
Self-Tuning Job Scheduling Strategies

for the Resource Management of

HPC Systems and Computational Grids

Dissertation

von

Achim Streit

Schriftliche Arbeit zur Erlangung des Grades

eines Doktors der Naturwissenschaften

Fakultät für Elektrotechnik, Informatik und Mathematik

der Universität Paderborn

Paderborn, Oktober 2003

ii

Acknowledgment

Research is not a one-man show, many individuals have contributed to the work presented
in this thesis. At first, I would like to thank my supervisor Prof. Dr. Burkhard Monien
for his continuous support throughout the past four years. Secondly, I would like to thank
Prof. Dr. Uwe Schwiegelshohn from the Computer Engineering Institute, Dortmund, for giving
me much advice, answering my questions, and also asking the right questions at the right time.
Additionally, I have to thank Prof. Dr. Odej Kao for allowing me to write this thesis down in
the recent months and for taking off as much workload as possible from me.

A big thank-you goes to my former colleague Dr. Jörn Gehring, whom I owe a lot. Jörn
put me on the right track and showed me how research is done successfully.

I would also like to thank my colleagues Carsten Ernemann, Volker Hamscher, and Dr. Ramin
Yahyapour from the Computer Engineering Institute of Prof. Schwiegelshohn. The part on
grid scheduling in this thesis would not be possible without them. During long telephone
discussions, fruitful work was done and nice papers were written and published.

Finally, I would like to thank all members of the PC2 and the research group of Prof. Monien
for providing a nice place to work. In particular, I have to thank Sven Grothklags, Jan
Hungershöfer, Axel Keller, and Jens-Michael Wierum, who had to answer many questions,
with whom I had fruitful discussions, and who had to get along with me - I know that’s not
easy.

iv

Abstract

In this thesis we develop and study self-tuning job schedulers for resource management sys-
tems. Such schedulers search for the best solution among the available scheduling alternatives
in order to improve the performance of static schedulers. In two domains of real world job
scheduling this concept is implemented. First of all, we study the scheduling in resource
management software for high performance computing (HPC) systems. Typically, a single
scheduling policy like first come first serve is used, although the characteristics of the submit-
ted jobs permanently change. Using a single scheduling policy might induce a performance
loss, as other policies might be more suitable for specific job characteristics. We develop a
self-tuning scheduler, which automatically checks all implemented policies and switches to
the best one. This improves the performance, in terms of increased utilization and decreased
waiting time.

Secondly, we develop and study an adaptive scheduler for computational grid environments.
In such grids, several geographically distributed HPC machines are joined in order to increase
the amount of computational power. Grid jobs might be scheduled across multiple machines,
so that the communication among the job parts involves slow wide area networks. This
often induces an additional communication overhead, which has to be considered by the grid
scheduler. Our adaptive grid scheduler considers the slower communication over wide area
networks by extending the execution time of such multi-site jobs. The developed adaptive
multi-site grid scheduler automatically checks, which of the two options is more beneficial:
waiting for enough resources at a single site, or using multiple sites and the slower wide area
network immediately.

In both cases we use discrete event simulations for evaluating the performance of the devel-
oped schedulers. The results for the self-tuning scheduler show, that an increased utilization
of the system and a decreased waiting time for the jobs are possible. We think, that such
self-tuning schedulers should be used in modern resource management systems for HPC ma-
chines. The evaluation of the grid scheduler shows, that in general a combination of many
small machines and multi-site scheduling can not perform as well as a single large machine
with the same amount of resource. However, the adaptive multi-site scheduler decreases the
performance difference significantly. We think that the participation in computational grid
environments is beneficial, as larger problems requiring more computational power can be
solved.

v

vi

Contents

1 Introduction 1

2 Related Work 5
2.1 Parallel Job Scheduling . 5
2.2 Analytical Results . 15
2.3 Workload Characterization . 17
2.4 Self-Tuning and Dynamic Policy Switching 20
2.5 Scheduling in Meta- and Grid-Computing Environments 22

3 Job Scheduling and Evaluation Methodologies 27
3.1 Classification of Resource Management Systems 27

3.1.1 Queuing Systems . 28
3.1.2 Planning Systems . 29

3.2 Scheduling Policies . 30
3.3 Backfilling . 32
3.4 Performance Metrics . 36
3.5 Workloads . 41
3.6 Analysis of Traces . 46
3.7 Increasing the Workload . 52
3.8 Simulation Environment . 54
3.9 Summary . 56

4 Dynamic Policy Switching 59
4.1 History of Development . 60
4.2 Use of Bounds . 62
4.3 Concept of Self-Tuning . 63
4.4 Decider Mechanisms . 64
4.5 Options for the Self-Tuning dynP Scheduler 66
4.6 Optimal Schedules with CPLEX . 67

4.6.1 Modelling the Scheduling Problem . 67
4.6.2 Results . 70

5 Evaluation of the dynP Scheduler 73
5.1 Results Based on Original Traces . 73

5.1.1 Basic Policies . 74
5.1.2 Advanced vs. Simple Decider and Half vs. Full Self-Tuning 76
5.1.3 Comparing Self-Tuning Metrics . 79
5.1.4 Preferred Decider . 81
5.1.5 Slackness . 83

5.2 Results Based on Increased Workload . 85

vii

Contents

5.2.1 Basic Policies . 86
5.2.2 Self-Tuning dynP Scheduler . 90

5.3 Summary . 95

6 Job Scheduling in Grid Environments 97
6.1 Site Model . 99
6.2 Machine Model . 99
6.3 Job Model . 99
6.4 Scheduling System . 100
6.5 Scenarios . 101

6.5.1 Local Job Processing . 101
6.5.2 Job Sharing . 101
6.5.3 Multi-Site Job Execution . 102

7 Evaluation of Multi-Site Grid Scheduling 105
7.1 Machine Configurations . 105
7.2 Workloads . 105
7.3 Results . 107

7.3.1 Machine Configurations . 107
7.3.2 Job Sharing and Multi-Site Scheduling 115
7.3.3 Constraints for Multi-Site Scheduling 119

7.4 Summary . 126

8 Conclusion 129

A Detailed Results 133
A.1 Original Traces . 133

A.1.1 Basic Policies . 133
A.1.2 Self-Tuning dynP Scheduler . 137

A.2 Increased Workload . 140
A.2.1 Basic Policies . 140
A.2.2 Self-Tuning dynP Scheduler . 143

Bibliography 151

viii

1 Introduction

Modern high performance computing (HPC) machines are becoming increasingly faster in
compute and interconnect speeds, memory bandwidth, and local file I/O [62]. An efficient
usage of the machines is important for users and owners, as such systems are rare and high in
cost. Resource management systems for modern HPC machines consist of many components
which are all vital in keeping the systems fully operational. The user interface allows the users
to submit and cancel jobs. Information about the system status and submitted or executing
jobs can also be obtained. The scheduler assigns resources to jobs according to the active
scheduling policy. The information service stores data concerning the number of resources
that are generally available and of which type they are. Furthermore, data about the current
state and the current load is provided. Policies are defined in the security service, which in
turn regulate who is authorized to execute jobs and whether the resource usage is restricted
or not. The monitoring and watch dog component regularly checks if all components of the
resource management system are fully operational.

With regards to performance aspects, all components of the resource management system
should perform their assigned tasks efficient and fast, so that no additional overhead is in-
duced. Different objectives exist and acceptability, usability, reliability, security, robustness
are only some to mention. If performance metrics like throughput, utilization, wait and re-
sponse times are addressed, the scheduler plays a major role. A clever scheduling strategy is
essential for a high utilization of the machine and short response times for the jobs. However,
these two objectives are contradicting. Jobs tend to have to wait for execution on a highly
utilized system with space sharing. Short or even no waiting times are only achievable with
low utilizations. Typically a scheduling policy that optimizes the utilization prefers those
jobs, which in turn need many resources for a long time. Jobs requesting few resources for
a short amount of time may have to wait longer until adequate resources are available. If
such small and short jobs are preferred by the scheduler, the average waiting time would be
reduced. As jobs typically have different sizes and lengths, fragmentation of the schedule
occurs and the utilization drops [16]. The task of the scheduler is to find a good compromise
between optimizing these two contrary metrics.

Due to being rare, HPC systems usually have a large user community with different resource
requirements and general job characteristics. For example, some users primarily submit par-
allel and long running jobs, while other users submit hundreds of short and sequential jobs
[93, 41]. Furthermore, the arrival patterns vary between specific user groups. Hundreds of
jobs for a parameter study might be submitted in one go via a script. Other users might
only submit their massively parallel jobs one after the other. The arrival distances might be
large, as e. g. the previous run has to be evaluated before new parameters are generated. In
addition, the submission behavior also varies over a longer time span, as e. g. conference or
project deadlines and holidays are reflected.

All this results in a non-uniform workload and job characteristics that permanently change
[24]. Hence, using only a single, pre-defined scheduling strategy can result in a loss of perfor-
mance, i. e. more resources remain idle and jobs have to wait longer than necessary.

1

1 Introduction

Overview

Modern resource management systems for single HPC machines usually have several schedul-
ing policies implemented [69, 56, 5]. Most commonly used is first come first serve (FCFS)
with backfilling [55, 82, 64], as on average a good utilization of the system and good response
times of the jobs are achieved. However, with certain job characteristics other scheduling
policies might be superior to FCFS. For example, for mostly long running jobs, longest job
first (LJF) is beneficial, while shortest job first (SJF) is used with mostly short jobs [16].
Many resource management systems allow to change the active scheduling policy, but this
has to be done manually by the system administrators [61, 5].

We group modern resource management systems into two classes, queuing and planning
systems. The major difference between the two classes is the scheduled time frame. Queuing
systems schedule only the present, while planning systems schedule the present and future.
As soon as a new job is submitted, the scheduler of a planning system places the job in the
schedule and assigns a potential start time. With this scheduling approach, a so called ”full
schedule” is generated, which contains preliminary start and end times of all currently waiting
jobs.

We present the self-tuning dynP scheduler, which dynamically switches the active policy of
the resource management system according to the characteristics of the currently waiting jobs.
As we assume a planning system, the self-tuning dynP scheduler computes full schedules for
every available policy, rates the schedules with means of a performance metrics, and switches
to the best policy. We develop and compare decider mechanisms, which are fair and unfair
in terms of policy usage. Different enhancements for the self-tuning dynP scheduler are also
presented and studied. Similar work on schedulers with dynamic policy switching is presented
in [73] and in [23] a self-tuning system is presented which uses genetic algorithms to generate
new parameter settings for a scheduling system. While computing full schedules for every
policy, the self-tuning dynP scheduler does a quasi off-line scheduling. Following [92], we
model the scheduling problem as an integer problem. This is solved with the well-known
CPLEX library [45]. With this approach we check how much performance is lost when using
common scheduling strategies. Optimal schedules are not computed by CPLEX, as we have
to apply time-scaling in order to reduce the number of variables of the integer problem and
to make it computable.

Similar to single HPC machines, resource management functionalities are also required
in grid computing environments, where several HPC machines are joined [30]. The grid
middleware is responsible for providing a transparent access to these resources. All previously
mentioned aspects and conclusions about resource management systems for a single HPC
machine are also applicable to the grid middleware. An additional level of sophistication
is added to the scheduling process, as typically each site works autonomously with its own
restrictions, policies, and resource management system [65]. A grid scheduler has to find
available and appropriate machines for a job and then decides on which of the machines
the job is started. Jobs might also be started on multiple machines, which are typically
geographically distributed. If the different parts of such a multi-site job communicate with
each other, wide area network (WAN) links are involved. Compared to an interconnect inside
of a single HPC machine, the bandwidth of WAN connections is typically low and the latency
high. In order to reflect the communication overhead of the involved WAN connections, we
increase the execution time of multi-site grid jobs. If not enough resource are available to
place a job on a single machine immediately, our multi-site scheduler decides, whether the

2

job waits until enough resources are available at a single site, or the job is started on multiple
sites immediately and the jobs execution time is increased. In both cases, the response time of
the job is increased. The adaptive multi-site grid scheduler decides which of the two options
is more beneficial (wait or distribute). The alternative with the shortest response time is
chosen.

Like the previously mentioned self-tuning scheduler for single HPC machines, this adaptive
multi-site grid scheduler is autonomous, too. Both schedulers check various scheduling alter-
natives on their own and automatically choose that alternative, which promises to generate
the best performance.

Document Structure

This thesis is subdivided into eight chapters. Related Work is found in Chapter 2 in order to
give the reader the opportunity to range this work in the broad spectrum of research on job
scheduling. In Chapter 3 general aspects are described, common terminologies are introduced,
and definitions are made, which are used in the remainder of this thesis.

In Chapter 4 the basic concept of dynamically switching the scheduling policy is described.
We begin with a history of development and the description of the initial version that uses
two bounds for deciding when the scheduling policy is switched. Following that, the self-
tuning version of the dynP scheduler with all its decider mechanisms and general options is
described. To conclude this chapter we present an approach for computing optimal schedules.
The scheduling problem is modelled as an integer problem, which is then solved by the CPLEX
library. Chapter 5 contains the evaluation with original traces and synthetic job sets with
increased workloads. The evaluation of the self-tuning dynP scheduler contains studies about
different decider mechanisms, their switching behavior, and several options for the decision
process of the self-tuning dynP scheduler.

Chapter 6 focuses on job scheduling in grid environments. We describe how we model the
grid environment and we define three scenarios for the scheduling. Of special interest is the
multi-site scenario, which allows the execution of a grid job across multiple sites. Therefore,
the evaluation in Chapter 7 concentrates on the multi-site scenario. To begin with, we study
the effects of different machine configurations on the grid scheduling. Secondly, a comparison
of job sharing and multi-site is made. The chapter ends with an evaluation of constraints for
multi-site scheduling. The adaptive version of the multi-site grid scheduler is similar to the
self-tuning dynP scheduler, as it also searches for the best solution to start jobs.

A brief conclusion closes this thesis. At the end an outlook and some ideas, on the effects
of scheduling with advanced reservations, are given.

Publications

Many parts of this work have been published on workshops and conferences. The classifica-
tion of resource management systems in Section 3.1 has been presented on the 9th Workshop
on Job Scheduling Strategies for Parallel Processing (JSSPP 2003) [42]. The work in Chapter
4 and 5 on the self-tuning dynP scheduler has been published in the proceedings of the 8th
International Conference on High Performance Computing (HiPC 2001) [85], in the proceed-
ings of the 11th International Heterogeneous Computing Workshop (HCW) at IPDPS 2002
[87], and in the proceedings of the 8th Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP 2002) [86].

3

1 Introduction

The work on scheduling in grid environments from Chapters 6 and 7 is a joined work with
Carsten Ernemann, Volker Hamscher, and Ramin Yahyapour. It has been published in the
proceedings of the 1st IEEE/ACM International Workshop on Grid Computing (Grid 2000)
[40], in the proceedings of the International Conference on Architecture of Computing Systems
(ARCS 2002) [15], in the proceedings of the 2nd IEEE International Symposium on Cluster
Computing and the Grid (CC-GRID 2002) [13], and in the proceedings of the 3rd IEEE/ACM
International Workshop on Grid Computing (Grid 2002) at Supercomputing 2002 [14].

Not mentioned in this thesis are the early experiences of the EGrid Testbed Working Group
of the former European Grid Forum, which was joined with the Global Grid Forum [35] in
2000. These experiences are published in the proceedings of the 1st IEEE/ACM International
Symposium on Cluster Computing and the Grid (CC-GRID 2001) [12]. This paper is different,
as all 31 people involved in the work of the EGrid Testbed Working Group are listed as authors
of the paper. So writing the paper was more an organizational issue.

4

2 Related Work

Scheduling in a uniprocessor system is about making the decision, which application or thread
runs on the single processor? In a multiprocessor system a second dimension is added, as
more than one processor exists. The question is not only about when a job should run but also
where, i. e. on which processors? Thus, jobs are competing for resources in time and space.
Such a multi processor system scheduler assigns sets of resources to parallel applications.
Scheduling is also required on a lower level by assigning threads of parallel applications to
processing elements. This is either done by the resource management system, by the language
run time system, or within the application itself. This work focuses on scheduling in the
resource management system at the higher level, i. e. which resources a job gets assigned to
and when?

In the following sections several papers and other publications which deal with various
subjects of parallel job scheduling for HPC computers are presented. Section 2.1 covers
general aspects about parallel job scheduling and it also contains definitions of common
terminologies. Some analytical results are presented in Section 2.2. In Section 2.3 work
on characterizing supercomputer workloads is presented. Related work for self-tuning and
dynamic policy switching is presented in Section 2.4. Finally, Section 2.5 is about the related
work for the area of scheduling in meta and grid computing environments.

2.1 Parallel Job Scheduling

In 1995 Feitelson and Rudolph presented an introductory paper [25] on the 1st Workshop on
Job Scheduling Strategies for Parallel Processing [48]. The paper gives an overview on issues
and approaches for parallel job scheduling. The authors state, that parallel computers are
more difficult to use than single processor machines mainly because a different programming
model has to be used. Additionally, more users (respectively their jobs) than resources exist
on such machines, so jobs compete with each other. Nonetheless, users are willing to use
parallel machines, because they come with major benefits:

• Applications that run on a parallel system potentially finish in a shorter period of time.

• The problem that needs to be solved may be more complex, but it is still computed in
the same time.

• The problem may be solved more precisely.

Therefore, many people are using parallel machines and a wide range of applications are
executed on these systems. Obviously the resource requirements differ from one user (or
application) to the other. Some users need large batch jobs, i. e. many processors for a long
run time. Others work interactively most of the time and they probably only need a single
processor for a short amount of time (e. g. for developing a new application). In this case, job

5

2 Related Work

scheduling and resource management becomes an even more critical issue, as nobody wants
to wait half a day for a job that runs for just 10 minutes.

The authors state, that job scheduling means many different things to many different people.
For example, for people from parallel programming languages, parallel computer architectures
and parallel operating systems an ideal scheduling strategy does not exist. Furthermore, the
problem is getting harder with the large set of diverse goals: should the scheduler try to gen-
erate short response times for individual jobs or a high overall system utilization? It is also
hard to compare schedulers in commercial products that process real workloads with sched-
ulers that are developed in academic research and are usually tested with synthetic workloads.

In [25] four classes (or levels) of scheduling are defined:

1. Static scheduling is often used for understanding the theoretical limitations of schedul-
ing. It is made under the assumption that a close to complete knowledge of the compu-
tation is available. An application is modelled as a DAG (directed acyclic graph) where
nodes represent tasks and direct edges describe dependencies between two tasks. The
task at the origin of a direct edge has to be completed before the task at the end is
executed. Furthermore, nodes and direct edges have weights which reflect the amount
of computation of a task and the amount of communication or transferred data between
two tasks. Many parallel programming styles like functional programming, dataflow,
or other side-effect free programming models are similar to the described DAG model.
Hence, in the past many heuristics have been developed for approximating good sched-
ules. Unfortunately, many heuristics are not applicable for programming models that
use other representations.

2. Scheduling in the run time system has the benefit that the user does not see the de-
tails of how the program is mapped on the machine. The run time system accomplishes
this. One common approach is to use a thread library where the run time environ-
ment implements the functionality for creating, synchronizing, and killing threads. The
application simply calls these functions. Another approach is to use parallelizing com-
pilers, that unroll loops and parallelize them. Common to both approaches is, that the
programmer does not have to deal with details of how this is done at the machine level.

3. Scheduling in the resource management system is induced by balancing the in-
dividual needs of every user when multiple programs co-exist in the same system. The
applied mechanisms and considerations are similar to scheduling at the run time or
application level, so that it is not quite clear who is in charge of the problem: the run
time or resource management system. Hence, the spectrum of opinions range from: all
scheduling has to be done on the application level, which leaves out the resource man-
agement scheduler, to where the resource management system should do all the work.
Nevertheless, as parallel systems become more and more popular resource management
at this system level is needed.

4. Administrative scheduling makes scheduling decisions on the administrative and
political level. For example, the head of the computing center allows a certain project
to use the whole machine for the next month or specific job types (short massively
parallel jobs or long jobs of less parallelism) are preferred by assigning higher priorities.
The authors of [25] state, that unfortunately no research has been done on this level of
scheduling so far, although it effects many users significantly.

6

2.1 Parallel Job Scheduling

In the following scheduling on the level of the resource management system is addressed.
A resource management scheduler has to decide when a parallel job is started and which
resources are assigned to the job. Therefore, the main issue is how to share the available
resources among the competing jobs, so that each job gets the requested level of service. Two
sharing schemes exist:

In time-sharing (or time-slicing) several jobs share the same resource and are executed
quasi-simultaneously. Resources are not exclusively assigned to a specific job. The resource
usage of jobs is reduced to short time slices. Each job gets the resource assigned in a round-
robin fashion. Jobs need more than a single time slice to be completed, as a time slice
is typically very short, e. g. only some clock ticks of the processor. As a result new jobs
are started immediately without waiting time, but their execution takes longer than with a
dedicated resource. Shared memory machines are often operated in time-sharing mode.

On the other hand in space-sharing (or space-slicing) resources are exclusively assigned to
a job until it is completed. As the amount of resources are limited, jobs may have to wait for
enough free resources until they can get started. Of course, a combination of space- and time-
sharing is also thinkable. Space-sharing is not useful, e. g. if the network is not partitionable
or an application needs the full parallelism of the machine. Similarly, if it is not possible to
switch protection domains of an application or if paging in and out large amounts of main
memory takes too much time, time-sharing is not suitable.

Both sharing schemes are orthogonal to each other and a combination of these might be
useful. Several examples are found in [16] and the four most popular approaches are:

1. Global queue: Threads of a parallel job that are ready to run are placed in a global
queue. An idle processor picks the first thread of the global queue, executes it for a
certain time quantum and then puts it back into the queue. This approach is commonly
used in bus-based shared memory processor systems. The main advantage is automatic
load sharing, but this comes with several drawbacks. Threads are typically executed
on different processors, so that caches are wiped out with each re-scheduling. This
is prevented when the scheduler tries to reschedule threads on the same processor as
before (affinity scheduling). Furthermore, the global queue approach induces problems
if the threads of an application interact and synchronize with each other, as the threads
are most likely scheduled in an uncoordinated manner. An interesting fact about the
global queue approach is, that the service a job receives is proportional to the number
of threads it spawns. Large jobs (many threads) that require more computational time
more often get the necessary resources.

2. Variable partitioning: All available processors are partitioned in disjointed sets.
Each job is executed in a distinct partition. If the partitioning is fixed, the size of each
partition is set in advance by the administrative staff. Re-partitioning requires a re-boot
of the machine. It is possible to split a large partition in several smaller ones to allow
small jobs to be executed in parallel. If the current system load is taken into account
and the size of each partition is automatically set by the system, adaptive partitioning is
done. Variable partitioning is common on distributed memory machines, like the IBM
SP2 or clusters. It places the needs of individual jobs over that of the system and has
many more advantages: e.g. no cache interference, no operating system overheads, and
depending on the network topology there might also be no network interference. For
example, in a hyper-cube each sub-cube uses a disjointed set of links. However, in a
multistage network some links may be shared by different partitions. Of course, variable

7

2 Related Work

partitioning has some disadvantages as fragmentation may occur, if the number of free
processors is insufficient in satisfying the needs of waiting jobs. Hence, jobs may wait
for a long time until the requested resources are available.

3. Dynamic partitioning with two-level scheduling: Changes in the partitioning
during the execution is provided by dynamic partitioning. However, applications have
to support this and the used programming model has to express changes in requirements
(more or less resources) but should also handle system induced changes. One approach
in establishing this, is by using a work-pile model which de-couples the computational
task from the workers that perform the computation. It is easily possible to adjust the
number of workers. Two levels of scheduling are done, as the operating system deals with
the allocation of processors to a job and its application, while the application assigns
chunks of work to the processors and workers respectively. Dynamic partitioning has
several advantages: no loss of resources due to fragmentation, no overhead from context
switching (except from the re-distribution of processors when the load changes), no
waste of CPU cycles on busy waiting for synchronization, and the degree of parallelism
for each application is automatically decreased under heavy load conditions.
Interaction between the application scheduler and the resource management scheduler is
needed. For example, if a vital processor is taken from the application, the application
may stay in a locked state. Consequently, the operating system and programming model
have to be designed together, which limits the portability of applications.

4. Gang scheduling: The benefits of space- and time-sharing are combined, as context
switching is done coordinately across all processors of a job. All threads of a job are ex-
ecuted synchronously, so that fine grained interaction is possible. Additionally, threads
are usually bound to a specific processor which allows the use of local memory and to
benefit from a sustained cache state. Gang scheduling works with every programming
model, but also comes with some drawbacks: the overall system performance is not
always optimal, although it favors individual jobs. Cache interference, overhead from
context switching, processor fragmentation and draining of network links might occur.
The hardware requirements during context switching are high, considering the main
memory.

Variable and dynamic partitioning are based on the space-sharing approach. Time-sharing
concepts are used for the other two approaches.

In a paper on theory and practice in parallel job scheduling [28] Feitelson, Rudolph, Schwie-
gelshohn, Sevcik, and Wong describe the way in which massively parallel processors (MPP)
systems with distributed memory are typically operated:

• The system is divided in partitions that are assigned for the processing of parallel jobs,
doing interactive work in time-slicing mode, or handling service tasks like file I/O.
The partitioning of the system can be changed manually in order to ,e.g., assign more
processors to the batch partition during the night.

• Several job queues that reflect various job characteristics (e. g. a queue for heavily par-
allel but short running jobs and another for sequential long running jobs) and priorities
(e. g. high priority, best effort) are defined. Within a queue, jobs are usually sorted in
first come first serve order.

8

2.1 Parallel Job Scheduling

• An assignment between a partition and one or more job queues is done, so that the
processors in a partition serve as a pool for the assigned queues. If processors are free,
non empty queues are searched according to their priority for jobs to start. Once a job
is started with the requested number of processors, it runs until completion.

The authors state, that many different models are used to describe the scheduler and
the system. Usually, the constraints of these models directly affect the performance of the
scheduler. Some of these constraints are inspired by real systems and by the way these are
managed. The authors characterize the models according to the five criteria:

1. Partitioning of the system: Every job is executed in a partition of the system.
Partitions are:

• fixed, if the size is defined by the administrative staff and can only be modified
when the machine is rebooted.

• variable, if it is sized according to the user request at the submission of the job.

• adaptive, if the scheduler determines the size at job start and takes the user request
into account.

• dynamic, if the size of the partition changes during the run time of the job, de-
pending on the system load and different requirements.

Table 2.1 is taken from [16] and shows a comprehensive overview on the four types
of partitioning. Most common is variable partitioning, as the parallelism is hardcoded
(which is simpler than expressing the parallelism e. g. a parameter and speedup function)
and the requests are matched. On the other hand, adaptive and especially dynamic
partitioning have to be supported by the submitted jobs. This requires more effort by
the programmer and is therefore less common.

2. Job flexibility: According to the partitioning of the system, jobs are:

• rigid, if the number of assigned resources is not specified by the scheduler. The
scheduler has to assign the number of resources requested by the users at job
submission and can not change it during the execution of the job. A typical rigid
job will not execute with fewer resources and will not make use of more resources.

• moldable, if the scheduler determines the number of resources assigned to a job
when it is started. Moldable jobs usually work with a wide range of resources, but
also have a minimum number of resources to use. Additional resources improve
the performance, possibly up to a saturation point. The decision of the scheduler
on how many resources are actually assigned to the job is influenced by the job
properties, system load and other constraints. However, the number of assigned
resources is not changed throughout the run time of the job.

• evolving, if different phases of parallelism occur naturally in the application, so
that the number of required resources changes during the run time. The job
itself decides if more resources are needed or unused resources are returned to the
resource management system. The system must satisfy the requests of the job,
because otherwise the job will not continue with its execution.

9

2 Related Work

operating sys-
tem

application run
time

advantages disadvantages

fixed predefined parti-
tions

parallelism is
hardcoded or
specified by a
parameter

simple, preserves
locality

internal fragmen-
tation, limited
multiprogram-
ming, arbitrary
queuing

variable allocation accord-
ing to request
(possibly rounded
up)

hardcoded paral-
lelism

matches requests,
preserves locality

external (and
possibly internal)
fragmentation,
arbitrary queuing

adaptive allocation subject
to load when
launched

parallelism is a
parameter

preserves local-
ity, adapts to
load, improved
efficiency

external frag-
mentation, some
queuing

dynamic allocation
changes at run
time to reflect
changes in load
and requirements

express changes
in potential
parallelism and
adapt to changes
in available
parallelism

no fragmenta-
tion, queuing
only under high
load, adapts to
load, improved
efficiency

does not pre-
serve locality,
partitions are
not independent,
restrictions on
programming
model

Table 2.1: Four types of partitioning [16].

• malleable, if the number of resources assigned to the job can be changed by the
system. The scheduler decides if the job has to release resources or if additional
ones are assigned. The job has no influence on this decision.

The difference between evolving and malleable jobs is who decides on changing the
number of assigned resources. However, evolving and malleable jobs should usually go
together. With increased flexibility the scheduler has more opportunities to schedule
the job. In general, a job is more likely to be started earlier if it is moldable or even
malleable rather than being rigid. Nevertheless, the task of implementing a job of
increased flexibility requires a lot of effort. Hence, only stable and frequently used
applications should be modified to be malleable. Evolving jobs usually have system
calls integrated, which indicate when more or less resources are needed. Table 2.2
summarizes the classification of job flexibility.

when is it decided?
at submission during execution

who user rigid evolving
decides? system moldable malleable

Table 2.2: The four types of jobs based on specifying the number of resources [26].

3. Level of preemption supported: During their run time jobs or single threads may
be preempted and potentially relocated in order to decrease resource fragmentation or
to increase response time of short running jobs:

10

2.1 Parallel Job Scheduling

• no preemption: once a job is started it continuously runs to completion on the
same set of resources.

• local preemption: single threads of a parallel job may be preempted, but they are
later restarted on the same processor. With that no migration and data movement
is required.

• migratable preemption: additionally, single threads of a parallel job may also be
resumed on a different processor than they were preempted. Obviously migration
and data movement mechanisms are needed.

• gang scheduling: all active threads of a parallel job are suspended and resumed
simultaneously (with or without migration).

For real systems preempting a parallel job means, that all threads are stopped in a con-
sistent state, no messages are lost and the state of each job is preserved [28]. Whether
the data of the job is removed from memory or not, depends on the memory require-
ments and the amount of available memory. If single threads are moved from one
processor to another, communication paths have to be changed and thread data has to
be moved. Especially in shared memory systems, the last point is easier to establish
than in distributed memory systems.

4. Amount of job and workload knowledge available to the scheduler and used by
it:

• none: all jobs are treated the same upon submission.
• workload: the overall distribution of run time is known for the whole workload.

Information about individual jobs is not available. All jobs are treated the same,
but scheduler parameters can be changed to match the workload.

• class: each submitted job belongs to a class. Key characteristics (estimates about
the processing environment, maximum parallelism, average parallelism, and possi-
bly more detailed speedup characteristics) for each class are known.

• job: the exact run time of the job is known for any given number of processors.

In practice complete job knowledge is unrealistic [28]. Any information provided by
users has to be treated carefully as the accuracy of this information is probably wrong.
And users may also deceive the scheduler intentionally. User information is historically
unreliable and users are not careful about making good estimates. The scheduler may
either measure the efficiency during the run time and assign more processors only to
those jobs which use their assigned resources efficiently. Or the scheduler may store
past data about run times and speedups and use it for future executions.

5. Memory allocation is usually critical for high performance applications:

• distributed memory: the system consists of many nodes, each having one or more
processors and associated memory. Message passing is used for communication
and data access in remote memory.

• shared memory: the cost for accessing memory is either uniform (UMA) or nonuni-
form (NUMA). With UMA, the allocation of memory resources is more equitable,
whereas in NUMA architectures the performance depends on the allocation of a
job to processors and its data to memory.

11

2 Related Work

The authors of [28] state, that shared memory systems are usually more difficult and
thereby more expensive to implement. Nevertheless, such systems are very popular as
programming shared memory applications is quite easy. On the other hand, distributed
memory systems are more easy to realize because standard hardware is used for nodes
and they are connected with a standard network. However, the task of implementing
distributed memory applications is more difficult. Message passing libraries like MPI
or PVM are used to communicate with other threads of the same parallel job that run
on a different node.

With the above definitions the model applied in this work uses variable partitioning, the jobs
are rigid, no preemption is possible, no job or workload knowledge exist and the memory
allocation is distributed.

According to [27] today’s resource management systems are queuing systems as jobs arrive,
potentially waiting for a specific time, then receiving the requested service and finally leaving
the system again. Such systems are either on-line or off-line, with the on-line systems being
further distinguished in open and closed systems (cf. Figure 2.1).

off-line closed on-line open on-line

Figure 2.1: Three types of queuing systems.

In an off-line scenario all jobs are known at the beginning and their resource requirements,
too. No further jobs arrive later while the system is running. With that, an optimal planning
of all jobs is possible because the situation does not change. An off-line scenario is often
used for space-sharing or batch job schedulers and their performance is often predicted by
analytical methods.

In an on-line scenario jobs arrive all the time. The scheduler has to process new jobs
without the benefit of knowing about future job arrivals. Therefore, planning is only possible
for the current situation. Presumably the next submitted job makes it necessary to change
the current plan and a new solution is required. Hence, computing a new solution has to
be fast, but most often this is critical. In closed on-line systems it is assumed that the set
of jobs is fixed. That is, arrivals of new jobs depend on terminations of previous jobs. The
most realistic model is open on-line, where an endless stream of jobs arrive and departing
jobs have no influence on new jobs. This model is more complex than the other two, as the
arrival process also needs to be specified. Additionally, an open on-line scheduler must be
able to deal with extreme situations, e. g. temporary high workloads. Hence, it is interesting
to evaluate when a scheduler breaks down and the incoming load is no longer handled. The
system becomes saturated, as an increased workload does not result in a higher utilization,
but the quality of the provided service (e. g. average response time) drops significantly. We
use the open on-line model in this work, as in real world scenarios for scheduling HPC systems
and grid environments, jobs arrive over a period of time, i. e. all job properties are not known
from the beginning, and newly submitted jobs do not depend on recently finished jobs.

In an open on-line scenario users typically react on the schedulers performance (e. g. the
response time). If the response time is small, more jobs are submitted and the load increases

12

2.1 Parallel Job Scheduling

(i. e. load is a function of response time). At a certain level the load becomes too high and the
scheduler can no longer provide a good service. From there on, response time is a function of
the load. With this, a stable state exists [27]. It requires a suitable amount of users that are
potentially willing to submit many jobs.

Each of the three models has its own performance metrics of choice. The response time is
probably the most important metrics for interactive jobs, whilst the utilization is more suited
for batch jobs. In an open on-line system the utilization depends mainly on the arrival process
and the resource requirements of the jobs. Utilization does not depend on the schedulers per-
formance, which leaves the response time as the main metrics. Of course, the response time
should be measured at different load conditions which directly refer to the arrival process and
the rate new jobs arrive. In a closed on-line system the arrival process depends on how many
jobs are re-submitted after their termination. Therefore, the number of jobs processed per
time unit or the throughput is a effective metrics to use. Makespan is the metrics of choice
for the off-line model. It denotes the time at which the whole workload terminates. It can be
seen as an off-line version of the response time. In an open on-line scenario the makespan is
not very meaningful, as it typically depends on the last submitted job.

In 1999 Krallmann, Schwiegelshohn, and Yahyapour presented a general approach on de-
signing job scheduling systems [53]. They state, that job scheduling obviously does/should
not effect the outcome or accuracy of a job. However, it may have a significant influence
on the efficiency of the whole system, because a good scheduler reduces the loss of resources
to fragmentation and thereby increases the system utilization and job throughput. A good
scheduling system is of major importance for the management of large computing resources,
as supercomputers (independent of their size) often represent a significant investment for
the company or research institute who owns it. Therefore, almost all developments in job
scheduling are induced by the owners of these machines (e. g. EASY backfilling was developed
at Argonne National Lab for their IBM SP system). The authors state, that ”on the other
hand some manufacturers showed only limited interest in this issue as they frequently seem
to have the opinion that machines are not sold because of superior job schedulers”. Hence,
the authors present guidelines for the selection and evaluation of job scheduling systems for
multiprocessor machines.

Scheduling a multiprocessor system is a typical on-line scenario in the real world, as a stream
of job submission data arrives over a period of time. The submitted data is subdivided in
three categories:

• user data (e. g. the name, project, or compute quota) is used to generate job priorities
as some users jobs might be preferred.

• resource requests specify e. g. the number and type of resources needed, the length of
time the resources are needed, the amount of memory, I/O, or network performance
or other hardware and software requirements. Note, some of the data may only be
estimated, especially the run time.

• scheduling objectives may include additional information for the scheduler, e. g. dead-
lines that have to be met.

Now the task of the scheduling system is to generate an allocation of system resources
to individual jobs for a certain period of time. If further hardware or software restrictions

13

2 Related Work

(e. g. gang-scheduling, or at most one application is active on a processor at any time) are
not observed, a schedule may be invalid. Some systems with a specific interconnect topology
might require the schedule also to be mappable on the resources. Neglecting the machine
architecture (e. g. the topology of the interconnect) during the scheduling phase may result
in schedules, where enough resources are available for a specific job, but it is impossible to
generate a continuous partition with the same set of resources. Hence, validity constraints are
machine dependent, but in general it is assumed that schedulers do not attempt to produce
invalid schedules.

According to the authors the scheduler is divided in three parts:

1. Scheduling policy: This is a collection of rules that is used to determine the assign-
ment of resources to jobs, if not enough resources are available to satisfy all jobs at
this time. These rules may be formulated in a non-formal, non-mathematical style and
they should allow a rough distinction between good and bad schedules. Other more
general rules need not have to be specified explicitly, like e. g. finish every job as soon as
possible without breaking any other rule. A good scheduling policy should also contain
rules to solve conflicts between other rules. And of course the scheduling policy has to
be implementable.

2. Objective function: The goal is to have a single scalar value (schedule cost) that rep-
resents a complete schedule. It is then possible to distinguish good from bad schedules
and furthermore rank schedules. Schedules (or better the according scheduling policies)
are comparable, if the same job set is used as input. An upfront calculation of the
objective value may not be possible, as an execution of all jobs might be necessary e. g.
to detect their actual run time. With almost all machine installations, simple objective
functions are used, like the average response time, system utilization, or job throughput.

3. Scheduling algorithm: The algorithms task is to generate a valid schedule for the
stream of submitted jobs in an on-line fashion. A good scheduling algorithm should
always generate good or even optimal schedules according to the objective function.
Additionally, the computation should not take ’too much’ time or use ’too many’ re-
sources. Unfortunately, most scheduling problems are computationally hard, so it is not
possible to have an algorithm that guarantees the best possible schedule. Especially in
an on-line scenario where jobs are sometimes submitted at a high rate and a new sched-
ule has to be computed after each job submission. The time for generating a solution
is sometimes more important than the optimality of the solution.

Selecting a good scheduling algorithm depends on many constraints, but most of the time
the administrative staff simply choose an algorithm from the literature and adapts it to their
local environment. Despite the fact that the algorithm should compute a valid schedule, it
has to be determined, whether good or bad schedules are generated. To evaluate this, either
algorithmic theory or discrete event simulations are used. The job input for simulations is
taken from an actual trace or from a workload model.

According to the authors the result of an evaluation without algorithmic theory is, that
often competitive analysis can not be applied to methods which are based on very complex
algorithms or which use specific data sets as input successfully. Furthermore, competitive
factors are the worst case factors, which are not acceptable in a real world environment. For
example a competitive factor of 2 for the utilization means, that half of the resources are not

14

2.2 Analytical Results

used. The reliability of a simulation based evaluation depends on the availability of correct
job input and the compliance of these jobs with the actual workload on the target machine.

In a recent paper [20] it is stated that the goal of performance evaluation is not to obtain
absolute numbers but rather differentiate between alternatives. Both the used metrics and
job input have a strong influence on the results of a performance evaluation. Hence, it
is appropriate to use common metrics and workloads in order to standardize the evaluation
process and make the results comparable. One approach is to use real traces from the Parallel
Workloads Archive [89].

2.2 Analytical Results

In 1979 Graham, Lawler, Lenstra, and Rinnoy Khan [38] introduced a model for describing
scheduling problems. It consists of three parameters α|β|γ. n jobs are processed and the
number of resources or processors is m. j describes a job and a specific processor is marked
with i.

α represents the machine environment and is 1, if a machine with a single processor is used,
or P , if a parallel multi-processor machine with m identical processors is used. Other possible
values for α can be Q for describing a system with m processors in series where each job has
to be processed on each of the m processors on the same route, or O if the route of processing
is no longer fixed and some of the processing times may be zero.

β describes the job characteristics and processing restrictions. In contrast to α multiple
entries are possible for β. If pj is specified, processing times of the jobs are given. sizej

stands for the number of processors needed by jobs and is only relevant, if parallel jobs are
scheduled and more than one processor is available. Otherwise sequential jobs are assumed.
rj is specified if jobs arrive over a period of time and information about all jobs is not available
from the beginning. Jobs are not started before their release date rj . pmtn indicates, that
job preemption is allowed. That means jobs do not have to run to completion once they have
started. The scheduler is allowed to interrupt the execution of a job at any time for starting
a different job. Information and results of the preempted jobs are preserved and the original
total processing time is not affected by the preemption. Several more options exist and an
almost complete list is found in Section 2.1 of Pinedo’s Book on Scheduling [72].

Finally γ describes the objective function. Three are most common: the weighted sum of
completion times

∑
wj Cj , the makespan Cmax and the sum of flow or response times

∑
Fj

with Fj = Cj − rj .
The book [1] by P. Brucker is about scheduling algorithms and is structured in three parts.

In the first part of the book an introduction to and classification of scheduling problems is
given. Next, classical algorithms for solving single and parallel machine problems, and shop
scheduling problems are presented. Finally, multiprocessor task scheduling problems and
problems connected to flexible management (e. g. scheduling with due dates) are discussed.
The book also summarizes complexity results for different scheduling problems at the end of
each chapter.

In [22] a new processing restriction for β, the stability constraint stbl, is presented. Al-
though release dates and an on-line algorithm already describe a real system very well, an
important fact has to be considered, too: on average the resource requirements of submitted

15

2 Related Work

jobs must be less than the system’s capacity. The authors compare it with queuing theory
where this fact is expressed by the requirement of λ/µ < 1. λ is the arrival rate in jobs per
time unit and µ is the service rate in the same unit. In queuing theory the average time
that jobs spend in the system is predicted, under the assumption that the system does not
become saturated. If the system becomes saturated, the queuing time may rise without a
bound, which is not tolerated. The authors state, that in the common theoretical model of
scheduling an illusion of stability exists, as all jobs are indeed scheduled at some point. How-
ever, this is because of the finite input and not of the constraint on arriving jobs. Initially,
the load increases as jobs have to wait and later on the system becomes drained. Except for
limited fluctuations, this is not allowed in real systems.

Transferring the stability constraint from queuing theory to the field of job scheduling and
using the model with release dates, leads to:

∑

ri≤rj ,i 6=j

pi ≤ rj + c

If rj is the release date for job j and pj is its processing time, then it is required that for
all j the accumulated processing time of previous jobs fit in up to a positive constant c.
c allows load fluctuations which often occur at the beginning, where the offered load may
be higher than the systems capacity. The connection to the λ/µ < 1 from queuing theory
is obvious: if jobs are indexed according to their arrival times (ri ≤ rj iff i < j) and a
large number of jobs are observed, then λ ≈ j/rj . The service rate is approximated by the
reciprocal of the average processing time (µ ≈ j/

∑
i≤j pi). Putting it all together results in

1 > λ/µ ≈ j/rj

j/
∑

i≤j
pi

=
∑

i≤j pi/rj . And extending the expression for parallel jobs:

∑

ri≤rj ,i6=j

pi · sizei

m
≤ rj + c (2.1)

The constant c is also used to allow some degree of overlap between jobs that do not use all
processors of the system.

The authors state about the stability constraint that is expresses the fact that the offered
load to the system is bounded (on average) by its capacity. However, it does not guarantee
that the system stays stable. It may saturate because of an inefficient scheduling algorithm
or other constraints, e. g. if the size of all jobs is dm/2e + 1, half of the processors will be
wasted.

With this stability constraint new results for the identical parallel machine model with
sequential jobs (P |stbl|∑ wjCj , Cmax,

∑
Fj) and the multi-processor machine model with

parallel jobs and preemption (P |stbl, sizej , pmtn|∑ wjCj , Cmax) are developed [22]. An
overview of the results are given in Table 2.3. Although these models already come close
to reality, an additional assumption is done: at most, one job can be processed at a time.
Unfortunately, this is the most restricting, as it substantially limits the usage of a large
space-shared supercomputer.

Much more research has been done on scheduling problems for many decades and in many
research fields of computer science, operations research, and discrete mathematics. Developing
efficient resource management software for computer systems has been used as a reason to
drive this research. This especially holds for the field of job scheduling. Hence, it is obvious to
use these theoretical approaches directly. However, according to [28] many of the theoretical

16

2.3 Workload Characterization

competitive ratio for
model

∑
wjCj Cmax

∑
Fj

1|stbl|∑ wjCj , Cmax,
∑

Fj 2 2 1
P |stbl|∑ wjCj , Cmax,

∑
Fj 2 2 1

P |stbl, sizej , pmtn|∑ wjCj , Cmax 3 3

Table 2.3: Competitive ratios with the new stability constraint from [22].

results rely on ”a creative set of assumptions in order to make their proofs tractable. This
divergence from reality does not only make them hard to use in practice, but also the diversity
of divergence makes them hard to compare with each other.” One such example is to allow
preemptions. It is difficult to realize preemptions in real systems, as the requirements from
e. g. the hardware (a lot of memory and support from the interconnection network is needed)
and the software side (the operating system has to suspend the whole job on all resources)
are hard.

Information about approximation factors for off-line algorithms and competitive ratios for
on-line algorithms are difficult to apply, as the worst case is very unlikely in the real world. An
example clarifies the problem of worst case analysis: consider an algorithm with a competitive
ratio of 2 and a system with an average utilization of around 90%. In a worst case scenario
the utilization would drop to about 45% and more than half of the resources would be lost.
As the owner of the system is interested in a good and efficient usage of the machine, such a
situation is not tolerable and will surely not often occur. Studying the worst case behavior
of backfilling, shows a similar situation. In the worst case it is not possible to start any job
out of order, so the backfill routine has no influence on the scheduling at all. The original
starting order induced by the sorting policy is retained and in this example standard FCFS
list scheduling is done. Therefore, adding backfilling to a list scheduling algorithm like FCFS
does not change its worst case behavior. Nevertheless, evaluating backfilling in the average
case, so using real, trace based job sets as input, shows a significant performance benefit
which is also measured in practice [29].

2.3 Workload Characterization

Many machine installations and their resource management systems store data about past
usage of the system and moreso about executed jobs. Such data is called workload, accounting
log, or trace. Traces provide a wealth of information about every job in the system. It is
common to store data about scheduled and executed jobs, i. e. the time a job was submitted,
started, and finished and how many resources the job used. Furthermore, less scheduler
important data is stored which is later used for accounting reasons and for statistical analysis.
To mention some is the name of the user, the project code, the executable, and more than
likely command line parameters for the executable of the submitted job.

Although many large supercomputer installations exist today and most of them store data
about executed jobs, only some traces are publicly available. Possible reasons are: a low
utilization of the machine should be kept private, the machine may be classified if e. g. the
machine is owned by an industry or government, but most often the traces are not published
as there is no direct benefit for the administrative staff in doing this. Nevertheless, two trace
archives exist today. Both are driven by research interests in the field of job scheduling. The

17

2 Related Work

Parallel Workload Archive [89] and the HPC Workload Trace Repository [60] maintained by
the Maui scheduler project at supercluster.org. The available traces are presented in more
detail later.

While describing jobs the terms ’large’ and ’small’ (but also ’wide’ and ’narrow’) refer to
the number of requested resources of the job which is also often called ’size’ or ’width’. The
run time, duration or ’(execution) length’ is characterized with the terms ’long’ and ’short’.

