
Mario Franke

Interactive Driving Simulator for Car2X
Scenarios

Bachelorarbeit im Fach Computer Engineering

12. Juli 2018

Please cite as:
Mario Franke, “Interactive Driving Simulator for Car2X Scenarios,” Bachelor Thesis (Bachelorarbeit), Heinz Nixdorf Institute,
Paderborn University, Germany, July 2018.

Distributed Embedded Systems (CCS Labs)
Heinz Nixdorf Institute, Paderborn University, Germany

Fürstenallee 11 · 33102 Paderborn · Germany

http://www.ccs-labs.org/

http://www.ccs-labs.org/

Interactive Driving Simulator for Car2X
Scenarios

Bachelorarbeit im Fach Computer Engineering

vorgelegt von

Mario Franke

geb. am 09. February 1996
in Paderborn

angefertigt in der Fachgruppe

Distributed Embedded Systems
(CCS Labs)

Heinz Nixdorf Institut
Universität Paderborn

Betreuer: Dominik S. Buse
Sven Henning

Gutachter: Falko Dressler
Holger Karl

Abgabe der Arbeit: 12. Juli 2018

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer

als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder

ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser

als Teil einer Prüfungsleistung angenommen wurde.

Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als

solche gekennzeichnet.

Declaration

I declare that the work is entirely my own and was produced with no assistance

from third parties.

I certify that the work has not been submitted in the same or any similar form for

assessment to any other examining body and all references, direct and indirect, are

indicated as such and have been cited accordingly.

(Mario Franke)

Paderborn, 12. Juli 2018

Abstract

Due to the rapidly increasing number of vehicles participating in road traffic, scientists

draw interest in increasing safety in road traffic. Technologies enabling Inter-Vehicle

Communication (IVC) are a promising approach to make important information

available for a larger number of vehicles in order to enhance collision avoidance.

Today’s vehicles already gather lots of data with several sensors. Research has shown

that sharing the data among neighboring vehicles may have a positive effect on safety.

Unfortunately, most research results are completely based on vehicular network

simulators since real field tests are expensive and not well scalable. Furthermore,

it is hard to provide reproducible results due to uncontrollable events. Vehicular

network simulators provide precise simulation results even for large-scale road traffic

scenarios but they only incorporate human imperfection based on some theoretical

models. Driving simulators offer controllable road traffic scenarios and incorporate

human imperfection. But most driving simulators lack the ability to simulate IVC

or have some negative characteristics. Bridging both simulation domains promises

a simulation tool capable of incorporating human imperfection as well as precise

simulation of IVC. To combine advantages of both simulation domains, a network

coupling the vehicular network simulator Vehicles in Network Simulation (Veins)

and a driving simulator based on a vehicle dynamics model and a visualization

framework is proposed. Evaluation results show the feasibility of such a coupled

simulation framework as well as problems occurring when both simulation domains

differ too much in the time domain. Furthermore, it is evaluated how well the system

can recover from slight real-time deadline violations. Strategies avoiding such time

differences are essential to provide a realistic driving experience and representable

simulation results of real-world environments.

iii

Kurzfassung

Hinsichtlich des dauerhaften Bestrebens den Straßenverkehr sicher zu gestalten,

bietet Kommunikation zwischen Fahrzeugen einen vielversprechenden Ansatz. In-

formationen, die zur Unfallvermeidung beitragen können, werden möglichst vielen

Verkehrsteilnehmern zur Verfügung gestellt. Heutige Fahrzeuge erfassen schon viele

solcher Informationen. Wissenschaftliche Ausarbeitungen haben gezeigt, dass das

Verbreiten entsprechender Informationen einen positiven Einfluss auf die Sicher-

heit im Straßenverkehr haben kann. Leider basieren die meisten Ergebnisse auf

Verkehrssimulationen, da echte Messungen teuer und schlecht skalierbar sind. Ver-

kehrssimulationen liefern genaue Ergebnisse bezüglich der Kommunikation zwischen

Fahrzeugen, sogar für Szenarien, die ganze Städte umfassen. Jedoch beziehen solche

Simulatoren menschliche Ungenauigkeiten nur basierend auf theoretischen Model-

len ein. Fahrsimulatoren bieten kontrollierbare Verkehrsszenarien und beziehen das

Verhalten des Fahrers mit ein. Die meisten Fahrsimulatoren sind aber nicht in der

Lage, Kommunikation zwischen Fahrzeugen zu simulieren oder weisen Nachteile in

ihrem Konzept auf. Wenn man beide Simulatortypen verbindet, erhält man einen

Simulator, der Kommunikation zwischen Fahrzeugen wie auch menschliche Unge-

nauigkeiten berücksichtigen kann. Um die Vorteile aus beiden Simulatortypen zu

vereinen, ist in dieser Ausarbeitung ein Netzwerk aus dem Verkehrssimulator Veins

und einem Fahrsimulator präsentiert. Die Auswertung zeigt, dass es grundsätzlich

möglich ist, beide Simulatortypen zu verbinden, jedoch Probleme auftreten, wenn

sich beide Simulatortypen zu sehr in der simulierten Zeit unterscheiden. Des Wei-

teren ist untersucht, wie gut sich ein solcher Simulator von Echtzeitverletzungen

erholt. Strategien, um zu große Zeitunterschiede zwischen beiden Simulatortypen

zu vermeiden, sind notwendig für ein realistisches Fahrverhalten.

iv

Contents

Abstract iii

Kurzfassung iv

1 Introduction 1

2 Fundamentals 3

2.1 Traffic Information Systems . 3

2.2 Vehicular Network Simulations . 4

2.3 Driving Simulators . 7

2.4 Coupling Simulators . 8

2.5 Related Work . 9

3 Concept 14

4 Implementation 16

4.1 Networking Tools . 16

4.2 Synchronization of Components . 19

4.3 Vehicle Dynamics Model . 22

4.4 Scenario Generation . 23

4.5 Visualization . 23

5 Evaluation 26

5.1 Measurement Setup and Tools . 26

5.2 Subjective Observations . 29

5.3 Quantitative Performance Analysis . 30

6 Conclusion 41

Bibliography 46

v

Chapter 1

Introduction

Car manufactures continuously try to improve the safety of their cars. With the help

of several sensors modern vehicles already assist the driver in keeping track of the

complex road traffic conditions. Such systems are called Advanced Driver Assistant

System (ADAS). Popular examples are blind spot assistants and emergency brake

systems. Both systems currently rely on vision-based or radar sensors which can

measure the distance of the vehicle to objects in vicinity [1]. Such sensors can only

detect dangerous situations in close vicinity due to their regional restricted sensing

area. Moreover, only the driver of the vehicle detecting the dangerous situation is

informed. Vehicles in vicinity have to detect the dangerous situation on their own.

A promising upcoming technology tries to enable communication in-between

vehicles, especially cars, or between vehicles and infrastructure based on Radio

Frequency (RF) technologies. In the research field, these technologies are called

Inter-Vehicle Communication (IVC) or more general Car2X (C2X) communication

[2]. With the help of IVC, vehicles can make other vehicles aware of themselves by

regularly sending their position and possible trajectories. Based on this information

cooperative ADAS can detect dangerous situation earlier and even without a direct

line of sight. Additionally, all vehicles in the neighborhood are informed. Joerer

et al. [3] show that IVC is able to prevent two vehicles from colliding.

But since ADAS can currently only warn drivers, the drivers have to avoid the

dangerous situation. In the experiments by Joerer et al. [3] all vehicles were con-

trolled by a simulator. Consequently, the impact of human drivers was neglected. In

order to evaluate the impact of ADAS including human imperfection one could think

of conducting field tests. On the one hand field tests provide the most representative

results. But on the other hand field tests do not provide reproducible results due to

constantly changing road traffic conditions. Moreover, field tests are expensive and

can endanger test persons.

1

1 Introduction 2

Another approach are simulations. Simulations can provide reproducible sim-

ulation results and do not endanger test persons. Further, simulations are better

scalable than field tests because scenarios with many vehicles are expensive. Cur-

rently, driving simulators are commonly used tools to investigate human driving

behavior [4], [5] and vehicular network simulators [6] are capable of simulating

large-scale road traffic using IVC. Vehicular network simulators are able to simulate

precise radio propagation models for IVC and accurate behavior of the road traffic.

To combine the advantages of both domains this thesis tries to couple a vehicular

network simulator with a driving simulator. The resulting driving simulator is able

to integrate human inputs to which the vehicular network simulator has to react.

IVC-based ADASs assist the driver. Information and warnings generated by ADASs

are displayed inside the visualization of the driving simulator. Humans controlling

the driving simulator can react accordingly to the displayed information and can

experience driving a vehicle capable of ADASs relying on IVC. This driving simulator

can be used as tool for investigating the interaction between cooperative ADASs and

humans who are still responsible for driving vehicles.

To get an overview of the state of the art of driving simulators and vehicular

networking, a literature review is done. Based on this knowledge, a concept regarding

the information exchange between the necessary components is developed and

implemented. The implemented driving simulator is evaluated concerning subjective

characteristics and quantitative metrics.

Chapter 2

Fundamentals

The proposed driving simulator needs to simulate IVC and ADASs. Both technologies

are closely related. General information about IVC and ADAS and how to simulate

both technologies are described in the next two sections. Basic concepts regarding

driving simulators and coupling simulator platforms are presented in the following

sections.

2.1 Traffic Information Systems

Traffic Information System (TIS) [7] is a generic term for systems which aim at

distributing information in-between vehicles and roadside units. As shown by Joerer

et al. [3], cooperative ADASs are individual TISs which aim at improving safety in

road traffic in certain situations like collision avoiding at crossings. To achieve this

goal, each vehicle shares its current state. By broadcasting basic messages, which

are called beacon messages, all vehicles in vicinity become aware of the broadcasting

vehicle. According to the European Telecommunications Standards Institute (ETSI)

[8], a basic message describing the current state of a vehicle contains data fields

like vehicle type, vehicle role and its size. Moreover, some geographical information

like the vehicle’s position, orientation, velocity and acceleration are added in order

to make other vehicles aware of the sending vehicle. Based on such messages,

the vehicle trajectories can be estimated and probable collisions can be avoided.

These messages are distributed among all neighboring vehicles with the help of RF

technologies enabling IVC. Several vehicles capable of IVC may form a Vehicular Ad

Hoc Network (VANET) [2]. Communication inside VANETs can be accomplished by

either Dedicated Short Range Communication (DSRC) or cellular-based approaches

like Long Term Evolution (LTE) [9].
DSRC enables direct communication between vehicles which are in vicinity. A

common DSRC protocol stack is IEEE 802.11p. It specifies the physical layer and

3

2.2 Vehicular Network Simulations 4

(a) DSRC (b) LTE

Figure 2.1 – Different communication patterns of DSRC and LTE. Figure
inspired by Rémy et al. [9].

the Medium Access Control (MAC). On top of this protocol stack, there can be

several other protocols which provide services for higher layer applications. The

most common ones are the American IEEE 1609.4/Wireless Access in Vehicular

Environments (WAVE), the European ETSI ITS-G5 and the Japanese ARIB STD-

T109.

In contrast to DSRC, cellular based communication requires a base station. The

base station aggregates vehicle states and therefore has centralized knowledge about

the traffic conditions in its area.

The described technologies have to be simulated precisely in order to provide

simulation results representing real-world behavior of VANETs.

