
Parallel Real-Time Rendering using
Heterogeneous PC Clusters

Tim Süß

Zusammenfassung

3-D-Szenen aus CAD-Systemen besitzen zumeist eine hohe geometri-
sche Komplexität. Es gibt eine Reihe von Konzepten, welche sich mit
der Schwierigkeit auseinandersetzen, solche Szenen in Echtzeit zu ren-
dern; beispielsweise daten- und rechenparallele Techniken oder Out-
of-Core Rendering Mechanismen. Diese Dissertationsschrift behandelt
die Nutzung von heterogenen PC-Clustern zur parallelen Bildberech-
nung von hochkomplexen Szenen. Für drei unterschiedliche Szenarien
wurden jeweils verschiedene Verfahren entwickelt bei deren Berech-
nungen wenige Highend-Rechner von vielen schwachen Rechnern un-
terstützt werden. Zunächst sind dies statische Szenen, die vollständig
in den Hauptspeicher eines Rechners geladen werden können. Im zwei-
ten Szenario werden statische Szenen betrachtet, deren Komplexität
den Speicher eines einzelnen Rechners übersteigt. Zuletzt werden Sze-
nen betrachtet, die neben statischen Objekten auch dynamische Ob-
jekte beinhalten.

Abstract

Often 3D scenes created with CAD applications have a high geo-
metric complexity. There are several concepts (like out-of-core render-
ing, levels of detail, parallel rendering) to render these complex scenes
in real-time. This dissertation focuses on the usage of heterogeneous
PC clusters for parallel real-time rendering of highly complex scenes.
For three different scene types specific rendering approaches were de-
veloped, where a small group of high-end computers is supported by a
large number of weaker PC cluster nodes. The first scene type consists
of static scenes that can be stored completely in a single computer’s
main memory, while the scenes of the second type exceed this memory
limitations. The scenes of the last type contain not only static but
also dynamic objects.

HEINZ NIXDORF INSTITUT

Universität Paderborn

Parallel Real-Time Rendering using
Heterogeneous PC Clusters

Dissertation

by

Tim Süß

Heinz Nixdorf Institute and Department of Computer Science
University of Paderborn

November 2011

Reviewers:

• Prof. Dr. Friedhelm Meyer auf der Heide, University of Paderborn

• Prof. Dr. André Brinkmann, University of Mainz

II

For Anja and Noel

III

Contents

1 Introduction 1

2 Rendering 9
2.1 PC Clusters for Parallel Rendering . 9
2.2 Overview of Related Work . 10

2.2.1 Parallel Rendering . 11
2.2.2 Out-of-core Rendering . 13
2.2.3 Occlusion Culling . 15
2.2.4 Mesh Simplification and Impostors 16

3 Preliminaries and Definitions 17
3.1 Objects, Models, and Scenes . 17
3.2 PC Cluster . 17

Scenario I: Static and Sparse Occluded Scenes Fitting into
Processor’s Primary Memory 21

4 Reliefboards 23
4.1 Overview and Summary of Results . 23
4.2 Related Work . 25
4.3 Distributed Rendering . 27
4.4 Reliefboard Structure and Creation . 29
4.5 Identifying Objects by Clustering . 33

4.5.1 Clustering Algorithm . 34
4.6 Evaluation . 37
4.7 Contribution . 44

Scenario II: Static Scenes Which do not fit into a Processor’s
Primary Memory 49

5 Load-Balancing using the c-Load-Collision Protocol 51
5.1 Overview and Summary of Results . 52
5.2 Related Work . 53
5.3 The Parallel Rendering System . 53

V

Contents

5.4 Load-Balancing Algorithm . 56
5.5 Evaluation . 59
5.6 Contribution . 67

6 Hull Tree 69
6.1 Overview and Summary of Results . 71
6.2 Related Work . 72
6.3 Building the Hull Tree . 73
6.4 Determining the Interior Approximations 74
6.5 Rendering Algorithm . 76
6.6 Evaluation . 79
6.7 Contribution . 88

7 Parallel Out-of-Core Occlusion Culling using the Hull Tree 89
7.1 Overview and Summary of Results . 90
7.2 Related Work . 91
7.3 Scene Preparation . 92
7.4 Data Distribution and Rendering . 93
7.5 Evaluation . 97
7.6 Contribution . 104

Scenario III: Large Dynamic Scenes 109

8 Visualization of Multiple Synchronous Simulations 111
8.1 Overview and Summary of Results . 112
8.2 Related Work . 115
8.3 System Architecture . 116
8.4 Joining the Partial Images . 121
8.5 Contribution . 122

9 Conclusions 125
9.1 Contribution . 125
9.2 Open Questions and Future Work . 127

VI

1 Introduction

Complex polygonal 3D models may consist of hundreds of millions of triangles and re-
quire multiple gigabytes of memory. Rendering such Massive Models in real-time is one
of the most challenging problems in modern computer graphics [KBF05]. A user should
be able to navigate through a scene or models interactively while at least six to ten
frames per second are computed. The parallelization of the rendering process is a com-
mon approach to face this problem [KDG+08]. Many real-time rendering algorithms can
improve performance by distributing the load among multiple computers. For each frame
that is displayed an image for the current camera position must be rendered. To produce
images of polygonal 3D models, usually their geometric primitives are sent through a ren-
dering pipeline (see Figure 1.1), where they are transformed into pixels [AMHH08]. The
parallelization of such real-time, pipeline rendering algorithms is done rarely because PC
clusters completely equipped with modern graphic adapters are still rare. Usually, PC
clusters are intended to be used for other applications, such as scientific computations.
For example, the PADS and TeraPort PC clusters at the University of Chicago do not
provide any OpenGL accelerating hardware nor does the JUGENE supercomputer of the
Jülich Supercomputing Center. Some systems are equipped with weak graphics adapters,
like the Paderborn Center of Parallel Computing’s (PC2) Arminius PC cluster. On the
other hand, many compute centers offer a small group of so-called visualization nodes
that are equipped with high end graphics hardware. The performance improvements
and the GPGPU programmability of modern graphic adapters make these components
more and more valuable for PC clusters. However, this kind of PC clusters can hardly
be used for standard parallel pipeline rendering techniques as proposed by Molnar et
al. [MCEF94, MCEF08]. Typically, the performance of these methods depend on the
slowest node. Due to these reasons, we put the focus of this thesis on the development
of new parallel pipeline rendering algorithms for such heterogeneous PC clusters. We
require that these heterogeneous systems include a small group of powerful visualization
nodes and a large group of weaker back-end nodes. While the visualization nodes should
be equipped with high end graphics adapters, the back-end nodes require only weak
graphics performance. The back-end nodes should be equipped with common hardware
and a network must connect the different nodes.

Vertex
Data

Vertex
operations

Raster
operations

Frame
Buffer

Figure 1.1: Simplified representation of a rendering pipeline.

1

Introduction

The objective is to render complex 3D scenes in real-time using such heterogeneous
environments. Thus, the following questions are addressed in this thesis:

• How can we utilize heterogeneous PC clusters for parallel pipeline rendering?

• How can the powerful, high end nodes benefit from the additional computational
power of the weaker nodes?

• How can we cope with or even exploit asynchronous communication?

• How can the load be distributed fairly among the different nodes?

Different scene classes require different rendering algorithms. Many levels of detail
systems require objects (for example chairs, balls or even planes) that consist of con-
nected components (often, these methods are unsuitable for triangles in arbitrary order,
usually referred to as polygon-soups) [LWC+02], and the rendering algorithm introduced
by Chamberlain et al. is best applied on spacious scenes that provide an even distri-
bution of their geometry [CDL+96]. Several occlusion culling systems are only suitable
for scenes consisting of architectural models [AMHH08]. These systems discard objects,
which are covered by other objects. Scenes that exceed primary memory (in our case the
main and video memory) often must be processed differently than scenes that fit within
it. Real-time rendering is challenging even for large static scenes; including dynamic
objects further increases the difficulty.

We developed different pipeline rendering algorithms and data structures for three
different scenarios. Each of our developed parallel rendering algorithms is suitable for
one of these. Below we denote pipeline rendering simply by “rendering”, unless otherwise
stated.

Scenario I Static scenes (scene’s objects never change their position) that fit into the
primary memory of a visualization node and have sparse occlusion (objects are
rarely covered completely). The challenge of rendering such scenes is the large
number of objects participating in an image, because it is rare that objects occlude
others completely.

Scenario II Static scenes that do not fit into the primary memory of a visualization node.
Rendering images of such scenes with a suitable frame rate requires fast access to
data items which are not stored in the primary memory and a fast detection of the
visible items.

Scenario III Large dynamic scenes (scene’s objects can change their position). In such
scenes objects’ visibility can change constantly. Furthermore, additional compu-
tations are necessary for the moving objects, which influence the rendering speed.

We developed several data structures, rendering algorithms, and object simplifications
to render such scenes on heterogeneous PC clusters. We also tested different hardware
configurations to accelerate the parallel rendering process of dynamic scenes. Below we
will describe briefly our approaches for each scenario. Additionally, we state the issues,
which must be addressed to realize these approaches.

2

Introduction

Method for Scenario I
For the first scenario we introduce reliefboards [SJF10]. A reliefboard is an approxima-
tion of a complex scene object. These approximations are generated asynchronously on
the weak back-end nodes while the displayed images are rendered on a single powerful
visualization node. Since the reliefboard’s computation takes several seconds on the
weak back-end nodes, the reliefboard must be suitable for multiple camera positions and
for many frames. Reliefboards appear like a scene’s original objects for many camera
positions, and provide other positive properties. If the image errors that occur through
camera movements exceed a threshold, the reliefboard must be exchanged with a new
one. In this scenario the following problems have been solved:

1. Computation of simplifications that are suitable for many camera positions.

2. Determination of objects that can be replaced by reliefboards.

3. Even distribution of the computational load.

4. Reduction of the payload that is sent across the network.

To 1: Reliefboards make it possible to render complex scenes with high frame rates with
acceptable image errors.
To 2: We employed a clustering algorithm to determine objects which are suitable for
replacement by reliefboards.
To 3: For the load balancing we modified a data management protocol, the so-called
c-collision protocol, for our asynchronous communication scheme.
To 4: Reliefboards have little memory requirements in comparison to the original geom-
etry that leads to small messages sent across the network.

Furthermore, using our developed object simplifications reduces the image noise and
frame rate’s fluctuations during the walk-through. In contrast to other parallel rendering
systems, our approach scales in the image quality rather than scaling in the frame rate if
the number of back-end nodes is increased. Our rendering system do not wait until the
back-end nodes have finished their tasks. If the number of back-end nodes is increased,
we can decrease the number of approximations each of these nodes has to process or the
number of objects it has to test. Thus, we reduce the time spent between the initiation
and response of a job, whereby the required results of these jobs arrive earlier.

Methods for Scenario II
For the second scenario we introduce two different parallel out-of-core rendering systems
[SWF10a, SWF10b, SKJ+11] and one sequential rendering technique [SKJF11]. The
rendering method of all rendering systems is approximative, which leads to pixel errors
in the final image. In the parallel out-of-core systems, the weak back-end nodes serve as
secondary memory of the visualization nodes. The complete scene is distributed among
these weak nodes and stored in their primary memory, to allow for fast data access.
When scene objects are requested, the back-end nodes test the visibility of these objects
instead of sending them blindly.

3

Introduction

The parallel out-of-core rendering system that we will introduce first uses a version
of the c-load-collision protocol to balance rendering load and nodes’ contention. The
back-end nodes perform visibility tests, while they have only access to a subset of all
objects and global, but aged, distance information of the other objects. Due to the
aged distance information the back-end nodes cannot guarantee to determine all visible
objects until the information are updated. The positive tested objects are sent to the
visualization node, where they are rendered and displayed.

The sequential rendering system and its data structure is the groundwork for the sec-
ond parallel out-of-core render system. Our developed hull tree is a spatial, hierarchical
data structure. It covers scene’s objects more tightly than other commonly used data
structures. Additionally, we store for each object an approximation to improve and ac-
celerate the visibility test. Our associated approximative rendering algorithm exploits
this structure.

The second parallel out-of-core rendering system combines the hull tree with another
spatial data structure, the so-called randomized sample tree, to improve its properties
for parallel rendering. Each back-end node stores a small subset of the original objects
and approximations for the other objects. The back-end nodes perform visibility tests
with this mix of originals and approximations which are organized in a hull tree.

In these parallel rendering systems the following challenges arise:

1. Distribution of the objects to achieve fast and balanced data access.

2. Providing information to perform suitable visibility tests.

3. Even distribution of the computational load and the data load.

4. Reducing the number of objects sent across the network.

To 1: Due to a randomized distribution we achieve good load balancing.
To 2: We achieve suitable visibility tests if we use global, but aged, distance information
of scene’s objects. The hull tree in combination with the used approximations reduces
the complexity of the visibility tests.
To 3: The data management protocol of our first parallel out-of-core rendering system
achieves a good balancing of the load. Due to the hull tree’s combination with a ran-
domized sample tree, sending the visible objects across the network is distributed among
multiple frames.
To 4: Testing objects visibility a priori on the back-end nodes instead sending them
blindly reduces the network load. Thus, we could reduce the network requirements for
the second parallel out-of-core rendering system.

Like the reliefboard approach the parallel out-of-core rendering systems scales in the
image quality if the number of back-end nodes is increased. Furthermore, an increased
number of back-end nodes reduces the delay between a request initiation and its answer.

4

Introduction

Method to Scenario III
In the third scenario the focus is put on large dynamic scenes [DFH+08, SFH+08,
SFH+09]. In this scenario we separate the dynamic and static objects. In this way
it is possible to apply the techniques for static scenes and process the dynamic objects
separately. The computations of objects’ movements and their interactions is mostly
isolated from the rendering of the static parts. We render the different parts on differ-
ent nodes, and combine the resulting images into a final image. Combining the images
is a time consuming operation. For this reason we searched for alternative techniques
to accelerate the conflation. Here, hardware and software based solutions were devel-
oped [SSPP09, SSPP11]. For our developed systems for dynamic scenes the following
questions must be answered:

1. How do we combine the different images?

2. What kind of hardware can be used to accelerate the combining of the different
images?

To 1: The developed rendering approach allows to visualize multiple dynamic scenes
simultaneously in only one displaying window. We combined the images of the static
and the different dynamic scene parts by comparing the depth values of the different
corresponding pixels.
To 2: To accelerate this merging process we tested different techniques. We utilized
different CPU features as well as GPU features and an FPGA.

Structure of this thesis

In this thesis we focus on the utilization of PC clusters that consist of few visualization
nodes equipped with high performance hardware and a large amount of back-end nodes
with poor graphics performance for parallel pipeline rendering.

In Chapter 2, we introduce the relevance of this work’s topic followed by an overview
of work related to this thesis. In Chapter 3, we will introduce preliminaries and defini-
tions used in this work. Afterwards we will present our different rendering algorithms as
well as techniques for load balancing, data management, and visibility testing for hetero-
geneous PC clusters. These techniques provide object-approximations, data structures,
and different algorithms to accelerate the rendering of massive models.

Chapter 4 introduces the reliefboard technique where an object-approximation is cre-
ated on-the-fly on the weak back-end-nodes. The technique presented in Chapter 5
handles the usability of an adjusted data management protocol for parallel out-of-core
rendering. To accelerate visibility tests, we developed a culling technique using the hull
tree, presented in Chapter 6. We integrated this technique with its associated data
structure in a parallel out-of-core rendering system in Chapter 7. For dynamic scenes
we evaluated, for one technique, the benefit of FPGAs for parallel rendering in hetero-
geneous PC clusters, in Chapter 8. The thesis ends with a conclusion and an outlook to
future work.

5

Personal Publications

[DFH+08] Wilhelm Dangelmaier, Matthias Fischer, Daniel Huber, Christoph Laroque,
and Tim Süß. Aggregated 3d-visualization of a distributed simulation exper-
iment of a queuing system. In S. J. Mason, R. Hill, L. Moench, and O. Rose,
editors, Proceedings of the Winter Simulation Conference, WSC´ 08, pages
2012 – 2020. IEEE, Omnipress, 2008.

[DS10] Dominic Dumrauf and Tim Süß. On the complexity of local search for
weighted standard set problems. In Proceedings of the 6th Conference on
Computability in Europe, pages 132–140, 30 June - 4 July 2010.

[SFH+08] Tim Süß, Matthias Fischer, Daniel Huber, Christoph Laroque, and Wilhelm
Dangelmaier. A system for aggregated visualization of multiple parallel dis-
crete event simulations. In Proceedings of the International Symposium on
Advances in Parallel and Distributed Computing Techniques, APDCT ’08,
pages 587–593. IEEE, IEEE Computer Society Press, December 2008.

[SFH+09] Tim Süß, Matthias Fischer, Daniel Huber, Christoph Laroque, and Wilhelm
Dangelmaier. Ein System zur aggregierten Visualisierung verteilter Materi-
alflusssimulationen. In Jürgen Gausemeier and Michael Grafe, editors, Aug-
mented & Virtual Reality in der Produktentstehung, volume 252, pages 111–
126. Heinz Nixdorf Institut, Universität Paderborn, May 2009.

[SJF10] Tim Süß, Claudius Jähn, and Matthias Fischer. Asynchronous parallel re-
liefboard computation for scene object approximation. In Proceedings of the
Eurographics Symposium on Parallel Graphics and Visualization, EGPGV
’10, pages 43–51, Norrköping, Sweden, May 2010. Eurographics Association,
Eurographics Association.

[SKJ+11] Tim Süß, Clemens Koch, Claudius Jähn, Matthias Fischer, and Fried-
helm Meyer auf der Heide. Ein paralleles Out-of-Core Renderingsystem für
Standard-Rechnernetze. In Jürgen Gausemeier, Michael Grafe, and Fried-
helm Meyer auf der Heide, editors, Augmented & Virtual Reality in der Pro-
duktentstehung, volume 295 of HNI-Verlagsschriftenreihe, Paderborn, pages
185–197. Heinz Nixdorf Institut, Universität Paderborn, May 2011.

[SKJF11] Tim Süß, Clemens Koch, Claudius Jähn, and Matthias Fischer. Approxi-
mative occlusion culling using the hull tree. In Proceedings of the Graphics
Interface 2011, pages 79–86. Canadian Human-Computer Communications
Society, May 2011.

7

Personal Publications

[SSPP09] Tobias Schumacher, Tim Süß, Christian Plessl, and Marco Platzner. Commu-
nication performance characterization for reconfigurable accelerator design on
the XD1000. In Proceedings of the International Conference on ReConFig-
urable Computing and FPGAs (ReConFig), 9 - 11 December 2009.

[SSPP11] Tobias Schumacher, Tim Süß, Christian Plessl, and Marco Platzner. Fpga
acceleration of communication-bound streaming applications: Architecture
modeling and a 3d image compositing case study. International Journal of
Reconfigurable Computing, 2011:1–11, 2011. Article ID 760954.

[SWF10a] Tim Süß, Timo Wiesemann, and Matthias Fischer. Evaluation of a c-load-
collision-protocol for load-balancing in interactive environments. In Proceed-
ings of the 5th IEEE International Conference on Networking, Architecture,
and Storage, pages 448 – 456. IEEE Computer Society, IEEE Press, 15 -
17 July 2010.

[SWF10b] Tim Süß, Timo Wiesemann, and Matthias Fischer. Gewichtetes c-Collision-
Protokoll zur Balancierung eines parallelen Out-of-Core-Renderingsystems.
In Jürgen Gausemeier and Michael Grafe, editors, Augmented & Virtual Re-
ality in der Produktentstehung, HNI-Verlagsschriftenreihe, Paderborn, pages
39–52. Universität Paderborn, HNI Verlagsschriftenreihe, Paderborn, 2010.

8

2 Rendering

Computer graphics are becoming more and more important in various areas of our
life. Architects, designers, physicians and many more gain information from the ability
to create realistic images of their objects of interest. One area in the huge field of
computer-graphics is the real-time rendering of three-dimensional scenes: the aim of
3D real-time rendering is to produce images of a given scene with at least six frames
per second [AMHH08]. Thus, a user is able to navigate through the scene without
losing his orientation. Usually these scenes are composed of two-dimensional polygons.
The process of transforming these polygon data sets into 2D raster images is called
rendering. At pipeline rendering this process is supported by specialized hardware of
common graphics adapters (typically programmed with OpenGL or DirectXTM). In order
to improve the realistic appearance of images produced by such scenes, often the scene
objects’ polygon count is increased. Thus the virtual objects become more detailed.
Incrementing the polygon count also results in more precise object surfaces which allows
for more accurate measurements. This is highly relevant for simulations of industrial
complexes, production environments, machinery, etc. where users want to check, for
example, whether one gear fits to another or if they can be replaced without removing
any other parts of the machinery. To increase realism even more, the different objects
and the scene itself include several attributes like materials, shaders, textures, or light
sources. There is a great need to render scenes that consist of hundreds of millions
or more triangles [KDG+08], usually qualified as massive models, in real-time. If the
geometry in such scenes is never modified, they are referred to as static scenes. Otherwise
they are called dynamic scenes. The complexity of such massive models can increase so
much that a single computer is unable to render them in real-time, even if the scenes are
static. When a scene contains dynamic objects, which change their position, orientation
or appearance during runtime, the problem becomes even worse.

2.1 PC Clusters for Parallel Rendering

A common approach to computing images of such massive models is to use PC clusters,
distributing the rendering load among multiple computers. PC clusters offer a lot of
computational power and memory, and in many cases fast networks to exchange data
between different nodes. If the PC cluster nodes are equipped with graphics adapters, it
is possible to distribute the rendering among these cards, instead using only one. Here
for example, each graphics adapter could render a different subimage which are finally
combined to a complete one [SFL01, SFLS00, MCEF08]. However, the usage of many
PCs instead of only one for rendering introduces new problems. For example, to achieve

9

2 Rendering

good performance the computational load should be distributed evenly among the cluster
nodes. This introduces a need for load balancing algorithms. Another problem passed
by the parallelization of the rendering process is the data organization. Fast data access
and a good data distribution is necessary to render massive models. If the data amount
is so large that it does not fit into the primary memory of a single PC, data access
or data distribution methods are also required. In this thesis the primary memory of
a computer refers to its processor memory, its main memory, and its video memory.
Slower storage elements used (for example, local hard disks, network attached storage
systems) are referred to as secondary memory.

Apart from algorithmic problems, hardware related challenges also occur. While up-
grading a single computer can be done with little effort, the renewal of a whole PC
cluster rises bigger problems. Beside the acquisition costs for the computer hardware,
other costs arise. In many cases, advanced hardware consumes more power which leads
to the requirement of a better power supply. The increasing power requirements usu-
ally result in a higher heat production, which, in turn, requires an improved cooling
system. This then leads to an even higher power consumption. PC clusters’ energy
consumption and temperature control challenge their providers: For example Green-IT
refers to the concept of reducing compute centers’ energy consumption, while increasing
their computational power. Another problem when upgrading PC clusters is hardware’s
short improvement circles. Usually, the influences of new components on the rest of the
system cannot be tested sufficiently. So the upgrade of single hardware components of
all PC cluster nodes can lead to malfunctions and the instability of the entire system.
One method to combat these problems and to raise computational power is to allow
heterogeneous PC clusters, where different nodes are equipped with different hardware
components. The nodes within such systems are equipped with different hardware, which
is specialized for different tasks. While upgrading an entire PC cluster with state of the
art components is a big challenge, a few cluster nodes can be upgraded with signifi-
cantly less effort. The different components of these nodes (CPUs, memory, graphics
cards, etc.) can be replaced in shorter periods of time. While the configuration of most
cluster nodes is unmodified, a minor group of dedicated nodes can be kept up-to-date.
If these nodes are organized beside the main system, their influence on the stability of
the main system is marginal. These nodes can be equipped with high end hardware that
offers all features that a user or developer would like to use.

2.2 Overview of Related Work

This section introduces work related to the algorithms presented in this thesis. Here,
concepts and techniques are introduced that build the basics for all parts of this thesis.
We will give a brief overview of parallel rendering in §2.2.1 and out-of-core rendering in
§2.2.2. Additionally, we will introduce different techniques for occlusion culling in §2.2.3
and mesh replacement in §2.2.4 that are related to methods we have developed for our
rendering methods.

10

2.2 Overview of Related Work

2.2.1 Parallel Rendering

Parallel rendering has been categorized into three basic approaches by Molnar et al.
[MCEF94, MCEF08]: sort-first, sort-middle, and sort-last. These parallelization ap-
proaches specify in which stage of the rendering pipeline the geometric primitives are
distributed among PC cluster nodes (see Figure 1.1).

Sort-first
In the sort-first approach, the display is subdivided into multiple tiles. Usually the
geometric primitives in each of these tiles are rendered by a different processor. Before
rendering, it is estimated in which tile each primitive must be displayed. In other words,
the primitives are assigned/sorted to the different nodes before they are sent into the
rendering pipeline. When each node has finalized its partial image, the different tiles are
composed to the final image (see Figure 2.1, left).

geometry database

(Pre-transformation)

Redistribute “raw”
primitives

...

...

...

Geometry
transformation

Rasterization

Display

(arbitarily partitioned)

geometry database

Redistribute screen-
space primitives

...

...

Geometry
transformation

Rasterization

Display

()

(arbitarily partitioned) geometry database

Redistribute pixels,
samples, or fragments

...

...

Geometry
transformation

Rasterization

Display

...

(Compositing)

(arbitarily partitioned)

Figure 2.1: In sort-first rendering the geometric primitives are redistributed during the
geometry transformation. In sort-middle, the screen-space elements are re-
distributed in between geometry transformation and rasterization. In sort-
last, the different picture elements are redistributed after rasterization and
composed afterwards.

The drawback of this method is that usually the different primitives cannot be as-
signed to the rendering nodes uniquely. Primitives can overlap into multiple tiles, which
influence the scalability of that approach negatively.

Sort-middle
In sort-middle, the primitives’ arrangement is made in the middle of the rendering
pipeline, in between geometry transformation and rasterization. Similar to the sort-first
approach, the display is subdivided into tiles. Additionally, the geometric primitives are
distributed arbitrarily exclusively to the nodes in a preprocessing step. This distribution

11

2 Rendering

does not change during runtime. Each node performs the geometry transformation for its
assigned geometric primitives and determines its corresponding tiles. The transformed
display coordinates are transferred to the responsible nodes, where the primitives’ ras-
terization are performed. When all the primitives have been transformed, the nodes’
partial images are composed to a final image (see Figure 2.1, middle).

In the sort-middle approach the primitives must be assigned to the different render-
ing nodes while passing the rendering pipeline. Typical common computer hardware
does not provide an interface for interfering with the rendering process at this stage,
without causing high delays. Thus, this parallel rendering approach is impracticable
for parallelization on PC clusters. However, most graphics adapters internally use the
sort-middle approach in their rendering pipeline [CDR02].

Sort-last
In the sort-last approach the arrangement is made after the geometry primitives have
been sent through the rendering-pipeline. Before rendering, the different primitives are
assigned to different nodes. For each frame, the nodes render their subset of primitives
into separate frame and depth buffers. Afterwards all nodes read back both buffers into
their main memory. The partial images are combined into a single image by comparing
the depth values of the different depth buffers. For the final image, the pixel from the
frame buffer whose depth value is the nearest to the view plane is chosen (see Figure
2.1, right).

Load balancing strategies
To accelerate the sort-first rendering process, the computational load must be distributed
evenly among the cluster nodes. It is easy to produce situations where most processors
are idle while only a single node has to render the complete scene. Hence, load balancing
techniques are required. Usually the load is balanced by adapting rendering nodes’ tile
sizes [SZF+99, ACCC04, OU06, RRR06, Paj08] using heuristics, for example.

Using the sort-last approach, the composition of the different partial images requires
a significant amount of time. While the rendering load usually decreases for a rising
number of cluster nodes, the merging time increases. To distribute the load for composi-
tion evenly the binary-swap algorithm and its improvements can be utilized [MPHK94,
MPHK08, TIH03, EP08]. Additional run-length encoding of the images reduce the load
of the network and accelerate the image composition even more [HWC10, KPH+10].

Hybrid techniques
Sort-first and sort-last bring their own advantages and disadvantages. Using sort-first,
the different partial images can be easily composed, while many elements are rendered
redundantly in multiple tiles. Sort-last renders each element at most once, but the
composition of the partial images needs much time. Both approaches can be combined
to reduce the drawbacks [SFL01, SFLS00].

12

2.2 Overview of Related Work

Hardware acceleration
Special purpose hardware has also been developed for parallel rendering [Whi92]. As
defined in Flynn’s taxonomy, there are Single Instruction, Multiple Data (SIMD) as well
as Multiple Instruction, Multiple Data (MIMD) approaches. In SIMD system a single
instruction stream is performed in parallel on multiple data streams. In contrast, a
MIMD system performs a different instruction stream for each data stream. There are
complete hardware systems to render 3D scenes fast [MBDM97, WLLB97, Ada05], in
the form of special purpose components (for example the VoodooTMgraphics accelerator)
that can be applied to off the shelf computers [DY08, MOM+01, SEP+01].

Many modern graphics adapters provide techniques to combine the computational
power of multiple graphics adapters [Res09, AMHH08]. There are different solutions
such as SLI or Crossfire where homogeneous graphics adapters are combined. Other tech-
niques, like LucudLogix HydraLogix Engine allow the usage of heterogeneous adapters
[Lud10].