In general a classification of supercomputer systems is possible by their size, ownership and
usage:

• Production machines typically have many processors (≥ 128) and are equipped with
powerful hardware, e. g. main memory, disk storage, interconnect, air conditioning,
power supply. The hardware comes from well-known vendors like IBM, Cray, SGI,
or SUN and machines of the same type are found all over the world. Users come from
almost all research areas (e. g. genome sequencing, protein folding, astro physics, numer-
ical and non numerical algorithms, ...) but also from the industry (e. g. automotive or
chemical). Industrial users typically have to pay for the resource usage but sometimes
parts of the machine are directly owned by companies [44]. Production machines are
installed at national high performance supercomputing centers and only a minority of
the users are internal from that center. Most of the users are from external institutions
from all over the world.
A large amount of users guarantee a steady arrival process with bursts being rare. The
number of jobs submitted in a fixed time interval (e. g. 24 over hours) is large. Con-
sequently jobs usually have to wait for execution, but at the same time the scheduler
has more possibilities in picking an appropriate job for utilizing free resources. Hence,
less resources remain idle and the utilizations is high (approx. 80 - 90%). The run time
of production jobs is long and interactive application development is usually not done.
Idle time or even down time due to hardware failure or maintenance is avoided as much
as possible. The aim is to have the system available 24 hours a day, 7 days a week.

• Research machines are typically smaller than production machines (≤ 64 processors).
Standardized and cheap hardware components of the shelf are used (e. g. PC based Linux
clusters) in order to reduce the costs. Such machines are found in research groups or
small computing centers where mostly local and internal users submit jobs. The types of
applications do not differ much from production machines. However, more application
development is done and job run times are on average shorter.
Many implications arise from this usage: The arrival process is less continuous and
bursts are more likely. The number of waiting jobs is small and slowdown values are
close to the minimum of one (Table 3.6). The utilization is low (at about 40 to 60%)
and less continuous (Figure 2.2 gives an example). Maintenance and errors in the
system occur more often. However, this is not critical, as a 24/7 service is not intended.
Assigning the machine to a single user or a group of users for exclusive usage is possible.

Note, the given limits on the amount of processors for each type of machine are not strict.
For example, vector machines usually have much lower processor numbers, but are mainly
used for production purposes. And also PC clusters with large processor and node numbers
exist, which are mainly used for research.

Much work was done in the past on analyzing and characterizing workload traces. Subhlok,
Gross, and Suzuoka [88] analyzed and compared traces from the 512-node IBM SP2 machine

18

2.3 Workload Characterization

0

20

40

60

80

100

0 50 100 150 200 250 300 350

%

day

Utilization hpcLine 01.01.2002 to 31.12.2002

Average Utilization 49.63%

Figure 2.2: Utilization of the hpcLine cluster at the PC2[70].

installed at the Cornell Theory Center, the 512-node Cray T3D at the Pittsburgh Supercom-
puting Center, and the 96-node Intel Paragon at the ETH Zurich. They observed a high
percentage of small (sequential) jobs, but their part of the resource usage was small. On the
other hand only some large jobs exist, which are in turn responsible for most of the resource
usage. In general, users tend to use ’power of 2’ job sizes and indeed it was observed, that
most of the jobs are clustered around power of 2 sizes. The majority of jobs are of medium
width (requesting 8-64 processors) and length (between 1 and 12 hours). The authors state,
that one implication for scheduling is to use space-sharing. As many small and short jobs with
almost no resource usage exist, a scheduler should be able to prioritize these jobs without
significantly affecting large jobs. Applying backfilling by starting jobs out of order without
delaying other jobs is suitable.

The tendency to use power of 2 jobs is based on the resource needs of most applications
and the topology of the machine interconnect. Debugging and testing, but also jobs from
the administrative staff, cause the high percentage of small and sequential jobs. Having not
enough software licenses or only some nodes equipped with a large main memory further
increases this percentage. Short running jobs are typically caused by errors and bugs in the
according application, so such jobs fail after only some seconds of run time. On research
machines small and short jobs occur more often than on production machines.

In [24] similar observations whilst analyzing the trace of the 128-node iPSC/860 system
installed at NASA Ames are made. A large number of sequential jobs dominate the trace
while the resource usage (measured in node seconds) is mostly generated by parallel jobs.
Actually most (over 80%) of the sequential jobs were submitted by the administrative staff
and consisted of a simple UNIX ’pwd’ command. It is used to check, if the machine is up
and running. The average run time of jobs grew with the number of requested processors,
so that the area (resource usage) grew superproportionally. A distinction for the submission

19

2 Related Work

rate is done by day (prime time) and night (non prime time). During the day the rate is
about one job every two minutes. The average size of running jobs is small as much testing
and development is done. This changes at night as more production jobs are executed. These
are usually executed on a larger set of processors and their run time is longer. Even though
the submission rate is low at night (the production jobs were submitted towards the end of
the day shift) the achieved utilization is high. On weekends this behavior is more extreme,
as the submission rate is lower than on weekdays as most of the time production runs with
a high resource usage (more resources for a longer run time) are executed. The iPSC/860
system is used as a research machine during the day in the week and as a production machine
for the rest of the time. The trace also shows, that applications are started repeatedly for a
significant number of times which confirms the production machine’s status.

In general, job run times and sizes, but also the user behavior (which is reflected in the
arrival process) depend on the properties of the scheduler. For example, if the scheduler allows
an estimation of continuous run times, certain run time values occur more often than others
e. g. 10 minutes or 1 hour. On the other hand some schedulers (typically queuing systems like
NQE/NQS) only have upper limits for the run time which result from the available queues.
Users only specify the queue for their job and a precise run time estimate. The NASA Ames
iPSC/860 machine is an example that works with a queuing system (cf. Table 3.1). Other
systems even restrict the resource usage e. g. to power of 2 job sizes starting from 32 as it is
done on the Thinking Machines CM-5 installed at Los Alamos National Lab (LANL).

Workload traces also contain a lot of system administrative induced jobs as previously
described. One question is, whether these jobs should be removed from the real trace or not?
As no significant work is done and these jobs do not reflect the machine users at all, one
could argue that these jobs should be eliminated from the trace. However, these small and
insignificant jobs influence the system behavior as they occupy resources and user jobs have to
compete with them. Neglecting these jobs in the trace would falsify the users ’look and feel’
of the machine and the workload would no longer represent the real world. Furthermore, the
authors state, that down time has to remain in the trace. For example the iPSC/860 machine
was down due to maintenance reasons (air conditioning, software and hardware failures) for
about 7.5% of the traced time frame.

2.4 Self-Tuning and Dynamic Policy Switching

In 1994 Ramme and Kremer [73] described the problem of scheduling a machine room of MPP-
systems. Users either submit long running batch jobs or they work interactively (typically
only for a short time). To accomplish this on a single MPP-system the resource management
system has to switch from batch mode (preferring batch jobs) to interactive mode (preferring
interactive jobs) and back. Usually this is done manually by the administrative staff, e. g. at
fixed times of the day: interactive mode during working hours, batch mode for the rest of
the day and over weekends. In general, the overall job throughput is the main objective of
batch processing. As batch jobs typically have a long run time, waiting is not very critical.
On the other hand, a user that works interactively counts the five minutes until he/she can
start working with the requested resources. Other issues like the overall job throughput or
the utilization are less important while operating in interactive mode. Which in comparison
to batch mode jobs are rather short.

The idea [32, 73] is to allow the users to decide in which mode the system should be

20

2.4 Self-Tuning and Dynamic Policy Switching

operating. Hence, the Implicit Voting System (IVS) is introduced, as users should not vote
explicitly:

• If most of the waiting jobs are submitted for batch processing, IVS switches to LJF
(longest job first). As batch jobs are typically long, they receive a higher priority
in the scheduling process. Hence, resources are longer bound to jobs, less resource
fragmentation is caused and the utilization and throughput of the system is increased.

• If most of the waiting jobs are submitted for interactive access, IVS switches to SJF
(shortest job first). As interactive jobs are usually short in their run time and short
jobs are preferred, the average waiting time is reduced.

• If the system is not saturated, the default scheduling strategy FCFS (first come first
serve) is used. Note, a threshold for defining when a system is saturated and when not is
defined by the administrative staff. For the authors a MPP system becomes saturated,
if more than five jobs can not be scheduled immediately.

Unfortunately, the idea of IVS was never realized nor implemented and tested in a real envi-
ronment.

Feitelson et al. [24, 23] described a similar approach for the NASA Ames iPSC/860 system.
In the prime time during the day only a fraction of the resources is allocated to the batch
partition, while most of the resources are available for interactive access. During non prime
time all resources are assigned to the batch partition. The re-partitioning is done manually
and at fixed times of the day.

The problem of getting the best performance out of a modern resource management system
is described in [23]. Commonly such software systems are highly parameterized and the
administrative staff performs a lot of trial and error testing in order to find a good parameter
setting for the current workload. If the workload changes, new parameter settings have to
be found. However, they are notoriously overworked and have little or no time for this fine
tuning, so the idea is to automate this process. Much information about the current and
past workload is available, which is used to run simulations in the idle loop of the system (or
on a dedicated machine). Various parameter settings are simulated and the best setting is
chosen. The authors call such a system self-tuning, as the system itself searches for optimized
parameter settings.

To create new parameter settings for the simulations, genetic algorithms are used. New
parameter settings are generated by randomly combining several potential combinations from
the previous step. Speaking in biological terms: chromosomes are the binary representation
of a parameter. A parameter setting is called individual and the according parameter values
are concatenated in their binary representation. In this example the fitness function is the
average utilization of the system achieved by the according parameter setting. All simulated
parameter settings (individuals) in one step represent a generation. Now the chromosomes
of the fittest individuals of a generation are used to produce new individuals for the next
generation. New generations are continuously created with the latest system workload as
input. The process is started with default values. In a case study for scheduling batch jobs
of the NASA Ames iPSC/860 system the authors observed, that with the self-tuning search
for parameter settings the overall system utilization is improved from 88% (with the default
parameters) to 91%.

21

2 Related Work

In 1996 Nguyen et al. [66] evaluated the processor allocation to iterative parallel applica-
tions on a shared memory multiprocessor machine. In their example some applications show a
behavior where assigning more processors results in a degraded performance. Their definition
of self-tuning is when ”an application determines for itself the best number of processors to
use”. They present three levels of processor allocation, each being more sophisticated:

1. A good processor allocation is determined once at the beginning of the execution.

2. A new processor allocation is determined repeatedly, either in fixed intervals or after
dramatic efficiency changes.

3. In each parallel phase of an iteration a new processor allocation is computed.

They show, that a dynamic selection of processor allocation matches the best static alloca-
tion. However, this is done with the potential benefit of finding even better solutions that
outperform any static allocation.

2.5 Scheduling in Meta- and Grid-Computing Environments

The cooperation of geographically distributed computing resources for solving large problems
became a hot topic in the research of the last ten years. In 1992 Smarr and Catlett first defined
the term metacomputing [83]. They define a metacomputer as a network of heterogeneous,
computational resources which are linked by software so that they can be used as easily as a
desktop PC. Three stages are proposed in constructing a metacomputer:

1. A software and hardware integration effort is at the beginning in order to create and
harness the necessary software components. Furthermore, this stage involves inter-
connecting all involved resources with high-performance networks, implementing a dis-
tributed file system, coordinating the user access inside the metacomputer, and making
the environment seamless by using existing technology.

2. The second stage moves beyond the software integration of a heterogeneous network of
computers. Now a single application is spread across several computers. With that many
computers process a single problem cooperatively. This allows users to solve problem
scenarios which are virtually impossible without a metacomputer. Problems may now
be larger in size, more complex, or the precision of the solution is increased. The authors
state, that in general the evolution of metacomputers is limited not only by the software
layer but also by the network that connects the heterogeneous computing resources. Due
to the differences in bandwidth and latency of network links the capabilities of a local
area metacomputer are typically one year ahead compared to a wide area metacomputer.
And this is still more or less true today, more than 10 years after the authors stated
this.

3. The third stage of a metacomputer is a transparent national metacomputer. The au-
thors state, that the amount of computational resources useable by applications will
dramatically increase. However, this third stage involves more. An adequate wide area
network infrastructure has to be in place and standards at the security, administrative,
file system, and accounting level have to be developed. This then enables multiple local
area metacomputers to cooperate.

22

2.5 Scheduling in Meta- and Grid-Computing Environments

In the remainder of [83] the two authors describe several showcases from the SIGGRAPH’92
conference. There, metacomputers were used for:

• Theoretical simulations to solve scientific equations numerically. The application re-
quires the metacomputer to easily interconnect several computers to work on a single
problem at the same time.

• Instrument and sensor control: The metacomputer translates raw data from scientific
instruments and sensors into visual images. This also allows the user to interact with
the instrument or sensor. Hence, a remote observation and instrument control over the
network is possible.

• Data Navigation: The metacomputer is used to explore large databases and translating
numerical data into human processable input. As a vision the authors state, that ”over
the next several years, we will see an unprecedent growth in the amount of data that is
stored as a result of theoretical simulations, instruments, and sensors.”

The web page of the DataGrid project [9] contains a good and summarized introduction to
grid environments: The idea of computational and data grids dates back to the first half of
the 90’s. The vision behind them is often explained using the electric power grid metaphor.
The electric power grid delivers electric power in a pervasive and standardized way. One can
use any device that requires standard voltage and has a standard plug if one is able to connect
it to the electric power grid through a standard socket. When electricity is used one does not
worry where it is generated and how it is delivered.

As explained by Foster and Kesselman in the second chapter of their book ”The Grid”
[30]: ”The current status of computation is analogous in some respects to that of electricity
around 1910. At that time, electric power generation was possible, and new devices were being
devised that depended on electric power, but the need for each user to build and operate a new
generator hindered the use. The truly revolutionary development was not, in fact, electricity,
but the electric power grid and the associated transmission and distribution technologies”.

Currently millions of computing and storage systems exist all over the planet connected
through the Internet. However, missing is an infrastructure and standard interfaces capable
of providing transparent access to all this computing power and storage space in a uniform
way. For the scientist, the vision that is now becoming reality with modern grid environments
is as follows:

• The user submits his request through a Graphical User Interface (GUI) simply by spec-
ifying high level requirements (the kind of application he wants to use, the operating
system,...) and eventually providing input data.

• The Grid finds and allocates suitable resources (computing systems, storage facilities,
...) to satisfy the user’s request.

• The Grid monitors all processing requests.

• The Grid notifies the user when the results are available and then after some time
presents them.

As seen, the users do not have to know which resources they are using or where they are.
They just receive computing power and storage space from the Grid through a standard
interface.

23

2 Related Work

A quote from Foster’s and Kesselman’s book summarizes the definition: ”A computational
grid is a hardware and software infrastructure that provides dependable, consistent, pervasive
and inexpensive access to high-end computational capabilities”.

In other words, grid environments take up the former metacomputing idea and broaden
it. Other different kinds of resources are now joined in a grid environment and they can
be used collaboratively. Examples are data archives, physical instruments and sensors, and
three-dimensional graphical output devices. The wide area networks themselves are also in-
cluded in the grid resource management, as their bandwidth and latency is subject to frequent
changes and most often overloads.

In 1999 Gehring and Preiss published work about scheduling a Metacomputer with uncoop-
erative sub-schedulers [31]. The authors state, that in an intuitive and simple metacomputing
scheduling architecture the local schedulers would be replaced by metacomputer scheduling
modules. In this case local machines are no longer accessible directly, the metacomputer
frontend has to be used in any case. However, drawbacks are obvious, as with this approach
the site autonomy is no longer assured. Furthermore, local users can not be forced to submit
all their jobs through the metacomputer.

Therefore, a two tier scheduling architecture is required, which preserves the local schedul-
ing instances. In this approach a metacomputing super-scheduler is placed on top of the
local resource management schedulers. The authors described three levels of information
interchange between the two tiers:

• scheduling with no control: The metacomputer has no knowledge about locally submit-
ted jobs. Furthermore, no information is available on the amount of resources assigned
to locally submitted jobs and how many resources are free for the metacomputer.

• scheduling with limited control: The metacomputing scheduler is able to query infor-
mation from the local resource management about how many resources are assigned to
local jobs. The returned data can be unreliable, as the jobs’ resource requirements are
not typically known in advance.

• scheduling with full control: Whenever a job is submitted to the local resource manage-
ment scheduler, it is forwarded to the metacomputing scheduler. Hence, site autonomy
and local scheduling policies are abandoned.

Obviously the scenario with full control is the most promising scheduling approach.
Especially in this last approach the metacomputer has to find a common basis for schedul-

ing. This means, that the least common multiple of all resource management system flavors,
scheduling policies, and other local restrictions have to be found. By that a drawback is ob-
vious: special features, which are only available at some or only one site, may not be useable
through the metacomputer frontend. Most likely local users, who are now forced to use the
metacomputer, will become dissatisfied.

The authors state, that scheduling with no control is the reference case, as most metacom-
puting environments at that time worked with this approach. Scheduling with full control
represents the idealized scenario and scheduling with limited control is a compromise of both.

In 1998 Czajkowski, Foster, Karonis, Kesselman, Martin, Smith, and Tuecke presented
a resource management architecture for metacomputing systems [8]. They state, that the

24

2.5 Scheduling in Meta- and Grid-Computing Environments

resource management comes with five challenging problems: site autonomy, heterogeneous
substrate, policy extensibility, co-allocation, and online control.

1. Site autonomy: As resources are typically owned and operated by different organizations
and under different administrative domains, a common understanding of e. g. scheduling
policies and security mechanisms is difficult to obtain.

2. Heterogeneous substrate: This problem is induced by the fact that different resource
management systems are used at the local sites, e. g. CONDOR, LoadLeveler, PBS,
LSF, or NQE/NQS. Even if two sites use the same resource management system, the
configurations might differ due to different scheduling and machine usage policies. That
means, that diversity in functionality is growing even more.

3. Policy extensibility: Metacomputing applications come from a wide range of domains,
each domain or application with its own requirements. A resource management system
has to support the frequent development of new domain-specific management structures,
without the necessity of changing already installed codes at local sites.

4. Co-allocation: Many applications come with resource requirements that can only be
satisfied by using resources simultaneously at multiple sites. Because of the site au-
tonomy and the possibility of failures during the allocation, the resource management
needs special mechanisms for allocating multiple resources, initiating the computation
on the resources, and monitoring and managing the running computations.

5. Online control: It might be necessary to adapt the resource requirements of an ap-
plication to current resource availability, especially if the requirements and resource
characteristics change during the run time. This requires the ability of the resource
management system to negotiate resource requests.

The authors state, that no resource management system at that time addresses all five prob-
lems. In the remainder of [8] they present a resource management system approach that
addresses all five of the named problems. Included is a description of the GRAM (Globus
Resource Allocation Manager), the interface to the local resource management system.

25

2 Related Work

26

3 Job Scheduling and Evaluation Methodologies

In the previous chapter we presented related work on parallel job scheduling, some analytical
results, characterizations of commonly used workload sets, and scheduling in grid environ-
ments. By that, a global scope for this work has been defined. In this chapter we present
general aspects, common terminology and several definitions for parallel job scheduling, which
are used both for single machine scheduling, as well as for scheduling within grid environ-
ments. The chapter begins with a classification of resource management systems. Queuing
based systems schedule only the present resource usage, while planning based systems schedule
the present and future resource usage. The self-tuning dynP scheduler described in Chapter 4
is based on this approach of scheduling in a resource management system.

After the classification, an overview on different policies for scheduling single HPC machines
is given in Section 3.2. Scheduling policies are often enhanced by backfilling in order to increase
the utilization and response time. The concept of backfilling and its variants are presented in
Section 3.3. Metrics are needed in order to rate schedulers and measure their performance.
Performance metrics can be classified in owner and user centric metrics. In Section 3.4 several
metrics are presented which are later used in the evaluations of the self-tuning dynP scheduler.
The workloads used as job input for the evaluation are described in Section 3.5. A general
overview on available traces and models is given, a subset of traces for the evaluation is
chosen, and an analysis for these workloads is done. Additionally, approaches for increasing
the workload are presented, so that an evaluation of the schedulers with different workloads is
possible. Finally, the simulation environment used for the evaluation of the self-tuning dynP
scheduler is described in Section 3.8.

3.1 Classification of Resource Management Systems

Before the classification begins we define some terms that are used in the following.

• The term scheduling stands for the process of computing a schedule. This may be done
by a queuing or planning based scheduler.

• A resource request contains two information fields: the number of requested resources
and a duration for how long the resources are requested for.

• A job consists of a resource request plus additional information about the associated
application. Examples are: information about the processing environment (e. g. MPI or
PVM), file I/O and redirection of stdout and stderr streams, the path and executable
of the application, or startup parameters for the application. We neglect the fact that
some of these extra job data may indeed be needed by the scheduler, e. g. to check the
number of available licenses.

• A reservation request is a resource request starting at a specified time for a given dura-
tion. Once the scheduler accepted such a request, it is a reservation.

27

3 Job Scheduling and Evaluation Methodologies

We call a reservation Fix-Time request to emphasize that it can not be shifted on the
time axis during scheduling. Accordingly we call a resource request Var-Time request, as the
scheduler can move the request on the time axis to an earlier or later time according to the
used scheduling policy. In the following we focus on resource management systems that use
space-sharing.

The criterion for the differentiation of resource management systems is the planned time
frame [42]. Queuing systems try to utilize currently free resources with waiting resource
requests. Future resource planning for all waiting requests is not done. Hence, waiting
resource requests have no proposed start time. Planning systems in contrast, plan for the
present and future. Planned start times are assigned to all requests and a complete schedule
about the future resource usage is computed and made available to the users. A comprehensive
overview is given in Table 3.2 at the end of this section.

3.1.1 Queuing Systems

Today almost all resource management systems fall into the category of queuing systems.
Several queues with different limits on the number of requested resources and the duration
exist for the submission of resource requests. Jobs within a queue are ordered according to
a scheduling policy, e. g. FCFS (first come, first serve). Queues might be activated only for
specific times (e. g. prime time, non prime time, or weekend). A rather old example from the
128-node NASA Ames iPSC/860 machine running NQS is taken from [93] and is shown in
Table 3.1. Another more complex example for the LLNL1 Craw T3D is found in [21].

number of nodes
time limit 16 32 64 128
20 minutes q16s1,2 q32s1,2 q64s2 q128s2

1 hour q16m1 q32m1 q64m q128m
3 hours q16l q32l q64l q128l

1 active during prime time
2 active during weekend day

Table 3.1: NAS’s NQS scheduling queue structure for the iPSC/860 machine. Prime time is
from Monday to Friday, 6:00 to 20:00 PST.

The task of a queuing system is to assign free resources to waiting requests. The highest
prioritized request is always the queue head. If it is possible to start more than one queue
head, further criteria like queue priority or best fit (e. g. leaving less resources idle) are used
to select a request. There might also exist a high priority queue whose jobs are preferred at
any time. If not enough resources are available to start any of the queue heads, the system
waits until enough resources become available. These idle resources may be utilized with less
prioritized requests by backfilling mechanisms.

As the queuing systems time frame is the present, no planning of the future is done. Hence,
no information about future job starts are available. Consequently guarantees can not be given
and resources can not be reserved in advance. However, if participating in grid environments

1Lawrence Livermore National Lab

28

3.1 Classification of Resource Management Systems

this functionality is desirable. Using reservations eases the way of starting a multi-site ap-
plication which synchronously runs on different sites. By reserving the appropriate resources
at all sites, it is guaranteed that all requested resources are available at the requested start
time. With queuing systems this still has to be done manually by the administrative staff.
Usually high priority queues combined with dummy jobs for delaying other jobs are used.

Users do not necessarily have to specify run time estimates for their jobs, as a queuing
system might let jobs run to completion. Obviously users would exploit this by starting very
long running jobs which then block parts of the system for a long time. Hence, run time
limits were added to the queues (Table 3.1). A longer run time than the limit of the queue
is not allowed and the resource management system usually kills such jobs. If the associated
application still needs more CPU time, the application has to be checkpointed and later
restarted by the user.

3.1.2 Planning Systems

Planning systems schedule for the present and future. With assigning start times to all
requests a full schedule is generated. It is possible to query start and end times of requests
from the system and a graphical representation of the schedule is alsopossible (Figure 3.1).
Obviously duration estimates are mandatory for this planning. With this knowledge advanced
reservations are easily made possible. There are no queues in planning systems. Every
incoming request is planned immediately. The Computer Center Software (CCS) from the
PC2 is such a planning based resource management system [52, 5].

Figure 3.1: The CCS schedule browser.

The re-planning process is the key element of a planning system. Each time a new request
is submitted or a running request ends before it was estimated to end, a new schedule has
to be computed and this function is invoked. At the beginning of a re-plan all non-running
requests are deleted from the schedule and sorted according to the scheduling policy. Then
all requests are re-inserted at the earliest possible start time in the schedule. After this step
each request is assigned a planned start and end time. The non-running requests are usually
stored in a list structure and different sorting criteria are applied. They define the scheduling
policy of the system.

As planning systems work with a full schedule and assign start times to all requests, resource
usage is guaranteed and advanced reservations are possible. A reservation usually comes with
a given start time or if the end time is given the start time is computed with the estimated

29

3 Job Scheduling and Evaluation Methodologies

run time. When the reservation request is submitted the scheduler checks with the current
schedule, whether the reservation can be made or not. That is the amount of requested
resources is available from the start time and throughout the complete estimated duration.
If the reservation is accepted it is stored in an extra list for accepted reservations. During
the re-planning process this list is processed before the list of variable requests. It does not
have to be sorted as all reservations are accepted and therefore generate no conflicts in the
schedule. Furthermore, additional types of job lists are thinkable which are then integrated
in the re-planning process according to their priority (reservations should have the highest
and variable requests the lowest priority).

Controlling the usage of the machine as it is done with activating different queues for e. g.
prime and non prime time in a queuing system has to be done differently in a planning system.
One way is to use time dependent constraints for the planning process, e. g. “during prime
time no requests with more than 75% of the machines resources are placed”. Also project or
user specific limits are possible so that the machine size is virtually decreased. Examples for
such limitations are:

• Jobs requesting more than two thirds of the machine are not started during daytime,
only at night and on weekends.

• Jobs that are estimated to run for more than two days are only started at weekends.

• It is not possible that three jobs are scheduled at the same time where each job uses
one third of the machine.

If an already running request interferes with limits during its run time, it is not prematurely
killed. It runs until the estimated end is reached. With the examples from above one could
think of a job that requests all resources of a machine, is started on Sunday and runs until
Tuesday. Such a job would then block the whole machine on Monday which contradicts the
limits for Monday.

Planning systems also have drawbacks. The cost of scheduling is higher than in queu-
ing systems. And as users can view the current schedule and know when their requests are
planned, questions like “Why is my request not planned earlier? Look, it would fit in here.”
are most likely to occur [50]. Besides the pure and easily measurable performance of the
schedule (e. g. utilization or slowdown), other more social and psychologic criteria might also
be considered. It might be beneficial to generate a less optimized schedule in favor of having
a more understandable schedule. Furthermore, the usage of reservations should be observed,
especially if made reservations are really used. Again, users tend to simply reserve resources
without really needing and using them [50]. This can be avoided by automatically releasing
unused reservations after a specific idle time.

Table 3.2 shows a summary of the previously described differences between queuing and
planning based resource management systems.

3.2 Scheduling Policies

Typical resource management systems store requests in list-like structures. Therefore, a
scheduling policy consists of two parts: inserting a new request in the data structure at its

30

3.2 Scheduling Policies

queuing system planning system

planned time frame present present and future
submission of resource requests insert in queues re-planning
assignment of proposed start time no all requests
run time estimates not necessary1 mandatory
reservations not possible yes, trivial
backfilling optional yes, implicit
examples PBS, NQE/NQS, LL CCS, Maui Scheduler2

1 exception: backfilling
2 According to [46], Maui may be configured to operate like a planning system.

Table 3.2: Differences between queuing and planning systems.

submission and taking requests out during the scheduling. Different sorting criteria are used
for inserting new requests and some examples are (either in increasing or decreasing order):

• by arrival time: FCFS (first come first serve) uses an increasing order. FCFS is probably
the most known and used scheduling policy as it simply appends new requests at the end
of the data structure. This requires very little computational effort and the scheduling
results are easy to understand: jobs that arrive later are started later. With this example
the term fairness is described [79]. In contrast, sorting by decreasing arrival time is not
commonly used, as ’first come last served’ makes no sense in an on-line scenario with
the potential risk of waiting forever (this is also called starvation). However, a stack
works with decreasing order of arrival time.

• by duration: Both increasing and decreasing orders are used. Sorting by increasing
order leads to SJF (shortest job first) respectively FFIH (first fit increasing height2).
Accordingly LJF (longest job first) and FFDH (first fit decreasing height) sort by de-
creasing run time. In an on-line scenario this requires duration estimates, as the actual
duration of jobs are not known at submission time. SJF and LJF are both not fair, as
very long (SJF) and short (LJF) jobs potentially wait forever. LJF is commonly known
for improving the utilization of a machine.

• by area: The jobs area is the product of the width (requested resources) and length
(estimated duration). FFIA (first fit increasing area) is used in the SMART algorithm
(Scheduling to Minimize Average Response Time) [91, 76].

• by given job weights: Jobs may come with weights which are used for sorting. Job
weights consist of user or system given weights or a combination of both. For example:
all jobs receive default weights of one and only very important jobs receive higher
weights, i. e. they are scheduled prior to other jobs.

• by the Smith ratio: The Smith ratio of a job is defined by weight
area and is used in the

PSRS (Preemptive Smith Ratio Scheduling) algorithm [75].

• by many others: e. g. number of requested resources, current slowdown, ...
2The duration or run time of a job is also known as ’height’ or ’length’, while the number of requested

resources is usually called ’width’

31

3 Job Scheduling and Evaluation Methodologies

In the scheduling process jobs are taken out of the ordered data structure for either a direct
start in queuing systems or for placing the job in a full schedule (planning system):

• front: The first job in the data structure is always processed. Most scheduling policies
use this approach as only with this a sorting policy makes sense. In queuing systems jobs
might have to wait until enough resources are available. Planning systems also process
the front of the data structure while placing requests as soon as possible. FCFS, SJF,
and LJF use this approach.

• first fit: The data structure is traversed from the beginning and always the first job
is taken, that matches the search constraints, i. e. requests equal or less resources than
currently free.

• best fit: All jobs are tested to see whether they can be scheduled. According to a
quality criterion the best suited job is chosen. Commonly the job which leaves the least
resources idle in order to increase the utilization is chosen. Of course this approach is
more compute intensive as the complete data structure is traversed and tested. If more
than one job is best suited an additional rule is required, e. g. always take the first, the
longest/shortest job, or the job with the most weight.

• next fit: The SMART algorithm uses this approach in a special case (NFIW) [91, 76].

In general, all combinations are possible but only a few are applicable in practice. Figure 3.2
shows example schedules for FCFS, SJF, LJF, and FFIA. Sorting requests in any order while
using first or best fit is not necessary, as the best job is always chosen regardless of its position
in the sorted structure. However, a sorting policy could be used to choose one job, if many
jobs are equal. Furthermore, best fit comes with the risk of making schedules unfair and
opaque for users.

If fairness in common sense has to be met, i. e. the starting order equals the arrival order,
only the combination of sorting by increasing arrival time and always processing the front
of the job structure can be used. All other combinations do not generate fair schedules.
However, such a fair scheduler is not very efficient, as jobs usually have to wait until enough
free resources are available. Therefore, basic scheduling policies are extended by backfilling,
a method to avoid excessive idleness of resources. Backfilling became standard in modern
resource management systems today. If requests are scheduled out of their sorting order by
first or best fit, some form of backfilling is carried out.

3.3 Backfilling

As previously described FCFS generates fair and understandable schedules for space-shared
systems, but at the expense of fragmentation. Queuing systems plan for the present and
utilize free resources with queued requests. The highest prioritized request (i. e. the queue
head) is always processed. If not enough resources are available to start the queue head, the
system waits until enough resources become available. One solution is to utilize these idle
resources in the mean time with less prioritized jobs. If the duration of requests is not known,
the highest prioritized request may have to wait longer and probably forever.

A sophisticated solution requires run time estimates. With this information a scheduler
computes the time for when enough resources are available for the waiting, highest prioritized

32

3.3 Backfilling

waiting jobs
(in order of arrival):

jobs

running

already
1

time

re
so

u
rc

es

2

3

jobs

running

already

44

jobs

running

already

1

2

3

4

FCFS (sorting order: 1, 2, 3, 4)

time

re
so

u
rc

es

time

re
so

u
rc

es

SJF (sorting order: 2, 1, 4, 3)

LJF (sorting order: 3, 4, 1, 2)

2

1

4
3

3

4 1
2

jobs

running

already

time

re
so

u
rc

es

FFIA (sorting order: 4, 3, 2, 1)

3
4

1
2

job

1
2

3

4

size

5 x15 units
3 x 22 units

15 x 3 units

9 x 4 units

area

75
66

45

36

Figure 3.2: An example of different scheduling policies and the resulting schedules. No Back-
filling has been applied.

33

3 Job Scheduling and Evaluation Methodologies

request. The scheduler starts only those requests which do not delay the start of the highest
prioritized jobs any further. This mechanism is called backfilling and was developed for the
IBM SP at Argonne National Lab as part of the EASY (Extensible Argonne Scheduling sYs-
tem) project [55]. Later this approach was also integrated in the IBM LoadLeveler scheduler
for the IBM SP2 [82].

According to [64] two major versions of backfilling exist:

• conservative backfilling: Assume request w can not be started immediately as not
enough resources are free. The earliest possible start time for job w is s. Now the
list of waiting requests is scanned and as long as resources are free those requests are
started which end before s. This requirement assures that all other waiting requests
from the queue are not further delayed compared to pure FCFS.

• EASY: The original idea softens the last restriction. The number of free resources f
during the run time of request w is computed. In addition to the conservative version
such requests can be backfilled which do not require more than f resources. It is assured
that only the waiting request w is not delayed. Other less prioritized requests might
be delayed further compared to pure FCFS. Therefore, EASY is also called aggressive
backfilling.

Note, in the original algorithm s is called shadow time and f extra nodes. An example for
pure FCFS in contrast to the two backfilling variants is shown in Figure 3.3.

The following statements relate to both backfilling variants. They were extracted from
[63, 29]:

• In general, backfilling improves the response time of short jobs together with no starva-
tion for long jobs. However, one could think of examples with awkward jobs that wait
forever with EASY, but do not with conservative backfilling.

• With both backfilling variants applied the scheduling process is no longer fair as jobs
are executed out-of-order.

• The behavior of EASY is especially unpredictable, which might result in confused users.

• The performance improvement of backfilling does not depend on the number of backfilled
jobs, but on which jobs are backfilled.

• More exact run time estimates should lead to an improved performance. However,
using run time estimates at the same time means, that jobs are killed when they run
longer than estimated. Therefore, users tend to over-estimate the run time. Over-
estimation factors3 are usually large. Simulation results [97] show, that this is not at
all bad as unused areas in the schedule grow. Hence, more and larger jobs (requesting
more resources) become backfilled. In fact, the simulation results show, that accurate
estimates are not necessarily the best. Simply multiplying the user estimates by a
constant factor automatically improves the performance [49].

• Backfilling is optional for queuing systems and today all common resource management
systems have backfilling included.

3The ratio between estimated and actual run time.

34

3.3 Backfilling

jobs

running

already
1

time

re
so

u
rc

es

2

3

jobs

running

already
1

4

2

3

4

4

jobs

running

already
1

2

3
4

1

2

3

4

FCFS without any backfilling

time

re
so

u
rc

es

time

re
so

u
rc

es

FCFS with conservative backfilling

FCFS with EASY backfilling

waiting jobs
(in order of arrival):

Figure 3.3: Exemplary scheduler FCFS without any backfilling, conservative, and EASY back-
filling.

Further improvements of backfilling were developed in recent years. The decision of which
job should be backfilled is done by first fit in the original idea. Of course, other more elab-
orated ways of finding backfill candidates exist. For example, that request is chosen, which
best fits and leaves the least resources idle. Or even combinations of jobs are constructed
which then utilize the idle resources in a more efficient way.

Another improved variant of backfilling is called slack-based backfilling [90]. The basic idea
is to soften the guaranteed start time of the waiting, highest prioritized request. It might be
delayed, but the additional waiting time (the slack) is limited (e. g. by half the jobs estimated
run time). More sophisticated is a combination of the priority and several system parameters
in order to reflect the importance of the request. Thus other and potentially more jobs are
backfilled. The actual decision process as described in [90] consists of testing all possibilities

35

3 Job Scheduling and Evaluation Methodologies

of backfilled jobs, computing the cost for each and finally choosing the cheapest solution.
Slack-based backfilling preserves the bounded delay advantage of FCFS plus conservative
backfilling over EASY.

Obviously some sort of backfilling is implicitly done during the re-planning process in
planning systems. Because planning systems place requests as soon as possible in the current
schedule, requests might be placed in front of already planned requests. However, these
previously placed requests are not delayed (i. e. planned at a later time), as they already have
a proposed start time assigned. Note, a separate backfilling routine as in queuing systems
does not exist. If backfilling is ’disabled’ in a planning system, Var-Time requests are not
inserted as soon as possible. The scheduler begins the search for an appropriate start time at
the start time of the previously planned job.

3.4 Performance Metrics

We described sorting policies and backfilling variants in the previous two sections. If different
scheduling strategies are evaluated, the according schedules have to be compared with each
other. This means, that a relation schedulea > scheduleb has to be defined. In other words:
if it is possible to reduce a schedule of many thousands of jobs into a single number, schedules
are easily comparable. For this purpose performance metrics are used. Most well-known are
utilization, makespan, or average response time. Later, several more are presented. Obviously
different target groups exist with opposing objectives. A general classification in owner- and
user-centric performance metrics is done in the following.

The main focus of owner-centric performance metrics lies on an efficient usage of the owned
resources. Commonly known for this purpose are utilization (how much percent of all resources
were actually used on average over a specific time frame?) and throughput (how many jobs
were processed during a specific time frame?). Others are the makespan (when was the last
job completed?), the loss of capacity (how much percent of all resources were idle, although
workload for processing was available?), or the sum of completion or idle times. This class
of metrics directly refers to the resource usage or idleness respectively. Such metrics are
important for the resource owner or investor and blind out job characteristics.

In contrast, user-centric performance metrics refer to the actual job performance. As the
performance of the scheduler directly affects the waiting time of jobs, the time difference
between submission and start of a job is the key component of all user-centric performance
metrics. Most known is the average response time, which is computed from the waiting time
plus the execution time (time interval from job submission to job completion). It directly
refers to the time when the results of the job are available. The ratio of response time to run
time is called slowdown and is measured dimensionless. All metrics are defined later in more
detail.

However, these two classes often overlap as some performance metrics are interesting for
both groups. For example, owners are also interested in user-centric metrics as they measure
the quality of service delivered to the users. A high utilization often means large slowdown
values as the scheduler mixes the waiting jobs so that the resources are best used. The owner
is satisfied now, but surely not the users. If the slowdown values are very bad, users will
submit their jobs to other resources. The utilization of these resources will drop due to a
lack of jobs. Another example: users mainly focus on the average job slowdown, as it directly
affects their work. However, users are also interested in a low utilization as an indication for

36

3.4 Performance Metrics

short waiting times.
Especially user-centric metrics are often weighted in order to emphasize certain job groups.

The width (requested number of resources) of jobs is typically used as a weight. Furthermore,
bounded metrics are used to ignore special job classes, e. g. very short jobs (less than 60
seconds). Such jobs often represent errors or live tests submitted by the administrative staff.
With bounded performance metrics only important jobs are considered.

Nevertheless the cost of scheduling should not be forgotten. The computation time of the
scheduler is important for both queuing and planning systems. A long computation time in
queuing systems means, that resources remain idle while the scheduler searches for the next
job. In planning systems dead time is not tolerable as this increases the time when either
users get to know about their jobs start times or if reservations are accepted or not. Critical
dead times are either in the range of some seconds or even up to one or two minutes. In
handling reservations requests the dead time should be as short as possible.

Assume the following parameters for scheduled jobs:

• tai is the arrival or submission time of job i

• tsi is the start time of job i

• tei is the end time of job i

• wi is the width (number of requested/used resources) of job i

From these parameters are computed:

• li = tei − tsi is the length (run time, duration) of job i

• twi = tsi − tai is the waiting time of job i

• tri = twi + li is the response time of job i

• si = tri
li

= 1 + twi
li

is the slowdown of job i

• ai = wi · li is the area of job i

Note, the slowdown is always greater than one. A problem with the slowdown metrics is, that
the importance of very short requests is overemphasized. For example, a request that runs
for 0.5 s is delayed for 10 minutes and therefore suffers a slowdown of 1201. A request with
the same waiting time but a length of 20 seconds has a slowdown of only 31. For the user
both waiting times are surely unacceptable, but as the run time stands in the denominator
the short job has a high weight on average. Therefore, the bounded slowdown is used, where
the run time of very short jobs is limited to a threshold of e. g. 60 seconds:

• s60
i = max(tri ,60)

max(li,60) is the slowdown bounded by 60 seconds. Note, the bounded slowdown

is also written as max(tri
max(li,60) , 1) in [18, 19] and Keleher and Perkovic defined it as

1 + twi
max(li,60) [49, 71].

In [97] Zotkin and Keleher defined a per-processor slowdown as jobs that do the same amount
of work with the same response time may suffer different slowdowns due to their different
shape. A simple example clarifies this: a job with 100 seconds requests only one processor

37

3 Job Scheduling and Evaluation Methodologies

and is therefore started immediately. It has a slowdown of 1 (zero waiting time). Another
job containing the same amount of work (e. g. requesting 10 processors for 10 seconds) is
delayed for 90 seconds. Its response time is also 100 seconds, but the slowdown is 10. The
per-processor slowdown considers this by using 1/width as a weight:

• pp s60
i = max(tri

wi·max(li,60) , 1)

The authors understand the per-processor slowdown as a further normalization of the slow-
down metrics. In the above example both requests have a per-processor slowdown of 1. A user
is punished who makes the effort of parallelizing an application on the other hand. Therefore,
a scheduler should not treat a delayed sequential and parallel request the same way.

Further to this, user-centric performance metrics (m denotes the total number of requests
which are considered for the computation of the metric):

• the average waiting time:

AWT =
1
m
·

m∑

i=1

twi (3.1)

• the average response time:

ART =
1
m
·

m∑

i=1

tri (3.2)

• the average response time weighted by job width:

ARTwW =

m∑

i=1

wi · tri
m∑

i=1

wi

(3.3)

• the average slowdown weighted by job area:

SLDwA =

m∑

i=1

ai · si

m∑

i=1

ai

(3.4)

The unbounded SLDwA uses the area of requests as a weight which circumvents the problem
described above: Assume both request only one processor. The 0.5 s long request has a
weighted slowdown of 1201 · 0.5 = 600.5 and the 20 second job 31 · 20 = 620. They have a
similar weighted slowdown which reflects that both waiting times are unacceptable for the
user.

Furthermore, owner-centric performance metrics are (N denotes the total number of avail-
able resources):

• the makespan:
max

i=1,...,m
tei (3.5)

38

3.4 Performance Metrics

• the utilization:

UTIL =

m∑

i=1

wi · li
N · (max

i=1,...,m
tei − min

i=1,...,m
tai)

(3.6)

The denominator of the utilization is the total area of the schedule which is computed from
the number of resources (e. g. processors or nodes) and the length of the schedule, i. e. from
the first submission to the last end. This is the same as with the makespan, if the first request
is submitted at time zero. The makespan is seldom used as a metrics, because the utilization
of a machine is more convincing. The makespan contains no information about the usage of
the resources. In on-line scenarios the makespan is often influenced by the last submission.
Furthermore, there is no need to reduce the makespan in on-line scenarios, as there is no end
of the scheduling process by definition.

Additionally, the performance of a scheduler may be measured with the loss of capacity
(LOC) [95, 96] from the system’s perspective. This means, that requests wait for execution
and available resources, but due to fragmentation it is not possible to start any waiting
request. To define the loss of capacity, schedule events which occur each time a new request
is submitted or a running job ends are introduced. With m requests 2m schedule events exist
at times τk for k = 1, . . . , 2m. fk denotes the number of free resources between the scheduling
events k and k + 1. δk is one, if requests wait for execution and zero otherwise. With that:

• the loss of capacity:

LOC =

2m−1∑

k=1

fi · (τk+1 − τk) · δk

N · (max
i=1,...,m

tei − min
i=1,...,m

tai)
(3.7)

A system is in a saturated state if the number of waiting jobs increases and the scheduler is
not able to achieve a higher utilization. As a result a scheduler with backfilling can search
within a larger set of jobs for backfill candidates. If the utilization is small enough, slots in
the scheduler are bigger and most likely more and better suited jobs are backfilled. Even in
the saturated state fragmentation exists, but the holes are that small that no requests are
backfilled in these holes. Therefore, requests wait longer for their execution and thus user-
centric performance metrics increase dramatically. If a system reaches the saturated state (δk

is almost always 1) the following equation holds: 1− LOC = UTIL.
While evaluating job scheduling strategies with a fixed set of jobs, it is observed, that

the ranking of strategies depends on the used metrics. Some strategies try to achieve good
slowdown values while others optimize the utilization of the system. Moreover, scheduling
strategies are designed especially for optimizing one of the metrics e. g. the SMART algo-
rithm [91, 76]. However, when comparing the ranking of scheduling strategies for different
performance metrics it is observed, that the average response time weighted by job width
(ARTwW) and the average slowdown weighted by job area (SLDwA) behave similarly. In
fact it is possible to convert one metrics into the other by means of a constant factor:

39

3 Job Scheduling and Evaluation Methodologies

SLDwA

ARTwW
=

m∑

i=1

ai · si

m∑

i=1

ai

·

m∑

i=1

wi

m∑

i=1

wi · tri

=

m∑

i=1

(li · wi) · tri
li

m∑

i=1

ai

·

m∑

i=1

wi

m∑

i=1

wi · tri

=

m∑

i=1

wi

m∑

i=1

ai

(3.8)

The ratio of the average width and average area of all jobs is constant for a given set of
requests. As these values are independent from the waiting time of requests, both metrics
generate the same ranking for different scheduling strategies and job inputs. The ARTwW
is more difficult to understand for users, as the response time contains the duration. As
the SLDwA is measured without a dimension it is more user-friendly: If the system has an
average slowdown of e. g. three, users have to wait three times the length of the request unless
results are available. The SLDwA is used in this work.

All presented metrics are based on job properties and are therefore easy to compute. Some-
times more sophisticated metrics are helpful, e. g. the understandability or readability of a
schedule. However, they are difficult or even impossible to measure from job properties as
the users knowledge of scheduling is taken into account. For planning systems this is still
neglected. As the current schedule is visible to the users, they want to understand the actions
of the scheduler. For example: a slot in the schedule exists and a user submits a job that fits
perfectly into this slot. If it is placed in this slot the user is satisfied and the scheduling action
was understandable. However, if the scheduling strategy is too complex (e. g. the weight of
a job is computed from job properties, user weights and current system properties) and the
job is not placed in that slot, the user is not satisfied. If such cases are frequent users will
probably submit their jobs to different machines. Sorting the list of variable jobs by increas-
ing arrival time leads to more understandable schedules. If sorting is done by increasing or
decreasing run time the readability of the schedule changes significantly as one very short or
long job might change the complete schedule.

However, fairness helps with the problem of understanding or reading schedules. In [94, 79]
a scheduling strategy is named λ-fair if all jobs submitted after a job i can not increase the
response time of i by more than a factor of λ. The term is defined in the theoretical analysis
of preemptive scheduling algorithms, hence the factor is related to optimal solutions. Another
approach is to define the term fairness with respect to the start times in a pure FCFS schedule
(without any backfilling). In [88] the term fairness is generally less defined. As schedulers
may favor jobs with certain properties, the fairness is measured on a case-by-case basis. The
MASC (Maximum Allowable Skipping Count) defines the maximum number of jobs that can
pass a waiting job. As the MASC is given specifically for each job, jobs are not indefinitely

40

3.5 Workloads

delayed.

3.5 Workloads

An evaluation of job scheduling strategies contains three parts: the scheduling strategy, the
performance metrics and a set of jobs as input for the scheduler. The job input is also called
workload for the job scheduler. In this context a job is defined by:

1. the time of submission

2. the number of requested resources (= width)

3. the estimated duration (= length)

4. and actual duration

These job properties are necessary for the scheduler to work with the job. As we model a
planning system the run time estimate is mandatory. And as a simulation environment is
used to perform the evaluation, information about the actual duration of jobs also needs to
be specified in the job set. Several options exist for generating the four properties:

Random Generated A random number generator (usually in the range 0 to 1) is used to
obtain the four values. However, random functions are evenly distributed in most program-
ming languages. For the job width this means: having 32 resources in total and jobs are of
arbitrary size, every width between 1 and 32 occurs with a probability of 1

32 . However, this is
not the case in the real world. Smaller or even sequential jobs are found far more often than
large jobs requesting e. g. more than 50% of all available resources [24, 41, 57].

