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Zusammenfassung

Heutzutage ist in groflen Daten- und Rechenzentren oft nicht mehr die Rechenka-
pazitét der Flaschenhals des Systems, sondern der Speicher oder die verfiigbare
Datenrate. Scheduling-Algorithmen treffen in der Regel Entscheidungen, wie Jobs
an einzelnen Knoten abgearbeitet werden, aber beriicksichtigen meistens keine
zusétzlichen Ressourceneinschriankungen in Bezug auf das gesamte Rechenzentrum.
Diese Arbeit zielt darauf ab, solche globalen Ressourcen zu beriicksichtigen.

Es werden vier Modelle eingefiihrt, die solche Ressourcen einbeziehen: Die er-
sten drei Modelle dhneln sich insofern, dass jeweils eine Ressource mit begrenzter
Kapazitat von mehreren Prozessoren geteilt wird, und das Ziel grofitenteils darin
besteht, die Gesamtabarbeitungszeit zu minimieren. Im ersten Modell wird der
Fokus auf die Zuordnung der Ressource zu den Prozessoren gesetzt, wahrend die
Jobs bereits in einer festgelegten Reihenfolge auf die Prozessoren aufgeteilt sind. Im
zweiten Modell werden Kommunikationsanforderungen zwischen Jobs betrachtet,
die auf einem gemeinsamen Kommunikationskanal erfiillt werden miissen. Das dritte
Modell ist zugleich auch das allgemeinste Modell, in dem Jobs mit bestimmten
Ressourcenanforderungen an Prozessoren verteilt werden miissen, aber auch die
Ressource noch zugeteilt werden muss.

Das vierte Modell erfasst dagegen mogliche Strategien fiir hochdynamische Sys-
teme, in denen sich stetig verdndernde Beschrinkungen eingehalten werden miissen.
Genauer wird hier der Energieverbrauch eines einzelnen Prozessors unter variablen
Geschwindigkeitsschranken und verdnderlichen Energiekosten minimiert.






Abstract

In today’s data and computing centers, the available computing power of a system
often is sufficient, but memory and the data rate become the bottleneck instead.
Scheduling algorithms usually deal with the assignment of jobs to processors, but
without any global constraint on the computing center as a whole. In this thesis,
new scheduling problems incorporating such global properties are introduced. Four
(slightly) different models capturing aspects of these properties are studied.

The first three models are similar in that a resource with a limited capacity is
shared among multiple processors, and mostly the objective is to minimize the
makespan, i.e., the time until all jobs are completed. The focus of the first model
is on the assignment of the resource to the processors, where for each processor a
queue of jobs is already fixed. The second model focuses on interjob communication,
where given communication requirements between jobs need to be scheduled on a
common communication channel. Finally, the third model is the most general case,
where jobs with a certain resource requirement need to be scheduled on the different
processors, but the resource has to be assigned as well.

On the other hand, the fourth model captures possible strategies for highly
dynamic systems, where constraints may even change continuously over time. Here,
the energy consumption of a single processor is minimized while adhering to variable
speed limits and incorporating fluctuating energy costs.
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CHAPTER

Introduction

omputing centers do not cease to grow. Even for a single chip, where

one might expect that physical limits should lead to a cessation of the

increase in processing power, the limits are not yet reached. Instead, Moore’s
law [Moo65], stating that the number of transistors on a chip will double every two
years, now holds true for more than 50 years. It has been observed that a similar
law also holds for the increase in data traffic [CO02]. While parallelism strongly
increases, it is comprehensible that communication between machines, processors
and cores must also increase. Oftentimes, it even happens that the available data
rate becomes more important than the device’s speed. In extreme cases, this effect
may lead to the device’s speed having almost no influence, that is, if the available
data rate is reduced by a certain factor = > 1, the runtime is increased by this
factor [Zhu+12]. On a smaller scale, a shared communication channel such as a
data bus yields similar results. Other examples for scarce resources include memory
or processing power being shared among multiple virtual machines. Scheduling
decisions thus have to include the distribution of the resource in addition to how
and where services are executed, and the question of how to distribute the resource
often becomes more important than on which processors services are scheduled.

In general, scheduling describes the problem of allocating resources as well as
defining an order in which certain tasks are completed. Scheduling decisions start
with everyday tasks such as planning a day at work, where e-mails need to be
answered, meetings (at fixed times) need to be attended and phone calls need to be
made, possibly with additional restrictions, for example due to differences between
time zones.

In computing centers, scheduling decisions typically focus on services (or jobs)
that have to be executed. Each job has specific properties such as the required
processing power or data rate. An example for a simple scheduling model is as
follows [Bla+07, Ch. 4]: On a single processor, there are jobs with a processing
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requirement and a release time and the objective is to finish all jobs as early as
possible (the total time to complete all jobs is also called the makespan). Indeed, an
optimal solution for this problem can be found quite easily by greedily scheduling
jobs in the order of non-decreasing release times. This simple procedure is called
Earliest Release Time First (ERF). Similarly, if deadlines instead of release times
are given, in case there is a feasible solution, i.e., a solution such that each job is
finished before or at its deadline, an optimal solution can be found by scheduling
jobs in order of non-decreasing deadlines (FEarliest Deadline First (EDF)).

Scheduling is mostly regarded as an independent research area since 1954 [PS09],
originating in the seminal paper by Johnson [Joh54]. Since then, the variety of
scheduling problems has strongly increased and is still researched extensively today.
Naturally, new aspects have been considered. A good overview of scheduling models
is given by Leung [Leu04].

Among those are scheduling under resource constraints and energy-efficient schedul-
ing (or speed scaling). In the former area, jobs additionally require resources that
are shared among processors [GG75; BLK83]. Here, a job requires its full resource
requirement in order to execute jobs. As the resources need to be assigned to the
jobs, additional complexity is added to the original problem. In the latter area,
processors can be sped up in order to improve their performance [YDS95]. However,
this comes at the cost of increased power consumption. Typically, a linear increase in
speed is assumed to lead to a cubic increase in power consumption, as also observed
in practice [Bro+00].

In this thesis, related problems of resource constrained scheduling are considered
in Chapters 2 to 4. Here, it is assumed that the resource requirement of a job
can be fulfilled in arbitrary parts (that may also differ in size), whereas most
related literature assumes that the supplied resource of a job remains constant over
time. For the speed scaling variant considered in Chapter 5, there is an additional
upper speed limit (translating to an upper power limit) that may change almost
arbitrarily over time. This captures the trend to more power consumption and
heat in computing centers, making the speed limited in the sense that speed needs
energy, which is already limited by itself as only a certain power can be supplied,
and energy also produces heat, which is particularly critical during high temperature
periods. However, the model in Chapter 5 differs from the models in Chapters 2
to 4 in that only a single processor is given, hence no resource is shared among
multiple processors. For an arbitrary number of processors sharing a common energy
source, the problem is in line with the problems from Chapters 2 to 4, but seemingly
becomes much more difficult to cope with and is left as an open problem (see also
more details in Chapter 6).

1.1 Approximation and Online Algorithms

In the following, I give a short overview of how the quality of algorithms for offline
and online problems is usually measured.



Approximation and Online Algorithms

Approximation Algorithms. It is widely believed that the complexity class P of
problems deterministically solvable in polynomial time is a strict subset of the
class NP of problems nondeterministically solvable in polynomial time. Assuming
this to be true, it can be shown that many computational problems cannot be
(deterministically) solved optimally in polynomial time. In particular, this is true
for the class of so-called N P-hard problems, denoting those problems that are at
least as hard to solve as the hardest problems in N P. As super-polynomial runtimes
quickly become intractable in practice, different methods of how to cope with such
problems have been developed.

For offline optimization problems, i.e., problems where the full instance is known
in advance and where the objective is to mimimize or maximize a certain objective
value, the most popular among those methods is the design of polynomial-time
approximation algorithms. Here, algorithms are developed that guarantee to be
at most by a certain factor worse than the optimal solution. Formally, for a
minimization problem, denoting A(I) to be the value of a solution achieved by
a given algorithm A for an instance I, and OPT(I) defined similarly, A is an
a-approximation for some a > 1 if % < « holds for all instances I. Analogously,
for a maximization problem, an algorithm A is an a-approximation for some av > 1 if
O’;(TI()I) > é holds for all instances I. An algorithm has an asymptotic approximation
ratio of « if, on any instance I, A(I) = a- OPT(I) + o (OPT(I)).

The strongest variant of approximation algorithms are so-called polynomial-time
approximation schemes. A polynomial-time approximation scheme (PTAS) is an
approximation algorithm which takes an input parameter € > 0 additionally to the
problem instance and returns a (1 + ¢)-approximation for a given optimization prob-
lem. However, for the runtime, ¢ is assumed to be a constant, hence a PTAS is only
required to be polynomial in the input size and not in the parameter . An efficient
polynomial-time approximation scheme (EPTAS) is a PTAS where the runtime is
bounded by O (n¢) with ¢ being a constant independent of €. For example, runtimes
such as ¢/(/9)nc, where ¢ may arbitrarily depend on /e, but ¢ is independent of e,
are allowed. A fully polynomial-time approximation scheme (FPTAS) is a PTAS
where the runtime is polynomial in 1/e and n. An asymptotic PTAS (APTAS) is
defined analogously to a PTAS, but with an asymptotic approximation ratio of
(1 +¢). Asymptotic EPTAS (AEPTAS) and asymptotic FPTAS (AFPTAS) are

defined analogously.

However, such approximation schemes often have a runtime that is too high for
practical applications. For this reason, the focus of this thesis is on approximation
algorithms with guaranteed bounds, but reasonable runtimes.

Online Algorithms. For online optimization problems, i.e., problems where jobs
(or other items) arrive over time and their properties only become available at their
release time, algorithms are typically analyzed in terms of their competitiveness.
For a minimization problem, denoting A(I) and OPT(I) similar to above, where
OPT(I) is the optimal offline solution, an online algorithm A is a-competitive for

1.1
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some « > 1 if for any instance I, it holds % < «. For a maximization problem,
A is a-competitive for some a > 1 if for any instance I, it holds %()[) > é

In terms of online problems, one often thinks of an adversary that builds up the
instance over time. This can be done as the algorithm has no knowledge about the
future and deciding whether a job arrives or not (and which properties it has) can
be done by the adversary on the fly.

1.2 OQOutline of the Thesis

The focus of this thesis is to cope with scarce resources in scheduling problems.
Throughout this thesis, I usually consider the preemptive setting. That is, jobs
can be interrupted and resumed at any point in time without inducing additional
cost. Note that in Chapter 2, the preemptive and non-preemptive settings are
equivalent. In Chapter 4, however, the non-preemptive setting is considered. In this
case, the results for the non-preemptive case directly carry over to the preemptive
setting (because the bounds on the optimal algorithm remain valid). Note that
preemptiveness should not be confused with migration, which allows to stop jobs at
arbitrary times and resume them on a different processor. Migration is not allowed
in the models of this thesis or the models in related literature.

In the following, I introduce the models considered in the different chapters. In
Section 1.3, I compare the models and elaborate on important differences between
the models. An overview of related work regarding all parts of the thesis is given in
Section 1.4. In order to put this thesis in context with my other research, I conclude
the introduction with a list of my own publications in Section 1.5.

Chapters 2 to 5 contain the main content of this thesis. Note that each of
these chapters is self-contained except for related work which is summarized in
Section 1.4 to avoid redundancy. In Chapters 2 to 4, a shared resource needs to
be assigned to a number of processors. In contrast to original resource constrained
scheduling [GG75; BLKS83], the resource requirement of a job is assumed to be
divisible among contiguous time steps by slowing down jobs. Chapter 5 considers a
variant of energy-efficient scheduling, where power consumption limits and energy
cost dynamically change over time. In the following, an overview of the models and
results of the individual chapters is given.

Assigning a Sharable Resource in a Multiprocessor System. In this chapter, the
model contains m identical processors sharing a continuously divisible resource. An
assignment of a number of jobs to the m processors and the order of the jobs on each
processor are already given. The time line is assumed to be composed of discrete
time steps. It is the scheduler’s task to distribute the resource among the processors.
Here, each job j comes with a resource requirement r; € [0, 1] and unit size, that is,
a job can always be finished in one time step if granted its full resource requirement.
If receiving only an x-portion of r;, it is processed at an z-fraction of the full speed.
For example, a job with resource requirement 70% can be finished in 3 time steps
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by granting it 30% of the resource in the first time step and 20% of the resource in
the remaining two time steps. The objective is to find a resource assignment that
minimizes the makespan.

In contrast to Chapter 4, where the assignment of the jobs to the processors also
has to be done by the scheduler, this model rather focuses on the assignment of the
resource to the processors. It is shown that finding an optimal solution is NP-hard if
the number of processors is part of the input. Positive results include a polynomial-
time algorithm for any constant number of processors. Since the runtime is infeasible
for practical purposes, more efficient algorithm variants are also provided: a faster
optimal algorithm for two processors and a (2 — 1/m)-approximation algorithm for
M Processors.

The model, analyses and results presented in this chapter are based on the
following publications (conference and journal version):

2014 (with A. Brinkmann, P. Kling, F. Meyer auf der Heide, L. Nagel and
T. SiiB). “Scheduling Shared Continuous Resources on Many-Cores”. In:

Proceedings of the 26th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), cf. [Bri+14].

2017 (with E. Althaus, A. Brinkmann, P. Kling, F. Meyer auf der Heide,
L. Nagel, J. Sgall and T. Stif8). “Scheduling Shared Continuous Resources
on Many-Cores”. In: Journal of Scheduling, cf. [Alt+17].

Multiprocessor Scheduling with a Sharable Communication Channel. Similarly
to Chapter 2, this chapter considers m identical processors sharing a common
resource, but in a different manner. In particular, the common resource can (and
should) be seen as a communication channel shared among the processors. A set of
tasks needs to be scheduled on the processors, where each task 7T; consists of a set of
jobs with interjob communication demands, represented by a weighted, undirected
graph G;. The shared communication channel can be used by jobs to communicate
among each other while being processed in parallel. In each time step, the scheduler
assigns jobs to the processors. The scheduler allows (parts of) the communication
demands between scheduled jobs to be satisfied under the restriction that the overall
communication does not exceed the capacity of the channel. Again, the objective is
to find a schedule with minimum makespan in which the communication demands
of all jobs (i.e., the sum of the shares of the communication channel assigned to it)
are satisfied.

This problem is shown to be NP-hard in the strong sense even if the number of
processors is constant and the underlying graph is a single path or a forest with
arbitrary constant maximum degree. Consequently, approximation algorithms with
a provable (asymptotic) approximation guarantee are designed and analyzed. If the
underlying graph G, the union of the Gj, is a forest, an asymptotic approximation

’m—1

ratio of min{1.8,1.5™+} + 1 is shown; for general graphs it is min {1.8 M} .

1.2
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(arb(G) + %), where arb(G) denotes the arboricity of G, i.e., the minimum number
of forests into which the edges of G can be partitioned.

Parts of the model, analyses and results presented in this chapter are based on the
following publication. A journal version with additional results is currently under
submission.

2016 (with J. Konig, A. Mécker and F. Meyer auf der Heide). “Schedul-
ing with Interjob Communication on Parallel Processors”. In: Proceed-

ings of the 10th International Conference on Combinatorial Optimization
and Applications (COCOA), cf. [Kén+16].

