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Sören Riechers

Paderborn, August 2017



Betreuer:
Prof. Dr. Friedhelm Meyer auf der Heide (Universität Paderborn)

Gutachter:
Prof. Dr. Friedhelm Meyer auf der Heide (Universität Paderborn)
Prof. Dr. Petra Berenbrink (Universität Hamburg)

Weitere Mitglieder der Promotionskommission:
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Zusammenfassung

Heutzutage ist in großen Daten- und Rechenzentren oft nicht mehr die Rechenka-
pazität der Flaschenhals des Systems, sondern der Speicher oder die verfügbare
Datenrate. Scheduling-Algorithmen treffen in der Regel Entscheidungen, wie Jobs
an einzelnen Knoten abgearbeitet werden, aber berücksichtigen meistens keine
zusätzlichen Ressourceneinschränkungen in Bezug auf das gesamte Rechenzentrum.
Diese Arbeit zielt darauf ab, solche globalen Ressourcen zu berücksichtigen.

Es werden vier Modelle eingeführt, die solche Ressourcen einbeziehen: Die er-
sten drei Modelle ähneln sich insofern, dass jeweils eine Ressource mit begrenzter
Kapazität von mehreren Prozessoren geteilt wird, und das Ziel größtenteils darin
besteht, die Gesamtabarbeitungszeit zu minimieren. Im ersten Modell wird der
Fokus auf die Zuordnung der Ressource zu den Prozessoren gesetzt, während die
Jobs bereits in einer festgelegten Reihenfolge auf die Prozessoren aufgeteilt sind. Im
zweiten Modell werden Kommunikationsanforderungen zwischen Jobs betrachtet,
die auf einem gemeinsamen Kommunikationskanal erfüllt werden müssen. Das dritte
Modell ist zugleich auch das allgemeinste Modell, in dem Jobs mit bestimmten
Ressourcenanforderungen an Prozessoren verteilt werden müssen, aber auch die
Ressource noch zugeteilt werden muss.

Das vierte Modell erfasst dagegen mögliche Strategien für hochdynamische Sys-
teme, in denen sich stetig verändernde Beschränkungen eingehalten werden müssen.
Genauer wird hier der Energieverbrauch eines einzelnen Prozessors unter variablen
Geschwindigkeitsschranken und veränderlichen Energiekosten minimiert.
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Abstract

In today’s data and computing centers, the available computing power of a system
often is sufficient, but memory and the data rate become the bottleneck instead.
Scheduling algorithms usually deal with the assignment of jobs to processors, but
without any global constraint on the computing center as a whole. In this thesis,
new scheduling problems incorporating such global properties are introduced. Four
(slightly) different models capturing aspects of these properties are studied.

The first three models are similar in that a resource with a limited capacity is
shared among multiple processors, and mostly the objective is to minimize the
makespan, i.e., the time until all jobs are completed. The focus of the first model
is on the assignment of the resource to the processors, where for each processor a
queue of jobs is already fixed. The second model focuses on interjob communication,
where given communication requirements between jobs need to be scheduled on a
common communication channel. Finally, the third model is the most general case,
where jobs with a certain resource requirement need to be scheduled on the different
processors, but the resource has to be assigned as well.

On the other hand, the fourth model captures possible strategies for highly
dynamic systems, where constraints may even change continuously over time. Here,
the energy consumption of a single processor is minimized while adhering to variable
speed limits and incorporating fluctuating energy costs.
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Introduction

Computing centers do not cease to grow. Even for a single chip, where
one might expect that physical limits should lead to a cessation of the
increase in processing power, the limits are not yet reached. Instead, Moore’s

law [Moo65], stating that the number of transistors on a chip will double every two
years, now holds true for more than 50 years. It has been observed that a similar
law also holds for the increase in data traffic [CO02]. While parallelism strongly
increases, it is comprehensible that communication between machines, processors
and cores must also increase. Oftentimes, it even happens that the available data
rate becomes more important than the device’s speed. In extreme cases, this effect
may lead to the device’s speed having almost no influence, that is, if the available
data rate is reduced by a certain factor x > 1, the runtime is increased by this
factor [Zhu+12]. On a smaller scale, a shared communication channel such as a
data bus yields similar results. Other examples for scarce resources include memory
or processing power being shared among multiple virtual machines. Scheduling
decisions thus have to include the distribution of the resource in addition to how
and where services are executed, and the question of how to distribute the resource
often becomes more important than on which processors services are scheduled.

In general, scheduling describes the problem of allocating resources as well as
defining an order in which certain tasks are completed. Scheduling decisions start
with everyday tasks such as planning a day at work, where e-mails need to be
answered, meetings (at fixed times) need to be attended and phone calls need to be
made, possibly with additional restrictions, for example due to differences between
time zones.

In computing centers, scheduling decisions typically focus on services (or jobs)
that have to be executed. Each job has specific properties such as the required
processing power or data rate. An example for a simple scheduling model is as
follows [B la+07, Ch. 4]: On a single processor, there are jobs with a processing
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Chapter 1 INTRODUCTION

requirement and a release time and the objective is to finish all jobs as early as
possible (the total time to complete all jobs is also called the makespan). Indeed, an
optimal solution for this problem can be found quite easily by greedily scheduling
jobs in the order of non-decreasing release times. This simple procedure is called
Earliest Release Time First (ERF). Similarly, if deadlines instead of release times
are given, in case there is a feasible solution, i.e., a solution such that each job is
finished before or at its deadline, an optimal solution can be found by scheduling
jobs in order of non-decreasing deadlines (Earliest Deadline First (EDF)).

Scheduling is mostly regarded as an independent research area since 1954 [PS09],
originating in the seminal paper by Johnson [Joh54]. Since then, the variety of
scheduling problems has strongly increased and is still researched extensively today.
Naturally, new aspects have been considered. A good overview of scheduling models
is given by Leung [Leu04].

Among those are scheduling under resource constraints and energy-efficient schedul-
ing (or speed scaling). In the former area, jobs additionally require resources that
are shared among processors [GG75; BLK83]. Here, a job requires its full resource
requirement in order to execute jobs. As the resources need to be assigned to the
jobs, additional complexity is added to the original problem. In the latter area,
processors can be sped up in order to improve their performance [YDS95]. However,
this comes at the cost of increased power consumption. Typically, a linear increase in
speed is assumed to lead to a cubic increase in power consumption, as also observed
in practice [Bro+00].

In this thesis, related problems of resource constrained scheduling are considered
in Chapters 2 to 4. Here, it is assumed that the resource requirement of a job
can be fulfilled in arbitrary parts (that may also differ in size), whereas most
related literature assumes that the supplied resource of a job remains constant over
time. For the speed scaling variant considered in Chapter 5, there is an additional
upper speed limit (translating to an upper power limit) that may change almost
arbitrarily over time. This captures the trend to more power consumption and
heat in computing centers, making the speed limited in the sense that speed needs
energy, which is already limited by itself as only a certain power can be supplied,
and energy also produces heat, which is particularly critical during high temperature
periods. However, the model in Chapter 5 differs from the models in Chapters 2
to 4 in that only a single processor is given, hence no resource is shared among
multiple processors. For an arbitrary number of processors sharing a common energy
source, the problem is in line with the problems from Chapters 2 to 4, but seemingly
becomes much more difficult to cope with and is left as an open problem (see also
more details in Chapter 6).

1.1 Approximation and Online Algorithms

In the following, I give a short overview of how the quality of algorithms for offline
and online problems is usually measured.
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Approximation and Online Algorithms 1.1

Approximation Algorithms. It is widely believed that the complexity class P of
problems deterministically solvable in polynomial time is a strict subset of the
class NP of problems nondeterministically solvable in polynomial time. Assuming
this to be true, it can be shown that many computational problems cannot be
(deterministically) solved optimally in polynomial time. In particular, this is true
for the class of so-called NP -hard problems, denoting those problems that are at
least as hard to solve as the hardest problems in NP . As super-polynomial runtimes
quickly become intractable in practice, different methods of how to cope with such
problems have been developed.

For offline optimization problems, i.e., problems where the full instance is known
in advance and where the objective is to mimimize or maximize a certain objective
value, the most popular among those methods is the design of polynomial-time
approximation algorithms. Here, algorithms are developed that guarantee to be
at most by a certain factor worse than the optimal solution. Formally, for a
minimization problem, denoting A(I) to be the value of a solution achieved by
a given algorithm A for an instance I, and OPT(I) defined similarly, A is an
α-approximation for some α ≥ 1 if A(I)

OPT(I) ≤ α holds for all instances I. Analogously,
for a maximization problem, an algorithm A is an α-approximation for some α ≥ 1 if
A(I)

OPT(I) ≥
1
α holds for all instances I. An algorithm has an asymptotic approximation

ratio of α if, on any instance I, A(I) = α ·OPT(I) + o (OPT(I)).
The strongest variant of approximation algorithms are so-called polynomial-time

approximation schemes. A polynomial-time approximation scheme (PTAS) is an
approximation algorithm which takes an input parameter ε > 0 additionally to the
problem instance and returns a (1 + ε)-approximation for a given optimization prob-
lem. However, for the runtime, ε is assumed to be a constant, hence a PTAS is only
required to be polynomial in the input size and not in the parameter ε. An efficient
polynomial-time approximation scheme (EPTAS) is a PTAS where the runtime is
bounded by O (nc) with c being a constant independent of ε. For example, runtimes
such as c′f(1/ε)nc, where c′ may arbitrarily depend on 1/ε, but c is independent of ε,
are allowed. A fully polynomial-time approximation scheme (FPTAS) is a PTAS
where the runtime is polynomial in 1/ε and n. An asymptotic PTAS (APTAS) is
defined analogously to a PTAS, but with an asymptotic approximation ratio of
(1 + ε). Asymptotic EPTAS (AEPTAS) and asymptotic FPTAS (AFPTAS) are
defined analogously.

However, such approximation schemes often have a runtime that is too high for
practical applications. For this reason, the focus of this thesis is on approximation
algorithms with guaranteed bounds, but reasonable runtimes.

Online Algorithms. For online optimization problems, i.e., problems where jobs
(or other items) arrive over time and their properties only become available at their
release time, algorithms are typically analyzed in terms of their competitiveness.
For a minimization problem, denoting A(I) and OPT(I) similar to above, where
OPT(I) is the optimal offline solution, an online algorithm A is α-competitive for
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Chapter 1 INTRODUCTION

some α ≥ 1 if for any instance I, it holds A(I)
OPT(I) ≤ α. For a maximization problem,

A is α-competitive for some α ≥ 1 if for any instance I, it holds A(I)
OPT(I) ≥

1
α .

In terms of online problems, one often thinks of an adversary that builds up the
instance over time. This can be done as the algorithm has no knowledge about the
future and deciding whether a job arrives or not (and which properties it has) can
be done by the adversary on the fly.

1.2 Outline of the Thesis
The focus of this thesis is to cope with scarce resources in scheduling problems.
Throughout this thesis, I usually consider the preemptive setting. That is, jobs
can be interrupted and resumed at any point in time without inducing additional
cost. Note that in Chapter 2, the preemptive and non-preemptive settings are
equivalent. In Chapter 4, however, the non-preemptive setting is considered. In this
case, the results for the non-preemptive case directly carry over to the preemptive
setting (because the bounds on the optimal algorithm remain valid). Note that
preemptiveness should not be confused with migration, which allows to stop jobs at
arbitrary times and resume them on a different processor. Migration is not allowed
in the models of this thesis or the models in related literature.

In the following, I introduce the models considered in the different chapters. In
Section 1.3, I compare the models and elaborate on important differences between
the models. An overview of related work regarding all parts of the thesis is given in
Section 1.4. In order to put this thesis in context with my other research, I conclude
the introduction with a list of my own publications in Section 1.5.

Chapters 2 to 5 contain the main content of this thesis. Note that each of
these chapters is self-contained except for related work which is summarized in
Section 1.4 to avoid redundancy. In Chapters 2 to 4, a shared resource needs to
be assigned to a number of processors. In contrast to original resource constrained
scheduling [GG75; BLK83], the resource requirement of a job is assumed to be
divisible among contiguous time steps by slowing down jobs. Chapter 5 considers a
variant of energy-efficient scheduling, where power consumption limits and energy
cost dynamically change over time. In the following, an overview of the models and
results of the individual chapters is given.

Assigning a Sharable Resource in a Multiprocessor System. In this chapter, the
model contains m identical processors sharing a continuously divisible resource. An
assignment of a number of jobs to the m processors and the order of the jobs on each
processor are already given. The time line is assumed to be composed of discrete
time steps. It is the scheduler’s task to distribute the resource among the processors.
Here, each job j comes with a resource requirement rj ∈ [0, 1] and unit size, that is,
a job can always be finished in one time step if granted its full resource requirement.
If receiving only an x-portion of rj , it is processed at an x-fraction of the full speed.
For example, a job with resource requirement 70% can be finished in 3 time steps

6



Outline of the Thesis 1.2

by granting it 30% of the resource in the first time step and 20% of the resource in
the remaining two time steps. The objective is to find a resource assignment that
minimizes the makespan.

In contrast to Chapter 4, where the assignment of the jobs to the processors also
has to be done by the scheduler, this model rather focuses on the assignment of the
resource to the processors. It is shown that finding an optimal solution is NP-hard if
the number of processors is part of the input. Positive results include a polynomial-
time algorithm for any constant number of processors. Since the runtime is infeasible
for practical purposes, more efficient algorithm variants are also provided: a faster
optimal algorithm for two processors and a (2− 1/m)-approximation algorithm for
m processors.

The model, analyses and results presented in this chapter are based on the
following publications (conference and journal version):

2014 (with A. Brinkmann, P. Kling, F. Meyer auf der Heide, L. Nagel and
T. Süß). “Scheduling Shared Continuous Resources on Many-Cores”. In:
Proceedings of the 26th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), cf. [Bri+14].

2017 (with E. Althaus, A. Brinkmann, P. Kling, F. Meyer auf der Heide,
L. Nagel, J. Sgall and T. Süß). “Scheduling Shared Continuous Resources
on Many-Cores”. In: Journal of Scheduling, cf. [Alt+17].

Multiprocessor Scheduling with a Sharable Communication Channel. Similarly
to Chapter 2, this chapter considers m identical processors sharing a common
resource, but in a different manner. In particular, the common resource can (and
should) be seen as a communication channel shared among the processors. A set of
tasks needs to be scheduled on the processors, where each task Ti consists of a set of
jobs with interjob communication demands, represented by a weighted, undirected
graph Gi. The shared communication channel can be used by jobs to communicate
among each other while being processed in parallel. In each time step, the scheduler
assigns jobs to the processors. The scheduler allows (parts of) the communication
demands between scheduled jobs to be satisfied under the restriction that the overall
communication does not exceed the capacity of the channel. Again, the objective is
to find a schedule with minimum makespan in which the communication demands
of all jobs (i.e., the sum of the shares of the communication channel assigned to it)
are satisfied.

This problem is shown to be NP-hard in the strong sense even if the number of
processors is constant and the underlying graph is a single path or a forest with
arbitrary constant maximum degree. Consequently, approximation algorithms with
a provable (asymptotic) approximation guarantee are designed and analyzed. If the
underlying graph G, the union of the Gi, is a forest, an asymptotic approximation
ratio of min{1.8, 1.5 m

m−1} + 1 is shown; for general graphs it is min
{

1.8, 1.5m
m−1

}
·
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Chapter 1 INTRODUCTION

(
arb(G) + 5

3

)
, where arb(G) denotes the arboricity of G, i.e., the minimum number

of forests into which the edges of G can be partitioned.
Parts of the model, analyses and results presented in this chapter are based on the

following publication. A journal version with additional results is currently under
submission.

2016 (with J. König, A. Mäcker and F. Meyer auf der Heide). “Schedul-
ing with Interjob Communication on Parallel Processors”. In: Proceed-
ings of the 10th International Conference on Combinatorial Optimization
and Applications (COCOA), cf. [Kön+16].

Multiprocessor Scheduling with a Sharable Resource. This chapter also models
m identical processors sharing an arbitrarily divisible resource. This resource is
shared similarly to Chapter 2. A number of jobs is given, but in contrast to
Chapter 2, the assignment of the jobs to the processors is not yet done. That is, the
scheduler must assign the jobs to the processors as well as distribute the resource
among them (e.g., for three processors in shares of 20%, 15%, and 65%) and adjust
this distribution over time. Each job j comes with a size pj > 0 and a resource
requirement rj > 0. Jobs do not benefit when receiving a share larger than rj of
the resource. However, similar to Chapter 2, providing them with a fraction of
the resource requirement causes a linear decrease in the processing efficiency. The
objective is to find a (non-preemptive) job and resource assignment minimizing the
makespan.

The main result of this chapter is an efficient approximation algorithm which
achieves an approximation ratio of 2 + 1/(m − 2). It can be improved to an
(asymptotic) ratio of 1 + 1/(m− 1) if all jobs have unit size (that is, they still have
different resource requirements). The described algorithms also imply new results for
a well-known bin packing problem with splittable items and a restricted number of
allowed item parts per bin as well as for certain cases of the model from Chapter 3.

Based upon the above solution, an additional setting with so-called tasks is
introduced, each containing several jobs. The objective is to minimize the average
completion time of tasks, where a task is completed when all its jobs are completed.
As an extension of the model with single jobs, this problem remains NP-hard and
approximation algorithms with similar guarantees are derived.

The results presented in this chapter are based on the following publication.

2017 (with P. Kling, A. Mäcker and A. Skopalik). “Sharing is Caring:
Multiprocessor Scheduling with a Sharable Resource”. In: Proceedings of
the 29th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), cf. [Kli+17].

Scheduling with a Bounded Speed Limit and Variable Energy Costs. In this
chapter, an extension of the dynamic speed scaling model introduced by Yao et al.
[YDS95] is considered: A set of jobs, each with a release time, deadline, and workload,
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Overview of the Different Models 1.3

has to be scheduled on a single, speed-scalable processor. Both the maximum allowed
speed of the processor and the energy costs may vary continuously over time. The
objective is to find a feasible schedule that minimizes the total energy costs.

Theoretical algorithm design for speed scaling problems often tends to discretize
problems, as the tools in the discrete realm are often better developed or under-
stood. Using the above speed scaling variant with variable, continuous maximal
processor speeds and energy prices as an example, it is demonstrated that a more
direct approach via tools from variational calculus can not only lead to a very
concise and elegant formulation and analysis, but also avoids the “explosion of
variables/constraints” that often comes with discretizing [Ant+14]. Using well-
known tools from calculus of variations, combinatorial optimality characteristics
for the continuous problem are derived and a quite concise and simple correctness
proof is provided. A combinatorial algorithm for this problem is suggested and the
optimality characteristics are used to prove that this algorithm indeed returns an
optimal solution.

The results in this chapter are based on the following publication.

2017 (with A. Antoniadis, P. Kling and S. Ott). “Continuous Speed
Scaling with Variability: A Simple and Direct Approach”. In: Theoretical
Computer Science vol. 678, cf. [Ant+17].

1.3 Overview of the Different Models
In the following, I will evaluate the differences between the strongly related models
from Chapters 2 to 4 (Section 1.3.1). I will then discuss the relation to the model
from Chapter 5 in Section 1.3.2.

1.3.1 Sharing a Resource among Multiple Processors

First note that for all the models in Chapters 2 to 4, a job has a size pj ∈ R+ and a
resource requirement rj ∈ R+. The model in Chapter 4 is the most general of these
models, where pj and rj are both chosen arbitrarily. Also, the assignment of the
jobs to the processors is not yet fixed.

In contrast, the assignment of jobs to processors is already fixed in Chapter 2.
Also, all jobs have unit size pj = 1 and resource requirement rj ≤ 1.

In Chapter 3, resource demands are communication demands among different
nodes. That is, rather than being given a set of single jobs that need to be assigned
to one processor each, there is a number of tasks, each consisting of a connected,
undirected graph. The resource (communication) requirement is given as weights
on the edges and can be any rj ∈ R+. In order to satisfy the communication
requirement of an edge, both adjacent nodes need to be scheduled on two separate
processors at the same time. The size of an edge (not to be confused with the
communication requirement or weight) is assumed to have unit size (pj = 1), implying
that the communication demand can be processed at once if the full communication
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requirement is supplied. Nevertheless, note that if the communication requirement
of an edge is larger than the overall size of the communication channel, the full
requirement of the edge cannot be fulfilled in one time step. However, similarly to
both other models, an overall communication (or resource) limitation persists.

The Convenience of Freedom. As noted above, the model in Chapter 4 is the
most general model. However, when looking for algorithms with a short runtime,
achieving good approximation factors seems to be simpler if the assignment of jobs to
processors is still necessary. By assigning jobs depending on the required resource, it
can be easily avoided that ill fitting jobs are scheduled at the same time. That is, the
scheduler can ensure that the sum of resource requirements of currently scheduled
jobs is close to the available resource requirement. Intuitively, the algorithms used
in Chapter 4 do exactly that. At each point in time, the scheduler tries to maintain
high parallelism as well as high resource usage. That is, given m processors and an
available resource of R, the scheduler tries, at any point in time, to schedule m jobs
such that

1. m− 1 of them receive their full resource requirement, and

2. the full resource R is used.

Only at a point in time where it is no longer possible to maintain both, i.e., there
are only jobs with a very small or with a large resource requirement left, is one
of the two properties violated. However, it can be proven that choosing jobs in a
particular way ensures that once this happens, the property not violated in that
very time step remains valid until no more jobs need to be scheduled, which implies
a good approximation guarantee.

Normalizing Job Sizes. One problem of the above algorithm is its frailty regarding
job sizes. That is, as long as there are still jobs to be scheduled, it is ensured that
one of the two conditions held for the whole time: either m−1 jobs were executed in
parallel in each time step or the full resource R was used in each time step. However,
as the length of the jobs is not incorporated in the algorithm and prioritization
only depends on the resource requirements, it can happen for roughly the second
half of the time line that only one very long job with a low resource requirement
is scheduled. This increases the approximation ratio by a factor of almost two. In
contrast, if all jobs have unit size, there is at most one time step where one of the
two conditions is not fulfilled. This implies an asymptotic approximation ratio of
1 + 1

m−1 , which approaches one for a high number of processors.

Fixing the Job Assignment. In contrast, the assignment of jobs to processors is
already fixed in the model of Chapter 2. For a fixed number of processors, the
NP-hardness of the problem dissolves, and it remains hard only if the number of
processors is part of the input. However, approximating the solution with a fast
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approximation algorithm seems to become more difficult. This is because if trying
to fit jobs well locally at some point in time, that is, such that resource utilization
and parallelism are both maximized at this point, jobs at a much later or much
earlier time may fit even worse. This may imply a sequence of errors and, thus,
situations where jobs with large (low) resource requirement have to be scheduled at
the same time, thereby reducing parallelism (resource utilization) and worsening
the approximation substantially.

Intuitively, for two processors, this effect can be seen as two sawtooth patterns
facing each other (where a spike represents a high resource requirement), where
each pattern has additional irregularities. Now they can be shifted such that a spike
always meets a low point of the other processor and a low point always meets a
spike of the other processor, whereas the irregularities hurt the solution only slightly.
This would result in a schedule with a small makespan. However, if the wrong jobs
are prioritized, spikes and low points each meet their counterparts, which results in
giving away resource and parallelism and implying a large makespan. Refer also to
Section 2.4.3 with Figure 2.5 for a more detailed description and a visualization.

Nevertheless, a branch and bound algorithm with runtime O
(
n2) that solves this

problem optimally for two processors is given in Chapter 2, as one can still cope
with the above problems for the two processor case. For more processors, however,
this “fitting of saw teeth” becomes more demanding, and there seems to be no fast
algorithm finding an optimal solution. By constructing a dynamic program through
cleverly arranging possible configurations, the optimal solution can still be found,
but only at the cost of high (but still polynomial) runtime.

The simple approximation algorithm introduced in Chapter 2 for a practically
tractable runtime has an approximation guarantee that approaches two for a high
number of processors, which is much worse than the approximation ratio in Chapter 4,
which approaches one as m tends to infinity for the equivalent setting of unit size
jobs. This is in accordance with the expectation that the possibility to avoid ill
fitting jobs in Chapter 4 makes it easier to approximate a solution within a satisfying
factor.

Shared Resources in Connected Components. In the model of Chapter 3, a
number of tasks is given, each consisting of a connected, undirected graph. A weight
or communication requirement is assigned to each edge. A common communication
channel now represents the shared resource. In contrast to the models discussed
above, the communication demand of an edge can only be satisfied by assigning
both adjacent nodes to two processors at the same time. A simple way to meet all
communication demands would be to schedule each edge separately. That is, each
node v is split into deg(v) copies, each connected only to one edge. If each task can
be represented by a tree, it is later shown that this simple procedure together with
the algorithm from Chapter 4 leads to a better approximation guarantee than the
algorithms in Chapter 3. This is because splitting a tree into single edges results in
at most a doubling the number of nodes, hence only losing a factor of at most two.
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However, to capture the behavior of tasks not having the simple structure of a
tree, the notion of arboricity is used. The arboricity of a graph denotes the minimum
number of forests into which the edges of a graph can be decomposed. By using
an existing result, it is also possible to decompose an arbitrary graph into arb(G)
forests and one additional graph of degree at most 2. Hence, decomposing the graph
into forests, then splitting the forest into separate edges and using the algorithm
from Chapter 4 with approximation ratio 1+ 1/(m−1) leads to an approximation ratio
of (2m/(m−1))arb(G), whereas the approximation algorithm described in Chapter 3
guarantees a ratio of min {1.8, 1.5m/(m−1)} · (arb(G) + 5/3). For large m, the latter
approximation thus has a similar or better guarantee for any arb(G) ≥ 5. For small
m (i.e., if the minimum equals 1.8) this is already the case for a smaller arboricity.

1.3.2 Shared Resources and Energy-Efficient Scheduling

In the model of Chapter 5, only one speed-scalable processor is given, but with
maximum speed and energy cost both varying continuously over time. Hence, this
model does not cover limits of resources shared among multiple processors. The
variant where a variable maximum power is the shared resource used by multiple
processors is left as an open question.

However, the variant from Chapter 5 dealing with only one processor gives insights
about the necessary techniques to cope with such flexible limits, for example energy
limits in computing centers. Also, as most of the energy is absorbed as heat, the
temperature of a processor can be associated with a maximum power consumption.
In order to avoid overheating, a maximum speed that changes over time is determined,
which also results in the kind of problem dealt with in this chapter.

1.4 Related Work

In the following, I give an overview of related literature in the area of scheduling. In
particular, I review scheduling problems where the distribution of scarce resources
among processors is the main challenge.

The Origins of Scheduling. The area of scheduling is believed [PS09] to be seen as
a distinct research area since Johnson [Joh54] composed his paper about production
schedules, which is called flow shop nowadays. In his paper, he considers a problem
where different items undergo a production process. Items have to be processed by
one machine first and by a second machine afterwards. Each item has an overall
processing time for each of the two machines, which is regarded as the sum of
setup time and work time. Johnson gives an optimal algorithm for this problem
by arranging the processing times of the items in two columns for the first and
the second machine. The smallest processing time among all listed times (i.e., a
processing time of any job on any machine) is picked, where ties are broken arbitrarily.
If the processing time concerns the first machine, the respective job is scheduled first;
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if it applies to the second machine, the respective job is scheduled last. Repeating
this procedure until all jobs are processed (hence building the schedule from the
ends to the middle) results in an optimal schedule. For the restricted case of a
similar problem with three machines, where for any pair of items, the processing
time of the first item on the first machine is larger than the processing time of the
second item on the second machine, an optimal solution can be found using a similar
algorithm. The same applies if a similar property holds for the third instead of the
first machine.

Multiprocessor Scheduling. In the classical multiprocessor makespan scheduling
problem, a set of jobs, each having a specific processing time, needs to be scheduled
on m identical machines so as to minimize the makespan. For this problem, an
EPTAS is known [Alo+98] if m is part of the input. For fixed m even an FPTAS
is possible [HS76]. Compared to the models in Chapters 2 to 4, this model does
not incorporate additional resource requirements. However, reducing the resource
requirements of each job in the model of Chapter 4 to an infinitesimal amount, it
becomes equivalent to the model without resource requirements.

In terms of fast algorithms, Graham [Gra69] introduces list scheduling algorithms
which are used today as a typical example achieving a reasonable approximation
quality. Here, jobs are added one after another from a sorted list. Each job is added
to the processor with the lowest workload, that is, the processor that would finish
all jobs first with respect to the current schedule. Graham [Gra69] proves that
for the setting with m machines, an arbitrarily ordered list results in a (2 − 1

m)-
approximation. If the list is sorted by non-increasing job size (also called longest
processing time first (LPT)), it achieves an approximation ratio of 4

3 −
1

3n . For the
general case, the authors also prove the following result. Assume n jobs are given
and the list starts with the k longest of these jobs in an order resulting in an optimal
solution (limited to these k jobs). No matter in which order the remaining jobs are
added to the list, the resulting list scheduling algorithm achieves an approximation
ratio of 1 + 1−1/n

1+dk/ne . For example, this also implies that if the largest m jobs are
distributed to the processors (one job for each processor), and the remaining list
is ordered arbitrarily, the resulting solution is at most by a factor of 3

2 −
1

2n worse
than the optimum.

Resource Constrained Scheduling. Research on scheduling with resource con-
straints originates from the 1970s. In [GG75], Garey and Graham introduce a
model with m processors and a set of k resources. A number of jobs has to be
scheduled, where each job has a processing time and a specific demand for each
resource. In their model, the execution of a job may not be interrupted and resumed
later, which corresponds to the non-preemptive setting described earlier. For any
time, it is the scheduler’s task to assign a set of jobs to the processors such that for
any resource, the sum of supplied resource shares of the jobs does not exceed the
available resource. This is in contrast to the models from Chapters 2 to 4, where
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the scheduler can assign a lower resource to a job than its requirement, leading to a
slower execution of this job. The authors consider list-scheduling algorithms and
prove an approximation factor of at most min{m+1

2 , k + 2− 2k+1
m } for this problem.

They also consider this problem with precedence constraints: that is, each job may
depend on the completion of one or multiple other jobs. For this case, they show
that their list-scheduling algorithm achieves a tight approximation factor of m,
which is the same as the trivial algorithm assigning all jobs to the same processor
would achieve.

For the restriction to a single resource and no precendence constraints, the results
discussed above directly imply that their list scheduling algorithm achieves an
approximation factor of 3 − 3

m . In [NW15], the authors improve these results by
presenting a (2 + ε)-approximation algorithm for this problem using techniques such
as grouping and linear programming. They also prove that even for unit size jobs,
this problem cannot be approximated within an (absolute) approximation ratio less
than 3

2 unless P = NP by a straightforward reduction from the Partition problem.
For this unit size case, Epstein and Levin [EL10] introduce an asymptotic fully
polynomial-time approximation scheme (AFPTAS).

Finally, Jansen et al. [JMR16] very recently published new results where they
present an AFPTAS for the general problem (however, still with a single resource and
without precedence constraints). They also introduce an AFPTAS for the machine
scheduling problem with resource dependent processing times. This model is quite
similar to the models studied in Chapters 2 to 4 in assuming that a job supplied with
a smaller part of the resource than its requirement cannot be finished with full speed.
However, in their model the resource supplied to a job must remain constant during
the full execution time window, whereas a job’s share of the resource in Chapters 2
to 4 may be changed in any time step. They also assume the overall resource as
well as each job’s share of the resource to be an integer number. On the other
hand, Jansen et al. [JMR16] also allow other dependencies than the linear decline
in processing speed, that is, they introduce a processing time function relating the
set of possible resource shares for a job to arbitrary processing speeds. The models
from Chapters 2 to 4 are more realistic for applications where the resource can
be split arbitrarily, for example if a common data rate is involved, as a job only
needs to receive a certain amount of data as soon as possible. In contrast, the
model considered in [JMR16] seems more realistic for applications where the job
is configured for a specific share of the resource, resulting in the requirement that
the resource remains constant during the full execution time. For example, a job
may have a low memory configuration that comes with a longer processing time,
but allowing it to have a higher memory consumption for a part of the processing
time may not speed its execution.

For a deeper insight into resource constrained scheduling, for example with multiple
resources, the interested reader is referred to [Leu04, Chs. 23-24] and [B la+07,
Ch. 12].
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Bin Packing. Bin packing has a long history in computer science research and a
huge body of literature on several variants of bin packing problems emerged in the
past. In its most basic variant, n items of sizes 0 < si ≤ 1 need to be placed into as
few bins of capacity 1 as possible. Similar to resource constrained scheduling, this
problem is easily seen to be NP-hard by a reduction from the Partition problem,
which also directly gives an inapproximability for an (absolute) approximation ratio
below 3

2 unless P = NP . This bound is actually achieved by the well-known First
Fit Decreasing strategy, which first sorts the items in decreasing order by their sizes
and then places the current item to be packed into the first bin it fits into. In
[Dós+13], Dósa et al. also prove that First Fit Decreasing uses at most 11

9 OPT + 6
9

bins and that this bound is tight, implying an exact asymptotic approximation
ratio of 11

9 . When considering asymptotic approximation algorithms, even (fully)
polynomial-time approximation schemes (A(F)PTAS) are known [VL81; KK82].

While there are dozens of variants of this basic problem, the problem supposedly
closest related to the problems from Chapters 2 to 4 is bin packing with cardinality
constraints and splittable items as introduced in [Chu+06]. In this problem, a set of
n items needs to be packed into as few bins of capacity one as possible. In contrast
to standard bin packing, items can have an arbitrary size in (0,∞) and may be
split and distributed among different bins. However, there is a constraint on the
maximum number of (parts of) different items that may be packed into a single bin
given by some predefined value k. Chung et al. [Chu+06] prove this problem to
be strongly NP-hard for k = 2 and provide a simple approximation algorithm with
an asymptotic approximation ratio of 3/2 (also for k = 2). In [ES11], the authors
extend the NP-hardness to any fixed k ≥ 2. They also give efficient algorithms
with asymptotic approximation ratio 7/5 for k = 2 and an absolute approximation
ratio of 2− 1/k for k ≥ 2, respectively. Finally, Epstein et al. [ELS12] present an
EPTAS for the case k = o (n). They also prove that for k = Θ (n) a polynomial-time
approximation algorithm with a ratio smaller than 3/2 cannot exist unless P = NP.

Note that bin packing with cardinality constraints and splittable items is, except
for the lack of the notion “preemption”, equivalent to the main problem from
Chapter 4 with unit size jobs: If items correspond to jobs of size 1 and each bin is
identified with one time step, the packing of a bin describes the jobs executed in this
time step and the part size of an item corresponds to the share of the resource the
respective job gets. The cardinality constraint k corresponds to having k processors.

