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A B S T R A C T

The photonic time-frequency degree of freedom is a powerful re-
source for implementing high-dimensional quantum information pro-
cessing. In particular, field-orthogonal pulsed temporal modes offer
a flexible framework compatible with both long-distance fibre net-
works and integrated waveguide devices. In order for it to be fully
utilised, techniques must be developed which can reliably generate
diverse quantum states of light and accurately measure complex tem-
poral waveforms. A promising toolbox to accompolish this is non-
linear processes driven by spectrally shaped pump pulses in group-
velocity engineered waveguides. In this thesis, we show how tailor-
ing the phasematching conditions of parametric downconversion and
sum-frequency generation, as well as pulse shaping techniques, cre-
ate new possibilities for generating highly pure single photons, for
flexible temporal-mode entanglement, and for accurate measurement
of time-frequency photon states.

v





Z U S A M M E N FA S S U N G

Die photonische Zeit-Frequenz Freiheitsgrad ist ein leistungsfähiger
Werkzeug, der sich für die Implementierung hochdimensionalen Quan-
teninformationsverarbeitung eignet. Inbesondere die sogenannten fel-
dorthagonalen Temporal Modes bieten einen flexiblen Rahmen, den
mit sowohl Glasfasernetzen, als auch integrierte Wellenleiter-Geräte
kompatibel sind. Um diese Potential vollständig auszunutzen, müssen
Methoden und Techniken entwickelt werden, die in der Lage sind, di-
verse Quantenzustände von Licht zuverlässig zu generieren und kom-
plexe temporale Waveforms akkurat zu messen. Ein vielversprechen-
des Mittel, dieses zu ermöglichen, bieten nichtlineare Prozessen an,
die über spektral geformten Pump-Pulse in Gruppengeschwindigkeit-
optimierten Wellenleitern angetrieben werden. In dieser Dissertation
zeigen wir, wie sozusagen maßgeschneiderte (tailored) Phasenanpassung
für die parametrischen Downconversion und Summenfrequenzerzeu-
gung, wie auch Pulsformung-Techniken, neue Möglichkeiten erlauben
bei der Produktion reiner einzelnen Photonen, sowie auch bei der
flexiblen Verschränkung von Temporal Modes und akkuraten Mes-
sungen von Zeit-Frequenz-Zuständen der Photonen.
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1
I N T R O D U C T I O N

1.1 temporal modes of light

Let us consider the temporal modes of a quanta of electric field i.e.
single photons. If we neglect all degrees of freedom expect time, the
quantum state of a single photon in a specific temporal-mode is

|ψj〉 = Â†
j |0〉 , (1.1)

where the quantum operator Â† defines the temporal-mode of the pho-
ton such as

Â†
j =

∫
dt f̃ j(t)Â†(t), (1.2)

where f̃ j(t) the temporal shape of the wave packet and Â†
j (t) is a

creation operator for a single photon at time t [11]. Although this fully
describe the photon’s temporal-mode, depending on the problem at
hand it can be useful to express the field in the frequency domain.
Through a Fourier transformation we can rewrite Â† in the frequency
space as

Â†
j =

∫ dω

2π
f j(ω)â†(ω), (1.3)

where f j(ω) is the complex spectral amplitude of the wave packet and
â†(ω) is the monochromatic creation operator. The operators Âj and
â(ω) both satisfy bosonic commutation relations. With this definition,
we can write the state of any single-photon in terms of superposition
of temporal-modes

|Ψ〉 = ∑
j

cj Â†
j |0〉 , (1.4)

where {Â†
j } create a complete basis.

These temporal-modes of light accommodate a versatile resource
for information encoding in quantum and classical information sci-
ences. The description of the temporal-modes of quantum light for-
mulated here can be easily translated to classical light, where e.g.
f j(ω) define the temporal-modes of our classical field. In any case,
the information is encoded in the complex time-frequency ampli-
tude of photons. Like spatial encodings, the Hilbert space available
in the Fourier-conjugate time and frequency domains is in-principle
unbounded, allowing for high-dimensional encodings. Unlike spa-
tial encodings, time-frequency encodings are intrinsically compatible
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4 introduction

Figure 1.1: Temporal-mode encodings visualised in time-frequency space.
Orthogonal temporal mode bases can be constructed through
slicing bins in frequency or time, as in (a) and (b), or through
intensity-overlapping but field-orthogonal waveforms, such as
the Hermite-Gauss pulsed modes in (c).

with waveguides and fibre transmission. Temporal-mode bases can
take on a variety of forms, such as discrete time or frequency bins or
intensity-overlapping Hermite-Gaussian modes, as illustrated in Fig
1.1, so long as the waveforms provide an orthonormal basis.

1.2 chronocyclic wigner function

A nice mathematical formalism to visualise ultrashort temporal-modes
is the chronocyclic Wigner function [65]. The real-valued Wigner dis-
tribution function can be defined as

W(t, ω) =
1

2π

∫
f (ω +

ω′

2
) f ∗(ω− ω′

2
) e−ıω′tdω′. (1.5)

The temporal and spectral intensities of the a pulse can be easily cal-
culated by tracing the Wigner function over the conjugate variable. In
Fig. 1.1 (c) we show the Wigner function for the first four Hermite-
Gaussian modes.

1.3 shaping ultrashort pulses

Many different experimental techniques exist for pulse shaping [62,
94, 95], where the practicality of each method depend on the required
temporal resolution and the temporal duration of the pulses. In the
context of this thesis, we work with ultrashort pulses of duration
from 100 to 10,000 femtoseconds. Since the existing electronics tech-
nology is not fast enough to modulate such short pulses directly in
time, typically frequency-domain methods are chosen to shape these
pulses.

Here we use 4f-setups with a spatial light modulator (SLM) at the
Fourier plane to shape the desired spectral amplitude and phase [28,
92], as outlined in Fig. 1.2. As an example, to shape pulses from a tita-
nium:sapphire (Ti:Sa) oscillator (Coherent Chameleon Ultra II) with
a central wavelength of 850 nm, our 4f-setup consist of a magnify-
ing telescope with a magnification of three, a holographic diffraction
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Figure 1.2: Ultrashort pulse shaping. We use a reflective spatial light modu-
lator (SLM) in a folded 4f-setup to shape the spectral amplitude
and phase of the pulses. A telescope is used to match the size of
each frequency component with SLM’s pixels to get an optimum
resolution. The SLM reflects the beam at a slightly different an-
gle which displaces the reflected beam vertically and allows us
to collect the reflected beam with a d-shaped mirror.

grating with 2000 lines per mm, a cylindrical silver mirror with a fo-
cal length of 300 mm and a reflective liquid crystal on silicon spatial
light modulator (Hamamatsu X10468-07 LCoS-SLM). This configura-
tion provide a pulse shaper with a spectral resolution of about 33

picometres or 87 GHz which corresponds to a temporal window of
about 31 picoseconds.

1.4 characterising ultrashort pulses

Similar to pulse shaping methods, there are also many techniques
developed to fully characterise optical fields [62, 87]. In the context
of this thesis, we widely used spectral interferometry [27] in the
alignment procedure of pulse shapers and to characterise the shaped
pulses. The outline of this method is depicted in Fig. 1.3. We mix
an unknown pulse f (ω) = | f (ω)|eıφ(ω) with a known reference pulse
fr(ω) = | fr(ω)|eıφr(ω) with a controllable time delay τ on a beamsplit-
ter. Then we measure the interferogram on an optical spectrometer.
The obtained interferogram can be expresses as

I(ω) = | f (ω) + fr(ω) eıωτ|
= | f (ω)|2 + | fr(ω)|2 + 2 | f (ω)| | fr(ω)| cos[φ(ω)− φr(ω)−ωτ].

(1.6)

With a complete and priori knowledge of the reference field, we can
reconstruct the complex spectral field of the unknown pulse. This can
be easily achieved by a Fourier analysis of the interferogram [53, 82].
In Fig. 1.4 we plot a few experimentally shaped and characterised
pulses with the methods described in this chapter.
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Spectrometer

BS

Reference pulse

Unknown pulse

Figure 1.3: A sketch of the spectral interferometry setup. The pulse under
characterisation is interfered with a known reference on a beam-
splitter (BS). The beam from an output port of the beamsplitter
is then measured on an optical spectrometer. Through a Fourier
analysis of the interferogram, the complex spectral field of the
unknown pulse can be reconstructed.
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Figure 1.4: Gallery of ultrashort pulses, characterised by spectral interfer-
ometry. Columns are: I(ω) the interferogram, f̃ (t) the temporal
profile, f (ω) the spectral amplitude and phase, and W(t, ω) the
Wigner function. Rows correspond to: (a) Gaussian, (b) Gaus-
sian with a linear phase, (c) Gaussian with a quadratic phase, (d)
Gaussian with a cubic phase, (e) time-bins, (f) Lorentzian distri-
bution, (g) boxcar function in frequency, (h) first-order Hermite-
Gaussian, (i) fifth-order Hermite-Gaussian pulses.
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C R E AT I N G Q U A N T U M S TAT E S O F L I G H T W I T H
C O N T R O L L E D T E M P O R A L M O D E S

declaration

The ideas and content presented in this chapter are partly taken
from the following publications:

1. Vahid Ansari, et al, Opt. Express 26(3), 2764-2774 (2018).

2. Vahid Ansari, et al, Optica 5, 534 (2018).

2.1 temporal-mode structure of parametric down con-
version

In this section we describe the TM structure of photon-pair states gen-
erated in PDC, where a photon from a bright classical pump pulse
decays with a small probability inside a nonlinear optical medium,
e.g. a nonlinear waveguide, into a pair of daughter photons typi-
cally called signal and idler, as sketched in Fig. 2.1a. PDC is a well-
understood process, capable of generating photons with a rich TM
structure at room temperature. Moreover, PDC can be used to gener-
ate a plethora of quantum states, including heralded single photons,
squeezed states, and maximally entangled states. These properties
have cemented PDC as the workhorse in many quantum optics labo-
ratories.

Restricting our model to the generation of photon pairs and as-
suming spatially single-mode emission, e.g. by realising the PDC in a
weakly pumped waveguide, the type-II PDC process can be described
by the interaction Hamiltonian

ĤPDC = B
∫

dωs dωi f (ωs, ωi)â†(ωs)b̂†(ωi) + h.c., (2.1)

and the generated state can be written as

|ψ〉PDC = B
∫

dωs dωi f (ωs, ωi)â†(ωs)b̂†(ωi)|vac〉, (2.2)

where â†(ωs) and b̂†(ωi) are standard creation operators that gener-
ate a signal photon at ωs and an idler photon at ωi, B is the optical
gain or efficiency of the process which includes the second-order non-
linearity and the pump power, and f (ωs, ωi) is the complex-valued
joint spectral amplitude (JSA), normalised to

∫
dωs dωi | f (ωs, ωi)|2 =

1. The JSA describes the entangled time-frequency structure of the

9
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PDC state, and is essential for describing PDC in cases with a broad-
band pump pulse [35].

PDCpump

idler

signal

= + + ...+

(a)

(b) (c) (d) (e)

(f)

Figure 2.1: Joint spectral amplitude, temporal modes, and Schmidt coeffi-
cients of a non-engineered PDC process. (a) Outline of a PDC
process with the three involved fields. (b) The JSA and its
marginal distributions which is the product of pump (dashed
lines) and phasematching (solid lines) functions and, in this case,
exhibits frequency anti-correlations between signal and idler fre-
quencies. The Schmidt decomposition of this Gaussian JSA is
given by Hermite-Gaussian functions, with the first three TM
pairs shown in (c-e). (f) The first seven Schmidt coefficients λk.
The decomposition of this example yields an effective mode num-
ber of K ≈ 3.14.

The JSA itself can be written as a product of the pump envelope
function α(ωs + ωi) and the phasematching function φ(ωs, ωi), such
that

f (ωs, ωi) = α(ωs + ωi)φ(ωs, ωi). (2.3)

Here, α(ωs + ωi) is the slowly varying envelope of the broadband
pump and reflects energy conservation during the PDC, and the phase-
matching φ(ωs, ωi) expresses the momentum conservation between
involved fields and the dispersion properties of nonlinear medium.
The phasematching function can be written as

φ(ωs, ωi) =
∫ L

0
dz χ(z) exp [ı∆k(ωs, ωi)z] , (2.4)

where ∆k(ωs, ωi) = kp(ωs + ωi) − ks(ωs) − ki(ωi) is the phase mis-
match, L is the length of the nonlinear medium, and χ(z) = ±1 de-
scribes the orientation of the ferroelectric domains of the crystal. A pe-
riodic modulation of χ(z), with a period Λ, is called periodic poling[41].
This poling adds an additional component of the form kQPM = 2π/Λ
to the phase mismatch such that ∆k(ωs, ωi) 7→ ∆k(ωs, ωi) + 2π/Λ,
allowing the center frequencies of the phasematched process to be
tuned. In this case, the resulting phasematching function is given by

φ(ωs, ωi) =
1
L

sinc
(

∆k(ωs, ωi)L
2

)
eı∆k(ωs,ωi)

L
2 . (2.5)
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The sinc profile of the phasematching function has significant impli-
cations which will be discussed in Section 2.3. However, to simplify
the equations and plots in this thesis, we usually employ a Gaussian
approximation of the phasematching function.

In 2000, Law and co-workers examined the time-frequency struc-
ture of the JSA through the Schmidt decomposition, defining two-photon
entanglement in terms of temporal modes [51]. For this, the JSA is de-
composed into two sets of orthonormal basis functions {g(s)} and
{h(i)} for signal and idler, and we write

f (ωs, ωi) = ∑
k

√
λkg(s)k (ωs)h

(i)
k (ωi), (2.6)

where ∑k λk = 1. With this we define broadband TM operators

Â†
k =

∫
dωs g(s)k (ωs)â†(ωs), (2.7)

B̂†
k =

∫
dωs h(i)k (ωi)b̂†(ωi), (2.8)

and consequently obtain

|ψ〉PDC = ∑
k

√
λk Â†

k B̂†
k |0〉. (2.9)

This means that a PDC photon pair is generated in the k-th TM pair
with a probability of λk. An example of a typical JSA together with its
Schmidt decomposition is given in Fig. 2.1b. For a typical Gaussian
JSA, the Schmidt modes are given by Hermite-Gauss functions, which
overlap in both spectral and temporal intensity. Note that the Schmidt
decomposition holds only if the global two-photon state is itself pure,
and is not general for multipartite scenarios [39].

The Schmidt decomposition of the joint spectral amplitude pro-
vides an essential link between the continuous time-frequency de-
scription and a discretised temporal-mode picture. Such a transition
is necessary for describing mode-multiplexed systems, where each
Schmidt mode can be thought of as an independent information
carrier. Such multiplexed systems are useful for communication net-
works [29] and essential to generate highly entangled cluster states
for measurement-based quantum computation [60, 97], where utilis-
ing the time-frequency domain allows for operations to take place in
a single spatial mode.

In the low-gain PDC regime, the Schmidt decomposition of the JSA
can be linked directly to the amount of time-frequency entanglement
present in the two-photon system. The Schmidt number, defined as
K = 1/ ∑k λ2

k , quantifies the effective number of TM pairs required
to describe the properties of the generated state, with K = 1 for a
single-mode (separable) state and K � 1 for a multimode (entangled)
state. The Schmidt number is related to the spectral purity of the
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individual signal photons generated, which are generally described
by the mixed density matrix

ρ̂s = Tri(ρ̂PDC) = ∑
k

λk|Ak〉〈Ak| (2.10)

with a purity of

Ps = tr(ρ̂2
s) =

1
K

. (2.11)

For PDC-generated photons, this quantity is directly experimentally
accessible through the marginal second-order correlation function (i.e.
unheralded signal photons) as g(2)(0) = 1 + Ps[16, 24].

In summary, we have introduced the continuous time-frequency
structure of PDC and connected it to the discrete TM picture through
the Schmidt decomposition. Such analysis naturally describes the
two-photon entanglement from PDC and the spectral purity of the
generated photons. In most configurations, PDC generates highly cor-
related states with a large Schmidt number, yielding low-purity her-
alded photons if no additional spectral filtering is applied. We will
shift our focus in the next section to how proper engineering of the
PDC process can overcome this limitation and facilitate the direct gen-
eration of pure single photons.

2.2 group-velocity matching for single-mode emission

Although multimode PDC states with usual frequency correlations,
as shown in Fig. 2.1, have found many applications in quantum sci-
ences [31, 63], full control over the modal structure of the PDC state
would make a new range of applications possible. For example, high-
visibility quantum interference between distinct nodes in a photonic
network requires pure PDC sources, i.e. sources that emit in a single
temporal mode. Without dispersion engineering, intrinsic frequency
anti-correlations between signal and idler are imposed by energy con-
servation of the pump, reflected by the −45◦ angle of the pump func-
tion in the joint spectral amplitude (see Fig. 2.1), resulting in highly
multimode systems. To realise single-mode PDC, researchers have
tailored the phasematching function to produce separable JSAs, al-
lowing for high-quality heralded photons without any need for addi-
tional spectral filtering.

At the turn of the millennium, several groups studied the spectral
characteristics of PDC photon pairs and identified a connection be-
tween the photon spectra and the dispersion of the nonlinear medium
[26, 32, 44]. It was shown that with a properly selected non-linear
material, polarisations, and photon central frequencies the frequency
correlations between the signal and idler photons can be eliminated
[34]. Later this work was further developed in [89], where the authors
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(a) No GVM

(b) aGVM

(c) sGVM

p
s

i

p s

i

p
s

i

Figure 2.2: Three different group-velocity matching condition. The JSA of
each case is plotted on the left side, with the respective group
velocities uj of the pump, signal, and idler fields plotted on the
right side. The group velocities (normalised over the speed of
light in vacuum) are exemplary for TE and TM-polarised light
in a z-cut potassium titanyl phosphate (KTP). (a) Typically with-
out dispersion engineering, the long-wavelength signal and idler
photons both have a larger group velocity than the pump (ξ > 0).
This leads to a negative phasematching angle and consequently
to a correlated JSA as shown on the left. In this example, ξ ≈ 0.4.
(b) In the case of aGVM (ξ → 0), one photon (here the sig-
nal) propagates at the same velocity as the pump. This yields
a phasematching function that is aligned with the signal or idler
frequency axis. If the pump spectral bandwidth is larger than the
phasematching bandwidth, a separable JSA is generated. (c) For
sGVM (ξ → −1), the group velocity of the pump lies between
the group velocities of signal and idler. This leads to a +45◦

phasematching angle and, given that the pump spectral band-
width matches the phasematching bandwidth, a separable JSA
with potentially indistinguishable signal and idler.



14 creating quantum states of light with controlled temporal modes

showed that the relationship between the group-velocities of interact-
ing fields plays an essential role to tailor the phasematching function
φ(ωs, ωi) and consequently the JSA.

To understand the underlying physics, we perform a Taylor expan-
sion of the phase mismatch (defined in Sec. 2.1) up to the first order.
Assuming that the process is perfectly phasematched at the center fre-
quencies and that dispersion through the nonlinear medium is negli-
gible, we obtain

∆k(ωs, ωi) ≈ (u−1
s − u−1

p )ωs + (u−1
i − u−1

p )ωi, (2.12)

where the uj ≡ ∂ωj
∂k j

are the group-velocities of the pump, signal, and
idler fields. In this context, it is useful to define the group-velocity-
mismatch contrast ξ as

ξ =
u−1

s − u−1
p

u−1
i − u−1

p
. (2.13)

The group-velocity mismatch contrast is related to the angle of the
phasematching function in the (ωs, ωi)-plane by θPM = − arctan(ξ)
[89].

Among all possible group-velocity arrangements, two special cases
received particular attention. In the first case, dubbed asymmetric group-
velocity matching (aGVM), the pump propagates with the same group
velocity as either the signal photon (ξ → 0) or the idler photon
(ξ → ∞). If the pump is group-velocity matched to the signal pho-
ton, the JSA from Eq. (2.3) is reduced to

f (ωs, ωi) ≈ α(ωs + ωi)φ(ωi). (2.14)

As seen in Fig. 2.2(b), as the phasematching bandwidth shrinks to be
much narrower than the pump bandwidth, the JSA becomes more
and more separable. The single-modedness of the system can be in-
creased by using wider pump bandwidths or tightening the phase-
matching function with longer nonlinear interactions [89]. In this sce-
nario, the signal and idler photon will have drastically different spec-
tral bandwidths.

In the second case, the group velocity of the pump is exactly be-
tween the group velocities of signal and idler (ξ → −1), referred to
as symmetric group-velocity matching (sGVM) or extended phasematching,
which results in a JSA of the form

f (ωs, ωi) ≈ α(ωs + ωi)φ(ωs −ωi). (2.15)

As seen in Fig. 2.2(c), if the phasematching bandwidth equals the
pump bandwidth, the JSA is a perfectly separable circle, allowing
for pure single photons with identical spectral properties. This phase-
matching configuration also allows for two-photon states with posi-
tive spectral correlations (and negative temporal correlations) when
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(a) aGVM (b) sGVM

signal filter

idler filter

Figure 2.3: Joint spectral amplitudes (absolute value) with standard periodic
poling and filters on the individual photons. (a) In an aGVM
source, the idler can be filtered to remove the side lobes and
herald pure signal photons. However, filtering on the signal arm
cannot be used to remove the side lobes. (b) In sGVM sources,
the JSA is symmetric. Filtering either signal or idler leaves the
other with a purity of about 94%.

the pump is broader than the phasematching function [24, 49, 56], use-
ful for certain quantum synchronisation and dispersion-cancellation
techniques.

2.3 the problem with side lobes

To put these results into context, we next consider the limitations im-
posed by the phasematching function in Eq. 2.5. In Fig. 2.3, we plot
the JSAs resulting from this phasematching function, along with pos-
sible broadband spectral filtering. It becomes immediately obvious
that the side lobes of the sinc-shaped phasematching function intro-
duce undesired frequency anti-correlations, limiting the maximum
purity of heralded photons to around 86% in the sGVM case. With fil-
ters chosen to transmit the main peak of the JSA but block as many of
the correlated side lobes as possible, it possible to increase the source
performance, but limitations are still present. In the case of aGVM de-
picted in Fig. 2.3(a), the idler filter can be chosen to be much narrower
than the signal filter. In this example, if idler is filtered and serves as
herald, the maximum purity for the heralded signal increases to 97%.
In contrast, if the signal is filtered and serves as a herald, the her-
alded idler photon has a maximum purity of about 92%. Note that
this value can be increased with a larger pump bandwidth. In sGVM
example shown in Fig. 2.3(b), the signal and idler photons are indis-
tinguishable, and the filtering shown in either case leaves the other
photon with a purity of about 94% when heralded. We note that these
numbers can be further increased when choosing smaller filter band-
widths at the cost of decreased heralding rates [61, 88].
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2.4 controlled generation of temporal modes

Finally we want to highlight two possibilities to accurately control
the generated PDC state beyond separability. For applications that ex-
ploit TMs as encoding basis, the targeted generation of states with a
user-defined TM structure is highly desirable. Complementary tech-
niques arise for PDC state engineering through spectrally shaping the
pump pulse in aGVM and sGVM sources, the former providing pure
shaped single photons while the latter provides flexible sources for
high-dimensional TM entanglement.

In the aGVM case, as seen in Eq. 2.14, the spectrum of the idler
photon is nearly entirely dependent on the phasematching while the
spectrum of the signal photon is dependent on the shape of the pump.
By manipulating the spectral shape of the pump, the shape of the
signal photon can be programmed on-the-fly, as seen in Fig. 2.4(a-c).
So long as the phasematching is narrow relative to the finest features
of the desired spectral shape, the JSA remains separable.

In the following, we utilise a aGVM phasematching based on the
in-house fabricated unpoled KTP waveguides and emits in the near-
infrared telecommunications regime. we generate heralded photons
which inherit the temporal shape of the pump pulse.

To measure joint spectral intensity (JSI) distribution | f (ωs, ωi)|2, we
combine a monochromator in the idler arm with a time-of-flight spec-
trometer in the signal arm [7]. In the time-of-flight spectrometer we
use a highly dispersive fibre to map the spectrum into the temporal
profile which can be resolved directly in time on SNSPDs. We use a
4.3 km long fibre with a total dispersion of 0.3 ns/nm which, along-
side with 70 ps timing resolution of SNSPD, constitute a spectrometer
with a resolution of about 0.2 nm. The measured JSIs with the pump
field in the first four Hermite-Gauss modes and five frequency bins
are plotted in Fig. 2.5. The Schmidt number inferred from these JSIs
shows a spectral purity of more than 0.98, which provides an upper
bound on the spectral purity.

As discussed in the theory section, spectral correlations between
PDC photons leads to impurity of the heralded single photons. Al-
though the JSI measurement provide important information about
the spectral correlation of the PDC photons, it is blind to the spec-
tral phase of the photons and is also limited by the resolution of
the spectrometers. A better measure of any underlying correlations
of the PDC photons is the second-order correlation function g(2)(0)
of signal or idler photons, as measured with a 50/50 fibre coupler
[16, 85]. The g(2)(0) measurement probes the photon number statis-
tics of unheralded beams (signal or idler) and can discriminate be-
tween a single-mode PDC state with g(2)(0) = 2 and a highly mul-
timode state with g(2)(0) = 1. In Fig. 2.6 we plot the g(2)(0) of
the both PDC photons with the pump pulse in different orders of
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aGVM

(a) (b) (c)

sGVM

(d) (e) (f) (g)

Figure 2.4: Orchestrating Schmidt modes via group-velocity matching and
pump pulse shaping. (a-c) JSAs for a PDC source with an aGVM
setting. The weights of the first five Schmidt modes λk are shown
under each JSA. The state remains single-mode regardless of the
pump shape. The only significant Schmidt modes of signal A0
and idler B0 photons are shown at the bottom. The idler photon
shape is invariant to the pump, while the TM of the signal pho-
ton reflects the TM of the pump field. (e-g) A sGVM PDC can be
used to control the exact number of excited temporal modes. For
example, driving the source with a first-order Hermite-Gaussian
pump pulse as in (e) results in exactly two TMs. This can be ex-
tended with higher orders of Hermite-Gaussian pulses as in (f),
but different Schmidt modes are not occupied with a same prob-
ability. A balanced Schmidt mode distribution can be achieved
when the source is pumped with time-bin superpositions, as in
(g).
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(a)

(e)

(d)

(c)

(b)

Figure 2.5: A few examples of the measured joint spectral intensities (JSIs),
with the marginal spectral distribution of signal photon above in
grey. The pump mode for each JSI is shown on the right side,
where the grey shaded area is the spectral amplitude and the
green line is the spectral phase. The pump modes are as the
following: (a) Gaussian, (b) 1st-order Hermite-Gaussian, (c) 2nd-
order Hermite-Gaussian, (d) 3rd-order Hermite-Gaussian, (e) fre-
quency bins, with Schmidt numbers: Ka = 1.01, Kb = 1.01,
Kc = 1.02, Kd = 1.02, Ke = 1.02.

(a) (b)

Figure 2.6: The second-order correlation measurements of the idler and sig-
nal photons with the pump set to different bandwidths and dif-
ferent orders of Hermite-Gaussian modes. The error bars for the
g(2)signal(τ = 0) are smaller than the markers.
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Hermite-Gauss modes and bandwidths ranging from 0.5 nm to 3

nm. With a narrow pump bandwidth, energy correlations remain
in the PDC state which are exhibited in lower g(2)(0) values. For
the idler photon, we spectrally filter the asymmetric phasematch-
ing side-lobes (see Fig. 2.3), and we achieve the highest g(2)(0) of
1.99± 0.02 with a 1.5 nm broad Gaussian pump pulse, which reduces
to 1.93± 0.02, 1.85± 0.02, and 1.81± 0.02 for the first, second, and
third order Hermite-Gauss modes, respectively. This reduction in the
g(2)(0) value is also expected from theory. With increasing order of
Hermite-Gauss modes, these function feature more complex struc-
tures spanned over a broader frequency range which inevitably in-
creases the frequency anti-correlations between signal and idler (see
Fig. 2.1(a)). Despite this, it is possible to achieve a high purity with
an appropriately designed crystal length.