Multiprocessor Scheduling with a Sharable Resource. This chapter also models
m identical processors sharing an arbitrarily divisible resource. This resource is
shared similarly to Chapter 2. A number of jobs is given, but in contrast to
Chapter 2, the assignment of the jobs to the processors is not yet done. That is, the
scheduler must assign the jobs to the processors as well as distribute the resource
among them (e.g., for three processors in shares of 20%, 15%, and 65%) and adjust
this distribution over time. Each job j comes with a size p; > 0 and a resource
requirement r; > 0. Jobs do not benefit when receiving a share larger than r; of
the resource. However, similar to Chapter 2, providing them with a fraction of
the resource requirement causes a linear decrease in the processing efficiency. The
objective is to find a (non-preemptive) job and resource assignment minimizing the
makespan.

The main result of this chapter is an efficient approximation algorithm which
achieves an approximation ratio of 2 + 1/(m — 2). It can be improved to an
(asymptotic) ratio of 1+ 1/(m — 1) if all jobs have unit size (that is, they still have
different resource requirements). The described algorithms also imply new results for
a well-known bin packing problem with splittable items and a restricted number of
allowed item parts per bin as well as for certain cases of the model from Chapter 3.

Based upon the above solution, an additional setting with so-called tasks is
introduced, each containing several jobs. The objective is to minimize the average
completion time of tasks, where a task is completed when all its jobs are completed.
As an extension of the model with single jobs, this problem remains NP-hard and
approximation algorithms with similar guarantees are derived.

The results presented in this chapter are based on the following publication.

2017 (with P. Kling, A. Méacker and A. Skopalik). “Sharing is Caring:
Multiprocessor Scheduling with a Sharable Resource”. In: Proceedings of

the 29th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), cf. [Kli+17].

Scheduling with a Bounded Speed Limit and Variable Energy Costs. In this
chapter, an extension of the dynamic speed scaling model introduced by Yao et al.
[YDS95] is considered: A set of jobs, each with a release time, deadline, and workload,
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has to be scheduled on a single, speed-scalable processor. Both the maximum allowed
speed of the processor and the energy costs may vary continuously over time. The
objective is to find a feasible schedule that minimizes the total energy costs.

Theoretical algorithm design for speed scaling problems often tends to discretize
problems, as the tools in the discrete realm are often better developed or under-
stood. Using the above speed scaling variant with variable, continuous maximal
processor speeds and energy prices as an example, it is demonstrated that a more
direct approach via tools from variational calculus can not only lead to a very
concise and elegant formulation and analysis, but also avoids the “explosion of
variables/constraints” that often comes with discretizing [Ant+14]. Using well-
known tools from calculus of variations, combinatorial optimality characteristics
for the continuous problem are derived and a quite concise and simple correctness
proof is provided. A combinatorial algorithm for this problem is suggested and the
optimality characteristics are used to prove that this algorithm indeed returns an
optimal solution.

The results in this chapter are based on the following publication.

2017 (with A. Antoniadis, P. Kling and S. Ott). “Continuous Speed
Scaling with Variability: A Simple and Direct Approach”. In: Theoretical
Computer Science vol. 678, cf. [Ant+17].

1.3 Overview of the Different Models

In the following, I will evaluate the differences between the strongly related models
from Chapters 2 to 4 (Section 1.3.1). I will then discuss the relation to the model
from Chapter 5 in Section 1.3.2.

1.3.1 Sharing a Resource among Multiple Processors

First note that for all the models in Chapters 2 to 4, a job has a size p; € Ry and a
resource requirement 7; € Ry. The model in Chap?er 4 is the most general of these
models, where p; and r; are both chosen arbitrarily. Also, the assignment of the
jobs to the processors is not yet fixed.

In contrast, the assignment of jobs to processors is already fixed in Chapter 2.
Also, all jobs have unit size p; = 1 and resource requirement r; < 1.

In Chapter 3, resource demands are communication demands among different
nodes. That is, rather than being given a set of single jobs that need to be assigned
to one processor each, there is a number of tasks, each consisting of a connected,
undirected graph. The resource (communication) requirement is given as weights
on the edges and can be any r; € Ry. In order to satisfy the communication
requirement of an edge, both adjacent nodes need to be scheduled on two separate
processors at the same time. The size of an edge (not to be confused with the
communication requirement or weight) is assumed to have unit size (p; = 1), implying
that the communication demand can be processed at once if the full communication

1.3
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requirement is supplied. Nevertheless, note that if the communication requirement
of an edge is larger than the overall size of the communication channel, the full
requirement of the edge cannot be fulfilled in one time step. However, similarly to
both other models, an overall communication (or resource) limitation persists.

The Convenience of Freedom. As noted above, the model in Chapter 4 is the
most general model. However, when looking for algorithms with a short runtime,
achieving good approximation factors seems to be simpler if the assignment of jobs to
processors is still necessary. By assigning jobs depending on the required resource, it
can be easily avoided that ill fitting jobs are scheduled at the same time. That is, the
scheduler can ensure that the sum of resource requirements of currently scheduled
jobs is close to the available resource requirement. Intuitively, the algorithms used
in Chapter 4 do exactly that. At each point in time, the scheduler tries to maintain
high parallelism as well as high resource usage. That is, given m processors and an
available resource of R, the scheduler tries, at any point in time, to schedule m jobs
such that

1. m — 1 of them receive their full resource requirement, and
2. the full resource R is used.

Only at a point in time where it is no longer possible to maintain both, i.e., there
are only jobs with a very small or with a large resource requirement left, is one
of the two properties violated. However, it can be proven that choosing jobs in a
particular way ensures that once this happens, the property not violated in that
very time step remains valid until no more jobs need to be scheduled, which implies
a good approximation guarantee.

Normalizing Job Sizes. One problem of the above algorithm is its frailty regarding
job sizes. That is, as long as there are still jobs to be scheduled, it is ensured that
one of the two conditions held for the whole time: either m — 1 jobs were executed in
parallel in each time step or the full resource R was used in each time step. However,
as the length of the jobs is not incorporated in the algorithm and prioritization
only depends on the resource requirements, it can happen for roughly the second
half of the time line that only one very long job with a low resource requirement
is scheduled. This increases the approximation ratio by a factor of almost two. In
contrast, if all jobs have unit size, there is at most one time step where one of the
two conditions is not fulfilled. This implies an asymptotic approximation ratio of
1+ ﬁ, which approaches one for a high number of processors.

Fixing the Job Assignment. In contrast, the assignment of jobs to processors is
already fixed in the model of Chapter 2. For a fixed number of processors, the
NP-hardness of the problem dissolves, and it remains hard only if the number of
processors is part of the input. However, approximating the solution with a fast
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approximation algorithm seems to become more difficult. This is because if trying
to fit jobs well locally at some point in time, that is, such that resource utilization
and parallelism are both maximized at this point, jobs at a much later or much
earlier time may fit even worse. This may imply a sequence of errors and, thus,
situations where jobs with large (low) resource requirement have to be scheduled at
the same time, thereby reducing parallelism (resource utilization) and worsening
the approximation substantially.

Intuitively, for two processors, this effect can be seen as two sawtooth patterns
facing each other (where a spike represents a high resource requirement), where
each pattern has additional irregularities. Now they can be shifted such that a spike
always meets a low point of the other processor and a low point always meets a

spike of the other processor, whereas the irregularities hurt the solution only slightly.

This would result in a schedule with a small makespan. However, if the wrong jobs
are prioritized, spikes and low points each meet their counterparts, which results in
giving away resource and parallelism and implying a large makespan. Refer also to
Section 2.4.3 with Figure 2.5 for a more detailed description and a visualization.

Nevertheless, a branch and bound algorithm with runtime O (n?) that solves this
problem optimally for two processors is given in Chapter 2, as one can still cope
with the above problems for the two processor case. For more processors, however,
this “fitting of saw teeth” becomes more demanding, and there seems to be no fast
algorithm finding an optimal solution. By constructing a dynamic program through
cleverly arranging possible configurations, the optimal solution can still be found,
but only at the cost of high (but still polynomial) runtime.

The simple approximation algorithm introduced in Chapter 2 for a practically
tractable runtime has an approximation guarantee that approaches two for a high
number of processors, which is much worse than the approximation ratio in Chapter 4,
which approaches one as m tends to infinity for the equivalent setting of unit size
jobs. This is in accordance with the expectation that the possibility to avoid ill
fitting jobs in Chapter 4 makes it easier to approximate a solution within a satisfying
factor.

Shared Resources in Connected Components. In the model of Chapter 3, a
number of tasks is given, each consisting of a connected, undirected graph. A weight
or communication requirement is assigned to each edge. A common communication
channel now represents the shared resource. In contrast to the models discussed
above, the communication demand of an edge can only be satisfied by assigning
both adjacent nodes to two processors at the same time. A simple way to meet all
communication demands would be to schedule each edge separately. That is, each
node v is split into deg(v) copies, each connected only to one edge. If each task can
be represented by a tree, it is later shown that this simple procedure together with
the algorithm from Chapter 4 leads to a better approximation guarantee than the
algorithms in Chapter 3. This is because splitting a tree into single edges results in

at most a doubling the number of nodes, hence only losing a factor of at most two.
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However, to capture the behavior of tasks not having the simple structure of a
tree, the notion of arboricity is used. The arboricity of a graph denotes the minimum
number of forests into which the edges of a graph can be decomposed. By using
an existing result, it is also possible to decompose an arbitrary graph into arb(G)
forests and one additional graph of degree at most 2. Hence, decomposing the graph
into forests, then splitting the forest into separate edges and using the algorithm
from Chapter 4 with approximation ratio 1+ 1/(m—1) leads to an approximation ratio
of (2m/(m—1))arb(G), whereas the approximation algorithm described in Chapter 3
guarantees a ratio of min {1.8,1.5m/(m-1)} - (arb(G) 4 5/3). For large m, the latter
approximation thus has a similar or better guarantee for any arb(G) > 5. For small
m (i.e., if the minimum equals 1.8) this is already the case for a smaller arboricity.

1.3.2 Shared Resources and Energy-Efficient Scheduling

In the model of Chapter 5, only one speed-scalable processor is given, but with
maximum speed and energy cost both varying continuously over time. Hence, this
model does not cover limits of resources shared among multiple processors. The
variant where a variable maximum power is the shared resource used by multiple
processors is left as an open question.

However, the variant from Chapter 5 dealing with only one processor gives insights
about the necessary techniques to cope with such flexible limits, for example energy
limits in computing centers. Also, as most of the energy is absorbed as heat, the
temperature of a processor can be associated with a maximum power consumption.
In order to avoid overheating, a maximum speed that changes over time is determined,
which also results in the kind of problem dealt with in this chapter.

1.4 Related Work

In the following, I give an overview of related literature in the area of scheduling. In
particular, I review scheduling problems where the distribution of scarce resources
among processors is the main challenge.

The Origins of Scheduling. The area of scheduling is believed [PS09] to be seen as
a distinct research area since Johnson [Joh54] composed his paper about production
schedules, which is called flow shop nowadays. In his paper, he considers a problem
where different items undergo a production process. Items have to be processed by
one machine first and by a second machine afterwards. Each item has an overall
processing time for each of the two machines, which is regarded as the sum of
setup time and work time. Johnson gives an optimal algorithm for this problem
by arranging the processing times of the items in two columns for the first and
the second machine. The smallest processing time among all listed times (i.e., a
processing time of any job on any machine) is picked, where ties are broken arbitrarily.
If the processing time concerns the first machine, the respective job is scheduled first;
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if it applies to the second machine, the respective job is scheduled last. Repeating
this procedure until all jobs are processed (hence building the schedule from the
ends to the middle) results in an optimal schedule. For the restricted case of a
similar problem with three machines, where for any pair of items, the processing
time of the first item on the first machine is larger than the processing time of the
second item on the second machine, an optimal solution can be found using a similar
algorithm. The same applies if a similar property holds for the third instead of the
first machine.

Multiprocessor Scheduling. In the classical multiprocessor makespan scheduling
problem, a set of jobs, each having a specific processing time, needs to be scheduled
on m identical machines so as to minimize the makespan. For this problem, an
EPTAS is known [Alo+98] if m is part of the input. For fixed m even an FPTAS
is possible [HS76]. Compared to the models in Chapters 2 to 4, this model does
not incorporate additional resource requirements. However, reducing the resource
requirements of each job in the model of Chapter 4 to an infinitesimal amount, it
becomes equivalent to the model without resource requirements.

In terms of fast algorithms, Graham [Gra69] introduces list scheduling algorithms
which are used today as a typical example achieving a reasonable approximation
quality. Here, jobs are added one after another from a sorted list. Each job is added
to the processor with the lowest workload, that is, the processor that would finish
all jobs first with respect to the current schedule. Graham [Gra69] proves that
for the setting with m machines, an arbitrarily ordered list results in a (2 — %)-
approximation. If the list is sorted by non-increasing job size (also called longest
processing time first (LPT)), it achieves an approximation ratio of % — % For the
general case, the authors also prove the following result. Assume n jobs are given
and the list starts with the k longest of these jobs in an order resulting in an optimal
solution (limited to these k jobs). No matter in which order the remaining jobs are
added to the list, the resulting list scheduling algorithm achieves an approximation
ratio of 1 + % For example, this also implies that if the largest m jobs are
distributed to the processors (one job for each processor), and the remaining list
is ordered arbitrarily, the resulting solution is at most by a factor of % — L worse

2n
than the optimum.

Resource Constrained Scheduling. Research on scheduling with resource con-
straints originates from the 1970s. In [GGT75], Garey and Graham introduce a
model with m processors and a set of k resources. A number of jobs has to be
scheduled, where each job has a processing time and a specific demand for each
resource. In their model, the execution of a job may not be interrupted and resumed
later, which corresponds to the non-preemptive setting described earlier. For any
time, it is the scheduler’s task to assign a set of jobs to the processors such that for
any resource, the sum of supplied resource shares of the jobs does not exceed the
available resource. This is in contrast to the models from Chapters 2 to 4, where

1.4
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the scheduler can assign a lower resource to a job than its requirement, leading to a
slower execution of this job. The authors consider list-scheduling algorithms and
prove an approximation factor of at most min{mT‘H, k+2— %} for this problem.
They also consider this problem with precedence constraints: that is, each job may
depend on the completion of one or multiple other jobs. For this case, they show
that their list-scheduling algorithm achieves a tight approximation factor of m,
which is the same as the trivial algorithm assigning all jobs to the same processor
would achieve.

For the restriction to a single resource and no precendence constraints, the results
discussed above directly imply that their list scheduling algorithm achieves an
approximation factor of 3 — % In [NW15], the authors improve these results by
presenting a (2 + ¢)-approximation algorithm for this problem using techniques such
as grouping and linear programming. They also prove that even for unit size jobs,
this problem cannot be approximated within an (absolute) approximation ratio less
than % unless P = NP by a straightforward reduction from the Partition problem.
For this unit size case, Epstein and Levin [EL10] introduce an asymptotic fully
polynomial-time approximation scheme (AFPTAS).