Worst Case For each scheduling strategy a set of jobs can be created, which results in a
worst case behavior of the scheduler. Obviously each scheduling strategy has its own set of
worst case jobs. A simple worst case example for pure FCFS is taken from [75]: the current
waiting queue of a pure FCFS scheduler (without any backfilling) consists of a sequence of
jobs. Odd jobs are short (e. g. 10 seconds) and request the full machine. Even jobs are long
(e. g. 10 minutes), but request only one 1

10 of the machines resources. Both job types are
submitted alternatingly.

The resulting pure FCFS schedule has a ladder like appearance as jobs are started in the
same order as they are submitted. It is impossible to start two even jobs at the same time
as an odd job is always submitted in between. However, if backfilling is applied 10 even
jobs are started at the same time, because 9 even jobs are able to overtake the next odd
job without delaying it. This example shows how unrealistic worst case workloads might
be. If a scheduling strategy is used in a real environment, its worst case performance can
be neglected as such worst case scenarios are very unlikely to occur. More important is the
average performance with realistic workloads.

Job Model In order to generate more realistic workloads, job models use non-uniform dis-
tributions for the width, length and interarrival time. The parameters of the distributions
are taken from a statistical analysis of different workload logs. Therefore, it is possible to

41

3 Job Scheduling and Evaluation Methodologies

generate new job sets with similar statistical properties. At the same time these properties
can be changed, e. g. for generating a higher system load.

According to [6] job models fall into two categories: those modelling rigid jobs and flexible
jobs. Models for rigid jobs generate jobs with a given time of submission, number of resources,
and run time. The two values describing the size of the jobs (number of resources and run
time) are fixed and the scheduler can not change them. In contrast, a flexible job model
describes how the application performs at different levels of parallelism. For example, this is
described by data about the total computation and by specifying a speedup function. The
scheduler is now able to choose a job size that fits best in the current schedule.

The following models are available in Feitelson’s Parallel Workload Archive [89] for down-
load (Table 3.3 shows a comprehensive overview):

[4] Calzarossa and Serazzi, 1985: only the arrival process of interactive jobs in a multi-user
UNIX environment is modelled

[54] Leland and Ott, 1986: only the actual run time of processes in an interactive UNIX
environment is modelled

[81] Sevcik, 1994: includes the speedup characteristics of parallel applications including
imbalance, inherited serial work and parallel overhead

[17] Feitelson, 1996: is based on characteristics of rigid jobs from six traces; includes distri-
bution of job width, correlation between run time and parallelism (width), and repeated
runs of the same job

[10] Downey, 1997: is based on observations from the SDSC Paragon log and CTC SP2 log;
includes moldable jobs where the width is chosen by the scheduler

[47] Jann et al, 1997: a detailed model of parts of the CTC SP2 log; handles rigid jobs with
distribution of run times and interarrival times

[27] Feitelson and Rudolph, 1998: is a framework to create models which focus on the
connections between application behavior and scheduling

[59] Lublin, 1999: a detailed model for rigid jobs, which includes arrival pattern with a
daily cycle, correlation between run times and requested nodes, distinction between
interactive and batch jobs

[7] Cirne and Berman, 2001: generates moldable jobs and is based on the model of Downey,
1997

Unfortunately, all job models do not contain any information about the estimated run time.
However, run time estimates are mandatory for this work.

Trace Today most parallel supercomputer installations and their resource management sys-
tems generate traces. The data contained is used for accounting purposes or the evaluation
of the machine usage. The data is logged in different levels of detail. Core data for every job
is always stored: the submit, start and end time, the number of used resources, and probably
a user ID. Some systems also store pre-scheduling data, e. g. run times estimates or memory
usage. Other systems log internal scheduler information about the prioritization parameters

42

3.5 Workloads

reference jobs work parallelism run time speedups arrivals
[4] Unix no no no no yes
[54] Unix yes no yes no no
[81] moldable no no yes yes no
[17] rigid no yes yes no partial
[10] moldable yes yes yes yes partial
[47] rigid no partial yes no yes
[27] varied yes partial partial implied no
[59] rigid no yes yes no yes
[7] moldable yes yes yes yes yes

Table 3.3: A comprehensive overview on available job models in the Parallel Workload Archive
[89].

or queues. Many traces exist and are available on the internet. Two sources are the Par-
allel Workload Archive [89] and the Maui Scheduler Workload Trace Repository maintained
by supercluster.org [60]. Furthermore, traces from the hpcLine [43] cluster installed at the
Paderborn Center for Parallel Computing (PC2) exist. Details on the available traces are
given in the following.

Again, for this work it is important that run time estimates are logged in the trace as this
information is required for the backfilling.

The advantage of traces over random generated or worst case job set is the realism of
the logged job properties. For an evaluation of job scheduling strategies many traces with
different characteristics have to be used in order to achieve a broad spectrum of results. A
scheduling strategy might be good for one type of job, but might generate poor results for
other job characteristics.

In the following some information about listed traces in the two archives and the related
machines is provided.

Parallel Workload Archive

• NASA Ames, system: 128-node iPSC/860 hypercube, duration: fourth quarter of
1993, jobs: 42,050 total, 14,794 user:
This is the first workload trace which was analyzed in detail [24]. For each job the
number of nodes, the actual run time in seconds (not node-seconds), and the local start
date and time are available. User and job names are substituted by irrelevant text
strings. However, classes of users are retained, e. g. root, development, support, and
user. Because of the system architecture the number of requested nodes is limited to
powers of two. The NQS queue configuration is found in Table 3.1.

• SDSC4, system: 416-node Intel Paragon, duration: all of 1995 and 1996, jobs: 76,872
in 1995 and 38,723 in 1996:
In fact only 352 nodes are usable by parallel jobs via NQS, 48 nodes are for interactive
access and the remaining nodes are for the service (e. g. login) and I/O. The compute
partition itself is divided into 64 nodes for short jobs and 288 for long jobs. Three
classes of run time limits exist: short (1 hour), medium (4 hours), and long (12 hours).

4San-Diego Supercomputer Center

43

3 Job Scheduling and Evaluation Methodologies

Each job in the trace is specified by the number of nodes, the submit time, the start
time (so the waiting time can be computed), the end time (so the actual run time can
be computed), the used CPU time, the used NQS queue and their limits, and the users
name.

• CTC5, system: 512-node IBM SP2, duration: July 1996 - May 1997, jobs: 79,302:
As with all other SP2 traces in the archive the machine is scheduled by LoadLeveler.
Therefore, run time estimates are available. Additionally, on this machine EASY is
attached to LoadLeveler. This machine is heterogeneous in the sense that the nodes are
not identical. 430 nodes are available in the batch partition and most of them (352) are
’thin’ nodes each equipped with 128 MB. For each logged job a variety of information
is available. The most important for scheduling are: number of nodes, submission,
start and completion time, and most important is the maximum run time. This time is
entered by users in advance and is used by the EASY scheduler for backfilling.

• KTH6, system: 100-node IBM SP2, duration: October 1996 - August 1997, jobs:
28,490:
Basically, the same job properties as on the CTC SP2 are logged for this machine. As
EASY is used run time estimates are available, too. This machine is also heterogeneous
as different types of ’thin’ and ’wide’ nodes are built in. Basically all nodes are avail-
able for batch processing. However, from time to time some nodes were put aside for
special/interactive usage.

• LANL7, system: 1024-node Connection Machine CM-5 from Thinking Machines, du-
ration: October 1994 - September 1996, jobs: 201,387:
The trace of this machine is different to all others as the machine works with a fixed
partitioning. Therefore, the number of nodes for a job is limited to powers of two and
the smallest allocatable partition is 32 nodes. Except the SP2 traces from CTC, KTH,
and SDSC this is the only trace that also comes with run time estimates.

• LLNL8, system: 256-node Cray T3D, duration: June - September 1996, jobs: 21,323
(represented by 40,591 rolls):
The scheduler of this machine is unique as it supports gang-scheduling9 [21, 78, 96].
Therefore, jobs are occasionally preempted and swapped out in favor of other jobs.
This is also called ’roll-in’ and ’roll-out’, and the trace contains information about
every ’roll’-activity. Basic job properties are traced: number of nodes, the start time
and date (when the execution actually begins, after job initiation or ’roll-in’), the run
time and some others. The queues of the scheduler have different resource and duration
limits. The maxima are 64 processors for 40 hours or 256 processors for only 4 hours.
More information on the gang scheduler of this machine can be found in [21].

• SDSC, system: 128-node IBM SP2, duration: May 1998 - April 2000, jobs: 67,667:
The trace comes from the NPACI10 JOBLOG repository [67] and provides a rich set of

5Cornell Theory Center
6Swedish Royal Institute of Technology
7Los Alamos National Lab
8Lawrence Livermore National Lab
9An intuitive extension of time-sharing on multiprocessor systems. All parallel instances of an application

are suspended at the same time.
10National Partnership for Advanced Computational Infrastructure

44

3.5 Workloads

information. Unfortunately, no information is found as to whether EASY is used for
scheduling or not. The fact that run time estimates are available like for all other SP2
machines indicates the use of EASY.

• LANL, system: cluster of 16 Origin 2000 machines with 128 processors each (2048
total), duration: Dec 1999 - Apr 2000, jobs: 122,233:
This machine is the largest in the archive, but only four months of traces are avail-
able. LSF11 [58] is used as the resource management system. Unfortunately, run time
estimates are not provided.

Maui Scheduler Workload Trace Repository Much less information is available for these
traces and the related machines. Common for all is the usage of the Maui Scheduler [46, 61]
and as it falls in the class of planning systems run time estimates are available. Unfortunately,
most of the repository itself is in a bad condition as two traces (ANL, NCSA) and information
about machine and scheduler configurations is not accessible. In general, the Maui scheduler is
combined with the commercial resource management system PBS pro [69]. This combination
is very popular for scheduling and managing large Linux Clusters.

• CHPC12, system: 266 processor Linux Cluster, duration: March 2000 - March 2001,
jobs: 20,000

• MHPCC13, system: 224 processor IBM SP2, duration: March 1998 - April 1998, jobs:
4100:
In contrast to the other SP2 traces from the Parallel Workloads Archive, LoadLeveler
is not used for scheduling this IBM SP2. The scheduler component was replaced by the
Maui scheduler.

• ANL14, system: 256 node, dual processor Linux Cluster, duration: May 2001 - n/a,
jobs: n/a

• OSC15, system: 32 node, quad processor and 25 node, dual processor Linux Cluster,
duration: January 2000 - November 2001, jobs: 80000:
It is not clear from which of the two clusters the traces were generated.

• NCSA16, system: 512 node, dual processor Linux Cluster, duration: October 2001 -
n/a, jobs: n/a

The PC2 Trace The Fujitsu-Siemens hpcLine system [43] is a typical HPC cluster which
is a combination of a fast interconnect and powerful computing nodes. The SCI (Scalable
Coherent Interface [80]) interconnect comes with a high bandwidth (80 - 280 MByte/s) and
low latency (4 - 10 µs for ping-pong/2). The nodes hardware is taken from reliable server
products and each node is equipped with two Intel Pentium III 850 MHz processors and
512 MB main memory. Altogether 96 nodes are installed. The PC2 has developed its own
11Load Sharing Facility
12Center for High Performance Computing, University of Utah
13Maui High Performance Computing Center
14Argonne National Lab
15Ohio Supercomputing Center
16National Center for Supercomputing Applications, University of Illinois at Urbana- Champaign

45

3 Job Scheduling and Evaluation Methodologies

resource management system which is called CCS (Computing Center Software) [3, 51]. It is a
planning system and not a queuing system. On the hpcLine node scheduling is applied, which
means, that the smallest entity that can be requested by users is a node, i. e. two processors.

The available data covers approximately two years of machine usage. From January to
December in 2001 and 2002. The data is not joined to one trace as the machine is shut down
for maintenance between Christmas and the first days in January (cf. Table 3.5). Hence, the
PC2-2001 trace contains 35,094 jobs and the PC2-2002 32,212 respectively.

3.6 Analysis of Traces

As already stated above, run time estimates are needed by queuing systems with backfilling
applied and by all planning systems run time estimates are needed. Therefore, the IBM SP2
traces from CTC, KTH, SDSC, and LANL are chosen from the Parallel Workloads Archive.
Unfortunately, only the CHPC and MHPCC are downloadable from the Maui Scheduler
Workload Trace Repository. Finally this makes eight traces that are used in this work: CTC,
KTH, SDSC, LANL, PC2-2001, PC2-2002, CHPC, and MHPCC.

The following tables and figures contain detailed information on the eight traces and their
differences. Table 3.4 shows basic job properties which include data about requested resources,
estimated and actual run times. The interarrival time is the time distance between two
consecutive job submissions and gives information on the arrival process. For each of the four
job properties the minimum, average, and maximum values are printed. As stated earlier the
LANL users can only request power of two resources starting at 32 (i. e. requested resources
have values of 32, 64, 128, 256, 512, and 1024). On all other machines users are able to
request an arbitrary number of resources.

On some systems (CTC, CHPC, MHPCC) users either did not or were not allowed to
request all available resources of the machine. Run time data and the over-estimation factor
(ratio of estimated to actual run time) in the bottom table of Table 3.4 show, that users
estimate their jobs about two to three times longer than the jobs actually run. Comparing the
values for available resources and maximum estimated run time shows, that for the four SP2
machines these values are coupled similarly to a speedup function: the more total resources
the machine has, the smaller the maximum requested run time is.

The high maximum interarrival time of 1.8 million seconds results from a 20 day period
between the 27th of May and 17th of June 2002. During this time the machine was dedicated
to a single user and resource management was not done. Therefore, no trace data is available,
although a utilization of 100% is seen in Figure 2.2 on page 19.

Table 3.5 shows the exact dates of the first and last job submission. For the traces taken
from the Parallel Workloads Archive job submissions are logged in seconds from the beginning
of the trace. With the exact information about the date and time of the first job submission
it is possible to convert all subsequent events to a real date and time. Therefore, it is possible
to observe the scheduler performance on a monthly or even daily basis.

In order to get a feeling for the trace and how much the machine was utilized at the time the
trace was generated, simulations with a FCFS + EASY backfill scheduler were done. Table 3.6
shows the results. For some traces less jobs are simulated and scheduled as available, because
the simulation environment had to reject jobs which came with a zero actual run time. After
the simulation ended and while computing the slowdown, jobs with zero actual run time
crashed the analyzer as the run time was positioned as the denominator. Therefore, such jobs

46

3.6 Analysis of Traces

requested available
resources resources

trace min avg. max on machine

CTC 1 10.72 336 430
KTH 1 7.66 100 100
LANL 32 104.95 1,024 1,024
SDSC 1 10.54 128 128

PC2-2001 1 6.34 96 96
PC2-2002 1 8.14 96 96

CHPC 1 5.80 100 266
MHPCC 1 8.08 180 224

estimated actual average interarrival
run time [sec.] run time [sec.] overest. time [sec.]

trace min avg. max min avg. max factor min avg. max

CTC 0 24,324 64,800 0 10,958 64,800 2.220 0 369 164,472
KTH 60 13,678 216,000 0 8,858 216,000 1.544 0 1,031 327,952
LANL 1 3,683 30,000 1 1,659 25,200 2.220 0 509 201,006
SDSC 2 14,344 172,800 0 6,077 172,800 2.360 0 934 79,503

PC2-2001 1 11,717 1,209,600 1 4,346 604,800 2.696 0 870 313,861
PC2-2002 1 33,942 604,800 1 6,310 604,800 5.379 0 944 1,835,392

CHPC 5 168,024 10,800,000 0 47,838 2,275,790 3.512 0 1,750 170,365
MHPCC 30 20,079 129,600 8 6,246 116,128 3.215 0 740 94,979

Table 3.4: Basic properties of the used traces (86,400 seconds = 1 day).

last job
trace submission [sec.] first job submit last job submit

CTC 29,299,062 Wed, 26 Jun 96, 16:06:00 Sat, 31 May 97, 22:11:26
KTH 29,363,618 Mon, 23 Sep 96, 12:00:31 Fri, 29 Aug 97, 08:55:01
LANL 62,288,828 Tue, 04 Oct 94, 07:01:12 Tue, 24 Sep 96, 06:44:55
SDSC 63,183,029 Wed, 29 Apr 98, 16:05:28 Sun, 30 Apr 00, 04:08:32

PC2-2001 30,538,430 Tue, 02 Jan 01, 08:15:43 Fri, 21 Dec 01, 22:26:20
PC2-2002 30,439,963 Mon, 07 Jan 02, 11:35:11 Wed, 25 Dec 02, 19:07:57

CHPC 34,274,155 Sat, 08 Apr 00, 04:41:54 Wed, 09 May 01, 21:17:49
MHPCC 2,417,836 Sat, 28 Feb 98, 20:58:41 Sat, 28 Mar 98, 19:34:37

Table 3.5: Length, start and end dates of used traces.

are left out and not scheduled. This corresponds with the column ’min. actual run time’ in
Table 3.4 and zero entries.

The workload for the scheduler is also often called backlog. There is no common definition
for the backlog, however the average queue length can be used. At the end of a simulated
schedule a potential backlog is obvious. If the backlog is low or does not exist, the last
submitted job usually doesn’t have to wait until it is executed. By comparing the virtual end
and the actual makespan of a schedule the size of the backlog at the end of the schedule can
be estimated. The virtual end denotes the time at which the last submitted job would end
if it is directly started after submission. It is computed from the arrival time plus actual run
time of the last submitted job. However, this only represents the backlog towards the end
of the schedule. The average queue length (6th column) new jobs see at their submission
represents the backlog during the total length of the trace. Additionally, how many newly
submitted jobs had to wait for execution (last column in Table 3.6) is counted. The four

47

3 Job Scheduling and Evaluation Methodologies

SP2 traces (CTC, KTH, LANL, SDSC) come with considerable large numbers for both, as
these machines are real production machines at large computing centers. All other remaining
traces do not show such large numbers. All remaining traces are derived from PC-based
cluster systems.

In the bottom part of Table 3.6 several job performance metrics are presented. The average
response time, measured in seconds, is difficult to handle, unless the average length of all
scheduled jobs is not printed (the response time is computed from its waiting time and run
time). This confirms the choice for the slowdown metrics, as it is measured without any
dimension. The very small waiting times (even without comparing them to the job length)
for PC2-2001, PC2-2002, CHPC, and MHPCC are also reflected by SLDwA values very close
to one. Comparing the slowdown values near one with the achieved utilization shows their
dependence: if the utilization is low (e. g. less than 50%) the schedule is empty, the backlog is
small, jobs wait only for a short amount of time and so in the end they achieve good slowdowns.
Large slowdowns represent a packed schedule where jobs have to wait for execution.

total scheduled makespan virtual avg. queue waiting
trace jobs jobs [s] end [s] length jobs > 1

CTC 79,302 79,279 29,306,682 29,301,671 49.56 44,126
KTH 28,487 28,479 29,363,626 29,363,626 16.37 20,801
LANL 122,305 122,305 62,292,428 62,292,428 24.24 55,588
SDSC 67,631 67,620 63,213,412 63,189,634 40.79 54,496

PC2-2001 35,094 35,094 30,552,830 30,552,830 8.41 4,154
PC2-2002 32,212 32,212 30,439,966 30,439,966 91.37 3,471

CHPC 19,583 19,270 34,274,160 34,274,160 4.34 646
MHPCC 3,273 3,267 3,102,871 3,102,871 9.29 146

AWT ARTwW avg. job SLDwA UTIL
trace [s] [s] length [s] [%]

CTC 4,829 19,917 10,961 2.0455 65.70
KTH 7,989 28,680 8,860 3.1015 68.72
LANL 1,340 4,642 1,658 1.6801 55.61
SDSC 21,064 63,918 6,077 6.8261 82.48

PC2-2001 216 6,586 4,345 1.0846 46.07
PC2-2002 279 5,744 6,310 1.0798 47.64

CHPC 3 30,929 48,615 1.0004 38.39
MHPCC 298 7,245 6,246 1.2362 28.55

Table 3.6: Performance scheduled by FCFS + EASY backfill. The virtual end is the arrival
time of the last submitted job plus its actual run time. ’jobs waiting > 1’ denotes
the number of job submissions at which previously submitted jobs are still waiting
for execution.

Nevertheless the downloaded traces could not be used straightaway. While converting the
traces to the MuPSiE job format, jobs are not converted:

• if the submission time is shorter than the submission time of the last job. Thereby,
negative time steps are prevented.

• if the number of requested resources is zero, negative or larger than the number of
available resources on the machine.

• if the actual or estimated run time is negative.

48

3.6 Analysis of Traces

Furthermore, the actual run time is cut off at the estimated run time as jobs are not allowed
to run longer than estimated. It does not matter, whether this is done whilst converting jobs
or whilst reading jobs in the simulation. Additionally, about 40 jobs were left out at the
beginning of the original MHPCC trace due to very large interarrival times. These 40 jobs
were submitted during the first 20% of the original trace and they generated no noticeable
utilization. If these jobs had been considered in the evaluation process, the average utilizations
would have been incorrect. User centric performance metrics like the SLDwA would not
change dramatically as the slowdown is already close to one for the rest of the trace.

The provided additional information for the LANL trace states, that the last job was
submitted in September 1996 (Table 3.5). However, two jobs are logged after this last job
submission. We deleted these two jobs as their submission dates are in the December time
frame with almost two months of interarrival time in between. If these two jobs were to
be used for the evaluation, the utilization results would be false with two months of no job
submission.

The minimum, maximum and average values as stated above are typically insufficient for
describing the job traces in detail. Hence, distribution plots for the arrival process, the
estimated, and actual run time are presented in the following. Common to all figures is,
that the accumulated number of jobs relative to the total number of jobs is printed on the
y-axis. In Figure 3.4 the arrival time relative to the previous arrival time is plotted on the
x-axis. Obviously all curves have to start at (0,0) and have to end at (1,1) as 100% of all
jobs are submitted with the last job. A direct line from these two points indicates a constant
submission pattern. A larger gradient (e. g. SDSC at 0.2) indicates a burst of job submissions.
It means, that many jobs are submitted over a relatively short amount of time. The 20 days
down time in the PC2-2002 trace are reflected by a horizontal line from 0.4 to 0.5. All in all an
irregular arrival process is observable for the four cluster system traces PC2-2001, PC2-2002,
CHPC, and MHPCC. The traces from the SP2 machines show a smoother arrival pattern
which is only interrupted by a burst in the SDSC trace at the beginning and towards the end
in the LANL trace.

Run time distribution plots are used to describe the job run time in more detail. Compared
to the arrival process plot the x-axis shows the run time in a logarithmic scale. All traced
jobs are categorized according to their estimated or actual run time. The accumulated sizes
for each category are printed on the y-axis. Therefore the curves end at the maximum
estimated/actual run time from Table 3.4. Figure 3.5 shows, that job length categories with
many jobs exist. Examples are: 600 seconds (10 minutes) in the two PC2trace as 10 minutes
are the default value for the run time estimate, if nothing is specified by the user. 3,600
seconds (1 hour) for almost all traces (KTH, PC2-2001, PC2-2002, SDSC, and CHPC) and
86,400 seconds (1 day) for CTC. In the PC2-2002 trace almost half of the jobs are estimated to
have a run time of 10 minutes. This was induced by a small test script that was continuously
(every hour) started by one of the projects through the Globus interface [37]. Most of these
jobs were submitted in the last two months of the trace.

The large increase at the beginning of the CTC trace is misleading. Only 6 out of 79,302
jobs come with an estimated run time of zero seconds. Due to the fact that the next run
time category is 300 seconds (with 6,802 jobs) and an logarithmic scale is used, a direct line
is drawn between one and 300 seconds. The exact start and end points (i. e. their according
run times) for each curve correspond with the entries for min and max estimated run time in
Table 3.4. All curves have a staircase like shape as users usually choose round and common
values (e. g. 10 minutes, 1 hour, 1 day) as run time estimates.

49

3 Job Scheduling and Evaluation Methodologies

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

arrivaltime / last arrivaltime

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

m
u

la
te

d
 p

er
ce

n
ta

g
e

o
f

jo
b

s

MHPCC

SDSC

PC2-2002
CHPC

LANL

PC2-2001

KTH
CTC

Figure 3.4: The arrival process: relative arrival (each arrival time is divided by the maximum
arrival time) on the x-axis, accumulated number of jobs on the y-axis.

In contrast, the curves for the actual run times are smoother as applications typically do
not end after common durations, but jumps are still observable in Figure 3.6. This is the
result of killed jobs that tried to run longer than estimated. For example in the PC2-2001
trace at 7,200 seconds: 6,849 jobs are estimated to have had a run time of two hours and
5,553 jobs also ended after a two hour duration. These are not necessarily the same jobs, but
it seems that they are killed by the resource management system. The curve for PC2-2002
rapidly increases at the start, indicating that many jobs (more than 60%) have a run time of
less than one minute. Continuously started test jobs finished their work after some seconds,
especially the already named.

Like with the estimated run time, jobs with a zero or one second actual run time exist. Such
jobs might represent errors, like a missing or mistyped path, filename or input parameter. It is
also observed, that for some traces (CTC, KTH, LANL, SDSC and MHPCC) almost no jobs
with actual run times below a certain threshold exist (e.g. 13 seconds for CTC). A conjecture
might be that this indicates the fixed time every resource management system needs for
preparing and shutting down a partition17. In such systems a job start is probably logged
when the related resources are taken from the system (and are therefore no longer available
for other jobs) and not when the application is actually started on the set of resources.

For some of the evaluations the original traces can not be used, as they either contain too
many (CTC, LANL) or not enough (MHPCC) jobs. Too many jobs elongate the run time of
the simulation and usually without generating different results. Less jobs are enough, hence
we arbitrarily choose an amount of 10,000 jobs. However, these 10,000 jobs are not a subset of
17A set of resources assigned to the same job is often called partition.

50

3.6 Analysis of Traces

1 10 100 1000 10000 100000 1000000 10000000

requested runtimes in seconds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ac

cu
m

u
la

te
d

 p
er

ce
n

ta
g

e
o

f
jo

b
s

CTC

LANL
KTH

SDSC
PC2-2001

CHPC
MHPCC

PC2-2002

Figure 3.5: Distribution of estimated run times.

1 10 100 1000 10000 100000 1000000 10000000

actual runtimes in seconds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

m
u

la
te

d
 p

er
ce

n
ta

g
e

o
f

jo
b

s

CTC
KTH
LANL
SDSC
PC2-2001

CHPC
MHPCC

PC2-2002

Figure 3.6: Distribution of actual run times.

51

3 Job Scheduling and Evaluation Methodologies

the original trace or randomly chosen. Here we use synthetically generated jobs which retain
the characteristics of the original traces. Several advantages arise, as it is possible to:

• generate any number of jobs,

• modify the analyzed information for generating job sets with different characteristics,

• apply other modifications, e. g. large jobs are split up in width, so that the maximum
job width is only 64, but the total area of all jobs does not change.

The four elementary job properties to model are: arrival time, number of requested re-
sources, estimated and actual run time. The arrival time of each job is modelled by the
interarrival time and the arrival time of the previous job. The interarrival time is best ex-
pressed by a Weibull distribution f(x) = 1 − e

−(x
β

)α

. Values for α and β and the likelihood
of the interarrival time for each trace are given in Table 3.7.

likelihood of weibull distribution
trace interarrival time α β

CTC 0.0063932 0.35 60
KTH 0.0116895 0.35 200
SDSC 0.0104242 0.40 290
LANL 0.0001635 0.45 180

PC2-2001 0.0659942 0.25 40
PC2-2002 0.0523407 0.25 40

CHPC 0.0328346 0.35 300
MHPCC 0.0012243 0.35 120

Table 3.7: Weibull parameters for the distribution of interarrival time.

Although the other three job properties all depend on each other, no distribution was
found to model them [86, 53]. Hence, a 3-dimensional matrix holds probability values for all
combinations of job width, estimated and actual length. The trace analyzer generates the
parameters for the Weibull distribution and the probability matrix.

With this statistical information as input the job generator is started. Each time a new job
is generated, first its submission time is computed from the previous arrival time, a random
number and the Weibull distribution. Three more random numbers and the 3-dimensional
probability matrix are used to generate the remaining values for the number of requested
resources, the estimated, and actual run time.

The complete process of analyzing a trace, retrieving the statistical parameters and the
probability matrix, and finally generating synthetic job sets is described in [53]. Synthetic
job sets generated by this approach are used in many other NWIRE18 related publications
[84, 40, 13, 15, 14, 94].

3.7 Increasing the Workload

Traces consist of a set of jobs and as described each trace comes with different job properties
(i. e. long/short jobs, small/large jobs, continuous/bursty arrival rates, etc.). However, a
trace also reflects the performance of the scheduler and the user behavior induced by the
scheduler. If such traces are used again as input for a scheduler and furthermore to evaluate
18Net-Wide-Resources, http://www-ds.e-technik.uni-dortmund.de/~rmg/de/

52

http://www-ds.e-technik.uni-dortmund.de/~rmg/de/�

3.7 Increasing the Workload

different scheduling strategies, the results are not meaningful. Hence, scheduling jobs which
have already been scheduled by a scheduler before is not a hard task.

However, an interesting question to evaluate is ”How do different scheduling strategies
react on less or more workload?” Obviously, less workload is not interesting to analyze as the
scheduler has less opportunities to sort a list of jobs differently or to find jobs for backfilling.
Hence, an increased workload resulting from more users is emulated. Two general approaches
are imaginable: reducing the average interarrival time and increasing the run time (both
estimated and actual):

1. shrinking factor: The arrival time of each job in the job set is multiplied by this
factor. This can easily be done as the arrival times are given in seconds from the first
job submission. Smaller arrival times and thereby smaller interarrival times mean, that
the same number of jobs are submitted in a shorter amount of time. The workload
for the scheduler is increased with a shrinking factor of less than one. A benefit is,
that the job area (either number of requested resources or run time) is not changed at
all. However, a drawback is, that the simulated day becomes shorter and characteristic
submission patterns for prime time and non prime time are also shortened.

2. run time extension: The run time of a job is extended by multiplying it with an
extension factor greater than one. It is necessary to change both run time values (the
estimated and actual run time). If only the estimated run time is increased, the job
still ends at the original time. If only the actual run time is increased, the job runs
longer than estimated and schedulers typically kill such jobs. However, the submission
process is not changed. Characteristic arrival patterns are retained and the length of the
day is not shortened. A drawback is the change of the characteristic usage of common
estimated run times (Figure 3.5), e. g. common values like 10 minutes, 1 hour, or 1 day.

The following example shows, that both approaches are similar: Assume a run time exten-
sion factor of 1.1. Each job gets 10% longer and the total area of all jobs is also increased
by 10%. Furthermore, assume that the makespan of the schedule only depends on the last
job, which is submitted after a long submission pause. Hence, the makespan of the complete
schedule is extended only by 10% of the length of the last job. And the last job may be very
short. As the total area of processed jobs is 10% larger, the utilization of the machine also
increases by almost 10% (definition 3.6). If the shrinking factor had been used instead for
this example, the total area of all jobs (the numerator) would not have changed. Assume
that the submission pause is so long that after reducing the arrival time of the last job, the
submission pause still exists. The makespan is then also reduced and therefore the utilization
is increased. By choosing a proper shrinking factor the same utilization as for the extension
factor of 1.1 is achievable.

In the end, both approaches increase the workload and both modify job properties. How-
ever, the shrinking factor does not change the shape of the jobs. The emulation of more
users is represented in a better way by the shrinking factor, as the average interarrival time
is reduced. Additionally, extending the run times of jobs induces problems with algorithms
that use run time bounds for changing their behavior. Such bounds would have to be adapted
according to the run time extension with increased workload.

Therefore, we use the shrinking factor, in the following, to increase the workload.

53

3 Job Scheduling and Evaluation Methodologies

3.8 Simulation Environment

As already mentioned above it is common practice to evaluate job scheduling strategies in
simulation environments. For this purpose we developed MuPSiE19. It consists of a large set
of tools which we describe in the following.

With the job-converter different trace formats like the MAUI, CCS or the SWF format
(used in the Parallel Workload Archive [89]) are converted to the MuPSiE specific job format.
The MuPSiE job format is simple, because jobs are described by their job number (this is
also a unique ID for identifying jobs), arrival time (in seconds from the start of the job set),
requested number of resources, actual run time, and estimated run time. At the start the
number of resources to use is specified by the string ”Machine Size:”. Comments are marked
with ’#’ and the rest consists of one job per line. As an example, the beginning of the
PC2-2001 trace looks as follows:

Machine Size: 96

Start Time: Tuesday, 2 Jan 01, 08:15:43

now the jobs !

format: job number, submit time, req. resources, actual run time, est. run time

0 1 64 79 21600

1 221 96 163 1200

2 994 8 10 60

3 1017 64 86400 86400

4 4966 4 172800 172800

5 5554 8 88787 172800

6 5688 8 25 1200

7 6152 8 61 1200

8 6238 4 22 1200

9 6474 16 58 1200

10 17661 4 3970 172800

We developed our own job format as it is lean and contains only the relevant information
needed by the simulation environment.

Changing the average interarrival time with the shrinking factor from the previous section
is done with the job-shrinker. Like all other job set related tools the job-shrinker requires
the input in the MuPSiE job format. Analyzing a set of jobs is done with the job-analyzer.
It provides information like presented in Table 3.4. The job-generator is used to generate
synthetic job sets. For input this tool needs a trace statistic as described in Table 3.7. For
obtaining the statistical data an analyzer tool from the NWIRE environment [94] is used.

Both concepts of resource management systems (queuing and planning system) and a va-
riety of scheduling policies are implemented in MuPSiE. Especially the re-planning process
of CCS [52] is implemented. It consists of: clearing the whole current schedule, reinserting
all running jobs, reinserting all made reservations, and finally reinserting the sorted list of
variable jobs by placing each job asap.

Besides these three basic sorting schemes FCFS, SJF, and LJF several other sorting policies
are also implemented. And of course all algorithms presented in this work are implemented.
Furthermore, it is also possible to compute optimal schedules by means of the CPLEX library.

Each schedule event (submit, start, actual end) is printed by the scheduler in a special
format, which is later used to analyze the performance of the scheduler. Examples are:
19Multi Purpose Simulation Environment (for job scheduling)

54

3.8 Simulation Environment

• SUBMIT-0 8008950, e n 15, bl 11, ID 4538:
The job with ID 4538 was submitted at 8,008,950 seconds since the start of the simu-
lation. After the job is submitted the backlog consists of 11 jobs (including this one)
and 15 nodes are empty. The information about empty resources (e n) and the backlog
(bl) is needed by the schedule analyzer to compute the loss of capacity (definition 3.7).
The number after the keyword SUBMIT is used as an identifier to differentiate between
several machines, if a grid-environment with more than one machine is simulated.

• START-0 8011163, ar 8006040, wi 16, e n 0:
8,011,163 seconds after the start of the simulation the job submitted at time 8,006,040 is
started by the scheduler. 16 resources are allocated at this time and 0 empty resources
are leftover afterwards. Note, this event is not needed for the schedule-analyzer. It is
printed for an improved human readability of the schedule.

• END-0 8011178, ar 8006040, st 8011163, wi 16, e n 16, bl 11, ID 4527:
Job 4527 that arrived at 8,006,040 and was started at 8,011,163 seconds finally finished
its execution at 8,011,178 seconds and had used 16 resources. Again, information for
measuring the loss of capacity is printed as it is done in the SUBMIT event. The END
event is the most important event in the schedule printout. From the given information
the waiting time, the response time and the run time of a job are computed. From these
values the more sophisticated performance metrics like slowdown are derived.

At the end of a simulation run average data about the scheduling process itself is printed.
The following example is retrieved from a simulation of a planning system with FCFS and
uses the original CTC trace of 79,302 jobs as input:

#queue with more than 1 job: 44126

#average queue length: 49.5574

#average schedule time: 1775 clock-ticks = 0.001775 seconds

#number of reschedules done: 156791

#simulation ended normally

The first two lines correspond with the last two columns in the upper part of Table 3.6.
156,791 re-schedules were done and each computation lasted for an average of 1.7 milliseconds.
Additionally, the computational time for each re-scheduling step is printed during the simu-
lation run, so that a detailed observation is possible. The number of reschedules is slightly
less than twice the number of simulated jobs. This is because a re-schedule is done for each
job submit and job end, but sometimes more than one job is submitted or ends at the same
time. In this case only one re-schedule after the last job submit or end is necessary.

Schedules stored in the above given format are read-in by the schedule-analyzer to compute
average performance metrics. Using the information from Table 3.5 it is also possible to print
out monthly averaged performance numbers (Chapter 5). Thereby it is possible to evaluate
the performance more precisely. A schedule-viewer is used to present a schedule graphically.
Such a representation is often helpful during the development and debugging of new scheduling
strategies.

The simulation environment is developed with Borland C++ Builder 5 under MS Windows.
It is implemented platform independent in C++ using STL (Standard Template Library)
classes. The simulation environment has been successfully tested on various architectures.

55

3 Job Scheduling and Evaluation Methodologies

Primarily, simulation runs were done on the hpcLine [43] cluster running Linux. The CPLEX-
scenarios required more memory, hence an 8-way SMP, 64-bit SUN and dual IA-64 Itaniums
were used.

Additional functionality is available in the MuPSiE environment which ease the everyday us-
age. A restart mechanism stores the simulation state on a regular basis (e. g. every hour) and
therefore makes it possible to simulate large and long-running scheduling problems. In com-
bination with automatic startup scripts many simulation runs are automatically distributed
on the cluster nodes, so that autonomous computations are possible.

3.9 Summary

In the previous sections we presented general aspects, terminologies, and definitions for job
scheduling in resource management systems. A classification of resource management systems
based on the scheduled time frame was done as a basis for our work. In contrast to queuing
systems, planning systems schedule the present and future resource usage. Every waiting job
in the system is placed in the schedule and gets a proposed start time assigned. Of course
run time estimates are mandatory in order to plan the schedule. Planning based resource
management systems and their approach to scheduling jobs are the basis for the self-tuning
dynP scheduler.

The scheduling process is influenced by the scheduling policy, which often defines a sorting
order for the waiting jobs. Many policies exist and the focus is on FCFS, SJF, and LJF.
These three policies are also implemented in the resource management software CCS, which
is another basis for this work. As we used the planning based scheduling approach, some kind
of backfilling is done implicitly. Backfilling is a common extension to queuing systems, which
improves the response time and utilization by neglecting the sorting order of the jobs. If the
highest prioritized job has to wait for enough free resources, backfilling starts other jobs with
the guarantee that the highest prioritized job will not wait any longer.

In order to measure the schedulers performance and for comparing different schedulers,
performance metrics are needed. User and owner centric metrics exist. We chose the slowdown
(weighted by the area of jobs) as the user centric metrics and the utilization of the system as
the owner centric metrics.

We used a discrete event simulation environment called MuPSiE for the evaluation of dif-
ferent schedulers. For job input into the simulations we used traces from real HPC systems.
The Parallel Workload Archive and the Maui Scheduler Workload Repository contains many
traces for this purpose. As a planning based scheduling approach requires information about
run time estimates, only a subset of the available traces are usable. These are CTC, KTH,
LANL, and SDSC, respectively CHPC and MHPCC (the names represent the institutions
where the corresponding machines are installed). The first four traces were derived from IBM
SP2 installations, while the others came from cluster systems. Additionally, trace data from
CCS and the hpcLine cluster installed at the PC2 were available. We extracted two traces of
the year 2001 and 2002 from the archive. We analyzed these eight traces in detail and ex-
tracted basic characteristics. Later the original traces were used to evaluate the performance
of the different schedulers.

In order to evaluate the schedulers with an increased workload, two approaches were in-
troduced: 1) increasing the jobs run time and 2) decreasing the interarrival time. In the
first approach the outlook (i. e. area) of the job is changed. Hence, performance metrics that

56

3.9 Summary

are based on the run time (e. g. slowdown or run time) will automatically change, although
the schedulers performance might not be worse. The second approach leaves the area of
jobs untouched and changes the submission behavior (i. e. interarrival time). As the day be-
comes shorter, common submission patterns for prime and non prime time are also changed.
Although both approaches have drawbacks, we used the second approach in this work. Espe-
cially with the dynP scheduler with bounds the first approach is not suitable, as the bounds
are set according to the run time of the jobs. If the run time is changed, so as to increase the
workload, it would be necessary to adapt the bounds, too.

Finally we described the discrete event simulation environment, which we use for the eval-
uation of the dynP scheduler.

57

3 Job Scheduling and Evaluation Methodologies

58

4 Dynamic Policy Switching

In the previous chapter we presented general aspects, definitions, and common terminology
for job scheduling and the evaluation of job scheduling policies for resource management
systems. Herewith, the basis for the following work has been set. A single scheduling policy
is usually used in a resource management system and it typically generates good schedules
only for jobs with specific characteristics (e. g. short jobs). If the job characteristics change,
other scheduling policies might perform better and it might be beneficial that the system
administrator changes the scheduling policy. However, system administrators are not able to
watch and change the scheduling policy permanently.

We developed the family of dynP schedulers, which automatically switch the active schedul-
ing policy during run time. In general, the set of scheduling policies to choose from can consist
of many or even all policies one can think of. However, we restrict the set of used policies
to first come first serve (FCFS), shortest job first (SJF), and longest job first (LJF). This
is done, as these three scheduling policies are commonly known and used in many resource
management systems. SJF is known for reducing the average waiting time of jobs, while LJF
is known for increasing the utilization of the system. FCFS is a good compromise between
these two contradicting objectives and generates understandable schedules. Therefore it is
used as the active policy at many sites. We restrict the set of used policies to the mentioned
three, as we want to evaluate the general behavior and performance of the dynP scheduler
family and if it is beneficial to switch the policy during run time. We do not want to evalu-
ate, which combination of policies is best suited for specific job characteristics. Presumably,
combinations with other and more scheduling policies exist, which generate better results,
than presented in the following.

Initially, we present a variant of the dynP scheduler, which uses bounds for the average
estimated run time of waiting jobs to check, which policy is best suited for the current job
characteristics. This version and some performance numbers are presented in Section 4.2. A
major drawback of this version is obvious, as the performance depends on a proper setting
of the bounds. And in order to reflect different job characteristics, these bounds need to be
changed. We developed the self-tuning dynP scheduler which automatically searches for the
best suited policy.

The aim is to have no more input parameters which depend on the job characteristics.
In Section 4.3 we present the basic concept of such a self-tuning scheduler for the resource
management of HPC systems, which automatically switches the active scheduling policy.
Decider mechanisms with different levels of sophistication can be applied to the self-tuning
dynP scheduler. In Section 4.4 a simple and an advanced decider are presented. The advanced
decider is fair in its decisions, i. e. it does not prefer any policy. Furthermore, the currently
active policy has to be considered in certain decision scenarios in order to find the right policy
to use. The preferred decider explicitly prefers a single policy. Some options for the self-tuning
dynP scheduler are presented in Section 4.5. With these options it is possible to influence
the self-tuning dynP scheduler in a general way, e. g. to add some slackness for reducing the
amount of policy switches.

59

4 Dynamic Policy Switching

As the self-tuning dynP scheduler generates full schedules for each policy in order to mea-
sures them, a quasi off-line scheduling is done. In Section 4.6 we give answer to how much
performance is lost when common scheduling policies are used. The scheduling problem is
modelled as an integer problem. We use the ILOG CPLEX library to solve the integer problem
and to compute the optimal schedule.

4.1 History of Development

At the Paderborn Center for Parallel Computing (PC2) the self-developed resource manage-
ment system CCS (Computer Center Software, [52]) is used for managing the hpcLine cluster
[43]. Three scheduling policies are currently implemented: FCFS, SJF, and LJF. According
to the classification of resource management systems, CCS is a planning based resource man-
agement system. Jobs are placed in the schedule as soon as possible, hence backfilling is done
implicitly. Although three policies are implemented, FCFS is used most of the time. It is
chosen because it provides a certain level of fairness among the jobs and the understandabil-
ity of the schedule is granted. For debugging and accounting CCS stores information about
scheduled jobs in trace files.

From these facts a simple question concludes: Is or was FCFS the best choice, in terms
of response time, for scheduling the submitted workload or do SJF or LJF perform better?
To answer this question we analyzed the scheduling process of CCS and implemented it in
the MuPSiE simulation environment. Two representative job sets were extracted from the
available job traces. Each job set consists of roughly three months of the year 2000. Table 4.1
shows the basic job characteristics. In set1 the duration of jobs is short and the jobs are
submitted at a high rate. In set2 jobs are more than two times longer and they are submitted
with a greater average distance (interarrival time).

average average actual average esti- average inter-
number requested run time mated run time arrival time

job set of jobs nodes [sec.] [sec.] [sec.]

set1 8,469 13.49 2,836 6,554 628

set2 8,166 10.11 6,698 21,634 1,277

Table 4.1: Characteristics of the two jobs sets used in [85].

Simulations with the three scheduling policies were performed for these two job sets. Various
shrinking factors were used to generate different workloads. The average response time (ART)
was used for measuring the performance. The results show, that when focusing on medium
utilizations, SJF was the best choice for one job set, followed by FCFS and LJF. For the other
job set LJF was best and SJF was worst. FCFS is a good average for both job sets. However,
a clear winner could not be found.

set1 SJF FCFS LJF

∼63% 8,335 s 16,587 s 26,459 s
(+49%) (0%) (-60%)

∼78% 34,840 s 45,292 s 93,641 s
(+23%) (0%) (-106%)

set2 SJF FCFS LJF

∼58% 18,388 s 17,182 s 13,883 s
(-7%) (0%) (+19%)

∼73% 45,080 s 37,998 s 26,673 s
(-19%) (0%) (+30%)

Table 4.2: Average response times for SJF, FCFS, and LJF at medium utilizations. FCFS is
used as a reference for computing the percentages. Smaller values are better.

60

4.1 History of Development

0

1

2

3

4

5

6

60 65 70 75 80 85av
er

ag
e

re
sp

on
se

 t
im

e
(*

 1
0.

00
0)

 in
 s

ec
on

ds

utilization in %

set1

SJF
FCFS

LJF
B-dynP

0

1

2

3

4

5

6

55 60 65 70 75 80av
er

ag
e

re
sp

on
se

 t
im

e
(*

 1
0.

00
0)

 in
 s

ec
on

ds

utilization in %

set2

SJF
FCFS

LJF
B-dynP

Figure 4.1: Performance (average response time) focusing on medium utilizations. set1 left,
set2 right. The dynP scheduler uses 2 hours as the lower bound and 2 hours and
30 minutes as the upper bound.

Obviously the performance (and ranking) of the three scheduling policies is strongly related
to the characteristics of incoming jobs. Therefore, the basic idea of dynamic policy switching
(dynP) is to dynamically switch the scheduling policy while the system is running. The aim
is to always work with the best scheduling policy for the current waiting jobs.

Two aspects have to be considered in a dynP scheduler:

• When should the scheduler decide to switch the policy?

• Which new policy should the scheduler choose?

Possible answers to the first question might be: every time the schedule changes (i. e. at each
job submit and job end), only when new jobs are submitted, every 10 new jobs, or in fixed
intervals (e. g. every hour).

Basically, the first alternative is chosen in order to avoid any loss of performance. As
only job submits and job ends induce a schedule change, checking for a new policy at these

61

4 Dynamic Policy Switching

events is sufficient. Note, a job start does not change a planned schedule. Checking for a
new policy only at job submits might be sufficient. Also job ends might be neglected, as the
characteristics of waiting jobs do not change, when an already running job terminates.

Answers to the second question are given in the following.

4.2 Use of Bounds

As mentioned at the beginning of this chapter, we use three policies for evaluating the benefits
of policy switching schedulers. FCFS, SJF, and LJF are commonly known and are typically
used in modern resource management system for scheduling HPC systems. As SJF and LJF
use the estimated duration of waiting jobs for sorting them, an intuitive approach is to also
use this criterion for policy switching. Therefore, the average estimated run time (AERT)
of all currently waiting jobs is computed. The new scheduling policy is found by testing the
computed AERT value against a lower and upper bound:

new scheduling policy =

SJF , if lower bound ≥ AERT
FCFS, if lower bound < AERT ≤ upper bound

LJF , if AERT > upper bound
(4.1)

The shown switching mechanism is short and simple to understand. However, a proper
setting of the two bounds is essential for a good performance. Finding good bounds to
improve the schedulers performance is difficult. Doing an experimental search process is one
solution, but it usually takes much time and effort. If the characteristics of the waiting jobs
change significantly, the bounds probably have to be re-adapted so that the scheduler still
achieves the best possible performance.

The set of used policies may also be restricted. For example:

• if the lower bound is set to zero, only FCFS and LJF are chosen

• if the upper bound is set to infinity, only SJF and FCFS are chosen

• if the lower and upper bound are the same, the decider switches only between SJF and
LJF.