The g(2)(0) of signal photons, plotted in Fig. 2.6(b), is considerably
lower. This is due to the presence of the phasematching side-lobes
which cannot be simply filtered for the signal photons (see Fig. 2.3(b)).
While the signal photons are themselves less pure, the high g(2)(0) of
the idler indicates that the shaped signal photons are highly pure
when heralded by an idler detection. However, this purity comes at
a cost of heralding efficiency. Enhancing the waveguide fabrication
technology or using methods such as noncritical phasematching [54]
or aperiodic poling [22, 33] may be able to eliminate these unwanted
spectral features to produce filter-free heralded photons with high
purities and arbitrary temporal shapes.

On the other hand, PDC states that comprise a user-defined num-
ber of TMs can be generated in the sGVM configuration. Again, this
is achieved by spectral shaping of the pump pulses. One example
of this is a PDC driven by a pump pulse with a first-order Hermite-
Gaussian spectrum [11], as depicted in Fig. 2.4(e). In this case, the
generated state is a TM Bell-state of the form

|ψ〉Bell =
1√
2
(|0〉s|1〉i + eıϕ|1〉s|0〉i) , (2.16)

where |0〉j (|1〉j) labels the j photon occupying a Gaussian (first-order
Hermite-Gaussian) spectrum and j=(s,i). To add additional TMs to
this state, it is sufficient to increase the order of the Hermite-Gaus-
sian spectrum of the pump pulse, which is easily achieved with con-
ventional pulse shaping [94]. Although this provides a state with
finite number of Schmidt modes, the generated TMs are generally
not equally occupied (i.e. they can have different

√
λk) [11], and thus

the generated TMs are not maximally entangled. Another alternative
pump shape to control the Schmidt modes is superposition of time
bins or, equivalently, cosine functions in the frequency domain, as
shown in Fig. 2.4(g) [64]. This provides a flexible and versatile source
that generates maximally entangled states with an arbitrary dimen-
sion without the need for changing any hardware. In Fig. 2.7, we plot
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(a)

(b)

(c)

(d)

Figure 2.7: Examples of the measured joint spectral intensities (JSIs), for
sGVM PDC. The pump mode for each JSI is shown on the right
side; (a) Gaussian, (b) 1st-order Hermite-Gaussian, (c) 2nd-order
Hermite-Gaussian, (d) superposition of cosine functions with a
Gaussian envelope.
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a few experimentally measured PDC JSIs, created under sGVM in a
ppKTP waveguide [5, 36].

To conclude, PDC state engineering is now at a point where we
can exert close-to arbitrary control over the TM structure of the gen-
erated state. This brings into reach the realisation of TM based QIP
applications and provides us with a very clean laboratory system for
the generation of Hilbert spaces with well-defined dimensions.





3
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With the ability to generate single photons in arbitrary TMs, the
next step for complete TM-based QIP is a quantum device capable
of accessing a TM out of a multimode input. In other words, we re-
quire a special quantum mechanical beam splitter that operates on a
customisable basis of TMs. A promising tool to build such a device is
engineered frequency conversion.

Frequency conversion (FC) has been recognised as means to trans-
late the central frequency of a photonic quantum state while pre-
serving its non-classical signatures. The first proposal in 1990 consid-
ered the frequency-translation of squeezed states of light[47]. Differ-
ent experiments have since confirmed that FC retains the quadrature
squeezing[9, 40, 55, 93], quantum coherence and entanglement[19, 38,
70, 84], the anti-bunching of single photons[6, 98], and non-classical
photon correlations[59, 69]. Since FC can be highly efficient[67, 90,
91], it provides a useful tool for improved detection schemes[1, 50,
52, 77, 86] and an interface for dissimilar nodes in future quantum
networks[15, 18, 20, 30, 42, 43, 48, 58, 78, 81, 83].

However, there is more to frequency conversion. In 2010, Raymer
and co-workers proposed an interpreation of FC as a two-colour beam
splitter[71], enabling for example Hong-Ou-Mandel interference[37]
of photons of different colour. If the FC is set to 50% efficiency, and
if two monochromatic photons which are centred at the two linked
frequencies (red and blue) are sent into the process, simultaneous
SFG/DFG occurs and both photons will exit the FC either at the
blue frequency or the red frequency. The conversion process links the
two frequency bands in a beamsplitter fashion, as has been demon-
strated with single-photon signals exhibiting Ramsey interference[17]
and two-colour Hong-Ou-Mandel interference[45].

23
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FC

input

pump

output(a)

(b)

(c)

(d)

Figure 3.1: Frequency conversion process and its transfer function. (a) Out-
line of a general frequency conversion process with pump, in-
put and output fields. (b to d) Sum-frequency conversion trans-
fer functions F(ωin, ωout) with its marginal distributions (left)
and its first few Schmidt coefficients

√
λk. (b) A non-engineered

SFG with significant frequency correlations and a K ≈ 3.7. (c)
and (d) present a tailored SFG process with aGVM condition
with pump functions α(ωout − ωin) of Gaussian and first-order
Hermite-Gauss, respectively, and a K ≈ 1.01.

Inspired by the previously outlined work in PDC engineering, the
mode structure of FC can be tailored through dispersion engineering.
It turns out that a configuration that is similar to asymmetric group-
velocity matching facilitates single-mode operation: when the input
signal propagates through the nonlinear medium at the same velocity
as the bright pump but the output is group-velocity mismatched, one
specific TM is selected and converted to the output frequency, while
all other TMs are simply transmitted[23]. The single-mode FC has
been dubbed the quantum pulse gate (QPG) to reflect that it selects, or
gates, one broadband TM.

In the following we briefly outline the QPG formalism. The inter-
action Hamiltonian that describes a general FC process is given by

Ĥint = θ
∫

dωin dωoutF(ωin, ωout)â(ωin)ĉ†(ωout) + h.c., (3.1)
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where â and ĉ are annihilation operators in the input and upconverted
modes, respectively, and θ is a coupling of the process incorporating
the power of the QPG pump and the strength of the material nonlin-
earity. The transfer function F(ωin, ωout) describes the mapping from
input to output frequencies, analogous to the JSA in PDC processes.
The transfer function, as in the case of PDC, is a product of pump
amplitude and phasematching

F(ωin, ωout) = α(ωout −ωin)φ(ωin, ωout). (3.2)

Similar to PDC, we can apply a Schmidt decomposition to the map-
ping function and define our operators in the TM basis, obtaining

Ĥint = θ
∞

∑
k=0

√
λk ÂkĈ†

k + h.c., (3.3)

with ∑k λk = 1. Despite the similarity to the Schmidt decomposition
of the PDC state as formulated in Eq. (3.3), there is a fundamental dif-
ference in the meaning of the decomposition and the Schmidt modes
in each case. While the PDC decomposition expresses the modes of a
state, in the case of the FC we have a SFG operation. The Hamiltonian
in Eq. (3.3) generates operator transformations

Âk → cos(
√

λkθ)Âk + sin(
√

λkθ)Ĉk, (3.4)

Ĉk → cos(
√

λkθ)Ĉk − sin(
√

λkθ)Âk. (3.5)

These can be interpreted as k independent beam splitters with reflec-
tivities sin2(

√
λkθ), which connect the input Âk to an output Ĉk.

As previously derived for PDC, the phasematching function can be
written in terms of the group-velocity mismatch, ∆k(ωin, ωout). As-
suming that the nonlinear medium is periodically poled to ensure
phasematching at the centre frequencies, this phase mismatch can be
written to first order in analogy to Eq. 2.12 as

∆k(ωs, ωi) ≈ (u−1
in − u−1

p )ωin − (u−1
out − u−1

p )ωout. (3.6)

For the case of asymmetric group-velocity matching (aGVM) case
where the input signal propagates at the same velocity as the pump
(uin = up), the first-order phasematching function is only depen-
dent on the up-converted frequency φ(ωin, ωout) ≈ φ̃(ωout). If the
phasematching is spectrally narrow enough that the output frequency
spread is negligible compared to the input, the contribution of the
pump field is approximately dependent on only the central frequency
of the up-converted field, α(ωout−ωin) ≈ α̃(ωin). If these approxima-
tions hold, the transfer function can be rewritten simply as

F(ωin, ωout) ≈ α̃(ωin)φ̃(ωout). (3.7)
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As the phasematching function tightens, the transfer function becomes
more and more separable, as illustrated in Fig.3.1(c,d).

For a separable transfer function, the Schmidt decomposition yields
only one single non-zero Schmidt coefficient and the interaction Hamil-
tonian reduces to the desired QPG Hamiltonian,

ĤQPG = θÂ0Ĉ†
0 + h.c. (3.8)

and we obtain the following operator transformations

Â0 → cos(θ)Â0 + sin(θ)Ĉ0, (3.9)

Ĉ0 → cos(θ)Ĉ0 − sin(θ)Â0, (3.10)

Âk → Âk for k 6= 0, (3.11)

Ĉk → Ĉk for k 6= 0. (3.12)

Hence, the ideal QPG selects one single input TM and converts it
to an output TM with an efficiency of sin2(θ), while all orthogonal
TMs pass through the QPG unconverted and undisturbed. The se-
lected input TM Â0 is defined by the shape of the bright pump pulse
that drives the conversion (α̃(ωin)), whereas the shape of the out-
put TM Ĉ0 is given by the envelope of the phasematching function
(φ̃(ωout))[12, 23]. By shaping the spectral amplitude and phase of the
QPG pump pulse, the mode selected by the QPG can be adapted on-
the-fly. While most works have motivated the QPG towards Hermite-
Gauss TMs, it can also be set to select arbitrary superpositions as
well as entirely different mode bases (e.g. time-frequency bins) by
reshaping the pump pulse. While other group-velocity conditions ex-
ist which enable nearly single-mode sum-frequency generation, the
aGVM case outlined here has been shown to be optimal[72].

An ideal QPG operation, as described in Eq. (3.8), requires a perfect
GVM between the pump and input. To quantify this, we can redefine
the group-velocity mismatch contrast, was introduced in Eq. (2.13),
as

ξ =
u−1

in − u−1
p

u−1
out − u−1

p .
(3.13)

A aGVM condition between the pump and input fields means ξ → 0.
This definition can help us to study the feasibility of building a QPG
in different non-linear materials with different dispersion properties.

3.1 measurement tomography of a quantum pulse gate

Recently, quantum pulse gate (QPG) devices have been demonstrated
by several groups by employing dispersion-engineered frequency con-
version between a strong shaped driving pump field and a coherent
signal state at single-photon level intensities [14, 57, 68, 73, 80] or with
heralded single photons from a parametric down-conversion source
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Figure 3.2: Outline of QPG operation. The QPG is a beamsplitter operating
on a TM defined by the index α. For the measurement tomogra-
phy, we send coherent states |β〉 to the QPG and at the converted
(reflected) port we measure the number of converted photons
using a bucket detector, noted as nαβ.

[5]. In these experiments, TM selectivity with reasonable efficiencies
has been shown, but the coherences between all possible TMs have
not been investigated in detail. This is, however, an essential ingredi-
ent for the realisation of any application based on a high-dimensional
alphabet rather than on simple add/drop-type multiplexing of infor-
mation channels. An easy example is polarisation tomography, where
measurements have to be carried out in all three mutually unbiased
bases (MUBs) — horizontal/vertical, diagonal/anti-diagonal, right-
circular/left-circular — in order to retrieve full information on the
state under investigation.

Here, we reconstruct all measurement operators of a QPG operat-
ing on both a five-dimensional and seven-dimensional TM Hilbert
space. Our QPG is based on dispersion-engineered sum-frequency
generation in a titanium-indiffused lithium niobate waveguide, and
we use sets of weak coherent states which span a tomographically
complete set of MUBs to characterise the device. Afterwards, we use
the retrieved measurement operators of our QPG to perform TM state
tomography of randomly chosen TM states in an up to seven-dimen-
sional Hilbert space with average fidelities of 0.99. This combines,
for the first time, the necessary ingredients for high-dimensional QIS
with single-photon TMs and paves the way towards future applica-
tions of this technology.

The outline of our experiment is shown in 3.2. The QPG is imple-
mented through a type-II sum-frequency process in an in-house built
17 mm LiNbO3 crystal with titanium indiffused waveguides and a
poling period of 4.4 µm. Further experimental details are given in
Chapter 8.

We shape both the pump (denoted by superscript α) and the input
(denoted by β) to span a complete set of mutually unbiased bases
(MUBs) [8]. These have the property that for a dimension d, there
are (d + 1) bases such that overlaps between states from different
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bases are always 1/d, hence unbiased. This ensures that the space is
uniformly probed. Furthermore, the total set is tomographically over-
complete, helping to reduce systematic experimental errors. Since for
each pump shape, we have to run the full characterisation with (d +

1)d input modes, the total number of measurements for d = 5 and d =

7 are 900 and 3136, respectively. For each of them, we record counts
(denoted by nαβ) for about 1 s at count rates up to 105 counts/s. This
corresponds to a FC efficiency of about five percent, which is solely
limited by the pump pulse energy of about 5 pJ in the our current
experimental setup. Despite the relatively low conversion efficiency, a
short measurement time is possible owing to high detection efficiency
of the SiAPD. Since the count rates are directly proportional to the
powers of the pump and the input, we record both values after the
waveguide and normalise the count rates accordingly to account for
small drifts in the setup (with the magnitude of less than 10%). It
worth mentioning that one can also use symmetric informationally
complete POVMs (SIC-POVMs) as the tomography bases [79]. The
main advantage of the SIC-POVMs is that, contrary to MUBs, they
exist for any arbitrary dimension [76].

To find QPG’s measurement operators M̂α from the data we per-
form a weighted least squares fit

min
M̂α

∑
β

| f αβ − 〈β|M̂α|β〉|2
f αβ

, (3.14)

where f αβ are normalised count rates and M̂α is constrained to be
Hermitian and positive semidefinite. Since each setting α is an in-
dependent measurement, we do not put a constraint on the sum of
operators. In Fig. 3.3 we show the first eigenmodes of all measure-
ment operators for seven dimensions. They closely resemble the ideal
MUB states. Additionally, the matrix of projections of MUB POVM
elements | |φi〉 〈φj| |2 which shows the orthogonality of the basis is
given in Fig. 3.3.

To quantify how accurate the results are, we calculate the purities

Pα = tr([M̂α]2)/tr(M̂α)2 and the fidelities F α =
√
〈α| M̂α |α〉 /tr(M̂α)

with the ideal operators |α〉〈α|. We perform the characterisation in
five and seven dimensions, whereas for five dimensions we also com-
pare the two experimental settings with and without a spectral filter
in the output mode. The spectral filter blocks the side lobes of the
phasematching (see Fig. 3 in Chapter 8). The average values with their
respective standard deviations are listed in Table 3.1. For compari-
son we also show theoretical values assuming the aGVM condition, a
Gaussian phasematching function and perfect pump shaping. The im-
perfections in this case originate from the fact that the phasematching
is only about five times narrower than the pump, leading to correla-
tions in the transfer function and multimode performance of the QPG.
These correlations also explains why suppressing the side lobes of the
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Figure 3.3: The first eigenvectors of the 7×6 measurement operators. For
each plot, the x-axis corresponds to the frequency detuning (from
the central frequency) and the y-axis to the amplitude and phase.
Black and green lines are the measured amplitudes and phases,
respectively; shaded areas and blue lines correspond to the the-
oretical MUB modes. Note that the phase is 2π periodic, which
is also the interval of the y-axis. Please note that phases are only
meaningful when a significant amplitude is present.

(a)

(b)

Theory Experiment

Theory Experiment

Figure 3.4: Matrix of projections of MUB POVM elements for five (a) and
seven (b) dimensions.
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Table 3.1: Purities and fidelities of QPG measurement operators.

d 5 (unfiltered) 5 7

Pmeasured 0.719± 0.064 0.920± 0.024 0.811± 0.035

Fmeasured 0.778± 0.086 0.912± 0.046 0.847± 0.042

Ptheory 0.939± 0.026 0.909± 0.035

Ftheory 0.979± 0.008 0.971± 0.010

output spectrum improves the purity from 0.72 to 0.92. A comparison
of the eigenmodes for these two cases shows that the first eigenmode
hardly changes. Thus the spectral filtering suppresses the higher or-
der spectral modes introduced by the side lobes of the phasematch-
ing, or in other words drives the QPG closer to single-modeness. Go-
ing from five to seven dimensions slightly lowers both the purities
and the fidelities. One reason is that the richer spectral structure of
the pump at higher dimensions, again, will introduce some spectral
correlations in the transfer function which also reduce the theoreti-
cal values. However, the expected reduction is smaller than what we
measure. Imperfections in the pulse shaping are a greater problem
for higher dimensions. With the increase of dimensionality, the total
bandwidth both in time and frequency increases which requires the
relative phases and amplitudes to be accurate over a broader range
in both time and frequency. To improve the single-mode operation of
QPG, one can use a longer waveguide which gives a narrower phase-
matching bandwidth. Furthermore, the measurement time increases
drastically which makes the experiment more susceptible to drifts in
the setup. With the current experimental setup, the seven dimensional
characterisation takes about 2 hours.

The overall high fidelities we measure in this work demonstrates
that the QPG can operate on arbitrary TMs in a selective way. The
fidelities also quantify the mode selectivity since the normalised con-
version efficiency is given by F 2. In the five-dimensional case, that
means that the desired mode gets converted with 83% efficiency and
any orthogonal mode gets converted with less than 17%. However,
with the measurement operators we have much more information
than just the mode selectivity. For a task like state tomography, the
QPG operation can be calibrated for small experimental errors, as we
have here. All we need is mode sensitivity and the knowledge of our
mode detector, which we have with the matrices M̂α.

In the following we investigate the performance of the QPG for
state tomography. For this purpose, we prepare states like ρ̂ = |β〉 〈β|,
which are different from the characterisation set we use for the mea-
surement tomography. To ensure fair benchmarking we prepare twenty
different input states where half of them are generated randomly.
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(a) Theory Experiment
with calibration

Experiment
without calibration

(b) Theory Experiment
with calibration

Experiment
without calibration

Figure 3.5: Two examples of state tomography with QPG in the Hermite-
Gaussian basis in five (a) and seven (b) dimensions. State vectors
corresponding to each density matrix is detailed in Chapter 8

(Appendix). For each state the theoretical density matrix (left),
the reconstructed density matrix without QPG calibration (mid-
dle) and the reconstructed density matrix with QPG calibration
(right) are plotted.
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Table 3.2: Measured purities and fidelities of state tomography.

d 5 (unfiltered) 5 7

P 0.68± 0.079 0.753± 0.098 0.619± 0.052

F 0.742± 0.126 0.879± 0.041 0.813± 0.031

Table 3.3: Measured purities and fidelities of state tomography with cali-
brated QPG.

d 5 (unfiltered) 5 7

P 0.931± 0.038 0.972± 0.016 0.957± 0.017

F 0.971± 0.015 0.991± 0.005 0.988± 0.004

Then we use the (d + 1)d QPG settings α to reconstruct the input
state. We measure the normalised probabilities f α and minimise

min
ρ̂

∑
α

| f α − tr(ρ̂M̂α)|2
f α

, (3.15)

under the constraints that ρ̂ is Hermitian, positive semidefinite and
tr(ρ̂) = 1. First, we assume a perfect QPG with ideal measurement
operators and reconstruct the input states. Since the prepared inputs
are coherent states in well-defined TMs, we expect to reconstruct pure
states. The average fidelities and their standard deviations measured
for all input states are listed in Table 3.2, which shows a modest fi-
delity of the reconstructed state with respect to the prepared state.
This is because the slight multimodeness of the QPG operation, trans-
lates into the mixedness of the reconstructed states and leads to inac-
curate tomography.

To improve the quality of the state tomography we can use the
characterised measurement operators of the QPG in Eq. (3.15). Ta-
ble 3.3 summarises the outcome. The improvement is striking. We
obtain fidelities of 0.99 with the actual input state. Two example of
such states are shown in Fig. 3.5. The decrease in fidelity from five
to seven dimensions is almost negligible and even without filtering,
the values are still very high. This shows the power of proper detec-
tor calibration for state tomography. The outstanding fidelities sug-
gest that the state tomography with QPG can be scaled up to higher
dimensions. However performing a complete measurement tomogra-
phy for higher dimensions, with the current experimental configu-
ration, would require an impractically long measurement time. This
is primarily a technical challenge to decrease the switching time of
the SLMs and increase the count rates per second. From the numeric
point of view, measurement tomography becomes time consuming
very quickly. Here, one could switch to pattern tomography [75],
which circumvents this tedious step by fitting the detector response
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pattern directly. We tested this approach as well and obtained similar
fidelities as shown in Table 3.3.

3.2 temporal-mode tomography and purification of quan-
tum light

To fully exploit the temporal mode structure of quantum light, it
is necessary to both control the modal structure of quantum light
sources and develop matched mode-selective measurement methods.
In order to perform projective measurements onto arbitrary tempo-
ral modes, techniques are needed which can identify and remove
a specific desired mode from a mixture or superposition. Further-
more, operations on photonic temporal modes must not introduce
noise in order to leave the fragile quantum nature of the light in-
tact. Sum-frequency generation with tailored group-velocity relation-
ships and shaped ultrafast pulses provides a capable toolbox for these
tasks [2, 21, 23, 66, 72, 99]. Notably, a sum-frequency process between
a weak photonic signal and a shaped strong measurement pulse with
matched group velocities has been shown to act as mode-selective
coupling between an upconverted frequency band and the tempo-
ral mode defined by the shaped strong pulse [23, 72]. This process,
dubbed the quantum pulse gate (QPG), is capable of selectively ad-
dressing individual temporal modes and can be used as a temporal-
mode analyser for communication networks [99] or as an add-drop
component to build general unitaries and quantum logic gates for a
desired temporal-mode basis [11, 13]. Recent QPG experiments have
shown highly efficient and highly selective operations on coherent
light pulses [14, 25, 46, 57, 74, 80] and its effectiveness as a measure-
ment device for unknown superpositions [4] and a mode-selective
photon subtractor [68].

In this section, we show a complete set of tools to generate, ma-
nipulate, and measure the temporal-mode structure of single pho-
tons with a high degree of control. The outline of our scheme is de-
picted in Fig. 3.6. Single photons are heralded from an engineered
PDC source where we orchestrate the modal structure of the photon
pair by spectral modulation of the pump field. Regardless of the tem-
poral mode structure of the PDC photons, we show that the QPG
can select a single temporal mode from a mixture, demonstrating
its usefulness as a temporal-mode projective measurement and as
a purifier. We then use a QPG to tomographically reconstruct the
seven-dimensional temporal-mode density matrix of heralded sin-
gle photons, showing that QPG measurements are sensitive to time-
frequency structure of light beyond intensity-only measurements. Fi-
nally, through the correlation function measurements, we show that
the QPG can change the modal structure of the transmitted photon
state, either acting as a mode cleaner or increasing the mixedness
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Figure 3.6: Temporal mode selection with a quantum pulse gate. The two-
photon state resulting from parametric downconversion (PDC)
has a multimode structure defined by the pump field and non-
linear phasematching. The quantum pulse gate (QPG) selects a
single mode (the first-order Hermite-Gauss for example, in bold)
from this superposition and upconverts it to a higher frequency,
while the unselected modes transmit unaffected. Changing the
shape of the QPG pump changes which temporal mode the QPG
selects.

depending on its programmable operation. We measure high signal-
to-noise ratios and high contrast between mode selections while op-
erating on quantum light, definitively positioning the QPG as an in-
valuable resource for pulsed quantum information science.

The group-velocity matching condition can be met in periodically
poled lithium niobate (PPLN) waveguides, which also provide the
spatial confinement necessary for long nonlinear interaction lengths.
In our experimental setup, detailed in the appendix, we make use of
type-II group-velocity matching between a 1540-nm photonic input
and an 876-nm QPG pump, as in Refs. [4, 14]. To implement the QPG,
we use a 17-mm PPLN waveguide with a 4.4 µm poling period built
in-house. We measure upconverted output pulses at 558 nm with a 61-
pm (59 GHz) bandwidth (full-width at half-maximum), significantly
narrower than the 4.9-nm (620 GHz) bandwidth of the input photons.
Although similar conditions can be met in other materials using near-
degenerate type-0 or type-I processes [25, 46, 57], our scheme avoids
the challenge of isolating the single-photon signal from the second
harmonic of the QPG pump.

We use spatial-light-modulator-based pulse shapers to define both
the spectral amplitude and phase of the PDC and QPG pump pulses
[62, 94]. With this flexibility in hand, we selected four PDC states
to illustrate the versatility of the QPG. The joint spectral intensity
| f (ωs, ωi)|2 for each is shown of the right side of Fig. 3.7, as mea-
sured with dispersive time-of-flight spectrometers [7]. Firstly, we set
the PDC pump bandwidth such that the generated two-photon state
is nearly spectrally separable [36], as seen in Fig. 3.7a. In this sce-
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Figure 3.7: Joint spectral intensities and reconstructed temporal-mode
density matrices. The real part of the seven-dimensional one-
photon temporal-mode tomographically reconstructed density
matrices (left), joint spectral intensities (right), and theoretically
expected density matrices (inset) for four PDC states: (a) a sep-
arable PDC state, (b) a PDC state with spectral anti-correlations
from a narrow-bandwidth pump, (c) a PDC state with spectral
phase correlations from a chirped pump, and (d) a PDC state
pumped with a higher-order mode. The values of the first two
diagonal entries are explicitly labelled above the density matrix.
Imaginary components of the reconstructed density matrices are
small and found in the appendix.

nario, we expect that a single temporal mode dominates the PDC
state. A singular value decomposition of the joint spectral intensity
predicts a purity of 0.995, but measured g(2) = 1 + P (corrected for
detector dark counts) corresponds to a significantly lower purity of
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0.929± 0.008, potentially due to high-order phase correlations or de-
generate background processes.

By shaping the QPG pump to project onto a set of Hermite-Gauss
spectral shapes, we expect to significantly higher upconversion prob-
abilities for the lowest-order Gaussian mode. We find that, when mea-
suring in coincidence with an idler detection, the Gaussian projection
indeed provides more counts than the first-order Hermite-Gaussian
projection by a factor of 19.3 (12.8 dB), with even stronger suppression
for higher-order modes. This demonstrates simultaneously the high
mode separability of our device and the single-mode character of
our PDC state. With a coherent-state input signal from a commercial
pulse shaper instead of PDC photons, the suppression factor increases
to 111 (20.5 dB). The upconverted signal is cleanly separated from all
background sources, even for a PDC-generated average photon num-
ber of 〈n〉 ≈ 0.16. The signal-to-noise ratio (including detector dark
counts and noise from the QPG pump) is over 70:1 without heralding
and increases to over 900:1 when gated by an idler detection.

While joint spectral intensity measurements provide important in-
formation about the two-photon PDC state, they potentially hide sig-
nificant information about the spectral phase to which mode-selec-
tive measurement would be sensitive. To demonstrate the effective-
ness of the QPG for quantum state characterisation, we reconstruct
the density matrix of the signal photons, as seen on the left-hand
side of Fig. 3.7. By shaping the QPG pump, we project onto the
first seven Hermite-Gauss temporal modes as well as a tomograph-
ically complete set of superpositions, totalling 56 measurements [8,
96]. The time-frequency waveforms chosen span eight mutually un-
biased seven-dimensional bases. The density matrices were then re-
constructed from the heralded counts in the upconverted mode us-
ing a maximum-likelihood approach [3]. As the tomography mea-
surements are made on one photon of a PDC pair, we expect to re-
construct mixed density matrices with purities consistent with the
measured g(2). For the separable PDC state of Fig. 3.7a, we recon-
struct a density matrix with a purity of tr(ρ2) = 0.896± 0.006, lower
than the expected value of 0.929± 0.008. Discrepancies between the
tomographically reconstructed purities and the g(2) values arise from
somewhat diminished mode selectivity for the higher-order projec-
tions [4], to which characterisation of single-mode behaviour is par-
ticularly sensitive.

Next, we increase the number of modes present in the PDC state in
three different ways, and show that the QPG measurements are sen-
sitive to all three. First, we narrow the bandwidth of the PDC pump
to produce a multimode PDC state with spectral intensity anticorre-
lations. The inseparability of this system can be seen directly in the
joint spectral intensity of Fig. 3.7b as well as in the g(2)-inferred pu-
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rity of 0.528± 0.009, which matches the purity of the reconstructed
density matrix, 0.523± 0.008.