Finally, Jansen et al. [JMR16] very recently published new results where they
present an AFPTAS for the general problem (however, still with a single resource and
without precedence constraints). They also introduce an AFPTAS for the machine
scheduling problem with resource dependent processing times. This model is quite
similar to the models studied in Chapters 2 to 4 in assuming that a job supplied with
a smaller part of the resource than its requirement cannot be finished with full speed.
However, in their model the resource supplied to a job must remain constant during
the full execution time window, whereas a job’s share of the resource in Chapters 2
to 4 may be changed in any time step. They also assume the overall resource as
well as each job’s share of the resource to be an integer number. On the other
hand, Jansen et al. [JMR16] also allow other dependencies than the linear decline
in processing speed, that is, they introduce a processing time function relating the
set of possible resource shares for a job to arbitrary processing speeds. The models
from Chapters 2 to 4 are more realistic for applications where the resource can
be split arbitrarily, for example if a common data rate is involved, as a job only
needs to receive a certain amount of data as soon as possible. In contrast, the
model considered in [JMR16] seems more realistic for applications where the job
is configured for a specific share of the resource, resulting in the requirement that
the resource remains constant during the full execution time. For example, a job
may have a low memory configuration that comes with a longer processing time,
but allowing it to have a higher memory consumption for a part of the processing
time may not speed its execution.

For a deeper insight into resource constrained scheduling, for example with multiple
resources, the interested reader is referred to [Leu04, Chs. 23-24] and [Bla+07,
Ch. 12).
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Bin Packing. Bin packing has a long history in computer science research and a
huge body of literature on several variants of bin packing problems emerged in the
past. In its most basic variant, n items of sizes 0 < s; < 1 need to be placed into as
few bins of capacity 1 as possible. Similar to resource constrained scheduling, this
problem is easily seen to be NP-hard by a reduction from the Partition problem,
which also directly gives an inapproximability for an (absolute) approximation ratio
below % unless P = NP. This bound is actually achieved by the well-known First
Fit Decreasing strategy, which first sorts the items in decreasing order by their sizes
and then places the current item to be packed into the first bin it fits into. In
[D6s+13], Désa et al. also prove that First Fit Decreasing uses at most %OPT + g
bins and that this bound is tight, implying an exact asymptotic approximation
ratio of %. When considering asymptotic approximation algorithms, even (fully)
polynomial-time approximation schemes (A(F)PTAS) are known [VL81; KK82].
While there are dozens of variants of this basic problem, the problem supposedly
closest related to the problems from Chapters 2 to 4 is bin packing with cardinality
constraints and splittable items as introduced in [Chu+06]. In this problem, a set of
n items needs to be packed into as few bins of capacity one as possible. In contrast
to standard bin packing, items can have an arbitrary size in (0,00) and may be
split and distributed among different bins. However, there is a constraint on the
maximum number of (parts of) different items that may be packed into a single bin
given by some predefined value k. Chung et al. [Chu+06] prove this problem to
be strongly NP-hard for k = 2 and provide a simple approximation algorithm with
an asymptotic approximation ratio of 3/2 (also for k = 2). In [ES11], the authors
extend the NP-hardness to any fixed £k > 2. They also give efficient algorithms
with asymptotic approximation ratio 7/5 for k£ = 2 and an absolute approximation
ratio of 2 — 1/k for k > 2, respectively. Finally, Epstein et al. [ELS12] present an
EPTAS for the case kK = o (n). They also prove that for £ = © (n) a polynomial-time
approximation algorithm with a ratio smaller than 3/2 cannot exist unless P = NP.
Note that bin packing with cardinality constraints and splittable items is, except
for the lack of the notion “preemption”, equivalent to the main problem from
Chapter 4 with unit size jobs: If items correspond to jobs of size 1 and each bin is
identified with one time step, the packing of a bin describes the jobs executed in this
time step and the part size of an item corresponds to the share of the resource the

respective job gets. The cardinality constraint k£ corresponds to having k processors.

Discrete-Continuous Scheduling. The notion of discrete-continuous scheduling

traces back to several papers by Jézefowska and Weglarz, first and foremost [JW9S].

While most results in this area study scenarios where the amount of allocated
resources influences the processing time or release dates of jobs (see [JJLO7] for a
survey), Jozefowska and Weglarz [JW98] consider the case where the amount of
allocated resources influences the processing speed of jobs. More precisely, if the
function R;: R>g — [0, 1] models the share of the resource that job j gets assigned
at some time t € R>g, its workload is processed at a speed of f;(R;(t)). Here, f;
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models how a job’s processing speed is affected by the received resource amount and
is assumed to be continuous and non-decreasing with f;(0) = 0. Using this resource
model, the authors consider the problem of scheduling n non-preemptable and
independent jobs on m processors. They propose an analysis framework based on a
mathematical programming formulation and demonstrate its use for the objective of
minimizing the schedule’s makespan. For certain classes of f;, this yields a simple
analytical solution [JWO98; J6z+499]. This holds especially for convex functions
fj, which encourage the scheduler to assign the full resource to a single processor.
Finding an optimal solution for more realistic cases (especially concave f;) remains
infeasible. The results in [JW98] initiated several research efforts in this area,
including a transfer of the methodology to other scheduling variants (e.g., average
flow time instead of makespan [JW96]) as well as several heuristic approaches to
obtain practical solutions in the general case [J6z+00; J6z+02; Kis05; Walll]. A
detailed survey about these results can be found in [Weg+11] (especially Section 7).

The scheduling models with shared resources in this thesis have several charac-
teristics in common with discrete-continuous scheduling problems. In particular,
the jobs’ resource requirements can be modeled via concave functions f; of the
form fj(R) = min(#/r;, 1), where the value r; denotes the resource requirement of
job j (cf. Section 2.1.1). That is, the speed used to process a job depends linearly
on the share of the resource it receives, but is capped at one. In contrast to the
results presented in Chapters 2 to 4, most of the aforementioned results for the
discrete-continuous setting are of heuristic nature and do not provide any provable
quality guarantees with respect to the resulting schedules, and cases that can be
analyzed analytically turn out to feature quite simple solution structures [JWO98;
J6z+99].

Order Scheduling Models. With respect to the second part of Chapter 4, where
a model generalization for tasks that are composed of multiple jobs is considered,
[LLPO05] should be mentioned. Here, a production model is considered where tasks
represent orders and each job of an order must be processed on a subset of specific
machines. However, note that these order scheduling models do not consider resource
sharing in the sense of the models in this thesis, but instead only the allocation to
the (non-identical) machines.

Energy-Efficient Scheduling. The area of energy efficient scheduling, often also
described as speed scaling, has been initiated by Yao et al. [YDS95]. They assume
to have a single speed-scalable processor: that is, one processor that can be sped
up arbitrarily, but at the cost of increased power consumption. In their model, the
power the processor requires is described by a convex power function P: R>9 — R>g.
More exactly, when running with speed s, they assume that the processor has a
power consumption of P(s) = s®, where @ > 1 is a constant called the energy
exponent. This assumption is natural, as the typical power consumption of CMOS
devices can roughly be estimated by s and CMOS devices will presumably remain
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the dominant technology in the near future [BKPO07]. The authors present an optimal
algorithm for this problem, which is called the YDS algorithm. The main idea of
the algorithm is to develop a sense of density of jobs, that is, determining intervals
containing a large amount of workload per time unit. Recursively identifying the
densest interval, then scheduling all contained jobs within this interval with minimal
uniform speed, and proceeding by deleting the interval from the timeline yields
an optimal solution. Ideas from this algorithm are also used for the algorithm
in Chapter 5. The authors proceed by introducing two online algorithms for this
problem, which they call Average Rate and Optimal Available. Intuitively, the
Average Rate algorithm processes each job such that its processing speed is the same
over the full interval between its release time and deadline. Hence, at any point in

time, the overall processing speed is the sum of the job’s processing speeds. Yao et al.

[YDS95] prove that Average Rate has a competitive ratio of at most 2 1a®. In
[Ban+08; Ban+11], the authors show that the analysis is almost tight by providing
a lower bound of @ -a®, where ¢ approaches 0 when a approaches infinity. The
Optimal Available algorithm is computationally more intensive: At any point in
time where a new job arrives, the optimal solution of all currently available jobs
is computed, for example by executing the YDS algorithm. Bansal et al. [BKPO7]
prove that the competitive ratio of Optimal Available is exactly a®. This implies
that Optimal Awvailable is superior to Average Rate in terms of competitiveness, but
this comes with a computational overhead. Bansal et al. [BKPO07] also present a
new algorithm, which they call BKP and which estimates the density of available

jobs in a different way in order to behave similar to the YDS offline algorithm.

ae
a—1

They prove that BKP has a competitive ratio of at most 2 ( )a, thus having a
stronger guarantee than Optimal Available for a > 5. In Bansal et al. [Ban+09],
the authors show that the exponential dependency is inherent to the problem: that
is, they prove that any online algorithm has a competitive ratio of at least & :

See also [Alb10] and [IP05] for broader surveys on energy-efficient algorithms.

Energy-Efficient Scheduling with Maximum Speed or Varying Energy Prices.

Special cases of both the maximum speed and the electricity tariff setting have been
studied before. Chan et al. [Cha+09] and Li [Lill] assume that there is a constant
upper bound on the available speed, and one wants to maximize the throughput of
the schedule while minimizing the power consumption. Chan et al. [Cha+09] present
an O (1)-competitive algorithm in terms of throughput and energy. Allowing the
maximum speed of the online scheduler to be (1 + ¢) times the original maximum
speed for some € > (0 enables the authors to improve the competitive ratio on
throughput to any value 1 + § with § > 0. However, the competitive ratio on power
consumption remains a larger constant. Li [Lill] consider the offline variant of this

problem. They present an algorithm which is a 3-approximation of the throughput
(a—1)*t(@Ba—1)>
Dae(3e-1_T)o-T
On the other hand, Fang et al. [Fan+15] consider electricity tariffs, but without

an upper bound on the speed and in a much more restricted setting: their model

and a -approximation of the power consumption.

a®
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is equivalent to considering only one-job instances and discrete dynamics in the
problem from Chapter 5. They develop an optimal polynomial-time algorithm by
a technique which to some extent resembles ours. However, since Chapter 5 deals
with a significantly more general setting, several important aspects not appearing
in [Fan+15] have to be considered, in particular the KKT optimality conditions
need to be extended using variational calculus. Electricity tariffs have also been
considered beyond the speed-scaling setting, see for example [KT11].

Further, Thang [Thal3] uses the Lagrangian dual of a mathematical program
in order to analyze several online scheduling algorithms with flow-time objectives.
Although [Thal3] also has the same view of optimizing over a set of arbitrary
speed functions, it differs from the approach in Chapter 5 in that Lagrangian
duality is used more as a tool for analyzing the approximation ratio, rather than
for characterizing an optimal solution and deriving an optimal algorithm. Finally,
Bansal et al. [BCP09] consider a speed scaling problem where energy is supplied at
a limited rate. However, their supply rate does not vary over time. In fact, there is
another significant difference between their model and the model from Chapter 5, as
they consider also a storage device and seek to minimize the constant supply rate.

1.5 Own Publications

In the following, I present a list of my own publications that I co-authored while
studying the topics of this thesis. The publications are given in reverse chronological
order. This list merely serves to put the topics from this thesis in context with my
other research.

2017 (with M. Drees, M. Feldotto and A. Skopalik). “Pure Nash
Equilibria in Restricted Budget Games”. In: Proceedings of the 23rd

International Computing and Combinatorics Conference (COCOON),
cf. [Dre+17].

2017 (with A. Antoniadis, P. Kling and S. Ott). “Continuous Speed
Scaling with Variability: A Simple and Direct Approach”. In: Theoretical
Computer Science vol. 678, cf. [Ant+17].

2017 (with E. Althaus, A. Brinkmann, P. Kling, F. Meyer auf der Heide,
L. Nagel, J. Sgall and T. Sti}). “Scheduling Shared Continuous Resources
on Many-Cores”. In: Journal of Scheduling, cf. [Alt+17].

2017 (with P. Bemmann, F. Biermeier, J. Biirmann, A. Kemper, T.
Knollmann, S. Knorr, N. Kothe, A. Mécker, M. Malatyali, F. Meyer auf
der Heide, J. Schaefer and J. Sundermeier). “Monitoring of Domain-
Related Problems in Distributed Data Streams (to appear)”. In: Pro-
ceedings of the 24th International Colloguium on Structural Information
and Communication Complexity (SIROCCO), cf. [Bem+17].
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(SPAA), cf. [Kli417].

2017 (with A. Méacker, M. Malatyali and F. Meyer auf der Heide). “Non-
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Setup Times (to appear)”. In: Proceedings of the 15th Workshop on
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2017 (with S. Li, A. Mécker, C. Markarian and F. Meyer auf der Heide).
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“Cost-Efficient Scheduling on Machines from the Cloud”. In: Journal of
Combinatorial Optimization, cf. [Méc+17a].

2016 (with A. Mécker, M. Malatyali and F. Meyer auf der Heide). “Cost-
Efficient Scheduling on Machines from the Cloud”. In: Proceedings of the

10th Annual International Conference on Combinatorial Optimization
and Applications (COCOA), cf. [Méac+16].

2016 (with J. Konig, A. Mécker and F. Meyer auf der Heide). “Schedul-
ing with Interjob Communication on Parallel Processors”. In: Proceed-
ings of the 10th International Conference on Combinatorial Optimization

and Applications (COCOA), cf. [Kén+16].

2015 (with M. Drees, M. Feldotto and A. Skopalik). “On Existence
and Properties of Approximate Pure Nash Equilibria in Bandwidth
Allocation Games”. In: Proceedings of the 8th International Symposium
on Algorithmic Game Theory (SAGT), cf. [Dre+15].

2015 (with A. Méacker, M. Malatyali and F. Meyer auf der Heide). “Non-
Preemptive Scheduling on Machines with Setup Times”. In: Proceedings

of the 14th International Symposium on Algorithms and Data Structures
(WADS), cf. [Mac+15].

2015 (with S. Li, A. Mécker, C. Markarian and F. Meyer auf der
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Proceedings of the 20th International Computing and Combinatorics
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CHAPTER

Assigning a Sharable Resource in a
Multiprocessor System

he processor scheduling problem considered in this chapter is motivated
by the observation that, in many cases, it is not a device’s speed or energy
consumption that limits the progress of a given computation but the fact
that data cannot be provided at the necessary rate. At first glance, this seems
more a network issue than a problem of interest for processor scheduling. After
all, bandwidth bottlenecks are typically imposed by the interconnection of devices
(e.g., networks or data buses), and there is a huge body of literature concerned
with such issues on the network layer. However, the analysis in this area typically
concentrates on the network’s performance. In contrast, our model focuses on how
the distribution of the bandwidth shared by a fixed set of processing units can
affect their computational performance. That is, given some information about the
bandwidth requirement of a program (e.g., when does it need how much bandwidth
to progress at full speed), the scheduler can speed up critical jobs by a suitable
assignment of the available bandwidth to the different processors. Typical examples
for such settings are many-core systems: They provide an immense computing power
through the sheer number of processor cores. Yet, many (if not all) of the chip’s
cores share a single data bus to the outside world. If such a system has to process
I/O-intensive tasks (as typical for scientific computing), the available bandwidth
becomes the computational bottleneck, and the bandwidth distribution becomes
the decisive scheduling factor.

