
Dynamic Meta Modeling
A Semantics Description Technique for

Visual Modeling Languages

Jan Hendrik Hausmann

D I S S E R T A T I O N

Dynamic Meta Modeling
A Semantics Description Technique for

Visual Modeling Languages

Jan Hendrik Hausmann
hausmann@upb.de

A thesis submitted to the Faculty of Computer Science, Electrical Engineering, and
Mathematics of the University of Paderborn
in partial fulfillment of the requirements for the degree of Dr. rer. nat.

Paderborn, October 2005

Danksagung

Zu meinem 12. Geburtstag bekam ich von meiner Patentante das Buch ”Le-
bendiges Wissen-Computer“ geschenkt, das nicht nur mein Interesse an diesem
Thema geweckt hat, sondern das in seinem Ausblickskapitel auch folgende weit-
sichtige Aussage trifft:

Wahrscheinlich werden eine neue Software und neue Arten, Pro-
gramme zu schreiben, die größte Auswirkung auf die Leistungsfähig-
keit zukünftiger Computer und damit auch auf ihre Bedeutung für
die Menschen haben.

Und tatsächlich ermöglichen heute die modernen Methodiken der Softwaretech-
nik die Erstellung vom Programmen in einer zur damaligen Zeit wohl unvorstell-
baren Komplexität. Allerdings werfen auch diese Methodiken stets neue Fragen
und Probleme auf. Ich freue mich sehr, dass ich mit der hier vorliegenden Dis-
sertation nun selbst einen Beitrag zum Gebiet der Softwaretechnik leisten kann,
der einige der aktuellen Probleme für die Zukunft lösen kann (und hoffentlich
wird).

Den folgenden Menschen möchte ich ganz herzlich für ihre Mitwirkung zum
Gelingen meiner Promotion danken:

Gregor Engels —Doktorvater, Chef und Vorbild— für das präzise Benennen von
Stärken und Schwächen in Text und Argumentation. Weit darüber hinaus
für 5 Jahre Zutrauen und Vertrauen, für meine Freiheit bei gleichzeitiger
vorbehaltloser Rückendeckung. Unschätzbar unersetzlich!

Reiko Heckel und Stefan Sauer —the original DMMsters— für den Grundstein
des Themas und unendlich viele hilfreiche Diskusssionen in seiner Ausar-
beitung. Ohne euch wäre noch nicht mal der Name da!

Marc Lohmann —Weltklasse-Bürokollege— für das geduldige Ertragen meiner
Launen und für die stete Bereitschaft sich meine halbgaren Ideen an-
zuhören und dann die Probleme detailliert aufzuzeigen. Wie soll ich in
Zukunft anders arbeiten können?

Friedhelm Meyer auf der Heide, Wilhelm Schäfer und Theo Lettmann für ihre kri-
tische Auseinandersetzung mit meinen Ideen, eine sehr interessante Ver-
teidigung und die großzügige Beurteilung meiner Leistung.

Sonja, Tom Niklas, Trude und Volker für die zeitlichen Freiräume, die emotionale
Unterstützung und all die Liebe, die mir auch in den anstrengenden Phasen
immer gezeigt hat, wofür ich das mache.

Contents

I Motivation and Overview 1
I.1 State of the Art . 2
I.2 On the Benefits of Formal Semantics 4
I.3 Objective of this Thesis . 5
I.4 Structure of this Thesis . 5

II Semantics Description Techniques for Visual Modeling Lan-
guages 7

II.1 Concepts of Languages and their Definition 7
II.2 Visual Modeling Languages and their Definition 11
II.3 Survey of Semantic Description Techniques for VMLs 23
II.4 Concept of the Dynamic Meta Modeling Approach 41

III Meta Relations 45
III.1 On the Need for Meta Relations 47
III.2 Concept of Meta Relations . 51
III.3 Concrete Syntax for Meta Relations 53
III.4 Abstract Syntax for Meta Relations 55
III.5 Semantics of Meta Relations . 57
III.6 Summary and Discussion . 62

IV Graph Transformations 63
IV.1 Graphs . 64
IV.2 Graphs in Dynamic Meta Modeling 68
IV.3 Graph Transformation Rules . 70
IV.4 Graph Transformation in DMM 76
IV.5 Controlling Graph Transformations 79
IV.6 Control in DMM—The Mechanism of Rule Invocation 82
IV.7 Discussion . 101

V The Architecture of Dynamic Meta Modeling 103
V.1 Expressing Static Semantics in DMM 105
V.2 Expressing Dynamic Semantics in DMM 107
V.3 Model Semantics in DMM . 109
V.4 Modularity and Extensibility 110
V.5 Summary and Discussion . 116

VI Case Study: Formalizing UML Activity Diagrams 123

viii CONTENTS

VI.1 Eliciting the Semantics of UML Activity Diagrams 124
VI.2 Excerpts from the DMM Specification of Activity Diagrams . . 140
VI.3 Discussion of the DMM Specification of Activity Diagrams . . . 146

VII Pragmatic Guidelines for Formulating DMM Specifications 153
VII.1 Qualities of DMM Specifications and Heuristics for their

Achievement . 154
VII.2 Guidelines for Formulating the SD Meta Model and Relations . 160
VII.3 Guidelines for Formulating DMM Rule Sets 166
VII.4 Summary and Discussion . 172

VIII Automatically Applying DMM Specifications 175
VIII.1 Model Checking approaches for Graph Transformation Systems 176
VIII.2 Introduction to the GROOVE Tool Set 177
VIII.3 Translation of DMM Specifications into GROOVE Specifications182
VIII.4 Interpreting Activity Diagrams with GROOVE 187
VIII.5 Discussion of the GROOVE Prototype 194

IX Summary and Conclusions 201
IX.1 Summary of the Contributions of this Thesis 201
IX.2 Overview of Publications on DMM 202
IX.3 Discussion of DMM . 202
IX.4 Closure . 205

A Overview of Activity Diagrams 207
A.1 History of Activity Diagrams 207
A.2 The Role of Activity Diagrams in UML 2.0 208
A.3 Activity Diagram Elements . 209
A.4 Advanced Activity Diagram Elements 214

B The DMM Specification of UML Activity Diagrams 215
B.1 Overview of the SD Meta Model for Activity Diagrams 215
B.2 Package Ordering . 217
B.3 Package Core Structure . 219
B.4 Package Core Behavior . 222
B.5 Package Core Activities . 229
B.6 Package Buffernodes . 244
B.7 Package Controlnodes . 258
B.8 Package Core Actions . 268
B.9 Package Actions . 279
B.10 Package Dummy Actions . 286

Bibliography 291

Index 315

Chapter I

Motivation and Overview

Software Engineering is the discipline of Computer Science which is concerned
with the creation process of software systems. This process is inherently complex
as it entails a transformation of numerous customer requirements into sophis-
ticated program code. The size and complexity of modern software systems
require different specialists to cooperate in a team to develop a high quality
product within a competitive time frame.

Two aspects are crucial for such a development to succeed: communication
and automation. Communication between customers and the developers drives
the development project, communication within the development team is vital
for its coordination and ultimately for its success. Automation on the other
hand effects productivity and quality as computers can perform certain tasks
in the development process with vastly higher speed and accuracy than human
developers.

Models have been found to be a very useful concept which supports both of
these key development aspects. For communication purposes, models allow
an intuitive presentation of concepts while abstracting from details, thereby
allowing people from different backgrounds to build a common understanding
about a problem and its possible solutions. For automation purposes, models
document the creative design decisions necessarily taken by a human developer.
Based upon these models, computer systems can be used to automatically derive
an elaborated solution.

To actually fulfill the pivotal role attributed to them in a development process,
models need to follow a commonly agreed language definition. On the basis of
such a definition all participants can precisely express concepts in the form of
a model and they can expect others to comprehend the information captured
therein unambiguously. Modeling languages which feature diagrammatic nota-
tions have proven to be especially successful in terms of human comprehensibil-
ity. Such formalisms are collectively addressed as Visual Modeling Languages
(VMLs).

1

2 Chapter I. Motivation and Overview

VML Definition

Syntax

«Meta Model»

«Language Engineer»

«Advanced Language

User»

Parser

Model

«
s
y
n
ta
c
ti
c

c
o
n
fo
rm
a
n
c
e
»

Figure I.1: Illustration of the benefits of a formal syntax definition

I.1 State of the Art

The Unified Modeling Language (UML) [Obj03e, Obj04, Obj03b] is the indus-
try standard VML to express models in a software development process. It was
incepted 1997 by combining the three (at that time) most popular modeling
techniques into a unified formalism. The main goal of this standardization was
to obtain a single set of well-defined modeling notations which could uniformly
be used in large parts of the software industry and through all phases of a devel-
opment process (a more detailed account of the UML and its features is provided
in Chapter II). This goal has been successfully achieved and today UML can be
regarded as the lingua franca in the Software Engineering community. Despite
its dominant position, UML is far from being the only modeling language. A
multitude of other formalisms continue to be used and new VMLs constantly
emerge.

Focusing on the way a (new) Visual Modeling Language is defined, we find that
the technique of meta modeling, i.e., the definition of the abstract syntax by
means of a Class Diagram has by now been widely established. A Language
Engineer (a term we will use for a person who is defining a new language) can
thus provide a meta model which precisely determines how expressions (i.e.,
models) in the language must be constructed. The meta model is understood by
(advanced) language users and forms a precise basis for automated processing.
Fig. I.1 illustrates the benefits of formality in this part of the language definition.
If a Language Engineer provides a language definition (creation is symbolized
by the open arrows) in terms of a meta model, a precise information transfer
(solid arrows) to language users is possible. Tools can process this specification
to, e.g., check user-created models automatically for their conformance to the
language definition.

For the definition of the semantics of a Visual Modeling Language no such

I.1. State of the Art 3

VML Definition

Syntax

«Meta Model»

Text «Language Engineer»

«Advanced Language

User»

Code GeneratorModel

Semantics

«Text»

????

Figure I.2: Illustration of the problems of an informal semantics definition

standardized or even commonly agreed upon approach is available today. The
UML (and other languages of a comparable complexity) relies on prose text to
convey the meaning of its various diagrams. While being very convenient for
the human reader and allowing for much flexibility, using natural language text
for semantics specifications has severe drawbacks: Natural language is often
used imprecisely and ambiguously. In large texts (the UML specification fills
more than 800 pages), omissions, inconsistencies, and outright contradictions
are inevitable. Neither an automated detection nor a systematic resolution of
such flaws is possible. Human inspection alone revealed more than 800 issues
[FTF] during the final phase of the UML 2.0 definition. It is highly probable
that a substantial amount of flaws still remains in the specification text to date.

The ambiguity of the specification text and actual flaws in the specification
erode the users’ confidence and invite the conception of individual language
interpretations which deviate from the standard. An unambiguous settling of
emerging differences is not possible. Endless debates on the correct interpreta-
tion of model elements and outright misunderstandings are the consequences of
this situation. The value of models as efficient communication means is seriously
decreased.

Even more serious is the impact of informal semantics definitions on automa-
tion. Semantics-dependent model processing tools (e.g., code generators, model
analyzers) can never correctly implement the language’s semantics but ever only
their creator’s interpretation of the semantics description. This interpretation
may deviate from that of other language users. Interoperability problems be-
tween different tools and distrust in the reliability of tool-produced results are
the consequence. Models can thus not fully play the role attributed to them in
the development process.

4 Chapter I. Motivation and Overview

VML Definition

Syntax

«Meta Model»

Semantics

«formal» «Language Engineer»

«Advanced Language

User»

Interpreter

Code GeneratorModel

«validation by test

cases»

«s
em
an
tic

co
nf
or
m
an
ce
»

«
in
te
rp
re
ta
ti
o
n
»

Figure I.3: Illustration of the benefits of a formal semantics definition

Figure I.2 illustrates this situation: If the semantics specification is provided as
a text, it is only subject to (possibly flawed) human interpretation (indicated
by the wavy arrow). This interpretation is then the base for creating models
and for model-processing tools build by advanced users. Neither for models nor
for tools a conformance to the language definition can be proven in a systematic
way.

I.2 On the Benefits of Formal Semantics

The introduction of a formal semantics can vastly improve this situation in a
number of ways (as illustrated in Fig. I.3). The most obvious difference to
informal semantics is that is that formal semantics form an precise point of
reference against which language users can build their understanding of the
language—provided the semantics definition is presented in an understandable
way.