2.2 Vehicular Network Simulations

According to Sommer, German, and Dressler [6], simulating VANETs involves two

main domains which are closely related. On the one hand a realistic driving behavior

and on the other hand the IVC needs to be simulated. Using two separate simulators,

one for each domain, ensures representative simulation results regarding realistic

driving behavior and realistic IVC. There is a need for realistic road traffic simulators

and computer network simulators which are capable to simulate RF technologies

for communication. In addition, both simulators have to be able to provide their

simulation state at regular intervals. The reason for this requirement is the close

relation of both domains. Realistic simulation of IVC requires exact positions of

senders and receivers. Thus, realistic driving behavior affects IVC. But IVC can affect

the driving behavior of vehicles, too. For example, with the help of ADASs, vehicles

2.2 Vehicular Network Simulations 5

can avoid traffic jams if they receive the knowledge of a traffic jam early enough

to find another route. Concluding, IVC affects the driving behavior of vehicles and

vice versa during runtime. Consequently, VANETs simulators need to be coupled

bidirectionally. For exchanging the simulation states of road traffic simulators and

computer network simulators, there needs to be an interface. This interface has to

ensure the synchronization between both simulators.

Most computer network simulators are event-based [10]–[12] and therefore the

synchronization could be done in-between of processing two events. An event-based

simulator processes only one event at a time, starting with the event which is nearest

in time. One processed event can schedule several new events in the future which

are going to be processed one after another. A timeline on which scheduled events

are marked can be seen in Figure 2.2. The leftmost event in Figure 2.2 is processed

next. Tasks which have to be executed when this type of event occurs are executed

and if the event has to be repeated it is going to be scheduled again in the future.

Further, the computer network simulator does not wait for the time an event is

scheduled at. After finishing the processing of a single event the computer network

simulator immediately processes the event which is next in time. Processing one

event can require high computing power depending on the number of simulated

vehicles. Consequently, the computation time of one event varies.

However, such a network of a road traffic simulator and a computer network

simulator cooperating together provide realistic simulation results in the field of

VANETs. The interactive driving simulator described in this thesis uses the vehicular

network simulator Vehicles in Network Simulation (Veins). Veins [6] is an open

source vehicular network simulation framework which couples the discrete event

simulator Objective Modular Network Testbed in C++ (OMNeT++) [10] and the road

traffic simulator Simulation of Urban MObility (SUMO) [13]. Veins provides realistic

radio propagation models and common protocol stacks for IVC. SUMO is a large-scale

road traffic simulator using validated vehicle behavior models. Furthermore, Veins

and SUMO, both implement the Traffic Control Interface (TraCI) [14] protocol for

exchanging simulation states via Transmission Control Protocol (TCP). Additionally,

with the help of TraCI, it is possible to take over control of a vehicle of the simulation.

There are commands provided by TraCI to set the position of a vehicle manually.

These commands enable integrating a vehicle which is not controlled by SUMO.

Hence, all SUMO-controlled vehicles have to react to the ego vehicle.

t= 0 1E^1000 1E^101E^100 1
time in s

Figure 2.2 – Timeline with scheduled simulation events.

2.2 Vehicular Network Simulations 6

The basic architecture of Veins, bidirectionally coupled with SUMO via TraCI, is

illustrated in Figure 2.3. For synchronization purposes, Veins and SUMO are in a

master-slave relationship in which Veins is the master and SUMO is the slave. Veins

controls the time domain in both simulations. In the first part of a single simulation

step, Veins simulates the whole network traffic in the simulation scenario. Commands

influencing the behavior of vehicles are sent to SUMO which buffers all incoming

commands. When Veins finishes its own simulation step, Veins invokes SUMO to

simulate one simulation step. Figure 2.4 illustrates the described message exchange

between Veins and SUMO. SUMO simulates a new simulation step and sends the

new simulation state back to Veins. With the new simulation state, Veins simulates

another simulation step before it invokes SUMO again. In such a synchronized

manner, Veins and SUMO provide realistic simulation results for VANETs regarding

driving behavior and radio propagation models.

OMNeT++
Veins

OMNeT++

SUMO

TraCI

Figure 2.3 – Architecture of the bidirectionally coupled simulators Veins and
SUMO.

Veins SUMO

VehicleCommand1

VehicleCommand2

VehicleCommand3

Advance sim step

Vehicle positions

Vehicular
Network
Simulation

Road
Traffic

Simulation

Figure 2.4 – Message sequence diagram of one time step of the Veins frame-
work. Figure inspired by Wegener et al. [14].

2.3 Driving Simulators 7

2.3 Driving Simulators

In contrast to vehicular network simulators, interactive driving simulators take

human interactions into account in order to simulate a human-controlled vehicle

and its interactions with other road traffic. In the following, the human-controlled

vehicle is called ego vehicle and all other vehicles are called fellow vehicles. As

shown by Kuhl et al. [15], a driving simulator gets inputs from a human in order to

simulate the behavior of a single vehicle, the ego vehicle, and to visualizes it. To

provide an immersive simulation, the researchers state that driving simulators have

to accomplish a high degree of fidelity regarding the interface between human and

simulator, the vehicle dynamics model and the visualization environment.

Common input devices and visualization techniques for driving simulators can

vary from commercially available gaming steering wheels and simple monitors to

complete vehicle cabins which provide a wide field of view and all driving controls

of usual vehicles. Blana [16] contributes a survey of different driving simulators

regarding costs and complexity. Examples of different scaled driving simulators can

be seen in the publication of Abdelgawad et al. [17].
According to Kuhl et al. [15], the visualization is a complex aspect of driving sim-

ulators. Because the driver continuously interacts with the simulated environment,

in terms of controlling a vehicle in it, the environment has to be a representative

image of reality. Road traffic, buildings, traffic signs and traffic light systems have to

be visualized in a realistic manner.

Vehicle dynamics [18] rely on physical laws in order to have realistic vehicle

movements. Abdelgawad et al. [19] list several vehicle dynamics submodels. Their

vehicle dynamics model consist of a horizontal dynamics model, a vertical dynamics

model, a steering model, an engine model, a gearbox model, a differential model, a

tire and wheel model and a brake model. Physical values which are important for

the visualization are position, orientation and speed of the simulated vehicle.

Since the vehicle dynamics model depends on the interactive input, the driving

simulator has to process its simulation steps including calculations for the vehicle

dynamics model and visualization in real-time.

The term real-time is explained in the book written by Kopetz [20] in the following

way: Computer programs process their tasks sometimes slower and sometimes faster

depending on the complexity of the task and the computation load. If a computer

program has to finish its tasks in real-time, it should finish the task to an exact point in

time regarding the wall clock time. Real-time can be considered in two graduations.

When a computer slightly misses a real-time deadline for a task but the computation

result is still valid, the deadline is called a soft real-time deadline. But when the

real-time deadline has to be held and otherwise the computation result is invalid,

the deadline is called a hard real-time deadline. Violating real-time deadlines in

2.4 Coupling Simulators 8

interactive driving simulators has a negative impact on the entire driving simulator

because the inputs by the human cannot be displayed immediately. As a result, there

is no realistic immersion driving a vehicle. A System which includes real-time tasks

is called a real-time system.

A driving simulator is a real-time system which allows investigating human

behavior in certain situations. Several research studies on human behavior in au-

tomotive domains were conducted with the help of driving simulators. Tateiwa,

Nakamura, and Yamada [4] investigated the driver awareness of pedestrians at

intersections. The researchers collected data on situations in which drivers were

unaware of pedestrians crossing a street at an intersection with the help of driving

simulators. They aim at estimating the awareness of the driver depending on the

vehicle’s behavior. In case the driver was indicated as unaware although there is a

pedestrian on the street, the driver was warned. They claim to have a positive effect

on the driver using the warning system.

Another study by Sonoda and Wada [5] investigated the driver trust in vehicular

self-driving systems. The researchers investigated a scenario in which a vehicle

equipped with a vehicular self-driving system has to overtake a motorbike. Three

different overtaking manoeuvres were compared. The driver was equipped with

vibrotactile displays to provide spatial information on the situation awareness of the

vehicular self-driving system. The study showed the vibrotactile displays and the

manoeuvre affects the trust of the driver in the vehicular self-driving system.

Both studies demonstrate the capabilities of driving simulators to provide scien-

tific findings in experiments involving humans. Moreover, it is possible to investigate

dangerous situations without endangering test persons. But most driving simulators

neither have large-scale road traffic nor support IVC for enabling cooperative ADASs.

In order to support IVC and ADASs driving simulators can be coupled with vehicular

network simulators.

2.4 Coupling Simulators

Different simulators are coupled in order to benefit from precise simulation results

in several domains. For example, Sommer, German, and Dressler [6] coupled the

network simulator OMNeT++ and SUMO to simulate precise large-scale road traffic

and realistic RF propagation models. Currently, a highly investigated research field

of coupling simulators is Hardware-in-the-Loop (HIL) systems. A HIL system aims at

integrating a real hardware component, often a subsystem like an engine of a vehicle

[21], into a computer-based simulation emulating the subsystem’s environment,

for example, the whole vehicle and its environment. The proposed interactive

driving simulator could be described as a Human-in-the-Loop (HuIL) system because

2.5 Related Work 9

the human’s behavior of driving a vehicle can be investigated inside a simulation

environment. Both, HIL and HuIL systems, have quite similar requirements in order

to provide valid simulation results because in both cases the simulation tools have

to incorporate input data generated by physical input quantities.

According to Swanson et al. [22], there are some requirements for building HIL

or HuIL systems, especially for driving simulators. The in-the-Loop system has to

have an interface for gathering sensor data. The sensor can either be a camera-

detection system, a steering wheel or any other device operated by a human for HuIL

systems. The data gathered by the sensor has to be incorporated in the simulation

with the help of an interface building the bridge between the physical subsystem and

the simulation. Due to the sensors constantly generating data, in-the-Loop systems

have to provide milliseconds level latencies in-between components responsible for

processing sensor data. The low latency level is necessary for providing a realistic

feedback for the tested subsystem or the human.

Moreover, the latencies in-between all components are not the only time critical

aspect of coupling simulators. As stated by Buse et al. [23], the simulation step

length of the used components is a key factor for the granularity of the simulation

results. Further, the synchronization between all components has to be ensured even

if the simulation components have different simulation step lengths.

Several other researchers have tried coupling different simulators and integrating

interactive inputs. Thus, there are some publications which try to couple vehicular

network simulators with driving simulators or other human input devices. Their

approaches are presented in the next section.

2.5 Related Work

The investigated research field covers vehicular networking, ADASs and coupling

simulators. The need for coupling different simulators in order to benefit from each

of them was recognized by several researchers. For example, Sommer, German, and

Dressler [6] bidirectionally coupled the discrete event simulator OMNeT++ and the

road traffic simulator SUMO. They investigated the impact of IVC on road traffic

and vice versa. As a result, they proclaimed to simulate vehicular networks with the

help of bidirectionally coupled simulators due to the influence of IVC on road traffic

and vice versa. Veins is a state of the art vehicular network simulator and is not

designed to visualize its simulation in 3D environments or to interactively integrate

a vehicle based on human decisions.

The approach by Guan, De Grande, and Boukerche [24] synchronizes a road

traffic simulator with a 3D visualization. Their chosen visualization framework

is Unity3D, since it incorporates a simplistic mobility model which controls the

2.5 Related Work 10

simulated vehicles. Both components are coupled to exchange systems states in

real-time, but their system does not simulate IVC and the system is not able to

incorporate real-time inputs.