A First Glimpse at the Model. From a more abstract point of view, the afore-
mentioned bandwidth scheduling can be seen as a variant of resource constrained
scheduling, the bandwidth being an example for the resource. Imagine a system
consisting of several identical processors that run at a fixed speed and share a given
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resource. Assume that the resource is the system’s performance bottleneck, in the
sense that the runtime of programs (tasks) depends directly (that is to say, linearly)
on the share of the resource they are allowed to use. Each task provides information
about its resource requirements by stating what share of the resource it needs at
different phases of its processing to run at full speed. Thus, we can imagine a task
1 to consist of a number n; of jobs that must be processed sequentially, one after
another. Each job represents a phase of the task’s processing where the resource
requirement is constant. The length of the phase (i.e., the job’s processing time) is
minimal at full speed and increases by a factor of 1/ if only a portion = € [0, 1] of
the requested resource share is provided. We use the term CRSHARING to refer to
this problem of sharing continuous resources; see Section 2.1.1 for a more formal
description.

We approach the problem by concentrating on the assignment of resources,
removing the (classical) scheduling aspect almost completely. That is to say, we
consider a scenario in which each processor has exactly one task, and each task
consists of jobs of unit workload (but different resource requirements). Moreover,
we assume discrete time steps, such that the scheduler can change the resource
assignment only at the beginning of such a time step. As we will see, even this
simple setting proves to be challenging.

Outline. Section 2.1 starts with a formal model description of the CRSHARING
problem in Section 2.1.1, an overview of our contribution in Section 2.1.2, and some
basic definitions and results in Sections 2.1.3 to 2.1.5. Our main results are given in
Sections 2.2 to 2.4, where we study the complexity of the CRSHARING problem and
present algorithmic options for the CRSHARING problem.




Preliminaries

2.1 Preliminaries

In Section 2.1.1, we start by defining the model for the general version of the
CRSHARING problem, which considers jobs of arbitrary sizes. Afterward, we discuss
an alternative interpretation of our model that will ease our argumentation in the
analysis part. Note that while the model description considers jobs of arbitrary
sizes, from Section 2.1.2 on, which summarizes our results, we only consider problem
instances in which all jobs are of unit size. In Section 2.1.3, a graphical representation
of schedules is introduced, supplying the reader with an idea of the underlying
structure. Section 2.1.4 is intended to equip her with the tools needed for the

analysis in later sections by discussing and proving some basic structural properties.

Finally, we analyze a simple round robin algorithm in Section 2.1.5.

2.1.1 Model & Notation

Consider a system of m identical fixed-speed processors sharing a common resource.

At every time step t € N, the scheduler distributes the resource among the m
processors. To this end, each processor i is assigned a share R;(t) € [0, 1] of the
resource, which it is allowed to use in time step t. It is the responsibility of the
scheduler to ensure that the resource is not overused. That is, it must guarantee that

M, R;(t) <1 holds for all t € N. For each processor i, there is a sequence of n; € N
jobs that must be processed by the processor in the given order. We write (i, j)
to refer to the j-th job on processor i. A processor is not allowed to process more
than one job during any given time step. Each job (i, ) has a processing volume
(size) pij € Rso and a resource requirement r;; € [0,1]. The resource requirement
specifies what portion of the resource is needed to process one unit of the job’s
processing volume in one time step. In general, when a job is granted an x-portion
of its resource requirement (x € [0,1]), exactly = units of its processing volume are
processed in that time step. There is no benefit in granting a job more than its
requested share of the resource. That is, a job’s processing cannot be sped up by
granting it, for example, twice its resource requirement. A feasible schedule for an
instance of the CRSHARING problem consists of m resource assignment functions
R;: N — [0, 1] that specify the resource’s distribution among the processors for all
time steps without overusing the resource. At any time ¢, each processor ¢ uses its
assigned resource share R;(t) to process the job (i,j) with minimal j among all
unfinished jobs. We measure a schedule’s quality by its makespan (i.e., the time
needed to finish all jobs). Our goal is to find a feasible schedule having minimal
makespan. To simplify notation, we often identify a schedule S with its makespan
(e.g., writing S/opT for the makespan of schedule S divided by the makespan of an
optimal schedule OPT).

Alternative Model Interpretation. An alternative interpretation of our scheduling
problem can be obtained by the following observation: Consider a job (i, j) whose

processing is started at time step ¢;. It receives a share R;(¢1) € [0, 1] of the resource.
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By the previous model definition, exactly min(£i(t1)/r;;, 1) units of its processing
volume are processed. Similarly, in the next time step min(£:(t1 +1) /5, 1) units of its
processing volume are processed. Consequently, the job is finished at the minimal
time step to > t; such that Z?:tl min(Ri®)/r;;, 1) > p;; or, equivalently if 7;; > 0, at
the minimal time step to > t1 with

l2
Z min(R;(t),7ij) > rijpij = Dij- (2.1)
t=t1

This observation allows us to get rid of the resource aspect by considering variable
speed processors instead of fixed speed processors. The speed of such variable speed
processors can be changed at runtimei. For our reinterpretation, think of a job (i, 7)
to have size p;; and of a processor i to be of variable speed. The value R;(t) denotes
the speed processor 7 is set to during time step t. The scheduler is in control of these
processor speeds, but it must ensure that the aggregated speed of all processors
does never exceed one. Moreover, in addition to the system’s speed limit, each
job (i, j) is annotated with the maximum speed 7;; it can utilize. In this light, our
CRSHARING problem becomes a speed scaling problem to minimize the makespan
in which the scheduler is limited by both the system’s maximum aggregated speed
and a per-job speed limit. The unit size restriction for the CRSHARING problem
translates into the restriction that job sizes p;; equal the corresponding resource
requirements r;;. In other words, all jobs must be processable in one time step if
run at maximum speed.

During the analysis, it will sometimes be more convenient to think of our problem
in the way described above. For example, note that the total size (in the alternative
model description) of all jobs in the system is Y " Z?;l Dij- This load is processed
at a maximal aggregated speed of 1. Thus, all processors together cannot process
more than one unit of this total load per time step. This yields the following simple
but useful observation:

Observation 2.1. Any feasible schedule needs at least y ;" ; Z?;l 7i;Pi; time steps
to finish a given set of jobs with resource requirements r;; and sizes p;;.

At times, we will use the notion remaining resource requirement to denote the
remnants of a job’s initial workload p;;.

Additional Notation & Notions. The following additional notions and notation
will turn out to be helpful in the analysis and discussion. For a processor i with n;
jobs, we define n;(¢) as the number of unfinished jobs at the start of time step ¢. In
particular, we have n;(1) = n;. The value j;(t) = n; — n;(t) denotes the number of
jobs completed on machine i at the start of step t. A processor i is said to be active
at time step ¢ if n;(t) > 0. Similarly, we say that job (i,7) is active at time step t if
Ji(t) =n; —ni(t) = j — 1 (i.e., if processor ¢ has finished exactly j — 1 jobs at the

'This is also known as speed scaling (cf. [YDS95]).
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start of time step t). We use M; = {i | n; > j } to denote the set of all processors
having at least j jobs to process. Finally, we define n := max; n; as the maximum
number of jobs any processor has to process.

2.1.2 Contribution

We introduce a new resource-constrained scheduling model for multiple processors,
where job processing speeds depend on the assigned share of a common resource.
Our focus lies on a variant with unit size jobs where the scheduler only has to
manage the distribution of the resource among all processors. The objective is to
minimize the total makespan (maximum completion time over all jobs). Even this
simple variant turns out to be NP-hard in the number m of processors. For fixed
m, we show that the problem is solvable in polynomial time. Since the respective
algorithm is not practical, we also provide an exact quadratic-time algorithm for
m = 2 and an approximation algorithm for any fixed m. The latter achieves a
worst-case approximation ratio of exactly 2 — 1/m. Our approach uses a hypergraph
representation that allows us to capture non-trivial structural properties.

2.1.3 Graphical Representation

For the remainder of this chapter, we assume that all jobs have unit size. This
section introduces a hypergraph notation for CRSHARING schedules.

Given a problem instance of CRSHARING with unit size jobs and a corresponding
schedule S, we can define a weighted hypergraph Hg = (V, E) as follows: The nodes
of Hg and their weights correspond to the jobs and their resource requirements,
respectively. That is, the node set is given by V' = {(i,j)]i = 1,2,..., m A j =
1,2,...,n;}, and the weight of a node (4, j) € V' is r;;. The edges of Hg correspond
to the schedule’s time steps and contain the currently active jobs. More formally, the

edge e; C V for time step t is defined as e; :== { (4,7) | ni(t) > 0N j =n; —ni(t) +1}.

Thus, if we abuse S to also denote the makespan of schedule S, the edge set of Hg
can be written as £ = { ey, ea,...,es }. We call Hg the scheduling (hyper)graph of
S. See Figure 2.1a for an illustration.

Connected Components. In Section 2.1.4 and during the analysis in Section 2.4,
we will see that the connected components formed by the edges of a scheduling
graph Hg carry a lot of structural information about the schedule. To make use of
this information, let us introduce some notation that allows us to directly argue via
such components. We start with an observation that follows from the construction
of H S.

Observation 2.2. Consider a connected component C' C V' of Hg and two time
steps t1 < to with e, Ue,, C C. Then, for all ¢t € {t1,t1 +1,...,t2} we have
€t Q C.

21

25



Chapter 2

26

ASSIGNING A SHARABLE RESOURCE IN A MULTIPROCESSOR SYSTEM

© 000

QO ©®© O & O

€6 03
@ O ®

(a) Scheduling graph Hg trying to greedily  (b) Connected components of the scheduling
finish as many jobs as possible. graph, ordered from left to right.

Figure 2.1: Hypergraph representation of a schedule for three processors. Resource
requirements are given as node labels (in percent). Nodes are laid out
such that each row corresponds to the job sequence of one processor
(from left to right). Edges correspond to the schedule that prioritizes
jobs in order of increasing remaining resource requirement.

Let N denote the total number of connected components and let C denote the k-
th connected component (for k € {1,2,..., N }). Moreover, we use #}, to denote the
number of edges of the k-th component. That is, we have #;, = [{e; € E | e, C Cy }|.
Observation 2.2 implies that a component C}, consists of #j consecutive time steps.
This allows us to order the components such that, for any two components k, & and
edges e; C Ok, ey C Cjr with t < ¢/, we have k < k/. That is, we can think of the
components being processed by the processors from left to right. See Figure 2.1b
for an illustration.

The maximal size of an edge in the k-th component, which equals the size of
its first edge, gives us a rough estimate for the amount of potential parallelism
available during the corresponding time steps. Note that while the size of edges
e; is monotonously decreasing in ¢, a schedule that tries to balance the number of
remaining jobs on each processor will decrease the edge size only at the end of a
component (for all components but the last one). We will make use of this fact in
the proof of Lemma 2.21. For now, let us honor its foreshadowed importance by the
following definition:

Definition 2.3 (Component Class). Given a component Cy, we define its class g
as the size of its first edge. That is, g := |e;| with t = min {¢' | ey C Cy }.

Besides being an upper bound on the size of a component’s edges, the class g
is also decreasing in k. Moreover, Lemma 2.11 will show that a component’s class
allows us to formulate an important relation between its size and the total number
of its edges.

2.1.4 Structural Properties

Let us use the introduced notions to point out some structural properties of schedules
for the CRSHARING problem with unit size jobs. We start by defining three properties
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of schedules and show in Lemma 2.7 that we can restrict our analysis to schedules
which have them.

Definition 2.4 (Non-wasting). We call a schedule non-wasting if it finishes all
active jobs during every time step ¢ with >/, R;(f) < 1.

Definition 2.5 (Progressive). A schedule is progressive if, among all jobs that are
assigned resources, at most one job is only partially processed during any time step
t. More formally, we require that

H{i|ni(t)=ni(t+1)AR;(t) >0} <1 (2.2)
holds for all ¢ € N.

Definition 2.6 (Nested). Let S(i,7) and C(i,j) denote the starting step and the
completion step of job (i, ), respectively. A schedule is nested if, at no time ¢,
there are two jobs (i,j) and (¢/,j") such that S(i,j) < S(7,j) <t < C(,j'),
S(i',7") < C(i,j) and (i, 7) is running during step t.

This last property intuitively means that among the partially processed jobs, we
always prefer to run and complete the job that started at the latest step. Note that
the condition of a nested schedule in particular implies that, for no jobs (7, ) and
(i, 4", S(i,j) < S@#',5") < C(i,j) < C(i,5"). Otherwise we could choose t = C(i, )
and job (4, j) would run in step ¢t = C(4, 7). An example for a nested and an unnested
schedule is given in Figure 2.2.

Lemma 2.7. Every schedule S can be transformed into a schedule S’ which is
non-wasting, progressive and nested without increasing its makespan.

Proof. Making a given schedule non-wasting is trivial because, given a time step
t with >7"; R;(t) < 1 and an active job (i, j’), we can increase R;(t) until either
the job is finished or >°1"; R;(t) = 1 (and decrease the resource consumption of this
job by the same amount in later steps). In both cases, the schedule’s makespan
does not increase. By doing this for each step t in ascending order, we will get a
non-wasting schedule.

In the following we assume that we start with a non-wasting schedule. For each of

the following modifications, it is easy to check that the schedule remains non-wasting.

First we guarantee by an exchange argument that for no two jobs (i, 5) and (i, j')
it holds that S(i,7) < S(i/,j") < C(i,7) < C(7',4"). Suppose we have a pair of jobs
(i,7) and (i, j") violating the condition. Consider all the resource the two jobs are
using in steps S(¢',j'),...,C(i,j) and redistribute it in each of these steps so that
(i,7) is completed before or when (7, j') is started. This is done by first giving all
resource assigned to (i, j) to (i, 7) until (¢, j) is finished and then giving all resource
assigned to (i,7) to (i, 5"). It follows that C(i,5) < S(i',5’) and that the condition
is not longer violated for this pair of jobs. Furthermore, C(,j) is not increased,
S(#',7") is not decreased and all other start and completion times remain unchanged,
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Figure 2.2: The schedules in Figure 2.2b and 2.2c are based on the input in Fig-
ure 2.2a and observe a resource limit of 100. Both schedules are non-
wasting and progressive, but only the schedule in Figure 2.2b is nested.
In the other schedule, pi’s job is already running when po’s job is started,
and completed before ps’s job is completed.

so that no new violating pair is created. In this way we can eliminate the violating
pairs one by one.

Now we modify the schedule for each time step ¢ = 1,2,... so that for this ¢ the
resulting schedule is nested and progressive. More precisely, we alter it in such a way
that there is at most one job running in step ¢ and active after step ¢; furthermore
such a job has the smallest completion time among the jobs active after step ¢. This
guarantees both properties.

Let (i,7) and (i, ") be two jobs that are running in step ¢ and active after step
t. Further, let (7,7) have the smallest completion time among these jobs. Then at
step ¢, give the maximal amount of resource assigned to job (i, j”) to job (i, ), and
balance this exchange by giving the same amount of resource from (i, j) to (i”, ")
at later time steps. Note that this exchange does not change C'(i”,j"”). As a result
of the exchange, either C'(i,j) =t or (i”,5"”) does not run at time ¢. In both cases
we have decreased the number of jobs that are partially processed at time t.

Decreasing C(i,j) may create a new pair with S(z,7) < S(¢/,5) < C(i,j) <
C(i',j"), however only for S(i’,j') > t. We treat any such pair as in the previous
paragraph, which changes the schedule only after time ¢. Now we repeat the process
for the next pair of (7,7) and (", ;") as needed. O
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Lemma 2.7 allows us to narrow our study to the subclass of non-wasting, progres-
sive and nested schedules, and from now on we will assume any schedule to have
these properties (if not stated otherwise).