By choosing bounds like e. g. 24 hours for the upper bound and one hour for the lower bound,
a generalized behavior of the machine is defined. Or a dynP scheduler only considers the time
of day and the day of week. For example, LJF during the weekend, FCFS during prime time
(during the day) in the week, and SJF during non prime time in the week.

We did an experimental search process in [85] for the two jobs sets from Table 4.1. At
that time these two jobs sets were representative for the usage of the new machine. Tested
bounds varied between ten minutes and one hour for the lower bound and one hour to half
a day for the upper bound. A setting of two hours (7200 s) for the lower bound and two
hours, 30 minutes (9000 s) as an upper bound generates the best results for both job sets.
The performance for this dynP setting is also shown in Figure 4.1. For the set2 the dynP
scheduler even outperforms the best basic policy LJF at medium utilizations. Figure 4.2
shows the overall usage of the three policies under different workloads. With different job
characteristics the dynP adapts its behavior. As the average estimated run time for set1 is
short compared to set2, SJF and FCFS are commonly chosen by the dynP scheduler. The

62

4.3 Concept of Self-Tuning

usage of LJF drops with increasing load. In contrast, the dynP scheduler behaves completely
different for set2 although the bounds are the same. As the average estimated run time is
almost three times larger than in set1, LJF is used most of the time. With increasing load
the usage of LJF increases from 60% to around 90%. At high loads SJF is occasionally used.

55 60 65 70 75 80 85 90 95 100
utilization in %

FCFS

SJF20

40

60

0

LJF

80

100

po
lic

ie
s

us
ed

 in
 %

 o
f

to
ta

l t
im

e

60 65 70 75 80 85 90 95 100
utilization in %

0

20

40

60

80

100

SJF

FCFS

LJF

po
lic

ie
s

us
ed

 in
 %

 o
f

to
ta

l t
im

e

set2set1

Figure 4.2: Accumulated percentages of policies used by the dynP scheduler with lower bound
7200 s and upper bound 9000 s. set1 left, set2 right.

4.3 Concept of Self-Tuning

The dynP scheduler with bounds is able to achieve good results. However, this depends on
the proper setting of the two bounds. Finding them with an experimental search takes a lot
of effort and time. Hence, in a real world scenario the scheduler should be easier to use for the
administrative staff. Usually, they have no time to perform a lengthy experimental search for
good parameter settings. Especially if the bounds might have to be re-adapted often, in order
to reflect changing job characteristics. Therefore, a scheduler with dynamic policy switching
has to work autonomously. That means, that no more input parameters are required, which
might depend on the job characteristics.

To achieve this, the dynP scheduler has to find good bounds by itself. One way is to integrate
the experimental search process in the scheduler. Simulations with the previously executed
jobs are done automatically with various bound settings. However, the experimental search
still has to be done. Furthermore, the decision for the future is based on past information.

With the ability to plan the future resource usage like a planning based resource manage-
ment system does, a more sophisticated approach is possible to find a new policy. For all
waiting jobs the scheduler computes a full schedule and planned start times are assigned to
every waiting job in the system. With this information it is possible to measure the schedule
by means of a performance metrics (e. g. response time, slowdown, or utilization). Now the
basic idea is:

The self-tuning dynP scheduler computes full schedules for each available policy
(here: FCFS, SJF, and LJF). These schedules are evaluated by means of a perfor-
mance metrics. Thereby, the performance of each policy is expressed by a single
value. These values are compared and a decider mechanism chooses the best

63

4 Dynamic Policy Switching

policy, i. e. the lowest (average response time, slowdown) or highest (utilization)
value.

In the following, the performance metrics used in the self-tuning process is called self-tuning
metrics for simplicity.

4.4 Decider Mechanisms

For the required decision several levels of sophistication are thinkable. We presented the
simple decider that basically consists of three if-then-else constructs in [87]. The decider
searches for that policy, which generates the minimum value. At first the performances of
SJF and LJF are compared, finally the best one is compared to FCFS:

1 IF (SJF <= LJF) {

2 IF (FCFS <= SJF) {

3 new_policy = "FCFS";

4 } ELSE {

5 new_policy = "SJF";

6 }

7 } ELSE {

8 IF (FCFS <= LJF) {

9 new_policy = "FCFS";

10 } ELSE {

11 new_policy = "LJF";

12 }

13 }

Example 4.1: The simple decider for the self-tuning dynP scheduler. FCFS, SJF, and LJF
are used as abbreviations for the performance values of the corresponding policies.

In the given example the best performance is achieved by the smallest value. The algorithm
is directly usable with common user centric performance metrics (e. g. average response time
or slowdown). If performance is measured as utilization, either the logical operators or the
performance values have to be inverted.

Whilst comparing the performance, it might occur that two policies are equal. In these
cases arbitrarily FCFS (lines 2 and 8) and SJF (line 1) are preferred.

However, the simple decider also has drawbacks. It does not consider the old policy. Es-
pecially if two policies are equal and a decision between them is needed, information about
the old policy is helpful. We did a detailed analysis of the simple decider (Table 4.3) in [86],
which shows, that in four cases even a wrong decision is made by the simple decider (cases:
1, 6b, 8c, and 10c). FCFS is favored in three and SJF in one case, although staying with the
old policy is the correct decision with these cases.

The advanced decider generates decisions as shown in the last column of Table 4.3. However,
complex decision scenarios might occur. For example, the old policy is worse than the others,
but all others achieve an equal performance. So what is the new policy? In three cases no
exact decision is possible with the three performance numbers and the old policy:

• case 6c: the old policy (LJF) needs to be switched as it is obviously the worst. Either
FCFS or SJF could be chosen, as both are equal. FCFS is chosen arbitrarily, as it might
be beneficial to the average response time of the generated schedule.

64

4.4 Decider Mechanisms

simple correct

case combinations decider decision

1 FCFS = SJF = LJF FCFS old policy

2 SJF < FCFS, SJF < LJF SJF SJF

3 FCFS < SJF, FCFS < LJF FCFS FCFS

4 LJF < FCFS, LJF < SJF

a FCFS < SJF LJF LJF

b FCFS = SJF LJF LJF

c FCFS > SJF LJF LJF

5 FCFS = SJF, LJF < FCFS (⇔ LJF < SJF) LJF LJF

6 FCFS = SJF, FCFS < LJF (⇔ SJF < LJF)

a old policy = FCFS FCFS (= old policy) old policy (= FCFS)

b old policy = SJF FCFS old policy (= SJF)

c old policy = LJF FCFS FCFS

7 FCFS = LJF, SJF < FCFS (⇔ SJF < LJF) SJF SJF

8 FCFS = LJF, FCFS < SJF (⇔ LJF < SJF)

a old policy = FCFS FCFS (= old policy) old policy (= FCFS)

b old policy = SJF FCFS FCFS

c old policy = LJF FCFS old policy (= LJF)

9 SJF = LJF, FCFS < SJF (⇔ FCFS < LJF) FCFS FCFS

10 SJF = LJF, SJF < FCFS (⇔ LJF < FCFS)

a old policy = FCFS SJF SJF

b old policy = SJF SJF (= old policy) old policy (= SJF)

c old policy = LJF SJF old policy (= LJF)

Table 4.3: Detailed analysis of the simple decider. Decisions printed in bold highlight the
differences.

• case 8b: similar to case 6c, but FCFS or LJF could be chosen.

• case 10a: similar to case 6c, but SJF or LJF could be chosen. SJF is chosen in order to
prefer short jobs.

At a first glance it does not make any difference which policy among equals is chosen. At
this stage the scheduler only knows estimates of the jobs run time and usually the jobs actual
run time is shorter than estimated. When a job ends earlier than estimated, the schedule
changes and new planning is necessary. Depending on the chosen policy different jobs might
have been started in the meantime. Therefore, even a decision between two equal policies is
required.

Previously, the fairness among the policies was of major interest. However, it might be
interesting to explicitly prefer one of the policies and neglect the others. For that purpose
the preferred decider was developed. The preferred policy is not switched unless any other
policy is clearly better. Whenever any of the other policies are currently used, the preferred
policy only has to achieve an equal performance and the decider switches back.

The deciders of the self-tuning dynP scheduler consider only the three policies FCFS, SJF,
and LJF for three reasons. First of all, in this work we evaluate the general behavior and
performance of self-tuning schedulers. In this chapter, for the domain of resource management

65

4 Dynamic Policy Switching

of HPC systems. We do not want to evaluate, which combination of policies is best suited
for specific job characteristics. Presumably, combinations with other and more scheduling
policies exist, which generate even better results. Secondly, FCFS, SJF, and LJF are the most
known scheduling policies and many resource management systems have at least these three
implemented. And thirdly, these three policies are implemented in the resource management
software CCS, which depicts the basis and starting position for our work.

4.5 Options for the Self-Tuning dynP Scheduler

The aim of the self-tuning dynP scheduler is to eliminate job input parameters, especially
those which depend on the characteristics of the processed jobs (i. e. the two bounds of the
simple decider) and need to be re-adapted continuously. Nevertheless, options that influence
the scheduler in a more general way are thinkable. Of course they should be independent of
any job characteristics and easy to handle, so that a continuous manual re-adaption is not
needed. Some options to mention are:

• At what time or event is self-tuning invoked? Only when a new job is submitted. Or
also each time the schedule changes, i. e. when a running job ends earlier than estimated
and when a new job is then placed in the schedule.
If jobs end earlier than estimated other jobs might be scheduled at an earlier start time
and therefore the schedule changes. Note, starting a job does not change the schedule.
It is an implementation of the planned schedule.
In the following full self-tuning means, that at each job submit and at each time a
running job ends self-tuning is invoked. With half self-tuning this is done only when
new jobs are submitted. Hence, roughly half as much self-tuning is performed.

• Adding slackness while switching policies. The motivation comes from the field of
electrical engineering and the hysteresis of electric ferromagnets whilst changing their
polarity.
A self-tuning dynP scheduler with slackness requires the new policy to be better than
the old policy by at least the given slackness threshold (e. g. 2%). This prevents rapid
and consecutive policy switching.
Additionally, this also prevents user induced policy switches, subsequently switching
between SJF and LJF might change the schedule significantly. In worst case scenarios
a user may submit dummy jobs which induce the self-tuning dynP scheduler to switch
the policy. Consequently the important job from the user is started earlier than jobs
from other users which are then further more delayed.

• As the self-tuning dynP scheduler requires a planning system, planning is done for all
waiting jobs. Hence, all waiting jobs influence the decision. However, in some scenarios
one could think of restricting the number of jobs that influence the decision made by
the self-tuning dynP scheduler. Many approaches are possible: if the complete schedule
is planned only the first n jobs are used to evaluate the performance, or only those jobs
which are started within the next t hours are used. More sophisticated criteria like e. g.
the duration, parallelism, or priority of jobs might also be used for filtering jobs.

One could think of many more options which influence the decision process of the self-
tuning dynP scheduler, but are independent of incoming jobs. In the following evaluation
only the first and second option are used.

66

4.6 Optimal Schedules with CPLEX

4.6 Optimal Schedules with CPLEX

As described before, the self-tuning dynP scheduler generates full schedules for each available
policy (here: FCFS, SJF, and LJF). Full schedules contain a start and end time for every
submitted job. Therefore, it is possible to compute waiting and response times for each job.
With a performance metrics the schedules are analyzed and the self-tuning dynP scheduler
chooses the policy that generates the best schedule and switches to it. This process is called
a self-tuning step and each time a quasi off-line scheduling is done as the number of jobs are
fixed. However, it is not a classic off-line scheduling by optimizing the makespan. And the
schedule does not start with an empty machine, i. e. some resources are not available. The
history of resource usage has to be considered as a result of jobs started in the past.

From this two questions arise:

1. What is the optimal schedule in each self-tuning step?

2. What is the performance difference between the optimal schedule and the best schedule
generated with one of the scheduling policies?

The second question is interesting, as it gives answers to how much performance is lost when
a common scheduling policy like FCFS (+ backfilling) is used.

An approach to compute optimal schedules is to model the scheduling problem as an integer
problem, which is then solved with the well-known ILOG CPLEX library [45].

4.6.1 Modelling the Scheduling Problem

Following [92], we model the scheduling problem as an integer problem [74]:
Three values are used to describe the properties of a job i. The number of requested

resources is denoted with wi (width). The estimated duration is described by di and the job
is submitted at time si.

The history of resource usage is a list of tuples. A tuple consists of a time stamp and
the number of resources that are free from that time on. Figure 4.3 shows an example.
The number of free resources are increasing monotonously as only already running jobs are
considered. And if more than one job ends at the same time, a single time stamp is sufficient.
Note, the estimated duration of already running jobs has to be used for generating the time
stamps.

time [sec.] free resources

120 48

140 64

160 80
200 96

100 120 140 160 180 200 220
time

16

32

48

64

80

96

resources

100 16

Figure 4.3: Example for a machine history.

67

4 Dynamic Policy Switching

The variables are defined as:

xit =

{
1 , if job i is started at time t
0 , else

(4.2)

The average response time weighted by width is used as the objective function. As previ-
ously mentioned, ARTwW and SLDwA behave similarly in comparing schedules if the same
job input is used. The objective function is defined as:

Minimize
∑

i,t

xit (t− si + di) wi (4.3)

The constraints are: ∑

t

xit = 1 ∀i (4.4)

∑

i,max(0,t−di)≤j≤t

xij wi ≤ M ∀t ∈ [0, T] (4.5)

Constraint 4.4 describes that every job is started only once. In constraint 4.5 T is the
maximum possible length of the schedule. Usually this is infinity, but the resulting integer
problem would contain too many variables. Assuming that the schedules for FCFS, SJF,
and LJF are already computed, the best solution is to use the maximum makespan of the
three schedules. This is most likely the makespan of the LJF-generated schedule. The sum in
constraint 4.5 describes the fact that the machine consists of M resources in total. In order
to reflect the machine history the number of available resources has to be reduced accordingly
(see Figure 4.3).

The smallest time step in resource management systems is usually one second. This requires
t in Equation 4.2 to be at a second scale. However, this induces too many variables (number
of jobs times T in seconds) and therefore too much memory (roughly the number of variables
times T). For example: the maximum makespan is two days (172,800 seconds) and an optimal
schedule for eight jobs has to be computed. The number of variables is already more than
a million, although the scheduling problem is rather small for a real world scenario. Such
problems would need a considerable amount of memory. If the problems grow in size, the 8
GB of the available simulation hardware are not enough. A commonly used solution to solve
this, is to use time-scaling [39]. This means, that the schedule is computed at a greater time
scale (e. g. one minute). By that a certain amount of time in the real schedule is reduced
to a single point of time. For most real world scenarios this is enough, as jobs are usually
estimated to run for several minutes, hours, or even days, so significantly longer than one
second.

We use the following approximation for computing a suitable time-scale: the size of the
integer problem (i. e. the number of matrix entries and constraints) roughly depends on the
number of jobs multiplied with the square of T . The variable matrix is sparse and the degree
of sparseness depends on the accumulated run time of all jobs [74]. Hence, the size of the
integer problem in memory (i. e. the total amount of memory that should be used) is computed
by

number of jobs ·
(

max. makespan
time-scale

)2

· acc. run time
max. makespan · number of jobs

· x (4.6)

68

4.6 Optimal Schedules with CPLEX

x denotes the memory size of each matrix entry in bytes. In initial testings we discovered
that good values for x are 0.1 kB or 0.0001 MB.

Then:

time-scale =

√
max. makespan · acc. run time · x

available memory
(4.7)

The time-scale is rounded up to the next 60 seconds, so that the schedules are solved in a
full minute scale. Additionally, the amount of memory used for the integer problem should
be about four times smaller than the total memory available, as the additional memory is
needed by CPLEX during the solving phase. For the computations a machine with 8 GB of
total main memory is used.

However, time-scaling has drawbacks. Jobs are scheduled at the beginning of a time-scaled
interval, e. g. at the beginning of a one minute interval in the schedule. The duration of jobs
is not time-scaled and they still end at any time in the time-scaled interval. Hence, from
the time a job ends to the next interval start resources remain unused, although they could
be utilized without time-scaling. To solve this problem each job is moved forward as much
as possible after the optimal starting order of the jobs is found. With that, unused slots
in the schedule are avoided. The maximum time a job is moved forward is (time-scale − 1)
seconds and on average time-scale−1

2 seconds. To implement this in practice (and also in the
simulation environment MuPSiE) each job is inserted in the schedule according to the starting
order of the optimal schedule computed by CPLEX. Each job is placed as soon as possible
and unused time slots, due to time-scaling, do no longer occur. By applying time-scaling the
final schedule might not be optimal, as heuristics are used. However, if time-scaling is not
applied, the problem might not fit in the available memory and no solution is computed.

This CPLEX-computed schedule is analyzed and the results are compared to the perfor-
mance of the three basic policies. We define the quality of a policy p and according to a
performance metrics m(e. g. SLDwA) as:

quality(p,m) =
performance measured with m of the CPLEX-computed schedule

performance measured with m of the schedule generated by p
(4.8)

If quality(p, m) < 1 the schedule computed by CPLEX is better. The percentage (1 −
quality(p,m)) · 100 depicts how much performance is lost by using the policy p. Due to time-
scaling the quality(p,m) might be > 1. In this case, the policy p is better than the schedule
computed by CPLEX with time-scaling applied.

Despite solving the integer problem and computing the optimal schedule, the time CPLEX
needs for the computation is of an additional importance. Computing an optimal schedule and
using it in a resource management system surely improves the performance of the system.
However, if the computation takes too much time (e. g. one hour), it is not practical. In
general, the scheduling component of a resource management system should generate new
schedules as fast as possible, which typically means close to one second or less in a real world
scenario.

The time for scheduling a new job is not critical in queuing based resource management
systems as the job is appended to a queue. In contrast, a planning based resource management
system re-plans the resource usage and considers the new job. This has to be done fast, as
the updated schedule is required for the following requests. For example, a request for a
reservation is submitted right after. An answer is expected immediately as other reservation
requests might depend on the acceptance of this request. Hence, the updated resource plan

69

4 Dynamic Policy Switching

has to be computed fast. Therefore, finding and using optimal schedules in the real world is
not practical. With the basic policies of the self-tuning dynP scheduler, the time of scheduling
is less than 10 milliseconds for an average number of 25 waiting jobs.

Therefore, a mixture of quality and computational time has to be used in a comparison.
In other words the physical definition of power, i. e. work per time unit, is well suited for
measuring the performance of a scheduler.

4.6.2 Results

In the following we would like to answer the questions from the beginning of this section,
i. e. How much performance is lost, compared with the optimal schedule by using common
scheduling policies like FCFS or SJF? For this the following configuration for the self-tuning
dynP scheduler is used: SJF-preferred decider, self-tuning is invoked only at job submits,
ARTwW as self-tuning metrics, and a slackness of 4%. Initially, we planned that simulations
are performed with several job sets. However, as solving the integer problem with the CPLEX
library need a lot of computational time, we used only one job set in the end (the CTC trace).
The shrinking factor is not applied, i. e. it is one and the workload is not further increased.

Optimal schedules are computed in each self-tuning step, hence at every job submission.
Although optimal schedules are available, they are not used for the actual scheduling process.
They are only used for the comparison with the schedule of the best basic policy in each step
of the self-tuning process. Hence, it is possible to directly state how much performance is lost
in each step of the self-tuning dynP scheduler. If optimal schedules were to be used directly
for scheduling the jobs, future scheduling decisions and optimal schedules would be influenced
by a different past resource usage and a fair comparison would not be possible.

As previously stated the CPLEX approach with solving an integer problem needs a lot
of memory. This is due to the definition of the variable xi,t and the constraints. Hence,
time-scaling is used to reduce the number of variables, which implies that schedules are only
solved on a one minute or greater scale.

Table 4.4 shows exemplary CPLEX runs for various problem sizes, i. e. schedules. For
each line in the table the time at which the integer problem was solved is given, i. e. a new
job was submitted and self-tuning was invoked. The three columns show the values used to
compute the time scaling according to Equation 4.7. The resulting time scale used for solving
the integer problem is given in the following column. Finally, the last columns depict the
results and performance of computing an optimal scheduler with CPLEX. As stated above, if
the performance loss is positive, the CPLEX computed schedule is better than the schedule
generated by the scheduling policy. Of course this should be the normal case. However,
sometimes the performance loss is negative. This indicates, that the scheduling generated
by the best scheduling policy is better than the solution found by CPLEX. Obviously this is
caused by the time scaling in the integer problem. If no time-scaling is applied and enough
memory and compute time is available, the CPLEX should always at least find the same
schedule as any scheduling policy and most likely a better one.

It is noted that the problem sizes in the first block are considerably large. This is indicated
by the amount of jobs, the accumulated run time, and finally the time scale. The performance
loss of the scheduling policy (in all four cases SJF + backfilling) is very small and in the 1%
range. CPLEX needs much compute time for achieving this result.

The second block of examples show, that it is impossible to predict the compute time of
CPLEX from previous runs. In these two successive job submissions both scheduling problems

70

4.6 Optimal Schedules with CPLEX

CPLEX problem size CPLEX result
submission makespan acc. run time time scale perf. comp. time
time jobs [sec.] [sec.] [min.] quality loss hr. min. sec.

38,589 40 189,559 1,798,837 7 0.9920 0.80% 8 14 17
38,590 40 189,596 1,862,437 8 0.9869 1.31% 1 47 35
40,284 31 190,899 1,395,637 7 0.9934 0.66% 12 58 51
40,493 32 191,509 1,395,937 8 0.9968 0.32% 23 22 48

50,356 18 194,121 1,030,782 6 0.9865 1.35% 2 26 32
50,360 19 194,161 1,095,582 6 0.9974 0.26% 40 52 51

70,628 17 259,141 715,905 6 0.9821 1.79% 76 15 8
71,271 17 256,741 723,405 6 0.9804 1.96% 129 16 25
71,285 17 256,741 728,505 6 0.9804 1.96% 237 7 59

36,037 39 178,232 1,617,937 7 0.8913 10.87% 3 26 4
52,698 19 201,983 906,331 6 1.0014 -0.14% 14 43 40
69,073 9 239,417 519,300 5 1.0022 -0.22% 0 23 40

averages 21.7 166,766 931,168 5 0.9930 0.70% 5 34 29

Table 4.4: Examples of CPLEX problem sizes, the quality, and the compute time.

are of an equal size. In the first case, CPLEX needs 2.5 hours to find an optimal solution
which is 1.3% better than the best scheduling policy. With the submission of the next job, the
scheduling problem increases only slightly in size. The performance loss, hence the difference
between the scheduling policy and the CPLEX-computed solution is much smaller than before.
However, in this case almost 20 times more compute time is needed. This might be the results
of the newly submitted job, which might have increased the degree of difficulty substantially
without changing the size of the problem.

In the third block, examples for extremely long compute times of CPLEX are given. Note,
237 hours equals approximately 10 days. However, the CPLEX-computed solutions are clearly
better than the schedules of the best basic policies. A time scaling of 6 minutes is used, so
that an even larger improvement might be possible, if a second precise scaling is applied. Of
course this would require a considerable amount of main memory.

In all previous examples the performance loss of the scheduling policy is within the 1%
range. However, the case might be that the scheduling policy is significantly worse. As
shown, the largest measured performance loss is close to 11%. About 3.5 hours are needed by
CPLEX to compute this solution. The other two examples show, that it is also possible that
the CPLEX-computed schedule is worse than the SJF-generated schedule. Obviously this is
due to the time scaling in the integer problem. However, the long compute time (almost 15
hours) of CPLEX has to be considered.

Finally, the last row in Table 4.4 shows the averages of all CPLEX computations. It is seen
that the performance loss of the scheduling policies is only 0.7% compared to the CPLEX-
computed solution with a 5 minute average time scaling applied. On average more than 5
hours are needed to solve the integer problems. The average size of the according scheduling
problem is 22 jobs with a maximal makespan of close to 2 days as an upper bound. In real
world scenarios such schedule would be considered to be small. Many more jobs are usually
processed in a resource management system, with a much larger makespan. This indicates,
that CPLEX-computed schedules are unpractical for a real implementation in a resource
management system. The response times of real schedulers need to be considerably small, so
that user decisions (e. g. accepting or declining a reservation) can be made quickly. Approaches

71

4 Dynamic Policy Switching

are thinkable, where the scheduling policy is used to generate an initial schedule and CPLEX is
used to find better schedules while the initial schedule is active and implemented. However, in
online scheduling systems jobs are submitted continuously and with short average interarrival
times (on average 369 seconds for the CTC trace). Hence, a new schedule is required, while
CPLEX is still solving the previous scheduling problem.

72

5 Evaluation of the dynP Scheduler

It is common practice to use simulation environments for the evaluation process. Simula-
tion environments need job sets and information about the simulated machine as input, i. e.
the total number of resources, if a homogenous machine and no topology of the network is
assumed.

At first, we use the original eight traces and the corresponding machines. As exact start
dates and times are known for all traces, it is possible to evaluate the results of the scheduling
policies on a monthly basis. With this, differences in the trace become visible. Additionally,
the total number, the average width (number of requested resources), and the average actual
and estimated duration of submitted jobs are also given for each month. Furthermore, the
resulting over-estimation factor and the performance of the three basic policies FCFS, SJF,
and LJF measured in the average slowdown weighted by job area (SLDwA) are given. As
already mentioned, the SLDwA metrics is used for measuring the overall performance of the
simulated schedule.

Later we evaluate the performance of the self-tuning dynP scheduler at increased workloads.
For that we generated synthetic job sets, which are based on the statistical properties of
the original traces and they contain only 10,000 jobs each. With the shrinking factor the
interarrival times between jobs are reduced and the workload is increased.

The scheduling process of a planning based resource management system is modelled in the
simulation environment. As jobs are placed in the schedule as soon as possible, backfilling is
implicitly done with all policies. Note, if we use the term slowdown for simplicity, we mean
the average slowdown weighted by the jobs area (SLDwA).

At the beginning in Section 5.1 the original traces from Section 3.5 are used for the eval-
uation. As precise information concerning the start date and time of each trace is available,
a monthly evaluation is done. In Section 5.2 the self-tuning dynP scheduler is evaluated with
increased workloads. For that the shrinking factor and synthetically generated jobs, based
on the traces, are used. In this chapter only major results are presented and the whole set of
numbers is found in Appendix A.1.

5.1 Results Based on Original Traces

A first look at the overall results for the original traces in Table 5.1 shows, that the last four
traces (PC2-2001, PC2-2002, CHPC, and MHPCC) are not well suited for an evaluation. The
differences between the basic policies are only marginal and the slowdowns are close to the
minimum of one. This means, that the corresponding schedules are empty and jobs do not
have to wait a long time for their start.

However, scheduling strategies only influence waiting jobs by sorting them according to
the policy. This in turn means, that if no or only some jobs have to be sorted, no difference
in performances occurs. Evaluating the self-tuning dynP scheduler with such job sets does
not make sense, as only a different performance of the basic policies induce the scheduler to

73

5 Evaluation of the dynP Scheduler

switch the policy. In contrast, the slowdowns for the first four traces (CTC, KTH, LANL,
and SDSC) show differences between the three basic policies.

5.1.1 Basic Policies

We begin with presenting the results for the three basic policies. This shows which of the
policies is the best choice for each job set. It is also observed, that the same policy is not the
best choice for all applied workloads. The presented results are used as the reference case for
the following evaluations.

In Table 5.1 the best basic policy is highlighted in blue. Particularly for the SDSC trace,
the differences in slowdown are large as SJF is worse than FCFS by a factor of almost two
and the same factor applies to the ratio of LJF to SJF.

FCFS SJF LJF

CTC 2.0455 1.9277 2.5212
KTH 3.1015 2.5488 5.8118

LANL 1.6801 1.7031 2.0507
SDSC 6.8260 12.5662 26.8207

PC2-2001 1.0846 1.0758 1.0838
PC2-2002 1.0798 1.0765 1.1033

CHPC 1.0038 1.0037 1.0038
MHPCC 1.2362 1.2319 1.2353

Table 5.1: Overall average slowdown weighted by area (SLDwA) for the three basic policies
FCFS, SJF, and LJF. Blue indicates the best policy for each trace.

CTC The monthly evaluation of the CTC trace in Table A.1 shows, that the first month
should not be taken into account. The trace starts five days before the end of the month and
only a few jobs are submitted in these days. Nevertheless, it is interesting that these few jobs
request almost three times as many resources and are estimated to be twice as long as all
remaining jobs in the other months.

In general, the CTC trace comes with a steady arrival process, which means, that the
average job data does not change much over the months. Except for the last three months,
where about 1,000 jobs less are submitted as in the months before. However, the jobs request
more resources and are estimated to run longer. In all months the differences in the slowdown
between FCFS and SJF are minimal and LJF is worse, by far. The performance in February
1997 is completely different, as LJF is better than SJF and almost competes with FCFS.

KTH SJF is the best basic policy throughout all months of the KTH trace (Table A.2).
Again, the first month should not be taken into account as it only consists of seven days and
some jobs. Although the submitted jobs of the KTH trace do not change much, three months
are noticeable: in July 1997 the jobs are longer (almost by a factor of two) than before, both
in the estimated and actual duration. This has no influence on the performance of LJF and
the performance gap of the other two policies.

In November 1996 and February/March 1997 the performance of LJF is worse compared
to the previous and following months by almost a factor of two. However, the performance
difference between FCFS and SJF and the submitted job data does not change.

74

5.1 Results Based on Original Traces

LANL The LANL trace (Table A.3) is different than the previous two. No clear winner
between FCFS and SJF is found when the months are viewed independently. At the beginning
of the traced time frame, SJF is clearly better than FCFS, by about 5%. Then from June
1995 to June 1996 the best policy continuously switches between SJF and FCFS, then finally
FCFS becomes superior to SJF by about 5% in the last four months. The overall average
shows, that FCFS is slightly better than SJF. This behavior makes the LANL trace very
interesting for the evaluation process.

Note, the large amount of submitted jobs in July 1996. Almost three times as many jobs
were submitted. And these jobs are estimated to be three times longer than in all other
months. However, the over-estimation factor for this month is almost 12, which indicates,
that the jobs actual duration was very short. Also note, the performance of LJF and SJF in
the last four months of the trace increases significantly. It even outperforms SJF and becomes
the second best policy.

SDSC Observing the best basic policy for each month in the SDSC trace (Table A.4), a
similar behavior is found as with the LANL trace. At the beginning SJF is clearly the best
policy. However, from July 1999 on FCFS is the best policy. The only major difference is
in the width of the submitted jobs. It significantly increases, which probably induces this
change.

Similar to the LANL trace FCFS is the best policy on average of all months. Noticeable is
the submission behavior in September 1998. Almost three times more jobs are submitted in
this month. At the same time the average width and duration is shorter. Hence, the workload
(i. e. area of jobs) stays almost the same and the slowdowns do not increase much. In the
second half of the trace the slowdown values increase dramatically and the performance of
LJF is up to ten times worse than FCFS or SJF. Similar to the LANL trace LJF is better
than SJF in the last three months. Overall, the behavior of the SDSC trace is quite similar
to the LANL trace. Except that in the LANL trace only power-of-2 job widths larger than
32 exist whereas in the SDSC trace such a restriction does not exist.

PC2 Both PC2 traces have a much lower utilization than the previous four traces from the
Parallel Workload Archive. Possible reasons could be the different types of machine (IBM
SP2s vs. Linux-Clusters) and the machine usages. Furthermore, the hpcLine cluster of the
PC2 is not used as a production machine like the others. Hence, a steady and daily workload
is not submitted and bursts of utilization occur over a period of time. Therefore, differences
between the policies do not occur often. In only three months of the first year (Table A.5) one
of the policies is superior to the others. In the second year (Table A.6) this happens only in
a single month (March 2002). For all other months no best policy is found and the slowdown
values for these month are close to the minimum of one.

However, in some months the data of submitted jobs is interesting. In September 2001 only
a few jobs are submitted, the jobs are rather long and with this request many resources. In
the second year large over-estimation factors occur from June to August 2002. This means,
that jobs were estimated to run for a long time, but they end much earlier. In the following
two months September and October 2002 the jobs were estimated to run longer and the
estimation is more precise. Their average actual run time is almost 6 hours. Regardless of
the differences in the submitted jobs the schedules are empty. Therefore, the policies generate
an equal performance with slowdowns close to one. This means, that jobs do not have to

75

5 Evaluation of the dynP Scheduler

wait for their start. Only in March 2002 a significant workload is submitted and differences
between the policies become visible. Nonexistent or very small differences in the policies
already indicate, that a self-tuning dynP scheduler does not work with such workloads. As
mentioned earlier the self-tuning dynP scheduler requires waiting jobs, which are then started
in different orders. In both PC2 traces the overall value from Table 5.1 shows, that almost
no difference between the three basic policies exist, although SJF was slightly better for both
traces.

CHPC As with the last two traces from the PC2 the CHPC trace also contains no significant
workload except for June 2000. Only in this month the slowdowns are different from their
minimum of one and SJF is marginally better than FCFS and LJF. Note the large differ-
ences in the numbers and properties of the submitted jobs for different months. Almost all
combinations of width and duration are found: small and short (November and December
2000), small and long (March and April 2001), large and short (May 2000), and large and
long (June and July 2000). Despite this totally contrary submission behavior the policies can
not generate different results, as the schedules are not loaded enough.

MHPCC A monthly evaluation for the MHPCC trace also makes no sense as the trace covers
only one month (Table 3.5). Nevertheless, in this month enough jobs are submitted so that
the achieved slowdowns are not as close to one as before. Therefore, the differences between
the three policies are larger than before. Note, the 18 jobs submitted in February request a
large number of resources (about 20% of the total machine).

Concluding Remarks

In the previous section we evaluated the performance of the three basic scheduling policies
FCFS, SJF, and LJF with the original traces. Besides observing the overall results, we did
a monthly evaluation which reveals the changing characteristics of the traces throughout
their length. The evaluation of the traces CTC, KTH, LANL, and SDSC shows, that no
clear winning policy is found. For the CTC and KTH trace SJF is the best choice with
respect to the average slowdown weighted by the area (SLDwA), whereby for the LANL and
SDSC trace FCFS is the best. For all traces LJF generates the worst slowdown performance.
The results of the last four traces (PC2-2001, PC2-2002, CHPC, and MHPCC) show, that
differences between the scheduling policies are only marginal. Due to low utilization and
empty schedules, the scheduler starts new jobs directly without having to wait. However,
SJF is the best basic policy for these four traces.

We evaluated the basic policies in order to get a reference for the following evaluation
of the self-tuning dynP scheduler. Because of the low utilizations in the last four traces,
different scheduling policies are not able to generate different schedules, hence evaluating the
self-tuning dynP scheduler would be useless. Therefore, the four traces PC2-2001, PC2-2002,
CHPC, and MHPCC are no longer observed in the following.

5.1.2 Advanced vs. Simple Decider and Half vs. Full Self-Tuning

At first, the slowdown performance of the simple and advanced decider is compared. For
this initial evaluation the average response time weighted by width (ARTwW) is used as

76

5.1 Results Based on Original Traces

self-tuning metrics. This is similar to using the average slowdown weighted by area (SLDwA)
metrics. The comparison is either done for full and half self-tuning. After that, full and
half self-tuning themselves are compared in their performance. The four traces CTC, KTH,
LANL, and SDSC are used as job input. They proved to generate enough workload so that
different results for the three basic policies occurred.

In Table 5.2 the slowdown results for the simple and advanced decider are presented. The
percentages indicate the advantage of the advanced decider compared with the simple decider.
One can see that the advanced decider obviously outperforms the simple decider due to its
design. This is independent of whether full or half self-tuning is performed. The performance
benefit of the advanced decider is different for the four traces, quite large for the KTH and
SDSC trace and smaller for the LANL trace. However, for the CTC, KTH, and LANL trace
almost no differences occur whether half or full self-tuning is applied. For the SDSC trace
and full self-tuning the difference between the two deciders is almost 70%. Unfortunately, in
this case the advanced decider is not that good (in fact it is still worse than the best basic
policy, cf. Table A.12), but rather the simple decider performs that worse. Although the
performance with the SDSC trace stays behind the best basic policy. However, the switching
behavior is much more interesting than with the CTC or LANL trace, where the self-tuning
dynP scheduler outperforms the best basic policy.

simple decider advanced decider
best policy half full half full

CTC 1.9277 SJF 2.3036 2.2834 1.9085 (+ 17.15%) 1.8809 (+ 17.63%)
KTH 2.5488 SJF 4.7256 5.6562 2.5812 (+ 45.22%) 2.5885 (+ 54.36%)

LANL 1.6801 FCFS 1.7538 1.7489 1.6101 (+ 8.19%) 1.6075 (+ 8.09%)
SDSC 6.8260 FCFS 13.3353 26.3414 10.0953 (+ 24.30%) 9.8325 (+ 62.67%)

Table 5.2: Comparison of the simple and advanced decider using ARTwW as self-tuning met-
rics and half or full self-tuning. The given values are the overall SLDwA perfor-
mance.

According to Table 4.3 the differences between the two deciders appear in four cases. In
case 1, 6b, and 8c the simple decider chooses FCFS as the new policy, whereas the advanced
decider correctly stays with the old and current policy. The same applies to case 10c where
the simple decider chooses SJF. Hence, the simple decider favors FCFS. The four cases are
responsible for the large differences in the performance of both deciders.

As the difference between the simple and advanced decider is most prominent for the SDSC
trace and with full self-tuning, a detailed case analysis was done. Table 5.3 shows the amount
each case is reached during the decision process. The numbers show a significant difference
in case 6b: the performance of FCFS is equal to SJF, LJF is worse than both, and the old
policy is SJF. In 112,606 (77.69%) of 144,942 total self-tuning decisions this situation occurs
and the advanced decider stays with SJF. In contrast, the simple decider only runs 44.89%
of all self-tuning decisions and switches to FCFS in this situation.

In case 1 all three policies have the same performance. The correct decision is to stay with
the policy like the advanced decider does. The simple decider arbitrarily favors FCFS. The
other two cases 8c and 10c are not reached by the simple or advanced decider, hence they
are not responsible for the different performance. With the large differences in case 6b the
number of appearances of the other cases is also influenced. This is best seen for case 4b.
However, the other cases have no influence on the different performance of the simple and
advanced decider, as both deciders choose the same policy (LJF) as their new policy.

77

5 Evaluation of the dynP Scheduler

simple advanced
case combinations decider counted decider counted

1 FCFS = SJF = LJF FCFS 10,437 old policy 17,657

2 SJF < FCFS, SJF < LJF SJF 70,543 SJF 996

3 FCFS < SJF, FCFS < LJF FCFS 82 FCFS 55

4 LJF < FCFS, LJF < SJF
a FCFS < SJF LJF 20 LJF 13
b FCFS = SJF LJF 2,121 LJF 10,719
c FCFS > SJF LJF 19 LJF 5

5 FCFS = SJF, LJF < FCFS (⇔ LJF < SJF) LJF 0 LJF 0

6 FCFS = SJF, FCFS < LJF (⇔ SJF < LJF)
a old policy = FCFS FCFS 383 FCFS 777
b old policy = SJF FCFS 69,868 SJF 112,606
c old policy = LJF FCFS 249 FCFS 1136

7 FCFS = LJF, SJF < FCFS (⇔ SJF < LJF) SJF 0 SJF 0

8 FCFS = LJF, FCFS < SJF (⇔ LJF < SJF)
a old policy = FCFS FCFS 1,919 FCFS 978
b old policy = SJF FCFS 0 FCFS 0
c old policy = LJF FCFS 0 LJF 0

9 SJF = LJF, FCFS < SJF (⇔ FCFS < LJF) FCFS 1 FCFS 0

10 SJF = LJF, SJF < FCFS (⇔ LJF < FCFS)
a old policy = FCFS SJF 2 SJF 2
b old policy = SJF SJF 0 SJF 0
c old policy = LJF SJF 0 LJF 0

totally counted 155,642 144,942

Table 5.3: Case analysis for the SDSC trace and the simple vs. advanced decider. Full self-
tuning is applied and ARTwW is used as self-tuning metrics.

The differences between the two deciders are also seen when focusing on the policy usage,
i. e. the times the deciders switched to the policies and how many jobs were started with each
policy as in Table 5.4.

simple decider advanced decider

FCFS 70,723 (45.44%) 1,137 (0.78%)
switches to each policy SJF 70,545 (45.33%) 998 (0.69%)

LJF 360 (0.23%) 1,136 (0.78%)

no policy switch 14,014 (9.00%) 141,671 (97.75%)

FCFS 39,554 (58.49%) 4,268 (6.31%)
job started with each policy SJF 26,784 (39.61%) 52,590 (77.77%)

LJF 1,282 (1.90%) 10,762 (15.92%)

Table 5.4: Comparison of the decision behavior and the usage of policies for the SDSC trace.
Full self-tuning is applied and ARTwW is used as a self-tuning metrics.

If the advanced decider is applied almost 80% of all jobs are started by SJF and only a
minority of 6% by FCFS. About 16% of the jobs were started with LJF, which is surprising
as LJF is always the worst policy when the overall or monthly averages are evaluated (cf.
Table A.12 and Table A.4). Focusing on the number of switches to each of the policies shows,
that the advanced decider stays with the current policy and does not switch it in most cases
(almost 98%). Only in about 1,000 cases the advanced decider switches to one of the policies.
This means, that once the decider switched to a policy many jobs are started with this policy.
This applies in particular to SJF.

78

5.1 Results Based on Original Traces

If on the other hand the simple decider is applied its switching behavior is much more
spontaneous. In only 10% of all cases the simple decider does not switch its policy. Most of
the time it switches back and forth between FCFS and SJF. This results in an almost equal
usage of the two policies over a period of time (51% and 47% resp.) and the difference in
the number of jobs started with FCFS and SJF is also considerably smaller than with the
advanced decider. In only 10% of all self-tuning decisions the simple decider stays with its
current policy. Discarding its previous decision leads to a scenario where preceding jobs are
started by alternating policies. Compared to the advanced decider about ten times more jobs
(60%) are started with FCFS by the simple decider, whereas about only half as many jobs
(40%) are started by SJF. Only a minority (roughly 2%) of all jobs are started with LJF.

The number of self-tuning calls and invocations of one of the deciders is larger for the
simple decider (155,642) than for the advanced decider (144,942). This results from the fact
that more than one job ends at the same time. Why? As full self-tuning is applied and the
same job trace is used, the amount of self-tuning calls at job submission does not change for
one of the deciders. However, if more than one job ends at the same time, a reschedule takes
place only once and therefore self-tuning is also called only once. Hence, the advanced decider
performs better than the simple decider and at the same time induces less self-tuning calls.

From this fact another question arises: If only half self-tuning is applied, i. e. self-tuning
is not done when jobs end, the number of self-tuning calls should almost be the same for
both deciders? And yes, if half self-tuning is applied the simple decider is called 56,738 times
whereas the advanced decider is called 56,208 times. Both amounts are a slightly less than
the number of totally scheduled jobs (67,620).

Concluding Remarks

In the previous section we evaluated the slowdown performance of the self-tuning dynP sched-
uler. We compared the simple and advanced decider with half and full self-tuning applied.
We only used half of the original traces, as the other half generates not enough workload,
so that differences between the schedules do not occur. The results show, that the advanced
decider is clearly better than the simple decider. A detailed case analysis shows the differ-
ences in the switching behavior of the two deciders. In general full self-tuning is superior
to half self-tuning. Although only about half as many self-tuning calls are done with half
self-tuning, the performance is only behind slightly. Therefore, if less self-tuning calls are
intended, for example to reduce the switching behavior of the self-tuning dynP scheduler, and
the remaining percentages of performance optimization are unimportant, half self-tuning is a
good compromise.

5.1.3 Comparing Self-Tuning Metrics

Due to the fact that several metrics can be used in the self-tuning process for measuring
the performance of the generated schedules, an evaluation focusing on this topic is to follow.
The following metrics are compared: average response time (ART), average response time
weighted by area (ARTwA), average response time weighted by width (ARTwW), makespan,
average slowdown (SLD), average slowdown weighted by width (SLDwW), average slowdown
per processor bound by 60 seconds (ppSLD 60).

Table 5.5 shows the overall slowdown performance (SLDwA) of the advanced decider with
different self-tuning metrics and either half or full self-tuning. Clearly the ARTwW metrics

79

5 Evaluation of the dynP Scheduler

generates the best results among all metrics for all job traces. Equivalent to the above
presented results full self-tuning is superior to half self-tuning. However, if the other metrics
are observed, no clear tendency towards half or self-tuning is found. Except for ARTwW
no further tendency is reported to say that one of the performance metrics always performs
better with one of the self-tuning variants.

Nevertheless, the influence of the switching behavior on the performance of the self-tuning
dynP scheduler is obvious. As the average slowdown weighted by area is used for comparing
the overall performance, the use of makespan as self-tuning metrics always results in poor
results. This is seen in Table 5.5 and especially for the LANL or SDSC trace. With both
traces the slowdown values with makespan as self-tuning metrics are considerably higher than
with any other metrics.

Comparing the best case (ARTwW with full self-tuning) with the best basic policy from
Table 5.1 shows, that only with the CTC and LANL trace the self-tuning dynP scheduler is
better. Note that the second best self-tuning metrics SLDwW is also better than the best
basic policy for these two traces.

quality metrics used for self-tuning
self-tuning ART ARTwA ARTwW Makespan SLD SLDwW ppSLD 60

CTC
full 2.0417 2.2888 1.8809 2.4663 1.9752 1.8955 2.0787
half 2.0318 2.2997 1.9085 2.4675 1.9547 1.8919 2.0657

KTH
half 3.1749 5.4043 2.5665 5.3979 2.6526 2.5686 3.7325
full 3.0742 4.4683 2.5812 5.5312 2.6579 2.5826 3.4218

LANL
half 1.6746 1.7752 1.6075 2.0378 1.6602 1.6333 1.6927
full 1.6882 1.7568 1.6101 2.0357 1.6614 1.6332 1.7126

SDSC
half 14.3471 18.9294 9.8325 25.1183 11.2207 10.8829 18.1592
full 13.6907 13.1993 10.0953 25.0682 11.8253 10.9371 19.4111

Table 5.5: SLDwA values for different self-tuning metrics used in the self-tuning dynP sched-
uler with the advanced decider. Green colors indicate whether full or half self-
tuning is better, while the blue color indicates the best quality metrics for self-
tuning.

A subsequent question is how the results change when an owner-centric metrics like e. g.
the utilization is used to evaluate the overall performance? And which self-tuning metrics is
the best choice now, possibly the makespan?

Unfortunately, it is not possible to answer the questions for all four traces with ease. For
the CTC, KTH, and LANL the utilization does not change, regardless of whether half or
full self-tuning is applied or if any different self-tuning metrics is used (cf. Table 5.6). Only
the SDSC trace contains enough workload so that nonequal utilization values are generated.
As expected the makespan metrics is the best choice for measuring the overall performance
with the utilization. Comparing these results with Table 3.6 shows, that the utilization of the
best basic policy FCFS is slightly less than with the advanced decider and makespan as the
self-tuning metrics.

Finally the results from Table 5.5 show, that for all four relevant traces a single combination
is always the best choice: ARTwW as self-tuning metrics and full self-tuning applied.

It seems to be obvious that ARTwW as self-tuning metrics performs best due to its depen-

80

5.1 Results Based on Original Traces

quality metrics used for self-tuning
self-tuning ART ARTwA ARTwW Makespan SLD SLDwW ppSLD 60

CTC
half
full

for all combinations: 65.701%

KTH
half
full

for all combinations: 68.716%

LANL
half
full

for all combinations: 55.607%

SDSC
half 81.739% 81.806% 81.763% 82.499% 81.719% 81.494% 81.532%
full 81.826% 82.081% 81.623% 82.467% 81.735% 81.469% 81.544%

Table 5.6: Utilization for different self-tuning metrics used in the self-tuning dynP scheduler
with the advanced decider. Green colors indicate whether full or half self-tuning is
better, while the blue color indicates the best quality metrics for self-tuning.

dence on the SLDwA. Especially as two similar metrics are used for measuring the overall
performance and also for the measurement in the self-tuning process. However, the best
possible performance is desired at each time of the scheduling process.

Evaluating the option on the invocation of self-tuning shows, that applying full self-tuning
is best. In case the costs of scheduling and self-tuning are too high, half self-tuning is an
option as only half of the self-tuning calls are omitted. However, this comes with a small
decrease in overall performance. Hence, if the costs of scheduling are high, abandoning the
last percent of performance optimization might be beneficial and half self-tuning should be
applied.