Discrete-Continuous Scheduling. The notion of discrete-continuous scheduling
traces back to several papers by Józefowska and Weglarz, first and foremost [JW98].
While most results in this area study scenarios where the amount of allocated
resources influences the processing time or release dates of jobs (see [JJL07] for a
survey), Józefowska and Weglarz [JW98] consider the case where the amount of
allocated resources influences the processing speed of jobs. More precisely, if the
function Rj : R≥0 → [0, 1] models the share of the resource that job j gets assigned
at some time t ∈ R≥0, its workload is processed at a speed of fj

(
Rj(t)

)
. Here, fj
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models how a job’s processing speed is affected by the received resource amount and
is assumed to be continuous and non-decreasing with fj(0) = 0. Using this resource
model, the authors consider the problem of scheduling n non-preemptable and
independent jobs on m processors. They propose an analysis framework based on a
mathematical programming formulation and demonstrate its use for the objective of
minimizing the schedule’s makespan. For certain classes of fj , this yields a simple
analytical solution [JW98; Józ+99]. This holds especially for convex functions
fj , which encourage the scheduler to assign the full resource to a single processor.
Finding an optimal solution for more realistic cases (especially concave fj) remains
infeasible. The results in [JW98] initiated several research efforts in this area,
including a transfer of the methodology to other scheduling variants (e.g., average
flow time instead of makespan [JW96]) as well as several heuristic approaches to
obtain practical solutions in the general case [Józ+00; Józ+02; Kis05; Wal11]. A
detailed survey about these results can be found in [Weg+11] (especially Section 7).

The scheduling models with shared resources in this thesis have several charac-
teristics in common with discrete-continuous scheduling problems. In particular,
the jobs’ resource requirements can be modeled via concave functions fj of the
form fj(R) = min(R/rj, 1), where the value rj denotes the resource requirement of
job j (cf. Section 2.1.1). That is, the speed used to process a job depends linearly
on the share of the resource it receives, but is capped at one. In contrast to the
results presented in Chapters 2 to 4, most of the aforementioned results for the
discrete-continuous setting are of heuristic nature and do not provide any provable
quality guarantees with respect to the resulting schedules, and cases that can be
analyzed analytically turn out to feature quite simple solution structures [JW98;
Józ+99].

Order Scheduling Models. With respect to the second part of Chapter 4, where
a model generalization for tasks that are composed of multiple jobs is considered,
[LLP05] should be mentioned. Here, a production model is considered where tasks
represent orders and each job of an order must be processed on a subset of specific
machines. However, note that these order scheduling models do not consider resource
sharing in the sense of the models in this thesis, but instead only the allocation to
the (non-identical) machines.

Energy-Efficient Scheduling. The area of energy efficient scheduling, often also
described as speed scaling, has been initiated by Yao et al. [YDS95]. They assume
to have a single speed-scalable processor: that is, one processor that can be sped
up arbitrarily, but at the cost of increased power consumption. In their model, the
power the processor requires is described by a convex power function P : R≥0 → R≥0.
More exactly, when running with speed s, they assume that the processor has a
power consumption of P (s) = sα, where α > 1 is a constant called the energy
exponent. This assumption is natural, as the typical power consumption of CMOS
devices can roughly be estimated by s3 and CMOS devices will presumably remain
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the dominant technology in the near future [BKP07]. The authors present an optimal
algorithm for this problem, which is called the YDS algorithm. The main idea of
the algorithm is to develop a sense of density of jobs, that is, determining intervals
containing a large amount of workload per time unit. Recursively identifying the
densest interval, then scheduling all contained jobs within this interval with minimal
uniform speed, and proceeding by deleting the interval from the timeline yields
an optimal solution. Ideas from this algorithm are also used for the algorithm
in Chapter 5. The authors proceed by introducing two online algorithms for this
problem, which they call Average Rate and Optimal Available. Intuitively, the
Average Rate algorithm processes each job such that its processing speed is the same
over the full interval between its release time and deadline. Hence, at any point in
time, the overall processing speed is the sum of the job’s processing speeds. Yao et al.
[YDS95] prove that Average Rate has a competitive ratio of at most 2α−1αα. In
[Ban+08; Ban+11], the authors show that the analysis is almost tight by providing
a lower bound of (2−δ)α

2 · αα, where δ approaches 0 when α approaches infinity. The
Optimal Available algorithm is computationally more intensive: At any point in
time where a new job arrives, the optimal solution of all currently available jobs
is computed, for example by executing the YDS algorithm. Bansal et al. [BKP07]
prove that the competitive ratio of Optimal Available is exactly αα. This implies
that Optimal Available is superior to Average Rate in terms of competitiveness, but
this comes with a computational overhead. Bansal et al. [BKP07] also present a
new algorithm, which they call BKP and which estimates the density of available
jobs in a different way in order to behave similar to the YDS offline algorithm.
They prove that BKP has a competitive ratio of at most 2

(
αe
α−1

)α
, thus having a

stronger guarantee than Optimal Available for α ≥ 5. In Bansal et al. [Ban+09],
the authors show that the exponential dependency is inherent to the problem: that
is, they prove that any online algorithm has a competitive ratio of at least eα−1

αα .
See also [Alb10] and [IP05] for broader surveys on energy-efficient algorithms.

Energy-Efficient Scheduling with Maximum Speed or Varying Energy Prices.
Special cases of both the maximum speed and the electricity tariff setting have been
studied before. Chan et al. [Cha+09] and Li [Li11] assume that there is a constant
upper bound on the available speed, and one wants to maximize the throughput of
the schedule while minimizing the power consumption. Chan et al. [Cha+09] present
an O (1)-competitive algorithm in terms of throughput and energy. Allowing the
maximum speed of the online scheduler to be (1 + ε) times the original maximum
speed for some ε > 0 enables the authors to improve the competitive ratio on
throughput to any value 1 + δ with δ > 0. However, the competitive ratio on power
consumption remains a larger constant. Li [Li11] consider the offline variant of this
problem. They present an algorithm which is a 3-approximation of the throughput
and a (α−1)α−1(3α−1)α

2αα(3α−1−1)α−1 -approximation of the power consumption.
On the other hand, Fang et al. [Fan+15] consider electricity tariffs, but without

an upper bound on the speed and in a much more restricted setting: their model
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is equivalent to considering only one-job instances and discrete dynamics in the
problem from Chapter 5. They develop an optimal polynomial-time algorithm by
a technique which to some extent resembles ours. However, since Chapter 5 deals
with a significantly more general setting, several important aspects not appearing
in [Fan+15] have to be considered, in particular the KKT optimality conditions
need to be extended using variational calculus. Electricity tariffs have also been
considered beyond the speed-scaling setting, see for example [KT11].

Further, Thang [Tha13] uses the Lagrangian dual of a mathematical program
in order to analyze several online scheduling algorithms with flow-time objectives.
Although [Tha13] also has the same view of optimizing over a set of arbitrary
speed functions, it differs from the approach in Chapter 5 in that Lagrangian
duality is used more as a tool for analyzing the approximation ratio, rather than
for characterizing an optimal solution and deriving an optimal algorithm. Finally,
Bansal et al. [BCP09] consider a speed scaling problem where energy is supplied at
a limited rate. However, their supply rate does not vary over time. In fact, there is
another significant difference between their model and the model from Chapter 5, as
they consider also a storage device and seek to minimize the constant supply rate.

1.5 Own Publications
In the following, I present a list of my own publications that I co-authored while
studying the topics of this thesis. The publications are given in reverse chronological
order. This list merely serves to put the topics from this thesis in context with my
other research.

2017 (with M. Drees, M. Feldotto and A. Skopalik). “Pure Nash
Equilibria in Restricted Budget Games”. In: Proceedings of the 23rd
International Computing and Combinatorics Conference (COCOON),
cf. [Dre+17].

2017 (with A. Antoniadis, P. Kling and S. Ott). “Continuous Speed
Scaling with Variability: A Simple and Direct Approach”. In: Theoretical
Computer Science vol. 678, cf. [Ant+17].

2017 (with E. Althaus, A. Brinkmann, P. Kling, F. Meyer auf der Heide,
L. Nagel, J. Sgall and T. Süß). “Scheduling Shared Continuous Resources
on Many-Cores”. In: Journal of Scheduling, cf. [Alt+17].

2017 (with P. Bemmann, F. Biermeier, J. Bürmann, A. Kemper, T.
Knollmann, S. Knorr, N. Kothe, A. Mäcker, M. Malatyali, F. Meyer auf
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Related Problems in Distributed Data Streams (to appear)”. In: Pro-
ceedings of the 24th International Colloquium on Structural Information
and Communication Complexity (SIROCCO), cf. [Bem+17].
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(SPAA), cf. [Kli+17].
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“Cost-Efficient Scheduling on Machines from the Cloud”. In: Journal of
Combinatorial Optimization, cf. [Mäc+17a].

2016 (with A. Mäcker, M. Malatyali and F. Meyer auf der Heide). “Cost-
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2016 (with J. König, A. Mäcker and F. Meyer auf der Heide). “Schedul-
ing with Interjob Communication on Parallel Processors”. In: Proceed-
ings of the 10th International Conference on Combinatorial Optimization
and Applications (COCOA), cf. [Kön+16].

2015 (with M. Drees, M. Feldotto and A. Skopalik). “On Existence
and Properties of Approximate Pure Nash Equilibria in Bandwidth
Allocation Games”. In: Proceedings of the 8th International Symposium
on Algorithmic Game Theory (SAGT), cf. [Dre+15].

2015 (with A. Mäcker, M. Malatyali and F. Meyer auf der Heide). “Non-
Preemptive Scheduling on Machines with Setup Times”. In: Proceedings
of the 14th International Symposium on Algorithms and Data Structures
(WADS), cf. [Mäc+15].
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7th International Symposium on Algorithmic Game Theory (SAGT),
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Assigning a Sharable Resource in a
Multiprocessor System

The processor scheduling problem considered in this chapter is motivated
by the observation that, in many cases, it is not a device’s speed or energy
consumption that limits the progress of a given computation but the fact

that data cannot be provided at the necessary rate. At first glance, this seems
more a network issue than a problem of interest for processor scheduling. After
all, bandwidth bottlenecks are typically imposed by the interconnection of devices
(e.g., networks or data buses), and there is a huge body of literature concerned
with such issues on the network layer. However, the analysis in this area typically
concentrates on the network’s performance. In contrast, our model focuses on how
the distribution of the bandwidth shared by a fixed set of processing units can
affect their computational performance. That is, given some information about the
bandwidth requirement of a program (e.g., when does it need how much bandwidth
to progress at full speed), the scheduler can speed up critical jobs by a suitable
assignment of the available bandwidth to the different processors. Typical examples
for such settings are many-core systems: They provide an immense computing power
through the sheer number of processor cores. Yet, many (if not all) of the chip’s
cores share a single data bus to the outside world. If such a system has to process
I/O-intensive tasks (as typical for scientific computing), the available bandwidth
becomes the computational bottleneck, and the bandwidth distribution becomes
the decisive scheduling factor.

A First Glimpse at the Model. From a more abstract point of view, the afore-
mentioned bandwidth scheduling can be seen as a variant of resource constrained
scheduling, the bandwidth being an example for the resource. Imagine a system
consisting of several identical processors that run at a fixed speed and share a given
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resource. Assume that the resource is the system’s performance bottleneck, in the
sense that the runtime of programs (tasks) depends directly (that is to say, linearly)
on the share of the resource they are allowed to use. Each task provides information
about its resource requirements by stating what share of the resource it needs at
different phases of its processing to run at full speed. Thus, we can imagine a task
i to consist of a number ni of jobs that must be processed sequentially, one after
another. Each job represents a phase of the task’s processing where the resource
requirement is constant. The length of the phase (i.e., the job’s processing time) is
minimal at full speed and increases by a factor of 1/x if only a portion x ∈ [0, 1] of
the requested resource share is provided. We use the term CRSharing to refer to
this problem of sharing continuous resources; see Section 2.1.1 for a more formal
description.

We approach the problem by concentrating on the assignment of resources,
removing the (classical) scheduling aspect almost completely. That is to say, we
consider a scenario in which each processor has exactly one task, and each task
consists of jobs of unit workload (but different resource requirements). Moreover,
we assume discrete time steps, such that the scheduler can change the resource
assignment only at the beginning of such a time step. As we will see, even this
simple setting proves to be challenging.

Outline. Section 2.1 starts with a formal model description of the CRSharing
problem in Section 2.1.1, an overview of our contribution in Section 2.1.2, and some
basic definitions and results in Sections 2.1.3 to 2.1.5. Our main results are given in
Sections 2.2 to 2.4, where we study the complexity of the CRSharing problem and
present algorithmic options for the CRSharing problem.

22



Preliminaries 2.1

2.1 Preliminaries
In Section 2.1.1, we start by defining the model for the general version of the
CRSharing problem, which considers jobs of arbitrary sizes. Afterward, we discuss
an alternative interpretation of our model that will ease our argumentation in the
analysis part. Note that while the model description considers jobs of arbitrary
sizes, from Section 2.1.2 on, which summarizes our results, we only consider problem
instances in which all jobs are of unit size. In Section 2.1.3, a graphical representation
of schedules is introduced, supplying the reader with an idea of the underlying
structure. Section 2.1.4 is intended to equip her with the tools needed for the
analysis in later sections by discussing and proving some basic structural properties.
Finally, we analyze a simple round robin algorithm in Section 2.1.5.

2.1.1 Model & Notation

Consider a system of m identical fixed-speed processors sharing a common resource.
At every time step t ∈ N, the scheduler distributes the resource among the m
processors. To this end, each processor i is assigned a share Ri(t) ∈ [0, 1] of the
resource, which it is allowed to use in time step t. It is the responsibility of the
scheduler to ensure that the resource is not overused. That is, it must guarantee that∑m
i=1Ri(t) ≤ 1 holds for all t ∈ N. For each processor i, there is a sequence of ni ∈ N

jobs that must be processed by the processor in the given order. We write (i, j)
to refer to the j-th job on processor i. A processor is not allowed to process more
than one job during any given time step. Each job (i, j) has a processing volume
(size) pij ∈ R>0 and a resource requirement rij ∈ [0, 1]. The resource requirement
specifies what portion of the resource is needed to process one unit of the job’s
processing volume in one time step. In general, when a job is granted an x-portion
of its resource requirement (x ∈ [0, 1]), exactly x units of its processing volume are
processed in that time step. There is no benefit in granting a job more than its
requested share of the resource. That is, a job’s processing cannot be sped up by
granting it, for example, twice its resource requirement. A feasible schedule for an
instance of the CRSharing problem consists of m resource assignment functions
Ri : N→ [0, 1] that specify the resource’s distribution among the processors for all
time steps without overusing the resource. At any time t, each processor i uses its
assigned resource share Ri(t) to process the job (i, j) with minimal j among all
unfinished jobs. We measure a schedule’s quality by its makespan (i.e., the time
needed to finish all jobs). Our goal is to find a feasible schedule having minimal
makespan. To simplify notation, we often identify a schedule S with its makespan
(e.g., writing S/OPT for the makespan of schedule S divided by the makespan of an
optimal schedule OPT).

Alternative Model Interpretation. An alternative interpretation of our scheduling
problem can be obtained by the following observation: Consider a job (i, j) whose
processing is started at time step t1. It receives a share Ri(t1) ∈ [0, 1] of the resource.
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By the previous model definition, exactly min(Ri(t1)/rij, 1) units of its processing
volume are processed. Similarly, in the next time step min(Ri(t1 + 1)/rij, 1) units of its
processing volume are processed. Consequently, the job is finished at the minimal
time step t2 ≥ t1 such that ∑t2

t=t1 min(Ri(t)/rij, 1) ≥ pij or, equivalently if rij > 0, at
the minimal time step t2 ≥ t1 with

t2∑
t=t1

min(Ri(t), rij) ≥ rijpij =: p̃ij . (2.1)

This observation allows us to get rid of the resource aspect by considering variable
speed processors instead of fixed speed processors. The speed of such variable speed
processors can be changed at runtime1. For our reinterpretation, think of a job (i, j)
to have size p̃ij and of a processor i to be of variable speed. The value Ri(t) denotes
the speed processor i is set to during time step t. The scheduler is in control of these
processor speeds, but it must ensure that the aggregated speed of all processors
does never exceed one. Moreover, in addition to the system’s speed limit, each
job (i, j) is annotated with the maximum speed rij it can utilize. In this light, our
CRSharing problem becomes a speed scaling problem to minimize the makespan
in which the scheduler is limited by both the system’s maximum aggregated speed
and a per-job speed limit. The unit size restriction for the CRSharing problem
translates into the restriction that job sizes p̃ij equal the corresponding resource
requirements rij . In other words, all jobs must be processable in one time step if
run at maximum speed.

During the analysis, it will sometimes be more convenient to think of our problem
in the way described above. For example, note that the total size (in the alternative
model description) of all jobs in the system is ∑m

i=1
∑ni
j=1 p̃ij . This load is processed

at a maximal aggregated speed of 1. Thus, all processors together cannot process
more than one unit of this total load per time step. This yields the following simple
but useful observation:

Observation 2.1. Any feasible schedule needs at least ∑m
i=1

∑ni
j=1 rijpij time steps

to finish a given set of jobs with resource requirements rij and sizes pij .

At times, we will use the notion remaining resource requirement to denote the
remnants of a job’s initial workload p̃ij .

Additional Notation & Notions. The following additional notions and notation
will turn out to be helpful in the analysis and discussion. For a processor i with ni
jobs, we define ni(t) as the number of unfinished jobs at the start of time step t. In
particular, we have ni(1) = ni. The value ji(t) := ni − ni(t) denotes the number of
jobs completed on machine i at the start of step t. A processor i is said to be active
at time step t if ni(t) > 0. Similarly, we say that job (i, j) is active at time step t if
ji(t) = ni − ni(t) = j − 1 (i.e., if processor i has finished exactly j − 1 jobs at the

1This is also known as speed scaling (cf. [YDS95]).
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start of time step t). We use Mj := { i | ni ≥ j } to denote the set of all processors
having at least j jobs to process. Finally, we define n := maxi ni as the maximum
number of jobs any processor has to process.

2.1.2 Contribution

We introduce a new resource-constrained scheduling model for multiple processors,
where job processing speeds depend on the assigned share of a common resource.
Our focus lies on a variant with unit size jobs where the scheduler only has to
manage the distribution of the resource among all processors. The objective is to
minimize the total makespan (maximum completion time over all jobs). Even this
simple variant turns out to be NP-hard in the number m of processors. For fixed
m, we show that the problem is solvable in polynomial time. Since the respective
algorithm is not practical, we also provide an exact quadratic-time algorithm for
m = 2 and an approximation algorithm for any fixed m. The latter achieves a
worst-case approximation ratio of exactly 2− 1/m. Our approach uses a hypergraph
representation that allows us to capture non-trivial structural properties.

2.1.3 Graphical Representation

For the remainder of this chapter, we assume that all jobs have unit size. This
section introduces a hypergraph notation for CRSharing schedules.

Given a problem instance of CRSharing with unit size jobs and a corresponding
schedule S, we can define a weighted hypergraph HS = (V,E) as follows: The nodes
of HS and their weights correspond to the jobs and their resource requirements,
respectively. That is, the node set is given by V = {(i, j)|i = 1, 2, . . . ,m ∧ j =
1, 2, . . . , ni}, and the weight of a node (i, j) ∈ V is rij . The edges of HS correspond
to the schedule’s time steps and contain the currently active jobs. More formally, the
edge et ⊆ V for time step t is defined as et := { (i, j) | ni(t) > 0 ∧ j = ni − ni(t) + 1 }.
Thus, if we abuse S to also denote the makespan of schedule S, the edge set of HS

can be written as E = { e1, e2, . . . , eS }. We call HS the scheduling (hyper)graph of
S. See Figure 2.1a for an illustration.

Connected Components. In Section 2.1.4 and during the analysis in Section 2.4,
we will see that the connected components formed by the edges of a scheduling
graph HS carry a lot of structural information about the schedule. To make use of
this information, let us introduce some notation that allows us to directly argue via
such components. We start with an observation that follows from the construction
of HS .

Observation 2.2. Consider a connected component C ⊆ V of HS and two time
steps t1 ≤ t2 with et1 ∪ et2 ⊆ C. Then, for all t ∈ { t1, t1 + 1, . . . , t2 } we have
et ⊆ C.
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2020 1010 1010 1010

5050 5555 9090 5555 1010

5050 4040 9595

e1 e2 e3 e4

e5 e6

(a) Scheduling graph HS trying to greedily
finish as many jobs as possible.

C1 C2

C3

2020 1010 1010 1010

5050 5555 9090 5555 1010

5050 4040 9595

(b) Connected components of the scheduling
graph, ordered from left to right.

Figure 2.1: Hypergraph representation of a schedule for three processors. Resource
requirements are given as node labels (in percent). Nodes are laid out
such that each row corresponds to the job sequence of one processor
(from left to right). Edges correspond to the schedule that prioritizes
jobs in order of increasing remaining resource requirement.

Let N denote the total number of connected components and let Ck denote the k-
th connected component (for k ∈ { 1, 2, . . . , N }). Moreover, we use #k to denote the
number of edges of the k-th component. That is, we have #k = |{ et ∈ E | et ⊆ Ck }|.
Observation 2.2 implies that a component Ck consists of #k consecutive time steps.
This allows us to order the components such that, for any two components k, k′ and
edges et ⊆ Ck, et′ ⊆ Ck′ with t ≤ t′, we have k ≤ k′. That is, we can think of the
components being processed by the processors from left to right. See Figure 2.1b
for an illustration.

The maximal size of an edge in the k-th component, which equals the size of
its first edge, gives us a rough estimate for the amount of potential parallelism
available during the corresponding time steps. Note that while the size of edges
et is monotonously decreasing in t, a schedule that tries to balance the number of
remaining jobs on each processor will decrease the edge size only at the end of a
component (for all components but the last one). We will make use of this fact in
the proof of Lemma 2.21. For now, let us honor its foreshadowed importance by the
following definition:

Definition 2.3 (Component Class). Given a component Ck, we define its class qk
as the size of its first edge. That is, qk := |et| with t = min { t′ | et′ ⊆ Ck }.

Besides being an upper bound on the size of a component’s edges, the class qk
is also decreasing in k. Moreover, Lemma 2.11 will show that a component’s class
allows us to formulate an important relation between its size and the total number
of its edges.

2.1.4 Structural Properties
Let us use the introduced notions to point out some structural properties of schedules
for the CRSharing problem with unit size jobs. We start by defining three properties
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of schedules and show in Lemma 2.7 that we can restrict our analysis to schedules
which have them.

Definition 2.4 (Non-wasting). We call a schedule non-wasting if it finishes all
active jobs during every time step t with ∑m

i=1Ri(t) < 1.

Definition 2.5 (Progressive). A schedule is progressive if, among all jobs that are
assigned resources, at most one job is only partially processed during any time step
t. More formally, we require that

|{ i | ni(t) = ni(t+ 1) ∧Ri(t) > 0 }| ≤ 1 (2.2)

holds for all t ∈ N.

Definition 2.6 (Nested). Let S(i, j) and C(i, j) denote the starting step and the
completion step of job (i, j), respectively. A schedule is nested if, at no time t,
there are two jobs (i, j) and (i′, j′) such that S(i, j) < S(i′, j′) ≤ t < C(i′, j′),
S(i′, j′) < C(i, j) and (i, j) is running during step t.

This last property intuitively means that among the partially processed jobs, we
always prefer to run and complete the job that started at the latest step. Note that
the condition of a nested schedule in particular implies that, for no jobs (i, j) and
(i′, j′), S(i, j) < S(i′, j′) < C(i, j) < C(i′, j′). Otherwise we could choose t = C(i, j)
and job (i, j) would run in step t = C(i, j). An example for a nested and an unnested
schedule is given in Figure 2.2.

Lemma 2.7. Every schedule S can be transformed into a schedule S′ which is
non-wasting, progressive and nested without increasing its makespan.

Proof. Making a given schedule non-wasting is trivial because, given a time step
t with ∑m

i=1Ri(t) < 1 and an active job (i′, j′), we can increase Ri′(t) until either
the job is finished or ∑m

i=1Ri(t) = 1 (and decrease the resource consumption of this
job by the same amount in later steps). In both cases, the schedule’s makespan
does not increase. By doing this for each step t in ascending order, we will get a
non-wasting schedule.

In the following we assume that we start with a non-wasting schedule. For each of
the following modifications, it is easy to check that the schedule remains non-wasting.

First we guarantee by an exchange argument that for no two jobs (i, j) and (i′, j′)
it holds that S(i, j) < S(i′, j′) < C(i, j) < C(i′, j′). Suppose we have a pair of jobs
(i, j) and (i′, j′) violating the condition. Consider all the resource the two jobs are
using in steps S(i′, j′), . . . , C(i, j) and redistribute it in each of these steps so that
(i, j) is completed before or when (i′, j′) is started. This is done by first giving all
resource assigned to (i′, j′) to (i, j) until (i, j) is finished and then giving all resource
assigned to (i, j) to (i′, j′). It follows that C(i, j) ≤ S(i′, j′) and that the condition
is not longer violated for this pair of jobs. Furthermore, C(i, j) is not increased,
S(i′, j′) is not decreased and all other start and completion times remain unchanged,
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t0 t1 t2 t3

p0 50 50 50 50

p1 100

p2 100

(a) Input

t0 t1 t2 t3

p0 50 50 50 50

p1 50 50

p2 50 50

(b) Nested schedule

t0 t1 t2 t3

p0 50 50 50 50

p1 50 50

p2 50 50

(c) Unnested schedule

Figure 2.2: The schedules in Figure 2.2b and 2.2c are based on the input in Fig-
ure 2.2a and observe a resource limit of 100. Both schedules are non-
wasting and progressive, but only the schedule in Figure 2.2b is nested.
In the other schedule, p1’s job is already running when p2’s job is started,
and completed before p2’s job is completed.

so that no new violating pair is created. In this way we can eliminate the violating
pairs one by one.

Now we modify the schedule for each time step t = 1, 2, . . . so that for this t the
resulting schedule is nested and progressive. More precisely, we alter it in such a way
that there is at most one job running in step t and active after step t; furthermore
such a job has the smallest completion time among the jobs active after step t. This
guarantees both properties.

Let (i, j) and (i′′, j′′) be two jobs that are running in step t and active after step
t. Further, let (i, j) have the smallest completion time among these jobs. Then at
step t, give the maximal amount of resource assigned to job (i′′, j′′) to job (i, j), and
balance this exchange by giving the same amount of resource from (i, j) to (i′′, j′′)
at later time steps. Note that this exchange does not change C(i′′, j′′). As a result
of the exchange, either C(i, j) = t or (i′′, j′′) does not run at time t. In both cases
we have decreased the number of jobs that are partially processed at time t.

Decreasing C(i, j) may create a new pair with S(i, j) < S(i′, j′) < C(i, j) <
C(i′, j′), however only for S(i′, j′) > t. We treat any such pair as in the previous
paragraph, which changes the schedule only after time t. Now we repeat the process
for the next pair of (i, j) and (i′′, j′′) as needed.
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Lemma 2.7 allows us to narrow our study to the subclass of non-wasting, progres-
sive and nested schedules, and from now on we will assume any schedule to have
these properties (if not stated otherwise).

Balanced Schedules. Intuitively, good schedules should try to balance the number
of remaining jobs on each processor. This may provide the scheduler with more
choices to prevent the underutilization of the resource later on (e.g., when only one
processor with many jobs of low resource requirements remains). The better part
of Section 2.4 serves the purpose of confirming this intuition. In the following, we
formalize this property of balanced schedules and, subsequently, work out further
formal and concise properties of balanced schedules.

Definition 2.8 (Balanced). We say a schedule is balanced if, whenever a processor
i finishes a job at a time step t, any processor i′ with ni′(t) > ni(t) also completes a
job.

Proposition 2.9. Every balanced schedule features the following properties:

1. For all i1, i2 with ni1 ≥ ni2 and for all t ∈ N, we have ni1(t) ≥ ni2(t)− 1.

2. For all i1, i2 with ni1 > ni2 and for all t ∈ N, we have ni1(t) ≤ ni2(t)+ni1−ni2 .

Proof. Both statements follow easily from the definition of balanced schedules. To
see this, first note that both properties hold for t = 1, since ni(1) = ni for all
processors i. Moreover, at any time step t, the number ni(t) of remaining jobs
cannot increase, and decreases by at most one during the current time step. Thus,
it is sufficient to show that if one of the statements holds at some time step t with
equality, it still holds at time step t+ 1. For Property 1, ni1(t) = ni2(t)− 1 and the
balance property imply that if i1 finishes its job, then so must i2. Thus, we have
ni1(t+ 1) ≥ ni2(t+ 1)− 1. The very same argument works for Property 2.

Proposition 2.10. Consider a balanced schedule and the set Mj of processors
having at least j jobs. Let (i, j) be a job that is active at time step t and assume
ni(t) > 1 (i.e., it is not the last job on processor i). Then all processors i′ ∈Mj are
active at time step t.

Proof. Let i′ ∈Mj be a processor with at least j jobs and consider the case ni′ ≥ ni.
By Proposition 2.9, Property 1, we have ni′(t) ≥ ni(t) − 1 > 0, so processor i is
active at time t. If ni′ < ni, we can apply Proposition 2.9, Property 2 and get

ni′(t) ≥ ni′ − (ni − ni(t)) = ni′ − (j − 1) ≥ 1. (2.3)

The equality uses the fact that job (i, j) is active at time step t, implying that the
number ni − ni(t) of jobs finished by processor i before time step t is exactly j − 1.
The last inequality comes from i′ ∈Mj .
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The final structural property of balanced schedules addresses, as indicated earlier,
how a component’s class allows us to relate its size (number of nodes) to the total
number of its edges.

Lemma 2.11. Consider a non-wasting, progressive, and balanced schedule. The
number of nodes and edges and the size of the first edge in a component are related
via the following properties:

1. The inequality |Ck| ≥ #k + qk − 1 holds for all k ∈ { 1, 2, . . . , N − 1 }.

2. The last component satisfies |CN | ≥ #N .

Proof. The second statement follows immediately from Lemma 2.7, which (by the
schedule being progressive) states that in each time step (i.e., for each edge) at least
one job is finished.

For the first statement, fix a k ∈ { 1, 2, . . . , N − 1 } and consider the first edge et
of the component Ck. By definition, this edge consists of qk different nodes. We
now show that each of the remaining #k − 1 edges adds at least one new node to
the component. So fix an edge et′ ⊆ Ck with t′ > t and consider the time step t′− 1.
Since we know that at least one job is finished in every time step (Lemma 2.7)
and that S is balanced, at least one of the processors having the maximal number
of remaining jobs finishes its current job. More formally, there is some processor
i′ = arg maxi ni(t′ − 1) that finishes its currently active job at time step t′ − 1.
Because of k 6= N , we also know that ni′(t′ − 1) > 1, such that there is a new active
job for processor i′ at time step t′. This yields the lemma’s first statement.

2.1.5 Warm-up: Round Robin Approximation
Consider the following simple round robin algorithm for the CRSharing problem
(with unit size jobs): Given a problem instance where the maximal number of jobs
on a processor is n, the algorithm operates in n phases. During phase j, it processes
the j-th job on each processor, assigning the resource in an arbitrary way to any
processors that have not yet finished their j-th job. Note that this algorithm may
waste resources (although only between two phases) and is possibly non-progressive.
Still, the following theorem shows that it results in schedules that are not too bad.

Theorem 2.12. The RoundRobin algorithm for the CRSharing problem with
unit job sizes has a worst-case approximation ratio of exactly 2.

Proof. We start with the upper bound on the approximation ratio. RoundRobin
algorithm needs exactly

⌈∑
i∈Mj

rij
⌉

time steps to finish the j-th phase (cf. “Alterna-
tive Model Interpretation” in Section 2.1.1). Thus, the makespan of a RoundRobin
schedule can be bounded by

n∑
j=1


∑
i∈Mj

rij

 ≤ n+
n∑
j=1

∑
i∈Mj

rij . (2.4)
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0101 0202 0303 . . .. . . 9999 100100

100100 9999 9898 . . .. . . 0202 0101
(a) OPT schedule, wastes no resources and needs n+ 1 time steps.

Phase 1 Phase 2 Phase 3 . . . Phase
99

Phase
100

0101 0202 0303 . . .. . . 9999 100100

100100 9999 9898 . . .. . . 0202 0101
(b) RoundRobin, uses two time steps per phase and wastes 99% of the resource at the end

of each phase.

Figure 2.3: Worst-case example for RoundRobin schedule. Node labels give the
jobs’ resource requirements in percent.

Since any processor can finish at most one job per time step, even an optimal schedule
has a makespan of at least n. Observation 2.1 yields another lower bound on the
optimal makespan, namely ∑n

j=1
∑
i∈Mj

rij . Together, we get that RoundRobin
computes a 2-approximation.

For the lower bound on the approximation ratio, consider the following CRShar-
ing problem instance with unit size jobs on two processors: Let n ∈ N, ε := 1/n > 0
and define the resource requirements for the first processor as r1j := j · ε for
j ∈ { 1, 2, . . . , n }. For the second processor, we define r2j := (1 + ε)− r1j . Note that
each processor has to process n jobs. Figure 2.3 illustrates the instance as well as
the resulting optimal and RoundRobin schedules for n = 100. An optimal schedule,
shown in Figure 2.3a, will waste no resource at all. In contrast, the RoundRobin
schedule, as indicated in Figure 2.3b, wastes a share of 1− ε of the resource in every
second time step. As a result, the RoundRobin schedule needs 2n time steps, while
an optimal schedule can finish the same workload in n + 1 time steps. Thus, for
n→∞ we get an approximation ratio of 2.
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2.2 Problem Complexity
One of our first major results is the following theorem, showing that the CRSharing
problem is (even in the case of unit size jobs) NP-hard in the number of processors.
Theorem 2.13. CRSharing with unit size jobs is NP -hard if the number of
processors is part of the input.
Proof. In the following, we prove the NP-hardness of the CRSharing problem
with unit size jobs via a reduction from the Partition problem. Our reduction
transforms a Partition instance of n elements into a CRSharing instance on n
processors, each having three jobs to process.