Balanced Schedules. Intuitively, good schedules should try to balance the number
of remaining jobs on each processor. This may provide the scheduler with more
choices to prevent the underutilization of the resource later on (e.g., when only one
processor with many jobs of low resource requirements remains). The better part
of Section 2.4 serves the purpose of confirming this intuition. In the following, we
formalize this property of balanced schedules and, subsequently, work out further
formal and concise properties of balanced schedules.

Definition 2.8 (Balanced). We say a schedule is balanced if, whenever a processor
i finishes a job at a time step ¢, any processor ¢’ with n;(t) > n;(t) also completes a
job.

Proposition 2.9. Fvery balanced schedule features the following properties:
1. For all iy, ia with n;, > n;, and for allt € N, we have n;, (t) > n;,(t) — 1.
2. For alliy, iy with n;, > n;, and for allt € N, we have n;, (t) < ni, (t)+ni, —nis, .-

Proof. Both statements follow easily from the definition of balanced schedules. To
see this, first note that both properties hold for ¢ = 1, since n;(1) = n; for all
processors i. Moreover, at any time step ¢, the number n;(¢) of remaining jobs
cannot increase, and decreases by at most one during the current time step. Thus,
it is sufficient to show that if one of the statements holds at some time step t with
equality, it still holds at time step ¢ + 1. For Property 1, n;, (t) = n;,(t) — 1 and the
balance property imply that if 4; finishes its job, then so must i. Thus, we have
ng, (t+1) > n;,(t +1) — 1. The very same argument works for Property 2. O

Proposition 2.10. Consider a balanced schedule and the set M; of processors
having at least j jobs. Let (i,7) be a job that is active at time step t and assume
ni(t) > 1 (i.e., it is not the last job on processor i). Then all processors i’ € M; are
active at time step t.

Proof. Let i’ € Mj be a processor with at least j jobs and consider the case n; > n;.
By Proposition 2.9, Property 1, we have n;(t) > n;(t) —1 > 0, so processor i is
active at time t. If ny < n;, we can apply Proposition 2.9, Property 2 and get

’I’Ll/(t) > n; — (nl — nl(t)) = Ny — (] — 1) > 1. (23)

The equality uses the fact that job (i, ) is active at time step ¢, implying that the

number n; — n;(t) of jobs finished by processor i before time step ¢ is exactly j — 1.

The last inequality comes from i’ € Mj. O
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The final structural property of balanced schedules addresses, as indicated earlier,
how a component’s class allows us to relate its size (number of nodes) to the total
number of its edges.

Lemma 2.11. Consider a non-wasting, progressive, and balanced schedule. The
number of nodes and edges and the size of the first edge in a component are related
via the following properties:

1. The inequality |Cx| > #x + qx — 1 holds for all k € {1,2,...,N —1}.
2. The last component satisfies |Cn| > #n.

Proof. The second statement follows immediately from Lemma 2.7, which (by the
schedule being progressive) states that in each time step (i.e., for each edge) at least
one job is finished.

For the first statement, fix a k € {1,2,..., N — 1} and consider the first edge e;
of the component C. By definition, this edge consists of ¢ different nodes. We
now show that each of the remaining #; — 1 edges adds at least one new node to
the component. So fix an edge e C C), with ¢’ > t and consider the time step ¢’ — 1.
Since we know that at least one job is finished in every time step (Lemma 2.7)
and that S is balanced, at least one of the processors having the maximal number
of remaining jobs finishes its current job. More formally, there is some processor
i’ = argmax; n;(t' — 1) that finishes its currently active job at time step ¢’ — 1.
Because of k # N, we also know that n; (¢ — 1) > 1, such that there is a new active
job for processor i’ at time step t’. This yields the lemma’s first statement. O

2.1.5 Warm-up: Round Robin Approximation

Consider the following simple round robin algorithm for the CRSHARING problem
(with unit size jobs): Given a problem instance where the maximal number of jobs
on a processor is n, the algorithm operates in n phases. During phase j, it processes
the j-th job on each processor, assigning the resource in an arbitrary way to any
processors that have not yet finished their j-th job. Note that this algorithm may
waste resources (although only between two phases) and is possibly non-progressive.
Still, the following theorem shows that it results in schedules that are not too bad.

Theorem 2.12. The ROUNDROBIN algorithm for the CRSHARING problem with
unit job sizes has a worst-case approximation ratio of eractly 2.

Proof. We start with the upper bound on the approximation ratio. ROUNDROBIN
algorithm needs exactly [Y,c M, 7;j| time steps to finish the j-th phase (cf. “Alterna-
tive Model Interpretation” in Section 2.1.1). Thus, the makespan of a ROUNDROBIN
schedule can be bounded by

i{z Tia} < n+zn: > . (2.4)

j=1|ieM; j=licM;
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(a) OPT schedule, wastes no resources and needs n + 1 time steps.

O 066 ® 0o

Phase 1 Phase 2 Phase 3 ISl Pfoag,e

OO0 OO ®

(b) ROUNDROBIN, uses two time steps per phase and wastes 99% of the resource at the end
of each phase.

Figure 2.3: Worst-case example for ROUNDROBIN schedule. Node labels give the
jobs’ resource requirements in percent.

Since any processor can finish at most one job per time step, even an optimal schedule
has a makespan of at least n. Observation 2.1 yields another lower bound on the
optimal makespan, namely -7 3~,c M; Tij- Together, we get that ROUNDROBIN
computes a 2-approximation.

For the lower bound on the approximation ratio, consider the following CRSHAR-
ING problem instance with unit size jobs on two processors: Let n € Nje :=1/n > 0
and define the resource requirements for the first processor as ri; = j - ¢ for
j€{1,2,...,n}. For the second processor, we define ry; := (1+4¢) —ry;. Note that
each processor has to process n jobs. Figure 2.3 illustrates the instance as well as
the resulting optimal and ROUNDROBIN schedules for n = 100. An optimal schedule,
shown in Figure 2.3a, will waste no resource at all. In contrast, the ROUNDROBIN
schedule, as indicated in Figure 2.3b, wastes a share of 1 — € of the resource in every
second time step. As a result, the ROUNDROBIN schedule needs 2n time steps, while
an optimal schedule can finish the same workload in n + 1 time steps. Thus, for
n — oo we get an approximation ratio of 2. O

21

31



Chapter 2 | ASSIGNING A SHARABLE RESOURCE IN A MULTIPROCESSOR SYSTEM

32

2.2 Problem Complexity

One of our first major results is the following theorem, showing that the CRSHARING
problem is (even in the case of unit size jobs) NP-hard in the number of processors.

Theorem 2.13. CRSHARING with unit size jobs is N P-hard if the number of
processors is part of the input.

Proof. In the following, we prove the NP-hardness of the CRSHARING problem
with unit size jobs via a reduction from the PARTITION problem. Our reduction
transforms a PARTITION instance of n elements into a CRSHARING instance on n
processors, each having three jobs to process.

Let ay,a2,...,a, € N and A € N with 7' ;a; = 2A be the input of the
PARTITION instance (w.l.o.g., A > 2). For our transformation, let € € (0,1/n) and
set § := ne < 1. We define the first and last job on any processor i to have resource
requirements r;1 = r;3 = a; == A‘ﬂi 5- Lhe second job on any processor i has a resource
requirement of ;9 = € == A%ré' Note that no schedule can finish the first job of all

tasks in only one time step as we have Y 1 | 71 = j—fd > 1 by construction. Now,
with each task containing three jobs, any schedule needs at least four time steps to
finish all jobs. To finish our reduction, we show that there is an optimal schedule
with makespan 4 if and only if the given PARTITION instance is a YES-instance (i.e.,
if it can be partitioned into two sets that sum up to exactly A).

Assume we are given a YES-instance of PARTITION and let, w.l.o.g., the first k
elements form one partition. The schedule shown in Figure 2.4a is feasible and has
makespan 4. Now assume we are given a NO-instance and an optimal schedule for
the corresponding CRSHARING instance. W.l.o.g., exactly the first k& processors
finish their jobs in the first time step. This implies Z,’f:l a; < 1, yielding the
inequality ¥ ;a; < A+ 6 < A+ 1. Since the given PARTITION instance is a
NO-instance, we also have Y%, a; # A. Together this implies Y% a; < A — 1,
which, in turn, yields i ;. a; > A+ 1. Since we have not yet finished the jobs
(k+1,1),(k+2,1),...,(n,1), we need at least two more time steps until we can
start working on (k + 1,3), (k4 2,3),...,(n,3). Their total resource requirement is

at least . N

gkt @ AT 2.5
D wT Tz > L (25)
i=k+1

Thus, after the first three time steps, we need at least two more time steps to finish
the remaining jobs, yielding a makespan of at least 5. O

Note that we also get the following lower bound from the proof of Theorem 2.13:

Corollary 2.14. It is NP-hard to approrimate CRSHARING with a factor better
than 5/4.

While Theorem 2.13 proves NP-hardness of our problem, it leaves the question
concerning the problem’s complexity for constant m. In the next two sections we
will show that in this case the problem is polynomial-time solvable.
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(a) Optimum for YES-instances. (b) Optimum for NO-instances.

Figure 2.4: Problem instance and schedules used for the reduction from PARTITION
to CRSHARING with unit size jobs.

2.2
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2.3 Optimal Algorithms

We start with a simple optimal algorithm for the variant with two processors in
Section 2.3.1. In Section 2.3.2, we present a dynamic programming approach to
solve the problem in polynomial time for an arbitrary number of processors.

2.3.1 Algorithm for Two Processors

While the previous section proves NP-hardness in the number of processors, there
are exact polynomial-time algorithms for a fixed number of processors. Before we
state and analyze the algorithm for arbitrary m > 2 in Section 2.3.2, we introduce a
faster algorithm for two processors. Algorithm OPTRESASSIGNMENT traces out all
reasonable scheduling decisions. To keep this approach feasible, we use Lemma 2.7
(implying the existence of an optimal schedule that finishes at least one job in each
time step) and another structural property (see Lemma 2.15). These allow us to
discard bad scheduling decisions early on.

Algorithm Description. The OPTRESASSIGNMENT algorithm uses a dynamic
programming approach. To this end, it maintains a two-dimensional array B of
size n1 X ng. Each entry holds a tuple Bliy,i2] = (r,t), which states that there is
a schedule that, at time step ¢, has finished all jobs (1, 1) with j; <43 and (2, jo)
with jo < d9, and for which the remaining resource requirements of (1,7;) and (2,i3)
sum up to r. OPTRESASSIGNMENT fills B in nj + ny — 1 phases, one phase for
each diagonal of B. It maintains the invariant that, from the start of phase ¢ on,
all entries on the (¢ — 1)-th diagonal (i.e., all Bliy,i2] with i1 + ia = £) are optimal.
More precisely, such entries correspond to subschedules with minimal ¢ (and, for this
t, minimal 7) reaching the jobs (1,4;) and (2,42). See Listing 2.1 for the pseudocode.
Note that in our algorithm description, we compute only the makespan (and not a
corresponding schedule) of an optimal solution. However, given the array B, one
can easily trace back the final entry and derive an explicit schedule in linear time.

Correctness & Runtime. We start with a simple lemma, which will be used later
on to show that the diagonal-wise processing of B is correct.

Lemma 2.15. Consider two non-wasting and progressive schedules S and S’ as
well as a time step t such that n;(t) < ni(t) fori e {1,2}. Let v;(t) and v)(t) be
the remaining resource requirement of the job that is active at time t on processor
i€{1,2} in schedule S and S’, respectively. If

1. ni(t) < nf(t) or na(t) < nh(t), or

2. nq(t) = nf(t) and na(t) = nh(t) and, w.l.o.g., v1(t) + va(t) < v (t) + vh(t),

then we can transform S without changing the first t — 1 time steps such that S < S’.
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[resource requirements are stored in A1 and Az]
[subschedules are stored in two-dimensional array B]
[extend A1 as well as Az by an extra 0-entry/
n1 = length(A1); na = length(A2);
initialize array B[l...m1,1...n2] with null entries
B[1,1] = (A1[1] + 42[1],0)
for £ from 2 tony +ng — 1

for i1 from max {1,/ —no} tomin{¢—1,n; }

o =€ — i1
(r,t) = Bli1, i2]
if i1 =n1

add(z’l,z’2+1,o,A2[ig+1},t+1)
else if io = no
add (i1 + 1,42, A i1 +1],0,t + 1)
else if r <1
add(i1 + 1,12 + 1,A1[i1 + 1]7A2[i2 + 1],t+ 1)
add (1,12 + 1,0,A2[i2 + 1},t+ 1
add(i1 + l,iQ,Al[il + 1],0,t+ 1
else
add (1,12 + 17A1[i1} —i—Az[iQ} — 1,A2[i2 + 1},t+ 1
add(i1 + 1,42, A1[in + 1], A1[in] + A2fie] — 1,t+ 1
min = Bln1,n2]

function add(i1,12,v1,v2,t)}

r=v1+v2

(Totds tora) = Bli1,12]

if (rordstord) = null Vit <tog V (t=tora AT < To1d)
B[il, ig] = ('r, t)

Listing 2.1: Algorithm OPTRESASSIGNMENT computes an optimal solution for the
two processor case in a runtime of O (n?).

Proof. First observe that we already have S < S’ if one of the properties applies at
the end of S. Thus, it suffices to show that the properties can be maintained from ¢
tot+ 1.

1. Without loss of generality, assume nq(t) < nf(t). If S’ finishes only one job, S
can complete a job on the same processor and hence maintains the inequalities. If S’
finishes both jobs, this yields n}(t+1) = n}(t)—1fori € {1,2}. Thus, if S finishes a
job on processor 2 and assigns the remaining resource to the job on processor 1, this
results in nq (t+1) = ny(t) < nf(t+1) and na(t+1) = na(t)—1 < nh(t+1). If equality
applies (otherwise Property 1 holds), then the same jobs are active at time ¢+ 1 in S’
and S, say ji and jo. This yields vy (t4+1)+va(t+1) < 715, +12j, = v (E+1)+v5(t+1),
therefore Property 2 applies.

2. Now suppose v1(t) + va(t) < v](t) + v4(t). If S’ finishes both jobs, S can do
the same and Property 2 holds with equality. If S” only finishes one job (w.l.o.g.,
job j — 1 on processor 1), S can also finish that job. If vy () + va2(t) < 1, it also
completes a second job and therefore Property 1 applies. On the other hand, if
v1(t) +v2(t) > 1, this results in vi(t + 1) +v2(t + 1) = rij + (v1(t) +v2(t) — 1) <
1+ (vi(t) +v5(t) — 1) = vj(t 4+ 1) + vy(t + 1), thus Property 2 applies.

2.3
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Theorem 2.16. Consider a CRSHARING instance with unit size jobs and two
processors. The following statements hold:

1. OPTRESASSIGNMENT computes an optimal solution.
2. OPTRESASSIGNMENT has runtime O (n?).

Proof. The correctness of Statement 2 is immediate, as OPTRESASSIGNMENT runs
in O (n) phases and each phase considers the O (n) entries on the corresponding
diagonal. It remains to prove the correctness of Statement 1.