To incorporate real-time inputs and to test ADAS, Abdelgawad et al. [17] and

Gruyer et al. [25] followed quite similar approaches. Both research groups imple-

mented complex vehicle dynamic models. Additionally, both research groups used

immersive visualization techniques. Gruyer et al. [25] used a head-mounted dual

screen and the controls of a real vehicle. Abdelgawad et al. [17] used a driving

simulator platform on which whole vehicle cabins are mounted. Due to the complex

vehicle dynamic models and the immersive visualization techniques both approaches

provide a quite realistic driving experience. But both approaches are lacking of

large-scale road traffic and TISs. They only investigate ADASs which do not rely on

IVC. Regarding road traffic, Abdelgawad et al. [17] try to simulate road traffic but

their approach is not able to simulate large road networks and Gruyer et al. [25] do

not simulate road traffic at all.

Griggs et al. [26] developed a platform in which a real vehicle is integrated in

SUMO. Consequently, simulating large road networks is possible thanks to SUMO.

The data exchange between the vehicle and SUMO is achieved by an Android

smartphone. The smartphone sends the vehicle state via a 3G UMTS network to a

computer running SUMO. Additionally, the smartphone acts as an interface for the

driver as it displays the simulated state of the road traffic around the real vehicle

or feedback from ADASs. But the system is lacking realistic or simulated VANET

characteristics. There is no IVC. Since the researchers only used SUMO as a single

simulator, they did not have to cope with challenges regarding coupling real-time

based simulators with discrete time-based simulators.

Solving these challenges is the aim of the concept developed by Buse et al. [23].
The presented Ego Vehicle Interface (EVI), acting as a broker, synchronizes a real-

time based HIL system with Veins. The real-time based system sends clock tick

messages in order to invoke Veins to simulate another time step. As they propose, it

is possible to exchange the HIL system with a driving simulator.

Michaeler and Olaverri-Monreal [27] try to incorporate road traffic, vehicular

networking and a user-controlled vehicle. The developed driving simulator is based

on the Unity3D visualization framework. They proclaim combining Unity3D with

simulators like OMNeT++ or SUMO is not suitable because the vehicular network

simulations steps have to be finished before the driving simulator can advance.

Therefore, all calculations regarding road traffic and vehicular networking are pro-

cessed within Unity3D. Thus, their approach is lacking state of the art IVC lower

layer network protocol stacks like IEEE 802.11p and exact radio propagation models.

In order to provide more precise simulation results, Prendinger et al. [28] devel-

oped a multi-user driving simulator named Distributed Virtual Environment (DiVE).

2.5 Related Work 11

DiVE is based on a server-client architecture. Each client is an independent driving

simulator controlled with the help of steering wheels and pedals or different input

devices. The used visualization framework is Unity3D. On the server’s side, there is

a road traffic simulator and a vehicular network simulator based on OMNeT++. The

clients and the server are synchronized. But on the client’s side, there is no vehicle

dynamics model. The only physics model is the one provided by Unity3D. Hence,

the immersion might be affected negatively.

For maximum immersion, Hou et al. [29] build a three-in-one simulator. It

consists of the road traffic simulator Paramics, the Network Simulator 2 (NS2) and

the driving simulator developed at the University at Buffalo. Paramics implements

car-following and lane-changing modes and NS2 is able to simulate IVC. The driving

simulator provides a six-degree-of-freedom motion platform and four displays to

visualize the 3D environment. But since the driving simulator is only developed at

the University at Buffalo, it might be difficult to exchange the driving simulator in

order to run the three-in-one simulator at different places.

Table 2.1 provides an overview of the capabilities of all presented systems. It

shows most of the systems do not fulfill the claimed requirements or have disad-

vantages over the proposed system. Figure 2.5 illustrates the current state of the

art in a more intuitive way. As showed before, there are already systems which are

capable of a subset of the claimed functionality. These systems are represented by

the intersection of two circles. The grey point in the middle represents the technol-

ogy gap which this thesis tries to fil. By building the proposed interactive driving

simulator for C2X scenarios all circles should intersect.

Furthermore, after investigating the related work, most publications do not

evaluate the actual simulator or system. In the presented evaluation chapters, there

Driving
Simulation

Vehicular
Networking
Simulation

3D
Visualization

Road Traffic
Simulation

Figure 2.5 – Illustration of already intersecting research domains. The grey
point illustrates the technology gap this thesis tries to fill.

2.5 Related Work 12

Pu
bl

ic
at

io
n

3D
Vi

su
al

iz
at

io
n

R
oa

d
Tr

af
fic

Si
m

ul
at

or
Ve

hi
cu

la
r

N
et

w
or

k
Si

m
ul

at
or

D
ri

vi
ng

Si
m

ul
at

or

So
m

m
er

,G
er

m
an

,a
nd

D
re

ss
le

r
[6
]

N
o

SU
M

O
O

M
N

eT
+
+
/V

ei
ns

N
o

G
ua

n,
D

e
G

ra
nd

e,
an

d
B

ou
ke

rc
he
[2

4]
U

ni
ty

3D
O

w
n

tr
af

fic
m

od
el

N
o

N
o

A
bd

el
ga

w
ad

et
al

.
[1

7]
U

ni
ty

3D
N

o
N

o
M

AT
LA

B
/S

im
ul

in
k

G
ru

ye
r

et
al

.
[2

5]
Ye

s
N

o
N

o
O

w
n

ph
ys

ic
s

m
od

el
G

ri
gg

s
et

al
.
[2

6]
R

ea
lv

eh
ic

le
SU

M
O

N
o

R
ea

lv
eh

ic
le

B
us

e
et

al
.
[2

3]
Ex

te
nd

ib
le

SU
M

O
Ve

in
s

Ex
te

nd
ib

le
M

ic
ha

el
er

an
d

O
la

ve
rr

i-M
on

re
al
[2

7]
U

ni
ty

3D
B

ui
lt

in
U

ni
ty

3D
B

ui
lt

in
U

ni
ty

3D
B

ui
lt

in
U

ni
ty

3D
Pr

en
di

ng
er

et
al

.
[2

8]
U

ni
ty

3D
O

w
n

tr
af

fic
m

od
el

B
as

ed
on

O
M

N
eT
+
+

U
ni

ty
3D

H
ou

et
al

.
[2

9]
Ye

s
Pa

ra
m

ic
s

N
S2

Pl
at

fo
rm

ba
se

d

Ta
bl

e
2.

1
–

O
ve

rv
ie

w
of

di
ff

er
en

t
si

m
ul

at
or

pl
at

fo
rm

s.

2.5 Related Work 13

are applications described and evaluated which run within the system, but there

are no evaluation results of the simulation system itself regarding scalability or

performance.

To cope with all the presented problems and challenges, this thesis proposes an

architecture for an interactive driving simulator for C2X scenarios built on different

simulation tools and a visualization framework. The concept of this thesis and its

implementation are described in the following two chapters and the performance of

the implemented interactive driving simulator is presented in the evaluation.

Chapter 3

Concept

The general idea in this thesis is to couple simulators of different research fields

in order to benefit of the advantages each simulator type provides. As described

earlier, the vehicular network simulator Veins follows this idea, too [6]. Veins is

coupled bidirectionally with SUMO. A driving simulator capable of IVC can be build

by following this idea, too.

The necessary components are a vehicle dynamics model and a 3D visualization

building the driving simulator part and simulators responsible for IVC and large-scale

road traffic. The vehicle dynamics model is responsible for providing a realistic ego

vehicle behavior based on the inputs by humans and an accurate physics model.

An immersive 3D visualization is needed in order to provide a good feedback for

humans. To have realistic road traffic, a road traffic simulator has to be able to

integrate the ego vehicle and has to incorporate the behavior of the ego vehicle

for simulating reactions of the other road traffic. The IVC has to be simulated by

a vehicular network simulator which has to take precise radio propagation models

and the standardized protocol stacks into account. Given that, each component

needs data provided by another component, each component needs to be able to

communicate bidirectionally with each other as implemented by Buse et al. [23].
Figure 3.1 illustrates the basic information flow between all components. The 3D

visualization and the vehicular network simulator need the positions of all vehicles

provided by the vehicle dynamics model and the road traffic simulator. Furthermore,

the road traffic simulator has to be able to integrate the ego vehicle controlled by the

vehicle dynamics model, so that all fellow vehicles can react to the ego vehicle. The

ego vehicle is controlled with the help of a steering wheel or another appropriate

input device which is connected to the vehicle dynamics model. The vehicle positions

are important for displaying all vehicles at the right place inside the visualization and

for correctly simulating IVC. Based on the IVC a cooperative ADAS can warn or inform

the driver of the ego vehicle about certain traffic situations. Since an implementation

14

3 Concept 15

Vehicular Network
Simulator

Road Traffic Simulator

Visualization

Vehicle Dynamics
Model

All
vehicle
positions

Ego vehicle position

C2X Events

Figure 3.1 – Basic information shared between all components.

of a cooperative ADAS has to be done inside the vehicular network simulator, the

decision to notify the driver is made by the vehicular network simulator. Consequently,

the visualization needs the knowledge of when to visualize a notification by the

vehicular networking simulator. For synchronizing all components and managing

the information sharing, Buse et al. [23] present the EVI. The implementation of

the interface synchronizing all components for the interactive driving simulator is

described in the next chapter.

Chapter 4

Implementation

The proposed concept of the developed interactive driving simulator consists of a

modular network enabling information sharing among all components. For simulat-

ing IVC and large-scale road traffic, this approach uses the open source simulators

Veins 4.6 which already couples OMNeT++ 5.1.1 and SUMO 0.30.0. The vehicle

dynamics of the ego vehicle is simulated by a MATLAB/Simulink R2015b simulation

and the driving simulator environment is visualized with the help of the free visual-

ization framework Unity3D 5.6.0f3. According to the approach proposed by Buse

et al. [23], there needs to be an interface which orchestrates all components. The

proposed interface in this thesis is called Yet Another Ego Vehicle Interface (YAEVI).

YAEVI couples Veins and SUMO with Unity3D because there is already a bidirec-

tionally connection between Veins and SUMO [6]. A steering wheel to control the

position and orientation of the ego vehicle is connected to the MATLAB/Simulink

simulation. The MATLAB/Simulink simulation sends updates of the ego vehicle state

to Unity3D in real-time. The ego vehicle update is forwarded to SUMO in order to

incorporate it into the large-scale road traffic simulation. Since the vehicle dynamics

model can only send ego vehicle updates and cannot get information regarding the

fellow vehicles, it is not possible to simulate collisions between the ego vehicle and

fellow vehicles. Figure 4.1 illustrates the basic network architecture. In contrast to

Figure 2.3, the direct connection between OMNeT++/Veins is interrupted by the

YAEVI. The YAEVI is responsible for exchanging all network messages in-between

OMNeT++/Veins, SUMO and Unity3D and its synchronization.

4.1 Networking Tools

For exchanging simulation states, there needs to be protocols which handle the

communication in-between all components and which specify the structure of the

network messages. The network protocols, responsible for sending and receiving

16

4.1 Networking Tools 17

OMNeT++/Veins

SUMO

YAEVI Unity3D

MATLAB/Simulink

TCP

TCP

TCP

UDP

USB

Figure 4.1 – Basic architecture of the implemented interactive driving simula-
tor.

data packets in-between all simulators, can be either reliable (TCP) or unreliable

(User Datagram Protocol (UDP)). The network which handles the message exchange

is realized with the help of ZeroMQ [30]. ZeroMQ is an open source meta transport

layer providing several standard transport layer protocols in combination with pre-

defined communication patterns. The different components are connected via TCP

using a publish-subscribe (PubSub) communication pattern provided by ZeroMQ.

