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Abstract

For planar graphs, integer nowhere-zero flows and face colorings are

equivalent concepts. Considering embeddings in orientable surfaces every

face coloring can be expressed as an integer nowhere-zero flow. However,

not every integer nowhere-zero flow can be expressed as a face-coloring.

Therefore, nowhere-zero flows generalize the concept of colorings.

In this thesis we study flows on signed graphs. Signed graphs (G, σ)

generalize ordinary unsigned graphs G in such a way that each edge is

either positive or negative. While positive edges must be directed in

the ordinary way, negative edges must be either oriented introverted or

extroverted. Nowhere-zero flows on signed graphs differ essentially from

nowhere-zero flows on unsigned graphs because negative edges define a

set of edges that act like sources and sinks.

We will motivate the study of flows on signed graphs over colorings

and tensions. A graphs G has a nowhere-zero k-tension if and only if

G has a k-coloring. For every graph G there exists one surface such

that G can be embedded without crossing-edges and each circuit in this

embedding is a contractible curve. Corresponding to one wisely chosen

embedding, a face coloring of G always exist. We show that the corre-

sponding tension leads in a natural way to an integer nowhere-zero flow

on a certain dual signed graph.

Integer nowhere-zero flows on signed graphs establish a generalization

for colorings. We also study a refinement, circular nowhere-zero r-flows

where we allow edges to have real flow-values from the set {x ∈ R|1 ≤

|x| ≤ r − 1}. We study the relation between the circular flow number

Fc((G, σ)) and the integer flow number F ((G, σ)) that are defined as the

infimum over all r such that (G, σ) admits a circular nowhere-zero r-

flow or respectively an integer nowhere-zero r-flow. For flow-admissible

graphs, Raspaud and Zhu proved that F ((G, σ)) ≤ 2dFc((G, σ))e−1, and
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they conjectured Fc((G, σ)) > F ((G, σ))−1. We disprove this conjecture

by showing that sup{F ((G, σ))−Fc((G, σ))} ≥ 2. Furthermore, we show

some sufficient conditions for dFc((G, σ))e = F ((G, σ)).

The circular or integer flow spectrum (S(G) or S(G), respectively)

of a graph G is the set of all possible circular respectively integer flow

numbers given due to arbitrary flow-admissible signatures. We study

integer and circular flow spectra on regular graphs. The circular flow

number 2+ 1
t

is the smallest possible flow number in a regular graph. We

characterize (2t+ 1)-regular graphs whose flow spectrum contains 2 + 1
t
.

Furthermore, we analyze some cases for the flow spectrum of a graph G if

G has a 1-factor. By introducing the concept of r-minimal sets we prove

for a graph G 6= K3
2 the following statements are equivalent:

(1) G has a 1-factor. (2) 3 ∈ S(G). (3) 3 ∈ S(G). (4) 4 ∈ S(G).

We find cubic graphs whose integer flow spectrum does not contain

5 or 6, and we construct an infinite family of bridgeless cubic graphs

with integer flow spectrum {3, 4, 6}. We prove some sharp bounds for

the cardinality of smallest 3-minimal and 4-minimal sets, respectively. If

G is not 3-edge-colorable, then these bounds are formulated in terms of

its resistance and oddness.

A Kotzig graph is a cubic graph that has three 1-factors such that the

union of any two of them induces a hamiltonian circuit. We give a proof

of Bouchet’s conjecture for Kotzig-graphs.

Let F c be the set of circular flow numbers that can be obtained by

signed graphs and F ck be the set of circular flow numbers that can be

obtained by k-regular signed graphs. We show that F c2k+1 = (F c− [2; 2+

2
2k−1

])∪{2+ 1
k
}. As a corollary for unsigned graphs we entirely determine

the set of flow numbers for regular graphs up to 5, which is best possible

if Tutte’s 5-flow conjecture is true.

iv



Lastly, we relate the problem of finding certain circular and integer

nowhere-zero flows to the problem of finding a set of orientations with

special properties. In this regard, we characterize all nowhere-zero flows

on signed graphs.

Zusammenfassung

Ganzzahlige nirgends-null Flüsse und Flächen-Färbungen sind equiva-

lente Konzepte für planare Graphen. Hinsichtlich Einbettungen in ori-

entierbaren Flächen kann jede Flächenfärbung als ganzzahliger nirgends-

null Fluss dargestellt werden. Allerdings kann nicht jeder ganzzahlige

nirgends-null Fluss als Flächenfärbung dargestellt werden. Nirgends-null

Flüsse verallgemeinern also das Konzept von Färbungen.

In dieser Arbeit beschäftigen wir uns mit signierten Graphen. Sig-

nierte Graphen (G, σ) verallgemeinern gewöhnliche unsignierte Graphen

G, sodass jede Kante entweder eine positive oder negative Kante ist. Pos-

itive Kanten werden wie im gewöhnlichen Fall orientiert. Negative Kan-

ten sind entweder introvertiert oder extrovertiert. Nirgends-null Flüsse

auf signierten Graphen unterscheiden sich wesentlich von Flüssen auf un-

signierten Graphen, da negative Kanten eine Menge von Kanten bilden,

die als Quellen und Senken interpretiert werden können.

Wir motivieren das Studium von Flüssen auf signierten Graphen über

Färbungen und Tensionen. Ein Graph G hat eine nirgends-null k-Tension

genau dann, wenn G eine k-Färbung hat. Für jeden Graphen G existiert

eine Fläche, in die G ohne Kreuzungskanten eingebettet werden kann

und jeder Kreis in dieser Einbettung bildet eine Kurve, die sich auf einen

Punkt zusammenziehen lässt. Für eine mit Bedacht gewählte Einbettung

existiert eine Flächenfärbung. Wir zeigen, dass die zugehörige Tension

v



in natürlicher Art und Weise zu einem ganzzahligen nirgends-null Fluss

auf einem dualen signierten Graphen führt.

Ganzzahlige nirgends-null Flüsse auf signierten Graphen ver-

allgemeinern den Färbungsbegriff. Wir untersuchen neben ganz-

zahligen nirgends-null Flüssen zudem eine Verfeinerung: zirkuläre

nirgends-null r-Flüsse, bei denen wir reelle Flusswerte aus der Menge

{x ∈ R|1 ≤ |x| ≤ r − 1} erlauben. Wir betrachten die Beziehung zwis-

chen der zirkulären Flusszahl Fc((G, σ)) und der ganzzahligen Flusszahl

F ((G, σ)). Für Graphen, die einen nirgends-null Fluss zulassen, bewiesen

Raspaud and Zhu F ((G, σ)) ≤ 2dFc((G, σ))e− 1 und stellten die Vermu-

tung Fc((G, σ)) > F ((G, σ)) − 1 auf. Wir widerlegen diese Vermutung,

indem wir sup{F ((G, σ)) − Fc((G, σ))} ≥ 2 zeigen. Desweiteren stellen

wir einige hinreichende Bedingungen für dFc((G, σ))e = F ((G, σ)) auf.

Das zirkuläre bzw. das ganzzahlige Flussspektrum S(G) bzw. S(G)

eines Graphen G ist die Menge aller möglichen zirkulären bzw. ganzzahli-

gen Flusszahlen, die durch beliebige Signaturen, welche einen nirgends-

null Fluss zulassen, gegeben sind. Wir untersuchen ganzzahlige und

zirkuläre Flussspektren auf regulären Graphen. Der Wert 2 + 1
t

ist die

kleinstmögliche Flusszahl eines regulären Graphen. Wir charakterisieren

(2t+ 1)-reguläre Graphen, deren Flussspektrum 2 + 1
t

enthält. Desweit-

eren untersuchen wir einige Fälle des Flussspektrums eines Graphen G,

falls G einen 1-Faktor hat. Mithilfe des entwickelten Konzepts von r-

minimalen Mengen beweisen wir, dass für einen Graphen G 6= K3
2 fol-

gende Aussagen equivalent sind:

(1) G hat einen 1-Faktor. (2) 3 ∈ S(G). (3) 3 ∈ S(G). (4) 4 ∈ S(G).

Wir finden Graphen, deren ganzzahliges Flussspektrum nicht 5 oder

6 enthält und wir konstruieren eine unendliche Familie von brückenlosen

kubischen Graphen mit ganzzahligem Flussspektrum {3, 4, 6}. Wir be-

weisen einige scharfe Schranken für die Kardinalität von kleinsten 3-
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minimalen bzw. 4-minimalen Mengen. Falls G nicht 3-kantenfärbbar

ist, sind diese Schranken über den Widerstand und die Ungradheit von

G definiert.

Ein Kotzig Graph ist ein kubischer Graph, der drei 1-Faktoren besitzt,

sodass die Vereinigung zweier beliebiger 1-Faktoren einen Hamiltonkreis

induziert. Wir beweisen Bouchets Vermutung für Kotzig Graphen.

Sei F c die Menge der zirkulären Flusszahlen, die durch signierte

Graphen erhalten werden können und sei F ck die Menge der zirkulären

Flusszahlen, die durch k-reguläre signierte Graphen erhalten werden

können. Wir zeigen F c2k+1 = (F c−[2; 2+ 2
2k−1

])∪{2+ 1
k
}. Für unsignierte

Graphen ist F ck damit vollständig bis 5 bestimmt. Dies ist bestmöglich,

falls Tuttes 5-Fluss Vermutung wahr ist.

Abschließend überführen wir das Problem gewisse zirkuläre oder

ganzzahlige nirgends-null Flüsse zu finden in das Problem eine Menge

von Orientierungen mit speziellen Eigenschaften zu finden. In diesem

Zusammenhang charakterisieren wir alle nirgends-null Flüsse.
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Chapter 1

Introduction

1.1 Preliminaries

One of the most famous issues in graph theory is the Four color the-

orem. Nearly one and a half century ago Francis Guthrie raised the

conjecture that four colors are always sufficient to color a map in such

a way, that adjacent regions receive different colors. Once the conjec-

ture was stated, there appeared many proofs and counterexamples that

emerge to be wrong until Appel and Haken finally proved the conjecture

in 1976. The mathematical historical significance for that theorem es-

tablished since this is one of the first major theorems which could just

be prooven with the aid of a computer so far.

This thesis is about flows on signed graphs. On the one hand, flows

can be interpreted as a generalization of map-colorings and on the other

hand, signed graphs establish a more general concept for graphs. A more

detailed explanation about the connection of colorings and flows is given

in chapter 2. However, map-colorings are only defined for crossing-free

embeddings of graphs. The fact that flows extend the intuitional concept
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2 Chapter 1 Introduction

of map-colorings in the non-planar case made a great stir and caused flows

to be a well-respected topic in graph theory.

In 1954, Tutte stated the conjecture that every bridgeless graph ad-

mits a nowhere-zero 5-flow. A nowhere-zero 5-flow of a graph is an as-

signment of a direction and a value from the set {1, 2, 3, 4} for each edge,

in such a way that for each vertex the sum over all incoming values equals

the sum over all outgoing values. This conjecture became one of the most

famous in flow theory and until now it is unsolved. However, there are

several approaches for that conjecture as for example Seymour’s 6-flow

theorem, where the conjecture is prooven to be true by exchanging the

set of numbers by {1, 2, 3, 4, 5}.

For signed graphs the concept of nowhere-zero flows is basically the

same, except the fact that we allow graphs to have negative and positive

edges. The orientation of a positive edge is always defined from one

vertex towards another vertex, whereas the orientation of a negative edge

can only be directed towards each incident vertex, or away from each

incident vertex. Regarding that concept of flows on signed graphs, flows

on unsigned graphs are a special case where all edges are positive.

Until now, no flow-admissible all-positive graph is known that does

not have a nowhere-zero 5-flow. On the contrary, in the signed case

infinitely many graphs exist that do not admit a signed nowhere-zero

5-flow.

In this context two famous conjectures remain unsolved, for all-

positive graphs the above mentioned Tutte’s 5-flow-conjecture and for

signed graphs the conjecture that every flow-admissible graph admits a

nowhere-zero 6-flow stated by Bouchet in 1983.
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1.2 Basic Definitions

A graph G is an ordered pair G = (V,E) where V = V (G) is a set of

vertices and E = E(G) is a set of edges that are 2-element subsets of V .

Two vertices v, w ∈ V are neighbors and called adjacent if there exists an

edge e ∈ E with e = (v, w) or short vw. We can construe and visualize

graphs as vertices that are connected by edges. In this thesis we consider

graphs to be finite.

For a vertex v ∈ V (G) let E(v) be the set of edges which are incident

to v, and let |E(v)| be the degree of v which is denoted by dG(v). A graph

G is d-regular if all vertices of G have the degree d. The maximum degree

in a graph is denoted by ∆(G) and the minimum degree in a graph is

denoted by δ(G).

A signed graph (G, σ) consists of a graph G and a function σ from

E(G) into {-1,1}. The function σ is called a signature. Let e ∈ E(G)

an edge. Either σ(e) = 1 in which case e is called a positive edge, or

σ(e) = −1 in which case e is called a negative edge. For a graph G the

set which consists of all negative edges is denoted by Nσ. It is called the

set of negative edges while E(G)−Nσ is called the set of positive edges.

Every subset X of E(G) defines a signature σ of G with Nσ = X. If

all edges of (G, σ) are positive, i. e. when Nσ = ∅, we will call (G, σ)

an all-positive signed graph. An unsigned graph is an all-positive signed

graph. If we refer to the unsigned case we will denote an all-positive

signed graph (G, σ) simply by G and if we refer to the signed case we

will denote (G, σ) by (G, 1).

Let e ∈ E(G) be an edge which is incident to the vertices u and v. We

divide e into two half-edges hue and hve , one incident to u and one incident

to v. The set of the half-edges of G is denoted by H(G). For each half-

edge h ∈ H(G), the corresponding edge in E(G) is denoted by eh. For a
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vertex v, H(v) denotes the set of half-edges incident to v. An orientation

of (G, σ) is a function τ : H(G) → {±1} such that τ(hue )τ(hve) = −σ(e)

for each edge e = uv. The function τ can be interpreted as an assignment

of a direction to each edge in the following way:

For a positive edge exactly one half-edge is incoming and the other

one is outgoing. For a negative edge either both half-edges are incoming,

in which case e is an extroverted edge, or both half-edges are outgoing, in

which case e is an introverted edge. Taken together, a positive edge can be

directed like or like and a negative edge can be directed like

(extroverted edge) or like (introverted edge). An oriented

signed graph is also called a bidirected graph.

For a vertex v let H+(v) be the set of outgoing half-edges and H−(v)

be the set of incoming half-edges which are incident to v.

Let n ≥ 1 and P = u0u1...un be a path. We say that P is a v-w-path

if v = u0 and w = un. Let (G, σ) be oriented. If a path P of G does not

contain any negative edge and for every i ∈ {0, . . . , n−1} the edge uiui+1

is directed from ui to ui+1, then we say that P is a directed v-w-path. If

P is not directed, then every edge of P that is directed from ui to ui+1

will be called forward-edge and every edge of P that is directed from ui+1

to ui will be called backward-edge.

Let r, r′, x be real numbers with 0 ≤ r′ < r. We write x ≡ r′ (mod r)

if there is an integer t such that x− r′ = tr

Let (G, σ) be a signed graph with orientation τ . The boundary of the

orientation τ is a function δτ : V (G)→ R with δτ =
∑

h∈H(v) τ(h). The

boundary of a function f : E(G)→ R is a function δf : V (G)→ R with

δf(v) =
∑

h∈H(v) τ(h)f(eh).

The function f is a (modular) r-flow on (G, σ), if |f(e)| ∈ {x : 1 ≤

x ≤ r− 1} ∪ {0} for every e ∈ E(G) and δf(v) = 0 (δf(v) ≡ 0 (mod r))

for every v ∈ V (G). An r-flow f is also called an circular flow. If f(e) ∈ Z
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for all e ∈ E(G) we also call f an integer r-flow. Every flow f has one

underlying orientation τf . For defining one flow we also use the tupel

(D, f) consisting of an orientation D and a flow f .

The set {e : f(e) 6= 0} is the support of f , and f is a nowhere-zero

(modular) r-flow on (G, σ) if E(G) is the support of f .

A signed graph (G, σ) is flow-admissible, if there exists an orientation

τ and a number r ≥ 2 such that (G, σ) has a nowhere-zero r-flow. The

circular flow number of a flow-admissible signed graph (G, σ) is

Fc((G, σ)) = inf{r : (G, σ) admits a nowhere-zero r-flow}.

If we restrict our studies on flows that are integer-valued functions,

the corresponding integer flow number is denoted by F (G, σ).

Let (D,φ) be a nowhere-zero k-flow on (G, σ). If we reverse the orien-

tation of an edge e (or of the two half-edges, respectively) and replace φ(e)

by −φ(e), then we obtain another nowhere-zero k-flow (D∗, φ∗) on (G, σ).

Hence, if (G, σ) is flow-admissible, then it has always a nowhere-zero flow

with all flow values positive. This also shows that if Fc(G, σ) = r, then

there is a nowhere-zero r-flow for any prescribed orientation of (G, σ).

Let (G, σ) be a signed graph. For i ∈ {1, 2} let φi be a flow on (G, σ)

with underlying orientation τi. Note that for each edge e = uv either

τ1(hue ) = τ2(hue ) and τ1(hve) = τ2(hve) or τ1(hue ) 6= τ2(hue ) and τ1(hve) 6=

τ2(hve). The sum φ1 + φ2 is the function φ on (G, σ) with orientation τ ,

where τ = τ1|{h|φ1(eh)≥φ2(eh)}∪τ2|{h|φ2(eh)>φ1(eh)}, and φ(e) = φ1(e)+φ2(e) if

e has the same direction in τ1 and τ2, and otherwise φ(e) = |φ1(e)−φ2(e)|.

Clearly, if |φ(e)| ≥ 1 for every edge with φ(e) 6= 0, then φ is a flow.

Let (G, σ) be a signed graph. A switching at v defines a graph (G, σ∗)

with σ∗(e) = −σ(e) if e is incident to v, and σ∗(e) = σ(e) otherwise. We

say that signed graphs (G, σ) and (G, σ∗) are switching equivalent if they
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can be obtained from each other by a sequence of switchings. We also

say that σ and σ∗ are switching equivalent signatures of G. If we consider

a signed graph with an orientation D, then switching at v is a change of

the orientations of the half-edges that are incident with v. If D∗ is the

resulting orientation, then we say that D and D∗ are switching equivalent

orientations.

A circuit in (G, σ) is balanced, if it contains an even number of negative

edges; otherwise it is unbalanced. Note that a circuit of (G, σ) remains

balanced (resp. unbalanced) after switching at any vertex of (G, σ). The

signed graph (G, σ) is an unbalanced graph, if it contains an unbalanced

circuit; otherwise (G, σ) is a balanced graph.

A signed graph (G, σ) is called a barbell if either (G, σ) consists of

two circuits that intersect in exactly one vertex or (G, σ) consists of

two disjoint circuits C1, C2 and a path P that connects C1 with C2 and

V (C1) ∩ V (C2) ∩ P .

A circuit cover of a graph G is a set of circuits C1, C2, ..., Cn in G

such that the union
⋃n
i=1E(Ci) = E(G). A signed circuit is a graph that

is either a balanced circuit or a barbell.A graph which has a circuit that

visits each vertex precisely once is a hamilton graph. The corresponding

circuit is called a hamiltonian circuit.

An eulerian graph is a graph, that has one circuit that contains

each edge of the graph precisely once. Clearly, if (G, σ) and (G, σ′) are

equivalent and H is an eulerian subgraph of G, then |Nσ ∩ E(H)| and

|Nσ′ ∩ E(H)| have the same parity. Hence, H is unbalanced in (G, σ) if

and only if it is unbalanced in (G, σ′).

1.3 Contribution of the thesis

Some results of this thesis have already been published:
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• The results of section 3.1 (except 3.1.5 and 3.1.6) and of chapter 4

have been published in

[32] M. Schubert, E. Steffen, Nowhere-zero flows on signed regular

graphs, European Journal of Combinatorics, 48:34–47, 2015.

• The results of the parts 5.1.1 - 5.1.3 and section 5.2 have been

published for unsigned graphs in

[31] M. Schubert, E. Steffen, The Set of Circular Flow Numbers of

Regular Graphs, Journal of Graph Theory, 76(4):297–308, 2014.

1.4 State of the art

Certainly, for studying flows we are mainly interested in flow-admissible

graphs. In general, one can always construct a nowhere-zero flow by the

summation of proper flows if the support of those covers the whole edge

set. The question arises, what subgraphs are the smallest possible in such

a way that we can define flows on these subgraphs in order to cover each

edge at least once. It turns out that flow-admissibility is based on the

collection of signed circuits. Let (G, σ) be a signed graph. (G, σ) is flow-

admissible if and only if there exists a set of signed circuits in (G, σ) that

covers E(G). For an unsigned graph G it follows that G is flow-admissible

if and only if G has a circuit cover what is equivalent of being bridgeless.