Remember the invariant from the algorithm description: At the beginning of
phase ¢, for each entry Bliy,i2] = (r,t) on the (¢ — 1)-th diagonal the following
holds: ¢ is the earliest time at which all jobs preceding (1,4;) and (2,i2) can be
finished and r is, for this ¢, the smallest possible sum of the remaining resource
requirements of (1,4;) and (2,42). If this invariant holds for phase n; + ng, the
correctness follows immediately (we use dummy jobs, so the last diagonal entry
corresponds to all non-dummy jobs being fully processed). For the first phase,
the invariant’s correctness is obvious from the initialization, as there are no jobs
preceding (1,1) and (2,1). Now assume the invariant holds for the first ¢ phases and
consider an entry Blii, 2] processed in the (¢ + 1)-th phase. This entry corresponds
to a subschedule that has processed all jobs preceding (1,4;) and (2,42). Since
each processor can finish at most one job in one time step, this subschedule must
originate from one of the subschedules Si, S5, or S3 that have finished all jobs
preceding (i) (1,41 — 1) and (2,42), (ii) (1,41) and (2,42 — 1), and (iii) (1,4; — 1) and
(2,72 — 1), respectively. By our induction hypothesis, the entries in B[i; — 1,12],
Bli1,i2 — 1], and Bl[i; — 1,42 — 1] correspond to the best possible such schedules.
Since the algorithm uses these to compute Bli1, 4] (Lines 9 to 21) and the best of
them is chosen as predecessor (Line 27, correct by Lemma 2.15), the invariant is
established for entry Bliy,i2] (and, similarly, for all remaining entries on the same
diagonal). O

An alternative implementation of the algorithm replaces the 2-dimensional array
by a priority queue that orders intermediate schedules by their index sum i1 + io.
Although adding/retrieving such an entry has amortized costs O (log(n)), this
implementation runs faster for most of the instances, as it only considers index
pairs that actually point to a schedule and many index pairs are usually not used.
Consider, for instance, pair (1,1). If A1[1] + A2[1] < 1, the algorithm will proceed
with (2,2) and all entries (1,42) and (i1, 1) with 41,42 > 1 will never be used.
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2.3.2 Algorithm for m Processors

While in the previous section we discussed OPTRESASSIGNMENT, an exact algorithm
for m = 2 having a worst case runtime of O (n2), this section shows that there is
even a polynomial-time algorithm for any fixed m; we call it OPTRESASSIGNMENT2.
In the proof we will restrict the schedules to nested ones (see Definition 2.6) and
use the new notion of an (extended) configuration representing the current state of
a schedule. We argue that only a polynomial number of extended configurations
has to be considered and show that this implies a polynomial runtime.

Additional Notation. The configuration of a schedule S in time step ¢ can be
described by the sequence (ji(t),...,Jm(t)) of jobs completed and the amounts
(v1(t), ..., vm(t)) of resource spent for the active jobs before time step ¢. In particular
v;(t) = 0 if the active job has not started yet.

Definition 2.17 ((Extended) configuration; core; support). A configuration -y is
a vector (t,71(t), ..., Jm(t),v1(t),...,vm(t)) where j;(t) € {0,...,n; } and v;(t) €
[0,1]. The core of ~ is defined as core(y) = (j1(t),...,jm(t)) and its support as
supp(y) = {7 | vi(t) > 0}. Further, we define the extended configuration of v as the
tuple E(7) = (7, (,7i)iesupp(y))» Where 7; is the configuration after the time step in
which processor ¢ received resource for the last time.

We say two configurations are step-equal if they are in the same time step
and if their corresponding cores are equal. Two extended configurations E(v) =
(77 (iv ’Yi)i€supp(’y)) and E(f)/) = (7,7 (ia %/')'L'Gsupp(’y/)) are step-equal if 1) 7 and f}/ are
step-equal, 2) they have the same support and 3) v; and 4, are step-equal for all
i € supp(7).

In order to obtain a polynomial-time algorithm, we reduce the number of rel-
evant configurations to a polynomial number. Obviously, if both configurations
(t,j1(t), oy dm (), v1(t), ..., um(t)) and (¢, 51, ..., 50, (), v (t),..., v (t')) are
feasible with ¢t < ¢/, jy(t) > j,(t') and ve(t) > vj(¢’) for all 1 < ¢ < m, we do not need
the second configuration, as the first one is always to be preferred. We say that the
first configuration dominates the second one. The following lemma proves a natural
connection between this property of domination and step-equal configurations.

Lemma 2.18. If two extended configurations are step-equal, then one dominates
the other.

Proof. We prove the lemma by induction on |supp(7v)|.

First we consider the two cases |supp(y)| = |supp(?y’)| = 0 and |supp(y)| =
|supp(y')| = 1. If |supp(y)| = 0, then all v;(t) = 0 and, hence, there cannot be
another configuration with the same core. In the second case, any two configurations
~ and +/ differ only in one value v;(t) so that either v dominates 7' or vice versa.

Now consider any two non-dominated and step-equal extended configurations

(’77 (Zlvfyz‘)iesupp('y)) and (7/7(i771{)i€supp(’y’)) with |Supp(7)| = |Supp(f}/)’ > 2. For
all i € supp(7), denote by ¢; the time step of v; (and /), and let k such that

2.3
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¢ ={(1,0,...,0,0,...,0)}
for ¢ from 2 to oo
Ct = @
for all vy € Ci—q
succ(y) = successors of
store link between v and each 7' € succ(y)
Ct = Ct U suce(7)
if (¢,n1+1,...,nm+1,0,...,0) €Cs
output path to this configuration
break
for all v €C
for all v/ €Ci\{~}
if v dominates v
remove v’ from C;

Listing 2.2: Algorithm OPTRESASSIGNMENT2 computes an optimal solution for the
case with a constant number of processors in polynomial time.

tr = max {t; | i € supp(y) }. (Note that the ¢; are pairwise distinct because there is
at most one partly processed job in each time step.)

As the extended configurations are step-equal, the extended configurations after
time step ¢y, from which v and ' are derived, namely (vx, (7, Vi )icsupp(y)\{ £ }) and
(Vi (4,7 )iesupp(v)\{ k })> are also step-equal. They must be the same because, due to
the induction hypothesis, there are no two different non-dominated and step-equal
extended configurations with a support smaller than | supp(7y)|.

After ti, none of the tasks in supp(y) received resource in  or 4/ so that v;(t) =
vi(t) for all i € supp(y) \ { k¥ }. Furthermore, all of the resource was used in these
time steps because there were unfinished jobs in each of them. And since the same
set of jobs was completed in these time steps, it must hold that 3=;cq,n(y) vi(t) =
Diesupp(y) Vi(t) and, thus, vg(t) = vy, (t). Hence, E(y) and E(y') are the same. [

Algorithm. In order to find an optimal schedule, our algorithm OPTRESASSIGN-
MENT2 (Listing 2.2) enumerates all configurations that are not dominated by another
configuration. Starting from the initial configuration (1,0,...,0,0,...,0), it com-
putes the configurations of the next time step on the basis of the configurations of
the current time step. While doing this, it makes sure that the respective schedules
remain non-wasting, progressive, and nested. In each time step, it additionally
removes all dominated configurations by a pairwise comparison of the new configu-
rations. When the algorithm hits an end configuration, it outputs the path to it
and stops.

Theorem 2.19. OPTRESASSIGNMENT2 computes an optimal schedule in time
polynomial in n.

Proof. In each pass of the outer for-loop, OPTRESASSIGNMENT2 creates all sub-
schedules of ¢ steps which are non-wasting, progressive and nested and whose current
configuration is not dominated by another one. As soon as a final configuration is
reached, the algorithm outputs the results and stops. Therefore, the correctness
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of the algorithm follows from Lemma 2.7 which states that there is at least one
optimal schedule among all non-wasting, progressive and nested schedules.

In order to show the runtime, we will roughly bound the number of configurations
that are computed by the algorithm: the non-dominated ones as well as the domi-
nated ones (that are discarded right away). From Lemma 2.18 we know that there
is exactly one configuration that dominates all the other step-equal configurations.

Let veyt be the number of all possible non-dominated extended configurations
which are pairwise not step-equal. Since the number of time steps is bounded by
Yoty ni < m-n and the number of cores by [[i" n; < n'™, we can bound the number
of configurations which are not step-equal by m - n - n"™. An extended configuration
consists of up to m + 1 such configurations so that we obtain

2
Vewt < (m on- nm)m—f—l — M+l n(m-i—l) ]

m

The number of (non-dominated and dominated) configurations that immediately
succeed a given configuration is bounded by m - 2™ because there are at most 2™
possibilities to choose a subset of processors and at most m possibilities to choose
the partly processed job. Since each non-dominated configuration is used only once
as a base configuration (from which successive configurations are derived), we can
bound the total number of computed configurations by veg: - m - 2™.

The runtime for each time step is determined by the runtime for separating the
dominated configurations, which is quadratic in the number C; of step-t configura-
tions. Hence, very roughly, we can bound the total runtime by

0 ((mm+1 M 2m)2> ~0 (mZ-m+4 2 (mt)? 22-m) '
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2.4 Balanced Schedules

This section builds up to our last result, an approximation algorithm with a tight
approximation ratio of 2 — 1/m, in Theorem 2.22. While the quality of the result is
obviously worse compared to OPTRESASSIGNMENT?2, it can be achieved by running
a simple linear-time algorithm called GREEDYBALANCE. We start by providing two
lower bounds for optimal schedules in terms of a given non-wasting and balanced
schedule, respectively.

2.4.1 Lower Bounds for Optimal Schedules

The following lemma derives the first lower bound by exploiting the fact that within
a component, any non-wasting schedule always makes full use of the resource.

Lemma 2.20. Let OPT denote the minimal makespan of a given problem instance
and consider the scheduling graph Hg of a non-wasting schedule S. Then OPT can
be bounded by

OPT > i(#k —1). (2.6)
k=1

Proof. From Observation 2.1, we immediately get that OPT > ", Z?;l Tij-
Consider a connected component Cy of our schedule containing the edges t1,%1 +
1,...,to. Since S is non-wasting, > ", R;(t) = 1 holds for all time steps ¢t €
{ti,t1 +1,...,ta — 1 }. If there were such a t with >_i"; R;(t) < 1, the non-wasting
property would imply that all active jobs are finished. But then the edge €441 would
not be part of Cy, yielding a contradiction. For the last time step t2 of C} we have
>ty Ri(t2) > 0. Since S is feasible and, w.l.o.g., does not use more of the resource
than necessary, it follows that S35, ™ R;(t) = Y7, >ty rij. Let e®) denote
the last edge of C;. Then we get:

m n,; S m N
OPTZZZTz‘j:ZZRZ‘(t):Z Z Z Rz(t)
i=1j=1 t=11i=1 k=1e:CCy (i,j)E€er
N N
>3 > 1= (#—D.
k=1 e:CCy k=1
et;éeU“)

O

The second lower bound centers around utilizing parallelism. In a problem instance
where each processor has exactly n jobs, the maximum exploitable parallelism is m.
On the other hand, in a schedule with components C}, of class ¢, the maximum
parallelism that can be exploited in Cy is ¢x. In a sense, the following lemma shows
that, in the case of balanced schedules, this is not much worse than m.
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Lemma 2.21. Let OPT denote the minimal makespan of a given problem instance
and remember that n denotes the maximum number of jobs any processor has to
process. Given a balanced schedule S and its scheduling graph, OPT and n can be
bounded by the inequalities

|CN|

N-1
C
OPTznzZMJF—. (2.7)
=1 4 m

Proof. Remember that M; is the set of processors having at least j jobs to process.

Since any schedule can process at most one job per processor in every time step,
even an optimal schedule needs at least n time steps to finish all jobs. We can write

nas 3 jev /Ml yielding

N-1 1 1
- k=1 (i,j)€Cy | ]| (i,5)€ECN m
¥ L IO
i gec, Ml om
It remains to show that we have
1 C
> a2 G (2.8)

for all but the last component. So fix k € {1,2,... N — 1} and let (ig,jo) € Cx be
a job of the k-th component with minimal jy. Let ¢y be the first time step when
(40, jo) is active. The minimality of jo implies that e, is the first edge of C} and,
thus, qr = |es,|. We distinguish two cases:

Case 1: n;,(tg) > 1
By applying Proposition 2.10, we get that all processors ¢ € M;, are active at
time step t9. This yields [Mj,| < |e,| = gqx. Moreover, for a job (i,j) € Cj,
the minimality of jo gives us |Mj,| > |M;|. Combining both inequalities implies
|M;| < qi. Applying this to the first part of Equation (2.8) eventually yields the
desired inequality.

Case 2: n;,(tg) =1
In this case, (ig,jo) is the last job on processor iy at time step tg. However, for
any job (i,7) € Ck \ ey, we have n;(ty) > 1. Given such a job, let (i,j") be the

job processed on i at time step ty. Note that we have j' < j and, thus, M; C M.
By applying Proposition 2.10, we get that all i’ € M are active at time step tg.

Together with M; C Mj, this yields |M;| < g. Thus, to prove Equation (2.8), it

2.4
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only remains to show 32 (; jec, imy) > 2 (ig)eer, Vg (= 1).

To this end, note that since C} is not the last component, there exists at least
one job (i1,71) € ey, with n;, (t9) > 1. Let this job be such that j; is minimal.
Once more, by applying Proposition 2.10 we get that all i € M;, are active at time
step tp. Consider a job (i,j) € ey, with i € Mj,. If it is the last job on i (i.e., if
n;i(tp) = 1), we have j = n;. Together with the definition of M}, we get j =n; > ji,
yielding |M;| <|Mj,|. Similarly, if it is not the last job on ¢ (i.e., if n;(tg) > 1), the
minimality of ji gives us |M;| < |M;,|. This yields the desired inequality as follows:

1 1 1
Z M. 2 Z M. 2 Z M. =1
(i,4)€ety |M;] (i,4)€Eetq |M;] (i,4)€Eet |35,
ieMj, ieMj,

2.4.2 Deriving a (2 — !/m)-Approximation
Finally, we have all the ingredients to prove our main result:

Theorem 2.22. Consider a CRSHARING instance with unit size jobs and a feasible
schedule S for it that is non-wasting, progressive, and balanced. Then S is a
(2 — 1/m)-approzimation with respect to the optimal makespan.

Proof. In the following, let #4 = Y #/N denote the average number of edges in
a component. Our proof uses two bounds on the approximation ratio. The first one
follows easily from Lemma 2.20 and leads to a better approximation for instances
with large #4. The second bound is much more involved and mainly based on
Lemma 2.21. It yields a better approximation for instances with small #4. To get
the first bound, we simply apply Lemma 2.20 and get

S chvzﬁé% . #@ 2.9
OPT = S, (#x—1) #o -1 29

Let us now consider the second bound, based on Lemma 2.21. Our goal is to
show that the inequality
S o m #o
OPT = #g+m—1
holds. Once this is proven, we can combine both bounds by realizing that the
bound from Equation (2.9) is monotonously decreasing in #¢ and the bound from
Equation (2.10) is monotonously increasing in #g. Equalizing yields that their

(2.10)

minimum’s maximum is obtained at #4 = 2721:1 which results in an approximation

)
ratio of 2 — 1/m. 1
The rest of this proof is geared towards proving Equation (2.10). We distinguish
two cases. The first case covers the easier part, where we have OPT > n + 1. That
is, even an optimal solution cannot finish the jobs in n time steps. The second case,
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where we have OPT = n, turns out to be more difficult to prove. While we can
apply a similar analysis, we have to take more care when bounding our algorithm’s
progress in the first two time steps.