However, in the MuPSiE simulation environment a single self-tuning call for finding a new
policy is completed within 6 ms for an average of 22.5 waiting jobs (simulated configuration:
advanced decider, full self-tuning, ARTwW as self-tuning metrics, CTC trace, no slackness).
Therefore, it is not necessary to apply half self-tuning.

Concluding Remarks

In the previous section we studied the influence of different performance metrics on the self-
tuning process and the performance of the self-tuning dynP scheduler. It is seen that for all
four observed traces the average response time weighted by width (ARTwW) generates the
best results with regards to the slowdown performance. At all times, full self-tuning is the
best choice. With other self-tuning metrics and other job traces, half self-tuning is better than
full self-tuning in some cases, although a clear trend is not observed. If the performance is
measured with the utilization, the makespan metrics is the best choice for the SDSC trace. For
all other traces the same utilization is achieved, regardless of self-tuning metrics or whether
half or full self-tuning is applied.

5.1.4 Preferred Decider

In the following the preferred decider is evaluated and its performance is compared to the
advanced decider. With defining a preferred policy the decider only changes to a different
policy, if the preferred policy is clearly worse. On the other hand the decider switches back

81

5 Evaluation of the dynP Scheduler

to the preferred policy, if its performance is at least equal to the current used policy. As for
two of the traces FCFS is the best basic policy (LANL and SDSC) and SJF for the other two
(CTC and KTH), the evaluation is done with a FCFS-preferred and SJF-preferred decider.

In Table 5.7 the slowdowns (SLDwA) are printed. It is seen that in general the FCFS-
preferred decider is not able to outperform the best basic policies, and especially not FCFS
for the LANL and SDSC trace. Although one expects, that the FCFS-preferred decider could
improve the performance of FCFS, one has to consider the difference between the estimated
and actual run time of jobs. The estimated run time is used for scheduling and therefore
influences the decisions of the self-tuning dynP scheduler. As jobs are usually finished before
their estimated run time is reached, schedules change unexpectedly. Hence, the previous made
decision by the self-tuning dynP scheduler to switch away from the preferred policy may have
been wrong. This is checked for the LANL and SDSC trace by making the job run times
perfect, i. e. the estimated run time of every job is set to the value of the actual run time. As
seen in the last rows of Table 5.7, unfortunately this is not the case for any of the two traces.

trace FCFS SJF advanced SJF-preferred FCFS-preferred

CTC 2.0455 1.9277 1.8809 1.8762 2.2808
KTH 3.1015 2.5488 2.5665 2.5818 5.6985
LANL 1.6801 1.7031 1.6074 1.6275 1.7523
SDSC 6.8261 12.5662 9.8325 11.1882 26.3240
perfect estimates
CTC 1.9006 1.6323 1.6317 1.6232 2.4083
KTH 2.9228 2.3823 2.3685 2.3524 5.8390
LANL 1.6139 1.5110 1.4711 1.4712 1.8471
SDSC 5.3995 6.5780 5.1924 5.4704 21.1062

Table 5.7: Comparison of the FCFS-/SJF-preferred decider with the advanced decider. The
performance is measured in slowdown weighted by area (SLDwA). Full self-tuning
is applied and ARTwW is used as the self-tuning metrics. Green colors indicate
the best basic policy. If a self-tuning decider outperforms the best basic policy,
blue colors are used. The best self-tuning decider is marked red.

Choosing SJF as the preferred policy results in a better performance. For the LANL
trace the SJF performance is outstanding. Here FCFS is the best basic policy and although
choosing SJF as the preferred policy the self-tuning dynP scheduler with the preferred decider
is better. Even more interesting is the fact that 88.6% of all jobs are started with SJF, 11.4%
with LJF and surprisingly no jobs at all with FCFS.

Concluding Remarks

The preferred decider intentionally prefers a single policy and is therefore unfair with its
decision process. We evaluated the performance in the case that SJF or FCFS is used as the
preferred policy. The comparison with the advanced decider shows, that choosing FCFS as
the preferred policy is not beneficial. However, choosing SJF as the preferred policy improves
the performance for the CTC trace. With all other traces the advanced decider is always
superior. Unfortunately, the preferred decider does not deliver the expected performance,
although it was especially designed to improve the best basic policy for a given job trace.

82

5.1 Results Based on Original Traces

5.1.5 Slackness

As previously seen the self-tuning dynP scheduler can not outperform the performance of the
best basic policy for all traces (especially not for KTH). This can be induced by the following
scenario: Assume that the currently used policy is SJF and a set of new very long jobs are
submitted at the same time. With these new jobs the schedule changes, which results in the
self-tuning dynP scheduler’s decision to switch the policy to LJF. By switching the policy
these jobs are started immediately. Now assume that the actual run time of these new jobs
is rather short. Hence, it might have been better to stay with the old policy SJF.

The slackness option for the self-tuning dynP scheduler is used to avoid such scenarios and
to reduce the number of unnecessary policy switches (Table 5.4). The slackness is specified in
percent, i. e. the percentage specifies how much better than the currently used policy the new
policy has to be. In other words: the performance of the current policy is virtually improved
by the given percentage and the decider mechanism uses this new value for comparing the
policies.

In Table 5.8 the slowdown performance is given for slackness values of 2, 4, 6, 8, and 10%.
The grey column with 0% indicates, that no slackness is used. These results for 0% slackness
are taken from Table 5.2 and Table 5.7. If the results for the simple and advanced decider
and slackness values > 0% are compared, it is seen that the results are exactly the same. And
this holds for all traces. The question is why?

slackness in percent
FCFS SJF 0 2 4 6 8 10

simple decider

CTC 2.0455 1.9277 2.2834 1.8480 1.8787 1.9100 1.8903 1.9018
KTH 3.1015 2.5488 5.6562 2.5819 2.5672 2.5719 2.5470 2.5493
LANL 1.6801 1.7031 1.7489 1.6391 1.6304 1.6596 1.6760 1.6878
SDSC 6.8261 12.5662 26.3414 11.1859 10.7924 12.5575 12.0984 12.1065

advanced decider

CTC 2.0455 1.9277 1.8809 1.8480 1.8787 1.9100 1.8903 1.9018
KTH 3.1015 2.5488 2.5665 2.5819 2.5672 2.5719 2.5470 2.5493
LANL 1.6801 1.7031 1.6075 1.6391 1.6304 1.6595 1.6760 1.6878
SDSC 6.8261 12.5662 9.8325 11.1859 10.7924 12.5575 12.0984 12.1065

SJF-preferred decider

CTC 2.0455 1.9277 1.8762 1.8641 1.9000 1.8946 1.9012 1.9198
KTH 3.1015 2.5488 2.5818 2.5450 2.5402 2.5385 2.5479 2.5543
LANL 1.6801 1.7031 1.6275 1.6706 1.6869 1.6983 1.7005 1.7065
SDSC 6.8261 12.5662 11.1882 11.6090 10.6430 12.5653 12.1149 12.1111

Table 5.8: Comparison of different slackness values for different decider mechanisms. The
performance is measured in slowdown weighted by area (SLDwA). Full self-tuning
is applied and ARTwW is used as the self-tuning metrics. Green indicates the best
basic policy. If a self-tuning decider outperforms the best basic policy, blue colors
are used. The best self-tuning decider is marked red.

According to Tables 4.3 and 5.3 the differences between the simple and advanced decider
are the cases 1, 6b, 8c, and 10c:

• case 1 (all policies are equal): If the performance of the old policy is virtually improved,
the old policy is clearly better than the other two policies. Hence, the old policy is
retained and this case no longer appears in the decision process.

83

5 Evaluation of the dynP Scheduler

• case 6b (FCFS and SJF are equal, LJF is clearly worse, SJF is the old policy): With
slackness applied, the performance of SJF is virtually improved and is therefore better
than the performance of FCFS. Hence, SJF is retained and this case no longer appears.

• case 8c: similar to case 6b, but with LJF instead of SJF. LJF is retained.

• case 10c: similar to case 6b, but with SJF and LJF. LJF is retained.

Therefore, using any amount of slackness reduces the number of cases observed in the advanced
decider. Its choice of decisions is reduced to that of the simple decider.

Observing each of the traces in detail shows, that for the CTC trace slackness is useful.
With any of the evaluated slackness values a better slowdown is achieved than with the best
basic policy SJF. For the KTH trace a considerable amount of slackness (8%) has to be chosen
in order to outperform the best basic policy. If the LANL trace is used, 0% already achieves
the best performance and slackness is not needed. As previously observed the self-tuning
dynP scheduler does not outperform the best policy FCFS, if the complete SDSC trace is
used. However, by evaluating only the first 15 months of the traces (until June 1999), SJF is
the best basic policy and minimal slackness values of 2-4% are beneficial.

Table 5.9 shows the policy usage for the CTC trace. As previously mentioned the simple
and advanced decider are equal when slackness is used. If slackness is used with the advanced
decider it can be seen that less switches to each of the policies are made, but the numbers
do not change much. Without slackness, the advanced decider decided in 97.5% of all cases,
that a policy switching is not necessary. Applying 2% of slackness to the advanced decider,
increases this number to 99.3%. This shows the aim of using slackness, as the decider is
more stable in its decisions. The decider does not switch the active policy that often and
continuous with the currently used policy. The numbers of jobs started with each policy also
do not change much, although with slackness even more jobs are started with FCFS and less
with SJF and LJF.

slackness 0% simple decider advanced decider

FCFS 39,613 (35.19%) 795 (0.74%)
switches to each policy SJF 40,006 (35.53%) 964 (0.89%)

LJF 625 (0.56%) 963 (0.89%)

no policy switch 32,331 (28.72%) 105,386 (97.48%)

FCFS 16,678 (21.04%) 49,422 (62.34%)
job started with each policy SJF 58,538 (73.84%) 10,305 (13.00%)

LJF 4,063 (5.13%) 19,552 (24.66%)

slackness 2% simple decider advanced decider

FCFS 253 (0.23%)
switches to each policy SJF 275 (0.25%)

LJF 274 (0.25%)

no policy switch 108,187 (99.27%)

FCFS 60,521 (76.34%)
job started with each policy SJF 6,831 (8.62%)

LJF 11,927 (15.04%)

Table 5.9: Comparing the switching behavior of the simple and advanced decider with and
without slackness for the CTC trace. Full self-tuning is applied and ARTwW is
used as self-tuning metrics.

84

5.2 Results Based on Increased Workload

Without slackness the simple decider switches back and forth between FCFS and SJF most
of the time and in less than one third of all decisions no policy switching is made. Almost
three-quarters of all jobs are started with SJF and 20% by FCFS. If slackness is applied, the
simple mutates into the advanced decider and the policy usage changes completely. Almost
no jobs are started with SJF now, and in most of the decisions no policy switching is made.

Concluding Remarks

Applying slackness to the decision process improves the performance of the currently in use
policy. Therefore, such scenarios no longer occur where policies achieve an equal performance
compared with the current policy and the decider switches the policy. A detailed analysis of
the switching behavior shows, that with slackness applied the advanced decider is reduced in
its decisions with the simple decider. This is like cases where two policies are equal.

The evaluation results for all four traces show, that everything depends on the trace, if,
and how much, slackness is beneficial. The CTC and KTH trace benefit from small slackness
values, regardless of which decider mechanism is used. Especially for the LANL trace and the
advanced decider it is seen that slackness degrades the performance, although the results are
still better than the best basic policy of up to 8% of slackness.

5.2 Results Based on Increased Workload

In the previous section the self-tuning dynP scheduler was evaluated with original traces. Due
to the characteristics of the PC2-2001, PC2-2002, CHPC, and MHPCC traces, the submitted
workload is rather low. Therefore, the schedules are empty and most of the jobs are started
without a wait. As a result, the final slowdown (SLDwA) performance is close to the minimum
value of 1 (Table 5.1). If the schedule is empty, different scheduling strategies are equal in their
performance as different sorting criteria for the waiting jobs make no sense. In consequence
these four traces were not used previously.

In this section, these four traces are used again, as the performance at increased workloads
is now evaluated. Different approaches for increasing the workload exist: submitting more
jobs (e. g. each job two or three times), increasing the jobs resource usage (e. g. by extending
the estimated and actual run time), or submitting the same number of jobs at a faster rate.
Here we use the last mentioned approach.

The submit time of jobs is given in seconds relative to the first job submit. By multiplying
every submit time with a shrinking factor smaller than one, jobs are submitted faster. Ta-
ble 5.10 shows the shrinking factors we use for the eight job sets. The last four job sets need
smaller shrinking factors as their original utilization is much lower. The smaller shrinking
factors are chosen in order to achieve utilizations close to 100%, i. e. the saturated state is
reached. If the shrinking factor is set to zero, all jobs are submitted at once and off-line
scheduling is done.

We use synthetic job sets instead of the original traces as the size of the traces (i. e. number
of jobs) is either not sufficient (e. g. MHPCC, only one month) or too large (e. g. LANL
or SDSC with two years). Of course the synthetically generated jobs have the same basic
characteristics as the original traces. Hence, it is possible to simulate fewer jobs. In the
following, we use synthetic job sets with 10,000 jobs. To exclude singular effects resulting
from the generation process, ten synthetic job sets with 10,000 jobs are generated for each
trace and are used as input for the simulations. After the simulation and analysis of each

85

5 Evaluation of the dynP Scheduler

shrinking factors

CTC 1.0, 0.9, 0.8, 0.7, 0.6
KTH 1.0, 0.9, 0.8, 0.7, 0.6
LANL 1.0, 0.9, 0.8, 0.7, 0.6
SDSC 1.0, 0.9, 0.8, 0.7, 0.6

PC2-2001 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4
PC2-2002 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4
CHPC 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3
MHPCC 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3

Table 5.10: Used shrinking factors.

job set, the results are combined. This is done by neglecting the largest and smallest result
and the average is computed from the remaining eight values. Thereby, singular effects (both
good and bad) are not considered in the final values that are presented in the following.

As performance numbers for different workloads are presented in the following, simple tables
are no longer sufficient to show all results. Therefore, we mostly use diagrams for presenting
the results, as the schedulers performance can be observed over a wide range of workloads.
The appendix contains the corresponding numbers.

Again, the evaluation starts with the basic policies. The evaluation of the self-tuning dynP
scheduler and all its options are shown in a condensed format. Those configurations, which
already proved to be worse in the evaluation with the original traces, are left out.

5.2.1 Basic Policies

As with the original traces, the evaluation starts again with a comparison of the three basic
policies FCFS, SJF, and LJF. In the following and Appendix A.2 diagrams and tables with
detailed results can be found. Three types of diagrams exist: slowdown on the y-axis and
shrinking factor on the x-axis (Figure 5.1), utilization on the y-axis and shrinking factor on
the x-axis (Figure 5.2), and a combination of the first two diagrams slowdown on the y-axis
and utilization on the x-axis (Figure A.1). In Table A.13 and Table A.14 the corresponding
numbers are shown.

User and owner centric performance metrics are contrary just like the slowdown and uti-
lization are contrary. That is, only one of the two is typically optimized with a scheduling
strategy. As commonly known LJF increases the utilization of a machine and SJF gener-
ates short response times and slowdowns. This is seen in the two diagrams for slowdown
(Figure 5.1) and utilization (Figure 5.2). The green curve for LJF is always the highest
of all. Note, high utilization values are good, but high slowdown values are bad. Hence,
LJF generates the best utilization and the worst slowdown performance. Observing the blue
curve for SJF in the same two diagrams shows the opposite behavior as both curves are the
lowest. A good slowdown performance is achieved with SJF, but at the price of poor utiliza-
tions. In general, the difference between SJF and LJF in utilization for high workloads is 10
percentage-points and more.

FCFS seems to be a good compromise. The utilization is considerably higher than with
SJF and almost as high as with LJF. At the same time the slowdown is close to SJF and
in some cases (especially for CTC and SDSC) FCFS generates even smaller slowdowns than
SJF. Hence, FCFS is a good reference for comparing the slowdown and utilization with the
self-tuning dynP scheduler.

86

5.2 Results Based on Increased Workload

 0

 5

 10

 15

 20

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

SL
D

w
A

CTC

FCFS
SJF
LJF

 0

 5

 10

 15

 20

 25

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

KTH

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

SL
D

w
A

LANL

 0

 10

 20

 30

 40

 50

 60

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

SDSC

 0

 5

 10

 15

 20

 25

 30

 0.4 0.5 0.6 0.7 0.8 0.9 1

SL
D

w
A

PC2-2001

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.4 0.5 0.6 0.7 0.8 0.9 1

PC2-2002

 0

 2

 4

 6

 8

 10

 12

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SL
D

w
A

shrinking factor

CHPC

 0

 2

 4

 6

 8

 10

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

shrinking factor

MHPCC

Figure 5.1: Average slowdown weighted by area (SLDwA) of FCFS, SJF, and LJF with dif-
ferent workloads/shrinking factors.

87

5 Evaluation of the dynP Scheduler

 75

 80

 85

 90

 95

 100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

ut
ili

za
tio

n

CTC

FCFS
SJF
LJF

 65

 70

 75

 80

 85

 90

 95

 100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

KTH

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

ut
ili

za
tio

n

LANL

 78

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

SDSC

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0.4 0.5 0.6 0.7 0.8 0.9 1

ut
ili

za
tio

n

PC2-2001

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0.4 0.5 0.6 0.7 0.8 0.9 1

PC2-2002

 40

 50

 60

 70

 80

 90

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ut
ili

za
tio

n

shrinking factor

CHPC

 30

 40

 50

 60

 70

 80

 90

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

shrinking factor

MHPCC

Figure 5.2: Utilization of FCFS, SJF, and LJF with different workloads/shrinking factors.

88

5.2 Results Based on Increased Workload

Therefore, Table A.13 and Table A.14 have additional columns where the difference of
SJF and LJF to FCFS is given. For the slowdown the relative difference is printed as a
percentage, whereas for the utilization the absolute difference is printed in percentage points
of utilization. A negative difference indicates a poorer performance (i. e. higher slowdown or
lower utilization). The table also contains average values for the differences of all shrinking
factors. Although averaging over different workloads, this value summarizes the performance
difference reasonably well.

For the first four job sets (CTC, KTH, LANL, and SDSC) in Table A.13 it can be seen
that, except for the KTH based jobs, the overall average slowdown of SJF is worse than
FCFS. Additionally, the utilization is worse, even for KTH. This is different for the other four
job sets (PC2-2001, PC2-2002, CHPC, and MHPCC) in Table A.14 which originally comes
with a low workload. Here SJF is at least 15% better, averaged of all shrinking factors. For
all eight job sets the utilization benefit of LJF compared with FCFS is small (at most 3.6
percentage-points).

Table 5.11 shows a comparison of FCFS and SJF using both the original traces and the
synthetic job sets with a shrinking factor of 1. In some cases (e. g. SDSC, PC2-2001, and PC2-
2002) the slowdown values with the synthetic jobs are smaller (e. g. the SJF value for SDSC
is halved and is smaller than the FCFS value). In other cases (e. g. CTC, KTH, and LANL)
the slowdowns are greater for the synthetic jobs. This is probably induced by computing the
average and leaving out the minimum and maximum value, or this is a result of the analysis
of the original trace and the generation of new job sets. Due to the randomized generation
less awkward jobs occur, which smoothes out the schedule and generates different results.

original traces synthetic jobs
FCFS SJF LJF FCFS SJF LJF

CTC 2.0455 1.9277 2.5212 2.6086 2.7838 3.5543
KTH 3.1015 2.5488 5.8118 4.0572 3.3198 7.3312

LANL 1.6801 1.7031 2.0507 2.5263 2.4729 2.9228
SDSC 6.8260 12.5662 26.8207 6.1586 6.0003 14.4946

PC2-2001 1.0846 1.0758 1.0838 5.6913 4.6235 8.5279
PC2-2002 1.0798 1.0765 1.1033 8.5661 5.5526 19.4095

CHPC 1.0038 1.0037 1.0038 1.0091 1.0088 1.0115
MHPCC 1.2362 1.2319 1.2353 1.0541 1.0507 1.0640

Table 5.11: Comparison of the slowdown (SLDwA) for both the original traces and the syn-
thetic job sets (with shrinking factor 1.0). Blue color indicates which of the basic
policies is the best. Those cases where a different policy is best for the original
traces and synthetic jobs are marked red.

Concluding Remarks

In this section we extended the evaluation to increased workload scenarios. We used syntheti-
cally generated job sets which are based on the original traces. As a result all eight traces are
re-usable. By decreasing the average interarrival time the jobs are submitted over a shorter
time, hence the scheduler has to process more workload. Additionally to the slowdown, we
also studied the utilization. At very high workloads the system runs in a saturated state, in
which a further increase of workload does not yield to a higher utilization. The evaluation
results show, that LJF generates the highest possible utilization, although this comes with

89

5 Evaluation of the dynP Scheduler

immense slowdown values. In contrast, SJF achieves good slowdown values, but at the cost
of poor utilizations. A good compromise is FCFS, as the achieved slowdown values are close
to SJF while the utilization is closer to LJF.

5.2.2 Self-Tuning dynP Scheduler

Secondly, the performance of the self-tuning dynP scheduler is evaluated. In the previous sec-
tion SJF proved to be the best basic policy for the user-centric slowdown metrics. Therefore,
the performance of the self-tuning dynP scheduler is compared with SJF during the following
evaluation. The aim is to have a better overall performance, i. e. a smaller slowdown at an
increased utilization.

In this evaluation we focus on the advanced and SJF-preferred decider. According to
previous evaluation results, the simple decider is left out as it already proved to be worse.
Again, ARTwW is used as the self-tuning metrics and in the first step no slackness is applied.

The detailed evaluation results and corresponding diagrams can be found in the appendix
(Table A.15, Table A.16, Figure 5.3, Figure 5.4, and Figure A.2). Additional to the slowdown
and utilization results for each shrinking factor, the difference to SJF is also shown. For
the slowdown metrics (SLDwA) the relative difference in % of the SJF performance, and for
the utilization the absolute difference in percentage-points is presented. Finally averages of
all used shrinking factors are computed in order to join all results in a single value. The
value is then used as a comparison. This is done because of the scaling of the y-axis in the
diagrams. Therefore, small differences are difficult to spot. The average values are also shown
in Table 5.12 in a condensed form.

SLDwA: utilization:
relative difference absolute difference

to SJF in % to SJF in percentage-points
advanced SJF-preferred advanced SJF-preferred

CTC 9.04 9.92 1.22 1.21
KTH 0.15 -0.72 0.13 0.12
LANL 1.51 1.29 0.07 0.09
SDSC 6.36 6.22 0.93 0.91

PC2-2001 0.27 0.69 0.09 0.11
PC2-2002 -0.60 -0.32 0.39 0.41

CHPC -1.46 -0.61 0.16 0.07
MHPCC 2.22 1.24 0.04 0.03

Table 5.12: Difference in slowdown and utilization of the self-tuning dynP scheduler compared
with the best basic policy SJF. ARTwW is used as self-tuning metrics and no
slackness is applied. Shown are the average values of all workloads/shrinking
factors.

It can be noticed that for all job sets the self-tuning dynP scheduler achieves a better
utilization, although in some cases only slightly. Nevertheless, the average increase of 1.22
percentage-points with the CTC is good, especially at higher workloads. For example, at
a shrinking factor of 0.6 (cf. Table A.15), SJF’s utilization of 85.94% is increased by 1.45
percentage-points to 87.39% with the advanced decider. The difference appears to be small,
but at high utilizations even small improvements are difficult to achieve. Observing the
amount of resources that remain unused, so 1 − utilization, clarifies this. A utilization of
85% means, that 15% of the resources remain unused. Increasing the utilization by 1.5

90

5.2 Results Based on Increased Workload

 0

 5

 10

 15

 20

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

SL
D

w
A

CTC

FCFS
SJF
SJF-preferred
advanced

 0

 5

 10

 15

 20

 25

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

KTH

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

SL
D

w
A

LANL

 0

 10

 20

 30

 40

 50

 60

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

SDSC

 0

 5

 10

 15

 20

 25

 30

 0.4 0.5 0.6 0.7 0.8 0.9 1

SL
D

w
A

PC2-2001

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.4 0.5 0.6 0.7 0.8 0.9 1

PC2-2002

 0

 2

 4

 6

 8

 10

 12

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SL
D

w
A

shrinking factor

CHPC

 0

 2

 4

 6

 8

 10

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

shrinking factor

MHPCC

Figure 5.3: Average slowdown weighted by area (SLDwA) of the self-tuning dynP scheduler
with different workloads/shrinking factors. ARTwW is used as the self-tuning
metrics and no slackness is used.

91

5 Evaluation of the dynP Scheduler

 74

 76

 78

 80

 82

 84

 86

 88

 90

 92

 94

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

ut
ili

za
tio

n

CTC

FCFS
SJF
SJF-preferred
advanced

 65

 70

 75

 80

 85

 90

 95

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

KTH

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

ut
ili

za
tio

n

LANL

 78

 80

 82

 84

 86

 88

 90

 92

 94

 96

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

SDSC

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0.4 0.5 0.6 0.7 0.8 0.9 1

ut
ili

za
tio

n

PC2-2001

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0.4 0.5 0.6 0.7 0.8 0.9 1

PC2-2002

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ut
ili

za
tio

n

shrinking factor

CHPC

 30

 40

 50

 60

 70

 80

 90

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

shrinking factor

MHPCC

Figure 5.4: Utilization of the self-tuning dynP scheduler with different workloads/shrinking
factors. ARTwW is used as the self-tuning metrics and no slackness is used.

92

5.2 Results Based on Increased Workload

percentage-points means at the same time, that the amount of unused resources is reduced
by one tenth, which is good.

In general, improving the utilization at small workloads is not a hard task because the
schedule is empty. If the utilization is already considerably high (e. g. when the system is
close to the saturated state), even small improvements are difficult to achieve, as the schedule
is quite packed. The results show, that differences between the advanced and SJF-preferred
decider are large enough that one of the deciders is always better than the other. However, if
all job inputs are observed, none of the deciders is superior. Hence, a general recommendation
can not be made.

If the slowdown metrics is observed, the large improvements for the CTC (almost 10%) and
SDSC based synthetic job sets are obvious. These improvements are also seen in Figure 5.3,
especially the CTC performance shows the desired behavior of the self-tuning dynP scheduler.
At the beginning with low workloads FCFS is the best basic policy and the advanced decider
(red curve) follows it. Later (from 0.8 to smaller shrinking factors) the advanced decider
follows the blue curve of SJF, as now SJF is better than FCFS. Furthermore, at high workloads
the advanced decider achieves a better performance than SJF. Unfortunately, with PC2-2002
and CHPC based job sets the self-tuning dynP scheduler is worse than SJF, although the
performance loss is not large: less than 0.7% (SJF-preferred) and 1.5% (advanced) for the
slowdown metrics.

The same applies to the utilization, as it is difficult to favor one of the two deciders. Both
deciders are worse than SJF for PC2-2002 and CHPC. Interesting is the slowdown perfor-
mance with the KTH based synthetic jobs, as the advanced decider is better than SJF and
the SJF-preferred decider is worse. However, the presented behavior is similar to Table 5.8,
where the advanced decider does not outperform SJF, except if a slackness value of 8% is
applied.

Again, slackness is applied in order to reduce the number of policy switches and thereby
possibly improve the performance. In those cases, where two policies are equal and one
of them is the current policy, slackness may be beneficial. Confer to Table 4.3 for these
cases. The performance of the current policy is virtually improved, so that policy switching
is avoided. Again, simulations with the advanced and SJF-preferred decider and slackness
values of 2, 4, 6, 8, and 10% are driven. All results can be found in Tables A.17 - A.20.
Additional to the slowdown values the relative difference to SJF is given. From these relative
differences an average value using all shrinking factors can be computed, which allows us to
get a comprehensive overview on the performance. Table 5.13 gives a comprehensive overview
with the average values. The grey columns in the tables represents no use of slackness and
these numbers are also found in Table A.15 and Table A.16.

The results show, that for most job sets slackness is only useful, if small values in the
range of 1 to 2% are used. For CTC based synthetic jobs the best performance difference of
almost 10% is achieved without slackness. With a slackness of 2 or 4%, the performance is
already significantly lower for both deciders. A similar behavior can be observed for SDSC
based jobs. The advanced decider is less vulnerable to slackness for these two jobs sets. The
detailed numbers in Tables A.17 - A.20 show, that for specific combinations of slackness and
shrinking factors extremely bad results are generated, while changing one of both parameters
in any direction changes the performance difference significantly. It would have been expected
that the performance changes more continuously, especially with increasing slackness. With
the KTH based job input a slackness of 2% already allows both deciders to be superior to SJF,

93

5 Evaluation of the dynP Scheduler

synthetic jobs slackness in %
based on 0% 2% 4% 6% 8% 10%

advanced decider
CTC 9.04% 7.24% 2.78% -0.14% -0.72% -0.38%
KTH 9.92% 2.06% 0.48% 0.71% 0.36% 0.51%
LANL 1.51% 1.40% 0.83% 0.33% 0.03% 0.02%
SDSC 6.36% 2.69% 0.47% -0.20% 0.30% 0.13%

PC2-2001 0.27% -0.14% -0.85% 0.07% -0.08% 0.47%
PC2-2002 -0.60% 0.84% 0.96% 0.75% 0.59% 0.36%

CHPC -1.46% 0.09% 0.14% 0.01% -0.01% -0.10%
MHPCC 2.22% 1.56% 0.43% 0.45% 0.31% 0.22%

SJF-preferred decider
CTC 9.92% 2.06% 0.48% 0.71% 0.36% 0.51%
KTH -0.72% 0.91% 0.75% 0.34% 0.24% 0.36%
LANL 1.29% 1.48% 0.34% 0.01% -0.13% -0.17%
SDSC 6.22% 0.81% 1.10% 0.23% 0.12% 0.03%

PC2-2001 0.69% -0.15% -1.19% -0.17% 0.06% -0.03%
PC2-2002 -0.32% -0.07% -0.05% 0.19% 0.19% 0.39%

CHPC -0.61% -0.07% -0.03% -0.03% -0.05% -0.05%
MHPCC 1.24% -0.68% 0.66% 0.11% 0.10% 0.07%

Table 5.13: Slowdown as a relative difference compared to the basic policy SJF. Full self-
tuning is done and ARTwW is used as self-tuning metrics. Shown are average
values of all workloads/shrinking factors. Red colors indicate the best slackness
value for each job set.

whereas with no slackness the SJF-preferred decider is worse than SJF. Table A.17 shows,
that the advanced decider gets worse than SJF from slackness values of 6% increasing. At the
same time the SJF-preferred decider still remains superior to SJF and the advanced decider,
although it is significantly worse than without any slackness at all. All other job sets do not
show such behavior.

For the remaining four job sets no general behavior is observable and possible improvements
are insignificant. For the advanced decider with PC2-2001 and the SJF-preferred decider with
PC2-2002 higher slackness values are beneficial and induce a performance gain over SJF. Here
10% slackness allows a 0.5% performance gain. While for all other results no performance
gain can be found. In some cases (CHPC with the SJF-preferred decider) the self-tuning
dynP scheduler always stays behind SJF, and in other cases slackness only decreases the
performance.

In combination with Table 5.8 it can be noted that slackness should not generally be used
with higher workloads. The evaluation of slackness and half vs. full self-tuning shows, that
the abilities of the self-tuning dynP scheduler in switching the scheduling policy should not
be limited in any way. Neither reducing the number of chances for a policy switching, nor
virtually increasing the performance of the current policy increases the performance. Hence,
the original idea of switching the policy whenever possible, achieves the best results.

Concluding Remarks

We evaluated the self-tuning dynP scheduler at increased workloads in the previous section.
We focused on the advanced and SJF-preferred decider, full self-tuning, and ARTwW as the
self-tuning metrics. We compared the performance of the self-tuning dynP scheduler with

94

5.3 Summary

SJF, computed relative differences for the simulated workloads, and averaged the relative
differences. The results show, that for all job sets the self-tuning dynP scheduler achieves a
better utilization, although in some cases only slightly. Improving the utilization at small
workloads is not challenging. However, at high workloads and utilizations this becomes a
hard task for the scheduler and even small improvements are harder to achieve. Especially
for the CTC based job sets the performance of the self-tuning dynP scheduler is remarkable.
The utilization is increased by 1.22 percentage-points and additionally the slowdown values
are reduced by 9% of all applied workloads. The self-tuning dynP scheduler improves two
contradicting performance metrics. Applying slackness to the advanced and SJF-preferred
decider shows, that at increased workloads only very small slackness values up to 2% are
useful to further improve the performance.

5.3 Summary

In the previous two chapters we presented the self-tuning dynP scheduler, its basic idea,
different deciders, options, and evaluation results. The idea of dynamically switching the
scheduling policy (dynP) is based on the fact that usually no single policy generates good
schedules for every possible job characteristic. In order to achieve the best possible perfor-
mance, it becomes necessary to switch the active scheduling policies according to the current
waiting jobs. At the beginning we used a lower and upper bound for this decision. The aver-
age estimated run time of all waiting jobs was compared with two bounds and either FCFS,
SJF, or LJF was chosen. We restricted the set of possible scheduling policies to the mentioned
three, as they are implemented in the resource management system CCS. The evaluation of
the dynP scheduler with bounds shows, that reasonable good results are achieved over a wide
range of applied workloads. However, a major drawback is, that the bound setting needs to
be adapted with different job characteristics. Using such a scheduler in a real world scenario
is almost useless, as there is no time for a permanent re-adaptation of the bounds.

Hence, a major aim whilst developing the self-tuning dynP scheduler was to establish au-
tonomy from job induced parameter changes. The scheduler switches the scheduling policies
without the need of a permanent intervention of the system administrator. With the abil-
ity of future resource scheduling like planning based resource management systems do, the
idea of the self-tuning dynP scheduler is as follows: The self-tuning dynP scheduler generates
full schedules for each available policy, measures the generated schedules with a performance
metrics, and then chooses the best policy.

A decider mechanism is in charge of choosing the best policy according to a performance
metrics. We presented different levels of sophistication for the decider mechanisms. As its
name already implies, the simple decider is simply coded and specific policies are intentionally
preferred. The advanced decider is truly fair in its decisions and does not favor any policy,
unless the decider has to arbitrarily choose between policies. In contrast, the preferred decider
stays with a preferred policy and only switches to a different policy, if it is clearly better than
the preferred policy. Additional options for the self-tuning dynP scheduler exist: Is self-tuning
invoked only when jobs end (half self-tuning), or at job submits and ends (full self-tuning)?
With slackness applied, the performance of the current policy is virtually improved for the
comparison.

The evaluation of the self-tuning dynP scheduler started with a comparison of the three
basic policies FCFS, SJF, and LJF as the reference. Eight traces from HPC machines are used

95

5 Evaluation of the dynP Scheduler

as job input and the performance is measured by the slowdown weighted by area (SLDwA).
Furthermore, the results show, that half of the traces do not generate meaningful results, as
the corresponding schedules are that empty, that the slowdown is close to its minimum of
one. Scheduling policies can not generate different results, if the workload is low and there
are many holes in the schedule. Therefore, we focused on the traces CTC, KTH, LANL, and
SDSC. It is observed, that SJF achieves the lowest slowdown values for the CTC and KTH
trace, while FCFS is best for LANL and SDSC. Again, the results show, that a single policy
is not enough for changing workloads.

In the next step we compared the simple and advanced decider either with half or full
self-tuning. The performance of the self-tuning dynP scheduler is compared to the best policy
for each trace. The results show, that the advanced decider is clearly better than the simple
decider. Also, if full self-tuning is applied with the advanced decider, the best basic policy
is already outperformed for two traces (CTC and LANL). A detailed analysis of the decision
process and the switches to each basic policy for the simple and advanced decider show their
different behaviors.

Next, we compared different metrics for measuring the schedules in the self-tuning process.
The results show, that using the average response time weighted by the job width (ARTwW)
achieves the best results. Therefore, it was used for the remainder of the evaluation as the
self-tuning metrics. The preferred decider is compared with the advanced decider, either with
FCFS and SJF as the preferred policy. Choosing SJF as the preferred policy leads to the best
results, but by choosing FCFS the performance of the advanced decider can not be achieved
for any trace. Finally, we applied slackness to the decision process in the self-tuning dynP
scheduler. We compared slackness values of up to 10% with no slackness at all. The results
show, that for some traces (CTC, KTH, and LANL), applying slackness pays off. However,
a general slackness value that always improves the performance was not to be found. A case
analysis of the switching behavior shows, that with slackness applied the advanced decider
falls back to the simple decider, as cases with two equal policies no longer exist.

In a second step, we evaluated the self-tuning dynP scheduler with increasing workloads.
Different shrinking factors were used to decrease the interarrival time of jobs, so that the same
amount of jobs is submitted in a shorter time. We increased the workload until the scheduler
reaches a saturated state, i. e. the utilization of the system could not increase anymore. For
this evaluation we used synthetically generated job sets. These are based on the previously
used eight traces and have the same statistical job parameters. By using synthetic job sets,
the number of simulated jobs could be decreased without changing the job set characteristic.

Again, first the three basic policies were evaluated. The results prove, that with increasing
workloads LJF increases the utilization and SJF generates short response times and slow-
downs. FCFS is a good compromise, as the utilization is considerably higher than with SJF
and at the same time the slowdown is close to SJF. In the evaluation of the self-tuning dynP
scheduler, we focused on the advanced and SJF-preferred decider and used SJF as a reference
for comparing the performance of the different schedulers. For the CTC and SDSC based
job sets both deciders improve the slowdown by about 9 and 6% respectively, if measured
as the average of all applied workloads/shrinking factors. At the same time the utilization
is improved by about 1.2 and 0.9 percentage-points. Finally we applied different slackness
values in order to reduce the number of policy switches and thereby possibly increase the
performance of the self-tuning dynP scheduler. However, the evaluation shows, that slackness
is not as beneficial as expected, especially for higher workloads.

96

6 Job Scheduling in Grid Environments

In the previous two chapters we focused on the implementation and evaluation of self-tuning
schedulers in the domain of resource management for single HPC systems. In the following
chapter we present an adaptive multi-site grid scheduler for executing jobs across multiple
sites in so called meta or grid computing environments.

In metacomputing environments [83] many computing resources are used in a cooperative
way. The classical metacomputing use case is the multi-site execution of an application. This
means, that the application is synchronously started on a set of geographically distributed
resources at the same time. The running parts of the application collaborate closely and
therefore have to communicate with each other. One major problem in the past was, that
the parts of the application are able to communicate. For this purpose many solutions are
available nowadays. One to mention is the metacomputing MPI library PACX [68]. After
solving this, the next problem is to have all needed resources available at the same time.
From this, new requirements for the job scheduling arise.

Computational grids, grid environments, or in short grids [30] take up the idea of meta-
computing and broaden it, as not only computing resources are considered. Other types of
resources like network connections, data archives, special I/O hardware (telescopes, physi-
cal detectors, or 3D visualization devices), software licenses, and even human resources are
joined in grid environments. The aim of grids is to make these different types of resources
transparently accessible and usable for the users.

The most well-known analogy is the electric power grid: consumers simple use the electricity
without knowing how and where it is generated. At some time in the future, grids should be
able to deliver a similar service: users connect their laptop to the internet and they can use
different services for solving their problems, without knowing which resources are involved
or where they are located. Computing portals for e. g. CFD, FEM, or weather forecast
applications are a first step towards this vision.

Many more and more different use cases exist today, which have to be solved with grid
environments. For example, applications with pre- and postprocessing: Most often these
stages have to be computed on different types of computer architectures, e. g. preprocessing
is done on an distributed memory MPP, the actual computation is done on a vector machine,
whilst the postprocessing and visualization is done on an SGI Origin connected to a 3D cave.
Such jobs with pre- and postprocessing are also called job chains. However, such job types
might generate non-trivial problems, e. g. transferring the data from one stage/site to the next
and often over long distances (i. e. low bandwidth and high latency). In contrast, multi-site
applications need network connections with low latency, as the synchronously started parts
of the application communicate whilst they are running. For this, an additional network
reservation may be needed.

Other applications generate Terabytes of data during their execution. This data has to
be stored. Hence, space on a local storage server or in a remote data archive is needed.
In case the data is transferred to a remote archive, an additional network reservation is
needed in order to complete the data transfer in time. It is also thinkable that other types

97

6 Job Scheduling in Grid Environments

of resources (e. g. radio telescopes or 3D caves) are involved in grid jobs. Obviously, such
resources are not typically managed by common resource management systems that are used
for supercomputers or network connections. Hence, interfaces to different kinds of resource
management systems are needed in modern grid environments.

In the following, we concentrate on job scheduling aspects in such grid environments. How-
ever, job scheduling in grid environments is different compared to the previously described
job scheduling for single HPC machines. The local machine schedulers focus on packing the
submitted jobs in a way that the utilization or response time of the system is improved. The
task of a grid scheduler is more complex as more than one machine can execute a job. Hence,
a higher level of scheduling has to be implemented on top of the local machine schedulers.

As previously described, grid environments combine different types and sizes of comput-
ing resources. Diverse benefits arise for the users and owners of grid resources. The users
benefit from the larger set of machines and their different sizes. If they leave their job re-
quirements unchanged, they may notice a shorter waiting time, as load sharing is done by
the grid scheduler on the available machines. Users may also request more resources than
locally available, so that either larger problems are solved or the same problem size is solved
with a higher precision. Owners also benefit from participating in grids. A higher utiliza-
tion is more than likely as more users have access to the machine. However, owners also have
to pay attention to their local users as they might be unhappy due to an over-loaded machine.

The standard resource requests known from single machines are denoted as single-site jobs
in grid environments. The grid scheduler has to assign resources that belong to the same
machine, hence the name single-site. As previously mentioned single-site jobs benefit from
load sharing effects in the grid.

In contrast, multi-site jobs can span across several machines. The grid scheduler does not
necessarily have to assign resources that belong to a single machine. The usage of multi-
site applications has been theoretically discussed for quite some time [2]. With multi-site
computing the execution of a job is done at different sites. This results in a larger number of
totally available resources for a single job. The effect on the average response time is yet to
be determined as there are only few real world multi-site applications. This lack of real multi-
site applications may be the result of an absence of a common grid computing environment
which is able to support the allocation of resources in parallel on remote sites. In addition,
many users fear a significant adverse effect on the computation due to the limitations in
the network bandwidth and latency over wide area networks. This overhead depends on
the communication requirements of the application parts. As WAN networks become ever
faster, this overhead may decrease over a period of time. Hence, we evaluate which amount
of overhead will still result in an overall user benefit.

To evaluate the effect of multi-site applications in a grid environment, we examine the
usage of multi-site jobs in addition to job sharing. To this end, the NWIRE1 [94] discrete
event simulation environment was used. Again, we used workload traces as the basis for the
evaluation of sample grid configurations. The potential benefit of a computing site partici-
pation in a computational grid is evaluated. This evaluation focuses on the question whether
sharing jobs between sites and/or multi-site applications provides advantages in processing
the existing workload.

1Net WIde REsources

98

6.1 Site Model

6.1 Site Model

We assume a computing grid consisting of independent computing sites. Each site retains its
local workload. That means, that each site has its own computing resources as well as local
users that submit jobs to the local job scheduling system. In a typical single site scenario all
jobs are only executed on local resources.

The sites may combine their resources and share incoming job submissions in a grid comput-
ing environment. Here, jobs can be executed on local and remote machines. The computing
resources are expected to be completely committed to grid usage. That means job submissions
of all sites are redirected to and distributed by a grid scheduler. This scheduler exclusively
controls all grid resources. For a real world application this requirement may be difficult
to fulfill. There are other possible implementations where site-autonomy is still maintained.
Obviously, a centralized grid scheduler depicts a single point of failure, especially if the num-
ber of participating sites is great. However, we neglect the distribution of this centralized
instance as our focus is on the scheduling algorithms. Using the MOL-Kernel [34, 33] is one
way to implement such a distributed grid scheduler.

6.2 Machine Model

Massive parallel processor systems (MPP) are assumed as the computing resources. Each site
has a single parallel machine that consists of several nodes. Each node has its own processor,
memory, disk etc. The nodes of the machine are connected with a fast interconnection network
that does not favor any communication pattern inside the machine [25]. This means, that an
arbitrary subset of nodes can be allocated to the parallel job. This model comes reasonably
close to real systems like an IBM RS/6000 Scalable Parallel Computer, a Sun Enterprise
10000, or HPC clusters.

For simplicity, all nodes in this study are identical. The machines at the different sites only
differ in the number of nodes they have. The existence of different resource types would limit
the number of suitable machines for a job. In a real implementation such a pre-selection phase
is part of the grid scheduling process and is normally executed before the actual scheduling
process takes place. After the pre-selection phase the scheduler can ideally choose from several
resources that are suitable for the job request. In this study, we neglect this pre-selection
phase and focus on the scheduling result. Therefore, it is assumed that all resources are of
the same type and all jobs can be executed on all nodes.

The machines support space-sharing and run the jobs in an exclusive fashion. Jobs are
not preempted or time-shared. That means, that once started, a job runs until completion.
Furthermore, we do not consider that jobs exceed their allocated time. After submission, a
job requests a fixed number of resources that are necessary for starting the job. This number
is not changed during the execution of the job. That means jobs are rigid and not moldable,
malleable, or evolving [28, 16].

6.3 Job Model

As previously mentioned, the local workload is retained. Hence, jobs are submitted by in-
dependent users at the local sites. This generates an incoming stream of jobs over a period

99

6 Job Scheduling in Grid Environments

of time. Therefore, the scheduling problem is an on-line scenario without any knowledge of
future job submissions.

We restrict our simulations to batch jobs, as this job type is dominant on most MPP
systems. For interactive jobs there are usually dedicated machine partitions where the effect
of the scheduling algorithm is limited. In addition, interactive jobs are usually executed on
local resources.

The local scheduling system allocates resources to the incoming jobs and determines a
starting time. The jobs are executed without any further user interaction. Data management
of any files is surely of major importance in grid environments. However, we neglect the
data management in this study. This means, that for our grid computing scenario a job (and
its data) is transmitted to a remote site without any overhead. In real implementations the
transport of data requires additional time. Usually this effect is hidden by prefetching before
the execution starts. Postfetching is used to transfer the generated output of the application.
In these cases the resulting overhead is not necessarily part of the scheduling process.

It is the task of the data manager in a grid environment to handle these data transfers.
However, some scenarios exist in which the amount of data is, that large that it can not be
hidden. Therefore, the data manager has to closely interact with the job scheduler. It has
to be ensured that the input data is available at the start of the execution. If large output
data is generated by the running application the data manager has to assure that this data
is transferred to a storage site before the assigned resources are released and all associated
data is probably deleted.

In a grid environment we assume the jobs are able to run in multi-site mode. That means
a job can run in parallel (started synchronously) on a set of nodes distributed over different
sites. This allows the execution of large jobs that require more nodes than available at a single
site in the grid environment. The distributed parts of the application often communicate with
each other. Hence, the impact of bandwidth and latency has to be considered as wide area
networks can be involved. In the simulations we address this subject by increasing the job
length, if a multi-site execution is applied to a job.

6.4 Scheduling System

Simple first-come-first-serve (FCFS) scheduling policies have often been applied for the paral-
lel job scheduling in queuing based resource management systems for single parallel machines.
As an advantage, this algorithm provides some kind of fairness [79] and is deterministic for
the user. However, pure FCFS can result in poor quality, if jobs with large node requirements
are submitted. To circumvent this problem, a strategy called backfilling became standard on
almost all queuing based resource management systems today. It requires knowledge of the
estimated duration of all jobs and can be applied to any greedy list scheduling. If the next
job in the list can not be started due to a lack of available resources, backfilling tries to find
another job in the list which can use the idle resources straight away. It will not postpone
the execution of the next job in the list. The original backfilling algorithm was introduced by
Lifka in 1995 [55].

In our scenario for grid computing, the task of job scheduling is delegated to a grid sched-
uler. The local scheduler is only responsible for starting the jobs after allocation by the grid
scheduler. Note that we use a central grid scheduler. In a real implementation the architec-
ture of the grid scheduler can differ as single central instances usually lead to drawbacks in

100

6.5 Scenarios

performance, fail-safety or acceptance of resource users and owners. Nevertheless, distributed
architectures can be designed to act similar to a central grid scheduler.

6.5 Scenarios

From the different use cases mentioned above we extract three scenarios, which are:

• local job processing as the reference case. All jobs are submitted and executed locally.

• job sharing between all computing sites in the grid environment. The grid scheduler
can only assign nodes from one site to a job.

• multi-site computing, in which the grid scheduler can assign nodes from different sites.

These scenarios are most common in today’s grid environments and most interesting from
a scheduling point of view. In the following each scenario is described in detail. Later the
evaluation results are presented.