Intensity correlations are not the only available avenue for increas-
ing the mode number of a PDC state. By adding quadratic spectral
phase (chirp) to the PDC pump, we introduce phase correlations be-
tween the signal and idler photons. Note that this phase does not
affect the joint spectral intensity, as seen in Fig. 3.7c. However, the
added phase drastically decreases the g(2), with a measured purity of
0.327± 0.005. Through tomography, we find that the QPG measure-
ments are also sensitive to this phase, with a reconstructed purity
of 0.317± 0.005, similar to the g(2)-inferred purity. This result explic-
itly demonstrates the limitations of spectral intensity measurements
for benchmarking pure single photons and the necessity of spectral
phase control.

In each of the previous cases, the expected primary temporal mode
of the PDC state is approximately Gaussian, with higher-order contri-
butions falling off exponentially with mode number. In practical ap-
plications, it is often desirable to produce photon pairs in a restricted
subspace, for example to create maximally entangled Bell states and
their high-dimensional equivalents. As a final example, we produce
a state with contributions from principally two temporal modes by
shaping the PDC into the first-order Hermite-Gauss function, as seen
in Fig. 3.7d. This pump shape is expected to produce photon pairs in
the time-frequency Bell state, with similar weights in the zeroth- and
first-order HG modes [11]. The reconstructed density matrix from
the QPG measurements shows that the modal content of the PDC
state is principally confined to these two modes, and the purities in-
ferred from the g(2) and the tomography for this state are, respectively,
0.498± 0.006 and 0.531± 0.004, consistent with half of a highly entan-
gled qubit pair. The imbalance between the first two modes can be
attributed to a non-ideal group-velocity relationship between signal
and idler in the PDC process (i.e. a non-45-degree phasematching an-
gle [36]), and is consistent with the density matrix expected from the
joint spectral intensity.

To demonstrate the potential of the QPG for state purification, we
measure the g(2) of the upconverted photons for the QPG pump in
the first two Hermite-Gauss modes, as shown in Fig. 3.8. If the QPG
selects a single mode from the input mixture, we expect that the up-
converted photons themselves will be highly pure. Indeed, the g(2)

of the upconverted light confirms a purity of at least 0.9 for both
the zeroth- and first-order HG modes, regardless of the PDC state
under interrogation. For example, for the correlated spectral inten-
sity of case (b), the g(2) of the upconverted light when the Gaussian
mode is selected is 1.95 ± 0.04, which increases to 2.04 ± 0.04 after
dark-count subtraction. The purity of the upconverted light remains
high when the first-order HG mode is selected. The high g(2) values



38 measuring photonic temporal modes of quantum states

OFF HG0 HG1

1.0

1.2

1.4

1.6

1.8

2.0

OFF HG0 HG1
1.80

1.82

1.84

1.86

1.88

1.90(a)

OFF HG0 HG1

1.0

1.2

1.4

1.6

1.8

2.0

OFF HG0 HG1
1.44

1.46

1.48

1.50

1.52

1.54(b)

OFF HG0 HG1

1.0

1.2

1.4

1.6

1.8

2.0

OFF HG0 HG1
1.24

1.26

1.28

1.30

1.32

1.34

OFF HG0 HG1

1.0

1.2

1.4

1.6

1.8

2.0

OFF HG0 HG1
1.40

1.42

1.44

1.46

1.48

1.50

(c)

(d)

QPG Setting QPG Setting

g(2
)

g(2
)

g(2
)

g(2
)

Figure 3.8: Second-order correlation functions of transmitted and upcon-
verted photons. The marginal g(2)s of the upconverted (green)
and transmitted (red) PDC photons are shown for the four PDC
states corresponding to Fig. 3.7a-d with the QPG pump pulse
delayed relative to the signal photons (‘OFF’) and shaped to the
first two Hermite-Gauss temporal modes (‘HG0’ and ‘HG1’). The
right side of the figure shows the same data rescaled to highlight
the changes in the g(2) of the transmitted photons. The data pre-
sented is dark-count background subtracted and the error bars
are found assuming Poissonian noise.
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measured here conclusively show both that the QPG indeed selects a
single mode and that the upconverted mode retains the thermal pho-
ton statistics of PDC, with very little noise introduced by the process.

Finally, we show through the g(2) that the modal structures of the
transmitted photons are significantly altered by the QPG. If a mix-
ture of modes is dominated by one mode, partially removing that
mode from the mixture will increase the mixedness of the remaining
distribution, akin to the Procrustean method of entanglement concen-
tration [10]. For the decorrelated PDC state of case (a), we measured
the conversion efficiency through the depletion of the transmitted sig-
nal as approximately 22%. This partial removal of the primary mode
indeed results in a significant decrease in the g(2) of the unconverted
transmitted signal photons, as seen on the right-hand side of Fig.
3.8, consistent with the efficiency measured from the input depletion.
Conversely, removing the first-order HG mode removes amplitude
from the secondary Schmidt coefficient, which increases the relative
amplitude of the primary Schmidt mode. This is seen in cases (a-c)
to increase the overall purity of the transmitted photon state, demon-
strating that the QPG can act as a temporal mode cleaner even for
the non-converted photons. In case (d), the first-order HG mode is
present in a larger proportion than the Gaussian component, and the
opposite trend is seen. This is consistent with the reconstructed den-
sity matrix of Fig. 3.7d. This directly demonstrates that the QPG can
be used to remove modal components from a single-photon state, an
essential task for mode-selective add/drop functionality.

We have shown that the quantum pulse gate can be used to directly
manipulate and measure the temporal modal structure of single-pho-
ton states. By projecting over a complete set of temporal modes and
superpositions, we reconstructed seven-dimensional temporal-mode
density matrices for PDC photons with a variety of modal structures.
We have demonstrated that the output of the pulse gate is nearly
completely purified regardless of the input, positioning the quantum
pulse gate as a powerful tool for photonic quantum state engineer-
ing. We have also demonstrated through changes in the second-order
correlation function that the quantum pulse gate modifies the modal
structure of the input photons, establishing the QPG as a novel device
for both entanglement concentration and state purification. Future
work will focus on improving the efficiency and extending the ac-
cessible dimensionality of the quantum pulse gate to fully realise its
potential for time-frequency mode-selective measurement, as a con-
version interface and add/drop device for temporally encoded quan-
tum networks, and as a platform for high-dimensional quantum state
characterisation.





4
C O N C L U S I O N A N D O U T L O O K

In this thesis we demonstrated a complete framework for generat-
ing and measuring photon temporal modes. Through dispersion-en-
gineered waveguides we constructed photon-pair sources with near
arbitrary control over the temporal modes of the emitted photons and
the entanglement between them. Then we incorporated similar meth-
ods into sum-frequency generation, providing the necessary tools to
manipulate and measure temporal-modes of the generated photons.

In Chapter 1 we introduced the temporal modes of a single quantu
of light and its presentation through the chronocyclic Wigner func-
tion. Then we introduced the methods used in this thesis to shape
and characterise bright ultrashort pulses. In Chapter 2, we reviewed
the basic theory behind the temporal-mode structure of photon pairs
generated via parametric downconversion. By engineering the group-
velocity relation between the three optical fields involved in the non-
linear process in a KTP waveguide, we generated separable PDC
photons in arbitrary temporal modes capable of providing the high-
visibility quantum interference necessary for multiphoton quantum
networks. Exploiting a different group-velocity relation, it was also
shown that the number of excited temporal-modes and their entan-
glement structure can be controlled.

In Section 3, we used similar dispersion engineering methods in
sum-frequency generation to realise a quantum pulse gate; a versa-
tile tool capable of manipulating and measuring the temporal-mode
structure of single photons. We experimentally characterised the mea-
surement operators of a QPG in up to seven dimensions, enabling ac-
curate temporal-mode state tomography of single photons with fideli-
ties above 0.99. By projecting over a complete set of temporal modes
and superpositions, we reconstructed seven-dimensional temporal-
mode density matrices for PDC photons with a variety of modal
structures. We have demonstrated that the output of the pulse gate
is nearly completely purified regardless of the input, positioning the
quantum pulse gate as a powerful tool for photonic quantum state en-
gineering. We have also demonstrated through changes in the second-
order correlation function that the quantum pulse gate modifies the
modal structure of the input photons, establishing the quantum pulse
gate as a novel device for both entanglement concentration and state
purification.

Many challenges remain to push toward practical application. The
major benefits of encoding quantum information in temporal-modes
appears when we employ a high-dimensional space (large alphabet).

41



42 conclusion and outlook

However, devices that can isolate a single temporal mode are diffi-
cult to scale, requiring multiple shaped pulses and physical media to
construct a multi-output measure. Techniques which demultiplex a
set of pulsed temporal modes into spatial or spectral bins, equivalent
to the orbital angular momentum mode sorter in space, are essential
to scale these techniques to high-dimensional networks. A promis-
ing avenue for these temporal-mode demultiplexers is through multi-
peak phasematching structures. Furthermore, extending the access
of temporal-mode selective devices to pico- or nanosecond regime
can also benefit long-distance quantum communication where these
pulses can more efficiently coupled to memory-based interfaces and
are less jitter-sensitive, but requires advancement in pulse shaping
techniques. Temporal-mode encoding can also enable another range
of applications in quantum computation or simulation; where com-
pared to spatial-mode encoding, more scalable optical networks can
be implemented with efficient time-frequency encoding. Here the
challenge is to build a network of many mode-selective devices, phase
shifters, beam-splitters, etc., that efficiently operate on many single-
photons. To construct such networks, recent technological develop-
ments in photonic integrated circuits seem to offer a promising fu-
ture.
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Abstract: We experimentally demonstrate a source of nearly pure single photons in arbitrary tem-
poral shapes heralded from a parametric down-conversion (PDC) source at telecom wavelengths.
The technology is enabled by the tailored dispersion of in-house fabricated waveguides with
shaped pump pulses to directly generate the PDC photons in on-demand temporal shapes. We
generate PDC photons in Hermite-Gauss and frequency-binned modes and confirm a minimum
purity of 0.81, even for complex temporal shapes.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
OCIS codes: (270.0270) Quantum optics; (320.7110) Ultrafast nonlinear optics; (320.5540) Pulse shaping.
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1. Introduction

Preparing single photons in pure and controlled spectral-temporal modes is a key requirement for
quantum photonic technologies. Diverse applications including quantum-enhanced metrology
[1,2], quantum computation [3,4], and quantum encryption [5–7] rely on high-contrast interference
through stable sources of pure single photons. In addition, widely customisable and precisely
controllable temporal-mode shaping is necessary to ensure mode matching between individual
sources [8], facilitate coupling between nodes in a quantum network [9], and enable temporal-
mode based quantum communication [10] and source mupliplexing [11, 12], among other
applications. Furthermore, sources with high brightness are essential for scalable performance,
and spatially single-mode behaviour is necessary for coupling to optical fibre networks and
integrated waveguide devices.

Sources based on parametric downconversion (PDC) have granted a simple solution to heralded
single-photon generation for decades, but have not yet satisfied all of the above requirements
simultaneously. Most PDC sources generate photons with strong spectral correlations which
is undesirable for heralded single-photon sources. However, it is possible to minimise the
spectral correlation in crystals offering specific dispersion properties along with an adapted
pump bandwidth [8, 13–21]. This specific dispersion property is linked to the group velocities of
the pump and the PDC photons and can be summarised in two categories: matching the group
velocity of the pump photon with one of the PDC photons [8,20], or having the group velocity of
the pump between the two PDC photons [15, 17–19].

On the other hand, efficient temporal-mode shaping of the PDC photons is more challenging.
Existing methods to create a broadband single photon in an arbitrary temporal mode rely on
carving out the desired mode from the original wavepacket as depicted in Fig. 1(a), which
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Fig. 1. Heralded source of temporally shaped single-photons. (a) The desired temporal
mode can be carved out of PDC photons after the generation, which inevitably reduces
the heralding efficiency. (b) With an appropriately designed pump field and group-velocity
engineered nonlinear medium, the PDC photons are emitted directly in a desired temporal
shape. In both scenarios the purity of heralded single photon rely on the separability of the
PDC state in terms of signal and herald fields.

can be accurately achieved by temporal or spectral modulation of the photon [22–26]. This
method, however, necessarily introduces loss and leads to a reduced rate of prepared photons [27]
and a low pair-symmetric heralding efficiencies [28]; this poses a practical limit for many
experiments such as device-independent quantum cryptography [29, 30] and optical quantum
computing [31–33]. Temporal manipulation is also possible with shaped-pulse mediated nonlinear
interactions [9, 34–37], Raman interfaces [38], or ultrafast electro-optic modulation [39], but
these methods are experimentally challenging to implement without prohibitive loss. To minimise
the potential for photon loss, a source which generates heralded photons in a customisable and
pure spectral state is highly desirable.

In this letter, we take a novel approach to directly create PDC photons with tailored temporal-
modes. Through group-velocity matching two of the interacting fields in the PDC process, we
generate heralded photons which inherit the temporal shape of the pump pulse, as sketched in Fig.
1(b). We show through joint spectral measurements and second-order photon number correlations
that the photons are generated in a highly pure state. We explicitly demonstrate the versatility of
our source design by generating photons with customised temporal shapes, such as broadband
Hermite-Gaussian temporal modes and narrow frequency bins. Our source is based on the
in-house fabricated unpoled KTP waveguides and emits in the near-infrared telecommunications
regime, making it a prime candidate for use in long-distance quantum protocols and fibre-based
networks. Our result bridges an important gap in quantum state engineering of time-frequency
modes, and enables a range of quantum photonic applications that require temporal-mode
matching.

2. Theory

The PDC process in the waveguides happens when the energy conservation ωp = ωs + ωi and
the momentum conservation kp = ks + ki between the three fields — pump, signal, and idler —
are satisfied. The momentum conservation with waveguided collinear propagation is typically
achieved with quasi-phasematching through periodic poling. In our case, we consider a type-II
PDC process where momentum conservation is enabled by birefringent phasematching without
a need for periodic poling. The waveguided structure we consider is made with a z-cut KTP
substrate and waveguides fabricated along the x-axis of the crystal with rubidium ion exchange.
To calculate the effective refractive indices of the optical fields inside of the Rb:KTP waveguide,
we use a commercial finite-element mode solver along with a model for the refractive index
profile provided in [40]. Theoretically calculated phasematched type-II processes for different
pump wavelengths are plotted in Fig. 2(a) as solid lines, where we also experimentally verified
our model (see the caption).
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Fig. 2. (a) Birefringent phasematched type-II PDC processes in the KTP waveguide versus
pump wavelength. The pump and idler photons are TE polarised and the signal photon
is TM polarised. The dots correspond to experimentally measured PDC photons with a
tunable pulsed pump laser and a single-photon sensitive spectrometer. The data point at
the degeneracy point, however, is measured by means of second harmonic generation with
a pulsed pump at the central wavelength of 1275 nm. The error bars are smaller than the
markers. To generate a single-mode JSA we use the AGVM condition which holds for a
pump wavelength of 670 nm (indicated with the vertical dashed line) and a signal and idler
wavelengths of 1411 nm and 1276 nm, respectively (star markers). (b) Theoretical spectral
purity of the JSA for different pump bandwidths ∆λp and crystal lengths L.

The Hamiltonian of type-II PDC process is

ĤPDC ∝
∬

f (ωs, ωi)â†TM(ωs)â†TE(ωi)dωsdωi + h.c., (1)

where a†(ω) is the standard creation operator at frequency ω. The joint spectral amplitude (JSA)
function

f (ωs, ωi) = α(ωs + ωi)φ(ωs, ωi), (2)

describes the spectral-temporal properties of the PDC state, where α(ωs + ωi) is the ultrashort
pump amplitude function and φ(ωs, ωi) is the phasematching function expressing the momentum
conservation between the fields in the waveguide. Due to energy conservation, PDC sources
typically exhibit spectral correlations. However, many applications benefit from spectrally pure
single-photon states with separable JSAs of the form

f (ωs, ωi) ≈ g(ωs)h(ωi), (3)

which can be achieved by dispersion engineering.
The strength of spectral correlations in the PDC state can be quantified by a Schmidt

decomposition of the JSA function [41, 42]. This defines the Schmidt number K as the effective
number of temporal-modes in the state. An experimentally accessible method to measure the
Schmidt number and the purity P of the PDC photons is by means of second-order correlation
function g(2)(τ = 0) of unheralded signal or idler photons as [43]

P = 1
K
= g(2)(0) − 1. (4)

In the case of spectrally pure PDC state with K = 1, the partial trace of the PDC state exhibits
thermal photon number statistics corresponding to g(2)(0) = 2. With a multimode state, we would
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Fig. 3. (a) The absolute value of the pump spectrum |α(ωp = ωs + ωi)| with the first-order
Hermite-Gaussian profile with FWHM of 2 nm. (b) Phasematching function |φ(ωs, ωi)|
of a KTP waveguide with a length of 16 mm. (c) Theoretical joint spectral amplitude
| f (ωs, ωi)| of the PDC state and its marginal distributions. The modelled JSA shows a
Schmidt number of K = 1.087 and a spectral purity of P = 0.919. All functions are plotted
against wavelengths (instead of angular frequencies ωj ) to provide a convenient comparison
with the experimental data.

measure a convolution of all the different thermal photon statistics, since the detector cannot
discriminate each mode, which results in a Poissonian photon-number distribution and a g(2)(0)
that approaches 1 [44].
To realise a single-mode JSA we exploit a phasematching with matched group-velocities of

pump and signal fields, known as the asymmetric group-velocitymatching (AGVM) condition [45].
This condition holds for a pump wavelength of 670 nm (TE polarised) and a signal wavelength
of 1411 nm (TM polarised), which are marked with stars in Fig. 2(a). In order to find the
experimental settings for an optimum spectral purity, we calculate P for different pump pulse
bandwidths and crystal lengths as plotted in Fig. 2(b). In our experimental implementation, we
use the AGVM condition with a pump spectral FWHM of 2 nm and a crystal length of 16 mm.
This configuration leads to a nearly single-mode JSA as plotted in Fig. 3, where we plot the JSA
function with the pump in the first-order Hermite-Gauss mode. From the JSA and its marginal
distributions in Fig. 3(c), it is clear that the phasematching function is mapped onto the idler
photon, while the spectral profile of the pump is imparted into the signal photon. A similar
AGVM condition can be also achieved in a periodically poled bulk KTP but at wavelengths
outside of the telecom bands [20]. Additionally, the waveguided structure, in comparison to bulk,
accommodates a longer interaction length and a stronger field confinement, allowing for higher
parametric gains and narrower phasematching functions. Note that a narrow phasematching is
crucial for high fidelity shaping of the signal photon.

3. Experiment

The outline of the experimental setup is given in Fig. 4. To prepare the pump of the PDC process,
we take ultrashort pulses at the central wavelength of 670 nm (from a frequency doubled optical
parametric oscillator) (Coherent Chameleon OPO with APE HarmoniXX) and use a pulse shaper
to carve out the desired temporal modes. The pulse shaper is a folded 4f-setup consist of a
magnifying telescope, a holographic diffraction grating with 2000 lines per mm (Spectrogon), a
cylindrical silver mirror and a two-dimensional reflective liquid crystal on silicon spatial light
modulator (Hamamatsu X10468-07 LCoS-SLM) [46, 47]. This 4f-setup has a spectral resolution
of 35 pm which along with the initial 6 nm bandwidth of our laser system, allows us to accurately
prepare e.g. Hermite-Gaussian pulses of up to fourth order with 2 nm of FWHM for the Gaussian
profile. We use spectral interferometry to characterise the performance of the pulse shaper and
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Fig. 4. Experimental setup. To prepare ultrashort pump pulses at 670 nm we take second
harmonics (SHG) of an optical parametric oscillator (OPO). In the spectral shaping setup,
we use a reflective spatial light modulator (SLM) in a folded 4f-setup to shape the spectral
amplitude and phase of the pump field. A telescope is used to match the size of each
frequency component with SLM’s pixels to get an optimum resolution. The SLM reflects the
beam at a slightly different angle which displaces the reflected beam vertically and allows
us to collect the reflected beam with a d-shaped mirror. The generated PDC photons are
separated on a broadband polarising beamsplitter (PBS). We use 4f-setups for both PDC
photons to filter the undesirable background. Finally each beam is coupled into single-mode
fibres (SMF) for telecom wavelengths.

ensure a dispersion-free alignment [48].
The heart of the experiment is a 16 mm long in-house built Rb:KTP waveguide with a nominal

width of 3 µm and depth of 5µm, designed to be spatially single-mode over the whole telecom
range for both TE and TM polarisations. The sample is produced in a two-step process. At first,
KTP sample with dimensions of about 20 × 6 × 1 mm3 is immersed in a pure KNO3 melt to
homogenize the sample composition. In a second step, after a titanium mask is patterned on
the +c face of the sample using standard photolithography to define waveguide structures with
different widths, the sample is immersed in a RbNO3/KNO3/Ba(NO3)2 melt, where K+ ions in
the crystal are exchanged with Rb+ ions present in the melt. After removing the Ti mask, the
sample facets are polished to provide a smooth surface suitable for free space coupling and fibre
pigtailing.
To couple the laser to the waveguide, we use a aspheric lens with a focal length of 8 mm.

Using the Fabry-Perot interferometric method [49] we measure internal waveguide average
losses of 0.85 dB/cm (with a minimum of 0.66 dB/cm and a maximum of 1.15 dB/cm) and
0.67 dB/cm (with a minimum of 0.53 dB/cm and a maximum of 0.78 dB/cm) at 1550 nm for TE
and TM polarisations, respectively. To estimate the maximum achievable coupling efficiency of
the waveguide mode into the standard single-mode telecom fibre (SMF-28) we use bright lasers
matched with central frequencies of the PDC photons and measure coupling efficiencies of 0.65
and 0.60 for idler (TE) and signal (TM) photons, respectively. This is due to asymmetry of the
waveguide mode which can be designed to be more symmetric at any chosen wavelength by
modifying the fabrication parameters e.g. the diffusion depth. The waveguide used in this work
has a more symmetric mode profile at 1550 nm where we measure a coupling efficiency of more
than 0.80.

3.1. Heralding efficiency and brightness

To spectrally filter the pump field and the parasitic background noise, we use folded 4f-setups
in each arm, aligned around the central frequencies of PDC photons. The total transmissions
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Fig. 5. Mean photon number N of one PDC arm versus pump pulse energy. The pump pulse
energy is measured after the waveguide to account for the incoupling loss. The only fit
parameter used for the fitting function sinh2(α√P) is α = 0.28.

of 4f-setups are 0.26 and 0.30 for signal and idler photons, respectively, owing principally
to a low diffraction efficiency of the diffraction gratings. The PDC photons are then detected
with fibre coupled superconducting nanowire single photon detectors (SNSPD) (Photon Spot)
with system detection efficiencies of 0.41 and 0.55 at 1276 nm and 1411 nm, respectively.
With this configuration we measure Klyshko efficiencies (coincidences over the single counts
of each arm [50]) of (8±0.01)% and (5±0.02)% for signal and idler photons, respectively. A
normalisation over the transmission of 4f-setups (which can be replaced with bandpass filters with
very high transmissivities) and detection efficiencies suggests that these Klyshko efficiencies can
be improved to around 56% and 40% for signal and idler photons, respectively. These efficiencies
can be further improved by using anti-reflective coatings on the KTP waveguide facet and the
fibres.
To benchmark the brightness of the source, in in Fig. 5 we plot the generated mean photon

number versus pump pulse energy. For this measurement, we calibrate the detected counts using
the Klyshko method [50]. When we drive the waveguide with a pump pulse energy of 37.5 pJ, the
source generates states with a mean photon number of about 8. The mean photon number follows
the expected curve for a single-mode source at relatively low pump powers. The comparably high
brightness of the source is due to long waveguide length, the use of birefringent phasematching,
and the relatively single-mode character of the source.

3.2. Spectral characterisation

To measure the spectrum of the idler photon, we use the 4f-setup in the monochromator
configuration, with a spectral resolution of 0.2 nm. With the AGVM condition, as can be seen
in Fig. 3(c), the spectrum of the idler photon echoes the phasematching function φ(ωs, ωi). The
measured spectrum of the idler photon and its theoretical counterpart are plotted in Fig. 6(a).
The discrepancy between experiment and theory can be explained by considering the waveguide
inhomogeneities [51–54]. Inhomogeneity of the waveguide channel, e.g. non-uniform width or
depth, can change the effective refractive index along the propagation direction and consequently
distort the phasematching function. This can be understood by regarding the inhomogeneous
waveguide as many short homogeneous segments with different phasematching conditions
∆k(ωs, ωi) = kp(ωs + ωi) − ks(ωs) − ki(ωi). The overall phasematching distribution then would
be a sum of all of these segments, which is a coherent mixture of many sinc-shaped functions
with different widths and central frequencies. This depends on the exact form of inhomogeneities,
but in general these inhomogeneities effectively broaden the phasematching function. A known
solution to this is to design the waveguide geometry insensitive to these inhomogeneities (known
as noncritical phase-matching) [53, 55]. We are currently conducting a comprehensive study of
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Fig. 6. (a) Theoretical and experimentally measured phasematching functions phasematching
function |φ(ωs, ωi)|. (b) A contour plot of the theoretical JSA function and the bandpass
filters to remove the phasematching sidelobes. The widths of filters in signal and idler arms
are 45 nm and 3 nm, respectively. Without any spectral filtering, the JSA features a Schmidt
number K = 1.12 which increases to K = 1.03 when the idler filter is applied. Due to the
specific distribution of JSA, filtering the signal photons cannot remove the phasematching
sidelobes.

this matter.
The broadened phasematching with asymmetric side-lobes, seen in Fig. 6(a), diminishes the

spectral purity and the fidelity of single photon shaping, hence we use spectral filtering (with a
width of 3 nm) on the idler photons to remove the side-lobes, as shown in Fig. 6(b). From the
distribution of the JSA, it is evident that removing the phasematching sidelobes is only possible
by filtering the idler photons. This filtering, however, result in an imbalanced Schmidt number
K between the signal and idler photons [56]. Nonetheless, since we are interested in heralding
signal photons upon detection of idler photons, the heralded photons inherent the lowest Schmidt
number K , which consequently yields a high purity.

To measure joint spectral intensity (JSI) distribution | f (ωs, ωi)|2, we combine the monochroma-
tor in the idler arm with a time-of-flight spectrometer in the signal arm [57]. In the time-of-flight
spectrometer we use a highly dispersive fibre to map the spectrum into the temporal profile
which can be resolved directly in time on SNSPDs. We use a 4.3 km long fibre with a total
dispersion of 0.3 ns/nm which, alongside with 70 ps timing resolution of SNSPD, constitute
a spectrometer with a resolution of about 0.2 nm. The measured JSIs with the pump field in
the first four Hermite-Gauss modes and five frequency bins are plotted in Fig. 7. The Schmidt
number inferred from these JSIs shows a spectral purity of more than 0.98, which provides an
upper bound on the spectral purity.

3.3. Purity and second-order correlation function

As discussed in the theory section, spectral correlations between PDC photons leads to impurity
of the heralded single photons. Although the JSI measurement provide important information
about the spectral correlation of the PDC photons, it is blind to the spectral phase of the photons
and is also limited by the resolution of the spectrometers. A better measure of any underlying
correlations of the PDC photons is the second-order correlation function g(2)(0) of signal or idler
photons, as measured with a 50/50 fibre coupler [43,58]. The g(2)(0) measurement probes the
photon number statistics of unheralded beams (signal or idler) and can discriminate between
a single-mode PDC state with g(2)(0) = 2 and a highly multimode state with g(2)(0) = 1. In
Fig. 8 we plot the g(2)(0) of the both PDC photons with the pump pulse in different orders of
Hermite-Gauss modes and bandwidths ranging from 0.5 nm to 3 nm. With a narrow pump
bandwidth, energy correlations remain in the PDC state which are exhibited in lower g(2)(0)
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(a)

(e)

(d)

(c)

(b)

Fig. 7. A few examples of the measured joint spectral intensities (JSIs), with the marginal
spectral distribution of signal photon above in grey. The pump mode for each JSI is shown
on the right side, where the grey shaded area is the spectral amplitude and the green line
is the spectral phase. The pump modes are as the following: (a) Gaussian, (b) 1st-order
Hermite-Gaussian, (c) 2nd-order Hermite-Gaussian, (d) 3rd-order Hermite-Gaussian, (e)
frequency bins, with Schmidt numbers: Ka = 1.01, Kb = 1.01, Kc = 1.02, Kd = 1.02,
Ke = 1.02.