Let a1, a2, . . . , an ∈ N and A ∈ N with ∑n
i=1 ai = 2A be the input of the

Partition instance (w.l.o.g., A ≥ 2). For our transformation, let ε ∈ (0, 1/n) and
set δ := nε < 1. We define the first and last job on any processor i to have resource
requirements ri1 = ri3 = ãi := ai

A+δ . The second job on any processor i has a resource
requirement of ri2 = ε̃ := ε

A+δ . Note that no schedule can finish the first job of all
tasks in only one time step as we have ∑n

i=1 ri1 = 2A
A+δ > 1 by construction. Now,

with each task containing three jobs, any schedule needs at least four time steps to
finish all jobs. To finish our reduction, we show that there is an optimal schedule
with makespan 4 if and only if the given Partition instance is a YES-instance (i.e.,
if it can be partitioned into two sets that sum up to exactly A).

Assume we are given a YES-instance of Partition and let, w.l.o.g., the first k
elements form one partition. The schedule shown in Figure 2.4a is feasible and has
makespan 4. Now assume we are given a NO-instance and an optimal schedule for
the corresponding CRSharing instance. W.l.o.g., exactly the first k processors
finish their jobs in the first time step. This implies ∑k

i=1 ãi ≤ 1, yielding the
inequality ∑k

i=1 ai ≤ A + δ < A + 1. Since the given Partition instance is a
NO-instance, we also have ∑k

i=1 ai 6= A. Together this implies ∑k
i=1 ai ≤ A − 1,

which, in turn, yields ∑n
i=k+1 ai ≥ A+ 1. Since we have not yet finished the jobs

(k + 1, 1), (k + 2, 1), . . . , (n, 1), we need at least two more time steps until we can
start working on (k + 1, 3), (k + 2, 3), . . . , (n, 3). Their total resource requirement is
at least

n∑
i=k+1

ãi

∑n
i=k+1 ai
A+ δ

≥ A+ 1
A+ δ

> 1. (2.5)

Thus, after the first three time steps, we need at least two more time steps to finish
the remaining jobs, yielding a makespan of at least 5.

Note that we also get the following lower bound from the proof of Theorem 2.13:
Corollary 2.14. It is NP-hard to approximate CRSharing with a factor better
than 5/4.

While Theorem 2.13 proves NP-hardness of our problem, it leaves the question
concerning the problem’s complexity for constant m. In the next two sections we
will show that in this case the problem is polynomial-time solvable.
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(a) Optimum for YES-instances.
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ãnãn ε̃̃ε ãnãn

(b) Optimum for NO-instances.

Figure 2.4: Problem instance and schedules used for the reduction from Partition
to CRSharing with unit size jobs.
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2.3 Optimal Algorithms

We start with a simple optimal algorithm for the variant with two processors in
Section 2.3.1. In Section 2.3.2, we present a dynamic programming approach to
solve the problem in polynomial time for an arbitrary number of processors.

2.3.1 Algorithm for Two Processors

While the previous section proves NP-hardness in the number of processors, there
are exact polynomial-time algorithms for a fixed number of processors. Before we
state and analyze the algorithm for arbitrary m ≥ 2 in Section 2.3.2, we introduce a
faster algorithm for two processors. Algorithm OptResAssignment traces out all
reasonable scheduling decisions. To keep this approach feasible, we use Lemma 2.7
(implying the existence of an optimal schedule that finishes at least one job in each
time step) and another structural property (see Lemma 2.15). These allow us to
discard bad scheduling decisions early on.

Algorithm Description. The OptResAssignment algorithm uses a dynamic
programming approach. To this end, it maintains a two-dimensional array B of
size n1 × n2. Each entry holds a tuple B[i1, i2] = (r, t), which states that there is
a schedule that, at time step t, has finished all jobs (1, j1) with j1 < i1 and (2, j2)
with j2 < i2, and for which the remaining resource requirements of (1, i1) and (2, i2)
sum up to r. OptResAssignment fills B in n1 + n2 − 1 phases, one phase for
each diagonal of B. It maintains the invariant that, from the start of phase ` on,
all entries on the (`− 1)-th diagonal (i.e., all B[i1, i2] with i1 + i2 = `) are optimal.
More precisely, such entries correspond to subschedules with minimal t (and, for this
t, minimal r) reaching the jobs (1, i1) and (2, i2). See Listing 2.1 for the pseudocode.
Note that in our algorithm description, we compute only the makespan (and not a
corresponding schedule) of an optimal solution. However, given the array B, one
can easily trace back the final entry and derive an explicit schedule in linear time.

Correctness & Runtime. We start with a simple lemma, which will be used later
on to show that the diagonal-wise processing of B is correct.

Lemma 2.15. Consider two non-wasting and progressive schedules S and S′ as
well as a time step t such that ni(t) ≤ n′i(t) for i ∈ { 1, 2 }. Let vi(t) and v′i(t) be
the remaining resource requirement of the job that is active at time t on processor
i ∈ { 1, 2 } in schedule S and S′, respectively. If

1. n1(t) < n′1(t) or n2(t) < n′2(t), or

2. n1(t) = n′1(t) and n2(t) = n′2(t) and, w.l.o.g., v1(t) + v2(t) ≤ v′1(t) + v′2(t),

then we can transform S without changing the first t− 1 time steps such that S ≤ S′.
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1 [resource requirements are stored in A1 and A2]
2 [subschedules are stored in two-dimensional array B]
3 [extend A1 as well as A2 by an extra 0-entry]
4 n1 = length(A1); n2 = length(A2);
5 initialize array B[1 . . . n1, 1 . . . n2] with null entries
6 B[1, 1] =

(
A1[1] +A2[1], 0

)
7 for ` from 2 to n1 + n2 − 1
8 for i1 from max { 1, `− n2 } to min { `− 1, n1 }
9 i2 = `− i1

10 (r, t) = B[i1, i2]
11 if i1 = n1
12 add

(
i1, i2 + 1, 0, A2[i2 + 1], t+ 1

)
13 else if i2 = n2
14 add

(
i1 + 1, i2, A1[i1 + 1], 0, t+ 1

)
15 else if r ≤ 1
16 add

(
i1 + 1, i2 + 1, A1[i1 + 1], A2[i2 + 1], t+ 1

)
17 add

(
i1, i2 + 1, 0, A2[i2 + 1], t+ 1

)
18 add

(
i1 + 1, i2, A1[i1 + 1], 0, t+ 1

)
19 else
20 add

(
i1, i2 + 1, A1[i1] +A2[i2]− 1, A2[i2 + 1], t+ 1

)
21 add

(
i1 + 1, i2, A1[i1 + 1], A1[i1] +A2[i2]− 1, t+ 1

)
22 min = B[n1, n2]
23
24 function add(i1, i2, v1, v2, t)}
25 r = v1 + v2
26 (rold, told) = B[i1, i2]
27 if (rold, told) = null ∨ t < told ∨ (t = told ∧ r < rold)
28 B[i1, i2] = (r, t)

Listing 2.1: Algorithm OptResAssignment computes an optimal solution for the
two processor case in a runtime of O

(
n2).

Proof. First observe that we already have S ≤ S′ if one of the properties applies at
the end of S. Thus, it suffices to show that the properties can be maintained from t
to t+ 1.

1. Without loss of generality, assume n1(t) < n′1(t). If S′ finishes only one job, S
can complete a job on the same processor and hence maintains the inequalities. If S′
finishes both jobs, this yields n′i(t+1) = n′i(t)−1 for i ∈ { 1, 2 }. Thus, if S finishes a
job on processor 2 and assigns the remaining resource to the job on processor 1, this
results in n1(t+1) = n1(t) ≤ n′1(t+1) and n2(t+1) = n2(t)−1 ≤ n′2(t+1). If equality
applies (otherwise Property 1 holds), then the same jobs are active at time t+1 in S′
and S, say j1 and j2. This yields v1(t+1)+v2(t+1) ≤ r1j1 +r2j2 = v′1(t+1)+v′2(t+1),
therefore Property 2 applies.

2. Now suppose v1(t) + v2(t) ≤ v′1(t) + v′2(t). If S′ finishes both jobs, S can do
the same and Property 2 holds with equality. If S′ only finishes one job (w.l.o.g.,
job j − 1 on processor 1), S can also finish that job. If v1(t) + v2(t) ≤ 1, it also
completes a second job and therefore Property 1 applies. On the other hand, if
v1(t) + v2(t) > 1, this results in v1(t+ 1) + v2(t+ 1) = r1j + (v1(t) + v2(t)− 1) ≤
r1j + (v′1(t) + v′2(t)− 1) = v′1(t+ 1) + v′2(t+ 1), thus Property 2 applies.
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Theorem 2.16. Consider a CRSharing instance with unit size jobs and two
processors. The following statements hold:

1. OptResAssignment computes an optimal solution.

2. OptResAssignment has runtime O
(
n2).

Proof. The correctness of Statement 2 is immediate, as OptResAssignment runs
in O (n) phases and each phase considers the O (n) entries on the corresponding
diagonal. It remains to prove the correctness of Statement 1.

Remember the invariant from the algorithm description: At the beginning of
phase `, for each entry B[i1, i2] = (r, t) on the (` − 1)-th diagonal the following
holds: t is the earliest time at which all jobs preceding (1, i1) and (2, i2) can be
finished and r is, for this t, the smallest possible sum of the remaining resource
requirements of (1, i1) and (2, i2). If this invariant holds for phase n1 + n2, the
correctness follows immediately (we use dummy jobs, so the last diagonal entry
corresponds to all non-dummy jobs being fully processed). For the first phase,
the invariant’s correctness is obvious from the initialization, as there are no jobs
preceding (1, 1) and (2, 1). Now assume the invariant holds for the first ` phases and
consider an entry B[i1, i2] processed in the (`+ 1)-th phase. This entry corresponds
to a subschedule that has processed all jobs preceding (1, i1) and (2, i2). Since
each processor can finish at most one job in one time step, this subschedule must
originate from one of the subschedules S1, S2, or S3 that have finished all jobs
preceding (i) (1, i1 − 1) and (2, i2), (ii) (1, i1) and (2, i2 − 1), and (iii) (1, i1 − 1) and
(2, i2 − 1), respectively. By our induction hypothesis, the entries in B[i1 − 1, i2],
B[i1, i2 − 1], and B[i1 − 1, i2 − 1] correspond to the best possible such schedules.
Since the algorithm uses these to compute B[i1, i2] (Lines 9 to 21) and the best of
them is chosen as predecessor (Line 27, correct by Lemma 2.15), the invariant is
established for entry B[i1, i2] (and, similarly, for all remaining entries on the same
diagonal).

An alternative implementation of the algorithm replaces the 2-dimensional array
by a priority queue that orders intermediate schedules by their index sum i1 + i2.
Although adding/retrieving such an entry has amortized costs O (log(n)), this
implementation runs faster for most of the instances, as it only considers index
pairs that actually point to a schedule and many index pairs are usually not used.
Consider, for instance, pair (1, 1). If A1[1] +A2[1] ≤ 1, the algorithm will proceed
with (2, 2) and all entries (1, i2) and (i1, 1) with i1, i2 > 1 will never be used.
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2.3.2 Algorithm for m Processors
While in the previous section we discussed OptResAssignment, an exact algorithm
for m = 2 having a worst case runtime of O

(
n2), this section shows that there is

even a polynomial-time algorithm for any fixed m; we call it OptResAssignment2.
In the proof we will restrict the schedules to nested ones (see Definition 2.6) and
use the new notion of an (extended) configuration representing the current state of
a schedule. We argue that only a polynomial number of extended configurations
has to be considered and show that this implies a polynomial runtime.

Additional Notation. The configuration of a schedule S in time step t can be
described by the sequence (j1(t), . . . , jm(t)) of jobs completed and the amounts
(v1(t), . . . , vm(t)) of resource spent for the active jobs before time step t. In particular
vi(t) = 0 if the active job has not started yet.

Definition 2.17 ((Extended) configuration; core; support). A configuration γ is
a vector (t, j1(t), . . . , jm(t), v1(t), . . . , vm(t)) where ji(t) ∈ { 0, . . . , ni } and vi(t) ∈
[0, 1]. The core of γ is defined as core(γ) = (j1(t), . . . , jm(t)) and its support as
supp(γ) = { i | vi(t) > 0 }. Further, we define the extended configuration of γ as the
tuple E(γ) := (γ, (i, γi)i∈supp(γ)), where γi is the configuration after the time step in
which processor i received resource for the last time.

We say two configurations are step-equal if they are in the same time step
and if their corresponding cores are equal. Two extended configurations E(γ) =
(γ, (i, γi)i∈supp(γ)) and E(γ′) = (γ′, (i, γ′i)i∈supp(γ′)) are step-equal if 1) γ and γ′ are
step-equal, 2) they have the same support and 3) γi and γ′i are step-equal for all
i ∈ supp(γ).

In order to obtain a polynomial-time algorithm, we reduce the number of rel-
evant configurations to a polynomial number. Obviously, if both configurations
(t, j1(t), . . . , jm(t), v1(t), . . . , vm(t)) and (t′, j′1(t′), . . . , j′m(t′), v′1(t′), . . . , v′m(t′)) are
feasible with t ≤ t′, j`(t) ≥ j′`(t′) and v`(t) ≥ v′`(t′) for all 1 ≤ ` ≤ m, we do not need
the second configuration, as the first one is always to be preferred. We say that the
first configuration dominates the second one. The following lemma proves a natural
connection between this property of domination and step-equal configurations.

Lemma 2.18. If two extended configurations are step-equal, then one dominates
the other.

Proof. We prove the lemma by induction on | supp(γ)|.
First we consider the two cases | supp(γ)| = | supp(γ′)| = 0 and | supp(γ)| =
| supp(γ′)| = 1. If | supp(γ)| = 0, then all vi(t) = 0 and, hence, there cannot be
another configuration with the same core. In the second case, any two configurations
γ and γ′ differ only in one value vi(t) so that either γ dominates γ′ or vice versa.

Now consider any two non-dominated and step-equal extended configurations
(γ, (i, γi)i∈supp(γ)) and (γ′, (i, γ′i)i∈supp(γ′)) with | supp(γ)| = | supp(γ′)| ≥ 2. For
all i ∈ supp(γ), denote by ti the time step of γi (and γ′i), and let k such that
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1 C1 = { (1, 0, . . . , 0, 0, . . . , 0) }
2 for t from 2 to ∞
3 Ct := ∅
4 for all γ ∈ Ct−1
5 succ(γ) = successors of γ
6 store link between γ and each γ′ ∈ succ(γ)
7 Ct = Ct ∪ succ(γ)
8 if (t, n1 + 1, . . . , nm + 1, 0, . . . , 0) ∈ Ct
9 output path to this configuration

10 break
11 for all γ ∈ Ct
12 for all γ′ ∈ Ct \ { γ }
13 if γ dominates γ′
14 remove γ′ from Ct

Listing 2.2: Algorithm OptResAssignment2 computes an optimal solution for the
case with a constant number of processors in polynomial time.

tk = max { ti | i ∈ supp(γ) }. (Note that the ti are pairwise distinct because there is
at most one partly processed job in each time step.)

As the extended configurations are step-equal, the extended configurations after
time step tk, from which γ and γ′ are derived, namely (γk, (i, γi)i∈supp(γ)\{ k }) and
(γ′k, (i, γ′i)i∈supp(γ′)\{ k }), are also step-equal. They must be the same because, due to
the induction hypothesis, there are no two different non-dominated and step-equal
extended configurations with a support smaller than | supp(γ)|.

After tk, none of the tasks in supp(γ) received resource in γ or γ′ so that vi(t) =
v′i(t) for all i ∈ supp(γ) \ { k }. Furthermore, all of the resource was used in these
time steps because there were unfinished jobs in each of them. And since the same
set of jobs was completed in these time steps, it must hold that ∑i∈supp(γ) vi(t) =∑
i∈supp(γ) v

′
i(t) and, thus, vk(t) = v′k(t). Hence, E(γ) and E(γ′) are the same.

Algorithm. In order to find an optimal schedule, our algorithm OptResAssign-
ment2 (Listing 2.2) enumerates all configurations that are not dominated by another
configuration. Starting from the initial configuration (1, 0, . . . , 0, 0, . . . , 0), it com-
putes the configurations of the next time step on the basis of the configurations of
the current time step. While doing this, it makes sure that the respective schedules
remain non-wasting, progressive, and nested. In each time step, it additionally
removes all dominated configurations by a pairwise comparison of the new configu-
rations. When the algorithm hits an end configuration, it outputs the path to it
and stops.

Theorem 2.19. OptResAssignment2 computes an optimal schedule in time
polynomial in n.

Proof. In each pass of the outer for-loop, OptResAssignment2 creates all sub-
schedules of t steps which are non-wasting, progressive and nested and whose current
configuration is not dominated by another one. As soon as a final configuration is
reached, the algorithm outputs the results and stops. Therefore, the correctness
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of the algorithm follows from Lemma 2.7 which states that there is at least one
optimal schedule among all non-wasting, progressive and nested schedules.

In order to show the runtime, we will roughly bound the number of configurations
that are computed by the algorithm: the non-dominated ones as well as the domi-
nated ones (that are discarded right away). From Lemma 2.18 we know that there
is exactly one configuration that dominates all the other step-equal configurations.

Let νext be the number of all possible non-dominated extended configurations
which are pairwise not step-equal. Since the number of time steps is bounded by∑m
i=1 ni ≤ m ·n and the number of cores by ∏m

i=1 ni ≤ nm, we can bound the number
of configurations which are not step-equal by m · n · nm. An extended configuration
consists of up to m+ 1 such configurations so that we obtain

νext ≤ (m · n · nm)m+1 = mm+1 · n(m+1)2
.

The number of (non-dominated and dominated) configurations that immediately
succeed a given configuration is bounded by m · 2m because there are at most 2m
possibilities to choose a subset of processors and at most m possibilities to choose
the partly processed job. Since each non-dominated configuration is used only once
as a base configuration (from which successive configurations are derived), we can
bound the total number of computed configurations by νext ·m · 2m.

The runtime for each time step is determined by the runtime for separating the
dominated configurations, which is quadratic in the number Ct of step-t configura-
tions. Hence, very roughly, we can bound the total runtime by

O
((
mm+1 · n(m+1)2 ·m · 2m

)2
)

= O
(
m2·m+4 · n2·(m+1)2 · 22·m

)
.
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2.4 Balanced Schedules

This section builds up to our last result, an approximation algorithm with a tight
approximation ratio of 2− 1/m, in Theorem 2.22. While the quality of the result is
obviously worse compared to OptResAssignment2, it can be achieved by running
a simple linear-time algorithm called GreedyBalance. We start by providing two
lower bounds for optimal schedules in terms of a given non-wasting and balanced
schedule, respectively.

2.4.1 Lower Bounds for Optimal Schedules

The following lemma derives the first lower bound by exploiting the fact that within
a component, any non-wasting schedule always makes full use of the resource.

Lemma 2.20. Let OPT denote the minimal makespan of a given problem instance
and consider the scheduling graph HS of a non-wasting schedule S. Then OPT can
be bounded by

OPT ≥
N∑
k=1

(#k − 1). (2.6)

Proof. From Observation 2.1, we immediately get that OPT ≥
∑m
i=1

∑ni
j=1 rij .

Consider a connected component Ck of our schedule containing the edges t1, t1 +
1, . . . , t2. Since S is non-wasting, ∑m

i=1Ri(t) = 1 holds for all time steps t ∈
{ t1, t1 + 1, . . . , t2 − 1 }. If there were such a t with ∑m

i=1Ri(t) < 1, the non-wasting
property would imply that all active jobs are finished. But then the edge et+1 would
not be part of Ck, yielding a contradiction. For the last time step t2 of Ck we have∑m
i=1Ri(t2) ≥ 0. Since S is feasible and, w.l.o.g., does not use more of the resource

than necessary, it follows that ∑S
t=1

∑m
i=1Ri(t) = ∑m

i=1
∑ni
j=1 rij . Let e(k) denote

the last edge of Ck. Then we get:

OPT ≥
m∑
i=1

ni∑
j=1

rij =
S∑
t=1

m∑
i=1

Ri(t) =
N∑
k=1

∑
et⊆Ck

∑
(i,j)∈et

Ri(t)

≥
N∑
k=1

∑
et⊆Ck
et 6=e(k)

1 =
N∑
k=1

(#k − 1).

The second lower bound centers around utilizing parallelism. In a problem instance
where each processor has exactly n jobs, the maximum exploitable parallelism is m.
On the other hand, in a schedule with components Ck of class qk, the maximum
parallelism that can be exploited in Ck is qk. In a sense, the following lemma shows
that, in the case of balanced schedules, this is not much worse than m.
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Lemma 2.21. Let OPT denote the minimal makespan of a given problem instance
and remember that n denotes the maximum number of jobs any processor has to
process. Given a balanced schedule S and its scheduling graph, OPT and n can be
bounded by the inequalities

OPT ≥ n ≥
N−1∑
k=1

|Ck|
qk

+ |CN |
m

. (2.7)

Proof. Remember that Mj is the set of processors having at least j jobs to process.
Since any schedule can process at most one job per processor in every time step,
even an optimal schedule needs at least n time steps to finish all jobs. We can write
n as ∑(i,j)∈V 1/|Mj |, yielding

OPT ≥ n =
∑

(i,j)∈V

1
|Mj |

=
N∑
k=1

∑
(i,j)∈Ck

1
|Mj |

≥
N−1∑
k=1

∑
(i,j)∈Ck

1
|Mj |

+
∑

(i,j)∈CN

1
m

=
N−1∑
k=1

∑
(i,j)∈Ck

1
|Mj |

+ |CN |
m

.

It remains to show that we have∑
(i,j)∈Ck

1
|Mj |

≥ |Ck|
qk

(2.8)

for all but the last component. So fix k ∈ { 1, 2, . . . N − 1 } and let (i0, j0) ∈ Ck be
a job of the k-th component with minimal j0. Let t0 be the first time step when
(i0, j0) is active. The minimality of j0 implies that et0 is the first edge of Ck and,
thus, qk = |et0 |. We distinguish two cases:

Case 1: ni0(t0) > 1
By applying Proposition 2.10, we get that all processors i ∈ Mj0 are active at
time step t0. This yields |Mj0 | ≤ |et0 | = qk. Moreover, for a job (i, j) ∈ Ck,
the minimality of j0 gives us |Mj0 | ≥ |Mj |. Combining both inequalities implies
|Mj | ≤ qk. Applying this to the first part of Equation (2.8) eventually yields the
desired inequality.

Case 2: ni0(t0) = 1
In this case, (i0, j0) is the last job on processor i0 at time step t0. However, for
any job (i, j) ∈ Ck \ et0 we have ni(t0) > 1. Given such a job, let (i, j′) be the
job processed on i at time step t0. Note that we have j′ < j and, thus, Mj ⊆Mj′ .
By applying Proposition 2.10, we get that all i′ ∈ Mj′ are active at time step t0.
Together with Mj ⊆Mj′ , this yields |Mj | ≤ qk. Thus, to prove Equation (2.8), it
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only remains to show ∑
(i,j)∈et0

1/|Mj | ≥
∑

(i,j)∈et0
1/qk(= 1).

To this end, note that since Ck is not the last component, there exists at least
one job (i1, j1) ∈ et0 with ni1(t0) > 1. Let this job be such that j1 is minimal.
Once more, by applying Proposition 2.10 we get that all i ∈Mj1 are active at time
step t0. Consider a job (i, j) ∈ et0 with i ∈ Mj1 . If it is the last job on i (i.e., if
ni(t0) = 1), we have j = ni. Together with the definition of Mj1 we get j = ni ≥ j1,
yielding |Mj | ≤ |Mj1 |. Similarly, if it is not the last job on i (i.e., if ni(t0) > 1), the
minimality of j1 gives us |Mj | ≤ |Mj1 |. This yields the desired inequality as follows:

∑
(i,j)∈et0

1
|Mj |

≥
∑

(i,j)∈et0
i∈Mj1

1
|Mj |

≥
∑

(i,j)∈et0
i∈Mj1

1
|Mj1 |

= 1.

2.4.2 Deriving a (2− 1/m)-Approximation
Finally, we have all the ingredients to prove our main result:

Theorem 2.22. Consider a CRSharing instance with unit size jobs and a feasible
schedule S for it that is non-wasting, progressive, and balanced. Then S is a
(2− 1/m)-approximation with respect to the optimal makespan.

Proof. In the following, let #∅ := ∑N

k=1 #k/N denote the average number of edges in
a component. Our proof uses two bounds on the approximation ratio. The first one
follows easily from Lemma 2.20 and leads to a better approximation for instances
with large #∅. The second bound is much more involved and mainly based on
Lemma 2.21. It yields a better approximation for instances with small #∅. To get
the first bound, we simply apply Lemma 2.20 and get

S

OPT ≤
∑N
k=1 #k∑N

k=1(#k − 1)
= #∅

#∅ − 1 . (2.9)

Let us now consider the second bound, based on Lemma 2.21. Our goal is to
show that the inequality

S

OPT ≤
m ·#∅

#∅ +m− 1 (2.10)

holds. Once this is proven, we can combine both bounds by realizing that the
bound from Equation (2.9) is monotonously decreasing in #∅ and the bound from
Equation (2.10) is monotonously increasing in #∅. Equalizing yields that their
minimum’s maximum is obtained at #∅ = 2m−1

m−1 , which results in an approximation
ratio of 2− 1/m.

The rest of this proof is geared towards proving Equation (2.10). We distinguish
two cases. The first case covers the easier part, where we have OPT ≥ n+ 1. That
is, even an optimal solution cannot finish the jobs in n time steps. The second case,
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where we have OPT = n, turns out to be more difficult to prove. While we can
apply a similar analysis, we have to take more care when bounding our algorithm’s
progress in the first two time steps.

Case 1: OPT ≥ n+ 1
Applying Lemma 2.21 to this case yields

S

OPT ≤
∑N
k=1 #k∑N−1

k=1
|Ck|
qk

+ |CN |
m + 1

≤ N ·#∅∑N−1
k=1

#k+qk−1
qk

+ #N+m−1
m

≤ N ·#∅∑N
k=1

#k+m−1
m

≤ m ·#∅
#∅ +m− 1 .

(2.11)

Case 2: OPT = n
If we apply the same analysis as in the first case, we will fall short of our desired
approximation ratio. Surprisingly, it turns out to be sufficient to bound only the
first two time steps more carefully. The idea of the following analysis is to consider
the first two time steps of S and the remaining part of S separately. To this end,
first note that we can assume, w.l.o.g., that #1 > 1 (i.e., the first two time steps
belong to the same component). If this is not the case, our algorithm finishes
all active jobs in the first time step and, thus, behaves optimally2. Consider the
remaining jobs/workloads after the first two time steps. We can regard this as a
subinstance of our original problem instance. Let S′ denote the subschedule that
results from restricting S to time steps t ≥ 3. We use N ′, #′k, q′k, and n′ to refer
to the corresponding properties of its scheduling graph HS′ . Note that we have
N ′ ≥ N − 1 (because of our assumption #1 > 1) as well as N ′ ·#′∅ = N ·#∅ − 2
(since exactly two time steps are missing in the subschedule). Moreover, we also
have n′ = n − 2. The inequality n′ ≥ n − 2 is obvious. For n′ ≤ n − 2, note that
OPT must finish the jobs in the set { (i, 1) | ni(1) ≥ n− 1 } ∪ { (i, 2) | ni(1) ≥ n }
during the first two time steps. Thus, the total resource requirement of these jobs is
at most two. Since S is balanced, it will prioritize and, thus, finish these jobs in the
first two time steps. Finally, we can bound our approximation ratio as follows (the
first inequality applies Lemma 2.21 to S′):

S

OPT = N ·#∅
2 + n′

≤ N ·#∅

2 +∑N ′−1
k=1

|C′
k
|

q′
k

+ |C′
N′ |
m

≤ N ·#∅

1 + 1
m +∑N ′−1

k=1
#′
k
+q′

k
−1

q′
k

+ #′
N′
m + m−1

m

2This reduces our analysis to a smaller problem instance.
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≤ N ·#∅

1 + 1
m +∑N ′

k=1
#′
k
+m−1
m

= N ·m ·#∅
m+ 1 +N ′ ·#′∅ +N ′(m− 1)

≤ N ·m ·#∅
2 + (N ·#∅ − 2) +N(m− 1) = m ·#∅

#∅ +m− 1 .

This proves that Equation (2.10) also holds in this case.

2.4.3 Tight Approximation Algorithm
So far, we analyzed the quality of balanced schedules in general, but did not
yet provide a concrete example of a corresponding algorithm. One of the most
natural greedy algorithms schedules jobs by prioritizing processors with a higher
number of remaining jobs and, in the case of a tie, by prioritizing jobs with larger
remaining resource requirements. We name this algorithm GreedyBalance. In
Section 2.4.2, we saw that balanced schedules and, as a consequence, the algorithm
GreedyBalance yield a (2− 1/m)-approximation for the CRSharing problem.
Now we show that this approximation ratio is tight for GreedyBalance.
Theorem 2.23. The GreedyBalance algorithm for the CRSharing problem
with jobs of unit size has a worst-case approximation ratio of exactly 2− 1/m.
Proof. Since GreedyBalance computes only balanced schedules, the upper bound
follows immediately from Theorem 2.22. For the lower bound, consider a family
of problem instances defined as follows: We define blocks of m × m jobs with
resource requirements as described below. For the first block, let ri1 := 1− i · ε for
i ∈ { 1, 2, . . . ,m }, r12 := 1 −∑m

i=1(1 − ri1) + ε, and ri2 := ε for i ∈ { 2, 3, . . . ,m }.
Moreover, define rij := ε for all i ∈ { 1, 2, . . . ,m } and j ∈ { 3, 4, . . . ,m }. This
finishes the first m × m-block of jobs. Having constructed the l-th block, we
construct the next block, starting with its first column j := l ·m + 1. We define
rij := 1 − (m − 1)ε for i ∈ { 1, 2, . . . ,m− 1 } and rmj := 1 −∑m−1

i′=1 rm−i′,j−i′ . For
the second column of this block we set r1,j+1 := 1−∑m

i=1(1−rij)+ε, and ri,j+1 := ε
for i ∈ { 2, 3, . . . ,m }. To finish the block, we set rij′ := ε for all i ∈ { 1, 2, . . . ,m }
and j′ ∈ { j + 2, j + 3, . . . , j +m− 1 }. We finish the construction once the next
block contains jobs with negative resource requirements. Note that by choosing ε
small enough, we can make this construction arbitrarily long. See Figure 2.5 for an
illustration of this construction and the schedules produced by GreedyBalance
and an optimal algorithm. Our construction is such that GreedyBalance needs
exactly 2m− 1 time steps per block: By balancing the number of remaining jobs,
it is forced to work m time steps on a block’s first column (which contains a total
resource requirement of roughly m) before it can finish the remaining m−1 columns
of a block. In contrast, the optimal algorithm ignores any balancing issues, which
allows it to exploit that all diagonals have a total resource requirement of 1.
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Block 1 Block 2 Block 3 . . .

9999 77 11 9898 1313 11 9898 1919 11 9898 . . .. . .

9898 11 11 9898 11 11 9898 11 11 9898 . . .. . .

9797 11 11 9292 11 11 8686 11 11 8080 . . .. . .

(a) An optimal schedule.

Block 1 Block 2 Block 3 . . .

9999 77 11 9898 1313 11 9898 1919 11 9898 . . .. . .

9898 11 11 9898 11 11 9898 11 11 9898 . . .. . .

9797 11 11 9292 11 11 8686 11 11 8080 . . .. . .

(b) Schedule computed by GreedyBalance.

Figure 2.5: Construction and schedules used in the proof of Theorem 2.23 for m =
3 and ε = 0.01. Node labels show the corresponding job’s resource
requirement in percent (e.g., r12 = 0.07). Note that the optimal schedule
needs (essentially) m time steps to finish a block, while S needs 2m− 1
time steps per block.
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Multiprocessor Scheduling with a
Sharable Communication Channel

In “On-The-Fly Computing” [Hap+13; 17], one main idea is that future software-
based IT services are automatically composed from base services traded on global
markets. Thereby, the functionality of a service is provided by the interaction

of smaller pieces of software resulting in the exchange of data during the execution.
This strengthens the necessity of taking into account communication when designing
scheduling algorithms that enable efficient execution of such software. It might even
shift the focus from processing times to planning communication, particularly if the
exchange of data rather than actual computations becomes the major bottleneck in
a system.

These observations lead to a new scheduling problem that we study in this chapter.
We are given a communication graph, where each connected component describes a
service composed of jobs (base services) by identifying nodes with jobs and using
weighted edges to model the required interjob communication of jobs. These edge
weights can, for instance, be thought of as communication volume in bytes. Also,
we are given a system comprised of m parallel, identical processors connected by a
shared communication channel (e.g., a data bus) enabling communication between
the processors and hence between jobs processed in parallel. Given that the available
communication channel constitutes a scarce resource with bounded capacity (e.g.,
available data rate in bytes per second), a fundamental question arising in this
setting is: how to assign jobs to processors and share the channel among them
in order to minimize the time at which all jobs with their related communication
demands are done and hence, to minimize the time until all services are completed.

We model this scheduling problem as a novel bin packing variant and propose and
analyze approximation algorithms. In the following, we give a formal description of
the studied problem. In Section 3.2, we study the computational hardness showing
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that the considered problem is (for the most relevant cases) NP-hard in the strong
sense, even for a constant number of processors and a single path or a forest with
arbitrary constant maximum degree. Consequently, we then focus on approximation
algorithms and start by considering a simple NextFit strategy for graphs of degree
two in Section 3.3. For trees and general graphs with arbitrary degree we provide
a more complex approximation algorithm in Section 3.4. For an overview of our
results see also Section 3.1.2.

3.1 Preliminaries

In the following we introduce the model and the notation used throughout the
paper.

3.1.1 Model & Notation

We consider the following scheduling problem called Sic. Given a set of tasks
{T1, T2, . . . , Tp}, each described by a connected, undirected graph Gi = (Vi, Ei) on a
set Vi of jobs together with a weight function w : Ei →]0,∞[. Each edge {u, v} ∈ Ei
represents the communication requirement (or communication demand) between
jobs u and v. Additionally, we are given a set of m identical, parallel processors
connected by a shared communication channel with capacity C > 0. Each processor
can process at most one job per (discrete) time step while a job can be processed
in several (not necessarily contiguous) time steps. Two jobs can communicate only
when they are executed in parallel. Hence, in any time step t, at most m jobs can
be processed and, additionally, a scheduler has to define how much capacity of the
communication channel is allocated to pairs of jobs processed in t. Thereby the
channel may not be overused, i.e., a capacity of at most C may be allocated to jobs
per time step. As soon as for a pair of jobs with strictly positive communication
demand the accumulated share of the channel it was assigned over time is at least
its requirement w(e), we call this edge to be completed. The objective is to find a
schedule that minimizes makespan, i.e., the time until the last edge is completed.

