𝑗 ≥ 3] + ⋯. We have
just shown that 𝑃𝑟[𝑋𝑗 ≥ 𝑘] ≤ (1 − 1

4 log 𝑛)𝑘−1. Thus, we can conclude that
𝐸[𝑋𝑗] = 1 + (1 − 1

4 log 𝑛)1 + (1 − 1
4 log 𝑛)2 + ⋯. This geometric sum converges to

4 log 𝑛: i.e., 𝐸[𝑋𝑗] ≤ 4 log 𝑛. Consequently, 𝐸[𝑋] can be expressed as the sum
of log (𝑛) + 1 terms 𝐸[𝑋𝑖], each of which is upper bounded by 4 log 𝑛, which is
the desired statement.

As Dietzfelbinger and Woelfel [DW14] have shown, the chosen probability
for the long range links that only depends on 𝑑(𝑣, 𝑤)−1 is optimal for greedy
routing: i.e., greedy routing does not perform asymptotically better for any
other uniform and isotropic augmenting distribution. This completes our
formal analysis of the super-line.

9.3. Comparing the Strict Line and the Super-Line

We want to conclude our analysis on monotonic searchability by comparing
our protocols for the strict line and for the super-line as well as their respective
search protocols. In order to do so we implemented the protocols in a simulator
and conducted experiments. We want to emphasize that this section is not
meant as a full-fledged experimental analysis of both scenarios, instead we
simply want to stress a few interesting properties that stood out to us. Most
importantly, we want to highlight that the Build-SuperLine protocol for the
strict line is not only simpler than the Build-Line+ protocol for the strict
line, but also more efficient in various ways. We are going to compare the two
protocols in terms of certain network properties (i.e., degree growth and node
distances), time and space complexity of self-stabilization and the number of
successful searches during stabilization.

In Subsection 9.3.1 we explain the setup of our experiments. Subsection 9.3.2
focuses on the comparison of network properties. Subsection 9.3.3 concentrates
on the time and space complexity of self stabilization (in terms of stabilization
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time and required messages until the network is stable). In Subsection 9.3.4
we briefly evaluate the impact of searching on the stabilization time. Finally,
Subsection 9.3.5 considers the search messages during stabilization in terms of
successfulness.

9.3.1. Experiment Setup

All experiments were performed in a specifically designed simulator written in
Java that ran on a Windows 10 computer with an AMD 6100 six-core processor
running at 3.30 GHz and 8 GB RAM. Initial graphs for each simulation were
random graphs with an average node degree of 2 and with the additional
constraint of being weakly connected. In order to allow for a comprehensible
comparison between the two protocols (and the corresponding topologies), both
protocols were executed on the same initial graph topology for each simulation
run. In case search messages were required for an experiment, both protocols
had to handle the same rate of search messages in a certain time interval (i.e.,
200 milliseconds).

For most experiments we focused on the scalability of our approaches, so the
varied parameter is the network size: i.e., the number of nodes in the network.
If possible, the following network sizes were investigated: 50, 100, 250, 500, 1000,
2000 and 4000. In scenarios where search messages are initiated, the maximum
network size was reduced to 250 nodes. This was due to increased memory
consumption of search messages which afflicted the performance of the simulator.
For every single parameter value we conducted 50 experiments, each with its
own initial graph, and took the average of the result.

In order to allow for a reasonable implementation of our protocols we made
the following changes/additions:

(a) If a node has performed a Timeout action it is forced to sleep for a time
between 50 and 100 milliseconds. This is used to avoid deadlocks: i.e. to
enforce a behavior that is similar to weakly fair action execution, since
there is no 100% fairness for threads in Java.

(b) The Timeout action of a node is triggered when there is no message
in the channel at the moment, i.e., nodes prefer handling messages to
executing the Timeout action.
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(c) If a node receives a message from its incoming channel it inspects the
whole channel to determine whether the message is contained multiple
times in the channel. If that is the case, it receives the message and
its duplicates at once (i.e., they are all removed from the channel).
Search messages (and their probes) are an exception to that rule. This
algorithmic trick drastically reduces the required memory for each node
and facilitates simulations for network sizes over 1000.

(d) There is a central monitoring node in the system which periodically
(i.e., every 200 milliseconds) checks whether a legitimate state has been
reached. Consequently, the measured stabilization time is in tolerance of
200ms.