Casel: OPT >n+1
Applying Lemma 2.21 to this case yields

S . SN
— -1 |C C
OPT Zgzll%_{_%_’_l
N - F#5
< (2.11)
= ~N—1 #ptqp—1 +m—1
Zk:l #Hk qZk + #N mm

< N - #4 < m - #g
=S B S =T

Case 2: OPT =n

If we apply the same analysis as in the first case, we will fall short of our desired
approximation ratio. Surprisingly, it turns out to be sufficient to bound only the
first two time steps more carefully. The idea of the following analysis is to consider
the first two time steps of S and the remaining part of S separately. To this end,
first note that we can assume, w.l.o.g., that #; > 1 (i.e., the first two time steps
belong to the same component). If this is not the case, our algorithm finishes
all active jobs in the first time step and, thus, behaves optimallyz. Consider the
remaining jobs/workloads after the first two time steps. We can regard this as a
subinstance of our original problem instance. Let S’ denote the subschedule that
results from restricting S to time steps t > 3. We use N', #}, ¢, and n’ to refer
to the corresponding properties of its scheduling graph Hg/. Note that we have
N’ > N —1 (because of our assumption #; > 1) as well as N' - #, = N - #5 — 2
(since exactly two time steps are missing in the subschedule). Moreover, we also
have n’ = n — 2. The inequality n’ > n — 2 is obvious. For n’ < n — 2, note that
OPT must finish the jobs in the set { (¢,1) | n;(1) >n—1}U{(:,2) | ni(1) >n}
during the first two time steps. Thus, the total resource requirement of these jobs is
at most two. Since S is balanced, it will prioritize and, thus, finish these jobs in the
first two time steps. Finally, we can bound our approximation ratio as follows (the
first inequality applies Lemma 2.21 to S’):

S . N#@ < N#Q
- r= —1 ¢ T/
g N #o
- — #’4’/*1 #l/ —
RS 2 S

2This reduces our analysis to a smaller problem instance.
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N - #o
14 L4 o, Hatmed
_ N-m-#g
S m A1+ N H#+ N(m—1)
< N-m-#g _ m - #y
T2+ (N-#5—-2)+Nm—1) H#g+m—1

This proves that Equation (2.10) also holds in this case.

2.4.3 Tight Approximation Algorithm

So far, we analyzed the quality of balanced schedules in general, but did not
yet provide a concrete example of a corresponding algorithm. One of the most
natural greedy algorithms schedules jobs by prioritizing processors with a higher
number of remaining jobs and, in the case of a tie, by prioritizing jobs with larger
remaining resource requirements. We name this algorithm GREEDYBALANCE. In
Section 2.4.2, we saw that balanced schedules and, as a consequence, the algorithm
GREEDYBALANCE yield a (2 — 1/m)-approximation for the CRSHARING problem.
Now we show that this approximation ratio is tight for GREEDYBALANCE.

Theorem 2.23. The GREEDYBALANCE algorithm for the CRSHARING problem
with jobs of unit size has a worst-case approrimation ratio of exactly 2 — /m.

Proof. Since GREEDYBALANCE computes only balanced schedules, the upper bound
follows immediately from Theorem 2.22. For the lower bound, consider a family
of problem instances defined as follows: We define blocks of m x m jobs with
resource requirements as described below. For the first block, let r;1 =1 — 1 - ¢ for
ie{1,2,....m},ra=1-%"(1—ry)+e, and rjp =cforie{2,3,...,m}.
Moreover, define r;; = ¢ for all ¢ € {1,2,...,m} and j € {3,4,...,m}. This
finishes the first m x m-block of jobs. Having constructed the I-th block, we
construct the next block, starting with its first column j :=1-m + 1. We define
rij=1—(m—1)eforie {1,2,...,m—1}and rp; =1— ;7:_11 Tm—i j—ir- For
the second column of this block we set ry j11 :=1—=>1" (1 —74)+e,and 75 j41 =€
for i € {2,3,...,m}. To finish the block, we set 7,5 :=¢ for alli € {1,2,...,m}
and j' € {j+2,7+3,...,7+m—1}. We finish the construction once the next
block contains jobs with negative resource requirements. Note that by choosing e
small enough, we can make this construction arbitrarily long. See Figure 2.5 for an
illustration of this construction and the schedules produced by GREEDYBALANCE
and an optimal algorithm. Our construction is such that GREEDYBALANCE needs
exactly 2m — 1 time steps per block: By balancing the number of remaining jobs,
it is forced to work m time steps on a block’s first column (which contains a total
resource requirement of roughly m) before it can finish the remaining m — 1 columns
of a block. In contrast, the optimal algorithm ignores any balancing issues, which
allows it to exploit that all diagonals have a total resource requirement of 1. O
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Block 1 Block 2 Block 3

(1B 1
(8)

(a) An optimal schedule.

Block 2 ,

(b) Schedule computed by GREEDYBALANCE.

Figure 2.5: Construction and schedules used in the proof of Theorem 2.23 for m =
3 and € = 0.01. Node labels show the corresponding job’s resource
requirement in percent (e.g., 112 = 0.07). Note that the optimal schedule
needs (essentially) m time steps to finish a block, while S needs 2m — 1
time steps per block.
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CHAPTER

Multiprocessor Scheduling with a
Sharable Communication Channel

n “On-The-Fly Computing” [Hap+13; 17], one main idea is that future software-

based IT services are automatically composed from base services traded on global

markets. Thereby, the functionality of a service is provided by the interaction
of smaller pieces of software resulting in the exchange of data during the execution.
This strengthens the necessity of taking into account communication when designing
scheduling algorithms that enable efficient execution of such software. It might even
shift the focus from processing times to planning communication, particularly if the
exchange of data rather than actual computations becomes the major bottleneck in
a system.

These observations lead to a new scheduling problem that we study in this chapter.
We are given a communication graph, where each connected component describes a
service composed of jobs (base services) by identifying nodes with jobs and using
weighted edges to model the required interjob communication of jobs. These edge
weights can, for instance, be thought of as communication volume in bytes. Also,
we are given a system comprised of m parallel, identical processors connected by a
shared communication channel (e.g., a data bus) enabling communication between
the processors and hence between jobs processed in parallel. Given that the available
communication channel constitutes a scarce resource with bounded capacity (e.g.,
available data rate in bytes per second), a fundamental question arising in this
setting is: how to assign jobs to processors and share the channel among them
in order to minimize the time at which all jobs with their related communication
demands are done and hence, to minimize the time until all services are completed.

We model this scheduling problem as a novel bin packing variant and propose and
analyze approximation algorithms. In the following, we give a formal description of
the studied problem. In Section 3.2, we study the computational hardness showing
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that the considered problem is (for the most relevant cases) NP-hard in the strong
sense, even for a constant number of processors and a single path or a forest with
arbitrary constant maximum degree. Consequently, we then focus on approximation
algorithms and start by considering a simple NEXTFIT strategy for graphs of degree
two in Section 3.3. For trees and general graphs with arbitrary degree we provide
a more complex approximation algorithm in Section 3.4. For an overview of our

results see also Section 3.1.2.

3.1 Preliminaries

In the following we introduce the model and the notation used throughout the
paper.

3.1.1 Model & Notation

We consider the following scheduling problem called Sic. Given a set of tasks
{T,T>,...,T,}, each described by a connected, undirected graph G; = (V;, E;) on a
set V; of jobs together with a weight function w : E; —]0, oo[. Each edge {u,v} € E;
represents the communication requirement (or communication demand) between
jobs u and v. Additionally, we are given a set of m identical, parallel processors
connected by a shared communication channel with capacity C' > 0. Each processor
can process at most one job per (discrete) time step while a job can be processed
in several (not necessarily contiguous) time steps. Two jobs can communicate only
when they are executed in parallel. Hence, in any time step ¢, at most m jobs can
be processed and, additionally, a scheduler has to define how much capacity of the
communication channel is allocated to pairs of jobs processed in t. Thereby the
channel may not be overused, i.e., a capacity of at most C' may be allocated to jobs
per time step. As soon as for a pair of jobs with strictly positive communication
demand the accumulated share of the channel it was assigned over time is at least
its requirement w(e), we call this edge to be completed. The objective is to find a
schedule that minimizes makespan, i.e., the time until the last edge is completed.

Formally, the scheduling problem is defined as an equivalent bin packing for-
mulation: Let G = (U; Vi, U; E;) be the (in general unconnected) communication
graph consisting of the graphs G;. In the bin packing formulation, each edge e € F
corresponds to an item e with size r. := w(e). The goal is to pack all items into as
few bins with capacity C' as possible while allowing items to be arbitrarily split into
parts and subject to the following constraints:

1. Capacity Constraint: Each bin may contain (parts of) items of an overall size
of at most C,

2. Edge Constraint: Each bin may contain (parts of) items incident to at most
m nodes in the underlying graph G.
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In the rest of this chapter, we assume without loss of generality that C' = 1. Observe
that in terms of the original scheduling formulation each part of an item corresponds
to one time step in which the corresponding jobs are scheduled and its item size
represents the channel capacity assigned to this pair of jobs in this time step. The
edge constraint respresents the fact that only m processors are available while the
capacity constraint represents the available channel capacity. The number of bins
then coincides with the number of time steps required to finish all tasks.

Since in the next section we show that Sic is NP-hard in general, even for a
constant number of m > 4 processors and when G is a single tree, we focus on
designing approximation algorithms. Remember that a polynomial-time algorithm A
is called to have an (absolute) approzimation ratio of a if, on any instance I, it holds

O’E(T() 7 < @, where A(I) and OPT(I) denote the number of bins used on instance I
by algorithm A and by an optimal solution, respectively. A has an asymptotic ratio
of a if R*® < o, where R*™ = limy_, ., sup; {OP(T() ik :OPT(I) = k}

A further notion we need in the following is the arborzczty of a graph G = (f/ E),
denoted arb(G). Let X C V be a (sub-)set of nodes and Ex C E be the set of edges

induced by X. The arboricity is defined as arb(G) = [maXXgV,|X\22 ﬁ—‘ and

describes the minimum number of forests needed to cover the entire graph G. It is
known that arb(G) can be computed in polynomial time [GW92]. Furthermore, it
is possible to compute a decomposition of G into at most arb(G) many forests and
an additional graph of degree at most two in polynomial time (by applying a result

3.1.2 Contribution

We thoroughly study the complexity of SiCc depending on the parameter m, the
degree d of G and further structural properties of G. An overview of these results is
given in Figure 3.1. For m > 3 the NP-hardness holds even if G is a single path,
the most simple structure G can have.

Constant Degree Variable Degree

m =2 Trivially in P
Forest: Exact Algorithm (Theorem 3.4)

m =3 ———— | NP-hard (Proposition 3.1)
General Graph: NP-hard (Lemma 3.5)

m > 3 NP-hard (Section 3.2.2)

Figure 3.1: Complexity results for different values of m and degree d of graph G.

We further present approximation algorithms for the cases where Sic is NP-hard.

For G being a graph with maximum degree d = 2 we shovv that a simple NEXTFIT
strategy achieves an approximation ratio of 6( =Y in Section 3.3. When G
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becomes more complex but still is acyclic so that it is built by a set of trees (forest), we
can asymptotically approximate an optimal packing by a ratio of min{1.8, }rf‘—f’f} +1
as shown in Section 3.4.1. On the basis of our algorithm for forests, we then show how
to handle arbitrary graphs G in Section 3.4.2. We assume that arb(G)/OPT = o(1)
and show an approximation ratio of min {1.8,1.5 - m/(m-1)} - (arb(G) + 5/3) for this
general case. If one, however, wants to drop the aforementioned assumption, the

approximation ratio only worsens by an additional summand of 2.5arb(G)/OPT.

3.2 Complexity

First, note that our problem is trivial to solve for m = 2. In this case, each item
has to be packed alone, hence packing all items into distinct bins is optimal.

For larger values of m, as a first observation and a direct corollary from NP-
hardness of cardinality constrained bin packing with splittable items [Chu4-06],
which, for a cardinality constraint set to m — 1, is equivalent to Sic when the
communication graph forms a star, we have the following proposition.

Proposition 3.1. The SiC problem is strongly NP-hard for constant m > 3 proces-
sors and G being a single tree with degree d when d is part of the input.

Despite this hardness result, it is interesting to study the question of whether the
complexity changes when the degree d of the communication graph is fixed. We will
see that the problem is in P for m = 3 when G is a forest, but not for arbitrary
graphs with constant degree d > 4. More interestingly and suprisingly, the problem
remains NP-hard for any G being a tree with constant degree d and constant m > 4.

3.2.1 Case m = 3 Processors

We first study the case where we have m = 3 processors and the underlying
communication graph G is a forest with constant degree. Afterward, we consider
the case of m = 3 processors and arbitrary complex graphs G with constant degree.

Exact Algorithm for Forests of Constant Degree. In this section, we use a similar
representation for packings as Epstein and van Stee [ES07] used when they introduced
a PTAS for cardinality constrained bin packing with splittable items. Here, a packing
is represented by a graph where nodes correspond to items and edges correspond to
bins. For a bin containing two item parts, there is an edge between the two items.
If a bin contains only one item, there is a loop on that item. The following lemma
can be adapted from Lemma 1 in [Chu+06].

Lemma 3.2. Given a packing P with bins B for the communication graph (G, E),
if the graph (E, B) representing the packing contains a cycle, there is a packing with
the same number of bins and without any cycles.
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Proof. For the sake of completeness, we include the proof here. We start with
a packing P for a communication graph (G, F) such that the underlying graph
(E, B) contains a cycle. We consider an arbitrary cycle in B and remove it without
increasing the number of bins and without creating a new cycle. Doing so repeatedly
leads to a packing represented by a graph without cycles.

Now, let B = {Bj,..., By} be the set of bins (or edges) and E = {ey,...,e;} the
set of items (or nodes) in this cycle. W.l.o.g., assume B; contains a part of size r}
from item e; and of size 77, ; from e;; for all i € {1,...,k — 1} and B, contains
a part of size rj, from ey and a part of size 7/ from e;. W.l.o.g., assume r} is the
smallest value out of all 7} and 7. Repack all bins such that B; contains a part of
size v} — r} from e; and a part of v} + ] from e;y; for alli € {1,...,k— 1}, and By,
contains a part of size rj, — r] from e, and a part of size r{ 4+ 7] from e;. Feasibility
follows from the minimality of 7} among the 7} and 7/, the number of bins remains
the same and the cycle is broken between e; and eo, that is, B; only contains parts
of item e and is not an edge in the underlying graph representation anymore. [J

This lemma also directly implies the following corollary.

Corollary 3.3. For constant m = 3 and any star communication graph, there exists
an optimal packing where for each pair of items, parts of them are packed together
in at most one bin.

This corollary implies that in a star communication graph with degree d, the
underlying graph representation of the packing is a forest with degree at most d — 1
(as it only consists of d nodes).

We now provide an exact algorithm and a proof of its optimality. We assume
G to be a single tree. However, this is without loss of generality as solving each
individual tree of a forest optimally provides an optimal solution for the forest. This
is true as no solution can pack any two items belonging to different trees into the
same bin.

Theorem 3.4. The SiC problem can be solved in polynomial time for constant
d>2, m=3 and G a forest.