6.5.1 Local Job Processing

This scenario represents the common situation where no job exchange or load sharing is done
between sites (Figure 6.1). Local computing resources are only available to local users. In
difference to Chapter 4 queuing based resource management systems are now assumed to be
used for the local job scheduling. As the name implies the locally generated workload is not
shared with other sites. Hence, load balancing effects do not occur. In the common sense
this scenario is no real grid environment, but it depicts a good basis for our evaluations. We
concentrate on EASY backfilling [55], as its performance proves to be superior to conservative
backfilling.

���������������������������
���

����������
���������������
���������������
���������������
��������������� 	�	

	�	
�

�

���

��

���������
���������
�����������������
�����������������

Grid-Scheduler

Scheduler 1 Scheduler 2 Scheduler 3

Site 2 Site 3Site 1

Machine 1 Machine 2 Machine 3

tim
e

tim
e

tim
e

nodesnodesnodes

Schedule Schedule Schedule

Job-Queue 1 Job-Queue 2 Job-Queue 3

Figure 6.1: Sites executing all jobs locally.

6.5.2 Job Sharing

In this scenario all jobs submitted at any site are delegated to the grid scheduler as seen in
Figure 6.2. In this study the applied scheduling algorithms consist of two phases. First an
appropriate machine is selected. Then the allocation in time for this machine takes place:

101

6 Job Scheduling in Grid Environments

1. Machine Selection: Several methods exist for selecting machines (BiggestFree, Ran-
dom, BestFit, EqualUtil). Simulation studies [40, 84] showed good results for a selection
strategy called BestFit. With this strategy that machine on which the job leaves the
least number of free resources if started is selected.

2. Scheduling Algorithm: The backfilling strategy is applied for the single machines as
well. This algorithm has shown best results in previous studies.

According to the definition in [31] the job sharing scenario refers to full control as the
central instance has full control over the local machines and local schedulers do not process
any locally submitted workload.

���������������������������
���

����������
���������������
���������������
���������������
��������������� 	�	

	�	
�

�

���

��

���������
���������
�����������������
�����������������

Grid-Scheduler

Scheduler 1 Scheduler 2 Scheduler 3

Site 2 Site 3Site 1

Machine 1 Machine 2 Machine 3

tim
e

tim
e

tim
e

nodesnodesnodes

Schedule Schedule Schedule

Job-Queue 1 Job-Queue 2 Job-Queue 3

Figure 6.2: Sites sharing jobs and resources.

6.5.3 Multi-Site Job Execution

This scenario is similar to job sharing: a grid scheduler receives all submitted jobs. However,
the grid scheduler is no longer forced to choose nodes from a single site. Jobs can now be
executed across site boundaries (Figure 6.3).

Again, several strategies exist for multi-site scheduling [40, 84]. Here we use a scheduler
which first tries to find a site that has enough free resources for starting the job. If such a
machine is not available, the scheduler tries to allocate the jobs to resources from different
sites. To this end, the sites are sorted in descending order of free resources. The allocation
of free resources for a multi-site job is done in this order. This assures that the number of
combined sites is minimized. If there are not enough resources free for a job, it is queued and
normal backfilling is applied.

Spawning job parts over different sites usually generates an additional overhead. This
overhead is caused by the communication via slow networks (e. g. wide area networks). In
consequence the overall execution time of the job will increase depending on the communi-
cation pattern. For jobs with a limited communication demand there is only a small impact.
Note that, neglecting the additional communication overhead for multi-site execution, the grid
would behave like a single large supercomputer. Hence, in the ideal case multi-site scheduling
would outperform all other scheduling strategies. In this study, we examine the effects of
multi-site processing on the schedule quality under the influence of different communication

102

6.5 Scenarios

overheads. To this end, the communication overhead is modelled as an extension of the jobs
duration di to d∗i for a job i that runs on multiple sites at a constant factor of: d∗i = (1+p) ·ri

with p = 0 .. 40 % in steps of 5%.
Of course, in a real world implementation of multi-site scheduling this simple model of

considering the communication overhead would not be sufficient. Due to more complex com-
munication patterns of multi-site applications and different network speeds more sophisticated
models have to be used. Furthermore, we do not consider how many parts the grid scheduler
partitions the multi-site application, or how many nodes belong to each part. Both scheduler
induced values surely influence the communication overhead and should therefore be consid-
ered during job scheduling. We assume that all the mentioned overheads are summarized in
the above given simple extension model.

��

���������������������������
��� 	�	�	
�
�

������������������������������
������������������������������ �����

���

���

��

��������������������������������������
����������������������������������

Grid-Scheduler

Scheduler 1 Scheduler 2 Scheduler 3

Site 2 Site 3Site 1

Machine 1 Machine 2 Machine 3

tim
e

tim
e

tim
e

nodesnodesnodes

Schedule Schedule Schedule

Job-Queue 1 Job-Queue 2 Job-Queue 3

Figure 6.3: Support for multi-site execution of jobs.

103

6 Job Scheduling in Grid Environments

104

7 Evaluation of Multi-Site Grid Scheduling

For the comprehensive evaluation of the described algorithms and scheduling schemes discrete
event simulations have been performed. Various machine and workload configurations have
been examined during these simulations [13, 15, 14] and are described in the following.

7.1 Machine Configurations

All configurations use a total of 512 resources. These resources are partitioned in the various
machines as shown in Table 7.1. A larger grid environment with more total resources would
require additional scaling of the workload without improving the evaluation validity.

identifier configuration max. size sum
m64 4 · 64 + 6 · 32 + 8 · 8 64 512
m64-8 8 · 64 64 512
m128 4 · 128 128 512
m256 2 · 256 256 512
m256-5 1 · 256 + 4 · 64 256 512
m384 1 · 384 + 1 · 64 + 4 · 16 384 512
m512 1 · 512 512 512

Table 7.1: Used Machine Configurations.

The configurations m64-8, m128, and m256 are representations of sites with equal machines.
They are balanced as there is an equal number of resources at each machine. The configuration
m384 and m256-5 are examples for a large computing center with several client sites. In
the m256-5 configuration the largest machine is smaller than the largest machine in the
m384 configuration. The configuration m64 represents a cluster of several sites with smaller
machines. The reference configuration m512 consists of a single site with one large machine.
In this case no grid computing is used and a single scheduler can control the whole machine
without any need to split jobs.

The m384 machine configuration was chosen, as the largest job, in the later described
workloads, requests 336 resources. Hence, it is ensured that these large jobs can be started
on a single site. In order to stick with the power of 2 size of the remaining machines, 384 was
chosen.

7.2 Workloads

Unfortunately, no real workload is currently available for grid computing. For our eval-
uation we derived a suitable workload from real machine traces. These traces have been
obtained from the Cornell Theory Center (CTC) and are based on an IBM RS6000/SP par-
allel computer with 430 nodes. This trace was already used in the previous evaluations of

105

7 Evaluation of Multi-Site Grid Scheduling

the self-tuning dynP scheduler. A description and more details on the trace are found in
Section 3.5.

In order to use the CTC trace for this study it was necessary to modify the traces in order to
simulate submissions at independent sites with local users. To this end, the jobs from the real
trace have been assigned to the different sites in a round robin fashion. It is typical for many
known workloads that jobs favor requesting power of 2 number of nodes. The CTC workload
shows the same characteristic. The modelling of configurations with smaller machines would
put these machines at a disadvantage if the number of nodes is not a power of 2. Hence,
the machine configurations consists of 512 nodes. Nevertheless, the trace consist of enough
workload to keep a sufficient backlog on all systems [40]. The backlog is the workload that is
queued in every time step if there are not enough free resources to start the jobs. A sufficient
backlog is important as a small or even no backlog indicates, that the system is not fully
utilized. In this case, there is not enough workload available to keep the machines working.
Many schedulers, e. g. the mentioned backfilling strategy, require enough jobs are available
for backfilling in order to utilize idle resources. Hence, insufficient backlog leads to a bad
scheduling quality and unrealistic results.

Over all, the quality of a scheduler is highly dependent on the workload. To minimize the
risk in achieving singular effects the simulations have been done for all workload sets:

• a synthetic probabilistic generated workload on the basis of the CTC traces.

• three extracts of the original CTC traces.

The synthetic workload is very similar to the CTC trace. It has been generated to prevent
singular effects in real traces (e. g. short and rare bursts of submission or down time of the
machine) affecting the accuracy of the results. Additionally, the usage of three extracts of the
real traces are used to get information on the consistency of the results for the CTC workload.
Each workload set consists of 10,000 jobs which corresponds to a period of more than three
months in real time.

A problem with these simulations is the handling of wide jobs contained in the original
workload traces. The widest job in the CTC traces e. g. requests 336 processing nodes. On
the one hand, these jobs can be used in simulations with multi-site. Here, jobs can be split
across different sites to use more resources than available at a single site. On the other hand,
these large jobs can not be started in simulations of scenarios with smaller machines and only
with local job processing or job sharing.

To permit a valid comparison of schedules and simulation results, no jobs must be neglected.
Therefore, we assume that the workload of large jobs is still generated at a single site. Large
jobs are split up into several parts, so that they can be processed on the given machine
size. This is 64 for m64 and m64-8. Appropriately, the job size is limited by the size of the
largest machines in the job sharing scenario. Here, users can submit jobs that request more
resources than locally available. To allow the comparison of different scenarios the following
modifications have been applied to each of the four mentioned workloads.
The applied workload modifications are:

1. large jobs are split in parts to match the local machine size,

2. large jobs are split in parts to match the largest machine size in the machine configura-
tion,

106

7.3 Results

3. large jobs are split in parts with a maximum of 64 nodes,

4. large jobs remain unchanged.

The workloads with modification 1 were executed in all three scenarios. The workloads with
modification 2 were used for the job sharing and multi-site scenarios, whereas modification 3
was only used for the multi-site scenario. All of these modifications do not change the overall
amount of submitted workload. We assume that a certain amount of workload exists at a
local site. Depending on the scenario, a user may submit jobs larger than the local machine.
The simulations allow the examination of the impact caused by larger multi-site jobs on the
schedule.

Table 7.2 shows a summary of all used workloads in this study and an identifier is introduced
for each workload.

identifier description

10 20k org An extract of the original CTC traces from job 10,000 to 20,000.

10 20k max64 The workload 10 20k org, split up in jobs with a maximum of 64 processors.

30 40k org An extract of the original CTC traces from job 30,000 to 40,000.

30 40k max64 The workload 30 40k org, split up in jobs with a maximum of 64 processors.

60 70k org An extract of the original CTC traces from job 60,000 to 70,000.

60 70k max64 The workload 60 70k org, split up in jobs with a maximum of 64 processors.

syn org The synthetically generated workload derived from the CTC workload traces.

syn max64 The workload syn org, split up in jobs with a maximum of 64 processors.

Table 7.2: Workload Configurations.

7.3 Results

In the following we present the results for different scenarios, resource configurations and
workloads. All presented work on scheduling in grid environments is done in cooperation
with colleagues from the Computer Engineering Institute at the University of Dortmund:
Carsten Ernemann, Volker Hamscher, and Ramin Yahyapour.

The results on the effects of machine configurations in Section 7.3.1 are published in [15].
The results on job sharing and multi-site job execution as presented in Section 7.3.2 are
published in [13]. Further enhancement to the multi-site scheduling approach and their results
on the schedule quality are presented in Section 7.3.3 and published in [14].

7.3.1 Machine Configurations

The simulation results show, that configurations with equal sized machines provide signifi-
cantly better scheduling results than machine configurations that are not balanced. Machine
configurations with a small number of machines produce better scheduling results under the
precondition that each configuration has the same amount of resources in its sum.

As a performance metrics, the average weighted response time (AWRT) and the average
weighted waiting time (AWWT) are used in this study. The response time of each job is the
difference between the completion time and the submission time. The response time of each
job is weighted by its resource consumption. The average weighted response time is the sum
of all weighted response times divided by the number of all jobs. The waiting time of each

107

7 Evaluation of Multi-Site Grid Scheduling

job is the difference between the start time and the submission time. The weights are defined
the same way as for the average weighted response time. Additional performance metrics are:

Average Response Time weighted by Width:

AWRT =

∑
j∈Jobs

(j.requestedResources · (j.endT ime− j.submitT ime))
∑

j∈Jobs
j.requestedResources

(7.1)

Average Waiting Time weighted by Width:

AWWT =

∑
j∈Jobs

(j.requestedResources · (j.startT ime− j.submitT ime))
∑

j∈Jobs
j.requestedResources

(7.2)

Note that, the mentioned weights prevent any prioritization of small over large jobs in
regard to the average weighted response and average weighted waiting time, if no resources
are left idle [77]. The average weighted response time is a mean for the schedule quality
from a user perspective. A shorter AWRT indicates, that the users have to wait less for
the completion of their jobs. A shorter AWWT indicates, that the jobs have to wait less,
before they are started. Note, the average weighted waiting time should not be too small,
as this indicates, that the backlog is very small and that jobs are started shortly after their
submission.

As an example for the scheduling quality, the average weighted response time for the work-
load 60 70k org and all resource configurations is shown in Figure 7.1. The other workloads
show a similar behavior. Several parameter settings for the increase of the corresponding run
time for multi-site jobs were examined. The AWRT for the machine configuration m512 is
constant for all parameters, due to the fact that no multi-site scheduling is applied in this
configuration. As een in Figure 7.1 the AWRT decreases from m64-8 to m128 to m256. All
of these machine configurations have equal sized machines, but the size of the machines in-
creases between the configurations. The AWRT decreases from machine configuration m64 to
m64-8, as the configuration m64-8 consists of more larger machines than m64. As more jobs
are executed in multi-site mode in configurations with a higher number of smaller machines,
an increase of the communication overhead p has a higher impact on the AWRT. The same
effect is observed for m256 and m256-5. Here the configuration m256-5 is not balanced and
contains smaller machines. This turns out to be a disadvantage. In conclusion, there is no
hard rule, neither for the advantage of equal sized nor of the biggest machines. This will
depend highly on the characteristic of the workload as seen in the comparison between m384
and m256. In this example, m384 outperforms m256 with a communication overhead of up
to 45%.

In Figure 7.2 the average weighted response time is shown relative to the average weighted
response time of configuration m512. This underlines the above statements in more detail.

The average weighted response times for the configurations m64 and m64-8 are almost
similar to the values of the multi-site parameter p between 0% and 35%. If the overhead
exceeds 35%, the AWRT of configuration m64 increases dramatically and is at least 25%
bigger than the AWRT for the configuration m64-8. The decreasing AWRT from m64-8 to
m128 and m256 is evaluated with at least 20% for each step for overhead parameters over

108

7.3 Results

Average Weighted Response Time for Multi-Site Scheduling and workload 60_70k_org

0,0E+00

1,0E+04

2,0E+04

3,0E+04

4,0E+04

5,0E+04

6,0E+04

7,0E+04

m64 m64-8 m128 m256 m256-5 m384 m512

machine configuration

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
in

s
e
c
o

n
d

s

p=0%

p=5%

p=10%

p=15%

p=20%

p=25%

p=30%

p=35%

p=40%

p=45%

p=50%

p=55%

p=60%

Figure 7.1: The average weighted response time in seconds for workload 60 70k org and all
machine configurations and multi-site scheduling.

Average Weighted Response Time for Multi-Site Scheduling and workload 60_70k_org related to

machine configuration m512

-50%

0%

50%

100%

150%

200%

250%

m64 m64-8 m128 m256 m256-5 m384

machine configuration

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
in

%
re

la
te

d
to

m
5
1
2

p=0%

p=5%

p=10%

p=15%

p=20%

p=25%

p=30%

p=35%

p=40%

p=45%

p=50%

p=55%

p=60%

Figure 7.2: The average weighted response time for workload 60 70k org and all machine
configurations relative to machine configuration m512 for multi-site scheduling.

35%. The difference of the AWRT for the parameters under 35% is not significant. The
comparison between configuration m256 and m256-5 results in a similar conclusion. The

109

7 Evaluation of Multi-Site Grid Scheduling

AWRT increases for parameters over 45% by at least 25%.

file 10 20k org 30 40k org 60 70k org syn org
[jobs]=̂[10−2%] [jobs]=̂[10−2%] [jobs]=̂[10−2%] [jobs]=̂[10−2%]

p=0% 539 431 840 774

p=5% 543 436 850 769

p=10% 582 448 928 827

p=15% 572 490 917 906

p=20% 583 546 946 946

p=25% 601 567 951 1042

p=30% 622 521 979 1026

p=35% 637 523 1036 1063

p=40% 647 534 1106 1012

p=45% 673 597 1008 1181

p=50% 755 579 1029 1188

p=55% 748 578 1086 1233

p=60% 746 638 1114 1177

Table 7.3: Number of multi-site jobs for different workloads and different parameters using
machine configuration m128.

The increase of AWRT results from two effects. First of all, the whole workload increases,
as all multi-site jobs have a longer execution time. Second, the number of multi-site jobs
increase. Table 7.3 shows the number of multi-site jobs for machine configuration m128,
for different workloads and different multi-site parameters. For all workloads the number of
multi-site jobs increases. This process is not continuous. However, the difference between the
number of multi-site jobs for p = 0% and p = 60% is always at least 30%.

This behavior results from the policy to schedule all jobs as soon as possible after sub-
mission. Due to an increased execution time of all multi-site jobs the number of free time
slots within the schedule decreases and the probability of free time slots within one machine
decreases, too. Therefore, jobs can only be started as soon as possible, if free time slots from
different machines are combined.

Table 7.4 indicates, that the increasing number of multi-site jobs corresponds with an
increasing part of the squashed area1 of all multi-site jobs related to the squashed area of the
whole workload. Between parameters p = 0% and p = 60% this part increases at least by
50%.

Table 7.3 and Table 7.4 also indicate, that jobs running in multi-site mode are mostly larger
jobs. This is concluded, as about 5% to 10% of all jobs are responsible for about 20% to 40%
of the whole workload depending on the used job trace. This effect even increases for a higher
multi-site parameter p.

As seen in Figure 7.2, the AWRT for the machine configurations m128, m256, and m384
is smaller in comparison to m512 for the multi-site parameter p = 0%. This effect results
from the scheduling algorithm for multi-site. Some jobs can surpass queued jobs during the
multi-site scheduling, because the scheduler tries to start the jobs as soon as possible or to
split them. In contrast, normal backfilling queues the job in first-come-first-serve order.

Figure 7.3 shows the already mentioned behavior for different workloads whilst using multi-
site scheduling with p = 50%. Therefore, it is reasonable to assume that the above explained
effects apply in general.

1The squashed area is defined as:
∑

j∈Jobs

(j.requestedResources · j.runtime).

110

7.3 Results

file 10 20k org 30 40k org 60 70k org syn org

p=0% 22,19% 23,97% 34,01% 40,75%

p=5% 22,87% 25,09% 36,36% 41,21%

p=10% 24,71% 27,21% 37,28% 46,85%

p=15% 25,30% 28,24% 38,97% 47,95%

p=20% 26,05% 31,36% 40,43% 46,91%

p=25% 29,40% 31,93% 41,02% 52,81%

p=30% 29,11% 30,84% 44,53% 53,62%

p=35% 30,24% 31,01% 44,38% 54,01%

p=40% 31,21% 32,82% 48,10% 56,01%

p=45% 33,22% 37,20% 45,87% 59,77%

p=50% 37,15% 34,18% 46,25% 59,99%

p=55% 37,87% 36,05% 49,81% 62,72%

p=60% 41,46% 39,17% 52,38% 60,46%

Table 7.4: The squashed area of the multi-site jobs related to the squashed area of the whole
workload for different workloads and multi-site communication overheads p using
machine configuration m128.

The AWWT for simulation with the workload 60 70 org for all used machine configurations
is shown in detail in Figure 7.4. The value of the AWWT is at least two hours. This indicates
the existence of an appropriate backlog, which is necessary for the backfilling algorithm.

The results presented in Figure 7.4 show a similar behavior like the results in Figure 7.1,
as the values only differ in the execution time of the jobs.

Average Weighted Response Time for different workloads and different machine configuration for

Multi-Site Scheduling and p=50%

0,0E+00

1,0E+04

2,0E+04

3,0E+04

4,0E+04

5,0E+04

6,0E+04

7,0E+04

10_20k_org 30_40k_org 60_70k_org syn_org

Workloads

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
in

s
e
c
o

n
d

s

m64

m64-8

m128

m256

m256-5

m384

m512

Figure 7.3: The average weighted response time in seconds for all workloads and all machine
configurations for multi-site scheduling and p = 50%.

111

7 Evaluation of Multi-Site Grid Scheduling

Average Weighted Wait Time in seconds for Multi-Site Scheduling and workload m60_70k_org

0,0E+00

5,0E+03

1,0E+04

1,5E+04

2,0E+04

2,5E+04

3,0E+04

3,5E+04

4,0E+04

4,5E+04

5,0E+04

m64 m64-8 m128 m256 m256-5 m384 m512

machine configuration

A
v
e
ra

g
e

W
e
ig

h
te

d
W

a
it

T
im

e
in

s
e
c
o

n
d

s p=0%

p=5%

p=10%

p=15%

p=20%

p=25%

p=30%

p=35%

p=40%

p=45%

p=50%

p=55%

p=60%

Figure 7.4: The average weighted waiting time in seconds for workload 60 70k org and all
machine configurations for Multi-Site Scheduling.

The next aspect of this study is to identify whether all workloads show the described
behavior for each machine configuration. The configuration m128 is chosen to demonstrate
the results. All other machine configuration produce similar results.

Figure 7.5 demonstrates the examined behavior for the AWRT for multi-site scheduling.
Depending on the multi-site parameter p the AWRT increases for all workloads. The actual
deterioration of performance differs between the workloads.

After the evaluation of multi-site scheduling the results for job sharing will be presented.
Jobs with limited resource demands (e. g. 50% of the largest machines) suffer only a minor
drawback for configurations with smaller machines. In general, the increase of the average
weighted response time is lower than 20% for all partitioned configurations. An exception
is m64 compared to a single large machine with 512 nodes. The workload syn max64, an
exception, shows, that the results are highly dependent on the workload characteristics.

In Figure 7.6 the AWRT for all workloads and all machine configurations is presented.
The results correspond to the statements made for multi-site scheduling. The AWRT for all
workloads and machine configuration m64 is higher than the AWRT for machine configuration
m64-8. This indicates, that the balanced configuration with larger machines is advantageous
to the unbalanced configuration with other smaller machines. The comparison between the
configurations m64-8, m128, and m256 shows, that the use of larger machines produces
favorably better scheduling results. The analysis of the scheduling behavior of m256 and
m256-5 also comes to the same results as with multi-site scheduling. The use of a configuration
with two big machines is superior to the usage of a system with one big and several smaller
machines. Again, the comparison between m256 and m384 provides no clear result.

The already mentioned conclusions for the job sharing scenario are seen in Figure 7.7 as

112

7.3 Results

Average Weighted Response Time in seconds for machine configuration m128 and all workloads

for Multi-Site Scheduling

0,0E+00

1,0E+04

2,0E+04

3,0E+04

4,0E+04

5,0E+04

6,0E+04

0 5 10 15 20 25 30 35 40 45 50 55 60

Multi-Site Job Length Parameter in %

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
in

s
e
c
o

n
d

s

10_20k_org

30_40k_org

60_70k_org

syn_org

Figure 7.5: The average weighted response time in seconds for machine configuration m128
and all workloads for multi-site scheduling.

Comparision of the Average Weighted Response Time between all machine configurations for all

workloads using job sharing

0,0E+00

5,0E+03

1,0E+04

1,5E+04

2,0E+04

2,5E+04

3,0E+04

3,5E+04

4,0E+04

m64 m64-8 m128 m256 m256-5 m384 m512

machine configuration

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
in

s
e
c
o

n
d

s

10_20k_max64

30_40k_max64

60_70k_max64

syn_max64

Figure 7.6: The average weighted response time in seconds for all workloads and all machine
configurations for job sharing.

113

7 Evaluation of Multi-Site Grid Scheduling

well. Here, the AWWT is presented for all workloads and all machine configurations. The
minimal AWWT is approximately 45 minutes and so there is evidence of a sufficient backlog
for the backfilling strategy.

Average Weighted Wait Time in seconds for Job Sharing and all machine configurations and

workloads

0,0E+00

5,0E+03

1,0E+04

1,5E+04

2,0E+04

2,5E+04

3,0E+04

m64 m64-8 m128 m256 m256-5 m384 m512

machine configuration

A
v
e
ra

g
e

W
e
ig

h
te

d
W

a
it

T
im

e
in

s
e
c
o

n
d

s

10_20k_max64

30_40k_max64

60_70k_max64

syn_max64

Figure 7.7: The average weighted waiting time in seconds for all workloads and all machine
configurations for job sharing.

Concluding Remarks

As expected, the results show, that configurations with large machines are superior to con-
figurations with smaller machines. However, as long as jobs are limited in resource demand
(e. g. 50% of the largest machines) configurations with smaller machines result only in a minor
drawback. For example, the increase for the average weighted response time remains below
15% for a configuration with four machines of 128 nodes compared to a single large machine
with 512 nodes. We expect, that an adequate ratio between the workload of large jobs and
the available computing power of the large machines is necessary to guarantee an acceptable
response time. As long as this requirement is met, the remaining resources may consist of
smaller machines without implying a significant drawback.

In contrast to job sharing, the usage of multi-site scheduling allows the execution of jobs
that are not limited by the maximum machine size. As shown here, the resource configuration
and the overhead, due to multi-site scheduling, have a strong impact on the AWRT of the
schedule. Configurations with larger machines are superior to those with smaller machines.
However, scenarios with small overheads (p < 20%) only show a slight advantage of balanced
large machine configurations compared to unbalanced systems with small machines.

Especially on smaller resource configurations a large overhead results in a steep increase
of the AWRT, as more jobs are executed in multi-site mode in configurations with a higher

114

7.3 Results

number of smaller machines. Nevertheless, there are some factors for the overhead that lead
to a decrease, or at least no increase of the AWRT compared to smaller factors in the same
scenario. This may be caused for two reasons. First, the number of jobs used for multi-site
scheduling increases corresponding to the size of the overhead, whereas the squashed area
of these jobs shows a much lower increase than the overhead. Therefore, each job must be
smaller on average. This leads to the assumption, that jobs used for multi-site scheduling
differ in each scenario for each size of the overhead. Second, the increase of the communication
overhead incidentally leads to more suitable job sizes as certain patterns of job execution times
are more common than others.

7.3.2 Job Sharing and Multi-Site Scheduling

The simulation results show, that job sharing provides significant improvement for the user,
compared to local job processing. As a measure, the average weighted response time is used
in this study.

The mentioned improvement of job sharing is seen in the results for all configurations and
workload sets. Figure 7.8 shows the average weighted response time for the m128 configura-
tion with an improvement of over 50%. Similar results can be found in the other simulations.
The average weighted response time of locally executed jobs certainly depends on the local
workload modelling. The results shown in this thesis for single-site execution and job sharing
are generated using an EASY backfill scheduler. In contrast to job sharing, single-site exe-
cution is restricted to keep the workload local. That means that no job is transferred to a
remote site. As mentioned before large jobs that are wider than the local machine have to be
split up into smaller jobs which are sequentially executed on the local system. This leads to
a significant increase in AWRT, due to the applied weight on each job part. Job sharing on
the other hand allows the transfer of jobs to remote machines.

Further improvements of the AWRT are achieved by using multi-site execution. As a
reference the result for a single machine with 512 nodes is also given in Figure 7.8. The result
of this m512 configuration depicts the lower bound for the backfilling algorithm. In this
configuration no machine partitioning has to be taken into account, in contrast to any other
configuration. Figure 7.8 shows simulation results for multi-site execution with different run
time overheads for split jobs (0% . . . 40%). As expected, the average weighted response time
without overhead for a multi-site is similar to the m512 result. In this case splitting a job for
multi-site execution causes no penalty.

Moreover, multi-site execution is beneficial compared to job sharing even for an overhead
on execution time of about 25%.

Figure 7.9 shows the improvement for other configurations with jobs limited to the max-
imum machine size. The configurations with equal sized machines show better results than
for the m384 or m64 configurations. For equal-sized machines and multi-site scheduling the
overhead can be even larger and the AWRT results are still better than with job sharing.

Figure 7.10 shows the average weighted response time for some sample workloads. Note that
the workload as shown in Figure 7.8 produces the least effective improvements. The average
weighted response time in other configurations delivers better results. Here, the overhead on
multi-site executed jobs could be even larger.

The example given in Figure 7.8 represents the workload where all original wide jobs with
node requirements larger than 128 were split up into jobs requesting 128 or less nodes. As
mentioned before, simulations were computed for multi-site execution with the original job

115

7 Evaluation of Multi-Site Grid Scheduling

0

10

20

30

40

50

60

70

S
in

gl
e

Jo
b

sh
ar

in
g

M
ul

ti-
0

M
ul

ti-
05

M
ul

ti-
10

M
ul

ti-
15

M
ul

ti-
20

M
ul

ti-
25

M
ul

ti-
30

M
ul

ti-
35

M
ul

ti-
40

A
W

R
T

 (
in

 1
00

0
se

co
n

d
s)

1 x 512 processors machine 4 x 128 processors machines

Figure 7.8: Average weighted response time for the m128 configuration and workload syn org
with modification 2 applied.

0%

50%

100%

150%

200%

250%

Jo
b

sh
ar

in
g

M
ul

ti-
0

M
ul

ti-
05

M
ul

ti-
10

M
ul

ti-
15

M
ul

ti-
20

M
ul

ti-
25

M
ul

ti-
30

M
ul

ti-
35

M
ul

ti-
40

Jo
b

sh
ar

in
g

M
ul

ti-
0

M
ul

ti-
05

M
ul

ti-
10

M
ul

ti-
15

M
ul

ti-
20

M
ul

ti-
25

M
ul

ti-
30

M
ul

ti-
35

M
ul

ti-
40

Jo
b

sh
ar

in
g

M
ul

ti-
0

M
ul

ti-
05

M
ul

ti-
10

M
ul

ti-
15

M
ul

ti-
20

M
ul

ti-
25

M
ul

ti-
30

M
ul

ti-
35

M
ul

ti-
40

Jo
b

sh
ar

in
g

M
ul

ti-
0

M
ul

ti-
05

M
ul

ti-
10

M
ul

ti-
15

M
ul

ti-
20

M
ul

ti-
25

M
ul

ti-
30

M
ul

ti-
35

M
ul

ti-
40

A
W

R
T

 r
el

at
iv

e
to

 m
51

2
w

it
h

 b
ac

kf
ill

in
g

Machine Configuration: m64
Maximum Job Size: 64
Data-set: ctcsyn

Machine Configuration: m128
Maximum Job Size: 128
Data-set: ctcsyn

Machine Configuration: m256
Maximum Job Size: 256
Data-set: ctcsyn

Machine Configuration: m384
Maximum Job Size: 384
Data-set: ctcsyn

Figure 7.9: Results for different resource configurations compared to configuration m512 with
backfilling (equals 0%).

116

7.3 Results

0

5

10

15

20

25

30

35

40
S

in
gl

e-
E

A
S

Y

Jo
b

sh
ar

in
g

M
ul

ti-
0

M
ul

ti-
10

M
ul

ti-
20

M
ul

ti-
30

M
ul

ti-
40

S
in

gl
e-

E
A

S
Y

Jo
b

sh
ar

in
g

M
ul

ti-
0

M
ul

ti-
10

M
ul

ti-
20

M
ul

ti-
30

M
ul

ti-
40

S
in

gl
e-

E
A

S
Y

Jo
b

sh
ar

in
g

M
ul

ti-
0

M
ul

ti-
10

M
ul

ti-
20

M
ul

ti-
30

M
ul

ti-
40

S
in

gl
e-

E
A

S
Y

Jo
b

sh
ar

in
g

M
ul

ti-
0

M
ul

ti-
10

M
ul

ti-
20

M
ul

ti-
30

M
ul

ti-
40

A
W

R
T

 (
in

 1
00

0
se

co
n

d
s)

m512 single m128 job sharing m128 multi-site

Workload: ctc1 Workload: ctcsynWorkload: ctc3Workload: ctc2

Figure 7.10: Results of different workloads.

size. Figure 7.11 shows, that submitting these wide jobs does not significantly increase the
average weighted response time. The improvement over job sharing is valid even though these
wider jobs are actually more complex to schedule as the job start time has to be synchronized
between all job parts. This simulation can not be computed for the job sharing scenario as
these wide jobs can only be executed in a multi-site scenario.

Concluding Remarks

The results show, that the collaboration between sites, by exchanging jobs even without multi-
site execution, significantly improves the average weighted response time. This is already
achieved with a simple algorithm by a central scheduler. Furthermore, the usage of multi-site
applications leads to even better results under the assumption of a limited increase on job
execution time due to communication overheads. Even with an increase of 25%, the execution
time of multi-site proved to be more beneficial compared with job sharing. In terms of latency
WAN networks are in the order of 2-3 magnitudes slower than common fast interconnection
networks between nodes inside a parallel computer, e. g. an IBM SP Switch. Therefore, it
can not be concluded that multi-site is suitable for all applications. However, multi-site is
beneficial for applications with a limited demand in communication.

As grid environments and networks are becoming more common, it seems reasonable for re-
source owners to participate in such initiatives. Simple strategies like job sharing significantly
improve the average weighted response time and therefore the quality of service to the users.
The research and effort in developing multi-site programs for suitable applications with lim-
ited demands in network communication can also provide even better results. Furthermore,
multi-site applications can effectively use more resources for a single job than available on
any single machine. The drawback, due to submitting a larger job instead of several smaller
jobs, was limited in our simulations. Of course this may vary with the amount of large jobs

117

7 Evaluation of Multi-Site Grid Scheduling

�
�
�

0%

50%

100%

150%

200%

250%

300%

350%

m512
single

Job
sharing

Multi-
0

Multi-
05

Multi-
10

Multi-
15

Multi-
20

Multi-
25

Multi-
30

Multi-
35

Multi-
40

A
W

R
T

re
la

tiv
e

to
 m

51
2

m512, wide jobs split
to 128

m512 with wide
jobs

job
sharing

multi-site, wide jobs split
to 128

multi-site with wide
jobs

Figure 7.11: Comparing workloads with original jobs split into 128 parts with keeping wide
jobs.

in a workload.

118

7.3 Results

7.3.3 Constraints for Multi-Site Scheduling

In the following, we examine the behavior of multi-site scheduling, if additional constraints
for the job fragmentation are applied. To this end, two parameters are introduced for the
scheduling process. The first parameter lower bound restricts the jobs that are potentially
fragmented during the multi-site scheduling by a minimal number of necessarily requested
processors. The second parameter is implemented as a vector that describes the maximal
number of job fragments for certain intervals of processor numbers. Presumably, this leads
to a further improvement of the scheduling process. Based on those results the algorithm is
extended with the ability to react on the current status of the system.

sum of all
free resource

<
requested
resources?

place job in waiting
queue

calculate number of needed
fragments

(ordered by the decreasing
number of free resources on the

available machines)

Yes

No

initiate backfilling

number of needed
resources >=
 lower bound

No

number of needed
fragments =< allowed

 maximal number
 of fragments

Yes

Yes

start job in Multi-Site
mode

single free machine >=
requested resources?

No

Yes
Start job on a

single machine
(strategy Best Fit)

No

potential
earliest end time on
 a single machine >

 end time in Multi-Site
 mode

calculate potential earliest end
time of Single-Site execution

with waiting and Multi-Site
execution without waiting

Yes

No

Figure 7.12: Algorithm for multi-site scheduling
with constraints.

The basic scheduling process in the grid
scheduler works as described in Figure 7.12.
In its first step the algorithm determines
whether or not there are enough free re-
sources at this point in time. If the job
can not be immediately started in single-
or multi-site mode, the job is stored in a
waiting queue.

Jobs are scheduled from this queue by a
First-Come-First-Serve (FCFS) algorithm
in combination with backfilling [55, 82, 36]
where each step consists of the method de-
scribed above. Otherwise for a single ma-
chine with enough free resource is searched.
Upon a successful search, the job is started
on this machine, which is chosen by imme-
diately using the BestFit-strategy [17, 40].
A search failure leads to the check of the
parameter lower bound e. g. a value of eight
implies that only jobs requesting more than
eight resources may be split up. Next, the
required number of fragments is calculated
by using a machine list ordered by the de-
creasing number of free resources on each
machine. This allows minimizing the num-
ber of fragments (job parts running multi-
site) for a job. If the number of fragments is
larger than a given maximal allowed num-
ber of fragments the job is placed in the
waiting queue and again backfilling is initi-
ated.

An Adaptive Version of Multi-Site Sche-
duling One can think of scenarios with
large communication overheads, where it
would be beneficial to wait for a single-site

execution of the job. Hence, a different scheduling behavior is induced, if the grid scheduler

119

7 Evaluation of Multi-Site Grid Scheduling

has not found enough resources for immediately starting the job on a single site, but on
multiple sites. Hence, in the following we have to distinguish between the adaptive and the
non-adaptive case. The non-adaptive algorithm directly executes the job in multi-site mode.

In the adaptive case the lower bound is set to zero and the number of fragments is not
limited. Additionally, the boxed off greyed area in Figure 7.12 is added to the algorithm.
In this part of the algorithm an earliest potential end time of the job running on a single
machine (tei,single) is compared to the end time of a multi-site execution with its additional
overhead (tei,multi).

Now the idea of the adaptive version of the multi-site grid scheduler is to compare both
end times. If tei,multi < tei,single the grid scheduler immediately starts the jobs on multiple sites
and extends its duration. If tei,multi > tei,single the job remains in the waiting queue of the grid
scheduler and waits for a future start. Potentially, it is started at the initial computed start
time. Due to the fact that reservations are not supported by the local schedulers, the single-
site start is not guaranteed. The adaptive multi-site grid scheduler holds the job back on a
best effort basis. It might occur that the resources are taken by other backfilled jobs. One
can expect, that, especially for large communication overheads, the adaptive multi-site grid
scheduler favors waiting for a single-site execution of jobs. Jobs requesting more resources
than available at the largest site in the grid environment are not influenced by this adaptive
version. They are directly started in multi-site mode.

The described behavior of the adaptive multi-site scheduler is similar to the self-tuning
dynP scheduler. Both schedulers check several options for scheduling jobs and choose the best
solution in order to reduce the response time of jobs.

Although several performance metrics were already described before, we use a differ-
ent weight for the average weighted response time metrics. The resource consumption (or
squashed area) of a job is described as the product of the job’s run time and the number of
requested resources. Therefore, large jobs have a larger resource consumption than smaller
jobs. The resource consumption of a single job j is defined as follows:

Resource Consumptionj = (reqResourcesj · (endTimej − startTimej))

One measurement for the schedule quality is the average response time weighted by the
job’s resource consumption [77]. We define it as follows:

AWRT =

∑
j∈Jobs

(Resource Consumptionj · (endTimej − submitTimej))

∑
j∈Jobs

Resource Consumptionj

By weighting the response time of each job with its resource consumption, all jobs with the
same resource consumption have the same influence on the schedule quality. Otherwise a
small, often insignificant job would have the same impact on this metrics as a big job with
the same response time.

Fragmentation Parameters The analysis of the used workloads shows a tendency of jobs to
size with the power of 2 [11]. This is seen in Figure 7.13. Herein the resource consumption
is summed up for all jobs of a specific width (i. e. the number of requested resources) for the
syn org workload. The other workloads show a similar behavior. Because of this ”power of

120

7.3 Results

0

50

100

150

200

250
0 8 16

24

32

40

48

56

64

72

80

88

96

10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

20
8

21
6

22
4

23
2

24
0

24
8

25
6

26
4

27
2

28
0

28
8

29
6

30
4

31
2

32
0

32
8

33
6S
q

u
as

h
ed

 A
re

a
in

 1
0

6 p
ro

ce
ss

o
r*

se
co

n
d

s

Number of allocated Processors

Figure 7.13: Distribution of the resource consumption (or squashed area) in the synthetic
CTC workload.

2” focus we also used power of 2 values for the lower bound parameter. Jobs that fall short
of this lower bound are only scheduled on a single machine and are not distributed across
several sites. For the maximum number of job fragments we use a function defined over
several intervals. We define two configurations with different values for each interval:

1. a limited configuration, wherein only necessary fragmentation of a job is allowed and

2. an unlimited configuration, which does not restrict the fragmentation process at all.

For the unlimited case the number of fragments is only limited by the maximum number of
machines in the used resource configurations and the maximum number of requested resources
for a specific job, as shown in Table 7.5.

requested resources maximal number of fragments
lower limit upper limit limited configuration unlimited configuration

1 4 1 4
5 8 1 8
9 16 1 16
17 32 1 18
33 64 1 18
65 128 2 18
129 512 8 18

Table 7.5: Maximal fragmentation for the limited and unlimited configuration.

Impact of lower bounds All displayed results were achieved using the CTC syn workload.
As mentioned earlier this workload represents the average behavior of all used data sets. The
results vary depending on the used workload, but only within close ranges.

121

7 Evaluation of Multi-Site Grid Scheduling

The influence of the lower bound is highly dependent on the additional run time caused by
the overhead. Obviously, without an overhead a multi-site execution would be beneficial in
any case. Jobs which run unnecessarily in multi-site mode can be forced to run on a single
machine. This reduces the impact of the overhead on the overall performance. Up to a certain
level of overhead the use of multi-site (besides mandatory fragmentation to execute the job
at all) leads to a better average weighted response time in our simulations.

This correlation is observed for the m384 configuration and a lower bound of 128 as pre-
sented in Figure 7.14. A decrease of the average weighted response time by 16,3% for p =
80%, and by 29,9% for p = 120%. Here the limited and the unlimited configurations show no
difference with regard to the average weighted response time.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 2 4 8 12 16 20 24 32 48 64 96 12
8

25
6

Lower Bound

A
W

R
T

in
s

e
c

o
n

d
s

m384 unlimited p 80

m384 unlimited p 120

m384 limited p 80

m384 limited p 120

Figure 7.14: Influence of the lower bound for m384 configuration.

Similar results are achieved for the m256 configuration. Here a lower bound of 128 proves
to be beneficial compared to any other values. In this configuration 128 is half the size of the
biggest machine, which verifies the theorem, that it is beneficial for the scheduling that the
job size stays below half the machine size, mentioned in [79]. For an overhead of p = 80% a
reduction of about 12% is reached and for p = 120% 32% is reached.

For the m384 configuration, it is seen that choosing an unappropriate lower bound may lead
to a performance decrease, e. g. a lower bound of 256 results in an increased average weighted
response time of 16% and a lower bound of 96 increases the average weighted response time
by at least 29 % compared to a lower bound of 128 in the m384 configuration, as shown in
Figure 7.14.

An optimal lower bound is difficult to specify as it varies between the different machine
configurations. In our simulations a lower bound of half the machine size proved to be
beneficial in most cases. Exceptions are the configurations m384 and the small configuration
m64.

122

7.3 Results

Comparison of limited and unlimited fragmentation In configurations with smaller ma-
chines e. g. m64 and an overhead up to 60% the unlimited multi-site strategy is superior to
the limited fragmentation strategy, as shown by the first four bars of each group in Figure
7.15.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 8 16 32 64

Lower Bound

A
W

R
T

in
s

e
c

o
n

d
s

unlimited, P=30

limited, P=30

unlimited, P=60

limited P=60

unlimited, P=90

limited, P=90

unlimited, P=120

limited, P=120

unlimited, P=150

limited, P=150

unlimited, P=180

limited, P=180

Figure 7.15: Comparison for m64.

In [15] and Section 7.3.2 we have presented a study of the impact of machine configura-
tions on strategies, where multi-site execution is not limited. In comparison we evaluated
enhancements of those strategies by using constraints and the new adaptive scheduler in the
following.

Applying a higher number of fragments is beneficial. This can be seen in Figure 7.15,
where the average weighted response time is decreased by about 60% for the unlimited scenario
compared to the limited scenario for an overhead up to 60%. Whereas the m64 8 configuration
with equally sized machines shows a decrease of the average weighted response time of only
around 10% for a higher fragmentation. In this scenario the lower bound has a higher impact.
Major parts of the workload can only be scheduled in multi-site mode, as shown earlier in
Figure 7.13. Hence, especially in resource configurations with smaller machines the average
weighted response time scales directly with the overhead parameter p. Figure 7.15 underlines
the advantages of unlimited fragmentation under the condition of a lower bound of 64 and an
overhead of up to 180% for small machine configurations. In this case the average weighted
response time may reach values of up to twelve times as high as the average weighted response
time on a single large machine with 512 nodes.

Results for Adaptive Multi-Site Scheduling In the following we show only the lower bound
for each configuration presenting the best achieved results. In Figure 7.16 the average weighted
response time for the resource configurations m512 and m384 for the best non-adaptive and

123

7 Evaluation of Multi-Site Grid Scheduling

the adaptive scheduling results are given. The improvements, by using adaptive scheduling in
comparison to the non-adaptive case, are clearly seen. The average weighted response time,
using the adaptive scheduling process, increases only by about 35% in comparison to the
single site machine m512 using an overhead of 300%. On the contrary, the average weighted
response time of the non-adaptive scheduling system increases by about 244% with the same
overhead of 300%.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 30 60 90 120 150 180 210 240 270 300

Overhead in %

A
W

R
T

in
s

e
c

o
n

d
s

ADAPTIV m384

m384 limited LB 128

m512

Figure 7.16: Comparison of adaptive and best non-adaptive schedules for m384.

Using the resource configuration m384 even for the largest jobs, multi-site scheduling is not
necessary, as the largest job within the workload requests only 336 nodes and can therefore
be executed on the largest machine which consists of 384 nodes. Even with an overhead of
300%, using resource configuration m384, the adaptive scheduling system executes about 4%
of all jobs in multi-site mode. This is only a 42% reduction compared to an overhead of 30%
in the same configuration. Whereas the resource consumption of the multi-site jobs decreases
to 30% in the same case. This indicates a shift towards the use of jobs with a smaller resource
consumption for multi-site scheduling. All in all, increasing the overhead ten times from 30%
to 300% only results in an increase of the average weighted response time of about 7% in this
configuration.

In the best non-adaptive case increasing the overhead from 30% to 300% results in a 66%
higher average weighted response time. Note, in the m384 configuration with an, or even
without, overhead the best non-adaptive multi-site scheduling system performs worse than
the adaptive system with an overhead of 300% as seen in Figure 7.16. A similar behavior can
be observed in all other resource configurations as shown in Table 7.6.

In Figure 7.17 all resource configurations with the adaptive scheduling system are compared.
The average weighted response time for the resource configuration m512, given as a reference,
is always constant as no multi-site scheduling is invoked. The results of configurations m64

124

7.3 Results

resource configuration number of multi-site jobs ∆ Jobs ∆ resource consumption
overhead 30 % overhead 300 % in % in %

m64 1069 430 -60 +176
m64-8 815 387 -53 +132
m128 478 337 -29 +88
m256 336 189 -44 ≈ 0
m256-5 589 411 -30 +90
m384 637 368 -42 -71

Table 7.6: Comparison of adaptive configurations with overheads of 30% to 300% with regard
to the alternation of the number and the resource consumption of multi-site jobs.

and m64 8 show an increasing disadvantage which almost scales with the overhead from 30%
to 300% up to a factor of about 15. However, the influence of the overhead on the overall
performance for all other resource configurations is not as significant. The configurations
m128, m256, and m256 5 show a similar behavior in terms of performance. For overheads
between 30% and 300%, none of these three configurations clearly outperforms any of the
other two in the adaptive case as shown in Figure 7.17.

0

50000

100000

150000

200000

250000

0 30 60 90 120 150 180

Overhead in %

A
W

R
T

in
s

e
c

o
n

d
s

m64

m64_8

m128

m256

m256_5

m384

m512

Figure 7.17: Comparison of adaptive schedules.

This figure also displays the influence of different machine configurations. The equal par-
titioned configuration m64 8 outperforms its non-balanced counterpart m64. This is due to
the fact that larger machines are available for the execution of large jobs, leading to more
flexibility for the overall scheduling process. The most significant impact of the adaptive
scheduling system is observed in the results of the resource configuration m384. Most re-
sources are combined in a single machine and therefore no multi-site scheduling is necessary.
Here the multi-site scheduling is only used to enhance the quality of the overall schedule.

125

7 Evaluation of Multi-Site Grid Scheduling

Concluding Remarks

We introduced the lower bound parameter in order to restrict the multi-site execution to jobs
which require, at the least, a certain number of resources. Setting the lower bound resulted
in a significant improvement of up to 30% in the average weighted response time for certain
scenarios. Additionally, we restricted the number of fragments to be generated by the multi-
site scheduler. For communication overheads with over 60% of the original execution time it
proved to be beneficial to limit the fragmentation process.