(a) (b)

Fig. 8. The second-order correlation measurements of the idler and signal photons with the
pump set to different bandwidths and different orders of Hermite-Gaussian modes. The error
bars for the g(2)signal(τ = 0) are smaller than the markers.
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values. For the idler photon, we spectrally filter the asymmetric phasematching side-lobes (see
Fig. 6), and we achieve the highest g(2)(0) of 1.99 ± 0.02 with a 1.5 nm broad Gaussian pump
pulse, which reduces to 1.93 ± 0.02, 1.85 ± 0.02, and 1.81 ± 0.02 for the first, second, and third
order Hermite-Gauss modes, respectively. The corresponding purities can be calculated through
Eq. (4). This reduction in the g(2)(0) value is also expected from theory. With increasing order of
Hermite-Gauss modes, these function feature more complex structures spanned over a broader
frequency range which inevitably increases the frequency anti-correlations between signal and
idler (see Fig. 3(a)). Despite this, it is possible to achieve a high purity with an appropriately
designed crystal length.
The g(2)(0) of signal photons, plotted in Fig. 8(b), is considerably lower. This is due to the

presence of the phasematching side-lobes which cannot be simply filtered for the signal photons
(see Fig. 6(b)). While the signal photons are themselves less pure, the high g(2)(0) of the idler
indicates that the shaped signal photons are highly pure when heralded by an idler detection.
However, this purity comes at a cost of heralding efficiency. Enhancing the waveguide fabrication
technology or using methods such as noncritical phasematching [55] or aperiodic poling [59, 60]
may be able to eliminate these unwanted spectral features to produce filter-free heralded photons
with high purities and arbitrary temporal shapes.

3.4. Conclusion

We have shown that heralded single photons can be generated in arbitrary temporal modes using
pulse shaping and KTP waveguides with an optimised dispersion. Through joint spectral intensity
measurements, we have verified that the spectral shape of the pump pulse is faithfully imparted
onto the signal photon. Second-order photon number correlations measurements show that the
heralded photon state is highly pure and suitable for use in quantum networks. Our integrated
source is based on birefringent phasematching and emits within the telecommunications band.
Future work will focus on adapting the source with periodic poling to optimise the emission
wavelengths for available photon detectors and customise the joint spectral amplitude to eliminate
the need for filtering. With these optimisations, the source presented here will prove to be a vital
component in applications such as temporal-mode based quantum communication and mode
matching between quantum interfaces.
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Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as

elements based on parametric downconversion sources, quantum dots, colour centres or

atoms are fundamentally different in their frequencies and bandwidths. Although pulse

manipulation has been demonstrated in very different systems, to date no interface exists

that provides both an efficient bandwidth compression and a substantial frequency transla-

tion at the same time. Here we demonstrate an engineered sum-frequency-conversion

process in lithium niobate that achieves both goals. We convert pure photons at telecom

wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under

preservation of non-classical photon-number statistics. We achieve internal conversion

efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compres-

sion. Our system thus makes the connection between previously incompatible quantum

systems as a step towards usable quantum networks.

DOI: 10.1038/ncomms14288 OPEN

1 Integrated Quantum Optics, Applied Physics, University of Paderborn, Paderborn 33098, Germany. 2 Clarendon Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, UK. Correspondence and requests for materials should be addressed to M.A. (email: markus.allgaier@uni-paderborn.de).

NATURE COMMUNICATIONS | 8:14288 | DOI: 10.1038/ncomms14288 | www.nature.com/naturecommunications 1



P
hotons play the important role of transmitting quantum
information between nodes in a quantum network1.
However, systems employed for different tasks such as

generation, storage and manipulation of quantum states are in
general spectrally incompatible. Therefore, interfaces to adapt the
central frequency and bandwidth of the photons are crucial2–4.
To achieve any viable bandwidth compression, the interface has
to provide at least a net gain over using spectral filters. Electro-
optical frequency conversion can provide such high efficiencies
for bandwidth compression4 and shearing5 of quantum pulses.
However, it is limited to frequency shifts of a few hundred
gigahertz. Optical frequency conversion in nonlinear crystals
offers both large frequency shifts as well as high conversion
efficiencies6–10. Operating on chirped pulses allows to perform
spectral shaping11, an approach with which a bandwidth
compression of 40 has been demonstrated2,12, however, with
low efficiencies below spectral filtering. Reaching high conversion
efficiencies with this method is challenging, as very broad
phasematching is required, which in turn limits the allowed
interaction lengths and hence the conversion efficiencies. An
alternative approach is to engineer the phasematching of the
sum-frequency process itself13 by choosing appropriate group
velocity and pump-pulse conditions. Such engineering has been
widely exploited for parametric downconversion (PDC)14–17 to
produce decorrelated photon pairs efficiently. For frequency
conversion, this approach has not been investigated.

The quantum pulse gate (QPG)9,18–20 is such a device that
exploits specific group-velocity conditions: The input and the
pump are group-velocity matched, while the output is strongly
group-velocity mismatched. This is achieved in a type-II sum-
frequency process in a periodically poled titanium-indiffused
waveguide in lithium niobate. The group-velocity matching
ensures that spectrally broad input pulses overlap throughout
the crystal while the mismatch with the output in combination
with the long interaction length inside the waveguide results in a
narrow output spectrum. Furthermore, the output temporal
mode, that is, the temporal or spectral amplitude of the output
pulse, only depends on the phasematching and not on the pump
or input fields. This allows to convert any input to the same
narrow output. It can thus interface broad PDC sources as well as
narrower and even dissimilar emitters, such as quantum dots.

To demonstrate the performance of the QPG as an interface, we
focus on its application as a link between PDC sources and
quantum memories to produce on-demand single photons. Ideally
for quantum networks, single photons are generated into well-
defined optical modes and feature compatibility with low-loss fibre
networks. Heralded photons from engineered, single-pass PDC
fulfill these requirements21,22. One class of quantum memories,
Raman quantum memories, can exhibit very broad spectral band-
widths of a few gigahertz23 up to 20 GHz (refs 24,25). Long storage
times have been achieved in alkali vapour memories with
bandwidths of up to several gigahertz26; however, these are
narrowband compared with the above-mentioned PDC sources
with bandwidths in the terahertz regime22. In diamond, terahertz
bandwidth can be achieved27, but both storage time and memory
efficiency are low, such that these memories cannot be utilized in
quantum networks, yet. In principle, schemes exist to match
both systems directly by using a very broad memory27 or strong
spectral filtering of a correlated PDC source28, but these come at
the expense of short storage times or reduced purities through
spectral filtering29. A bandwidth-compressing interface between
the broadband PDC sources at telecom wavelengths and the
narrower quantum memories at visible or near-infrared
wavelengths is therefore desirable.

We show in this work that dispersion engineering can be used
to develop processes that provide spectral reshaping and high

conversion efficiencies at the same time. We demonstrate such an
interface by converting single photons from 1,545 nm and a
bandwidth of 1 THz to 550 nm and a bandwidth of 129 GHz
under preservation of the second-order correlation function
g(2)(0) while achieving external conversion efficiencies high
enough to outperform a spectral filter producing an equivalent
output spectrum.

Results
Experimental setup and spectral properties of the PDC source.
Our experimental setup is depicted in Fig. 1. We generate single
photons at 1,545 nm from an 8 mm long type-II PDC source in
periodically poled potassium titanyl phosphate with a poling
period of 117 mm and a Klyshko efficiency30 of 20.2%. The pump
beam for the PDC source is created by a series of elements,
starting with a Ti:Sapphire mode-locked laser, which pumps an
optical parametric oscillator, followed by second-harmonic
generation and bandwidth fine-tuning with a 4f spectral filter.
The bandwidth is adjusted to ensure a decorrelated PDC state.
We characterize the spectral properties of the PDC photons by
measuring their joint spectral intensity with a time-of-flight
spectrometer31, consisting of a pair of dispersive fibres and a low-
jitter superconducting nanowire single-photon detector (SNSPD;
Photon Spot). From this measurement, shown in Fig. 2a, we
conclude that the bandwidth (full-width at half-maximum) of the
idler photon is 963±11 GHz at 1,545 nm central wavelength.
Furthermore, the round shape of the joint spectral intensity and
the Schmidt number32 K¼ 1=

P
k l

2
k¼ 1:05 extracted from the

measurement indicate that the photon pairs are indeed spectrally
decorrelated. lk are the weights of the Schmidt modes. We keep
the pulse energy of the PDC pump at a low level of 62.5 pJ to
ensure that mainly photon pairs and only few higher-photon-
number components are created. At the output, an 80 nm wide
band-pass filter centred at 1,550 nm is used to filter out
background processes while not cutting the spectrum of the
actual PDC process.

The heralded idler photon is then sent to the QPG, consi-
sting of a periodically poled 27 mm long LiNbO3 crystal with
Ti-indiffused waveguides and a poling period of 4.4 mm. It is
pumped at 854 nm with light from the same Ti:Sapphire laser,
which is spectrally shaped by means of another 4f line containing
a liquid-crystal spatial-light modulator. The modulator can be
used to adapt the QPG pump to any input. To characterize the
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1,544 nm
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1,545 nm

Herald
1,543 nm

(h)

Transmitted
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SMF to SiAPD or
spectrograph
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Figure 1 | Experimental setup. Setup used for characterization of the

transfer function of the the quantum pulse gate (QPG) as well as the

measurement of conversion efficiency, correlation functions and spectra.

BP, band pass filter; CW, continuous wave laser; DM, dichroic mirror; OPO,

optical parametric oscillator; PBS, polarizing beam splitter; ppKTP,

periodically poled potassium titanyl phosphate crystal; ppLN, periodically

poled lithium niobate crystal; SHG, second-harmonic generation; SMF,

single mode fibre; Ti:Sa, Ti:Sapphire laser.
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QPG, we measure its phasematching function by recording the
sum-frequency signal of a broad pump and a tunable continuous
wave telecom laser on a Czerny–Turner spectrograph equipped
with 2,398 lines mm� 1 grating and a single-photon-sensitive
electron multiplying charge-coupled device camera. The result is
shown in Fig. 2b. The horizontal orientation of the phasematch-
ing function is due to the fact that the input and pump are group-
velocity matched, while the output is strongly group-velocity
mismatched. This leads to the narrow spectrum of the output
field while accepting a broad input field. As the slope of the
phasematching function is connected to the group-velocity
mismatch between input and pump, the horizontal portion on
the top indicates perfect group-velocity matching, where the
output spectrum depends only on the phasematching and not on
the pump. This holds for a telecom input bandwidth as large as
20 nm. As the PDC photons are only 7.8 nm wide, we are well
within that range and adjust the pump bandwidth accordingly to
ensure maximum conversion efficiency. After the conversion, we
separate both the converted and the unconverted light from the
background and residual pump by means of broadband filters
and couple all fields into single-mode fibres. It is noteworthy that
the phasematching bandwidth and therefore the bandwidth
compression depend on the sample length and could therefore
be increased or decreased to get the desired output. As the group-
velocity curves steepen towards shorter wavelength, moving the
process in this direction would increase the group-velocity
mismatch between input and output resulting in even greater
bandwidth compression.

Noise properties of the conversion. To be viable as an interface
in quantum networks, the device has to leave the quantum nature
of the single photons untouched. To measure this, we employ
photon-number statistics, namely, the heralded second-order
autocorrelation function of the photons measured with a 50/50
beam splitter and two click detectors:

g 2ð Þ¼ Pcc

P1 � P2
; ð1Þ

where Pcc is the coincidence probability and P1 and P2 the single-
click probabilities. The QPG does not change the g(2)(0), which
takes the value of 0.32±0.01 both before and after the frequency
conversion. With g(2)(0)o1, the single-photon character is
verified before and after the conversion. The value before the
conversion can be explained with higher photon number
components. More notably, there are no measurable noise

photons added polluting the g(2) in the frequency conversion
process.

Bandwidth compression and efficiency. To estimate the band-
width compression, we record the spectrum of converted PDC
photons with the aforementioned Czerny–Turner spectrometer.
The marginal spectra of the idler photon together with the con-
verted spectrum are depicted in Fig. 3. The converted light has a
spectral bandwidth of 129±4 GHz and a central wavelength of
550 nm. Compared with the original bandwidth of 963 GHz of the
PDC photon, this implies a bandwidth-compression factor of
7.47±0.01.

The second, equally important figure of merit is the conversion
efficiency. If the conversion efficiency is low, a simple spectral
filter could outperform the device. Were the idler converted by a
continuous wave pump, the bandwidth would remain constant at
963 GHz. Filtering down to 129 GHz would then imply a
throughput of 13.40±0.02% (the error corresponds to the fit
errors for the spectral bandwidths in Fig. 3), assuming the
conversion itself is lossless. To measure the conversion efficiency,
we send the photons to SNSPDs and a silicon avalanche
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photodiode (SiAPD) for infrared or visible photons, respectively.
We estimate the internal efficiency of the process itself as well as
the external efficiency including all optical loss in the setup.
As a measure for the internal efficiency, we use the depletion
of the transmitted light by calculating the Klyshko efficiency30 Zt

of the unconverted 1,545 nm light, transmitted through the QPG
with the QPG pump open and blocked. The Klyshko efficiency is
defined as Zt¼ Pcc/Ph, where Pcc is the coincidence-count
probability between the herald (h) and unconverted,
transmitted (t) PDC photon (refer to labels in Fig. 1) and Ph is
the herald-count probability alone. From this depletion, we get
the internal conversion efficiency of the process

Zint¼1� Zopen
t

Zblocked
t

ð2Þ

where the superscript denotes whether the QPG pump was
blocked, meaning that the idler mode is merely coupled and
transmitted through the QPG, or open and the conversion
process takes place. Using the depletion of the unconverted light
has the advantage that it provides a direct measure of the internal
conversion efficiency. By contrast, one would need precise
knowledge of all losses to estimate it from the upconverted
signal. The resulting value for the internal conversion efficiency is
61.5%.

As a measure for the external conversion efficiency, we use the
ratio between the Klyshko efficiencies of the converted light
Zc and the unconverted idler light before the QPG Zi, corrected
only for the different detection efficiencies of the SiAPD
compared with the SNSPD:

Zext¼
Zc � ZSNSPD

Zi � ZSiAPD
ð3Þ

where ZSNSPD¼ 0.9 and ZSiAPD¼ 0.6 are the detector efficiencies
of the SNSPD and SiAPD photon detectors, respectively. This
external conversion efficiency is 16.9%. Owing to some spatial
mode mismatch, the coupling of the converted light into a single
mode fibre is reduced compared with the unconverted light.
Taking into account this reduced fibre compatibility of the green
mode (50% instead of 80% for the herald), the external efficiency
amounts to 27.1%. This can be seen as the free-space efficiency of
the device. As all of these efficiencies result from counting
sufficiently large numbers of photons, errors are negligible. The
coupling of the green mode into the fibre can be further improved
by optimizing the waveguide structure or the coupling optics. The

difference between the internal and the external efficiency is
mainly due to linear optical losses in uncoated lenses and a 4f
line band-pass filter, with a total transmission of 68% and a
waveguide-incoupling efficiency of around 71%.

These conversion efficiencies show that the QPG offers useful
bandwidth compression and provides a net gain over using a
spectral filter. For the first time, this is realized in combination
with substantial frequency conversion. This is true not only when
looking at the internal conversion efficiency but even when
comparing to the external conversion efficiency, which already
includes all losses, such as waveguide and even fibre couplings.

Discussion
Having demonstrated a viable interface, we calculate the process
parameters required to interface the proposed broadband
memories in diamond based on nitrogen and silicon vacancy
centres24,25. The degrees of freedom available for tuning the
conversion process are primarily the temperature and the choice
of the nonlinear material. As a basis for this study, we use
effective Sellmeier equations33,34 of the modes inside the wave-
guide. Figure 4a shows the group-velocity mismatch between
PDC idler and pump at two different temperatures. The two light
stripes in the colour code represent areas with zero group-velocity
mismatch for 190 �C (left stripe) and 300 �C (right stripe),
whereas the solid white lines indicate wavelength combination
where the sum-frequency is at the desired output frequency. The
main target wavelength in this work, the transition of a charge-
neutral nitrogen vacancy centre (NV0) in diamond24 at 574 nm,
can be addressed with a group-velocity-matched sum-frequency
generation process at a sample temperature of 300 �C. The PDC
wavelength would be at 1,560 nm and the pump at 907 nm, well
within reach of PDC sources and Ti:Sapphire laser systems. For
the proof-of-principle experiment in this work, we have chosen a
slightly different operating point of 190 �C as it simplifies the
choice of suitable ovens and insulation materials, thus shifting
the target wavelength to 550 nm. As unwanted effects such as
photorefraction are only present at lower temperatures35, there is
no fundamental limitation for increasing the temperature as high
as the Curie temperature. The alternative silicon-vacancy
transition25 at 738 nm cannot be reached with the birefringent
properties of lithium niobate. However, lithium tantalate, a less
birefringent material, supports it. The signal wavelength of this
process could be at 1,278 nm and the pump wavelength at
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1,748 nm or vice versa. Temperature tuning of the group-velocity
matching in the same way as in lithium niobate can also be
considered. Figure 4b shows the parameter space for that process.
Note that these numbers are based on bulk Sellmeier equations36

and might slightly differ for waveguides. Apart from sum-
frequency processes, difference-frequency generation can also be
considered. For example, conversion of near-infrared light as
emitted by semiconductor quantum dots to the telecom band can
be carried out with an infrared pump such as the one employed in
ref. 37. Overall, a large range of wavelengths can be covered with
the available materials and realistic process parameters.

In conclusion, we have realized a device that not only offers
efficient upconversion from telecom light to the visible spectrum
but also useful bandwidth compression. As the phasematching
bandwidth is proportional to the inverse of the sample length, the
compression factor is in principle scalable. It is noteworthy that
the device does not provide a fixed bandwidth ratio between input
and output but rather a fixed output bandwidth, such that the
same converter can be used for inputs of different bandwidth.

Methods
Laser system. The main laser system employed in the experiment is a Coherent
Chameleon Ultra II Titanium Sapphire laser with an APE Compact OPO optical
parametric oscillator. The pulse duration of the Ti:Sapphire oscillator is 150 fs at a
repetition rate of 80 MHz. The optical parametric oscillator’s pulse duration is
190 fs. Its emission at 1,545 nm is converted to 772.5 nm by a periodically poled
bulk lithium niobate second-harmonic generation crystal fabricated in-house in
Paderborn. The bandwidth of the 772.5 nm light used as the PDC pump is 3 nm
(all bandwidths given as full-width at half-maximum). A Photonetics Tunics
continuous wave laser was used in the characterization of the QPG’s
phasematching.

Spectral pump shaping. Two 4f line pulse-shaping setups are employed in the
experiment. Both use a dispersive element to separate spectral components. The
spectrum is then manipulated in the focal plane of a lens. The one for the PDC
pump is a folded geometry prism monochromator with an adjustable slit as
described in ref. 22. The resolution is 0.7 nm. The pump for the QPG can be
intensity and phase-shaped with a liquid-crystal-on-silicon-based spatial light
modulator setup in a folded grating monochromator geometry with a resolution
of 22 pm. In this work, the PDC pump spectrometers was set to the full 3 nm
bandwidth to match the phasematching bandwidth of the PDC crystal in order to
achieve a decorrelated PDC state. The QPG pump was set to 6 nm.

Photon pair source. The PDC photon pair source is a commercially available
periodically poled potassium titanyl phosphate crystal with rubidium-exchanged
waveguides purchased from ADVR. The crystal is 8 mm long with a poling period
of 117 mm over a poled length of 6 mm. The source is pumped to produce a

decorrelated photon pair state with a bandwidth of 7.8 nm. The Schmidt number
obtained from the measured joint spectral intensity is 1.05, and the Klyshko
efficiency is 20.2%. A coincidence window of 5 ns was used to obtain this number.

Time-of-flight spectrometer. The time-of-flight spectrometer consists of two
dispersive fibres introducing group delays of 431 ps nm� 1 each. The chirped
photons are then detected by superconducting nanowire single-photon detectors
manufactured by Photon Spot combined with a AIT TTM8000 time tagger. The
convoluted jitter in the coincidence measurement is 150 ps leading to a spectral
resolution of 0.35 nm.

Coincidence measurements. The coincidence window for all coincidence
measurements was set to 5 ns. For the measurement of external conversion
efficiencies, we measured Klyshko efficiencies, that is coincidence rates devided by
herald counts. Table 1 shows the herald and coincidence count rates leading to the
external efficiency discussed in the paper.

The measurements were conducted over periods of 30 s before the QPG and
46 s after, yielding 12 million and 21 million herald counts, respectively. The herald
is not sent through the pulse gate; the fluctuation is due to fluctuations of the laser
output power. For the g(2) measurement, the PDC photons in mode 1 were split up
by a fibre beam splitter and all counts were conditioned on a click in the herald
arm. The result was normalized over the herald counts:

g 2ð Þ¼ Phab

Pha � Phb
� Ph ð4Þ

where a and b label the two modes resulting from splitting up mode 1.
The count and coincidence rates in this measurement are shown in Table 2:

The measurement durations were 57 s in front and 190 s behind the QPG,
yielding a total of 52 million and 185 million herald counts, respectively. The
duration of the measurement for the converted light was increased in order to yield
the same statistical error for the g(2)(0).

Pump power dependence of conversion efficiency. Figure 5 shows the
dependence of the QPG conversion efficiency on the pump power. Although the
conversion probability follows a sin2 dependence, we cannot reach unit efficiency
with the pump power available to us.

Code availability. The code used to generate the findings of this study is available
from the corresponding author on reasonable request.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.

Table 1 | Herald and coincidence count rates before and
after the quantum pulse gate (QPG) used to obtain the
external conversion efficiency.

Before QPG After QPG

Herald counts (s� 1) 430,000 465,000
Coincidence counts (s� 1) 86,000 10,600
Klyshko efficiency 20.2% 2.27%

Table 2 | Count and coincidence rates for measuring the
second-order correlation function before and after the
quantum pulse gate (QPG).

Before QPG After QPG

Herald counts (s� 1) 910,000 970,000
Coincidences herald—mode1 (s� 1) 6,900 3,900
Coincidences herald—mode2 (s� 1) 7,200 2,780
Triple coincidences (s� 1) 18.0 3.42
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Figure 5 | Pump power dependence of the internal conversion efficiency.

Pump power dependence of the quantum pulse gate’s internal conversion

efficiency. The solid line was fitted to the data and follows

0.619 � sin2(0.130 �
ffiffiffi
P
p

). Each data point was obtained by measuring the

depletion of the unconverted (transmitted) beam’s count rate. Poissonian

distributed statistical uncertainties of the count rates are small, error bars

are therefore omitted as they are smaller than the data points.
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Temporal-mode measurement tomography of a quantum pulse gate
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Encoding quantum information in the photon temporal mode (TM) offers a robust platform for high-
dimensional quantum protocols. The main practical challenge, however, is to design a device that operates on
single photons in specific TMs and all coherent superpositions. The quantum pulse gate (QPG) is a mode-selective
sum-frequency generation designed for this task. Here, we perform a full modal characterization of a QPG using
weak coherent states in well-defined TMs. We reconstruct a full set of measurement operators, which show an
average fidelity of 0.85 to a theoretically ideal device when operating on a seven-dimensional space. Then we
use these characterized measurement operators of the QPG to calibrate the device. Using the calibrated device
and a tomographically complete set of measurements, we show that the QPG can perform high-dimensional TM
state tomography with 0.99 fidelity.

DOI: 10.1103/PhysRevA.96.063817

I. INTRODUCTION

Optical quantum information science (QIS) covers a mul-
titude of applications ranging from quantum computing and
simulation over quantum metrology to quantum communi-
cations. Using photons to carry information in any of these
applications, we have to choose an alphabet for information
encoding. Of the four degrees of freedom—polarization,
transverse electric-field distribution (two degrees of freedom),
and time—polarization is more popular due to its experi-
mental accessibility. This comes, however, with an intrinsic
limitation to a two-dimensional Hilbert space, where we
actually would prefer an infinite-dimensional alphabet which
can increase the information capacity of each photon and can
also improve the performance of quantum protocols. For this
reason, recent years have seen increasing interest in alternative
encodings deploying either the spatial degree of freedom or
the spectral-temporal domain where the basis states are e.g.,
orbital angular momentum states or temporal modes (TMs),
respectively. The latter are particularly appealing because
they are compatible with single-mode fiber networks and are
also eigenmodes of state-of-the-art photon sources based on
parametric down-conversion and four-wave mixing. However,
the temporal shaping and detection of single-photon wave
packets in higher-dimensional spaces are challenging, as they
require time-dependant operations, such as nonlinear optical
interactions [1,2]. Regardless of this, TMs of single photons
have been identified as a promising resource for QIS and were
studied in many contexts such as high-dimensional quantum
communications [3], deterministic photonic quantum gates
[4], light-matter interaction [5,6], and enhanced-resolution
spectroscopy [7]. Any of these applications necessarily re-
quires the capability to prepare photons in specific TMs,
defined by a complex amplitude and phase distribution of
the electric field, and to perform TM-resolved measurements
in both the computational and any associated superposition
basis. This can be achieved with the quantum pulse gate
(QPG), a device that selects a single, arbitrary TM and converts

*vahid.ansari@uni-paderborn.de

it to a distinguishable output [1,2]. Recently, such devices
have been demonstrated by several groups by employing
dispersion-engineered frequency conversion between a strong
shaped driving pump field and a coherent signal state at
single-photon level intensities [8–12] or with heralded single
photons from a parametric down-conversion source [13]. In
these experiments, TM selectivity with reasonable efficiencies
has been shown, but the coherences between all possible TMs
have not been investigated in detail. This is, however, an
essential ingredient for the realization of any application based
on a high-dimensional alphabet rather than on simple add-
or drop-type multiplexing of information channels. An easy
example is polarization tomography, where measurements
have to be carried out in all three mutually unbiased bases
(MUBs)—horizontal or vertical, diagonal or antidiagonal,
and right-circular or left-circular—in order to retrieve full
information on the state under investigation.

In this paper, we reconstruct all measurement operators of
a QPG operating on both a five-dimensional and seven-
dimensional TM Hilbert space. Our QPG is based
on dispersion-engineered sum-frequency generation in a
titanium-indiffused lithium niobate waveguide, and we use
sets of weak coherent states which span a tomographically
complete set of MUBs to characterize the device. Afterwards,
we use the retrieved measurement operators of our QPG to
perform TM state tomography of randomly chosen TM states
in an up to seven-dimensional Hilbert space with average
fidelities of 0.99. This combines the necessary ingredients for
high-dimensional QIS with single-photon TMs and paves the
way towards future applications of this technology.

II. FREQUENCY CONVERSION AND MODE
SELECTIVE MEASUREMENTS

In this section, we present the theoretical basis behind the
QPG and the use of it for tomography of TM states. We express
our single-photon states in terms of broadband TMs:

Âi =
∫

fi(ω)â(ω)dω, (1)

2469-9926/2017/96(6)/063817(8) 063817-1 ©2017 American Physical Society
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FIG. 1. Outline of QPG operation. The QPG is a beamsplitter
operating on a TM defined by the index α. For the measurement
tomography, we send coherent states |β〉 to the QPG and at the
converted (reflected) port we measure the number of converted
photons using a bucket detector, noted as nαβ .

where fi(ω) are frequency amplitudes and â(ω) are the
annihilation operators for the central frequency ω. The
spectral intensity |fi(ω)|2 can be measured with a standard
spectrometer. In the following, the modes Âi form our discrete
basis of dimension d, i.e., the functions fi(ω) are orthonormal
and 0 � i < d. In the experiment, we take d = {5,7} and fi(ω)
as Hermite-Gaussian functions of order i.