Tools can either process the semantics definition directly (in the illustrating
Figure I.3 an Interpreter is such a tool) or their implementation can be proven
to be in accordance with the official semantics. Most important among these
tools are interpreters, i.e., tools which take a specific model as their input and
automatically derive its meaning(s) (or interpretation) according to the defined
semantics. Users can employ such tools in an exploratory style of learning to
refine and extend their knowledge about the language. This is similar to the
learning of programming languages which is also usually done in a combination

I.3. Objective of this Thesis 5

of general definitions of constructs and their exploration in individual programs.
Having these two points of reference allows for a thorough and precise under-
standing of the language, preventing misunderstandings in communication by
models.

An indirect benefit is that the quality of the language itself is bound to improve:
Based on the automated interpretation enabled by formal semantics, Language
Engineers can validate by test cases whether their language definition correctly
reflects their intentions. Flaws in the definition can be detected by this testing
or by subjecting the definition itself to formal analysis. This effects a higher
quality of the language specification.

The effect of formal semantics for modeling languages is thus that models can
fulfill their purpose as unambiguous means of communication and as a precise
basis for automation in software development.

A suitable technique for specifying the semantics of a Visual Modeling Language
like UML do thus have to combine two major goals: For automation purposes
it needs to be precise and formal. For human comprehension it also needs to
be understandable. While a number of techniques have been put forward in the
literature (see Chapter II for an overview), none of them has found widespread
recognition (as witnessed by the OMG’s explicit refusal to employ any of these
techniques in the definition of UML 2.0). We believe that the reason for this
failure is due the fact that none of these specification techniques is explicitly
designed to address the problem of defining the semantics of a Visual Modeling
Language (we elaborate the requirements stemming from this specific scenario
in Chapter II).

I.3 Objective of this Thesis

The objective of this thesis is to supply a technique for the specification of a
Visual Modeling Languages’ semantics. The technique should combine formal-
ity and precision with a high degree of understandability for a human reader.
In fact, the specifications resulting from its application should be fit to serve
as part of a published language definition. The specification technique must
provide convenient support to express core features of Visual Modeling Lan-
guages in general and UML in particular, e.g., the combination of structural
and behavioral models, incomplete models, and possible user-defined language
extensions.

I.4 Structure of this Thesis

The core of this thesis is the introduction of Dynamic Meta Modeling (DMM),
a technique for the specification of the semantics of Visual Modeling Languages,
which fulfills the above stated requirements. The presentation is divided into
nine chapters (including this introduction).

6 Chapter I. Motivation and Overview

In Chapter II, ”Semantics Description Techniques for Visual Model-
ing Languages“, we elaborate the premises of the thesis in greater depth.
After introducing basic terminology used in the thesis, we detail the require-
ments for a semantics specification technique for Visual Modeling Languages. A
number of existing approaches are surveyed and evaluated according to these re-
quirements. Finding all of them lacking, we proceed to outline our own approach
of Dynamic Meta Modeling. To fill this outline the next two chapters present
technical information on separate components of DMM which are combined in
Chapter V.

Chapter III, ”Meta Relations“, introduces a novel technique for establish-
ing meta model relations. Such relations can be employed in the style of de-
notational meta modeling to provide semantics in the denotational style for
structural model elements.

Chapter IV, ”Graph Transformations“, explains the basic notions of the
Graph Transformations and proceeds to provide a set-theoretic formalization of
an innovative rule style using the mechanism of invocations to combine different
rules to a complex transformation. This style of rules allows for the formula-
tion of operational semantics, a kind of semantics ideal for the description of
behavioral elements of a modeling language.

Chapter V, ”The Architecture of Dynamic Meta Modeling“, combines
these two techniques to form DMM specifications which then allow for the spec-
ification of a complete language’s semantics. Additionally, DMM specifications
provide a modularization concept allowing for easy maintenance and extensibil-
ity.

The applicability of the DMM technique is demonstrated in Chapter VI which
contains an elaborate case study targeting the formalization of UML 2 Activity
Diagrams. An inspection of the relevant UML semantics descriptions reveals
a number of problems which have to be resolved prior to formalization. The
presentation and discussion of the formalization’s results provides insights on
the practical realization of the approach’s promised qualities..

How a DMM specification is to be created is the topic of Chapter VII, ”Prag-
matic Guidelines for Formulating DMM Specifications“. Here, we
discuss the notion of qualities of a specification and which considerations under-
lie their realization. We provide a small methodology which provides guidance
to Language Engineers employing DMM to specify a language’s semantics.

In Chapter VIII, ”Automatically Applying DMM Specifications“, we
focus upon the interpretation of single models. For this we provide a proto-
typical DMM interpreter based on the GROOVE tool set [Ren03a] which is
able to automatically construct the precise semantics for a model expressed in
a language specified using DMM.

Having thus covered the definition and application of DMM, we discuss its
achievements and remaining open problems of specifying a Visual Modeling
Language’s semantics in the concluding Chapter IX.

Chapter II

Semantics Description
Techniques for Visual
Modeling Languages

The focus of this thesis are Visual Modeling Languages and especially the tech-
niques used to define their semantics. This chapter provides an in-depth intro-
duction to these topics and thus forms the basis for the elaboration of the thesis.
It details and backs claims and statements made in the overview in Chapter I.

We explain the fundamental concepts underlying the definition of languages in
Section II.1. The terminology introduced there is essential for precise discus-
sions throughout the thesis. The field of Visual Modeling Languages in general
and the UML in particular are the topics of Section II.2. Here, we elicit charac-
teristics of these languages, resulting in requirements for a semantics definition.
Based upon these requirements we present a survey of existing approaches in
Section II.3. While there is currently no approach to fulfill all these require-
ments, a combination of ideas from different approaches seems promising. We
outline this combination in Section II.4 and pursue its detailed definition in the
remainder of the thesis.

II.1 Concepts of Languages and their Definition

To lay out the concepts of a language’s definition we need to define some funda-
mental terms from Linguistics in general and Formal Languages in particular,
as the latter are usually of interest in Computer Science.

Let’s first turn to the general term language itself:

Language is a system of finite arbitrary symbols combined ac-
cording to rules of [a] grammar for the purpose of communication.
Individual languages use [. . .] symbols to represent objects, con-
cepts, emotions, ideas, and thoughts. [Wik05]

7

8 Chapter II. Semantics Description Techniques for Visual Modeling Languages

Language type Examples Definition by

Natural Language ”horse“
”John“

Word list (dictionary)

Programming Languages until
xy$

Keyword list
Regular expressions

Visual Languages MyClass

comprises

List of shapes and con-
nections

Table II.1: Overview of different definition techniques for a language’s concrete
syntax

To fulfill its communication purpose a language must not be an ad hoc con-
struction but needs to have a stable definition which is shared between the
participants of the communication. This definition comprises three parts: The
concrete syntax, the abstract syntax, and the semantics.

II.1.1 Concrete Syntax

The concrete syntax definition provides the set of symbols used to construct
expressions in a language (cf. Table II.1). In natural languages and program-
ming languages this set comprises words constructed from the characters of the
western alphabet and enumerated in dictionaries. The creation of new symbols
(identifiers) in programming languages furthermore underlies rules provided by
regular expressions. In Visual Modeling Languages we usually find an assort-
ment of shapes and connecting lines as the concrete symbols. Complex syntax
representations may call for additional definition means like grammars or mul-
tiple layers of definition.

II.1.2 Abstract Syntax

The abstract syntax definition sets out rules for the combination of language
elements (words) to complex constructs (sentences). Such rule sets are called
grammars. Grammars can be categorized according to their expressive power.
The so called Chomsky hierarchy distinguishes between unrestricted, context-
sensitive, context-free, and regular grammars. Natural languages conform to
only partially formalized and generally unrestricted grammars. The definition
of programming languages is usually split up into a context-free part (expressed
in the Backus-Naur form) and context-sensitive well-formedness conditions (tra-
ditionally but misleadingly called static semantics in the field of programming
languages, cf. [HR00, Mos01]). Attributed Grammars can be used to express
such conditions for programming languages [Kas91], but often they are provided
textually only and made precise by reference implementations of compilers. Vi-
sual Languages nowadays mostly use a combination of meta models and OCL

II.1. Concepts of Languages and their Definition 9

Language type Examples Definition by

Natural Language
(English)

A relative clause is a
clause introduced by a rel-
ative pronoun.

Description

Programming Lan-
guages

<if statement> ::=

<bool exp> <statement>

<statement>

BNF (context-free parts)

The declaration of a vari-
able needs to precede its
first value assignment.

Attribute Grammars,
Text/Compiler (context-
sensitive parts)

Visual Languages
Class

Association

*

1 sourcetarget 1

*

Meta model & OCL,
Graph grammars

Table II.2: Overview of different definition techniques for a language’s abstract
syntax

expressions [Obj03c] to define their abstract syntax. Graph grammars have also
been used to define the abstract syntax of visual languages [Sch77]. The con-
cept of attribute grammars has been taken up in the PROGRES system [Sch90].
Table II.2 provides an overview of the definition methods for abstract syntax.

The benefits of using such formal definition techniques for the definition of
abstract syntax are witnessed by the existence of tools which can automatically
process specifications given in certain formalisms. Scanners can automatically
tokenize the elements of a given expression on the basis of a keyword list and
regular expressions. Parsers can proceed to reveal the abstract structure of an
expression based on BNF grammars. In fact, such tools can be constructed
generically by so called scanner/parser generators (see [Com05] for an overview
of available generators).

For Visual Modeling Languages, the parser is usually integrated in a syntax-
directed editor which guides the construction of expressions. For formal abstract
syntax definition techniques, the construction of generic editors which are cus-
tomized by a concrete language definition is possible. Examples include the Kent
Modeling Framework [kmf] (definition by meta models), DiaGen [MK00, MV93]
(definition by hypergraph grammars) and VL-Eli [KS02] (definition by special
attributed grammars). The whole approach of Software Factories for Domain
Specific Languages (DSLs) [GSCK04, Fow05a] is based upon the concept of gen-
erating such specific tools on the basis of a formal (meta model based) language
definition.

The abstract syntax serves as the basis for semantics definitions. In the remain-
der we will thus regard expressions usually not in their concrete form (unless
we want to present examples) but in their abstract representation. Fig. II.1
illustrates the difference for a UML class (top of figure) and a UML action with
an outgoing control flow. The left hand side of the figure shows the concrete

10 Chapter II. Semantics Description Techniques for Visual Modeling Languages

Horse

Name=“Horse“

:Class

ride

Name=“ride“

:ActionNode
:ControlFlow

source

Figure II.1: Examples for the difference between concrete and abstract syntax
of UML elements

representations, the right hand side their abstract counterparts (expressed as
instances of the UML meta model).

A direct implication is that we consider only such expressions for semantics
definition which are legal in the language and thus allow for such an abstract
representation.

II.1.3 Semantics

While the syntax of a language is concerned with the form of its expressions, the
semantics of a language is concerned with their meaning. Semantics thus form a
bridge between the concepts expressed by the language and the symbols used to
express them. This general outline immediately gives rise to another problem:
As concepts, ideas, and perceptions of reality primarily exist in the mind of a
person, how do we relate them to (written) symbols? If we try to explain them,
what are the semantics of the language we use for explanation? Such questions
have been the basis for a philosophical examination of the term ”semantics“ and
its implications, resulting in Tarski’s indefinability theorem [Tar44], which states
that a language cannot be used to explain its own semantics. The implication
of the theorem is that an assumption-free definition of semantics cannot exist:

Further important results can be obtained by applying the the-
ory of truth to formalized languages of a certain very comprehensive
class of mathematical disciplines; only disciplines of an elementary
character and a very elementary logical structure are excluded from
this class. It turns out that for a discipline of this class the no-
tion of truth never coincides with that of provability; for all prov-
able sentences are true, but there are true sentences which are not
provable.([Tar44], Sect. 13)

Computer Science usually takes a more pragmatic view on this dilemma and
simply assumes that a sufficiently well understood formalism exists to express
semantic concepts. If all else fails, pure mathematics is often regarded as the
least common denominator for definitions. We do thus assume that a so called
semantic domain exists which captures concepts to be expressed by a language.
Syntactic terms are then assigned a meaning by relating them via a semantic
mapping to semantic elements [HR04, CEK+00].