Next to Molnar’s parallelization approaches there are further methods to render 3D
scenes in parallel. One of these methods is often offered by the previously mentioned
multiple GPU solutions and is referred to as alternate frame. Here, multiple graphics
adapters or rendering nodes are used to compute consecutive images. Each frame is
assigned to a render unit in a round-robin manner. While a GPU is displaying its
frame, the following GPUs use this time to render their frame. The problem here is
the method’s scalability. When the number of render units increases, the latencies of
the rendering system also increases. Another problem of this approach is the possible
dependency of a frame on the previous one. In this case the required data must be send
from one graphics adapter to another over the bus.

2.2.2 Out-of-core Rendering

Out-of-core rendering methods are necessary if a 3D scene is too large to fit into the
primary memory of a single computer. In this case, secondary memory is used to store
invisible scene parts. In general, the hard drive is used for this purpose. In comparison
to the primary memory this storage has massive capacities, but at the costs of much
greater latency. Thus, it is necessary to store all objects that contribute to the final
image in local main memory to render the images with good performance.

Aliga et al. presented an interactive massive model rendering system to process scenes
that exceed primary memory [ACW+99]. Their approach combines many different ren-
dering techniques to handle such large scenes (for example, hierarchical data structures,
levels of detail, visibility culling, etc.). This was the first rendering system that was
able to process scenes with more than ten million triangles [CKS03]. They employed a
from-region pre-fetching, to load required data from the secondary memory.

To render models that exceed the primary memory pre-fetching and caching mecha-
nisms are required. Extending the viewing frustum is a simple technique to load objects
(see Figure 2.2), which are potentially visible in one of the next frames [VM02]. The
iWalk rendering system [CKS02b, CKS03, CKS02a] stores a given 3D scene in an octree
[AMHH08]. Using this spatial data structure, selective object loading is possible.

13

2 Rendering

Figure 2.2: Pre-fetching in an out-of-core rendering system.

Sajadi et al. present an out-of-core rendering system that subdivides a given 3D scene
using a k-d tree [SHDG+09]. The k-d tree is also used to find the data required by
their rendering system. Their system reduces the data and cache-management costs by
storing all objects within equal-sized memory blocks. Although this approach uses more
memory than the total object size, it prevents the fragmentation of memory.

Goswami et al. present a parallel out-of-core rendering system for very large terrain
data sets [GMBP10]. Their system provides a sort-first and a sort-last rendering. For
the sort-first portion of the renderer they evaluate the behavior of the system when the
display is segmented only by equally sized horizontal or vertical stripes. They show that
the load is distributed more evenly if the stripes are orientated vertically. Due to terrain
scenes’ properties the triangle distribution is usually densest at the horizon, while in the
sky the polygon count is usually very low. Using equally sized tiles is reasoned by a
reduction of accesses to the data, stored on a network-attached storage.

Brüderlin et al. presented Interview3D, an out-of-core rendering system that is able
to render CAD scenes of nearly arbitrary size [BHP07]. The system loads only that
data into the primary memory that is potentially visible. Thus they use visibility-guided
rendering which is an output-sensitive approach to reduce the rendering load. Required
data is incremental updated from the secondary memory to prevent the renderer from
stalling (small details can be delayed).

All rendering nodes of the parallel rendering approaches presented in this section
require high capacity graphics adapters to achieve good performance. Typically, the
performance of the entire system depends on the slowest node. The described out-of-
core rendering approaches utilize the hard drive for storing the data-items. Our methods
for primary memory exceeding scenes do not require - unlike other approaches - that the
objects are stored in equal-sized blocks. In our methods we use a randomized sample
tree for the spatial scene partition, where elements from lower levels in the octree are
randomly lifted into higher levels. For this reason, each sample tree cell can have a
different number of objects attached to it.

The data transfer rates of hard drives are very low compared to the rates that can
be achieved using high speed networks. In other approaches, the data items are loaded

14

2.2 Overview of Related Work

without testing the object for occlusion by other objects. In our rendering system, we
use the nodes’ RAM as secondary memory instead of hard drives. To ensure fast data
access all nodes are connected via an Infiniband network. On the back-end nodes, all
requested data items have to pass additional tests before they are transmitted to the
rendering node’s main memory.

2.2.3 Occlusion Culling

Occlusion culling is a common approach to reduce the number of objects sent into the
rendering pipeline. Many graphics adapters provide an interface to retrieve occlusion
information directly from the GPU – the so-called hardware accelerated occlusion queries.
The queries return the number of potentially visible pixels for the queried geometry (i.e.
if the query returns zero the geometry is invisible, otherwise it contributes to the final
image).

The different algorithms can be categorized into three groups: conservative, approxi-
mative, and aggressive culling algorithms. While conservative algorithms usually over-
estimate the set of visible objects, approximate algorithms can terminate their visibility
tests for various reasons, even before they determined all visible objects. Aggressive
algorithms only determine objects that are visible, and in addition discard objects even
if they are definitely visible.

All three approaches can be used with from-cell and from-camera position occlusion
culling. Algorithms related to the first group determine sets of visible objects within a re-
gion in a preprocessing step. The visibility within a cell can be determined conservatively
[TS91, NBG02] or approximatively [DDTP00, NB04, Lai05, LSCO03]. Other algorithms
determine in a preprocessing, which regions are invisible for a given cell [SDDS00]. It
is not necessary to determine the visible objects in advanced. There are methods that
compute the from-cell visibility during runtime [RP05, MBWW07, BMW+09]. When
the camera is placed within a region, only objects from pre-determined set of potentially
visible objects are processed. These approaches exploit spatial coherency.

From-camera culling algorithms are typically processed at runtime. Many of these
runtime occlusion culling algorithms profit from the hardware accelerated visibility
tests. Exploiting spatial and time coherency can reduce the number of performed tests.
The conservative techniques determine all currently visible objects [HSLM02, BWPP04,
GBK06, SBS06]. To accelerate the visibility tests object approximations can be used
[DMS01, SKJF11]. Other techniques uses multiple graphics adapters to determine visi-
ble objects [GSYM03, SWF10a, SKJ+11]. In contrast to these conservative approaches,
the approximative techniques do not guarantee that all visible objects are displayed in
the final image [KS00, CKS03, GBSF05, GM05]. Some of these approximative methods
draw objects until a budget is reached, other techniques determine the visible objects in-
crementally. Several methods allow for choosing a conservative or approximative culling
by parametrization [MBW08].

15

2 Rendering

2.2.4 Mesh Simplification and Impostors

Level of detail and impostor techniques are one of the most common approaches to
process massive models. The idea to replace objects by less complex approximations
organized in a hierarchy has been introduced by Clark [Cla76]. Polygonal simplifica-
tion techniques usually require objects of connected components, like chairs, balls, etc.
Levels of detail (LOD) can be classified into three groups: discrete, continuous, and
view-dependent [Lue01, LWC+02]. Discrete LODs are multiple versions of the same
model with variable complexities [SZL92, Tur92, HDD+93, Kle97]. The different ver-
sions can be used for different objects-to-camera distances, for example. A continuous
LOD has no individual version. Utilizing a data structure, an object’s complexity can
be refined or coarsened seamlessly [Hop96, SGG+00]. View-dependent LODs are based
on continuous LODs that additionally use the current camera position as criteria for the
chosen simplifications [LE97, EMB01].

Impostors replace scene parts as well, but they do not manipulate the original objects.
Billboards replace scene elements with a texture that is placed on a simple geometric
object (e. g. rectangle, cone, cube, etc.). Some techniques replace composited scene
parts [SLS+96], others combine multiple billboards to replace a single object like a tree
[YSK+02, DDSD03, DN09]. Particle systems, to visualize smoke or water, can also be
realized with billboards [USKS06]. Other techniques, like our developed reliefboards,
produce simple meshes that are not based on the original geometry to replace objects
[ABB+07, GFB10, SJF10].

16

3 Preliminaries and Definitions

In this chapter we will introduce and define some expressions we require throughout this
thesis. Additionally, we describe the PC cluster system used for testing. One of the PC
cluster used has been modified over the time, resulting in different settings for the same
PC cluster environment.

3.1 Objects, Models, and Scenes

For most of the algorithms we need the central concept of objects which are rendered.
In this setting, an object is a set of triangles that builds a semantic group irrespective of
the object’s form, complexity, and spatial dimensions. An arbitrary, single polyhedron
is defined as geometric primitive. Usually these groups of objects are given as input
for our rendering algorithms. They are created using CAD applications or 3D scanners.
The composition of multiple objects is called a model or a scene.

If the input is given as set of independent geometric primitives, or if the given objects
are not suitable for our rendering algorithm, the input must be reorganized to fit our
specific needs. For example, connected components can be found or geometric clustering
techniques can be utilized.

To place objects’ vertices, we use the Cartesian coordinate system. Every vertex is
given as a triple (x,y,z) ∈ R3, representing a point in the three dimensional Euclidean
space. We cannot use elements of the set of real numbers for our computations because
of hardware’s limitations. The computations are limited by hardware supported floating
point numbers. Nevertheless, in this thesis we will use R for the used floating point
numbers, unless otherwise stated. The coordinate system used in this thesis is right
handed [Wat99] (see Figure 3.1). A box containing an object, whose sides are paral-
lel/orthogonal to coordinate system axis is defined as axis aligned bounding box, short
AABB.

3.2 PC Cluster

In the following section we will formally introduce the terms and definition related to a
PC cluster, followed by the detailed PC cluster configuration used in the tests.

Definitions

In this thesis we use the terms processor, rendering node, and cluster node synonymously
as atomic computation units of a PC cluster. Each processing element in a PC cluster

17

3 Preliminaries and Definitions

Figure 3.1: Right-handed coordinate system with a single vertex. Virtually, when a
hand grabs the z-axis from the top and the arm is placed on the positive
x-axis, the thumb points along the positive z-axis.

consisting of N nodes is identifiable via a unique id PEi ∈ {PE0,PE1,. . . ,PEN−1}.
The used PC cluster is a distributed memory MIMD system, as defined in Flynn’s
taxonomy [Fly72], which means that the different nodes have no access to a shared
memory space [Pac96]. For this restriction, each piece of information or data item must
be sent and received over a network. The different algorithms developed for this thesis
use message passing for communication. The MIMD system is programmed via SPMD
(single-program, multiple-data). That means that each node executes the same program,
but can process different data.

Configuration

The PC cluster we used for the evaluation was the Paderborn Center of Parallel Com-
puting’s (PC2) Arminius cluster. Over time the cluster was modified so we have two
different configurations: a large and a small configuration.

In the large configuration, the strongest visualization nodes provide an NVidia
Geforce 9800 GX2 graphics adapter with 512 MiB memory, 16× PCI-e 1.0, two AMD
Opteron 250 processors and 4 GiB RAM. The installed 64-bit OS was Fedora Linux 9. In
this configuration 200 back-end nodes were available. Each back-end node provides an
NVidia Quadro NVS280 graphics adapter with 64 MiB memory, PCI-e 1.0 (single lane),
two Intel Xeon 3.2 GHz processors, and 4 GiB RAM. The installed 64-bit OS was Red
Hat Enterprise Linux AS, release 4. All nodes are connected via Infiniband (using 16×
PCI-e, about 1.8 GiB/sec at full-duplex transmission).

In the small configuration, neither the hardware configuration of the visualiza-
tion node nor the hardware configuration of the back-end nodes has been changed, but
the number of available back-end nodes is decreased to 16. The operating system was
changed to the 64-bit version of Cent-OS 5.5.

18

Scenario I:

Static and Sparse Occluded Scenes
Fitting into Processor’s Primary
Memory

19

Reliefboards

Figure 3.2: If trees are discarded too early it is possible to see the sunset behind them.
This strong change in the illumination can influence shaders negatively.

Here, we will describe the challenges which inspired the development of reliefboards.
Real-time rendering of large scenes is a challenge, especially if the objects’ complete,
mutual occlusion is sparse. In such scenes, camera positions exist where all objects must
be rendered to produce a correct image. Examples for such scenes are forests where it
is possible to see through gaps between tree’s leaves. Here it is difficult to decide which
objects can be discarded and which objects appear in the final image. This is reasoned
by small gaps between leafs, branches, trunks, etc. where an observer is able to look
through (see Figure 3.2). The discarding of objects which allows the background to be
seen can lead to disturbing image errors. This can occur, for example, when shaders are
used which use information of previous frames to determine the illumination.

Additionally, rendering highly tessellated scenes like woods can produce many aliasing
artifacts. This is because of the small projection sizes of distant objects and the difficulty
of determining the pixels’ color (see Figure 3.3). A pixel’s appearance depends on the
primitives which are projected on its center or multiple other sample points included in
this pixel [Ros05, AMHH08]. If the projection size of the primitives in a display region
is smaller than a pixel, small changes in the camera position can result in noise.

Figure 3.3: Minor changes in camera position can result in significant image changes.
If these changes appear permanently during walk-through, it is called noise.
Such effects can easily be produced by small structures in a forest scene.

21

Scenario I

Image noise during a walk-through can disturb users and reduce the overall image
quality. There are many techniques to avoid this problem, however these techniques
often need significant additional computation time.

One common approach to face this problem is the use of textures that are placed on
planes for distant objects. These billboards are simple and achieve good results, but they
do not cover other objects correctly. Additionally, if only one billboard is used per object
the parallax effect is missing, where elements change their distance in screen space if the
camera is moved sideways (see Figure 3.4).

Figure 3.4: Schematic representation of the parallax effect. Due to the motion parallel
to the viewing plane, objects change their distances.

To process scenes as described before and to avoid the occurring problems, we de-
veloped an object simplification, the so-called reliefboards. We developed a parallel
rendering system that uses these approximations. In contrast to other parallel render-
ing systems, the presented system scales in image quality instead of frame rate. For
load balancing, we used a randomized data management protocol. To achieve an evenly
distribution of the load we distribute the objects randomly and redundant among the
PC cluster’s back-end nodes. This distribution yields good results and is easy to com-
pute. A deterministic computation of the object distribution is hard. With the needed
properties this problem is similar to the set-packing optimization problem. We analyzed
if a polynomial-time local search algorithms could achieve suitable results. We have
shown that the localized version of set-packing is already PLScomplete for a two-differ-
neighborhood [DS10]. That means, starting with an feasible solution we try to optimize
the packing by a sequence of real improvements, in which we exchange at most two
elements in each step. The PLS completeness of set-packing shows that the length of
this sequence could be exponential, until we reach a local optimal solution.

22

4 Reliefboards

Often complex scenes are composed of many individual objects. Each of these objects
can have a moderate complexity but the composition of all of the objects is too complex
to be rendered by a single computer, even if they fit into its main memory. Some
examples for this are trees or skylines. When a user observes the scene through an
aerial perspective, objects barely occlude each other. In worst case, all objects must be
rendered.

To render such scenes in real-time we developed reliefboards (see Figure 4.1). This
approximation technique is similar to regular billboards, but they have improved prop-
erties (e.g., they support the parallax effect). To generate reliefboards in our parallel
rendering system the PC cluster’s back-end nodes do not even need graphics adapters, a
software rendering system can be used. Our requisite to the back-end nodes is that the
sum of their memory is large enough to store the scene’s objects redundantly [SJF10].

4.1 Overview and Summary of Results

Our system architecture uses a single visualization node equipped with a powerful graph-
ics adapter and a PC cluster consisting of a large number of back-end nodes not neces-
sarily offering accelerated 3D graphic performance. The displayed images of the scene
are only rendered on the visualization node. We assume that a 3D scene consists of a
certain number of atomic objects. The visualization node renders a subset of the objects
with their original geometry. A large number of elementary objects are replaced by re-
liefboards (see Figure 4.1). A reliefboard is a mesh consisting of colored vertexes placed

Figure 4.1: Approximating objects by reproducing their surface by reliefboards.

23

4 Reliefboards

on a regular grid and shifted along the grid’s normal vector. Reliefboards approximate
the original objects and their quality depends on the viewer’s position. Therefore the
reliefboards have to be updated periodically. This is done by the PC cluster’s nodes,
which compute the reliefboards asynchronously.

Figure 4.2: Objects which are near the viewer, too large or too simple are rendered with
the original polygons. Objects which are far away and suitable are removed
and rendered with reliefboards.

Rendering cycle: The visualization node’s rendering cycle consists of three steps.
First, all unsuitable objects are rendered. Unsuitable objects are rendered with original
geometry because their diameter is too large or the number of triangles is too low and
thus a replacement with a reliefboard would not gain any speedup (see Section 4.5).
Replacing objects which are too large could lead to significant image errors. Second,
all suitable objects are rendered in a front-to-back manner. An object is suitable for
replacement with a reliefboard if the number of triangles and the diameter of the object
is adequate (see Section 4.5). We call the area where suitable objects are rendered with
original triangles the near zone (see Figure 4.2). Third, distant, suitable objects behind
the near zone are replaced and rendered with a reliefboard. We call this area the far
zone (see Figure 4.2).

We developed reliefboards and a related parallel rendering algorithm. Reliefboards are
easy to compute and yield good results (see Figure 4.3). Using these object impostors
allows us to accelerate the rendering process of complex scenes. Additionally, the fluc-
tuations of the required rendering times are reduced by reducing the strong fluctuations
in the number of polygons to render.

Before our rendering algorithm starts to render a preprocessing step is necessary (see
Figure 4.4). For our parallel rendering method we need suitable objects. These objects

24

4.2 Related Work

Figure 4.3: Reliefboards applied on the UNC Power Plant scene. The left image shows
the scene rendered with the original geometry. For the right image relief-
boards were applied. The red frames shows the highlighted areas.

are groups of many triangle that are pooled in a small space. If the given input does
not fulfill these properties, we have to compute the required objects during preprocess-
ing. To determine suitable objects we can use an agglomerative clustering algorithm.
These objects are needed for the computation of the reliefboards as well as for the load
balancing. For this purpose we use a data management protocol. During runtime we
balance the rendering load of the different back-end nodes with the c-collision protocol
(see Section 5.2 for a brief overview).

o
p
ti

o
n
a
l:

d
e
te

rm
in

e
n
e
a
r

zo
n
e

o
p
ti

o
n
a
l:

co
m

p
u
te

o
b
je

ct
s

d
is

tr
ib

u
te

o
b
je

ct
s

d
e
te

rm
in

e
re

lie
fb

o
a
rd

s
to

 u
p
d
a
te

b
a
la

n
ce

 l
o
a
d

a
n
d
 i
ss

u
e

a
sy

n
c.

 r
e
q
u
e
st

s

u
p
d
a
te

 a
rr

iv
in

g
re

lie
fb

o
a
rd

s

re
n
d
e
r

a
n
d

d
is

p
la

y
 i
m

a
g
e

preprocessing image computation

suitable objects

u
n
su

it
a
b
le

in
p
u
t

Figure 4.4: Our system transforms unsuitable inputs to objects that meet our needs.
These objects are distributed among the back-end nodes. In every loop,
reliefboard updates could be requested or received before a new image is
rendered.

4.2 Related Work

Here, an overview of related work for mesh replacement and displacement mapping will
be presented.

Mesh Replacement substitutes objects’ original geometry with a simplified repre-
sentation, which typically reduces rendering costs (e.g., impostors or LODs). Simple

25

4 Reliefboards

billboards replace original geometry by single textures placed on a rectangle or another
simple geometric object. A disadvantage of this technique is that billboards can inter-
sect at most once (see Figure 4.5). To reduce this negative effect, it is possible to use
multiple billboards instead of one [YSK+02, DDSD03].

Jeschke and Wimmer introduced Textured Depth Meshes to accelerate the render-
ing process [JW02]. To create these impostors a new mesh and texture are generated
from a voxelizated scene part. These simplifications can be used in fixed view cells as
simplifications for complex objects.

Andújar et al. presented omni-directional relief impostors to improve rendering per-
formance [ABB+07]. In a preprocessing step they compute relief maps from different
directions for a given object. During runtime, depending on the camera position, some
of these maps are combined and rendered. Thus, the number of polygons sent into the
rendering pipeline is reduced. In contrast to the reliefboards in our rendering system all
these impostors are generated in a preprocessing step and not on-the-fly during runtime.

Shade et al. [SLS+96] use textures to reduce scene complexity. They compute a k-d
tree that contains the scene’s geometry. By utilizing this k-d tree, the cell’s geometry
can be substituted by a rendered image of it, as seen from the observer’s position. The
main drawback of this technique is that it is sometimes possible to see through a gap
between textures and real geometry. Furthermore, if the position is changed, there is no
parallax effect.

LODs, as for example Hoppe’s Mesh optimization [HDD+93] or his developed Pro-
gressive Meshes [Hop96] create simplifications based on an object’s mesh. Usually, these
LODs must be generated during preprocessing and the quality must be checked manu-
ally. Reliefboards are computed in parallel, automatically, and on-the-fly. They can be
used for groups of different objects and generate a less complex representation for all
of them at once. Detailed descriptions of other LOD techniques have been pooled by
Luebke et al. [LWC+02].

Displacement mapping is used to add depth to simple surfaces. In contrast to tech-
niques like bump or normal mapping [AMHH08], which only simulate the visual effects
of depth (e.g. by lighting or shadowing), displacement mapping changes the geometry
of a surface [Coo84]. These techniques support the parallax effect and intersection of
objects, such as parallax mapping [KTI+01, Wel04, AMHH08]. Typically, a simple sur-
face (usually a grid) is transformed to a more complex one by using several maps. By
using these meshes, correct shadows and valid occlusion can be computed. Furthermore,
objects’ silhouettes appear realistic [WWT+03]. Due to not respecting the distance be-
tween an object and the camera the underlying geometries are often overtessellated, so
that a retessellation is needed [GH99, DH00]. Typically, the displacement of the vertices
must be computed in every frame. If the number of vertices to displace is high, this
technique can influence the rendering time negatively. For this reason, reliefboards do
not necessarily displace the vertices in every frame. The vertices of the grid are shifted
only once and used for many frames.

26

4.3 Distributed Rendering

Original

Reliefboard Billboard

Figure 4.5: The bunny is rendered with original geometry. The lower left picture shows
a picture detail using reliefboards. The upper right picture shows the origi-
nal picture detail and the lower right shows the picture detail using simple
billboards. These simple billboards neither support multiple intersections
nor correct lighting.

4.3 Distributed Rendering

The parallel rendering system uses two different node types: a single visualization node
and a large amount of back-end nodes. The back-end nodes are utilized for the dis-
tributed creation of the reliefboards. The visualization node requests and uses the re-
liefboards to render the actual scene to the screen and provides the interface for the
interactive movement of the observer.

Rendering on the visualization node

The rendering of a frame on the visualization node is performed in three steps.

1. In the first step, all unsuitable objects inside the viewing frustum which were iden-
tified as too large or not complex enough are rendered to the screen. Their polygon
count is thereby accumulated. In neither case would it be practical to replace these
objects by reliefboards. If an object is too large, even a slight change of the ob-
server’s position is likely to cause an unacceptable change in the perspective. If
the object consists of too few polygons, the original object’s rendering time could
actually be better than the approximation’s.

2. In the second step, the other objects are rendered in front-to-back order from the
observer, as long as the overall polygon count does not exceed the value of a given

27

4 Reliefboards

parameter tnz. If the number of objects is small enough, we can sort the objects
in every frame using a standard sorting algorithm. Otherwise, one should utilize
a spatial data structure like a loose octree for storing the objects and traverse it
in front-to-back order. This implicitly results in the subdivision of the frustum
into the near zone, where only the original geometry is rendered and the far zone,
where reliefboards can be used (compare to Figure 4.2).

3. In the last step, a decision is made for each of the remaining objects in the view-
ing frustum, whether the original object or the corresponding reliefboard should
be rendered. If no reliefboard has yet been received for an object, the original
object is rendered and, if no reliefboard request for this object is pending, a new
request is issued. Each request consists of an unique identifier for the object, the
direction vector from the observer’s position to the object’s center and the object’s
projected size in pixels for the reliefboard’s resolution. Requests are processed
asynchronously and the resulting data arrives after a few frames.

point of view

Reliefboard

normal vector

error

εΕ

Figure 4.6: When the angle error exceeds ε a new reliefboard is requested by the visual-
ization node. If the angle error exceeds E, the visual error is considered too
large and the original geometry is rendered.

If a reliefboard has already been received from the visualization node, the current
angle error is calculated. The angle error is defined as the angle between the direction
vector that was used as parameter for creating the reliefboard and the current direction
vector from the observer to the center of the board (see Figure 4.6). This is taken as an
indicator for the visual similarity of the reliefboard’s projection and the original object.
If the error is higher than a fixed parameter ε, and no request for this object is pending,
then a request for a new reliefboard incorporating the current direction is issued. If the
error is unacceptably large (defined by another fixed parameter E), then again the orig-
inal object is rendered until an updated version is received. Another source for artifacts
produced by a reliefboard is the difference in the current projected size to the relief-
board’s original resolution. If the observer approaches a low resolution mesh, blocking
artifacts occur. If the observer moves away from a high resolution mesh, aliasing arti-
facts occur. Hence, we use the relative difference in reliefboard’s current projected size

28

4.4 Reliefboard Structure and Creation

and the projected size when generated as an additional indicator to trigger an update
request.
If a reliefboard with an acceptable error is available, the corresponding relief mesh is
rendered at the original object’s position, oriented towards the direction it was created
in. This should be the most common case, as a reliefboard can normally be used for
many frames.
Also, in every frame a check is performed whether newly created reliefboards have been
received from the back-end nodes. If so, the corresponding old ones are replaced. This
results in the occurrence of a slight popping effect in the next frame. This effect is more
visible as the old and new direction vector differ. Nevertheless, these effects disappear
when applying blending. If the new reliefboard replaces an original object, the relief-
board’s direction vector differs from the actual direction in which the object was seen
last.

Distributed creation and load balancing

One goal of the distributed creation of the reliefboards is to keep the latency for their
requests as low as possible. When a request is delayed, it is possible that the out-dated,
old version of a reliefboard is used for a longer period resulting in a increased visual error.
If the request for an object, which is currently rendered with its original geometry, is
delayed the rendering time may increase.

Initially we distribute the data of all objects randomly and redundantly, with a fixed
number of replicas over the back-end nodes. In order to assign the requests to the nodes
at runtime, we make use of a modified version of the c-collision protocol [Ste96a], which
aims at having a low contention of every network node and spreading the requests evenly
over the nodes (see Figure 4.7). This protocol is implemented on the visualization node
and is executed after each frame if new requests were made.

The assignment of requests is performed in rounds. In every round, a node handles at
most c requests. If more than c requests arrives during a round, the node answers none
of them. We begin with 1 as value of c. If not all requests can be handled with that
value, c is increased until one node can fulfill all its requests. Then c is reset to 1 and
the distribution is continued until all requests are assigned to a node. The assignment
of a request to a node persists, until the reliefboard is received.

The dynamic handling of the value of c has the disadvantage of not being able to
ensure a maximal contention as with the original protocol, but guarantees the handling
of all requests, prevents the protocol from deadlocking and allows asynchronous commu-
nication.

4.4 Reliefboard Structure and Creation

A reliefboard’s foundation is a mesh consisting of colored vertices placed on a regular
grid which are shifted along the grid’s normal vector (see Figure 4.8). The general
orientation of the grid’s base plane is orthogonal to the vector from the center of the

29

4 Reliefboards

Obj5Obj2Obj5Obj2

Obj5Obj2Obj4 Obj2Obj4

Obj4

round i

Obj1

Obj1
Obj2
Obj6
Obj4

c=1

Obj3

Obj3
Obj4
Obj5
Obj2

cont=0 cont=0

Obj1
Obj3
Obj6
Obj5

cont=0

Obj1

Obj1
Obj2
Obj6
Obj4

c=1

Obj3

Obj3
Obj4
Obj5
Obj2

cont=1 cont=1

Obj1
Obj3
Obj6
Obj5

cont=0

round i+1

Obj1
Obj2
Obj6

c=1

Obj4

Obj3
Obj4
Obj5

cont=1 cont=1

Obj1
Obj3
Obj6

cont=0

Obj1

Obj1
Obj2
Obj6

c=2

Obj3

Obj3
Obj4
Obj5

cont=1 cont=1

Obj1
Obj3
Obj6
Obj5

cont=0

Obj1 Obj3 Obj4

Obj1
Obj2
Obj6

c=2

Obj4

Obj3
Obj4
Obj5

cont=2 cont=1

Obj1
Obj3
Obj6

cont=0

Obj1

Obj1
Obj2
Obj6
Obj4

c=1

Obj3
Obj4
Obj5

cont=2 cont=0

Obj1
Obj3
Obj6

cont=0

Obj1 Obj3 Obj4

Figure 4.7: Circles represent requests and hexagons represent handled requests. The
data items are distributed redundantly and randomly among the different
nodes

reliefboard to the observer’s position at the time when the reliefboard is created. This
absolute orientation stays fixed as long as the reliefboard is valid. It does not change
when the observer’s position changes, unlike some simple billboards that always face the
observer.

The displacement of the vertices on the grid reproduces the surface of the approxi-
mated object as seen from observer’s original position in orthographic projection (i.e.
without perspective distortion). If the position of a vertex does not lie in the area that
is covered by the original object’s projection onto the reliefboard’s plane, this vertex is
removed from the mesh. As a result, the reliefboard’s silhouette reproduces the original
object’s silhouette (again, as seen from the observer’s original position). The vertex
colors and vertex normals are also taken from the projection of the unlighted original
object. The combination of unlighted color and the normal vector allows exploiting the
normal (possibly dynamic) lightning techniques, used during the reliefboard’s rendering
on the visualization node. If the perspective distortion or the lightning would be applied
during reliefboard’s creation these effects would be applied a second time when we render
the reliefboards on the visualization node.