Before giving the sketch of the TM tomogra-
phy, we briefly review the underlying formalism of
the QPG as a mode-selective frequency conversion
(FC). FC in general is a beamsplitter acting on
TMs, which is described by a Hamiltonian ĤFC =
θ

∫∫
f α(ωin,ωout)â(ωin)b̂†(ωout)dωindωout + H.c., where â

and b̂ are the annihilation operators for the two beamsplitter
modes. The transfer function

f α(ωin,ωout) = α(ωpump)�(ωin,ωout) (2)

is given by the pump amplitude α(ωpump) and the phase-
matching function �(ωin,ωout) of the crystal [1,2]. We use
a superscript α to indicate that we can adjust the process by
shaping the pump spectrum. Using the Schmidt decomposi-
tion, the transfer function f α(ωin,ωout) can be decomposed
into its eigenmodes defining new TM operators Ĉα

k and D̂α
k ,

thus reducing the integral to the following sum:

Ĥ α
FC = θ

∑
k

λα
k

(
D̂α

k

)†
Ĉα

k + H.c., (3)

where λα
k are the eigenvalues of the decomposition, normalized

as
∑

k |λα
k |2 = 1, and θ is the gain of the process. The

orthogonality of the eigenmodes ensures that we can regard
the FC as independent beamsplitters with a reflectivity or
conversion efficiency of ηα

k = sin2(|θλα
k |). As sketched in

Fig. 1, we have no input in mode D and measure the mean
photon number of the converted light, which is

n =
∑

k

ηα
k

〈(
Ĉα

k

)†
Ĉα

k

〉
. (4)

To calculate what this means for a given input spectral
shape, we decompose the mode β of the input state into the
eigenmodes of the FC:

β̂ =
∑

k

v
αβ

k Ĉα
k . (5)

Then we can rewrite the mean photon number of converted
light as

nαβ = Nβ
∑

k

ηα
k

∣∣vαβ

k

∣∣2
, (6)

where Nβ is the total mean photon number of the input state
and |vαβ

k |2 is the overlap between the input mode β and the
kth eigenmode of the conversion process for a pump setting α.
Interestingly, this is valid for all photon number distributions
including the coherent states we use here.

We can also rewrite this in vector notation as

nαβ = Nβ
∑

k

ηα
k |〈β|kα〉|2 = 〈β|M̂α|β〉, (7)

where M̂α = ∑
k ηα

k |kα〉〈kα| = ∑
ij mα

ij |i〉 〈j | is our measure-
ment operator, |i〉 is the TM basis from Eq. (1), |β〉 is the
input state, and |kα〉 are the eigenvectors of the process.
The idea of measurement tomography is to probe the matrix
M̂α with different states |β〉. All we have to do is to
generate a tomographically complete set of probe states and
employ standard measurement tomography with the measured
mean photon numbers for each setting, thus determining
the elements mα

ij . Diagonalizing this matrix, we get the FC
eigenmodes |kα〉 and efficiencies ηα

k . This fully characterizes
the input-mode structure of the FC. An ideal QPG has only one
eigenmode, i.e., M̂α has only one nonzero eigenvalue, and the
shape of the eigenmode would reflect the shape of the pump
kα

0 (ω) = α(−ω). This can be achieved in a three-wave mixing
process with the group-velocity matching (GVM) condition
between the input and the pump fields [1,2].

It is worth noting that while the number of modes of
the FC is in principle infinite the probe space is only finite
dimensional. Despite this, the reconstruction of the FC within
the probe space is accurate. A simple example is when the TMs
of the pump and input are not perfectly matched, e.g., in their
central frequencies. This can change the overall conversion
efficiency tr(M̂α) = ∑

k ηα
k for different pump shapes α. We

therefore try to match the central frequencies and bandwidths
of the input and pump TMs to cover as much of the FC space
as possible.

III. EXPERIMENT

The outline of the experimental setup is sketched in
Fig. 2. We take ultrashort pulses from a Ti:sapphire oscillator
[14] to pump an optical parametric oscillator (OPO) [15].
With this configuration we have Gaussian pulses at central
wavelengths of 873 and 1550 nm, for the pump and signal
fields, respectively, with amplitude full width at half maximum
(FWHM) of 3.35 THz for both fields. To prepare the coherent
input state, we attenuate the OPO beam to a mean photon
number of 0.1 per pulse. We use a self-built pulse shaper to
shape the pump and a commercial pulse shaper [16] to shape
the input light pulses, with spectral resolutions of 22 and 8 pm,
respectively. The self-built pulse shaper is a folded 4f setup
consisting of a magnifying telescope, a holographic diffraction
grating with 2000 lines/mm, a cylindrical silver mirror, and
a reflective liquid crystal on a silicon spatial light modulator
(SLM) [17]. We use spectral interferometry to ensure both
pulse shapers are dispersion free. The shaping resolutions

063817-2
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FIG. 2. Experimental setup. A femtosecond titanium:sapphire
(Ti:Sa) oscillator with repetition rate of 80 MHz is used to pump an
optical parametric oscillator (OPO). The pump of the QPG is obtained
from a tap-off of the Ti:Sa laser. The input signal field is prepared by
attenuating the OPO output to a mean photon number of 0.1 photon
per pulse by using neutral density (ND) filters. For spectral shaping,
we use SLMs in a folded 4f setup to shape the desired spectral
amplitude and phase for the both fields. Then pump and input fields
are combined on a dichroic mirror (DM) and coupled to an in-house
built periodically poled lithium niobate (PPLN) waveguide, held at
207 ◦C. After the PPLN waveguide, the up-converted photons with
a green color are selected by a 4f setup and coupled to a silicon
avalanche photodiode (SiAPD), through a single-mode fiber (SMF).

are better than the resolution we require in this experiment.
For example, while we could prepare the 20th-order Hermite-
Gaussian mode, we only use the first seven modes as our basis
due to other constraints that will be discussed later. For the
tomography, we choose a bandwidth of 0.4 THz (FWHM of
the amplitude of the Gaussian mode) for both fields. Finally,
the type-II sum-frequency process happens in an in-house built
17-mm LiNbO3 crystal with titanium indiffused waveguides
and a poling period of 4.4 μm. The waveguides are designed
to be spatially single mode at 1550 nm.

The key property of a QPG is the GVM between the input
and the pump [1,2]. In Fig. 3 we plot the intensity of the phase-
matching function |�(λin,λout)|2, measured with a scanning
continuous-wave input laser and adjusted pump pulses on a
high-resolution spectrometer. A perfect GVM condition results
in zero gradient of the phase-matching function in Fig. 3.
The marginal spectrum of this function, plotted on the left
side in Fig. 3, shows an asymmetric structure with decaying
side lobes. This can be explained by an inhomogeneity of the
effective refractive index along the waveguide, equivalent to
a variation of the poling period. A quadratic variation of the
poling period can introduce such asymmetric side peaks. In
the experiment, we also have a 4f setup on the sum-frequency
generation (SFG) line (with a total transmissivity of about
0.55) that allows us to filter out these side lobes.

One common complication with waveguides is that differ-
ent spatial mode combinations have different phase matchings.
In our case, these do not overlap with the phase matching for
the fundamental mode shown in Fig. 3, thus we can simply
filter them out spectrally. Nevertheless, special care is taken to

FIG. 3. Phase-matching function of the QPG. Right: The zero
gradient of the phase-matching function �(ωin,ωout) is an indicator
of group-velocity matching between input signal and pump field.
The diagonal white lines are marking the orientation of the pump
amplitude α(ωout − ωin) and the bandwidth we use in this paper. The
horizontal white lines are showing the bandwidth of the 4f setup used
to filter the SFG signal. Left: Marginal distribution of the plot on the
right side. Asymmetries are due to inhomogeneity of the effective
refractive index along the waveguide.

optimize the coupling of both beams into the waveguide for
the desired process and minimize the intensity of higher-order
modes.

We shape both the pump and the input to span a complete set
of MUBs [18]. These have the property that for a dimension
d there are (d + 1) bases such that overlaps between states
from different bases are always 1/d, hence unbiased. This
ensures that the space is uniformly probed. Furthermore, the
total set is tomographically overcomplete, helping to reduce
systematic experimental errors. Since for each pump shape
we have to run the full characterization with (d + 1)d input
modes, the total number of measurements for d = 5 and 7
are 900 and 3136, respectively. For each of them, we record
counts for about 1 s at count rates up to 105 counts/s. This
corresponds to a FC efficiency of about 5%, which is solely
limited by the pump pulse energy of about 5 pJ in the current
experimental setup. Despite the relatively low conversion
efficiency, a short measurement time is possible owing to
high detection efficiency of the silicon avalanche photodiode
(SiAPD). Since the count rates are directly proportional to the
powers of the pump and the input, we record both values after
the waveguide and normalize the count rates accordingly to
account for small drifts in the setup (with the magnitude of
less than 10%). It is worth mentioning that one can also use
symmetric informationally complete POVMs (SIC-POVMs)
as the tomography bases [19]. The main advantage of the
SIC-POVMs is that, contrary to MUBs, they exist for any
arbitrary dimension [20].

IV. MEASUREMENT TOMOGRAPHY OF THE QPG

To find the measurement operators M̂α from the data we
perform a weighted least-squares fit:

min
M̂α

∑
β

|f αβ − 〈β|M̂α|β〉|2
f αβ

, (8)
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FIG. 4. The first eigenvectors of the 7×6 measurement operators. For each plot, the x axis corresponds to the frequency detuning (from
the central frequency) and the y axis to the amplitude and phase. Black and green lines are the measured amplitudes and phases, respectively;
shaded areas and blue lines correspond to the theoretical MUB modes. Note that the phase is 2π periodic, which is also the interval of the y

axis. Please note that phases are only meaningful when a significant amplitude is present.

where f αβ are normalized count rates and M̂α is constrained
to be Hermitian and positive semidefinite. Since each setting α

is an independent measurement, we do not put a constraint on
the sum of operators. In Fig. 4 we show the first eigenmodes
of all measurement operators for seven dimensions. They
closely resemble the ideal MUB states. Additionally, the
matrix of projections of MUB POVM elements which shows
the orthogonality of the basis is given in Appendix B.

To quantify how accurate the results are, we calculate
the purities Pα = tr([M̂α]2)/tr(M̂α)2 and the fidelities Fα =√

〈α| M̂α |α〉 /tr(M̂α) with the ideal operators |α〉〈α|. We
perform the characterization in five and seven dimensions,
whereas for five dimensions we also compare the two experi-
mental settings with and without a spectral filter in the output
mode. As mentioned, the spectral filter blocks the side lobes of
the phase matching. The average values with their respective
standard deviations are listed in Table I. For comparison we
also show theoretical values assuming a Gaussian horizontal

phase matching and perfect pump shaping. The imperfections
in this case originate from the fact that the phase matching is
only about five times narrower than the pump, leading to cor-
relations in the transfer function and multimode performance
of the QPG. These correlations also explain why suppressing
the side lobes of the output spectrum improves the purity from
0.72 to 0.92. A comparison of the eigenmodes for these two
cases shows that the first eigenmode hardly changes. Thus the

TABLE I. Purities and fidelities of QPG measurement operators.

d 5 (unfiltered) 5 7

Pmeasured 0.719 ± 0.064 0.920 ± 0.024 0.811 ± 0.035
Fmeasured 0.778 ± 0.086 0.912 ± 0.046 0.847 ± 0.042
Ptheory 0.939 ± 0.026 0.909 ± 0.035
Ftheory 0.979 ± 0.008 0.971 ± 0.010
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spectral filtering suppresses the higher-order spectral modes
introduced by the side lobes of the phase matching, or in other
words drives the QPG closer to single modeness. Going from
five to seven dimensions slightly lowers both the purities and
the fidelities. One reason is that the richer spectral structure
of the pump at higher dimensions, again, will introduce some
spectral correlations in the transfer function which also reduce
the theoretical values. However, the expected reduction is
smaller than what we measure. Imperfections in the pulse
shaping are a greater problem for higher dimensions. With the
increase of dimensionality, the total bandwidth both in time
and frequency increases, which requires the relative phases
and amplitudes to be accurate over a broader range in both time
and frequency. To improve the single-mode operation of the
QPG, one can use a longer waveguide which gives a narrower
phase-matching bandwidth. Furthermore, the measurement
time increases drastically, which makes the experiment more
susceptible to drifts in the setup. With the current exper-
imental setup, the seven-dimensional characterization takes
about 2 h.

The overall high fidelities we measure in this paper
demonstrate that the QPG can operate on arbitrary TMs in a
selective way. The fidelities also quantify the mode selectivity
since the normalized conversion efficiency is given by F2.
In the five-dimensional case, that means that the desired
mode gets converted with 83% efficiency and any orthogonal
mode gets converted with less than 17%. However, with the
measurement operators we have much more information than
just the mode selectivity. For a task like state tomography,
the QPG operation can be calibrated for small experimental
errors, as we have here. All we need is mode sensitivity and
the knowledge of our mode detector, which we have with the
matrices M̂α . In Appendix C we discuss the feasibility of
this tomographic method at the presence of more significant
experimental errors.

V. STATE TOMOGRAPHY WITH THE QPG

In the following we investigate the performance of the
QPG for state tomography. For this purpose, we prepare states
like ρ̂ = |β〉 〈β|, which are different from the characterization
set we use for the measurement tomography. To ensure fair
benchmarking we prepare 20 different input states where half
of them are generated randomly. Then we use the (d + 1)d
QPG settings α to reconstruct the input state. We measure the
normalized probabilities f α and minimize

min
ρ̂

∑
α

|f α − tr(ρ̂M̂α)|2
f α

, (9)

under the constraints that ρ̂ is Hermitian and positive semidef-
inite and tr(ρ̂) = 1. First, we assume a perfect QPG with ideal

TABLE II. Measured purities and fidelities of state tomography.

d 5 (unfiltered) 5 7

P 0.68 ± 0.079 0.753 ± 0.098 0.619 ± 0.052
F 0.742 ± 0.126 0.879 ± 0.041 0.813 ± 0.031

TABLE III. Measured purities and fidelities of state tomography
with calibrated QPG.

d 5 (unfiltered) 5 7

P 0.931 ± 0.038 0.972 ± 0.016 0.957 ± 0.017
F 0.971 ± 0.015 0.991 ± 0.005 0.988 ± 0.004

measurement operators and reconstruct the input states. Since
the prepared inputs are coherent states in well-defined TMs,
we expect to reconstruct pure states. The average fidelities and
their standard deviations measured for all input states are listed
in Table II, which shows a modest fidelity of the reconstructed
state with respect to the prepared state. This is because the
slight multimodeness of the QPG operation translates into the
mixedness of the reconstructed states and leads to inaccurate
tomography.

To improve the quality of the state tomography we can use
the characterized measurement operators of the QPG in Eq. (9).
Table III summarizes the outcome. The improvement is strik-
ing. We obtain fidelities of 0.99 with the actual input state. Two
examples of such states are shown in Fig. 5. The decrease in
fidelity from five to seven dimensions is almost negligible and,
even without filtering, the values are still very high. This shows
the power of proper detector calibration for state tomography.
The outstanding fidelities suggest that the state tomography
with QPG can be scaled up to higher dimensions. However,
performing a complete measurement tomography for higher
dimensions, with the current experimental configuration,
would require an impractically long measurement time. This
is primarily a technical challenge to decrease the switching
time of the SLMs and increase the count rates per second.
From the numeric point of view, measurement tomography
becomes time consuming very quickly. Here, one could switch
to pattern tomography [21], which circumvents this tedious
step by fitting the detector response pattern directly. We tested
this approach as well and obtained similar fidelities as shown
in Table III.

VI. CONCLUSION

In conclusion, we experimentally characterized the mea-
surement operators of a temporal-mode selective device in
up to seven dimensions. We have shown that the device is
effective in superposition bases spanning a tomographically
complete set of mutually unbiased bases. Furthermore, we
have shown that characterization of the measurement opera-
tors of such a device enables accurate temporal-mode state
tomography, with fidelities in the 0.99 range. With such
characterization, the QPG can be used to fully characterize
ultrafast quantum states. Future work will focus on improving
the performance of the QPG to realize its full potential for
high-dimensional quantum information science with temporal
modes.
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FIG. 5. Two examples of state tomography with QPG in the Hermite-Gaussian basis in five (a) and seven (b) dimensions. State vectors
corresponding to each density matrix are detailed in Appendix A. For each state the theoretical density matrix (left), the reconstructed density
matrix without QPG calibration (middle), and the reconstructed density matrix with QPG calibration (right) are plotted.
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FIG. 6. Matrix of projections of MUB POVM elements for five
(a) and seven (b) dimensions.
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APPENDIX A: LIST OF STATE VECTORS

The following is the list of state vectors associated with the
density matrices presented in Fig. 5, described in the Hermite-
Gaussian basis:

|ψa〉 = |1〉 − ı |3〉 , (A1)

|ψb〉 = (0.36110833 + 0.28107443ı) |0〉
+ (0.14599764 + 0.23536858ı) |1〉
+ (0.39339517 + 0.05872998ı) |2〉
+ (0.37242591 + 0.35380667ı) |3〉
+ (0.34693250 + 0.07796563ı) |4〉
+ (0.25172264 + 0.24799887ı) |5〉
+ (0.16147789 + 0.12004762ı) |6〉 . (A2)

FIG. 7. The impact of an imperfect QPG (parametrized in σ with
arbitrary units) on fidelity and purity of (a) measurement operators,
(b) state tomography without calibration, and (c) state tomography
with calibration of the POVMs. The y-axis in all cases indicates the
purity or fidelity, scaling from zero to one.

APPENDIX B: MUB POVM ORTHOGONALITY

Figure 6 shows the matrix of projections of MUB POVM
elements | |φi〉 〈φj | |2 for five and seven dimensions, which is
used for normalizing the data.

APPENDIX C: FEASIBILITY AGAINST
EXPERIMENTAL ERRORS

In this section we briefly discuss the effectiveness of
our tomographic method against the imperfections of the
QPG’s measurement operators. To simulate the imperfect QPG
measurements, we convolve the theoretical seven-dimensional
measurement operators with a Gaussian filter with a width of
σ . This error model is chosen because from an operational
point of view the main source of errors is the imperfect
mode selectivity of the QPG. With an increasing width of
the Gaussian filter, purity and fidelity of the measurement
operators decline, as plotted in Fig. 7(a). In Fig. 7(b), we
use these imperfect measurement operators to perform a state
tomography on a pure input state in the Gaussian mode,
which, as expected, shows a reduced fidelity with increasing
values of σ . Finally, in Fig. 7(c), we use our knowledge
of imperfect POVMs and repeat the state tomography with
a calibrated QPG. For relatively small values of σ , with
the purity of the measurement operators larger than about
0.6, the state tomography works with very high fidelities.
However, our method breaks down for a larger amount of
errors, which is considerably more than the experimental
imperfections presented in this paper. With an excessive
amount of experimental errors, other tomographic methods,
such as Bayesian mean estimation [22], might be more
effective. Nonetheless, a comprehensive theoretical evaluation
of various types of error and finding the optimized tomographic
method is necessary, which is beyond the scope of this paper.

[1] B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn,
New J. Phys. 13, 065029 (2011).

[2] A. Eckstein, B. Brecht, and C. Silberhorn, Opt. Express 19,
13770 (2011).

[3] B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer,
Phys. Rev. X 5, 041017 (2015).

[4] T. C. Ralph, I. Söllner, S. Mahmoodian, A. G.
White, and P. Lodahl, Phys. Rev. Lett. 114, 173603
(2015).

[5] J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C.
Waldermann, Z. Wang, and D. Jaksch, Phys. Rev. A 75, 011401
(2007).

063817-7



ANSARI, HARDER, ALLGAIER, BRECHT, AND SILBERHORN PHYSICAL REVIEW A 96, 063817 (2017)

[6] Z. Zheng, O. Mishina, N. Treps, and C. Fabre, Phys. Rev. A 91,
031802 (2015).

[7] F. Schlawin, K. E. Dorfman, and S. Mukamel, Phys. Rev. A 93,
023807 (2016).

[8] B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L.
Sansoni, and C. Silberhorn, Phys. Rev. A 90, 030302 (2014).

[9] P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock,
M. M. Fejer, P. Kumar, and G. S. Kanter, Optica 3, 1300 (2016).

[10] Y.-S. Ra, C. Jacquard, A. Dufour, C. Fabre, and N. Treps,
Phys. Rev. X 7, 031012 (2017).

[11] A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, Sci. Rep.
7, 6495 (2017).

[12] D. V. Reddy and M. G. Raymer, Opt. Express 25, 12952
(2017).

[13] V. Ansari, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N.
Treps, G. Harder, and C. Silberhorn, arXiv:1607.03001.

[14] Coherent Chameleon Ultra II.
[15] Coherent Chameleon OPO.
[16] Finisar waveshaper 4000.
[17] Hamamatsu X10468-07 LCoS-SLM.
[18] S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F.

Vatan, Algorithmica 34, 512 (2002).
[19] A. J. Scott and M. Grassl, J. Math. Phys. 51, 042203 (2010).
[20] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves,

J. Math. Phys. 45, 2171 (2004).
[21] J. Rehacek, D. Mogilevtsev, and Z. Hradil, Phys. Rev. Lett. 105,

010402 (2010).
[22] R. Schmied, J. Mod. Opt. 63, 1744 (2016).

063817-8





9
A R X I V: 1 6 0 7 . 0 3 0 0 1 V 2 ( 2 0 1 8 )

Title: Tomography and purification of the temporal-
mode structure of quantum light

Authors: Vahid Ansari, John M. Donohue, Markus All-
gaier, Linda Sansoni, Benjamin Brecht, Jonathan
Roslund, Nicolas Treps, Georg Harder, Christine
Silberhorn

Journal: arXiv:1607.03001v2 (Accepted for publication in
Phys. Rev. Lett.)

Year: 2018

Contributions: V.A. designed and constructed the experimental
setup. V.A., J.M.D, and G.H. carried out the exper-
iment and wrote the manuscript. C.S. supervised
the project. All authors contributed to the discus-
sion of results and commented on the manuscript.

91



Tomography and purification of the temporal-mode structure of quantum light

Vahid Ansari,1, ∗ John M. Donohue,1, † Markus Allgaier,1 Linda Sansoni,1 Benjamin Brecht,1, 2

Jonathan Roslund,3 Nicolas Treps,3 Georg Harder,1 and Christine Silberhorn1

1Integrated Quantum Optics, Paderborn University,
Warburger Strasse 100, 33098 Paderborn, Germany

2Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, United Kingdom
3Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS,
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To fully realize the potential of the time-frequency degree of freedom for photonic quantum science,
techniques which selectively address the individual information-carrying modes must be established.
In this work, we employ dispersion-engineered sum-frequency generation to perform temporal-mode
selective measurements and manipulations on photons generated through parametric downconver-
sion. We tailor the time-frequency mode structure of the generated photons through pump pulse
shaping and confirm their structure through seven-dimensional quantum state tomography. Through
changes in the second-order correlation function, we confirm that our technique manipulates and
purifies the temporal structure of the overall photon state, explicitly demonstrating the effectiveness
of engineered nonlinear processes for the mode manipulation of quantum states.

Single photons in clearly distinguishable, accurately
controllable, and practically measurable modes are es-
sential for photonic implementations of quantum infor-
mation protocols [1]. The spectral and temporal, or
time-frequency, photonic degrees of freedom offer an
attractive framework for quantum communication and
quantum information processing [2–5]. Unlike polariza-
tion and spatial encodings, information encoded in the
time-frequency domain is robust through fiber-optic and
waveguide transmission, making it a natural candidate
for both long-distance quantum communication and com-
pact integrated devices. The time-frequency basis also
allows for expanded per-photon information rates and
enables large-scale networking through high-dimensional
encoding, multiplexing, and entanglement [6–10]. In par-
ticular, the pulsed broadband temporal mode structure
provides an elegant, resource-efficient basis by encod-
ing high-dimensional qudits in intensity-overlapping but
field-orthogonal temporal waveforms [5], analogous to the
orbital angular momentum spatial modes of light [11].
Due to their pulsed nature, temporal-mode encodings are
an ideal choice for high repetition-rate applications and
synchronizing multiple parties. Additionally, broadband
temporal modes describe the natural Schmidt modes of
photon pairs emitted from parametric downconversion
(PDC) and spontaneous four-wave mixing [8, 12].

To fully exploit the temporal mode structure of quan-
tum light, it is necessary to both control the modal
structure of quantum light sources and develop matched
mode-selective measurement methods. In order to per-
form projective measurements onto arbitrary temporal
modes, techniques are needed which can identify and re-
move a specific desired mode from a mixture or super-
position. Furthermore, operations on photonic temporal
modes must not introduce noise in order to leave the frag-
ile quantum nature of the light intact. Sum-frequency
generation with tailored group-velocity relationships and

shaped ultrafast pulses provides a capable toolbox for
these tasks [13–18]. Notably, a sum-frequency process
between a weak photonic signal and a shaped strong
measurement pulse with matched group velocities has
been shown to act as mode-selective coupling between
an upconverted frequency band and the temporal mode
defined by the shaped strong pulse [15, 17]. This pro-
cess, dubbed the quantum pulse gate (QPG), is capable
of selectively addressing individual temporal modes and
can be used as a temporal-mode analyzer for commu-
nication networks [13] or as an add-drop component to
build general unitaries and quantum logic gates for a de-
sired temporal-mode basis [5, 19]. Recent QPG exper-
iments have shown highly efficient and highly selective
operations on coherent light pulses [20–25] and its effec-
tiveness as a measurement device for unknown superpo-
sitions [26] and a mode-selective photon subtractor [27].
While some of these works have used single-photon level
coherent states [20, 22, 27], no existing experiments have
shown temporal-mode selective manipulations and mea-
surements of heralded single photons from PDC sources,
which are necessary for entanglement-enhanced applica-
tions.

In this Letter, we show a complete set of tools to gener-
ate, manipulate, and measure the temporal-mode struc-
ture of single photons with a high degree of control. Sin-
gle photons are heralded from an engineered PDC source
where we orchestrate the modal structure of the photon
pair by spectral modulation of the pump field. Regard-
less of the temporal mode structure of the PDC pho-
tons, we show that the QPG can select a single temporal
mode from a mixture, demonstrating its usefulness as a
temporal-mode projective measurement and as a purifier.
We then use a QPG to tomographically reconstruct the
seven-dimensional temporal-mode density matrix of her-
alded single photons, showing that QPG measurements
are sensitive to time-frequency structure of light beyond
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intensity-only measurements. Finally, through the cor-
relation function measurements, we show that the QPG
can change the modal structure of the transmitted pho-
ton state, either acting as a mode cleaner or increasing
the mixedness depending on its programmable operation.
We measure high signal-to-noise ratios and high contrast
between mode selections while operating on quantum
light, definitively positioning the QPG as an invaluable
resource for pulsed quantum information science.

To illustrate the capability, flexibility, and sensitivity
of our QPG scheme, we generate photon pairs through
parametric downconversion in multiple configurations to
produce varied underlying modal structures. PDC is a
nonlinear process described by the Hamiltonian

ĤPDC =

∫∫
dωsdωi f(ωs, ωi)â

†
ωs
b̂†ωi

+ h.c., (1)

where the subscripts s and i refer to the signal and idler
photons generated in modes â and b̂, respectively. The
joint spectral amplitude function f(ωs, ωi) describes the
spectral phase and amplitude of the two-photon state,
and is determined by the spectral shape of the PDC
pump and the dispersive properties of the nonlinear ma-
terial. While the joint spectral amplitude contains a
complete description of the state in continuous time-
frequency space, an equivalent discrete description can
be obtained from the Schmidt decomposition [28], which
re-expresses it in terms of orthonormal modes with nor-
malized Schmidt coefficients γk as

f(ωs, ωi) =
∑

k

√
γk ψk(ωs)φk(ωi). (2)

Notably, for a Gaussian joint spectral amplitude, the
eigenmodes are given by Hermite-Gaussian (HG) func-
tions, as sketched in Fig. 1.