If (G, σ) does not admit any nowhere-zero flow, we set Fc((G, σ)) = ∞.

It is easy to see that two switching equivalent graphs (G, σ) and (G, σ′)

have the same (circular) flow numbers. Thus, switching is an equivalence

relation. It is well known (see e.g. [30]) that (G, σ) is balanced if and only

if it is switching equivalent to (G, 1). Bouchet [3] showed that (G, σ) is

not flow-admissible if and only if (G, σ) is switching equivalent to (G, σ′)

with |Nσ′| = 1 or G has a bridge b and a component of G− b is balanced.
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For an unsigned graph G, an orientation D, and a set X ⊆ V (G) of G

the setD+(X) denotes the set of edges oriented from V (G)−X towardsX

and D−(X) denotes the set of edges oriented from X towards V (G)−X.

From a theorem of [11] it can be shown that an unsigned graph G admits

a circular nowhere-zero r-flow if and only if G has one orientation such

that for all X ⊆ V (G), r− 1 ≥ |D+(X)|
|D−(X)| and r− 1 ≥ |D−(X)|

|D+(X)| [6]. Thus, for

flow-admissible unsigned graphs it can be seen that the infimum Fc(G)

is a minimum and it is obtained at a rational number. For signed graphs

the authors of [30] generalize the above mentioned characterization for

circular flows and deduce that for every flow-admissible graph (G, σ),

Fc((G, σ)) is a minimum and it is obtained at a rational number.

In 1954, Tutte established the topic of flows. Flows on graphs consti-

tute a very active field of research in graph theory and there are many dif-

ficult conjectures on circular flows on graphs, see [37] for a brief overview.

The flow number of unsigned graphs has been studied intensively in the

recent years. One of the most famous conjectures in this context is Tutte’s

5-flow conjecture [41].

Conjecture 1.4.1. [41] If G is flow-admissible, then G admits a

nowhere-zero 5-flow.

The smallest counterexample for that an unsigned flow-admissible

graph does not admit a nowhere-zero k-flow for k ≥ 2 is cubic [33].

Hence, it is sufficient to proof Conjecture 1.4.1 for cubic graphs.

There exist infinitely many graphs G for which the circular flow num-

ber Fc(G) = 5 (see [18]). The first graph that was known in this regard

is the Petersen graph. A proof that for the Petersen graph P holds

Fc(P ) = 5 can be found in [35]. Thus, the bound in Tutte’s conjecture

is sharp. So far, the closest approach for Tutte’s conjecture is Seymour’s

6-Flow Theorem.
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Theorem 1.4.2. [33] If G is flow-admissible, then G admits a nowhere-

zero 6-flow.

In fact Tutte’s 5-flow Conjecture as well as Seymours 6-flow Theorem

were stated for integer flows. Until now, it is still an open issue if there

exists an ε ∈ (0, 1) such that every flow-admissible graph G admits a

nowhere-zero (5 + ε)-flow. Furthermore, Tutte’s 5-flow conjecture and

Seymours 6-flow Theorem were stated without the consideration of a

graph to be signed, since that generalization was established later.

Naturally, the concept of nowhere-zero flows has been extended in sev-

eral ways. In this thesis we study one generalization of these – nowhere-

zero flows on signed graphs. Flows on signed graphs were introduced by

Bouchet, who stated the following conjecture.

Conjecture 1.4.3. [3] Let (G, σ) be a signed graph. If (G, σ) is flow-

admissible, then (G, σ) admits a nowhere-zero 6-flow.

The bound on Bouchet’s conjecture is best possible, since the Petersen

graph, equipped with a certain signature, has flow number 6. However,

there exists no published proof, yet. To show that a flow number of

a graph equals a specific value k we need to show that there exist one

nowhere-zero k-flow on the graph and there exist no nowhere-zero k′-flow

with k′ < k. The latter case usually is quite hard to show since there

are many possibilities. In Appendix A we will prove that the Petersen

graph, equipped with a certain signature, has flow number 6.

For cubic graphs, Bouchet’s conjecture 1.4.3 is as follows:

Conjecture 1.4.4. Let (G, σ) be a signed cubic graph. If (G, σ) is flow-

admissible, then (G, σ) admits a nowhere-zero 6-flow.

It is well-known that Bouchet’s conjecture is equivalent to its restric-

tion on cubic graphs. Note, that for showing the equivalence for signed
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graphs, a proof similar to that in [33] does not work. Since there seems

to be no proof published so far, we will give one proof in the following.

Theorem 1.4.5. Conjecture 1.4.3 and Conjecture 1.4.4 are equivalent.

Proof. If Conjecture 1.4.3 is true, then obviously Conjecture 1.4.4 is

true. Now, assume that Conjecture 1.4.4 is true. Let (G, σ) be a non-

cubic flow-admissible signed graph. We suppress all vertices of degree 2

and for each vertex v ∈ V (G) with dG(v) ≥ 4 we subdivide each incident

edge evi (i ∈ {1, . . . , dG(v)}) by adding a new vertex vi. Now, delete v

and add the edges (evi , e
v
i+1). The addition of the indices is taken modulo

dG(v). The edges joining the circuit are defined to be f vi , such that each

vi has the edges evi , e
v
i+1, f

v
i . We repeat this procedure for each vertex

v ∈ V (G). We end up with a cubic graph G′ and every vertex v ∈ V (G)

corresponds to a circuit Cv of G′. The edge set E(G) induces a 1-factor

F1 in G′, and the circuits in G′ which correspond to the vertices in G form

a 2-factor F2. Let σ′ : E(G′)→ {±1} be the signature with σ′(e) = σ(e)

for each e ∈ F1 and σ′(e) = 1 for each e ∈ F2. We claim that (G′, σ′)

is flow-admissible. Construct a nowhere-zero flow ψ as follows: Let φ be

a nowhere-zero flow on an orientation (G, τ) of (G, σ). We may assume

that φ(f) ≥ 1 for all f ∈ F1. As otherwise, we switch the direction of

f and set the flow value to its negative inverse. For every circuit Cv let

δ+
G(v) be the set of edges such that the corresponding half-edge is directed

to the circuit. We define ψ : E(G′) → R with ψ(e) = φ(e) for f ∈ F1.

For each circuit Cv in F2 we direct all edges in one direction along the

circuit and set:

ψ(e1) =
∑

u∈δ+G(v)

φ(u) + 1

ψ(ei+1) =


ψ(ei) + fi, if fi is directed towards Cv

ψ(ei)− fi, if fi is directed away from Cv
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Hence, (G′, σ′) is flow-admissible and due to Conjecture 1.4.4 (G′, σ′)

admits a nowhere-zero 6-flow. Now we contract the circuits given by

F2 and insert the edges of degree 2 which were suppressed in G and by

contraction we get F ((G, σ)) ≤ 6.

�

The best published approximation to Bouchet’s Conjecture 1.4.3 is

proved by the following theorem of Zýka.

Theorem 1.4.6. [52] Let (G, σ) be a signed graph. If (G, σ) is flow-

admissible, then (G, σ) admits a nowhere-zero 30-flow.

Moreover, DeVos proved in one manuscript that every flow-admissible

graph (G, σ) admits a nowhere-zero 12-flow [5].

For 2-edge-connected signed graphs the following improvement was

proved.

Theorem 1.4.7. [4] Let (G, σ) be a 2-edge-connected signed graph. If

(G, σ) is flow-admissible, then (G, σ) admits a nowhere-zero 11-flow.

Bouchet’s conjecture has been confirmed for particular classes

of graphs [23, 21] and also for signed graphs with restricted edge-

connectivity (for example [30]). By Theorem 1.4.2 it is also true for

signed graphs with all edges positive, because it describes the special

case for all-positive graphs. Furthermore, if for a graph (G, σ) there is

an edge-cut X ⊆ E(G) with X = Nσ, then (G, σ) is switching equivalent

to (G, 1) and is follows that their (circular) flow numbers coincide. This

can be seen easily by switching all vertices of one side of the cut.

Another interesting fact about flows in unsigned graphs is, that when-

ever we consider one flow, we are able to scale the flow values in a specific

way as shown by the following theorem.
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Theorem 1.4.8. [35] Let G be a graph and Fc(G, σ) = p
q

+ 1. Then

there exists a nowhere-zero (p
q

+ 1)-flow φ on G, such that for each edge

e ∈ E(G) exists one ne ∈ Z such that φ(e) = ne
q

.

For signed graphs this theorem does not hold in general.



Chapter 2

Motivation

There exist several studies that connect signed graphs with interesting

applications from other branches besides mathematics. As an example,

for politics we would like to refer to a structural analysis of the situation

in the middle east in 1956 [9] or a graph-theoretical approach for the

analysis of international relations [10]. In physics signed graphs are often

used to study spin glasses (see [39] for example). Moreover, in chemistry

signed graphs are used to study molecular structures (see [8] for example).

This is just a short overview about topics where signed graphs are used.

For more information in [49] a mathematical bibliography of signed and

gain graphs and allied areas is given with more than 340 pages. Moreover,

the author of [49] regularly updates a webpage which contains a list of

hundreds of publications that fall in the area of signed graphs. For signed

graphs pure mathematical concepts, as for example colorings, are also

studied (see [47],[46],[48]). An interesting point is that there are even

different concepts for colorings of signed graphs (see [19] and [16] for

example). In this thesis we will focus on a pure mathematical analysis

of flows of signed graphs. A survey article about flows on signed graphs

is given in [15].

13
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2.1 Flow and Coloring Duality

Throughout this chapter we consider flows to be integer flows. The mo-

tivation for studying flows emerges by the fact that flows and colorings

are dual concepts. For unsigned graphs, this can be seen quite easily,

while for signed graphs it turns out to be more complicated. However,

the connection of colorings and flows, especially for signed graphs, estab-

lishes a great motivation. Therefore, we will give a brief overview about

that topic.

Let G be a graph. An embedding M of G into a surface Σ is an

injective function φ : V → Σ together with a set of homomorphisms

{ψe : e = (x, y) ∈ E} such that:

1. ψe : [0, 1]→ Σ

2. {ψe(0), ψe(1)} = {φ(x), φ(y)}

3. ψe((0, 1)) ∩ ({φ(v) : v ∈ V } ∪ {ψe′ : e′ ∈ E, e′ 6= e, x ∈ [0, 1]}) = ∅

A crossing-free embedding is an embedding of a graph such that for

any two edges there is no intersection. With repect to one surface Σ we

call a graph G crossing-free if there exists a crossing-free embedding of G

into Σ. A graph G is planar if there exists one crossing-free embedding

of G into a sphere.

The Jordan Curve Theorem allows us to define faces of a crossing-

free embedding of a graph given by the connected components that are

separated by edges which generate a Jordan curve.

Theorem 2.1.1 (Jordan Curve Theorem [14]). Every simple closed curve

y separates the 2-sphere into two connected components of which y is their

common boundary.

The first proof of Theorem 2.1.1 was submitted in [14], however, some

cases were missing. For a detailed proof we refer to [44].
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Defining faces in one embedding is only meaningful if the embedding

is crossing-free. However, for every graph G exists a surface ΣG such

that G has a crossing-free embedding into Σ. For example, let M be

an embedding of a graph G into S2 with minimum number of crossing

edges. For one intersection of two edges e, f we add one handle H to our

surface, connecting the endvertices of e and exchange the Jordan curve

that represents e by a Jordan curve that connects the end vertices of e

over H. By applying this procedure we end up with one surface Σ∗ that

is orientable and one crossing-free embedding of G into Σ∗.

However, this procedure might lead to the problem that not every

face is bounded by one circuit of the graph, because not every closed

Jordan Curve in the resulting surface is contractible. For defining face-

colorings we need to consider embeddings where each face is bounded by

one circuit. Thus, we can use the above described procedure and to avoid

crossing edges we insert cross caps instead of adding handles. Eventually,

we reach to one non-orientable surface Σ∗ and one crossing-free embed-

ding of G into Σ∗. Furthermore, each Jordan Curve is contractible in Σ∗.

In summary, to ensure that for every graph a surface exists where we can

define a face coloring on a proper crossing free embedding, we cannot

rely on orientable surfaces. Jaeger proposed the following conjecture.

Conjecture 2.1.2 (The strong embedding conjecture [13]). Every 2-

connected graph G has an embedding where each face boundary is a circuit

in some orientable surface.

Thus, whenever we consider a face-coloring of a graph, we may require

the corresponding embedding to be crossing-free and each face bounded

by one circuit. For an embedding of a graph G the set of faces is denoted

by F (G).

A face-coloring of an embedding M of a graph G is a mapping c

that assigns a color to every face of G in M in such a way that any two
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adjacent faces receive different colors. Whenever not stated explicitly,

for convenience we will use the set of integer numbers {0, . . . , k − 1} to

describe a set of k colors. A graph regarding to one embedding has a

k-face-coloring, if it has a face-coloring which uses at most k colors. In

a similar manner we define edge-colorings and vertex-colorings. A k-

vertex-coloring of a graph is an assignment c : V (G) → {0, . . . , k − 1}

such that adjacent vertices receive different colors. Moreover, a k-edge-

coloring of a graph is an assignment c : E(G)→ {0, . . . , k−1} such that

adjacent edges receive different colors. The smallest number of colors

needed to edge-color or vertex-color G is the chromatic index or the

chromatic number of G, respectively.

Let G be a graph embedded in a surface Σ with faces F = F1, . . . , Fn.

Regarding one corresponding embedding M of G, the dual graph G′ is

given by V (G) = {v1, . . . , vn} and E(G) = {(vi, vl) : Fi and Fl are

adjacent}. By identifying each face of G as a vertex of G′ and by con-

necting each pair of vertices if and only if the corresponding faces are

adjacent we naturally get one embedding of G′ in Σ as well. Clearly, G

is k-face colorable if and only if G′ is k-vertex colorable. For unsigned

graphs Tutte proved the following.

Theorem 2.1.3. [42] Let k ∈ Z. A graph G embedded in S2 has a

k-face-coloring if and only if G admits a nowhere-zero k-flow.

Since the definition of nowhere-zero flows is independent of embed-

dings, flows on unsigned graphs establish a generalization for the concept

of face-colorings.

To fathom a similar relation for signed graphs we need the concept

of tensions. Let G be a graph and for every circuit C let DC be an

orientation of C such that each vertex has one incoming and one outgoing

edge. For an orientation D of G we partition the set of edges of each

circuit C into two sets C1 and C2. C1 contains all edges, that have
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the same orientation in D and DC , and C2 contains all edges that are

oriented differently. G has a k-tension if there exists an orientation and a

function φ : E(G)→ R such that for each circuit C holds
∑

e∈C1
φ(e) =∑

e∈C2
φ(e). An embedded graph G has a local k-tension if there exists

an orientation and a function φ : E(G) → R such that for each circuit

C, which is a contractible curve, holds
∑

e∈C1
φ(e) =

∑
e∈C2

φ(e). A k-

tension φ or a local k-tension φ where 1 ≤ φ(e) ≤ k−1 is a nowhere-zero

k-tension or nowhere-zero local k-tension, respectively. One equivalence

between colorings and tensions is given by the following theorem. Note,

that the following statements are well known. For the sake of motivating

flows on signed graph, the proofs are given.

Theorem 2.1.4. Let G be a graph and k ∈ Z. G has a nowhere-zero

k-tension if and only if G has a k-coloring.

Proof. We may assume that G is connected. Let f : E(G) → Z

be a k-tension with an orientation D. We will define a k-coloring c :

E(G) → Z as follows: Choose a vertex u ∈ V (G) and set c(u) = 0. To

color the remaining vertices we successively apply the following rule: Let

x, y be two vertices that are connected by one edge e = (x, y) such that

x is colored and y is not colored. We set c(y) ≡ c(x) + f(e) (mod k) if

e is directed towards y and c(y) ≡ c(x) − f(e) (mod k) if e is directed

towards x. Thus, for a vertex z the value of c(x) is the sum of f(e)

of forward edges e minus the sum of f(g) of backward edges g on a

u-z-path. Next, we have to show that the coloring which we get, is well-

defined. Let z be a vertex and u1 and u2 be two different neighbors of

z. We assume that there is one u-u1-path W1 and one u-u2-path W2 in

G, both paths do not contain z. Furthermore, we may assume that W1

and W2 only intersect in u and z and thus, we get a circuit C consisting

of E(W1) ∪ E(W2). If W1 and W2 would intersect in another vertex,

then the last v ∈ V (W1)∪V (W2)\{u, z} on the u-u1-path would replace
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u. We may color z by a sequence of vertex colorings corresponding to

W1 or corresponding to W2. We have to show, that, independent of the

choice, c(z) is uniquely defined. We define a direction DC of C such

that each vertex has one incoming and one outgoing edge and define

C1 := {e ∈ C|DC(e) = D(e)} and C2 := C \ C1. Note that we may

change the direction of one edge regarding to the tension and exchange

its value in f by its negative inverse and receive a valid tension again.

Thus, we may assume that C1 = W1∪{u1z} and C2 = W2∪{u2z}. Since

f is a tension it follows

∑
e∈C1

f(e)−
∑
e∈C2

f(e) = 0. (2.1)

For the color of z regarding W1 it is

c(z) ≡ c(u) +
∑
e∈C1

f(e) (mod k) (2.2)

and with 2.1 it follows

c(z) ≡ c(u) +
∑
e∈C2

f(e) (mod k). (2.3)

Thus, independent of the choice, c(z) is uniquely defined and therefore

is c well-defined.

Now, let c : V (G) → Z be a k-coloring. We will define a nowhere-

zero k-tension f : E(G) → Z as follows. Let e = uv be an edge. If

c(v) > c(u), we direct e from u towards v and set f(e) = c(v)− c(u) and

if c(u) > c(v), we direct e from v towards u and set f(e) = c(u) − c(v).

Since c is a proper k-coloring, f is a proper k-tension.

�



2.1 Flow and Coloring Duality 19

11

2

1

1

1

1

1

2

5

4

3

3

3

4

32

3

2

4

Figure 2.1: Embedding of the signed Petersen graph (P, σ) with
F (P, σ) = 6 and its dual graph in the projective plane

In the following we observe the connection between colorings of em-

bedded unsigned graphs and flows on the corresponding dual graphs.

Therefore, we introduce a method for creating a bidirected dual signed

graph from a directed unsigned graph embedded in one surface Σ. Let

G be a directed unsigned graph. For each cylce C of G we predefine

one orientation DC such that each vertex of C has one outgoing and

one incoming edge. Let G′ be a dual graph of G in regard to Σ. For

a vertex v′ of G′ with incident edges e′1, . . . , e
′
dG(v′) the corresponding

edges e1, . . . , edG(v′) in G are given by the circuit Cv′ which bounds the

corresponding face. We define a direction of the incident half-edges of

v′ as follows: If el (l ∈ {1, . . . , dG(v′)}) has the same orientation in G

and DC , then hv(e
′
l) is incoming and if el has a different orientation

in G and DC , then hv(e
′
l) is outgoing. Repeating this procedure for

each vertex u′ ∈ G′ leads to a bidirected dual graph with an induced

signature. Let φ : E(G) → R be a mapping and let φ′ : E(G′) → R by

φ′(e′i) = φ(ei) for all i ∈ {1, . . . , dG(v)}. By this construction it is easy
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to see that φ is a nowhere-zero k-flow if and only if φ′ is a nowhere-zero

local k-tension. Hence, a graph G has a nowhere-zero k-flow if and only

if the corresponding dual Graph G′ has a nowhere-zero local k-tension.

In figure 2.1 one signed Petersen graph embedded in the projective plane

and the corresponding dual graph is depicted with a nowhere-zero 6-flow

and a nowhere-zero local 6-tension, respectively.



Chapter 3

Relations between the

circular flow number and the

integer flow number

The results of section 3.1, except 3.1.5 and 3.1.6, have already been pub-

lished in [32]. In the previous chapter 2 we concluded that, regarding

certain embeddings, colorings and integer flows are dual concepts. The

definition of a coloring leads to integer valued flows in a natural way.

When we allow flows to be real-valued, we get a refinement of the concept

of flows and therefore a refinement for colorings as well. However, the

focus of this thesis is on flows. In this chapter we study the relation be-

tween the integer flow number and its refinement, the circular flow num-

ber. Clearly, for a signed graph (G, σ) it holds Fc((G, σ)) ≤ F ((G, σ)).