TCP may cause problems because of the reordering of messages or retransmissions

causing violating real-time deadlines. But, TCP ensures the receiving of all network

messages in the order as they were sent. Therefore, no simulator has to implement

strategies for dropped network messages. The PubSub cummunication pattern pro-

vides publisher and subscriber sockets. Publisher sockets can only send network

messages and subscriber sockets can only receive network messages, but both socket

types work without any synchronization of each other. Consequently, their advan-

tage is the ability to continuously send and receive network messages. Figure 4.2

illustrates the PubSub communication pattern.

The structure of the network messages exchanged by OMNeT++/Veins and

SUMO is specified by the TraCI protocol, see Figure 2.3 and Figure 2.4. The TraCI

protocol specifies message structures for exchanging simulation states of vehicle,

traffic lights and commands affecting the simulation. But, TraCI lacks commands

needed for the 3D visualization in order to visualize driver notifications because it

was not build for synchronizing simulators with 3D visualizations. In this approach,

4.1 Networking Tools 18

OMNeT++/Veins

SUMO

YAEVI Unity3D

Pub

Sub

Figure 4.2 – Architecture with PubSub communication pattern. Points illus-
trate publisher sockets. Arrowheads illustrate subscriber sockets.

the structure of the network messages exchanged between Veins, YAEVI and SUMO

is based on TraCI because Veins and SUMO already implement TraCI. To compensate

the lack of 3D visualization commands, TraCI needs to be extended. Since TraCI

commands are encoded as bytes, TraCI is hard to extend and maintain. Furthermore,

the number of different commands is limited. A tool which provides high extendibility

and maintainability is Google Protocol Buffers1. Google Protocol Buffers is an open

source programming language independent and extendible tool for serializing data.

Google Protocol Buffers is able to generate an Application Programming Interface

(API) for most common programming languages out of .proto files which specify

Google Protocol Buffers messages and their data fields. The proposed solution is to

tunnel whole TraCI commands as a single data field inside a Google Protocol Buffers

message, as illustrated by Figure 4.3. Additional custom commands can be easily

extended by adding new data fields to the Google Protocol Buffer message. Currently,

there are two custom commands added. First, there is a generic information command

in order to display text based information inside the visualization. Second, there is

a generic warning command which has a text data field and a data field indicating

the importance of the warning.

The structure of the network messages exchanged between YAEVI and Unity3D

is completely based on Google Protocol Buffers messages. There are four different

message types which are developed by Buse et al. [23].

• Session messages are used to initialize and shut down the visualization.

1https://developers.google.com/protocol-buffers

https://developers.google.com/protocol-buffers

4.2 Synchronization of Components 19

Google Protocol Buffers Message

TraCI Command

Generic Information Command

Generic Warning Command

Figure 4.3 – TraCI tunneled with Google Protocol Buffers.

• Vehicle messages provide states of all vehicles regarding vehicle id, position,

orientation, vehicle speed and road id.

• Traffic light messages provide states of all traffic light systems regarding traffic

light signals and the junction where they are at.

• Visualization messages are used to visualize notifications and warnings gener-

ated by Veins

By using their message protocol the EVI and the YAEVI can be exchanged easily and

the visualization can be used by both interfaces. For ensuring to send and receive the

right message type to the right point in time all components have to be synchronized.

4.2 Synchronization of Components

Since all network messages in the network have to be forwarded by the YAEVI,

it is responsible for synchronizing the different simulators. The behavior of the

ego vehicle is simulated by a MATLAB/Simulink simulation in a real-time domain.

The fellow vehicles, representing other road traffic, are simulated by SUMO. Veins

simulates the IVC. Both, Veins and SUMO simulate events in a discrete time domain

without any real-time guaranties. The real-time duration of a single simulation step

of Veins or SUMO may differ depending on the complexity of the current simulation

step. As a result, one simulated time step can take longer or shorter than the duration

of the time step in real-time. According to Buse et al. [23], the duration of one

simulated time step is a key factor for the granularity of the simulation results.

They propose that 100 ms is a good trade-off between simulation granularity and

computational effort. In this approach one simulation step of Veins and SUMO takes

100 ms, too, in order to update the fellow vehicle state in the visualization fast

enough. With a larger synchronization interval the difference of the positions of the

fellow vehicles between SUMO and the visualization would be too big.

4.2 Synchronization of Components 20

Coupling Veins and SUMO with the real-time based visualization requires some

kind of synchronization because the MATLAB/Simulink simulation has to run in

parallel. It should not be stopped due to its real-time calculations. When the

vehicle dynamics model would be stopped the immersion of the driving simulator

would be affected negatively because the inputs provided by the human would be

displayed with a noticeable delay. The synchronization has to ensure that Veins

and SUMO do not simulate faster than the real-time based simulation. Due to the

MATLAB/Simulink simulation is directly connected to Unity3D, the clock provided

by Unity3D is assumed to be the real-time clock all other simulators have to be

synchronized on. By Unity3D sending clock tick messages, Veins and SUMO can be

synchronized with Unity3D. The discrete time-based simulators invoke one time

step every time a clock tick messages arrives at the YAEVI. If a simulation step of

the discrete time-based simulators takes longer than real-time, a mechanism, which

enables catching back up to real-time, can mitigate slight real-time violations.

As illustrated in Figure 4.4, a single simulation step of the system invokes a

predefined sequence of message exchanges. First, the YAEVI waits for Veins sending

a command requesting to advance the system-wide simulation step. Next, the

YAEVI waits for Unity3D sending a clock tick message. Unity3D generates clock

tick messages everytime when the wall clock, all components are synchronized

on, exceeds 100 ms. A generated clock tick message is inserted in a list. In order

to not desynchronize, clock tick messages are only sent when the YAEVI provided

the fellow vehicle states of the last simulation step. When the YAEVI is too slow

to provide fellow vehicle states the list managing the clock tick messages grows.

Consequently, when the driving simulator holds the real-time deadlines the clock tick

EgoVehUp/Tick

YAEVI VeinsSUMOUnity3D

CMDSIMSTEP

Ack

SUMOresults

CMDSIMSTEP

EgoVehUp

SUMOresults

SUMOresults

Figure 4.4 – Message sequence diagram of synchronized messages of a single
simulation step.

4.2 Synchronization of Components 21

message list in Unity3D is not larger than one because the clock tick messages are

sent immediately. The clock tick messages from Unity3D also include an ego vehicle

update for SUMO. After the YAEVI received the clock tick message, it immediately

sends the simulation state of SUMO to Veins, a fellow vehicle update to Unity3D

and an ego vehicle update message to SUMO. SUMO acknowledges the receiving of

the ego vehicle update message. To conclude a single simulation step, the YAEVI

sends a message to make SUMO advance its simulation by 100 ms and to provide

new states of the fellow vehicles.

Additionally, all components are coupled synchronously. This design decision has

a disadvantage. The whole system misses a real-time deadline when either Veins or

SUMO misses a real-time deadline. This can happen because all components have to

wait for the component missing the real-time deadline. If Veins misses the real-time

deadline, but SUMO meets it, the fellow vehicles will not be displayed in a real-time

manner anyway because the whole driving simulator is slowed down by waiting

for Veins finishing its current simulation step. When the described case frequently

occurs it can lead to slowed down or jumping fellow vehicles in the visualization.

Messages, which have to be sent due to IVC events, are sent asynchronously

from Veins to SUMO or to Unity3D. This means, corresponding messages are sent

immediately when the event is processed by Veins. The messages do not have to

wait to be sent until the simulation step of Veins is advanced. Such message types

are, for example, the visualization messages for Unity3D or messages instructing

SUMO to reroute a fellow vehicle.

In order to send Veins the simulation state of SUMO immediately, SUMO’s simula-

tion state is one simulation step ahead of all other components. SUMO is instructed

to simulate two simulation steps at once in the first system-wide simulation step. The

first simulation state from SUMO is forwarded to Veins. The simulation state of the

second simulation step is cached in the YAEVI. In the next system-wide simulation

step YAEVI can immediately send the cached simulation state from SUMO to Veins.

This trick shortens the time Veins has to wait for the new simulation state provided

by SUMO.

The overall network structure of the developed interactive driving simulator

is now presented. In an ideal case the human steering the ego vehicle does not

recognize any network specific events. The human controls the ego vehicle with the

help of a steering wheel and gets feedback by the visualization. Both aspects are

explained in the next two sections.

4.3 Vehicle Dynamics Model 22

4.3 Vehicle Dynamics Model

As input device for the driving simulator described in this thesis, a Logitech Driving

Force GT from 2007 is used. It supports a 900° steering wheel angle which means

it takes 2.5 turns from lock to lock. Furthermore, it supports force feedback, has

throttle and brake pedals and a gearshifter. It is plugged in via USB. The Logitech

Driving Force GT is shown in Figure 4.5.

Nevertheless, the best devices for interfacing between human and driving simu-

lator do not provide a realistic immersion if the driving simulator itself does not take

physics into account. Realistic movements and orientation of the ego vehicle based

on physical laws enhance the immersion of driving a real vehicle. The parameters

for the physical calculations rely on the human controlling the steering wheel. For

affording realistic physics for the interactive driving simulator, the output signals

of the steering wheel are used by a MATLAB/Simulink simulation implemented by

Abdelgawad et al. [19]. Based on the steering wheel angle, the pedal states and

the gear the MATLAB/Simulink simulation provides position, rotation and speed of

the ego vehicle. These values are sent via UDP to Unity3D. In contrast to all other

network connections, see Figure 4.1, this connection is realized with UDP because

it is not that critical if a single UDP message is dropped. The MATLAB/Simulink

simulation sends ego vehicle updates fast enough that a single dropped update is

not recognizable by humans.

The ego vehicle is visualized only based on the mentioned values provided by

the MATLAB/Simulink simulation. But the ego vehicle itself is a quiet small part of

(a) Steering wheel (b) Pedals

Figure 4.5 – Steering wheel and pedals used for the interactive driving simu-
lator.

4.4 Scenario Generation 23

the whole visualization. The visualized ego vehicle is only a single vehicle inside a

complete environment which has to be visualized.

4.4 Scenario Generation

According to Kuhl et al. [15], driving environments have to be as realistic as possible.

With the help of the used components, it is possible to visualize 3D environments

based on OpenStreetMap (OSM) [31] data. Consequently, the visualization can

illustrate exact 3D environments imaging real-world cities. Currently, it possible to

visualize real-world street networks including exact positions of buildings. A tool

called netconvert provided by SUMO is able to generate SUMO network and SUMO

polygon files out of OSM files. The generated SUMO polygon files are needed by Veins,

too, because buildings have a significant influence on radio propagation models.

SUMO network files save all information regarding the street network including

traffic light systems. Unity3D can parse these SUMO network and SUMO polygon

files and builds streets, buildings and traffic light systems in the 3D environment.

Figure 4.6 shows a street network of the north of Paderborn2 provided by OSM,

the corresponding 3D environment generated by Unity3D and the environment

integrated in SUMO. Since the described 3D environment only visualizes the street

network and buildings it lacks dynamic objects like fellow vehicle traffic and traffic

light systems.

4.5 Visualization

Moreover, Kuhl et al. [15] state, the 3D rendering quality should be as high as

possible because the displayed state of the ego vehicle is the main feedback for

the human giving the inputs. The widely-used visualization framework Unity3D is

responsible for visualizing driving environments of the interactive driving simulator

developed in this thesis.