9.3.2. Network Properties
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Figure 9.1.: Degree Growth Comparison

A natural consequence of the Build-SuperLine protocol is that the degree
of nodes grows until the line is fully stabilized, since nodes never delegate
edges. The degree of a node can also increase throughout the execution of
Build-Line+ for a finite amount of time. However, once the topology is fully
stabilized every node has a degree of at most two. One notion to capture
the development of degrees is the degree growth. For a node 𝑢 the degree
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growth is the maximum degree of that node in the computation minus its
initial degree. In Figure 9.1 we compare the degree growth of Build-Line+
and Build-SuperLine. We investigate the minimum, the maximum, the
average and the median degree growth for varying network sizes.
As one can easily see in the graphs, the degree growth of Build-Line+ is

almost constant (average and max. degree growth): i.e., almost independent
of the network size. This is not too surprising since nodes try to get rid of
superfluous edges every time the timeout action is executed. More interestingly,
the minimum node degree is negative and declines with an increasing number
of nodes. This is an artifact of how initial graphs are created: i.e., with an
increasing number of nodes it is more likely to get a node that has a high initial
degree and, thus, can have a negative degree growth, since the initial degree is
the maximum degree.
For Build-SuperLine the plots look vastly different, since nodes never

delegate edges. Consequently, the degree growth has to be positive. The
minimum degree growth is almost constant. Much more importantly, the plots
of the average, median and maximum node degree look similar to a shifted
logarithmic curve. This is indeed an interesting insight, since one can easily
construct instances in which Build-Line+ has a linear degree growth for some
nodes. We conjecture that the super-line has a logarithmic degree growth in
expectation.

Another interesting parameter for an overlay network is the pairwise distance
between nodes. Figure 9.2 contains the graphs for Build-Line+ and Figure 9.3
for Build-SuperLine. In both figures we omit the graph for minimum distance,
since it would always be 1 (because both protocols stabilize to a topology that
contains the line as a subtopology). One can clearly see in Figure 9.2 that
for the strict line the maximal distance between nodes (i.e., the diameter of
the network) is always linear and that even the average and median distances
behave linearly. Since the final topology of Build-Line+ is the strict line, this
result was to be expected.
In comparison, Build-SuperLine is much more efficient. As we can see

in Figure 9.3 the maximal distance between nodes is close to logarithmic. In
fact, the average and median distance between nodes seems to hit a ceiling at
the value of 4. As a consequence, search requests can be routed quickly in the
constructed topology.
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Figure 9.2.: Distances Between Nodes (Build-Line+)

To summarize, one can conclude that Build-Line+ behaves as one would
predict, the degree growth is very low while the distances between nodes are
high. On the other hand Build-SuperLine constructs a topology with a very
low average node distance and even a low diameter. This advantage is traded
off by a degree growth that grows logarithmically with network size.

9.3.3. Self-Stabilization (without Searching)

We now focus on the time and space complexity of the self-stabilization process.
For our evaluation of time complexity we use milliseconds as the unit for
measuring time. We are aware that the value itself is not very meaningful,
since Java is not an efficient programming language for experimental evaluations
and the value is heavily dependent on the machine used for the experiments.
However, since we merely want to compare two protocols (and not the efficiency
of one protocol), we believe that the choice is apt.
As we can see in Figure 9.4 the stabilization time of Build-Line+ is

always longer than the one of Build-SuperLine. Even in small network
sizes (i.e., up to 500 nodes) Build-Line+ is roughly five times slower than
Build-SuperLine. This ratio increases for bigger network sizes. In fact,
Build-Line+ is so slow that we had to cancel all simulations for network
sizes greater than 2000 nodes. We can find one possible justification for this
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observable effect in Figure 9.5. However, before we discuss the required number
of messages for stabilization, we want to emphasize that the stabilization time
for both protocols seems to be superlinear: i.e., at least quadratic.

The graphs for required messages until stabilization follow a similar pattern
to the graphs for stabilization time (see Figure 9.5). Build-Line+ requires
3 − 6 times more messages than Build-SuperLine. This is due to the fact
that Build-Line+ requires at least three messages to delegate a single edge
whereas Build-SuperLine simply never delegates. In fact, our simulations
indicate that the number of messages is one of the main influencing factors for
stabilization time. As the number of nodes increase, the nodes have to handle
a bigger number of messages in their channel: i.e., it takes longer to process
messages. However, it needs to be stated that the observed effect for large
network sizes might be affected by the limited memory of the computer. It is
possible that the influence of the number of messages on the stabilization time
is much lower if memory is not an issue.