II.2. Visual Modeling Languages and their Definition 11

Syntactic

Domain

Semantic

Domain

Kradrostilo Grill
semantic

mapping

Figure II.2: Example illustrating the roles of syntactic domain, semantic do-
main, semantic mapping, and represented concept

In. Fig. II.2 we illustrate these terms with an example from natural languages:
The syntactic term ”Kradrostilo“ (a legal word in the artificial language Es-
peranto) is assigned a meaning by relating it to the German term ”Grill“. This
construction assumes that the term in the semantics domain (”Grill“) is suffi-
cient to capture and convey the general concept of the cooking device which is
addressed by it.

We can furthermore distinguish between static semantics and dynamic seman-
tics. Static semantics express the structural meaning of a language term (”what
something is“). Dynamic semantics are concerned with the behavior expressed
by a language term (”what something does“). Precisely defining the latter is
usually harder than the former.

We can summarize that language definitions in general comprise defini-
tions of concrete and abstract syntax as well as semantics in the form of
a semantic domain and a semantic mapping. The forms in which these
components are expressed vary greatly.

We now focus more concretely on that segment of languages which we are in-
terested in: Visual Modeling Languages.

II.2 Visual Modeling Languages and their Definition

We begin the discussion of Visual Modeling Languages by giving an overview
of the dissemination and diversity of this type of language in software develop-
ment (Subsect. II.2.1). Focusing on the common core concepts of VMLs (Sub-
section II.2.2) we find UML to be the embodiment of these concepts. Moving
on to the definition techniques for VMLs, Subsect. II.2.3 lays out the concepts
of meta modeling as used in the UML. Goals of and requirements for a formal
semantics definition technique for VMLs are then collected in Subsection II.2.4.

II.2.1 Overview of Visual Modeling Languages

Modeling has found wide-spread acceptance in software development as it allows
for an abstract representation of certain aspects of either a problem or a pro-

12 Chapter II. Semantics Description Techniques for Visual Modeling Languages

posed solution. Taking different domains of system development into account
(e.g., database design, telecommunication systems, embedded software, user-
interface design, business process support) we find very different aspects which
are important to these domains and which are consequently addressed by a mul-
titude of modeling notations: Database design requires conceptual data mod-
eling, served by Entity Relationship diagrams (ER-diagrams, [Che76, AE96]),
telecommunication systems are concerned with inter-component communication
as visualized by Message Sequence Charts (MSCs, [ITU93]), embedded systems
emphasize real-time aspects as expressed by, e.g., Timed Automata [AD94],
user-interface design is mainly concerned with reactive behavior emphasized in
variants of Statecharts [Hor99], and finally business process support requires the
modeling of alternative and interwoven flows of control and information which
can be visualized with Event-Process-Chains [KNS92]. Besides these rather
practically oriented formalisms there are also Visual Languages stemming from
theoretical considerations, e.g., Petri Nets [Pet62, Rei85].

Intensive research on VMLs yielded numerous variants of the above enumerated
formalisms to provide ever more detailed features. On the other hand, the
exact nature of what a model actually is and which characteristics a Visual
Language must have to be suitable for the expression of models remains an
open question for high-level philosophical debates, conducted, e.g., in [Kue05,
Bez04, Fav04, Lud03, Sei01]. The whole field of Visual Modeling Languages has
in fact by now grown so large that several scientific conference series [MB01,
GK01, RH04, Min04, BMS04] and journals (Sosym, JVLC) are solely devoted
to documenting the progress in this area.

II.2.2 Characteristics of Visual Modeling Languages

The necessary pragmatic reduction of the discussion from the complete field
of Visual Modeling Languages and its open philosophical ends to commonly
and practically used core concepts is simplified by the existence of the Unified
Modeling Language (UML) [Obj01, Obj04].

The UML was explicitly constructed to address the proliferation of modeling
languages by capturing the commonly found concepts of VMLs into a single
formalism. Störrle characterizes the achievements of the UML as a consolidation
of the field of VMLs, its integration and standardization and the selection of
core concepts of visual modeling ([Stö05c], p.231). The success of the UML in
achieving this consolidation is undeniable; by now (roughly 8 years after the
publication of the UML 1.1 [UML97]) it has become the lingua franca of the
Software Engineering community, being used in the industry and academia alike.

In the following discussions we will thus regard those features of Visual Modeling
Languages as ”common“ which are integrated in the UML. UML is also by far
the most complex VML in the field due to its unifying nature. Additional
problems need to be addressed in its definition which can be sidestepped in
smaller notations which focus on a single aspect only. Consequently, the UML
is used as the primary subject of discussion in this thesis and examples are
presented using UML notations. The results in the remainder of this chapter

1translated from German

II.2. Visual Modeling Languages and their Definition 13

and the technique introduced in this thesis do, however, also apply to other
visual languages which convey similar concepts to those found in the UML.

Characteristics of the UML (especially those with an impact on the seman-
tics definition) are elicited in the UML Semantics FAQ [KER99], a document
combining the opinions of some of the most influential academics in the UML
community at that time:

UML does have some specific characteristics, which makes the
task of semantics definition interesting:

a) A substantial part of UML is visual/diagrammatic.
b) UML is not for execution, but for modeling, thus incorporating

abstraction and underspecification techniques.
c) UML is combined of a set of partially overlapping subnotations.
d) UML is of widespread interest.

At least b) has to be amended by now as UML 1.5 introduced the so called
UML Action Semantics [Obj03e], which ”are now defined in as much detail as
a programming language“ [Kob04]. We can generalize that UML models can
comprise underspecification and abstraction, but not necessarily.

In addition to c) Harel and Rumpe emphasize the need to consider structural
as well as behavioral subnotations in formulating semantics [HR00]:

One common misconception in the world of system modeling
languages is to take semantics as a synonym for behavior. Both the
behavior and the structure of a system are important views thereof;
both are represented by syntactic concepts and both need semantics.

Bran Selic, one of the principal authors of the UML standard, formulates an
important characteristic of these behavioral views [Sel04]:

UML behavioral semantics only deal with event-driven, or dis-
crete, behavior.

The strive for universality in UML’s application also causes two rather uncom-
mon characteristics: The UML’s definition is intentionally incomplete and open
to change. To allow for varying interpretations of controversial details, the UML
comprises the concept of semantic variation points. Such variation points des-
ignate details in the specification which are intentionally left open. At best,
choice lists for possible interpretations are provided (e.g., events received dur-
ing a transition can be regarded as errors, they can be discarded or deferred).
At worst, crucial details are left completely unspecified (”The precise lifecycle
semantics of aggregation is a semantic variation point.“ [Obj04], p.53).

Going even beyond this local adaptability is the language extension concept of
UML. To allow for different application domains to endorse UML even though
standard UML does not fully address their modeling needs, UML allows for user-
defined language extensions. A language extension (technically combined in a
so called profile) can restrict the core UML to a subset suitable for the domain,
add new symbols to extend/replace standard UML notation, and introduce
completely new concepts to the language. The term extension is thus misleading
as extensions as well as restrictions can be effected by a profile. While the
syntactical alterations to standard UML underlie several restrictions ([Obj04],

14 Chapter II. Semantics Description Techniques for Visual Modeling Languages

Chap. 18), the only restriction on semantic alterations is that ”the specialized
semantics do not contradict the semantics of the reference meta model2.“ Details
on the profile mechanism may be found in [CKM+99], a discussion of different
extension mechanisms is provided by [RCA01].

To summarize: We focus our discussion primarily on the UML because it
unifies the core concepts of many other Visual Modeling Languages. Its
characteristics are that it is a visual language which expresses static and
discrete dynamic concepts in partially overlapping views. It is intended
for a wide audience and may contain underspecification both in the
definition and in its expressions. The language is furthermore open to
syntactic and semantic extensions.

Before we elicit concrete requirements toward a semantics definition of the UML
from these characteristics, we first explain the UML’s syntax definition in more
detail.

II.2.3 Definition of the UML’s Syntax by Meta Modeling

The Unified Modeling Language is an industry standard published by the Object
Management Group (OMG). Currently, version 1.5 [Obj03e] is still the official
standard (bearing the formal designation ”Published Specification“), but the
version 2.0 [Obj04] of the language is in the last stage of its inception and
its specifying documents are already available. Unless noted otherwise we will
already refer to the upcoming standard UML 2.0 as ”the UML“.

The UML 2.0 specification comprises an infrastructure part (which defines a lan-
guage kernel) and a superstructure part (which provides the front-end language).
In this thesis we usually refer to the superstructure part as the UML definition.
The superstructure specification is an 800+ pages document which contains a
structured list of all language elements found in UML. The concrete syntax for
each element is provided by means of example renderings and descriptions of
presentation options3. Each element can underlie certain context-sensitive re-
strictions, expressed in the Object Constraint Language (OCL)[Obj03c]. The
abstract syntax of the language is defined by a meta model and its semantics
are given by explanations in natural language. We will take a closer look at the
technique of meta modeling first as it is a truly remarkable feature of UML.

As explained above, the inception of UML was clearly aimed at an integration
of existing concepts. In its definition method, however, the UML used a rather
innovative technique. This technique, the definition of abstract syntax by means
of a meta model, was not only readily accepted by the community but it soon
became a common way of expressing the abstract syntax of modeling languages
even beyond the UML (e.g., meta models are used to define Petri-nets in [VP03,

2Obviously the reference language is meant here as the meta model itself does not specify
semantics.

3The concrete syntax of the UML is—contrary to common belief—not standardized. As
emphasized in [Boc03d], UML models can be expressed using different symbols or text entirely.

II.2. Visual Modeling Languages and their Definition 15

dLETE04], an ASM meta model can be found in [KN03]). Meta modeling
was not invented with the inception of the UML, though. Previously it was
used to compare and integrate different OO analysis and design approaches
(see [Ode97]) with the COMMA meta model (Common Object Methodology
Metamodel Architecture) as its most prominent result. And even before that it
was a technique to facilitate interoperability between different CASE tools (e.g.,
[Fla02] gives an overview on the development and application of the CDIF meta
model). UML’s contribution is the wide dissemination of this concept as a
language definition technique.

Two main properties can be identified as the cause for this rapid success: ade-
quacy and accessibility. Visual Modeling Languages do not usually have a tree as
the underlying structure in their abstract syntax, but they conform to the more
general concept of graphs (cf. [EH00, GPP98]). While tree-based structures can
be easily captured in (context-free) grammars with each rule expanding one ele-
ment of the tree, graphs can only be described (in general) by context-sensitive
graph grammars which are much harder to grasp. Meta models changed the
basic approach of syntax definition from an operational (production rules of a
grammar) to a declarative one. By presenting this declaration visually, they
were able to visualize the underlying graph structure in an intuitive way. Thus,
declarative meta models are more adequate for expressing graph structures than
operational (grammar) approaches.

The second property which made meta models a success is an idea known from
meta-programming [DM95] or reflective languages [Coi96, dRS84]: the expres-
sion of language features using the language’s own notation. For UML this
means that the expression of its meta model uses the notation of Class Dia-
grams. The huge advantage of this approach is that the potential recipients of
the definition (i.e., advanced UML users delving into the details of the specifica-
tion) already have a firm understanding of the notation and are spared the effort
of learning a special definition notation. It is presumably this easy accessibility
for the intended audience which contributed most to the rapid adoption of meta
modeling as an established method for defining a VML’s abstract syntax.

A further important achievement of the UML’s meta model is that it allows
for the integration of the separated subnotations of UML. Since all elements of
the UML syntax are defined by the same meta model, meta associations can be
used to express relations between elements even if they are strictly separated
in the notation. E.g., the meta class Activity (used to represent concepts in the
behavioral notation UML Activity Diagrams) can be connected to an operation
of a class (used in the structural Class Diagrams) to express that the activity
specifies the operation’s behavior. Semantics specifications can thus largely
disregard the different subnotations and be based on a single integrated meta
model.

Technically, however, meta modeling gives rise to a number of rather grave
issues. While the notation of the meta model is the same as that of UML’s
Class Diagrams, the meta model is actually defined according to the OMG’s
Meta Object Facility (MOF) [Obj02a, Obj03a]. MOF thus defines a meta-meta
model which provides the concepts used for the definition of the classes in the
UML meta model. The UML meta model is thus not really a UML Class
Diagram, it just happens to look a lot like one.