Traffic light systems are visualized by Unity3D, too, but they are simulated by

SUMO. Every simulation step Unity3D gets a message which describes the signal

state of all simulated traffic light systems. With the information provided by SUMO,

Unity3D only has to set the traffic lights according to the received message. Because

SUMO is simulating the traffic light system states it is easily possible to change the

signaling to the exact behavior of the traffic light system of the real-world. But traffic

light systems without fellow vehicle traffic are useless.

The fellow vehicle traffic is implemented quite similar to the traffic light systems.

Every simulation step Unity3D gets a vehicle update message containing the state of

2https://www.openstreetmap.org/#map=16/51.7270/8.7674

https://www.openstreetmap.org/#map=16/51.7270/8.7674

4.5 Visualization 24

(a) OSM (b) Unity3D

(c) SUMO

Figure 4.6 – Top down view of a neighborhood of the north of Paderborn
provided by OSM and the corresponding environment visualized by Unity3D
and SUMO.

all simulated vehicles. This means, Unity3D gets every 100 ms an update about all

fellow vehicles and their positions. If Unity3D only sets all fellow vehicles to their

corresponding position, all fellow vehicles would jump through the environment

because there are only 10 updates per second. To compensate the low update rate

Unity3D interpolates between two fellow vehicle updates. Unity3D already provides

functions for interpolation. Such a function gets the current position of a fellow

vehicle, its destination, a speed vector and the time to arrive at the destination. Since

the update interval is 100 ms, the fellow vehicles should arrive after 100 ms at their

destination. When fellow vehicle updates arrive at Unity3D it calls the interpolation

function for all fellow vehicles to provide smooth fellow vehicle movements.

The last part of the visualization is to display the generic warning and generic

information messages sent by Veins. Figure 4.7 shows a warning message visualized

4.5 Visualization 25

Figure 4.7 – Warning message visualized in the lower right corner.

in Unity3D. If an ADAS notices a situation of which the driver has to be informed or

warned the visualization has to notify the driver. When Unity3D receives a generic

information message a canvas in the right lower corner of the display pops up and

displays the text information. After a few seconds the canvas disappears. A generic

warning message triggers the canvas to pop up, too, and a warning sound rings and

a red warning light is activated. After a while the warning indications disappear.

The described visualization builds in combination with the vehicle dynamics

model a simplistic driving simulator but with the addition of simulated large-scale

road traffic and precise simulation of radio propagation models for IVC. Moreover, it

is possible to notify the driver about road traffic conditions based on IVC events. The

performance and characteristics of the interactive driving simulator and its network

architecture are evaluated in the next chapter.

Chapter 5

Evaluation

To show the feasibility of the proposed concept and its implementation, this chapter

evaluates the interactive driving simulator. The evaluation consists of two parts. The

first part highlights a few subjective impressions recognized during the evaluation.

This means, there are characteristics described which cannot be properly measured

because these characteristics depend on the perception of the human controlling the

driving simulator. For example, the feeling of the velocity of the controlled vehicle

or the behavior of the fellow vehicles belong to these characteristics. The second

and main part of the evaluation is about the performance of the developed network

architecture regarding scalability and real-time criteria. To better understand the

evaluation results, the chapter starts with a description of the measurement setup

and tools.

5.1 Measurement Setup and Tools

As described in the fundamentals chapter, Kuhl et al. [15] state having an as accurate

as possible driving environment improves the immersion. Therefore, a real-world

driving environment fulfills the requirement best. The OSM provides the required

data for real-world driving environments. Any OSM-based scenarios can be generated

as it is described in the scenario generation section. In this evaluation, a 3.5 km

round course in a neighborhood in the north of Paderborn is used as test course.

The test course is visualized in Figure 5.1 with the help of the blue line. The ego

vehicle route starts at the most southern point of the blue line and follows the

blue line counterclockwise back to the starting point. To provide reproducible and

comparable simulation results for this evaluation, the ego vehicle route is recorded.

These recordings are called ego vehicles traces. There are ego vehicle traces for 5 to

25 simulated vehicles with a stepwidth of 5 and for 25 to 200 simulated vehicles with

a stepwidth of 25. Additionally, for each number of simulated vehicles there are 3 ego

26

5.1 Measurement Setup and Tools 27

Figure 5.1 – Test course used for the evaluation. The red dot indicates the
start position of the ego vehicle.

vehicle traces recorded with different SUMO seeds in order to differently initialize

the random number generator of SUMO. Consequently, there are 36 different ego

vehicles traces. The ego vehicle traces build the base for this evaluation because it is

not possible to drive the ego vehicle exactly in the same way for each experiment.

The different number of simulated vehicles affects the driving behavior of the ego

vehicle as well. With the help of the ego vehicle traces, each experiment can be

conducted several times with exactly the same behavior of the ego vehicle and

the corresponding reaction of the fellow vehicles. A single ego vehicle trace takes

between 8 min to 10 min. Consequently, the evaluation is based on ego vehicle traces

lasting about a total of five and a half hours. The total driven distance is 126 km.

The recording of the ego vehicle traces is done with the tool Wireshark. Wireshark

is able to record UDP streams and can save them in .pcap files. Since the ego vehicle

states are updated by the vehicle dynamics model which is directly connected to the

visualization via UDP, Wireshark only has to save the UDP packets sent by the vehicle

dynamics model. In order to replay a recorded ego vehicle trace, the tool tcpreplay is

used. Tcpreplay is able to replay the recorded .pcap files. The visualization notices no

difference whether the ego vehicle states are updated by the ego vehicle’s dynamics

model or by a saved ego vehicle trace.

Due to the network architecture, single components of the network can run on

different computers. In the evaluated architecture, the 3D visualization is running

on a Windows 7 computer. Veins, SUMO, YAEVI and tcpreplay are running on a

Ubuntu 16.04 LTS computer. The system specifications are highlighted in Table 5.1.

As shown by Buse et al. [23], SUMO needs around 11 ms to provide results of a new

simulation step in their scenario as worst case approximation. This is far less than

5.1 Measurement Setup and Tools 28

Component Windows 7 PC Ubuntu 16.04 LTS PC

CPU Intel Core i7-3770K @ 3.5 GHz Intel Core i7-7700K @ 4.2 GHz
RAM 16 GB 16 GB
GPU Nvidia GTX 650 Ti no dedicated GPU

Table 5.1 – System specification of the computers used for the evaluation.

the synchronization interval of 100 ms. According to Obermaier and Facchi [32]
and Buse et al. [23], OMNeT++ will probably be the bottleneck in the developed

driving simulator architecture. The more interesting question is in which manner

the driving simulator network behaves with different computation times of a single

time step and whether it is possible to compensate real-time deadline violations.

To investigate the performance of the driving simulator network with different

OMNeT++/Veins time step computation times, a dummy application is implemented

in Veins. This dummy application is called dummy-app. With the help of dummy-app

it is possible to control the computation time of a single time step of Veins. The

dummy-app does nothing except of waiting for the adjusted Veins time step duration

to exceed. By setting the duration of a single time step of Veins, it can be investigated

how the driving simulator’s behavior depends on the duration that Veins takes for

simulating a single time step. Furthermore, the simulation results measured with

dummy-app are independent of a specific Veins implementation or scenario because

the duration of a single time step does not depend on functions responsible for

processing radio propagation models. In this thesis, the duration of a single time

step of Veins is called Veins load. The system-wide synchronization interval is 100 ms.

When the duration of a single Veins simulation time step is adjusted to 40 ms, the

Veins load is set to 40% of the synchronization interval of 100 ms.

In this thesis three different experiments are conducted to investigate the driving

simulator’s performance.

• Static Veins Load: The Veins load is set to values from 10% to 120% for each

different number of fellow vehicles. The Veins load is constant during the

complete simulation time. With the help this experiment, the general perfor-

mance of the driving simulator’s behavior depending on different Veins loads

is investigated.

• Uniformly Distributed Veins Load: The Veins load is varied between a mini-

mum value and a maximum value of an uniform distribution. The average

Veins load is consequently the average of the minimum and the maximum

value. Everytime Veins advances its simulation state, a new random value

corresponding to the adjusted uniform distribution is taken as duration for

the new time step of Veins. The uniform distribution enables investigations of

5.2 Subjective Observations 29

the behavior of the driving simulator’s performance when a simulation step

varies in its duration.

• 10 Hz Beaconing: In this scenario each vehicle runs a concrete application in

Veins which counts the fellow vehicles in communication range. Therefore,

each vehicle sends beacon messages at a rate of 10 Hz. This experiment shows

how many vehicles can be simulated in real-time in this particular scenario

with the described hardware.

5.2 Subjective Observations

As mentioned before there are 36 ego vehicles traces. Each trace is 3.5 km long.

Consequently I drove 36 times 3.5 km which are 126 km altogether, only for evalua-

tion purposes. During driving there were several effects impacting the immersion

driving a real vehicle which I recognized.

First of all, the current field of view is too small. Since the visualization is

currently presented on a single monitor, only the cockpit of the ego vehicles is

visualized. Hence, it is hard to see vehicles on intersecting roads.

The second effect reducing the immersion is the sense for velocity inside visu-

alization. It is hard to estimate the current velocity of the ego vehicle without a

speedometer. This effect is mostly noticeable at taking turns. If the speed of the ego

vehicle is too high, sharp turns are not possible and the ego vehicle will leave the

road.

A positive aspect of the visualization is that the human does not recognize whether

there are two or three missed real-time deadlines because the ego vehicle is always

displayed in a real-time manner due to the direct connection between the vehicle

dynamics model and the visualization. Thus, the immersion of the driving simulator

does not break entirely when there are a few missed real-time deadlines.

However, the biggest effect which affects the immersion negatively is caused

by SUMO. SUMO is responsible for simulating the fellow vehicles. Inside SUMO,

vehicles are simulated as single points in space and there is no vehicle dynamics

model for the fellow vehicles. Especially in turns, the lack of a vehicle dynamics

model is noticeable because fellow vehicles can almost turn on the point where they

are without reducing their velocity.

Furthermore, fellow vehicles behave strange compared to real-world road traffic

with the default SUMO configuration. For example, the fellow vehicles sometimes

ignore traffic regulations at crowded intersections without traffic light system. This

behavior can be explained by the aim of SUMO to involve effects caused by humans

to some degree. One parameter impacting the behaviour is called impatience. If

a vehicle has to wait too long at an intersection its impatience factor increases.

5.3 Quantitative Performance Analysis 30

After exceeding a certain threshold, the vehicle enters the intersection even if the

vehicle breaks traffic regualtions or other vehicles have to brake in order to not

collide. For humans using the driving simulator, it is hard to interact with this

behavior because the fellow vehicles act as there were no traffic regulations and it is

hard to enter the intersection without provoking a collision. Moreover, the way this

parameter is implemented does not represent the behavior of real humans at crowded

intersections. This behavior may be improved with a better SUMO configuration.

Concluding, the driving simulator provides an immersion good enough to show

the feasibility of the concept. Since a few missed real-time deadlines are not notice-

able, the immersion does not break entirely and the simulation is still representable

when the driving simulator is able to catch up the missed real-time deadlines. The

next section highlights under which circumstances the driving simulator holds the

real-time deadlines and in which manner the driving simulator is able to recover

from a few missed real-time deadlines.

5.3 Quantitative Performance Analysis

In order to get a basic insight in the driving simulator’s performance, results of the

Static Veins Load experiment are evaluated. Before evaluating the network part of

the driving simulator, it is important to know whether the visualization is able to

update the 3D environment fast enough for a fluent visualization. Richard et al.