Formally, the scheduling problem is defined as an equivalent bin packing for-
mulation: Let G = (⋃i Vi,⋃iEi) be the (in general unconnected) communication
graph consisting of the graphs Gi. In the bin packing formulation, each edge e ∈ E
corresponds to an item e with size re := w(e). The goal is to pack all items into as
few bins with capacity C as possible while allowing items to be arbitrarily split into
parts and subject to the following constraints:

1. Capacity Constraint: Each bin may contain (parts of) items of an overall size
of at most C,

2. Edge Constraint: Each bin may contain (parts of) items incident to at most
m nodes in the underlying graph G.
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In the rest of this chapter, we assume without loss of generality that C = 1. Observe
that in terms of the original scheduling formulation each part of an item corresponds
to one time step in which the corresponding jobs are scheduled and its item size
represents the channel capacity assigned to this pair of jobs in this time step. The
edge constraint respresents the fact that only m processors are available while the
capacity constraint represents the available channel capacity. The number of bins
then coincides with the number of time steps required to finish all tasks.

Since in the next section we show that Sic is NP-hard in general, even for a
constant number of m ≥ 4 processors and when G is a single tree, we focus on
designing approximation algorithms. Remember that a polynomial-time algorithm A
is called to have an (absolute) approximation ratio of α if, on any instance I, it holds
A(I)

OPT(I) ≤ α, where A(I) and OPT(I) denote the number of bins used on instance I
by algorithm A and by an optimal solution, respectively. A has an asymptotic ratio
of α if R∞ ≤ α, where R∞ := limk→∞ supI

{
A(I)

OPT(I) : OPT(I) = k
}

.
A further notion we need in the following is the arboricity of a graph G̃ = (Ṽ , Ẽ),

denoted arb(G̃). Let X ⊆ Ṽ be a (sub-)set of nodes and ẼX ⊆ Ẽ be the set of edges
induced by X. The arboricity is defined as arb(G̃) :=

⌈
maxX⊆Ṽ ,|X|≥2

|ẼX |
|X|−1

⌉
and

describes the minimum number of forests needed to cover the entire graph G̃. It is
known that arb(G̃) can be computed in polynomial time [GW92]. Furthermore, it
is possible to compute a decomposition of G̃ into at most arb(G̃) many forests and
an additional graph of degree at most two in polynomial time (by applying a result
from [KL11] with ε = 1

arb(G̃)+2).

3.1.2 Contribution
We thoroughly study the complexity of Sic depending on the parameter m, the
degree d of G and further structural properties of G. An overview of these results is
given in Figure 3.1. For m > 3 the NP-hardness holds even if G is a single path,
the most simple structure G can have.

Constant Degree Variable Degree

m = 2 Trivially in P

m = 3
Forest: Exact Algorithm (Theorem 3.4)

NP-hard (Proposition 3.1)
General Graph: NP-hard (Lemma 3.5)

m > 3 NP-hard (Section 3.2.2)

Figure 3.1: Complexity results for different values of m and degree d of graph G.

We further present approximation algorithms for the cases where Sic is NP-hard.
For G being a graph with maximum degree d = 2, we show that a simple NextFit
strategy achieves an approximation ratio of 7

3 + 5
6(m−1) in Section 3.3. When G
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becomes more complex but still is acyclic so that it is built by a set of trees (forest), we
can asymptotically approximate an optimal packing by a ratio of min{1.8, 1.5m

m−1}+ 1
as shown in Section 3.4.1. On the basis of our algorithm for forests, we then show how
to handle arbitrary graphs G in Section 3.4.2. We assume that arb(G)/OPT = o(1)
and show an approximation ratio of min {1.8, 1.5 · m/(m−1)} · (arb(G) + 5/3) for this
general case. If one, however, wants to drop the aforementioned assumption, the
approximation ratio only worsens by an additional summand of 2.5arb(G)/OPT.

3.2 Complexity

First, note that our problem is trivial to solve for m = 2. In this case, each item
has to be packed alone, hence packing all items into distinct bins is optimal.

For larger values of m, as a first observation and a direct corollary from NP-
hardness of cardinality constrained bin packing with splittable items [Chu+06],
which, for a cardinality constraint set to m − 1, is equivalent to Sic when the
communication graph forms a star, we have the following proposition.

Proposition 3.1. The Sic problem is strongly NP-hard for constant m ≥ 3 proces-
sors and G being a single tree with degree d when d is part of the input.

Despite this hardness result, it is interesting to study the question of whether the
complexity changes when the degree d of the communication graph is fixed. We will
see that the problem is in P for m = 3 when G is a forest, but not for arbitrary
graphs with constant degree d ≥ 4. More interestingly and suprisingly, the problem
remains NP-hard for any G being a tree with constant degree d and constant m ≥ 4.

3.2.1 Case m = 3 Processors

We first study the case where we have m = 3 processors and the underlying
communication graph G is a forest with constant degree. Afterward, we consider
the case of m = 3 processors and arbitrary complex graphs G with constant degree.

Exact Algorithm for Forests of Constant Degree. In this section, we use a similar
representation for packings as Epstein and van Stee [ES07] used when they introduced
a PTAS for cardinality constrained bin packing with splittable items. Here, a packing
is represented by a graph where nodes correspond to items and edges correspond to
bins. For a bin containing two item parts, there is an edge between the two items.
If a bin contains only one item, there is a loop on that item. The following lemma
can be adapted from Lemma 1 in [Chu+06].

Lemma 3.2. Given a packing P with bins B for the communication graph (G,E),
if the graph (E,B) representing the packing contains a cycle, there is a packing with
the same number of bins and without any cycles.
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Proof. For the sake of completeness, we include the proof here. We start with
a packing P for a communication graph (G,E) such that the underlying graph
(E,B) contains a cycle. We consider an arbitrary cycle in B and remove it without
increasing the number of bins and without creating a new cycle. Doing so repeatedly
leads to a packing represented by a graph without cycles.

Now, let B̃ = {B1, . . . , Bk} be the set of bins (or edges) and Ẽ = {e1, . . . , ek} the
set of items (or nodes) in this cycle. W.l.o.g., assume Bi contains a part of size r′i
from item ei and of size r′′i+1 from ei+1 for all i ∈ {1, . . . , k − 1} and Bk contains
a part of size r′k from ek and a part of size r′′1 from e1. W.l.o.g., assume r′1 is the
smallest value out of all r′i and r′′i . Repack all bins such that Bi contains a part of
size r′i − r′1 from ei and a part of r′′i + r′1 from ei+1 for all i ∈ {1, . . . , k− 1}, and Bk
contains a part of size r′k − r′1 from ek and a part of size r′′1 + r′1 from e1. Feasibility
follows from the minimality of r′1 among the r′i and r′′i , the number of bins remains
the same and the cycle is broken between e1 and e2, that is, B1 only contains parts
of item e2 and is not an edge in the underlying graph representation anymore.

This lemma also directly implies the following corollary.

Corollary 3.3. For constant m = 3 and any star communication graph, there exists
an optimal packing where for each pair of items, parts of them are packed together
in at most one bin.

This corollary implies that in a star communication graph with degree d, the
underlying graph representation of the packing is a forest with degree at most d− 1
(as it only consists of d nodes).

We now provide an exact algorithm and a proof of its optimality. We assume
G to be a single tree. However, this is without loss of generality as solving each
individual tree of a forest optimally provides an optimal solution for the forest. This
is true as no solution can pack any two items belonging to different trees into the
same bin.

Theorem 3.4. The Sic problem can be solved in polynomial time for constant
d ≥ 2, m = 3 and G a forest.

Proof. Consider the algorithm in Listing 3.1. Informally, the algorithm performs a
dynamic programming approach by proceeding from bottom to top and storing a set
of candidate solutions for each level of the tree. To do so, it starts at the set of nodes
with a distance of 1 to the closest leaf. For each node v, it considers the subtree
rooted at v and generates all possible graph representations (of degree m− 1 = 2)
without cycles where each item is split at most d− 1 times. These representations
induce a set of possible subsolutions for the subtree rooted at v, where for each
subsolution the remaining space is filled with parts of the item ev upwards from
v. Using the condition in Line 16, only solutions that may be a subsolution of an
optimal solution are stored. Once all nodes on a level are completed, the algorithm
proceeds by doing the same for the next higher level. Now, as there are already
different subsolutions for the lower level, all combinations of these subsolutions are

51



Chapter 3 SCHEDULING WITH A SHARABLE COMMUNICATION CHANNEL

1 [P [e]: set of candidate packings for tree rooted at lower endpoint of e]
2 for all edges e to a leaf node P [e] := {{}} \EndFor\vspace{−1mm}
3 for h \text{from} (height of G = (V,E)) \text{to} 1
4 for all nodes v with depth h− 1
5 Let Ev = {e1, . . . , ek} be the edges to the children of v
6 Let ev be the edge to the parent of v
7 for all (B1, . . . , Bk) with (Bi ∈ P [ei] ∀i)
8 for all forests (Ev , Ẽ) with deg ≤ d representing a packing for Ev
9 r′ev

= rev

10 [Let r′ev
(B) be the remaining part of r′ev

after packing B]
11 Fill items induced by Ev greedily starting from the leaves of (Ev , Ẽ) (for each tree separately),
12 according to the remaining item sizes (r′e1 (B1), . . . , r′ek

(Bk)) into bins B̃
13 Fill bins from B̃ with only one item with additional parts of ev ; reduce r′ev

accordingly
14 Let B := B̃ ∪B1 ∪ . . . Bk be the bins in the induced packing
15 [If new packing is not dominated by an existing packing]
16 if ((|B| < |B′| ∨ r′v + |B| < r′v(B′) + |B′|)forallB′ ∈ P [ev ])
17 Let the set of possible packings P [ev ] := P [ev ] ∪ {B}
18 Pack bins according to stored packing with minimal number of bins

Listing 3.1: Finding an optimal solution for m = 3 and constant degree d.

considered. Again, solutions that may be a subsolution of the optimal solution are
stored for later iterations. After having considered all levels, the best packing of the
full tree is returned.

From [ES07], we know that we can fill the bins greedily using the graph representa-
tion. Now, for any node v, any algorithm cannot pack items e1, . . . , ek together with
an item e /∈ {e1, . . . , ek, ev}. This implies that partial solutions for each of the item
sets {e1, . . . , ek, ev} and E \ {e1, . . . , ek} can be computed separately and combined
subsequently. However, the remaining question is where item ev is split, that is how
much of the size of ev is included in which solution. Hence, for each subtree rooted
at v, we need to compute all solutions that are optimal for the subtree and use only
a certain part of ev. Fortunately, we have the following property:

Property. A solution B1 dominates a solution B2 if the number of bins in B1 is
at most as large as the number of bins in B2 (i.e., |B1| ≤ |B2|) and, additionally,
r′v(B1)− r′v(B2) ≤ |B2| − |B1| holds.

In this case, in an optimal solution containing B2 as an induced subsolution, B2
can simply be replaced by B1 together with |B2| − |B1| bins, each packing a part of
size 1 from the item ev, thus reducing r′v(B1)− r′v(B2) to at most 0 and ensuring
feasibililty of the resulting solution. Also, there exists an optimal solution where
the induced subpacking of items {e1, . . . , ek} is packed together with parts of a size
of at most d− 1 from ev. This results in a difference of at most d− 1 between the
number of bins of two stored solutions, as only non-dominated solutions are stored,
hence resulting in at most d solutions to be stored. Otherwise, there must be an
item ei which is packed together with ev twice, but due to Corollary 3.3, we know
that any such packing can be modified such that this is not the case. Together with
Lemma 3.2, we know that at least one of the graphs generated in Line 8 represents
a subpacking for (the star subgraph) Ev that is induced by an optimal packing of
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the full graph. As our algorithm finds all candidate solutions for the set Ev that
may end up to match the solution induced by the optimum, the optimality of the
algorithm recursively follows.

Concerning the runtime, at most d solutions must be stored in Line 17 for each
node. In turn, the loop in Line 7 is executed at most dd times. Also, the number of
graphs in Line 8 is definitely below 2d2 . Polynomial runtime follows.

NP-Hardness for Graphs of Constant Degree. We show that for general graphs
with constant degree d ≥ 4, the problem is NP-hard when m = 3. To this end, we can
easily reduce from the PartitionIntoTriangles problem: Given an undirected
graph G = (V,E), the question is whether there is a partitioning into 3-element sets
S1, S2, . . . , S|V |/3 such that each Si forms a triangle in G. This problem is proven
to be NP-hard for graphs of (constant) degree d ≥ 4 in [RKB13].

Lemma 3.5. Sic is NP-hard for m = 3 and general graphs with constant degree
d ≥ 4.

Proof. Given an instance I for PartitionIntoTriangles, construct an instance
I ′ for Sic by assigning a weight of 1/3 to each edge. If I is a YES-instance, I ′ can
be packed into |V |/3 many bins. If I is a NO-instance, more than |V |/3 bins are
required.

3.2.2 NP-Hardness for m > 3 Processors
We now study the complexity for m > 3 processors. We thereby focus on the
NP-hardness when the underlying graph is a single path, yielding hardness results
for the most basic case where only a single, most simply structured task is to be
scheduled.

Theorem 3.6. The Sic problem is strongly NP-hard for d = 2 and constant m ≥ 6,
even for a single path.

Proof. We start with the 3-Partition problem with a restricted size of the elements
which is defined as follows. Given a multiset A = { a1, . . . , an } of n = 3k elements,
a bound B with B/4 < ai < B/2 ∀ i ∈ {1, . . . , n} and ∑

a∈A a = kB, is there
a partition into k sets A1, . . . , Ak such that |Ai| = 3 and ∑

a∈Ai a = B for all
i ∈ { 1, . . . , k }?

Let our Sic instance consist of one path with `+1 := 3k · (3m−2)+2k · (m−5)+1
nodes. We denote the edge between node i and i+ 1 by ei, yielding E = {e1, . . . , e`}
with sizes {r1, . . . , r`}. Now let r(i−1)·(3m−2)+1 :=

(
1
2 + ai

2B

) (
1− m−5

5m

)
< 3

4 for all
i ∈ {1, . . . , 3k}, called medium items, and let r(i−1)·(3m−2)+m = r(i−1)·(3m−2)+b 3

2mc =
r(i−1)·(3m−2)+2m = 1− m−2

5m ∀ i ∈ {1, . . . , 3k}, called large items. All other edges are
assigned a size of ri = 1

5m , called small items. For a visualization, see Figure 3.2.
Now is there a packing of a size of at most 11k?
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Figure 3.2: Corresponding Sic instance for 3-Partition with input {a1, . . . , an}.

In case that the 3-Partition instance is a Yes-instance, we need to show
that there is a corresponding packing with at most 11k bins for our Sic in-
stance. Given a set Ai, the 3 (medium) items Si derived from it can always
be packed into two bins together with m − 5 of the last 2k · (m − 5) items: that
is, items e3k·(3m−2)+(2i−2)(m−5)+1, . . . , e3k·(3m−2)+(2i−1)(m−5) for the first bin, and
items e3k·(3m−2)+(2i−1)(m−5)+1, . . . , e3k·(3m−2)+2i(m−5) for the second bin. That is,
because the 3 items from Si only use 4 of the allowed incident nodes in both bins,
and the m− 5 small items use m− 4 of the allowed incident nodes. Also, we have∑
r∈Si r + 2 · m−5

5m = (3
2 +∑

a∈Ai
a

2B )(1− m−5
5m ) + 2 · m−5

5m = 2 giving a valid packing
if we split one of the medium items accordingly. Thus, we can pack all item sets Si
into two bins each, together with the last 2k · (m− 5) items, leading to 2k bins.

Observe that the 3m− 3 items in each block filling the gaps between two medium
items (i.e., the rectangles in Figure 3.2) can be put into three bins: The first m− 1
items of each block (i.e., m− 2 small items and one large item) can be put into one
bin, as the sum of their sizes is exactly 1 by construction. The same holds for the
second and third item set of m− 1 items, respectively.

More formally, for all i ∈ {1, . . . , 3k}, the items e(i−1)·(3m−2)+2, . . . , e(i−1)·(3m−2)+m
can be packed into one bin. The same property holds for the respective item sets
{e(i−1)·(3m−2)+m+1, . . . , e(i−1)·(3m−2)+3m−2} for each i ∈ {1, . . . , 3k} as well as the
item sets {e(i−1)·(3m−2)+2m, . . . , e(i−1)·(3m−2)+3m−2} for each i ∈ {1, . . . , 3k}. This
gives another 3 · 3k bins and all items are packed.

On the other hand, we show that if there is a packing with a size of at most 11k,
we show that the respective 3-Partition instance is a Yes-Instance. In order to do
so, we show the following properties in the given order:

(1) The capacity of each bin must be fully utilized.

(2) At least k medium or large items need to be split.

(3) In order to pack the last 2k · (m− 5) items, 4k additional separate components
of the communication graph have to be packed together with them.

(4) Our 11k bins contain exactly 9k · (m− 1) + 2k · (m− 3) item parts.

(5) The last 2k · (m− 5) items are packed into 2k bins containing exactly m− 5
of these items and two medium item parts each.
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(6) Exactly k of the 3k medium items are split, and they are split into exactly
two parts each.

(7) The corresponding 3-Partition is a Yes-instance.

(1) The capacity must be fully utilized in any bin, because we have ∑`
i=1 ri =∑3k

i=1

(
1
2 + ai

2B

)
(1− m−5

5m ) + 2k(m− 5) · 1
5m + 3 · 3k ·

(
(m− 2) · 1

5m +
(
1− m−2

5m

))
=(

3k
2 + kB

2B

)
(1− m−5

5m ) + 2k · m−5
5m + 3 · 3k = 11k.

(2) Now we show that at least k medium or large items need to be split. There
are 3 · 3k large items as well as 3k medium items. If less than k of these 12k items
were split, there would be at least one bin fully containing two of these items. This
is a contradiction, as all the item sizes are greater than 1

2 . Hence, there are at least
`+ k item parts.

(3) We now concentrate on the 2k · (m − 5) last items, i.e., on the items
e3k·(3m−2)+1, . . . , e3k·(3m−2)+2k·(m−5). Note that these items cannot be packed with
a medium or a large item without using two components of the communication
graph. However, if using two components, they contain at most m− 2 items, which
implies (as we always use the full capacity by (1)), that each bin containing one of
these items also contains at least two medium or large items. As by construction,
there are always at least m−2 edges between a medium and a medium or large item,
and at least

⌊
m
2
⌋
− 1 edges between two large items, there are only two possibilities

how to obtain this:

a) At most m− 5 of the considered small items are combined with at least two
further components of the communication graph, which contain exactly one
medium or large item each.

b) At most
⌈
m−6

2

⌉
≤ m−5

2 of the considered small items are combined with only
one further component of the communication graph, which contains exactly
two large items.

Taken together, this implies that in order to pack all 2k · (m−5) items, there have to
be taken at least 2k ·2 = 4k additional separate components from the communication
graph.

(4) It follows that in our packing, the 11k bins can contain at most 11k · (m− 1)−
4k = 9k ·(m−1)+2k ·(m−3) item parts by (3). However, as we showed earlier in (2),
the overall number of item parts is at least `+ k = 3k · (3m− 2) + 2k · (m− 5) + k =
9k · (m − 1) + 2k · (m − 3). Thus, both properties are tight and in all bins not
containing any of the 2k · (m− 5) last items, exactly m− 1 items must be packed.
Now, this can only be done by using one (complete) large item and m− 2 adjacent
small items, as one medium item together with m− 2 adjacent small items does not
use the full capacity.

(5) Considering the last 2k · (m − 5) items again, note that all bins fulfilling
Property a) from (3) now need to contain exactly m− 5 of these small items as well
as all bins fulfilling Property b) now need to contain exactly m−5

2 of these small
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items. However, this implies that Property b) never happens. Otherwise, if there
were 2j bins fulfilling Property b) (giving 2k − j bins fulfilling Property a)), each
of them would make at least one large item incomplete. As this leads to exactly
2k − j bins containing m− 3 items and 2j bins containing m− 2 items, there must
be exactly 9k − j bins containing m − 1 items. However, there are only at most
9k − 2j (complete) large items left, yielding j = 0.

(6) We now know that there are exactly 9k bins containing one (complete) large
and m−2 small items each. Hence, there are exactly 2k bins where each bin contains
m− 5 of the last 2k · (m− 5) items and two parts of medium items. We also know
that only medium items are split, thus exactly k of the medium items are split into
exactly two parts each.

W.l.o.g., let Ẽ = { e1, . . . , ek } be the (medium) items that are split. We observe
that no two items from Ẽ can be packed into the same bin. Otherwise, at least one
of them uses a capacity of at least 1

2 in that bin, hence a capacity of at most 1
4 in

the other bin, where the remaining part of the item is packed. Then, the capacity is
not fully utilized in that other bin, as the other medium item (which has to exist by
(5) and (6)) uses less than a capacity of 3

4 .
Now, for each medium item split into two parts, we know that exactly one complete

other medium item is packed together with each part of it. For each split item,
we build a set containing itself and the two medium items packed together with it.
There are m such sets S1, . . . , Sm with three elements each. Now the sum of the
sizes of these three items is 2 − 2 · m−5

5m (as both bins additionally contain m − 5
small items), implying ∑r∈Si

(
1
2 + r

2B

)
= 2 which yields ∑r∈Si r = B. This is a

3-Partition.

Corollary 3.7. The Sic problem is strongly NP-hard for d = 2 and m = 4, even
for a single path.

Proof Sketch. We use the same reduction as in the proof of Theorem 3.6, but with
medium item sizes 1

2 + ai
2B and without adding the last 2k(m− 5) auxiliary items.

This implies removing step (3) and instead using the fact that any bin containing a
medium item part can only be packed up to the full capacity using two separate
components of the communication graph. As the medium items alone have an
overall capacity of 2k, it follows that at least 2k additional separate components
need to be used, yielding exactly 9k · (m− 1) + 2k · (m− 2) item parts to be packed
in step (4). However, this directly implies that at least 9k bins have to contain the
full number of m− 1 items, which (by (1)) is only possible using one large and m− 2
adjacent small items. It follows that the remaining 2k bins contain the 3k medium
items. Hence, the remaining part of the proof remains the same.

Corollary 3.8. The Sic problem is strongly NP-hard for d = 2 and m = 5, even
for a single path.

Proof Sketch. We modify the reduction of Corollary 3.7 by adding one additional
small item adjacent to each medium item and reducing the medium item sizes by
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factor (1− 1
5·5). Now three medium items are always packed together with two of

these adjacent items into two bins. There are k remaining small items adjacent to
medium items. In order for these to be packed, we add k small gadgets to the end
of the path (instead of the 2k · (m− 5) small items from the proof of Theorem 3.6).
These small gadgets consist of one very large item of size 1 − 2

5·5 (in contrast to
large items, which now have a size of 1 − 3

5·5) and one small item. Two adjacent
small gadgets are always separated by the usual rectangular gadgets from Figure 3.2.
With a similar argument as (3) from the proof of Theorem 3.6, we now ask how to
pack the small items adjacent to medium items and conclude that they either have
to be packed together with medium items or (for the remaining k items) they have
to be packed together with the newly introduced small gadgets. This concludes the
proof for m = 5.

Corollary 3.9. The Sic problem is strongly NP-hard for constant d ≥ 2 and
constant m ≥ 4, even for a single connected component.

Proof Sketch. In order to achieve a higher degree than 2, we add a similar gadget
to the (rectangular) gadgets with the large (and small) items from the original
reduction in Theorem 3.6. This new gadget is visualized in Figure 3.3. To separate
this gadget from the rest of the instance, we first add another rectangular gadget as
used in the proof of Theorem 3.6 at the end of the path. The new part of the gadget
(behind the rectangular gadget) consists of a star graph with many small and few
large items to achieve the necessary degree. We fill it up with small items in a path
towards the rectangular gadget. This is necessary to achieve an overall number
of items divisible by (m − 1) (i.e., an overall number of small items divisible by
(m− 2)). Now the items from the newly introduced gadget have to be packed with
one large item and m− 2 small items into one bin each similar to the packing for
the rectangular gadgets in Theorem 3.6. The remaining reduction is analogous.

Proposition 3.10. The Sic problem is strongly NP-hard for d = 1 and constant
m ≥ 4.

Proof. The restrictions lead to having a set of single edges. Hence, similarly to
Proposition 3.1, this problem is equivalent to bin packing with splittable items
and cardinality constraint bm/2c. This problem is already NP-hard for cardinality
constraint at least 2, hence the claim follows.

3.3 Communication Graphs of Degree Two
In this section, we analyze a simple greedy algorithm for instances with a communi-
cation graph of degree two.

First note that this problem can be solved efficiently for m ≤ 3 similarly to the
algorithm in Listing 3.1. For each path, the claim directly follows. For cycles, in
order to find an optimal packing, we start the algorithm in Listing 3.1 at each node
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Figure 3.3: Gadget to add for degree d ≥ 2.

1 Split each cycle at an arbitrary node (duplicate node), obtaining a path
2 Connect all paths to one single path V ′ = (G′, E′) by adding edges of size 0
3 Index items in order of path, E′ := { e0, e1, . . . }
4 B := new empty bin
5 for all items ei ∈ E′
6 if ei does not fit into B w.r.t.\ edge constraint
7 B := new empty bin
8 if ei fits into B
9 Pack ei into B

10 else
11 Pack as much of ei into B as possible
12 B := new empty bin
13 Pack remaining part of ei into B

Listing 3.2: Algorithm A1 for instances of degree two.

of a cycle individually. By doing so, all possible points where the cycle may be split
are considered and the optimal solution will be among those found.

For m > 3, we first remove cycles, then connect resulting paths arbitrarily
such that we get one single path and finally use a straightforward adaption of the
classical NextFit algorithm. The formal description of the algorithm A1 is given
in Listing 3.2. It starts by splitting up all cycles into paths. This is done at an
arbitrary node: that is, after the split, two copies of this node (at each end of the
path) are in the resulting graph. As a next step, the algorithm connects the ends
of the set of paths by edges of size 0 such that the result is one single path. Note
that after this, we have one path with |E′| = |E|+ (p − 1) edges. The algorithm
then dispatches the items in the order of the path starting at one of the nodes with
degree one. If an item fits into the current bin while violating neither the capacity
nor the edge constraint, it is placed in the current bin. If it does not fit into the
current bin (since at least one of the constraints would be violated), as much of the
item is placed in the current bin as possible and a new bin is opened in which the
(remaing part of the) item is placed. That is, A1 will always (except for the last bin)
fully pack a bin or pack the maximum number of (parts of) items allowed in a bin.

We start by lower bounding the number of bins used by OPT. Let pp be the
number of paths and pc be the number of cycles (implying p = pp + pc).

Lemma 3.11. We can state that:
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1. OPT ≥ d
∑
e∈E′ see and

2. OPT ≥
⌈
|E|+pp
m

⌉
.

Proof. The first inequality directly follows from the capacity constraint and the fact
that items in E′ \ E have size 0 by construction.

For the second inequality, each of the p connected components of the input graph
is either a path or a cycle by the degree constraint. If the input only consists of
cycles, an optimal solution could potentially pack up to m items per bin. However,
for each path, there is an overhead of one node, i.e., each path of length k is incident
to k + 1 nodes. Expressed differently, the upper bound of m items per bin is still
valid if we close each path to a cycle. This gives the second bound.

We next analyze the approximation ratio of A1 and show that any solution is
worse than the optimum by a factor only slightly larger than 7/3.

Lemma 3.12. The algorithm A1 uses at most

A1 ≤
4m

3m− 3 ·OPT +
(

1− 1
2(m− 1)

)∑
e∈E

re + 1

bins and runs in time O(|V |).

Proof. For the sake of analysis, we partition the set of bins used by algorithm
A1 into the set B1 containing those bins with a tight capacity constraint and B2
containing those bins which are not full but have a tight edge constraint. We also
define the following three sets of items on the basis of how they are packed in the
solution given by algorithm A1. E1 contains those items from E′ for which at least
one part of the item is packed in a bin from B1. In E2 there are all items from
E′ for which at least one part of the item is packed in a bin from B2, and finally
ER := E′ \ (E1 ∪E2) contains the remaining items. Note that in ER there can only
be items placed in the last bin that was opened, and that E1 ∩ E2 need not be
empty.

We now give a bound on the maximum number of bins used by A1. We have

A1 = |B1|+ |B2|+
⌈ |ER|
m− 1

⌉
since each bin either belongs to B1 or B2 or is the last bin and ER 6= ∅. Additionally,
since any bin belonging to B1 only contains items from E1, we have |B1| ≤

∑
e∈E1 re.

Any bin belonging to B2 contains m − 1 (parts of) items from E2 and each item
from E2 is packed in at most one bin from B2 and hence, |B2| = |E2|

m−1 . Therefore,
we have

A1 = |B1|+ |B2|+
⌈ |ER|
m− 1

⌉
≤
∑
e∈E1

re + |E2|
m− 1 +

⌈ |ER|
m− 1

⌉
.
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Denoting the set of items belonging to E1 ∩E2 by Ẽ, we have |E′| = |E1|+ |E2|+
|ER| − |Ẽ|. Also, |E| ≥ pp + 3pc, because the smallest possible cycle is a triangle.
Hence |E′| = |E| + (p − 1) < |E| + pp + pc ≤ 4/3 · |E| + 2/3 · pp ≤ 4/3 · (|E| + pp).
Together with the claim that |Ẽ| ≤ |E1|/2, we can conclude

A1 ≤
∑
e∈E1

re + |E2|+ |ER|
m− 1 + 1

≤ |E1|
2(m− 1) + |E2|+ |ER|

m− 1 + 2(m− 1)− 1
2(m− 1)

∑
e∈E

re + 1

≤ |E1|+ |E2|+ |ER| − |Ẽ|
m− 1 + 2 · (m− 1)− 1

2(m− 1)
∑
e∈E

re + 1

≤ 4
3 ·
|E|+ pp
m− 1 +

(
1− 1

2(m− 1)

)∑
e∈E

re + 1

≤ 4m
3m− 3 ·OPT +

(
1− 1

2(m− 1)

)∑
e∈E

re + 1,

where we used the fact that |E1| ≥
∑
e∈E1 re and the aforementioned bound on A1

in the first two estimations, the claimed bound on |Ẽ| in the third, the inequalities
claimed right before in the second last and the second bound on OPT in the last
inequality.

Hence, it remains to prove the claim. Recall that Ẽ contains the items that are in
E1 and in E2, i.e., any item e ∈ Ẽ is partly packed in a bin that is full and partly
packed in a bin that is not full but has a tight edge constraint. By the definition of
A1, such an item e ∈ Ẽ fulfills the condition that it is first partly packed in a bin B′
belonging to B1 and then a bin belonging to B2 is opened to pack the remaining
part of item e. Note that consequently B′ contains a different item belonging to
E1 \ Ẽ. Hence, to any item e ∈ Ẽ we can associate a different item ē ∈ E1 \ Ẽ,
proving the claim and concluding the proof.

The runtime is O(|V |) as we essentially traverse the path once.

Corollary 3.13. Algorithm A1 has an asymptotic approximation ratio of at most
7
3 + 5

6(m−1) .

Proof. From Lemma 3.12 and using the bounds on OPT, we have

A1 ≤
4m

3m− 3 ·OPT +
(

1− 1
2(m− 1)

)∑
e∈E

re + 1 ≤
(7

3 + 5
6(m− 1)

)
OPT + 1.

We now show that our analysis of the approximation factor of A1 is (almost)
tight by giving an instance on which it obtains an approximation factor of at least
7
3

(
1− 1

(6k−2)

)
.
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Figure 3.4: Hard instance for algorithm A1. Let m = 12k − 3 for some k ∈ N.

Intuitively, this instance (cf. Figure 3.4) exploits the two different optimization
goals, i.e., using the full capacity of a bin and using the full number of allowed
adjacent nodes. The optimal algorithm chooses to skip certain elements in order
to always use the full capacity. In contrast, the greedy algorithm always uses the
full capacity (packing only two items) in every second bin and the full number of
allowed adjacent nodes (using only low capacity) in the other bins. Additionally,
this instance uses the fact that A1 splits up all cycles to worsen the quality of A1’s
solution. This gives an approximation factor of almost 7/3. For m→∞ the upper
as well as the lower bound converge to 7/3.

Theorem 3.14. There is an instance such that the algorithm A1 performs by a
factor of at least 7

3

(
1− 1

(6k−2)

)
worse than the optimum.

Proof. Consider an instance as given in Figure 3.4 and let ε > 0 be sufficiently small
and m = 12k − 3 for some k ∈ N. The instance consists of a set of tasks that are
mostly triangles with some additional edges with the following form: The leftmost
item (single edge) has a size of 1− m−3

2 · (m− 1)ε. It is repeatedly followed by the
following set of tasks S: First, there is a set of 3k− 2 triangles each containing three
items with size ε. An additional triangle with two items of size ε and one item of
size 1− (m− 1)ε follows. Finally, there is one edge of size mε.

This set of tasks is repeated several times such that we obtain (m−3)/2 copies of
S. Note that this number is integer by m = 12k − 3. Finally, k(m−3)/2 additional
triangles follow, each containing three items of size ε.

On this instance, an optimal solution can pack the items of each subset S without
the single item of size mε together with k additional triangles from the final set
of triangles. Taken together, these are (3k − 2) · 3 + k · 3 + 2 = m − 1 items of
size ε, which fit exactly together with the one item of size 1− (m− 1)ε. Also, the
packed items are incident to exactly (3k− 2) · 3 + k · 3 + 3 = 12k− 3 nodes. As there
are m−3

2 copies of S, m−3
2 bins are needed for the respective items. Additionally,

the very first item is packed together with the m−3
2 items that were left over (each

having a size of mε). Overall, these are m−3
2 + 1 = m−1

2 edges which can be packed
into one bin. Hence, OPT = m−3

2 + 1 = m−1
2 .