16 Chapter II. Semantics Description Techniques for Visual Modeling Languages

Fig. II.3 provides an overview of the OMG’s four-leveled meta stack. The ex-
ample is taken from the UML specification and illustrates simultaneously the
concept and some problems of the architecture: On the topmost level (M3) the
Meta Object Facility’s meta meta model is located. It provides the constructs
which can be used in the creation of a language’s meta model. One such element
is Class. The usage of classes in a meta model is shown on the M2 level. Here, a
fragment of the UML meta model is displayed which itself defines the language
constructs to be used at the model level. The displayed constructs are Class and
Attribute, i.e., we are looking at a fragment of the Class Diagram specification.
Models (M1) can now employ these elements to express structures in a problem
domain, e.g., for video rentals. The M0 level finally contains the objects which
the model is supposed to represent, in case of a software model these are usually
supposed to be run-time elements.

Some problems are also be demonstrated by the figure as there are actually two
instances of the Video class, one on M1 and one on M0. The detailed relation
between these two notions of instance was left unclear in UML 1.x. In UML 2
the problem was principally resolved with replacing the Instance class from the
UML meta model by an InstanceSpecification class. That change has obviously
not been propagated to this architectural overview figure and thus the figure
also serves to demonstrate the inconsistencies in the UML specification.

The original construction of UML and MOF (in their 1.x versions) has drawn a
lot of criticism [AK01, BG01, AKHS00, VP03, CEK+00, AES01a, Atk99] which
can be summarized in four distinct topics:

a) The four-level hierarchy was in general poorly understood4. A main contri-
bution to this problem is the fact that actually three levels of the hierarchy
(in Fig. II.3) comprise identically looking class constructs, while the fourth
(M0) completely lacked constructs for its expression. This overloading of
notational constructs is one of the inherent dangers of a meta modeling
approach.

b) MOF was not an exact subset of UML’s Class Diagrams. Several details
differed between both notations, making MOF-based meta models prone
to misinterpretations. Consequently, the alignment of UML and MOF
was a major aim of the MOF 2.0 and UML 2.0 infrastructure formulation
[Obj03b, Obj03a].

c) MOF did neither provide a precise instantiation notion (i.e., it remains
unclear when exactly an M2 meta model is an instance of MOF), nor did
it shed any light on the instantiation of a meta model described using
MOF (i.e., the relations between M1 models and their M2 meta model
definitions) [CEK+00, AK01, Atk99, AES01b].

d) Since MOF is a technology to define meta models, it is used to define itself,
i.e., MOF is defined recursively. The exact interpretation of MOF and its
meta models thus depends on the fact that the user already has an under-
standing of MOF and meta modeling. This circularity is a fundamental

4There is even evidence for severe confusion in the OMG on the precise roles of the different
meta levels: The whole UML infrastructure specification switched levels during its develop-
ment. Compare, e.g., draft version 0.6 [Alc01] with the final version [Obj03b] of the UML 2.0
Infrastructure specification

II.2. Visual Modeling Languages and their Definition 17

UML 2.0: Infrastructure - Final Adopted Specification 31

.

Figure 8 - An example of the four-layer metamodel hierarchy

Class

Attribute Class

Video
+title: String

«instanceOf»«instanceOf»

: Video

title = "2001: A Space Odyssey"

«instanceOf»«instanceOf»

M3 (MOF)

M2 (UML)

M1 (User model)

Instance

«instanceOf»

«instanceOf»

classifier

«instanceOf»

M0 (Run-time instances) aVideo

«instanceOf»

«snapshot»

Figure II.3: Illustration of the four layer structure of the UML/MOF framework
(reproduced from [Obj03b])

18 Chapter II. Semantics Description Techniques for Visual Modeling Languages

issue in meta modeling approaches [AKHS00, BG01, VP03].

Concerning d), different approaches were put forth to provide a firm base for
the definition of meta models, by basing them on set-theory [Baa02], Object-
Z [GKM98], or specially designed calculi [VP03, CEK01]. Other researchers
adopted a more constructive approach by iteratively extending meta models
with tool support in a bootstrapping fashion [kmf, SLKN01].

Substantial contributions toward a more precise (and possibly level-spanning)
concept of meta instantiation have been made by Colin Atkinson and Thomas
Kühne [Atk99, AKHS00, AK01, AK02b, Kue05, Küh05] who defined the notions
of strict meta modeling [Atk99, AK01] and provided a detailed suggestion for
renovation of the MOF/UML architecture [AK02c]. The precise UML group5

also pursued this goal. Based on an IBM-sponsored study on the feasibility of
re-architecting the UML [CEK01] they developed the Meta Modeling Language
MML and elaborated its implications for meta modeling [AES01b, AES01a].
A core idea was that a meta model should not only provide elements for the
level below it, but also define the relationship of this level to its instances (i.e.,
Mn defines the constructs for Mn−1 and the instantiation between Mn−1 and
Mn−2). While these works propose remedies for c) they come at the price of an
even more complicated hierarchy notion, thus worsening a).

The forthcoming version 2.0 of MOF [Obj03a] mainly targets the alignment
problems summarized under b). Its architecture basically remains unchanged.
If anything, it has been obfuscated even further by re-using the UML infras-
tructure (i.e., the UML language core) in the MOF, distinguishing between an
essential MOF (called EMOF) and the complete MOF (CMOF) and explicitly
adding reflection facilities. There are furthermore several other Requests for
Proposals to extend MOF even more (e.g., the Queries, Views, and Transfor-
mations RfP [Obj02b]). Addressing the understandability problem a) and its
resolution in MOF 2.0, the specification provides the following statement:

Suffice it to say MOF 2.0 with its reflection model can be used
with as few as 2 levels and as many levels as users define.

We doubt whether this insight serves to alleviate the user’s confusion.

Summarizing we can state that meta modeling enjoys a high acceptance
on the user’s side and that the UML meta model achieves an integration
of the different UML notations. The technical realization of meta mod-
eling in form of the Meta Object Facility fails to convincingly solve the
technical issues arising out of the inherent circularity of the approach.

Having thus covered the syntax definition of the UML we now proceed to discuss
its semantics definition.

5See also www.puml.org

www.puml.org

II.2. Visual Modeling Languages and their Definition 19

II.2.4 Requirements for a Technique for Semantics Definitions

While meta modeling has become an accepted technique for the definition of the
abstract syntax, the UML’s informal approach to semantics definition remains
an issue of heated criticisms. The three main arguments are:

u The UML’s semantics is unsystematic. Being organized along the syntactic
elements, semantics information is spread all over the place and there is no
systematic way to collect all information pertaining to a special situation.
There is also no systematic way to derive precise interpretations of special
cases or to resolve the frequently occurring contradictions.

u The UML’s semantics text is subject to human interpretation. The inter-
preter’s expectations, experiences, and demands will influence this inter-
pretation.

u The UML’s semantics definition cannot be subject to automated process-
ing. The formality of syntax definitions has allowed for the creation of a
high number of very useful and generic language processors. All applica-
tions dealing with the semantics have to be hand coded, based solely on
their creator’s interpretation of the specification.

The essence of the criticism is that there is often no way to either prove or
disprove that a certain interpretation of a UML diagram is correct with respect
to the language standard. UML models can thus not be regarded as precise and
reliable means of communication in a development process.

Formal semantics descriptions promise to improve all criticized aspects of this
situation. Numerous suggestions for such formal semantics descriptions have
been brought forward by the academic community. The OMG, however, de-
cided to stick with the ”precise natural language“ [Obj03b] approach for the
description of the UML 2.0. Obviously, there are more factors to consider than
the ones enumerated above. In the following paragraphs we take a closer look
at the strengths and weaknesses of the natural language style of semantics def-
inition. Our goal here is to derive requirements for a semantics description
technique which should ideally be able to replace the current style of semantics
definition in future UML versions and other VMLs of a comparable nature.

The first important distinction is between the form and the content of a se-
mantics definition. The content of a semantics definition are the concepts it de-
scribes. The form is the way these concepts are described. There is little doubt
that an 800+ pages long document which is the result of a strenuous agreement
process6 in which more than fifty parties participated [Kob04] simply cannot
be free of odd design choices, inconsistencies, omissions and outright contradic-
tions (some of which are enumerated in [AR02, HS01, RW99, SG99, FQL+03],
many more can be found in [FTF]). These, however, are all faults which lie with
the content of the specification and which are largely (albeit not completely)
independent of the technique used for its description (i.e., its form). It is to be
expected that a formal specification would (at least initially) also reflect these

6Our favorite quote from such a discussion is from UML’s (at that point rather exasperated)
chief author Bran Selic: ”Otherwise, I will simply defer the issue until God comes down to
Earth and reveals the Truth.“ [FTF], issue 6902

20 Chapter II. Semantics Description Techniques for Visual Modeling Languages

inherent faults in the diverging semantic concepts of the various UML authors.
Equally all claims that the UML either omits important concepts for some do-
mains [HS99] or is already overburdened with too many features [Mey97] target
the content of the specification only. In this thesis we are not concerned with the
content of a language specification unless it has implications for the specification
technique.

An existing connection between form and content is that formal specifications
allow for an easy and systematic, sometimes even automatic detection of certain
types of errors in a specification. Natural language cannot be processed this way.
The detection of flaws in the UML specification thus relies on human inspection
only. A semantics description technique which allow for automated analysis of
the specification would thus increase the quality of the UML specification. To
allow for such processing, the specification technique needs at least to be formal
(i.e., all of its part must be in some well-defined and itself precisely defined
format). Which further properties need to be fulfilled to enable certain kinds
of analysis is hard to discern from this general point of view. Usually a high
number of powerful control features makes analysis harder. We do thus request
a generic analyzability in that the semantics definition technique is minimal in
its features.

A problem clearly related to the form of the semantics definition is the precise-
ness of its interpretation. Currently, even the UML’s authors themselves can
get into heated debates on the interpretation of the specification text. A se-
mantics description that is precise would eliminate such arguments. Preciseness
captures the fact that for a given model of the language its meaning can be
systematically and precisely constructed. The best proof for such preciseness
is the existence of what is often called a reference implementation of the UML
[Kob04, Ste04, HK04, Tho03]. The term (and the idea behind it) stems from
the way programming languages are published: A specification text is shipped
together with a reference implementation of a compiler for the language. Ex-
isting ambiguities in the specification text are removed by the compiler which
precisely determines which programs are admissible and which are erroneous.

Reference implementations have another important advantage: They allow users
to learn about the general technique as well as trying out specific examples by
directly compiling/executing them. Especially the latter facility is very helpful
in picking up new notations as ”people seem to be a lot better at dealing with
specific examples first, then generalizing from them, than they are at absorbing
general abstract principles first and applying them in particular cases“ [Tai97].
Such a facility is also of immense help to Language Engineers as writers of a
language specification since they can validate whether their specification (‘what
they write’) actually matches their intentions (‘what they want to write’).

Note, however, that precision in the semantics specification technique only im-
plies that it is possible to unambiguously say whether a certain syntactical
structure has a particular meaning or not. It does not imply that there is only
one such meaning. This distinction is stressed in [HR00, HR04, KER99] to
alleviate fears that in providing a precise way to specify the semantics of the
UML the inherent abstractness of UML would get lost, ultimately resulting in
a programming rather than a modeling language (cf. [Tho03, Ste04, Fow05b]).
A semantics specification technique should rather be prepared for the fact that

II.2. Visual Modeling Languages and their Definition 21

UML elements can in general have a whole set of possible meanings (deriv-
ing from their abstractness as well as their diverging interpretation in different
domains). The reference implementation which we have in mind is thus signifi-
cantly different from approaches toward executable UML [MB02] in that it not
necessarily creates in a deterministic behavior sequence as its result.