30

4.4 Reliefboard Structure and Creation

Camera Position

View Frustum

(a)

View Frustum

Camera Position

Grid

(b)

Point of
creation

Camera Position

View Frustum

(c)

Figure 4.8: Image (a) shows from which position the reliefboard is created. Image (b)
visualizes how the vertexes of a grid are shifted. Image (c) shows how the
reliefboard holds its original alignment for multiple camera positions.

Creation

The data and parameters necessary for the creation of a reliefboard are:

• The geometry (including colors, normals, etc.) and the position of the original
object.

• The directional vector from the observer’s position to the original object’s center
(which also becomes the center of the reliefboard).

• The resolution of the grid. As the reliefboard should reproduce the original object
as well as possible, at least at the time it is created, the resolution is set to the
current projected size of the object (in pixels). In this way every pixel is initially
represented by one colored vertex.

For the computation of a reliefboard, the original object’s orthogonal projection needs
to fit into an area on the given screen’s resolution, the desired side facing towards the
camera. Hence the object is initially translated and scaled accordingly (see Figure 4.9).

Then four intermediate, two-dimensional color maps of the given resolution are created
by rendering the original object onto the screen (or to an off-screen buffer). As we want
to exploit a cluster’s nodes (with possibly not up-to-date graphics hardware) for the
generation of the reliefboards, we do not use multi target rendering to render to multiple
buffers at once. Instead, we use multiple rendering passes to obtain the data for the
different target maps separately. Each of the four rendering passes exploits a simple
shader to support the efficient processing of the data into the target map:

31

4 Reliefboards

Figure 4.9: To compute the textures for reliefboard generation the camera is placed on
the unit-sphere. The spheres center is placed at coordinate systems origin.
Each object is scaled and translated such that its AABB fits into the sphere.

The distance-map encodes the displacement by extracting the
depth information of the pixels. This map is used to shift the
vertices of the grid. The higher a pixel’s value the more the corre-
sponding vertex is pulled towards the camera position, the lower
a value the more the vertex is pushed away.

The stencil-map marks which pixels are covered by the projection
and which vertices should be removed. The stencil is needed to
determine which vertices are needed for the approximation and
which have to be discarded.

The color-map reproduces the unlighted (but possibly textured)
color of the object. Each pixel indicates the unshaded color of the
corresponding vertex.

The normal-map encodes the surface normals in order to support
correct lighting.

Finally, these maps are combined with the grid to form the mesh of the reliefboard
at the given position. The created reliefboard replaces the original mesh and does not
change its alignment during the walk-through.

32

4.5 Identifying Objects by Clustering

4.5 Identifying Objects by Clustering

To achieve good results with reliefboards triangle groups are required instead of single
triangles. The triangles in such groups should be pooled as close as possible. Below,
these triangle groups are called objects. These objects are not limited to semantic groups
like chairs. Instead, these objects can consist of arbitrary elements.

For our parallel rendering system we require that, on the one hand, the objects consist
of a sufficient amount of triangles and, on the other hand, that the objects have a
relatively small diameter. Reliefboards replace the triangles of objects by another groups
of triangles, whose complexity has an upper limit. Thus, a sufficient triangle count of
the replaced object is necessary to benefit from a replacement. As shown in the previous
section, reliefboards are generated from several maps. The maximal resolution of those
maps is an input parameter p, which defines the maximal complexity of the reliefboards.
This resolution also defines the granularity of the simplifications. Our tests have shown
that maps with a side length of 256 pixels yield good results. The smaller the diameter
of the replaced object the better reliefboard’s quality. If the diameter of an object which
is to replace is too large, the generated simplification is to coarse.

For entered input there are two options: the entered objects meets the needs for our
rendering system or they do not. In the first case, the entered objects can be used
without any additional computation. In the second case, we need to compute suitable
objects.

clu
st

er
 c

s w
ith

tnz
 tr

ia
ng

le
s

near zone
radius dnz

(a)

dnz

p
 p

ix
e
ls

sl
c

in
 w

o
rl

d
 s

p
a
ce

(b)

slcslc

(c)

Figure 4.10: At first we determine the expansion of the near zone. Afterwards we
calculate the size of suitable objects, followed by the determination of the
objects for our rendering algorithm.

For a good image quality we render the objects close the the camera position only
with their original geometry. In this near zone we limit the number of rendered triangles
of the original objects. Our tests have shown that a third of the maximal amount of
triangles that can rendered per frame is a good triangle limit for this zone. Additionally,
beyond this near zone the projected size of the replaced objects must not be bigger
than the side length of the textures used to generate the reliefboards. Thus, we have to

33

4 Reliefboards

determine the expansion of the near zone. We compute the smallest cluster of triangles
that consist of this triangle limit. The diameter of this cluster defines the size of the
near zone (see Figure 4.10a).

Using the expansion of the near zone, display’s resolution, and the size of the textures
to generate reliefboards allows for determination of the size of our clusters (see Figure
4.10b).

In the last step we compute the final object clusters for our parallel rendering system
(see Figure 4.10b). The size of these clusters can be smaller than the calculated maximal
size, but they can be larger. Another property is that the clusters can insect each other
which does not influence our rendering method.

4.5.1 Clustering Algorithm

Suitable objects are needed for our parallel use of reliefboards. The objects must have
a reasonably high triangle count and must be compact in space. If the objects are
given in a suitable form, reliefboards can be applied directly. Otherwise, if the objects
are unsuitable or the geometry consists of triangles in an arbitrary order, we have to
segment the scene into several, new objects. Therefore, we perform a preprocessing
stage consisting of three phases. In the last two phases we use a heuristic, based on
agglomerative clustering [DE84].

Figure 4.11: Clustering based on the smallest joined bounding box. The two objects in
the dashed black bounding box are joined next.

In the preprocessing’s first phase we have to process the input. First we remove
redundant vertexes and faces from the given input. Afterwards, we determine connected
components and their axis aligned bounding boxes. These partial meshes are the base-
clusters for our agglomerative clustering algorithm.

In the next phase we choose the near zone range dnz. In this zone it is guaranteed
that an object’s original geometry is always rendered. Using the radius of this zone, we
calculate the maximal side length slc of the clusters. These clusters can be substituted
by reliefboards. For this calculation, we need the maximum amount of triangles tnz that

34

4.5 Identifying Objects by Clustering

can be rendered in the near zone, the reliefboards’ maximal projected side length in
pixels p, and the display resolution r as parameters.

Finally, we determine the required clusters with the previously determined side length
slc. During rendering, these clusters can be replaced by reliefboards. Below, phase two
and three are described in detail.

Phase II: Choosing near zone
In the beginning of this phase we calculate the cluster cs with tnz triangles which has
the “smallest” diameter. To do this we use our agglomerative clustering algorithm as
described later in this section. The diameter of cs is the range of our near zone dnz.
Using the determined dnz and the given parameters p and r, we can calculate the needed
side length for the clusters slc.

Figure 4.12: Clustering of the UNC Power Plant. Green (brighter) objects exceed the
maximal side length of clusters and red (darker) ones are suitable clusters.
Different colored parts are clusters, whose complexity is not large enough
to replace them with reliefboards.

Phase III: Determining suitable clusters
In the algorithm’s third phase we use the base-clusters and slc in the agglomerative
clustering algorithm. At first we remove all base-clusters whose maximal side length is
bigger than slc. A replacement of such a base-cluster would result in massive pixel errors
because of reliefboard’s limited granularity, given as parameter p. Hence these base-
clusters should not be substituted by reliefboards (these objects are unsuitable). The

35

4 Reliefboards

clustering algorithm combines the other clusters as long as their longest side is smaller
than slc. When a cluster exceeds this limit it is completed and removed from further
clustering. The resulting clusters are the objects which can potentially be replaced by
reliefboards. In Figure 4.12 these different types of objects are visualized. Green objects
are too large to be replaced by reliefboards (they are unsuitable) while red objects are
suitable. Objects in Figure 4.12 which are rendered in a different color are also unsuitable
because they are too simple to be replaced.

Agglomerative cluster algorithm
Our agglomerative clustering algorithm’s inputs are the base-clusters as described before.
Naive agglomerative clustering algorithms compute the joined axis aligned bounding box
(AABB) for all potential smallest cluster pairs. Here we combine two clusters whose
longest side of their combined AABB is minimal with respect to all other cluster pairs
(see Figure 4.11). For optimization purposes we do not compute all possible joined
AABBs. Instead we compute only a constant number of AABBs for each cluster, we
use only those clusters that are nearby as described later in this section. By this we
reduce the clustering time from O(n3) of the naive algorithm to O(n log n), where n is
the number of connected components at the beginning.

To determine the cluster efficiently we use a loose octree [Del00] and a priority queue
of cluster pairs (clustera,clusterb),a 6= b. The queue’s first element is always that pair
with the smallest joined AABB. While building the loose octree, its nodes are subdivided
as long as they include more than a defined, constant number of base-clusters. Every
loose octree node is identifiable by a unique ID i ∈ N.

Afterwards we determine for all loose octree nodes celli the set of adjacent loose
octree cells on the same octree level: adji = {celli,cellx,celly,. . . ,cellz},1 ≤ |adji| ≤ 27.
The union of the clusters in the loose octree cells in adji is stored in another set uaci.
While the clusters within the different celli are disjoint, different uaci can include equal
clusters. For each uaci we compute the smallest cluster pair scpi and push this pair into
the priority queue.

The following steps are performed to determine a new cluster and to reduce their total
number: As defined, both clusters (clusteri,clusterj) of the queue’s first element build
the smallest cluster. Clustering this pair requires an update of the priority queue and
the loose octree. For that we determine the octree nodes celli and cellj that contain
the clusters. From these loose octree nodes we get the corresponding sets of adjacent
cells adji and adjj. For all octree nodes cellk ∈ adji ∪ adjj, we remove the clusters
clusteri,clusterj from cellk and from its associated uack. Additionally, we remove scpk
from the priority queue.

After all copies of clusteri and clusterj are removed from the loose octree we join
these clusters to clustern. The new cluster is inserted into the loose octree at cell celln.
Next, for all octree nodes cellk ∈ adji ∪ adjj ∪{celln} we update the uack, determine the
new scpk, and push it into the priority queue.

While repeating this algorithm the cardinality of at least one uaci decreases. If the
number of included clusters in a loose octree node is below a threshold, we lift all clusters

36

4.6 Evaluation

from that node celli into its parent node and remove its scpi from the priority queue.
Afterwards we update celli’s parent node and delete celli from the tree.

4.6 Evaluation

In this section, we present empirical results showing the practicality and the main char-
acteristics of reliefboards. To evaluate system’s scalability we analyze the response time
for reliefboard requests and the effects if increase the number of copies of each suitable
object. Additionally, we analyze how a larger number of back-end nodes influence the
image quality. To gain information about systems rendering performance we compare
the rendering times of our system with the rendering times of a system that does not
use reliefboards.

Evaluation system

We implemented the presented techniques using the programming language C++ (GCC-
3.4.0), OpenGL for rendering and MPI (ScaliMPI-3.12.0-1) for the communication be-
tween the nodes. For the evaluation we use the large configuration of the PC2 Arminius
cluster. The frame’s resolution is set to 1,024× 768 pixels.

Scenes and parameters

Figure 4.13: Camera path in the UNC Power Plant scene. The path is traversed in
6,000 steps at a uniform speed.

We used two different test scenes: A forest composed of many (not instantiated) mod-
els of the Stanford bunny and different kinds of trees (≈ 25 M triangles in 250 total
objects see Figure 4.5) and the well known UNC Power Plant model (≈ 12.4 M triangles
in 150 total objects). As the forest scene consists of relatively compact objects with
almost uniform complexity, it is possible to use these objects directly without any clus-
tering. The power plant’s original objects are very complex and lack locality (e.g. long

37

4 Reliefboards

pipes or a chimney). Hence, to allow the proper application of reliefboards, we defined
150 new objects by clustering the scene (see section 4.5).
The camera path used for the power plant is shown in Figure 4.13. The Forest scene is
circled by the camera in 6,000 camera positions.

In our first tests we started an update when an angle error of ε = 11. 5◦ was exceeded
or when the projected side length of the reliefboard differed more than 30% from the
original. The original geometry was rendered when the angle error exceeded E = 45◦.
The value for tnz is set to 3.5 M triangles.

The number of replicas for the objects placed on the back-end nodes was set to three,
as a compromise between a sufficient distribution of the requests over the nodes and the
increased demand for memory for additional copies.

Scalability

In the first scalability test we evaluate the influence of the number of back-end nodes used
on the requests’ average response time. Due to the need of storing the data redundantly
on different nodes we use at least four back-end nodes in all our tests. This is the average
time that passes from the initiation of a request until the corresponding reliefboard has
been received by the visualization node. This includes the time for completing all prior
requests on a node, rendering the original geometry, reading the frame buffer in the
desired resolution several times (see section 4.4), and finally composing and sending the
created reliefboard to the visualization node.

Our experiments show that increasing the number of nodes decreases this response
time, as the average congestion (the average size of the queue of open requests) on every
node decreases (see Figure 4.14). If many back-end nodes are available, the response
time converges to the time needed for the construction and transmission of a single
reliefboard. This implies that, for a given scene and an amount of requests (implied by
the speed of the observer’s movement), increasing the number of nodes past a certain
point does not improve the performance.

The time needed for updating all reliefboards in the scene (e.g. when the observer
turns around very quickly) is not much higher than the average time needed for a single
request, due to the parallel execution. For the UNC Power Plant scene, the time for a
complete update is nearly the same as the average response time; for the forest scene,
the time is about twice the average response time.

In our our second scalability test we evaluate the influence on the c-collision protocol
when the number of nodes is increased. We use the c-collision protocol to distribute the
rendering load among the back-end nodes. Due to the asynchronous communication and
the permanent changing situation on the visualization node, requests for new reliefboards
can be delayed. Instead of using an unchangeable c in our implementation of the protocol,
we increase c to assign requests (described in Section 4.3). The number of back-end
nodes and the number of copies should influence the maximum c reached during the
walk-through.

For this test we discard the maximum contention of the nodes, because our algorithm
computes new reliefboards for all suitable objects at the start of execution. When

38

4.6 Evaluation

0

5,000

1,0000

15,000

20,000

25,000

30,000

4
back-end

nodes

8
back-end

nodes

12
back-end

nodes

16
back-end

nodes

20
back-end

nodes

24
back-end

nodes

28
back-end

nodes

32
back-end

nodes

av
rg

.
re

sp
on

se
ti

m
e

in
m

il
li
se

co
n
d
s

Response Time

Power Plant
Forest

Figure 4.14: Average response times for requested reliefboards. The more nodes, the
faster is the response – to the point where all requests can be processed
immediately.

reliefboards’ initial computation is finalized, and the contention of all back-end nodes is
zero, we start the measurement. The resulting maximal c’s are displayed in the diagram
of Figure 4.15.

The diagram shows that the maximal value of c decreases if the number of back-end is
increased. The higher the number of back-end nodes the lower the number of reliefboards
each back-end node has to compute. In the UNC Power Plant scene we were not able to
measure a significant effect when the number of distributed copies is increased, unlike
in the forest scene. Noticeable is the significant increased c when we used four back-end
nodes and we distributed each object three times. In this case the c is about 2. 35 times
larger than that when we distributed only two copies. This is due to the amount of
data every back-end node has to store and process. Memory space that is required to
store the objects exceed the GPU’s available memory on the back-end nodes. Due to
this objects must be rendered from nodes’ main memory, which is less efficient. Thus
processing a request requires more time and more new requests for other objects appear.

If more than four back-end nodes are used, the system takes advantages of the redun-
dant placement. In the forest scene the maximum c reached decreases when the number
of copies is increased.

39

4 Reliefboards

0
5

10
15
20
25
30
35
40

4
back-end

nodes

8
back-end

nodes

12
back-end

nodes

16
back-end

nodes

20
back-end

nodes

24
back-end

nodes

28
back-end

nodes

32
back-end

nodes

m
ax

im
al

c

Contention

Power Plant 1 copy
Power Plant 2 copies
Power Plant 3 copies
Forest 1 copy
Forest 2 copies
Forest 3 copies

Figure 4.15: Maximal reached contention during the walk-through. With increasing the
number of processors, the maximal contention decreases.

Rendering time

One property of our method is that the frame rate is mainly determined by the visual-
ization node’s computational power and the properties of the scene (i.e. the number of
objects in the viewing frustum, the complexity of the unsuitable objects and the reso-
lution of the reliefboards). The number of back-end nodes only slightly influences the
rendering time. Due to an overreaching latency resulting in a high error rate, the original
objects are rendered instead of a reliefboard. Figure 4.16 shows that the rendering time
using reliefboards can be reduced substantially if many objects are in the frustum.

The average rendering time along the chosen camera path using only frustum culling
and the original objects is 43 ms, whereas the average rendering time with applied re-
liefboards is only about 16 ms, nearly independent from the number of back-end nodes
used (the observed difference is below the error threshold of the measurements). Thus,
the frame rate for a given scene can be influenced by the hardware configuration of only
a single PC, which can be improved by relatively cheap updates without modifying any
other node of the cluster.

While testing the Forest scene the frame rate fluctuates widely if only original geom-
etry is rendered. Using reliefboards accelerates the rendering process and reduces these
fluctuations.

40

4.6 Evaluation

0

10

20

30

40

50

60

0 1,000 2,000 3,000 4,000 5,000 6,000

ti
m

e
in

m
s

frame

Rendering Time per frame (Power Plant)

4 back-end nodes
8 back-end nodes
12 back-end nodes
16 back-end nodes
20 back-end nodes

24 back-end nodes
28 back-end nodes
32 back-end nodes
No reliefboards

20
40
60
80

100
120
140
160
180
200
220
240

0 1,000 2,000 3,000 4,000 5,000 6,000

ti
m

e
in

m
s

frame

Rendering Time per frame (Forest)

4 back-end nodes
20 back-end nodes

32 back-end nodes
No reliefboards

Figure 4.16: The diagrams show the rendering acceleration through reliefboards – top
for the UNC Power Plant scene, bottom for the forest scene . The speedup
is nearly independent from the number of nodes. The highest lines show
the rendering time without reliefboards.

41

4 Reliefboards

Scene sizes

The complexity of the scene for which the presented method is suitable is determined
by several parameters:

• The overall amount of available memory on the back-end nodes needs to be large
enough to store the scene redundantly with the chosen number of replicas. In our
experimental setting, this was far from becoming a problem.

• The computational power of the graphics adapter of the visualization node mainly
determines the achieved rendering time, which is composed of the time needed for
rendering the original geometry and for the reliefboards. If the number of objects
in the scene gets too large, the frame rate may decrease because too many triangles
need to be rendered. In this case the amount of original geometry rendered can be
adjusted by lowering the parameter tnz. In this way the total number of rendered
triangles is decreased. This reduces the quality but results in additional capacity
for the rendering of reliefboards.

In our prototypical implementation, the size of the scene is also limited by the amount
of available memory of the visualization nodes’ graphics adapters. One should be able
to lift this restriction by adding a simple memory management mechanism, which stores
the objects that are located near the observer’s position or which are likely to get into
the near zone within a few frames, in the graphics cards memory.

Figure 4.17: The left image shows the large forest scene that consists of≈ 60M triangles.
The diagram in the right image show the rendering acceleration reached
when reliefboards are applied.

Using another hardware setup consisting of nine desktop PCs, we could render another
forest scene (see right image in Figure 4.17) with about 60 M triangles with 18 fps by
applying reliefboards (tnz = 3.5 M, 550 objects displayed as reliefboard). In this con-
figuration the visualization node is equipped with an Intel Quad Core 2.8 GHz, 8 GiB

42

4.6 Evaluation

RAM, a NVidia 260 GTX GeForce with 896 MiB graphics memory. Additionally we
use multiple standard office PCs as back-end nodes. When solely rendering the original
scene on the visualization node without reliefboards we only achieve about 4 fps (see left
image in Figure 4.17).

Visual quality

Although the frame rate is nearly independent of the number of back-end nodes, the
visual quality is heavily influenced by the response time and therefore by the number
of nodes. Generally speaking, a lower response time results in less visual error which
can be caused by an outdated reliefboard. Figure 4.18 shows the average distribution of
the angle error for the UNC Power Plant scene. The error angle is a good indicator for
the image error. The difference in the projected size is not considered as the influence
is insignificant due to the chosen camera path. As expected, more nodes decrease the
occurrence of errors. For the chosen setting, about 28 nodes seem to be sufficient to
achieve a mean error of only 16 degrees (compare to Figure 4.1). Additional nodes are
not necessary as almost every request can be processed immediately. The high peaks
occur when new objects appear in the viewing frustum. In this case, the angle between
an object’s normal when its last reliefboard was created and the current viewing vector
towards the object can be arbitrarily large.

0
20
40
60
80

100
120
140
160
180

4
back-end

nodes

8
back-end

nodes

12
back-end

nodes

16
back-end

nodes

20
back-end

nodes

24
back-end

nodes

28
back-end

nodes

32
back-end

nodes

an
gl

e
er

ro
r

in
d
eg

re
e

Image Error

Quartiles Median Average

Figure 4.18: Accumulated angle error in the UNC Power Plant scene (with min, max,
quartiles, median and average values): The visual quality scales with the
number of available nodes.

43

4 Reliefboards

During the real-time walk-through, a direct pixel based comparison between images
where only original objects are used and images where reliefboards are used is not re-
alizable. This is because of the time needed for this comparison (the required time for
reading from the frame buffer and storing the images influence the results). Less images
are produced in the same time when no comparison is made, so more time available to
generate the approximations. As a result the angle in between two updates decreases
which influences the image’s quality positively.

Differences between images with and without reliefboards, can be seen in Table 4.1.

4.7 Contribution

Reliefboards allow the use of a wide range of PC clusters with only limited graphic
capabilities for parallel rendering, so that only one powerful visualization node is needed.
In contrast to other parallel rendering approaches, this method scales in the quality of
the rendered picture instead of rendering speed, when the number of PC cluster nodes
is increased.

Using reliefboards allows us to render complex three-dimensional scenes that fit into
the visualization node’s memory. To apply these approximations, we have to compute the
suitable objects for replacement by reliefboards. In order to achieve this we use a heuris-
tic, agglomerative clustering algorithm that builds the required objects in O(n log n)
time.

Because of the scene’s size, we were required to apply approximations. These approx-
imations should be easy to compute, low in complexity, and suitable for many camera
positions. Reliefboards meet all these needs. These approximations can be computed
by computers with weak graphic performance in a few seconds. Their complexity is
controllable and limited by the granularity of the grid from which they are generated.
The relief properties makes them suitable for multiple camera positions, in contrast to
billboards.

To get updates of outdated reliefboards as quick as possible we had to distribute the
rendering load evenly among the PC cluster nodes. Here we used the c-collision protocol
to achieve this goal. Randomized object distribution results in each node having to
process complex objects as well as less complex objects. The redundant distribution can
reduce the nodes’ maximum contention.

44

4.7 Contribution

Table 4.1: The images in the left column shows images made with only original objects.
Middle column’s images are made using reliefboards. The images in the right
column displays the differences between the images in the previous columns.

45

Scenario II:

Static Scenes Which do not fit into a
Processor’s Primary Memory

47

Out-of-Core

Figure 4.19: Massive Models consist of so many triangles that they do not fit into node’s
primary memory. This model of a Boeing 777 consists of approximately
350,000,000 triangles and requires more than 8 GiB memory.

Massive Models have such high memory requirements that these scenes do not fit into
the primary memory of a single PC (see Figure 4.19). To process such scenes, out-of-
core rendering mechanisms are required. In such systems, scene parts are loaded from
a secondary memory device to a computer’s primary memory when they are needed.
Usually the computer’s hard disk is utilized to store the scene parts that do not fit
into primary memory. The usage of hard disks as secondary memory has advantages
for our needs: this memory is cheap, scalable, modifiable, and easy to exchange. The
acquisition of new drives can be done easily, in contrast to the primary memory. Usually,
if no further memory is available new drives can be added or old disks can be replaced by
new ones with higher capacities. The disadvantage of this memory is its speed. For our
needs, hard disk latencies are high in comparison to the machine’s main memory, not to
mention GPU’s memory. Distributed data placement, like different RAID systems, can
reduce these latencies.

For such Massive Models we remove the requirement of the previous scenario that the
complete scene must fit into the computer’s primary memory. Here we do not require
that all visible objects participate on the final rendered image. Thus, this approach can
lead to image errors, but it allows us to render the images in real-time.

We developed two different parallel and approximative rendering algorithms for such
large scenes. The first algorithm uses a modified version of the c-load-collision protocol
to balance the rendering load and to reduce node’s contention. Here we analyze the
balancing if we increase the number of copies, distributed among the back-end nodes.
Furthermore we tested the influences of randomized and deterministic tiebreaker algo-
rithms.

As preliminary work for our second parallel out-of-core rendering system we developed
the hull tree, a special purpose data structure. The hull tree is a spatial data structure
that covers scene objects tighter than common data structures. Additionally, we de-

49

Scenario II

veloped a sequential rendering algorithm that exploits this data structure. To speedup
visibility tests we also use approximations. In this way we reduce the number of triangles
sent through the rendering pipeline.

To use the hull tree for the parallel out-of-core rendering system some minor modifica-
tions were needed. We combined the hull tree with another hierarchical data structure
to improve its properties for our needs. For these systems we evaluate the time re-
quired to produce images. Additionally, we analyze the influence of different hardware
environments on the rendering algorithm.

Our parallel out-of-core rendering approaches use the main memory of the back-end
nodes in a PC cluster as secondary memory. The network adapters in PC2’s Arminius
cluster enable faster access to the different data items than regular hard drives. Addi-
tionally we can use back-end nodes’ computational power to filter the items sent across
the network. Nevertheless, due to back-end nodes’ weak computational power, we do
not request the items synchronously. Similar to our approach for reliefboards we send a
request and receive the answers several frames later (see Figure 4.20). At any time only
a small amount of the complete scene is stored on a small group of visualization nodes,
where the images for the user are produced.

Figure 4.20: Example of the communication scheme for our parallel out-of-core rendering
systems. The visualization node sends a request and continues its rendering
process, while back-end nodes perform their tests and answer the requests
several frames later.

50

5 Load-Balancing using the
c-Load-Collision Protocol

In this chapter we will present a workload balancing technique for heterogeneous clusters,
based on the c-load-collision protocol. In the previous part we developed a rendering
technique for scenes that can be stored completely in the primary memory. The parallel
out-of-core rendering systems presented next do not have this limitation. The system
we present in this chapter was designed, implemented, and evaluated in Wiesemann’s
diploma thesis as a collaboration [Wie10]. The presented approach can be applied when
a fast network is available but the data access or the computations on the different
nodes is slow. In this work, we focus on the load-balancing of large groups of back-end
nodes. The rendering speed itself depends mostly on the rendering performance of the
small group of rendering nodes. To evaluate this protocol we implemented a parallel
out-of-core rendering system with dynamic load-balancing for huge data sets (larger
than 8 GiB). In this system, nodes with graphics adapters that provide a high triangle
throughput are responsible for image generation, whereas the back-end nodes serve as
secondary storage and for other smaller tasks [SWF10a, SWF10b, Wie10].

The nodes of PC2’s Arminius Cluster are connected via Infiniband. The nodes of
this PC cluster provide weak rendering performance, but they can be used for other
important tasks to support the rendering process. Their main memory can be used as
secondary storage in an out-of-core rendering system, instead of hard drives, which are
typically used if the main memory resources are exceeded. Unlike the storage systems in
other out-of-core rendering systems, these nodes can also perform additional tests and
calculations largely autonomously. In order to reduce network’s load, we aim to keep
the amount of data that is received by these nodes small. To utilize the PC cluster for
our out-of-core rendering the system has to fulfill the following requirements:

• The scene should be distributed evenly among the main memories of the back-end
nodes.

• The back-end nodes’ tests and computations should require little information from
the other nodes.

• The visibility calculations should be balanced for most camera positions.

• The back-end nodes’ workload should be balanced.

• The amount of data to be sent to the visualization node must be kept small.

51

5 Load-Balancing using the c-Load-Collision Protocol

Figure 5.1: Layout of our rendering system, consisting of a visualization node (VN), four
render nodes (RN) and several back-end nodes (BN). Each of the four render
nodes is assigned to a portion of the screen (tile).

5.1 Overview and Summary of Results

Our system architecture requirements a single visualization node, a small group of power-
ful render nodes, and a large group of back-end nodes. In this approach, the visualization
node does not need a powerful graphics adapter. This node is used to accept user inputs
and to send them to the render nodes. Additionally, it receives the partial images from
the render nodes, combines them, and displays the final image.

Each render node renders a part of the final frame. Therefore, a node stores only the
necessary objects to its piece of the frame. Newly appearing objects which are requested
from the back-end nodes are determined using a spatial data structure.

Instead of sending the requested objects directly, the back-end nodes test the objects
for visibility. To do this, these nodes use a depth buffer they receive periodically from
the render nodes. If an object it tests is visible, it is sent to the inquiring render node.

In this system we distributed the different objects redundantly and randomly. This
provides good load balancing for most camera positions. To benefit from this distribution
(i.e., to keep contention low and to distribute the load evenly) we use a version of the
c-load-collision protocol.
To decrease the number of rendered objects, the render nodes need only a sample tree as
spatial data structure. To perform the visibility test, the back-end nodes exploit render
nodes’ depth buffers, which are updated periodically.