For an unsigned graph G, it is proven in [6] that F (G) = dFc(G)e.
21
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flow number

3.1 The difference between Fc((G, σ)) and

F ((G, σ))

Raspaud and Zhu [30] proved that F ((G, σ)) ≤ 2dFc((G, σ))e − 1, and

they conjectured the following.

Conjecture 3.1.1. [30] For every graph (G, σ) holds

Fc((G, σ)) > F ((G, σ))− 1.

We will show that this conjecture is not true. Let δF = sup{F ((G, σ))−

Fc((G, σ)) : (G, σ) is flow-admissible}. Let t ≥ 1 be an integer and Ht

be the graph which is obtained from 2t + 1 triangles Ti, one vertex v

and precisely one vertex of each triangle, say vi, is adjacent to v. For

i ∈ {1, . . . , 2t + 1} let bi = vvi. Clearly, each bi is a bridge and Ht has

no 1-factor. We define the signature σ∗ by the set of negative edges Nσ

which includes precisely each edge between the two bivalent vertices of

each triangle.

Theorem 3.1.2. Fc((Ht, σ
∗)) = 3 + 2

t
and F ((Ht, σ

∗)) = 5, for each

integer t ≥ 1. Furthermore, Ht has an integer nowhere-zero 5-flow φ

such that φ(e) ∈ {1, 2, 4}, and a (3 + 2
t
)-flow with φc with φc(e) ∈ {1, 1 +

1
t
, 2, 2 + 2

t
} for all e ∈ E(Ht)

Proof. We will construct an integer nowhere-zero 5-flow on (Ht, σ
∗).

Define an orientation τ on Ht as follows: Let ei ∈ Nσ∗ ∩ E(Ti) and let

e1, . . . , et+1 be extroverted and et+2, . . . , e2t+1 be introverted. Orient the

positive edges of the triangles such that the triangles are oriented like a

”loop”. For i ∈ {1, . . . , t + 1}, v is the terminal end of bi, and for j ∈

{t+1, . . . , 2t+1}, v is the initial end of bj. Let φ be the integer nowhere-

zero 5-flow with φ(e) = 1 if e ∈
⋃2t
i=1E(Ti), φ(e) = 2, if e ∈ {b1, . . . , b2n}∪

E(T2t+1), and φ(e) = 4, if e = b2t+1. Hence, F ((Ht, σ
∗)) ≤ 5.
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Figure 3.1: H2

Let ψ be an integer nowhere-zero flow on (Ht, σ
∗). Let E+(v) (E−(v)) be

the set of incoming (outgoing) edges at v. Assume that |E+(v)| ≥ t+ 1.

Since ψ is an integer flow it follows that ψ(bi) is even for every bridge.

Hence,
∑

b∈E+(v) ψ(b) ≥ 2t+2. Since |E−(v)| ≤ t and ψ is an integer flow

it follows that there is a bridge b with ψ(b) ≥ 4. Hence, F ((Ht, σ
∗)) = 5.

We construct a nowhere-zero (3 + 2
t
)-flow φc on (Ht, σ

∗). Let τ be as

above and φc(e) = φ(e) if e ∈
⋃t+1
i=1 E(Ti), φc(e) = 2, if e ∈ {b1, . . . , bt+1},

φc(e) = 2+ 2
t

if e ∈ {bt+2, . . . , b2t+1}, and φc(e) = 1+ 1
t

if e ∈
⋃2t+1
i=t+2E(Ti).

Hence, Fc((Ht, σ
∗)) ≤ 3 + 2

t
.

Let ψc be a nowhere-zero flow on (Ht, σ
∗). Assume that |E+(v)| ≥ t+ 1.

Since ψc(bi) ≥ 2 for every bridge it follows that
∑

b∈E+(v) ψc(b) ≥ 2t+ 2.

Hence, there is a bridge b with ψ(b) ≥ 2 + 2
t
. Therefore, F ((Ht, σ

∗)) =

3 + 2
t
.

�

For t ≥ 2, the graphs (Ht, σ∗) are counterexamples to the conjec-

ture of Raspaud and Zhu. One interesting fact about Ht is also, that

Ht stays to be a counterexample under any arbitrary flow-admissible

signature σ.
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flow number

Lemma 3.1.3. For t ≥ 2, let (Ht, σ) be a flow admissible graph. Then,

F ((Ht, σ)) = F ((Ht, σ
∗)) and Fc((Ht, σ)) = Fc((Ht, σ

∗)).

Proof. Let (Ht, σ) be flow-admissible. We show that (Ht, σ) is

switching equivalent to (Ht, σ
∗) where precisely the edge between the

two bivalent vertices of each triangle is negative. Switch, if necessary, at

vertices vi to obtain a switching equivalent signature where all bridges

are positive. Clearly, each triangle is unbalanced. Hence, if three edges

of a triangle are negative, then switch at a bivalent vertex such that pre-

cisely one edge of that triangle is negative. Now, if necessary, switch at a

bivalent vertex to obtain (Ht, σ
∗). Hence, F ((Ht, σ)) = F ((Ht, σ

∗)) and

Fc((Ht, σ)) = Fc((Ht, σ
∗)).

�

We saw, that for the graph Ht exists only one flow number over all

signatures. In chapter 4 we will study possible flow numbers for fixed

graphs and variable signatures, and will introduce the term spectrum.

The observation of lemma 3.1.3 shows that, the circular flow spectrum

and the integer flow spectrum of Ht contains precisely one element which

is a seemingly rare property.

Graph H2 is shown in Figure 3.1. As a consequence of Theorem 3.1.2

we state:

Corollary 3.1.4. δF ≥ 2.

The statement of Theorem 3.1.2 holds also for graphs obtained from

Ht by replacing the triangles by (negative) loops. Clearly, the argumen-

tation for the lower bounds of the flow numbers in the proof of Theorem

3.1.2 works also if replace the triangles of Ht by any other unbalanced

component and v by a balanced component. After this result was pub-

lished, Máčajová and Steffen [22] proved δF ≥ 3 by using a slightly
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modified graph, where each negative loop is exchanged by 2t negative

loops. Furthermore, when Bouchet’s Conjecture is true, then δF = 3.

The constructed graphs have a special property.

Let K1,t be a graph consisting of one vertex, which is connected to t

different vertices by a single edge.

Definition 3.1.5. A star-cut is an induced subgraph S isormorphic to

K1,t of G such that every vertex and every edge of H is a cut.

Up to today, all examples with the property that dFc((G, σ))e <

F ((G, σ)) contain a star-cut. It becomes natural to ask whether for

each 2-edge-connected signed graph (G, σ) the numbers dFc((G, σ))e and

F ((G, σ)) are the same. We deny this question by giving a counterexam-

ple.

By K4 we denote the complete graph on four vertices.

Proposition 3.1.6. Let (G, σ) be the signed graph obtained from the all-

positive (K4, 1) by deleting an edge v1v2 and adding two negative loops,

l1 at v1 and l2 at v2. It holds Fc((G, σ)) = 3 and F ((G, σ)) = 4.

Proof. Claim that (G, σ) admits a circular nowhere-zero 3-flow. The

graph (K4, 1) admits a nowhere-zero 4-flow f with precisely one edge

v1v2 of flow value 3. Hence, define φ of G from f assigning 1 + 1
2

to

each loop. We claim that (G, σ) does not admit an integer nowhere-zero

3-flow. Suppose that φ is one positive integer nowhere-zero 3-flow on

(G, σ). Since (G, σ) has only two negative edges, both loops are oriented

in opposite directions and get the same flow value x with x ∈ {1, 2}.

An integer flow f of (K4, 1) can be obtained from φ on G by assigning

2x + φ(v1v2) to the edge v1v2. If x = 1, then f itself is a nowhere-zero

3-flow of (K4, 1), which forms a contradiction. If x = 2, then f(v1v2) = 4

and f : E(K4) → {±1,±2, 4}. Hence, f is a modulo 3-flow of (K4, 1)
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(here, f(v1v2) ≡ 1 (mod 3)), thus, by Lemma 3.2 of [45] (K4, 1) has an

integer nowhere-zero 3-flow, which forms a contraction.

�

3.2 Some sufficient conditions for

dFc((G, σ))e = F ((G, σ))

In 3.1.2 it was shown that the supremum of F ((G, σ)) − Fc((G, σ))

is at least 2. In the following we give some sufficient conditions for

dFc((G, σ))e = F ((G, σ)).

A signed graph (G, σ) has a circular-flow- 1
µk

-property if for each

nowhere-zero n
k
-flow φ on (G, σ) exists a nowhere-zero n

k
-flow φ′ on

(G, σ) such that µkφ′(e) ∈ Z for each edge e. The family of signed

graphs that have a circular-flow- 1
µk

-property is denoted by Gµ. With

this notion, we can restate Theorem 1.4.8 as follows: All unsigned

flow-admissible graphs are members of G1. Now, we will show the

corresponding result for general signed graphs that all signed graphs are

members of G2. This is best possible since in general flow-values can not

be scaled by mutiples of 1
q
, as for example figure 3.1 shows. It is easy to

see that every circular nowhere-zero 4-flow on (H2, σ) must contain an

edge with the flow value 1 + 1
2
.

For the next theorem we need the concept of pseudoflows:

Let (G, σ) be a signed graph. A function f : E(G)→ R with orienta-

tion τf which fulfills 0 =
∑

h∈H(v) τ(h)f(eh) for each vertex v ∈ V (G) is

a pseudo-r-flow if 0 ≤ |f(e)| ≤ r− 1 for each edge e ∈ E(G). Obviously,

a pseudo-r-flow is a nowhere-zero r-flow if |f(e)| ≥ 1 for each e ∈ E(G).



3.2 Some sufficient conditions for
dFc((G, σ))e = F ((G, σ)) 27

For two nowhere-zero flows f and g with orientations τf and τg, the

difference f − g is defined for all edges e ∈ E(G) as

• an orientation τh where τh(e) = τf (e) if f(e) ≥ g(e) or τh(e) = τg(e)

if f(e) < g(e) and

• a function h : E(G)→ R with h(e) = f(e)− g(e) if f(e) ≥ g(e) or

h(e) = g(e)− f(e) if f(e) < g(e).

For a signed graph (G, σ) with two pseudo flows f and g, it is easy

to see that f − g is also a pseudo flow.

Theorem 3.2.1. Let (G, σ) be a graph and Fc((G, σ)) = p
q

+ 1. Then

there exists a nowhere-zero (p
q

+1)-flow φ on (G, σ), such that ∀e ∈ E(G)

∃ne ∈ Z : φ(e) = ne
2q

.

Proof. Given a nowhere-zero (p
q

+ 1)-flow ψ let Fψ = {e ∈ E(G) :

2qψ(e) /∈ Z}. Choose a nowhere-zero (p
q

+ 1)-flow φ of (G, σ) for which

Fφ has minimum cardinality. We may assume that φ(e) ≥ 1 for each

e ∈ E(G). If Fφ = ∅ then the flow value on each edge is a multiple of

1
2q

and we are done. Thus, assume Fφ is not empty. Furthermore, each

vertex of G is incident to either zero or at least two edges of Fφ.

Claim 1: There is no subset of Fφ which induces a signed circuit.

Suppose to the contrary that there is a subset F ′ ⊆ Fφ that induces

a signed circuit C. First, we consider the case that C is a balanced

circuit or consists of two unbalanced circuits that intersect in ex-

actly one vertex. Since C admits a nowhere-zero 2-flow let DB be

an orientation corresponding to a nowhere-zero 2-flow of C in G. Let

ε = mine∈Fφ{
p
q
− φ(e), φ(e) − 1}. Let φp be a pseudoflow on G with

orientation Dφp = DB ∪Dφ|E(G)−E(C), φp(e) = ε for e ∈ C, and φp(e) = 0
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for e ∈ E(G)\C. Then, the mappings φ+φp and φ−φp are nowhere-zero

(p
q
+1)-flows and Fφ+φp or Fφ−φp is a proper subset of Fφ contradicting the

choice of φ. It remains to show that C is not a barbell. Suppose C con-

sists of two unbalanced circuits C1 and C2 and a path P connecting them.

Define a parameter αe with αe = 1
2

for e ∈ P and αe = 1 for e /∈ P . Since

C admits a nowhere-zero 3-flow let DB be an orientation corresponding

to a nowhere-zero 3-flow. Let ε = mine∈Fφ{αe(
p
q
− φ(e)), αe(φ(e) − 1)}.

Let φp be a pseudoflow on G with orientation Dφp = DB ∪Dφ|E(G)−E(C),

φp(e) = ε for e ∈ C1 ∪ C2, φp(e) = 2ε for e ∈ P , and φp(e) = 0 for

e ∈ E(G) \ C. Again, φ + φp and φ− φp are nowhere-zero (p
q

+ 1)-flows

and Fφ+φp or Fφ−φp is a proper subset of Fφ contradicting the choice of φ.

Claim 2: For each v ∈ V , |δ(v)∩Fφ| ∈ {0, 2}. For sure, |δ(v)∩Fφ| 6= 1.

Assume to the contrary that for v1 ∈ V (G) holds |δ(v1) ∩ Fφ| ≥ 3.

If v1 belongs to a path in G[Fφ], that connects two circuits, then

either one circuit is balanced or v1 belongs to a barbell. That contra-

dicts Claim 1. Thus, v1 belongs to one unbalanced circuit C and any

path from v1 must end in C. Let P = v1, w1, . . . , wl, vk (k ∈ [2, n],

l ∈ Z) (the wi’s and vj’s are pairwise disjoint) be such a path and let

C = v1, . . . , vn. However, either the circuit C1 = v1, . . . , vk, wl, . . . , w1, v1

or C2 = vk, . . . , vn, v1, w1, . . . , wl, vk is balanced contradicting Claim 1.

To complete the proof it remains to show that there is no unbal-

anced circuit in Fφ. Assume C = v1, . . . , vn (n ∈ Z) is an unbalanced

circuit in Fφ with edges el = (vl, vl+1), l mod n. We may change the

orientation of C such that each vertex but v1 is incident to exactly

one incoming and one outgoing half-edge. For each edge for which we

change the direction we also exchange its flow-value by its negative in-

verse and φ remain a proper nowhere-zero flow. Since a vertex in C
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has exactly two incident edges from Fφ we get 2q(φ(en) + φ(e1)) ∈ Z

and 2q(φ(ek) − φ(ek−1)) ∈ Z for k ∈ {2, . . . , n}. By induction we get

2q(φ(en) − φ(e1)) ∈ Z and hence, 4qφ(en) ∈ Z and it follows that each

φ(ek) is an odd multiple of 1
4q

for k ∈ {1, . . . , n}. Since C has an odd

number of negative edges the minimum cut X that separates C from

G carries an excess
∑

e∈X∩C+ φ(e) −
∑

e∈X∩C− φ(e) = 2(2m+1)
4q

= 2m+1
2q

(m ∈ Z). Let F ′ = {e ∈ E(G) : φ(e) = 2k+1
2q
, k ∈ Z}.

We get |F ′∩X| ≡ 1 mod 2 and for each v ∈ V (G)−V (G[Fφ]), |δ(v)∩

F ′| ≡ 0 mod 2. Therefore, not every path with edges of F ′ that begins

with a vertex in C ends in C as well. There exists a barbell B consisting

of a path P ⊆ F ′ that connects C with another unbalanced circuit C ′ ⊆

Fφ. Since B admits a nowhere-zero 3-flow let DB be an orientation

corresponding to a nowhere-zero 3-flow. Let φp be a pseudoflow on G

with orientation Dφp = DB ∪ Dφ|E(G)−E(B), φp(e) = 1
4q

for e ∈ C ∪ C ′,

φp(e) = 1
2q

for e ∈ P , and φp(e) = 0 for e ∈ E(G) \ B. Again, φ + φp

and φ−φp are nowhere-zero (p
q

+ 1)-flows and Fφ+φp or Fφ−φp is a proper

subset of Fφ contradicting the choice of φ which completes the proof.

�

Lemma 3.2.2. Let (G, σ) ∈ G1. Then dFc((G, σ))e = F ((G, σ)).

Proof. Let (G, σ) ∈ G1 with a circular nowhere-zero p
q
-flow f and

let h = dp
q
e. Since f can also be considered as a circular nowhere-zero

h-flow, (G, σ) admits a circular nowhere-zero h-flow f ′ with rational flow

values from the set {1, 1+ 1
1
, 1+ 2

1
, · · · , h−1}. Obviously, f ′ is an integer

valued nowhere-zero h-flow.

�
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Lemma 3.2.3. If (G, σ) has no long barbell, then (G, σ) ∈ G1.

Proof. Given a nowhere-zero (p
q

+1)-flow ψ let w(e) ≡ φ(e) (mod 1)

and Fψ = {e ∈ E(G) : w(e) 6= 0}. Choose a nowhere-zero (p
q

+ 1)-flow φ

of (G, σ) for which Fφ has minimum cardinality. We may assume that

φ(e) ≥ 1 for each e ∈ E(G). If Fφ = ∅ then we are done. Thus, we

suppose to the contrary, that Fφ 6= ∅.

Claim 1: Fφ contains neither a balanced circuit nor consists of two

unbalanced circuits that intersect in exactly one vertex.

Suppose that there is a subset F ′ ⊆ Fφ that induces a signed circuit

C that is either a balanced circuit or consists of two unbalanced circuits

that intersect in exactly one vertex. Since C admits a nowhere-zero 2-

flow let DB be an orientation corresponding to a nowhere-zero 2-flow of

C in G. Let ε = mine∈Fφ{
p
q
− φ(e), φ(e)− 1}. Let φp be a pseudoflow on

G with orientation Dφp = DB ∪ Dφ|E(G)−E(C), φp(e) = ε for e ∈ C, and

φp(e) = 0 for e ∈ E(G) \ C. Then, the mappings φ + φp and φ− φp are

nowhere-zero (p
q

+ 1)-flows and Fφ+φp or Fφ−φp is a proper subset of Fφ

contradicting the choice of φ.

Thus, F contains an unbalanced circuit C1. By switching, we may

assume that in C1 there is precisely one negative edge e1. We may assume

that e1 is extroverted. Since φ is balanced at every vertex, the total in-

flow and out-flow of all negative edges is zero.

∑
e∈Fφ∩Nσ

2φ(e) = 0.

That is, ∑
e∈Fφ∩Nσ

φ(e) = 0.
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Thus, there must be another negative edge e2 in Fφ. The edges e1, e2

are contained in different unbalanced circuits C1 and C2 of Fφ. Joining

C1 and C2 by a path of G, we get a long barbell, forming a contradiction.

�

With lemma 3.2.2 and 3.2.3 it simply follows the next Corollary.

Corollary 3.2.4. If (G, σ) has no long barbell, then

dFc((G, σ))e = F ((G, σ)).
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Chapter 4

Flows on signed regular

graphs

4.1 Preface

The results of this chapter have been published in [32]. Let G be a

graph and X ⊆ E(G). Let ΣX(G) be the set of signatures σ of G, for

which (G, σ) is flow-admissible and Nσ ⊆ X. We define SX(G) = {r :

there is a signature σ ∈ ΣX(G) such that Fc((G, σ)) = r} to be the X-

flow spectrum of G. The E(G)-flow spectrum is the flow spectrum of

G and it is denoted by S(G). If we consider integer-valued flows, then

SX(G) denotes the integer X-flow spectrum of G.

Section 4.2 characterizes (2t+ 1)-regular graphs whose flow spectrum

contains 2 + 1
t
. Furthermore, if a (2t + 1)-regular graph has a 1-factor,

then its integer flow spectrum contains 3. However, for every t ≥ 2, there

is a signed (2t+ 1)-regular graph (H, σ) with integer flow number 3 and

H does not have a 1-factor.

One of the earliest results on flows on graphs is Tutte’s characteriza-

tion of bipartite cubic graphs [40]. His observation that a cubic graph

33
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is bipartite if and only if it admits a nowhere-zero 3-flow motivated the

following statement.

Theorem 4.1.1. [35] Let t ≥ 1 be an integer. A (2t + 1)-regular graph

G is bipartite if and only if Fc((G, 1)) = 2 + 1
t
. Furthermore, if G is not

bipartite, then Fc((G, 1)) ≥ 2 + 2
2t−1

.

The the situation does not change in the more general case of flow

numbers on signed (2t + 1)-regular graphs. It is proven that if r is an

element of the flow spectrum of a (2t+ 1)-regular graph, then r = 2 + 1
t

or r ≥ 2 + 2
2t−1

. In order to generalize the structural part of Theorem

4.1.1 we will need the following definition: Let r ≥ 2 be a real number

and G be a graph. A set X ⊆ E(G) is r-minimal if

1) there is a signature σ of G such that Fc((G, σ)) = r and Nσ = X,

and

2) Fc((G, σ
′)) 6= r for every signature σ′ of G with Nσ′ ⊂ X.