Focusing only on the shortcomings of the UML’s specification technique without
acknowledging its successes would be foolish, though. After all the (flawed and
imprecise) 1.x versions of the language attracted a very large user base, proba-
bly surpassing that of any other VML7. The vast advantage that the informal
style of specification by explanations holds over all formal specification methods
is that it is easily accessible for anyone speaking English. No prior knowledge
of mathematics, formal calculi, or special programming languages is required
to read the specification8. This intuitive accessibility is the main reason for
the OMG to stick with natural language descriptions to convey semantics. Any
technique which seriously tries to compete with (or even replace) the current
style of semantics definition needs to make understandability for a wide audi-
ence its prime requirement. For modeling languages, this point is also made,
e.g., in [KW01, KHH+97, Sch96a, HR04, KER99] and looking to programming
languages we find rather similar problems. Marcotty et al. formulated them in
conclusion of their 1976 survey of (programming) language specification tech-
niques [MLB76]:

Formal definitions must never be thought of as self-contained
arenas with no user contacts. The interface with users is the key
area where most of the effort is needed. The metalanguage of a
formal definition must not become a language known to only the
high priests of the cult.

The notion of understandability is strongly related to the expected audience.
The one group which will certainly come into contact with the semantics defini-
tion technique are the writers of the specification. We call this group Language
Engineers. In the case of the UML these are primarily the members of the
OMG’s committees concerned with incepting or improving the language stan-
dards. On the reception side of the specification we find a group called Advanced
Language User . Under this heading we capture all users of UML who have a
deeper interest in its inner workings, e.g., academics, tool builders, writers of
UML books, UML consultants, and generally people who employed UML in
such a breadth and depth as to be aware of the detailed problems it comprises.
We do in fact not expect the average UML user to be in this group. For the basic
users of the language explanatory texts (more like those provided in introduc-
tory textbooks today [Stö05c, Stö05b, FS00, Pen03] than the actual standard’s
text) should complement the formal definition. Language Engineers are actually
a subset of the Advances User group as every advanced user may rightfully set
out to define his own UML extensions and thus be confronted with the task of
writing semantics specifications.

7Exact numbers are hard to come by, but a recent study of UML usage by Dobing and
Parsons [DP05] found almost 50% UML users in the questioned group of system developers.
Even though this exact number is not proven to be reliable, it still indicates a high degree of
UML dissemination in the relevant target group.

8although all of these help in actually understanding its details.

22 Chapter II. Semantics Description Techniques for Visual Modeling Languages

What then can we postulate as ”understandable“ for the Advanced Language
User group?

u Visual specifications are preferred over textual ones. Users of Visual Mod-
eling techniques can be assumed to have a preference for visual notations,
unless textual alternatives offer clear benefits.

u As modeling languages are used in the field of Software Engineering, solid
familiarity with the concepts of Object-Orientation can be assumed. Spe-
cial formal calculi will, however, only ever be known to a particular subset
of the audience.

u UML familiarity can also be assumed, even if the language under consid-
eration is not UML.

All of these assumptions strongly indicate that a meta modeling approach (like
employed for the definition of the abstract syntax of the UML) would have a
high degree of understandability for a semantics specification, too (an idea also
emphasized in [KER99, KW01, EFLR99, Reg02]).

Natural language is also very flexible in the way semantic concepts can be in-
troduced. In some places, the UML specification text is rather descriptive, in
others highly operational. Overall, it tries to express the semantics in a way
which is adequate in that the mapping of syntactic to semantic concepts remains
relatively straightforward. Any semantics description techniques which try to
reduce the high-level features of UML to very basic mathematic formalisms will
face a huge semantic gap and will probably not be adequate (cf. [Sel04]).

The flexibility of natural language has another effect: It can address all char-
acteristics of Visual Modeling Languages (cf. Subsect. II.2.2), i.e., static and
dynamic diagrams, high and low abstraction levels, semantic variation points
etc. It is universal and can even cover very informal concepts like Use Cases.
While this level of universality can never be reached with a formal specification
technique, such a technique should be aimed at a high degree of universality and
should be able to address (almost) all of UML’s characteristics and features.

Requirements for a VML’s semantics specification technique:

To actually find a suitable alternative to the current style of specifica-
tion, we look for a formal and precise description technique which

has a high understandability for Advanced Language Users. It also

needs to be analyzable , adequate , and universal .
These requirements will guide our evaluation of existing approaches (in
the next section) as well as our construction of the DMM approach.

II.3. Survey of Semantic Description Techniques for VMLs 23

II.3 Survey of Semantics Description Techniques for
Visual Modeling Languages

Surveying the body of existing proposals to provide a formal semantics to UML
is not an easy task as witnessed by [HR00]:

It is very difficult to compare papers written on the semantics of
the UML, since the comparison must take into account the subsets
of the notation dealt with, the assumptions on the kind of systems
it is intended for, the relationships between the constructs treated,
the levels of detail used in defining the language, and the notations
and representations used in the papers themselves.

A basic distinction can be made between approaches which pursue specific goals
(e.g., verifying model properties, analyzing consistency, or generating code) by
providing a formalized semantics and approaches which aim for a general seman-
tics description technique. The former are usually focused on their respective
goals and techniques and can not be expected to yield universal solutions. We
give an overview comparison of such approaches in Subsect. II.3.1.

Approaches with the explicit aim to provide a general semantics description
technique for (visual) languages are discussed in Subsections II.3.2 and II.3.3.
We orient the discussion along the classical division between denotational (or
compilation) semantics and operational (interpreter) semantics. In Subsec-
tion II.3.4 we present a hybrid operational/denotational approach.

II.3.1 Overview of Specific Formalizations

There is a vast difference between providing one specific formalization of (a sub-
part of) UML and designing a technique which can universally address UML’s
semantics definition. A lot of papers pursue the former goal. Bran Selic calls
these approaches ”concrete semantics“ in [Sel04]. We adopt this term. In par-
ticular we subsume approaches under this heading which

u are targeted toward a specific application purpose. This specific purpose
usually guides the formalization process in a way as to obtain a usable
formalization (for the application). If, e.g., model checking is the purpose
then the formalization will be restricted in a way as to avoid too fast state
space expansion.

u have a well known formal technique as their semantic domain. Targeting
such existing formal notions allows for the intended application purpose
as tools or theoretic results are readily available. The readability of the
formalism in the semantic domain is usually of no concern for the authors
and generally very poor with respect to Advanced Language Users of the
UML.

u focus more on the semantic domain than on the mapping. As in many cases
the semantic gap is rather small (the semantic domain and the examples
being chosen to fit rather intuitively) no special effort is spent on the

24 Chapter II. Semantics Description Techniques for Visual Modeling Languages

formulation of the mapping. Usually informal descriptions are provided
only.

u target specific notations of the UML only. To avoid the problem of a wide
semantic gap, many approaches look for the UML notation which looks
most like a nail to the hammer they have (or vice versa). Broadening the
scope to other UML notations is usually dubbed a topic of ”future work“.
Such approaches severely lack the universality required for a general se-
mantics definition.

While concrete semantics may provide valuable insights to their specific pur-
poses, they are far from meeting the requirements we set out. Especially un-
derstandability, adequacy, and universality are usually not addressed in these
works. We do thus only provide a summarizing overview of concrete semantics
approaches in Table II.3. For each approach we list its application purpose (if
no explicit purpose is given, we state the purpose as ‘formalization’), the tech-
nique of its semantic domain, the technique employed to describe the semantic
mapping, and the UML diagrams covered. Please note that this coverage does
not imply complete support for all features of the respective diagram. In fact,
most approaches place severe restrictions on the general expressiveness of UML.

Similar to the theoretically oriented concrete semantics there are a number of
approaches which generate program code from UML models. While most com-
mercial case tools restrict the code generation to static structures (i.e., mostly
class definitions), ideas for generation of more complex program code exist (e.g.,
[fuj, EHSW99]). These can also be classified as semantics descriptions, albeit
with serious shortcomings in relation to our requirements: As the target lan-
guage is a special programming language, the implementation independence of
UML gets lost by definition. Abstract models cannot be expressed, multiple
possible semantics are reduced to a single deterministic execution. Understand-
ability heavily depends on the user’s knowledge about the target language. We
thus not cover code-generating approaches in depth here.

We can summarize that despite the number of concrete semantics pro-
posed in the literature, none of them promises to fulfill the requirements
we have. The presented works provide valuable insights for model analy-
sis, consistency checking etc. But their formalization of UML is focused
upon this purpose only. UML is a very general and high-level language,
incorporating semantic concepts from very different schools of thought.
Expressing its semantics in a concrete formalism which is restricted (for
analysis purposes) or geared toward one specific paradigm only must fall
short.
It is our opinion that the problem of actually defining the semantics of
UML is complex enough to warrant its own technique. Based upon such
a general semantics definition, one may then progress to derive (in a
formal and documented way) more restricted semantics representations,
allowing for the application of specific analysis methods.

II.3. Survey of Semantic Description Techniques for VMLs 25

A
u
t
h
o
r
(s

)
P
u
r
p
o
se

S
e
m
a
n
t
ic

d
o
m
a
in

S
e
m
a
n
t
ic

m
a
p
-

p
in

g
U

M
L

c
o
v
e
r
a
g
e

B
oc

k
an

d
G

ru
ni

ng
er

[B
G

04
,
B

G
05

]
fo

rm
al

iz
at

io
n

P
ro

ce
ss

Sp
ec

ifi
ca

ti
on

L
an

-
gu

ag
e

de
sc

ri
pt

io
n/

ex
am

pl
es

A
ct

iv
it
y

D
ia

gr
am

s

B
ög

er
,

C
av

ar
ra

,
R

ic
-

cc
ob

en
e

[B
C

R
00

,
B

C
R

03
,
C

R
S0

4]

fo
rm

al
iz

a-
ti

on
/s

im
ul

a-
ti

on

A
bs

tr
ac

t
St

at
e

M
ac

hi
ne

s
(A

SM
s)

de
sc

ri
pt

io
n

A
ct

iv
it
y

D
ia

gr
am

s,
St

at
e-

ch
ar

ts

D
am

m
et

al
.[D

JP
V

03
]

fo
rm

al
iz

at
io

n
Sy

m
bo

lic
T
ra

ns
it

io
n

Sy
s-

te
m

s
pr

e-
co

m
pi

la
ti

on
an

d
fo

rm
al

lo
gi

c
R

ea
l

T
im

e
St

at
ec

ha
rt

s,
C

la
ss

D
ia

gr
am

s

D
i

N
it

to
et

al
.

[N
L
S+

02
]

w
or

kfl
ow

ex
-

ec
ut

io
n

O
P

SS
pr

oc
es

s
sp

ec
ifi

ca
-

ti
on

s
de

sc
ri

pt
io

n
A

ct
iv

it
y

D
ia

gr
am

s,
C

la
ss

D
ia

gr
am

s,
St

at
ec

ha
rt

s

E
sh

ui
s

an
d

W
ie

ri
ng

a
[E

W
04

,
E

sh
02

,
E

W
01

]
ve

ri
fic

at
io

n
C

lo
ck

ed
T
ra

ns
it

io
n

Sy
s-

te
m

de
sc

ri
pt

io
n

A
ct

iv
it
y

D
ia

gr
am

s

K
im

an
d

C
ar

ri
ng

-
to

n
[K

C
00

b,
K

C
00

c,
K

C
99

]

fo
rm

al
iz

at
io

n
O

b
je

ct
-Z

an
d

T
im

ed
R

e-
fin

em
en

t
C

al
cu

lu
s

Fo
rm

al
m

ap
pi

ng
[K

C
00

a]
C

la
ss

D
ia

gr
am

s,
St

at
e-

ch
ar

ts

K
na

pp
[K

na
99

]
an

d
St

ör
rl

e
[S

tö
03

]
fo

rm
al

iz
at

io
n,

de
te

ct
io

n
of

sp
ec

ifi
ca

ti
on

fla
w

s

T
ra

ce
s

an
d

T
em

po
ra

l
L
og

ic
D

es
cr

ip
ti

on
C

ol
la

bo
ra

ti
on

/I
nt

er
ac

ti
on

D
ia

gr
am

s

K
na

pp
et

al
.