52

5.2 Related Work

5.2 Related Work

To minimize the delivery time in our parallel out-of-core rendering system fast data
access is required. There are various data management protocols for networks, which
balance the occurring data requests among multiple data modules. In our sense, a data
module is equal to a back-end node. Dietzfelbinger and Meyer auf der Heide present
a deterministic approach to simulate a PRAM on different types of distributed memory
machines [DMadH93]. Using a c-arbitrary DMM, a data module processes at most c of
the arriving requests in one step. Using a c-collision DMM, a data module processes all
requests if there are at most c of them; otherwise it rejects all. The expected delay to
produce an access schedule is bounded by O(log n) with high probability.

Stegmann developed the first version of the randomized c-collision protocol which
reduces the expected maximal contention of a data module to a constant c with high
probability [Ste96a]. A known issue for this protocol is that there exist situations where
it cannot terminate for a given c. A rule of the protocol says that each node answers at
most c requests. If all nodes receives more than c requests, none will answer. To resolve
that problem, c could be increased until the protocol terminates.

The c-collision protocol can be interpreted as balls into bins game. In the previously
described versions, the balls’ weight is uniform. In contrast, Berenbrink et al. introduced
a protocol for weighted balls [BMadHS97]. In their c-load collision protocol, for every
request, three data modules are randomly chosen. Each request is sent to its chosen
data module, which answers all incoming requests if and only if their sum is at most c.

5.3 The Parallel Rendering System

In the following subsection we will describe the developed rendering system in more
detail. Our system requires a visualization node, render nodes, and back-end nodes as
described in the previous section (see Figure 5.1). To allow for sufficiently fast data
transfers we require a fast network. In our setting all nodes are connected through
Infiniband network adapters. Instead of the usually used hard drives as secondary mem-
ory, our rendering system uses the main memory of the different back-end nodes. The
secondary memory stores the currently unused scene parts that cannot be stored in the
primary memory.

The visualization node has four different jobs: displaying the rendered images,
balancing the render nodes’ load, organizing the render nodes’ data requests, and initi-
ating the updates of the back-end nodes’ depth buffers. The visualization node receives,
combines, and displays the different frame parts from the render nodes for each frame
(see Figure 5.3). To balance the individual render nodes’ load, the visualization node
receives the time it took to generate partial images from the render nodes. The task
sizes of the render nodes are modified based on these times, similar to the approach of
Abraham et al. [ACCC04]. To organize the data requests, the visualization node receives
these requests from the render nodes and calculates an assignment using a variant of the
c-load-collision protocol (see Section 5.4). We choose the c-load-collision protocol for

53

5 Load-Balancing using the c-Load-Collision Protocol

Figure 5.2: The images show the tail of a Boeing 777 from the same position, but different
view angles. When the camera is moved rapidly, image-errors can occur.
Both images show a tiled frame produced by render nodes 1 and 2. The
right image shows missing parts, caused by delayed objects.

load balancing because it assigns requests to nodes while considering all other requests.
Additionally, in general this protocol can be executed via network without keeping a cen-
tralized data structure. To allow the back-end nodes to perform a worthwhile occlusion
culling, the visualization node periodically initiates depth buffer updates.

Figure 5.3: Communication flow to produce an image on the visualization node.

The render nodes’ job is to render partial images of the scene. The dimensions and
positions of their tiles are received from the visualization node, as are the current camera
settings. After receiving the needed data, the nodes align their tile and camera settings
(see Figure 5.1). Next they perform a frustum culling on their extended viewing frustum
(see Figure 2.2) and reorganize their object cache. If the frustum test shows the potential
requirement of objects, which are not stored in their memory, a node sends a request to

54

5.3 The Parallel Rendering System

the visualization node. Due to this asynchronous communication objects arrive delayed,
which can result in temporal image errors (see Figure 5.2). The render nodes check
if there are new objects available before they render a frame. During rendering, the
back-end nodes perform occlusion culling to determine invisible objects. These objects
are stored in the object cache for potential reuse. After rendering their partial image,
each render node copies it from the GPU-memory to its main memory and sends it for
displaying to the visualization node. If initiated by the visualization node, the render
nodes transmit their local depth buffer to the different back-end nodes.

Figure 5.4: Communication flow to update the render nodes’ tile dimensions and back-
end nodes’ depth buffers.

The back-end nodes serve as smart secondary memory. Instead of sending objects
untested to a render node, they test objects’ visibility first. Each node stores only a
subset of the scene’s objects. It is difficult to perform occlusion culling with only a
subset of the entire scene. Due to the missing occluders, objects might be classified as
visible, while they are actually hidden in the final image. For this reason, the back-end
nodes periodically receive render nodes’ depth buffers and combine them (see Figure
5.4). During their own visibility tests, back-end nodes update the received depth buffers
successively. If they test an object and it is visible they send its data to the requesting
node. Otherwise, they send nothing.

The load-balancing protocol used requires that all data items are distributed re-
dundantly and randomly among the back-end nodes. Because the scene is too large to
fit into the main memory and it is not possible to render it in real time, it has to be
approximated and distributed.
For this purpose we use a sample tree data structure [KKF+02]. The sample tree parti-
tions the scene into smaller subsets that are distributed across the network (see Figure
5.1). In the course of this chapter, an object refers to all of the geometry contained within
a single sample tree cell. For fast data access, we use a modified version of the the c-
load-collision protocol. A request passed into this protocol is equivalent to a request for
one of these objects. Based on this protocol, the back-end nodes’ load is balanced. Al-
though there are other approaches (e.g., Levels of Detail [LWC+02]) the disadvantage of
these is that surface properties usually are altered. In this way, unwanted gaps between

55

5 Load-Balancing using the c-Load-Collision Protocol

objects can appear and influence image quality and collision-detection algorithms. To
produce a frame, the view-plane is separated in multiple tiles and each tile is rendered by
a different render node (see top, right in Figure 5.1). These nodes are the high-capacity
cluster nodes, which are equipped with modern graphic adapters. If needed data-items
are not stored in a render node’s local memory, a data request is send to the visualization
node. Instead of waiting for the requested data-items, the render node renders its frame
without the missing parts. In this case, errors can occur in the final image (see Figure
5.2). After rendering a tile, it is send to the visualization node.

In our environment each render node is equipped with 4 GiB of RAM, but our bench-
marking model of a Boeing 777 consists of roughly 350 M triangles (≈8.5 GiB), which is
more than twice the size of the primary memory.

The back-end nodes are utilized in two ways: due to their lack of graphics adapters,
they serve as secondary memory and assist the render nodes by performing occlusion
tests. If the tested object is visible, its data will be sent to the requesting render node.
Otherwise, the request is discarded without notifying the requesting render node.

5.4 Load-Balancing Algorithm

The c-collision protocol allows for fast data access in a network, where the different data-
items are distributed randomly and redundantly. Thereby the contention of different
back-end nodes is limited by the constant c with high probability [Ste96b]. The protocol
works as follows: each request is assigned to all back-end nodes that store a copy of
this item. If a back-end node has at most c assigned requests, it replies to all of them
and removes the answered requests from the other back-end nodes. If a back-end node
gets more than c requests, it answers none of them. This scheme is repeated for several
rounds until all requests are served (see Figure 5.5). It is assumed that all requests have
equal weight. For example, weights can be the required processing time or the message
size.

There are different situations in which the requests are weighted; these weights do
not affect the c-collision protocol. Berenbrink et al. present in [BMadHS97] the c-load-
collision protocol. This protocol is a modified version of the c-collision protocol that
respects the requests’ weights by involving them in the request assignment. The given
load limit c can only be held if all tasks have been finished before new requests arise. It
is impossible for this condition to hold if the protocol is used to balance the load of a
parallel out-of-core rendering system, which is supposed to offer sufficient frame rates.
Waiting until all requests have been answered would cause serious speed reductions in the
rendering process. Thus, an asynchronous communication scheme is needed that allows
for overlapping rounds. In our system, we investigate how two different strategies for
choosing responsible nodes affect the load-balancing situation. To do so, we developed
a randomized and a deterministic function for node picking. Furthermore, we evaluate
how overlapping rounds affect our version of the c-load-collision protocol.

Similar to the regular c-collision protocol, all data-items are distributed redundantly
and randomly across the different back-end nodes. This assignment does not change

56

5.4 Load-Balancing Algorithm

Figure 5.5: Three rounds of the c-collision protocol. A node with assigned requests will
not answer again.

during runtime. The render nodes send their requests to the visualization node instead of
sending them directly to the responsible back-end nodes. In every frame the visualization
node receives all new requests of the render nodes and calculates an assignment of tasks
to the back-end nodes. By using the protocol, we try to distribute the network load
evenly among the back-end nodes. Instead performing the c-load-collision protocol on
the real network it is simulated on the visualization node. This way no additional
communication is needed and the balancing-time is reduced.

The pseudo-code for our implementation of the c-collision protocol is shown in algo-
rithm 5.1. In every frame, the set of requests is divided into subsets that contain at most
the same amount of elements as the number of available back-end nodes. The weight
of a request is equal to the requested object’s number of triangles. Using triangles for
request weighting is convenient because the triangle amount influences the needed time
for the occlusion tests as well as the size of the data-item to be sent.

Figure 5.6: The two magenta colored back-end nodes can answer the same request. It
has to be decided which one is responsible.

57

5 Load-Balancing using the c-Load-Collision Protocol

If a data request r can be answered by more than one back-end node, it has to be
decided which back-end node will be responsible for the request (see Figure 5.6). In
order to balance the work-load evenly across the nodes, we first calculate the sums of
the weights of all active jobs on all nodes. The function to calculate the sum of the
weights of a node PE is defined as s(PEi). The list of nodes is sorted in ascending order
of these weighted sums and is processed in that order.

Figure 5.7: The selected strategy chose the node with the lower load to process the
request.

We analyze two strategies, a deterministic one and a randomized one. Both strategies
choose the responsible back-end node with respect to their load (see Figure 5.7).

• Our deterministic strategy works as follows: It always picks the first node with the
smallest s(PEi), which can handle all its requests (see Algorithm 5.2).

• Our randomized strategy works as follows: We pick a node randomly from all
nodes that could handle the request r. To influence the probability at which a
node is chosen, we utilize the weight sums of the nodes in question (see Algorithm
5.3).

Let P̂ be the set of back-end nodes able to handle request r. Then

T =
∑

PEi∈P̂

s(PEi)

is the total sum of the accumulated weights. The probability to choose node PEi is
defined as:

Pr(r is handled by node PEi) =
T − s(PEi)

(|P̂ | − 1) · T
The probabilities of each node equate to a unique area in the unit interval. To assign
a data request to a back-end node, a pseudo-random-number between zero and one
is generated. The generated number always lies within an interval associated with a
back-end node. This node is chosen to handle the data request.

58

5.5 Evaluation

Algorithm 5.1 c-collision protocol

Variables: nodes P , |P | = n,
request sequence S = (s0,s1,. . . ,sl−1),l = i · n.

1: c = 2
2: S = (r0⊕. . .⊕ri−1), rj = (sj·n,. . . ,s(j+1)·n−1),

0 ≤ j < i
3: for all rj ∈ S do
4: while ∃sk ∈ rj that is not answered do
5: if at least one request of rj can be answered then
6: for all sm that can be answered do
7: pick node PEa ∈ N that handles sm
8: increase load of node pa by the weight of sm
9: mark request sm as answered

10: end for
11: c = 2
12: else
13: c = c+ 1
14: end if
15: end while
16: end for

Algorithm 5.2 Deterministic picking strategy

Variables: request su to handle

1: determine P̂ = {P̂E0,. . . ,P̂Em} for su and T
2: for k = 0 to m do
3: determine wk = Pr(p̂k)
4: end for
5: assign su to p̂k with smallest wk

Algorithm 5.3 Probabilistic picking strategy

Variables: request su to handle

1: w0 = 0
2: determine P̂ = {P̂E1,. . . ,P̂Em} for su and T
3: for k = 1 to m do
4: determine wk = Pr(P̂Ek) + wk−1

5: end for
6: Choose a random number 0 < R ≤ 1,R ∈ R
7: assign su to p̂k with wk−1 < R ≤ wk

5.5 Evaluation

For our tests we use a model of a Boeing 777. The model’s size ≈ 8.5 GiBs, thus it does
not fit into the main memory of the render nodes. As test environment we used four

59

5 Load-Balancing using the c-Load-Collision Protocol

render nodes and up to 32 back-end nodes of PC2’s Arminius cluster. Here we run our
parallel out-of-core rendering system.

Figure 5.8: Walk-through for our tests.

Walk-throughs and load balancing tests in a real rendering system are limited to at
most 32 back-end nodes. To perform load balancing tests with an arbitrary number of
back-end nodes, we implemented a simulation system for the c-load-collision protocol.
The input for the simulation system is a sequence of data requests, generated during a
walk-through in the real rendering system using 32 back-end nodes. In Figure 5.8 the
test path is visualized.

In our tests, we evaluate the level of load-balancing that can be achieved using the
c-collision protocol with our modifications. Due to the randomness of the c-collision
protocol, we perform multiple test runs on the system, while using different seeds for the
pseudo-random-number generator. In the start-configuration of the c-collision protocol
we set c = 2. We averaged the results of these different runs. For each position of the
walk-through, we measure the load on the individual back-end nodes. The accumulated
amount of triangles of processed objects serves as load indicator for the back-end nodes.
To achieve comparable results at the individual walk-through positions, the results are
normalized. Three different numbers of back-end nodes were used to accomplish the
tests: 32, 80 and 120 back-end nodes (see Figure 5.9 - Figure 5.11).

For our tests, at each position in the walk-through, we measured how many triangles
each back-end node has to process and normalized the results. We determined the
median (red marks) and the 0.1/0.9 quantiles (blue marks) of the measured values.

For each test, our measurements are displayed in three diagrams: the first one shows
the load-balancing of the back-end nodes at every position in the walk-through; the sec-
ond one shows the relation between a given work-load and the number of data requests.
The third diagram combines the previous diagrams in a 3D diagram.

While all values are sorted by the walk-through position in the first diagram, in the
middle diagram all values are sorted by the number of request per frame. The last

60

5.5 Evaluation

diagram combines both views. The 3D diagrams’ y-axes are equally scaled to visualize
the benefit of an increased number of back-end nodes.

This sorting gives a hint to the origin of the strong peaks in the first diagram. If we
only have a few requests to distribute among many back-end nodes, stronger deviations
occur. In this situation, some nodes do not get any assignments at all, while others
still get a few. Here, even the median value is close to zero. The requests we use are
atomic and can not be distributed to multiple nodes. These peaks do not corroborate the
conclusion that there are overloaded nodes, there are just not enough requests available
to employ every single node.

In all the diagrams the deviation of the load is generally low. As mentioned above, the
difference of the load is larger if only a few requests are generated. The more requests we
have at a given position, the smaller the difference between the median and the quantiles.
If the number of back-end nodes is increased, this difference is even less significant. The
median value is generally close to 1/p, where p is equal to the number of back-end nodes,
which leads to the conclusion that the load is distributed evenly.

Next, we investigate how the redundancy influences the load-balancing. To accomplish
this, we increased the number of redundant copies of the objects in the network from
one to two. Our measurements show that the load can be distributed more evenly if the
number of copies is increased. Thus, the quantiles lie closer to the median within the
diagrams (see Figure 5.9 and Figure 5.12).

Next we distribute three copies of the elements among the back-end nodes and measure
how this influences the load balancing 5.13. The results of these tests show that there is
no significant difference between two and three copies of the elements distributed across
the PC cluster.

Altogether our tests show that our version of the c-load-collision protocol can achieve
good load-balancing if a sufficient number of requests are generated. This can be ob-
served in all diagrams: the strongest deviations occur whenever the number of requests
per position is very low, which leads to the conclusion that the amount of visible geom-
etry in these positions is marginal.

61

5 Load-Balancing using the c-Load-Collision Protocol

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

0 500 1,000 1,500 2,000 2,500 3,000 3,500

lo
ad

(n
or

m
al

iz
ed

)

frame

Load per Frame (32 nodes 2 copies)

0.1 / 0.9-quantile
median

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

0 1,000 2,000 3,000 4,000

lo
ad

(n
or

m
al

iz
ed

)

frame

Load per Request Count (32 nodes 2 copies)

0.1 / 0.9-quantile
median

1,000
2,000

3,000
0 1,000 2,000 3,000 4,000

0

0.04
0.08
0.12

0.16

lo
ad

(n
or

m
al

iz
ed

)

Load per Frame (32 nodes 2 copies)

0.1 / 0.9-quantiles
median

frame
request count

lo
ad

(n
or

m
al

iz
ed

)

Figure 5.9: Walk-through with 32 back-end nodes and two copies of each element.

62

5.5 Evaluation

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 500 1,000 1,500 2,000 2,500 3,000 3,500

lo
ad

(n
or

m
al

iz
ed

)

frame

Load per Frame (80 nodes 2 copies)

0.1 / 0.9-quantile
median

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 1,000 2,000 3,000 4,000

lo
ad

(n
or

m
al

iz
ed

)

frame

Load per Request Count (80 nodes 2 copies)

0.1 / 0.9-quantile
median

1,000
2,000

3,000
0 1,000 2,000 3,000 4,000

0

0.04
0.08
0.12

0.16

lo
ad

(n
or

m
al

iz
ed

)

Load per Frame (80 nodes 2 copies)

0.1 / 0.9-quantiles
median

frame
request count

lo
ad

(n
or

m
al

iz
ed

)

Figure 5.10: Walk-through with 80 back-end nodes and two copies of each element.

63

5 Load-Balancing using the c-Load-Collision Protocol

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0 500 1,000 1,500 2,000 2,500 3,000 3,500

lo
ad

(n
or

m
al

iz
ed

)

frame

Load per Frame (120 nodes 2 copies)

0.1 / 0.9-quantile
median

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0 1,000 2,000 3,000 4,000

lo
ad

(n
or

m
al

iz
ed

)

frame

Load per Request Count (120 nodes 2 copies)

0.1 / 0.9-quantile
median

1,000
2,000

3,000
0 1,000 2,000 3,000 4,000

0

0.04
0.08
0.12

0.16

lo
ad

(n
or

m
al

iz
ed

)

Load per Frame (120 nodes 2 copies)

0.1 / 0.9-quantiles
median

frame
request count

lo
ad

(n
or

m
al

iz
ed

)

Figure 5.11: Walk-through with 120 back-end nodes and two copies of each element.

64

5.5 Evaluation

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

0 500 1,000 1,500 2,000 2,500 3,000 3,500

lo
ad

(n
or

m
al

iz
ed

)

frame

Load per Frame (32 nodes 1 copy)

0.1 / 0.9-quantile
median

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

0 1,000 2,000 3,000 4,000

lo
ad

(n
or

m
al

iz
ed

)

frame

Load per Request Count (32 nodes 1 copy)

0.1 / 0.9-quantile
median

1,000
2,000

3,000
0 1,000 2,000 3,000 4,000

0

0.04
0.08
0.12

0.16

lo
ad

(n
or

m
al

iz
ed

)

Load per Frame (32 nodes 1 copy)

0.1 / 0.9-quantiles
median

frame
request count

lo
ad

(n
or

m
al

iz
ed

)

Figure 5.12: Walk-through with 32 back-end nodes and one copy of each element.

65

5 Load-Balancing using the c-Load-Collision Protocol

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

0 500 1000 1500 2000 2500 3000 3500

lo
ad

(n
or

m
al

iz
ed

)

frame

Load per Frame (32 nodes 3 copies)

0.1 / 0.9-quantile
median

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 500 1000 1500 2000 2500 3000 3500

lo
ad

(n
or

m
al

iz
ed

)

frame

Load per Frame (80 nodes 3 copies)

0.1 / 0.9-quantile
median

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0 500 1000 1500 2000 2500 3000 3500

lo
ad

(n
or

m
al

iz
ed

)

frame

Load per Frame (120 nodes 3 copies)

0.1 / 0.9-quantile
median

Figure 5.13: Walk-through with 32, 80, and 120 back-end nodes and three copy of each
element.

66

5.6 Contribution

Finally, we studied the differences in the balancing situation when using the random-
ized picking strategy and when using the deterministic picking strategy for the c-load-
collision protocol, described in Section 5.4. Generally we could not find any significant
differences when using either strategy. Only marginal differences could be found when
reducing the amount of back-end nodes to four. In Figure 5.14, a comparison between
two measurements was made: for every position of the walk-through we calculated the
difference of the results in deterministic and probabilistic methods, and plotted the ab-
solute value of this difference into the diagram. Most of these results are close to zero.
In the test series spikes occur when there are only a few requests. Whenever stronger
deviations occur, the differences of the two approaches get stronger as well.

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

Walkthrough position

D
iff

er
en

ce

0.9 Quantiles
0.1 Quantiles

Median

Figure 5.14: Differences between randomized and deterministic load-balancing.

5.6 Contribution

For its effectiveness in an interactive environment we tested a variation of the c-load-
collision protocol. We implemented a parallel out-of-core rendering system with the
c-load-collision protocol as a work load balancer. In the course of our tests we were able
to show that the protocol’s balancing capabilities are sufficient for this kind of applica-
tion, although there were no significant differences between two and three copies of the
elements distributed over the back-end nodes.
Through the occlusion culling performed on the back-end nodes, we reduced the amount
of data sent to the visualization node. This increased the speed of transmitting of re-
quired objects.

67

5 Load-Balancing using the c-Load-Collision Protocol

The occlusion culling on the back-end nodes uses the older depth buffers of the render
nodes. Due to the older depth buffers the occlusion culling is not always correct, but by
exploiting spatial coherency, the tests yields good results.
In the version we presented, there are only three node types available. Slight modifica-
tions to the c-load-collision protocol used would allow a wider variety of back-end nodes
to be handled and balanced. Therefore the different nodes’ computational power could
be included in the distribution computations of the data management protocol.

68

6 Hull Tree

In this chapter we present a data structure and a sequential rendering system, which is a
preparatory work for our second parallel out-of-core rendering system. To render highly
complex scenes in real-time, techniques are necessary to prevent objects from being sent
into the rendering pipeline if they have no effect on the final image. Invisible objects must
be recognized as early as possible to reduce the load. Culling, especially occlusion culling,
is a common approach to reduce the number of triangles and/or objects that are sent
into the rendering pipeline. However, during these visibility tests many occluded objects
are sent into the rendering pipeline. We developed the hull tree to reduce the number of
those objects, the so-called false positives. Additionally we designed a rendering method
that exploits this data structure.

Hardware vendors offer occlusion queries to accelerate visibility tests using the GPU.
The bounding volumes of all potentially visible objects or object groups are tested for
visibility in front-to-back order. Only if a fraction of the bounding volume, typically an
axis-aligned bounding box, is identified as visible, the associated objects are rendered.
To reduce the time spent on these tests, hierarchical data structures (like an octree) are
often used to test the visibility of whole object groups located in the same subtree.

Using axis aligned bounding boxes (AABBs) for occlusion tests have mixed results.
On the one hand these representations have a very low complexity and are therefore easy
to calculate and quick to test. On the other hand – depending on an object’s projected
shape – these approximations can be too conservative. Due to large empty spaces in the
bounding volumes, even complex objects can be classified as visible although they are
occluded. So the chosen outer approximation of an object (or a group of objects) can
influence the efficiency of an occlusion culling algorithm.

To improve and accelerate the occlusion culling our rendering approach should fulfill
the following requirements:

• Objects’ bounding volumes must be tight to reduce the number of false-positives.

• Bounding volumes should be organized in a hierarchical data structure to test
objects’ visibility quickly.

• The rendering algorithm’s occlusion culling must exploit the data structure to
accelerate rendering process.

The hull tree is a hierarchical data structure of simple approximated exterior object
hulls. This hull tree offers a much tighter coverage of the objects in the scene, while intro-
ducing only a small increase in the geometrical complexity compared to a corresponding

69

6 Hull Tree

Figure 6.1: Exterior approximations of the UNC Power Plant scene. The transparent
red cubes visualize an octree’s cells at one level. The included dark blue
polyhedrons show the much tighter shapes from our hull tree at the same
level.

ordinary octree with AABBs (see Figure 6.1). In our tests the total complexity increase
was limited by the factor 1. 02 [SKJF11].

An additional challenge for current occlusion culling techniques is that the order in
which the objects are rendered is determined by the traversal order of the data struc-
ture. For high visual quality, objects can have numerous different shader, materials,
textures, etc., attached. Even if only one of these properties is changed in between the
rendering of subsequent objects, a state-change in the GPU is induced, which can lead
to a deceleration of the rendering process. One occlusion culling algorithm in which this
problem is addressed is the CHC++ algorithm by Mattausch et al. [MBW08]. There,
the objects are rendered in multiple batches that can each be sorted individually by
the objects’ properties. This can already reduce the number of necessary state changes.
We propose an approximative occlusion culling algorithm (as defined by Nirenstein et
al. [NBG02]), which not only sorts small batches of objects, but sorts all rendered ob-
jects at once according to their state. Consequently, the number of state changes can
be reduced massively. The presented approximative occlusion culling algorithm uses the
hull tree for the determination of visibility at a fine granularity. The occlusion informa-
tion is created using the original objects and, additionally, an automatically generated
inner approximation of the scene’s objects that can be rendered more efficiently. While
it can take a few frames until the complete visibility is determined (which results in the
possibility of temporal image error) our rendering technique makes very efficient use of
the graphics pipeline with only few state changes and pipeline stalls.

70

6.1 Overview and Summary of Results

6.1 Overview and Summary of Results

For our rendering algorithm, we first preprocess the scene consisting of predefined objects
(meshes) (Note that reasonable objects should not be too big, in relation to scene’s overall
complexity, for our technique to work properly.). We compute two kinds of geometry
approximations: a hierarchical exterior approximation for the whole scene (later used
for our occlusion queries) and an interior approximation for single objects (which can be
used as an efficient occluder replacement during rendering).

For the construction of the outer hulls in the hull tree the scene is first subdivided by
a regular object-based octree, in which the scene’s objects are referenced redundantly
by all leaf nodes that intersect with the object. By construction, an octree’s node’s
bounding box completely encloses all children’s bounding boxes and can therefore serve
as an outer hull for the corresponding subtree. The main idea of the hull tree is not
to directly use this AABB of a node as a hull, but to automatically select a simple
volumetric hull shape out of a predefined set of shapes for all nodes in the tree. For
a shape to be selected, it has to completely cover all shapes of the node’s child nodes
and associated scene objects. These shapes can have a significantly lower volume and
projected size compared to the underlying box while offering a comparable complexity.

For interior approximation generation we use the edge-collapse algorithm introduced
by Hoppe [HDD+93], with a special condition that guarantees the approximation to
always be inside the original geometry (similar to progressive hulls [SGG+00]). Due
to the additional condition, the degree in which an object can be simplified strongly
depends on the topology of the mesh. Although one can easily construct meshes that
cannot be simplified at all without violating the condition, many objects (for example
originated from technical CAD-data) can be reduced to only a small fraction of their
initial complexity.

Rendering cycle: Our approximative occlusion culling algorithm works in two main
phases. First, all objects that were classified as visible in the previous frame are sorted
by their properties and rendered while tested for occlusion using hardware accelerated
occlusion queries (without waiting for the results). Second, the other scene elements’
visibility classification is updated for the next frame’s rendering.

This second phase exploits the prefilled depth buffer on the GPU of the first phase. The
hull tree is traversed and occlusion queries based on the simple volumetric hull shapes
are initiated to determining subtrees’ visibility. To update the visibility of objects which
have not been rendered in phase one, the objects’ interior approximations are used and
rendered to the depth buffer. These two phases provide a minimal number of state
changes and virtually no pipeline stalls.

For this rendering method we developed the hull tree. This data structure is based
on a regular octree and inherits its hierarchical properties. Instead of simple rectangu-
lar bounding boxes, this data structure consists of multiple shaped bounding volumes.
Thus these hulls surfaces and volumes are significantly smaller which lead to faster vis-
ibility tests. We present an approximative render method that exploits the hull tree in
combination with the used interior approximations.

71

6 Hull Tree

6.2 Related Work

In this section we present work related to occlusion culling, mesh simplification and
hull-approximations.

Occlusion Culling, in general, describes techniques which try to identify and leave
out occluded parts of a scene’s geometry to increase the rendering’s performance. Ac-
cording to the classification of Cohen-Or et al. [COCSD03], the presented occlusion
culling method is a point based (visibility is determined from the current observer posi-
tion) technique with an image-precision definition of visibility, (i. e. an object is visible
if it contributes at least one pixel to the final rendered image). Due to the special sup-
port for so-called hardware assisted occlusion queries in current graphics adapters, these
kinds of techniques are used in a wide range of applications for real-time rendering (for
example games). An occlusion query returns the number of pixels which pass the depth
test during an object’s rasterization. If this object is only a simple and cheap-to-render
proxy of the original geometry, the visibility of the proxy can be used to estimate whether
the original object is visible or not. One problem which arises is that the occlusion query
itself can be performed quite efficiently, but it may take up to several milliseconds be-
fore a query result is available from the graphics card. This problem is addressed by
several techniques. The CHC algorithm (Coherent Hierarchical Culling) by Bittner et
al. [BWPP04] tries to reduce possible pipeline stalls by an asynchronous use of occlusion
queries, in which the goal is to avoid idle waiting for a query’s result. Several techniques
try to further improve this idea. The Near Optimal Hierarchical Culling algorithm by
Guthe et al. [GBK06] tries to reduce the number of issued queries to a minimum by
estimating the outcome of the queries. Another approach is the CHC++ algorithm
by Mattausch et al. [MBW08], which reduces the number of queries and the possible
pipeline stalls, next to other improvements, by grouping multiple queries into batches (in
which, as mentioned, objects can be sorted by their state). By allowing our algorithm to
temporarily make errors in the visibility determination and therefore in the final image
(approximative culling), we can benefit from a wide temporal separation from the start
of an occlusion query to the reading of its result. This makes such queries very efficient
to use compared to other, more conservative algorithms.