In contrast, A1 processes the nodes from left to right. In order to do so, it splits
up the triangles and, thus, constructs a forth node for each triangle. We assume
that the last triangle in each set S is split up such that it starts with the ε-edges
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and the last edge is the edge of size 1 − (m − 1)ε. Hence, it packs the very first
item together with all items from S except the last edge of the last triangle (size
1− (m− 1)ε) and the last edge (size mε). By doing so, items in this bin are already
incident to two nodes from the very first item and (3k − 2) · 4 + 3 = 12k − 5 nodes
from the other edges, hence these two items cannot be added. Afterward, these two
items are packed in a second bin, leading to an unpacked part of the second item of
size ε. This part serves as the first item packed together with items from the next
copy of S. As this repeats m−3

2 times, A1 needs m− 3 bins for all the copies, leaving
an unpacked part of size ε from the last item and the k(m−3)

2 additional triangles.
Due to the cardinality constraint, these items will need at least another

(2 + k(m−3)/2 · 4)− 1
m− 1 = 2k(m− 3) + 1

m− 1 >
2k(m− 3)
m− 1

bins. Taking the upper and lower bound together yields

A1
OPT ≥

m− 3 + (2k(m−3))/(m−1)
(m−1)/2

= 6(2k − 1) + (12k(2k−1))/(12k−4)

6k − 2

= 6(2k − 1) + 3k/(3k−1) · (2k − 1)
6k − 2

≥ 7(2k − 1)
(6k − 2)

= 7
3

(
1− 1

(6k − 2)

)
.

3.4 Communication Graphs with Arbitrary Degree
In this section, we study the case where G is a graph of arbitrary degree. We start
with the case where G is a forest and then generalize our results to arbitrary graphs.

3.4.1 Packing Forests of Arbitrary Degree

In the following we propose an algorithm A2, which provides (min{1.8, 1.5m
m−1}+ 1)-

approximate solutions for instances described by a forest. Note that by splitting
the tree at each node and losing a constant factor of 2, the problem can be reduced
to cardinality constrained bin packing with splittable items. As there exists an
EPTAS for this problem [ELS12], we can get a 2 · (1 + ε)-approximation by using
it. However, to achieve an approximation factor of 2.5 for our problem, we need to
set the ε from [ELS12] to at most 1

36 . The constant in the runtime is then around(
1
ε8

) 1
ε2 , which is a very large number, rendering the usefulness rather questionable in
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practice. In the literature, the best algorithm of cardinality constrained bin packing
with splittable items using a rather simple approach is NextFit with a tight
approximation factor of 2− 1

m , which would only yield a 2 · (2− 1
m)-approximation.

The advantage of our algorithm is its simplicity and low runtime.
Roughly speaking, our algorithm consists of two steps: In a first step (cf. List-

ing 3.3), A′2 computes a preliminary (generally infeasible) packing, which ignores the
capacity constraints of bins. Then in a second step, we fix the preliminary packing
by repacking parts of items that are packed in bins violating the capacity constraint.
We use Tv to denote the nodes in the subtree rooted at node v and |T | to denote
the number of nodes in tree T .

Algorithm A′2 works as follows. In Line 1 to Line 8, we first identify those trees
for which the number of its edges is i · (m − 1) for some i ∈ N, i.e., it contains
i · (m− 1) + 1 nodes. Such a tree can be packed into i bins such that each bin has
a tight edge constraint. For all remaining trees we build as many pairs of trees as
possible such that the overall number of edges per pair is i · (m− 1)− 1 for some
i ∈ N, i.e., it once more contains i · (m− 1) + 1 nodes. For ease of presentation each
pair is combined to a new tree by adding an edge with weight 0 between their roots.
Finally all remaining trees are combined to a single tree in the same way. Then in
Line 10 to Line 23 each of the resulting trees is packed individually by processing
its nodes from the leaves to the root of the tree. That is, the algorithm finds a
node v with maximal depth such that the tree rooted in v has a size of at least m.
Having found such a node, it packs sets of m− 1 items into one bin, which implies
an efficient utilization of the edge constraint. It proceeds this way until it reaches
the root of the tree. After this step was performed for all trees, all yet unpacked
items (E2) are packed in a greedy way (Line 24).

For simplicity, denote as M ′i the set Mi where the virtual items are removed, i.e.,
we consider the original trees.

Also, for any packing P of a forest G, we introduce a corresponding graph
GP = (VP , EP ) as follows: Let VP be the set of trees of G. For two trees T1, T2 ∈ VP ,
let {T1, T2} ∈ EP if and only if there is a bin containing items from T1 as well as T2.

Definition 3.15. In a given packing P , a set of trees T = {T1, . . . , Ti } is packed
in conjunction if T is a maximal connected component in the corresponding graph
GP .

Definition 3.16. A set of trees {T1, . . . , Ti } is packed perfectly if it is packed in
conjunction and the number of used bins is exactly

∑i

`=1 |T`|−1
m−1 . This is also called a

perfect fit.

In particular, for any perfect fit, we have ∑i
`=1 |T`| = 1 mod (m − 1). Note

that no set of trees can be packed in conjunction using less bins than in a perfect
fit. This is because, compared with the maximum number of m − 1 items that
can be packed in each bin, at least i − 1 edges from the corresponding graph
need to be additionally packed by the definition of packing in conjunction (i.e.,
for packed items from each additional tree in a bin, one item less may be packed).
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1 M1 := ∅, M2 := ∅, M3 := ∅
2 Add all trees T with |T | = 1 mod m− 1 to M1
3 for all trees T
4 if T /∈M1 ∪M2, choose (if possible) a T ′ such that |T |+ |T ′| = 1 mod m− 1
5 Connect roots of T and T ′ by virtual edges with size 0
6 Add resulting tree (root chosen arbitrarily ) to M2
7 Connect the roots of all remaining trees by virtual edges with size 0
8 Add resulting tree (root chosen arbitrarily ) to M3
9 E2 := ∅

10 for all trees T ∈M1 ∪M2 ∪M3
11 for h from T to 1
12 for all nodes v with depth h
13 if |Tv | ≥ m
14 Let Cv = {v1, . . . , vk} be the children of v s.t. |Tv1 | ≤ . . . ≤ |Tvk |}
15 b := 1
16 for i from 1 to k
17 if |Tvb |+ . . .+ |Tvi | ≥ m− 1
18 Let T ′ be the subtree induced by {v} ∪ Tvb ∪ . . . ∪ Tvi

19 Pack m− 1 adjacent items from T ′ into new bin
20 Put all remaining non−virtual items from T ′ into E2
21 Remove T ′ (except for v if i 6= k) from T
22 b := i+ 1
23 Add any remaining non−virtual items in T to E2

24 Greedily pack the items from E2 into at most
⌈ |E2|
bm/2c

⌉
bins

Listing 3.3: A′2 constructing a preliminary packing.

Hence, |T`| − 1 being the number of items in tree T`, any packing needs at least(∑i

`=1(|T`|−1)
)
+(i−1)

m−1 =
∑i

`=1 |T`|−1
m−1 bins. Thus, we also observe that any set of trees

that is not packed perfectly uses at least
∑i

`=1 |T`|
m−1 bins.

Observation 3.17. There are exactly |M ′1| trees T with |T | = 1 mod m−1. Hence,
there can be at most |M ′1| trees such that each of them is packed perfectly.

Observation 3.18. Any algorithm can construct at most |M2| = 1
2 |M

′
2| pairs of

trees T1 and T2 such that |T1|+ |T2| = 1 mod m− 1. Thus, any algorithm can pack
at most 1

2 |M
′
2| pairs of trees perfectly.

We now give two bounds on the optimal solution OPT.

Lemma 3.19. OPT can be bounded by

OPT ≥
|E|+ 1

2 |M
′
2|+ 2

3 |M
′
3|

m− 1 .

Proof. Consider an optimal packing. We decompose the input forest into a set of
forests T := { T1, . . . , Tι } such that each T ∈ T is packed in conjunction. Note
that this decomposition is unique, as by definition of packing in conjunction it is
equivalent to decomposing a graph into maximal connected components.

We denote the number of sets T ∈ T with cardinality `, i.e., those consisting of
exactly ` trees, as k`, ` ∈ N. Also, we denote the edge set containing all items in
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the respective trees as E`, ` ∈ N. Finally, let pi = i · ki be the overall number of
trees contained in a tree set of this type.

Now, if k1 > |M ′1|, there must be at least k1 − |M ′1| trees that are not packed
perfectly. Otherwise, we have a contradiction to Observation 3.17. This implies
that OPT needs at least |E1|+max{0,k1−|M ′1|}

m−1 bins to pack all items in E1.
Further, if k2 > |M ′2|, at least k2− 1

2 |M
′
2| of these components cannot be a perfect

fit. Otherwise, we have a contradiction to Observation 3.18. Hence, OPT needs at
least |E2|+k2+max{0,k2− 1

2 |M
′
2|}

m−1 bins to pack all items in E2.
For the remaining items, OPT needs at least∑∞

i=3(|Ei|+ ki · (i− 1))
m− 1 ≥

∑∞
i=3(|Ei|+ pi · i−1

i )
m− 1 ≥

∑∞
i=3(|Ei|+ 2

3 · pi)
m− 1

bins as it cannot pack these trees better than in a perfect fit.
Together, this gives

(m− 1)OPT ≥
∞∑
i=1
|Ei|+ k2 + 2

3

∞∑
i=3

pi + max{0, k1 − |M ′1|}

+ max
{

0, k2 −
1
2 |M

′
2|
}

= |E|+ 1
2p2 + 2

3(|M ′1| − p1 + |M ′2| − p2 + |M ′3|)

+ max{0, p1 − |M ′1|}+ max
{

0, 1
2(p2 − |M ′2|)

}
≥ |E|+ 2

3 |M
′
3|+ max

{2
3(|M ′1| − p1), 1

3(p1 − |M ′1|)
}

+ 1
2 |M

′
2|+ max

{1
6(|M ′2| − p2), 1

3(p2 − |M ′2|)
}

≥ |E|+ 1
2 |M

′
2|+

2
3 |M

′
3|,

where the first inequality uses the above bounds, the first equality stems from∑∞
i=1 pi = |M ′1|+ |M ′2|+ |M ′3| and pi = iki, the second inequality is by moving parts

of the expression to the maxima, and the last inequality is by max{x,−x} ≥ 0.

Lemma 3.20. OPT can be bounded by

OPT ≥ |E|+ |M
′
1|+ |M ′2|+ |M ′3|
m

.

Proof. The number of trees in the input instance is exactly |M ′1| + |M ′2| + |M ′3|.
Each tree with k edges contains k + 1 nodes. Hence, the overall number of nodes in
the input forest is |E|+ |M ′1|+ |M ′2|+ |M ′3|. As all nodes are adjacent to some edge
and using the edge constraint, the claim directly follows.
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Corollary 3.21. OPT can be bounded by

OPT ≥ max
{
|E|+ 1

2 |M
′
2|+ 2

3 |M
′
3|

m− 1 ,
|E|+ |M ′1|+ |M ′2|+ |M ′3|

m
,
∑
e∈E

re

}
.

Proof. The first two bounds follow from Lemmas 3.19 and 3.20. The last bound
follows from the fact that the optimal solution cannot pack overfull bins.

Lemma 3.22. A′2 produces a preliminary packing with

A′2 ≤ min
{

1.8, 1.5m
m− 1

}
OPT + 2.5

bins. It runs in time O(|V | log |V |).

Proof. Let E1 := E′ \ E2 where E′ denotes the set of E together with the virtual
items added in A′2. We first show that |E1|+ (m− 1) ≥ |E2|. Whenever items are
added to E2 in Line 20, a bin is packed with m− 1 items not belonging to E2 in
Line 19. Additionally, in this case at most m − 1 items are added to E2 because
of the following reasoning. Assume to the contrary that more than m − 1 items
are added. This could only happen if |Tvb |+ . . .+ |Tvi | ≥ 2m− 1 holds in Line 17
at some point during the execution of the algorithm, since G′ contains at most
|Tvb |+ . . .+ |Tvi | items and m−1 items are packed in Line 19. In this case |Tvi | ≥ m
needs to hold. However, then there would have been an earlier iteration of the
for-loop in Line 11 in which |Tvi | was removed or |Tvi | became smaller than m, which
is a contradiction. Consequently, |E1| ≥ |E2| holds before the execution of Line 23
and then at most m− 1 items may be added to E2, yielding |E1|+ (m− 1) ≥ |E2|.

Also, it is always possible to pack the items from E2 in
⌈
|E2|
bm/2c

⌉
≤
⌈
|E2|

(m−1)/2

⌉
bins

in Line 23 since bm/2c items can be incident to at most m nodes and, thus, the edge
constraint is met.

Therefore, we obtain

A′2 ≤
⌈ |E1|
m− 1

⌉
+
⌈ |E2|

(m−1)/2

⌉
≤ |E1|
m− 1 + 1.5|E2|

m− 1 + 0.5|E2|
m− 1 + 2

≤ |E1|
m− 1 + 1.5|E2|

m− 1 + 0.5(|E1|+ (m− 1))
m− 1 + 2 ≤ 1.5|E′|

m− 1 + 2.5.

We have exactly 1
2 |M

′
2|+ max{0, |M ′3| − 1} virtual edges, hence

A′2 ≤
1.5(|E|+ 1

2 |M
′
2|+ max{0, |M ′3| − 1})
m− 1 + 2.5

≤
1.5(|E|+1/2|M ′2|+max{0,|M ′3|−1})

m−1

max
{
|E|+ 1

2 |M
′
2|+

2
3 |M

′
3|

m−1 ,
|E|+|M ′1|+|M ′2|+|M ′3|

m

} ·OPT + 2.5.
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For the two values in the denominator, we separately derive bounds. Regarding the
first expression, we bound

A′2 ≤
1.5(|E|+ 1

2 |M
′
2|+max{0,|M ′3|−1})
m−1

|E|+ 1
2 |M

′
2|+

2
3 |M

′
3|

m−1

·OPT + 2.5 (3.1)

≤
1.5
(
|E|+ 1

2 |M
′
2|+ 1

5(|E|+ 1
2 |M

′
2|) + 4

5 |M
′
3|
)

|E|+ 1
2 |M

′
2|+ 2

3 |M
′
3|

·OPT + 2.5

= 1.8OPT + 2.5,

where the first inequality uses |M ′3| ≤ |E| ≤ |E|+ 1
2 |M

′
2| and the second inequality

is by factoring out 6
5 in the numerator.

For the second bound, we have

A′2 ≤
1.5(|E|+1/2|M ′2|+|M ′3|)

m−1
|E|+|M ′1|+|M ′2|+|M ′3|

m

·OPT + 2.5

≤ 1.5m
m− 1 ·OPT + 2.5,

which yields
A′2 ≤ min

{
1.8, 1.5m

m− 1

}
·OPT + 2.5.

Concerning the runtime of A′2 one can see that it can be implemented such that
it runs in O(|V | log |V |) time. In a preprocessing step we can root the tree (if
necessary) and compute the values |Tvi | and the depth of all nodes by applying a
depth-first search, which takes O(|V |) time. Then, we essentially visit each node
twice (once in the two upper level loops and once in the loop in Line 16) and the
overall runtime is dominated by sorting nodes in Line 14. Hence, A′2 has a runtime
of O(|V | log |V |) (as each node is only sorted once).

Corollary 3.23. For a single tree, A′2 produces a preliminary packing with

A′2 ≤ 1.5OPT + 2.5.

Proof. For a single tree, we have |M ′2| = 0 and |M ′3| ≤ 1. Using this in Inequal-
ity (3.1), the result directly follows.

Given a solution of A′2, we can simply transform it into a feasible packing by
reallocating (parts of) items into new bins such that no capacity constraint is
violated. To this end, algorithm A2 considers each overfull bin B and greedily takes
(parts of) items of overall size one out of B and places them in new bins until
B’s capacity constraint is met. By OPT ≥

∑
re from Corollary 3.21, we have the

following theorem.
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Theorem 3.24. A2 has an asymptotic approximation factor of 2.5 if the graph G
is a single tree and min{1.8, 1.5m

m−1}+ 1 if G is a forest.

3.4.2 Packing General Graphs

Our algorithm for general graphs is based on a decomposition of graphs into
forests, which are then packed using our algorithms presented before. Precisely,
it decomposes G into forests F1, . . . , F`, ` ≤ arb(G), and (possibly) an additional
graph G′ of degree two. As mentioned before in Section 3.1.1 this is possible in
polynomial time. We then pack each forest Fi separately using algorithm A′2 and (if
it exists) we pack G′ using algorithm A1. Finally we transform the solution into a
feasible packing as in A2.

Theorem 3.25. Algorithm A constructs a packing with at most((
min

{
1.8, 1.5m

m− 1

})
· (arb(G) + 1) + 1

)
·OPT + 2.5arb(G) + 1

bins. It has an asymptotic approximation ratio of at most

min
{

1.8, 1.5m
m− 1

}
·
(

arb(G) + 5
3

)
.

Proof. Transforming the solution of A′2 to a feasible packing by reallocating (parts
of) items into new bins such that no capacity constraint is violated leads to at most∑
e∈
⋃`

i=1 EFi
re additional bins. Let A′1 be either A1 for m > 3 or OPT for m ≤ 3

(as this can be solved efficiently, see Section 3.3). From Lemmas 3.12 and 3.22, we
have

A ≤ A′1 +A′2 +
∑

e∈
⋃`

i=1 EFi

re

≤

min
{16

9 ,
4
3 ·

m

m− 1

}
·OPT +

(
1− 1

2(m− 1)

) ∑
e∈EG′

re + 1


+
(

min
{

1.8, 1.5m
m− 1

}
·OPT + 2.5

)
arb(G) +

∑
e∈
⋃`

i=1 EFi

re

<

(
min

{
1.8, 1.5m

m− 1

}
·OPT

)
(arb(G) + 1)

+
∑

e∈
(⋃`

i=1 EFi

)
∪EG′

re + 2.5arb(G) + 1

≤
((

min
{

1.8, 1.5m
m− 1

})
· (arb(G) + 1) + 1

)
·OPT + 2.5arb(G) + 1
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≤
((

min
{

1.8, 1.5m
m− 1

})
·
(

arb(G) + 5
3

))
·OPT + 2.5arb(G) + 1,

where we use min
{

16
9 ,

4
3 ·

m
m−1

}
≤ min

{
1.8, 1.5m

m−1

}
in the third inequality, the com-

munication bound on OPT in the second last and 1.5 ≤ min
{

1.8, 1.5m
m−1

}
in the last

inequality.
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Multiprocessor Scheduling with a
Sharable Resource

Multiprocessor scheduling is a classical resource allocation problem. In its
simplest version, a computing system consisting of m identical processors
has to execute n independent jobs of possibly different workloads. The

objective is to find an assignment of jobs to processors that minimizes some quality of
service measure such as the makespan (latest completion time of any job) or average
completion time (the average time a job has to wait for its completion). Specific
results differ widely depending on additional model parameters: Is preemption
(pausing and resuming jobs) allowed? Can jobs be migrated from one to another
processor? Is there any additional knowledge about the jobs (such as size, priority,
or dependencies)? Leung [Leu04] gives a good overview of these and many more.

This chapter considers the following multiprocessor model: In addition to the
processors and (non-preemptive) jobs, there is a common finite resource (think of
bandwidth or power supply) that is to be shared by the processors. The scheduler
controls the resource assignment, which can be adjusted over time. We assume that
the resource can be divided arbitrarily between the processors. For example, the
scheduler might distribute the total available bandwidth for a few processor cycles in
portions of 20%, 35%, and 45% among three available processors and change it later
to 10%, 85%, and 5%, depending on how communication intensive the currently
processed jobs are.

The dependency of different jobs on the resource might vary a lot. In the
bandwidth example, some jobs might be very data intensive and require a lot of
communication, while others do not communicate at all. We model this aspect via
a job’s resource requirement. This is a positive value that indicates what portion
of the resource is needed to finish one unit of the job’s workload. Providing the
job with a higher share of the resource does not speed it up (it cannot use the
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excess bandwidth). But assigning it a significantly smaller share might slow the
job down drastically. As a first step towards such a scalable resource model in
job scheduling, we consider a performance decrease that depends linearly on the
resource: for example, if a job of unit size receives 1/k-th (k > 1) of its resource
requirement during each time step it is executed, its processing takes dke steps.
Note that this model gives insights on scenarios where resource requirement is the
bottleneck of the system, which is often the case in today’s big data applications. In
contrast, the aspect of processing power is disregarded by assuming that sufficient
processing power is available at any time.

The first part of this chapter studies the above model for the objective of mini-
mizing the makespan. We refer to this problem as Shared Resource Job-Scheduling
(SoS) (see Section 4.1.1 for the full, formal specification). In the second part, we
extend this model to the setting of composed services, where the processors have
to finish a set of tasks and each task itself consists of a set of jobs (each of which
has its own resource requirement). A task is finished when all its jobs are finished.
We aim at minimizing the average completion time of all tasks. This is a typical
setting in cloud computing, where users submit applications (tasks) composed of
many smaller parts (jobs) and require the output of all these parts. We refer to this
setting as Shared Resource Task-Scheduling (SaS).

4.1 Preliminaries
In the following, we give an introduction to the model and summarize the results
presented in this chapter.

4.1.1 Model & Notation
Consider a system of m ∈ N processors from the set M := [m] = { 1, 2, . . . ,m }
and n ∈ N jobs from the set J := [n]. There is a resource that is to be shared
by the processors. In each time step t ∈ N, each processor i is assigned a share
Ri(t) ∈ [0, 1] of the resource. The resource may not be overused, such that we require∑
i∈[m]Ri(t) ≤ 1. Each processor can process at most one job per time step and

each job can be processed by at most one processor. A job j has a processing volume
(size) pj ∈ R and a resource requirement rj > 0. Note that we will assume pj ∈ N
for convenience throughout this paper, but all our results carry over to pj ∈ R (see
also the explanation below Equation (4.1)). Without loss of generality, we assume
r1 ≤ r2 ≤ · · · ≤ rn. The resource requirement specifies what portion of the resource
is needed to finish one unit of a job’s processing volume. More exactly, assume job j
is processed by processor i during time step t. Then exactly min(Ri(t)/rj , 1) units
of j’s processing volume are finished during that time step. A job is finished once
all pj units of its processing volume have been finished. Preemption and migration
of jobs is not allowed. The objective is to find a schedule S (i.e., a resource and job
assignment) having minimal makespan |S| (the number of time steps until all jobs
are finished). We refer to this problem as Shared Resource Job-Scheduling (SoS).
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As a special case, we sometimes consider pj = 1 for all j ∈ J . We refer to this as
the setting of jobs with unit size.

During our analysis, it will be convenient to adopt the following perspective on
SoS: Given a schedule S, consider job j processed on processor i during time step t.
Without loss of generality, we assume Ri(t) ≤ rj (setting Ri(t) to min {Ri(t), rj }
yields a valid schedule with the same makespan). Let t1 and t2 denote the time
steps when j was started and finished, respectively. Since j is finished, we have∑t2
t=t1 Ri(t)/rj ≥ pj . Rearranging yields ∑t2

t=t1 Ri(t) ≥ rj · pj . Thus, if we define
sj := rj · pj as the total resource requirement of job j, we can think of j as being
finished once the total resource shares it received over time equal (at least) sj . We
define sj(t) := sj −

∑t
t′=t1 Ri(t

′) as the total resource requirement remaining after
time step t. Note that job j is finished in the first time step t for which sj(t) = 0.
We use J(t) := { j ∈ J | sj(t) > 0 } to denote the set of jobs that are not finished
after time step t.

Recall that a polynomial-time algorithm A has an (absolute) approximation ratio
of α if, on any instance I, the schedule S produced by A satisfies |S|/|OPT| ≤ α,
where OPT denotes an optimal solution for I. A has an asymptotic ratio of α if, on
any instance, |S| = α · |OPT|+ o (|OPT|).

Lower Bounds. Let OPT denote an optimal schedule. Two simple lower bounds
for any schedule, including OPT, are ds0(J)e and 1

m ·
∑
j∈J dsj/rje. The former

holds since each job needs to receive a total of sj resource shares over time. The
latter holds since each job must be split in at least dsj/rje parts, and each such part
needs a dedicated machine in one time step to be processed. Thus, we have

|OPT| ≥ max

 ds0(J)e, 1
m
·
∑
j∈J

⌈
sj
rj

⌉  . (4.1)

Note that these lower bounds on OPT remain valid if allowing pj ∈ R and rescaling
p′j := dpje and r′j := sj/p′j, as this modification maintains the sj and by dp′je = dpje
the bound in Equation (4.1) remains the same. Also, the lower bounds remain valid
for the preemptive setting as they are only based on observations of the overall
workload.

4.1.2 Contribution
We study a new scheduling model for a setting of parallel processors sharing a
common scarce resource in terms of its complexity and approximations. Our model
is an extension of a simpler variant studied in [Bri+14] and is closely related to a
well-known bin packing problem [Chu+06]. Precisely, our results are as follows:

• We prove SoS and SaS to be NP-hard in the strong sense (Section 4.2).

• For SoS, we design and analyze a polynomial-time algorithm with an approx-
imation ratio of 2 + 1/(m−2) for jobs of arbitrary size and (asymptotically)
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1 + 1/(m−1) for unit size jobs (Section 4.3). Our algorithm is based on the
idea of a maximal sliding window: We order jobs by non-decreasing resource
requirement and (for each time step) create a sliding window trying to find a
subset of consecutive jobs such that m− 1 of these jobs can be finished and
the full resource can be used.

• Our algorithm implies the same (asymptotic) guarantee of 1 + 1/(k−1) for bin
packing with splittable items and cardinality constraint k. Besides a known
PTAS, which has a quite high runtime, the best known fast algorithm for
this problem has an approximation ratio of 2− 1/(k−1). For computing centers
typically containing a huge amount of processors, this ratio approaches 2,
whereas the ratio of our algorithm approaches 1.

• We generalize our algorithm to obtain an asymptotic approximation ratio of
2 + 4/(m−3) for SaS where unit size jobs are grouped into tasks and where we
aim at minimizing the average completion time of all tasks (Section 4.4).

4.2 Complexity

In the following, we explore the complexity of the SoS problem.

Theorem 4.1. The SoS problem with jobs of unit size is strongly NP-hard for
m = 2.

Proof. Bin packing with cardinality constraints and splittable items is equal to our
setting with preemption. The NP-hardness of SoS, even for unit size jobs, can
hence be shown similarly to the reduction found in [Chu+06]. For completeness
sake and to show its adaptivity to our setting, the reduction is included here.

We start with the 3-Partition problem with a restricted size of the elements
which is defined as follows. Given a multiset S = { s1, . . . , sn } of n = 3m elements,
a bound B with B/4 < si < B/2 for all si and ∑ si = mB, is there a partition into
m sets S1, . . . , Sm such that |Si| = 3 and ∑s∈Si s = B for all i ∈ { 1, . . . ,m }?

Let our SoS instance have n jobs J = { j1, . . . , jn } with resource requirement
rj = 1

2 + sj
2B < 3

4 , where we abuse notation via sji = si. We define Ji to contain the
jobs induced by set Si. Now is there a schedule with a makespan of at most 2m?

In case that the 3-Partition instance is a YES-instance, we need to show that
there is a corresponding schedule for our SoS instance. Given a set Sk, the three
jobs derived from it can always be processed in at most two timesteps, because∑
j∈Jk rj = 3

2 +∑
j∈Jk

sj
2B = 2. Finishing all job sets Jk in an arbitrary order yields

a valid schedule with a makespan of 2m.
On the other hand, we show that if there is a schedule with a makespan of at

most 2m, we can also generate a 3-Partition instance. Note that this is equivalent
to showing that if the 3-Partition instance is a NO-instance, there is no schedule
with makespan at most 2m.
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First observe that the resource must be fully utilized in any timestep, because∑
j∈J rj = ∑

j∈J

(
1
2 + sj

2B

)
= n

2 + mB
2B = 2m.

Then, any job must be processed during at most two timesteps. If this were not
the case, due to rj < 3

4 , there is a timestep t where the share of the resource of job j
is less than 1

4 . However, since for the job j′ on the second machine we have rj′ < 3
4 ,

the resource at this timestep cannot be fully used.
Now there must be exactly m jobs processed during two timesteps. This is because

if there were more than m jobs with this property, we would have more than 4m job
parts yielding a makespan of more than 2m. On the other hand, if there were less
than m jobs with this property, there is at least one timestep where only one job is
processed, which is a contradiction to fully utilizing the resource in every time step.

W.l.o.g., let J̃ = { j1, . . . , jm } be the jobs processed during two timesteps. We
observe that no two jobs from J̃ can be processed at the same timestep. Otherwise,
at least one of them uses a resource of at least 1

2 in that timestep, hence a resource
of at most 1

4 in the adjacent timestep. Then, the resource is not fully utilized in
that adjacent timestep, as the other job uses less than a resource of 3

4 .
Now, for each job split into two parts, we know that exactly one full other job is

processed together with each part of it. For each split job, we build a set together
with these two jobs processed together with it. There are m such sets J1, . . . , Jm
with three elements each. The sum of the resource requirements of these three
jobs is 2, implying ∑j∈Ji

(
1
2 + sj

2B

)
= 2 which yields ∑j∈Ji sj = B. This is a

3-Partition.

Note that the hardness of the general SoS problem (with jobs of arbitrary size)
directly follows. This also holds for the SaS problem, as it contains the SoS problem
with unit size jobs as a special case.

As stated before, there is a PTAS [ES07] for bin packing with cardinality con-
straints and splittable items if the cardinality constraint (corresponding to the
number of processors in our model) is in o (n). This bin packing variant is similar
to the unit size version of our problem, but with preemption. However, this PTAS
can be adapted easily to the setting without preemption by restricting the set of
solutions to non-preemptive schedules. For unit size jobs, this implies a better
approximation ratio than our algorithm in Section 4.3, but at the cost of very high
runtime.

4.3 Approximation Algorithm

We provide some additional notation for this section: Let j ∈ J, U ⊆ J and t ∈ N0.
We define r(U) := ∑

j∈U rj and st(U) := ∑
j∈U sj(t). We say job j is fractured at

time t if sj(t) = k · rj + qj(t) for some k ∈ N0 and qj(t) ∈ (0, rj) (i.e., sj(t) is not an
integer multiple of rj). Note that since sj(0) = sj = pj ·rj and pj ∈ N, initially no job
is fractured. We also define Lt(U) := { j ∈ J(t− 1) | j < minU } as the set of jobs
remaining at the beginning of time step t that have a resource requirement smaller
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than any job in U (“left of U”). Similarly, Rt(U) := { j ∈ J(t− 1) | j > maxU }.
For convenience, we define Lt(∅) := ∅ and Rt(∅) := J(t− 1).

We continue with the central definition of maximal (job) windows, a subset of
remaining jobs that can be processed efficiently (see algorithmic intuition below).
Our algorithm will ensure that it always processes jobs from such a window. The
bulk of the analysis goes towards proving that we can always find a maximal window.

Definition 4.2 (Job Window). A subset of unfinished jobs W ⊆ J(t− 1) is called
a job window for time step t if

1. j1, j2 ∈W ⇒ J(t− 1) ∩ { j1, j1 + 1, . . . , j2 } ⊆W ,

2. r(W \ {maxW }) < 1,

3. |{ j ∈W | qj(t− 1) > 0 }| ≤ 1, and

4. j ∈ J(t− 1) \W ⇒ sj(t− 1) = sj .

We say W is k-maximal if, additionally, it has size |W | ≤ k and the following
properties hold:

5. |W | < k ⇒ Lt(W ) = ∅ and

6. r(W ) < 1⇒ Rt(W ) = ∅.

In other words, a window W (of size ≤ m) is a set of consecutive jobs (Property 1)
such that we can assign all but the rightmost job their full resource requirements
(Property 2). Moreover, W contains all started jobs and at most one of these is
fractured (Properties 3 and 4). To be k-maximal, a window of a size of at most k
must contain either exactly k jobs or lie at the left border, and either utilize the full
resource or lie at the right border (Properties 5 and 6).

Algorithmic Intuition. We design our algorithm such that it has three key proper-
ties:

• During any time step t, it processes jobs from an (m− 1)-maximal window
Wt ⊆ J(t− 1) (Lemma 4.8).

• If the window Wt is at the left border of the remaining jobs (i.e., Lt(Wt) = ∅),
then this remains true for all Wt′ with t′ > t (Lemma 4.91).

• If the window Wt is at the right border of the remaining jobs (i.e., Rt(Wt = ∅)),
then this remains true for all t′ > t (Lemma 4.92).

Note that if Wt is not at the left border of the remaining jobs, Properties 2 and 5
of Definition 4.2 imply that we can assign the resource such that at least m− 2 jobs
(all of W except for maxWt) receive their full resource requirement rj during time
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1 for (t,W )← (1, ∅); J(t− 1) 6= ∅; t← t+ 1:
2 W ←W ∩ J(t− 1)
3 W ← GrowWindowLeft(W , t, m− 1, 1)
4 W ← GrowWindowRight(W , t, m− 1, 1)
5 W ← MoveWindowRight(W , t, 1)
6
7 if ∃ fractured job ι ∈W : F ← { ι }
8 else: F ← ∅
9 if r(W \ F ) ≥ 1:

10 process each job j ∈W \ (F ∪ {maxW }) with resource rj
11 if F = { ι }:
12 process job ι with resource qι(t)
13 process job maxW with the remaining resource
14 else:
15 process each job j ∈W \ F with resource rj
16 if F = { ι }:
17 process job ι with resource min { 1− r(W \ F ), sι(t− 1) }
18 if resource left and Rt(W ) 6= ∅:
19 assign remaining resource to job minRt(W )
20 W ←W ∪minRt(W )

Listing 4.1: Approximation algorithm for SoS.

step t. Similarly, if Wt is not at the right border of the remaining jobs, Property 6
implies that we can utilize the full resource during time step t.

Consider the first time step T such that LT (WT ) ∪RT (WT ) = ∅. In particular,
WT contains all remaining jobs. It is not hard to see that these can be finished by
our algorithm in |OPT| time steps. On the other hand, up to time step T the three
key properties and the above observations imply that in each time step either at
least m− 2 jobs receive their full resource requirement or the full resource is utilized.
In the former case, the lower bound from Equation (4.1) implies T ≤ m

m−2 · |OPT|.
In the latter case, the same bound implies T ≤ |OPT|. Together, this yields an
approximation ratio of at most m

m−2 + 1 = 2 + m−2
m .

A slightly more careful but similar analysis yields Theorem 4.4. We proceed to
describe our algorithm. Afterward we show that the three key properties hold and
formalize the above argument.