We examined a different approach by using an adaptive version of the multi-site scheduler.
Here the scheduler compares the completion times of single- and multi-site execution. For
single-site execution the waiting time, until the job can be started, has to be considered.
Whereas for multi-site the overhead has to be added to the run time. Depending on the
result the job either is added to the queue or is directly started in the multi-site mode. The
evaluation showed that the adaptive version substantially improved the performance of the
multi-site scheduler, regardless of the overhead percentage for the multi-site execution that
was chosen. Therefore, adaptive multi-site scheduling seems to be the best algorithm for a
multi-site environment. As the presented adaptive algorithm is a basic implementation, more
sophisticated adaptive algorithms may further increase the performance.

7.4 Summary

We used a simulation environment to evaluate and compare the performance of different grid
scheduling scenarios: local job processing, job sharing, and multi-site execution. As job input
we extracted job sets from real trace logs. Additionally, different machine configurations were
evaluated in order to measure the impact of different machine sizes and the way multi-site
jobs are distributed across the grid.

The results show, that the participation of sites in a grid environment pays off. Even
without the option to start jobs in multi-site mode the average weighted response time is
significantly improved in the job sharing scenario with a central grid scheduler. Observing
the structure of the grid, i. e. the size of participating machines, shows, that configurations
with large machines are obviously superior to configurations with smaller machines. However,
configurations with smaller machines have only minor drawbacks, if the resource demands of
the jobs are limited to 50% of the largest machine in the grid. For example, comparing four
128 node machines with the reference case of a single 512 machine shows, that the average
weighted response time is increased by at most 15%. We expect, that an acceptable response
time is guaranteed, if the ratio between the workload of large jobs and the available computing
power of the large machine is adequate. As long as this requirement is met, the remaining
resources may consist of smaller machines without implying a significant drawback.

In contrast to job sharing, the usage of multi-site scheduling allows the execution of jobs
that are not limited by the maximum machine size. The use of multi-site applications leads to
even better results under the assumption that a limited increase on job execution time is due
to communication overheads. Even with an increase of the execution time by 25%, multi-site
is beneficial compared to job sharing. In terms of latency, WAN networks are in the order
of 2-3 magnitudes slower than common fast interconnection networks between nodes inside a
parallel computer, e. g. an IBM SP Switch. Therefore, it can not be concluded that multi-site
is suitable for all applications. However, multi-site is beneficial for applications with a limited
demand in communication. As showed in Section 7.3.1 the resource configurations and the

126

7.4 Summary

overhead due to multi-site scheduling have a strong impact on the average weighted response
time of the schedule. Similar to job sharing configurations, larger machines are superior to
those with smaller machines. Though scenarios with small overheads (p < 20%) only show
a small advantage of balanced large machine configurations compared to unbalanced systems
with small machines.

Finally, in Section 7.3.3 we examined three enhancements of the multi-site scheduler for
grid computing environments. If a job can not be placed directly on a single machine, the
multi-site scheduler splits the original job in several fragments which are then started syn-
chronously on multiple sites/machines. The communication between job fragments and the
additional effort of data migration is considered in extending the jobs run time by a given
percentage. The lower bound parameter is used to restrict the multi-site execution to jobs re-
quiring at least a certain number of resources. Setting the lower bound appropriately, results
in a significant improvement of up to 30% in the average weighted response time for certain
scenarios. Additionally, the number of fragments to be generated by the multi-site scheduler
are restricted. For communication overheads with over 60% of the original execution time it
proves to be beneficial to limit the fragmentation process.

A different approach was done by using an adaptive version of the multi-site scheduler. Here
the scheduler compares the completion times of single- and multi-site execution. For single-
site execution the waiting time, until the job can be started, has to be considered, whereas
for multi-site the overhead has to be added to the run time. Depending on the result of the
comparison, the job is either stored in the waiting queue or it is directly started in multi-site
mode. The evaluation shows, that the adaptive version substantially improves the perfor-
mance of the multi-site scheduler, regardless of what overhead percentage for the multi-site
execution is chosen. Therefore, adaptive multi-site scheduling seems to be the best algorithm
for a multi-site environment. As the presented adaptive algorithm is a basic implementation,
more sophisticated adaptive algorithms may further increase the performance.

The applied algorithms for grid scheduling are simple extensions of backfilling and node
selection strategies. Additional research on more sophisticated scheduling algorithms is nec-
essary, which in turn may produce even better results. It has to be kept in mind, that the
quality of a schedule depends on the actual configuration and workload. The improvements
presented in this thesis were achieved using example configurations and workloads derived
from real traces. The outcome may vary in other settings. Nevertheless, the results show,
that job sharing and multi-site execution in a grid environment are capable of significantly
improving the scheduling quality for the users. In any case, the participation in grids is
beneficial, as the use of multi-site computing enables the execution of jobs that need more
resources than available on the largest single machine in such a grid environment.

127

7 Evaluation of Multi-Site Grid Scheduling

128

8 Conclusion

In this thesis we presented self-tuning schedulers, which dynamically adapt their scheduling
behavior to the current situation. We developed such schedulers for two areas of resource
management: single high performance computing (HPC) machines and computational grid
environments. The self-tuning dynP1 scheduler for single HPC machines switches its active
policy according to the characteristics of currently waiting jobs. As we assumed a planning
based resource management system, the scheduler is able to compute full schedules for each
implemented policy. Full schedules contain exact start and end times for all waiting jobs.
Each schedule can be measured with a performance metrics, so that the scheduler can rank
the available scheduling policies according to their performance. Then the self-tuning dynP
scheduler switches to the best policy. For scheduling in a computational grid we defined
three scenarios: local job processing, job sharing, and multi-site job execution. If not enough
resources are available to place a job on a single machine immediately, the multi-site grid
scheduler can use multiple machines for executing the job. As machines in grid environments
are typically geographically distributed, slow wide are networks (WAN) are involved and this
has to be considered during scheduling. This is done by increasing the execution time of the
job appropriately. A decision has to be made when scheduling newly submitted jobs. The
adaptive multi-site grid scheduler either waits until enough resources are available at a single
site, or starts the job immediately on multiple sites and consider the WAN communication
overhead.

We evaluated the self-tuning dynP scheduler by means of discrete event simulations. As
job input we used different traces from real machine installations at supercomputing centers.
We measured the performance with the slowdown weighted by area as a user centric metrics
and the system utilization as an owner centric metrics. Unfortunately, half of the available
traces generated low utilizations and corresponding empty schedules. Jobs do not have to
wait for execution and no significant results are generated. The measured slowdowns are close
to their minimum of one. The results of the remaining traces CTC, KTH, LANL, and SDSC
show, that the self-tuning dynP scheduler with the advanced decider improves the slowdown
and utilization compared to the best basic policy (SJF for the CTC and KTH trace, and
FCFS for the LANL and SDSC trace). The evaluation of the decision process in the self-
tuning dynP scheduler shows, that restricting the dynamic policy switching in any way (e. g.
by adding slackness to the decision process or by reducing the tests for policy switching) does
not improve the performance.

We observed similar results, if the workload is increased by reducing the average interarrival
time with a shrinking factor. If the performance improvement is averaged over the applied
range of workloads, the self-tuning dynP scheduler improves the slowdown by about nine
percent for the CTC jobs and six percent for the SDSC jobs. At the same time, the utilization
is increased by about one percentage-point for both job sets. The improvements seem to be
small, but with utilizations in the saturated state of around 90% an improvement to 91%

1dynamic Policy switching

129

8 Conclusion

means, that the amount of unused resources is reduced by one tenth. At high workloads it is
much more difficult for the scheduler to improve the utilization than at low workloads.

As a quasi off-line scheduling is done in each self-tuning step, we also compared the policies’
generated schedules with optimal schedules. For this purpose, we modelled the scheduling
problem as an integer problem and solved it with the CPLEX library. We applied time-scaling
in order to reduce the problem size and to make the problem computable. By that, CPLEX
does no longer compute optimal schedules with a second-precise scaling. The comparison
shows, that on average the best basic policy in each self-tuning step is less than one percent
worse than the solution computed by CPLEX. Because of time-scaling cases occur,in which
the solution computed by CPLEX is slightly worse than the best basic scheduling policy. This
is a result of time-scaling. Besides requiring a lot of main memory, CPLEX needs a lot of
computational time2. Therefore, using CPLEX to compute schedules it not feasible for the
scheduling in real world resource management systems.

We evaluated the three mentioned grid scheduling scenarios with different machine configu-
rations and the results show, that overall a participation in computational grid environments
pays off. Even without the option of starting jobs multi-site, the performance measured as
average weighted response time is improved significantly in the job sharing scenario. Consider-
ing the structure of the grid, i. e. the size of participating machines, shows, that configurations
with large machines are superior to equivalent configurations with small machines. Perfor-
mance drops for configurations with small machines, if the resource requirements of the jobs
exceed the size of the largest machine in the grid. We expect, that an adequate ratio between
the workload of large jobs and the available computing power of the large machines, guaran-
tees an acceptable response time. As long as this requirement is met, the remaining resources
may consist of smaller machines without implying a significant drawback. Multi-site schedul-
ing allows the execution of jobs that are not limited by the maximum machine size. The
usage of multi-site applications leads to even better results assuming that the communication
overhead is limited to 25% for most of the evaluated scenarios.

We applied further enhancements to the multi-site scheduling scenario and evaluated its
influence on the performance. The lower bound parameter is used to restrict the multi-site
execution to jobs requiring at least a certain number of resources. Setting the lower bound
appropriately, results in a significant improvement of up to 30% for the average weighted
response time for certain machine configurations. In addition, we restricted the generation of
job parts. The results show, that for communication overheads with over 60% of the original
execution time, it proves to be beneficial to limit the fragmentation process. The evaluation
of the adaptive multi-site scheduler shows, that the adaptive version substantially improves
the performance of the multi-site scheduler for all applied communication overheads.

In general, the evaluation results indicate, that the use of small systems in combination
with multi-site scheduling can not perform as well as a single large machine with the same
amount of resources. However, the presented algorithms decrease this difference. In any case,
the participation in computational grid environments seems to be beneficial. The use of multi-
site computing enables the execution of jobs that consume more resources than available on
the largest single machine in the grid.

The presented areas of job scheduling are different at a first glance. However, a closer view
on the scheduling approaches reveals, that both schedulers search for the best solution in a
dynamic way and only different terms are used to describe this functionality: ”self-tuning”

2on average more than five hours for a small schedule of 22 jobs and a makespan of two days

130

and ”adaptive”. In this work we showed that dynamic scheduling approaches are beneficial.
Therefore, we think that dynamic scheduling approaches, as presented in this thesis, should
be implemented in modern resource management systems and grid middleware.

Future Work

Future work in both areas may include support for advanced reservations. If users are al-
lowed to reserve resource in a single machine scenario, the resource management scheduler is
significantly limited in its abilities to plan a schedule. Once accepted, reservations can not
be moved on the time axis and standard batch jobs have to be planned around these fixed
jobs. Among other aspects it is of special interest to evaluate in which way the scheduler is
limited. For example, up to what percentage of reservations in the workload and utilization
of the machine is the scheduler able to handle reservations without neglecting normal batch
jobs?

Planning based resource management systems include advanced reservations in their design.
Additional functionality is thinkable for such modern resource management systems, which
guarantee the resource usage. We gave some initial thoughts for such extensions in [42]. In the
context of computational grids the support for Service Level Agreements (SLA) is important,
as not only a single resource usage can be guaranteed, but a general relationship between the
resource owner and user is specified.

Particularly, for the multi-site job execution scenario in grids, the ability to use reservations
would be a major improvement for the quality of the provided resource usage. If the adaptive
multi-site scheduler decides to wait for a single-site job start, the grid scheduler simply reserves
the appropriate number of resources and therefore the response time of the waiting job is
guaranteed. An evaluation has to show, that this actually increases the performance, because
at the same time reservations might constrain the local scheduler in their abilities.

131

8 Conclusion

132

A Detailed Results

A.1 Original Traces

The following two sections contain the detailed simulation results from Section 5.1.1 to Sec-
tion 5.1.4. The performance of a scheduling strategy is measured by the average slowdown
weighted by area (SLDwA). The eight original traces are used as job input for simulation
runs. With the exact start dates of Table 3.5 an analysis for each month of the trace is done.
Blue and green colors are used in the following to emphasize interesting results, which are
addressed in the text.

A.1.1 Basic Policies

average average over-
average actual estimated estimation SLDwA best

month year jobs width run time run time factor FCFS SJF LJF policy

6 1996 37 32.1 29,038 50,181 1.73 1.0000 1.0000 1.0000 -
7 1996 7,954 9.8 9,786 22,732 2.32 1.9326 1.7131 2.2870 SJF
8 1996 7,302 11.6 11,148 24,859 2.23 1.8303 1.8554 2.3735 FCFS
9 1996 6,188 11.3 13,237 26,637 2.01 2.3081 2.1746 2.7575 SJF

10 1996 7,288 10.1 9,106 20,857 2.29 1.8861 1.6894 2.0935 SJF
11 1996 7,874 10.8 10,027 22,451 2.24 1.6421 1.4862 2.0023 SJF
12 1996 7,881 9.6 8,810 22,016 2.50 1.4895 1.3953 1.9351 SJF
1 1997 7,535 8.9 9,989 25,944 2.60 2.0089 1.9857 2.2119 SJF
2 1997 8,190 9.3 11,766 25,344 2.15 1.7852 1.9870 1.8523 FCFS
3 1997 6,946 12.2 13,913 28,112 2.02 2.4485 2.0449 3.3134 SJF
4 1997 6,129 12.3 11,130 22,059 1.98 2.5380 2.5880 3.5569 FCFS
5 1997 5,978 13.2 12,632 27,449 2.17 2.5650 2.2275 3.2364 SJF

average 10.7 10,958 24,324 2.22 2.0455 1.9277 2.5212 SJF

Table A.1: Monthly analysis of the CTC trace: submitted job data and performance (average
slowdown weighted by job area) of the three basic policies.

133

A Detailed Results

average average over-
average actual estimated estimation SLDwA best

month year jobs width run time run time factor FCFS SJF LJF policy

9 1996 108 11.9 5,549 10,501 1.89 1.1035 1.1035 1.1035 -
10 1996 2,405 12.4 6,010 9,075 1.51 4.1895 3.4751 6.9391 SJF
11 1996 1,991 10.2 8,324 13,777 1.65 4.4634 3.6699 12.6893 SJF
12 1996 2,302 9.1 9,760 14,917 1.53 3.7131 3.2411 5.4525 SJF
1 1997 2,938 7.9 9,272 14,319 1.54 3.0440 2.2562 4.6119 SJF
2 1997 2,916 7.3 6,548 10,158 1.55 4.9779 3.5847 10.4477 SJF
3 1997 2,081 7.8 8,661 13,711 1.58 3.3362 3.0692 9.0681 SJF
4 1997 2,861 6.5 8,532 12,735 1.49 2.9512 2.1044 4.8270 SJF
5 1997 4,081 6.7 6,396 10,241 1.60 2.4835 2.1072 3.5145 SJF
6 1997 2,697 5.3 9,752 14,954 1.53 1.6373 1.5597 1.8178 SJF
7 1997 2,184 5.8 16,297 24,725 1.52 1.3082 1.2669 1.4926 SJF
8 1997 1,923 6.3 11,165 16,711 1.50 1.7919 1.5389 2.3467 SJF

average 7.7 8,858 13,678 1.54 3.1015 2.5488 5.8118 SJF

Table A.2: Monthly analysis of the KTH trace: submitted job data and performance (average
slowdown weighted by job area) of the three basic policies.

average average over-
average actual estimated estimation SLDwA best

month year jobs width run time run time factor FCFS SJF LJF policy

10 1994 6,134 81.3 1,274 2,081 1.63 1.5804 1.5466 2.2557 SJF
11 1994 6,014 90.3 1,429 2,114 1.48 1.7291 1.6193 2.3306 SJF
12 1994 4,595 103.3 1,576 2,357 1.50 1.7419 1.5588 2.2388 SJF
1 1995 3,472 118.6 1,784 2,802 1.57 1.6565 1.4963 2.0059 SJF
2 1995 3,877 99.5 1,618 2,603 1.61 1.6990 1.6551 1.9483 SJF
3 1995 4,885 88.9 1,495 2,394 1.60 1.5247 1.4035 1.7781 SJF
4 1995 4,651 102.1 1,845 2,832 1.53 1.6025 1.4648 1.9032 SJF
5 1995 4,778 108.6 1,861 3,089 1.66 1.9210 1.8521 2.5048 SJF
6 1995 5,637 103.6 1,777 3,089 1.74 2.6770 2.9987 4.2842 FCFS
7 1995 6,301 90.6 1,579 2,887 1.83 1.9940 2.0094 2.5278 FCFS
8 1995 6,261 83.1 1,250 2,124 1.70 1.5758 1.4076 1.8026 SJF
9 1995 5,714 110.3 1,734 3,017 1.74 2.1396 2.8997 2.7245 FCFS

10 1995 5,048 115.3 1,692 3,078 1.82 1.6669 1.5212 2.3309 SJF
11 1995 3,649 137.6 2,328 3,422 1.47 1.5907 1.8039 1.8494 FCFS
12 1995 4,151 114.9 2,071 3,826 1.85 1.4968 1.4963 1.6288 SJF
1 1996 4,163 109.4 1,923 3,443 1.79 1.2398 1.2222 1.3118 SJF
2 1996 3,697 105.7 1,739 2,821 1.62 1.1414 1.1501 1.1585 FCFS
3 1996 4,129 106.8 2,215 3,534 1.60 1.4335 1.3567 1.6069 SJF
4 1996 4,249 101.6 2,187 3,632 1.66 1.5114 1.5449 1.6258 FCFS
5 1996 4,954 97.2 2,150 3,342 1.55 1.5336 1.5167 1.7672 SJF
6 1996 5,240 102.8 1,751 5,399 3.08 1.3084 1.3525 1.3238 FCFS
7 1996 14,627 123.3 708 8,341 11.78 2.1841 2.2640 2.2157 FCFS
8 1996 3,668 110.9 2,234 3,695 1.65 1.3515 1.4127 1.4061 FCFS
9 1996 2,411 115.0 3,057 3,903 1.28 1.1977 1.2616 1.2217 FCFS

average 104.95 1,659 3,683 2.22 1.6801 1.7031 2.0507 FCFS

Table A.3: Monthly analysis of the LANL trace: submitted job data and performance (average
slowdown weighted by job area) of the three basic policies.

134

A.1 Original Traces

average average over-
average actual estimated estimation SLDwA best

month year jobs width run time run time factor FCFS SJF LJF policy

4 1998 5 6.2 145,434 145,440 1.00 1.0000 1.0000 1.0000 -
5 1998 2,767 14.7 7,706 18,028 2.34 3.3645 2.5552 4.8491 SJF
6 1998 2,535 9.2 8,601 25,724 2.99 2.0738 1.9523 2.6489 SJF
7 1998 2,832 7.4 6,999 17,509 2.50 2.3979 2.1876 2.8259 SJF
8 1998 3,618 6.0 6,666 15,230 2.28 3.1907 2.3388 4.1563 SJF
9 1998 12,536 3.1 2,621 7,438 2.84 3.2224 2.6290 5.5883 SJF

10 1998 4,491 5.9 6,063 11,122 1.83 2.3432 1.9787 2.9487 SJF
11 1998 3,105 12.4 6,915 20,576 2.98 2.8461 2.6827 3.4484 SJF
12 1998 2,894 13.1 7,456 17,524 2.35 6.1737 4.1766 9.7122 SJF
1 1999 2,802 9.3 7,836 20,174 2.57 4.1467 3.3003 12.6212 SJF
2 1999 2,720 9.7 6,275 15,643 2.49 6.8112 7.0362 14.0235 FCFS
3 1999 2,914 12.4 6,536 13,033 1.99 7.2553 7.0065 15.2942 SJF
4 1999 3,713 13.4 3,610 10,204 2.83 9.3420 5.9265 21.9462 SJF
5 1999 2,515 19.6 5,855 12,732 2.17 12.3298 7.3162 92.1742 SJF
6 1999 2,447 12.5 7,407 15,045 2.03 13.5694 11.9581 69.2463 SJF
7 1999 1,252 14.1 10,236 19,264 1.88 7.3964 11.2254 45.3261 FCFS
8 1999 1,934 12.9 7,554 15,257 2.02 8.0159 16.0247 24.4480 FCFS
9 1999 2,122 12.9 6,328 13,963 2.21 7.6722 22.3486 20.4491 FCFS

10 1999 1,957 16.6 5,636 13,126 2.33 9.6773 25.3462 102.4740 FCFS
11 1999 2,039 13.5 4,682 11,161 2.38 10.4231 27.0653 34.1716 FCFS
12 1999 1,695 22.0 5,675 11,065 1.95 11.2749 20.8298 48.5418 FCFS
1 2000 1,496 15.9 8,184 20,991 2.56 6.3182 21.1915 35.1660 FCFS
2 2000 1,140 14.6 10,313 20,143 1.95 8.1268 28.7438 15.4552 FCFS
3 2000 1,170 17.6 8,314 17,198 2.07 4.4993 37.3391 7.5649 FCFS
4 2000 932 18.7 11,742 24,730 2.11 5.9322 14.0702 9.6173 FCFS

average 10.54 6,077 14,344 2.36 6.8260 12.5662 26.8207 FCFS

only from 4-1998 until 6-1999
average 10.33 15,732 24,362 2.35 5.3378 4.2696 17.4989 SJF

Table A.4: Monthly analysis of the SDSC trace: submitted job data and performance (average
slowdown weighted by job area) of the three basic policies.

average average over-
average actual estimated estimation SLDwA best

month year jobs width run time run time factor FCFS SJF LJF policy

1 2001 1,508 8.1 6,884 41,548 6.04 1.0000 1.0000 1.0000 -
2 2001 1,549 15.5 2,140 6,966 3.25 1.0000 1.0000 1.0000 -
3 2001 2,610 6.1 2,821 6,195 2.20 1.0000 1.0000 1.0000 -
4 2001 3,184 7.7 2,684 6,455 2.40 1.1549 1.1704 1.2058 FCFS
5 2001 2,462 9.9 2,799 9,030 3.23 1.0000 1.0000 1.0000 -
6 2001 3,564 4.1 3,624 14,099 3.89 1.0010 1.0010 1.0010 -
7 2001 6,396 2.6 7,315 11,554 1.58 1.0011 1.0011 1.0011 -
8 2001 5,789 4.1 4,565 10,141 2.22 1.0000 1.0000 1.0000 -
9 2001 827 10.3 8,942 29,676 3.32 1.0000 1.0000 1.0000 -

10 2001 2,038 8.7 3,573 14,353 4.02 1.0000 1.0000 1.0000 -
11 2001 3,732 7.5 2,369 6,545 2.76 1.6354 1.5399 1.5817 SJF
12 2001 1,435 8.4 4,428 12,342 2.79 1.0040 1.0038 1.0041 SJF

average 6.34 4,346 11,717 2.70 1.0846 1.0758 1.0838 SJF

Table A.5: Monthly analysis of the PC2-2001 trace: submitted job data and performance
(average slowdown weighted by job area) of the three basic policies.

135

A Detailed Results

average average over-
average actual estimated estimation SLDwA best

month year jobs width run time run time factor FCFS SJF LJF policy

1 2002 664 16.7 2,929 10,610 3.62 1.0000 1.0000 1.0000 -
2 2002 8,068 11.5 1,727 4,141 2.40 1.1005 1.0837 1.1265 -
3 2002 3,847 10.5 4,033 10,719 2.66 2.2477 2.2103 2.6207 SJF
4 2002 1,660 15.9 4,424 10,079 2.28 1.0002 1.0002 1.0002 -
5 2002 1,197 12.2 5,865 12,275 2.09 1.0000 1.0000 1.0000 -
6 2002 1,762 2.6 6,607 76,858 11.63 1.0000 1.0000 1.0000 -
7 2002 3,478 3.5 5,831 98,398 16.88 1.0000 1.0000 1.0000 -
8 2002 1,398 8.7 5,736 56,154 9.79 1.0010 1.0010 1.0010 -
9 2002 1,064 9.9 26,008 62,398 2.40 1.0000 1.0000 1.0000 -

10 2002 2,862 3.9 19,658 32,371 1.65 1.0000 1.0000 1.0000 -
11 2002 4,339 4.4 5,530 54,812 9.91 1.0000 1.0000 1.0000 -
12 2002 1,873 3.8 5,136 14,522 2.83 1.0000 1.0000 1.0000 -

average 8.14 6,310 33,942 5.38 1.0798 1.0765 1.1033 SJF

Table A.6: Monthly analysis of the PC2-2002 trace: submitted job data and performance
(average slowdown weighted by job area) of the three basic policies.

average average over-
average actual estimated estimation SLDwA best

month year jobs width run time run time factor FCFS SJF LJF policy

4 2000 618 8.3 20,280 61,719 3.04 1.0000 1.0000 1.0000 -
5 2000 823 10.8 17,611 52,997 3.01 1.0008 1.0008 1.0008 -
6 2000 1,302 15.5 37,113 103,226 2.78 1.0036 1.0035 1.0036 SJF
7 2000 1,253 6.8 48,410 141,998 2.93 1.0000 1.0000 1.0000 -
8 2000 945 4.7 49,405 200,005 4.05 1.0000 1.0000 1.0000 -
9 2000 897 5.8 71,779 170,934 2.38 1.0000 1.0000 1.0000 -

10 2000 1,423 5.8 76,528 178,308 2.33 1.0000 1.0000 1.0000 -
11 2000 2,323 4.9 25,585 66,726 2.61 1.0000 1.0000 1.0000 -
12 2000 2,155 4.8 25,221 79,424 3.15 1.0000 1.0000 1.0000 -
1 2001 1,606 6.0 42,368 120,474 2.84 1.0000 1.0000 1.0000 -
2 2001 1,523 3.2 56,187 223,146 3.97 1.0000 1.0000 1.0000 -
3 2001 1,860 4.1 65,138 333,267 5.12 1.0000 1.0000 1.0000 -
4 2001 2,277 3.0 75,309 317,014 4.21 1.0000 1.0000 1.0000 -
5 2001 578 4.1 35,980 171,379 4.76 1.0000 1.0000 1.0000 -

average 5.80 47,838 168,024 3.51 1.0038 1.0037 1.0038 SJF

Table A.7: Monthly analysis of the CHPC trace: submitted job data and performance (aver-
age slowdown weighted by job area) of the three basic policies.

average average over-
average actual estimated estimation SLDwA best

month year jobs width run time run time factor FCFS SJF LJF policy

2 1998 18 43.9 15,426 29,133 1.89 2.2233 2.2394 2.2233 FCFS, LJF
3 1998 3,249 7.9 6,196 20,029 3.23 1.1581 1.1328 1.1572 SJF

average 8.08 6,246 20,079 3.21 1.2362 1.2319 1.2353 SJF

Table A.8: Monthly analysis of the MHPCC trace: submitted job data and performance
(average slowdown weighted by job area) of the three basic policies.

136

A.1 Original Traces

A.1.2 Self-Tuning dynP Scheduler

advanced better difference of applying
simple advanced than simple half self-tuning

month year best policy half full half full half full simple advanced

6 1996 1.0000 - 1.0000 1.0000 1.0000 1.0000 0.00% 0.00% 0.00% 0.00%
7 1996 1.7131 SJF 2.0379 2.0420 1.7544 1.7155 13.91% 15.99% 0.20% -2.27%
8 1996 1.8303 FCFS 2.2397 2.3152 1.9661 1.9473 12.22% 15.89% 3.26% -0.96%
9 1996 2.1746 SJF 2.5391 2.6146 2.1414 2.1422 15.67% 18.07% 2.89% 0.04%

10 1996 1.6894 SJF 1.9280 1.9876 1.7261 1.7267 10.47% 13.13% 3.00% 0.04%
11 1996 1.4862 SJF 1.9898 2.0481 1.5469 1.5508 22.26% 24.28% 2.85% 0.25%
12 1996 1.3953 SJF 1.8049 1.7208 1.4118 1.4133 21.78% 17.87% -4.89% 0.10%
1 1997 1.9857 SJF 2.0460 1.9729 1.9383 1.9008 5.27% 3.66% -3.71% -1.97%
2 1997 1.7852 FCFS 1.8126 1.7827 1.7922 1.7751 1.12% 0.43% -1.67% -0.96%
3 1997 2.0449 SJF 2.8573 2.6035 2.1001 2.0949 26.50% 19.54% -9.75% -0.25%
4 1997 2.5380 FCFS 3.2636 2.9913 2.4753 2.2878 24.15% 23.52% -9.10% -8.19%
5 1997 2.2275 SJF 2.7334 2.9875 2.0737 2.0784 24.13% 30.43% 8.50% 0.23%

average 1.9277 SJF 2.3036 2.2834 1.9085 1.8809 17.15% 17.63% -0.88% -1.47%
relative to best policy -19.50% -18.45% 0.99% 2.43%

Table A.9: Monthly comparison of the simple and advanced decider for the CTC trace:
ARTwW is used as the quality metrics in the self-tuning process. The overall
given performance is SLDwA. Blue font indicates a better performance than the
best basic policy SJF.

advanced better difference of applying
simple advanced than simple half self-tuning

month year best policy half full half full half full simple advanced

9 1996 1.1035 - 1.1035 1.1035 1.1035 1.1035 0.00% 0.00% 0.00% 0.00%
10 1996 3.4751 SJF 6.0425 8.6447 3.5121 3.3737 41.88% 60.97% 30.10% -4.10%
11 1996 3.6699 SJF 9.2196 12.8200 3.7814 4.0015 58.99% 68.79% 28.08% 5.50%
12 1996 3.2411 SJF 4.8263 4.7933 3.2393 2.9323 32.88% 38.83% -0.69% -10.47%
1 1997 2.2562 SJF 4.1738 4.1939 2.3723 2.4332 43.16% 41.98% 0.48% 2.50%
2 1997 3.5847 SJF 7.1177 9.1039 3.6633 3.7126 48.53% 59.22% 21.82% 1.33%
3 1997 3.0692 SJF 8.1751 9.5222 3.1509 3.2291 61.46% 66.09% 14.15% 2.42%
4 1997 2.1044 SJF 3.9127 4.1480 2.0341 2.1745 48.01% 47.58% 5.67% 6.46%
5 1997 2.1072 SJF 2.7665 2.9853 2.0420 2.0007 26.19% 32.98% 7.33% -2.07%
6 1997 1.5597 SJF 1.6634 1.7336 1.5481 1.5531 6.93% 10.41% 4.05% 0.33%
7 1997 1.2669 SJF 1.4253 1.4406 1.2983 1.3000 8.91% 9.76% 1.06% 0.13%
8 1997 1.5389 SJF 1.9747 2.0339 1.5774 1.5643 20.12% 23.09% 2.91% -0.84%

average 2.5488 SJF 4.72559 5.65619 2.58847 2.58121 45.22% 54.36% 16.45% -0.28%
relative to best policy -85.41% -121.92% -1.56% -1.27%

Table A.10: Monthly comparison of the simple and advanced decider for the KTH trace:
ARTwW is used as the quality metrics in the self-tuning process. The overall
given performance is SLDwA. Blue font indicates a better performance than the
best basic policy SJF.

137

A Detailed Results

advanced better difference of applying
simple advanced than simple half self-tuning

month year best policy half full half full half full simple advanced

10 1994 1.5466 SJF 1.9162 1.8143 1.5080 1.5128 21.30% 16.62% -5.62% 0.32%
11 1994 1.6193 SJF 1.9093 1.9441 1.5879 1.5842 16.83% 18.51% 1.79% -0.24%
12 1994 1.5588 SJF 1.9844 2.0052 1.6182 1.6163 18.45% 19.39% 1.04% -0.12%
1 1995 1.4963 SJF 1.7093 1.7536 1.5368 1.5145 10.09% 13.64% 2.53% -1.47%
2 1995 1.6551 SJF 1.7331 1.7259 1.5821 1.5796 8.71% 8.48% -0.41% -0.16%
3 1995 1.4035 SJF 1.5097 1.4858 1.3983 1.3933 7.38% 6.23% -1.61% -0.36%
4 1995 1.4648 SJF 1.7143 1.6623 1.4983 1.4974 12.60% 9.92% -3.13% -0.06%
5 1995 1.8521 SJF 1.9302 1.9573 1.8732 1.8558 2.95% 5.18% 1.39% -0.93%
6 1995 2.6770 FCFS 3.2082 3.2048 2.7059 2.6629 15.66% 16.91% -0.11% -1.62%
7 1995 1.9940 FCFS 1.9498 1.9161 1.7841 1.8333 8.50% 4.32% -1.76% 2.68%
8 1995 1.4076 SJF 1.5479 1.5212 1.4423 1.4457 6.82% 4.97% -1.75% 0.23%
9 1995 2.1396 FCFS 2.3717 2.3934 2.3441 2.3147 1.16% 3.29% 0.91% -1.27%

10 1995 1.5212 SJF 1.6828 1.6246 1.5078 1.4986 10.40% 7.75% -3.59% -0.61%
11 1995 1.5907 FCFS 1.5261 1.6355 1.4475 1.4408 5.15% 11.91% 6.69% -0.47%
12 1995 1.4963 SJF 1.5183 1.5044 1.4609 1.4643 3.78% 2.67% -0.93% 0.23%
1 1996 1.2222 SJF 1.2469 1.2577 1.2246 1.2160 1.79% 3.32% 0.86% -0.70%
2 1996 1.1414 FCFS 1.1491 1.1383 1.1319 1.1382 1.50% 0.01% -0.95% 0.56%
3 1996 1.3567 SJF 1.4892 1.4810 1.3531 1.3663 9.14% 7.74% -0.55% 0.97%
4 1996 1.5114 FCFS 1.5376 1.5471 1.4790 1.4962 3.81% 3.29% 0.61% 1.15%
5 1996 1.5167 SJF 1.5694 1.5128 1.4381 1.4321 8.37% 5.33% -3.74% -0.41%
6 1996 1.3084 FCFS 1.3065 1.3113 1.3000 1.3013 0.50% 0.76% 0.37% 0.10%
7 1996 2.1841 FCFS 2.1397 2.1342 2.1242 2.1184 0.72% 0.74% -0.25% -0.27%
8 1996 1.3515 FCFS 1.3386 1.3374 1.3322 1.3361 0.48% 0.09% -0.10% 0.29%
9 1996 1.1977 FCFS 1.1656 1.1601 1.1597 1.1563 0.50% 0.33% -0.47% -0.30%

average 1.6457 FCFS 1.7538 1.7489 1.6101 1.6075 8.19% 8.09% -0.28% -0.16%
relative to best policy -4.38% -4.09% 4.17% 4.32%

Table A.11: Monthly comparison of the simple and advanced decider for the LANL trace:
ARTwW is used as thequality metrics in the self-tuning process. The overall
given performance is SLDwA. Blue font indicates a better performance than the
best basic policy FCFS.

138

A.1 Original Traces

advanced better difference of applying
simple advanced than simple half self-tuning

month year best policy half full half full half full simple advanced

4 1998 1.0000 - 1.0000 1.0000 1.0000 1.0000 0.00% 0.00% 0.00% 0.00%
5 1998 2.5552 SJF 3.9804 4.1777 2.5709 2.5973 35.41% 37.83% 4.72% 1.02%
6 1998 1.9523 SJF 2.2676 2.3921 1.8456 1.8492 18.61% 22.69% 5.21% 0.19%
7 1998 2.1876 SJF 2.2523 2.3247 2.2678 2.2091 -0.69% 4.97% 3.11% -2.66%
8 1998 2.3388 SJF 3.8311 2.5395 2.4038 2.2651 37.26% 10.81% -50.86% -6.12%
9 1998 2.6290 SJF 4.8500 5.2526 2.4917 2.4654 48.62% 53.06% 7.66% -1.07%

10 1998 1.9787 SJF 2.5058 2.7115 1.9464 1.9727 22.32% 27.25% 7.59% 1.33%
11 1998 2.6827 SJF 3.2585 3.2806 2.4571 2.4617 24.59% 24.96% 0.67% 0.19%
12 1998 4.1766 SJF 6.5063 8.6952 4.0959 4.2356 37.05% 51.29% 25.17% 3.30%
1 1999 3.3003 SJF 5.9550 13.7324 3.2695 3.2121 45.10% 76.61% 56.64% -1.79%
2 1999 6.8112 FCFS 11.9343 11.7164 7.4516 5.9569 37.56% 49.16% -1.86% -25.09%
3 1999 7.0065 SJF 7.9153 10.9714 6.4692 5.5629 18.27% 49.30% 27.86% -16.29%
4 1999 5.9265 SJF 11.5757 24.2140 5.7675 6.0719 50.18% 74.92% 52.19% 5.01%
5 1999 7.3162 SJF 29.1250 72.0855 6.8181 7.0593 76.59% 90.21% 59.60% 3.42%
6 1999 11.9581 SJF 15.6778 38.3388 11.0933 12.2020 29.24% 68.17% 59.11% 9.09%
7 1999 7.3964 FCFS 16.9402 33.9734 9.5879 9.7302 43.40% 71.36% 50.14% 1.46%
8 1999 8.0159 FCFS 20.5530 27.3264 12.2373 13.6685 40.46% 49.98% 24.79% 10.47%
9 1999 7.6722 FCFS 23.1646 98.2952 16.5200 17.2090 28.68% 82.49% 76.43% 4.00%

10 1999 9.6773 FCFS 19.8268 38.3693 20.5178 19.9565 -3.49% 47.99% 48.33% -2.81%
11 1999 10.4231 FCFS 17.6656 42.6313 19.3444 18.0743 -9.50% 57.60% 58.56% -7.03%
12 1999 11.2749 FCFS 16.3706 79.9789 17.0810 16.2964 -4.34% 79.62% 79.53% -4.81%
1 2000 6.3182 FCFS 25.2349 27.9630 15.5033 15.4515 38.56% 44.74% 9.76% -0.34%
2 2000 8.1268 FCFS 18.1489 16.6975 19.8885 18.8583 -9.59% -12.94% -8.69% -5.46%
3 2000 4.4993 FCFS 16.1985 15.8643 26.6457 23.1310 -64.49% -45.81% -2.11% -15.19%
4 2000 5.9322 FCFS 18.8293 19.2047 13.5590 13.0022 27.99% 32.30% 1.95% -4.28%

average 6.8261 FCFS 13.3353 26.3414 10.0953 9.8325 24.30% 62.97% 49.38% -2.67%
relative to best policy -95.36% -285.89% -47.89% -44.04%

only from 4-1998 until 6-1999
average 4.2696 SJF 7.5090 13.5622 4.1299 4.0748 45.00% 69.95% 44.63% -1.35%

relative to best policy -75.87% -217.58% 3.27% 4.56%

Table A.12: Monthly comparison of the simple and advanced decider for the SDSC trace:
ARTwW is used as the quality metrics in the self-tuning process. The given
overall performance is SLDwA. Blue font indicates a better performance than
the best basic policy FCFS.

139

A Detailed Results

A.2 Increased Workload

In the following tables and diagrams the performance of FCFS, SJF, LJF, and the self-tuning
dynP scheduler at increased workloads are presented. Synthetic job sets with the statistical
properties of the original traces are used. In order to exclude singular effects, ten job sets
were generated and simulated. The presented numbers are averages of these job sets with the
best and worst results in each case being neglected. The difference of SJF and LJF to FCFS
for the slowdown is given as a percentage. The difference in the achieved utilization is given
in percentage points. Note, smaller slowdowns and higher utilization are better.

A.2.1 Basic Policies

rel. difference utilization abs. difference to
shrinking SLDwA to FCFS in % in % to FCFS in %-points

factor FCFS SJF LJF SJF LJF FCFS SJF LJF SJF LJF

CTC

1.0 2.61 2.78 3.55 -6.72 -36.25 76.20 75.48 76.50 -0.71 0.30
0.9 3.99 4.80 5.99 -20.14 -50.08 83.43 80.74 84.29 -2.69 0.86
0.8 7.51 8.36 13.25 -11.34 -76.56 89.13 83.07 91.70 -6.06 2.57
0.7 13.01 12.27 23.42 5.69 -80.08 91.65 85.36 95.01 -6.28 3.36
0.6 19.61 17.46 36.22 10.98 -84.74 93.38 85.94 96.60 -7.44 3.22

average -4.31 -65.54 -4.64 2.06

KTH
1.0 4.06 3.32 7.33 18.18 -80.70 69.33 68.81 69.48 -0.52 0.15
0.9 5.51 4.35 11.11 21.05 -101.59 76.64 75.46 76.84 -1.18 0.20
0.8 9.00 6.85 20.75 23.87 -130.55 85.08 80.37 85.41 -4.71 0.33
0.7 20.72 12.29 54.58 40.65 -163.49 92.08 82.59 93.20 -9.49 1.13
0.6 45.73 21.29 120.84 53.46 -164.22 94.03 84.25 96.30 -9.78 2.28

average 31.44 -128.11 -5.13 0.82

LANL
1.0 2.53 2.47 2.92 2.12 -15.69 63.61 63.61 63.63 0.00 0.02
0.9 3.20 3.16 3.83 1.07 -19.89 70.64 70.59 70.66 -0.05 0.02
0.8 4.69 5.11 6.26 -8.92 -33.25 79.37 79.11 79.42 -0.26 0.05
0.7 10.05 14.93 16.52 -48.57 -64.35 90.13 85.46 90.43 -4.67 0.30
0.6 44.46 41.73 82.88 6.16 -86.40 96.10 86.71 97.67 -9.40 1.57

average -9.63 -43.92 -2.88 0.39

SDSC
1.0 6.16 6.00 14.49 2.57 -135.36 79.41 78.59 79.69 -0.82 0.28
0.9 10.36 16.48 30.70 -58.98 -196.17 86.85 80.55 87.49 -6.30 0.64
0.8 25.06 29.86 84.77 -19.17 -238.35 91.83 81.23 92.87 -10.59 1.04
0.7 46.20 42.83 121.05 7.30 -161.99 93.15 81.87 95.00 -11.28 1.85
0.6 71.08 57.01 162.54 19.80 -128.65 94.05 82.38 96.19 -11.68 2.14

average -9.70 -172.10 -8.13 1.19

Table A.13: Average slowdown weighted by area (SLDwA) of FCFS, SJF, and LJF with
different workloads/shrinking factors. Part I.

140

A.2 Increased Workload

rel. difference utilization abs. difference to
shrinking SLDwA to FCFS in % in % to FCFS in %-points

factor FCFS SJF LJF SJF LJF FCFS SJF LJF SJF LJF

PC2-2001

1.0 5.69 4.62 8.53 18.76 -49.84 47.18 47.03 47.27 -0.15 0.09
0.9 6.44 5.12 10.15 20.41 -57.72 52.20 52.00 52.37 -0.20 0.18
0.8 7.95 6.02 12.98 24.30 -63.20 58.10 57.72 58.64 -0.38 0.54
0.7 10.39 8.68 20.28 16.48 -95.20 65.50 62.13 66.54 -3.38 1.03
0.6 14.57 12.91 39.74 24.30 -63.20 74.27 67.00 76.39 -7.27 2.12
0.5 23.55 20.45 79.79 16.48 -95.20 81.52 69.36 86.38 -12.16 4.86
0.4 39.68 28.23 139.63 11.41 -172.82 87.68 71.40 93.83 -16.29 6.15

average 18.88 -85.31 -5.69 2.14

PC2-2002
1.0 8.57 5.55 19.41 35.18 -126.59 48.84 48.94 49.44 0.09 0.59
0.9 9.60 6.11 24.94 36.38 -159.82 53.88 54.03 54.70 0.15 0.82
0.8 11.71 7.35 31.76 37.24 -171.15 60.39 60.15 61.04 -0.24 0.65
0.7 15.31 9.95 39.19 35.03 -155.90 67.59 63.74 68.88 -3.85 1.29
0.6 22.09 13.85 56.97 37.30 -157.88 75.00 68.40 78.90 -6.61 3.90
0.5 34.02 21.36 92.02 37.21 -170.51 80.20 70.68 88.62 -9.52 8.41
0.4 51.30 34.96 155.17 31.85 -202.48 84.98 72.55 94.52 -12.43 9.54

average 35.74 -163.47 -4.63 3.60

CHPC
1.0 1.01 1.01 1.01 0.04 -0.23 42.11 42.11 42.11 0.00 0.00
0.9 1.02 1.02 1.03 0.25 -0.91 46.29 46.29 46.29 0.00 0.00
0.8 1.04 1.04 1.07 0.80 -2.17 51.40 51.40 51.40 0.00 0.00
0.7 1.11 1.08 1.18 2.85 -6.30 57.78 57.78 57.78 0.00 0.00
0.6 1.33 1.20 1.59 9.85 -19.91 65.67 65.66 65.68 0.00 0.01
0.5 2.26 1.62 3.82 28.58 -68.61 75.46 75.69 76.04 0.24 0.59
0.4 11.89 3.96 31.39 66.66 -164.05 83.11 78.97 90.43 -4.13 7.33
0.3 30.71 10.15 67.41 66.94 -119.55 83.38 80.36 98.42 -3.02 15.04

average 22.00 -47.72 -0.87 2.87

MHPCC
1.0 1.05 1.05 1.06 0.33 -0.94 34.83 34.83 34.83 0.00 0.00
0.9 1.08 1.07 1.09 0.88 -0.86 38.63 38.63 38.63 0.00 0.00
0.8 1.11 1.09 1.13 1.20 -2.11 43.37 43.37 43.37 0.00 0.00
0.7 1.18 1.13 1.23 3.80 -4.32 49.42 49.42 49.42 0.00 0.00
0.6 1.31 1.25 1.40 4.08 -6.89 57.42 57.42 57.42 0.00 0.00
0.5 1.65 1.44 2.09 12.99 -26.72 68.52 68.52 68.52 0.00 0.00
0.4 3.37 2.76 6.57 18.24 -94.90 84.56 84.26 84.90 -0.30 0.34
0.3 32.69 9.51 72.31 70.90 -121.20 93.10 91.73 96.53 -1.36 3.43

average 14.05 -32.24 -0.21 0.47

Table A.14: Average slowdown weighted by area (SLDwA) of FCFS, SJF, and LJF with
different workloads/shrinking factors. Part II.

141

A Detailed Results

 0

 5

 10

 15

 20

 75 80 85 90 95 100

SL
D

w
A

CTC

FCFS
SJF
LJF

 0

 5

 10

 15

 20

 25

 65 70 75 80 85 90 95 100

KTH

 0

 5

 10

 15

 20

 25

 30

 35

 40

 60 65 70 75 80 85 90 95 100

SL
D

w
A

LANL

 0

 10

 20

 30

 40

 50

 60

 78 80 82 84 86 88 90 92 94 96 98

SDSC

 0

 5

 10

 15

 20

 25

 30

 45 50 55 60 65 70 75 80 85 90 95

SL
D

w
A

PC2-2001

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45 50 55 60 65 70 75 80 85 90 95

PC2-2002

 0

 2

 4

 6

 8

 10

 12

 40 50 60 70 80 90 100

SL
D

w
A

utilization in %

CHPC

 0

 2

 4

 6

 8

 10

 30 40 50 60 70 80 90 100

utilization in %

MHPCC

Figure A.1: Combination of Figure 5.1 and Figure 5.2 with utilization on the x-axis and
slowdown (SLDwA) on the y-axis.

142

A.2 Increased Workload

A.2.2 Self-Tuning dynP Scheduler

rel. difference utilization abs. difference to
shrinking SLDwA to SJF in % in % to FCFS in %-points

factor SJF adv. SJF-pref. adv. SJF-pref. SJF adv. SJF-pref. adv. SJF-pref.