Proof. Consider the algorithm in Listing 3.1. Informally, the algorithm performs a
dynamic programming approach by proceeding from bottom to top and storing a set
of candidate solutions for each level of the tree. To do so, it starts at the set of nodes
with a distance of 1 to the closest leaf. For each node v, it considers the subtree
rooted at v and generates all possible graph representations (of degree m — 1 = 2)
without cycles where each item is split at most d — 1 times. These representations
induce a set of possible subsolutions for the subtree rooted at v, where for each
subsolution the remaining space is filled with parts of the item e, upwards from
v. Using the condition in Line 16, only solutions that may be a subsolution of an
optimal solution are stored. Once all nodes on a level are completed, the algorithm
proceeds by doing the same for the next higher level. Now, as there are already
different subsolutions for the lower level, all combinations of these subsolutions are

3.2
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[Ple]: set of candidate packings for tree rooted at lower endpoint of e]
for all edges e to a leaf node Ple] := {{}} \EndFor\vspace{—1mm}
for h \text{from} (height of G = (V, E)) \text{to} 1
for all nodes v with depth h — 1

Let By, = {e1,...,er} be the edges to the children of v

Let e, be the edge to the parent of v

for all (Bi,...,By) with (B; € Ple;] Vi)

for all forests (FEu, E) with deg < d representing a packing for E,

[Let v, (B) be the remaining part of ri, ~after packing B]
Fill items induced by E, greedily starting from the leaves of (E,, E) (for each tree separately),
according to the remaining item sizes (rg, (B1),...,7¢, (Bg)) into bins B
Fill bins from B with only one item with additional parts of e,; reduce réu accordingly
Let B:= BUB; U... By, be the bins in the induced packing
[If new packing is not dominated by an ezisting packing]
if (|B| <|B'|Vr,+|B|<r,(B')+|B'|)forallB’ € Pley))
Let the set of possible packings Ple,] := Ple,] U {B}
Pack bins according to stored packing with minimal number of bins

Listing 3.1: Finding an optimal solution for m = 3 and constant degree d.

considered. Again, solutions that may be a subsolution of the optimal solution are
stored for later iterations. After having considered all levels, the best packing of the
full tree is returned.

From [ES07], we know that we can fill the bins greedily using the graph representa-
tion. Now, for any node v, any algorithm cannot pack items ey, ..., e together with
an item e ¢ {ey,..., e, e, }. This implies that partial solutions for each of the item
sets {e1,...,ex, ey} and E \ {e1,...,er} can be computed separately and combined
subsequently. However, the remaining question is where item e, is split, that is how
much of the size of e, is included in which solution. Hence, for each subtree rooted
at v, we need to compute all solutions that are optimal for the subtree and use only
a certain part of e,. Fortunately, we have the following property:

Property. A solution By dominates a solution Bs if the number of bins in By is
at most as large as the number of bins in By (i.e., |Bi| < |B2|) and, additionally,
T’;(Bl) — T;(BQ) S ‘BQ| — ‘Bl| holds.

In this case, in an optimal solution containing By as an induced subsolution, Bs
can simply be replaced by B; together with |Bs| — | B1| bins, each packing a part of
size 1 from the item e,, thus reducing 7, (By) — 7, (B2) to at most 0 and ensuring
feasibililty of the resulting solution. Also, there exists an optimal solution where
the induced subpacking of items {eq,...,ex} is packed together with parts of a size
of at most d — 1 from e,. This results in a difference of at most d — 1 between the
number of bins of two stored solutions, as only non-dominated solutions are stored,
hence resulting in at most d solutions to be stored. Otherwise, there must be an
item e; which is packed together with e, twice, but due to Corollary 3.3, we know
that any such packing can be modified such that this is not the case. Together with

Lemma 3.2, we know that at least one of the graphs generated in Line 8 represents

a subpacking for (the star subgraph) E, that is induced by an optimal packing of
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the full graph. As our algorithm finds all candidate solutions for the set F, that
may end up to match the solution induced by the optimum, the optimality of the
algorithm recursively follows.

Concerning the runtime, at most d solutions must be stored in Line 17 for each
node. In turn, the loop in Line 7 is executed at most d¢ times. Also, the number of
graphs in Line 8 is definitely below 2d*, Polynomial runtime follows. O

NP-Hardness for Graphs of Constant Degree. We show that for general graphs
with constant degree d > 4, the problem is NP-hard when m = 3. To this end, we can
easily reduce from the PARTITIONINTOTRIANGLES problem: Given an undirected
graph G = (V, E), the question is whether there is a partitioning into 3-element sets
51,82, ..., S)y|/3 such that each S; forms a triangle in G. This problem is proven
to be NP-hard for graphs of (constant) degree d > 4 in [RKB13].

Lemma 3.5. Sic is NP-hard for m = 3 and general graphs with constant degree
d>4.

Proof. Given an instance I for PARTITIONINTOTRIANGLES, construct an instance
I’ for Sic by assigning a weight of 1/3 to each edge. If I is a YES-instance, I’ can
be packed into |V'|/3 many bins. If I is a NO-instance, more than |V|/3 bins are
required.

O

3.2.2 NP-Hardness for m > 3 Processors

We now study the complexity for m > 3 processors. We thereby focus on the
NP-hardness when the underlying graph is a single path, yielding hardness results
for the most basic case where only a single, most simply structured task is to be
scheduled.

Theorem 3.6. The SIC problem is strongly NP-hard for d = 2 and constant m > 6,
even for a single path.

Proof. We start with the 3-PARTITION problem with a restricted size of the elements
which is defined as follows. Given a multiset A = {ay,...,a, } of n = 3k elements,
a bound B with B/4 < a; < B/2 VY i € {1,...,n} and )} ,c4a = kB, is there
a partition into k sets Ay,..., Ay such that |A;] = 3 and }°,.4,a = B for all
ie{l,....,k}?

Let our S1C instance consist of one path with £+1 := 3k-(3m —2)+2k-(m—>5)+1

nodes. We denote the edge between node i and i+ 1 by ¢;, yielding E = {ej,..., ez}

with sizes {r1,...,r¢}. Now let 7(;_1).(3m—2)11 = (% + 2‘%) (1 — ”;—;15) < % for all

i € {1,...,3k}, called medium items, and let 7(;_1).(3m—2)4m = T(i-1)-(3m—2)+| 3m| =
2

T(i—1)-(3m—2)+2m = 1 — 7’;—;3 Vie{l,...,3k}, called large items. All other edges are
assigned a size of r; = %, called small items. For a visualization, see Figure 3.2.

Now is there a packing of a size of at most 117

3.2
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(2 +35) (1 - 53 (3 +35) (1- 53 (3 +355) (1 - 55

o o L SHORN O

2k - (m — 5) items

1/5m, 1/5m,~1-( Bm 1/5m, (m-2) 5m 1/5m, (m-2) 5m 1/5m, 5,
Ly M Lem D em~fomy - O/ OOk O/ O O/ C
< = —— 7 e T

— 2 items [m/2] — 1 items [m/2] — 1 items m — 2'items.

Figure 3.2: Corresponding SIC instance for 3-PARTITION with input {a1,...,a,}.

In case that the 3-PARTITION instance is a YES-instance, we need to show
that there is a corresponding packing with at most 11k bins for our Sic in-
stance. Given a set A;, the 3 (medium) items S; derived from it can always
be packed into two bins together with m — 5 of the last 2k - (m — 5) items: that
is, items €3k-(3m—2)-+(2i—2) (m—5)+1s - - - » €3k-(3m—2)+(2i—1)(m—5) for the first bin, and
items €3k-(3m—2)+(2i—1)(m—5)+1s - - - » €3k-(3m—2)+2i(m—5) for the second bin. That is,
because the 3 items from S; only use 4 of the allowed incident nodes in both bins,
and the m — 5 small items use m — 4 of the allowed incident nodes. Also, we have
dores, T2 ”gm5 = (; + Y aea, 3p)(1 — ";—;f) +2- ";—;f’ = 2 giving a valid packing
if we split one of the medium items accordingly. Thus, we can pack all item sets S5;
into two bins each, together with the last 2k - (m — 5) items, leading to 2k bins.

Observe that the 3m — 3 items in each block filling the gaps between two medium
items (i.e., the rectangles in Figure 3.2) can be put into three bins: The first m — 1
items of each block (i.e., m — 2 small items and one large item) can be put into one
bin, as the sum of their sizes is exactly 1 by construction. The same holds for the
second and third item set of m — 1 items, respectively.

More formally, for alli € {1, ..., 3k}, the items e(;_1).(3m—2)42; - - s €(i=1)-(3m—2)+m
can be packed into one bin. The same property holds for the respective item sets
{e(=1)-(3m=2)4m+1s - - - €(i=1)-(3m—2)+3m—2} for each i € {1,...,3k} as well as the
item sets {€(;—1).(3m—2)+2m> - - -  €(i—1)-(3m—2)+3m—2} for each i € {1,...,3k}. This
gives another 3 - 3k bins and all items are packed.

On the other hand, we show that if there is a packing with a size of at most 11k,
we show that the respective 3-PARTITION instance is a YES-Instance. In order to do
so, we show the following properties in the given order:

(1) The capacity of each bin must be fully utilized.
(2) At least k medium or large items need to be split.

(3) In order to pack the last 2k - (m —5) items, 4k additional separate components
of the communication graph have to be packed together with them.

(4) Our 11k bins contain exactly 9% - (m — 1) + 2k - (m — 3) item parts.

(5) The last 2k - (m — 5) items are packed into 2k bins containing exactly m — 5
of these items and two medium item parts each.
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(6) Exactly k of the 3k medium items are split, and they are split into exactly
two parts each.

(7) The corresponding 3-PARTITION is a YEs-instance.

u The capac1ty must be fully utlhzed in any bin, because we have EZ 1T =
S (3+4 )(1——)+2/<:(m 5)- <k 4+3-3k- ((m 2) L+ (1-%32)) =
(%+4 )(1——)+2k m=5 | 3.3k = 11k.

(2) Now we show that at least k medium or large items need to be split. There
are 3 - 3k large items as well as 3k medium items. If less than &k of these 12k items
were split, there would be at least one bin fully containing two of these items. This
is a contradiction, as all the item sizes are greater than . Hence, there are at least
{ + k item parts.

(3) We now concentrate on the 2k - (m — 5) last items, i.e., on the items
€3k-(3m—2)+1s - - - + €3k-(3m—2)+2k-(m—5)- Note that these items cannot be packed with
a medium or a large item without using two components of the communication
graph. However, if using two components, they contain at most m — 2 items, which
implies (as we always use the full capacity by (1)), that each bin containing one of
these items also contains at least two medium or large items. As by construction,
there are always at least m — 2 edges between a medium and a medium or large item,
and at least [%J — 1 edges between two large items, there are only two possibilities
how to obtain this:

a) At most m — 5 of the considered small items are combined with at least two
further components of the communication graph, which contain exactly one
medium or large item each.

b) At most [ W < m— of the considered small items are combined with only
one further cornponent of the communication graph, which contains exactly
two large items.

Taken together, this implies that in order to pack all 2k - (m — 5) items, there have to
be taken at least 2k -2 = 4k additional separate components from the communication
graph.

(4) It follows that in our packing, the 11k bins can contain at most 11k - (m —1) —
4k = 9k-(m —1)+2k-(m —3) item parts by (3). However, as we showed earlier in (2),
the overall number of item parts is at least £ +k = 3k-(3m —2)+2k-(m—5)+k =
9k - (m — 1) + 2k - (m — 3). Thus, both properties are tight and in all bins not

containing any of the 2k - (m — 5) last items, exactly m — 1 items must be packed.

Now, this can only be done by using one (complete) large item and m — 2 adjacent
small items, as one medium item together with m — 2 adjacent small items does not
use the full capacity.
(5) Considering the last 2k - (m — 5) items again, note that all bins fulfilling
Property a) from (3) now need to contain ezactly m — 5 of these small items as well
as all bins fulfilling Property b) now need to contain ezactly ™52 of these small
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items. However, this implies that Property b) never happens. Otherwise, if there
were 27 bins fulfilling Property b) (giving 2k — j bins fulfilling Property a)), each
of them would make at least one large item incomplete. As this leads to exactly
2k — j bins containing m — 3 items and 2j bins containing m — 2 items, there must
be exactly 9k — j bins containing m — 1 items. However, there are only at most
9k — 2j (complete) large items left, yielding j = 0.

(6) We now know that there are exactly 9k bins containing one (complete) large
and m — 2 small items each. Hence, there are exactly 2k bins where each bin contains
m — 5 of the last 2k - (m — 5) items and two parts of medium items. We also know
that only medium items are split, thus exactly k of the medium items are split into
exactly two parts each.

W.lo.g., let E={ej,...,e,} be the (medium) items that are split. We observe
that no two items from E can be packed into the same bin. Otherwise, at least one
of them uses a capacity of at least % in that bin, hence a capacity of at most i in
the other bin, where the remaining part of the item is packed. Then, the capacity is
not fully utilized in that other bin, as the other medium item (which has to exist by

. . ; 3
(5) and (6)) uses less than a capacity of 7.

Now, for each medium item split into two parts, we know that exactly one complete
other medium item is packed together with each part of it. For each split item,
we build a set containing itself and the two medium items packed together with it.
There are m such sets Sy, ...,.5,, with three elements each. Now the sum of the
sizes of these three items is 2 — 2 - ”5‘—;”5 (as both bins additionally contain m — 5

small items), implying >, cg. (% + %) = 2 which yields >_,cq. 7 = B. This is a
3-PARTITION. U

Corollary 3.7. The SiC problem is strongly NP-hard for d =2 and m = 4, even
for a single path.

Proof Sketch. We use the same reduction as in the proof of Theorem 3.6, but with
medium item sizes § + % and without adding the last 2k(m — 5) auxiliary items.
This implies removing step (3) and instead using the fact that any bin containing a
medium item part can only be packed up to the full capacity using two separate
components of the communication graph. As the medium items alone have an
overall capacity of 2k, it follows that at least 2k additional separate components
need to be used, yielding exactly 9k - (m — 1) + 2k - (m — 2) item parts to be packed
in step (4). However, this directly implies that at least 9% bins have to contain the
full number of m — 1 items, which (by (1)) is only possible using one large and m — 2
adjacent small items. It follows that the remaining 2k bins contain the 3k medium
items. Hence, the remaining part of the proof remains the same. O

Corollary 3.8. The SiC problem is strongly NP-hard for d =2 and m =5, even
for a single path.

Proof Sketch. We modify the reduction of Corollary 3.7 by adding one additional
small item adjacent to each medium item and reducing the medium item sizes by
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factor (1 — %) Now three medium items are always packed together with two of
these adjacent items into two bins. There are k remaining small items adjacent to
medium items. In order for these to be packed, we add k small gadgets to the end
of the path (instead of the 2k - (m — 5) small items from the proof of Theorem 3.6).

These small gadgets consist of one very large item of size 1 — % (in contrast to
large items, which now have a size of 1 — %) and one small item. Two adjacent

small gadgets are always separated by the usual rectangular gadgets from Figure 3.2.
With a similar argument as (3) from the proof of Theorem 3.6, we now ask how to
pack the small items adjacent to medium items and conclude that they either have
to be packed together with medium items or (for the remaining & items) they have
to be packed together with the newly introduced small ga