[33] show that humans can interact properly with visualizations when 14 to 28

Frames Per Second (FPS) are displayed. Without a fluent visualization the driving

simulator loses its immersion. Therefore, the FPS of the visualization are measured

with different numbers of synchronized vehicles.

The number of frames per synchronization interval is counted and converted

in FPS. In Figure 5.2 the average FPS is plotted against the number of synchro-

nized vehicles. First it can be seen that the visualization is fast enough even for

200 synchronized vehicles on average with the given setup and scenario. For 200

synchronized vehicles there are 36 FPS on average which leads to a quiet fluent

visualization. The error bars indicate the 95% confidence interval. This means 95%

of all measured data points lay between the errorbars. 2.5% off all values lay below

the lower error bar and 2.5% lay above the higher error bar. Hence, even for 200

synchronized vehicles there are at least 20 FPS in 97.5% of all synchronization inter-

vals. In synchronization intervals in which the FPS are below 20, the visualization

might lag but it is still possible to control the ego vehicle.

The more interesting fact is that the FPS are decreasing linearly with an increasing

number of synchronized vehicles. This effect occurs because the visualization has

the same amount of computational effort for updating the synchronized states for

5.3 Quantitative Performance Analysis 31

0 25 50 75 100 125 150 175 200
Number Synchronized Vehicles

0

10

20

30

40

50

60

70
Fr

am
es

 p
er

 S
ec

on
d

Figure 5.2 – Average FPS depending on number of synchronized vehicles.
Error bars indicate the 95% confidence interval.

each vehicle. The data points of 20, 50 and 100 synchronized vehicles lay a little bit

lower than the lineal tendency. The reason for that may be that Figure 5.2 shows the

FPS depending on the number of synchronized vehicles, not the number of actual

displayed vehicles. When there is more computational effort for actually displaying

the fellow vehicles the FPS will consequently decrease.

Since it is shown that the visualization is able to fluently display the driving en-

vironment, the remainder of this chapter is about the discrete time-based simulators

performing under real-time conditions. As stated before, SUMO is responsible for

the fellow vehicle behavior and for including the ego vehicle. Hence, SUMO has a

large influence on the driving simulator without considering the IVC aspect. Because

the ego vehicle is controlled by human the ego vehicle state inside SUMO has to

be updated. Figure 5.3 shows the distribution of the duration for updating the ego

vehicle state in SUMO. 99.99% of all ego vehicle updates are done in less than 0.5 ms

of the 100 ms synchronization interval. This small value is reasonable since SUMO

only has to update the ego vehicle state and send back an acknowledge message.

SUMO does not advance its simulation state when it receives an ego vehicle update.

Accordingly, the measured time is more or less the round trip time between YAEVI

and SUMO. This may also explain the outlier for an ego vehicle update duration of

over 4 ms since the network could be exposed to fluctuation.

5.3 Quantitative Performance Analysis 32

0 1 2 3 4
Sumo Ego Vehicle Update Duration in [ms]

0%

20%

40%

60%

80%

100%
eC

D
F

Figure 5.3 – eCDF of the duration for updating the ego vehicle state in SUMO.

In order to investigate the duration SUMO needs to advance its simulation state,

the time points before sending the command to advance the simulation by one

simulation step and after receiving the new vehicle state from SUMO are measured.

The difference between these two points is considered as the duration SUMO takes

for simulating a single time step. This duration has to be lower than the 100 ms

synchronization interval. Figure 5.4 shows that the duration for simulating a single

time step in SUMO is always lower than 100 ms. On average SUMO needs about

8 ms to 15 ms for providing new simulation states of the fellow vehicles. The longest

duration SUMO takes to provide new simulation step results is about 35 ms. Thus,

SUMO never missed a real-time deadline.

But unfortunately, it can be seen in Figure 5.4 that the duration increases quite

linearly with no upper bound in the investigated scenario. This could lead SUMO to

constantly miss real-time deadlines after a certain time. Consequently, the driving

simulator components would desynchronize. Moreover, Figure 5.4 shows the appear-

ance of some outliers. These two observations could be based on two aspects. First,

during the recordings of the ego vehicle traces it was observed that the computational

effort of SUMO increased when the ego vehicle left the street. SUMO is not used

to vehicles not driving on the street and therefore there might be some behavior

inside SUMO causing the increasing SUMO simulation step duration. Furthermore,

in order to have always the same number of fellow vehicles inside the simulation,

5.3 Quantitative Performance Analysis 33

00:00:00 00:01:40 00:03:20 00:05:00 00:06:40 00:08:20 00:10:00
Simulation Time in [min]

10

15

20

25

30

35
Su

m
o

Si
m

ul
at

io
n

St
ep

 D
ur

at
io

n
in

 [m
s]

average
maximum

Figure 5.4 – Average and maximum duration SUMO takes to simulate single
time step over time.

the maximum number of fellow vehicles is bounded to a given number. When there

are more fellow vehicles scheduled than allowed in SUMO, SUMO will load the

scheduled fellow vehicles anyway but will not integrate them in the simulation. In

the evaluated SUMO configuration there are permanently generated fellow vehicles

in order to always have enough fellow vehicles inside the scenario. The list of fellow

vehicles which are loaded but cannot be integrated in the simulation permanently

grows. The growing list might be a problem for SUMO simulating a new simulation

step causing the duration to grow as well. Due to time limitations of this thesis there

is no further investigation on this behavior of SUMO. But Buse et al. [23] already

showed that SUMO is able to perform better under similar conditions regarding

real-time criteria. Hence, SUMO might perform better or in best case have an upper

bound of the simulation step duration with another parametrization.

Investigations regarding Veins influencing the driving simulator are presented

next because Veins will probably be the bottleneck in order to meet the 100 ms

synchronization interval [32]. To provide evaluation results regarding Veins inde-

pendent of a specific Veins implementation or scenario, the driving simulator is

investigated with different Veins loads. As illustrated by Figure 5.5, Veins can use up

to 95% of the synchronization interval for IVC simulation and the driving simulator

5.3 Quantitative Performance Analysis 34

0 20 40 60 80 100 120
Veins Load in % of Synchronization Intervall

0.8

0.9

1.0

1.1

1.2

Si
m

se
c

Pe
r

Se
c

Figure 5.5 – Average simsec per second depending on different static Veins
loads. Error bars indicate the 95% confidence interval.

has an average simulation second per second of 1. Means that, on average, the

driving simulator meets the real-time deadline up to a Veins load of 95%.

The error bars indicate the 95% confidence interval and show that the simulation

second per second values vary around 1. The reason for this is the varying duration

between two clock tick messages which arrive at the YAEVI. Sometimes the dura-

tion between these messages is shorter or longer than the synchronization interval

because the wall clock of the visualization does not always provide exact 100 ms

intervals. Therefore, the corresponding simulation second per second varies because

the discrete time-based simulators Veins and SUMO advance their simulation states

in exactly 100 ms steps.

When the Veins load is adjusted to 100% or higher the average simulation second

per second value is lower than 1. In some cases the simulation second per second

value is 1 when the duration between two clock tick messages is longer than 100 ms.

Consequently, with such an adjusted Veins load the driving simulator does not meet

any real-time deadline. When the Veins load is adjusted to 100%, a single Veins

simulation step takes as long as the synchronization interval. Since the YAEVI also

needs a few milliseconds for synchronizing all simulators, a Veins load of 100%

will cause missing real-time deadlines. For even higher Veins loads this effect will

increase. Figure 5.6 illustrates the simulation second per second ratio in a more

5.3 Quantitative Performance Analysis 35

intuitive way. The grey dashed line represents the wall clock time. When the black

line of the plots lays exactly on top of the grey line like in Figure 5.6a and Figure 5.6b

the driving simulator performs in a real-time manner. Figure 5.6c and Figure 5.6d

show the driving simulator not performing in a real-time manner because the black

line is not as steep as the grey line indicating the wall clock time.

When Veins always takes longer than the synchronization interval for simulating a

single time step, as shown in Figure 5.6d, it is obvious that the driving simulator will

not perform in a real-time manner. A more interesting question is how the driving

simulator behaves when there is not always a static load but rather a fluctuation on

the Veins load. Is the driving simulator able to catch up time and recover to real-time

when there are some simulation steps taking longer than the synchronization interval

and some simulation steps taking shorter than the synchronization interval? To

investigate the driving simulator’s behavior with fluctuating Veins load the Uniformly

Distributed Veins Load experiment was conducted. The fluctuation models the behav-

ior of Veins in a more realistic way because the duration of a time step of a concrete

application in Veins deviates, too, depending on the actual computational effort

needed for processing it. Four different uniform distributions are highlighted in

0 200 400 600
Wall Clock Time in [s]

0

200

400

600

Si
m

se
c

in
 [s

]

(a) 50% Veins load, real-time achieved

0 200 400 600
Wall Clock Time in [s]

0

200

400

600

Si
m

se
c

in
 [s

]

(b) 95% Veins load, real-time achieved

0 200 400 600
Wall Clock Time in [s]

0

200

400

600

Si
m

se
c

in
 [s

]

(c) 100% Veins load, real-time lost

0 200 400 600
Wall Clock Time in [s]

0

200

400

600

Si
m

se
c

in
 [s

]

(d) 120% Veins load, real-time lost

Figure 5.6 – Simulation second per second relation depending on different
static Veins loads.

5.3 Quantitative Performance Analysis 36

Table 5.2. The four different average Veins loads shall represent three cases. First,

80% average Veins load represents a case in which it is possible to meet the real-time

deadlines when there would be a static load. 95% and 100% average Veins load

represents the corner case in which it can be critical to meet the real-time deadlines

and 110% represents a case in which it should not be possible to meet the real-time

deadlines. Figure 5.7 illustrates the highlighted uniformly distributed Veins loads.

Unfortunately, there are some Veins simulation steps that are even longer than the

maximum of the adjusted uniform distribution recognizable by the not perfectly

straight lines. The even longer simulation steps could be caused by some overhead

of Veins managing the states of all vehicles. Normally, an empirical Cumulative

Distribution Function (eCDF) of an uniform distribution is a perfect straight line.

average uniform minimum value uniform maximum value

80% 30% 130%
95% 65% 125%
100% 70% 130%
110% 80% 140%

Table 5.2 – Input parameter of the dummy-app for uniformly distributed Veins
loads.

40 60 80 100 120 140 160
Veins Simulation Step Duration in [ms]

0%

20%

40%

60%

80%

100%

eC
D

F

uniform[30, 130], avg: 80
uniform[65, 125], avg: 95
uniform[70, 130], avg: 100
uniform[80, 140], avg: 110

Figure 5.7 – Simulation step duration of investigated uniformly distributed
Veins loads.

5.3 Quantitative Performance Analysis 37

Important to recognize is that in all distributions there are Veins simulation steps

which take longer than 100 ms.

As stated in the section about subjective observations, the ability to compensate

missed real-time deadlines prevents the driving simulator to lose the immersion. In

order to keep synchronized, the driving simulator has to compensate such too long

Veins simulation steps and has to catch up time when there are Veins simulation

steps shorter than the synchronization interval of 100 ms. Figure 5.8 illustrates the

relation of simulation second to second. As shown by Figure 5.8a and Figure 5.8b,

the driving simulator is able to compensate slight real-time deadline misses. This

behavior is caused because the YAEVI always tries to synchronize all driving simulator

components as fast as possible and afterwards waits for the new clock tick message

provided by the visualization. When the driving simulator missed a deadline, the

YAEVI does not have to wait for the corresponding clock tick message and can

therefore immediately synchronize all driving simulator components in order to

catch up time. But as shown by Figure 5.8c and Figure 5.8d, when the average Veins

load is too high it is not possible to perform in a real-time manner.