[K
M

R
02

]
co

ns
is

te
nc

y
ch

ec
ki

ng
T

im
ed

A
ut

om
at

a
de

sc
ri

pt
io

n
St

at
ec

ha
rt

s,
C

ol
la

bo
ra

-
ti

on
D

ia
gr

am
s

(c
on

ti
nu

ed
)

26 Chapter II. Semantics Description Techniques for Visual Modeling Languages
A

u
t
h
o
r
(s

)
P
u
r
p
o
se

S
e
m
a
n
t
ic

d
o
m
a
in

S
e
m
a
n
t
ic

m
a
p
-

p
in

g
U

M
L

c
o
v
e
r
a
g
e

K
üs

te
r

et
al

.
[K

üs
04

,
E

H
K

01
]

co
ns

is
te

nc
y

ch
ec

ki
ng

C
SP

ru
le

-b
as

ed
tr

an
sf

or
-

m
at

io
n

St
at

ec
ha

rt
s,

Se
qu

en
ce

D
i-

ag
ra

m

K
w

on
[K

w
o0

0]
ve

ri
fic

at
io

n
SM

V
in

pu
t

la
ng

ua
ge

(fi
-

ni
te

st
at

e
m

ac
hi

ne
s)

fo
rm

al
m

ap
pi

ng
St

at
ec

ha
rt

s

L
an

o
an

d
B

ic
ar

re
gu

i
[L

B
99

]
fo

rm
al

iz
at

io
n,

co
ns

is
te

nc
y

R
ea

l-
ti

m
e

A
ct

io
n

L
og

ic
de

sc
ri

pt
io

n
C

la
ss

D
ia

gr
am

s,
Se

qu
en

ce
D

ia
gr

am
s,

St
at

ec
ha

rt
s

L
i

et
al

.
[L

L
H

04
,

L
L
H

02
]

co
ns

is
te

nc
y

ch
ec

ki
ng

C
SP

de
sc

ri
pt

io
n

C
la

ss
D

ia
gr

am
s,

Se
qu

en
ce

D
ia

gr
am

s,
U

se
C

as
e

D
ia

-
gr

am
s

O
be

r
[O

be
03

]
fo

rm
al

iz
at

io
n

A
bs

tr
ac

t
St

at
e

M
ac

hi
ne

s
(A

SM
s)

tr
an

sl
at

io
n

to
ol

C
la

ss
D

ia
gr

am
s,

A
ct

io
ns

Ø
ve

rg
aa

rd
[Ø

ve
99

]
fo

rm
al

iz
at

io
n

T
ra

ce
s

an
d

lo
gi

c
de

sc
ri

pt
io

n
C

ol
la

bo
ra

ti
on

D
ia

gr
am

s

Ø
ve

rg
aa

rd
[Ø

ve
00

]
fo

rm
al

iz
at

io
n

B
O

O
M

(t
ex

tu
al

sp
ec

ifi
ca

-
ti

on
fr

am
ew

or
k,

ba
se

d
on

th
e

π
-c

al
cu

lu
s)

m
et

a
m

od
el

m
ap

-
pi

ng
s

[Ø
ve

98
]

C
la

ss
D

ia
gr

am
s

P
ai

ge
et

al
.

[P
O

B
02

]
co

ns
is

te
nc

y
ch

ec
ki

ng
P

V
S

sp
ec

ifi
ca

ti
on

s
(T

he
P

ro
to

ty
pe

V
er

ifi
ca

ti
on

Sy
st

em
,

a
th

eo
re

m
pr

ov
er

)

de
sc

ri
pt

io
n

C
ol

la
bo

ra
ti

on
D

ia
gr

am
,

C
la

ss
D

ia
gr

am

P
ez

zè
an

d
B

ar
es

i
[B

P
01

a,
B

P
01

b]
an

al
ys

is
H

ig
h

L
ev

el
T

im
es

P
et

ri
N

et
s

de
sc

ri
pt

io
n

an
d

re
-

du
ct

io
n

ru
le

s
C

la
ss

D
ia

gr
am

s,
St

at
e-

ch
ar

ts

(c
on

ti
nu

ed
)

II.3. Survey of Semantic Description Techniques for VMLs 27

A
u
t
h
o
r
(s

)
P
u
r
p
o
se

S
e
m
a
n
t
ic

d
o
m
a
in

S
e
m
a
n
t
ic

m
a
p
-

p
in

g
U

M
L

c
o
v
e
r
a
g
e

P
or

re
s

an
d

L
ili

us
[L

P
P

99
,
P

L
99

,
P
or

01
]

ve
ri

fic
at

io
n

P
R

O
M

E
L
A

(i
np

ut
la

n-
gu

ag
e

fo
r
th

e
SP

IN
m

od
el

-
ch

ec
ke

r)

vU
M

L
to

ol
C

la
ss

D
ia

gr
am

s,
St

at
e-

ch
ar

ts

R
eg

gi
o

et
al

.
[R

A
C

H
00

,
R

A
C

H
99

,
A

R
02

]

fo
rm

al
iz

at
io

n,
co

ns
is

te
nc

y
ch

ec
ki

ng

C
A

SL
(a

lg
eb

ra
ic

sp
ec

ifi
ca

-
ti

on
fr

am
ew

or
k)

an
d

LT
Ss

de
sc

ri
pt

io
n

C
la

ss
D

ia
gr

am
s,

St
at

e-
ch

ar
ts

St
ev

en
s

[S
te

01
]

fo
rm

al
iz

at
io

n
L
ab

el
ed

T
ra

ns
it

io
n

Sy
s-

te
m

s
de

sc
ri

pt
io

n
U

se
C

as
es

St
ör

rl
e

[S
tö

05
a,

SH
05

,
St

ö0
4c

,
St

ö0
4a

]
fo

rm
al

iz
at

io
n

P
et

ri
N

et
s

(v
ar

io
us

di
-

al
ec

ts
)

de
sc

ri
pt

io
n

A
ct

iv
it
y

D
ia

gr
am

s

va
n

de
r

B
ee

ck
[v

dB
01

,
vd

B
02

]
fo

rm
al

iz
at

io
n

St
ru

ct
ur

ed
O

pe
ra

ti
on

al
Se

m
an

ti
cs

ru
le

s
-n

ot
ap

pl
ic

ab
le

-
St

at
ec

ha
rt

s

V
an

de
r

St
ra

et
en

et
al

.
[S

JM
04

]
co

ns
is

te
nc

y
tr

ac
es

an
d

LT
S

de
sc

ri
pt

io
n

St
at

ec
ha

rt
s,

Se
qu

en
ce

D
i-

ag
ra

m
s

V
ar

ró
[V

ar
02

,
V

ar
03

]
ve

ri
fic

at
io

n
E

xt
en

de
d

H
ie

ra
rc

hi
ca

l
A

ut
om

at
a

M
od

el
T
ra

ns
it

io
n

Sy
st

em
s

St
at

ec
ha

rt
s

X
ie

et
al

.
[X

L
B

01
,

X
B

02
]

ve
ri

fic
at

io
n

S/
R

au
to

m
at

a
(i

np
ut

la
n-

gu
ag

e
fo

r
th

e
C

O
SP

A
N

m
od

el
ch

ec
ke

r)

to
ol

St
at

ec
ha

rt
s

T
ab

le
II

.3
:

O
ve

rv
ie

w
of

co
nc

re
te

se
m

an
ti

cs
de

sc
ri

pt
io

ns
fo

r
U

M
L

28 Chapter II. Semantics Description Techniques for Visual Modeling Languages

Besides these concrete semantics formalization approaches there are also more
fundamental and general proposals for semantics definition techniques. We dis-
cuss these in the following subsections, starting with the denotational paradigm.

II.3.2 Denotational or Compilation Semantics Descriptions

The approach of denotational semantics originated in the field of Programming
Languages. Its foundations were formulated by Scott and Strachey [SS71] in the
early 70s. The denotational approach has the following characteristics [Mos03]:

u Clear separation of syntactic domain, semantic domain, and semantic
mapping.

u The semantic domain is formed by mathematical functions

u The mapping is defined inductively, using λ-notation to specify how the
denotations of components are to be combined.

Denotational semantics allow for a very rigorous semantics definition in terms of
commonly agreed mathematics but they also require considerable mathematical
skills. For instance, loops and recursion are usually denoted to least fixed-
points of continuous functions on Scott-domains. In their pure form denotational
semantics thus remain very much a theoretician’s tool as they severely lack
understandability for a broad audience.

The clear underlying framework and its terminology have, however, shaped the
way many people think about semantics. We have also adopted this terminol-
ogy in our discussion of concrete semantics in the previous section. Since the
approaches discussed there (an in the remainder of this section) lack the math-
ematical rigor in both their semantic domain and the mapping definition, they
are not really denotational in the original sense of the approach. One might
rather call them ”translation“ or ”compilation“ semantics.

Compilation semantics thus consists of translating expressions in a language
which is to be defined (the syntactic domain) into a language which one as-
sumes is already known (the semantic domain). How well a compilation seman-
tics fulfills our requirements mainly depends on its choice of formalism for the
semantic domain (the overview of concrete semantics in the previous subsection
already dismissed a number of such choices). In the following paragraphs we
focus on three promising approaches for formulating a semantic domain suitable
for Visual Modeling Languages:

First, the expression of a model’s semantics in terms of graph transformations is
discussed. Being a well-known and visual formalism, graph transformations have
the potential to form a highly understandable semantic domain, thus meeting
our prime requirement. Then we briefly touch upon the topic of core semantics,
which promotes the idea of the semantic domain being a subset (or core) of the
original language. Finally we discuss the so called denotational meta modeling
which is the currently most influential style of semantics definition for the UML.

II.3. Survey of Semantic Description Techniques for VMLs 29

Syntactic Domain Semantic Domain

«Graph Transformations»

«Graph Transformation

Units»
«UML»

Figure II.4: Architecture of the Bremen approach to define UML semantics

Graph Transformations as a Semantic Domain

Graph Transformations are a visual formalism which allows to specify the ma-
nipulation of object structures in a very intuitive way. The mathematical foun-
dations of Graph Transformations, their features, and numerous examples are
presented in Chapter IV, see also [Roz97, EEKR99, EKMR99].

The combination of visual renderings with potentially intuitive interpretations
and mathematical rigor make Graph Transformations an interesting candidate
for behavioral specifications. This general fact has long been recognized, cf.
[Pad82, EEKR99, GR01].

One approach which exploits this general idea for the semantics description of
UML is that of Kuske, Gogolla and Ziemann (illustrated in Fig. II.4 and called
the Bremen approach in the following discussion). In [Kus01] the semantics of
a Statechart model is expressed by a set of graph transformation rules. Since
both formalisms are based on the concept of states and discrete changes of state,
the semantic gap is rather small in the basic case. To correctly translate the
high-level features of UML Statecharts (nested states, priorities, etc.) Kuske
employs Graph Transformations controlled by Transformation Units [Kus00].
Thus both the semantic domain and the semantic mapping are expressed by
Graph Transformations. The approach has later been generalized to cover other
UML diagrams and their integration [KGKK02, GZK02, ZHG05].

In its general form, the approach takes a model composed of different UML
diagrams as input and produces a set of Graph Transformation rules as output.
This process is illustrated by an example taken from [GZK02] and depicted in
Figs. II.5 and II.6. The figure shows a Class Diagrams and a Statechart which
specify aspects of an office model. Fig.II.6 shows a rule which is generated by
the approach. It combines the information of the different diagrams in that
it specifies that executing the operation printer.print(l), a new Printout object
is being created and an event for triggering proofreading is enqueued with the
Boss object.

An advantage of using Graph Transformations as the semantic domain is that
given a start graph for the model a whole behavior sequence can be played out
to the user by applying the generated rules [EHKZ05, EB04]. Such animations
come pretty close to our idea of example model validation. Open questions are
how non-determinism and incompleteness can adequately be represented in such
approaches.

The Bremen approach also comprises several drawbacks. Its most fundamen-
tal problem is the simplicity of the Graph Transformation approach employed
for the formulation for the semantic domain. Since only simple graph trans-

30 Chapter II. Semantics Description Techniques for Visual Modeling Languages

print(l:Letter)

Printer

record(t:Tape)

read(p:Printout)

sign(p:Printout)

Boss

empty : Boolean

Tape

type(t:Tape)

adjust(l:Letter)

mail(p:Printout)

Secretary

version : Integer

mailed : Boolean

Letter

signed : Boolean

Printout

*

1

1

1

*

1

0..1

1

1

1
0..1

0..1

*

1

PrinterLife

print(l)/self.boss.read(l.printout)

Figure II.5: Example for the Bremen approach: Class Diagram and Statechart

Y

print(l)

:Printer

:BossHasRecorded

X

l:Letter

Y

read(p)

:Printer

:BossHasRecorded

X

l:Letter

signed=false

p:Printout

Printer:print(l)

Figure II.6: Example for the Bremen approach: Resulting rule for operation
print

II.3. Survey of Semantic Description Techniques for VMLs 31

formation rules are used here, all manipulations for a certain behavior have to
be either combined in a single rule or synchronized by means of control ob-
jects (as done in [ZHG05]). This causes some rather peculiar interpretations of
UML models (e.g., all operations have to happen in an atomic step)—a sign for
inadequacy of the approach.