CTC

1.0 2.78 2.48 2.49 10.92 10.39 75.48 76.07 76.13 0.59 0.64
0.9 4.80 4.16 3.90 13.19 18.65 80.74 82.09 82.54 1.35 1.80
0.8 8.36 7.44 7.37 10.92 11.79 83.07 84.84 84.72 1.77 1.65
0.7 12.27 11.76 11.83 4.12 3.56 85.36 86.32 86.30 0.96 0.94
0.6 17.46 16.40 16.54 6.03 5.23 85.94 87.39 86.95 1.45 1.01

average 9.04 9.92 1.22 1.21

KTH

1.0 3.32 3.25 3.20 2.15 3.56 68.81 69.04 68.98 0.23 0.17
0.9 4.35 4.31 4.42 1.04 -1.46 75.46 75.68 75.68 0.22 0.22
0.8 6.85 6.70 6.91 2.17 -0.87 80.37 80.72 80.63 0.35 0.26
0.7 12.29 12.79 12.80 -4.04 -4.07 82.59 82.37 82.42 -0.22 -0.17
0.6 21.29 21.41 21.45 -0.57 -0.75 84.25 84.33 84.40 0.08 0.15

average 0.15 -0.72 0.13 0.12

LANL

1.0 2.47 2.43 2.42 1.81 1.96 63.61 63.61 63.61 0.00 0.00
0.9 3.16 3.13 3.13 1.11 0.95 70.59 70.63 70.63 0.04 0.04
0.8 5.11 4.95 5.00 3.28 2.19 79.11 79.14 79.12 0.03 0.01
0.7 14.93 14.50 14.58 2.92 2.34 85.46 85.64 85.57 0.18 0.11
0.6 41.73 42.37 42.13 -1.55 -0.97 86.71 86.81 87.00 0.10 0.29

average 1.51 1.29 0.07 0.09

SDSC

1.0 6.00 5.56 5.59 7.29 6.78 78.59 78.75 78.73 0.16 0.14
0.9 16.48 13.90 14.09 15.66 14.48 80.55 81.99 82.20 1.44 1.64
0.8 29.86 27.64 27.54 7.43 7.76 81.23 82.59 82.42 1.36 1.19
0.7 42.83 41.95 41.74 2.05 2.56 81.87 83.01 82.96 1.14 1.08
0.6 57.01 57.35 57.29 -0.61 -0.50 82.38 82.94 82.86 0.56 0.49

average 6.36 6.22 0.93 0.91

Table A.15: Average slowdown weighted by area (SLDwA) of the self-tuning dynP scheduler
with different workloads/shrinking factors. ARTwW is used as the self-tuning
metrics and no slackness is used. The abbreviations ’adv.’ stands for the ad-
vanced decider and ’SJF-pref.’ for SJF-preferred decider respectively. Part I.

143

A Detailed Results

rel. difference utilization abs. difference to
shrinking SLDwA to SJF in % in % to FCFS in %-points

factor SJF adv. SJF-pref. adv. SJF-pref. SJF adv. SJF-pref. adv. SJF-pref.

PC2-2001

1.0 4.62 4.56 4.47 1.43 3.37 47.03 47.05 47.05 0.03 0.03
0.9 5.12 5.09 5.06 0.70 1.17 52.00 51.87 51.91 -0.13 -0.09
0.8 6.02 6.36 6.34 -5.56 -5.28 57.72 57.73 57.77 0.01 0.05
0.7 8.68 8.29 8.16 4.47 5.93 62.13 63.20 63.19 1.07 1.07
0.6 12.91 13.09 13.20 -1.45 -2.26 67.00 66.09 66.29 -0.92 -0.71
0.5 20.45 19.80 19.83 3.16 3.05 69.36 69.81 69.93 0.45 0.57
0.4 28.23 28.47 28.55 -0.85 -1.14 71.40 71.51 71.29 0.11 -0.10

average 0.27 0.69 0.09 0.11

PC2-2002

1.0 5.55 5.53 5.47 0.45 1.54 48.94 48.97 49.07 0.04 0.13
0.9 6.11 6.29 6.24 -3.00 -2.27 54.03 54.12 53.88 0.09 -0.15
0.8 7.35 7.62 7.54 -3.64 -2.53 60.15 60.07 59.98 -0.08 -0.17
0.7 9.95 9.91 9.81 0.43 1.45 63.74 64.94 64.45 1.19 0.71
0.6 13.85 13.81 13.72 0.32 0.96 68.40 67.77 68.60 -0.63 0.20
0.5 21.36 21.22 21.51 0.66 -0.68 70.68 71.76 72.02 1.08 1.34
0.4 34.96 34.76 35.22 0.59 -0.73 72.55 73.58 73.35 1.03 0.80

average -0.60 -0.32 0.39 0.41

CHPC

1.0 1.01 1.01 1.01 -0.09 -0.01 42.11 42.11 42.11 0.00 0.00
0.9 1.02 1.02 1.02 0.02 -0.03 46.29 46.29 46.29 0.00 0.00
0.8 1.04 1.04 1.04 -0.31 -0.25 51.40 51.40 51.40 0.00 0.00
0.7 1.08 1.09 1.09 -0.86 -0.76 57.78 57.78 57.78 0.00 0.00
0.6 1.20 1.21 1.21 -1.32 -1.23 65.66 65.67 65.67 0.01 0.01
0.5 1.62 1.66 1.63 -2.83 -1.07 75.69 75.79 75.83 0.10 0.14
0.4 3.96 4.09 3.98 -3.21 -0.37 78.97 79.69 79.26 0.72 0.29
0.3 10.15 10.46 10.27 -3.07 -1.15 80.36 80.80 80.48 0.45 0.13

average -1.46 -0.61 0.16 0.07

MHPCC

1.0 1.05 1.05 1.05 -0.08 0.28 34.83 34.83 34.83 0.00 0.00
0.9 1.07 1.07 1.07 -0.06 0.02 38.63 38.63 38.63 0.00 0.00
0.8 1.09 1.10 1.10 -0.72 -0.36 43.37 43.37 43.37 0.00 0.00
0.7 1.13 1.14 1.14 -0.82 -0.62 49.42 49.42 49.42 0.00 0.00
0.6 1.25 1.24 1.24 0.73 0.71 57.42 57.42 57.42 0.00 0.00
0.5 1.44 1.48 1.45 -3.06 -0.53 68.52 68.52 68.52 0.00 0.00
0.4 2.76 2.17 2.50 21.41 9.30 84.26 84.52 84.49 0.26 0.23
0.3 9.51 9.48 9.40 0.34 1.15 91.73 91.78 91.77 0.05 0.04

average 2.22 1.24 0.04 0.03

Table A.16: Average slowdown weighted by area (SLDwA) of the self-tuning dynP scheduler
with different workloads/shrinking factors. ARTwW is used as the self-tuning
metrics and no slackness is used. The abbreviations ’adv.’ stands for the ad-
vanced decider and ’SJF-pref.’ for SJF-preferred decider respectively. Part II.

144

A.2 Increased Workload

 0

 5

 10

 15

 20

 74 76 78 80 82 84 86 88 90 92 94

SL
D

w
A

CTC

FCFS
SJF
SJF-preferred
advanced

 0

 5

 10

 15

 20

 25

 65 70 75 80 85 90 95

KTH

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 60 65 70 75 80 85 90 95 100

SL
D

w
A

LANL

 0

 10

 20

 30

 40

 50

 60

 78 80 82 84 86 88 90 92 94 96

SDSC

 0

 5

 10

 15

 20

 25

 30

 45 50 55 60 65 70 75 80 85 90

SL
D

w
A

PC2-2001

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45 50 55 60 65 70 75 80 85

PC2-2002

 0

 2

 4

 6

 8

 10

 12

 40 45 50 55 60 65 70 75 80 85

SL
D

w
A

utilization in %

CHPC

 0

 2

 4

 6

 8

 10

 30 40 50 60 70 80 90 100

utilization in %

MHPCC

Figure A.2: Combination of Figure 5.3 and Figure 5.4 with the utilization on the x-axis and
the slowdown (SLDwA) on the y-axis.

145

A Detailed Results

shrink. SLDwA relative to SJF
factor SJF 0% 2% 4% 6% 8% 10% 0% 2% 4% 6% 8% 10%

CTC advanced decider

1.0 2.78 2.48 2.50 2.69 2.71 2.75 2.75 10.92% 10.31% 3.36% 2.57% 1.13% 1.07%
0.9 4.80 4.16 4.13 4.48 4.86 4.94 4.92 13.19% 13.78% 6.52% -1.46% -3.11% -2.56%
0.8 8.36 7.44 7.63 7.70 8.20 8.29 8.34 10.92% 8.76% 7.92% 1.88% 0.76% 0.22%
0.7 12.27 11.76 12.17 12.82 12.64 12.61 12.41 4.12% 0.80% -4.52% -3.06% -2.83% -1.17%
0.6 17.46 16.40 17.01 17.35 17.56 17.38 17.36 6.03% 2.58% 0.62% -0.63% 0.45% 0.57%

average 9.04% 7.24% 2.78% -0.14% -0.72% -0.38%
SJF-preferred decider

1.0 2.78 2.49 2.60 2.61 2.65 2.67 2.70 10.39% 6.53% 6.25% 4.94% 3.99% 2.88%
0.9 4.80 3.90 4.66 4.96 4.84 4.94 4.84 18.65% 2.83% -3.40% -1.01% -3.00% -0.85%
0.8 8.36 7.37 8.13 8.30 8.39 8.27 8.28 11.79% 2.68% 0.70% -0.41% 0.99% 0.87%
0.7 12.27 11.83 12.50 12.47 12.42 12.35 12.37 3.56% -1.93% -1.63% -1.23% -0.65% -0.83%
0.6 17.46 16.54 17.43 17.38 17.24 17.38 17.38 5.23% 0.17% 0.46% 1.26% 0.46% 0.46%

average 9.92% 2.06% 0.48% 0.71% 0.36% 0.51%

KTH advanced decider

1.0 3.32 3.25 3.24 3.23 3.24 3.29 3.33 2.15% 2.25% 2.77% 2.27% 0.80% -0.39%
0.9 4.35 4.31 4.26 4.29 4.32 4.35 4.36 1.04% 2.05% 1.38% 0.62% 0.15% -0.21%
0.8 6.85 6.70 6.78 7.01 7.05 7.15 7.08 2.17% 1.07% -2.36% -2.90% -4.30% -3.30%
0.7 12.29 12.79 12.21 12.29 12.73 12.34 12.40 -4.04% 0.67% 0.06% -3.56% -0.34% -0.83%
0.6 21.29 21.41 21.29 21.34 21.16 21.04 21.10 -0.57% -0.02% -0.23% 0.57% 1.17% 0.90%

average 0.15% 1.21% 0.32% -0.60% -0.50% -0.77%
SJF-preferred decider

1.0 3.32 3.20 3.26 3.27 3.27 3.28 3.32 3.56% 1.89% 1.50% 1.60% 1.19% -0.07%
0.9 4.35 4.42 4.23 4.29 4.29 4.29 4.31 -1.46% 2.85% 1.37% 1.45% 1.46% 1.04%
0.8 6.85 6.91 6.86 6.90 6.98 7.03 6.88 -0.87% -0.14% -0.79% -1.89% -2.61% -0.39%
0.7 12.29 12.80 12.35 12.20 12.27 12.19 12.19 -4.07% -0.45% 0.81% 0.21% 0.85% 0.85%
0.6 21.29 21.45 21.20 21.11 21.21 21.22 21.20 -0.75% 0.41% 0.85% 0.35% 0.31% 0.39%

average -0.72% 0.91% 0.75% 0.34% 0.24% 0.36%

Table A.17: Slowdown (SLDwA) values for different slackness values (in %) with different
workloads/shrinking factors. The advanced and SJF-preferred deciders is applied
with ARTwW as the self-tuning metrics. Red color highlights the best slackness
value. Part I, CTC and KTH.

146

A.2 Increased Workload

shrink. SLDwA relative to SJF
factor SJF 0% 2% 4% 6% 8% 10% 0% 2% 4% 6% 8% 10%

LANL advanced decider

1.0 2.47 2.43 2.42 2.43 2.43 2.45 2.47 1.81% 2.30% 1.76% 1.82% 0.80% 0.28%
0.9 3.16 3.13 3.10 3.12 3.17 3.16 3.16 1.11% 1.98% 1.49% -0.10% 0.24% 0.20%
0.8 5.11 4.95 5.05 5.04 5.10 5.12 5.10 3.28% 1.28% 1.41% 0.17% -0.19% 0.34%
0.7 14.93 14.50 14.72 14.84 14.97 15.04 15.04 2.92% 1.45% 0.65% -0.27% -0.71% -0.72%
0.6 41.73 42.37 41.73 42.22 41.73 41.73 41.73 -1.55% -0.02% -1.18% 0.00% 0.00% 0.00%

average 1.51% 1.40% 0.83% 0.33% 0.03% 0.02%
SJF-preferred decider

1.0 2.47 2.42 2.43 2.43 2.44 2.44 2.47 1.96% 1.78% 1.73% 1.49% 1.16% 0.14%
0.9 3.16 3.13 3.11 3.18 3.16 3.17 3.16 0.95% 1.61% -0.37% 0.00% -0.31% 0.22%
0.8 5.11 5.00 4.94 5.01 5.14 5.16 5.17 2.19% 3.43% 2.09% -0.49% -0.98% -1.12%
0.7 14.93 14.58 14.75 15.01 14.97 15.01 14.94 2.34% 1.20% -0.49% -0.25% -0.54% -0.07%
0.6 41.73 42.13 41.98 42.25 42.02 41.73 41.73 -0.97% -0.62% -1.27% -0.70% 0.00% 0.00%

average 1.29% 1.48% 0.34% 0.01% -0.13% -0.17%

SDSC advanced decider

1.0 6.00 5.56 5.84 6.08 6.31 6.14 5.98 7.29% 2.69% -1.32% -5.09% -2.39% 0.26%
0.9 16.48 13.90 15.65 16.30 16.31 16.30 16.63 15.66% 5.02% 1.09% 1.04% 1.07% -0.93%
0.8 29.86 27.64 28.67 29.41 29.47 29.39 29.85 7.43% 3.97% 1.50% 1.28% 1.57% 0.02%
0.7 42.83 41.95 42.49 42.65 42.40 42.57 42.56 2.05% 0.79% 0.42% 1.00% 0.62% 0.63%
0.6 57.01 57.35 56.46 56.63 56.56 56.64 56.64 -0.61% 0.97% 0.67% 0.78% 0.65% 0.65%

average 6.36% 2.69% 0.47% -0.20% 0.30% 0.13%
SJF-preferred decider

1.0 6.00 5.59 6.03 5.90 6.02 6.00 6.03 6.78% -0.51% 1.63% -0.40% 0.01% -0.53%
0.9 16.48 14.09 16.23 16.02 16.48 16.47 16.47 14.48% 1.52% 2.75% -0.01% 0.02% 0.02%
0.8 29.86 27.54 29.46 29.64 29.60 29.86 29.86 7.76% 1.34% 0.73% 0.86% -0.01% 0.00%
0.7 42.83 41.74 42.42 42.98 42.63 42.63 42.53 2.56% 0.97% -0.34% 0.47% 0.47% 0.71%
0.6 57.01 57.29 56.60 56.60 56.87 56.94 57.04 -0.50% 0.72% 0.72% 0.24% 0.11% -0.05%

average 6.22% 0.81% 1.10% 0.23% 0.12% 0.03%

Table A.18: Slowdown (SLDwA) values for different slackness values (in %) with different
workloads/shrinking factors. The advanced and SJF-preferred decider is applied
with ARTwW as the self-tuning metrics. Red color highlights the best slackness
value. Part II, LANL and SDSC.

147

A Detailed Results

shrink. SLDwA relative to SJF
factor SJF 0% 2% 4% 6% 8% 10% 0% 2% 4% 6% 8% 10%

PC2-2001 advanced decider

1.0 4.62 4.56 4.52 4.67 4.66 4.67 4.65 1.43% 2.21% -0.91% -0.79% -1.06% -0.57%
0.9 5.12 5.09 5.11 5.25 5.11 5.15 5.12 0.70% 0.27% -2.37% 0.30% -0.57% 0.12%
0.8 6.02 6.36 6.29 6.25 6.11 6.04 6.00 -5.56% -4.45% -3.80% -1.45% -0.30% 0.29%
0.7 8.68 8.29 8.85 8.91 8.83 8.66 8.66 4.47% -2.01% -2.64% -1.77% 0.20% 0.25%
0.6 12.91 13.09 12.69 12.61 12.71 13.05 12.74 -1.45% 1.67% 2.31% 1.52% -1.09% 1.28%
0.5 20.45 19.80 20.07 20.07 19.83 19.91 19.97 3.16% 1.85% 1.86% 3.03% 2.67% 2.35%
0.4 28.23 28.47 28.38 28.34 28.33 28.35 28.35 -0.85% -0.54% -0.38% -0.38% -0.43% -0.43%

average 0.27% -0.14% -0.85% 0.07% -0.08% 0.47%
SJF-preferred decider

1.0 4.62 4.47 4.45 4.62 4.62 4.64 4.64 3.37% 3.83% 0.04% 0.15% -0.45% -0.43%
0.9 5.12 5.06 5.02 5.17 5.04 5.09 5.09 1.17% 2.10% -0.89% 1.62% 0.59% 0.73%
0.8 6.02 6.34 6.33 6.27 6.06 6.02 6.03 -5.28% -5.07% -4.19% -0.61% 0.00% -0.16%
0.7 8.68 8.16 8.79 8.87 8.92 8.64 8.74 5.93% -1.26% -2.20% -2.78% 0.41% -0.75%
0.6 12.91 13.20 12.83 12.86 12.87 13.01 12.94 -2.26% 0.61% 0.33% 0.29% -0.78% -0.25%
0.5 20.45 19.83 20.56 20.56 20.30 20.30 20.30 3.05% -0.52% -0.53% 0.74% 0.74% 0.74%
0.4 28.23 28.55 28.45 28.49 28.39 28.25 28.25 -1.14% -0.77% -0.92% -0.58% -0.08% -0.08%

average 0.69% -0.15% -1.19% -0.17% 0.06% -0.03%

PC2-2002 advanced decider

1.0 5.55 5.53 5.48 5.55 5.47 5.46 5.44 0.45% 1.31% -0.03% 1.43% 1.60% 2.06%
0.9 6.11 6.29 6.26 6.06 6.14 6.10 6.13 -3.00% -2.51% 0.72% -0.56% 0.17% -0.32%
0.8 7.35 7.62 7.35 7.34 7.42 7.31 7.37 -3.64% 0.04% 0.12% -0.98% 0.59% -0.29%
0.7 9.95 9.91 9.71 9.67 9.60 9.93 9.96 0.43% 2.39% 2.84% 3.47% 0.24% -0.13%
0.6 13.85 13.81 13.65 13.61 13.81 13.97 13.97 0.32% 1.47% 1.78% 0.29% -0.82% -0.84%
0.5 21.36 21.22 21.11 21.22 21.14 20.98 21.04 0.66% 1.15% 0.67% 1.03% 1.76% 1.48%
0.4 34.96 34.76 34.26 34.76 34.76 34.76 34.76 0.59% 1.99% 0.59% 0.59% 0.59% 0.59%

average -0.60% 0.84% 0.96% 0.75% 0.59% 0.36%
SJF-preferred decider

1.0 5.55 5.47 5.55 5.49 5.46 5.46 5.45 1.54% 0.13% 1.14% 1.70% 1.72% 1.76%
0.9 6.11 6.24 6.18 6.14 6.16 6.16 6.12 -2.27% -1.13% -0.54% -0.84% -0.85% -0.20%
0.8 7.35 7.54 7.29 7.32 7.39 7.32 7.35 -2.53% 0.88% 0.45% -0.51% 0.47% -0.02%
0.7 9.95 9.81 9.81 9.64 9.60 9.95 9.96 1.45% 1.37% 3.07% 3.47% 0.00% -0.09%
0.6 13.85 13.72 13.89 14.15 14.16 14.17 13.99 0.96% -0.25% -2.16% -2.23% -2.28% -1.02%
0.5 21.36 21.51 21.96 21.75 21.40 21.08 21.08 -0.68% -2.80% -1.81% -0.20% 1.31% 1.31%
0.4 34.96 35.22 34.50 35.14 34.99 34.62 34.62 -0.73% 1.33% -0.52% -0.07% 0.97% 0.97%

average -0.32% -0.07% -0.05% 0.19% 0.19% 0.39%

Table A.19: Slowdown (SLDwA) values for different slackness values (in %) with different
workloads/shrinking factors. The advanced and SJF-preferred decider is applied
with ARTwW as the self-tuning metrics. Red color highlights the best slackness
value. Part III, PC2-2001 and PC2-2002.

148

A.2 Increased Workload

shrink. SLDwA relative to SJF
factor SJF 0% 2% 4% 6% 8% 10% 0% 2% 4% 6% 8% 10%

CHPC advanced decider

1.0 1.01 1.01 1.01 1.01 1.01 1.01 1.01 -0.09% -0.01% 0.00% -0.03% -0.04% -0.03%
0.9 1.02 1.02 1.02 1.02 1.02 1.02 1.02 0.02% 0.00% -0.02% -0.01% 0.00% 0.01%
0.8 1.04 1.04 1.04 1.04 1.04 1.04 1.04 -0.31% -0.14% -0.05% -0.04% -0.09% -0.16%
0.7 1.08 1.09 1.08 1.08 1.08 1.08 1.08 -0.86% -0.57% -0.19% -0.16% -0.29% -0.14%
0.6 1.20 1.21 1.19 1.20 1.20 1.20 1.20 -1.32% 0.18% -0.14% 0.02% -0.17% -0.16%
0.5 1.62 1.66 1.62 1.62 1.62 1.61 1.61 -2.83% -0.37% -0.53% -0.20% 0.11% 0.18%
0.4 3.96 4.09 3.92 3.96 3.95 3.95 3.98 -3.21% 1.15% 0.08% 0.34% 0.24% -0.30%
0.3 10.15 10.46 10.10 9.96 10.13 10.13 10.17 -3.07% 0.46% 1.93% 0.17% 0.17% -0.16%

average -1.46% 0.09% 0.14% 0.01% -0.01% -0.10%
SJF-preferred decider

1.0 1.01 1.01 1.01 1.01 1.01 1.01 1.01 -0.01% -0.01% 0.00% 0.00% 0.00% 0.00%
0.9 1.02 1.02 1.02 1.02 1.02 1.02 1.02 -0.03% -0.02% -0.01% -0.01% 0.00% 0.00%
0.8 1.04 1.04 1.04 1.04 1.04 1.04 1.04 -0.25% -0.03% -0.01% 0.01% 0.00% 0.00%
0.7 1.08 1.09 1.08 1.08 1.08 1.08 1.08 -0.76% -0.07% 0.02% 0.01% 0.01% 0.01%
0.6 1.20 1.21 1.20 1.20 1.20 1.20 1.20 -1.23% -0.13% -0.02% 0.00% 0.00% 0.00%
0.5 1.62 1.63 1.62 1.62 1.62 1.62 1.62 -1.07% -0.02% -0.19% -0.23% -0.41% -0.43%
0.4 3.96 3.98 3.98 3.96 3.96 3.96 3.96 -0.37% -0.32% 0.00% 0.00% 0.00% 0.00%
0.3 10.15 10.27 10.14 10.15 10.15 10.15 10.15 -1.15% 0.07% 0.00% 0.00% 0.00% 0.00%

average -0.61% -0.07% -0.03% -0.03% -0.05% -0.05%

MHPCC advanced decider

1.0 1.05 1.05 1.05 1.05 1.05 1.05 1.05 -0.08% 0.01% 0.03% -0.10% -0.11% -0.13%
0.9 1.07 1.07 1.07 1.06 1.06 1.07 1.07 -0.06% -0.56% 0.34% 0.26% -0.04% -0.39%
0.8 1.09 1.10 1.10 1.09 1.10 1.10 1.10 -0.72% -0.42% 0.09% -0.24% -0.59% -0.55%
0.7 1.13 1.14 1.13 1.13 1.14 1.14 1.14 -0.82% 0.00% -0.03% -0.32% -0.44% -0.55%
0.6 1.25 1.24 1.24 1.24 1.24 1.24 1.24 0.73% 0.96% 1.27% 1.40% 1.23% 1.31%
0.5 1.44 1.48 1.45 1.44 1.43 1.43 1.43 -3.06% -1.22% -0.12% 0.47% 0.44% 0.46%
0.4 2.76 2.17 2.39 2.76 2.75 2.75 2.76 21.41% 13.33% 0.06% 0.27% 0.18% -0.19%
0.3 9.51 9.48 9.47 9.34 9.34 9.34 9.34 0.34% 0.42% 1.82% 1.81% 1.82% 1.82%

average 2.22% 1.56% 0.43% 0.45% 0.31% 0.22%
SJF-preferred decider

1.0 1.05 1.05 1.05 1.05 1.05 1.05 1.05 0.28% 0.06% 0.00% 0.00% 0.00% 0.00%
0.9 1.07 1.07 1.07 1.07 1.07 1.07 1.07 0.02% 0.00% -0.06% -0.06% -0.01% 0.00%
0.8 1.09 1.10 1.10 1.09 1.09 1.09 1.09 -0.36% -0.21% 0.00% -0.02% 0.00% 0.02%
0.7 1.13 1.14 1.13 1.13 1.13 1.13 1.13 -0.62% -0.11% -0.05% 0.04% 0.08% 0.04%
0.6 1.25 1.24 1.26 1.25 1.26 1.25 1.25 0.71% -0.51% -0.13% -0.20% -0.12% 0.06%
0.5 1.44 1.45 1.42 1.43 1.43 1.43 1.43 -0.53% 1.16% 0.64% 0.54% 0.36% 0.41%
0.4 2.76 2.50 2.95 2.62 2.74 2.74 2.76 9.30% -7.02% 4.89% 0.56% 0.53% 0.00%
0.3 9.51 9.40 9.40 9.51 9.51 9.51 9.51 1.15% 1.22% 0.00% 0.00% 0.00% 0.00%

average 1.24% -0.68% 0.66% 0.11% 0.10% 0.07%

Table A.20: Slowdown (SLDwA) values for different slackness values (in %) with different
workloads/shrinking factors. The advanced and SJF-preferred decider is applied
with ARTwW as the self-tuning metrics. Red color highlights the best slackness
value. Part IV, CHPC and MHPCC.

149

A Detailed Results

150

Bibliography

[1] P. Brucker. Scheduling Algorithms. Springer, 3rd edition, 2001.

[2] M. Brune, J. Gehring, A. Keller, and A. Reinefeld. Managing Clusters of Geographi-
cally Distributed High-Performance Computers. Concurrency - Practice and Experience,
11(15):887–911, 1999.

[3] M. Brune, A. Keller, and A. Reinefeld. Resource Management for High-Performance PC
Clusters. In Proc. of 7th International Conference High-Performance Computing and
Networking Europe, volume 1593 of Lecture Notes in Computer Science, pages 270–281.
Springer, 1999.

[4] M. Calzarossa and G. Serazzi. A Characterization of the Variation in Time of Workload
Arrival Patterns. IEEE Trans. Comput. C-34(2), pages 156–162, February 1985.

[5] The CCS Software. http://www.upb.de/pc2/projects/ccs/, October 2003.

[6] S.J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger,
W. Schwiegelshohn, W. Smith, and D. Talby. Benchmarks and Standards for the Evalu-
ation of Parallel Job Schedulers. In D. G. Feitelson and L. Rudolph, editor, Proc. of 5th
Workshop on Job Scheduling Strategies for Parallel Processing, volume 1659 of Lecture
Notes in Computer Science, pages 1–16. Springer, 1999.

[7] W. Cirne and F. Berman. A Model for Moldable Supercomputer Jobs. In Proc. of the
15th International Conference on Parallel and Distributed Processing Symposium, 2001.

[8] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke.
A Resource Management Architecture for Metacomputing Systems. In D. G. Feitelson
and L. Rudolph, editor, Proc. of 4th Workshop on Job Scheduling Strategies for Parallel
Processing, volume 1459 of Lecture Notes in Computer Science, pages 62–82. Springer,
1998.

[9] The DataGrid Project. http://www.eu-datagrid.org/, October 2003.

[10] A. B. Downey. A Parallel Workload Model and Its Implications for Processor Allocation.
In Proc. of the 6th International Symposium on High Performance Distributed Computing
(HPDC-6), August 1997.

[11] A. B. Downey and D. G. Feitelson. The Elusive Goal of Workload Characterization.
Technical report, Hebrew University, Jerusalem, March 1999.

[12] EGrid Testbed Working Group: G. Allen, G. Aloisio, Z. Balaton, M. Cafaro, T. Draml-
itsch, H.-H. Frese, J. Gehring, T. Goodale, P. Kacsuk, A. Keller, H.-P. Kersken, T. Kiel-
mann, H. Knipp, G. Lanfermann, B. Ludwiczak, L. Matyska, A. Merzky, J. Nabrzyski J.
Pukacki, T. Radke, A. Reinefeld, M. Ruda, F. Schintke, E. Seidel, A. Streit, F. Szalai,

151

http://www.upb.de/pc2/projects/ccs/�
http://www.eu-datagrid.org/�

Bibliography

K. Verstoep, and W. Ziegler. Early Experiences with the EGrid Testbed. In Procced-
ings of 1st IEEE/ACM International Symposium on Cluster Computing and the Grid
(CC-GRID 2001), pages 130–137. IEEE Computer Society Press, 2001.

[13] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and R.Yahyapour. On Ad-
vantages of Grid Computing for Parallel Job Scheduling. In Proc. of the 2nd IEEE
International Symposium on Cluster Computing and the Grid (CC-GRID 2002), pages
39–46. IEEE Computer Society Press, 2002.

[14] C. Ernemann, V. Hamscher, A. Streit, and R. Yahyapour. Enhanced Algorithms for
Multi-Site Scheduling. In Proc. of 3rd IEEE/ACM International Workshop on Grid
Computing (Grid 2002) at Supercomputing 2002, volume 2536 of Lecture Notes in Com-
puter Science, pages 219–231. Springer, 2002.

[15] C. Ernemann, V. Hamscher, A. Streit, and R. Yahyapour. On Effects of Machine Config-
urations on Parallel Job Scheduling in Computational Grids. In Proc. of the International
Conference on Architecture of Computing Systems (ARCS 2002), pages 169–179. VDE-
Verlag, 2002.

[16] D. G. Feitelson. A Survey of Scheduling in Multiprogrammed Parallel Systems. Research
report rc 19790 (87657), IBM T.J. Watson Research Center, Yorktown Heights, NY, 1995.

[17] D. G. Feitelson. Packing Schemes for Gang Scheduling. In D. G. Feitelson and L.
Rudolph, editor, Proc. of 2nd Workshop on Job Scheduling Strategies for Parallel Pro-
cessing, volume 1162 of Lecture Notes in Computer Science, pages 89–101. Springer,
1996.

[18] D. G. Feitelson. Metrics for Parallel Job Scheduling and their Convergence. In D. G.
Feitelson and L. Rudolph, editor, Proc. of 7th Workshop on Job Scheduling Strategies for
Parallel Processing, volume 2221 of Lecture Notes in Computer Science, pages 190–208.
Springer, 2001.

[19] D. G. Feitelson. Analyzing the Root Causes of Performance Evaluation Results. TR
2002-4, Hebrew University, Jerusalem, March 2002.

[20] D. G. Feitelson. The Forgotten Factor: Facts on Performance Evaluation and its Depen-
dence on Workloads. In Proceedings of EUROPAR 2002, volume 2400 of Lecture Notes
of Computer Science, pages 49–60. Springer, 2002.

[21] D. G. Feitelson and M. A. Jette. Improved Utilization and Responsiveness with Gang
Scheduling. In D. G. Feitelson and L. Rudolph, editor, Proc. of 3rd Workshop on Job
Scheduling Strategies for Parallel Processing, volume 1291 of Lecture Notes in Computer
Science, pages 238–262. Springer, 1997.

[22] D. G. Feitelson and A. W. Mu’alem. On the Definition of ”On-Line” in Job Scheduling
Problems. TR 2000-32, Hebrew University, Jerusalem, March 2000.

[23] D. G. Feitelson and M. Naaman. Self-Tuning Systems. In IEEE Software 16(2), pages
52–60, April/Mai 1999.

152

Bibliography

[24] D. G. Feitelson and B. Nitzberg. Job Characteristics of a Production Parallel Scientific
Workload on the NASA Ames iPSC/860. In D. G. Feitelson and L. Rudolph, editor,
Proc. of 1st Workshop on Job Scheduling Strategies for Parallel Processing, volume 949
of Lecture Notes in Computer Science, pages 337–360. Springer, 1995.

[25] D. G. Feitelson and L. Rudolph. Parallel Job Scheduling: Issues and Approaches. In
Proc. of 1st Workshop on Job Scheduling Strategies for Parallel Processing, volume 949
of Lecture Notes in Computer Science, pages 1–18. Springer, 1995.

[26] D. G. Feitelson and L. Rudolph. Toward Convergence in Job Schedulers for Parallel
Supercomputers. In D. G. Feitelson and L. Rudolph, editor, Proc. of 2nd Workshop
on Job Scheduling Strategies for Parallel Processing, volume 1162, pages 1–26. Springer,
1996.

[27] D. G. Feitelson and L. Rudolph. Metrics and Benchmarking for Parallel Job Scheduling.
In D. G. Feitelson and L. Rudolph, editor, Proc. of 4th Workshop on Job Scheduling
Strategies for Parallel Processing, volume 1459 of Lecture Notes in Computer Science,
pages 1–24. Springer, 1998.

[28] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, and K. C. Sevcik. Theory and Practice
in Parallel Job Scheduling. In D. G. Feitelson and L. Rudolph, editor, Proc. of 3rd
Workshop on Job Scheduling Strategies for Parallel Processing, volume 1291 of Lecture
Notes in Computer Science, pages 1–34. Springer, 1997.

[29] D. G. Feitelson and A. Weil. Utilization and Predictability in Scheduling the IBM SP2
with Backfilling. In Proc. of the 1st Merged International Parallel Processing Symposium
and Symposium on Parallel and Distributed Processing, pages 542–547. IEEE Computer
Society Press, 1998.

[30] I. Foster and C. Kesselman (Eds.). The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers Inc. San Fransisco, 1999.

[31] J. Gehring and T. Preiss. Scheduling a Metacomputer With Uncooperative Sub-
schedulers. In D. G. Feitelson and L. Rudolph, editor, Proc. of 5th Workshop on Job
Scheduling Strategies for Parallel Processing, volume 1659 of Lecture Notes in Computer
Science, pages 179–201. Springer, 1999.

[32] J. Gehring and F. Ramme. Architecture-Independent Request-Scheduling with Tight
Waiting-Time Estimations. In D. G. Feitelson and L. Rudolph, editor, Proc. of 2nd
Workshop on Job Scheduling Strategies for Parallel Processing, volume 1162 of Lecture
Notes in Computer Science, pages 65–80. Springer, 1996.

[33] J. Gehring and A. Streit. Robust Resource Management for Metacomputers. In Proceed-
ings of the 9th IEEE International Symposium on High PerformanceDistributed Com-
puting (HPDC-2000), pages 105–111. IEEE Computer Society Press, 2000.

[34] J. Gehring and A. Streit. The MOL-Kernel - A Platform for Multiform Metacomputing
Services. In 1st EGRID Workshop at ISThmus 2000, pages 269–277, April 2000.

[35] Global Grid Forum. www.globalgridforum.org, October 2003.

153

www.globalgridforum.org�

Bibliography

[36] R. Gibbons. A Historical Application Profiler for Use by Parallel Schedulers. In D. G.
Feitelson and L. Rudolph, editor, Proc. of 3rd Workshop on Job Scheduling Strategies
for Parallel Processing, volume 1291 of Lecture Notes in Computer Science, pages 58–77.
Springer, 1997.

[37] The Globus Project. http://www.globus.org/, October 2003.

[38] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnoy Kan. Optimization
and Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of
Discrete Mathematics, pages 287–326, 1979.

[39] L. A. Hall, D. B. Shmoys, and J. Wein. Scheduling To Minimize Average Completion
Time: Off-line and On-line Algorithms. In Proc. of the of the Seventh ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 142–151, 1996.

[40] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation of Job-
Scheduling Strategies for Grid Computing. In Proceedings of 1st IEEE/ACM Inter-
national Workshop on Grid Computing (Grid 2000), volume 1971 of Lecture Notes in
Computer Science, pages 191–202. Springer, 2000.

[41] S. Hotovy. Workload Evolution on the Cornell Theory Center IBM SP2. In D. G.
Feitelson and L. Rudolph, editor, Proc. of 2nd Workshop on Job Scheduling Strategies
for Parallel Processing, Lecture Notes in Computer Science, pages 27–40. Springer, 1996.

[42] M. Hovestadt, O. Kao, A. Keller, and A. Streit. Scheduling in HPC Resource Manage-
ment Systems: Queuing vs. Planning. In D. G. Feitelson and L. Rudolph, editor, Proc.
of the 9th Workshop on Job Scheduling Strategies for Parallel Processing, volume 2862
of Lecture Notes in Computer Science. Springer, 2003, to appear.

[43] The hpcLine at the Paderborn Center for Parallel Computing (PC2). http://www.upb.
de/pc2/services/systems/psc/index.html, October 2003.

[44] Access to the HWW Compute Platforms. http://www.hlrs.de/hw-access/access/,
October 2003.

[45] ILOG CPLEX. http://www.ilog.com/products/cplex/, October 2003.

[46] D. Jackson, Q. Snell, and M. Clement. Core Algorithms of the Maui Scheduler. In D. G.
Feitelson and L. Rudolph, editor, Proc. of 7th Workshop on Job Scheduling Strategies for
Parallel Processing, volume 2221 of Lecture Notes in Computer Science, pages 87–103.
Springer, 2001.

[47] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan. Modeling of
Workload in MPPs. In D. G. Feitelson and L. Rudolph, editor, Proc. of 3rd Workshop
on Job Scheduling Strategies for Parallel Processing, volume 1291 of Lecture Notes in
Computer Science, pages 95–116. Springer, 1997.

[48] Workshops on Job Scheduling Strategies for Parallel Processing. http://www.cs.huji.
ac.il/~feit/parsched/, October 2003.

[49] P. Keleher, D. Zotkin, and D. Perkovic. Attacking the Bottlenecks in Backfilling Sched-
ulers. Cluster Computing: The Journal of Networks, 3, 2000.

154

http://www.globus.org/�
http://www.upb.de/pc2/services/systems/psc/index.html�
http://www.upb.de/pc2/services/systems/psc/index.html�
http://www.hlrs.de/hw-access/access/�
http://www.ilog.com/products/cplex/�
http://www.cs.huji.ac.il/~feit/parsched/�
http://www.cs.huji.ac.il/~feit/parsched/�

Bibliography

[50] A. Keller. Personal communication about users of CCS and how they behave, May–
October 2002.

[51] A. Keller and A. Reinefeld. CCS Resource Management in Networked HPC Systems.
In Proc. of Heterogenous Computing Workshop HCW’98 at IPPS, pages 44–56. IEEE
Computer Society Press, 1998.

[52] A. Keller and A. Reinefeld. Anatomy of a Resource Management System for HPC
Clusters. In Annual Review of Scalable Computing, vol. 3, Singapore University Press,
pages 1–31, 2001.

[53] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour. On the Design and Evaluation
of Job Scheduling Algorithms. In D. G. Feitelson and L. Rudolph, editor, Proc. of 5th
Workshop on Job Scheduling Strategies for Parallel Processing, volume 1659 of Lectures
Notes in Computer Science, pages 17–42. Springer, 1999.

[54] W. E. Leland and T. J. Ott. Load-Balancing Heuristics and Process Behavior. In Proc. of
SIGMETRICS Conference Measurement & Modeling of Computer Systems, pages 54–69,
1986.

[55] D. A. Lifka. The ANL/IBM SP Scheduling System. In D. G. Feitelson and L. Rudolph,
editor, Proc. of 1st Workshop on Job Scheduling Strategies for Parallel Processing, volume
949 of Lecture Notes in Computer Science, pages 295–303. Springer, 1995.

[56] IBM Scalable Parallel (SC) software - LoadLeveler. http://www.ibm.com/
servers/eserver/pseries/library/sp\protect\unhbox\voidb@x\kern.06em\
vbox{\hrulewidth.3em}books/loadleveler.html, October 2003.

[57] V. Lo, J. Mache, and L.Windisch. A Comparative Study of Real Workload Traces and
Synthetic Workloads for Parallel Job Scheduling. In D. G. Feitelson and L. Rudolph, edi-
tor, Proceedings of the 4th Workshop on Job Scheduling Strategies for Parallel Processing,
volume 1459 of Lecture Notes in Computer Science, pages 25–46. Springer, 2002.

[58] Platform Computing, LSF - Load Sharing Facility. http://www.platform.com/
products/wm/LSF/index.asp, October 2003.

[59] U. Lublin and D. G. Feitelson. The Workload on Parallel Supercomputers: Modeling
the Characteristics of Rigid Jobs. TR 2001-12, Hebrew University, Jerusalem, October
2001.

[60] HPC Workload/Resource Trace Respository. http://supercluster.org/research/
traces/index.html, October 2003.

[61] Official MAUI Homepage. http://supercluster.org/maui, October 2003.

[62] G.E. Moore. Cramming More Components Onto Integrated Circuits. Electronics, 38(8),
1965.

[63] A. Mu’alem and D. G. Feitelson. Utilization, Predictability, Workloads, and User Run-
time Estimates in Scheduling the IBM SP2 with Backfilling. Technical Report 2000-33,
Institute of Computer Science, The Hebrew University, July 2000.

155

http://www.ibm.com/servers/eserver/pseries/library/spprotect unhbox voidb@x kern .06emvbox {hrule width.3em}books/loadleveler.html�
http://www.ibm.com/servers/eserver/pseries/library/spprotect unhbox voidb@x kern .06emvbox {hrule width.3em}books/loadleveler.html�
http://www.ibm.com/servers/eserver/pseries/library/spprotect unhbox voidb@x kern .06emvbox {hrule width.3em}books/loadleveler.html�
http://www.platform.com/products/wm/LSF/index.asp�
http://www.platform.com/products/wm/LSF/index.asp�
http://supercluster.org/research/traces/index.html�
http://supercluster.org/research/traces/index.html�
http://supercluster.org/maui�

Bibliography

[64] A. Mu’alem and D. G. Feitelson. Utilization, Predictability, Workloads, and User Run-
time Estimates in Scheduling the IBM SP2 with Backfilling. In IEEE Trans. Parallel &
Distributed Systems 12(6), pages 529–543. IEEE Computer Society Press, June 2001.

[65] J. Nabryzski, J.M. Schopf, and J. Weglarz (Eds.). Grid Resource Management: State of
the Art and Future Trends. Kluwer Academic Publishers, 2003.

[66] T. D. Nguyen, R. Vaswani, and J. Zahorjan. Maximizing Speedup through Self-Tuning of
Processor Allocation. In Proc. of the 10th International Parallel Processing Symposium,
pages 463–468. IEEE Computer Society Press, 1996.

[67] NPACI JOBLOG Job Trace Repository. http://joblog.npaci.edu/, October 2003.

[68] PACX-MPI Project Homepage. http://www.hlrs.de/organization/pds/projects/
pacx-mpi/, October 2003.

[69] PBS Pro Home. http://www.pbspro.com, October 2003.

[70] PC2 Annual Report - 2002, February 2003.

[71] D. Perkovic and P. Keleher. Randomization, Speculation, and Adaptation in Batch
Schedulers. In Supercomputing (SC2000), 2000.

[72] M. Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice Hall, New Jersey, 2nd

edition, 2002.

[73] F. Ramme and K. Kremer. Scheduling a Metacomputer by an Implicit Voting System. In
3rdInt. IEEE Symposium on High-Performance Distributed Computing, pages 106–113,
1994.

[74] G. Kliewer S. Grothklags. Personal communication about modelling the scheduling pro-
cess as an integer problem and solving it with the ILOG CPLEX library, November-
December 2002.

[75] U. Schwiegelshohn. Preemptive Weighted Completion Time Scheduling of Parallel Jobs.
In Proceedings of the European Symposium of Algorithms (ESA 96), volume 1136 of
Lecture Notes in Computer Science, pages 39–51. Springer, 1996.

[76] U. Schwiegelshohn, W. Ludwig, and P.S. Yu J.L. Wolf, J. Turek. Smart SMART Bounds
for Multiprocessor Response Time Scheduling. SIAM Journal of Computing, 28:237–253,
1998.

[77] U. Schwiegelshohn and R. Yahyapour. Analysis of First-Come-First-Serve Parallel Job
Scheduling. In Proceedings of the 9th SIAM Symposium on Discrete Algorithms, pages
629–638, 1998.

[78] U. Schwiegelshohn and R. Yahyapour. Improving First-Come-First-Serve Job Scheduling
by Gang Scheduling. In D. G. Feitelson and L. Rudolph, editor, Proc. of 4th Workshop
on Job Scheduling Strategies for Parallel Processing, volume 1459 of Lecture Notes in
Computer Science, pages 180–198, 1998.

[79] U. Schwiegelshohn and R. Yahyapour. Fairness in Parallel Job Scheduling. Journal of
Scheduling, 3(5):297–320, 2000.

156

http://joblog.npaci.edu/�
http://www.hlrs.de/organization/pds/projects/pacx-mpi/�
http://www.hlrs.de/organization/pds/projects/pacx-mpi/�
http://www.pbspro.com�

Bibliography

[80] Dolphin Interconnect Solutions Inc. http://www.dolphinics.com/products/, October
2003.

[81] K. C. Sevcik. Application Scheduling and Processor Allocation in Multiprogrammed
Parallel Processing Systems. Performance Evaluation 19(2-3), pages 107–140, March
1994.

[82] J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY — LoadLeveler API Project.
In D. G. Feitelson and L. Rudolph, editor, Proc. of 2nd Workshop on Job Scheduling
Strategies for Parallel Processing, volume 1162 of Lecture Notes in Computer Science,
pages 41–47. Springer, 1996.

[83] L. Smarr and C. E. Catlett. Metacomputing. Communications of the ACM, 35(6):44–52,
June 1992.

[84] A. Streit. Evaluation of Scheduling Strategies in Metacomputing (in German). Master’s
thesis, Dortmund University, 1999.

[85] A. Streit. On Job Scheduling for HPC-Clusters and the dynP Scheduler. In Proc. of
the 8th International Conference on High Performance Computing (HiPC 2001), volume
2228 of Lecture Notes in Computer Science, pages 58–67. Springer, 2001.

[86] A. Streit. A Self-Tuning Job Scheduler Family with Dynamic Policy Switching. In D. G.
Feitelson and L. Rudolph, editor, Proc. of the 8th Workshop on Job Scheduling Strategies
for Parallel Processing, volume 2537 of Lecture Notes in Computer Science, pages 1–23.
Springer, 2002.

[87] A. Streit. The Self-Tuning dynP Job-Scheduler. In Proc. of the 11th International Het-
erogeneous Computing Workshop (HCW) at IPDPS 2002, pages 87 (book of abstracts,
paper only on CD). IEEE Computer Society Press, 2002.

[88] J. Subhlok, T. Gross, and T. Suzuoka. Impact of Job Mix on Optimizations for Space
Sharing Schedulers. In Proc. of Supercomputing’96 Conference. ACM Press and IEEE
Computer Society Press, 1996.

[89] Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/parallel/workload/,
October 2003.

[90] D. Talby and D. G. Feitelson. Supporting Priorities and Improving Utilization of the
IBM SP2 Scheduler Using Slack-Based Backfilling. In Proc. of 13th International Parallel
Processing Symposium, pages 513–517. IEEE Computer Society Press, 1999.

[91] J. Turek, W. Ludwig, J.L. Wolf, L. Fleischer, P. Tiwari, J. Glasgow, U. Schwiegelshohn,
and P. S. Yu. Scheduling Parallelizable Tasks to Minimize Average Response Time.
In Proc. of the 6th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA-94), pages 200–209. ACM Press, 1994.

[92] J.M. van den Akker, C.A.J. Hurkens, and M.W.P. Savelsbergh. Time-Indexed For-
mulations for Single-Machine Scheduling Problems: Column Generation. Journal on
Computing, 12(2):111–124, 2000.

157

http://www.dolphinics.com/products/�
http://www.cs.huji.ac.il/labs/parallel/workload/�

Bibliography

[93] K. Windisch, V. Lo, R. Moore, D. Feitelson, and B. Nitzberg. A Comparison of Workload
Traces from Two Production Parallel Machines. In 6th Symposium Frontiers Massively
Parallel Computing, pages 319–326, 1996.

[94] R. Yahyapour. Design and Evaluation of Job Scheduling Strategies for Grid Computing.
PhD thesis, Computer Engineering Institute, University Dortmund, 2002.

[95] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam. Improving Parallel Job
Scheduling by Combining Gang Scheduling and Backfilling Techniques. In Proc. of the
14th International Conference on Parallel and Distributed Processing Symposium, pages
133–144. IEEE Computer Society Press, 2000.

[96] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam. An Integrated Approach
to Parallel Scheduling Using Gang-Scheduling, Backfilling, and Migration. In D. G.
Feitelson and L. Rudolph, editor, Proc. of 7th Workshop on Job Scheduling Strategies
for Parallel Processing, volume 2221 of Lecture Notes in Computer Science, pages 133–
158. Springer, 2001.

[97] D. Zotkin and P. Keleher. Job-Length Estimation and Performance in Backfilling Strate-
gies. In Proc. of 8th High Performance Distributed Computing Conference (HPDC), pages
236–243. IEEE Computer Society Press, 1999.

158