0 200 400
Wall Clock Time in [s]

0

100

200

300

400

500

Si
m

se
c

in
 [s

]

(a) Uniform distribution 30 to 130, avg: 80,
real-time achieved

0 200 400
Wall Clock Time in [s]

0

100

200

300

400

500

Si
m

se
c

in
 [s

]

(b) Uniform distribution 65 to 125, avg: 95,
real-time achieved

0 200 400
Wall Clock Time in [s]

0

100

200

300

400

500

Si
m

se
c

in
 [s

]

(c) Uniform distribution 70 to 130, avg: 100,
real-time lost

0 200 400
Wall Clock Time in [s]

0

200

400

Si
m

se
c

in
 [s

]

(d) Uniform distribution 80 to 140, avg: 110,
real-time lost

Figure 5.8 – Simsec to second relation depending on uniformly distributed
Veins simulation step duration

5.3 Quantitative Performance Analysis 38

The maximum difference between the simulation time of Veins and SUMO and

the wall clock time confirms the results and is showed in Table 5.3. In Figure 5.8a the

maximum difference is −175 ms between the simulation time of the discrete time-

based simulators and the wall clock time provided by the visualization. This means

Veins and SUMO never lag more than two simulation steps behind the visualization.

But in Figure 5.8d the maximum difference is−59 873 ms which means that Veins and

SUMO almost lag a whole minute behind the visualization. When the components

are desynchronized so much, the driving simulator does no longer work properly

because the simulation states of the vehicles does not match with the visualized

environment.

All recent results base on different Veins loads generated by the dummy-app, but

these results do not show how many vehicles can be simulated in the actual scenario,

given the used software versions and the available hardware. In order to investigate

the capabilities of the driving simulator with real simulated IVC, the 10 Hz Beaconing

experiment is conducted. This experiment is an actual application in Veins using

radio propagation models and obstacle shadowing. In this scenario all simulated

vehicles, including the ego vehicle, send beacon messages with a sending rate of

10 Hz in order build up a minimalistic neighbor table. The sending rate of 10 Hz is

used because this rate is the highest rate in which beacon messages are generated

according to the ETSI ITS-G5 protocol stack [8].
Figure 5.9 shows the average simulation second per second of the driving sim-

ulator depending on the number of simulated vehicles. Up to 20 vehicles can be

simulated in order to perform under real-time conditions in this particular scenario.

When there are 25 simulated vehicles the average simulation second per second

is already below 1 and therefore the real-time deadlines are not met on average.

The error bars show the 95% confidence interval in the same way as in Figure 5.5.

Figure 5.10 shows the distribution of the Veins simulation step duration and helps

to explains why the average simulation second per second value is about 1 when

there are 20 simulated vehicles and why the average simulation second per second

value is below 1 when there are 25 simulated vehicles.

uniform distribution maximum time difference

Figure 5.8a −175 ms
Figure 5.8b −396 ms
Figure 5.8c −10 006 ms
Figure 5.8d −59 873 ms

Table 5.3 – Maximum difference between simulation time and wall clock time
of the discrete time-based simulators Veins and SUMO and the visualization.

5.3 Quantitative Performance Analysis 39

0 10 20 30 40 50
Number of Synchronized Vehicles

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Si

m
se

c
Pe

r
Se

c

Figure 5.9 – Average simsec per second depending on number of simulated
vehicles [5, 10, 15, 20, 25, 50].

40 60 80 100 120 140 160
Veins Timestep Duration in [ms]

0%

20%

40%

60%

80%

100%

eC
D

F

20 Vehicles
25 Vehicles

Figure 5.10 – Distribution of the duration Veins needs to simulate a single
simulation step when there are 20 and 25 simulated vehicles.

5.3 Quantitative Performance Analysis 40

The static load experiment showed that Veins can use up to 95% of the syn-

chronization interval for processing a single simulation step. Consequently, a Veins

simulation step can take about up to 95 ms in this scenario without missing real-time

deadlines. When there are only 20 simulated vehicles 99% of all Veins simulation

steps take less than 95 ms. As showed earlier, the driving simulator is able to recover

from simulation steps taking longer than the synchronization interval. Thus, the

1% of Veins simulation steps taking longer than 95 ms can be compensated by the

driving simulator. But when there are 25 simulated vehicles, only 24% of all Veins

simulation steps take less than 95 ms. The rest of the Veins simulation steps take

longer and therefore cause missing real-time deadlines. Furthermore, the driving

simulator cannot compensate the larger amount of simulation steps longer than

the synchronization interval because there is too much load generated by Veins

on average. As a result, the maximum number of simulated vehicles which allows

simulating in a real-time manner lays between 20 and 25 vehicles.

These results complete the evaluation. The evaluation shows the feasibility of the

proposed concept and implementation. The driving simulator performs in a real-time

manner when all components meet the real-time deadlines. The evaluation shows

that Veins can use up to 95% of the synchronization interval and the components

keep synchronized. Further, the driving simulator is able to catch up time when

Veins misses a few real-time deadlines. The recovering from missed deadlines works

when the average Veins load is equal or below 95%. Finally, the evaluation results

show that the driving simulator supports about 20 vehicles sending beacon messages

at a sending rate of 10 Hz.

Chapter 6

Conclusion

This thesis proposed a concept and a concrete implementation of an interactive

driving simulator for C2X scenarios. The driving simulator consists of four major

components and an interface orchestrating the components. The discrete time-based

simulators Veins and SUMO are connected with a real-time based vehicle dynamics

model and a 3D visualization. The orchestration is done with the help of the YAEVI.

The YAEVI is responsible for synchronizing Veins, SUMO and the 3D visualization.

Moreover, the YAEVI handles the information exchange among Veins, SUMO and the

3D visualization. Evaluation results show the capability of all components meeting

the real-time deadlines. Further, it is illustrated that Veins can use to up 95% of

the time of the synchronization interval for simulating IVC. Even too long Veins

simulation steps due to uniformly distributed Veins loads can be compensated when

the average Veins load is not higher than 95%. Consequently, the immersion provided

by the driving simulator does not break entirely when there are only a few missed

real-time deadlines. With the developed driving simulator, humans can control a

vehicle inside C2X scenarios with currently about 20 supported vehicles. Cooperative

ADASs and human behaviors of driving vehicles can be evaluated together in small

scenarios. With a more efficient Veins implementation more vehicles could be

supported because Veins is currently the bottleneck of the driving simulator regarding

real-time deadlines. As future work, an approach which couples the components

asynchronously avoids the driving simulator from entirely desynchronizing when

Veins is not able to meet the real-time deadlines at all. Moreover, an subjective study

to investigate the human perception based aspects of the driving simulator in order

to improve them is a reasonable future work.

41

List of Abbreviations

ADAS Advanced Driver Assistant System

API Application Programming Interface

C2X Car2X

DiVE Distributed Virtual Environment

DSRC Dedicated Short Range Communication

eCDF empirical Cumulative Distribution Function

ETSI European Telecommunications Standards Institute

EVI Ego Vehicle Interface

FPS Frames Per Second

HIL Hardware-in-the-Loop

HuIL Human-in-the-Loop

IVC Inter-Vehicle Communication

LTE Long Term Evolution

MAC Medium Access Control

NS2 Network Simulator 2

OMNeT++ Objective Modular Network Testbed in C++
OSM OpenStreetMap

PubSub publish-subscribe

RF Radio Frequency

SUMO Simulation of Urban MObility

TCP Transmission Control Protocol

TIS Traffic Information System

TraCI Traffic Control Interface

UDP User Datagram Protocol

VANET Vehicular Ad Hoc Network

Veins Vehicles in Network Simulation

WAVE Wireless Access in Vehicular Environments

YAEVI Yet Another Ego Vehicle Interface

42

List of Figures

2.1 Different communication patterns of DSRC and LTE. Figure inspired

by Rémy et al. [9]. 4

2.2 Timeline with scheduled simulation events. 5

2.3 Architecture of the bidirectionally coupled simulators Veins and SUMO. 6

2.4 Message sequence diagram of one time step of the Veins framework.

Figure inspired by Wegener et al. [14]. 6

2.5 Illustration of already intersecting research domains. The grey point

illustrates the technology gap this thesis tries to fill. 11

3.1 Basic information shared between all components. 15

4.1 Basic architecture of the implemented interactive driving simulator. . 17

4.2 Architecture with PubSub communication pattern. Points illustrate

publisher sockets. Arrowheads illustrate subscriber sockets. 18

4.3 TraCI tunneled with Google Protocol Buffers. 19

4.4 Message sequence diagram of synchronized messages of a single

simulation step. 20

4.5 Steering wheel and pedals used for the interactive driving simulator. 22

4.6 Top down view of a neighborhood of the north of Paderborn provided

by OSM and the corresponding environment visualized by Unity3D

and SUMO. 24

4.7 Warning message visualized in the lower right corner. 25

5.1 Test course used for the evaluation. The red dot indicates the start

position of the ego vehicle. 27

5.2 Average FPS depending on number of synchronized vehicles. Error

bars indicate the 95% confidence interval. 31

5.3 eCDF of the duration for updating the ego vehicle state in SUMO. . . 32

5.4 Average and maximum duration SUMO takes to simulate single time

step over time. 33

43

List of Figures 44

5.5 Average simsec per second depending on different static Veins loads.

Error bars indicate the 95% confidence interval. 34

5.6 Simulation second per second relation depending on different static

Veins loads. 35

5.7 Simulation step duration of investigated uniformly distributed Veins

loads. 36

5.8 Simsec to second relation depending on uniformly distributed Veins

simulation step duration . 37

5.9 Average simsec per second depending on number of simulated vehicles

[5, 10, 15, 20, 25, 50]. 39

5.10 Distribution of the duration Veins needs to simulate a single simulation

step when there are 20 and 25 simulated vehicles. 39

List of Tables

2.1 Overview of different simulator platforms. 12

5.1 System specification of the computers used for the evaluation. 28

5.2 Input parameter of the dummy-app for uniformly distributed Veins

loads. 36

5.3 Maximum difference between simulation time and wall clock time of

the discrete time-based simulators Veins and SUMO and the visual-

ization. 38

45

Bibliography

[1] A. Gern, U. Franke, and P. Levi, “Robust Vehicle Tracking Fusing Radar and

Vision,” in International Conference on Multisensor Fusion and Integration

for Intelligent Systems MFI 2001, Baden-Baden, Germany: IEEE, Aug. 2001,

pp. 323–328. DOI: 10.1109/MFI.2001.1013555.

[2] C. Sommer and F. Dressler, Vehicular Networking. Cambridge University

Press, Nov. 2014. DOI: 10.1017/CBO9781107110649.

[3] S. Joerer, B. Bloessl, M. Huber, A. Jamalipour, and F. Dressler, “Assessing

the Impact of Inter-Vehicle Communication Protocols on Road Traffic Safety,”

in 20th ACM International Conference on Mobile Computing and Networking

(MobiCom 2014), 6th Wireless of the Students, by the Students, for the Students

Workshop (S3 2014), Maui, HI: ACM, Sep. 2014, pp. 21–23. DOI: 10.1145/

2645884.2645885.