The number of effective modes in the two-photon sys-
tem, K, can be defined in terms of the Schmidt coeffi-
cients and the purity P of the individual photons as

K =
1

P
=

1∑
k γ

2
k

. (3)

The purity of a heralded photon generated through PDC
can be experimentally measured through the second-
order correlation function of one arm of the PDC (i.e.
the marginal g(2)) [29]. In the low-gain regime, the g(2)

relates to the purity as simply g(2) = 1+P , as the single-
mode thermal photon-number statistics (g(2) = 2) tend
toward Poissonian (g(2) = 1) as many effective modes are
mixed together.

By optimizing the group velocity relationship between
the signal, idler, and PDC pump fields, it is possi-
ble to generate approximately pure heralded single pho-
tons [12, 30–32], but only for specific wavelength con-
figurations set by available nonlinear materials. To gen-
erate approximately pure single photons, PDC photons

PDC
Pump PDC

Idler

QPG

QPG
Pump

Signal

Upconverted

Transmitted

FIG. 1. Temporal mode selection with a quantum
pulse gate. The two-photon state resulting from paramet-
ric downconversion (PDC) has a multimode structure defined
by the pump field and nonlinear phasematching. The quan-
tum pulse gate (QPG) selects a single mode (the first-order
Hermite-Gauss for example, in bold) from this superposition
and upconverts it to a higher frequency, while the unselected
modes transmit unaffected. Changing the shape of the QPG
pump changes which temporal mode the QPG selects.

are commonly spectrally filtered to be narrower than the
PDC pump at the expense of heralding efficiency [33].
This tradeoff is due to the mismatch between the Schmidt
modes of PDC states (broadband pulses) and the basis in
which filtering is applied (spectral intensity). A tempo-
rally mode-selective device could overcome this limitation
by converting one single mode to a register mode where it
can be detected independently of the other modes [5, 24].
In this manner, an efficient QPG could be used to obtain
highly pure PDC photons without affecting the heralding
efficiency, essential for scalability in experiments requir-
ing high-visibility interference from independent quan-
tum sources [34, 35].

We implement a mode-selective QPG through sum-
frequency generation, which can be described as an inter-
action between input and output fields in modes â† and
ĉ† by the Hamiltonian

ĤSFG ∝
∫∫

dωindωout ξ(ωin, ωout)âωin
ĉ†ωout

+ h.c. (4)

The transfer function, ξ(ωin, ωout), is defined by the
phasematching function Φ(ωin, ωout) and the spectral
shape of the QPG pump, α(ωout − ωin). If the input
signal and the QPG pump travel together through the
medium (i.e. are group-velocity matched), the phase-
matching function can be described as a function of only
the output frequency, i.e. Φ(ωin, ωout) ≈ Φ̄(ωout). For a
sufficiently long interaction length, the output field will
be temporally much longer than the input fields and thus
spectrally much narrower. In this limit, the contribution
of the QPG pump shape is a function of only the input
field frequency, α(ωout − ωin) ≈ ᾱ(ωin), and the transfer
function is completely separable.

In this case, we can describe the QPG interaction (in
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the low-efficiency regime) as the single-mode broadband
beamsplitter Hamiltonian with coupling constant θ,

ĤQPG ∝ iθÂĈ† + h.c. (5)

Eq. (5) describes a process which converts a photon in the
input mode Â =

∫
dωinᾱ(ωin)âωin

defined by the QPG
pump spectral shape to the upconverted frequency mode
Ĉ =

∫
dωoutΦ̄(ωout)ĉωout

defined by the phasematching
function, and leaves all photons in orthogonal modes un-
altered, as seen in Fig. 1. By measuring the upconverted
frequency, the QPG facilitates a projective measurement
onto a temporal mode Â that can be adjusted by shaping
the spectrum of the QPG pump.

The group-velocity matching condition can be met in
periodically poled lithium niobate (PPLN) waveguides,
which also provide the spatial confinement necessary for
long nonlinear interaction lengths. In our experimental
setup, detailed in the appendix, we make use of type-
II group-velocity matching between a 1540-nm photonic
input and an 876-nm QPG pump, as in Refs. [20, 26].
To implement the QPG, we use a 17-mm PPLN waveg-
uide with a 4.4 µm poling period built in-house. We
measure upconverted output pulses at 558 nm with a 61-
pm (59 GHz) bandwidth (full-width at half-maximum),
significantly narrower than the 4.9-nm (620 GHz) band-
width of the input photons. Although similar conditions
can be met in other materials using near-degenerate type-
0 or type-I processes [21–23], our scheme avoids the chal-
lenge of isolating the single-photon signal from the second
harmonic of the QPG pump.

We use spatial-light-modulator-based pulse shapers to
define both the spectral amplitude and phase of the PDC
and QPG pump pulses [36, 37]. With this flexibility in
hand, we selected four PDC states to illustrate the versa-
tility of the QPG. The joint spectral intensity |f(ωs, ωi)|2
for each is shown of the right side of Fig. 2, as measured
with dispersive time-of-flight spectrometers [38]. Firstly,
we set the PDC pump bandwidth such that the gener-
ated two-photon state is nearly spectrally separable [32],
as seen in Fig. 2a. In this scenario, we expect that a
single temporal mode dominates the PDC state. A sin-
gular value decomposition of the joint spectral intensity
predicts a purity of 0.995, but measured g(2) = 1 + P
(corrected for detector dark counts) corresponds to a sig-
nificantly lower purity of 0.929± 0.008, potentially due to
high-order phase correlations or degenerate background
processes.

By shaping the QPG pump to project onto a set of
Hermite-Gauss spectral shapes, we expect to significantly
higher upconversion probabilities for the lowest-order
Gaussian mode. We find that, when measuring in coin-
cidence with an idler detection, the Gaussian projection
indeed provides more counts than the first-order Hermite-
Gaussian projection by a factor of 19.3 (12.8 dB), with
even stronger suppression for higher-order modes. This
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FIG. 2. Joint spectral intensities and reconstructed
temporal-mode density matrices. The real part of the
seven-dimensional one-photon temporal-mode tomographi-
cally reconstructed density matrices (left), joint spectral in-
tensities (right), and theoretically expected density matrices
(inset) for four PDC states: (a) a separable PDC state, (b)
a PDC state with spectral anti-correlations from a narrow-
bandwidth pump, (c) a PDC state with spectral phase corre-
lations from a chirped pump, and (d) a PDC state pumped
with a higher-order mode. The values of the first two diag-
onal entries are explicitly labelled above the density matrix.
Imaginary components of the reconstructed density matrices
are small and found in the appendix.

demonstrates simultaneously the high mode separabil-
ity of our device and the single-mode character of our
PDC state. With a coherent-state input signal from a
commercial pulse shaper instead of PDC photons, the
suppression factor increases to 111 (20.5 dB). The up-
converted signal is cleanly separated from all background
sources, even for a PDC-generated average photon num-
ber of 〈n〉 ≈ 0.16. The signal-to-noise ratio (including
detector dark counts and noise from the QPG pump) is
over 70:1 without heralding and increases to over 900:1
when gated by an idler detection.

While joint spectral intensity measurements provide
important information about the two-photon PDC state,
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they potentially hide significant information about the
spectral phase to which mode-selective measurement
would be sensitive. To demonstrate the effectiveness of
the QPG for quantum state characterization, we recon-
struct the density matrix of the signal photons, as seen on
the left-hand side of Fig. 2. By shaping the QPG pump,
we project onto the first seven Hermite-Gauss temporal
modes as well as a tomographically complete set of super-
positions, totalling 56 measurements [39, 40]. The time-
frequency waveforms chosen span eight mutually unbi-
ased seven-dimensional bases, and are sketched in the
appendix. The density matrices were then reconstructed
from the heralded counts in the upconverted mode using
a maximum-likelihood approach [41]. As the tomography
measurements are made on one photon of a PDC pair, we
expect to reconstruct mixed density matrices with puri-
ties consistent with the measured g(2). For the separable
PDC state of Fig. 2a, we reconstruct a density matrix
with a purity of Tr(ρ2) = 0.896 ± 0.006, lower than the
expected value of 0.929± 0.008. Discrepancies between
the tomographically reconstructed purities and the g(2)

values arise from somewhat diminished mode selectivity
for the higher-order projections [26], to which character-
ization of single-mode behaviour is particularly sensitive.

Next, we increase the number of modes present in the
PDC state in three different ways, and show that the
QPG measurements are sensitive to all three. First, we
narrow the bandwidth of the PDC pump to produce a
multimode PDC state with spectral intensity anticorre-
lations. The inseparability of this system can be seen
directly in the joint spectral intensity of Fig. 2b as well
as in the g(2)-inferred purity of 0.528 ± 0.009, which
matches the purity of the reconstructed density matrix,
0.523± 0.008.

Intensity correlations are not the only available av-
enue for increasing the mode number of a PDC state.
By adding quadratic spectral phase (chirp) to the PDC
pump, we introduce phase correlations between the signal
and idler photons. Note that this phase does not affect
the joint spectral intensity, as seen in Fig. 2c. However,
the added phase drastically decreases the g(2), with a
measured purity of 0.327± 0.005. Through tomography,
we find that the QPG measurements are also sensitive to
this phase, with a reconstructed purity of 0.317± 0.005,
similar to the g(2)-inferred purity. This result explicitly
demonstrates the limitations of spectral intensity mea-
surements for benchmarking pure single photons and the
necessity of spectral phase control. More details on PDC
with a chirped pump can be found in the appendix.

In each of the previous cases, the expected primary
temporal mode of the PDC state is approximately Gaus-
sian, with higher-order contributions falling off exponen-
tially with mode number. In practical applications, it
is often desirable to produce photon pairs in a restricted
subspace, for example to create maximally entangled Bell
states and their high-dimensional equivalents. As a fi-
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FIG. 3. Second-order correlation functions of trans-
mitted and upconverted photons. The marginal g(2)s of
the upconverted (green) and transmitted (red) PDC photons
are shown for the four PDC states corresponding to Fig. 2a-
d with the QPG pump pulse delayed relative to the signal
photons (‘OFF’) and shaped to the first two Hermite-Gauss
temporal modes (‘HG0’ and ‘HG1’). The right side of the
figure shows the same data rescaled to highlight the changes
in the g(2) of the transmitted photons. The data presented
is dark-count background subtracted and the error bars are
found assuming Poissonian noise.
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nal example, we produce a state with contributions from
principally two temporal modes by shaping the PDC into
the first-order Hermite-Gauss function, as seen in Fig. 2d.
This pump shape is expected to produce photon pairs in
the time-frequency Bell state, with similar weights in the
zeroth- and first-order HG modes [5]. The reconstructed
density matrix from the QPG measurements shows that
the modal content of the PDC state is principally con-
fined to these two modes, and the purities inferred from
the g(2) and the tomography for this state are, respec-
tively, 0.498 ± 0.006 and 0.531 ± 0.004, consistent with
half of a highly entangled qubit pair. The imbalance
between the first two modes can be attributed to a non-
ideal group-velocity relationship between signal and idler
in the PDC process (i.e. a non-45-degree phasematching
angle [32]), and is consistent with the density matrix ex-
pected from the joint spectral intensity.

To demonstrate the potential of the QPG for state pu-
rification, we measure the g(2) of the upconverted pho-
tons for the QPG pump in the first two Hermite-Gauss
modes, as shown in Fig. 3. If the QPG selects a sin-
gle mode from the input mixture, we expect that the
upconverted photons themselves will be highly pure. In-
deed, the g(2) of the upconverted light confirms a purity
of at least 0.9 for both the zeroth- and first-order HG
modes, regardless of the PDC state under interrogation.
For example, for the correlated spectral intensity of case
(b), the g(2) of the upconverted light when the Gaus-
sian mode is selected is 1.95 ± 0.04, which increases to
2.04 ± 0.04 after dark-count subtraction. The purity of
the upconverted light remains high when the first-order
HG mode is selected. The high g(2) values measured
here conclusively show both that the QPG indeed selects
a single mode and that the upconverted mode retains the
thermal photon statistics of PDC, with very little noise
introduced by the process.

Finally, we show through the g(2) that the modal struc-
tures of the transmitted photons are significantly altered
by the QPG. If a mixture of modes is dominated by one
mode, partially removing that mode from the mixture
will increase the mixedness of the remaining distribution,
akin to the Procrustean method of entanglement concen-
tration [42]. For the decorrelated PDC state of case (a),
we measured the conversion efficiency through the de-
pletion of the transmitted signal as approximately 22%.
This partial removal of the primary mode indeed results
in a significant decrease in the g(2) of the unconverted
transmitted signal photons, as seen on the right-hand
side of Fig. 3, consistent with the efficiency measured
from the input depletion. Conversely, removing the first-
order HG mode removes amplitude from the secondary
Schmidt coefficient, which increases the relative ampli-
tude of the primary Schmidt mode. This is seen in cases
(a-c) to increase the overall purity of the transmitted
photon state, demonstrating that the QPG can act as a
temporal mode cleaner even for the non-converted pho-

tons. In case (d), the first-order HG mode is present in
a larger proportion than the Gaussian component, and
the opposite trend is seen. This is consistent with the
reconstructed density matrix of Fig. 2d. This directly
demonstrates that the QPG can be used to remove modal
components from a single-photon state, an essential task
for mode-selective add/drop functionality.

We have shown that the quantum pulse gate can be
used to directly manipulate and measure the temporal
modal structure of single-photon states. By project-
ing over a complete set of temporal modes and super-
positions, we reconstructed seven-dimensional temporal-
mode density matrices for PDC photons with a variety
of modal structures. We have demonstrated that the
output of the pulse gate is nearly completely purified
regardless of the input, positioning the quantum pulse
gate as a powerful tool for photonic quantum state en-
gineering. We have also demonstrated through changes
in the second-order correlation function that the quan-
tum pulse gate modifies the modal structure of the in-
put photons, establishing the QPG as a novel device for
both entanglement concentration and state purification.
Future work will focus on improving the efficiency and
extending the accessible dimensionality of the quantum
pulse gate to fully realize its potential for time-frequency
mode-selective measurement, as a conversion interface
and add/drop device for temporally encoded quantum
networks, and as a platform for high-dimensional quan-
tum state characterization.
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Appendix

In this appendix, we provide technical details on the experimental setup, sketched in Fig. 4. In Table I, we
provide measured parameters of the four PDC states explored in the main text, including the g(2) numbers displayed
graphically in Fig. 3 of the main text. We also provide extra data detailing the purity of the PDC source as the
PDC pump is chirped, as seen in Fig. 5. In Fig. 7, we provide both the real and imaginary parts of the reconstructed
seven-dimensional density matrices, and compare their eigenvalues with the expected values from the JSI. In Fig. 6,
we show the projections implemented by the QPG to reconstruct the seven-dimensional density matrices.

Our experiment is driven by an 80-MHz titanium-sapphire laser (Ti:Sa, Coherent Chameleon) and OPO (APE
Compact). We create the PDC pump pulses at 769 nm by frequency doubling light from the OPO in 1 mm of bulk
PPLN; the fundamental of the Ti:Sa at 876 nm is used as the QPG pump. Both pulses are shaped with approximately
0.05-nm resolution using a 4f setup consisting of a 2000 lines/mm diffracting grating, a curved mirror with a 250 mm
focal length, and a reflective liquid-crystal spatial light modulator (SLM, Hamamatsu LCoS) at the focal plane [36, 37].
With this setup, we can directly control the bandwidth, spectral shape, and spectral phase of the pump pulses.

The PDC photons are generated through a near-degenerate type-II process in a 8-mm long PPKTP waveguide
(AdvR) with a nominal poling period of 117 µm. An 80 nm broad bandpass filter is used to remove the PDC pump,
and the individual photons are separated with a polarizing beamsplitter and filtered with 3 nm bandpass filters to

remove side lobes. In all cases, the PDC pump energy was approximately 15 pJ per pulse, with heralded g
(2)
h s lying

between 0.417±0.003 for the spectrally decorrelated state and 0.246±0.003 for the intensity-anticorrelated state. This
relatively high production rate was used to enable reasonably precise unheralded g(2) measurements with 10-minute

recording times. See Table I for all g
(2)
h values. For ease of alignment, the signal photon path can be switched for

a coherent pulse from the OPO, spectrally shaped by a commercial pulse shaper (Finisar WaveShaper 4000S). The
average number of generated photons can be inferred from the two-photon cross-correlation statistics [29], with the
average generation rate of 〈n〉 ≈ 0.16 for the decorrelated state deduced from a g(1,1) = 1

〈n〉 + g(2) = 8.303± 0.003.

The signal photons and the QPG pump (with an average energy-per-pulse of 250 pJ) are combined on a dichroic
mirror and coupled into a 17-mm long PPLN waveguide with a poling period of 4.4 µm, fabricated in-house and
designed for spatially single-mode propagation at 1540 nm. The waveguide mode of the QPG pump is imaged on
a camera after the waveguide and optimized to the fundamental spatial mode. Higher-order modes produce sum-
frequency signals for different time delays with central frequencies, and are filtered out of the final signal along with

Ti:SaOPO

SHG

Pulse Shaper Pulse Shaper

SLM SLM

QPG
PPLN

4fIdler

Transmitted
Signal

Upconverted
Signal

SNSPDs
SiAPDs

PDC
PPKTP BPF

BPF

BPF

λ/2

FIG. 4. Experimental setup. We create photon pairs through type-II PDC in an 8-mm PPKTP waveguide. By shaping the
bandwidth and spectral phase of the PDC pump with a spatial light modulator (SLM) in a 4f line [36, 37], we can control the
effective mode number of the generated photon pairs. The PDC pump is removed with a bandpass filter (BPF) and the photon
pair is split with a polarizing beamsplitter (PBS). The signal photon is then coupled into a 17-mm PPLN waveguide acting as
a quantum pulse gate (QPG), with a QPG pump shaped in both phase and amplitude by another SLM. A series of dichroic
mirrors and a 4f line are used to split the upconverted and transmitted photons from the leftover QPG pump, and all photon
paths are coupled into single-mode-fiber beamsplitters to measure second-order correlation functions.
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FIG. 5. PDC source purity as spectral phase added. The purity of the PDC source, as measured from the marginal g(2)

of the signal photon with the QPG off, as a function of quadratic spectral phase of the form eiA(ω−ω0)
2

on the PDC pump. Five
seconds of data were taken per spectral phase setting. The thick black lines represent the chirp values used for a high-purity
PDC state (Case ‘a’) and a highly multimode PDC state (Case ‘c’). The solid red curve is the theoretical expectation of Eq. 6,
and the dashed red curve is the same curve with Poissonian background equivalent to 4% of the total count rate added to
match the peak g(2) of 1.929 measured in the experiment.

the second harmonic of the QPG pump by a 4f-filter. The upconverted light at 558 nm is measured on a spectrometer
(Andor Shamrock SR500 spectrograph and Newton 970-BVF EMCCD camera with a 2398 lines/mm grating) to have
a bandwidth of 61 pm FWHM. The 4f-filter is also used to remove spectral side lobes, which account for less than 5%
of the total upconverted photons. The upconverted green photons were detected with silicon avalanche photodiodes
(SiAPDs, Excelitas), while the idler and leftover signal photons were detected with superconducting nanowire single-
photon detectors (SNSPDs, PhotonSpot). All three photon paths are split into two detectors to measure photon
number correlations via Hanbury-Brown-Twiss interferometry [29].

The joint spectral intensities (JSIs) were measured with fiber-based time-of-flight spectrometers [38], mapping a
spectral range of 1 nm at 1540 nm to a time delay of 0.42 ns. Assuming a flat spectral phase, the singular-value
decomposition of the JSI predicts a spectral purity of 0.995 for the decorrelated JSI of Fig. 7a, and 0.652 for the
intensity anticorrelated JSI of Fig. 7b. The marginal bandwidths (intensity FWHM) of the signal and idler photon
in the decorrelated case were measured to be 4.9 nm and 3.6 nm, respectively.

To compensate for dispersive elements throughout the apparatus, the spectral phase of the PDC pump was optimized
with the SLM to maximize the g(2) of the decorrelated state (Case ‘a’), as seen in Fig. 5. The chirp of the phase-
correlated PDC state of Fig. 7c is A = 0.38× 106 fs2, where the chirp is represented as a phase in angular frequency
as exp

[
iA(ω − ω0)2

]
. Given a separable Gaussian PDC state with signal and idler bandwidths σs and σi (intensity

standard deviation in ω), the expected purity as a function of pump chirp A is

P =
1√

1 + 16A2σ2
sσ

2
i

, (6)

which is seen in Fig. 5 to match the experimental result well for large chirp values. While this result clearly shows
that dispersion management of the pump is key for producing single-mode photons, it also provides an alternative
avenue for generating highly entangled photon pair states. For tasks requiring highly multimode photons, this method
of increasing the number of modes present can make use of the entire PDC pump bandwidth, and therefore does not
significantly affect the pair generation rate of the source in power-limited situations.

The central wavelength and time delay of the QPG pump relative to the PDC signal photons were set by optimizing
the ratio of upconversion between HG0 and HG1 projections. The spectral phase and bandwidth of the QPG pump



9

Reference (a) (b) (c) (d)

PDC Pump Shape HG0 HG0 HG0 HG1
PDC Pump Bandwidth 1.72 nm 0.54 nm 1.49 nm 1.31 nm
PDC Pump Chirp 0 0 0.38× 106 fs2 0
QPG Pump Bandwidth 1.54 nm 1.05 nm 1.58 nm 1.30 nm

Purity of ρ from reconstruction 0.896± 0.006 0.523± 0.008 0.317± 0.005 0.531± 0.004
Expected purity from JSI 0.995 0.652 0.377* 0.542*

Transmitted g(2), QPG pump blocked 1.929± 0.008 1.528± 0.010 1.327± 0.005 1.498± 0.006

Transmitted g(2), QPG pump delayed 1.861± 0.003 1.494± 0.003 1.302± 0.002 1.461± 0.003

Transmitted g(2), QPG pump HG0 1.827± 0.004 1.456± 0.004 1.277± 0.002 1.467± 0.003

Transmitted g(2), QPG pump HG1 1.875± 0.003 1.512± 0.004 1.308± 0.002 1.446± 0.003

Upconverted g(2), QPG pump HG0 1.975± 0.015 2.044± 0.037 1.983± 0.026 1.949± 0.033

Upconverted g(2), QPG pump HG1 2.078± 0.194 1.951± 0.105 1.925± 0.063 1.993± 0.025

Transmitted g
(2)
h , QPG pump delayed 0.417± 0.003 0.246± 0.003 0.374± 0.002 0.393± 0.003

Upconverted g
(2)
h , QPG pump HG0 0.423± 0.005 0.319± 0.009 0.501± 0.011 0.572± 0.017

TABLE I. Pump bandwidths and measured g(2)s for the four PDC states explored in the main text, corresponding to the
JSIs of Fig. 7. The error of the purity from the tomographically reconstructed density matrices ρ are found through Monte
Carlo simulation assuming the coincidences measured have Poissonian error. The expected purity from the JSIs correspond
to the singular value decomposition assuming a flat phase, except in cases marked (*) where faithful implementation of the

intended phase is assumed. All g(2) values are corrected for detector dark counts assuming a 3 ns coincidence window. g
(2)
h is

the heralded second-order correlation function, which is zero for the ideal single-photon Fock state and one or greater for all
classical states of light.

Mutuallly unbiased bases

B
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is
 s

ta
te

s

FIG. 6. Seven-dimensional temporal-mode bases. The spectral shapes corresponding to eight mutually unbiased seven-
dimensional bases [40] as programmed for the reconstruction of Fig. 7. The black line and blue fill correspond to the intensity
|f(ω)|2, and the red line corresponds to the phase on the interval [0, 2π].

were adjusted to maximize the visibility between HG0 and HG2 projections. Pulse bandwidths as measured on a
spectrometer (Andor Shamrock SR500 with a 1200 l/mm grating) are given in Table I.

For the g(2) measurements of Fig. 4 of the main text, the QPG is effectively set to ‘OFF’ by delaying the pump by
5 ps, where it does not interact with the PDC photons. The QPG pump is delayed rather than blocked in order to
ensure all three measurements are subject to the same background noise. Coincidences are registered within a 3 ns
window, and the expected dark counts outside this window are subtracted.
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FIG. 7. Reconstructed temporal-mode density matrices and joint spectral amplitudes. The real (i) and imaginary
(ii) parts of the reconstructed signal-photon density matrices for (a) a spectrally decorrelated PDC state, (b) an intensity-
correlated state, (c) a phase-correlated state, and (d) an HG1-pumped state. The eigenvalues (

∑
λ = 1) of these density

matrices are shown in red in (iii), with the error bars found from Monte Carlo simulations assuming Poissonian noise. The
expected one-photon density matrices from the joint spectral intensities (inset) are all diagonal with eigenvalues obtained from
the singular value decomposition, as seen in gray assuming a flat phase for cases (a) and (b) and the programmed phase in (c)
and (d).
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The time-frequency degree of freedom is a powerful resource for implementing high-dimensional quantum in-
formation processing. In particular, field-orthogonal pulsed temporal modes offer a flexible framework compatible
with both long-distance fiber networks and integrated waveguide devices. In order for this architecture to be
fully utilized, techniques to reliably generate diverse quantum states of light and accurately measure complex
temporal waveforms must be developed. To this end, nonlinear processes mediated by spectrally shaped pump
pulses in group-velocity engineered waveguides and crystals provide a capable toolbox. In this review, we examine
how tailoring the phase-matching conditions of parametric downconversion and sum-frequency generation allows
for highly pure single-photon generation, flexible temporal-mode entanglement, and accurate measurement of
time-frequency photon states. We provide an overview of experimental progress towards these goals and summa-
rize challenges that remain in the field. © 2018Optical Society of America under the terms of the OSAOpen Access Publishing
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1. INTRODUCTION

In any implementation of quantum information protocols, it is
necessary to have access to information-carrying modes that
are individually manageable and measurable in arbitrary bases.
In optical implementations, it is often essential to be able to create
photonic quantum states with a controlled degree of entangle-
ment and to retain coherence among the modes over long-
distance transmission. In polarization, state rotations and
measurements are simple with wave plates and polarizing beam
splitters, and entangled sources are straightforward to implement,
but the dimensionality is limited to two. In the spatial degree of
freedom, entanglement is naturally present in a high-dimensional
basis of, for example, orbital angular momentum modes, and
arbitrary measurements can be made with spatial light modula-
tors. However, their complex spatial structures render them
incompatible with spatially single-mode integrated devices and
optical fiber networks.

Alternatively, the time-frequency (or energy-time) degree of
freedom can be exploited by encoding quantum information
in photonic temporal modes (TMs). Here, the information is
encoded in the complex time-frequency amplitude of the electric
field of single photons. Like spatial encodings, the Hilbert space
available in the Fourier-conjugate time and frequency domains is,
in principle, unbounded, allowing for high-dimensional encod-
ings. Unlike spatial encodings, time-frequency encodings are

intrinsically compatible with waveguides and fiber transmission.
Temporal-mode bases can take on a variety of forms, such as
discrete time or frequency bins or intensity-overlapping pulsed
temporal modes, as illustrated in Fig. 1, so long as the waveforms
provide an orthonormal basis. However, controlling entangle-
ment between and directly measuring arbitrary temporal modes
presents a significant challenge for time-frequency quantum
information processing.

In this mini review, we will highlight works on both the
targeted generation and manipulation of TMs through control-
ling the group-velocity relationship in nonlinear processes. In
Section 2, we summarize the basic theory behind the TM struc-
ture of photon pairs generated via parametric downconversion
(PDC). Section 3 focusses on efforts towards engineering the
PDC process itself, for both single-mode photon generation
and to create photons with rich, programmable TM structures.
In Section 4, we transfer these techniques from PDC to frequency
conversion, unveiling methods to manipulate and measure the
complex TM structure. Section 5 then summarizes current exper-
imental progress on the manipulation of photonic TMs by means
of frequency conversion, direct temporal manipulation, and tail-
ored light–matter interactions. In Section 6, we overview recent
experimental results, paving the way towards TM-based quantum
applications. Finally, in Section 7, we will give an outlook on
future steps and highlight challenges that will need to be over-
come in the future.