One important aspect for a culling algorithm’s efficiency is the hierarchical data struc-
ture for the scene that determines the object’s grouping and the bounding volumes used
for the occlusion queries (for example Meißner et al. [MBM+01] examine this effect). For
this purpose we use the presented hull tree, being optimized to provide tight bounding
volumes for reliable occlusion queries.

Mesh simplification is another possibility to reduce the number of triangles sent
into the rendering pipeline. Instead of rendering the original object, a simpler version
is generated and rendered which should retain the original object’s appearance as close
as possible. For our rendering algorithm, we do not use simplified objects to reduce
the visible object’s complexity, instead simple objects are used as occluders to speed
up the visibility tests. Therefore it is important for our method that an object’s shape
is preserved as well as possible and that the object is not enlarged, whereas the visual
appearance is of no importance.

72

6.3 Building the Hull Tree

Hoppe et al. [HDD+93] present techniques to optimize and simplify meshes that can
be used as LODs (levels of detail). For continuous LOD Hoppe presents Progressive
meshes [Hop96]. These approximations cannot be used for occlusion culling directly
because they provide no information on whether the surface of these approximations is
outside or inside the original object’s surface.

Cohen et al. [CVM+96] propose a method for mesh approximations called simplified
envelopes where they also generate an inner and outer hull. Those hulls are only used
as intermediates to confine the actual approximation (which is generated in between) to
restrict the variance to the original geometry. The hulls are generated by moving the
original geometry’s points along their normals, thus the hulls have the same complexity
as the original model. As for the approximation, there is no prediction whether it is
inside or outside the original geometry. Therefore it cannot be used for our algorithm.

Sander et al. [SGG+00] present progressive hulls. Progressive hulls are a special case
of progressive meshes. This technique allows the computation of continuous approxi-
mations, which are always inside or always outside of the original mesh. Due to the
progressive property, the amount of memory is even higher than the memory needed to
store the original mesh. For our purposes, we need a mesh simplification with reduced
memory requirements. Our approximation is not continuous, it is one fixed state of this
sequence.

Hull-approximations can be used to approximate objects. Alt et al. present a
method to approximate polygons with less complex polygons or circles [ABW90]. To
apply their method, the polygon must have a convex shape in order to be simplified.
Held and Eibl present an approach to compute a simplified representation that is gen-
erated within a defined area, by tangent-continuous approximation [HE05]. In contrast
to the presented techniques, our approach works for arbitrarily shaped polygons and
meshes.

6.3 Building the Hull Tree

The hull tree’s aim is to automatically create a non-overlapping, hierarchical spatial
data structure in which a simple convex hull is attached to every node which covers
the whole subtree tightly. In order to generate these hulls efficiently, we restrict the
possible geometrical hull shapes to a predefined set of shapes which meet the following
requirements: each shape must consist of only a few triangles, be completely coverable
by other shapes on the next lower level, and allow an efficient decision on which shape
is covering all corresponding children’s shapes tightest. Our manually chosen set of
possible shapes consists of three-sided prisms, cuboids, and different five- and six-sided
prisms. These shapes are the distinction of our exterior hulls. Figure 6.2 shows some
of these available shapes; the complete set also includes the corresponding rotated and
mirrored shapes. Figure 6.3 gives an impression of two different levels of hull tree shapes
compared to the corresponding octree boxes, both covering the same scene.

The construction of the hull tree begins with the construction of an object based
octree covering the whole scene. The maximal depth is given as a parameter. The

73

6 Hull Tree

Figure 6.2: Set of possible hull shapes. The complete set also contains all reasonable
rotated and mirrored versions.

objects are referenced redundantly in all leaf nodes they intersect with. Beginning with
the lowest level containing the objects, the hull shapes are created for each node from
the leaves up to the root of the tree. A simple bounding box is chosen as a shape for all
leaf nodes. Experiments implied that the additional computational effort for choosing
tighter hull shapes for leaf nodes marginally influences the later rendering process if only
the chosen depth of the octree is large enough. An inner node’s shape is then chosen
based on its children’s shapes. Because of the shapes’ simple structure, it is sufficient to
base the decision on the coverage of several fixed points inside of the node’s bounding
volume (for example if all eight corners of the node’s bounding box are covered by
shapes of the children, the only possible choice for the node is the complete box). In
this manner, a decision tree is used to efficiently identify the smallest shape (by volume)
which completely covers all child nodes’ shapes (see Figure 6.4). If several shapes have
the same volume, a shape with the lowest polygon count is chosen. When the root node
is reached, the construction of the hull tree is complete.

6.4 Determining the Interior Approximations

The second part of the preprocessing stage is the calculation of the scene objects’ interior
approximations. The approach used does not require convex or closed objects. To be
able to use these approximations as occluders (without creating errors by occluding more
than the original object), the volume of these approximations must be smaller than the
original object’s volume and the approximation’s surface may not intersect with the
original object’s geometry. These interior approximations are generated with Hoppe’s
edge-collapse algorithm, with a special cost function. This works in a similar fashion
to the calculation of the interior volume of progressive hulls [SGG+00], but we compute
only a single fixed state of the progressive version.

74

6.4 Determining the Interior Approximations

(a) (b)

Figure 6.3: Levels 4 and 5 of the Boeing 777 scene’s hull tree. The accuracy increases
with each level. The transparent red cubes visualize the cells of an octree
at one level. The included blue polyhedrons show our much tighter shapes
from the hull tree at the same level.

Figure 6.4: Schematic 2D illustration of a hull tree: the left square shows the root node
(Level 0), and the middle and right square show Level 1 and Level 2. The
hull shapes (see Fig. 6.2) are drawn with blue lines.

We use a special cost function to preserve holes and to ensure that the interior approx-
imation is smaller than the original model. The desired goal is to collapse c edges (c is
given as a parameter) while maximizing the total profit as close as possible to c · d. For
the simplification, we need the diameter d of an object’s bounding box. If the vertices
on an edge are not both vertices of exactly two triangles, the profit for collapsing this
edge is −∞. In other word, an edge that should be collapsed must connect the complete
sides of two triangles. When an edge-collapse operation increases the object’s volume
or leads to an intersection with other triangles, the profit is also −∞. Otherwise the
profit is d− v, where v is the height of the cut off volume. Following this, the algorithm
tries to keep the lost volume small (see Figure 6.5). The algorithm terminates, when c
edges are joined or the only possible collapses brings a profit of −∞ (see Figure 6.5).
We discard normals and colors of our approximations because we do not need them for
our culling algorithm.

75

6 Hull Tree

Figure 6.5: By collapsing edges using the proposed cost function, the approximation will
always be located inside the original geometry.

(a) (b)

Figure 6.6: The left image shows the original geometry and the right image shows our
interior approximation - both rendered as wire-frame.

These interior approximations then can be used as occluders for the visibility tests.
Their projected size may be smaller than the related original objects’ sizes, but if the
interior approximation occludes another object, the original object would do this as well,
except for rare cases (see Figure 6.6). It is easy to handle the case of a camera placed
in-between the original and approximations surface: If the camera’s position is inside a
hull tree cell, all of its included original geometry is rendered.

6.5 Rendering Algorithm

The rendering algorithm can be subdivided into five steps (see Algorithm 6.1).

i. At the beginning of a new frame, the list of objects that were identified as visible
in the previous frame are grouped by their state (shader, texture, etc.). The state-
grouping can reduce the number of necessary state changes of the rendering pipeline
to the overall number of different states in the scene. This can be essential for the
rendering performance, especially if the rendered scene contains a huge number of objects

76

6.5 Rendering Algorithm

having many different states. Then, each group’s objects are sorted by distance to the
observer in front-to-back order so that a possible occlusion between objects inside a
group can be detected during rendering. A sorting of the groups themselves may not
reveal the occlusion between objects from different groups because of the possibly large
intersections. Therefore, we now randomly permute the order of the groups themselves
so that an occlusion is not guaranteed to be identified immediately but is likely to be
detected after a few frames. At the end of the first step all objects are rendered into the
frame buffer in the specified order while, for each object, an occlusion query is initiated.
These tests return the number of object’s pixels which actually passed the depth tests
during rendering. These tests introduce only a minor runtime overhead since the results
are read back only at a later step of the algorithm where no active waiting for results
is expected. Due to the usage of possibly outdated visibility information from the last
frame, visible objects can be missing in the rendered image for a few frames. This effect
is mostly noticeable in the first frames (where no visibility information is yet available)
and when the observer performs quick rotations or walks through a wall for example.
These image errors are visible for at most d frames, where d is the depth of the hull tree.

ii. In the second step, all hull tree nodes and objects for which the visibility informa-
tion should be updated are collected into lists by traversing the tree. Nodes which are
collected must be located inside the viewing frustum and either be marked as visible
with at least one invisible child or be marked as invisible, but having a visible parent.
All objects that are referenced by the latter kind of nodes (marked invisible, but whose
parents are marked visible) are added to another list. These are objects that are likely to
appear when the observer moves (or may even actually be visible, but not yet identified),
making them good candidates for further examination.

iii. When the observer moves through the scene, it is likely that many new objects
enter the viewing frustum at once. Therefore, the interior approximations of the objects
collected in the second step are rendered to the depth buffer (in front-to-back order from
the observer) while an occlusion query is initialized for each rendered approximation.
This improves the information in the depth buffer for further tests, gives fine granularity
visibility results for the corresponding objects and is quite efficient since most nodes’
inner approximation complexity is only a fraction from the original mesh’s complexity.

iv. Then, exploiting the completed depth buffer, occlusion tests are initialized for all
the nodes’ hull shapes collected in the second step (without altering the depth buffer).

v. In the final step, the results of all occlusion queries initialized in this frame are
read back from the GPU. Those objects whose corresponding test (or the test of the
associated interior approximation) returns that at least one pixel has passed the depth
test, are added to a list of visible objects. This list is used in the first algorithm step of
the next frame. According to the results for the tested hull shapes, the corresponding
nodes’ visibility markings are updated.

77

6 Hull Tree

Algorithm 6.1 Rendering-Loop

Variables: HullTreeRoot, visibleObjectList, possiblyVisibleObjectsList, testedEle-
mentsQueue, nodeTestList

// i. Sort and render visible objects
1: enable writing to the frame- and depth buffer
2: group objects in visibleObjectList by their states
3: for all groups in random order do
4: change state according to group
5: sort objects in group by increasing distance to observer
6: for all objects in the group do
7: render original object with occlusion query
8: add object to testedElementsQueue
9: mark object as rendered
10: end for
11: end for

// ii. Collect internal nodes and possibly visible objects
12: TraverseHullTree(HullTreeRoot)

// iii. Handle possibly visible objects
13: disable writing to the frame-buffer
14: sort objects in possiblyVisibleObjectsList by increasing distance to observer
15: for all objects in possiblyVisibleObjectsList do
16: if object not marked as rendered then
17: render object’s interior approximation with occlusion query
18: add object to testedElementsQueue
19: mark object as rendered
20: end if
21: end for

// iv. Init tests for inner nodes
22: disable writing to the frame- and depth buffer
23: for all objects in nodeTestList do
24: render nodes’s hull shape with occlusion query
25: add node to testedElementsQueue
26: end for

// v. Update visibility
27: clear visibleObjectList
28: for all elements in testedElementsQueue do
29: if occlusion query result is visible then
30: mark element as visible
31: if element is object then
32: add object to visibleObjectList
33: end if
34: else
35: mark element as invisible
36: end if
37: end for

78

6.6 Evaluation

Algorithm 6.2 TraverseHullTree(node)

Variables: testedElementsQueue, cameraPosition
1: if node outside Viewing-Frustum then
2: return
3: else if cameraPosition outside node’s bounding box then
4: if node marked as visible then
5: if at least one child is marked invisible then
6: add node to nodeTestList
7: end if
8: for all node’s child nodes do
9: TraverseHullTree(child node)

10: end for
11: else if node is leaf then
12: add node to nodeTestList
13: for all objects stored in the node do
14: add object to possiblyVisibleObjectsList
15: end for
16: end if
17: else
18: // Special case if the camera is located inside the node
19: mark node as visible
20: if node is leaf then
21: mark all node’s objects as visible
22: else
23: for all node’s child nodes do
24: TraverseHullTree(child node)
25: end for
26: end if
27: end if

On the one hand, our algorithm changes the detected visibility usually only for one
level of the hull tree per frame, which can lead to temporary image errors. On the other
hand, even complex scenes can be rendered with only few state changes of the graphics
pipeline and the occlusion tests are performed very efficiently because, typically, no
active waiting for the results is required.

6.6 Evaluation

We performed different tests to evaluate our approximations and our rendering algo-
rithm. We first started with tests related to the properties of our approximation com-
pared with standard bounding boxes. Tests were made with different scenes: the model
of the UNC Power Plant, a model of a Boeing 777, and two versions of a container port.
After that we performed runtime tests where we compared our rendering method with

79

6 Hull Tree

the CHC and the CHC++ algorithm. We measured the differences in the number of exe-
cuted occlusion tests, the differences in the count of the rendered objects, and pixel error
that occurs if our approximate rendering algorithm is used. To expose the advantage of
our algorithm with non-axis-aligned scenes, we used the container port scenes Container
Port and Container Port 45, each consisting of 5,322 objects and having approximately
6.5 M triangles. Each object has its own shader. There are five different shader pro-
grams, randomly attached to the different objects. The objects in the Container Port
scene are mostly axis-aligned, so most of the objects can be inserted in axis-aligned
bounding boxes without wasting too much space. The Container Port 45 is identical
to the Container Port scene, except that the scene is rotated by 45 degrees around the
y-axis. In that configuration, occlusion tests with AABBs lead to more false-positives.

For the tests, we implemented our rendering system in C++. The tests are performed
on a standard PC, equipped with a NVIDIA GeForce 260 GTX, a Quad-Core Intel CPU,
8 GiB RAM and Ubuntu 9.04 GNU/Linux as operating system.

Surface area, volume, and memory consumption

In our first tests we evaluated how much of the surface and volume is saved if we use
our exterior approximation instead of bounding boxes (see Figure 6.7). For both port
scenes we build a hull tree with a depth of seven, which proved to be a good trade-off
between accuracy and necessary traversal time. The hull trees for the UNC Power Plant
and the Boeing 777 scene have a depth of ten.

Figure 6.7: On every level of the hull tree, the surface area and the volume of the
approximations is smaller than the surface area and the volume of the octree
cells.

The values inside the diagrams are normalized, so that the root box of the octree
has surface area 1 and volume 1. As expected, the surface and the volume of the
exterior approximation was smaller than the surface and the volume of the octree cells’
bounding boxes. Furthermore, the savings increased on lower levels. Through this

80

6.6 Evaluation

Table 6.1: Comparison of the triangle count of the AABBs and our approximations.

Container Port Container Port 45
Lev. ∆ AABB ∆ Approx. fac. ∆ AABB ∆ Approx. fac.
0 12 12 1.0 12 12 1.0
1 48 40 0.83 48 48 1.0
2 144 128 0.89 168 152 0.9
3 480 460 0.96 504 500 0.99
4 1,872 1,824 0.97 1,836 1,768 0.96
5 8,208 8,232 1.0 7,740 7,848 1.01
6 37,632 37,484 1.0 35,352 35,220 1.0

UNC Power Plant Boeing 777
Lev. ∆ AABB ∆ Approx. fac. ∆ AABB ∆ Approx. fac.
0 12 8 0.67 12 12 1.0
1 24 24 1.0 48 52 1.08
2 84 72 0.86 168 184 1.1
3 276 236 0.86 720 632 0.88
4 900 860 0.96 2,292 2,184 0.95
5 3,732 3,600 0.96 9,060 8,968 0.99
6 17,988 17,344 0.96 43,212 43,800 1.01
7 92,904 94,860 1.02 222,528 228,332 1.03
8 492,096 503,608 1.02 1,234,884 1,274,460 1.03
9 2,303,244 2,302,204 1.0 6,305,292 6,417,264 1.02

increased precision, the number of false-positive occlusion queries decreases, thus the
number of initiated tests on lower levels is also reduced.

However, saving surface and volume for the visibility tests is not helpful when the
proxy geometry is too complex. Hence, we evaluated how many triangles are needed for
our approximations compared to the standard bounding boxes, for every octree level (see
Table 6.1). The measurements show that the number of triangles needed for our exterior
approximation is close to the number of triangles needed for standard bounding boxes.
In some situations the approximation needs less triangles, in some it needs only a few
more. These first tests show that using our exterior approximation saves a significant
amount of surface area and volume, and that the approximation’s complexity does not
differ too much from the complexity of the standard AABBs. The construction of the
hull tree took only a few seconds longer than the octree’s construction. The overhead
results from the additional operations required to determine the cell’s tighter shape by
examine its children nodes.

In the container port scenes, the interior approximation’s vertex data requires only
86 MiB, while the original scenes need 276 MiB of memory. Our simplification algorithm
was configured to create approximations with about 60 vertices per object, if possible.

Settings of the runtime tests

For the runtime tests of our rendering algorithm and the approximations, we used the
different container port scenes (see Figure 6.9). For comparison, we chose the CHC algo-
rithm as presented in [PF05], using a loose octree for storing the scene. This established
algorithm allows for quick occlusion culling. Although this algorithm is conservative, it

81

6 Hull Tree

Figure 6.8: Visualization of the camera path with the viewing directions used for the
tests.

basically uses the same building blocks as our algorithm and works without any addi-
tional parameters. In our opinion, this makes it a good candidate for the comparison.
For the rendering time, we additionally compared the results to the CHC++ algorithm,
using the parametrization as given in [MBW08].
We perform a walk-through as shown in Figure 6.8 for all of our runtime tests. We start
outside the port where we can see most of the environment. We quickly move the camera
to the outer left side of the container area. Then we turn right and move between the
containers, until we reach the cranes. We move left beyond the cranes, outside the port,
and direct our view to the center of the scene. After that we turn right again and move
back to the start position of the walk-through, while we still focus on the center of the
scene. The camera never holds its position, which results in a permanently changing set
of visible objects. The whole walk-through consists of 3,000 frames. The walk through
the Container Port 45 scene is similar, but not equal to the described walk-through. In
the middle section (frame 1,000-1,500) it differs. Here the camera is moved through a
channel built by many containers.

Image quality

In our first runtime test, we evaluate the rendering errors that occur if we use our
rendering method. For these tests we render each frame on the camera path twice with
a resolution of 1,024 × 768 pixels. Here a direct comparison is possible because the
additional needed computation time does not influence the results of this test (unlike

82

6.6 Evaluation

Figure 6.9: The left image shows a segment of the Container Port scene. In the right
image the blue hulls are our approximations, and the transparent red boxes
are the corresponding AABBs.

the parallel rendering system that communicate asynchronously).
First we render an image by using our rendering method and copy the resulting frame

into a buffer. In a second step, we do not change the camera position or orientation
and render an image with all objects, and copy the resulting frame into a second buffer.
Afterwards, we compare the buffers pixel by pixel and count the differences (see Fig-
ure 6.10).

0

20

40

60

80

100

0 500 1,000 1,500 2,000 2,500 3,000

p
ix

el
s

in
%

frame

Pixel errors per frame

CP00
CP45

Figure 6.10: Our rendering method produces images with a typically low pixel error,
with only a few extreme exceptions (thin peaks in the diagram above).

For most of the camera positions, the pixel error is close to 1%. There are a few
camera positions in which the pixel error is close to 100%. These peeks occur when the
camera is moved through a wall. In this situation it needs at most d frames (d being

83

6 Hull Tree

the depth of the hull tree) to determine the set of visible objects. After those frames the
image is mostly correct again.

Usually, when the visibility changes only gradually, errors occur only at small areas
near the border of the image and disappear almost immediately after only a few frames.
Due to this short time period, this is only perceived as a short flickering.

Tested objects in comparison with the CHC

In the comparison of our rendering algorithm with the CHC algorithm we also evaluated
the number of occlusion queries per frame. Figure 6.11 shows the results of these tests.
In most cases the CHC algorithm needs less tests than our rendering algorithm. We
have implemented the CHC algorithm as it is given in [PF05]. The algorithm does not
perform occlusion queries for each object. It stops testing when it reaches one of the
utilized data structure’s leaves and renders all included objects. Our algorithm also tests
the different objects in the leaves, which is why it initiates more tests.

0

100

200

300

400

500

600

0 500 1,000 1,500 2,000 2,500 3,000

q
u
er

ie
s

frame

Occlusion queries per frame

HT-CP00
CHC-CP00

HT-CP45
CHC-CP45

Figure 6.11: Comparison of the initiated occlusion queries using our rendering algorithm
and the CHC algorithm. (Values for the CHC are floating averages over a
range of eight frames to mask out the high frame to frame fluctuations.)

However, by performing more occlusion queries, we can reduce the number of objects
sent into the rendering pipeline. The additional tests do not influence the frame time
negatively. Our testing routine prevents the rendering pipeline from stalling, while
CHC’s occlusion queries can stall it. For nearly every camera position on our walk-
through our rendering algorithm renders less objects, as shown in Figure 6.12.

84

6.6 Evaluation

0

1,000

2,000

3,000

4,000

5,000

6,000

0 500 1,000 1,500 2,000 2,500 3,000

ob
je

ct
s

frame

Drawn objects per frame

HT-CP00
CHC-CP00

HT-CP45
CHC-CP45

Figure 6.12: Comparison of the drawn objects’ count using our rendering algorithm
compared with the CHC algorithm.

Rendering performance

Next, we evaluate the performance of our rendering technique. For this, we compare the
time needed to render a frame using our algorithm with the rendering time using the
CHC and the CHC++ algorithms. For this test we measure the rendering time for each
camera position with each algorithm. The results are plotted in Figure 6.13.

0

5

10

15

20

25

30

35

40

45

0 500 1,000 1,500 2,000 2,500 3,000

ti
m

e
in

m
s

frame

Rendering Time per frame

HT-CP00
CHC-CP00

CHC++-CP00
HT-CP45

CHC-CP45

Figure 6.13: Comparison of the rendering times using our rendering algorithm and the
CHC algorithm. Our algorithm is faster at nearly every camera position.

85

6 Hull Tree

The result shows that our algorithm provides a higher frame rate than the CHC
because our algorithm renders less objects and initiates fewer state changes. As expected,
the CHC++ outperforms the CHC algorithm at almost all positions. Compared with
our algorithm, the CHC++ produces quite similar results. However, our approximative
culling is faster than the CHC++ most of the time. In the Container Port scene the sum
of the rendering times is ≈ 61. 752 seconds when the CHC is used, ≈ 46. 839 seconds
when the CHC++ is used, and ≈ 35. 750 seconds when we use our rendering algorithm
with the hull tree.

Number of state-changes

This test evaluates how often the shader is exchanged using our rendering algorithm and
the CHC algorithm. Figure 6.14 shows that the number of state-changes is limited by
the number of different shader when our rendering algorithm is used. When the CHC
algorithm is used, the state of the rendering pipeline must be changed for nearly every
object that is rendered.

1

10

100

1,000

10,000

0 500 1,000 1,500 2,000 2,500 3,000

st
at

e-
ch

an
ge

s

frame

State-changes per frame

Average HT-CP45
Average CHC-CP45

Figure 6.14: Comparison of the shader changes using our rendering algorithm compared
to the CHC algorithm. The sorting of the objects by their shaders limits
the number of changes to the number of different shaders.

The CHC++ algorithm can reduce the number of state-changes. To reduce waiting
times, this algorithm sends a batch of objects into the rendering pipeline, and receives
the occlusion query results afterwards. The objects of each batch could be sorted by their
state, which influences occlusion tests’ quality negatively. To achieve best results from
the visibility tests, the objects should be sent in front-to-back order into the rendering
pipeline, just like it is done by the CHC algorithm.

86

6.6 Evaluation

Improvements by the interior approximations and exterior hulls

Our rendering system uses the interior approximations to test the visibility of scene
objects. By using these approximations instead of the original meshes we sent on average
only 68% of the triangles into the rendering pipeline to perform the visibility tests (see
Section 6.5, Step iii). When a user moves through the scene, looking around freely, the
number of initiated occlusion queries is lower when the hull tree is used in comparison to
a regular octree. In our tests the overall number of performed occlusion tests is reduced
by up to 5% compared to the usage of AABBs, especially while the camera moves quickly
and is distanced from the scene. Here the algorithm benefits from the tighter cells. The
culling algorithm must test additional octree levels while it can skip tests when the hull
tree is used.

In our last test we evaluated how many pixels were written into the depth buffer
during the visibility tests. Here we compare the number of drawn pixels while using the
hull tree with the number of drawn pixels while using an octree. If the hull tree is used
for the occlusion tests only 74% of the pixels are drawn into the depth buffer on average
(see Figure 6.15).

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

1e+08

0 500 1,000 1,500 2,000 2,500 3,000

d
ra

w
n

p
ix

el
s

frame

Drawn pixels into the depth buffer

hull tree
octree

Figure 6.15: Comparison of the number of pixels drawn to the depth buffer using the
hull tree and an octree.

This reduces the load on the graphics card’s raster operation pipeline. This is an
additional positive effect using the hull tree instead of an octree.

87

6 Hull Tree

6.7 Contribution

In this chapter we introduced a combination of approximations, organized in a hierar-
chical data structure, which allows a reduction in the number of false-positives, thus
reducing the overall number of performed occlusion tests. The bounding volumes of
the hull tree covers scenes’ objects tighter than other spatial hierarchical data struc-
tures. Additionally, the algorithm incorporates knowledge about the different states in
the draw order of the objects. Therefore it can limit the maximum number of state
changes to the number of different states, whereas other rendering algorithms do not
utilize this information which can lead to one state change per drawn object. Due to
these properties of our rendering algorithm and our approximations we can improve the
rendering performance of complex scenes without any scene specific configurations.

88

7 Parallel Out-of-Core Occlusion
Culling using the Hull Tree

In the previous chapter we introduced the hull tree data structure and a related rendering
algorithm. In this chapter we modify this data structure to make it suitable for a parallel
out-of-core rendering algorithm we developed [SKJ+11]. Here, we again look at a single
visualization node equipped with a high-end graphics adapter, that is supported by a
group of back-end nodes with weak graphics performance. The scenes to be visualized
are so large that they neither can be stored in the visualization node’s memory nor be
displayed in real-time with most standard techniques. We must therefore consider how
the slower back-end nodes can be used to accelerate the faster visualization node and
simultaneously how the objects are stored in the cluster. In comparison to the back-end
nodes in the approach presented in Chapter 5, these nodes receive no information besides
the current camera settings.

Our approach is as follows: the back-end nodes serve two purposes. First, their main
memory provides an out-of-core memory system for the visualization node. Second,
they assist the visualization node’s rendering by performing visibility calculations and
sending only visible objects to the visualization node. In order to obtain fast rendering
with our system, we have to distribute the objects among the back-end nodes in a way
that not only guarantees an even distribution of the objects, but also evenly distributed
visibility calculations. To achieve scalability and efficiency, our system has to meet the
following goals:

• The scene must be distributed evenly (without redundancy) among the combined
main memory of the back-end nodes.

• The computational load of visibility calculations should be balanced for most cam-
era positions.

• The back-end nodes’ response times (visibility calculations) must be kept as short
as possible.

• The amount of data to be sent to the visualization node must be kept small and
evenly distributed among the back-end nodes.

To fulfill these requirements, we use a pseudo-random distribution of the scene objects
across the back-end nodes’ main memory. To reduce the number of objects sent to the
visualization node at once, we employ an approximate hierarchical occlusion culling on
each back-end node. For this, they are equipped, in addition to the objects assigned to

89

7 Parallel Out-of-Core Occlusion Culling using the Hull Tree

them, with simplified versions of the remaining objects of the 3D scene. In the previous
chapters, we have used only PC clusters whose nodes are connected via a high speed
network. For the rendering system we additionally analyze the effect of only using a
standard network but with increased rendering performance of the back-end nodes.

7.1 Overview and Summary of Results

The single, powerful visualization node, connected to a number of back-end nodes via
network, renders the scene and allows the user to move interactively throughout the 3D
scene. Scene’s objects are distributed among the back-end nodes.

Object’s random distribution and hull tree modifications: Usually scalability
in scene size is achieved by external storage on disk, but with the drawback of slow
memory accesses. Fast visibility tests are easily achieved by the redundant storage of
the whole scene on each node, but with the drawback of low scalability. We solve these
conflicting requirements for our system as follows: We distribute all objects randomly
and without any redundancy among the back-end nodes and store them in processors’
main memory. We employ an approximate hierarchical occlusion culling algorithm on
each back-end node. For this, they are equipped with simplified versions of the scene
objects in addition to the objects assigned to them. In other words, each back-end node
contains a randomly chosen part of the scene’s objects. For each object that it does not
store, it maintains an interior approximation as described in the previous Section 6.4.
The random distribution of the objects results in the even distribution of final image
artifacts, while also ensuring that the amount of data to be sent is uniformly distributed
among the back-end nodes.