In Section 4.3 we show that a set X ⊆ E(G) is a minimal set such

that G−X is bipartite if and only if X is (2 + 1
t
)-minimal.

Since Bouchet’s conjecture is equivalent to its restriction on cubic

graphs we study flows on signed cubic graphs in Section 4.4. Let K3
2

be the unique cubic graph on two vertices which are connected by three

edges. We study the relation between 3- and 4-minimal sets and deduce

that if G has a 1-factor and G 6= K3
2 , then {3, 4} is a subset of its flow

spectrum and of its integer flow spectrum. Furthermore, if G 6= K3
2 ,

then the following four statements are equivalent: (1) G has a 1-factor.

(2) 3 ∈ S(G) (3) 3 ∈ S(G). (4) 4 ∈ S(G). There are cubic graphs

whose integer flow spectrum does not contain 5 or 6, and we construct

an infinite family of bridgeless cubic graphs with integer flow spectrum

{3, 4, 6}.
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We prove some sharp bounds for the cardinality of smallest 3-minimal

and 4-minimal sets, respectively. If G is not 3-edge-colorable, then these

bounds are formulated in terms of its resistance and oddness.

A Kotzig graph is a cubic graph that has three 1-factors such that

the union of any two of them induces a hamiltonian circuit. The chapter

concludes with a proof of Bouchet’s conjecture for Kotzig-graphs.

4.2 Smallest possible flow numbers of

signed (2t + 1)-regular graphs

This section characterizes (2t + 1)-regular graphs whose flow spectrum

contains 2 + 1
t
.

Let (G, σ) be a signed graph that admits a (modular) r-flow φ. Let

e be an edge of the support of φ. If we reverse the orientation of e and

replace φ(e) by −φ(e) (r − φ(e)) then we obtain another (modular) r-

flow φ′ with the same support as φ. Hence, we can assume that a graph

which has a (modular) r-flow φ has a (modular) r-flow φ′ with the same

support and φ′(e) ≥ 0 for all e ∈ E(G).

Lemma 4.2.1. Let t ≥ 1 be an integer and (G, σ) be a signed (2t + 1)-

regular graph. If (G, σ) admits a modular nowhere-zero (2 + 1
t
)-flow φ,

then |φ(e)| ∈ {1, 1 + 1
t
} for every e ∈ E(G).

Proof. Let φ be a modular nowhere-zero (2 + 1
t
)-flow on (G, σ).

Suppose to the contrary that there is an edge e′ with |φ(e′)| 6∈ {1, 1 + 1
t
}.

By the remark above there is modular nowhere-zero (2 + 1
t
)-flow ψ with

ψ(e) > 0 for every e ∈ E(G). Since −φ(e′) 6∈ {1, 1+ 1
t
}, and 2+ 1

t
−φ(e′) 6∈

{1, 1 + 1
t
} it follows that ψ(e′) 6∈ {1, 1 + 1

t
}.

Let e′ ∈ E(v). We can assume that there is an orientation of the

half-edges of (G, σ) such that |H+(v)| = 2t+ 1 and a modular nowhere-
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zero (2 + 1
t
)-flow ψ′ such that ψ′(e′) 6∈ {1, 1 + 1

t
} and ψ′(e) > 0 for

every e ∈ E(G). It follows that there is a positive integer k such that∑
h∈H+(v) ψ

′(eh) = k(2+ 1
t
). We have

∑
h∈H+(v) ψ

′(eh) > 2t+1 and hence,

k > t. On the other side
∑

h∈H+(v) ψ
′(eh) < 2t+3+ 1

t
and hence, k < t+1,

a contradiction. Therefore, |φ(e)| ∈ {1, 1 + 1
t
} for every e ∈ E(G).

�

The next theorem is a generalization of Lemma 3.2 of [45].

Theorem 4.2.2. Let t ≥ 1 be an integer. A signed (2t+1)-regular graph

(G, σ) admits a nowhere-zero (2 + 1
t
)-flow if and only if (G, σ) admits a

modular (2 + 1
t
)-flow and G has a t-factor.

Proof. Let φ be a nowhere-zero (2 + 1
t
)-flow on (G, σ) with φ(e) > 0

for every e ∈ E(G). Since every (2 + 1
t
)-flow is a modular (2 + 1

t
)-flow

it follows with Lemma 4.2.1 that φ(e) ∈ {1, 1 + 1
t
} for every e ∈ E(G).

The set of edges with flow value 1 + 1
t

induces a t-factor of G, and φ is

a modular nowhere-zero (2 + 1
t
)-flow.

If (G, σ) admits a modular nowhere-zero (2 + 1
t
)-flow, then it follows

with Lemma 4.2.1 there is one, say φ, such that φ(e) = 1 for every

e ∈ E(G). Since G is (2t+ 1)-regular, it follows that every vertex of G is

incident to either incoming or outgoing edges, only. Let F be a t-factor

of G. If we reverse the orientation of the edges of F , then the function

φ′ with φ′(e) = 1 if e ∈ E(G)− E(F ) and φ′(e) = 1 + 1
t

if e ∈ E(F ) is a

nowhere-zero (2 + 1
t
)-flow on (G, σ). �

We will need the following result of Petersen.

Theorem 4.2.3. [29] Let k be a positive integer and G a k-regular graph.

If k is even, then G has a 2-factor.
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Theorem 4.2.4. Let t ≥ 1 be an integer.

1) A (2t+ 1)-regular graph G has a t-factor if and only if 2 + 1
t
∈ S(G).

2) If G is (2t+ 1)-regular and has a 1-factor, then 3 ∈ S(G).

Furthermore, for each t > 1 there is a (2t + 1)-regular graph Gt which

has no 1-factor and 3 ∈ S(Gt).

Proof. 1) Let G have a t-factor. Let σ be the signature of G with

Nσ = E(G). The function φ with φ(e) = 1 for every edge e is a modular

nowhere-zero (2 + 1
t
)-flow on G. It follows with Theorem 4.2.2 that

2 + 1
t
∈ S(G). If 2 + 1

t
∈ S(G), then it follows with Theorem 4.2.2 that

G has a t-factor.

2) If t = 1, then φ′ is an integer 3-flow and it follows from 1) that

3 ∈ S(G). Let t ≥ 2 and F1 be a 1-factor of G. By Theorem 4.2.3, G−F1

has a 2-factor F2. Hence, F1∪F2 induces a spanning cubic subgraph H of

G which has a 1-factor. By 1), H has a signature σ such that (H, σ) has

an integer nowhere-zero 3-flow. Furthermore, H ′ = G−E(H) is (2t−2)-

regular and hence, (H ′, 1) has a nowhere-zero 2-flow. Thus, (G, σ) has

an integer nowhere-zero 3-flow. Since a 3-flow is the smallest possible

integer flow on a (2t+ 1)-regular graph it follows that 3 ∈ S(G).

It remains to construct the graph Gt for t > 1. Let T be a trian-

gle where exactly two vertices are joined by two parallel edges, all other

vertices are connected by a single edge. Take four copies T1, . . . , T4 of

T and connect each bivalent vertex of T1, T2, T3 with the bivalent ver-

tex y of T4 by an edge. Let H be this graph. Let σ be the signature of

H where Nσ is the set of the parallel edges of T1, . . . , T4. Graph (H, σ)

with nowhere-zero 3-flow is shown in Figure 4.1. Since H has a vertex of

degree 3, it follows that F ((H, σ)) = 3.

Let K ′n,n be the complete bipartite graph on 2n vertices where one

edge uv is replaced by a path uxv. For t > 1 and for each trivalent vertex

z of H take t − 1 copies of K ′2t+1,2t+1 and identify z and the bivalent
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Figure 4.1: A nowhere-zero 3-flow on (H, σ)

vertices of the copies of K ′2t+1,2t+1. Do the same with t − 2 copies of

K ′2t+1,2t+1 and y. The resulting graph Gt is (2t + 1)-regular. We have

Nσ ⊆ E(Gt), and since F ((K ′2t+1,2t+1, 1)) = 3 it follows that 3 ∈ S(Gt).

Since Gt − y has more than one odd component it follows that Gt

does not have a 1-factor.

�

The second part of Theorem 4.1.1 can be generalized to signed graphs.

Theorem 4.2.5. [32] Let t ≥ 1 be an integer and (G, σ) be a signed

(2t+ 1)-regular graph. If Fc((G, σ)) = r, then r = 2 + 1
t

or r ≥ 2 + 2
2t−1

.

Theorems 4.2.4 and 4.2.5 imply the following corollary.

Corollary 4.2.6. Let t ≥ 1 be an integer and (G, σ) be a flow-

admissible signed (2t + 1)-regular graph. If G does not have a t-factor,

then Fc((G, σ)) ≥ 2 + 2
2t−1

.

4.3 r-minimal sets

This section studies the structural implications of the existence of a

nowhere-zero (2 + 1
t
)-flow on a signed (2t + 1)-regular graph. Hence,

it extends the first part of Theorem 4.1.1 to signed graphs.
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Proposition 4.3.1. Let r ≥ 2 and G be graph.

1) The empty set is r-minimal if and only if Fc((G, 1)) = r.

2) Fc((G, 1)) ∈ SX(G) for every r-minimal set X.

Let G be a (2t + 1)-regular graph and X ⊆ E(G). Let H and H ′ be

two copies of G − X. For v ∈ V (H) and e ∈ E(H), let v′ (e′) be the

corresponding vertex (edge) in H ′. For each edge uv ∈ X add edges uu′

and vv′ (between H and H ′) to obtain a new (2t+ 1)-regular graph G2
X .

Let E2
X be the set of the added edges. Let σ be a signature on G, and

σ|G−X be the restriction of σ on G−X. Let σ2
X be the signature on G2

X

which is equal to σ|G−X on H and H ′ and all edges of E2
X are positive.

Note that |Nσ2
X
| = 2|Nσ −X|. In particular, if Nσ ⊆ X, then σ2

X is the

empty signature.

Lemma 4.3.2. Let t ≥ 1 be an integer and (G, σ) be a signed (2t + 1)-

regular graph. Let r ≥ 2 and X ⊆ E(G). Every nowhere-zero r-flow on

(G, σ) induces a nowhere-zero r-flow on (G2
X , σ

2
X).

Proof. If τ is an orientation of the half-edges of (G, σ), then τ denotes

the orientation of the half-edges of (G, σ) which is obtained from τ by

reversing the orientation of every half-edge. Now, if φ is a flow on (G, σ)

with orientation τ , then φ is also a flow on (G, σ) with orientation τ .

If φ is a nowhere-zero r-flow with orientation τ , then define a nowhere-

zero r-flow on (G2
X , σ

2
X) as follows. Let ψ be the restriction of φ on

(H, σ) with orientation τ and ψ′ be the restriction of ψ on (H ′, σ′) with

orientation τ ′ = τ . Extend these orientations to an orientation τ 2
X on

(G2
X , σ

2
X) as follows. The orientation of the half-edges of H or H ′ is

unchanged, and for an edge e ∈ X with e = uv orient the edges uu′ and

vv′ of E2
X as follows: τ 2

X(huuu′) = τ(hue ), τ
2
X(hu

′

uu′) = τ ′(hu
′

e′ ), τ
2
X(hvvv′) =

τ(hve), and τ 2
X(hv

′

vv′) = τ ′(hv
′

e′ ). To obtain a nowhere-zero r-flow φ2
X on
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(G2
X , σ

2
X) let ψ and ψ′ be unchanged and for uu′, vv′ ∈ E2

X which are

obtained from edge e ∈ X with e = uv let φ2
X(uu′) = φ2

X(vv′) = φ(e).

�

Theorem 4.3.3. Let t ≥ 1 be an integer and G be a (2t + 1)-regular

graph. A set X ⊆ E(G) is (2+ 1
t
)-minimal if and only if G has a t-factor

and X is a minimal set such that G−X is bipartite.

Proof. Let X be (2 + 1
t
)-minimal. By definition, there is a signature

σ of G, such that F ((G, σ)) = 2 + 1
t
, Nσ = X and F ((G, σ′)) 6= 2 + 1

t

for every signature σ′ of G with Nσ′ ⊂ X. By Theorem 4.2.4, G has a

t-factor.

Let φ be a nowhere-zero (2 + 1
t
)-flow on (G, σ). By Lemma 4.3.2, φ

induces a nowhere-zero (2 + 1
t
)-flow on (G2

X , 1). By Theorem 4.1.1, G2
X

is bipartite and therefore G−X as well.

Now suppose to the contrary that there is a proper subset X∗ of X

such that G−X∗ is bipartite.

(*) It easily follows that G2
X∗ is bipartite and therefore, (G2

X∗ , 1) has

a nowhere-zero (2 + 1
t
)-flow by Theorem 4.1.1. This (2 + 1

t
)-flow can be

modified to a modular nowhere-zero (2 + 1
t
)-flow φ such that φ(e) = 1

for every edge e ∈ E2
X∗ . Hence, if we reconstruct G from G2

X∗ by keeping

the orientation of the half-edges appropriately, we obtain a signature σ∗

of G with Nσ∗ ⊆ X∗ and a modular nowhere-zero (2 + 1
t
)-flow φ∗ on G.

By Theorem 4.2.2, (G, σ∗) has a nowhere-zero (2 + 1
t
)-flow. But Nσ∗ is a

proper subset of X, contradicting the fact that X is (2 + 1
t
)-minimal.

Let X be a minimal set such that G − X is bipartite. Clearly, if

X 6= ∅, then |X| ≥ 2. As above (*), we deduce that G has a signature σ

with Nσ ⊆ X and a nowhere-zero (2+ 1
t
)-flow φ on (G, σ). Suppose to the

contrary that there is an edge e ∈ X−Nσ. By Lemma 4.3.2, φ induces a

nowhere-zero (2 + 1
t
)-flow on (G2

X−e, 1). Hence, G− (X − e) is bipartite,
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contradicting the minimality of X. Therefore, X is a (2 + 1
t
)-minimal

set.

�

An exhaustive survey on sufficient conditions for the existence of fac-

tors in regular graphs is given in [1].

4.4 The flow spectrum of cubic graphs

This section studies the flow spectrum and r-minimal sets of cubic graphs.

We will construct some flows on cubic graphs.

Theorem 4.4.1. Let G be a cubic graph. If G is bipartite, then it has

signature σ with |Nσ| = 2 and Fc((G, σ)) = F ((G, σ)) = 4.

Proof. By Theorem 4.1.1, (G, 1) has a nowhere-zero 3-flow φ. We

can assume that φ(e) ≥ 1 for each e ∈ E(G). The edges with flow value

1 induce a 2-factor F of G. Let C be a circuit of F . Any two adjacent

edges of C are both oriented towards the vertex they share or both away

from it. Hence, φ can be modified to a nowhere-zero 3-flow φ′, where the

circuits of F are directed circuits and the flow values on the edges are 1

and -1, alternately.

Claim 4.4.2. There is a circuit C of F and a path P of three consecutive

edges e1, e2, e3 of C such that G− {e1, e3} is connected. Furthermore, G

contains a circuit D such that e1 ∈ E(D) and e3 6∈ E(D).

Proof. Every circuit of F has a length of at least 4. Let C be a circuit

of F , and e1 = v1v2, e2 = v2v3, e3 = v3v4 and e4 = v4v5 (v1 = v5 is not

excluded) four consecutive edges in C. Furthermore, v2 has a neighbor

x 6∈ {v1, v3, v4}. If {e1, e3} is a 2-edge-cut in G, then choose P ′ with

edges e2, e3, e4. Suppose to the contrary that {e2, e4} is an edge-cut. It
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follows that e2 is simple and v2x is a bridge, contradicting the fact that

G is bridgeless. Hence, there is a path as claimed. Furthermore, G− e3

is bridgeless and hence, G− e3 contains a circuit D with e1 ∈ E(D).

�

Let P be the path in C with three consecutive edges e1, e2, e3 (ei =

vivi+1) such that G − {e1, e3} is connected. We can assume that e2 is

directed from v2 to v3 and that φ′(e2) = 1. Let τ be the orientation

of H(G) which is obtained from the underlying orientation for φ′ by

reversing the orientation of hv1e1 and hv4e3 . Hence, we obtain a signature

σ of G with Nσ = {e1, e3}, where e1 is extroverted and e3 introverted.

Consider φ′ on (G, σ), then δφ′(v1) = −2, δφ′(v4) = 2, and δφ′(v) = 0 if

v ∈ V (G)−{v1, v4}. Let E(P ) = E(C)−E(P ). The function ψ : E(G)→

{1, 2, 3} with ψ(e) = φ′(e) if e ∈ E(G) − E(P ) and ψ(e) = φ′(e) + 2 if

e ∈ E(P ) is a nowhere-zero 4-flow on (G, σ). Since ψ is an integer flow

it follows that F ((G, σ)) ≤ 4.

By Claim 4.4.2 and Theorem 4.2.5 it follows that Fc((G, σ)) ≥ 4 and

hence, Fc((G, σ)) = F ((G, σ)) = 4.

�

We will use the strict form of Petersen’s Theorem on 1-factors in cubic

graphs.

Theorem 4.4.3 ([29]). Let G be a bridgeless cubic graph. For every

e ∈ E(G) there is a 1-factor of G that contains e.

The minimum number of odd circuits of a 2-factor of a cubic graph

G is the oddness of G and it is denoted by ω(G). A 2-factor that has

precisely ω(G) odd circuits is a minimum 2-factor of G.
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Theorem 4.4.4. Every non-bipartite cubic graph G with a 1-factor has

a signature σ such that |Nσ| = ω(G) and Fc((G, σ)) = F ((G, σ)) = 4.

Furthermore, if G is bridgeless, then for every 3-minimal set X3 there is

a 4-minimal set X4 with X4 ⊂ X3 and |X4| ≤ ω(G) < |X3|.

Proof. If G is 3-edge-colorable, then the empty set is 4-minimal and

the statement follows.

Thus, we assume that G is not 3-edge-colorable in the following. Let

ω(G) = 2n, F2 be a 2-factor with odd circuits C1, . . . , C2n, and F1 be

the complementary 1-factor. If G has a bridge, then there is one, say b,

such that one component of G − b is bridgeless. Such components will

be called end-components.

We first show that there is a signature σ with |Nσ| = ω(G) and

Fc((G, σ)) = F ((G, σ)) = 4. For i ∈ {1, . . . , 2n} choose fi ∈ E(Ci)

with the following restrictions if G has bridges or if an odd circuit of F2

contains a multi-edge.

(1) One of the odd circuits of F2, say Ck, has two vertices which are

connected by two edges in G. Choose fk to be one of these two edges,

and for i 6= k choose fi ∈ E(Ci) arbitrarily.

(2) All edges of the odd circuits of F2 are simple in G and G has an

end-component K such that the bivalent vertex x is contained in an odd

circuit Ck of F2. Let x1 and x2 be the two neighbors of x in K. Then

choose fk to be an edge of Ck which is incident to x1 and different from

xx1. For i 6= k choose fi ∈ E(Ci) arbitrarily.

In all other cases choose fi ∈ E(Ci) arbitrarily.

Subdivide fi by a vertex ui and add edges ek = u2k−1u2k, for k ∈

{1, . . . , n}. The resulting graph G′ is cubic. The set F ′1 = F1 ∪ {ek : k =

1, . . . , n} is a 1-factor and F ′2 = E(G′) \ F ′1 is an even 2-factor of G′.

The odd circuits Ci of F2 are transformed into even circuits C ′i of F ′2.

Let f ′i and f ′′i be the two edges of C ′i which are incident to ui. Let c
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be a proper 3-edge-coloring of G′ that colors the edges of F ′1 with color

1, and the edges of the circuits of F ′2 with colors 2 and 3. Assume that

f ′i ∈ c−1(2). Let φ1 be a nowhere-zero 2-flow on G′[c−1(1) ∪ c−1(2)]. Let

φ2 be a nowhere-zero 2-flow on G[c−1(2) ∪ c−1(3)], with the additional

property that the orientation of f ′i is different in φ1 and φ2. Flow φ2

exists, since for every i ∈ {1, . . . , 2n} there is precisely one edge f ′i in C ′i.

Now, 2φ1 + φ2 is a nowhere-zero 4-flow ψ on G′ with the additional

property that for each i ∈ {1, . . . , 2n} the vertex ui is either the terminal

vertex of f ′i and of f ′′i or it is the initial vertex of both of these edges.

Furthermore, ψ(f ′i) = ψ(f ′′i ) = 1.

For each i ∈ {1, . . . , n}, remove edge ei, suppress vertices u2i−1, u2i

and consider f ′i and f ′′i as two half-edges of fi to construct a signature

σ of G with Nσ = {f1, . . . , f2n}. Furthermore, ψ induces an integer

nowhere-zero 4-flow on (G, σ). Hence, F ((G, σ)) ≤ 4.