9.3.4. The Influence of Searching

In this subsection we want to evaluate whether search messages slow down the
stabilization process. We tested various search message rates and measured
their impact on the stabilization time (see Figure 9.6). The message rate
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Figure 9.4.: Stabilization Time Comparison

indicates how many search requests are started per 200𝑚𝑠 of the simulation.
For these requests the source node is randomly selected from all nodes and
𝑑𝑒𝑠𝑡𝐼𝐷 is also randomly selected from all IDs except the ID of the source node,
so every search message is independently created. This is done by a central
instance that has an overview over all nodes. After such a batch of search
messages is created, the messages are distributed to the respective source nodes.
The simulations were done only to a maximum network size of 250 nodes, since
the local memory of a node gets flooded by messages in larger network sizes
(i.e., nodes require a huge local memory). As we can see by the graphs, the
message rate influences Build-SuperLine differently than Build-Line+. For
Build-Line+ we can clearly see that the more searches are initiated, the more
time stabilization requires. However, the impact is not severe. Even for 250
nodes the stabilization time for 20 Searches

200𝑚𝑠 is only 13% higher than the one
without any searches. This slow down is most likely due to the message size of
the probe message in Search+. The 𝑁𝑒𝑥𝑡 set can increase to a size that is
linear in the number of nodes and thus requires more computer memory than
any other message. As stated before, this increased memory overhead can slow
down the stabilizing process significantly.
For Build-SuperLine we can observe the inverted effect: i.e., the simula-

tions without any searches take longer to stabilize than the one with search
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Figure 9.5.: Required Messages Comparison

messages. In fact, the higher the search rate is, the lower the stabilization
time becomes. We have no reasonable explanation from an algorithmic point
of view why search messages have a positive effect on the stabilization time.
Our predicted effect is that search messages of Greedy-Search have a lower
influence on Build-SuperLine than Search+ messages on Build-Line+.
The most reasonable explanation for the observed effect we can offer is the
following. Since Greedy-Search is a very lightweight protocol it incurs
almost no additional overhead. Moreover, whenever Greedy-Search succeeds
or fails it creates a new implicit edge from the current node to the source of
the message. This effectively creates new edges in the topology that would not
be available without searching. Moreover, these additional edges do not incur
the overhead as they would do in Build-Line+, since Build-SuperLine does
not have to delegate them.

9.3.5. Searchability

We want to conclude this section by comparing Build-Line+ and Build-
SuperLine in terms of searchability. Since search requests are always answered
correctly in the stable topology, we are only interested in the search requests
that are initiated while stabilization is still in progress. Additionally, we are
not concerned with search requests for IDs that do not belong to nodes in the
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network, since they are always bound to fail. We picked a message rate of
5 Searches

200𝑚𝑠 . The results of the experiments are presented in Figure 9.7. In general,
Build-Line+ (together with Search+) and Build-SuperLine (together
with Greedy-Search) perform extraordinarily well: both achieve more than
92% of successfully answered searches. This percentage value increases with
network size. This effect is most likely caused by the causality between network
size and stabilization time: i.e., a longer stabilization time implies a longer
time frame to route search requests (which is helpful especially for Search+)
and, additionally, more initiated searches, which in turn can be answered
successfully in already stable parts of the network.
Interestingly, Build-Line+ outperforms Build-SuperLine in every in-

stance. This seems to be contradictory to the basic principle that Build-
SuperLine never delegates edges. One might expect that Build-SuperLine
has more successful searches since the number of edges only increases in the
topology. Here, the differences between the search protocols make a huge
difference. Search+ visits every possible node on path between its source
and the target (i.e., at every node the probe is forwarded to the node closest
to the source), whereas Greedy-Search greedily selects nodes on the path.
As a consequence, Search+ successfully finds the target if there is a directed
path of explicit edges from source to target. However, for Greedy-Search
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this statement does not hold, especially in the early stage of the stabilization
process: i.e., even though there is a path of explicit edges, Greedy-Search
does not find the target since it does not pick the path. We conjecture that
a combination of Build-SuperLine with Search+ would yield the highest
ratio of successful searches. Of course, this would be traded-off by a large
message size for search messages since each node in the super-line topology has
potentially a lot of neighbors that are included in the 𝑁𝑒𝑥𝑡 set of the Search+
messages.
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CHAPTER 10

Conclusion of Part II

” We live in a society exquisitely dependent on science and technology, in
which hardly anyone knows anything about science and technology. ”

Carl Sagan; Astronomer and Popular Science Writer

Similarly to Chapter 6, w conclude the second part of this thesis (and
thus also the thesis as a whole) by subsuming the technical results of
this part. Throughout the second part we focused on the problem of

monotonic searchability for self-stabilizing overlay topologies. In Chapter 8 we
introduced the specific problem statement and identified restrictions concerning
the admissibility of messages in the system. Additionally, we introduced and
investigated four primitives for overlay edge manipulation which can be used
to show the preservation of weak connectivity in our protocols. Moreover,
they possess many interesting properties (especially their universality) which
might make them of independent interest even outside the self-stabilization
community.