General rendering loop: The main rendering loop works as follows: The visu-
alization node maintains a set of visible objects in its GPU memory and renders them
in successive images (visibility computations are not performed). The back-end nodes
compute the visibility of the objects and send a list of objects to be added to or re-
moved from rendering to the visualization node (see Figure 7.1). In case of objects to be
deleted, only unique object identifiers are sent. Due to slow response times of the back-
end nodes, the visualization node receives at most one update per rendered frame. After
receiving updates from a given back-end node, the visualization node sends the current
camera position back to that node. Now, the given back-end nodes perform occlusion
tests for different camera positions. Parallelization is realized via parallel computation
of visibility tests for different camera positions, unlike other methods which perform
parallel computation for a single camera position.

Visibility computations: For our parallel rendering algorithm, we store either the
original objects or their interior approximation in the hull tree at each back-end node.
This differs from the sequentially used hull tree where we store both in tree’s leaves. This
tree is used to compute a hierarchical occlusion culling, whereby the objects, as well as
the simplified objects, are used as occluders. The result of a hull tree traversal is a list of
potentially visible objects valid for the camera position received from the visualization
node (see Section 7.3). For those original objects whose visibility has changed, the back-

90

7.2 Related Work

Figure 7.1: Communication scheme between visualization node and back-end nodes.

end node sends an update to the visualization node. If an object becomes visible then
its geometry is sent, if it becomes invisible then its unique identifier is transferred.

In this system each of scene’s original objects is stored on exactly one PC cluster
node. Additionally, every node has approximations for the other objects. Due to the
randomized distribution of the objects, the load through the visibility tests and the
data sent across the network is evenly distributed among the back-end nodes. The
utilization of the hull tree accelerates the back-end nodes’ visibility tests, which results
in a reduction in time between initiating a request and its receiving answer. Through
the combination of a hull tree with a randomized sample tree, we keep the network load
low. Tests in different hardware environments have shown that the graphics adapters’
performance influences images’ quality more than the network speed. This is reasoned
by obtaining faster visibility updates for more reasoned camera positions.

For this system, we did not face the problem where the set of visible objects do not
fit into the visualization node’s primary memory. In this case, one could exploit the hull
tree’s combination with a randomized sample tree to keep the memory requirements low.
It should be simple to combine the rendering algorithm for the randomized sample tree
with our algorithm. Instead of loading all visible objects, we would discard objects on
lower levels of the hierarchical data structure that are far away from camera position.

7.2 Related Work

One Parallel occlusion culling technique was suggested by Naga K. Govindaraju et al.
[GSYM03]. Their system consists of three nodes: two occlusion-test nodes to perform
the occlusion tests, and one visualization node to render the visible objects of the scene.

91

7 Parallel Out-of-Core Occlusion Culling using the Hull Tree

(a) (b)

Figure 7.2: Both images show approximations for the model of a Boeing 777 used by our
rendering algorithm. The left image shows the exterior approximations in
the sixth level of a hull tree (red shaded areas are related octree cells) and
the right picture shows the composition of the interior approximations.

The objects are organized in a scene-graph, the nodes of which are addressable by a
unique ID. In every frame one of the occlusion-test nodes performs an occlusion culling
and sends the ids of the visible scene-graph nodes to the other computers. At the same
time, the visualization node uses the previously received IDs to render the image visible
for the user. The second occlusion-test node renders these objects as well. This image is
the base for the node’s next occlusion test. When all nodes have finalized their procedure,
the two occlusion-test nodes switch their behavior. By sending only the ids of objects
that must be rendered the network load is reduced. However, every node must also store
the complete scene. In contrast, our system sends more data across the network but
scene-data is distributed over the different back-end nodes. In this way scenes can be
rendered that do not fit into node’s memory.

Hua Xiong et al. presented different parallel occlusion culling methods [XPQS06].
These techniques are designed for a CAVE (partially or completely surrounding dis-
play walls) equipped with 15 projectors, each associated to a single computer. For
their proposed methods, the scene-data is spatially partitioned in voxels. These voxels
are distributed over the different nodes. In the Sort-First Occlusion Culling approach,
every computer computes the occlusion culling on its own (the culling process is not
distributed). In the Sort-Last Occlusion Culling approach, each node computes the vis-
ibility for all voxels in its local memory. Afterwards, the geometry of the visible voxels
is sent to the nodes assigned to the tile where it has to be displayed.

7.3 Scene Preparation

To prepare a virtual scene for the presented technique, two different preprocessing steps
have to be performed. In order to exploit spatial coherence during the occlusion tests,
the scene objects are stored in a hull tree. The hull tree used in the sequential rendering

92

7.4 Data Distribution and Rendering

system does not meet all our needs. To achieve better performance, we combine the
hull tree with the ideas of the randomized sample tree [KKF+02] . Next we describe the
necessary preprocessing steps.

Bounding volume hierarchy
A loose octree serves as the basis for the construction of the bounding volume hierarchy
of the scene’s objects. In contrast to an ordinary octree, the boxes of the child nodes
do not split up the parent’s box disjointly, but they overlap. This allows objects to
be stored uniquely in a node at a tree level corresponding to its size (see [Del00]). To
combine our hull tree with the randomized sample tree we need to store each object only
once in the data structure. The hull tree for sequential rendering does not provide this.

One important property of a bounding volume hierarchy is that, if the bounding
volume of an inner node is evaluated as fully occluded (and the observer’s position is
outside the volume), all objects stored in the corresponding subtree can also immediately
be discarded as invisible. If only a fraction of the bounding volume is visible (but no
object), the visibility of the nodes in the subtree can not be predetermined and have to
be evaluated through additional tests. To increase the accuracy of the occlusion tests,
we use a modified version of the hull tree (see Chapter 6). A result can be seen in Figure
7.2a, where the tighter volumes can be compared to the larger bounding boxes.

The hull tree’s tighter bounding volumes are employed to increase the accuracy of the
occlusion tests (decreasing the number of necessary tests) and thereby increasing the
efficiency of the occlusion culling. Additionally we apply another technique to slightly
increase the number of objects that are incorrectly classified as visible, but without
increasing the number of necessary occlusion tests. We randomly choose some objects
(weighted by their surface area) to be stored at a higher level in the tree than they would
normally belong to, due to their size. This is comparable to the technique used by the
randomized sample tree. Experiments showed that, during the walk-through, intention-
ally adding these false-positives results is like a simple pre-fetching mechanism which
may increase the image quality while only marginally influencing the overall perfor-
mance of the system. For example, if the observer is standing in front of a wall covering
the whole screen, the issued occlusion queries may evaluate some objects as visible al-
though they are occluded by the wall. When the observer steps through the wall, the
visualization node can immediately render the former wrongly classified objects, while
all other newly visible objects only appear later (after the next test results have arrived).
In the meantime, the images can contain significant errors, but despite this a user can
retain orientation. The interior approximations are determined as described in Section
6.4.

7.4 Data Distribution and Rendering

As mentioned, the system aims at visualizing scenes with a complexity exceeding the
capacities of a single node’s main memory. The data is therefore distributed over the
nodes in the following manner:

93

7 Parallel Out-of-Core Occlusion Culling using the Hull Tree

The visualization node stores the data of those objects which are currently classi-
fied as visible in the graphics memory. As soon as an object is identified as invisible, its
data is deleted.

Each back-end node stores a subset of the scene’s objects, the precomputed interior
approximations of the corresponding remaining objects and the hierarchical data struc-
ture in their main memory. The assignment of the objects to the back-end nodes is done
by using a pseudo-random hash function, which leads to a uniform distribution where
each object is stored on exactly one back-end node. The scene is thereby completely
stored by the back-end nodes and can be efficiently transferred to the visualization node
without the need of any low latency hard disk access. Furthermore, every back-end node
has a simplified representation of the whole scene in order to be able to perform the
occlusion culling.

Algorithm 7.1 rendering-loop - Visualization Node

Variables: objectMap (objectId 7→ objectData)
1: loop
2: if data is available from a back-end node then
3: receive invisible objects’ IDs and delete them from objectMap
4: receive and add new objects to objectMap
5: send current camera position to back-end node
6: end if
7: clear buffers, set camera, ...
8: render all objects in objectMap
9: handle user input to update camera position
10: end loop

Rendering on the visualization node
The rendering loop of the visualization node is simple and straightforward (see Algorithm
7.1). In every frame, it checks if a back-end node has finished its current visibility cal-
culations. If new data is available, the IDs of the objects that were classified as invisible
are received and the corresponding objects are removed. Then the mesh data of newly
appearing objects is received and stored in the graphics card’s memory. Afterwards,
the back-end node is informed of the observer’s new position (and viewing direction) to
begin with the next visibility calculation. If the data of more than one back-end node is
available, its processing is postponed to the next frame to reduce the fluctuations of the
frame rate. Finally, all stored objects are rendered and the camera position is updated
according to the user’s input before the rendering loop starts over.

In the proposed setting, in which a cluster with a high network bandwidth is given,
the actual time needed for receiving the updated mesh data in most situations does not
influence the overall frame rate. If the network between the visualization node and the
back-end nodes becomes a bottleneck, or if a more stable frame rate is required, this

94

7.4 Data Distribution and Rendering

problem can be reduced by receiving the data on the visualization node asynchronously
to the rendering process. In system’s evaluation, we show that network’s load is so low
that a standard 1 GBit Ethernet, using TCP/IP, is quick enough to meet our needs.

Occlusion culling on the back-end nodes

Due to the relatively low graphic performance of the back-end nodes and scene’s high
complexity, we chose to use an occlusion culling algorithm which determines the visibility
of the whole scene adaptively over several frames instead of in one frame, similar to the
occlusion culling algorithm for the hull tree (see Section 6.5). During the culling process,
the visibility of the hull tree’s exterior approximations and of their corresponding objects
are determined. The depth in the tree at which elements may be classified as visible
is thereby adaptively changed by only one level towards the leaves per frame. On one
hand, this leads to a very efficient culling process with almost no pipeline stalls. On the
other hand, it may take several frames until all objects (especially the smallest ones at
the leaf nodes) are classified as visible after they actually became in view.

The rendering algorithm works in four phases: Initializing the depth buffer and testing
formerly visible nodes, testing potentially visible objects, fetching and evaluating the
test results and then finally sending the data to the visualization node. The algorithm’s
pseudo-code is given in Algorithm 7.2 and 7.3.

In the first phase the depth buffer is filled by rendering the objects which were visible
in the last frame. This is done in a front-to-back order and a hardware assisted occlusion
query is initiated for each rendered object to determine if it became occluded by other
objects. The rendered objects can be both original meshes stored on this back-end
node or the corresponding interior approximations. To prevent a possible pipeline stall
caused by retrieving the results of occlusion queries before they passed through the entire
rendering pipeline, the retrieval of the results is postponed to a later phase.

The second phase is used to test objects inside visible hull tree nodes and those
nodes whose parent in the tree is visible or which have an invisible child by recursively
traversing the tree (see Algorithm 7.3). The set of visible marked nodes can thereby be
extended or reduced by one level of the tree per frame. For the occlusion test of the
nodes, the precomputed bounding volumes are used.

In the third phase the results of all issued occlusion queries are evaluated. For tested
tree nodes, just their visibility flag is updated. The visibility flag of every tested object
is also updated and all visible objects are collected into the list of visible objects used
for the next frame. Those objects whose original mesh is stored on this specific back-end
node are processed further. If they are found visible, but their data is not present on
the visualization node, their data is prepared for sending. If they are found invisible and
their data is present on the visualization node, their ID is added to the list of disappeared
objects.

In the last phase, the back-end node sends the IDs of disappearing objects to the vi-
sualization node, followed by the mesh-data of the appearing objects. Finally, it receives
the new camera parameters before the visibility testing loop starts over again.

95

7 Parallel Out-of-Core Occlusion Culling using the Hull Tree

Algorithm 7.2 testing-loop - Back-end Node

Variables: visList (list of visible objects), delList (list of object-ids to delete), sendList
(list of objects to send), testQueue (queue of tested nodes and objects)

1: loop
2: clear buffer, set camera, ...

// i. Init depth buffer & test previously visible objects
3: for all objects in visList in front-to-back order do
4: init occlusion-query and render orig. mesh or approx. to depth buffer
5: add object to testQueue
6: mark object as rendered
7: end for
8: clear visList

// ii. Test potentially visible nodes and objects
9: TraverseTreeFrontToBack(RootNode)

// iii. Fetch and evaluate test results
10: for all elements in testQueue do
11: if occlusion-query result is visible then
12: mark element as visible
13: if element is interior approx. then
14: add object to visList
15: else if element is original mesh then
16: add object to visList
17: if not stored on visuNode then
18: add object to sendList
19: mark object as stored on visuNode
20: end if
21: end if
22: else
23: mark element as invisible
24: if is orig. mesh and is stored on visuNode then
25: add object-id to delList
26: mark object as not stored on visuNode
27: end if
28: end if
29: end for

// iv. Send the data to the visualization node
30: send ids in delList
31: send complete data in sendList
32: receive new camera position (and direction)
33: end loop

96

7.5 Evaluation

Algorithm 7.3 TraverseTreeFrontToBack(node)

Variables: testQueue (queue of tested nodes and objects)
1: if cameraPosition inside node then
2: mark node and all node’s object as visible
3: for all node’s children in front-to-back order do
4: TraverseTreeFrontToBack(child)
5: end for
6: else if node in viewing frustum then
7: if node marked as visible then
8: for all node’s objects not marked as rendered do
9: init occlusion-query and render orig. mesh or approx. to depth buffer

10: add object to testQueue
11: end for
12: if at least one child is invisible or isLeaf then
13: init occlusion-query for node’s b. volume
14: add node to testQueue
15: end if
16: for all node’s children in front-to-back order do
17: TraverseTreeFrontToBack(child)
18: end for
19: else
20: init occlusion-query for node’s b. volume
21: add node to testQueue
22: end if
23: end if

7.5 Evaluation

In this evaluation we analyze our system’s properties and performance. First, we intro-
duce our system environment, the used scene, the properties of the precomputed object
approximations, as well as the used camera path. We show that the chosen pseudo-
randomized distribution of the data leads to evenly distributed memory consumption
and work load on the back-end nodes. Next we analyze the achieved rendering perfor-
mance and network load of our system. Here we present the measured times for rendering
the images and receiving data, as well as the amounts of data sent across the network.
We show that our rendering performance allows for real-time interaction and that the
network is not saturated. Finally we evaluate the visibility delay, where we measure the
time until all visible objects have been send to the visualization node. We compare the
visibility delay when the camera is teleported to random scene positions to the delay
during walk-through.

97

7 Parallel Out-of-Core Occlusion Culling using the Hull Tree

Benchmark

For our evaluation we used the small PC cluster configuration of the PC2 as described in
Section 3.2. Additionally, we used a PC cluster consisting of 17 nodes. Below we refer to
this configuration as the standard network. In this configuration the visualization node is
equipped with an Intel i7 (4× 2.8 GHz), 12 GiB DDR3 RAM, and a NVidia GeForce 480
GTX. The 16 back-end nodes are equipped with an Intel Core 2 CPU (2× 2.66 GHz),
4 GiB DDR2 RAM, and a NVidia Quadro FX 3500. All nodes are connected via 1 GBit
Ethernet. The installed operating system is 64-bit OpenSuSE-11.2.
Our application is written in C++, using the GCC-4.4, OpenMPI, and OpenGL. For
our walk-through tests we use the model of a Boeing 777 whose storage requirements
is ≈8.5 GiB. The total size of the interior approximations is ≈2.2 GiB, the size of the
exterior approximation is ≈320 MiB.

Figure 7.3: Visualization of the camera path through the Boeing 777 used for our tests.

For our tests we perform a walk-through as shown in Figure 7.3 using 15,000 fixed
camera positions and alignments. The walk-through starts in front of the model, focusing
the cockpit. We move the camera straight forward through the cockpit, into the first
cabin. Here we reduce movement’s speed and move into the third cabin where we keep
the camera position unchanged for a while. Afterwards, we move through the airplane’s
tail, while rotating the camera. After we leave the airplane’s model, the camera is looking
at the turbine of the left wing. We move forward while rotating the camera until we
pass the turbine and point the camera directly into the engine. We then move along
the shortest route back to the starting point of our walk-through, completing the cycle.
As rapid changes of the visibility are the most challenging situations for the algorithm,
we try not to use portals, like doors, windows, gateways etc., between different model
sections during the walk-through, but move the camera through walls and the airplane’s
inventory.

The speed of the camera movement during the walk-through has a strong influence
on the overall behavior of the system. For the evaluation, we chose to limit the frame
rate to 30 fps, while always stepping one fixed step forward on the path each frame. On
average, this corresponds to the speed of a slowly walking person.

98

7.5 Evaluation

Memory distribution and culling performance

In our first tests we evaluate the memory distribution and the culling performance on
the back-end nodes.
To evaluate the memory distribution among the back-end nodes, we tested our system
using 9 to 15 back-end nodes, measuring the minimal and the maximal amount of data
stored by the nodes (see Figure 7.4). As expected, the measurements show that the
pseudo-randomized data assignment produces a well-balanced data distribution, with
a difference between the minimum and the maximum amount stored of only ≈75 MiB
(≈2 % of the measured median).

3,500

3,600

3,700

3,800

3,900

4,000

9 10 11 12 13 14 15

m
em

or
y

in
M

iB

number of nodes

used memory per node

Quartiles

Figure 7.4: Required memory of 9 to 15 back-end nodes.

It was not possible to run this test in the standard network configuration using a
comparable amount of nodes to the PC cluster configuration. The system software on
the back-end nodes required much more memory than the software on the back-end
nodes in the PC cluster. For this reason, we were not able to run our rendering system
with less than 16 back-end nodes on the standard network configuration.

Figure 7.5 shows the time spent for the occlusion culling on the different PC cluster
back-end nodes, measured during the walk-through. At each point in time the workload
for all 15 back-end nodes is almost equal, although the nodes perform their tests at
slightly different camera positions. The time needed for one pass ranges from some
milliseconds up to over 10 seconds. It is important that the different back-end nodes
work asynchronously, especially at those extreme points, so that the visualization node
receives a continuous stream of new objects. Although it takes some time until the
created image shows all details, the image quality rapidly achieves a suitable level, even
if the user steps through a wall. These aspects are further evaluated in Section 7.5.

99

7 Parallel Out-of-Core Occlusion Culling using the Hull Tree

0

2,000

4,000

6,000

8,000

10,000

0 20 40 60 80 100 120 140 160 180

te
st

in
g

ti
m

e
in

m
s

program runtime in sec

Testing times of the different back-end nodes

Testing time IB

Figure 7.5: Required testing times of 15 back-end nodes during program’s execution.
At any time the load of all back-end nodes is almost equal.

Rendering performance

In our next tests we analyzed the performance of the visualization node. The time
needed on the visualization node to receive the data from the back-end nodes and to
render an image is shown in Figure 7.6. As the visualization nodes in the different
configurations do not perform any additional operations for the rendering itself and the
test scene’s objects are all of similar complexity, the rendering time strongly correlates
with the number of drawn objects (see the 30 fps plot in Figure 7.8). The additional
time spent on the visualization nodes correlates with the amount of received data from
the back-end nodes (see Figure 7.7). Other measurements showed that the number of
deleted objects which have to be updated on the visualization node does not significantly
influence the overall performance.

An important indicator for the image quality is the frequency of incoming messages at
the visualization node. The highest update frequency is reached in the standard network
configuration. Here, the red peaks in Figure 7.6 diagram are densest. The number of
drawn objects per frame is in this configuration the highest as well. On the other hand,
the number of drawn objects does not differ much if we use Infiniband or 1 GBit Ethernet
in the PC cluster.

In all configurations the number of drawn objects per frame is small in relation to
the complete number of objects (about 720,848 in total). In the standard network
configuration, the visualization node renders more than 8,000 objects for only few frames.
In this exterior view, the visualization node in this configuration renders significant more
objects than in the PC cluster configuration. On our walk-through with 30 fps, the
number of drawn objects never exceeds 5,700 in both PC cluster configurations, which
is the reason why the frame rate is high enough to allow real-time interaction with the
system.

100

0

20

40

60

80

100

120

140

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000re
n
d
er

in
g

+
re

ce
iv

e
ti

m
e

in
m

s

frame

Median of rendering and receive time (PC cluster, ethernet)

receive time
rendering time

0

5

10

15

20

25

30

35

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000re
n
d
er

in
g

+
re

ce
iv

e
ti

m
e

in
m

s

frame

Median of rendering and receive time (PC cluster, Infiniband)

receive time
rendering time

0

10

20

30

40

50

60

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000re
n
d
er

in
g

+
re

ce
iv

e
ti

m
e

in
m

s

frame

Median of rendering and receive time (standard network)

receive time
rendering time

Figure 7.6: Required rendering time in the different PC cluster configurations. The
measured times include the reception of updates as well as the pure rendering.
The black base lines illustrate the net rendering time, where as the red peaks
show the time spent to receive and process updates from the back-end nodes.

7 Parallel Out-of-Core Occlusion Culling using the Hull Tree

0
2,000
4,000
6,000
8,000

10,000
12,000

0 2,000 4,000 6,000 8,000 10,000 12,00014,00016,000

D
at

a
in

K
iB

frame

Max. received data per frame

Infiniband
standard network

Figure 7.7: Received amount of data at the different camera positions in KiB.

(a) (b)

Figure 7.8: (a) Drawn objects per frame using the PC cluster with Infiniband.
(b): Drawn objects per frame in the different PC cluster configurations (using
30 fps). The black line shows the number of visible objects.

Visibility delay

As the occlusion culling on the back-end nodes is significantly slower than the rendering
on the visualization node, the outdated visibility information leads to temporary image
errors. Depending on the speed that the user moves through the scene, the number of
drawn objects changes (see Figure 7.8). In our system the frame rate limits the number
of fixed-sized steps that can be done per second. The slower the user moves (e.g., with
10 fps), the more objects are rendered on the visualization node as the back-end nodes
have more time to adapt their own visibility information closer to the actual position. If
the user moves faster (e.g., with a limit of 100 fps), the visibility tests on the back-end

102

7.5 Evaluation

nodes do not have time to reach deeper levels of the scene tree and only the larger objects
(and those which were randomly lifted up) are identified as visible.

Figure 7.9: The images in the upper row show screenshots with a gap of two seconds of
different camera positions, during the walk-through. The lower row shows
the corresponding positions in the standard network configuration.

The evaluation setting, with a frame rate limitation to 30 fps, provides a good trade-
off between real-time properties and visibility delay. The images of Figure 7.9 shows
snapshots made during a walk-through with a gap of two seconds between each other.
These images give an impression of the image quality achieved during runtime using
the PC cluster with Infiniband. Even if a larger number of actual visible objects have
not yet been identified, two effects result in a relatively high image quality during the
walk-through: First, the asynchronously working back-end nodes produce an almost
continuous stream of new objects. Although a single culling pass may take several
seconds to complete, every few frames one node has new objects available, so the image
quality continuously improves (if current visibility situation does not change too much).
Second, the presented data structure in combination with the occlusion culling algorithm
used prioritizes the bigger, and thereby more important, objects. The first objects to
arrive from a back-end node after a severe change of the visibility are thus probably
those which actually contribute most to the rendered image.

A worst-case scenario for the image quality is when the observer does not walk to a
position in the scene but immediately teleports to a new position. Figure 7.10 shows
the positions and measurements for such teleports. The different camera settings were
chosen due to their different properties. The loading times using the PC cluster with
Infiniband depends greatly on the target position. The time needed until the image is
complete and no further objects are transmitted ranges from 6 seconds (in the Boeing’s
cockpit) to 50 seconds (when the complete Boeing is in sight). Using the PC cluster
with 1 GBit Ethernet, the processing time increases slightly. In the standard network
configuration, using standard 1 GBit Ethernet but with better graphics adapters better
results were achieved. The time interval for a complete load is strongly decreased.

103

7 Parallel Out-of-Core Occlusion Culling using the Hull Tree

A user in general moves more steadily through the scene, allowing us to exploit spatial
coherence. While the complete reload of the turbine needed 31 seconds after a teleport,
it took only 8 seconds during the walk-through to load the complete engine. Another
observation is that in those experiments the different back-end nodes still work in a
synchronized manner and their updates arrive closely together. This results in larger
popping artifacts where many objects become visible at once. During the walk-through,
the nodes soon start to send their results more evenly distributed over time.
In general, the experiments have shown that the system allows a fluid navigation through
a complex scene with a high frame-rate, while achieving a reasonable image quality.

7.6 Contribution

In the presented parallel out-of-core rendering approach we use weak back-end nodes to
compute visibility tests and their main memory as secondary storage. In order to en-
able back-end nodes to perform occlusion tests for complex scenes despite their limited
memory, we use object approximations. We achieved a fairly uniform data distribu-
tion and load balancing for most camera positions by distributing the scene’s objects
pseudo-randomly on the back-end nodes. Due to the exploitation of spatial coherence,
our rendering system copes with large delays of the visibility tests. Because of these
properties, our rendering system allows real-time interaction with large scenes while
producing images whose error depend on the user’s movement speed.

104

7.6 Contribution

Figure 7.10: The left column shows screenshots of different camera positions, while the
right column shows the required update times on these different scene’s
locations when the camera is teleported to those positions. The plots’ y-
axis represents the amount of received data and is plotted in KiB. The
x-axis shows the time since the teleport in seconds.

105

Scenario III:

Large Dynamic Scenes

107

Large Dynamic Scenes

Figure 7.11: Rendering static scenes is already challenging. Dynamic scenes make this
challenge even more difficult.

The rendering of large, static, three-dimensional scenes is already a well-known chal-
lenge. The previous chapters introduced techniques to processes such scenes in real-time.
If a scene also includes many moving objects, the problem become even worse. To place
the dynamic objects correctly, their positions must be updated in every frame. In our
case the objects are controlled by an external simulation, written in Java, that sends the
updates via a network.

The case-study where we render large scenes with dynamic objects in parallel is the
simulation of material flows [DFH+08, SFH+09]. This is one well-established method
for planning, safeguarding and improving production processes. This is an application
of discrete event simulation which has been introduced by Law and Kelton [LK00].
Problems studied are, for instance, lot size planning, layout improvement, queue size
evaluation, human resource planning, and so forth.

During the last years, the 3D-visualization of material flow simulations has had a
growing importance. It helps the user in understanding the underlying behavior of the
modeled system better and more quickly than other methods. Moreover, the 3D-view
on the simulation model offers helps in communicating results and simulation based
decisions to persons who are not experts in simulation. As the use of material flow
simulations in industry increases, the size and the complexity of models is also growing.
The complexity of not only the simulation model, but also the 3D representation, is high
because they are often imported from CAD-applications.

109

8 Visualization of Multiple
Synchronous Simulations

In the previous parts our techniques were focused on large static scenes, without any
dynamics. In this chapter we present a rendering technique that allows to render multiple
dynamic discrete event simulations simultaneously using a PC cluster. One main aspect
for our application of discrete event simulation is the intensive use of random variables
to model, for instance, processing times or break down intervals. This randomness
leads to the following problem: a single simulation run must not be regarded as the
representation of model behavior because it is possible to view the best case, the worst
case, or anywhere in-between. In classic simulation study, one would repeat simulation
runs in order to allow the assessment of each simulation run in the context of a set
of simulation runs. These replications only differ in their random variables, in such a
manner that the flow of jobs is affected but not the type of machines. An average over
the whole set is created and it is assumed that this mean is a valid representation of the
real system and can be used to make reasonable decisions.

The need for studies with a set of simulations and the benefit of simulation visualiza-
tion cannot be satisfied by current simulation tools because just one single simulation
run can be visualized. The system presented in this paper was designed to offer a solu-
tion to this problem: It enables the easily and fast analyzing of model behavior and it
supports the user to concentrate on significant representations.

The general idea of the developed approach is to visualize not only one simulation
run, but to animate all simulation runs in one 3D-visualization interface by using special
techniques such as transparency or tinting of each dynamic object of each simulation run
[DHL+06, FLH+07]. By aggregating transparent dynamic objects a “visual average” is
created (see Figure 8.1). It will then be possible to visualize the stochastic derivations
of the simulation study in one user interface. Moreover, the identification of extreme
simulation runs can be done faster and the direct analysis for reasons of extreme behavior
is supported. The identification of special simulation runs can be assisted by tinting
dynamic objects in different colors, depending of their simulation. To compare specific
simulations, multiple simulations can be visualized next to each other (see Figure 8.2).
Another feature of our system is that the number of simulation replications can be
altered during runtime. This is useful when the user wants to analyze system parameters,
which he has not thought of at the begin of the simulation. To increase the number of
simulations, a cloning method was implemented.

Our system has to simulate and visualize a large, and possibly growing, number of
complex models simultaneously. Each task cannot be accomplished by a single computer.

111

8 Visualization of Multiple Synchronous Simulations

Figure 8.1: Merging Dynamic Objects.

The execution of the simulation and the rendering is done on a PC cluster and a thin-
client is used for visualization and interaction. By using a PC cluster, a good scalability
of the development process is possible. The thin-client makes mobile application possible.
In order to do this we must solve the following problems:

• We must render large scenes that contain more static objects than a single node
is able to process.

• We must be able to display simulations that contain more dynamic objects than
one single node can process.

• We must join the images of static and dynamic scene parts quickly and efficiently.