It remains to show that Fc((G, σ)) ≥ 4. Suppose to the contrary that

Fc((G, σ)) < 4. Then, Fc((G
2
Nσ

)) < 4 and hence, G−Nσ is bipartite by

Theorem 4.1.1.

(1’) If there is k ∈ {1, . . . , 2n} such that Ck has two vertices which are

connected by two edges in G, then it follows from the construction of ψ,

that G−Nσ contains an odd circuit, a contradiction. Hence, Fc((G, σ)) =

F ((G, σ)) = 4.

We may assume that all edges of the odd circuits of F2 are simple in

G.

(2’) If G has an end-component, then there is one, say K, which is

respected in the construction of ψ. Let F2[E(K)] be the 2-factor of K

which is a subgraph of F2. It follows with Theorem 4.4.3 (suppress the

bivalent vertex), that there is a 2-factor F ′ of K that does not contain fk.

Since K has odd order and F contains at least as many odd circuits as

F2[E(K)] it follows that F ′ contains an odd circuit that does not contain



4.4 The flow spectrum of cubic graphs 45

any edge of Nσ. Thus, G−Nσ contains an odd circuit, a contradiction.

Hence, Fc((G, σ)) = F ((G, σ)) = 4.

It remains to consider the case when G is bridgeless. Let X3 be a

3-minimal set. Since X3 contains an edge of every odd circuit of F2 it

follows that |X3| ≥ ω(G). For i ∈ {1, . . . , 2n} let fi ∈ X3∩E(Ci). Let σ′

be the signature on G with Nσ′ = {f1, . . . , f2n} and construct an integer

nowhere-zero 4-flow on (G, σ′) as above. Hence, X3 contains a 4-minimal

set X4 with |X4| ≤ ω(G).

We will show that |X3| > ω(G). Suppose to the contrary that |X3| =

ω(G). Then {fi} = E(Ci) ∩ X3 for each i ∈ {1, . . . , 2n}. By Theorem

4.4.3 there is a 1-factor of G that contains f1. The complementary 2-

factor F ′ has at least ω(G) odd circuits. Thus, there is an odd circuit

of F ′ that does not contain an edge of X3 which implies that G − X3

is not bipartite, a contradiction. Thus, |X3| > ω(G), X4 ⊂ X3, and

Fc((G, σ
′)) = F ((G, σ′)) = 4.

�

Every signature of K3
2 is either equivalent to a signature with no

negative edges or to a signature with precisely one negative edge. Hence,

S(K3
2) = S(K3

2) = {3}. The following statement follows with Theorems

4.2.4, 4.4.1, and 4.4.4.

Theorem 4.4.5. Let G be a cubic graph which has a 1-factor. If G 6= K3
2 ,

then {3, 4} ⊆ S(G) ∩ S(G).

Theorem 4.4.6. Let G be a cubic graph. If G 6= K3
2 , then the following

statements are equivalent.

1) G has a 1-factor.

2) 3 ∈ S(G).

3) 3 ∈ S(G).

4) 4 ∈ S(G).
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Figure 4.2: A graph H which has no 1-factor and 4 ∈ S(H)

Proof. Statement 1) implies 2) by Theorem 4.4.5. By Lemma 4.2.1

it follows that every circular nowhere-zero 3-flow on G is an integer

nowhere-zero 3-flow. Hence, statement 2) implies statement 3), which

implies statement 1 by Theorem 4.2.4.

We show the equivalence of statements 1) and 4). If G has a 1-factor,

then 4 ∈ S(G) by Theorems 4.4.1 and 4.4.4. If 4 ∈ S(G), then G has an

integer nowhere-zero 4-flow φ with φ(e) > 0 for each edge e. It is easy

to see that F = {e : φ(e) = 2} is a 1-factor of G.

�

Theorem 4.4.5 says that if G has a 1-factor, then 4 ∈ S(G). However,

the other direction is not true.

Proposition 4.4.7. There is a cubic graph H which has no 1-factor and

4 ∈ S(H).

Proof. The graph H in Figure 4.2 has a nowhere-zero 4-flow. It has

no 1-factor since H − v has more than one odd component. By Theorem

4.4.6, it has no nowhere-zero 3-flow. Hence, 4 ∈ S(G) by Theorem 4.2.5.

�
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Corollary 4.4.8. Let G be a cubic graph that does not have a 1-factor.

If k ∈ S(G), then k ≥ 5.

Smallest r-minimal sets

Let r ≥ 2. An r-minimal set X is a smallest r-minimal set of G if

|X| ≤ |X ′| for every r-minimal set X ′ of G.

Proposition 4.4.9. Let t ≥ 1 be an integer, G a (2t + 1)-regular graph

and r ≥ 2. If X ⊆ E(G) is a smallest r-minimal set, then ∆(G[X]) ≤ t.

Proof. Suppose to the contrary that ∆(G[X]) > t. Then there is

v ∈ V (G) such that dG[X](v) > t. If we switch at v, then we obtain an

equivalent graph (G, σ) with |Nσ| < |X| and Fc((G, σ)) = r. But Nσ

contains an r-minimal set X ′, contradicting the fact that X is a smallest

r-minimal set.

�

We will prove some bounds for the cardinality of smallest r-minimal

sets. The independence number of G is denoted by α(G).

Proposition 4.4.10. Let t ≥ 1 be an integer and G be a (2t + 1)-

regular graph. If X ⊆ E(G) is a smallest (2 + 1
t
)-minimal set, then

|X| ≤ min{(1
2
|V (G)| − α(G))(2t+ 1), t

2
|V (G)|}.

Proof. Since G has a (2 + 1
t
)-minimal set, it follows by Theorem

4.2.4 that G has a t-factor. Let (G, σ) be the graph with Nσ = E(G)

and V ⊆ V (G) be an independent set with |V | = α(G). The function

φ : E(G)→ {1} is a modular nowhere-zero (2+ 1
t
)-flow on (G, σ). Switch

at every vertex of V to obtain a switching equivalent graph (G, σ′) with a

modular nowhere-zero (2+ 1
t
)-flow φ′ and |Nσ′ | ≤ |E(G)|−α(G)(2t+1) =
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(1
2
|V (G)| −α(G))(2t+ 1). It follows with Theorem 4.2.2 that (G, σ′) has

a nowhere-zero (2 + 1
t
)-flow. Therefore, |X| ≤ (1

2
|V (G)| −α(G))(2t+ 1).

Proposition 4.4.9 implies that |X| ≤ t
2
|V (G)|.

�

Let G be a bridgeless cubic graph. The resistance r(G) is the car-

dinality of a minimum color class, where the minimum is taken over all

proper 4-edge-colorings of G. It is easy to see that r(G) ≤ ω(G) and if

r(G) 6= 0, then r(G) ≥ 2 (see [34]). A bridgeless cubic graph which is

not 3-edge-colorable is called a snark.

Theorem 4.4.11. Let G be a cubic graph which has a 1-factor and G 6=

K3
2 . For each i ∈ {3, 4} there is a smallest i-minimal set Xi in G, and

1) if G is bipartite, then |X3| = 0 and |X4| = 2.

2) if G is 3-edge-colorable and not bipartite, then 2 ≤ |X3| ≤ 3(1
2
|V (G)|−

α(G)) and |X4| = 0.

3.1) if G is not 3-edge-colorable, then r(G) ≤ |X4| ≤ ω(G) ≤ |X3| ≤

min{3(1
2
|V (G)| − α(G)), 1

2
|V (G)|}.

3.2) if G is a snark, then r(G) ≤ |X4| ≤ ω(G) < |X3| ≤ min{3(1
2
|V (G)|−

α(G)), 1
2
|V (G)|}.

Proof. It follows from Theorem 4.4.5 that there is a smallest i-

minimal set Xi in G for each i ∈ {3, 4}. By Proposition 4.4.10, |X3| ≤

3(1
2
|V (G)| − α(G)).

1) If G is bipartite, then |X3| = 0 and it follows with Theorem 4.4.1

that G has a signature σ with |Nσ| = 2 and F ((G, σ)) = 4. Since every

signature of a flow-admissible graph has at least two edges it follows that

|X4| = 2.

2) If G is not bipartite and 3-edge-colorable, then |X4| = 0, and as

above we get that |X3| ≥ 2.
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3) Let G be not 3-edge-colorable. Suppose to the contrary that there

is a smallest 4-minimal set X such that |X| < r(G). By Lemma 4.3.2,

(G2
X , 1) has a nowhere-zero 4-flow and hence, it is 3-edge-colorable. By

Proposition 4.4.9, X is an independent set. Hence, a 3-edge-coloring of

G2
X induces a proper 4-edge-coloring of G which has a minimal color class

c with |c| ≤ |Nσ| < r(G), contradiction. Thus, r(G) ≤ |X4|. The other

inequalities follow by Theorem 4.4.4.

�

The bounds of Theorem 4.4.11 are sharp for the Petersen graph. In

[36] it is shown that for every positive integer k there is a cubic graph G

such that ω(G)− r(G) ≥ k and that there is cyclically 5-edge-connected

cubic graph H and r(H) ≥ k. If G is not 3-edge-colorable and r(G) > 2,

then there is a signature σ such that (G, σ) is flow-admissible and 2 ≤

|Nσ| < r(G). Theorem 4.4.11 implies F ((G, σ)) > 4. Hence, we obtain

the following corollary which is similar to Corollary 4.4.8.

Corollary 4.4.12. Let G be a cubic graph. If ω(G) > 2, then for every

k with 2 ≤ k < r(G) there is a signature σ such that |Nσ| = k such that

Fc((G, σ)) > 4 and F ((G, σ)) ≥ 5.

The integer flow spectrum of a class of cubic graphs

It is quite difficult to determine the flow spectrum of a graph. Indeed

even for the integer flow spectrum it is difficult. So far the integer flow

spectrum has been determined only for eulerian graphs in [23], and for

complete and complete bipartite graphs in [20]. For instance, it is known

that S(G) = {3, 4, 5, 6}, if G is the Petersen graph.

For n ≥ 1, let Gn be the cubic graph which is obtained from a circuit

of length 2n, where every second edge is replaced by two parallel edges.
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Theorem 4.4.13. If n = 1, then S(Gn) = {3}. If n = 2, then S(Gn) =

{3, 4}, and if n ≥ 3, then S(Gn) = {3, 4, 6}.

Proof. If n = 1, then G1 = K3
2 . Hence, S(G1) = {3}.

Let n ≥ 2. Theorem 4.4.5 implies that {3, 4} ⊆ S(Gn). Let V (Gn) =

{v0, . . . , v2n−1}. For i ∈ {0, . . . , n−1} the vertices v2i, v2i+1 are connected

by two parallel edges and the vertices v2i+1, v2i+2 are connected by a

simple edge (indices are added modulo 2n). Every signature of Gn is

equivalent to a signature σ where for each i ∈ {0, . . . , n− 1} at most one

edge between v2i, v2i+1 is negative and all other edges are positive. We

call σ a normal signature of Gn. We say that σ is odd or even, depending

on whether |Nσ| is odd or even. Hence, we have only to consider the two

cases, whether σ is even or odd.

If σ is even, then Gn is the union of two balanced eulerian graphs and

hence, F ((G, σ)) ≤ 4 by Lemma 4.4.14. Hence, S(G2) = {3, 4}.

It remains to consider the case when n ≥ 3 and σ is odd. Then

|Nσ| ≥ 3. Let e1, e2 ∈ Nσ. There are hamiltonian circuits C1, C2 such

that E(Ci)∩Nσ = Nσ−{ei}. Both circuits are balanced and hence, there

are nowhere-zero 2-flows φi on Ci. Let e′1 be the positive edges which is

parallel to e1. Then ψ = 2φ1 + φ2 is a 4-flow on Gn, and ψ(e) 6= 0 if

e ∈ Nσ, ψ(e) ∈ {0, 1, 3} if e ∈ E(Gn)− (Nσ ∪ {e′1}), and ψ(e′1) = 2. Let

τψ be the underlying orientation of H(G) for ψ. There is a hamiltonian

circuit C that consists only of positive edges, that contains e′1 and all

edges e with ψ(e) = 0. Let τ be an orientation of H(C) such that C is

a directed circuit and τ and τψ coincide on e′1. Let ψ′ be a nowhere-zero

2-flow on C with orientation τ . Then, ψ + 2ψ′ is a nowhere-zero 6-flow

on Gn.

Suppose to the contrary that F ((Gn, σ)) < 6. Let k < 6 and ψn be

nowhere-zero k-flow on Gn. Without loss of generality we assume in the

following that all flow values are positive.
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We first show that if n > 3, then F ((Gn, σ)) < 6 implies that there

is a m < n such that F ((Gm, σm)) < 6, where σm is normal and odd.

Let n > 3. It is easy to see that if one edge of the two edges between

v2i and v2i+1 is negative, then ψn(v2i−1v2i) 6= ψn(v2i+1v2i+2). If there are

i, j ∈ {0, . . . , n − 1} with i < j and ψn(v2i+1v2i+2) = ψn(v2j+1v2j+2),

then remove these two edges and add edges v2i+2v2j+1 and v2i+1v2j+2 to

obtain two graphs Gn1 and Gn2 with nowhere-zero k-flows ψn1 and ψn2 ,

respectively. Depending on the orientation of the half-edges of v2i+1v2i+2

and of v2j+1v2j+2 the new edges might be negative. For one of these

two graphs, say Gn1 , ψn1 is equivalent to a k-flow ψ′n1
on an odd normal

signature σ′n1
of Gn1 , since for otherwise Gn and an even normal signature

which is equivalent to σn could be reconstructed from (Gn1 , σn1) and

(Gn2 , σn2). Hence, |Nσn1
| ≥ 3. Thus, we can assume that Gn has an odd

normal signature σn with |Nσ| = n. In particular, n is odd.

Since k < 6, it follows that if Gn is not reducible to a smaller graph

Gm, then n = 3. Consider (G3, σ3). Since σ3 is normal it follows that the

difference between the flow values of any two simple edges is at least 2.

Since ψ3(e) ≥ 1 for every edge e ∈ G3, it follows that there is a simple

edge with ψ3(e) ≥ 5, contradicting our assumption that k < 6.

Therefore, F ((Gn, σ)) = 6 and S(Gn) = {3, 4, 6} if n > 2.

�

Every graph Gn is bipartite. Hence, the empty set is a smallest 3-

minimal set for all n ≥ 1. If n ≥ 2, then a smallest 4-minimal set contains

precisely two edges, and if n ≥ 3, then a smallest 6-minimal set consists

of three edges.
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Bouchet’s conjecture

To prove Bouchet’s conjecture it is sufficient to prove it for cubic graphs

(see Theorem 1.4.5). Hence, we are in a similar situation as for Tutte’s

5-flow conjecture. However, as Section 3.1 shows Bouchet’s conjecture

has to be proven for integer flows explicitly.

Lemma 4.4.14. Let (G, σ) be a signed graph. If (G, σ) is the union of

two balanced eulerian graphs, then F ((G, σ)) ≤ 4.

Proof. Let H1 and H2 be eulerian graphs such that E(H1)∪E(H2) =

E(G). For i ∈ {1, 2}, let σi be the restriction of σ to Hi. Since Hi is

balanced it follows that there is a nowhere-zero 2-flow φi on (Hi, σi).

Hence, φ1 + 2φ2 is a nowhere-zero 4-flow on (G, σ).

�

Theorem 4.4.15. Let (G, σ) be a flow-admissible signed cubic graph. If

G is a Kotzig-graph, then F ((G, σ)) ≤ 6.

Proof. Since G is a Kotzig-graph, G has three 1-factors M1, M2, M3

such that the union of any two of them induces a hamiltonian circuit of

G. It follows that there are two, say M1 and M2, such that |Nσ ∩M1|

and |Nσ ∩M2| have the same parity. Hence, |Nσ ∩M1| + |Nσ ∩M2| is

even, and (G[M1 ∪M2], σ1,2) with σ1,2 = σ|M1∪M2 is balanced. Clearly,

(G, σ) is equivalent to (G, σ′) with Nσ′ ∩ (M1 ∪M2) = ∅.

If |M3 ∩ Nσ′| is even, then (G[M1 ∪M3], σ1,3) with signature σ1,3 =

σ′|M1∪M3 is balanced. Hence, F (G, σ) ≤ 4 by Lemma 4.4.14.

If |M3∩Nσ′| is odd, then |Nσ′ | ≥ 3. Let e = xy be an extroverted edge

of (G, σ′), and let (G, σ∗) be the graph which is obtained from (G, σ′) by

changing the direction of hxe . Then e is a positive edge which is directed

from x to y in (G, σ∗). It follows as above, that (G, σ∗) has a nowhere-

zero 4-flow φ. Without loss of generality we can assume that all flow
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values are positive, all edges of M3 have flow value 1, and M1 ∪M2 is a

directed circuit C. For two vertices a, b, let P (a, b) denote the directed

path from a to b in C.

If we consider φ on (G, σ′), then δφ(x) = 2, and δφ(v) = 0 for all

v ∈ V (G) \ {x}. Since all flow values are positive, it follows that there

is an introverted edge f = uw. Let x, u, w be the sequent order of these

three vertices in C. We define a nowhere-zero 6-flow φ∗ on (G, σ′) as

follows: φ∗(e) = φ(e), if e ∈ E(G)−(E(P (x,w))∪{f}), φ∗(e) = φ(e)+2,

if e ∈ E(P (x, u)), φ∗(e) = φ(e) + 1, if e ∈ E(P (u,w)), and φ∗(f) = 2.

�

Greenwell and Kronk [7] proved that every uniquely 3-edge-colorable

cubic graph has precisely three hamiltonian circuits, which are induced

by the three color classes. Hence, we obtain the following corollary.

Corollary 4.4.16. Let (G, σ) be a flow-admissible signed cubic graph. If

G is uniquely 3-edge-colorable, then F ((G, σ)) ≤ 6.

Further results and references on Kotzig-graphs and uniquely 3-edge-

colorable graphs can be found in [51].

Remark: For t ≥ 2 it can be proven by a slight modification of the

proof of Theorem 4.4.15 that F ((G, σ)) ≤ 4 for every flow-admissible

(2t+ 1)-regular Kotzig-graph (G, σ). However, this is also a simple con-

sequence of a result of Raspaud and Zhu [30] that every flow-admissible

4-edge-connected graph has a nowhere-zero 4-flow.
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Chapter 5

The set of circular flow

numbers of regular graphs

5.1 Circular flow numbers of d-regular

graphs

The parts 5.1.1 - 5.1.3 and section 5.2 have been published for unsigned

graphs in [31]. In [31], the graphs are considered to be unsigned; this

section is the generalization of that study for signed graphs.

In this chapter we consider graphs to be loopless. The constructions

that we will use require multiedges, so-called t-edges. For t ≥ 1, a t-edge

between two vertices u and v is a set of t (parallel) edges between u and

v; that is, an edge is a 1-edge.

If we assign a direction to each edge of (G, σ), then we obtain a

directed graph D((G, σ)). For k ≥ 1, a k-edge e in a directed graph

is denoted by (u, v)k, if all k edges of e are directed from u to v. The

shorthand (u, v) is used for a 1-edge (u, v)1. We say that u is the initial

vertex and v is the end vertex of e.

55
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A network is an ordered pair ((G, σ), U) consisting of a signed graph

(G, σ) and a subset U ⊆ V (G) whose elements are called terminals. A

nowhere-zero r-flow φ on a network ((G, σ), U) is an assignment of a

direction and a real flow value φ(e) to each edge e ∈ E(G) such that 1 ≤

φ(e) ≤ r−1 and the excess flow δφ(v) is equal to 0 for every v ∈ V (G)−

U , where δφ(v) =
∑

h∈H+(v) φ(eh) −
∑

h∈H−(v) φ(eh). Considering flows

on terminals we will use the more intuitive term excessflow instead of

boundary. Clearly, if φ is a nowhere-zero r-flow on a network ((G, σ), U),

then
∑

v∈U δφ(v) = 0.

We say that an edge e has flow value x in ((G, σ), U) if φ(e) = x.

Moreover, we say that a k-edge (u, v)k has flow value x if each of its k

edges has flow value x. In this chapter terminals will always have degree

1. The set of terminals U is partitioned into two sets U+ and U−, where

U+ denotes the set of terminals which are end vertices and U− denotes

the set of terminals which are initial vertices of an edge. Note that a

signed graph (G, σ) is a network ((G, σ), ∅).

For a set A, let AQ = A ∩Q and

F c = {r : there is a signed graph (G, σ) with Fc(G, σ) = r}.

If we restrict our studies on all-positive graphs and include Seymour’s

6-flow Theorem 1.4.2, then F c ⊆ [2; 6]. In general, using the 12-flow

theorem of DeVos [5] we get for signed graphs F c ⊆ [2; 12].