On the other hand the simplicity of the semantic domain enforces a complex
translation mechanism to encode the high-level features of UML. The approach
of employing Graph Transformation Units to capture these translations (as used
in [Kus01]) does not find any mention in later publications [ZHG05]. These just
speak of an ”automated translation“ being based on the USE system [RG00].
The translation description, however, is where the language semantics really
reside in this approach. The resulting Graph Transformation System provides
the semantics for a single model only (note, how the rule in Fig. II.6 is formulated
over concrete model elements like Boss and Printer). Understanding the general
mechanisms of a language and possibly extending them is prohibited in this
approach by obscuring the translation specification. Without a clear mapping
notion the approach is also not precise.

We can conclude that Graph Transformations seem a promising choice
for the formulation of the semantic domain especially for dynamic se-
mantics but the way they are employed in the Bremen approach does not
meet the criterion of adequacy. The semantic mapping in that approach
also lacks precision and understandability.

Core Semantics

Core Semantics approach the dilemma of finding an appropriate semantic do-
main by defining a subset of the syntactic domain (i.e., the language to be
explained) as the core language. The semantics mapping can then be consid-
ered as a reduction from the whole language to the language core (cf. Fig. II.7).
Core semantics approaches for the definition of UML can be found in [GPP98]
(reducing UML Statecharts to simple automata) and [GR99] (reducing complex
to simple Class Diagrams). Both of these works use Graph Transformations to
describe the reduction. The general notion of defining a language core for UML
(without an explicit reduction) is often proposed (e.g., [SK02, EK99, ESW+05])
with Class Diagrams and Statecharts being the favorite candidates to express
structure and behavior respectively [HG97, HK04].

The inherent problem of Core Semantics is that a subset of the (as of yet seman-
tically undefined) language is assumed to have a clear and well-known semantics.
While this is just a variation on the general assumption of compilation seman-
tics, the circularity of Core Semantics makes it harder to accept to many people.
Thus, such reductions are usually regarded as pre-compilations only, reducing
the ”syntactic sugar“ before attacking the core language with a ”real“ semantics
description9.

9The reverse way is known as bootstrapping in Programming Language design: First, a
compiler for the core language is implemented in an external language, then this core language

32 Chapter II. Semantics Description Techniques for Visual Modeling Languages

Syntactic Domain

Semantic Domain

Language

Core

Figure II.7: Overview of the Core Semantics approach

Syntax Definition

Expression

Semantics Definition

Meaning

Language

Level

Model (Instance)

Level

conforms to conforms to’’

«Meta Model» «Meta Model»
semantic

 mapping

conforms to’

L

M

Figure II.8: The architecture of denotational meta modeling

Besides this problem, core semantics promise a high degree of understandability
by essentially applying the meta modeling idea to the definition of semantics.
We deem this to be a very interesting concept, yet the above cited works only
cover very selective features of UML and do not allow for an evaluation of
adequacy and universality of this kind of semantics definition.

Denotational Meta Modeling

Denotational Meta Modeling is a term coined by the members of the pUML
group which actively promoted this approach to semantics definition for Visual
Modeling Languages [KGR99, KER99, EK99, CEK+00, CEK01]. Its basic con-
struction is outlined in Fig. II.8. The denotational meta modeling approach
assumes the language under consideration to be formulated by a (syntactic)
meta model. This meta model defines the set of expressions of the language
(models). The approach then proposes to formulate the semantic domain in
a similar structure, using a semantic domain meta model to define the set of
semantic concepts which are relevant for the expression of a model’s meaning.
The semantic mapping is defined on the meta model level, relating syntactic to
semantic elements. This mapping is then propagated to the instance level and
allows for a precise construction of a given model’s semantics.

is used to define the compilation of additional language features.

II.3. Survey of Semantic Description Techniques for VMLs 33

Syntax Definition

Expression

Semantics Definition

Meaning

Class

Name:String

Video

Object

Attribute Slot

name=“2001“

V345:Video

L

M

Figure II.9: An example for denotational meta modeling

A common example for the denotational meta modeling approach can be found
in Fig. II.9. Here, the syntactic element Class is related to the semantic concept
Object, the concept of Attribute to that of a Slot (which can hold actual values).
On the model level we find a class modeling the concept Video (the example is
identical to that of Fig. II.3) which expresses properties about a set of objects
(a sample object is shown in the lower right hand package of the figure).

Note that the choice of semantic concepts in the denotational meta modeling
framework usually corresponds to ”runtime notions“, i.e., terms used to describe
the execution of programs. We thus find concepts like Object, SignalOccurrence,
and ActionExecution in the semantic domain meta model. For users with a
background in OO programming, these notions are well-known which increases
the understandability of the denotational meta modeling approach. There are,
however, no strict requirements for this choice of semantic concepts.

If runtime notions are chosen as the semantic concepts, one needs to take care
in using the term ’instance‘ in the denotational meta modeling framework. On
the one hand, language expressions can be seen as instances of their defining
meta model (i.e., the vertical relations in Figs. II.8 and II.9). In [Kue05] this
kind of instance is called a linguistic instance. On the other hand, the semantic
mapping relates defining model elements with runtime or instance notations
(the horizontal relations in the figures).

A main achievement of the denotational meta modeling approach is the clear
separation between the type or language level (which defines the semantic map-
ping in general) and the instance or model level (which assigns a concrete mean-
ing to one specific expression). While even mathematical denotational semantics
provide their definitions in terms of general syntactic entities, the distinction
between type and instance level is not made so explicit there. We will emphasize
this distinction by using the notation of the slightly raised boxes to distinguish
meta levels throughout this thesis. The language definition level is marked with
an ’L‘, the instance (model) level with an ’M‘.

Another advantage is that—compared to the concrete semantics approaches

34 Chapter II. Semantics Description Techniques for Visual Modeling Languages

94 UML OCL 2.0 Adopted Specification

• The Type-Value package contains the associations between the instances in the semantics domain and the types in the
abstract syntax.

• The Expression-Evaluation package contains the associations between the evaluation classes and the expressions in the
abstract syntax.

10.2 The Values Package
OCL is an object language. A value can be either an object, which can change its state in time, or a data type, which can
not change its state. The model in Figure 15 on page 95 shows the values that form the semantic domain of an OCL
expression. The basic type is the Value, which includes both objects and data values. There is a special subtype of Value
called UndefinedValue, which is used to represent the undefined value for any Type in the abstract syntax.

Figure 14 - Overview of packages in the UML-based semantics

Ocl-AbstractSyntax

OCL-AS-Domain-Mapping

Type-Value
(from OCL-AS-Domain-Mapping)

Expression-Evaluation
(from OCL-AS-Domain-Mapping)

OCL-Domain

Expressions
(from Ocl-AbstractSyntax)

Types
(from Ocl-AbstractSyntax)

Evaluations
(from OCL-Domain)

Values
(from OCL-Domain)

Figure II.10: Architecture of the semantics specification of OCL 2.0 (reproduced
from [Obj03c])

in Subsect. II.3.1—denotational meta modeling does not prescribe a specific
semantic domain, i.e., it provides no concrete constructs on which the syntax
elements have to be mapped. The Language Engineer can actually construct a
set of semantic concepts he deems adequate for the description of a language.
Denotational meta modeling only provides the technique to express his choices.
This enables an expression of semantics using concepts known to the intended
users. The concept of meta modeling is also known to this group from the
syntax definition of the UML. We can thus award high scores for potential
understandability.

As the pUML group formed the academic core of the U2Partners consortium
which contributed the basis for the UML 2.0 specification, the OMG has started
to follow the approach of denotational meta modeling. The most notable re-
sult is the OCL 2.0 specification [Obj03c] (see Fig. II.10 for its architectural
overview) which uses denotational meta modeling. The denotational meta mod-
eling approach is currently the closest to being considered for a formal specifi-
cation of UML’s semantics.

Even if the UML specification does not (yet) directly employ denotational meta
modeling, it benefited from the pUML group’s clarification of terms. Direct
results can be seen in the fact that Instance is not a class in the UML 2.0 meta
model anymore (because it really is a semantic concept) and that the Action
Semantics of UML 1.5 have been renamed to Actions (because they are syntactic
elements only).

Denotational meta modeling also incorporates two drawbacks: One is of a rather
technical nature, the other a severe conceptual issue.

Technically, the realization of the mapping between syntactic and semantic do-
main has to be considered an open problem. In the OCL 2 specification, special
mapping classes were used (grouped in the package OCL-AS-Domain-Mapping in
Fig. II.10) which were associated to the syntax and semantics elements. The

II.3. Survey of Semantic Description Techniques for VMLs 35

+communications

ModelElement

BehaviourDescription

+context

+behavior 0..1

Class

ActiveClass

1

Communication*

¢ y � � t r � µ × } ~ v x � y � � { t r � x � u w t x � w u ~ v w x � � � { v � r s w u ³ x � £ x � r

+dynInfo

LTS

Transition
* * *

11

Label

1

+source+target

+label

ObjectState

ActiveObjectState

+statesOf *

+transitionsOf
*

+labelsOf
*

DynInfo

1

+belongsTo+belongsTo

*

+belongsTo

*

**

*

ObjectMeaning

Meaning

¢ y � � t r � 2 × } ~ v x � y � � { t r � u r � x v w y � } { � x y v u � � { v � r s w u ³ x � £ x � r

� �

Figure II.11: Semantic domain meta model of the Reggio/Astesiano study: LTS
and Active Object (reproduced from [RA01])

main drawback here is that both domains get ”lumped together“ by using as-
sociations. In fact the package membership is all that distinguishes syntactic,
semantic, and mapping elements.

Conceptually the biggest drawback of denotational meta modeling is its inability
to express behavior in a proper way. In the definition of the Meta Modeling
Language (MML, the first substantial subset of UML to be defined according
to denotational meta modeling [CEK+00]) dynamic aspects are mentioned only
briefly. Two studies on the integration of dynamic semantics in MML have
been published: In [RA01] Reggio and Astesiano propose a concentration of
behavior notions to the (syntactic) element Active Class. The semantic domain
meta model for this element provides the notions of Active Object and LTS
(Labeled Transition System) (see Fig. II.11). The semantics mapping specifies
that the states of the LTS are the system states of the Active Object and that
the transitions of the LTS correspond to communications of the active class.
No more details are provided on the semantics mapping of this dynamic core.
The notion of active class is furthermore not related to UML’s usual behavioral
features (i.e., Statecharts etc.). It thus remains unclear how this dynamic core
ties into a more general framework.

Kleppe and Warmer [KW01] criticize the Reggio/Astesiano study furthermore
for not properly integrating the dynamic and the static features. In their opin-
ion, ”a static view is just a view at one moment in time of a dynamic view, thus
the semantics of UML must be build from a viewpoint that integrates static
and dynamic aspects“. They proceed to provide a semantic domain meta model
which is based upon the notion of Values which are aggregated to Snapshots (cf.
Fig. II.12). Fundamental behavioral mechanisms of UML (actions and signals)

36 Chapter II. Semantics Description Techniques for Visual Modeling Languages THE KERNEL META MODEL 14

© KLASSE OBJECTEN

purely local to the object, it is not an instance of a complete package (as it is in MML). A LocalSnapshot con-
tains only the names known directly to its owner object, e.g. all its attributes and associations. It does not con-
tain any names known indirectly to the object, e.g. attributes of associated objects.

As in the Action Semantics time is considered to be relative to the MutableValue, i.e. each MutableValue
has it own notion of time. Time is considered to pass in discrete steps, each step being represented by another
snapshot. The real time between the snapshots is not relevant in this kernel. An extension can be build in
which the real time between local snapshots is a prominent aspect. (See section 4.3 (“Suggestions for other
packages”).) This view on time is in accordance within Einstein’s relativity theory. Every space-continuum, in
our case every mutable value, has its own time. Furthermore, every mutable value has its own specific view of
the total universe: it sees only the values that are associated with it.