2334-2536/18/050534-17 Journal © 2018 Optical Society of America
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2. TEMPORAL-MODE STRUCTURE OF
PARAMETRIC DOWNCONVERSION

In this section, we describe the TM structure of photon-pair states
generated in PDC, where a photon from a bright classical pump
pulse decays with a small probability inside a nonlinear optical
medium, e.g., a nonlinear waveguide, into a pair of daughter pho-
tons typically called signal and idler, as sketched in Fig. 2(a). PDC
is a well-understood process, capable of generating photons with a
rich TM structure at room temperature. Moreover, PDC can be
used to generate a plethora of quantum states including heralded
single photons, squeezed states, and maximally entangled states.
These properties have cemented PDC as the workhorse in many
quantum optics laboratories.

Restricting our model to the generation of photon pairs and
assuming spatially single-mode emission, e.g., by realizing the
PDC in a weakly pumped waveguide, the type-II PDC process
can be described by the interaction Hamiltonian

ĤPDC � B
Z

dωsdωif �ωs,ωi�â†�ωs�b̂†�ωi� � h:c:, (1)

and the generated state can be written as

jψiPDC � B
Z

dωsdωif �ωs,ωi�â†�ωs�b̂†�ωi�jvaci, (2)

where â†�ωs� and b̂†�ωi� are standard creation operators that
generate a signal photon at ωs and an idler photon at ωi; B is
the optical gain or efficiency of the process, which includes
the second-order nonlinearity and the pump power; and
f �ωs,ωi� is the complex-valued joint spectral amplitude (JSA),

normalized to
R
dωsdωijf �ωs,ωi�j2 � 1. The JSA describes

the entangled time-frequency structure of the PDC state and
is essential for describing PDC in cases with a broadband pump
pulse [1].

The JSA itself can be written as a product of the pump
envelope function α�ωs � ωi� and the phase-matching function
ϕ�ωs,ωi�, such that

f �ωs,ωi� � α�ωs � ωi�ϕ�ωs,ωi�: (3)

Here, α�ωs � ωi� is the slowly varying envelope of the broad-
band pump and reflects energy conservation during the PDC, and
the phase-matching ϕ�ωs,ωi� expresses the momentum conserva-
tion between involved fields and the dispersion properties of the
nonlinear medium. The phase-matching function can be written as

ϕ�ωs,ωi� �
Z

L

0

dzχ�z� exp�ιΔk�ωs,ωi�z�, (4)

where Δk�ωs,ωi� � kp�ωs � ωi� − ks�ωs� − ki�ωi� is the phase
mismatch, L is the length of the nonlinear medium, and χ�z� �
�1 describes the orientation of the ferroelectric domains of the
crystal. A periodic modulation of χ�z�, with a period Λ, is called
periodic poling [2]. This poling adds an additional component of
the form kQPM � 2π∕Λ to the phase mismatch, such that
Δk�ωs,ωi� ↦ Δk�ωs,ωi� � 2π∕Λ, allowing the center frequen-
cies of the phase-matched process to be tuned. In this case, the
resulting phase-matching function is given by

ϕ�ωs,ωi� �
1

L
sinc

�
Δk�ωs,ωi�L

2

�
eιΔk�ωs,ωi�L2: (5)

The sinc profile of the phase-matching function has significant
implications that will be discussed in Section 3. However, to sim-
plify the equations and plots in this article, we usually employ a
Gaussian approximation of the phase-matching function.

In 2000, Law and co-workers examined the time-frequency
structure of the JSA through the Schmidt decomposition, defining
two-photon entanglement in terms of temporal modes [3]. For
this, the JSA is decomposed into two sets of orthonormal basis
functions fg �s�g and fh�i�g for signal and idler, respectively, and
we write

f �ωs,ωi� �
X
k

ffiffiffiffi
λk

p
g �s�k �ωs�h�i�k �ωi�, (6)

where
P

kλk � 1. With this we define broadband TM operators

(a)

(b) (c) (d) (e) (f)

Fig. 2. Joint spectral amplitude, temporal modes, and Schmidt coefficients of a non-engineered PDC process. (a) Outline of a PDC process with the
three involved fields. (b) The JSA and its marginal distributions which is the product of pump (dashed lines) and phase matching (solid lines) functions
and, in this case, exhibits frequency anti-correlations between signal and idler frequencies. The Schmidt decomposition of this Gaussian JSA is given by
Hermite–Gaussian functions, with the first three TM pairs shown in (c)–(e). (f ) The first seven Schmidt coefficients λk. The decomposition of this
example yields an effective mode number of K ≈ 3.14.

Fig. 1. Temporal-mode encodings visualized in time-frequency space.
Orthogonal temporal mode bases can be constructed through slicing bins
in time or frequency, as in (a) and (b), or through intensity-overlapping
but field-orthogonal pulsed temporal modes, such as the Hermite–Gauss
modes in (c).
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Â†
k �

Z
dωsg

�s�
k �ωs�â†�ωs�, (7)

B̂†
k �

Z
dωih

�i�
k �ωi�b̂†�ωi�, (8)

and consequently obtain

jψiPDC �
X
k

ffiffiffiffi
λk

p
Â†
kB̂

†
kj0i, (9)

where we have postselected on and renormalized for two-photon
emission. This means that given a PDC photon pair is generated,
it is in the kth TM pair with a probability of λk. An example of a
typical JSA together with its Schmidt decomposition is given in
Fig. 2(b). For a typical Gaussian JSA, the Schmidt modes are
given by Hermite–Gauss functions, which overlap in both
spectral and temporal intensity.

The Schmidt decomposition of the joint spectral amplitude
provides an essential link between the continuous time-frequency
description and a discretised temporal-mode picture. Such a tran-
sition is necessary for describing mode-multiplexed systems,
where each Schmidt mode can be thought of as an independent
information carrier. Such multiplexed systems are useful for
communication networks [4] and essential to generate highly en-
tangled cluster states for measurement-based quantum computa-
tion [5–8], where utilizing the time-frequency domain allows for
operations to take place in a single spatial mode. The Schmidt
modes of PDC can be directly connected to the supermodes gen-
erated in a synchronously pumped optical parametric oscillator
(SPOPO), where a degenerate downconversion medium is
pumped below threshold in a cavity matched to the repetition
rate of the driving laser system [9,10]. The eigenmode decompo-
sition of the interaction provides the independently squeezed
supermodes of the system [11,12], and their mixtures have
been experimentally demonstrated to exhibit strong continu-
ous-variable entanglement [13,14].

In the low-gain PDC regime, the Schmidt decomposition of the
JSA can be linked directly to the amount of time-frequency entan-
glement present in the two-photon system. The Schmidt number,
defined as K � 1∕

P
kλ

2
k , quantifies the number of TM pairs re-

quired to describe the properties of the generated state, with K � 1
for a single-mode (separable) state and K ≫ 1 for a multimode
(entangled) state [15–17]. The Schmidt number is related to
the spectral purity of the individual signal photons generated,
which are generally described by the mixed density matrix

ρ̂s � Tri�ρ̂PDC� �
X
k

λkjAkihAkj (10)

with a purity of

Ps � tr�ρ̂2s � �
1

K
: (11)

For PDC-generated photons, this quantity is directly
experimentally accessible through the marginal second-order cor-
relation function (i.e., unheralded signal photons) as g �2��0� �
1� Ps [18–20].

In summary, we have introduced the continuous time-
frequency structure of PDC and connected it to the discrete
TM picture through the Schmidt decomposition. Such analysis
naturally describes the two-photon entanglement from PDC,
the squeezed modes of a pulsed OPO, and the spectral purity
of the generated photons. In most configurations, PDC generates

highly correlated states with a large Schmidt number, yielding
low-purity heralded photons if no additional spectral filtering
is applied. We will shift our focus in the next section to how
proper engineering of the PDC process can overcome this limi-
tation and facilitate the direct generation of pure single photons.

3. PDC ENGINEERING

Although multimode PDC states with the usual frequency anti-
correlations, as shown in Fig. 2, have found many applications in
quantum science [21–23], full control over the modal structure of
the PDC state would make a new range of applications possible.
For example, high-visibility quantum interference between dis-
tinct nodes in a photonic network requires pure PDC sources,
i.e., sources that emit in a single temporal mode. Without
dispersion engineering, intrinsic frequency anti-correlations
between signal and idler are imposed by energy conservation
of the pump, reflected by the −45° angle of the pump function
in the joint spectral amplitude (see Fig. 2), resulting in highly
multimode systems. To realize single-mode PDC, researchers
have tailored the phase-matching function to produce separable
JSAs, allowing for high-quality heralded photons without any
need for additional spectral filtering.

A. Group-Velocity Matching for Single-Mode Emission

At the turn of the millennium, several groups studied the spectral
characteristics of PDC photon pairs and identified a connection
between the photon spectra and the dispersion of the nonlinear
medium [24–26]. It was shown that with properly selected
nonlinear material, polarizations, and photon central frequencies,
the frequency correlations between the signal and idler photons
can be eliminated [27]. Later this work was further developed
in Ref. [16], where the authors showed that the relationship
between the group velocities of interacting fields plays an essential
role in tailoring the phase-matching function ϕ�ωs,ωi� and
consequently the JSA.

To understand the underlying physics, we perform a Taylor
expansion of the phase mismatch (defined in Section 2) up to
the first order. Assuming that the process is perfectly phase
matched at the center frequencies and that group-velocity
dispersion through the nonlinear medium is negligible, we obtain

Δk�ωs,ωi� ≈ �u−1s − u−1p �ωs � �u−1i − u−1p �ωi, (12)

where the uj ≡
∂ωj

∂kj
are the group velocities of the pump, signal, and

idler fields. In this context, it is useful to define the group-velocity
mismatch contrast ξ as

ξ � u−1s − u−1p
u−1i − u−1p

: (13)

The group-velocity mismatch contrast is related to the angle
of the phase-matching function in the �ωs,ωi�-plane by
θPM � −arctan�ξ� [16].

Among all possible group-velocity arrangements, two special
cases received particular attention. In the first case, dubbed asym-
metric group-velocity matching (aGVM), the pump propagates with
the same group velocity as either the signal photon (ξ → 0) or the
idler photon (ξ → ∞). If the pump is group-velocity matched to
the signal photon, the JSA from Eq. (3) is reduced to

f �ωs,ωi� ≈ α�ωs � ωi�ϕ�ωi�: (14)
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As seen in Fig. 3(b), as the phase-matching bandwidth
shrinks to be much narrower than the pump bandwidth, the
JSA becomes more and more separable. The single-modedness
of the system can be increased by using wider pump band-
widths or tightening the phase-matching function with longer
nonlinear interactions [16]. In this scenario, the signal and idler
photon will have drastically different spectral bandwidths.

In the second case, the group velocity of the pump is
exactly between the group velocities of signal and idler (ξ → −1),
referred to as symmetric group-velocity matching (sGVM) or
extended phase matching, which results in a JSA of the form

f �ωs,ωi� ≈ α�ωs � ωi�ϕ�ωs − ωi�: (15)

As seen in Fig. 3(c), if the phase-matching bandwidth equals
the pump bandwidth, the JSA is a perfectly separable circle,

allowing for pure single photons with identical spectral properties.
This phase-matching configuration also allows for two-photon
states with positive spectral correlations (and negative temporal
correlations) when the pump is broader than the phase-matching
function [28–30], useful for certain quantum synchronization
and dispersion-cancellation techniques.

B. Experimental High-Purity Photon Sources

The first experimental demonstrations of separable photon-pair
generation were realized in nonlinear bulk crystals. In these sys-
tems, the spatial and spectral properties of the photon pairs can be
linked during generation, depending on the focus of the pump
and collection optics [31]. In 2007, Torres’s group demonstrated
control over the spectral correlations using this spectral-spatial
coupling for photon pairs at 810 nm generated in LiIO3 [32].
By adapting the spatial mode of the pump, the generated photon
pairs could be tuned from spectrally correlated to separable. This
was verified by a measurement of the joint spectral intensity
(JSI), jf �ωs,ωi�j2.

In 2008, Walmsley’s group demonstrated engineered PDC
under aGVM conditions in a bulk KDP crystal [33] with photon
pairs produced around 830 nm. In addition to JSI measurements,
the authors demonstrated Hong–Ou–Mandel interference [34]
between heralded photons from two different PDC sources with
a visibility of 94.4%.

Also in 2008, Wong’s group designed and analyzed a source of
telecom photon pairs produced under sGVM conditions in peri-
odically poled KTiOPO4 (ppKTP) crystal [35]. To measure cor-
relations, the photons were upconverted in a second nonlinear
crystal by a short gate pulse. By scanning the relative delay of
the photons and the gate, the authors were able to measure
the joint temporal intensity, explicitly showing the possibility
of temporal anti-correlation under sGVM conditions. This dem-
onstrated for the first time that changing the spectral bandwidth
of the pump facilitates control over the time-frequency correla-
tions of the pair photons.

KTP is particularly appealing as a source for dispersion-
controlled photons. As seen in Fig. 3, it exhibits both aGVM
and sGVM conditions at different frequencies. In particular,
through the sGVM condition, it can be used to produce photon
pairs with degenerate spectra in the highly useful telecommuni-
cations wavelength regime. In 2011, researchers at NIST pre-
sented a highly pure and spectrally degenerate telecom PDC
source realized in bulk ppKTP [36], demonstrating the indistin-
guishability of the photon pair through 95% visibility in signal-
idler Hong–Ou–Mandel interference.

To achieve the long interaction lengths necessary for narrow
phase-matching functions, sources in guided-wave media are es-
sential. In addition, the tight field confinement provides signifi-
cant increases in the source brightness, and the spectral and spatial
degrees of freedom are largely decoupled in a waveguide. In 2011,
Silberhorn’s group presented the first separable PDC source in a
waveguide [19], based on rubidium-exchanged ppKTP. The
tight field confinement contributed to a high brightness, with
hn̂PDCi ≈ 2.5 photons per pulse at pump pulse energies as low
as 70 pJ, and the purity of the source was confirmed through both
JSI and g �2� measurements. A further refinement of the source
offered a signal-idler indistinguishability of around 94% con-
firmed with Hong–Ou–Mandel interference, and a photon spec-
tral purity of up to 86.7% was obtained from interfering the

(a)

(b)

(c)

Fig. 3. Three different group-velocity matching condition. The JSA of
each case is plotted on the left side, with the respective group velocities uj
of the pump, signal, and idler fields plotted on the right side. The group
velocities (normalized over the speed of light in vacuum) are exemplary
for TE- and TM-polarized light in a z-cut KTP crystal. (a) Typically
without dispersion engineering, the long-wavelength signal and idler
photons both have a larger group velocity than the pump (ξ > 0).
This leads to a negative phase-matching angle and consequently to a cor-
related JSA as shown on the left. In this example, ξ ≈ 0.4. (b) In the case
of aGVM (ξ → 0), one photon (here the signal) propagates at the same
velocity as the pump. This yields a phase-matching function that is
aligned with the signal or idler frequency axis. If the pump spectral band-
width is larger than the phase-matching bandwidth, a separable JSA is
generated. (c) For sGVM (ξ → −1), the group velocity of the pump lies
between the group velocities of signal and idler. This leads to a �45°
phase-matching angle and, given that the pump spectral bandwidth
matches the phase-matching bandwidth, a separable JSA with potentially
indistinguishable signal and idler.
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photon with a classical reference field [37]. Since then, sGVM
sources have been incorporated into dual-pumped Sagnac
schemes to construct degenerate and highly pure photon pair
sources with polarization entanglement [38,39].

C. Problem with Side Lobes

To put these results into context, we next consider the limitations
imposed by the phase-matching function in Eq. (5). In Fig. 4, we
plot the JSAs resulting from this phase-matching function
along with possible broadband spectral filtering. It becomes
immediately obvious that the side lobes of the sinc-shaped
phase-matching function introduce undesired frequency anti-cor-
relations, limiting the maximum purity of heralded photons to
around 86% in the sGVM case. With filters chosen to transmit
the main peak of the JSA but block as many of the correlated side
lobes as possible, it is possible to increase the source performance,
but limitations are still present. In the case of aGVM depicted in
Fig. 4(a), the idler filter can be chosen to be much narrower than
the signal filter. In this example, if the idler is filtered and serves as
a herald, the maximum purity for the heralded signal increases to
97%. In contrast, if the signal is filtered and serves as a herald, the
heralded idler photon has a maximum purity of about 92%. Note
that this value can be increased with a larger pump bandwidth.
In the sGVM example shown in Fig. 4(b), the signal and idler
photons are indistinguishable, and the filtering shown in either
case leaves the other photon with a purity of about 94% when
heralded. We note that these numbers can be further increased
when choosing smaller filter bandwidths at the cost of decreased
heralding rates [40,41].

Luckily, there are elegant methods to shape the phase-
matching function in order to avoid the spectral filtering.
These methods rely on engineering the phase-matching distribu-
tion through modulation of the poling patterns and, in the case of
integrated devices, tailoring the geometry of the waveguided
structures. Since the phase-matching function is the Fourier trans-
form of the quasi-phase-matching (QPM) grating [χ�z� in
Eq. (4)], the nonlinearity profile along the interaction can be
smoothened or apodized to a Gaussian function by modulating
the QPM grating. The first experimental demonstration of
phase-matching apodization was realized by Fejer’s group [42],
where 13 dB suppression of the side lobes is shown. This simple
apodization method reduces the peak efficiency and broadens the
width of the phase-matching function, as expected from the

Fourier analysis. Apart from custom QPM gratings, the authors
also investigate different waveguide geometries effective for elimi-
nating the phase-matching side lobes. Later, many other methods
were proposed and demonstrated to efficiently apodize the phase-
matching function, such as modulation of the poling periodicity
[43], modulating the poling pattern’s duty-cycle [44,45], and
optimizing the orientation of each domain [46–49]. These tech-
niques grant purities in excess of 99% without spectral filtering,
opening new avenues to engineer the TM structure of PDC
states by arbitrary shaping of the phase-matching function.

D. Controlled Generation of Temporal Modes

Finally, we want to highlight two possibilities to accurately control
the generated PDC state beyond separability. For applications
that exploit TMs as the encoding basis, the targeted generation
of states with a user-defined TM structure is highly desirable.
Complementary techniques arise for PDC state engineering
through spectrally shaping the pump pulse in aGVM and
sGVM sources, the former providing pure shaped single photons
while the latter provides flexible sources for high-dimensional
TM entanglement.

In the aGVM case, as seen in Eq. (14), the spectrum of the
idler photon is almost entirely dependent on the phase matching,
while the spectrum of the signal photon is dependent on the shape
of the pump. By manipulating the spectral shape of the pump, the
shape of the signal photon can be programmed on the fly, as seen
in Figs. 5(a)–5(c). So long as the phase matching is narrow relative
to the finest features of the desired spectral shape, the JSA remains
separable. This was recently demonstrated in KTP waveguides
under birefringent phase-matching conditions, providing high-
purity shaped photons at 1411 nm [50].

In contrast, PDC states that comprise a user-defined number
of TMs can be generated in the sGVM configuration. Again, this
is achieved by spectral shaping of the pump pulses. One example
of this is a PDC driven by a pump pulse with a first-order
Hermite–Gaussian spectrum [51], as depicted in Fig. 5(e). In this
case, the generated state is a TM Bell state of the form

jψiBell �
1ffiffiffi
2

p �j0isj1ii � e φj1isj0ii�, (16)

where j0ij (j1ij) labels the j photon occupying a Gaussian (first-
order Hermite–Gaussian) spectrum and j � �s, i�. To add addi-
tional TMs to this state, it is sufficient to increase the order of the
Hermite–Gaussian spectrum of the pump pulse, which is easily
achieved with conventional pulse shaping [52]. Although this
provides a state with finite number of Schmidt modes, the gen-
erated TMs are generally not equally occupied (i.e., they can have
different

ffiffiffiffi
λk

p
) [51], and thus the generated TMs are not max-

imally entangled. Another alternative pump shape to control
the Schmidt modes is a superposition of time bins or, equiva-
lently, cosine functions in the frequency domain, as shown in
Fig. 5(g) [12]. This provides a flexible and versatile source that
generates maximally entangled states with an arbitrary dimension
without the need for changing any hardware.

As the last remark in this section, we want to point out that the
theoretical description of the PDC process presented here, using
the first-order perturbation theory, is only valid when the process
is weakly pumped (also referred to as the low-gain regime)
[53,54]. A full description of such nonlinear optical processes re-
quires the time-ordered treatment of the involved Hamiltonians

(a) (b)

Fig. 4. Joint spectral amplitudes (absolute value) with standard peri-
odic poling and filters on the individual photons. (a) In an aGVM source,
the idler can be filtered to remove the side lobes and herald pure signal
photons. However, filtering on the signal arm cannot be used to remove
the side lobes. (b) In sGVM sources, the JSA is symmetric. Filtering
either signal or idler leaves the other with a purity of about 94%.
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and consideration of the presence of multi-photon components.
In the high-gain regime (with intense pump powers and PDC
mean photon numbers≫1), the time ordering leads to significant
changes of the Schmidt modes and the respective squeezing in
each mode. Despite this, in the high-gain regime it is possible
to generate bright squeezed states that are interesting to study
a range of quantum phenomena at mesoscopic scales [55–57].

To conclude, PDC state engineering is now at a point where
we can exert close-to-arbitrary control over the TM structure of
the generated state. This brings into reach the realization of
TM-based quantum information processing (QIP) applications
and provides us with a very clean laboratory system for the gen-
eration of Hilbert spaces with well-defined dimensions.

4. MANIPULATION AND MEASUREMENT OF
TEMPORAL MODES

With a variety of sources available for both pure and entangled
TM-encoded photons, the next piece of the complete TM-based
QIP toolbox is a quantum device capable of accessing a TM out of
a multimode input. In other words, we require a special quantum-
mechanical beam splitter that operates on a customizable basis
of TMs. A promising tool to build such a device is engineered
frequency conversion (FC).

Frequency conversion has been recognized as means to trans-
late the central frequency of a photonic quantum state while pre-
serving its non-classical signatures. The first proposal in 1990
considered the frequency-translation of squeezed states of light
[58]. Different experiments have since confirmed that FC retains
quadrature squeezing [59–62], quantum coherence and entangle-
ment [63–66], anti-bunching of single photons [67,68], and
non-classical photon correlations [69,70]. Since FC can be highly

efficient [71–73], it provides a useful tool for improved detection
schemes [74–78] and an interface for dissimilar nodes in future
quantum networks [79–89].

However, there is more to frequency conversion. In 2010,
Raymer et al. proposed an interpretation of FC as a two-color
beam splitter [90], enabling for example Hong–Ou–Mandel in-
terference [34] of photons of different color. If the FC is set to
50% efficiency, and if two monochromatic photons that are cen-
tered at the two linked frequencies (red and blue) are sent into the
process, simultaneous sum-frequency generation (SFG) or differ-
ence-frequency generation (DFG) occurs and both photons will
exit the FC either at the blue frequency or the red frequency. The
conversion process links the two frequency bands in a beam split-
ter fashion, as has been demonstrated with single-photon
signals exhibiting Ramsey interference [91] and two-color
Hong–Ou–Mandel interference [92].

The proposal of Ref. [90] also considers the case of spectrally
broadband FC, where a specific input frequency ωin is mapped to
a plethora of output frequencies ωout and vice versa, as deter-
mined by the Heisenberg-picture Bogoliubov transformations,

â†�ωin� ↦
Z

dω 0
inGaa�ωin,ω 0

in�â†�ω 0
in�

�
Z

dω 0
outGac�ωin,ω 0

out�ĉ†�ω 0
out�, (17)

ĉ†�ωout� ↦
Z

dω 0
inGca�ωout,ω 0

in�â†�ω 0
in�

�
Z

dω 0
outGcc�ωin,ω 0

out�ĉ†�ω 0
out�: (18)

Here, â† and ĉ† are creation operators in the input and
frequency-converted output modes, respectively, and the Gij

(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Orchestrating Schmidt modes via group-velocity matching and pump pulse shaping. (a)–(c) JSAs for a PDC source with an aGVM setting.
The weights of the first five Schmidt modes λk are shown under each JSA. The state remains single-mode regardless of the pump shape. The only
significant Schmidt modes of signal A0 and idler B0 photons are shown at the bottom, where we plot TM amplitudes versus frequency. The idler
photon shape is invariant to the pump, while the TM of the signal photon reflects the TM of the pump field. (e)–(g) A sGVM PDC can be used
to control the exact number of excited TMs. For example, driving the source with a first-order Hermite–Gaussian pump pulse as in (e) results in exactly
two TMs. This can be extended with higher orders of Hermite–Gaussian pulses as in (f ), but the different Schmidt modes are not occupied with the
same probability. A balanced Schmidt-mode distribution can be achieved when the source is pumped with time-bin superpositions, as in (g).
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are Green’s functions that describe the mapping between the
two. By applying a Schmidt decomposition to the Green’s
functions, an interpretation of broadband FC as a beam splitter
that links sets of input TMs to output TMs becomes apparent
[90]. Similar to PDC, this process will generally be multimode.

Inspired by the previously outlined work in PDC engineering,
the mode structure of FC can be tailored through dispersion
engineering. It turns out that a configuration that is similar to
asymmetric group-velocity matching facilitates single-mode oper-
ation; when the input signal propagates through the nonlinear
medium at the same velocity as the bright pump, but the output
is group-velocity mismatched, one specific TM is selected and
converted to the output frequency, while all other TMs are simply
transmitted [93]. The single-mode FC has been dubbed the
quantum pulse gate (QPG) to reflect that it selects, or gates,
one broadband TM. The reversal of this process, when the output
light shares the group velocity of the pump, has been proposed as
a TM shaper [94].

In the following we briefly outline the QPG formalism. The
interaction Hamiltonian that describes a general FC process is
given by

Ĥ int � θ

Z
dωindωoutF �ωin,ωout�â�ωin�ĉ†�ωout� � h:c:, (19)

where â and ĉ are annihilation operators in the input and upcon-
verted modes, respectively, and θ is a coupling of the process
incorporating the power of the QPG pump and the strength
of the material nonlinearity. The transfer function F �ωin,ωout�
describes the mapping from input to output frequencies, equiv-
alent in the low-efficiency regime to the Green’s function
GRB�ωin,ωout� and analogous to the JSA in PDC processes.
The transfer function, as in the case of PDC, is a product of pump
amplitude and phase matching,

F �ωin,ωout� � α�ωout − ωin�ϕ�ωin,ωout�: (20)

Similar to PDC, we can apply a Schmidt decomposition to
the mapping function and define our operators in the TM basis
[compare Eqs. (3)–(9)], obtaining

Ĥ int � θ
X∞
k�0

ffiffiffiffi
λk

p
ÂkĈ

†
k � h:c:, (21)

with
P

kλk � 1. Despite the similarity to the Schmidt decompo-
sition of the PDC state as formulated in Eq. (9), there is a fun-
damental difference in the meaning of the decomposition and the
Schmidt modes in each case. While the PDC decomposition
expresses the modes of a state, in the case of the FC we have a
SFG operation. The Hamiltonian in Eq. (21) generates operator
transformations

Âk → cos
� ffiffiffiffi

λk
p

θ
�
Âk � sin

� ffiffiffiffi
λk

p
θ
�
Ĉk, (22)

Ĉk → cos
� ffiffiffiffi

λk
p

θ
�
Ĉk − sin

� ffiffiffiffi
λk

p
θ
�
Âk: (23)

These can be interpreted as k independent beam splitters
with reflectivities sin2� ffiffiffiffi

λk
p

θ�, which connect the input Âk to
an output Ĉk.

As previously derived for PDC, the phase-matching function
can be written in terms of the group-velocity mismatch,
Δk�ωin,ωout�. Assuming that the nonlinear medium is periodically
poled to ensure phase matching at the center frequencies, this phase
mismatch can be written to the first order in analogy to Eq. (12) as

Δk�ωin,ωout� ≈ �u−1in − u−1p �ωin − �u−1out − u−1p �ωout: (24)

For the case of aGVM where the input signal propagates at the
same velocity as the pump (uin � up), the first-order phase-
matching function is only dependent on the upconverted fre-
quency ϕ�ωin,ωout� ≈ ϕ̃�ωout�. If the phase matching is spectrally
narrow enough that the output frequency spread is negligible
compared to the input, the contribution of the pump field is ap-
proximately dependent on only the frequency of the input field,
α�ωout − ωin� ≈ α̃�ωin�. If these approximations hold, the transfer
function can be rewritten simply as

F�ωin,ωout� ≈ α̃�ωin�ϕ̃�ωout�: (25)

As the phase-matching function tightens, the transfer func-
tion becomes more and more separable, as illustrated in
Figs. 6(c) and 6(d).