Theorem 5.1.1. [28] For every r ∈ [2; 5]Q, there is an all-positive graph

(G, 1) with Fc(G, 1) = r.

If Bouchet’s 6-flow conjecture is true, then F c ⊆ [2; 6]Q.

Many flow conjectures are equivalent to their restrictions to regular

graphs. For instance, Tutte’s 5-flow conjecture and Bouchet’s 6-flow

conjecture are equivalent to its restrictions to cubic graphs (see Theorem
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1.4.5), and the 3-flow conjecture [43] is equivalent to its restriction to 5-

regular graphs. However, the set of flow values of graphs with a specific

odd regularity is not a closed interval, as Theorem 4.2.5 shows.

In this chapter we determine the set of flow numbers F cd of d-regular

graphs for odd d. Clearly, 1-regular graphs do not have any nowhere-zero

flows.

The initial motivation of the study in this chapter, which has its origin

in [31], is to estimate the set of flow numbers for regular all-positive

graphs. Nonetheless, in case for graphs of odd regularities these results

can be obtained for signed graphs as well.

If d is even, then Fc(G, 1) = 2 for every d-regular graph G.

Therefore, we focus on the case when d is odd and d ≥ 3. Let k ≥ 1

and F c2k+1 = {r : there is a signed (2k + 1)-regular graph (G, σ) with

Fc(G, σ) = r}. In [17] it is proven that for every r ∈ [4; 5]Q there is

a cubic graph (G, 1) with Fc(G, 1) = r. Indeed there is the additional

constraint, that these graphs are cyclically 4-edge connected and that

they have girth at least 5. We prove a similar result for (2k + 1)-regular

signed graphs, and we show that in case that Tutte’s 5-flow conjecture

is false, then gaps for circular flow numbers in the interval [5; 6] are due

for all graphs and not just for regular graphs.

Theorem 5.1.2. For all k ≥ 1 : F c2k+1 = (F c− [2; 2 + 2
2k−1

))∪ {2 + 1
k
}.

Theorems 5.1.1 and 5.1.2 imply the following result.

Corollary 5.1.3. For every integer k ≥ 1 and every rational number

r ∈ {2 + 1
k
} ∪ [2 + 2

2k−1
; 5], there exists a (2k + 1)-regular graph (G, σ)

with Fc(G, σ) = r.

In [35], Theorem 2.6, it is proven that if there is a graph (G, 1) with

Fc(G, 1) = r, then there is a simple graph G′ with Fc(G
′, 1) = r. The
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construction of [35] that originates from [27] preserves d-regularity. How-

ever, that proof uses a complicated method that is just applicable for

all-positive graphs. Here, we will give an easier proof for the general

case.

Let (G, σ) be a signed graph and v be a vertex with δ(v) = n. Let

v1, . . . , vn be the neighbors of v that are not necessarily distinct. Fur-

ther, let (H, 1) be the complete all-positive bipartite graph Kn,n−1 and

u1, . . . , un be the vertices of degree n − 1. The graph (GM , σM) op-

tained from (G−v, σ) and (H, 1) by adding the edges viui with signature

σ(viui) = σ(viv) for i ∈ {1, . . . , n} is called a Meredith-extension of G.

Theorem 5.1.4. If (GM , σM) is a Meredith-extension of a signed graph

(G, σ) then Fc((G, σ)) = Fc((G
M , σM)).

Proof. Let v be a vertex with δ(v) = n, v1, . . . , vn be the neighbors of

v, (H, 1) be the complete all-positive bipartite graph Kn,n−1, u1, . . . , un

be the vertices of degree n− 1 and x1, . . . , xn−1 be the vertices of degree

n. (GM , σM) is obtained from (G− v, σ) and (H, 1) by adding the edges

viui with signature σ(viui) = σ(viv) for i ∈ {1, . . . , n}.

Suppose φ is a nowhere-zero r-flow on (GM , σM). Since (H, 1) is an

all-positive graph, we get a nowhere-zero r-flow φ′ on (G, σ) by defin-

ing φ′(viv) = φ(viui) and φ′(e) = φ(e) if e 6= (viui) and correspond-

ing orientation τφ′(viv) = τφ(viui) and τφ(e) = τφ′(e) if e 6= (viui) for

i ∈ {1, . . . , n}. Hence, Fc((G, σ)) ≤ Fc((G
M , σM)).

To show the other direction we will construct a nowhere-zero r-flow

on Fc((G
M , σM)) from a given nowhere-zero r-flow φ on (G, σ). Define

a nowhere-zero r-flow on Fc((G
M , σM)) as follows: For i ∈ {1, . . . , n}

we define the corresponding orientation τφ(viui) = τφ′(viv), τφ′(ui, xl)

= τφ(vi+l, v) (the summation of the indices is taken modulo n), and

τφ′(e) = τφ(e) for e /∈ {viui : i ∈ {1, . . . , n}}∪E(H). For i ∈ {1, . . . , n} let

φ′(viui) = φ(viv), φ′(ui, xl) = φ(vi+l, v) (the summation of the indices is
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taken modulo n), and φ′(e) = φ(e) for e /∈ {viui : i ∈ {1, . . . , n}}∪E(H).

We show that φ′ is a proper flow. Kirchoff’s law is obviously fulfilled at

all vertices v ∈ V (GM)− V (H). For every ui we get

∑
h∈H(ui)

τ ′(eh)φ
′(eh) = τ(uixi)φ(uixi) +

∑
k∈{1,...,n}−i

τ(uixk)φ(uixk)

=
∑

h∈H(v)

τ(eh)φ(eh) = 0

(5.1)

Similarly we get
∑

h∈H(xi)
τ ′(eh)φ

′(eh) =
∑

h∈H(v) τ(eh)φ(eh) = 0. Hence,

φ′ is a proper nowhere-zero r-flow on (GM , σM) and Fc((G, σ)) ≥

Fc((G
M , σM)).

�

In this regard it is interesting to note that a more general concept

of the Meredith-extension as given in [38] and [2] will not keep the flow

number in general.

Let (G, σ) be a signed graph, v be a vertex with δ(v) = n and ∆ =

∆(G) be the maximum degree of G. Let v1, . . . , vn be the neighbors of v

that are not necessarily distinct. Further, let (H, 1) be the complete all-

positive bipartite graph K∆,∆−1 and u1, . . . , un be the vertices of degree

n − 1. The graph (GM ′ , σM
′
) optained from (G − v, σ) and (H, 1) by

adding the edges viui with signature σ(viui) = σ(viv) for i ∈ {1, . . . , n}

is called a general ∆-Meredith-extension of G.

Let (J, 1) be the all-positive graph given by K3,3 with one edge subdi-

vided by a vertex v. Since Fc(K3,3, 1) = 3 [35], we get Fc(J, 1) = 3. Now,

let (H, 1) be the graph obtained by applying a ∆-Meredith-extension on

v in (J, 1). We will show that Fc(H, 1) ≥ 4. After contraction of (K3,3, 1)

in (J, 1) and suppression of two vertices of degree two we get the complete
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graph on four vertices (K4, 1). Since we consider all-positive graphs, it

follows Fc(H, 1) ≥ Fc(K4, 1) = 4.

Hence, the Meredith-extension keeps the flow-value for every graph,

whereas there exist graphs where a ∆-Meredith-extension does not keep

the flow value.

Thus, Theorem 5.1.1, Theorem 5.1.2 and Corollary 5.1.3 are true for

the restriction on simple graphs as well.

5.2 Proof of Theorem 5.1.2

Let k ≥ 1 be an integer and (G, σ) be a signed (2k + 1)-regular graph.

If Fc(G, σ) = r, then r = 2 + 1
t

or r ≥ 2 + 2
2t−1

. Hence, we need

to consider the case that r ≥ 2 + 2
2k−1

. Let (G, σ) be a graph with

Fc(G, σ) = r. We have to show that there is a (2k + 1)-regular graph

(H, τ) with Fc(H, τ) = r.

Lemma 5.2.1. For every r ∈ F c, there is a graph (H, τ) with Fc(H, τ) =

r and a nowhere-zero r-flow φ such that the following holds: If v ∈ V (H)

and dH(v) 6∈ {2, 3}, then φ(e) < 2 for every edge e which is incident to

v.

Proof. If r < 3, then there is nothing to prove. Let r ∈ F c ∩

[3; 6], (G, σ) be a graph with Fc(G, σ) = r, and φ be a nowhere-zero

r-flow on (G, σ). There is an edge e with φ(e) ≥ 2. Let t(G,σ)(v) =∑
e∈E(v)(bφ(e)c − 1), V −(G) = {v : v ∈ V (G) and dG(v) 6∈ {2, 3}}, and

t((G, σ)) =
∑

v∈V −(G) t(G,σ)(v).

Among all graphs with circular flow number r let H be a graph with

t((H, τ)) minimum. We claim that t((H, τ)) = 0 and hence (H, τ) has

the desired property.

Suppose to the contrary that t((H, τ)) > 0. Then there is v ∈ V −(H)

with t(H,τ)(v) > 0. Let e ∈ E(v) and φ(e) ≥ 2.
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We assume that v is the end vertex of e. Subdivide e by a vertex w

and add an positive edge wv to obtain a new graph (H ′, τ ′). Then wv is a

2-edge, say (w, v)2 = {e1, e2} and both edges, e1 and e2, are directed from

w to v. Extend φ to a nowhere-zero r-flow φ′ on (H ′, τ ′) with φ′(e1) = 1

and φ′(e2) = φ(e) − 1. Since (H, τ) can be obtained from (H ′, τ ′) by

contraction of an all-positive subgraph, it follows that Fc(H
′, τ ′) = r.

Furthermore, t(H′,τ ′)(v) = t(H,τ)(v)− 1 and hence, t((H ′, τ ′)) < t((H, τ)),

which contradicts our choice of (H, τ).

�

Let ((G, σ), U) be a network with a nowhere-zero r-flow φ. Let v ∈

V (G) − U , and E(v) = {e1, . . . , en}. For each i ∈ {1, . . . , n}, subdivide

ei by a new vertex vi and delete v, to obtain a network ((G′, σ′), U ′). Let

e′i be the edge incident to vi in ((G′, σ′), U ′). We extend the direction

of ((G, σ), U) to ((G′, σ′), U ′) by letting the direction of all edges which

are not in {e′1, . . . , e′n} unchanged and giving e′i the same direction as ei,

that is, if v is the initial (end) vertex of ei, then vi is the initial (end)

vertex of e′i. Furthermore, φ is extended to a nowhere-zero r-flow φ′ on

((G′, σ′), U ′) as follows: Let φ′(e) = φ(e) if e 6∈ {e′1, . . . , e′n} and φ′(e′i) =

φ(ei), for i ∈ {1, . . . , n}. If vi is an end vertex, then δφ′(vi) = φ′(e′i) and

otherwise δφ′(vi) = −φ′(e′i). Therefore
∑n

i=1 δφ
′(vi) =

∑
e∈E+(v) φ(e) −∑

e∈E−(v) φ(e) = 0. We say that the network ((G′, σ′), U ′) is obtained

from ((G, σ), U) by splitting up v into terminals.

Construction 5.2.2. For k ≥ 1, let (Tk, 1) be the triangle where any

two vertices are connected by a k-edge, let (G, τ) be a signed graph, and

let v be a trivalent vertex of G. Let V (Tk) = {w1, w2, w3}. Split up v

into terminals v1, v2, v3 and identify vi and wi for i ∈ {1, 2, 3} to obtain

the graph (Gk
v , σ).
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Note that if k ≥ 2, then (Gk
v , σ) has one trivalent vertex less than

(G, τ). Furthermore, all vertices of Tk have degree 2k + 1 in Gk
v .

Lemma 5.2.3. Let k ≥ 2, (G, τ) be a graph with Fc(G, τ) = r, and let

v ∈ V (G). If dG(v) = 3, then Fc(G, τ) = Fc(G
k
v , σ).

Proof. Since G has a vertex v of degree 3, it follows that r ≥ 3. We

first consider the case when k = 2. Let E(v) = {e1, e2, e3}, without loss

of generality we assume that v is the end vertex of e1 and e2 and the

initial vertex of e3.

Consider (G2
v, σ), and let v1, v2, v3 be the vertices of T2. We assume

that v1 and v2 are end vertices of e′1 and e′2, respectively, and that v3 is the

initial vertex of e′3. Furthermore, denote the two edges between vi and vj

(i 6= j) by ei,j and fi,j. Let us orient the new edges as follows (note that

all of those are positive): Let e1,3 = (v1, v3), f1,3 = (v1, v3), e1,2 = (v2, v1),

f1,2 = (v2, v1), e2,3 = (v2, v3) and f2,3 = (v3, v2). Extend φ to a nowhere-

zero r-flow φv on (G2
v, σ) with φv(e1,3) = φ(e1), φv(f1,3) = φv(f2,3) = 2,

φv(e2,3) = φ(e2) and φv(e1,2) = φv(f1,2) = 1. Clearly, φv is a nowhere-zero

r-flow on (G2
v, σ).

If k > 2, then first construct (G2
v, σ) as above and then add k − 2

directed (all-positive) triangles with a nowhere-zero 2-flow to the triangle

T2 of (G2
v, σ) to obtain a graph (Gk

v , σ
′). Clearly, Fc(G

k
v , σ

′) = r, for all

k ≥ 2. The replacement of v by Tk is shown in Figure 5.1.

�

We first consider the interval [4; 6]Q. Let ((G, σ), U) be a network,

k ≥ 1 be an integer, and V ′(G) = {v : v ∈ V (G) − U and dG(v) 6∈

{2, 2k + 1}}.

Lemma 5.2.4. For all k ≥ 1 : F c ∩ [4; 6] ⊆ F c2k+1
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Figure 5.1: Replacement of v by Tk; the underlined term between two
dashed lines shows the multiplicity of edges, non-underlined terms rep-
resent the flow values on the edges

Proof. We first prove the statement for k = 1. Let r ∈ F c ∩ [4; 12],

(G, σ) be a signed graph with Fc(G, σ) = r, and let φ be a nowhere-zero

r-flow on (G, σ). We assume that (G, σ) has no bivalent vertices and

that it satisfies the conditions of Lemma 5.2.1. If V ′(G) = ∅, then we are

done.

If there is a vertex v ∈ V ′(G), then let ((G1, σ1), U1) be the network

which is obtained from (G, σ) by splitting up v into terminals v1, . . . , vl.

For i ∈ {1, . . . l} let E(vi) = {e′i}, and let φ1 be the corresponding

nowhere-zero r-flow on (G1, U1). Note, that |V ′(G1)| = |V ′(G)| − 1.

Step 1: Consider terminal vi. We assume that vi is the end

vertex of e′i. The argumentation in the other case is similar. If

δφ1(vi) > 3
2
, then add six vertices x1, x2, u1, u2, u3, u4 and the pos-

itive edges (vi, x1), (x1, x2), (u1, vi), (x1, u2), (x2, u3), (x2, u4). Extend

φ1 to a nowhere-zero r-flow φ2 on the new network ((G2, σ2), U2),

where φ2((x1, u2)) = φ2((x2, u3)) = φ2((x2, u4)) = 1, φ2((vi, x1)) = 3,

φ2((x1, x2)) = 2 and φ2((u1, vi)) = 3− δφ1(vi). Then U2 = (U1 − {vi}) ∪
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Figure 5.2: Construction if δφ1(vi) >
3
2

{u1, . . . , u4}, δφ2(u1) ≤ 3
2

and δφ2(uj) = 1 for j ∈ {2, 3, 4}. By Lemma

5.2.1 we have 1 < φ2((u1, vi)) < 3
2
. The construction is depicted in

Figure 5.2. Repeat Step 1 until we obtain a network ((G3, σ3), U3) with

a nowhere-zero flow φ3 where the absolute value of the excess flow of

all terminals is at most 3
2
. Note that all vertices of ((G3, σ3), U3) have

degree 1 or 3, and that the number of terminals with excess flow different

from 1 is unchanged.

Step 2: If there are two terminals w1, w2 of (G3, U3) with an excess

flow greater than 1, then identify w1 and w2 to a single vertex y1 and

add vertices y2, y3, y4 and positive edges (y1, y2), (y2, y3), (y2, y4). Ex-

tend the nowhere-zero r-flow on (G3, U3) to a nowhere-zero r-flow φ4 on

the new network ((G4, σ4), U4), where φ4((y1, y2)) = δφ3(w1) + δφ3(w2),

φ4((y2, y3)) = 1 and φ4((y2, y4)) = δφ3(w1) + δφ3(w2)− 1. The construc-

tion is depicted in Figure 5.3.

If δφ4(y4) = 2, then add two further vertices y′4, y′′4 and positive

edges (y4, y
′
4), (y4, y

′′
4) and define the flow value on these two edges to be

1. Then we have U4 = (U3 − {w1, w2}) ∪ {y3, y
′
4, y
′′
4} and all terminals

have excess flow 1. Hence, the number of terminals with an excess flow

different from 1 is reduced by 2.

If 3
2
< δφ4(y4) < 2, then we have U4 = (U3−{w1, w2})∪{y3, y4}, and

the number of terminals with excess flow different from 1 is reduced by

1. Apply Step 1 again to obtain a new network with the same number of
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Figure 5.3: Construction for two terminals with an excess flow greater
than 1

terminals with excess flow different from 1 and where all terminals have

an excess flow of at most 3
2
.

Since the number of terminals with excess flow different from 1 is

unchanged in Step 1 and reduced in Step 2 we eventually obtain (after a

finite number of applications of these two steps) a network ((G5, σ5), U5)

which has a nowhere-zero r-flow φ5 and the following property: Let U+
5 =

{z1, . . . , zn}, and U−5 = {z′1, . . . , z′m}. At most one terminal of U+
5 , say

z1, has an excess flow greater than 1 and all the other terminals have

an excess flow of 1. By our construction we have that δφ5(z1) < 2.

Since φ5 is a nowhere-zero r-flow on ((G5, σ5), U5) which is successively

constructed from the nowhere-zero r-flow φ on (G, σ), the same holds

true for U−5 . Hence, n = m and δφ5(z1) = δφ5(z′1). Identify terminals

zi and z′i, to obtain a cubic graph H and a nowhere-zero r-flow on H.

Since (G, σ) can be obtained from (H, τ) by contracting an all-positive

subgraph of H it follows that Fc(H, τ) = r.

For k ≥ 2 apply Construction 5.2.2 to every vertex of (H, τ) to obtain

a (2k + 1)-regular graph, which has circular flow number r by Lemma

5.2.3.
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�

Since an all-positive bipartite cubic graph has circular flow number 3

and by Lemma 5.2.4 there is a cubic graph with circular flow number r

for every r ∈ F c∩ [4; 6], it follows that Theorem 5.1.2 is proven for k = 1.

We now consider the interval [2 + 2
2k−1

; 4)Q for k ≥ 2. Clearly, Con-

struction 5.2.2 and Lemma 5.2.3 allow us to eliminate trivalent vertices.

The following lemma describes a ”target substructure” in a graph (G, σ),

which allows to replace a specific vertex v with dG(v) 6= 2k+1 by a graph

(Hv, τv), such that the new graph (H, τ) has the same circular flow num-

ber as (G, σ) and |V ′(H)| = |V ′(G)| − 1.

Lemma 5.2.5. Let n ≥ 1 and k ≥ 2 be integers, r ∈ [2 + 2
2k−1

; 4) and

(G, σ) be a graph with Fc((G, σ)) = r. If there is a nowhere-zero r-flow φ

of (G, σ) and a vertex v ∈ V ′(G) with |E+(v)| = n(2k−1), |E−(v)| = 2kn

and φ(e) = 1 + 1
2k−1

if e ∈ E+(v) and φ(e) = 1 if e ∈ E−(v), then there

is a graph (H, ρ) with Fc((H, ρ)) = Fc((G, σ)) and |V ′(H)| = |V ′(G)|−1.

Proof. Let v be a vertex of a graph G with dG(v) = n(4k − 1), and

E(v) = {e1, . . . , en(4k−1)}. Assume that the directions and the flow values

on the edges of E(v) are as stated above.

Let ((G1, σ1), U1) be the network which is obtained from (G, σ) by

splitting up v into terminals v1, . . . , vn(4k−1). Let E(vi) = {e′i} and φ1

be the corresponding nowhere-zero r-flow on ((G1, σ1), U1). Note that

|U+
1 | = n(2k − 1) and |U−1 | = 2kn.

We transform ((G1, σ1), U1) into a network ((G2, σ2), U2) with |U+
2 | =

(n−1)(2k−1) and |U−2 | = 2k(n−1). Let X+ be a set of 2k−1 elements

of U+
1 and X− be a set of 2k elements of U−1 .