In Chapter 9 we presented our main technical results of this part of the thesis:
a self-stabilizing protocol for the strict line topology and a self-stabilizing pro-
tocol for the super-line topology, both of which satisfy monotonic searchability.
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The main difference between the two topologies is the way edges that are not
part of the line are handled. The protocol for the strict line aims to get rid of
them, whereas the protocol for the super-line simply keeps them in place. Both
protocols work provably correctly: i.e., both stabilize to the desired topology
and maintain monotonic searchability during the stabilization process. For the
super-line, we also introduced a modification that allows for provably short
routing paths in expectation. Finally, we compared the performance of both
topologies and their respective protocols in experiments.
The remainder of this chapter is dedicated to further results and future

work. In Section 10.1 we explain some of our results concerning monotonic
searchability, which are not part of this thesis. These findings show that one
can combine the universality of the primitives with the notion of monotonic
searchability to achieve a more generic approach. Section 10.2 considers dif-
ferent directions for future results in the field.

10.1. Further Results

In this section we want to emphasize one additional result of ours concerning
monotonic searchability. Additionally, we will briefly highlight a result that
combines a protocol that maintains monotonic searchability with a protocol for
self-stabilizing node departures. Both results are not included in the technical
parts of this thesis. However, they are closely related and thus might give the
reader a more thorough understanding of the topic as a whole.
The closest result to the work presented in this thesis is our universal

framework for monotonic searchability [SSS16]. This framework takes an
existing self-stabilizing overlay protocol and transforms it into a protocol
that guarantees monotonic searchability. This transformation heavily relies
on the primitives presented in Section 8.3. The approach has some specific
requirements that the original protocol has to fulfill in order to be applicable.
Informally speaking, the original protocol should monotonically converge to
its desired topology (i.e., a node always keeps an edge that is part of the
desired topology and edges that are not part of the topology are removed
over time). Moreover, the action of nodes have to be deterministic and a
reference of a node is always routed along a fixed path in the topology. Finally,
all implicit edges have to merge eventually with explicit edges in legitimate
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states. Most of these requirements are natural for existing self-stabilizing
protocols. Nevertheless, they present a restriction concerning the universality
of the framework. It has to be stated, that this framework drastically slows
down the stabilization time, since a single use of the delegation primitive is
substituted by a more complex operation. Additionally, the generic routing
protocol that the framework imposes is very inefficient in terms of time and
space complexity. Similar to our approach of Section 9.1 it uses a node set to
route to the target node: i.e., every possible node on the path is visited and
the routing paths as well as the message sizes can be 𝒪(𝑛).

In [SSS15] we established a protocol that combines the Build-Line+ proto-
col of Section 9.1 with a protocol that solves the finite departure problem.
In the finite departure problem, nodes want to leave the network while main-
taining connectivity of the network. This is in itself a challenging task in a
self-stabilization scenario: i.e., it has been shown that in general the departure
problem cannot be solved without using an oracle that provides non-local infor-
mation to the nodes (see [For+14]). By combining the monotonic searchability
techniques with the protocol to solve the finite departure problem, we achieve
a self-stabilizing protocol that: (i) makes sure that nodes which want to leave
the network can do so without endangering connectivity, (ii) builds the line
topology, and (iii) maintains monotonic searchability for the line topology.

10.2. Future Work

As already mentioned in the last section there already exists a universal protocol
for monotonic searchability. However, the topic of monotonic searchability is
far from being exhausted and there are various possibilities for future research.
First of all, it would be very interesting to formally study the impact of

monotonic searchability maintenance on the standard complexity measures of
distributed protocols: i.e., runtime and memory consumption. So far the focus
has been on the feasibility of monotonic searchability. An efficiency evaluation
has been out of scope. In case such an analysis is done and once the existing
approaches have been thoroughly analyzed, one could even try to improve our
protocols concerning these measures in a second step.

Moreover, the universal framework for monotonic searchability suffers from
several disadvantages: e.g, the already mentioned long routing paths for search
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messages. Therefore, it is still highly desirable to study monotonic searchability
maintaining protocols for topologies that allow for short routing paths, e.g.,
De-Bruijn graphs, skip graphs or other hypercubic graphs.

Finally, one could also envision taking the general idea of monotonic search-
ability and use it to monotonically maintain other overlay properties. One
example for this idea is a self-stabilizing protocol that monotonically tracks the
maximum eccentricity of vertices: i.e., each node keeps track of the greatest
shortest path distance to all other nodes. Once a node has a correct value for
its maximum eccentricity, the value stays correct while the topology is still
stabilizing.
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