For a separable transfer function, the Schmidt decomposition
yields only one single non-zero Schmidt coefficient, and the in-
teraction Hamiltonian reduces to the desired QPG Hamiltonian,

ĤQPG � θÂ0Ĉ
†
0 � h:c:, (26)

and we obtain the following operator transformations:

Â0 → cos�θ�Â0 � sin�θ�Ĉ0, (27)

Ĉ0 → cos�θ�Ĉ0 − sin�θ�Â0, (28)

Âk → Âk for k ≠ 0, (29)

Ĉk → Ĉk for k ≠ 0: (30)

(a)

(b)

(c)

(d)

Fig. 6. Frequency conversion process and its transfer function.
(a) Outline of a general frequency conversion process with pump, input
and output fields. (b)–(d) Sum-frequency conversion transfer functions
F �ωin,ωout� with its marginal distributions (left) and its first few Schmidt
coefficients

ffiffiffiffiffi
λk

p
. (b) A non-engineered SFG with significant frequency

correlations and a K ≈ 3.7. (c) and (d) present a tailored SFG process
with aGVM condition with pump functions α�ωout − ωin� of
Gaussian and first-order Hermite–Gauss, respectively, and a K ≈ 1.01.
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Hence, the ideal QPG selects one single input TM and con-
verts it to an output TM with an efficiency of sin2�θ�, while all
orthogonal TMs pass through the QPG unconverted and undis-
turbed. The selected input TM Â0 is defined by the shape of the
bright pump pulse that drives the conversion (α̃�ωin�), whereas
the shape of the output TM Ĉ0 is given by the envelope
of the phase-matching function (ϕ̃�ωout�) [93,94]. By shaping
the spectral amplitude and phase of the QPG pump pulse, the
mode selected by the QPG can be adapted on the fly. While most
works have motivated the QPG towards Hermite–Gauss TMs, it
can also be set to select arbitrary superpositions as well as entirely
different mode bases (e.g., time or frequency bins) by reshaping
the pump pulse. While other group-velocity conditions exist that
enable nearly single-mode sum-frequency generation, the aGVM
case outlined here has been shown to be optimal [95].

Although ideal QPG operation as described in Eq. (26) re-
quires perfect GVM between the pump and input, one can still
realize a nearly single-mode QPG if the group-velocity mismatch
is small with respect to the temporal width of each field. To com-
pare different scenarios, we redefine the group-velocity mismatch
contrast, which was introduced in Eq. (13) as

ξ � u−1in − u−1p
u−1out − u−1p

: (31)

An aGVM condition between the pump and input fields
means ξ → 0. This definition can help us to study the feasibility
of building a QPG in different nonlinear materials with different
dispersion properties, which will be discussed in the next section.

More detailed studies followed this first proposal for a QPG,
which focused in particular on the behavior of a QPG as a func-
tion of conversion efficiency. In this context, implementations
based on both four-wave mixing and SFG were investigated
[95]. The figure of merit that was defined is the so-called selectivity
S of the QPG, which is defined as

S � η0 ·
η0P∞
k�0 ηk

≤ 1, (32)

where ηk � sin2� ffiffiffiffi
λk

p
θ� is the conversion efficiency for the kth

TM. The selectivity measures both the single-modedness of
the QPG and the conversion efficiency for this mode.

An ideal QPG operates on only one TM and converts this
mode with unit efficiency (S � 1). In a more realistic scenario,
the QPG becomes multimode when approaching high conversion
efficiencies, owing to non-perturbative interaction dynamics often
referred to as time-ordering effects in the quantum context
[53,95,96]. For a single QPG, a maximum selectivity of S ≈
83% has been determined [95]. Figure 7 shows the change in
the transfer functions for increasing pump powers [95].

In Ref. [97], Reddy et al. proposed a scheme to overcome this
limitation, dubbed temporal-mode interferometry. Using two
QPGs in a Mach–Zehnder-like configuration, they show it is pos-
sible to achieve selectivities approaching unity. In this scheme,
two QPGs are operated at 50% conversion efficiency—similar
to two balanced beam splitters—and the phases between the
two QPGs are adjusted such that interference leads to complete
conversion of the targeted input TM. Since each QPG operates at
a moderate conversion efficiency, the individual processes are still
close to single-mode, and an overall selectivity of more than 98%
can be achieved.

Despite this advance, simultaneously achieving high efficiency
and isolating orthogonal modes is a significant experimental chal-
lenge. In scenarios where the QPG is used for temporal-mode

Fig. 7. Absolute value of the temporal (left) and spectral (right) transfer
functions for broadband frequency conversion. The left column shows
the mapping from input times t in to output times tout for increasing
pump powers (top to bottom), corresponding to increasing conversion
efficiencies. The relative pump energy P, selectivity S, and separability σ0
are printed on top-right corner of each row. This leads to simultaneous
forward and backward conversion, which is reflected by the oscillations in
the mapping function. The functions were calculated by numerically
solving the Heisenberg equations for the input and output field opera-
tors. The right column shows the respective spectral mapping functions.
It can be seen that the general shape of the function broadens and that
additional correlations are introduced for stronger pump powers. These
correlations do not show up in a perturbative approach.
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reconstruction and measurement, efficiency may not be the dom-
inant concern. Instead, one might simply need to know how well
the upconverted signal identifies the presence of the target TM.
To isolate this criterion, often the separability σj for a given mode j
among a d -dimensional basis is quantified, defined as [98]

σj �
ηjPd
k�0 ηk

≤ 1: (33)

This quantifies how well the QPG isolates a single mode from
a mixture irrespective of incomplete conversion. Additionally,
oftentimes the suppression or extinction ratio for mode j is
reported [99,100],

E:R:j�dB� � 10 log10
ηj

maxk≠jηk
, (34)

which defines to what extent the QPG suppresses signals from
modes orthogonal to the target mode.

5. EXPERIMENTAL PROGRESS ON TM
SELECTION

In this section, we provide an overview of experimental work on
temporal-mode-selective devices built with pulse shaping and
dispersion engineering. To start, it is imperative to find nonlinear
materials and interactions that satisfy the aGVM conditions, i.e.,
minimize jξj in Eq. (31). This condition can be met for SFG
processes in multiple materials, as mapped out in Fig. 8. In par-
ticular, it naturally occurs near degeneracy in materials with
type-0 or type-I phase-matching conditions (i.e., where the
QPG pump and input have the same polarization and approxi-
mately the same frequency). However, in these near-degenerate
configurations, the second harmonic of the QPG pump adds a
strong source of phase-matched background noise for single-
photon operation, and suppressing it by detuning the signal from
degeneracy quickly degrades the mode selectivity of the device, as

seen in the rising ξ values in Fig. 8. To operate with “perfect”
group-velocity matching, specific conditions can be found in
type-II or frequency-nondegenerate configurations. For example,
in z-cut lithium niobate, a 1550 nm ordinarily polarized input
signal may interact with a 875 nm extraordinarily polarized
QPG pump to produce an ordinarily polarized upconverted signal
in the green range of the visible spectrum [93,99]. Since the SHG
process for the QPG pump is both phase mismatched and in the
blue range, the upconverted signal can be effectively isolated at
the optimal GVM wavelength. However, the type-II nonlinear
strength is considerably weaker than the type-0, necessitating
stronger pump fields.

While broadband temporal modes find a natural use in quan-
tum applications, similar concepts have been proposed and ex-
plored for classical communications. By taking a broad flat-top
optical pulse and manipulating its spectral phase with a pulse
shaper, one can generate sets of orthogonal pulses based on,
for example, Hadamard codes. If a decoder applies the correct
decoding phase sequence, the ultrashort pulse becomes Fourier
limited once more, with a commensurate increase in peak power
[101]. This concept can be merged with dispersion-engineered
sum-frequency generation to enable ultrashort-pulse code-
division multiple access. If a broadband pulse is sent through a
long nonlinear crystal for second-harmonic generation (SHG),
and the crystal is group-velocity mismatched such that the
SHG light walks off from the input light, and the second
harmonic will be temporally lengthened and spectrally narrowed.
If a frequency-dependent phase is applied to the pulse, it will only
be efficiently frequency doubled if the phase is symmetric. If two
users each have access to half of the spectral bandwidth of an ul-
trashort pulse, the pulse will cease to upconvert in this medium if
they apply orthogonal phase codes [102,103]. This effect is due to
interference within the broadband pulse structure and enabled by
the group-velocity walkoff in the nonlinear medium. This scheme
was demonstrated by Weiner’s group using a 20-mm-long bulk
PPLN sample with a broad input pulse at telecommunications
wavelength split into 16 channels. The SHG from mismatched
codes exhibited an extinction ratio of over 27 dB when filtering
the central frequency component [102]. Using entangled photon
pairs to supply the same effective spectral narrowing as the group-
velocity mismatched SHG, analogous encoding schemes have
been demonstrated with biphoton upconversion [104].

Recent realizations of the QPG allow for the analysis and
reconstruction of the temporal modes of distant single-photon
level pulses. These experiments can generally be described by
the apparatus of Fig. 9. In Silberhorn’s group, a quantum pulse
gate was constructed using a type-II interaction in titanium-
indiffused PPLN waveguides with short poling periods (4.4 μm)
[99], where an orthogonally polarized and group-velocity
matched telecom (1535 nm) input signal and a Ti:sapphire
(875 nm) QPG pump mix to produce a signal in a green
(550 nm) upconverted beam. The broad GVM of this process
allows it to be used for sub-picosecond pulses (approximately
300 fs FWHM), with the selected mode exactly matching the
spectral profile of the QPG pump in the low-efficiency regime,
as seen in Fig. 10. In Ref. [99], an efficiency of nearly 88% was
observed for the primary Gaussian mode with a single-photon-
level coherent state input, with a demonstrated extinction ratio of
approximately 7 dB, limited by the resolution of the pulse shaper.
With improved QPG pump pulse shaping, this experiment was

Fig. 8. Group-velocity mismatch contrast ξ (such that 0 is perfectly
matched) for processes in lithium niobate (LN) waveguides, potassium
titanyl phosphate (KTP) waveguides, and bulk bismuth borate (BiBO),
as the input signal is detuned from the optimal group-velocity matching.
The grey dashed line corresponds to the type-II process in LN, where
GVM is found for a 1550 nm signal, 875 nm pump, and 560 nm up-
converted [99]. All other processes have degenerate signal and QPG
pump for group-velocity matching, and IR (NIR) corresponds to
1550 nm (800 nm) signal and QPG pump. Signal detuning or noncol-
linear geometry is necessary in all cases except for type-II LN to overcome
the second harmonic of the QPG pump.
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extended to measure PDC photons from a spectrally pure source
with an extinction ratio of 12.8 dB and shaped coherent laser
light with an extinction ratio of over 20 dB, although with a
greatly reduced conversion efficiency (approximately 20%) [105].
Experimental SFG transfer functions using this system can be
seen in Fig. 10.

An approximate approach to mode-selective measurement
without strict group-velocity matching was later put forth by
Huang and Kumar [106]. Although the optimal mode-selective

frequency conversion configuration has been shown to be group-
velocity matched [93,95], they found that reasonably single-mode
frequency conversion could be realized through numerically opti-
mized pump shaping so long as the bandwidth of the phase
matching function is significantly narrower than the bandwidth
of the pump. By generating a 20 GHz pulse train through electro-
optically modulating a strong CW laser, Kowligy et al. produced a
17-element frequency comb for both the input signal and QPG
pump, with each tooth individually addressable in phase and
amplitude. With this scheme, they were able to experimentally
demonstrate efficiencies near 80% and 8 dB extinction ratios us-
ing a 6 cm type-II PPKTP waveguide [100]. In follow-up work,
they reverted to a nearly group-velocity matched configuration
using a near-degenerate type-0 SFG in a 52 mm PPLN waveguide
with input signals around 1550 nm. Applying their waveform
generation and numerical optimization to this situation, they
were able to demonstrate efficiencies above 75% for a four-
dimensional Hermite–Gaussian alphabet with separabilities above
65% and as high as 87% for picosecond-scale Gaussian pulses
[98]. These results have been extended to novel mode-selective
pulse-shaping schemes based on overconversion in SFG [107]
and demonstrations of mode-selective upconversion with efficien-
cies and selectivities high enough to outperform time-frequency
filtering for signal isolation [108].

In the low-efficiency regime, the spectral shape prepared for
the pump pulse corresponds exactly to the temporal mode se-
lected by the QPG. In the high-efficiency regime, this first-order
treatment breaks down due to the time-ordering effects outlined
in the previous section and Fig. 7 [53,96,97]. Reddy and Raymer
have investigated this regime with a QPG based on a 5-mm
PPLN waveguide phase matched for a type-0 interaction between
an 812-nm input signal, an 821-nm QPG pump, and a 408-nm
register (output) mode [109,110]. By operating with nearly de-
generate pump and signal, the group-velocity mismatch between
the two red modes is negligible compared to the violet upcon-
verted mode, and the type-0 PPLN interaction provides an
extremely high nonlinearity. This allowed them to saturate the
QPG efficiency at reasonable QPG pump powers (85% with
3.5 mW at 76 MHz with 500-fs pulses) [109]. They also con-
firmed numeric predictions that, in the high-efficiency regime,
greater conversion efficiencies and mode selectivities can be
reached with QPG pump shapes that differ from their analytically
calculated low-efficiency regime counterparts.

With 50% conversion efficiency, enhanced mode selectivity is
possible through temporal mode interferometry (TMI), where
phase reshaping between two 50% efficient QPGs suppresses
higher-order corrective terms [97,111,112]. By passing through
the same waveguide twice (necessary to ensure identical phase-
matching conditions), Reddy and Raymer were able to show
mode-selective Ramsey interference with enhanced efficiency
and mode selectivity relative to numerically calculated single-stage
expectations [110]. This enhancement was present using the ana-
lytic low-efficiency-regime QPG pump mode shapes, removing
the need for efficiency-dependent numerical optimization.

A. Mode Selection in Quantum Memories

A further possibility to manipulate TMs is by tailored light–
matter interactions in single-mode quantum memories, in par-
ticular Raman ensemble memories. Here, the optical light field
interacts with an ensemble of atoms with a Λ energy level

Fig. 9. Generic experimental situation for a quantum pulse gate. A
TM-encoded single photon or weak coherent state is prepared through
PDC or through shaping a spectrally broad input pulse and attenuating
with a neutral density (ND) filter. A strong QPG pump is prepared using
similar pulse shaping methods, or through electro-optic modulation
(EOM) of a strong cw laser to produce a frequency comb, which is modu-
lated in a tooth-by-tooth fashion by a pulse shaper [100]. The two are
mixed in a group-velocity-matched χ�2� waveguide, and the upconverted
signal in the register mode is measured. For temporal-mode interferom-
etry (TMI) [97], the QPG is split into two 50% efficient steps with phase
shifts in between.
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Fig. 10. Experimental spectral-intensity transfer functions for the first
four Hermite–Gaussian temporal modes (top–bottom), as measured in
the experimental apparatus of Ref. [165]. The QPG in question was
built from a 17-mm-long PPLN waveguide phasematched for a type-
II interaction (875 nm + 1540 nm to 555.7 nm), with the group-velocity
matching necessary to produce highly separable SFG transfer functions.
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configuration. A strong control pulse drives a two-photon Raman
transition, which maps the addressed input TM onto a so-called
spinwave, which can be transferred back into an optical field by
applying another strong control pulse. Similar to a QPG, the
underlying equations describing this interaction can be cast into
the form of a broadband beam splitter, where the shape of the
strong control pulse determines the TMs that are stored and
retrieved [113]. In contrast to QPGs, quantum memories give
access to a wide range of accessible spectral bandwidths ranging
from a few megahertz (MHz) up to terahertz (THz), depending
on the physical system used to realize the memory. Recent results
have shown the potential usefulness of these types of memories for
the storage and manipulation of multimode quantum frequency
combs [114] and the frequency and bandwidth conversion
of photons [115,116]. By performing a process tomography,
Walmsley’s group has demonstrated the single-TM operation
of a Raman memory [117]. Similar to the single-stage QPG,
the Raman memory shows a degrading single-modedness with
increasing efficiency. One way around this problem is to place
the memory inside a cavity, which enables both high efficiency
and mode selectivity simultaneously [118].

B. Multimode Manipulations with Sum-Frequency
Generation

While group-velocity engineered waveguides and mode-selective
interfaces are powerful tools, by definition they are unable to
reshape the structure of multimode fields except as resource-
intensive add/drop devices [51]. Applied temporal mode encod-
ings may need multimode reshaping, for example, to match the
central frequencies and bandwidths of PDC photons to the accep-
tance range of a solid-state memory interface [119], or to develop
resource-efficient rotations and manipulations in the temporal
mode basis. Initially, single-photon SFG was explored in the
context of upconversion detectors, which efficiently shifts the
frequency of photons from the telecom regime to the visible,
where more efficient avalanche photodiodes exist [71,77].
While advances in superconducting nanowire detectors have
eased telecom detection requirements, such processes have
continued to find quantum applications, including frequency
conversion for connecting quantum network nodes [119–121]
and ultrafast signal gating [35,122,123]. Multimode SFG proc-
esses have been shown to add little noise, evidenced through ex-
periments that have confirmed entanglement preservation in time
bin [63] and polarization [66,124] degrees of freedom after
frequency conversion and bandwidth manipulation.

For more general transformations, we can look to concepts
from temporal imaging [125,126], which describes manipulations
to the temporal structure of light in much the same way that
spatial imaging describes the actions of lenses and diffractive
propagation. Temporal imaging systems require the ability to
implement phase shaping in both the spectral and temporal
domains. Spectral domain manipulations can be accomplished
simply with phase-only pulse shaping or standard dispersion-
compensation techniques [52], but temporal phase manipulation
(often called “time lensing”) is more difficult for sub-picosecond
pulses, especially at the quantum level. Recently, groups have
shown that dispersion and sum-frequency generation provides
an effective toolbox for manipulating the bandwidth and time
scale of PDC photons [127] as well as reshaping the time-
frequency structure of entangled photon pairs [128]. These

techniques work in the exact opposite regime as the QPG, in that
broad, non-restrictive phase matching is desired, i.e., all three
fields must stay approximately group-velocity matched through
the interaction. This often limits SFG-based time lenses to short
nonlinear crystals, but the process can in principle reach high
efficiency without the same time-ordering roadblocks as mode-
selective measurement [95,129,130]. Note that temporal imaging
can be accomplished in analogous ways through four-wave mixing
[131,132]. Alternatively, other groups have shown deterministic
time lensing using electro-optic modulation [133–135] and cross-
phase modulation [136]. Taking concepts from the work done
on quantum temporal imaging and applying them to tempo-
ral-mode manipulation is an exciting direction for future research.

6. TOWARDS APPLICATIONS OF TEMPORAL
MODES IN QUANTUM INFORMATION SCIENCE

Finally, in this section, we outline experimental progress towards
harnessing mode-selective upconversion for quantum technolo-
gies. The experiments referenced above have shown that quantum
pulse gates can be realized with high efficiencies and high selec-
tivities. In order to apply them for quantum signal processing,
high signal-to-noise ratios are absolutely essential to separate
quantum from classical signals and to protect resources such as
entanglement and squeezing.

To exploit temporal modes as a high-dimensional coherent
quantum resource, the selectivity must be maintained for a
high-order alphabet as well as over the complete set of possible
superposition states, as illustrated in Fig. 11. The security of
quantum key distribution, for instance, relies entirely on the
ability to measure complementary observables. For tomographic
reconstruction of d -dimensional quantum states, projective mea-
surements onto at least d 2 states spanning the total Hilbert space
are required. A complete set of d � 1 mutually unbiased bases
[137,138] provides a sufficient set of projections, examples of

Fig. 11. Spectral field amplitudes spanning a complete set of mutu-
ally-unbiased bases for Hermite-Gauss modes in two (top) and five (bot-
tom) dimensions [165,137]. In order to completely access the Hilbert
space, effective projections on all of these states must be realizable.
The normalised spectral intensity is shown in grey and the red line
corresponds to the spectral phase (on the interval 0–2π).
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which in the Hermite–Gauss basis are shown in Fig. 11. High-
dimensional two-qudit state tomography of entangled photons
has been demonstrated with encodings in time-binned modes
[84,139], spectral-binned modes [140,141], and orbital angular
momentum spatial modes [142]. To avoid the intense resource
devotion needed for full tomographic reconstruction, properties
such as entanglement can be verified with witnesses instead
[143–146]. However, these techniques still require the ability
to project in complementary bases.

Utilizing the time-frequency degree of freedom for high-
dimensional quantum information protocols has generally been
confined to the context of time- or frequency-bin temporal
modes, where the computational-basis modes are directly distin-
guishable in intensity. In particular, time bins have become the
temporal-mode basis of choice behind the longest-distance Bell
inequality violations over fiber networks [147–149], many com-
mercial QKD systems [150], and high-dimensional entanglement-
enabled quantum communication schemes [151–153]. By
passing a photonic signal through an unbalanced Mach–
Zehnder interferometer, such that the reflected arm acquires
an overall delay and adjustable phase relative to the transmitted
signal, a superposition of arrival times can be prepared or mea-
sured [154]. Extensions to higher dimensions have been realized
with multi-path interferometers [155], cascaded Mach–Zehnder
interferometers with different delays [84,153], and time-to-
polarization conversion enabled by cross-phase modulation [139].
However, the interferometers in the first two techniques require
detectors with time resolution fine enough to separate non-
interfering events, and the latter technique is limited in which
superpositions can be directly measured. By using SFG with
chirped inputs as a time-to-frequency converter, it has been dem-
onstrated that projective measurements can be made on superpo-
sitions of time-bin photonic states on time scales well below
detector resolution [156]. While this technique was effective
enough to convincingly violate a Bell inequality and reconstruct
time-bin qubit density matrices, it is limited to a maximum
efficiency of 1∕d for a given projection.

SFG has also been key to frequency-bin encoded schemes, par-
ticularly those involving the recombination of a PDC photon pair
in a second nonlinear crystal [157,158]. By creating spectrally en-
tangled photons and slicing their spectra into bins, researchers
have used this method to demonstrate novel high-dimensional
encoding schemes [104] and violate high-dimensional Bell in-
equalities [140]. However, since these experiments rely on recom-
bination of the two photons, they are difficult to extend to
quantum network applications. Recent work using low-noise
electro-optic modulators to create sidebands from a frequency
comb source has enabled projective measurements on frequency-
bin entangled photons from frequency comb sources without
needing the two photons to recombine [141,159,160]. These
tools have been demonstrated to enable deterministic frequency-
bin rotations [161,162] and fast feed-forward frequency shifting
for spectrally multiplexed photon sources [163].

The dispersion-engineered techniques outlined in Section 4
have the key advantage that so long as the transfer function of
Eq. (20) remains separable, they are capable of projecting onto
temporal modes in arbitrary bases, including both the binned
modes and field-overlapping pulse modes. To be effective for
high-dimensional quantum protocols, dispersion-engineered
mode-selective SFG must be both low-noise and coherent, in

the sense that it remains effective for not only the basis modes
but also general superpositions. Progress has been made towards
applying the quantum pulse gate to photonic state characteriza-
tion and manipulation, but it remains an active field of research.

Using the configuration of Ref. [99] with input from a spec-
trally pure PDC source, it was confirmed that the QPG output
maintains nonclassical photon number correlations (i.e., the her-
alded g�2� of both the input and register modes was measured to
be 0.32� 0.01 < 1) [164]. By shaping the QPG pump over a
tomographically complete set of TMs, this setup has been used
to reconstruct the one-qudit TM density matrix of PDC photons
varied from single- to multimode configurations, with both inten-
sity- and phase-correlated multimode structure [105]. However,
worse performance was noted for higher-dimensional reconstruc-
tions. The device’s performance was fully characterized through
temporal-mode detector tomography [165], which showed that
a system based on a 17-mm PPLN waveguide could reconstruct
the TM density matrix in seven dimensions with a fidelity higher
than 80%. By calibrating the QPG with this detector tomogra-
phy, the reconstruction algorithm could be altered to reconstruct
randomly generated seven-dimensional coherent superpositions
of temporal modes with a fidelity of �98.8� 0.4�%. These
experiments are, to date, the only dispersion-engineered TM
measurements performed with a quantum light source rather than
attenuated coherent light.

In a continuous-variable context, where quantum information
is encoded in field quadratures rather than superpositions of
discrete qudit states, temporal modes still serve an important
purpose in SPOPOs. However, for these to work, continuous-
variable operations must operate in a mode-selective fashion.
Treps’s group showed that QPG techniques can work as a
mode-selective photon subtractor, a key non-Gaussian compo-
nent of the continuous-variable toolkit [166–168]. Since the
SPOPO emits squeezed light over many temporal modes, a
mode-selective beam splitter is necessary to ensure that the her-
alded photon subtraction is matched to the desired temporal
mode. Using a noncollinear frequency-degenerate phase matching
in bulk bismuth borate (BiBO) supplemented with spectral filter-
ing and shaped weak coherent states (n̄ < 1), Ra et al. were able to
reconstruct the temporal-mode subtraction matrix in both the
spectral bin and Hermite–Gauss basis [168], which characterizes
the modal purity of the subtraction process. For a seven-
dimensional HG superposition, the subtraction matrix was found
to have a purity of 96% regardless of whether the signal was bright
or on the single-photon level. Since the photon-subtraction
method requires weak coupling in order to minimally disturb
the quantum state, a QPG with a low efficiency (0.1%) was used,
equivalent to a low-reflectivity beam splitter [166].

7. OUTLOOK AND CHALLENGES

We have shown that dispersion-engineered waveguides provide a
capable toolbox for generating and measuring photon temporal
modes. By constructing photon-pair sources simultaneously pure
in both spatial and temporal degrees of freedom as shown in
Section 3, it is possible to efficiently create pure heralded single
photons, capable of providing the high-visibility quantum inter-
ference necessary for multiphoton quantum logic. By exploiting
the group-velocity matching of these systems, it was also shown
that the temporal shape and entangled structure of the temporal
modes can be customized, providing a versatile resource for
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quantum state engineering. In Section 4, it was shown that these
same engineered techniques can be applied to sum-frequency gen-
eration, providing the necessary tools to manipulate and measure
this structure. In Sections 5 and 6, we outlined the considerable
experimental progress that has been made towards realizing this
toolbox.

Many challenges remain to push toward practical application.
Temporal-mode-selective devices have been demonstrated in the
sub-picosecond or few-picosecond regime, where commercially
available pulse shapers exist. Such time scales are natural
for PDC processes, but come with difficult synchronization
challenges for long-distance quantum communication or entan-
glement distribution. Moving to longer, less jitter-sensitive
regimes through memory-based interfaces or resonant cavities
[169] relaxes this concern, but increases the burden of pulse shap-
ing. Four-wave mixing techniques have more complicated noise
landscapes for quantum tasks, but offer considerably longer inter-
action lengths and are currently understudied for temporal-mode
management. In all cases, for high-dimensional tasks, devices that
isolate a single temporal mode are difficult to scale, requiring
multiple shaped pulses and physical media to construct a
multi-output measure. Techniques that demultiplex a set of
pulsed temporal modes into spatial or spectral bins, equivalent
to the orbital angular momentum mode sorter in space [170], are
essential to scale these techniques to high-dimensional networks.
A promising avenue for these temporal-mode demultiplexers is
through multi-peak phase-matching structures [171,172].

By accessing the temporal mode structure of quantum light,
we can open a new frontier in photonic quantum information
science. By tailoring PDC sources to directly generate pure pho-
ton pairs, an important step towards scalable quantum networks
has been taken. With measurements sensitive to the time-
frequency structure in arbitrary phase-dependent bases, quantum
pulse gates may open the door to novel ultrafast measurement
schemes. We have outlined some of the significant advances that
have been made in the past 10 years from numerous researchers
across the globe. With an active and engaged community, we
eagerly anticipate the next 10 years.
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