Step 1: For u1, u2 ∈ X+, we add six vertices v1, v2, v3, v4, u3, u4. We

add the positive edges (v2, v1), (v4, v3), (v1, v4)k+1, (v4, v1)k−2, (v2, v3)k−1,
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Figure 5.4: Step 1 of the construction for the target substructure

(v3, v2)k, (u1, v1), (u2, v2), (v3, u3) and (v4, u4). The construction is de-

picted in Figure 5.4. We extend φ1 to a nowhere-zero r-flow φ2 on

((G2, σ2), U2) as follows:

Let φ2((v3, u3)) = φ2((v3, v2)k) = φ2((v1, v4)k+1) = 1, φ2((u1, v1)) =

φ2((u2, v2)) = φ2((v4, v3)) = 1+ 1
2k−1

, and φ2((v2, v1)) = φ2((v4, v1)k−2) =

φ2((v2, v3)k−1) = φ2((v4, u4)) = 1 + 2
2k−1

. Note that we have changed two

terminals of X+ with excess flow 1 + 1
2k−1

into two terminals, where one

has excess flow 1 and the other has excess flow 1 + 2
2k−1

. The successive

application of Step 1 on k − 1 pairs of terminals of X+ transfer 2k − 2

terminals with excess flow 1 + 1
2k−1

into k− 1 terminals with excess flow

1 and k − 1 terminals with excess flow 1 + 2
2k−1

. Let X+
1 be the set of

terminals with excess flow 1 and X+
2 be the set of terminals with excess

flow 1 + 2
2k−1

. We continue with Step 2.
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Figure 5.5: Step 2 of the construction for the target substructure

Step 2: First, identify each of the k−1 elements of X+
1 with precisely

one terminal of X−, and identify the k + 1 remaining elements of X− to

a single vertex v−. Then identify the elements of X+
2 and the remaining

terminal of X+ with excess flow 1 + 2
2k−1

to a single vertex v+. Finally

identify v+ and v− to a single vertex v to obtain the desired network

((G2, σ2), U2) (see Figure 5.5).

Repeat Step 1 and Step 2 until we get a graph H with Fc((H, ρ)) = r,

and |V ′(H)| = |V ′(G)| − 1.

�

Lemma 5.2.6. For all k ≥ 2 : F c ∩ [2 + 2
2k−1

; 4) ⊆ F c2k+1

Proof. Let k ≥ 2, r ∈ F c ∩ [2 + 2
2k−1

; 4) and (G, σ) be a graph

with Fc((G, σ)) = r and let φ be a nowhere-zero r-flow on (G, σ). Due to

Lemmas 5.2.1, 5.2.3, and Construction 5.2.2 we can assume that if e = uv

is an edge and φ(e) > 2, then dG(v) = dG(u) = 2k + 1. If V ′(G) = ∅,

then we are done. If V ′(G) 6= ∅, then we proceed as follows:

Step 1: Let v ∈ V ′(G), and ((G1, σ1), U1) be the network which is ob-

tained from (G, σ) by splitting up v into terminals v1, . . . , vn. Let E(vi) =
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Figure 5.6: Construction for v if δφ1(v) ≥ 1 + 2
2k−1

{e′i} and φ1 be the corresponding nowhere-zero r-flow on (G1, U1). Note

that |V ′(G1)| = |V ′(G)| − 1.

Step 2: We are now going to transfer ((G1, σ1), U1) stepwise into

a network ((G4, σ4), U4) with |V ′(G1)| = |V ′(G4)| and a nowhere-zero

r-flow φ4 with |δφ4(u)| ≤ 1 + 1
2k−1

for every terminal u. For the con-

structions we only consider positive terminals, for negative terminals the

constructions work analogously.

Step 2.1: If there is a terminal v in ((G1, σ1), U1) with δφ1(v) ≥

1 + 2
2k−1

, then add 2k new vertices and connect each new vertex with v

by a single positive edge. We extend the nowhere-zero r-flow as follows:

Exactly k + 1 of these edges have v as initial vertex and they have flow

value 1 and exactly k − 1 edges have v as end vertex and they have

flow value k+1−δφ1(v)
k−1

. Since 1 + 1
2k−1

< δφ1(v) < 2, it follows that 1 <

k+1−δφ1(v)
k−1

< 1 + 1
2k−1

≤ r − 1. The construction is shown in Figure

5.6. We apply this construction to each terminal u of ((G1, σ1), U1) with

δφ1(u) ≥ 1 + 2
2k−1

to obtain a network (G2, σ2), U2) with a nowhere-zero

r-flow φ2 such that the excess flow is smaller than 1 + 2
2k−1

for every

terminal. Note that |V ′(G2)| = |V ′(G)|. If δφ2(v) ≤ 1 + 1
2k−1

, for all

v ∈ U2, then set ((G4, σ4), U4) = ((G2, σ2), U2).
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Figure 5.7: Construction for v if 1 + 1
2k−1

< δφ2(v) < 1 + 2
2k−1

Step 2.2: If there is a terminal v ∈ U2 with 1 + 1
2k−1

< δφ2(v) <

1 + 2
2k−1

, then construct a new network ((G3, σ3), U3) by adding

seven new vertices v1, v2, v3, v4, u1, u2, u3. We add the positive edges

(v1, v2)k, (v2, v3)k−1, (v3, v4)k−1, (v4, v1)k−1, (v, v1), (v2, u1), (v3, v2),

(v3, u2), (v4, v3), (u3, v4) and (v1, v4). The construction is shown in

Figure 5.7. Extend φ2 to a nowhere-zero r-flow φ3 on ((G3, σ3), U3) as

follows: Let φ3((v, v1)) = δφ2(v), φ3((u3, v4)) = 2 + 2
2k−1

− δφ2(v),

φ3((v1, v4)) = δφ2(v) − 1
2k−1

, φ3((v2, v3)k−1) = φ3((v4, v1)k−1) =

φ3((v4, v3)) = 1 + 2
2k−1

, φ3((v2, u1)) = φ3((v3, u2)) = 1 + 1
2k−1

, and

φ3((v3, v2)) = φ3((v1, v2)k) = φ3((v3, v4)k−1) = 1. Terminal v is replaced

by three new terminals u1, u2, u3 and all other vertices of ((G2, σ2), U2)

are unchanged. The absolute value of the excess flow at two terminals

is 1 + 1
2k−1

and the other one is 2 + 2
2k−1

− δφ2(v), which is at least 1

and and smaller than 1 + 1
2k−1

. Repeat this construction to obtain a
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Figure 5.8: Construction if 2 + 1
2k−1

< δφ4(u1) + δφ4(u2) < 2 + 2
2k−1

network ((G4, σ4), U4), where the excess flow of every terminal is at most

1 + 1
2k−1

.

Step 3: Now we are going to construct a new network where all

but at most two (one positive and one negative) terminals have excess

flow in {±1,±(1 + 1
2k−1

)}. If one of the aforementioned networks has

this property, then we are done. Again, for the constructions we only

consider positive terminals, for negative terminals it works analogously.

Suppose that ((G4, σ4), U4) does not have this property. Then there

are two (positive) terminals u1 and u2 with δφ4(u1), δφ4(u2) 6∈ {1, 1 +

1
2k−1
}.

Step 3.1: If 2 + 1
2k−1

< δφ4(u1) + δφ4(u2) < 2 + 2
2k−1

, then add six

new vertices v1, v2, v3, v4, u3, u4 to obtain a new network ((G5, σ5), U5).

We add the positive edges (v2, v1), (v4, v3), (v3, v2), (v2, v3)k−1, (v3, v2)k−1,

(v4, v1)k−1, (v1, v4)k, (u1, v1), (v2, u3), (u2, v3) and (v4, u4). The construc-

tion is depicted in Figure 5.8.

Extend φ4 to a nowhere-zero r-flow φ5 on ((G5, σ5), U5) as follows:
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Figure 5.9: Construction if 2 < δφ4(u1) + δφ4(u2) ≤ 2 + 1
2k−1

Let φ5((u1, v1)) = δφ4(u1), φ5((v2, u3)) = δφ4(u1) + δφ4(u2) −

(1 + 1
2k−1

), φ5((u2, v3)) = δφ4(u2), φ5((v2, v1)) = 2 + 1
2k−1

− δφ4(u1),

φ5((v3, v2)) = δφ4(u2) + 1
2k−1

, φ5((v4, u4)) = 1 + 1
2k−1

, φ5((v1, v4)k) =

φ5((v3, v2)k−1) = 1 + 2
2k−1

, and φ5((v4, v3)) = φ5((v4, v1)k−1) =

φ5((v2, v3)k−1) = 1.

Step 3.2: If 2 < δφ4(u1) + δφ4(u2) ≤ 2 + 1
2k−1

, then add four

vertices v1, v2, u3, u4 and the following edges to obtain a new net-

work ((G6, σ6), U6): We add the positive edges (u1, v1), (u2, v1), (v2, u3),

(v2, u4), (v2, v1)k−1 and (v1, v2)k. The construction is shown in Figure

5.9.

Extend φ4 to a nowhere-zero r-flow φ6 on ((G6, σ6), U6) as follows: Let

φ6((u1, v1)) = δφ4(u1), φ6((u2, v1)) = δφ4(u2), φ6((v2, u4)) = δφ4(u1) +

δφ4(u2) − 1, φ6((v1, v2)k) = δφ4(u1)+δφ4(u2)+k−1
k

, and φ6((v2, v1)k−1) =

φ6((v2, u3)) = 1. Then u3 and u4 are terminals in (G6, U6) and their

excess flow is at most 1 + 1
2k−1

.

Repeat these two constructions until we get a network (G7, U7) where

all terminals but at most two (one positive and one negative) terminals

have excess flow in {±1,±(1 + 1
2k−1

)}.
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Now we are going to reduce the number of terminals so that we even-

tually get a signed graph (H∗, σ∗) with Fc((H
∗, σ∗)) = r and |V ′(H∗) =

|V ′(G)| − 1.

Let ((G7, σ7), U7) be the network where the only possible excess

flow values are ±1 or ±(1 + 1
2k−1

) except for at most two terminals

(one with positive and one with negative excess flow) x and y with

|δφ7(x)|, |δφ7(y)| < 1 + 1
2k−1

. Let aU+
7 be the set of terminals in U+

7

which have excess flow 1, and bU+
7 be the set of terminals in U+

7 which

have excess flow 1 + 1
2k−1

; aU−7 and bU−7 are defined analogously.

If only one of x and y exists, say x, then, since φ7 is a nowhere-zero

r-flow on ((G7, σ7), U7), x is a multiple of 1
2k−1

, contradicting the fact

that δφ7(x) ∈ (1; 1 + 1
2k−1

).

If x and y exist then it follows that

|bU+
7 |(1+

1

2k − 1
)+|aU+

7 |+|δφ7(x)| = |bU−7 |(1+
1

2k − 1
)+|aU−7 |+|δφ7(y)|

and therefore

|δφ7(y)| − |δφ7(x)| = (|bU+
7 | − |bU−7 |)(1 +

1

2k − 1
) + |aU+

7 | − |aU−7 |.

Hence, |δφ7(y)|−|δφ7(x)| is a multiple of 1
2k−1

. Since |δφ7(x)|, |δφ7(y)| ∈

(1; 1+ 1
2k−1

) it follows that |δφ7(y)|−|δφ7(x)| ∈ (− 1
2k−1

; 1
2k−1

), and there-

fore |δφ7(y)| = |δφ7(x)|.

Without loss of generality we assume that |aU+
7 | ≤ |aU−7 |. Since

((G7, σ7), U7) has a nowhere-zero r-flow, it follows that |bU+
7 | ≥ |bU−7 |.

Step 4: Identify x and y. Then identify every terminal of aU+
7 with

precisely one terminal of aU−7 , and every terminal of bU−7 with precisely

one terminal of bU+
7 to obtain a network ((G8, σ8), U8) where all positive

terminals have excess flow 1+ 1
2k−1

and all negative terminals have excess
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flow −1. Then identify these remaining terminals in one vertex v and

suppress the bivalent vertices to obtain a signed graph (G9, σ9) with

Fc((G9, σ9)) = r. If |V ′(G9)| = |V ′(G)| − 1, then (G9, σ9) = (H∗, σ∗)

and we are done. Otherwise, |V ′(G9)| = |V ′(G)| and there is an integer

n ≥ 1 such that dG(v) = n(4k− 1), |E+(v)| = n(2k− 1), |E−(v)| = 2kn,

and if e ∈ E+(v), then e has flow value 1 + 1
2k−1

, and if e ∈ E−(v),

then e has flow value 1. By Lemma 5.2.5 there is a graph (H∗, σ∗) with

Fc((H
∗, σ∗)) = Fc((G9, σ9)) = r and |V ′(H∗)| = |V (G9)|−1 = |V (G)|−1.

Repeat Step 1 to Step 4 until we get a graph (H, τ) with V ′(H) = ∅;

i.e. H is (2k + 1)-regular and Fc((H, τ)) = r.

�

Theorem 5.1.2 follows from Lemmas 5.2.4 and 5.2.6.
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Flows and orientations

6.1 Flows and signed circuits

Let G be a graph and e1, e2 ∈ E(G) be two edges incident with a vertex

v1. We say, under an orientation D of G, e1, e2 are consistent at v1 if

either

• hv1e1 is directed towards v1 and hv1e2 is directed away from v1, or

• hv1e1 is directed away from v1 and hv1e2 is directed towards v1.

We also say that v1 is consistently balanced. A trail or a balanced

cycle S is consistent, if S is consistently balanced in each vertex. An odd

cycle C is consistent if C is consistently balanced at each vertex but one.

We say that a nowhere-zero flow φ on a graph (G, σ) is A-

decomposable, if there exist a set A of subgraphs of G endowed

with certain nowhere-zero flows, such that

φ =
∑
S∈A

nSφS

75
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where φS is the corresponding nowhere-zero flow on S and nS is an pos-

itive integer.

For a graph (G, σ) let F(G,σ) be the set of signed circuits in (G, σ).

For a signed graph (G, σ) with a positive integer nowhere-zero flow φ let

F i
(G,σ) ∈ F(G,σ) (i ∈ Q) be the set of signed circuits that are endowed

with pseudo flows with the following properties:

• if S ∈ F i
(G,σ) is a barbell, then all edges in the unbalanced circuits

receive the value i and all edges on the path (possibly zero edges)

that connects these circuits receive the value 2i.

• if S ∈ F i
(G,σ) is a balanced circuit, then all edges receive value 1

Máčajová and Škoviera proved the following theorem:

Theorem 6.1.1. [25] Let φ be a positive integer nowhere-zero flow on a

signed graph (G, σ). Then φ is F
1
2

(G,σ)-decomposable such that all graphs

in F
1
2

(G,σ) have the same orientation as in (G, σ).

The issue that orientations are kept seems to be a strong condi-

tion. However, here, we decompose a nowhere-zero flow into non-proper

nowhere-zero flows. The question at hand is, whether the use of non-

proper nowhere-zero flows with fractional values is necessary. As an

example for the necessity the authors of [25] gave the following example.

Let (K∗2 , σ) be the graph consisting of two vertices connected by two

parallel positive edges, where a negative loop is attached to each vertex.

It is easy to see that (K∗2 , σ) admits a nowhere-zero 2-flow, but each de-

composition of this flow into flows of signed circuits contains two distinct

barbells that share both negative loops.

Thus, in this setting we do not get rid of non-proper flows with frac-

tional flow values. It seems natural to express a nowhere-zero flow of

a graph as the sum of nowhere-zero flows of signed circuits. For this
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purpose, in the further study of decompositions of a signed graph (G, σ)

we do not want to fix the orientation of the signed circuits in F i
(G,σ) cor-

responding to (G, σ). It turns out that this will give us the flexibility to

express a nowhere-zero flow by the sum of proper nowhere-zero flows of

signed circuits.

Theorem 6.1.2. Let (G, σ) be a flow-admissible signed graph and φ

be a positive integer nowhere-zero flow of (G, σ). Then φ is F 1
(G,σ)-

decomposable.

Proof. Let φ be a positive integer nowhere-zero flow on (G, σ).

We will prove the statement by induction on
∑

e∈E(G) φ(e). Therefore,

in each step we are going to find a directed signed circuit in (G, σ) and

choose one corresponding C ∈ F(G,σ) together with a nowhere-zero flow

φC such that τφC (e) = τφ(e) for each e ∈ E(G). Next, we consider the

integer nowhere-zero flow φ′ = φ − φC on the directed graph (G′, σ′)

with E(G′) = {e ∈ E(G)|φ(e) − φC(e) 6= 0} and σ′ = σ|E(G′). If C is a

balanced circuit or a short barbell, then

∑
e∈E(G′)

φ′(e) =
∑

e∈E(G)

φ(e)− |E(C)|.

Assume C is a barbell consisting of two disjoint unbalanced circuits C1

and C2 and a path T connecting C1 and C2. It follows

∑
e∈E(G′)

φ′(e) =
∑

e∈E(G)

φ(e)− |E(C1) ∪ E(C2)| − |{e ∈ E(T ) : φ(e) 6= 1}|.

Note, that in (G′, σ′) edges in T with flow value 1 reversed their direction.

It remains to show that in each step we can find a signed circuit

C ∈ F(G,σ) as a subgraph. Suppose after a series of steps we get one graph

(G′, σ′) with a pseudoflow φ′ and there are no signed circuits C ∈ F(G,σ)
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as subgraphs in (G′, σ′). Let v ∈ V (G′). Note, since φ′ is a positive

nowhere-zero flow, for each vertex v exist two edges that are consistent

in v. Beginning with a vertex v and an outgoing half-edge we successively

add consistent vertices and construct a maximum consistent trail P1. The

trail P1 must contain at least one vertex, say u1 twice. The corresponding

circuit C1 must be unbalanced.

Next, beginning with v and an incoming half-edge we successively

add consistent vertices and construct a maximum consistent trail P2.

Similarly P2 must contain at least one vertex, say w1 twice, forming an

unbalanced circuit C2. If C1 and C2 are pairwise disjoint or intersect in

precisely one vertex, then (G′, σ′) contains a barbell, which contradicts

our assumption. Thus, there are two circuits Cu = u1, . . . , up, . . . , un, u1

and Cw = w1, . . . , wp, . . . , wm, w1 (p, n,m ∈ Z) and ui = wi for i ∈

{1, . . . , p}. The circuit Ct formed by the the trails P1 = up, up+1, . . . , un

and P2 = wp, wp+1, . . . , wm must also be unbalanced. Therefore, precisely

one trail is balanced. Suppose P1 is balanced and P2 is unbalanced.

However, since C1 and C2 are unbalanced, the trail u1, . . . , up cannot be

balanced, nor unbalanced, a contradiction.

�

6.2 Characterization of flows

As seen in Theorem 6.1.2 orientations play an important role of the way

we are able to decompose a flow. Just by allowing a higher flexibility

we are able to prove a decomposition into proper nowhere-zero flows. In

this section, for a signed graph (G, σ) we characterize a nowhere-zero

flow φ by finding a set Q of orientations of (G, σ). In this regard for the

orientations in Q there are no constraints. An orientation D ∈ Q even
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does not have to admit a positive nowhere-zero flow. We will relate the

problem of finding a nowhere-zero k-flow to the problem of finding a set

of orientations with the property that a linear combination with given

coefficients over the boundary of these so called reorientations equals

zero. Let (G, σ) be an directed signed graph with orientation D. A

reorientation of (G, σ) is an assignment fD : E(G) → {−1,+1}. We

interpret fD as a new orientation of (G, σ) itself. If fD(e) = 1 for an edge

e, then each half-edge of e is oriented as in D and if f(e) = −1, then each

half-edge of e is oriented in the opposite direction. We may view each

orientation as an reorientation of one fixed orientation. Here, we use the

expression ∂f to denote the corresponding boundary of an orientation f .

The following theorem characterizes unsigned graphs that admit a

nowhere-zero 5-flow by orientations.

Theorem 6.2.1. [12] Let G be a directed unsigned graph. G admits a

nowhere-zero 5-flow if and only if G has three reorientations f1, f2, f3,

such that ∂f1 + 2∂f2 + 5∂f3 = 0

In the following we will give a similar characterization which is more

general for unsigned graphs that admit a nowhere-zero (p
q

+ 1)-flow.