8.1 Overview and Summary of Results

For the parallel simulations and the rendering system we use the large configuration of
PC2’s Arminius PC cluster. For the controlling and interaction, an additional external
visualization client is used. The communication between PC cluster and the external
visualization client is realized by a TCP/IP connection. The nodes in the cluster com-
municate over Infiniband interfaces. The communication-flow is shown in Figure 8.3.
For this rendering system, the PC cluster nodes are separated into three groups: a mas-
ter node, a large amount of static-rendering nodes, and a number of dynamic-rendering
nodes. The rendering performance of all utilized nodes is low. For each simulation there
is exactly one dynamic-rendering node. The external client is connected to the master
node. On each static-rendering node, a static-scene renderer is started and there are

112

8.1 Overview and Summary of Results

Figure 8.2: The visualization client.

no other processes started by the program on these nodes. On each dynamic-rendering
node, a dynamic-scene renderer and simulation kernel is started (see Figure 8.4).

The master node receives commands from the client and sends them to the static-
rendering nodes. Load-balancing of the static-rendering nodes, composing of the pictures
from the static and the dynamic-rendering nodes, and sending of composed pictures to
the client are also done by the master node.

The static and the dynamic parts of a 3D-scene are strictly separated. It is assumed
that the overall complexity of the static objects is higher than that of the dynamic
objects. The static objects do not differ from one simulation to another, so it is possible
to render only one picture of these objects for all simulations. In contrast, each dynamic
object is associated to exactly one simulation and typically simulations have different
behavior.

After receiving a user command, the static-rendering nodes render the static parts of
a simulation. This is repeated for every frame. The frame and the depth buffer are sent
to the master node. Additionally, the depth buffer and the last user command are sent
to the dynamic-rendering nodes. The nodes wait for new commands after their message
has been sent.

Every dynamic-scene renderer is connected to the simulation kernel which has been
started on the same node. There is no need for a simulation to be running on this
kernel as it is possible that a kernel is waiting for a simulation as input. This happens
when, for example, a user wants to clone a simulation. Cloning means to create a copy
of a simulation which acts exactly like the original. If a simulation shall be cloned to
another simulation kernel on another dynamic-rendering node, all simulation kernels in
the PC cluster have to be suspended at the same time. The simultaneous suspension
of all kernels keeps the simulation synchronous. When all kernels are suspended, the
selected simulation will be serialized to a byte-stream. This stream will be send to

113

8 Visualization of Multiple Synchronous Simulations

Figure 8.3: Communication Diagram.

a dynamic-rendering node whose simulation kernel is not running a simulation. The
stream will be deserialized in the simulation kernel and all simulation kernels will be
resumed simultaneously.

If a simulation is running on a dynamic-rendering node, the dynamic-scene renderer re-
ceives the signals of the simulation kernel, the depth buffers and the user commands from
the static-rendering nodes. After composing the incoming depth buffers the dynamic-
rendering nodes evaluate the received user command and compute a picture of the dy-
namic objects of the simulation it is associated to. After finalizing the rendering process,
the depth buffer of the rendered frame is compared with the composed depth buffer of
the static-rendering nodes. By doing this, occluded parts will be erased. The pictures of
the dynamic rending nodes are composed hierarchically by MPI-mechanisms. The final
picture of the visible dynamic parts will be sent to the master node. Here the static and
the dynamic pictures will be merged and sent to the client (see Figures 8.5 and 8.6 also
showing occlusion of dynamic objects by static objects).

A user is able to interact with and modify the simulations. All of these interactions
have to be lead through the PC cluster to the dynamic-rendering nodes where they are
transmitted to the simulation kernels.

To render large, static scenes we rendered these scene parts in sort-first manner. Thus
we do not use all available PC cluster nodes. We balance their rendering load using
a heuristic that determines the load of the different rendering nodes by the previously
needed rendering time. The dynamic scene parts are rendered by a second group of
back-end nodes. Each node in this second group renders the dynamic objects of exactly
one simulation. The produced images are combined in sort-last manner. Tests have
shown that the fastest merging of the images is done by FPGAs.

114

8.2 Related Work

Visualization
ClientClient

Static Rendering
Node

Static
Renderer

Master
Node

Dynamic Rendering
Node

Dynamicy
Renderer

Simulation
KernelKernel

Figure 8.4: Simplified visualization of the system configuration. The master node is the
communication center which handles all data into and out of the PC cluster.

8.2 Related Work

In this section, a short overview of the related work in the areas of simulation visualiza-
tion and parallel and distributed simulation shall be given.

The technique of Interactive simulations with 3D visualization has success-
fully found its way into discrete simulation technology over the last decade. Before that
the discrete simulators rendered the model in a 2D fashion with icons and lines. Com-
mon arguments for 3D visualization of simulation models are that they provide a better
understanding of the regarded problem by all stakeholders and the easier identification
of errors [KM00] (for example the detection of accumulations of packets on conveyor
belts). By allowing to change simulation’s parameters during runtime the number of
repeated simulation runs is decreased. Thus, the total evaluation time decreases as well
[DDLF09]. The changes to the simulation model can be done with a 3D editor.

Recent results of experimental studies that tested the impacts of Virtual Reality (VR)
on Discrete-Event Simulation show that it is easier and faster to spot errors in a 3D/VR
model than in 2D [AB05]. Despite the advantages of 3D visualization, many remain
cautious because of a shallow learning curve for 3D software. However, Renken et al.
have shown that 3D models can be used for motion planning in production facilities
[FRL+10].

Most of today’s discrete event simulation systems (for example Quest, Automod, and
others) already provide integrated 3D visualizations. In these systems, a simulation and
the rendering are running on the same machine. For performance reasons, simulation
and rendering can be executed on different machines and bidirectionally coupled with
each other [SSLR05]. When doing so, the synchronization of both tools (i.e. the time
advance in both tools) must be coordinated.

115

8 Visualization of Multiple Synchronous Simulations

Figure 8.5: Showcase of two static-scene renderers’ frame parts.

Parallel and distributed simulation is used to speed up the computation, in other
words, to reduce the time until reliable results are available. There are two methods to
exploit parallel processors for simulation. First, one simulation can be distributed on
a multiprocessor cluster to speed-up the simulation [Fuj98]. To obtain reliable results,
the simulation runs are executed sequentially. Second, as implemented in our system,
on every processor of a cluster one replicated simulation can be executed [GH91] (i.e.,
simulation runs are executed in parallel).

8.3 System Architecture

The system consists of program parts written in C/C++ and JavaTM. The different
components communicate via network. The static and dynamic scene parts are strictly
separated.

The simulation kernel
The simulation kernel used is a Java based discrete event simulation tool named d3FACT
insight [DMMH05]. This tool has be developed in-house by members of Prof. Dangel-
maier’s group. d3FACT insight is specialized in modeling and simulating material flow
systems, especially job shop problems. A model consists of a graph of entities represent-
ing machines, conveyor belts, buffers, etc. Every entity is a static object with respect to
rendering and an instant of an entity-class. The jobs are represented by token objects,
dynamic objects with respect to rendering. Token allocate the entities of the graph
and are sent from entity to entity, creating the material flow. This sending, receiv-
ing and alteration of tokens is done by event routines, which are executed at discrete

116

8.3 System Architecture

times when according events occur. To visualize a model, each entity and token has
a 3D-representation and a position in R3. The logic data of models (i.e., entities de-
scription and simulation input data) is separated from the 3D-data. Data of both data
types are stored in a central database and are linked by referencing the DB-key of the
3D-representations in the logic entity description.

Figure 8.6: Frame of the dynamic-scene renderer (on black) and the complete frame.

Like in every other common simulation tool, there is a set of random distributions
(e.g., normal, exponential, triangular) to model processing times, breakdown behavior,
etc. To each random variable a specific seed is assigned, allowing the generation of
different random values in each variable. This is used in simulation studies when a set
of simulation runs is used to analyze system behavior. In a study, every variable gets
a different seed in every run, thus resulting in different model behavior. To capture
model behavior, every entity has several statistic variables, like utilization, idle time,
breakdown time.

To enable online visualization of a simulation, there is a simulation-to-real-time ratio
parameter in the simulation kernel. This parameter, though not typical in discrete
event simulation, is necessary to create realistic animations. Normally a next event time
advance function is used, which advances the simulation clock directly from one event
to the next [LK00].

To connect to a simulation for online control, user interaction, visualization and data
collection (or, in more general terms, message reception and transmission) a well de-
fined message protocol is used. To receive these messages, a local socket connection is
necessary.

One special kernel module enables the cloning of simulations. The state of a simulation
can be saved (i.e., the variable values, the list of scheduled events, the position of dynamic
objects). This saved simulation state can be transferred to another simulation kernel,

117

8 Visualization of Multiple Synchronous Simulations

which is not running a simulation yet. This simulation kernel can load the saved state
and initialize a simulation equal to the original. After cloning, both simulation kernels
can run the “same” simulation. If complete equality is not desired, the cloned simulation
can be altered by changing the seeds of the random variables. If the original simulation
is suspended until the clone is ready, both simulations run nearly synchronously because
of the time ratio parameter of the simulation kernel.

The master node
The master node is the main communication center in our system. It sends the rendered
pictures to an external client and receives the inputs of a user (movement) and propagates
them to the rendering nodes. Additionally, the rendering job sizes of the static-scene
renderer are also organized by this special and unique node (load balancing). The
composition of dynamic and static subpictures is also performed on this node. The view
space is divided by a recursive algorithm. The splitting is related to the technique that
Abraham et. al. [ACCC04] present in their work. The number of static rendering nodes
is N = 2n. For the first frame of the visualization, the tiles are equally sized for all
nodes. Every node measures for every frame the time it needs to render its tile. The
needed rendering time is sent to the master node to determine the new tile sizes. The
N nodes are split in two fixed groups, g1 and g2, where the nodes of g1 have rendered
the upper half of the screen and the nodes of g2 the lower half.

Figure 8.7: Partition of tiles.

This arrangement in groups is persistent for the whole simulation. In Figure 8.7, an
example partition after several balancing steps is shown. The differently colored areas
visualize the different groups where every group has 2n−1 members. For both groups,
the average of the last frames’ required rendering times is calculated. The calculated
average of g1 will be called m1 and for g2 will be called m2. If m1 is bigger than m2,

118

8.3 System Architecture

typically the nodes of g1 have had to render more geometry than the nodes of g2. In this
case the border between this groups will be shifted in relation to the difference of the
averages. The area of g1 will be shrunk and the area of g2 will expand. If the average
rendering time of g2 is bigger the behavior is reversed. If the averages are (nearly) equal,
the border will not be shifted. This harmonization will be done recursively until a group
only consists of one node. Computing the load-balancing in this way is very fast and
tests show that the load of all nodes is well balanced after a few frames [ACCC04].

The dynamic-scene renderer
Every dynamic-scene renderer has its own exclusive simulation. On every dynamic-
rendering node a native MPI process runs for the rendering and a simulation process in
a Java-VM. Both processes communicate locally over a TCP/IP socket using a compact
protocol. The rendering and the simulation processes exchange binary-coded message
over this channel. After starting the MPI process it will instantiate a simulation kernel
in a Java-VM immediately. The dynamic-scene renderer connects a threaded socket-
client to a socket-server threaded by the simulation kernel. Between visualization and
simulation, all commands and events are transmitted over this channel.

First the simulation kernel, which is running on the dynamic-rendering node with
the lowest ID, loads all meshes which are needed to visualize the running simulation
from a database and stores them on the hard disk. When storing has been finished,
a message is sent from the simulation kernel to the connected dynamic-scene renderer.
This dynamic-scene renderer notifies all other renderes – static and dynamic – that the
loading of the scene data can be initiated.

When all renderers have finished loading and organizing their data, they wait for user
commands and the separated depth buffers of frame’s static parts. The itemized depth
buffers have to be combined into a single buffer for the whole frame. The depth buffer
is needed to erase dynamic objects that are occluded by static objects (the frame buffer
is not needed). The dynamic-scene renderer handles the user commands and renders
a picture of the dynamic objects of its corresponding simulation in front of a black
background. When the rendering process has been finished, a dynamic-scene renderer
reads back the frame and the depth buffer from the memory of the graphics adapter
to its local memory. The merging of the separated frames can be done in several ways
depending on the chosen visualization technique.

If all simulations will be shown in only one frame, a MPI-Reduce function is called
where the depth buffer values of all frames of the dynamic-scene renderer are compared
with one another. The comparison is organized hierarchically in a tree. In this way a
pixel will get the color of the object that is closest to the view-plane. The root of the
reducing function (the node where the final result is stored) sends the merged frame and
depth buffer to the master node and all nodes wait for new instructions.

The behavior of the system is similar if all simulations shall be visualized with trans-
parencies in one frame. Instead of merging the dynamic objects opaquely (occluding
each other) the several frames are merged proportionally with transparencies. If there
are n simulations that should be visualized in one frame, the alpha value of all pixels

119

8 Visualization of Multiple Synchronous Simulations

is set to 1
n
, where 0 is transparent and 1 is opaque. For the computation of the color

values of all of the pixels, the Porter Duff algorithm is used in a hierarchical tree as well.
Similar to opaque merging, the root of the reduction sends the final image to the master
node (see Figure 8.1).

The transparent visualization is reasonable up to 16 simulations. Our system allows
merging of more than 16 transparent frames, but for a user it is nearly impossible to
distinguish between one or two tokens at the same position.

If a lot of simulations are visualized in only one frame, a user can lose the overview.
However, sometimes a user wants to know how a specific simulation differs from all the
others. This rendering system offers an mechanism to tint the dynamic objects of one
simulation in an eye-catching color. This way it is possible for a user to see whether the
behavior of a simulation corresponds with the others.

The merging of the different dynamic-scene renderers’ images consumes a considerable
amount time. For this reason we looked into alternative methods to accelerate this
subroutine. These results are presented in Section 8.4.

The static-scene renderer
The static-scene renderer processes only the static parts of a scene (machines, racks,
etc.). These objects are rendered by a sort-first rendering approach. This means that
the viewing plane is divided in separated tiles. In this system, every static-scene renderer
is responsible for exactly one tile, whose relative position never changes.

After receiving a load-ready message from a dynamic-rendering node, all static-rendering
nodes load the data for the whole scene into their memory and organize them in a hier-
archical data structure which can be chosen by the user (octree or k-d tree). This data
structure is needed for frustum culling of every tile of a picture. Every static-rendering
node receives a user command and a tile position with its dimension from the master
node. The view-port will be trimmed and the geometry in this area of the view-plane
will be specified (by doing a frustum intersection test) traversing the built data struc-
ture. Every static-scene renderer computes its subframe, reads the image data from
the graphics adapter’s memory to its main memory. It then sends the frame buffer,
the depth buffer and the needed rendering time to the master node. The master node
receives all tiles from the static-render nodes and combines them to a complete image
of the static parts of the scene. However, the dynamic objects are still needed for dis-
playing a correct frame. Thus, the depth buffer is required to add the images of the
dynamic-rendering nodes. The pure rendering times are needed to balance the load of
the static-scene renderer.
The depth buffer is also sent to all dynamic-rendering nodes, just the same as the last
user command. When sending is completed, the static-render node waits for new input
from the master node.

The visualization client
The external control application is a thin-client written in Java. This decision has
been made to reduce the platform dependency. Additionally we decided that the client
does not need any 3D-graphic-accelerator. This decision makes it possible to develop

120

8.4 Joining the Partial Images

control-interfaces that run on weak computers, such as PDAs or cell-phones. The client
only provides an user-interface to control the cluster, the visualization and the itemized
simulations (see Figure 8.2). All computations are done by the processors in the PC
cluster. The client does not even know about the properties (utilization, speeds, ...) of
the several simulations. If there is the need for any information from the cluster or the
simulations, it has to be requested from the master node.
All images to be displayed on the client application are transmitted from the master
node as raw RGB-images, we discard pixels’ alpha values to reduce the network load.
After receiving an image, it will be visualized and a new user command is sent to the
master node. If there was no user interaction, a new image is requested anyway.
Using the client application it is also possible to select which simulations shall be shown
or modified. The properties of machines can be requested and, after this, a user can
modify them. For example a user can change the distribution ratio of a switch or the
processing time of a machine. After subscribing to machine properties, the user will be
informed about all changes until he unsubscribes from this information.

8.4 Joining the Partial Images

The rendering system renders the static scene parts in a sort-first manner. This way,
composing the different tiles can be done with less effort. In contrast, composing the
images (including the dynamic part) of the image consumes a significant amount of
time. In order to accelerate this image processing step, we test if different hardware
components can be utilized [SSPP09, SSPP11]. Here we aim to analyze the composing
speed and the rendering speed. As benchmark we render different sections of the UNC
Power Plant. We decrease the hierarchy tree’s depth by composing many images on one
node. We analyze the acceleration that can be achieved if images are merged via a pixel’s
depth value comparison. These tests are made separately in a different environment. In
one step we try to combine two up to eight images on one node, while we usually
combine two images on one node per step. In order to test a wide range of hardware
components we use the XtremeData’s XD1000 Architecture as visualization node. This
node is equipped with a 2.2 GHz AMD Opteron CPU and 4 GiB main memory. An Altera
Stratix II EP2S180-3 FPGA and additional 4 GiB external memory is placed in a second
Opteron socket. The CPU and FPGA communicate via a 16-bit-wide HyperTransport
link. Additionally, this node is equipped with a NVidia GeForce 8800 GTS (using 16×
PCI-e). In this configuration, only one back-end node is available. It is equipped with an
Intel Clovertown featuring 2 quad core CPUs running at 2.66 GHz and 8 GiB RAM. The
nodes are connected via Infiniband with a peak bandwidth of 10 GBit/s. We perform
the tests with a resolution of 800×600, 1,024×768, and 1,280×1,024 using 32 bit/pixel.
For the composition we used a simple algorithm (see Algorithm 8.1).

We evaluate six different configurations to accelerate the composition: CPU without
its streaming unit, CPU using SSE2, GPU using GLSL-shader, GPU using CUDA, and
FPGA. We achieve the best results with the FGPA. The second best results are achieved
with the CPU without the streaming unit.

121

8 Visualization of Multiple Synchronous Simulations

Algorithm 8.1 Simple sort-last image composing algorithm.

Variables: color array SrcC1, SrcC2 depth array SrcD1, SrcD2
1: for i = 0; i < SrcC1.length; i++ do
2: if SrcD1[i] > SrcD2[i] then
3: SrcC1[i] = SrcC2[i];
4: SrcD1[i] = SrcD2[i];
5: end if
6: end for

The usage of processor’s streaming units does not pay off. This is due to the number of
CPU instructions which are performed in every loop. To perform the composition using
SSE2 required more than twice the processor instructions than the comparison and copy
operations in the merge algorithm. If the chosen pixels are equally distributed over both
partial images, without SSE2 we can expect that half of the copy instructions can be
skipped. On the other hand, no operations can be skipped because of SSE2’s SIMD
characteristic.

The composition time using the GPU does not differ much when CUDA or GLSL is
used. The problem here is not the composition itself (the junction of several images on
the GPU can be performed rapidly). The problem is the host-to-device data transfer.
Composing four and seven 800 × 600 pixel images, we achieve roughly 11. 4 − 17. 1 fps
using the CPU, while we achieve only round about 9. 7−15. 5 fps if we use CUDA. Four
images with a resolution of 1,280 × 1,024 can be composed and display using the CPU
with a rate of 6. 4 fps, while we achieve only 5. 8 fps if the GPU is used.

The usage of the FPGA outperforms the CPU. The benefit achieved with the FPGA
is displayed in the diagram of Figure 8.8.

Using the FPGA, the rendering speed increases linearly with the number of composed
images until the network is saturated. If the CPU is used, the speed-up collapses ear-
lier. By increasing the number of processors, every node has to process fewer objects.
Additionally, the overhead to produce an image (like copying buffers) does not change.

8.5 Contribution

In this chapter we have presented a system for the simultaneous visualization of several
parallelly executed simulations. By using multiple processors for simulation execution
and parallel rendering, huge models can be simulated and visualized. Because of this,
new techniques to display aggregated data of many simulation runs had to be developed.
We separated the static scene parts from the dynamic. While we render the static parts
in sort-first manner, we render each simulation’s dynamic objects independently. To
accelerate the composition of the different images, we determined that the fastest way
is the usage of a FPGA in comparison to other techniques.

122

8.5 Contribution

0

5

10

15

20

25

30

2 3 4 5 6 7 8

fp
s

number of rendering nodes

Composing CPU vs. FPGA

CPU, 800× 600
CPU, 1,024× 768

CPU, 1,280× 1,024
FPGA, 800× 600

FPGA, 1,024× 768
FPGA, 1,280× 1,024

sat. network 800× 600
sat. network 1,024× 768

sat. network 1,280× 1,024

Figure 8.8: Comparison of the composition speed using the CPU without SSE2 and the
FPGA. The speedup of FPGA is stopped by the network’s saturation.

123

9 Conclusions

In this thesis we have shown how heterogeneous PC clusters can be utilized for parallel
image rendering. In this context we do not require that all nodes are equipped with
high end hardware. In the developed approaches, only a small group of powerful nodes
is necessary, the rest of the PC cluster nodes can offer weak graphic performance. Due
to this support of mixed hardware configurations it is possible to upgrade only a few
processors instead of the complete PC cluster system. This allows the users to use
hardware’s latest features like GPU-extensions, shaders, streaming units. In this way,
the upgraded group can be tested sufficiently while the other nodes run unmodified.
These properties can influence a system’s overall stability and performance positively.
Additionally, these configurations save energy and costs, which is an important topic for
PC cluster providers and their users. The providers can also use a PC cluster for a longer
time because the system improves constantly. Based on this it is easier for providers and
users to adjust their software for future PC cluster system configurations.

9.1 Contribution

Collectively, we developed four parallel rendering systems, one sequential rendering sys-
tem, and a spatial hierarchical data structure. Additionally, we evaluated how sort-last’s
image combination can be accelerated through the usage of different hardware.

With the developed parallel rendering systems we answered the following questions:

• Can heterogeneous PC clusters be utilized for parallel real-time rendering?

• What tasks can be handled by the weak nodes?

• How can asynchronous communication protocols be applied?

• How can the rendering, data, and network load be distributed among the different
nodes?

In this thesis we have shown that heterogeneous PC clusters, consisting of a few
powerful nodes and many weak nodes, can be used for parallel real-time image rendering.
We have introduced different methods where many weak nodes support a few powerful
nodes. These methods include techniques as simplification generation, visibility test, and
storing data. Additionally, we have shown that few nodes equipped with special purpose
hardware can influence the rendering performance positively. Our parallel rendering
systems for static scenes improve the image quality if the number of back-end nodes is

125

9 Conclusions

increased. This is different to other systems that increase the frame rate if the number
of nodes is increased.

The weak nodes can be utilized for tasks which are not time-critical. In the reliefboard
approach the weak back-end nodes compute the simplifications asynchronously, while
the display images are computer on the powerful visualization nodes. In the out-of-core
rendering systems, the back-end nodes serve as “smart” secondary memory that filter
requested objects by performing visibility tests. Our first introduced parallel out-of-core
rendering systems used older depth buffers to determine visible objects. To accelerate
the visibility test of our secondly introduced parallel out-of-core rendering system we
developed a spatial, hierarchical data structure. The hull tree reduces the amount of
data that each back-end node has to store in its primary memory.

Due to the back-end nodes’ weak performance, the suggested computations require
much processing time. As a result, the back-end nodes have to perform tasks whose
results are suitable for the displaying visualization nodes even when they arrive several
seconds later. Because of slight fluctuations in the various task sizes, it is unusual that
results arrive at the visualization nodes on time. For that reason, the communication
does not have much influence on the rendering process for the visualization nodes. In the
reliefboard approach the back-end nodes compute the simplification which can be used
for many frames on the visualization node. The parallel out-of-core rendering systems
reduce the load of the network by determining visible objects on the back-end nodes and
sending only visible objects.
In the parallel rendering system to visualize multiple simulations we separated the static
scene parts from the dynamic parts. While the static scene is rendered in a balancing
sort-first manner, the dynamic scene parts of each simulation is processed on a separate
back-end node. The different images are combined in sort-last manner. To accelerate
the merging process we use a node equipped with an FPGA, while other promising
techniques (like streaming units or GPUs) were not found to be beneficial, during our
tests.

A randomized distribution of the tasks and the data leads to good load balancing
in the presented systems. In the reliefboard approach and the first presented parallel
out-of-core approach, we distributed the different objects randomized and redundant
among the back-end nodes. In the parallel out-of-core rendering system that uses the
hull tree we renounced redundant storing of the data items. Due to the huge amount
of data items and the relative small number of requests, the load was sufficiently evenly
distributed.

In addition to these parallel rendering methods, we also developed a sequential occlu-
sion culling technique with a associated spatial hierarchical data structure (which was
later modified for parallel rendering purposes). The data structure covers its included
objects more tightly than other data structures, such as regular octrees. Thus it is more
suitable for occlusion culling.

126

9.2 Open Questions and Future Work

9.2 Open Questions and Future Work

We tested the developed rendering techniques with CAD-models without the use of
image manipulating procedures, such as a different post-processing shaders. It would be
interesting to analyze how our techniques can be combined with these techniques. Image
manipulating shaders can improve the image quality, which can lead to a higher level of
realism for the observer. Additionally, it would be interesting to evaluate how the user
perceives the approximations. On the one hand, massive popping effects can disturb
users. On the other hand, a low frame rate is also disturbing and, in some situations,
worse than the spontaneous appearance of objects.

The developed techniques are tested on two different types of nodes. The load-
balancing algorithms of reliefboards and the first out-of-core, rendering system presented
should be expandable to support more types of nodes. The out-of-core renderer using
the hull tree would need a new data access protocol.

In the future, multi-core CPUs will have a huge amount of independently working
cores. This computation parallelism should allow transferring the reliefboards technique
directly on a single computer. A transfer of the other parallel rendering techniques would
probably require more efforts.

For the static scene renderer, we always distributed the different objects randomly.
It would be interesting if there are other easily computable distributions (especially for
large scenes streaming algorithms for clustering) that could be used.

For two of our rendering techniques we use interior approximations. The computation
of these simplifications needs a significant amount of time. Additionally, for certain mesh
configurations it is not possible to determinate this approximation or to reach the aimed
triangle count. Faster and more robust methods are required here.

127

Bibliography

[AB05] Justice I. Akpan and Roger J. Brooks. Experimental investigation of the
impact of virtual reality on discrete-event simulation. In Proceeding of the
2005 Winter Simulation Conference, WSC ’05, pages 1968–1975. Winter
Simulation Conference, 2005.

[ABB+07] Carlos Andújar, Javier Boo, Pere Brunet, Marta Fairén, Isabel Navazo,
Pere Pau Vázquez, and Alvar Vinacua. Omni-directional relief impostors.
Computer Graphics Forum, 26(3):553–560, September 2007.

[ABW90] Helmut Alt, Johannes Blömer, and Hubert Wagener. Approximation of
convex polygons. In Proceedings of the 17th International Colloquium on
Automata, Languages and Programming, volume 443 of ICALP ’90, pages
703–716. Springer-Verlag, 1990.

[ACCC04] Frederico Abraham, Waldemar Celes, Renato Cerqueira, and Joao Luiz
Campos. A load-balancing strategy for sort-first distributed rendering. In
Proceedings of the XVII Brazilian Symposium on Computer Graphics and
Image Processing, SIBGRAPI ’04, pages 292–299, Washington, DC, USA,
2004. IEEE Computer Society.

[ACW+99] Daniel Aliaga, Jon Cohen, Andrew Wilson, Eric Baker, Hansong Zhang,
Carl Erikson, Kenny Hoff, Tom Hudson, Wolfgang Stuerzlinger, Rui Bas-
tos, Mary Whitton, Fred Brooks, and Dinesh Manocha. Mmr: an inter-
active massive model rendering system using geometric and image-based
acceleration. In Proceedings of the 1999 symposium on Interactive 3D
graphics, I3D ’99, pages 199–206, New York, NY, USA, 1999. ACM.

[Ada05] Paul Adams. Performance comparisons of visualization architectures. In
Proceedings of the Users Group Conference 2005, DOD-UGC ’05, pages
388–393, Washington, DC, USA, 2005. IEEE Computer Society.

[AMHH08] Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time Ren-
dering 3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

[BHP07] Beat Brüderlin, Mathias Heyer, and Sebastian Pfützner. Interviews3d:
A platform for interactive handling of massive data sets. IEEE Comput.
Graph. Appl., 27:48–59, November 2007.

129

Bibliography

[BMadHS97] Petra Berenbrink, Friedhelm Meyer auf der Heide, and Klaus Schröder.
Allocating weighted jobs in parallel. In Proceedings of the 9th Annual
ACM Symposium on Parallel Algorithms and Architectures, SPAA ’97,
pages 302–310, New York, NY, USA, 1997. ACM.

[BMW+09] Jǐŕı Bittner, Oliver Mattausch, Peter Wonka, Vlastimil Havran, and
Michael Wimmer. Adaptive global visibility sampling. In ACM Trans-
actions on Graphics, volume 28, pages 94:1–94:10, New York, NY, USA,
August 2009. ACM.

[BWPP04] Jǐŕı Bittner, Michael Wimmer, Harald Piringer, and Werner Purgathofer.
Coherent hierarchical culling: Hardware occlusion queries made useful.
Computer Graphics Forum, 23(3):615–624, 2004.