4.3.1 Algorithm Description

In the following we describe our algorithm. The corresponding pseudocode can be
found in Listing 4.1 (with some auxiliary procedures outsourced to Listing 4.2). If
not explicitly stated otherwise, references to lines refer to Listing 4.1. Note that the
implementation as shown in Listing 4.1 has only pseudo-polynomial runtime. It is
not hard to adapt it such that it yields polynomial runtime; we describe how to do
that in the proof of Theorem 4.4.

Lines 2 to 5 compute an (m− 1)-maximal window W for this time step. Lines 7
to 20 compute the resource assignment of this time step. The computation of the
maximal window W starts by removing any jobs that were finished in the last time
step (Line 2). Lines 3 to 5 take the resulting window and greedily grow it first left,
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1 GrowWindowLeft(W , t, size, R)
2 while

(
|W | < size and Lt(W ) 6= ∅

)
and r(W ) < R:

3 W ←W ∪ {maxLt(W ) }
4 return W
5
6 GrowWindowRight(W , t, size, R)
7 while

(
r(W ) < R and Rt(W ) 6= ∅

)
and |W | < size:

8 W ←W ∪ {minRt(W ) }
9 return W

10
11 MoveWindowRight(W , t, R)
12 while

(
r(W ) < R and Rt(W ) 6= ∅

)
and sminW = sminW (t− 1):

13 W ← (W \ {minW }) ∪ {minRt(W ) }
14 return W

Listing 4.2: Auxiliary procedures. The parameters size and R are only to facilitate
the algorithm from Section 4.4. In this section, we call these only with
size = m− 1 and R = 1.

then right, and finally move it as far to the right as possible. This way, W becomes
(m− 1)-maximal for this time step.

To compute the resource assignment, let F := { ι } be the set containing the only
fractured job of W (or F := ∅ if there is no fractured job). We distinguish two cases:

Case 1: r(W \ F ) ≥ 1
Note that ι 6= maxW , as otherwise Property 2 of Definition 4.2 violates the
case assumption. Each job j ∈ W except for ι and maxW receives its full
resource requirement rj . Job ι receives resource qι(t − 1). Any remaining
resource is assigned to maxW .

Case 2: r(W \ F ) < 1
In this case, each job j ∈W except for ι receives its full resource requirement rj .
Job ι receives resource min { 1− r(W \ F ), sι(t− 1), rι }. If there is resource
left, we use it to process minRt(W ) (this is the only case where we use all m
instead of only m− 1 processors). In that case, we add minRt(W ) to W .

Our analysis requires that there is always at most one fractured job.1 The case
distinction above is chosen with this goal in mind: If there is no fractured job,
all j ∈ W \ {maxW } receive their full resource requirement. The remaining
resource goes to maxW , possibly fracturing it. If there is already a fractured job
ι, doing the same might fracture a second job (maxW ). Instead, we distinguish
whether r(W \ { ι }) ≥ 1 or not. If so, we “unfracture” ι and instead fracture
maxW ; r(W \ { ι }) ≥ 1 guarantees that we can still use the full resource, even if
sι(t− 1) = ε� rι. Otherwise, r(W \ { ι }) < 1 allows us to assign all j ∈W \ { ι }
their full resource requirement and keep only ι fractured (it gets the remaining

1Otherwise, we could end up with m− 1 fractured jobs j ∈W , each with sj(t− 1) = ε� rj . This
may cause almost the full resource to be wasted during that step.

78



Approximation Algorithm 4.3

resource). This case might leave us with some unecessarily wasted resource (if
sι(t − 1) = ε � rι and Rt(W ) 6= ∅). If so, we finish ι and use the (so far unused)
m-th processor to start a new job. We gather this discussion in the following
observation.

Observation 4.3. Given an (m− 1)-maximal window W for the current time step,
Lines 7 to 20 compute a resource assignment for jobs in W such that at least |W |−1
jobs j ∈W receive their full resource requirement rj , at most one job is fractured
after this time step, and at most |W | jobs are started (and not finished) after this
time step.

4.3.2 Analysis
The goal of this section is to prove the following theorem.

Theorem 4.4. The algorithm from Listing 4.1 generates a schedule S with ap-
proximation ratio 2 + 1

m−2 . If jobs have unit size, we get the stronger guarantee
|S| ≤ (1 + 2

m−2) · |OPT|+ 1. The algorithm can be implemented with a runtime of
O ((m+ n) · n).

It is not hard to see that for jobs of unit size, a minor algorithm modification
avoids to reserve the m-th processor: If jobs have unit size, we have sj = rj for all
j ∈ J . Note that there will be always at most one started (and thus at most one
fractured) job: Indeed, by the while-loops of the auxiliary procedures, the window
can contain at most one job with sj = rj > 1 (this will be maxW ). Since for all
jobs j ∈W \ {maxW } we have sj = rj ≤ 1 and r(W \ {maxW }) < 1 (Property 2
of Definition 4.2), such j will be finished in the current time step. We can treat the
only started job ι in step t as a job with resource requirement sι(t− 1) and reorder
the jobs accordingly. The next time step will either finish ι or it will once more
be the only started job. This modification does not need the reserved processor,
so we can use m-maximal instead of (m − 1)-maximal windows, improving the
approximation factor for unit size jobs from m

m−2 = 1 + 2
m−2 to m

m−1 = 1 + 1
m−1 .

The analysis is analogous to the one given below for the unmodified algorithm.
We now start to provide tools for the proof of Theorem 4.4. We start with some

auxiliary claims and then prove the above-mentioned key properties in Lemmas 4.8
and 4.9

Claim 4.5. If Properties 1 to 4 from Definition 4.2 hold for W right before we call
the auxiliary procedures, then they also hold at any later point in this time step.

Proof. Property 1 holds since jobs are added one by one at the left/right borders
(Lines 3 and 8 in Listing 4.2) or one job is removed at the left border and another
added at the right border (Line 13). Property 2 is enforced by the while-loops’
conditions. Property 3 holds since only unstarted (and thus unfractured) jobs are
added to W . Finally, Property 4 holds since the while-loop in Line 12 of Listing 4.2
ensures that no started jobs are removed.
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Claim 4.6. If W = ∅ after Line 2 of Listing 4.1 in time step t and no job in J(t−1)
is started, then W is an (m− 1)-maximal window when MoveWindowRight exits.

Proof. We have W = ∅ right before the auxiliary procedures are called. In particular,
W is a (trivial) window for time step t. We apply Claim 4.5 to get that Properties 1
to 4 of Definition 4.2 hold when MoveWindowRight exits. Since the while-loops
ensure that the window size is at most m− 1, it remains to show that Properties 5
and 6 hold after the auxiliary procedures.

For Property 5, note that Lt(W ) = Lt(∅) = ∅. Thus, procedure GrowWindowLeft
exits immediately, leaving W = ∅. If GrowWindowRight exits because of |W | = m−1,
Property 5 holds (and remains true since MoveWindowRight does not change the
size of W ). Otherwise, if GrowWindowRight exits because the condition “r(W ) <
1∧Rt(W ) 6= ∅” is violated, MoveWindowRight exits immediately for the same reason.
But then, we still have min J(t− 1) ∈ W (impplying Lt(W ) = ∅) and Property 5
holds.

For Property 6, note that MoveWindowRight cannot exit because of the condition
“sminW = sminW (t− 1)” (there are no started jobs). Thus, it can only exit because
one of the other two conditions is violated, which immediately implies Property 6.

Claim 4.7. If W 6= ∅ after Line 2 of Listing 4.1 in time step t and the window
W̃ computed in the previous time step was (m− 1)-maximal, then W is a (m− 1)-
maximal window when MoveWindowRight exits.

Proof. We have W = W̃ ∩ J(t− 1) right before the auxiliary procedures are called.
W̃ was a maximal window, and removing finished jobs cannot violate Properties 1
to 4 of Definition 4.2. We apply Claim 4.5 to get that Properties 1 to 4 hold when
MoveWindowRight exits. It remains to show that Properties 5 and 6 hold after the
auxiliary procedures.

For Property 5, we first show that it holds after GrowWindowLeft. When we call
GrowWindowLeft for window W , note that Lt(W ) = Lt−1(W̃ ). Thus, if Lt−1(W̃ ) =
∅, Property 5 holds trivially after GrowWindowLeft (the while-loop exits immediately
because of the condition “Lt(W ) 6= ∅”). If Lt−1(W̃ ) 6= ∅, since Property 5 holds
for window W̃ , we have |W̃ | = m− 1. Note that for all j ∈ Lt(W ) = Lt−1(W̃ ) and
j′ ∈ W̃ we have rj ≤ rj′ (by the job ordering). This implies that we cannot violate
condition “r(W ) < 1” of the while-loop of GrowWindowLeft before adding |W̃ |−|W |
jobs. Moreover, we cannot violate “|W | ≤ m − 1” before adding |W̃ | − |W | jobs
(since |W | + (|W̃ | − |W |) = |W̃ | ≤ m − 1). Thus, GrowWindowLeft adds at least
min { |Lt(W )|, |W̃ | − |W | } jobs to W . If the minimum equals |Lt(W )| we added all
jobs left of W and Property 5 holds. If the minimum equals |W̃ | − |W |, Property 5
holds since the resulting window has a size of at least |W |+ (|W̃ | − |W |) = |W̃ | =
m− 1.

So Property 5 holds for W right before GrowWindowRight. We show that it
still holds after procedure MoveWindowRight. The statement is trivial if |W | =
m − 1 (both procedures do not decrease W ). Otherwise, we use that W has
Property 5 to get Lt(W ) = ∅. If GrowWindowRight exits because the condition
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“r(W ) < 1 ∧Rt(W ) 6= ∅” got violated, MoveWindowRight exits immediately for the
same reason, leaving Lt(W ) = ∅. Otherwise, if GrowWindowRight exits because of
|W | = m− 1, this is maintained by MoveWindowRight and, thus, Property 5 holds
after MoveWindowRight.

It remains to prove that Property 6 holds after procedure MoveWindowRight.
Consider the conditions of the while-loop in Line 12 of Listing 4.2. Property 6
holds if the while-loop exits because the condition “r(W ) < 1 ∧ Rt(W ) 6= ∅” got
violated. So assume it exits only because of the condition “sminW = sminW (t −
1)”. At that moment, we have a window W with r(W ) < 1, Rt(W ) 6= ∅, and
sminW > sminW (t − 1). The first two imply that |W | = m − 1, since otherwise
GrowWindowRight would not have exited. The inequality sminW > sminW (t − 1)
implies that job minW is already started, so it must have been in the last time
step’s window W̃ . Now, since W has maximal size m− 1 and its leftmost job was
also in W̃ , we get r(W̃ ) ≤ r(W ) < 1 as well as Rt(W ) ⊆ Rt−1(W̃ ). But since W̃
had Property 6, we know Rt−1(W̃ ) = ∅. Together, Rt(W ) = ∅, a contradiction.

Lemma 4.8. Fix t ∈ N0 and consider the job window W processed during time step
t. Then W is an (m− 1)-maximal window for time step t.

Proof. We prove the statement inductively. In the first time step t = 1, we start
with W = ∅ (initialization by the for-loop) and no job has been started. We apply
Claim 4.6 to get that W is an (m−1)-maximal window after the auxiliary procedures.
For t > 1 we either have W = ∅ or W 6= ∅ after Line 2 of Listing 4.1. In the former
case, we once more apply Claim 4.6. In the latter case, we apply Claim 4.7. In both
cases, we get that W is an (m− 1)-maximal window after the auxiliary procedures,
proving the desired statement.

Lemma 4.9. Let W̃ ⊆ J(t− 2) and W ⊆ J(t− 1) be the (m− 1)-maximal windows
processed during time step t− 1 and t, respectively. Then

1. Lt−1(W̃ ) = ∅ ⇒ Lt(W ) = ∅ and

2. Rt−1(W̃ ) = ∅ ⇒ Rt(W ) = ∅ ∧ r(W ) ≤ r(W̃ ).

Proof. For Statement 1, note that W starts out as W̃ ∩ J(n − 1) in time step t.
Since Lt(W ) = Lt−1(W̃ ) = ∅, we only add jobs from Rt(W ) = Rt−1(W̃ ). All these
jobs have a larger resource requirement than any job in W̃ . As a consequence, after
GrowWindowRight we have |W | ≤ |W̃ |. If |W | < |W̃ | ≤ m − 1, MoveWindowRight
exits immediately and we have Lt(W ) = ∅. Otherwise, if |W | = |W̃ | after
GrowWindowRight, we must have r(W ) ≥ r(W̃ ) and Rt(W ) ⊆ Rt−1(W̃ ). Since W̃ is
(m− 1)-maximal in time step t− 1, this implies either r(W ) ≥ 1 or Rt(W ) = ∅, such
that MoveWindowRight exits immediately and leaves Lt(W ) = ∅. This proves State-
ment 1. The first part of Statement 2 follows analogously. The second part
holds either since |W | = |W̃ | = m − 1 and jobs that were finished in W̃ are ex-
changed for jobs with at most the same resource requirement, or since W ⊆ W̃ (if
Lt−1(W̃ ) = ∅).
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With these lemmas, we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. We consider the schedule S produced by our algorithm
from Listing 4.1. By Lemma 4.8, the jobs processed during each time step
t ∈ N are contained in a maximal window Wt for time step t. We define TL :=
min { t ∈ N | |Wt| < m− 1 } and, similarly, TR := min { t ∈ N | r(Wt) < 1 }. By
Properties 5 and 6 of Definition 4.2 and Lemma 4.9 we have Lt(Wt) = Rt(Wt) = ∅
and rt(Wt) < 1 for all t ≥ max {TL, TR } =: T . In particular, the former implies
Wt = J(t− 1) for all t ≥ T . Combining these insights we get that for each t ≥ T ,
each of the at most |Wt| ≤ |WT | < m − 1 remaining jobs gets its full resource
requirement. Thus, each j ∈WT is finished after exactly dsj(T − 1)/rje additional
time steps. Let p := max { sj(T − 1)/rj | j ∈WT }. Note that |S| = T − 1 + dpe.
We distinguish two cases:

Case 1: T = TL
For each t < T we have |Wt| = m − 1. Thus, by Observation 4.3, at least
|Wt| − 1 = m − 2 jobs j ∈ Wt receive their full resource requirement rj .
Remember that pj = sj/rj . An average argument gives

T − 1 ≤
∑
j∈J pj − dpe
m− 2 ≤ |OPT| · m

m− 2 −
dpe
m− 2 .

Combining everything with the lower bound |OPT| ≥ dpe we compute

|S| = T − 1 + dpe ≤ |OPT| · m

m− 2 −
dpe
m− 2 + dpe

≤ |OPT| ·
(

m

m− 2 + 1− 1
m− 2

)
= |OPT| ·

(
2 + 1

m− 2

)
.

Case 2: T = TR
For each t < T we have r(Wt) ≥ 1. Using that OPT cannot overuse the
resource, we see T − 1 ≤ r(J) ≤ |OPT|. Similar to the first case, we compute
|S| = T − 1 + dpe ≤ 2 · |OPT|.

The result for jobs of unit size follows by realizing that |S| = T − 1 + 1 = T . Thus,
the bounds above give |S| ≤ |OPT| ·

(
1 + 2

m−2

)
+1 (Case 1) and |OPT|+1 (Case 2).

For the runtime, first note that the implementation given in Listing 4.1 has
actually pseudo-polynomial runtime (it depends on the sum ∑

j∈J pj , since each job
j needs a dedicated processor for at least pj time steps). However, note that if no
job is finished in the current time step, the maximal window in the next step will be
identical to the current maximal window. With this observation, we can calculate
via a simple linear equation after how many step with the current maximal window
the first job in the window will be finished. This allows us to “skip” time steps
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where no job is finished. Thus, given the maximal window in a time step t, we go
over the O (m) jobs in the window and find the first one(s) that will be finished
under the current resource assignment. To compute the next maximal window, we
remove the finished jobs and grow the window left/right. This can be computed
in time O (|W |) = O (m) (each adding/removal can be implemented trivially in
constant time using doubly linked lists). Then we move the window up to n steps
to the right, which can be done in time O (n). Since this always eliminates at least
one job from the old maximal window, this repeats at most O (n) times, yielding a
total runtime of O (n · (m+ n)).

As the lower bounds on OPT are still valid for the preemptive setting (see
description below Equation (4.1)), and the upper bounds of the algorithm obviously
do not increase by allowing preemption, our results for unit size jobs carry over
to bin packing with cardinality constraints and splittable items. Our algorithm
scales well with the number of processors in contrast to existing simple (i.e., fast)
algorithms, but (obviously) does not reach the approximation ratio of the existing
EPTAS [ELS12]. Note that in the following corollary, k denotes the cardinality
constraint as this is common notion in the related literature.

Corollary 4.10. Our results give an algorithm for bin packing with cardinality
constraints and splittable items [Chu+06] with asymptotic approximation ratio 1 +
1/(k−1) and runtime O ((k + n)n).

Proof. The lower bounds on the optimum remain valid for the preemptive setting as
they only use a notion of overall workload. Also, our algorithm still computes a valid
solution, as the preemptive setting removes a constraint. The claim follows.

The next results also follow almost directly from the results in this chapter.
The first result improves upon the prior approximation ratio for graphs with tree
structure, the second considers general graphs.

Corollary 4.11. A simple variant of our algorithm results in an approximation
guarantee of 2 + 2

m−1 for the model from Chapter 3 if the input graph has the
structure of a forest.

Proof. We start with an arbitrary forest and consider each edge separately. As each
forest with n nodes consists of at most 2n− 1 edgest (in case the forest is a tree),
and any optimal algorithm could schedule at most n− 1 edges at once (due to the
forest structure), we lose at most a factor of 2n−1

n−1 ≤ 2 by considering each edge
separately. Our algorithm from this chapter has an approximation guarantee of
1 + 1

m−1 , resulting in an overall approximation ratio of at most 2 ·
(
1 + 1

m−1

)
.

For the second result, recall that the arboricity arb(G) of a graph G denotes the
minimum number of forests into which a graph can be decomposed. Note that
the approximation ratio of the following corollary is better than the results from
Chapter 3 if m is large and arb(G) is small, that is, arb(G) < 5. For small m (that
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is, min
{

1.8, 1.5m
m−1

}
= 1.8), it only improves upon the prior result if arb(G) is even

smaller, the threshold depending on the exact value of m.

Corollary 4.12. Our algorithm can easily be modified to guarantee an approximation
ratio of (2m/(m−1))arb(G) for the model from Chapter 3, resulting in an overall
approximation ratio of min

{
min

{
1.8, 1.5m

m−1

}
·
(

arb(G) + 5
3

)
, ( 2m
m−1)arb(G)

}
Proof. We start with an arbitrary graph and consider each edge separately. We know
that the graph can be decomposed into arb(G) many forests. As each forest with k
nodes consists of at most 2k − 1 edges (in case the forest is a tree), it also follows
that each graph of size n consists of at most 2arb(G)n single edges. Therefore, using
our algorithm for unit size jobs on the resulting set of edges yields an approximation
ratio of (2arb(G)) · (1 + 1/(m−1)) = 2m/(m−1) · arb(G).

4.4 The Shared Resource Task-Scheduling Problem
Computational tasks often consist of multiple parts that may be executed in parallel
and independently of each other. Such situations often arise in the context of
composed cloud services that consist of several smaller services that can be executed
in parallel in a computing center.

We now consider the model where a set of tasks needs to be executed and where
each task consists of multiple unit size jobs, i.e., given a task set T = {T1, . . . , Tk }
each containing a set of jobs Ti = { ji1, . . . , jini } with pik = 1 for all i, k. The
objective is to minimize the average completion time, where the completion time fi
of a task Ti denotes the time the last job of this task is finished, i.e., fi := max{t :
sj(t − 1) > 0 for some j ∈ Ti}. Note that this equals the objective of minimizing
the sum of completion times, which we will do throughout this section.

We denote the set of unfinished tasks after time t by T (t), the set of unfinished
jobs of task i after time t by Ji(t), and the remaining resource requirement for set
U by r̃(U).

4.4.1 Prerequisites

Our algorithm for this setting partitions the set of tasks into two sets T1 and T2.
For each task, we consider the average resource requirement of its jobs. The tasks
with jobs that have a high resource requirement belong to T1, those with jobs that
have a low resource requirement belong to T2. The algorithm schedules both sets of
tasks independently in parallel, each on (roughly) half the processors with half the
resource.

We begin with the tasks that have high resource requirements. Here, the available
resource is R instead of 1 as in the previous section. Note that the auxiliary
procedures called in the algorithms in Listing 4.3 (Lines 7 to 9) and Listing 4.4
(Lines 8 to 10) are applied only to the currently considered task instead of the whole
set of jobs.
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1 for (t, S,W, i)← (1, ∅, ∅, 1); T (t− 1) 6= ∅; t← t+ 1:
2 m′ ← m
3 while (r̃(S) + r̃(Ji(t− 1)) ≤ 1):
4 S ← S ∪ Ti; i← i+ 1; m′ ← m′ − |Ji(t− 1)|
5 process all jobs in Ti with their full resource requirement
6 W ←W ∩ Ji(t− 1)
7 W ← GrowWindowLeft(W , t, m′, 1− r̃(S))
8 W ← GrowWindowRight(W , t, m′, 1− r̃(S))
9 W ← MoveWindowRight(W , t, 1− r̃(S))

10
11 if ∃ fractured job ι ∈W : F ← { ι }
12 else: F ← ∅
13 process each job j ∈W \ (F ∪ {maxW }) with resource rj
14 if F = { ι }:
15 process job ι with resource qι(t)
16 process job maxW with the remaining resource

Listing 4.3: Algorithm for task set T1.

Lemma 4.13. For a set of tasks T = {T1, . . . , Tk } with

r(T )
|T |

>
R

(m− 1)

for all T ∈ T , the algorithm in Listing 4.3 computes a schedule such that the
completion time fi of task Ti is

fi ≤
⌈∑i

l=1 r(Tl)
R

⌉
.

Proof. The algorithm in Listing 4.3 processes tasks by increasing index and proceeds
according to the algorithm in Listing 4.1 and Section 4.3 separately for each task.

Note that for a task Ti = { Ji1, . . . , Jini } the average size of the jobs is more than
R/(m−1). We inductively prove that r̃(Ji(t))

|Ji(t)\F | ≥
R

m−1 remains true for each unfinished
task Ti after any time step t. This would imply that after time step t there is a
sliding window using the full resource R in that time step (except in the last time
step of the schedule) and hence the lemma would follow. We distinguish two cases.

Case 1: First consider the case in which there is no transition between tasks in the
current time step t+ 1. As we have r̃(Ji(t))

|Ji(t)\F | ≥
R

m−1 and |F | ≤ 1, the algorithm
always finds an m-maximal window using the full resource R in time step t+ 1.
By Property 5 from Section 4.3, we have that (i) the windows has size m or
(ii) Lt(W ) = ∅. In case (i), r̃(Ji(t)) is reduced by R and |Ji(t) \ F | by at least
m− 1, thus r̃(Ji(t+1))

R = r̃(Ji(t))−R
R ≥ |Ji(t)\F |−(m−1)

m−1 ≥ |Ji(t+1)\F |
m−1 . In case (ii),

the jobs from Ji(t) with the smallest resource requirement are finished, thus
the ratio r̃(Ji(t))

|Ji(t)\F | ≥
R

m−1 can only increase. The claim follows.

Case 2: Now consider the case that there is a transition between tasks. That is,
there is an arbitrary number of tasks that is finished in Line 3 of Listing 4.3.
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1 for (t, S,W, i)← (1, ∅, ∅, 1); T (t− 1) 6= ∅; t← t+ 1:
2 m′ ← m
3 while (r̃(S) + r̃(Ji(t− 1)) ≤ 1) and (|S|+ |Ji(t− 1)| ≤ m):
4 S ← S ∪ Ti; i← i+ 1; m′ ← m′ − |Ji(t− 1)|
5 process all jobs in Ti with their full resource requirement
6 m′ ← min

{
m′,
⌊

(1− r̃(S)) · m−1
R

⌋
+ 1
}

;R← (m′ − 1) · R
m−1

7 W ←W ∩ Ji(t− 1)
8 W ← GrowWindowLeft(W , t, m′, 1− r̃(S))
9 W ← GrowWindowRight(W , t, m′, 1− r̃(S))

10 W ← MoveWindowRight(W , t, 1− r̃(S))
11
12 if ∃ fractured job ι ∈W : F ← { ι }
13 else: F ← ∅
14 process each job j ∈W \ (F ∪ {maxW }) with resource rj
15 if F = { ι }:
16 process job ι with resource qι(t)
17 process job maxW with the remaining resource

Listing 4.4: Algorithm for task set T2.

Those tasks used m −m′ processors, hence at least m −m′ − 1 processors
were occupied with full jobs. By induction hypothesis and by the average
size of jobs in task set T , at least a resource of m−m′−1

m−1 ·R was used. Hence,
the resource available to the sliding window determined in Lines 7 to 9 is at
most m′

m−1 ·R. By Lemma 4.8, we conclude that we computed an m′-maximal
window. Now we either have (a) |W | = m′ or (b) |W | < m′. In case (a), r̃(W )
was reduced by at most m′

m−1 · R, whereas |Ti \ F | was reduced by exactly
|W | = m′. Hence r̃(Ji(t+1))

R ≥ r̃(Ji(t))−m′R/(m−1)
R ≥ |Ji(t)\F |−m′

m−1 = |Ji(t+1)\F |
m−1 in

case (b) with |W | < m′, we know Lt(W ) = ∅ by Property 5 from Section 4.3,
implying that the smallest jobs of the new task were executed. The claim
follows, as the average size of jobs in each task is at least R/m−1.

We now consider tasks with jobs that have low resource requirements on average.

Lemma 4.14. For a set of tasks T = {T1, . . . , Tk } with

r(T )
|T |

≤ R

(m− 1)

for all T ∈ T , the algorithm in Listing 4.4 computes a schedule such that the
completion time fi of task Ti is

fi ≤
⌈∑i

l=1 |Ti|
m− 1

⌉
.

Proof. Let ti :=
∑i

l=1 |Ti|
m−1 . We show that the following properties hold for every task

Ti.
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(i) Ti is finished at fi ≤ dtie.

(ii) The number of processors occupied by tasks T1 . . . , Ti in time step dtie is at
most mi := (ti − (dtie − 1)) (m− 1).

(iii) Tasks T1 . . . , Ti occupy at most a resource of mi · R
m−1 in time step dtie.

These properties obviously hold for T1. For the sake of induction, assume they are
true for the tasks T1, . . . , Ti. We distinguish two cases whether task Ti+1 is finished
in step fi or not.

Case 1: If Ti+1 is finished in time step fi, it is among those tasks added during
the loop in Line 3. Then fi+1 = fi ≤ dtie ≤ dti+1e and Statement (i)
directly follows. For (ii), Ti+1 uses |Ti+1| processors, hence the number of
processors used by tasks T1, . . . , Ti+1 in time step fi is at most mi + |Ti+1| =
(ti+1 − (dtie − 1)) (m − 1) = mi+1. Finally, by r(Ti+1)

|Ti+1| ≤
R

(m−1) , the resource
occupied by tasks T1, . . . , Ti+1 in time step fi is at most mi · R

m−1 + r(Ti+1) ≤
mi · R

m−1 + |Ti+1| · R
m−1 = mi+1 · R

m−1 , which shows (iii).

Case 2: In the case that Ti+1 is not finished in time step fi, we will start task Ti+1
with m′ ≥ m−mi processors and allow a resource of at most (m′ − 1) · R

m−1
in this time step (and the full resource in any following non-transitional time
step). Since the average resource per full non-fractured job in our sliding
window (Lines 8 to 10) is R

m−1 , we get an analogue statement to Lemma 4.9
from Section 4.3. That is, we will (a) finish m′ − 1 jobs in fi and m− 1 jobs
in any time step t ∈ (fi, fi+1) or (b) use the full resource in any time step
t ∈ (fi, fi+1).

In case (a), we have

fi+1 ≤ fi +
⌈ |Ti+1| − (m′ − 1)

m− 1

⌉
≤ ti + m′ − 1

m− 1 +
⌈ |Ti+1| − (m′ − 1)

m− 1

⌉
=
⌈∑i

k=1 |Tk|+ |Ti+1|
m− 1

⌉
= dti+1e,

which yields (i). For (ii), the number of occupied processors in time step dti+1e
is at most ∑i+1

k=1 |Tk|− (dti+1e − 1) · (m−1) = mi+1. For (iii), observe that the
average resource of the window is non-increasing by Lemma 4.9, Statement 2.
In particular, the resource used at time dti+1e is at most mi+1 · R

m−1 .

For case (b), by using r(T )
|T | ≤

R
(m−1) in the first inequality, we will finish the
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task at time

fi+1 ≤ dtie+
⌈
r(Ti+1)− (m′ − 1) · R/(m−1)

R

⌉
≤ ti + m′ − 1

m− 1 +
⌈ |Ti+1| − (m′ − 1)

m− 1

⌉
= dti+1e,

which yields (i). By using the same reasoning without rounding, the resource
used in time step dti+1e by tasks T1, . . . , Ti+1 can be upper bounded byti +

r(Ti+1)− (m′ − 1) · R
(m−1)

R
− (dti+1e − 1)

 ·R
≤ (ti+1 − (dti+1e − 1)) ·R = mi+1 ·

R

m− 1 ,

which yields (iii). For (ii), it remains to be shown that the number of processors
occupied at time dti+1e by jobs from tasks T1 . . . , Ti+1 is at most mi+1. Since
(a) did not hold, less than m processors were occupied at some time step prior
to ti+1. This implies that the remaining full jobs must have an average size of
more than R

m−1 . The claim follows.

We now give bounds for the optimal algorithm.

Lemma 4.15. The sum of completion times of the optimal solution can be bounded
as follows.

1. Given a set of tasks T = {T1, . . . , Tk } with Rl ≤ Rl+1 for all l, we have
OPTT ≥

∑k
i=1

⌈∑i
l=1Rl

⌉
.

2. Given a set of tasks T = {T1, . . . , Tk } with |Tl| ≤ |Tl+1| for all l, we have
OPTT ≥

∑k
i=1

⌈∑i
l=1

|Tk|
m

⌉
.

Proof. We first prove Property 1. As the optimal solution cannot overuse the
resource, there is obviously an order T = {Tσ1 , . . . , Tσl } such that OPTT ≥∑k
i=1

⌈∑i
l=1Rσl

⌉
. We denote the bounds on the completion times as

fi :=
⌈

i∑
l=1

Rl

⌉
, f ′i :=

⌈
i∑
l=1

Rσl

⌉
.

We prove fi ≤ f ′i for all i which directly implies Property 1. Let i be arbitrary.
Assume fi > f ′i . Then

⌈∑i
l=1Rl

⌉
>
⌈∑i

l=1Rσl

⌉
, hence ∑i

l=1Rl >
∑i
l=1Rσl . This

is a contradiction to Rl ≤ Rl+1 for all l.
For Property 2, as the optimal solution cannot finish more than m jobs per time

step, there is an order T = {Tσ1 , . . . , Tσl } such that OPTT ≥
⌈∑i

l=1
|Tσl |
m

⌉
. Now
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denote fi :=
⌈∑i

l=1
|Tl|
m

⌉
, f ′i :=

⌈∑i
l=1

|Tσl |
m

⌉
. Assume fi > f ′i for some i. Hence∑i

l=1 |Tl| >
∑i
l=1 |Tσl |, which is a contradiction.

To upper bound rounding errors later, the following lemma proves to be useful.

Lemma 4.16. Given z ∈ N≥3 and {x1, . . . , xk } ∈ RoundRobin≥1/z such that
xi + 1/z ≤ xi+1 for all i ∈ { 1, . . . , k − 1 }, there is a q ∈ N0 such that

k∑
i=1

(⌈
z

b(z−1)/2c
· xi
⌉
− z

b(z−1)/2c
· dxie

)
≤ q (4.2)

and
k∑
i=1
dxie ≥

2
3(√q − 2)3 + (k − q). (4.3)

Proof. First, denote erri :=
⌈

z
b(z−1)/2c · xi

⌉
− z
b(z−1)/2c · dxie. Also, let E>0 :=

{ i ∈ { 1, . . . , k } : erri > 0 } and E≤0 analogously. Clearly, we have

erri ≤
(

z

b(z−1)/2c
· xi + 1

)
− z

b(z−1)/2c
· xi = 1

for all i ∈ { 1, . . . , k }. We choose q = |E>0|, so Equation (4.2) follows. We further
show that

xi ∈
[
l,
b(z−1)/2c

z
·
(⌈(l + 1) · z
b(z−1)/2c

⌉
− 1

)]
for l ∈ N0 (4.4)

implies erri ≤ 0. First note that Property 4.4 implies dxie ≤ l+ 1. We upper bound⌈
z

b(z−1)/2c
· xi
⌉
≤
⌈(l + 1) · z
b(z−1)/2c

⌉
− 1

≤ (l + 1) · z
b(z−1)/2c

= z

b(z−1)/2c
· dxie . (4.5)

Now each xi, i ∈ E>0 has to be in an open interval of the form(b(z−1)/2c
z

·
(⌈

l · z
b(z−1)/2c

⌉
− 1

)
, l

)
(4.6)

for some l ∈ N since otherwise erri ≤ 0 by Inequality (4.5). The length of each such
interval can be upper bounded by
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l − b
(z−1)/2c
z

·
(⌈

l · z
b(z−1)/2c

⌉
− 1

)

=

⌊
z−1

2

⌋
z
·

 l
(
z − 2

(⌊
z−1

2

⌋))
b(z−1)/2c

−


l
(
z − 2

(⌊
z−1

2

⌋))
b(z−1)/2c

+ 1


≤b

(z−1)/2c
z

·
(
l(z − 2 · (z−2)/2)
b(z−1)/2c

−
⌈
l(z − 2 · (z−1)/2)
b(z−1)/2c

⌉
+ 1

)
≤b

(z−1)/2c
z

·
( 2l
b(z−1)/2c

− 1 + 1
)

= 2l
z
,

where the first equality is just a transformation, the second inequality bounds the floor
and ceiling functions and the last inequality follows from l(z−2·(z−1)/2)

b(z−1)/2c = l
b(z−1)/2c > 0.

Hence, at most 2l different xi can be in the lth such interval. Considering the first p
such intervals, they can contain at most ∑p

l=1 2l = p(p+ 1) different xi. This leads
to xi > p for all i > p(p+ 1). We conclude

k∑
i=1
dxie =

∑
i∈E>0

dxie+
∑
i∈E≤0

dxie

≥

b√qc−1∑
p=1

p(p+1)∑
i=(p−1)p+1

p

+ (k − q)

≥
b√qc−1∑
p=1

2p2 + (k − q)

=
2 · (b√qc − 1) · (b√qc − 1/2) · b√qc

3 + (k − q)

≥ 2
3(√q − 2)3 + (k − q),

where the first inequality is by rearranging the sum and omitting some summands
as well as dxie ≥ 1 for all i and the last equality is by a well-known formula for
summing up squares.