Theorem 6.2.2. A directed unsigned graph G admits a nowhere-zero

(p
q

+ 1)-flow if and only if G has reorientations f1, . . . , fp−q+1, such that∑p−q+1
i=1 αi∂fi = 0 with α1 = q+p

2q
and αl = 1

2q
for l ∈ {2, . . . , p− q + 1}

Proof. Let φ be a nowhere-zero (p
q

+ 1)-flow on G which is chosen

according to Theorem 1.4.8, such that for each edge e, φ(e) is a multiple

of 1
q

and let D be the underlying orientation. We define the required

reorientations in the following way:

For e ∈ E(G) and i ∈ {1, . . . , p−q+1} let fi(e) = 1 if 1+ i−1
q
≤ φ(e) or

−1− i−1
q
< φ(e) ≤ −1 and fi(e) = −1 otherwise. Next, we consider the

vector consisting of all possible flow values of φ. We are going to express
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each flow value of an edge e by one unique set of reorientations regarding

e. We will determine the coefficients αi of the equation
∑p−q+1

i=1 αifi(e) =

φ(e). For reasons of symmetry we can restrict the linear system to only

positive flow values.



1 −1 . . . −1

1 1 −1
...

...
. . . 1 −1

1 . . . 1 1





α1

α2

...

αp−q+1


=

1

q



q

q + 1

...

p


. (6.1)

The unique solution is given by α1 = q+p
2q

and αl = 1
2q

for l ∈

{2, . . . , p− q + 1}. Hence,

p−q+1∑
i=1

αi∂fi(v) =

p−q+1∑
i=1

αi

 ∑
h∈H(v)

fi(he)


=

p−q+1∑
i=1

∑
h∈H+(v)

αifi(he)−
p−q+1∑
i=1

∑
h∈H−(v)

αifi(he)

=
∑

h∈H+(v)

φ(eh)−
∑

h∈H−(v)

φ(eh) = 0

(6.2)

To prove the other direction, let α1 = p+q
2q

and αl = 1
2q

for

l ∈ {2, . . . , p − q + 1} and f1, . . . , fp−q+1 be reorientations of (G, σ)

such that
∑p−q+1

i=1 αi∂fi = 0. Let φ : E(G) → R be an assignment with

φ(e) =
∑p−q+1

i=1 αifi(e). We need to show, that φ is a nowhere-zero flow.

Due to the choice of φ we get the same linear system as before. We

get
∑

h∈H+(v) φ(eh) −
∑

h∈H−(v) φ(eh) = 0 for every v ∈ V (G) and from

equation 6.1 follows φ−1(E) ⊆ {± q
q
,± q+1

q
, . . . ,±p

q
}. Thus, φ is a proper

nowhere-zero (p
q

+ 1)-flow. �
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In a similar way we can find a characterization for general signed

graphs. For flows on signed graphs we need more possible flow values.

That will result in an increasing number of reorientations.

Theorem 6.2.3. A directed signed graph (G, σ) admits a nowhere-zero

(p
q

+ 1)-flow if and only if (G, σ) has reorientations f1, . . . , f2p−2q+1, such

that
∑2p−2q+1

i=1 αi∂fi = 0 with α1 = p+q
2q

and αl = 1
4q

for l ∈ {2, . . . , 2p −

2q + 1}.

Proof. Let φ be a nowhere-zero (p
q

+1)-flow of (G, σ) which is chosen

according to Theorem 3.2.1, such that for each edge e, φ(e) is a multiple

of 1
2q

and let D be the underlying orientation. We define the required

reorientations in the following way:

For e ∈ E(G) and i ∈ {1, . . . , 2p−2q+1} let fi(e) = 1 if 1+ i−1
2q
≤ φ(e)

or −1 − i−1
2q

< φ(e) ≤ −1 and fi(e) = −1 otherwise. Next, we consider

the vector consisting of all possible flow values of φ. We are going to

express each flow value of an edge e by one unique set of reorientations

regarding e.

We will determine the coefficients αi of the equation
∑2p−2q+1

i=1 αifi(e) =

φ(e). For reasons of symmetry we can restrict the linear system to only

positive flow values.



1 −1 . . . −1

1 1 −1
...

...
. . . 1 −1

1 . . . 1 1





α1

α2

...

α2p−2q+1


=

1

2q



2q

2q + 1

...

2p


. (6.3)

The unique solution is given by α1 = 1
2q

(p + q) and αl = 1
4q

for

l ∈ {2, . . . , 2(p− q) + 1}. Hence,
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2p−2q+1∑
i=1

αi∂fi(v) =

2p−2q+1∑
i=1

αi

 ∑
h∈H(v)

fi(he)


=

2p−2q+1∑
i=1

∑
h∈H+(v)

αifi(he)−
2p−2q+1∑
i=1

∑
h∈H−(v)

αifi(he)

=
∑

h∈H+(v)

φ(eh)−
∑

h∈H−(v)

φ(eh) = 0

(6.4)

To prove the other direction, let α1 = p+q
2q

and αl = 1
4q

for l ∈

{2, . . . , 2p− 2q + 1} and f1, . . . , f2p−2q+1 be reorientations of (G, σ) such

that
∑2p−2q+1

i=1 αi∂fi = 0. Let φ : E(G) → R be an assignment with

φ(e) =
∑2p−2q+1

i=1 αifi(e). We need to show, that φ is a nowhere-zero

flow. Due to the choice of φ we get the same linear system as before. We

get
∑

h∈H+(v) φ(eh) −
∑

h∈H−(v) φ(eh) = 0 for every v ∈ V (G) and from

equation 6.3 it follows φ−1(E) ⊆ {±2q
2q
,±2q+1

2q
, . . . ,±2p

2q
}. Thus, φ is a

proper nowhere-zero (p
q

+ 1)-flow.

�



Chapter 7

Conclusion

Nowhere-zero flows on signed graphs generalize the coloring concept

in a natural way. Recall that δF = sup{F ((G, σ)) − Fc((G, σ)) :

(G, σ) is flow-admissible}. In Chapter 3 we showed δF ≥ 2. The

strenghtening in [22] cannot be improved anymore in the case if

Bouchet’s Conjecture 1.4.3 is true. We also showed that not every coun-

terexample to Conjecture 3.1.1 which states Fc((G, σ)) > F ((G, σ)) − 1

has a star-cut. However, up to now the only graphs that are known to

be counterexamples to Conjecture 3.1.1 contain a vertex cut consisting

of precisely one vertex (we may interprete a vertex with a negative loop

as such a vertex cut). In this context it is interesting to study whether

these graphs are the only counterexamples or not.

In Chapter 4 we studied the flow spectrum of graphs and established

the concept of r-minimal sets. If a graph H has an r-minimal set X

of cardinality 2, then SX(H) = {r, Fc((H, 1))}. Theorem 4.4.11 implies

that every 3-minimal set of a bridgeless non-3-edge-colorable cubic graph

contains at least three edges. The Petersen graph P has a 3-minimal set

X with |X| = 3. Hence, SX(P ) = {3, 4, 5}. On the other hand, P has

a 6-minimal set X ′ with |X ′| = 3. It follows that 3 6∈ SX′(P ); indeed
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v w

Figure 7.1: The dashed lines represent set X on the left and X ′ on the
right on the Petersen graph

SX′(P ) = {4, 5, 6}. The sets X and X ′ are indicated in Figure 7.1. Two

switches at v and w yield a signature σ of P such that (P, σ) and (P,X)

are equivalent. But X ′ ⊂ Nσ and therefore, SX(P ) 6= SNσ(P ).

Some further problems are:

• Let r ≥ 2, (G, σ) be a flow-admissible signed graph and X a (non-

empty) r-minimal set. Determine the (integer) X-flow spectrum of

G.

• Let r ≥ 2 and G be a graph. Let (G, σ) and (G, σ′) be flow-

admissible. Is it true that if Nσ and Nσ′ are (both) smallest r-

minimal sets, then SNσ(G) = SNσ′ (G) (or SNσ(G) = SNσ′ (G), if r

is an integer)?

• Let G be a snark and X3 a 3-minimal set. Is it true that there

exists a 4-minimal set X4 and a 5-minimal set X5 such that X5 ⊂

X4 ⊂ X3?

According to Theorem 4.4.11 for snarks every 3-minimal set contains

a proper 4-minimal set. If Tutte’s 5-flow conjecture is true, then the last

problem has an affirmative answer.
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In Chapter 5 we determined the set of circular flow numbers for (2k+

1)-regular signed graphs of odd regularity. An eulerian signed graph

(G, σ) with an even number of negative edges has Fc((G, σ)) = 2. Let

(H, τ) be the signed graph consisting of two vertices that are connected

by 2k+ 1 positive parallel edges and 2k+ 1 negative parallel edges. H is

eulerian and it is easy to see that Fc(H, τ) = 2 + 1
k
. It is an interesting

question whether for each r ∈ [2, 6] there exist one eulerian graph (G, σ)

with Fc((G, σ)) = r. Until now, only the integer flow numbers of eulerian

graphs have been characterized [24], [26].

In Chapter 6 we showed that a positive flow φ on a signed graph (G, σ)

is F 1
(G,σ)-decomposable. In our concept the orientation of the edges in the

decomposition are free. Therefore, we are able to decompose (G, σ) into

proper nowhere-zero flows. The authors of [25] proved that if a signed

graph G admits an integer nowhere-zero k-flow, then it has a signed

circuit cover of total length at least 2(k − 1)|E(G)|.

Suppose k ≥ 3. It would be interesting to analyse if we can lower the

total length of a signed circuit cover with the new concept.



Appendix A

Details

A.1 A graph (G, σ) with F ((G, σ)) = 6

In the following we will show that the Petersen graph equipped with a

special signature has integer flow number 6. The proof via case differ-

entiation is quite technical. Considering, that we prove that a certain

highly symmetric graph with ten vertices and 15 edges has a specific

flow number the afford for proving turns out to be huge. Moreover, in

the proof we use the fact that the Petersen graph is highly symmetric

in order to shorten the proof. This gives a feeling of how hard it is in

general to determine the flow number for a given graph. Up to switching

isomorphism, there are six ways to put signs on the edges of the Petersen

graph [50], thus, the spectrum of the Petersen graph P consists at most

of five elements, since at least one switching equivalence class contains no

flow-admissible graph. Indeed, it is well known, that S(P ) = {3, 4, 5, 6},

and in the following we determine one element of the spectrum.

In the following the summation of the indices is taken mod-

ulo 5. Let (P, σ∗) be the Petersen graph consisting of two circuits

C1 = u1, u2, u3, u4, u5 and C2 = v1, v2, v3, v4, v5 that are connected
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Figure A.1: (P, σ∗) with labels

by the edges g1 = u1v1, g2 = u2v4, g3 = u3v2, g4 = u4v5 and u5v3.

The summation of the indices is taken modulo 5. Further, let

ei = uiui+1 and fi = vivi+1 for i ∈ {1, ..., 5}. The signature is

given by Nσ∗ = {e1, e2, e3, e4, e5}. The signed Petersen graph (P, σ∗) is

depicted in figure A.1.

Lemma A.1.1. The signed Petersengraph (P, σ∗) has flow number

F ((P, σ∗)) = 6.

Proof. Suppose (P, σ∗) has a nowhere zero k-flow φ and k ≥ 6. Let

Nex and Nin be the sets of extroverted and introverted edges of φ, respec-

tively. Without loss of generality we may assume that either |Nex| = 4

and |Nin| = 1 or |Nex| = 3 and |Nin| = 2. First, we suppose |Nex| = 4

and |Nin| = 1. Due to symmetry we may assume Nex = {e1, e2, e3, e4}

and Nin = {e5}. Since 4 ≤
∑

e∈Nex φ(e) =
∑

e∈Nin φ(e) ≤ 4, it follows

φ(ei) = 1 for i = 1..4 and φ(e5) = 4. It follows that g1 and g5 are directed

towards C1 and g2, g3, g4 are directed towards C2 with φ(g1) = φ(g5) = 3

and φ(g2) = φ(g3) = φ(g4) = 2. Due to symmetry we may assume that f4
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is directed towards v4 and hence f3 is directed towards v3. If φ(f4) = 1,

it follows φ(f3) = 3 and φ(f2) = 0. If φ(f4) = 2 we get φ(f5) = 0.

Finally, if φ(f4) ≥ 3, it follows φ(f3) ≥ 5. In all cases we obtain a

contradiction to the fact, that φ is a proper nowhere zero k-flow and

k ≥ 6. Hence, |Nex| = 3 and |Nin| = 2. Let (a, b, c, d, e) be a 5-tuple for φ

in such a way that a, b and c represent the flow values for the extroverted

edges and d and e represent the flow values of introverted edges. Taken

into account that a + b + c =
∑

e∈Nex φ(e) =
∑

e∈Nin φ(e) = d + e ≤ 8

and φ(e) ≤ 4 there are without regarding permutations 19 possible 5

tuples: (1, 1, 1, 1, 2), (1, 1, 2, 1, 3), (1, 1, 2, 2, 2), (1, 1, 3, 1, 4), (1, 1, 3, 2, 3),

(1, 1, 4, 2, 4), (1, 1, 4, 3, 3), (1, 2, 2, 1, 4), (1, 2, 2, 2, 3), (1, 2, 3, 2, 4),

(1, 2, 3, 3, 3), (1, 2, 4, 3, 4), (1, 3, 3, 3, 4), (1, 3, 4, 4, 4), (2, 2, 2, 2, 4),

(2, 2, 2, 3, 3), (2, 2, 3, 3, 4), (2, 2, 4, 4, 4), (2, 3, 3, 4, 4). Next, we will

diminsh that list of possible flow values for negative edges. If one flow

value occurs more than 3 time in the 5-tuple, then there must be one

introverted edge incident to one extroverted edge with the same flow

value, but that would force another incident edge to have no proper flow

value and forms a contradiction. Thus, we get rid of (1, 1, 1, 1, 2) and

(2, 2, 2, 2, 4). If d + e ≥ 5, the introverted edges must not be adjacent,

since the value on the third incident edge would be ≥ 5. If additionally

the value d or e occurs at at least three times in the 5-tuple, there

will always be one incident edge forced to get flow value zero, which

generate a contradiction. Thus, we get rid of (1, 1, 3, 1, 4), (1, 2, 2, 2, 3),

(1, 2, 3, 3, 3), (1, 3, 4, 4, 4), (1, 3, 3, 3, 4), (2, 2, 4, 4, 4). We can also exclude

the tuples (2, 3, 3, 4, 4), (1, 1, 4, 2, 4) because at least two extroverted

edges are adjacent, but the sum of flow values for any two extroverted

edges is ≥ 5.

Thus, there are seven tuples left, where exists a possible distribu-

tion for the flow values in C1, (1, 1, 2, 1, 3), (1, 1, 2, 2, 2), (1, 1, 3, 2, 3),
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(1, 1, 4, 3, 3), (1, 2, 2, 1, 4), (1, 2, 3, 2, 4), (2, 2, 2, 3, 3). We will show that

for every tuple up to symmetry just exists one possible distribution in

the circuit. We consider the following cases:

(i) Suppose (a, b, c, d, e) = (1, 1, 2, 1, 3). The introverted edge with with

value 1, say e1 must not be adjacent to any introverted edge with

value 1, hence e3 and e4 are extroverted with φ(e3) = φ(e4) = 1.

Due to symmetry we may assume e2 is introverted, e5 is extroverted,

φ(e2) = 3, and φ(e5) = 2.

(ii) Suppose (a, b, c, d, e) = (1, 1, 2, 2, 2). The introverted edges with

value 2 must be adjacent, otherwise, no extroverted edge could

receive value 2. Hence, e1 and e2 are introverted, e3, e4 and e5 are

extroverted, and φ(e1) = φ(e2) = φ(e4) = 2 and φ(e3) = φ(e5) = 1.

In the following we may consider (1, 2, 2, 1, 4) represented by

(2, 2, 1, 4, 1). For all remaining tuples (a, b, c, d, e) ∈ {(1, 1, 3, 2, 3),

(1, 1, 4, 3, 3), (2, 2, 1, 4, 1), (1, 2, 3, 2, 4), (2, 2, 2, 3, 3)} we have d + e ≥ 5.

Thus, the introverted edges cannot be incident. Let e1 and e3 be the

introverted edges with φ(e1) = d and φ(e3) = e and e2, e4 and e5 are

extroverted.

(iii) Suppose (a, b, c, d, e) = (1, 1, 3, 2, 3) or (a, b, c, d, e) = (2, 2, 1, 4, 1)).

Since c = e we get φ(e5) = c and because of a = b, φ(e2) = φ(e4) =

a.

(iv) Suppose (a, b, c, d, e) = (1, 1, 4, 3, 3). It follows φ(e2) = 4 and

φ(e4) = φ(e5) = 1 since the edge with value 4 must not be ad-

jacent to any other extroverted edge.

(v) and (vi) Suppose (a, b, c, d, e) = (1, 2, 3, 2, 4). Since the extroverted

edges with values 2 and 3 must not be adjacent and the extroverted
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Figure A.2: Cases for a 6-flow on (P, σ∗)

and introverted edge with value 2 must not be adjacent we get

φ(e4) = 2, φ(e2) = 3 and φ(e5) = 1.

(vii) Suppose (a, b, c, d, e) = (2, 2, 2, 3, 3). We get φ(e2) = φ(e4) =

φ(e5) = 2.

In figure A.2 the possibilities for C1 with corresponding edges gi (i = 1..5)

are depicted.

Note, for further consideration, that whenever there is one incoming

and one outgoing edge adjacent with same the flow value, we may exclude

that case, since the flow cannot be extended properly.
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(i) E+(C1) = {e1, e4, e5} and E−(C1) = {e2, e3} and φ(g1) = 1, φ(g2) =

4, φ(g3) = φ(g4) = 2, φ(g5) = 3: The edges f3 and f4 must be

directed towards v4. It follows φ(f3) /∈ {3, 4} and f2 is directed

towards v2. If φ(f3) = 1, then φ(f2) = 2, and if φ(f3) = 2, then

φ(f4) = 2, which forms a contradiction.

(ii) E+(C1) = {e4, e5} and E−(C1) = {e1, e2, e3} and φ(g1) = φ(g3) =

1, φ(g2) = 4, φ(g4) = φ(g5) = 3: The edges f3 and f4 must be

directed towards v4. It follows φ(f3) /∈ {3, 4} and f2 is directed

towards v2. If φ(f3) = 1, then φ(f4) = 3, and if φ(f3) = 2, then

φ(f2) = 1, which forms a contradiction.

(iii) E+(C1) = {e1, e5} and E−(C1) = {e2, e3, e4} and φ(g1) = φ(g2) =

1, φ(g3) = φ(g4) = 4, φ(g5) = 4: The edges f2 and f3 must be

directed away from v3. It follows φ(f3) /∈ {1, 4} and f4 is directed

towards v5. If φ(f3) = 2, then φ(f2) = 2, and if φ(f3) = 3, then

φ(f4) = 2, which forms a contradiction.

(iv) E+(C1) = {e2, e3, e5} and E−(C1) = {e1, e4} and φ(g1) = φ(g4) =

φ(g5) = 2, φ(g2) = φ(g3) = 1: Due to symmetry we can assume that

f5 is directed towards v1. It follows that φ(f5) = 1, and hence f1 is

directed towards v1 with φ(f1) = 1, which forms a contradiction.

(v) E+(C1) = {e3, e4, e5} and E−(C1) = {e1, e2} and φ(g1) = φ(g5) =

1, φ(g2) = 2, φ(g3) = φ(g4) = 3: The edge f2 must be directed

towards v2 and φ(f2) /∈ {3, 4}. If φ(f2) = 1 then f3 must be

directed towards v4 with φ(f3) = 2, a contradiction. If φ(f2) = 2

then f1 must be directed towards v1 with φ(f1) = 3, that forms a

contradiction.

(vi) E+(C1) = {e1, e3, e4} and E−(C1) = {e2, e5} and φ(g1) = φ(g2) =

φ(g3) = 1, φ(g4) = 2, φ(g5) = 3: The edge f3 must be directed
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towards v4 and φ(f3) /∈ {3, 4}. If φ(f3) = 1 then f4 must be directed

towards v5 with φ(f4) = 2, a contradiction. If φ(f3) = 2 then f2

must be directed towards v2 with φ(f2) = 1, a contradiction.

(vii) E+(C1) = {e1, e2, e3, e4} and E−(C1) = {e5} and φ(g1) = φ(g2) =

φ(g3) = φ(g4) = 1, φ(g5) = 4: The edge f3 must be directed to-

wards v4, hence f4 must be directed towards v5, f1 must be directed

towards v1 and φ(f3) /∈ {1, 4}. If φ(f3) = 2 then φ(f4) = 1, a con-

tradiction. If φ(f3) = 3 then f2 must be directed towards v2 with

φ(f2) = 1, a contradiction.

To show that F ((P, σ∗)) ≤ 6 it is sufficient to find a nowhere-zero

6-flow as depicted in figure A.3.

�
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Figure A.3: A nowhere-zero 6 flow on (P, σ∗)
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