[CDL+96] Bradford Chamberlain, Tony DeRose, Dani Lischinski, David Salesin, and
John Snyder. Fast rendering of complex environments using a spatial hi-
erarchy. In Proceedings of the Conference on Graphics Interface ’96, pages
132–141, Toronto, Ont., Canada, Canada, 1996. Canadian Information
Processing Society.

[CDR02] Alan Chalmers, Timothy Davis, and Erik Reinhard, editors. Practical
parallel rendering. A. K. Peters, Ltd., Natick, MA, USA, 2002.

[CKS02a] Wagner T. Corrêa, James T. Klosowski, and Cláudio T. Silva. iwalk:
Interactive out-of-core rendering of large models. Technical Report
TR-653-02, Princeton University, http://www.cs.princeton.edu/˜wtcorrea
/papers/iwalk.pdf, 2002.

[CKS02b] Wagner T. Corrêa, James T. Klosowski, and Cláudio T. Silva. Out-of-core
sort-first parallel rendering for cluster-based tiled displays. In Proceed-
ings of the Eurographics Workshop on Parallel Graphics and Visualiza-
tion, EGPGV ’02, pages 89–96, Aire-la-Ville, Switzerland, Switzerland,
2002. Eurographics Association.

[CKS03] Wagner T. Corrêa, James T. Klosowski, and Claudio T. Silva. Visibility-
based prefetching for interactive out-of-core rendering. In Proceedings of
the 2003 IEEE Symposium on Parallel and Large-Data Visualization and
Graphics, PVG ’03, pages 1–8, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[Cla76] James H. Clark. Hierarchical geometric models for visible surface algo-
rithms. Communications of the ACM, 19:547–554, October 1976.

[COCSD03] Daniel Cohen-Or, Yiorgos Chrysanthou, Cláudio T. Silva, and Frédo Du-
rand. A survey of visibility for walkthrough applications. IEEE Transac-
tions on Visualization and Computer Graphics, 9(3):412–431, 2003.

130

Bibliography

[Coo84] Robert L. Cook. Shade trees. In Proceedings of the 11th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’84, pages
223–231, New York, NY, USA, 1984. ACM.

[CVM+96] Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, Greg Turk, Hans
Weber, Pankaj Agarwal, Frederick Brooks, and William Wright. Sim-
plification envelopes. In Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’96, pages
119–128, New York, NY, USA, 1996. ACM.

[DDLF09] Wilhelm Dangelmaier, Robin Delius, Christoph Laroque, and Matthias
Fischer. Concepts for model verification and validation during simulation
runtime. In European Simulation and Modelling Conference, ESM ’09,
pages 49–53. EUROSIS, EUROSIS-ETI, 26 - 28 October 2009.

[DDSD03] Xavier Décoret, Frédo Durand, François X. Sillion, and Julie Dorsey. Bill-
board clouds for extreme model simplification. ACM Transactions on
Graphics, 22:689–696, July 2003.

[DDTP00] Frédo Durand, George Drettakis, Joëlle Thollot, and Claude Puech. Con-
servative visibility preprocessing using extended projections. In Proceed-
ings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’00, pages 239–248, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

[DE84] William H. E. Day and Herbert Edelsbrunner. Efficient algorithms for
agglomerative hierarchical clustering methods. Journal of Classification,
1:7–24, 1984.

[Del00] Mark. Deloura. Game Programming Gems. Charles River Media, Inc.,
Rockland, MA, USA, 2000.

[DFH+08] Wilhelm Dangelmaier, Matthias Fischer, Daniel Huber, Christoph
Laroque, and Tim Süß. Aggregated 3d-visualization of a distributed simu-
lation experiment of a queuing system. In S. J. Mason, R. Hill, L. Moench,
and O. Rose, editors, Proceedings of the 2008 Winter Simulation Confer-
ence, WSC´ 08, pages 2012 – 2020. IEEE, Omnipress, 2008.

[DH00] Michael Doggett and Johannes Hirche. Adaptive view dependent tes-
sellation of displacement maps. In Proceedings of the ACM SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, HWWS ’00,
pages 59–66, New York, NY, USA, 2000. ACM.

[DHL+06] Wilhelm Dangelmaier, Daniel Huber, Christoph Laroque, Mark Aufe-
nanger, Matthias Fischer, Jens Krokowski, and Michael Kortenjan. d3fact
insight goes parallel - aggregation of multiple simulations. In Thomas

131

Bibliography

Schulze, Graham Horton, Bernhard Preim, and Stefan Schlechtweg, edi-
tors, Proceedings of the Simulation und Visualisierung 2006, SimVis ’06,
pages 79–88. SCS European Publishing House, 2006.

[DMadH93] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. Simple, effi-
cient shared memory simulations. In Proceedings of the 5th Annual ACM
Symposium on Parallel Algorithms and Architectures, SPAA ’93, pages
110–119, New York, NY, USA, 1993. ACM.

[DMMH05] Wilhelm Dangelmaier, Kiran Mahajan, Bengt Mueck, and Daniel Huber.
d3fact insight - simulation of huge scale models in cooperative work. In Jörg
Krüger, Alexei Lisounkin, and Gerhard Schreck, editors, Proceedings of the
Industrial Simulation Conference, ISC ’05, pages 150–158. EUROSIS-ETI,
9 - 11 June 2005.

[DMS01] Laura Downs, Tomas Möller, and Carlo H. Séquin. Occlusion horizons for
driving through urban scenery. In Proceedings of the 2001 symposium on
Interactive 3D Graphics, I3D ’01, pages 121–124, New York, NY, USA,
2001. ACM.

[DN09] Philippe Decaudin and Fabrice Neyret. Volumetric billboards. Computer
Graphics Forum, 28(8):2079–2089, 2009.

[DS10] Dominic Dumrauf and Tim Süß. On the complexity of local search for
weighted standard set problems. In Proceedings of the 6th Conference on
Computability in Europe, pages 132–140, 30 June - 4 July 2010.

[DY08] Steve Dominick and Ruigang Yang. Anywhere pixel router. In Proceed-
ings of the 5th ACM/IEEE International Workshop on Projector Camera
Systems, PROCAMS ’08, pages 7:1–7:2, New York, NY, USA, 2008. ACM.

[EMB01] Carl Erikson, Dinesh Manocha, and William V. Baxter, III. Hlods for
faster display of large static and dynamic environments. In Proceedings of
the 2001 Symposium on Interactive 3D graphics, I3D ’01, pages 111–120,
New York, NY, USA, 2001. ACM.

[EP08] Stefan Eilemann and Renato Pajarola. Direct send compositing for parallel
sort-last rendering. In ACM SIGGRAPH ASIA 2008 courses, SIGGRAPH
Asia ’08, pages 39:1–39:8, New York, NY, USA, 2008. ACM.

[FLH+07] Matthias Fischer, Christoph Laroque, Daniel Huber, Jens Krokowski,
Bengt Mueck, Michael Kortenjan, Mark Aufenanger, and Wilhelm Dan-
gelmaier. Interactive refinement of a material flow simulation model by
comparing multiple simulation runs in one 3d environment. In Proceedings
of the European Simulation and Modelling Conference, ESM ’07, pages
499–505. EUROSIS, October 2007.

132

Bibliography

[Fly72] Michael J. Flynn. Some computer organizations and their effectiveness.
IEEE Transactions on Computers, 21(9):948–960, September 1972.

[FRL+10] Matthias Fischer, Hendrik Renken, Christoph Laroque, Guido Schaumann,
and Wilhelm Dangelmaier. Automated 3d-motion planning for ramps and
stairs in intra-logistics material flow simulations. In Proceedings of the
2010 Winter Simulation Conference, WSC ’10, pages 1648 – 1660. IEEE,
Omnipress, 5 - 8 December 2010.

[Fuj98] Richard M. Fujimoto. Parallel and distributed simulation. In Jerry Banks,
editor, Handbook of Simulation, pages 429–464. John Wiley & Sons, 1998.

[GBK06] Michael Guthe, Ákos Balázs, and Reinhard Klein. Near optimal hierar-
chical culling: Performance driven use of hardware occlusion queries. In
T. Akenine-Möller and W. Heidrich, editors, Proceeding of the Eurograph-
ics Symposium on Rendering, pages 207–214. The Eurographics Associa-
tion, June 2006.

[GBSF05] Anselm Grundhöfer, Benjamin Brombach, Robert Scheibe, and Bernd
Fröhlich. Level of detail based occlusion culling for dynamic scenes. In
Proceedings of the 3rd International conference on Computer Graphics and
Interactive Techniques in Australasia and South East Asia, GRAPHITE
’05, pages 37–45, New York, NY, USA, 2005. ACM.

[GFB10] Johannes Ghiletiuc, Markus Färber, and Beat Brúderlin. A Highly Scal-
able Image-Based Remote Rendering Framework. In Jürgen Gausemeier
and Michael Grafe, editors, Augmented & Virtual Reality in der Produk-
tentstehung, HNI-Verlagsschriftenreihe, Paderborn, pages 317–330. Uni-
versität Paderborn, HNI Verlagsschriftenreihe, Paderborn, 2010.

[GH91] Peter W. Glynn and Philip Heidelberger. Analysis of parallel replicated
simulations under a completion time constraint. ACM Transactions on
Modeling and Computer Simulations, 1:3–23, January 1991.

[GH99] Stefan Gumhold and Tobias Hüttner. Multiresolution rendering with dis-
placement mapping. In Proceedings of the ACM SIGGRAPH/Eurographics
Workshop on Graphics Hardware, HWWS ’99, pages 55–66, New York,
NY, USA, 1999. ACM.

[GM05] Enrico Gobbetti and Fabio Marton. Far voxels: a multiresolution frame-
work for interactive rendering of huge complex 3d models on commodity
graphics platforms. ACM Transactions on Graphics, 24(3):878–885, July
2005.

[GMBP10] Prashant Goswami, Maxim Makhinya, Jonas Bösch, and Renato Pajarola.
Scalable parallel out-of-core terrain rendering. In Proceedings of the Euro-
graphics Symposium on Parallel Graphics and Visualization, EGPGV ’10,

133

Bibliography

pages 63–71, Norrköping, Sweden, May 2010. Eurographics Association,
Eurographics Association.

[GSYM03] Naga K. Govindaraju, Avneesh Sud, Sung-Eui Yoon, and Dinesh Manocha.
Interactive visibility culling in complex environments using occlusion-
switches. In Proceedings of the 2003 Symposium on Interactive 3D graphics,
I3D ’03, pages 103–112, New York, NY, USA, 2003. ACM.

[HDD+93] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Mesh optimization. In Proceedings of the 20th An-
nual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’93, pages 19–26, New York, NY, USA, 1993. ACM.

[HE05] Martin Held and Johannes Eibl. Biarc approximations of polygons within
asymmetric tolerance bands. In Computer-Aided Design, volume 37, pages
357–371, 2005.

[Hop96] Hugues Hoppe. Progressive meshes. In Proceedings of the 23rd An-
nual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’96, pages 99–108, New York, NY, USA, 1996. ACM.

[HSLM02] Karl Hillesland, Brian Salomon, Anselmo Lastra, and Dinesh Manocha.
Fast and simple occlusion culling using hardware-based depth queries.
Technical report, Department of Computer Science, University of North
Carolina at Chapel Hill, 2002.

[HWC10] Mark Howison, Bethel E. Wes, and Hank Childs. MPI-hybrid Parallelism
for Volume Rendering on Large, Multi-core Systems. In Proceedings of the
Eurographics Symposium on Parallel Graphics and Visualization, EGPGV
’10, Norrköping, Sweden, May 2010. Eurographics Association, Eurograph-
ics Association.

[JW02] Stefan Jeschke and Michael Wimmer. Textured depth meshes for real-time
rendering of arbitrary scenes. In Proceedings of the 13th Eurographics work-
shop on Rendering, EGRW ’02, pages 181–190, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association.

[KBF05] David J. Kasik, William Buxton, and David R. Ferguson. Ten CAD chal-
lenges. IEEE Computer Graphics and Applications, 25:81–92, March 2005.

[KDG+08] David Kasik, Andreas Dietrich, Enrico Gobbetti, Fabio Marton, Dinesh
Manocha, Philipp Slusallek, Abe Stephens, and Sung-Eui Yoon. Massive
model visualization techniques: course notes. In ACM SIGGRAPH 2008
classes, SIGGRAPH ’08, pages 40:1–40:188, New York, NY, USA, 2008.
ACM.

134

Bibliography

[KKF+02] Jan Klein, Jens Krokowski, Matthias Fischer, Michael Wand, Rolf Wanka,
and Friedhelm Meyer auf der Heide. The randomized sample tree: a data
structure for interactive walkthroughs in externally stored virtual environ-
ments. In Proceedings of the ACM symposium on Virtual Reality Software
and Technology, VRST ’02, pages 137–146, New York, NY, USA, 2002.
ACM.

[Kle97] Reinhard Klein. Multiresolution representations for surfaces meshes. In
Proceedings of the Spring Conference on Computer Graphics 1997, SCCG
’97, pages 57–66, 1997.

[KM00] Vineet R. Kamat and Julio C. Martinez. 3d visualization of simulated
construction operations. In Proceedings of the 2000 Winter Simulation
Conference, WSC ’00, pages 1933–1937, San Diego, CA, USA, 2000. Soci-
ety for Computer Simulation International.

[KPH+10] Wes Kendall, Tom Peterka, Jian Huang, Han-Wei Shen, and Robert Ross.
Accelerating and benchmarking radix-k image compositing at large scale.
In Proceedings of Eurographics Symposium on Parallel Graphics and Vi-
sualization, EGPGV ’10, pages 101–110. Eurographics Association, Euro-
graphics Association, May 2010.

[KS00] James T. Klosowski and Cláudio T. Silva. The prioritized-layered projec-
tion algorithm for visible set estimation. IEEE Transactions on Visualiza-
tion and Computer Graphics, 6:108–123, April 2000.

[KTI+01] Tomomichi Kaneko, Toshiyuki Takhei, Masahiko Inami, Naoki Kawakami,
Yasuyuki Yanagida, Taro Maeda, and Susumu Tachi. Detailed shape rep-
resentation with parallax mapping. In Proceedings of the 11th Interna-
tional Conference on Artificial Reality and Telexistence, ICAT ’01, pages
205–208, 2001.

[Lai05] Samuli Laine. A general algorithm for output-sensitive visibility prepro-
cessing. In Proceedings of the 2005 Symposium on Interactive 3D Graphics
and Games, I3D ’05, pages 31–40, New York, NY, USA, 2005. ACM.

[LE97] David Luebke and Carl Erikson. View-dependent simplification of arbi-
trary polygonal environments. In Proceedings of the 24th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’97,
pages 199–208, New York, NY, USA, 1997. ACM Press/Addison-Wesley
Publishing Co.

[LK00] Averill M. Law and W. David Kelton. Simulation Modeling and Analysis.
McGraw-Hill, 2000.

135

Bibliography

[LSCO03] Tommer Leyvand, Olga Sorkine, and Daniel Cohen-Or. Ray space fac-
torization for from-region visibility. ACM Transactions on Graphics,
22(3):595–604, 2003.

[Lud10] Ludic. Graphics task distribution performance scaling without compro-
mise. Technical report, Ludic, September 2010. whitepaper.

[Lue01] David P. Luebke. A developer’s survey of polygonal simplification algo-
rithms. IEEE Computer Graphics and Applications, 21:24–35, May 2001.

[LWC+02] David Luebke, Benjamin Watson, Jonathan D. Cohen, Martin Reddy, and
Amitabh Varshney. Level of Detail for 3D Graphics. Elsevier Science Inc.,
New York, NY, USA, 2002.

[MBDM97] John S. Montrym, Daniel R. Baum, David L. Dignam, and Christopher J.
Migdal. Infinitereality: a real-time graphics system. In Proceedings of
the 24th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’97, pages 293–302, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[MBM+01] Michael Meißner, Dirk Bartz, Gordon Müller, Tobias Hüttner, and Jens
Einighammer. Generation of subdivision hierarchies for efficient occlusion
culling of large polygonal models. Technical Report TUBSCG-1999-01,
Technical University of Braunschweig, 2001.

[MBW08] Oliver Mattausch, Jǐŕı Bittner, and Michael Wimmer. CHC++: Coherent
hierarchical culling revisited. Computer Graphics Forum, 27(2):221–230,
April 2008.

[MBWW07] Oliver Mattausch, Jǐŕı Bittner, Peter Wonka, and Michael Wimmer. Opti-
mized subdivisions for preprocessed visibility. In Proceedings of the Graph-
ics Interface, GI ’07, pages 335–342, New York, NY, USA, 2007. ACM.

[MCEF94] Steve Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A sorting
classification of parallel rendering. IEEE Computer Graphics and Appli-
cations, 14:23–32, July 1994.

[MCEF08] Steve Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A sort-
ing classification of parallel rendering. In ACM SIGGRAPH ASIA 2008
courses, SIGGRAPH Asia ’08, pages 35:1–35:11, New York, NY, USA,
2008. ACM.

[MOM+01] Shigeru Muraki, Masato Ogata, Kwan-Liu Ma, Kenji Koshizuka, Kagenori
Kajihara, Xuezhen Liu, Yasutada Nagano, and Kazuro Shimokawa. Next-
generation visual supercomputing using pc clusters with volume graphics
hardware devices. In Proceedings of the 2001 ACM/IEEE Conference on
Supercomputing (CDROM), Supercomputing ’01, pages 51–51, New York,
NY, USA, 2001. ACM.

136

Bibliography

[MPHK94] Kwan-Liu Ma, James S. Painter, Charles D. Hansen, and Michael F.
Krogh. Parallel volume rendering using binary-swap compositing. IEEE
Computer Graphics and Applications, 14:59–68, July 1994.

[MPHK08] Kwan-Liu Ma, James S. Painter, Charles D. Hansen, and Michael F.
Krogh. Parallel volume rendering using binary-swap image composition.
In ACM SIGGRAPH ASIA 2008 courses, SIGGRAPH Asia ’08, pages
38:1–38:9, New York, NY, USA, 2008. ACM.

[NB04] Shaun Nirenstein and Edwin H. Blake. Hardware accelerated visibility
preprocessing using adaptive sampling. In Proceedings of the 15th Eu-
rographics Symposium on Rendering, Rendering Techniques 2004, pages
207–216. The Eurographics Association, 2004.

[NBG02] S. Nirenstein, E. Blake, and J. Gain. Exact from-region visibility culling.
In Proceedings of the 13th Eurographics Workshop on Rendering, EGRW
’02, pages 191–202. Eurographics Association, 2002.

[OU06] Tetsuro Ogi and Takaya Uchino. Dynamic load-balanced rendering for a
cave system. In Proceedings of the ACM Symposium on Virtual Reality
Software and Technology, VRST ’06, pages 189–192, New York, NY, USA,
2006. ACM.

[Pac96] Peter S. Pacheco. Parallel programming with MPI. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1996.

[Paj08] Renato Pajarola. Cluster parallel rendering. In ACM SIGGRAPH ASIA
2008 courses, SIGGRAPH Asia ’08, pages 34:1–34:12, New York, NY,
USA, 2008. ACM.

[PF05] Matt Pharr and Randima Fernando. GPU Gems 2: Programming tech-
niques for high-performance graphics and general-purpose computation.
Addison-Wesley Professional, first edition, 2005.

[Res09] Jon Peddie Research. Multi gpus: Needs, issues, and opportunities. Tech-
nical report, Jon Peddie Research, 2009. whitepaper.

[Ros05] Randi J. Rost. OpenGL(R) Shading Language (2nd Edition). Addison-
Wesley Professional, 2005.

[RP05] Timothy Roden and Ian Parberry. Portholes and planes: faster dynamic
evaluation of potentially visible sets. Computers in Entertainment, 3:3–3,
April 2005.

[RRR06] Marcus Roth, Patrick Riess, and Dirk Reiners. Load balancing on cluster-
based multi projector display systems. In Proceedings of the International
Conference in Central Europe on Computer Graphics, Visualization and
Computer Vision, WSCG ’06, pages 55–62, 2006.

137

Bibliography

[SBS06] Dirk Staneker, Dirk Bartz, and Wolfgang Straßer. Occlusion-driven scene
sorting for efficient culling. In Proceedings of the 4th International Confer-
ence on Computer Graphics, Virtual Reality, Visualisation and Interaction
in Africa, AFRIGRAPH ’06, pages 99–106, New York, NY, USA, 2006.
ACM.

[SDDS00] Gernot Schaufler, Julie Dorsey, Xavier Decoret, and François X. Sillion.
Conservative volumetric visibility with occluder fusion. In Proceedings of
the 27th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’00, pages 229–238, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[SEP+01] Gordon Stoll, Matthew Eldridge, Dan Patterson, Art Webb, Steven
Berman, Richard Levy, Chris Caywood, Milton Taveira, Stephen Hunt,
and Pat Hanrahan. Lightning-2: a high-performance display subsystem
for pc clusters. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’01, pages 141–148, New
York, NY, USA, 2001. ACM.

[SFH+09] Tim Süß, Matthias Fischer, Daniel Huber, Christoph Laroque, and Wil-
helm Dangelmaier. Ein System zur aggregierten Visualisierung verteilter
Materialflusssimulationen. In Jürgen Gausemeier and Michael Grafe, edi-
tors, Augmented & Virtual Reality in der Produktentstehung, volume 252,
pages 111–126. Heinz Nixdorf Institut, Universität Paderborn, May 2009.

[SFL01] Rudrajit Samanta, Thomas Funkhouser, and Kai Li. Parallel rendering
with k-way replication. In Proceedings of the IEEE 2001 Symposium on
Parallel and Large-Data Visualization and Graphics, PVG ’01, pages 75 –
84, Piscataway, NJ, USA, October 2001. IEEE Press.

[SFLS00] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and Jaswinder Pal Singh.
Hybrid sort-first and sort-last parallel rendering with a cluster of pcs. In
Proceedings of the ACM SIGGRAPH/Eurographics Workshop on Graphics
Hardware, HWWS ’00, pages 97–108, New York, NY, USA, August 2000.
ACM.

[SGG+00] Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues Hoppe, and John
Snyder. Silhouette clipping. In Proceedings of the 27th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’00,
pages 327–334, New York, NY, USA, 2000. ACM Press/Addison-Wesley
Publishing Co.

[SHDG+09] Behzad Sajadi, Yan Huang, Pablo Diaz-Gutierrez, Sung-Eui Yoon, and
M. Gopi. A novel page-based data structure for interactive walkthroughs.
In Proceedings of the 2009 Symposium on Interactive 3D Graphics and
Games, I3D ’09, pages 23–29, New York, NY, USA, 2009. ACM.

138

Bibliography

[SJF10] Tim Süß, Claudius Jähn, and Matthias Fischer. Asynchronous parallel
reliefboard computation for scene object approximation. In Proceedings
of the Eurographics Symposium on Parallel Graphics and Visualization,
EGPGV ’10, pages 43–51, Norrköping, Sweden, May 2010. Eurographics
Association, Eurographics Association.

[SKJ+11] Tim Süß, Clemens Koch, Claudius Jähn, Matthias Fischer, and Fried-
helm Meyer auf der Heide. Ein paralleles Out-of-Core Renderingsystem
für Standard-Rechnernetze. In Jürgen Gausemeier, Michael Grafe, and
Friedhelm Meyer auf der Heide, editors, Augmented & Virtual Reality in
der Produktentstehung, volume 295 of HNI-Verlagsschriftenreihe, Pader-
born, pages 185–197. Heinz Nixdorf Institut, Universität Paderborn, May
2011.

[SKJF11] Tim Süß, Clemens Koch, Claudius Jähn, and Matthias Fischer. Approxi-
mative occlusion culling using the hull tree. In Proceedings of the Graphics
Interface 2011, pages 79–86. Canadian Human-Computer Communications
Society, May 2011.

[SLS+96] Jonathan Shade, Dani Lischinski, David H. Salesin, Tony DeRose, and
John Snyder. Hierarchical image caching for accelerated walkthroughs of
complex environments. In Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’96, pages
75–82, New York, NY, USA, 1996. ACM.

[SSLR05] Steffen Strassburger, Thomas Schulze, Marco Lemessi, and Gordon D.
Rehn. Temporally parallel coupling of discrete simulation systems with
virtual reality systems. In Proceedings of the 2005 Winter Simulation
Conference, WSC ’05, pages 1949–1957. Winter Simulation Conference,
2005.

[SSPP09] Tobias Schumacher, Tim Süß, Christian Plessl, and Marco Platzner. Com-
munication performance characterization for reconfigurable accelerator de-
sign on the XD1000. In Proceedings of the International Conference on Re-
ConFigurable Computing and FPGAs (ReConFig), 9 - 11 December 2009.

[SSPP11] Tobias Schumacher, Tim Süß, Christian Plessl, and Marco Platzner. Fpga
acceleration of communication-bound streaming applications: Architec-
ture modeling and a 3d image compositing case study. International Jour-
nal of Reconfigurable Computing, 2011:1–11, 2011. Article ID 760954.

[Ste96a] Volker Stemann. Parallel balanced allocations. In Proceedings of the eighth
annual ACM symposium on Parallel algorithms and architectures, SPAA
’96, pages 261–269, New York, NY, USA, 1996. ACM.

139

Bibliography

[Ste96b] Volker Stemann. Parallel balanced allocations. In Proceedings of the 8th
Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
’96, pages 261–269, New York, NY, USA, 1996. ACM.

[SWF10a] Tim Süß, Timo Wiesemann, and Matthias Fischer. Evaluation of a c-
load-collision-protocol for load-balancing in interactive environments. In
Proceedings of the 5th IEEE International Conference on Networking, Ar-
chitecture, and Storage, pages 448 – 456. IEEE Computer Society, IEEE
Press, 15 - 17 July 2010.

[SWF10b] Tim Süß, Timo Wiesemann, and Matthias Fischer. Gewichtetes
c-Collision-Protokoll zur Balancierung eines parallelen Out-of-Core-
Renderingsystems. In Jürgen Gausemeier and Michael Grafe, edi-
tors, Augmented & Virtual Reality in der Produktentstehung, HNI-
Verlagsschriftenreihe, Paderborn, pages 39–52. Universität Paderborn,
HNI Verlagsschriftenreihe, Paderborn, 2010.

[SZF+99] Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser, Kai Li, and
Jaswinder Pal Singh. Load balancing for multi-projector rendering sys-
tems. In Proceedings of the ACM SIGGRAPH/Eurographics Workshop
on Graphics Hardware, HWWS ’99, pages 107–116, New York, NY, USA,
1999. ACM.

[SZL92] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Dec-
imation of triangle meshes. In Proceedings of the 19th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’92, pages
65–70, New York, NY, USA, 1992. ACM.

[TIH03] Akira Takeuchi, Fumihiko Ino, and Kenichi Hagihara. An improvement on
binary-swap compositing for sort-last parallel rendering. In Proceedings of
the 2003 ACM Symposium on Applied Computing, SAC ’03, pages 996–
1002, New York, NY, USA, 2003. ACM.

[TS91] Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interactive
walkthroughs. SIGGRAPH Computer Graphics, 25:61–70, July 1991.

[Tur92] Greg Turk. Re-tiling polygonal surfaces. SIGGRAPH Computer Graphics,
26:55–64, July 1992.

[USKS06] Tamás Umenhoffer, László Szirmay-Kalos, and Gábor Szijártó. Spherical
billboards and their application to rendering explosions. In Proceedings of
Graphics Interface, GI ’06, pages 57–63, Toronto, Ont., Canada, Canada,
2006. Canadian Information Processing Society.

[VM02] Gokul Varadhan and Dinesh Manocha. Out-of-core rendering of massive
geometric environments. In Proceedings of the IEEE Visualization, VIS
’02, pages 69–76, Washington, DC, USA, 2002. IEEE Computer Society.

140

Bibliography

[Wat99] Alan H. Watt. 3D Computer Graphics. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 3rd edition, 1999.

[Wel04] Terry Welsh. Parallax mapping with offset limiting: A per-pixel approxi-
mation of uneven surfaces, 2004.

[Whi92] Scott Whitman. Multiprocessor Methods for Computer Graphics Render-
ing. A. K. Peters, Ltd., Natick, MA, USA, 1992.

[Wie10] Timo Wiesemann. Effektivitätsanalyse des c-Collision Protokolls als
gewichteter Datenbalancierer in einem parallelen Out-of-Core Renderer.
Diploma thesis, University of Paderborn, 2010.

[WLLB97] Harvey J. Wassermann, Olaf M. Lubeck, Yong Luo, and Federico Bassetti.
Performance evaluation of the sgi origin2000: a memory-centric character-
ization of lanl asci applications. In Proceedings of the 1997 ACM/IEEE
Conference on Supercomputing (CDROM), Supercomputing ’97, pages 1–
11, New York, NY, USA, 1997. ACM.

[WWT+03] Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo,
and Heung-Yeung Shum. View-dependent displacement mapping. ACM
Transactions on Graphics, 22:334–339, 2003.

[XPQS06] Hua Xiong, Haoyu Peng, Aihong Qin, and Jiaoying Shi. Parallel occlusion
culling on gpus cluster. In Proceedings of the 2006 ACM International
Conference on Virtual reality Continuum and its Applications, VRCIA
’06, pages 19–26, New York, NY, USA, 2006. ACM.

[YSK+02] Shuntaro Yamazaki, Ryusuke Sagawa, Hiroshi Kawasaki, Katsushi Ikeuchi,
and Masao Sakauchi. Microfacet billboarding. In Proceedings of the 13th
Eurographics Workshop on Rendering, EGRW ’02, pages 169–180, Aire-
la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.

141