4.4.2 Approximation Algorithm
We are now ready to describe our algorithm. The algorithm divides the tasks into
task sets

T1 =
{
T ∈ T

∣∣∣∣∣ |T |∑
Ji∈T ri

< m− 1
}
, and

T2 =
{
T ∈ T

∣∣∣∣∣ |T |∑
Ji∈T ri

≥ m− 1
}
.
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We assign bm/2c processors to task set T1 and dm/2e processors to task set T2.
Denote the sum of completion times of the task using our algorithm by S and the
optimal sum of completion times by OPT. The partial sum of completion times of
tasks from T1 and T2 are called OPTT1 and OPTT2 , respectively. Also, let k1 = |T1|,
k2 = |T2| (implying k = k1 + k2). We prove the following lemmata.

Lemma 4.17. Scheduling T1 using the algorithm in Listing 4.3 with
⌊
m
2
⌋

processors
and a resource of R = bm/2c−1

m−1 < 1
2 , there is a q1 ∈ N0 such that the sum of completion

times is at most (
2 + 4

m− 3

)
OPTT1 + q1

and
OPTT1 ≥

2
3(√q1 − 2)3 + (k1 − q1). (4.7)

Proof. For all T ∈ T1, we have

r(T )
|T |

>
1

m− 1 =
(bm/2c−1)/(m−1)

bm/2c − 1

by construction of T1. Assume the tasks T1 = {T1, . . . , Tk1 } are ordered by non-
decreasing overall resource requirement (i.e., r(T1) ≤ r(T2) ≤ · · · ≤ r(Tk1)). Apply-
ing Lemma 4.13, we know that the full resource of bm/2c−1

m−1 is used in every time
step. Hence, the tasks are scheduled such that the sum of their completion times is

ST1 =
k1∑
i=1

⌈ ∑i
l=1 r(Tl)

(bm/2c−1)/(m−1)

⌉
=

k1∑
i=1

⌈
m− 1

(bm/2c − 1)

i∑
l=1

r(Tj)
⌉
.

From Lemma 4.15, Property 1, we have

OPTT1 ≥
k1∑
i=1

⌈
i∑
l=1

r(Tj)
⌉
.

Now, using Lemma 4.16 with xi := ∑i
l=1 r(Tj) and z := m − 1, we conclude that

there is a q1 ∈ N0 such that

ST1 ≤
m− 1

(bm/2c − 1)OPTT1 + q1 ≤
(

2 + 4
m− 3

)
OPTT1 + q1

as well as Inequality (4.7), which proves the claim.

Lemma 4.18. Scheduling T2 using the algorithm in Listing 4.4 with
⌈
m
2
⌉

processors
and a resource of R = 1

2 , there is a q2 ∈ N0 such that the sum of completion times
is at most (

2 + 4
m− 2

)
OPTT2 + q2
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as well as
OPTT2 ≥

2
3(√q2 − 2)3 + (k2 − q2). (4.8)

Proof. For all T ∈ T2, we have

r(T )
|T |

≤ 1
m− 1 =

1/2
(m+1)/2− 1 ≤

1/2

dm/2e − 1

by construction of T2. Assume the tasks T2 = {T1, . . . , Tk2 } are ordered by non-
decreasing number of jobs (i.e., |T1| ≤ |T2| ≤ · · · ≤ |Tk2 |). By Lemma 4.14, we
have

ST2 =
k2∑
i=1

⌈ |Ti|
dm/2e − 1

⌉
.

From Lemma 4.15, Property 2 we have

OPTT2 ≥
k2∑
i=1

⌈ |Ti|
m

⌉
.

Now, observing dm/2e = b(m+1)/2c and using Lemma 4.16 with xi := |Ti|
m and z := m,

we conclude that there is a q2 ∈ N0 with

ST1 ≤
m

b (m+1)
2 c − 1

·OPTT2 + q2 ≤
(

2 + 4
m− 2

)
OPTT2 + q2

as well as Inequality (4.8).

For our final result, we need the following technical lemma.

Lemma 4.19. Given q1, q2, k1, k2 ∈ N0 and k ∈ N such that q1 + q2 ≤ k. Then

q1 + q2
2
3(√q1 − 2)3 + 2

3(√q2 − 2)3 + k − (q1 + q2)
= O

(
k−

1/5
)

with respect to k.

Proof. If q1 + q2 ≤ k4/5,

q1 + q2
2
3(√q1 − 2)3 + 2

3(√q2 − 2)3 + k − (q1 + q2)

≤ q1 + q2

−2 · 16
3 + k − (q1 + q2)

<
k4/5

k − k4/5 − 11
≤ 1
k1/5 − 12

.

On the other hand, if k4/5 < q1 + q2 ≤ k, then q1 > 1/2k4/5 > 1/4k4/5 or q2 > 1/4k4/5.
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Hence
q1 + q2

2
3(√q1 − 2)3 + 2

3(√q2 − 2)3 + k − (q1 + q2)

≤ q1 + q2
2
3(√q1 − 2)3 + 2

3(√q2 − 2)3 ≤
k

2
3(1

2k
2/5 − 2)3 .

The claim follows.

We are now ready to state the main results of this section. Note that we use o (1)
with respect to the number of tasks.

Theorem 4.20. Splitting up T into task sets T1 and T2 and scheduling them
separately with the algorithms from Listing 4.3 and Listing 4.4 results in a sum of
completion times of ((2 + 4/(m−3)) + o (1)) ·OPT.

Proof. By S = ST1 + ST2 and OPT = OPTT1 + OPTT2 as well as Lemma 4.17 and
Lemma 4.18, there are q1, q2 ∈ N0 such that

S ≤
(

2 + 4
m− 3

)
OPTT1 + q1 +

(
2 + 4

m− 2

)
OPTT2 + q2

≤
(

2 + 4
m− 3

)
(OPTT1 + OPTT2) + q1 + q2

and
OPT ≥ 2

3(√q1 − 2)3 + (k1 − q1) + 2
3(√q2 − 2)3 + (k2 − q2).

Dividing S by OPT, using these inequalities, and applying Lemma 4.19 completes
the proof.

If we denote the total number of jobs by n = ∑k
i=1 ni and by applying the same

arguments as in the proof of Theorem 4.4, we get a bound on the runtime.

Corollary 4.21. Splitting up T into task sets T1 and T2 and scheduling them
separately with the algorithms from Listing 4.3 and Listing 4.4 can be implemented
with a runtime of O ((m+ n) · n).
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Scheduling with a Bounded Speed Limit
and Variable Energy Costs

Energy has long since been recognized as one of the most important factors
concerning the profitability of modern data centers [BH07]. In fact, energy
efficiency has risen to be a major factor in the design and development

of most technical systems, ranging from the above-mentioned data centers, over
the embedded systems in our homes (“Internet of Things”), to the mobile devices
everybody carries around. There are efforts on a multitude of levels to make such
systems more energy (cost) efficient, in order to reduce the energy footprints of
all those gadgets and to let our mobile devices run longer. On an algorithmic
level, these efforts focus largely on a technique called speed scaling, also known as
dynamic voltage scaling [Alb10]. It describes the ability of a device to adapt its
speed, and thus energy consumption, to the current requirements. It is one of the
most prominent energy saving techniques, and most modern systems support it
in one way or another. This chapter joins a line of research that models different
incarnations of this technique and designs provably efficient algorithms (see [Alb11]
for a survey). The first theoretical study of speed scaling models is due to Yao et al.
[YDS95]. The authors modeled the power consumption of a processor running at
speed s by a power function P (s) = sα. Here, α is a device-dependent constant
that is approximately 3 in practice [Bro+00]. Yao et al. designed a polynomial-time
algorithm to compute an energy-minimal schedule for a given number of jobs, each
with its own release time, deadline, and workload. We consider a model variant
of [YDS95] with the following additional characteristics:
Dynamic Speed Limits: Most results adopt the unbounded speed model of [YDS95],

where the processing speed s can be arbitrarily large. In practice, however,
there are limits to the speed, and they no longer stem solely from the (static)
maximum processor frequency. Instead, as devices become smaller and more
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sensitive to environmental conditions such as temperature and humidity, speed
limits become highly dynamic. For example, failures of air conditioning, broken
fans, or airflow problems can cause severe temperature fluctuations, requiring
a temporary slow down of processors [ITW14]. Other sources of dynamic
speed limits are voltage fluctuations as they occur in solar-powered devices,
for example.

Dynamic Electricity Costs: A second, often neglected model constraint, are dynamic
electricity costs. In particular for data centers, energy minimization aims at
cost reduction. But often, algorithm design assumes energy costs to be uniform
over time. However, electricity providers increasingly adopt time-dependent
tariff policies. In fact, most providers already offer heavily discounted rates
during off peak times, for example at night or before noon. While such cost
changes are not as frequent and dynamic as the aforementioned changes of
the maximum speed, they can have a huge impact on the operating costs.

We consider the problem of minimizing the total (energy) costs in a system with
these characteristics. Note that while problems motivated by dynamic environments
often call for a consideration as an online problem, similar to [YDS95] this chapter
concentrates on the offline optimization problem as a first step to solve this variant.
Also, previous work has shown that offline algorithms can be an integral part of
online algorithms [BKP07].

5.1 Preliminaries
We formally introduce the model in Section 5.1.1. We then proceed by giving an
overview of our contribution in Section 5.1.2

5.1.1 Model & Notation
We consider the scheduling of n jobs J := { 1, 2, . . . , n } on a single, speed-scalable
processor. Here, speed-scalable means that the processor’s speed s ∈ R≥0 is
controlled by the scheduler. The power consumption is modeled by a power function
P : R≥0 → R≥0, s 7→ sα. That is, while running at speed s, energy is consumed
at a rate of P (s) = sα. The constant α > 1 is called the energy exponent. This
assumption is common in the speed scaling literature as the power consumption of
CMOS devices can roughly be estimated by s3 and CMOS devices will presumably
remain the dominant technology in the near future [BKP07]. Technically, our work
could be generalized to convex power functions with invertible P ′, but at the cost
of intuition in the properties of our algorithm and schedule, in particular during the
computation of water levels (cf. Section 5.2) in Section 5.3.1.

In addition to these classical speed scaling properties, we have the constraint that
the maximum speed at time t is bounded. We model this constraint via a maximum
speed function smax : R≥0 → R≥0. Further, there is a cost factor associated with
every timepoint t ∈ R≥0, specifying the cost per unit of energy. The cost factor is
modeled via a cost factor function c : R≥0 → R>0.
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Each job j ∈ J comes with a release time rj ∈ R≥0, a deadline dj ∈ R≥0, and a
workload wj ∈ R≥0. For each time t ∈ R≥0, a schedule S must decide which job
to process at what speed. Preemption is allowed, so that a job may be suspended
and resumed later on. We model a schedule S by a speed function s : R≥0 → R≥0
and a scheduling policy J : R≥0 → J . Here, s(t) denotes the speed at time t, and
J (t) the job that is scheduled at time t. A feasible schedule must finish all jobs
within their release time/deadline intervals [rj , dj) without exceeding the maximum
speed function smax. More formally, we require s(t) ≤ smax(t) for all t ∈ R≥0 and∫
J−1(j)∩[rj ,dj) s(t) dt ≥ wj for all j ∈ J . If, additionally, all workloads are met

exactly (i.e.,
∫
J−1(j)∩[rj ,dj) s(t) dt = wj for all j ∈ J), we call the schedule non-

wasting. The total energy consumption of a schedule S is given by
∫∞

0 P (s(t)) dt,
and its total energy cost by E(s) :=

∫∞
0 c(t) · P (s(t)) dt. For technical reasons, we

restrict ourselves to functions in Cpr (i.e., to functions that are right-continuous
with finitely many discontinuities), which covers all practically relevant schedules.
Our goal is to find a feasible schedule of minimum cost. In the rest of this paper,
we refer to this scheduling problem as ContBERS (Continuous Bounded Speed &
Electricity Rates Scheduling).

Computational Model We assume oracle access to the functions smax and c.
Similarly, we assume access to basic function calculus such as taking the min of two
functions or computing integrals (cf. Section 5.3.1). This is in accord with standard
speed-scaling literature (e.g., [AF07; BCP13]) where one needs the ability to, for
example, solve equations involving high degree polynomials.

5.1.2 Contribution
Theoretical algorithm design for speed scaling problems tends to consider discretized
versions of problems, as our tools in the discrete realm are often better developed
or understood. Extending [YDS95] to also feature the aforementioned continuous
characteristics of “Dynamic Speed Limits” and “Dynamic Electricity Costs” makes
for a good example in which discretization results in a burdensome quantity of
variables and constraints. On the basis of this problem we demonstrate that a more
direct approach via tools from variational calculus not only leads to a very concise
formulation and analysis, but also avoids the “explosion of variables/constraints”
that often comes with discretizing [Ant+14].

Although specific calculus of variations tools have been used before in the speed
scaling literature [BKP07; Tha13], they were merely used as tools for analyzing a
discrete problem. In contrast, we derive combinatorial optimality characteristics for
a continuous problem. More specifically, our approach is based on formulating the
problem, as well as designing and analyzing the algorithm in a continuous fashion,
which helps us provide a quite concise and simple correctness proof.

It should be noted that because practical implementations of our approach would
typically rely on numerical (i.e., discrete) function calculus, it is natural that our
algorithm turns out to be similar to existing ones for discrete versions of the problem.
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However, our focus here is not to provide a better practical implementation, but
rather to simplify (at least in some settings) a rigorous design and analysis. We
believe that using the available mathematical tools from calculus of variations to
directly formulate, analyze, and design algorithms in a continuous setting yields a
holistic approach that might help in solving some longstanding open problems, such
as [Ant+14; Bar+13] for arbitrary continuous speeds.

5.2 Balance for Optimality
This section is dedicated to proving the following theorem.

Theorem 5.1. A feasible schedule is optimal if and only if it is both non-wasting
and work-balanced.

Here, being work-balanced is a natural structural property, which we formally
introduce in Section 5.2.3. For now, think of schedules that distribute the jobs’ work-
load “as evenly as possible” while taking constraints (e.g., the release times/deadlines
or the speed limits) and cost factors into account.

Being work-balanced is a natural condition, and similar structural properties have
been exploited for a variety of problems to study and compute optimal or approximate
solutions. Examples include the original speed-scaling algorithm YDS [BKP07] or
the study of equilibria in resource selection games [GT14]. Another related property
is used in the standard approximation algorithm for metric facility location [JV01],
which carefully controls the contribution of the different clients to the costs of opening
facilities. The common ground of these properties is that they can be derived using a
linear or convex program and duality theory and, by controlling how much different
elements (jobs, clients) contribute to the solution, yield a corresponding primal-dual
algorithm. The basic ingredients to analyze the solution quality of such an approach
are the KKT conditions known from convex programming [BV04]. Unfortunately,
this approach does not work in our setting. Although the considered optimization
problem is convex, the general maximum speed restriction leads to infinitely many
variables/constraints: for each time t ∈ R≥0 the speed must not exceed smax(t). On
the basis of the theory of variational calculus [Smi98], we can still approach the
ContBERS problem by similar means.

Overview We continue in Section 5.2.1 with a presentation of the ContBERS prob-
lem viewed as an optimization problem with an infinite number of constraints.
Afterward, Section 5.2.2 provides a framework to characterize optimal solutions for
problems of a more general form. Finally, Section 5.2.3 applies this framework to
prove Theorem 5.1.

5.2.1 Scheduling via Variational Calculus
Optimization problems with infinitely many variables/constraints can be modeled
via function variables. In the case of the ContBERS problem, one can think of the
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schedule’s speed function s : R≥0 → R≥0 as a variable that has to fulfill the constraint
s(t) ≤ smax(t) at any time t ≥ 0. Remember that the costs of a speed function s are
given by E(s) =

∫∞
0 c(t)P (s(t)) dt ∈ R. In other words, E is a function that maps a

speed function s to a real cost value E(s). Functions mapping other functions to
real values are called functionals [Smi98]. We seek a speed function s that minimizes
the functional E under the constraints that the maximum speed is never exceeded
and that all jobs are finished. Since we also need a scheduling policy (to decide
which job to run when), we actually search n speed functions sj : R≥0 → R≥0 telling
us when and how to run j. The set of candidate functions is

Sj := { f : R≥0 → R≥0 | f ∈ Cpr ∧ ∀x 6∈ [rj , dj) : f(x) = 0 } . (5.1)

Let S := ∏
j∈J Sj . To improve readability, we slightly abuse notation by using s

for an element of S (i.e., a vector of the n different sj ’s) as well as for the speed
function of the schedule (i.e., the sum of the n different sj ’s). We can formulate our
optimization problem as the (infinite) mathematical program (SP) shown below.

min
s∈S

E(∑j∈J sj)

s.t. ∑
j∈J sj(t) ≤ smax(t) ∀t ≥ 0 (5.2)∫ dj

rj
sj(t) dt ≥ wj ∀j ∈ J (5.3)

An optimal solution minimizes the energy costs for the speed function ∑j∈J sj
without exceeding the maximum speed (Constraint (5.2)) and finishes all jobs
(Constraint (5.3)). Note that we do not require the sj to have pairwise disjoint
supports. In other words, the resulting schedule might run two jobs at the same
time. Omitting this requirement is without loss of generality, as we can show how
to transform such schedules to obtain pairwise disjoint supports.

Lemma 5.2 (EDF Schedule). Consider an arbitrary feasible solution s ∈ S to
the optimization problem (SP). Then there exists a feasible solution s′ ∈ S with
E(s′) ≤ E(s) and the property ∀j1, j2 ∈ J, t ∈ R≥0 : s′j1(t) · s′j2(t) > 0 =⇒ j1 = j2.

Proof. We transform solution s to a solution s′ by employing Earliest Deadline First
(EDF) scheduling. Intuitively, at every timepoint we run only the task that has the
earliest deadline among all available tasks.

Let the indices of the jobs be ordered according to their deadline and assume,
w.l.o.g., that no two jobs share the same deadline. We first transform s to a solution
ŝ such that for every job j, ŝ processes exactly wj workload (i.e., a non-wasting
schedule). To do this we identify for each job j the earliest timepoint tj such that∫ tj
rj
sj(t) dt = wj . Note that by constraint (5.3) we have that tj ≤ dj . We then set

ŝj(t) = 0 for all t ≥ tj and ŝj(t) = sj(t) for all t < tj . Note that E(ŝ) ≤ E(s) holds.
We next transform ŝ into s′. To this end, set t∗ := minj rj and let ŵj := wj

denote the remaining workload of j, for all j ∈ J . We identify the job i that has the
earliest deadline among all jobs j released by time t∗ and with nonzero ŵj . Now set
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ti such that
∫ ti
t∗
∑
j sj(t) dt = ŵi. That is, the point at which i would be finished if

it were exclusively processed by schedule s. If there is no release time in [t∗, ti), we
set s′i(t) := ∑

j sj(t) for every t ∈ [t∗, ti) and s′j(t) := 0 for all other jobs. Then t∗ is
updated to ti and ŵi to 0. Otherwise, let rk be the earliest release time in [t∗, ti).
We set s′i(t) := ∑

j sj(t) for every t ∈ [t∗, rk) and s′j(t) = 0 for all other jobs. Finally
we update ŵi to ŵi −

∫ rk
t∗ si(t) dt and t∗ to rk. We repeat the above step until all

ŵj ’s are set to 0.
The above transformation terminates, because in each iteration (new t∗) we make

progress: either we move to the next release time, or one of the ŵj ’s is set to zero.
Also note that E(ŝ) = E(s′). This immediately follows by the fact that by the way
the transformation is defined: for any t, ∑j ŝj(t) = ∑

j s
′
j(t) holds. Further, since

at every timepoint, t there exists at most one j such that s′j(t) > 0, s′ satisfies
the property stated in the lemma. However, it is not immediately obvious that
s′ is feasible. We continue to show this. By the above transformation, we have
for any j that s′j(t) = 0 for all t ∈ [rmin, rj). It remains to show that the total
workload of each job is processed before its deadline. More formally, we must have∫ dj

0 s′j(t) dt = wj for all jobs j. (The fact that s′j(t) = 0 for t ∈ (dj , dmax) then
follows by the definition of the transformation). To this end, define for any job j, any
timepoint t, and any solution s the value F (t, j, s) :=

∫ t
0
∑
i≤j si(x) dx. Intuitively,

F (t, j, s) denotes the total workload of jobs with a deadline of at most dj that s
has finished by timepoint t. By Constraint (5.3) of (SP) and the first part of the
transformation we have F (dj , j, ŝ) = ∑j

i=1wi for any job j.
We now show that for any j and t, we have the inequality F (t, j, s′) ≥ F (t, j, ŝ).

That is, s′ finishes as least as much workload of jobs with deadline at most dj by
time t as ŝ. Indeed, assume that this is not the case and let t′ be the first time
such that F (t′, j, s′) < F (t′, j, ŝ). In combination with the fact that s′ satisfies
the property stated in the lemma, this implies that at t′ we have ∑j

i=1 ŝi(t′) > 0
while ∑j

i=1 s
′
i(t′) = 0. However, by the definition of s′, ∑j

i=1 s
′
i(t′) = 0 can only

hold when all jobs with a release time ≤ t′ and a deadline ≤ dj are fully processed.
This contradicts the assumption F (t′, j, s′) < F (t′, j, ŝ), since ŝ processes exactly
wj units for each job j. Thus, we must have F (t, j, s′) ≥ F (t, j, ŝ) for all t and
j and, in particular, F (dj , j, s′) ≥ F (dj , j, ŝ) for all j. The lemma follows since
F (dj , j, ŝ) = ∑j

i=1wi.

5.2.2 Characterizing Optimal Solutions

In the following, we formulate a more general optimization problem and derive
(rather abstract) optimality conditions that can be viewed as an extended version of
the KKT conditions. We will see in Section 5.2.3 how to apply these conditions to
the ContBERS problem.

Let N,m, n ∈ N. We consider an optimization problem for functionals over the
set F := ∏N

j=1Fj and m+n constraints, where for intervals Ij with j ∈ { 1, . . . , N },
we define Fj := { g : R→ R | g ∈ Cpr ∧ ∀x 6∈ Ij : g(x) = 0 }. The j-th component of
f ∈ F therefore is a right-continuous function g with finitely many discontinuities,
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and g|R\Ij = 0. We also view the vectors f ∈ F as vector-valued functions f : R→
RN .

We have an objective function L : R× RN → R as well as two types of constraint
functions Gk, Hl : R × RN → R for k ∈ { 1, 2, . . . ,m } and l ∈ { 1, 2, . . . , n }. All
these functions are assumed to be piecewise differentiable and convex in their second
argument. For example, Gk(x, y) with x ∈ R and y ∈ RN is piecewise continuously
differentiable and convex in y. We write ∇L (and similar for the other functions)
to refer to the gradient of L taken with respect to the components of the second
argument y ∈ RN and ∇jL for the j-th component of L’s gradient. Let I be any
interval in R. The considered general optimization problem (GP) is

min
f∈F

∫
I
L(x, f(x)) dx

s.t. Gk(x, f(x)) ≤ 0 ∀x ∈ I, k ∈ { 1, 2, . . . ,m } (I)∫
I
Hl(x, f(x)) dx ≤ 0 ∀l ∈ { 1, 2, . . . , n } (II)

Here, constraints of type (I) represent local constraints that hold at any point in
time t (e.g., restricted processor speed). Constraints of type (II) represent global
constraints that hold for some kind of volume (e.g., finished workload of a job). The
following theorem provides sufficient optimality conditions for solutions of (GP).

Theorem 5.3 (Extended KKT conditions). Assume that f ∈ F is a feasible solution
for (GP) with finite solution value. Furthermore, assume that there exist functions
λk : I → R≥0, λk ∈ Cpr, and constants µl ∈ R≥0 such that the following properties
hold:

1. For all j ∈ { 1, 2, . . . , N } and x ∈ Ij, we have

∇jL(x, f(x)) +
m∑
k=1

λk(x) · ∇jGk(x, f(x)) +
n∑
l=1

µl · ∇jHl(x, f(x)) = 0. (5.4)

2. For all k ∈ { 1, 2, . . . ,m } and x ∈ I, we have λk(x) ·Gk(x, f(x)) = 0.

3. For all l ∈ { 1, 2, . . . , n }, we have µl ·
∫
I Hl(x, f(x)) dx = 0.

Then f is an optimal solution to (GP).

Similar conditions have been used before (see for example [Lue69]). For a restricted
class of these problems, such conditions were even given in a quite similar form
under the term continuous time optimization: Hanson and Mond [HM68] consider
a class of nonlinear programming problems in the continuous variant and present
KKT-like conditions for the adapted problems. In their variant, the equivalent of
our f(x) appears only linearly in the constraints. Farr and Hanson [FH74] extend
the prior results to nonlinear constraints, but the equivalent to x and f(x) still
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appear in separate functions in their work and hence cannot depend arbitrarily on
each other.

In the following we give a self-contained proof of the extended KKT conditions.

Getting Rid of the Constraints Using Lagrange multipliers λk : I → R≥0, λk ∈
Cpr, k ∈ { 1, 2, . . . ,m }, and µl ∈ R≥0, l ∈ { 1, 2, . . . , n }, we can define the functional

Λ(f, λ, µ) :=
m∑
k=1

∫
I
λk(x) ·Gk(x, f(x)) dx+

n∑
l=1

µl ·
∫
I
Hl(x, f(x)) dx, (5.5)

where λ = (λ1, . . . , λm) and µ = (µ1, . . . , µn). This is the so-called Lagrangian. By
construction, we have Λ ≤ 0 if f satisfies the constraints of (GP) (independently
of λ and µ). This can be used to prove the following result known from duality
theory [BV04; Smi98]:

Lemma 5.4. Fix λ and µ, and consider an optimal solution f̃ ∈ F to the mini-
mization problem (LGR) given as

min
f∈F

D(f), where D(f) :=
∫
I
L (x, f(x)) dx+ Λ(f, λ, µ). (5.6)

Assume that λ, µ, and f̃ satisfy Properties 2 and 3 of Theorem 5.3. If, additionally,
f̃ fulfills the constraints of (GP), then f̃ is an optimal solution to (GP).

Proof. For such λ, µ, and f̃ , we have Λ(f̃ , λ, µ) = 0. Thus, when comparing f̃ to
an arbitrary feasible solution f of (GP), we get∫

I
L
(
x, f̃(x)

)
dx =

∫
I
L
(
x, f̃(x)

)
dx+ Λ

(
f̃ , λ, µ

)
≤
∫
I
L (x, f(x)) dx+ Λ (f, λ, µ)

≤
∫
I
L (x, f(x)) dx.

The last inequality holds because f is a feasible solution to (GP), which implies
Λ(f, λ, µ) ≤ 0. This proves the lemma’s statement.

Lemma 5.4 says that in order to solve the minimization problem (GP) with its
constraints, it is sufficient to solve (LGR) (which does not have constraints) for
arbitrary, fixed dual variables, but only if we can guarantee that the constraints are
fulfilled. This seems of small help, and in general such a solution might actually
not exist. However, the dual variables give us an extra degree of freedom, and
convexity ensures that our problem is “well-behaved”. Thus, our strategy is to find
dual variables such that the optimal solution for (LGR) adheres to the constraints
of (GP).
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Convexity of (LGR) In order to solve (LGR), we first observe that the set F over
which we optimize is convex. That is, for any two functions f, g ∈ F and t ∈ [0, 1]
we have (1− t) · f + t · g ∈ F . Another useful observation is that the objective D of
(LGR) is convex (as a functional over F). To see this, remember that L, Gk, and
Hl are convex in their second argument. Moreover, D can be rewritten as

D(f) =
∫
I
L (x, f(x)) dx+ Λ(f, λ, µ)

=
∫
I

(
L(x, f(x)) +

m∑
k=1

λk(x) ·Gk(x, f(x)) +
n∑
l=1

µl ·Hl(x, f(x))
)

dx

=:
∫
I L̃(x, f(x), λ(x), µ) dx, for a suitably defined L̃ : R×RN ×Rm ×Rn → R. The

function L̃ is (as a positive sum of convex functions) convex in its second argument.
Using monotonicity and linearity of the integration operator, we can prove the
convexity of D:

D
(
tf + (1− t)g

)
=
∫
I
L̃(x, tf(x) + (1− t)g(x), λ(x), µ) dx

≤
∫
I

(
tL̃(x, f(x), λ(x), µ) + (1− t)L̃(x, g(x), λ(x), µ)

)
dx

= t

∫
I
L̃(x, f(x), λ(x), µ) dx+ (1− t)

∫
I
L̃(x, g(x), λ(x), µ) dx

= tD(f) + (1− t)D(g).

Optimality Condition for (LGR) With D being convex, we can use the property
that any local optimum is also globally optimal (cf. [KM11, Chap. 3]). Local optima
can be characterized via their derivatives. Consider the (one-sided) directional
derivatives δ+D(f, v) := limε→0+

D(f+εv)−D(f)
ε of D at f ∈ F in any direction v

with f + v ∈ F . By convexity, a solution f ∈ F to (LGR) is (globally) optimal if
and only if

δ+D(f, v) ≥ 0 ∀v : f + v ∈ F . (♥)

With this, we are now finally ready to prove Theorem 5.3.

Proof of Theorem 5.3. Assume we have functions λk : I → R≥0 and constants µl ∈
R≥0 as in Theorem 5.3, so that the properties 1 to 3 hold for a feasible solution
f ∈ F to (GP). Remember that L, Gk, and Hl are piecewise differentiable, implying
that L̃ is piecewise differentiable. Similarly to the other functions, we write ∇L̃ to
denote L̃’s gradient taken with respect to the components of the second argument
y ∈ RN . Then, by Leibniz and chain rule, we can write the directional derivative of
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Equation (♥) as

δ+D(f, v) = d
dε

∫
I
L̃(x, f(x) + εv(x), λ(x), µ) dx

∣∣
ε=0

=
∫
I

d
dεL̃(x, f(x) + εv(x), λ(x), µ)

∣∣
ε=0 dx =

∫
I

〈
∇L̃(x, f(x), λ(x), µ), v(x)

〉
dx
(5.7)

Note that it may be necessary to split the integral for this operation as the involved
functions are only piecewise differentiable. Now, by Property 1 of Theorem 5.3,
we have that component j of ∇L̃(x, f(x), λ(x), µ) is equal to zero whenever x ∈
Ij . On the other hand, whenever x 6∈ Ij , we must have vj(x) = 0 as otherwise
fj(x) + vj(x) 6= 0, contradicting the fact that f + v ∈ F . The integrand of
Equation (5.7) thus vanishes, and δ+D(f, v) = 0 for all directions v with f + v ∈ F .
This implies optimality of f for the optimization problem (LGR). As λ, µ, and f
satisfy Properties 2 and 3 of Theorem 5.3, we can apply Lemma 5.4 to show that f
is an optimal solution of (GP).

5.2.3 Extracting Structural Properties

We rewrite the mathematical program (SP) from Section 5.2.1 such that it has the
form of the general mathematical program (GP) from Section 5.2.2. To this end, let
T be the latest deadline and set I := [0, T ). We get the following convex problem:

min
s∈S

E(s)

s.t. s(t)− smax(t) ≤ 0 ∀t ≥ 0 (5.8)∫
I

wj
T
− sj(t) dt ≤ 0 ∀j ∈ J (5.9)

−sj(t) ≤ 0 ∀j ∈ J, t ≥ 0 (5.10)

Theorem 5.3 gives us a continuous version of the KKT conditions, which we can
apply to extract a nice and combinatorial optimality condition for our problem. Note
that the Constraints (5.8) and (5.10) translate to inequality constraints of type (I),
whereas Constraint (5.9) corresponds to an inequality constraint of type (II).

Extended KKT Conditions for ContBERS We now introduce a dual variable λ : I →
R≥0 for Constraint (5.8), dual variables µj ∈ R≥0 for Constraint (5.9), and dual
variables γj : I → R≥0 for Constraint (5.10). Then the extended KKT conditions
are:

1. Extended Stationarity: For all j ∈ J and t ∈ [rj , dj), the expression

∇j
(
c(t)P

(
s(t)

))
+ λ(t) · ∇j

(
s(t)− smax(t)

)
−
∑
j′∈J

γj′(t) · ∇jsj′(t) + ∑
j′∈J

µj′ · ∇j
(
wj′
T − sj′ (t)

)

equals zero. Recall that ∇j denotes the j-th component of the gradient of
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the second argument (where the arguments are t and s(t)) and, therefore, the
partial derivative with respect to sj(t). Hence, the equality above is equivalent
to

c(t)P ′
(
s(t)

)
+ λ(t)− γj(t)− µj = 0. (5.11)

2. Continuous complementary slackness conditions:

λ(t) ·
(
s(t)− smax(t)

)
= 0 ∀t ∈ I, (5.12)

γj(t) · sj(t) = 0 ∀j ∈ J, t ∈ I. (5.13)

3. Discrete complementary slackness conditions:

µj ·
(∫

I

wj
T
− sj(t) dt

)
= 0 ∀j ∈ J. (5.14)

Characterizing Optimality We now use the above stated extended KKT conditions
to characterize optimal solutions for our ContBERS scheduling problem. Using
the jobs’ release times and deadlines, we partition the time horizon into m non-
overlapping, consecutive time intervals Ti := [ti, ti+1), i ∈ { 1, 2, . . . ,m }, where ti is
the i-th point in the set { rj , dj | j ∈ J }. Note that m ≤ 2n− 1. We call Ti the i-th
atomic interval and use J(i) := { j ∈ J | Ti ⊆ [rj , dj) } to denote the set of jobs that
are active in Ti (i.e., that may be scheduled in Ti).

The resulting scheduling condition is essentially a generalization of the well-known
optimality condition for the classical speed-scaling model from Yao et al. [YDS95].
There, an important property of optimal schedules is that during the lifetime of a
job j, speed never drops below the speed sj used to process j. For our setting, we
need a more general and complex optimality condition. In the following, we provide
such a property (Definition 5.6) and prove that it characterizes optimal schedules
(by proving Theorem 5.1) using our extended KKT conditions.