[4] K. Tateiwa, A. Nakamura, and K. Yamada, “Study on Estimating Driver Aware-

ness of Pedestrians While Turning Right at Intersection Based on Vehicle

Behavior Utilizing Driving Simulator,” in IEEE Intelligent Vehicles Symposium

(IV), Gothenburg, Sweden: IEEE, Jun. 2016, pp. 388–393. DOI: 10.1109/

IVS.2016.7535415.

[5] K. Sonoda and T. Wada, “Displaying System Situation Awareness Increases

Driver Trust in Automated Driving,” IEEE Transactions on Intelligent Vehicles,

vol. 2, no. 3, pp. 185–193, Sep. 2017. DOI: 10.1109/TIV.2017.2749178.

[6] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled Network

and Road Traffic Simulation for Improved IVC Analysis,” IEEE Transactions on

Mobile Computing, vol. 10, no. 1, pp. 3–15, Jan. 2011. DOI: 10.1109/TMC.

2010.133.

[7] L. Wischhof, A. Ebner, H. Rohling, M. Lott, and R. Halfmann, “SOTIS - A

Self-Organizing Traffic Information System,” in 57th IEEE Vehicular Technology

Conference (VTC2003-Spring), Jeju, South Korea: IEEE, Apr. 2003, pp. 2442–

2446. DOI: 10.1109/VETECS.2003.1208829.

46

https://doi.org/10.1109/MFI.2001.1013555
https://doi.org/10.1017/CBO9781107110649
https://doi.org/10.1145/2645884.2645885
https://doi.org/10.1145/2645884.2645885
https://doi.org/10.1109/IVS.2016.7535415
https://doi.org/10.1109/IVS.2016.7535415
https://doi.org/10.1109/TIV.2017.2749178
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1109/VETECS.2003.1208829

Bibliography 47

[8] ETSI, “Intelligent Transport Systems (ITS); Vehicular Communications; Basic

Set of Applications; Part 2: Specification of Cooperative Awareness Basic

Service,” ETSI, EN 302 637-2 V1.3.2, Nov. 2014.

[9] G. Rémy, S.-M. Senouci, F. Jan, and Y. Gourhant, “LTE4V2X: LTE for a Cen-

tralized VANET Organization,” in IEEE Global Telecommunications Conference

(GLOBECOM 2011), Houston, TX: IEEE, Dec. 2011. DOI: 10.1109/GLOCOM.

2011.6133884.

[10] A. Varga, “The OMNeT++ Discrete Event Simulation System,” in European

Simulation Multiconference (ESM 2001), Prague, Czech Republic, Jun. 2001.

[11] M. Lacage and T. R. Henderson, “Yet Another Network Simulator,” in 2006

Workshop on Ns-2: The IP Network Simulator, Pisa, Italy: ACM, Oct. 2006.

DOI: 10.1145/1190455.1190467.

[12] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2, 1st ed.

Boston, MA: Springer US, 2009. DOI: 10.1007/978-0-387-71760-9_2.

[13] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner, “SUMO (Simulation

of Urban MObility); An Open-source Traffic Simulation,” in 4th Middle East

Symposium on Simulation and Modelling (MESM 2002), Sharjah, United Arab

Emirates, Sep. 2002, pp. 183–187.

[14] A. Wegener, M. Piorkowski, M. Raya, H. Hellbrück, S. Fischer, and J.-P. Hubaux,

“TraCI: An Interface for Coupling Road Traffic and Network Simulators,” in

11th Communications and Networking Simulation Symposium (CNS 2008),

Ottawa, Canada: ACM, Apr. 2008, pp. 155–163. DOI: 10.1145/1400713.

1400740.

[15] J. Kuhl, D. Evans, Y. Papelis, R. Romani, and G. Watson, “The Iowa Driving

Simulator: An Immersive Research Environment,” IEEE Computer, vol. 28,

no. 7, pp. 35–41, Jul. 1995. DOI: 10.1109/2.391039.

[16] E. Blana, “A Survey of Driving Research Simulators Around the World,” In-

stitute for Transport Studies, University of Leeds, Working Paper 481, Dec.

1996.

[17] K. Abdelgawad, B. Hassan, J. Berssenbrügge, J. Stöcklein, and M. Grafe, “A

Modular Architecture of an Interactive Simulation and Training Environment

for Advanced Driver Assistance Systems,” International Journal On Advances

in Software, vol. 8, no. 1 & 2, pp. 247–261, Jun. 2015.

[18] Y. Boukadida, A. Masmoudi, G. M. Casolino, and F. Marignetti, “A Simple

Assessment of the Dynamics of the Road Vehicles,” in 18th International

Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo,

Monaco: IEEE, Apr. 2018. DOI: 10.1109/EVER.2018.8362416.

https://doi.org/10.1109/GLOCOM.2011.6133884
https://doi.org/10.1109/GLOCOM.2011.6133884
https://doi.org/10.1145/1190455.1190467
https://doi.org/10.1007/978-0-387-71760-9_2
https://doi.org/10.1145/1400713.1400740
https://doi.org/10.1145/1400713.1400740
https://doi.org/10.1109/2.391039
https://doi.org/10.1109/EVER.2018.8362416

Bibliography 48

[19] K. Abdelgawad, M. Abdelkarim, B. Hassan, M. Grafe, and I. Gräßler, “A

modular architecture of a PC-based driving simulator for advanced driver

assistance systems development,” in 15th International Workshop on Research

and Education in Mechatronics (REM), El Gouna, Egypt: IEEE, Sep. 2014. DOI:

10.1109/REM.2014.6920237.

[20] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded

Applications, 2nd ed. Springer US, 2011. DOI: 10.1007/978-1-4419-8237-

7.

[21] R. Isermann, J. Schaffnit, and S. Sinsel, “Hardware-in-the-loop simulation

for the design and testing of engine-control systems,” Control Engineering

Practice, vol. 7, no. 5, pp. 643–653, May 1999. DOI: 10.1016/S0967-

0661(98)00205-6.

[22] K. S. Swanson, A. A. Brown, S. N. Brennan, and C. M. LaJambe, “Extending

Driving Simulator Capabilities Toward Hardware-in-the-Loop Testbeds and

Remote Vehicle Interfaces,” in IEEE Intelligent Vehicles Symposium (IV’13),

Gold Coast, QLD, Australia: IEEE, Jun. 2013, pp. 122–127. DOI: 10.1109/

IVS.2013.6629458.

[23] D. S. Buse, M. Schettler, N. Kothe, P. Reinold, C. Sommer, and F. Dressler,

“Bridging Worlds: Integrating Hardware-in-the-Loop Testing with Large-Scale

VANET Simulation,” in 14th IEEE/IFIP Conference on Wireless On demand

Network Systems and Services (WONS 2018), Isola 2000, France: IEEE, Feb.

2018. DOI: 10.23919/WONS.2018.8311659.

[24] S. Guan, R. E. De Grande, and A. Boukerche, “Real-time 3D Visualization for

Distributed Simulations of VANets,” in 18th IEEE/ACM International Sympo-

sium on Distributed Simulation and Real Time Applications, Toulouse, France:

IEEE, Oct. 2014, pp. 138–146. DOI: 10.1109/DS-RT.2014.25.

[25] D. Gruyer, O. Orfila, V. Judalet, S. Pechberti, B. Lusetti, and S. Glaser, “Proposal

of a Virtual and Immersive 3D Architecture dedicated for Prototyping, Test and

Evaluation of Eco-Driving Applications,” in IEEE Intelligent Vehicles Symposium

(IV’13), Gold Coast, QLD, Australia: IEEE, Jun. 2013, pp. 511–518. DOI:

10.1109/IVS.2013.6629519.

[26] W. M. Griggs, R. H. Ordóñez-Hurtado, E. Crisostomi, F. Häusler, K. Massow,

and R. N. Shorten, “A Large-Scale SUMO-Based Emulation Platform,” IEEE

Transactions on Intelligent Transportation Systems, vol. 16, no. 6, pp. 3050–

3059, Dec. 2015. DOI: 10.1109/TITS.2015.2426056.

https://doi.org/10.1109/REM.2014.6920237
https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.1016/S0967-0661(98)00205-6
https://doi.org/10.1016/S0967-0661(98)00205-6
https://doi.org/10.1109/IVS.2013.6629458
https://doi.org/10.1109/IVS.2013.6629458
https://doi.org/10.23919/WONS.2018.8311659
https://doi.org/10.1109/DS-RT.2014.25
https://doi.org/10.1109/IVS.2013.6629519
https://doi.org/10.1109/TITS.2015.2426056

Bibliography 49

[27] F. Michaeler and C. Olaverri-Monreal, “3D Driving Simulator with VANET

Capabilities to Assess Cooperative Systems: 3DSimVanet,” in IEEE Intelligent

Vehicles Symposium (IV’17), Redondo Beach, CA, USA: IEEE, Jun. 2017,

pp. 999–1004. DOI: 10.1109/IVS.2017.7995845.

[28] H. Prendinger, M. Miska, K. Gajananan, and A. Nantes, “A Cyber-Physical

System Simulator for Risk-Free Transport Studies,” Computer-Aided Civil and

Infrastructure Engineering, vol. 29, no. 7, pp. 480–495, Aug. 2014. DOI:

10.1111/mice.12068.

[29] Y. Hou, Y. Zhao, A. Wagh, L. Zhang, C. Qiao, K. F. Hulme, C. Wu, A. W. Sadek,

and X. Liu, “Simulation-Based Testing and Evaluation Tools for Transportation

Cyber-Physical Systems,” IEEE Transactions on Vehicular Technology, vol. 65,

no. 3, pp. 1098–1108, Mar. 2016. DOI: 10.1109/TVT.2015.2407614.

[30] P. Hintjens, ZeroMQ Messaging for Many Applications. O’Reilly Media, 2013.

[31] M. Haklay and P. Weber, “OpenStreetMap: User-Generated Street Maps,” IEEE

Pervasive Computing, vol. 7, no. 4, pp. 12–18, Oct. 2008. DOI: 10.1109/

MPRV.2008.80.

[32] C. Obermaier and C. Facchi, “Observations on OMNeT++ Real-Time Be-

haviour,” in 4th OMNeT++ Community Summit (OMNeT++ 2017), Bremen,

Germany: arXiv, Sep. 2017.

[33] P. Richard, G. Birebent, P. Coiffet, and G. Burdea, “Effect of Frame Rate and

Force Feedback on Virtual Object Manipulation,” Presence: Teleoperators and

Virtual Environments, vol. 5, no. 1, pp. 95–108, Winter 1996. DOI: 10.1162/

pres.1996.5.1.95.

https://doi.org/10.1109/IVS.2017.7995845
https://doi.org/10.1111/mice.12068
https://doi.org/10.1109/TVT.2015.2407614
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1162/pres.1996.5.1.95
https://doi.org/10.1162/pres.1996.5.1.95

	Abstract
	Kurzfassung
	1 Introduction
	2 Fundamentals
	2.1 Traffic Information Systems
	2.2 Vehicular Network Simulations
	2.3 Driving Simulators
	2.4 Coupling Simulators
	2.5 Related Work

	3 Concept
	4 Implementation
	4.1 Networking Tools
	4.2 Synchronization of Components
	4.3 Vehicle Dynamics Model
	4.4 Scenario Generation
	4.5 Visualization

	5 Evaluation
	5.1 Measurement Setup and Tools
	5.2 Subjective Observations
	5.3 Quantitative Performance Analysis

	6 Conclusion
	Bibliography