Definition 5.5 (Work-Transferable). For a given schedule and two atomic intervals
Ti and Ti′ , the work-transferable relation i → i′ holds if there exists a job j ∈
J(i) ∩ J(i′) with

∫ ti+1
ti sj(t) dt > 0. Furthermore, let � be the reflexive transitive

closure of →.

Definition 5.6 (Work-Balanced). We say that a schedule is work-balanced if there
are constants si ∈ R for i ∈ { 1, . . . ,m } so that 1. for any fixed atomic interval Ti
the speed s(t) ∈ R at time t ∈ [ti, ti+1) is min(smax(t), c(t)−

1
α−1 · si) and 2. for any

two atomic intervals Ti and Ti′ with i� i′, we have that si ≤ si′ .

To get an intuition, assume c(t) to be constant in each atomic interval. Then, the
first property implies that, unless smax forces us to run slower, we run at a constant
speed in each atomic interval (which can be different for each atomic interval). The
second property says that workload can only be transferred to intervals of higher
speed (which would increase the cost). For non-constant c(t), we have to weight the
speed suitably.
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To ease the further discussion, we slightly abuse notation by extending the work-
transferable relation “�” to timepoints and jobs. More specifically, for an atomic
interval Ti and a time t ∈ R≥0 we write i � t if for the atomic interval Ti′ with
t ∈ Ti′ we have i� i′. Similarly, for an atomic interval Ti and a job j ∈ J we write
i� j if there is an atomic interval Ti′ in which j is processed and for which i� i′.

Using these definitions, we have everything needed for the formal proof of Theo-
rem 5.1 (as stated at the beginning of Section 5.2). Our analysis uses the following
simple observation:

Observation 5.7. Consider a feasible schedule, an atomic interval i, a job j, and
a time t0 ∈ [rj , dj). Then we have

1. { i | i� j } ⊆ { i | i� t0 } and
2. if sj(t0) > 0, then { i | i� t0 } = { i | i� j }.

We also need the following auxiliary lemma to characterize optimality via the
above notions.

Lemma 5.8. Assume that for a feasible schedule S there exist two timepoints t1 ∈ Ti
and t2 ∈ Ti′ such that

• i� i′,

• c(t1)s(t1)α−1 > c(t2)s(t2)α−1, and

• s(t2) < smax(t2).

Then S cannot be optimal.

Proof. To prove the lemma, we transform S to S̃, such that S̃ is feasible and
E(s) > E(s̃). The transformation is as follows:

By the right-continuity of the involved functions, there exist intervals Ii := [t1, t1 +
ε) ⊆ Ti and Ii′ := [t2, t2 + ε) ⊆ Ti′ for some ε > 0 such that mint∈Ii c(t)s(t)

α−1 >
maxt∈Ii′ c(t)s(t)

α−1 and s(t′) < smax(t′), for all t′ ∈ Ii′ .
By the definition of “�”, there exists a sequence of atomic intervals Ti =

Ti1 , Ti2 , . . . , Til = Ti′ , such that for each y ∈ { 1, . . . , l − 1 } there holds iy →
iy+1. In other words, for every y ∈ { 0, . . . , l − 1 }, there exists a jy such that
jy ∈ J(iy) ∩ J(iy+1), and

∫ tiy+1
tiy

sjy(t) dt > 0. Consecutively, for every such y we
reduce the load of job jy in the atomic interval Tiy by δ > 0, and increase the load
of job jy in Tiy+1 by δ. At the same time we decrease the speed in Ii by δ/ε and
increase the speed in Ii′ by δ/ε. It is easy to see that by choosing δ small enough,
the resulting schedule S̃ is feasible (although during the above procedure it may
have been infeasible at times), and that mint∈Ii c(t)s̃(t)

α−1 > maxt∈Ii′ c(t)s̃(t)
α−1

still holds. Further, note that the cost only changes in the intervals Ii and Ii′ .
Figure 5.1 visualizes the process described above for the simplified version with

constant energy costs c(t).
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Balance for Optimality 5.2

(a) Speed levels before moving workload. (b) Speed levels after moving workload.

Figure 5.1: Energy decrease when moving workload for the simplified problem with
constant energy costs. The black line denotes the upper speed limit,
whereas the level of the yellow area denotes the current speed level of
the schedule.

In Ii the energy cost decreases by:∫
Ii

c(t) (P (s(t))− P (s̃(t))) dt

≥
∫
Ii

c(t)
(
δ

ε
P ′(s̃(t))

)
dt

≥
∫
Ii

δ

ε
min
t∈Ii

(
αc(t)s̃(t)α−1

)
dt

= δα ·min
t∈Ii

(
c(t)s̃(t)α−1

)
,

where the first inequality follows by the convexity of the power function.
On the other hand, by a similar calculation, the energy cost in Ii′ increases by at

most:

δα ·max
t∈Ii′

(
c(t)s̃(t)α−1

)
.

Since we chose δ so that mint∈Ii
(
c(t)s̃(t)α−1

)
> maxt∈Ii′

(
c(t)s̃(t)α−1

)
still holds,

the lemma follows.

We are now ready to prove our characterization of optimal schedules stated in
Theorem 5.1.

Proof of Theorem 5.1. We start with the proof that being non-wasting and work-
balanced is sufficient for optimality. Afterward, we show the necessity of both
properties.

“⇐”: Any feasible schedule S defines function variables sj for a feasible solution.
Here, sj(t) denotes the processing speed of job j at time t. In the following we
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set the dual variables and show that they satisfy the extended KKT conditions.

λ(t) := sup
t0∈Tk,k�t

(
c(t0)P ′

(
s(t0)

))
− c(t)P ′

(
s(t)

)
∀t ∈ [0, T )

µj := sup
t0∈Tk,k�j

(
c(t0)P ′

(
s(t0)

))
∀j ∈ J

γj(t) := λ(t)− µj + c(t)P ′
(
s(t)

)
∀j ∈ J, t ∈ [rj , dj)

Moreover, we set γj(t) := 0 for t /∈ [rj , dj). We first need to show that these
variables are dual-feasible (i.e., non-negative). We start with λ(t). Consider
the atomic interval Ti with t ∈ Ti. We obviously have i � t, causing the
supremum to consider t itself. Thus λ(t) cannot be negative. The non-
negativity of µj follows immediately from S being a feasible schedule. Because
of this, there is an atomic interval Ti in which j is processed at some t0 ∈ Ti
with speed s(t0) > 0. For this atomic interval we have i � j. Finally, the
non-negativity of γj(t) for any j ∈ J and t ∈ [rj , dj) follows immediately from
Observation 5.71.
It remains to prove that the extended KKT conditions hold. The first condition,
Equation (5.11), holds by definition of γj(t). For Equation (5.13), fix j ∈ J ,
t ∈ I and assume sj(t) > 0. Then we must have t ∈ [rj , dj). By applying
Observation 5.7, Property 2 we get { i | i� t } = { i | i� j }. This implies the
equality of the supremum expressions in the definition of λ(t) and µj and, thus,
γj(t) = 0. Now look at Equation (5.12) for some fixed t ≥ 0 with i such that
t ∈ Ti and assume s(t) < smax(t). By definition of the work-balanced property,
we must have supt0∈Ti

(
c(t0)1/(α− 1)s(t0)

)
≤ si = c(t)1/(α− 1)s(t). Moreover, any

k with k � i satisfies sk ≤ si, which yields supt0∈Tk
(
c(t0)1/(α− 1)s(t0)

)
≤

c(t)1/(α− 1)s(t). By rearranging, we get supt0∈Tk
(
c(t0)s(t0)α−1

)
≤ c(t)s(t)α−1.

Since we have shown that λ(t) cannot be negative, this yields λ(t) = 0.
Finally, Equation (5.14) follows because S is non-wasting, which gives us
wj =

∫
i∈I sj(t) dt ∀j ∈ J .

“⇒”: First, we show that any optimal schedule S is work-balanced.

For every atomic interval T`, let t` := arg maxt∈Tk,k�` s(t)c(t)
1

α−1 , and s` :=
s(t`)c(t`)

1
α−1 . For the sake of contradiction, assume that these s`’s do not

satisfy property (a) of work-balanced schedules (i.e., there exists some interval
T` and t∗ ∈ T` so that s(t∗) 6= min(smax(t∗), c(t∗)−

1
α−1 · s`)). Then it must

be the case that s(t∗) < smax(t∗), since s(t∗) > smax(t∗) would contradict
the feasibility of S, and s(t∗) = smax(t∗) would imply c(t∗)−

1
α−1 · s` < s(t∗)

and thus contradict our choice of s`. Therefore we have s(t∗) < smax(t∗) and
c(t∗)−

1
α−1 · s` ≥ s(t∗). In fact, even the strict inequality c(t∗)−

1
α−1 · s` > s(t∗)

must hold, since equality would contradict the definition of t∗. Hence, all the
properties of Lemma 5.8 are satisfied with t1 = t` and t2 = t∗, contradicting
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Figure 5.2: Water-filling: Atomic interval containers whose upper borders represent
the maximum speed function smax. This example is for constant energy
costs and shows a work-balanced schedule.

the optimality of S.
Property (b) of work-balanced schedules follows directly from the transitivity
of � and the fact that si is defined as maxt∈Tk,k�i s(t)c(t)

1
α−1 .

Finally, assume S is optimal and not non-wasting. Obviously, we can uniformly
decrease the speed for jobs with wj >

∫
I sj(t) dt which leads to a lower energy

cost and a contradiction.

5.3 Exact Polynomial-Time Algorithm

This section states our algorithm (Section 5.3.1) and proves both its correctness (via
the work-balanced property, Theorem 5.10) and runtime bound (Theorem 5.11).

Overview Our algorithm can be seen as pouring a liquid (workload of the jobs)
into a number of connected containers (atomic intervals). The upper border of
these containers is given by the maximum speed function smax, and neighboring
containers are connected with valves. Pouring liquid into the containers causes the
water levels to rise evenly among all non-full containers, while the valves ensure that
the workload of a job does not leave its release-deadline interval. The process is
stopped when all the liquid has been poured. The water level essentially corresponds
to the speed used in the atomic interval. Figure 5.2 illustrates this intuition for
constant energy costs.

If we consider dynamic electricity rates, the situation becomes more complicated.
Here, the energy costs at time t can be interpreted as changing the liquids density
over time. The water levels no longer correspond immediately to job speeds. Instead,
a job’s speed at time t is essentially given by its water level times the density

109
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factor at time t. We note that water-filling is a natural way of viewing primal-dual
algorithms (see, e.g., water-filling algorithms in [BV04, Chap. 5]).

5.3.1 Algorithm Description

Our algorithm works in rounds. In the first round, we find the set of consecutive
atomic intervals Ti1 , Ti1+1, . . . , Ti2 that require the “highest water level”. This fixes
the schedule for Ti1 to Ti2 . We then remove these atomic intervals and the scheduled
jobs from the input, adapt the remaining jobs’ release and deadlines, and start over
again. We continue by formally defining water levels and describe more exactly
how the algorithm computes a schedule in each round. See Listing 5.1 for the
corresponding pseudocode.

Computing Water Levels Consider a collection (union) I of atomic intervals.
In the following, one can mostly think of I as a union of consecutive atomic
intervals. However, for our proofs we also need to cover the case that I contains
“holes” (i.e., a union of nonconsecutive atomic intervals). Define the set J(I) :=
{ j ∈ J | rj ∈ I, dj ∈ I } of jobs whose release times and deadlines are contained in
I and the closure of I, respectively. Moreover, let W (I) := ∑

j∈J(I)wj denote the
total workload of these jobs. For a time t ∈ R≥0 let φ(t) := c(t)− 1/α− 1 denote the
density factor at time t. We define the water level ρ(I) ∈ R≥0 of I as the solution
to the equation

W (I) =
∫
I

min
(
φ(t) · ρ(I), smax(t)

)
dt. (5.15)

Equation (5.15) has a solution if and only if W (I) ≤
∫
I smax(t) dt. If this inequality

is strict, the solution is unique. If it is an equality, we agree on ρ(I) = supt∈I
smax(t)
φ(t) .

If there is no solution to Equation (5.15), we define ρ(I) :=∞.
Note that the computability of ρ(I) depends not only on the ability to compute

the involved integrals. Rather, one also must be able to solve an integral equation
involving smax and c. This is possible for practically relevant functions but can be
nontrivial depending on smax and c (e.g., for high-degree polynomials). In such
cases, one can use numerical methods such as binary search. Since our focus lies on
the combinatorial scheduling aspect and continuity of the involved functions, we
assume that ρ(I) can be computed efficiently.

From Water Levels to Schedules We describe the algorithm in an iterative way.
This gives not the most efficient implementation but simplifies the analysis. Our
algorithm iteratively computes a schedule for a subset of jobs and removes these
from the input, creating a new subinstance of the original problem. This is then
solved in the next iteration.

Set I0 := ∅ and consider an iteration k ≥ 1. We first find indices i1k and i2k for
which the water level ρk := ρ(Ik) of Ik :=

(⋃i2k
i=i1k Ti

)
\
(⋃

k′<k Ik′
)

is maximal. If this
water level is ∞, the problem instance is infeasible. Otherwise, we can schedule all
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1 A := { 1, 2, . . . ,m } {remaining atomic interval indices}
2 B := ∅, J := J {removed atomic interval indices & remaining jobs}
3 while J 6= ∅:
4 for each pair i1 ≤ i2 from A: compute water level ρ(i1, i2) := ρ

(⋃
i∈[i1,i2]\B Ti

)
5 find maximum water level ρk := ρ(i1k, i2k) = maxi1,i2 ρ(i1, i2)
6 Ik := { i ∈ N | i1k ≤ i ≤ i2k, i 6∈ B } {atomic intervals of this iteration}
7 if ρk =∞: return infeasible { feasibility check}
8 set sk(t) := min

(
φ(t) · ρk, smax(t)

)
{speed to be used in atomic intervals of Ik}

9 A := A \ Ik, B := B ∪ Ik, J := J \ J(Ik)
10 for all j ∈ J : update release times and deadlines

Listing 5.1: Primal-dual algorithm for the ContBERS problem. It returns the speed
functions sk to be used during the atomic intervals Ik of iteration k.
To keep the pseudocode simple, we define the interval collections Ik as
index sets instead of the actual unions of atomic intervals.

jobs Jk := J(Ik) during Ik by using the EDF (earliest deadline first) scheduling policy
and the speed function sk(t) := min

(
φ(t) ·ρk, smax(t)

)
during Ik. At the end of itera-

tion k, we remove the scheduled jobs Jk and the time subset Ik from the input. This
entails updating any remaining release time rj ∈ Ik to min { t ≥ rj | t 6∈

⋃
k′≤k Ik′ }

and any remaining deadline dj ∈ Ik to sup { t ≤ dj | t 6∈
⋃
k′≤k Ik′ }.

5.3.2 Correctness & Runtime

Before we state and prove our main result, we give an auxiliary lemma, showing
that the water levels computed by our algorithm are monotonously decreasing.

Lemma 5.9. The algorithm’s water levels ρk are monotonously decreasing in k.

Proof. Assume this is not true, so there is a minimal k such that ρk < ρk+1.
First note that there are u1 < u2 and v1 < v2 with Ik = [u1, u2) \ ⋃k′<k Ik′ and
Ik+1 = [v1, v2) \⋃k′<k+1 Ik′ . We consider two cases:

Case 1: [u1, u2] ∩ [v1, v2] = ∅
Note that, in this case, job removals and changes to release times or deadlines
from iteration k cannot affect the job set J(Ik+1) in iteration k + 1. But
then, since our algorithm also considered Ik+1 in iteration k, it would have
computed the same water level ρk+1 > ρk for Ik+1 in this iteration and chosen
it instead of Ik, which is a contradiction.

Case 2: [u1, u2] ∩ [v1, v2] 6= ∅
Consider the interval I := Ik ∪ Ik+1. Because of [u1, u2] ∩ [v1, v2] 6= ∅, our
algorithm did consider I during iteration k. Moreover, note that J(I) (in
iteration k) contains both the job set J(Ik) from iteration k and the job set
J(Ik+1) from iteration k + 1. Together with the definition of water levels, we
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have

W (I) ≥W (Ik) +W (Ik+1) =
∫
Ik

min
(
φ(t) · ρk, smax(t)

)
dt

+
∫
Ik+1

min
(
φ(t) · ρk+1, smax(t)

)
dt >

∫
I

min
(
φ(t) · ρk, smax(t)

)
dt.

Since the function x 7→
∫
I min

(
φ(t) · x, smax(t)

)
dt is non-decreasing, I’s water

level in iteration k must be larger than ρk, yielding a contradiction to our
algorithm’s choice.

Given this lemma, we can now prove the correctness of our algorithm.

Theorem 5.10 (Correctness). Consider an instance of the ContBERS problem. If
there exists a feasible solution, our algorithm returns a work-balanced and non-
wasting schedule. In particular, the returned schedule is optimal.

Proof. Assume there is a feasible solution to the given instance. We first show
that our algorithm returns a non-wasting schedule. Afterward, we show that this
schedule is also work-balanced (implying its optimality by Theorem 5.1).

For the first iteration’s water level, we have ρ1 <∞. Otherwise, even running all
the time at maximum speed would not finish all jobs in J1, causing any schedule to
be infeasible. Moreover, it is easy to see that EDF together with the speed function
s1 on I1 yields a feasible (and non-wasting) schedule for the jobs J1. This is because,
by Equation (5.15), EDF with speed function s1 exactly finishes the workload of all
jobs within I1 (i.e., when ignoring release times and deadlines). If this schedule is
infeasible, there must be an I ′1 ⊂ I1 with W (I ′1) >

∫
I′1

min
(
φ(t) · ρ1, smax(t)

)
dt. But

then, since x 7→
∫
I′1

min
(
φ(t) · x, smax(t)

)
dt is non-decreasing and continuous, we

get ρ(I ′1) > ρ1, contradicting the maximality of ρ1. Now consider a later iteration
k and assume we found a feasible subschedule in the previous iteration k − 1. We
immediately get ρk <∞ by Lemma 5.9 (ρk =∞ would contradict ρk ≤ ρk−1 <∞).
The feasibility and non-wasting property of EDF with speed function sk in Ik follows
by the same argument as for the first iteration.

We continue to show that the algorithm computes a work-balanced schedule.
To this end, we show that the constants si from Definition 5.6 are given by the
water levels ρk with Ti ⊆ Ik. The first part of this definition is obviously met, as it
corresponds exactly to our definition of water levels and the speed functions in Ik.
For the second part, note that we need only to consider two atomic intervals Ti ⊆ Ik
and Ti′ ⊆ Ik′ from different iterations k < k′ (if they are from the same iteration,
their water levels match, such that the definition’s second part holds trivially). By
construction of the algorithm, we cannot have i� i′: no j scheduled in Ti is active
outside of ⋃k′′≤k Ik′′ , and the same holds for any j scheduled in ⋃k′′≤k Ik′′ (and
thus, no such job is active in Ik′). On the other hand, if i′ � i, the second part of
Definition 5.6 holds as ρk′ ≤ ρk by Lemma 5.9.
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Note that the runtime of any algorithm for the ContBERS problem inherently
depends on the ability to perform advanced computations on continuous functions.
Depending on smax and the cost factor function c, relying on numerical methods
might even be unavoidable. Since we are interested in the scheduling aspect of the
model, the following runtime discussion assumes computations (such as integrals,
solving equations, taking the minimum etc.) involving continuous functions can be
performed in constant time. As noted earlier, our iterative implementation is not
the most efficient one, but it is convenient for our correctness analysis. A rather
simple improvement can be achieved by precomputing the water levels for all pairs
i1 and i2 of atomic intervals beforehand and merely updating these values at the
end of each iteration. This immediately yields the same cubic runtime as known
from the original YDS algorithm [YDS95]1:

Theorem 5.11 (Runtime). The ContBERS problem can be solved in time O
(
n3).

1There are improved implementations of YDS with runtime O
(
n2 log n

)
[LYY06] and

O
(
n2) [LYY17].
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Conclusion & Outlook

The main focus of this thesis lies on models where one common resource is shared by
a number of processors. In the following, I discuss the results and future directions
for each chapter as well as possible extensions for the whole research field. I also
briefly comment on possible online variants of the considered models.

Assigning a Sharable Resource in a Multiprocessor System. In Chapter 2, the
assignment of the resource to different processors is considered. The assignment of
the jobs to the processors and their order is assumed to be already fixed. Even for
unit size jobs, this problem turns out to be NP-hard in the number of processors.
However, if the number of processors is constant, the problem can be solved optimally
in polynomial time. The respective algorithm merely proves that such solutions exist,
but it is by no means practical as its runtime is roughly O

(
n2(m+1)2

)
. Thus, for

m = 2, the runtime of the general algorithm is already O
(
n18) and for m = 3 even

O
(
n32). While for two processors an exact quadratic-time algorithm is presented, it

remains an open question whether there are algorithms that have a similar runtime
(such as O (nm)) for m ≥ 3. Consequently, a linear-time approximation algorithm
with a worst-case approximation ratio of 2− 1/m is provided for an arbitrary number
of processors m.

Restricting the analysis to unit size jobs, no analytical results for jobs of arbitrary
sizes1 are given, but I conjecture that the results should be transferable. However,
extending the analysis turns out to be non-trivial. In particular the scheduling of
(hyper-)graphs cannot, with their current definition, capture such problem instances.
And yet, intuition suggests that one should be able to extend the definitions and

1 One could also consider resource requirements > 1. However, the most natural extension of the
considered model can easily be shown to reduce to non-unit size jobs with resource requirements
≤ 1 (rescale jobs with resource requirement r > 1 and workload p such that it has resource
requirement 1/r · r = 1 and workload r · p).
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find similar structural properties for arbitrary job sizes.
Regarding online variants of this problem, the most natural model seems to be

to assume that for each processor, only the next (i.e., current) job in the queue
is visible and all jobs behind this job are yet unknown. Assuming this model,
there is the following simple lower bound proving that any online algorithm cannot
achieve a better competitive ratio than 2− 1/m. Given m2 large jobs with a resource
requirement of 1− ε, the adversary distributes them evenly among the m processors,
resulting in m large jobs on each processor. If ε is chosen sufficiently small, this
implies that any algorithm needs m2 time steps until all these jobs are finished.
The adversary then adds m · (m− 1) small jobs with a resource requirement of ε
to the processor whose workload is finished last, resulting in an overall makespan
of m2 + m(m − 1) for the algorithm’s schedule. In contrast, the optimal (offline)
algorithm prioritizes the processor containing the small jobs and executes them
together with the large jobs, leading to an overall makespan of m+m(m− 1) = m2.
The lower bound of 2− 1/m follows.

Note that the simple round robin algorithm introduced in Chapter 2 also works
online and achieves an approximation ratio of 2. On the other hand, the introduced
approximation algorithm with guarantee 2 − 1/m cannot be adapted to be used
online, as it incorporates the length of the queues. I suspect that the best way to
proceed to possibly find a tight online algorithm is to try to adapt the round robin
algorithm. More precisely, it currently works in phases, finishing only one column
of the jobs at a time. This simplifies the analysis, but may result in an inferior
approximation guarantee compared to a round robin approach where the next job
is started right away if a part of the resource is remaining. For a slightly modified
variant of the tight example in Figure 2.3 (the variant making it harder for the
improved round robin algorithm) as well as the lower bound above, at least, such
a round robin approach results in the desired (2− 1/m)-approximation, indicating
that this guarantee may also hold in general.

Multiprocessor Scheduling with a Sharable Communication Channel. In the
model from Chapter 3, composed services have to be scheduled, whereas the com-
munication demand is assumed to be the bottleneck of the system. In order to
complete a set of jobs, the communication demand on their interconnecting edges
has to be processed. Similar to the prior model, the analysis is limited to unit size
items: that is, a single edge can be completed in one time step as long as the full
communication demand is supplied. However, the communication requirement for
each edge is allowed to be arbitrarily high, implying that the demand of a single edge
may exceed the capacity of the communication channel and making it impossible
to fulfill the full communication requirement of such an edge in a single time step.
At first sight, this seems natural, as the only requirement that has to be fulfilled is
actually the communication demand. Hence, there is no reason why it should not
be possible to complete the whole communication requirement in a single time step
as long as its full requirement does not exceed the capacity of the channel.
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On the other hand, computational limits on the nodes could make it impossible
to process the amount of data of a single edge at once, implying that only a part
of the overall communication demand can be finished in a single time step. This
results in the necessity to introduce a second parameter, the size of an edge. This is
the number of time steps this edge needs to receive its full communication demand
in order to be completed (thus resulting in a similar two-dimensional problem as in
the model of Chapter 4).

However, as our algorithms rely on the fact that any item can be packed in a
single bin, I suspect that the extension to non-unit size items is non-trivial. But
for the cases where Chapter 4 improves upon the results of this chapter, the same
method can naturally be used to derive guarantees for the non-unit size case as well:
The graph is split into single edges and each edge is scheduled separately.

For online variants of this problem, a reasonable model is to introduce release
times. The most interesting variant seems to be that tasks arrive at different times,
but all parts of a task (i.e., the items in the underlying bin packing representation)
still arrive at the same time (thus no new communication requirements between
already present nodes are added during the execution). In turn, it also makes sense
to modify the optimization goal, for example to minimize the average flow time.
This variant differs a lot from the model considered in Chapter 3 and, personally, I
think that it may be impossible to find an O (1)-competitive online algorithm. As
this model is a variant of the model in Chapter 4, but with more constraints, I will
discuss the reasoning behind this hypothesis in more detail in the next paragraph.

Multiprocessor Scheduling with a Sharable Resource. In contrast to the models
from Chapters 2 and 3, arbitrarily sized jobs are considered in Chapter 4. However,
in doing so, the approximation ratio increases. While this is to be expected, I am
confident that there is room to improve the ratio. Omitting the resource, the sorted
list scheduling algorithm yields a ratio of roughly 4/3 (cf. Section 1.4). Recall that
this algorithm simply creates a list sorted by non-increasing job size and greedily
schedules these jobs on the processor with the lowest load currently available. This
algorithm yields a much better guarantee than the achieved approximation of roughly
2. The difficulty lies in combining the two approaches of prioritizing the larger jobs
and at the same time ensuring that resource and parallelism both remain high. A
reasonable approach seems to be to introduce some kind of trade-off between these
two properties. But while I still suspect that this approach could be successful, a
working approach together with the proper analysis seems to be hard to find.

Also, the procedure for the task scheduling problem may be improved by modifying
it with respect to how the set of tasks is divided into two sets. Currently, the scheduler
does not take into account how many tasks are restricted by the overall resource,
and how many of them are restricted by the number of jobs that can be executed
at the same time. Choosing the partition of the tasks into the two task sets using
this information cleverly may lead to a better approximation. The objective being
the average completion time, however, complicates analyzing an arbitrary trade-off.
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That is, in case the workload of one of the task sets (say T1) is small, an optimal
algorithm could still prioritize the few tasks (with small workload) in T1. But
a different partition supplying T1 with reduced resources forces the algorithm to
stretch these short tasks, hence drastically increasing the cost.

Considering online variants of this problem, a natural extension arises in adding
release times to the jobs (see also prior paragraph). In doing so, a new optimization
goal such as average flow time should be defined. This modification results in a
significantly different model, and I hypothesize that an O (1)-competitive online
algorithm for this problem does not exist. I believe so because errors made at some
point in time affect the full future timeline.

Regarding polynomial-time online algorithms, an indication that such an algorithm
does not exist stems from the following lower bound for the offline version of average
flow time scheduling with job lengths and without resource constraints [LR07]: The
authors prove that there is no polynomial-time (offline) algorithm approximating
the problem within a factor of O

(
n1/3−ε

)
for some ε > 0 unless P = NP . However,

I was not able to adjust this bound such that it carries over to the unit size model
from Chapter 4 with additional release times (whereas it trivially applies to the
non-unit size model with additional release times). This is because when scheduling
multiple jobs with a high resource requirement at the same time, one can stretch
and compress the jobs on the different processors, whereas this is not possible for
jobs that have a specified length.

On the other hand, I was confident for a while that a resource augmentation in
the form of one additional processor renders the suggested sliding window algorithm
optimal for the online problem, at least for the unit size variant. The idea is to
allow the online algorithm to use m + 1 instead of m processors and to reserve
one processor for the leftovers of prior jobs. However, it turns out that this is not
sufficient, so the algorithm used can at least not directly be applied for the online
problem with a resource augmentation of only one processor. The problem regarding
the adaptability of the algorithm is that the chosen jobs in the sliding window
depend on the remaining job(s), as the underlying model is non-preemptive and jobs,
once started, cannot be removed from the system. This may result in the algorithm
choosing the wrong jobs and being stuck with jobs with a large resource requirement,
resulting in a suboptimal solution. For the interested reader, the following example
illustrates this problem in more detail (a resource augmentation of m+ 1 over m
processors is assumed).

Given one job with a resource requirement of 1
m − ε, m − 1 small jobs with a

resource requirement of 1
m and one large job of resource requirement 1− (m− 1)ε.

No matter how the sliding window is chosen (as far as possible to the left or to the
right), the algorithm always finishes all except the last job. Also, it starts the last
job and finishes a fraction of ε of it. In contrast, the optimal algorithm only finishes
the first m jobs. In each of the next m steps, add one tiny job with a resource
requirement of 1

2m , m − 1 small jobs with a resource requirement of 1
m and one

medium job with a resource requirement of 3
2m . As the large job has been started
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in the first step of ALG, the sliding window of ALG always leads to the execution
of the tiny and small jobs. In contrast, OPT finishes one tiny job, m − 2 small
jobs and one medium job. Then, after these m steps, ALG has left m jobs with a
resource requirement of 3

2m and one job with a resource requirement of 1
2 −mε. On

the other hand, OPT has left m jobs with a resource requirement of 1
m and one

job with a resource requirement of 1 − (m − 1)ε. In this step, no additional jobs
are added. Hence, OPT can finish all m jobs with a resource requirement of 1

m ,
whereas ALG can only finish 2m

3 jobs with a resource requirement of 3
2m . In the last

time step, ALG has m
3 jobs with a resource requirement of 3m

2 and one job with
a resource requirement of 1

2 −mε left. OPT has left just one job with a resource
requirement of 1− (m− 1)ε. Finally, m− 1 jobs with a resource requirement of ε
are added. OPT will finish all remaining jobs. ALG has 4m

3 jobs left, which cannot
be finished in one time step.

Note that this example does not give insights whether the algorithm achieves a
constant competitive ratio under resource augmentation. Also, it does not imply that
a larger resource augmentation does not result in an optimal solution. Further, a
modification of the algorithm or a completely different algorithm may lead to better
results, but as stated earlier I suspect that an O (1)-competitive online algorithm
without resource augmentation is not possible.

General Extensions of Scheduling with Scarce Resources. The problem variants
from Chapters 2 to 4 only deal with discrete time models, both because it facilitates
the analysis and because it fits well in typical implementations of real-world sched-
ulers (which are usually called at regular time intervals [B la+07]). Nevertheless,
it seems an intriguing question to consider these models in a more sophisticated,
continuous setting where the scheduler can act at arbitrary times. Also, these chap-
ters mostly focus on practically viable algorithms, that is, simple algorithms with a
short runtime. I strongly believe that the results could be improved with respect to
the approximation ratio by allowing arbitrary polynomial runtimes and considering
polynomial-time approximation schemes. As indicated before, for the unit size
variant of the job scheduling model in Chapter 4, a PTAS already exists [ES07], and
adopting it to jobs of arbitrary size should be possible by additionally rounding job
lengths to multiples of ε2OPT/m, removing long jobs like Epstein and Stee [ES07],
removing resource intensive jobs, grouping short jobs, and slightly modifying the
grouping and rounding steps with respect to resource requirement.

Scheduling with a Bounded Speed Limit and Variable Energy Costs. Chapter 5
deals with energy-efficient scheduling with variable energy prices and upper speed
limits. Also, new combinatorial optimality conditions are derived that will hopefully
be useful beyond the scope of this work. As these conditions are a variant of the KKT
conditions that can be applied on continuous optimization problems (with variables
from a function space), it should be particularly interesting for extensions of discrete
problems where the KKT conditions could be used to prove optimality. In using
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the proposed extended KKT conditions and adapting the algorithms accordingly,
it should be possible to prove the optimality of these algorithms for continuous
variants of interesting discrete problems. However, note that a slightly less general
variant of these conditions was already stated earlier [FH74] and to the best of my
knowledge, there are barely applications. As many problems in computer science are
still discrete by nature, we also have not yet succeeded in finding relevant problems
to which our framework can be directly applied. Nevertheless, I see potential in
these continuous optimization problems, but it may turn out to be more fruitful to
look for problems that are continuous by nature.

Regarding online variants of this problem, the main issue lies in the upper speed
limit, which may force an online algorithm to produce an infeasible solution. That is,
if an online algorithm runs at full speed (i.e., right at the speed limit) even though
there is plenty of time for the currently available jobs, the competitive ratio can be
arbitrarily bad. On the other hand, if an online algorithm does not run at full speed
in the same setting, an adversary can add enough jobs with high workload such
that the only feasible solution would have been to run with full speed over the full
timeline. In doing so, such a solution is rendered infeasible. Hence, for future online
variants of this problem, the adversary has to be restricted in a reasonable way.

Combining Scarce Resources and Energy Efficiency. At the intersection of Chap-
ters 2 to 4 and Chapter 5, a very interesting model arises in assuming a shared
energy source in a computing center. That is, the resource in form of available energy
is shared among the m processors and it is the goal of the scheduler to generate
a schedule that consumes as little energy as possible and at the same time does
not violate the power limit. However, the additional complexity arising by adding
multiple processors somehow seems to be higher if the overall energy is (dynamically)
restricted than in the original YDS model. That is, we were not able to adapt the
approaches that were used to extend the YDS algorithm to multiple processors (i.e.,
without an energy limit) to the model with energy limits. Nevertheless, I suspect
that this problem can still be solved optimally in polynomial time, yielding an
enthralling open question.
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Skopalik. “On Existence and Properties of Approximate Pure Nash
Equilibria in Bandwidth Allocation Games”. In: Proceedings of the
8th International Symposium on Algorithmic Game Theory (SAGT).
Springer, 2015, pp. 178–189.

[Dre+17] Maximilian Drees, Matthias Feldotto, Sören Riechers, and Alexander
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and Jan Weglarz. “A Heuristic Approach to Allocating the Continuous
Resource in Discrete-Continuous Scheduling Problems to Minimize the
Makespan”. In: Journal of Scheduling vol. 5, no. 6 (2002), pp. 487–499.
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[Mäc+16] Alexander Mäcker, Manuel Malatyali, Friedhelm Meyer auf der Heide,
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