Figure 2-7 shows how the ’time-reality’ of a mutable value connects to the time-reality of another mutable
value. To make the diagram more clear, the classes MutableValue and LocalSnapshot occur twice. The dia-
gram shows that for every mutable value (call it A) that is in a slot of a mutable value (call it O), there may be
a link between the local snapshots of both. This way we can determine the value of the slots of A from the
snapshot of O. A minimal synchronisation between the two linked mutable values occurs.

2.4.2.1 Definitions

DomainElement: an element that can be reasoned about (specified, modelled) using the UML.

LocalSnapshot: a collection of NameValueBindings for a certain MutableValue at a certain point in time.

NameValueBinding: a combination of a Name (reference) and a Value.

figure 2-6 The core.instance.concepts package

NullValue

DomainElement

Object

ImmutableValue

DataValue
(from immutables)

MutableValue

Name
(from parameters)

ValueNameValueB inding

1 +name1

1

+value

1

LocalSnapshot

0..n0..1
+pred

+succ
0..1

0..n
+history

0..n

0..n

+bindings

0..n

0..n
+slotValues

0..n

0..n

Figure II.12: Semantic domain meta model of the Kleppe/Warmer study: Val-
ues and Snapshots (reproduced from [KW01])

are related to this dynamic core. Fig. II.13 provides an excerpt of the package
specifying the semantics of actions (actionExpressions.instance.concepts). The
semantic equivalent of an action expression is the class ActionExpExec which
relates a before to an after snapshot. It may furthermore produce a Value as
its result. While this is a correct description of an action execution from a
structural point of view, it simultaneously falls woefully short to explain any-
thing about the actual behavior (i.e., ”What does the action do?“). Actually
this information has to be encoded in very complex OCL constraints on the
semantic mapping. Being complex already for (basic) actions, the study falls
short to lay out the semantics of the more high-level behavioral diagrams by
reducing state machines to a simple signaling mechanism and claiming activity
and collaborations diagrams to be ”straightforward“.

Despite all its successes and obvious advantages, the restriction of deno-
tational meta modeling to specifying behavior in a descriptive way only
is a fundamental drawback. It makes for complicated specifications and
shifts the emphasis from the semantic domain to the semantic mapping
and thus to complex logic formulae (in the form of OCL). We do recog-
nize that denotational meta modeling goes a long way to the satisfaction
of our requirements but it is not yet an ideal solution.

II.3. Survey of Semantic Description Techniques for VMLs 37

 THE KERNEL META MODEL 25

© KLASSE OBJECTEN

[4] A feature reference should be a reference to a feature of the selfType of the executing instance (the source).
context FeatureRef inv:
executingInstance.selfType.features->includes(def)

[5] As in the Action semantics the CreateObjectAction does not model the execution of the constructor, it only
creates an object of the right class with structural features, therefore a CreateObjectAction has no parame-
ters.

context uml.actions.model.CreateObjectAction inv:
params->size = 0

2.8.2 The actionExpressions.instance.concep ts package
The actionExpressions.instance.concepts package is depicted in figure 2-16. It defines the concept of Action-
ExpExec, which is the execution or evaluation of an actionExpression within a certain context. This context is
determined by the mutable value that performs the action: the selfInstance. An ActionExpExec has a before
and an after snapshot representing the state of the self instance before and after the execution or evaluation of
the ActionExpression.

The term execution is normally used for executions that change state, whereas the term evaluation is nor-
mally used for executions that do not change state. As explained earlier we can not distinguish between
expressions that do and do not change state, therefore we use the term execution to denote both execution and
evaluation in the following.

figure 2-16 The acti onExpressions.instance.concept s package

CreateObjectActionExec

PrimitiveActionExec

WriteActionExecReadActionExec

NameValueBinding
(from core)

LocalSnapshot
(from core)

MutableValue
(from core)

0..n
+history
0..n

0..n

+slots

0..n

Value
(from core)

NameValueSpace

0..n

+bindings

0..n

ActionExpExec

1
+before

1
1

+after
1

1
+selfInstance
1

0..1
+result

0..1

1

+env

1

FeatureRefExec DataValueExpExec

Figure II.13: Semantic domain meta model of the Kleppe/Warmer study: Ac-
tions (excerpt, reproduced from [KW01])

II.3.3 Operational or Interpretation Semantics Descriptions

Operational Semantics are also a general style of semantics descriptions and
form an alternative to denotational semantics. While denotational semantics
approach semantics definitions by stating what an element is (in terms of the
semantic domain), Operational Semantics describe what an element does. Oper-
ational Semantics are given in terms of rules. Each rule consists of preconditions
which have to be met for the rule to apply and effects which transform the cur-
rent state in some way. There is a number of different operational specification
frameworks available (see [Mos01, Mos03] for an overview). The most promi-
nent approach is Structured Operational Semantics (SOS), proposed by Plotkin
[Plo81]. The history of the SOS approach and its connections to other styles of
semantics definitions are elaborated in [Plo04].

[Mos01] provides the following characterization of Operational Semantics:

Computations are modeled as sequences of (possibly labeled)
transitions between states involving syntax, computed values, and
auxiliary structures.

Figure II.14 provides an abstract representation of the idea of Operational Se-
mantics. It is a bit unusual (compared to illustrations usually found) in that
it tries to place the ideas of Operational Semantics in the structure imposed
by denotational semantics. We can see that the notion of state in Operational
Semantics consists of syntactic elements, values, and auxiliary elements. The se-
mantic mapping on the language level is thus a simple identity function between
the syntactic elements. The core of an operational semantics are its rules which
specify transformations of states. On the instance level, an expression deter-
mines a start state (the state solely constructed from its syntactical elements).
Applying the rules of the Operational Semantics yields new states which grad-
ually extend and finally replace the syntactic structures by auxiliary constructs
and values. The final states of this transition system only contain values, they
represent the result(s) of the specification. This type of transition system is
called a Labeled Transition System (LTS). The semantics of a program are thus

38 Chapter II. Semantics Description Techniques for Visual Modeling Languages

Semantics Definition

Syntax Elements

Values

Aux. Elements

Syntax Definition

Syntax Elements

Meaning «LTS»

States

Expression

Expression

Rules

conforms to

State Definition

conforms to

L

M

Figure II.14: Overview of the Operational Semantics approach

(1) E −→ E′

cond(E,E1, E2) −→ cond(E′, E1, E2)

(2) cond(true, E1, E2) −→ E1

(3) cond(false, E1, E2) −→ E2

Figure II.15: Operational Semantics: Example rules

the LTS it induces.

A typical example for SOS rules is provided in Fig. II.15. These three rules
evaluate a conditional expression which upon the boolean value of E either
executes E1 or E2 (i.e., in usual pseudo-code: if E then E1 else E2). The
rules illustrate the step-wise fashion in which operational semantics alter the
underlying state. Rule (1) is a conditional rule which states that the results
of other rules (for evaluating boolean expressions) can be propagated to the
conditional construct. Once these evaluations yield a final boolean value, rules
(2) or (3) may apply and either reduce the conditional expression to its ‘then’
part (E1) or its ‘else’ part (E2). Note that the lower two rules delete all obsolete
syntactic elements.

As the user can ”observe“ the steps of evaluation/computation in the LTS, op-
erational semantics are also said to specify an abstract interpreter for a given
language. Such interpreter semantics have an advantage in understandability as

II.3. Survey of Semantic Description Techniques for VMLs 39

M. von der Beeck: A structured operational semantics for UML-statecharts 137

take labeled transition systems as semantic domain and
use SOS-rules to define the (auxiliary) semantics of UML-
statecharts – restricted to the processing of single input
events – in a modular way. More precisely, we will define
the auxiliary semantics by a function [[.]]aux :UML-SC−→
LTS, where LTS is the set of labeled transition systems and
where the (semantic) transitions15 work on single input
events e ∈ Π. For the second phase we use Kripke struc-
tures as semantic domain, because this selection simpli-
fies the processing of event sequences considerably, since
Kripke structures are very appropriate for modeling that
the output of one step serves as (part of) the input of the
next step.
Both phases constitute an operational and modular

approach, such that comprehension as well as flexibility
(e.g. with respect to subsequent enhancements) are sup-
ported – without restricting preciseness.

Priority mechanism. As opposed to the work of Latella et
al. [10] we will not parameterize our semantics definition
with a priority mechanism for transition execution, since
lower-first priority is stipulated in the official UML spe-
cification of the OMG [17]. Therefore, we directly encode
lower-first priority in our semantics.

Auxiliary semantics. The auxiliary semantics [[s]]aux of
a UML-statechart term s ∈ UML-SC is given by the la-
beled transition system (UML-SC, L,−→, s)∈ LTS, where

– UML-SC is the set of states,16

– L=Π×A∗×{0, 1} is the set of labels,
– −→⊆ UML-SC×L×UML-SC is the transition rela-
tion, and

– s is the start state.

15 We use the term “semantic transition” in order to distin-
guish transitions of the semantics of UML-statecharts from “UML-
statechart transitions”, which occur in the syntax, more precisely
in UML-statechart terms of type Or.
16 This implies that each state of the transition system is given by
a UML-statechart term.

Table 1. SOS rules of the auxiliary semantics

BAS
true

[n]
e
〈〉→0 [n]

OR-1
(_, l, sr, e, α, td, i, ht) ∈ T, sr ⊆ conf(sl), sl �

e
→1

[n, (s1..k), l, T]
e

ex::α::en→1 [n, (s1..k)[si/next(ht,td,si)], i, T]

(
ex ∈ exit(sl),

en ∈ entry(next(ht, td, si))

)

OR-2
sl
e
α
→1 s

′
l,

[n, (s1..k), l, T]
e
α
→1 [n, (s1..k)[sl/s′l], l, T]

OR-3
sl
e
〈〉→0 sl, [n, (s1..k), l, T] �

e
→1

[n, (s1..k), l, T]
e
〈〉→0 [n, (s1..k), l, T]

AND
∀j ∈ {1, . . . , k} . sj

e
αj
→fj s

′
j

[n, (s1..k)]
e
α→
∨k
j=1 fj

[n, (s′1..k)]

(
α ∈ {αb(1) :: . . . :: αb(k) |

∃ bijection b : {1..k} −→ {1..k}}

)

For the sake of simplicity, we write s
e

α
→f s′ instead of

(s, (e, α, f), s′) ∈−→ and s �
e
→f instead of � ∃s

′, α. s
e

α
→f s′,

where s and s′ are called the source and the target of these
(semantic) transitions, respectively, e and α are called the
input and output, respectively, and f is called the stut-
tering flag (or for short flag). We say that term s may
perform a (semantic) transition with input e, output α,
and flag f to term s′. If appropriate, we do no mention the
input, output, and/or target of the transition. Intuitively,
stuttering flag f states whether a semantic transition is
performed,

– either because at least one UML-statechart transition
is taken (in this case f = 1, denoted as positive flag)

– or without taking any UML-statechart transition (in
this case f = 0, denoted as negative flag). In this case
only the input event is “consumed”, whereas source
and target are identical. This is usually denoted as
a stuttering step.

The flag is needed to assure that stuttering steps can
only occur, if no non-stuttering step is possible.
In contrast to the work of Latella et al. [10] we do not

need to annotate a semantic transition with the explicit
set of UML-statechart transitions which are taken when
the semantic transition is performed. Instead, in our case
it suffices to annotate the boolean information whether at
least one UML-statechart transition is taken. This sim-
plification reduces the complexity of the semantics and
therefore could ease the implementation of the semantics.
Furthermore, a better performance of the implemented
semantics could result.
Transition relation −→ is defined as presented in

Table 1 by five SOS rules using the following rule format:

name
premise

conclusion
(condition)

Explanation of the SOS rules:

– BAS (stuttering)
A basic state may perform a semantic transition with

Figure II.16: Formalizing UML Statecharts by SOS rules, examples reproduced
from [vdB02]

users can follow complex computations in a stepwise fashion. Operational Se-
mantics are thus usually regarded as more intuitive than denotational semantics
for the expression of behavior.

Operational Semantics also provide a firm base for reasoning about programs:
As the rules work along the structure of the specification, which in programming
languages is a tree, proofs can be formulated inductively. Induction works over
the structure (a property holds for all abstract syntax trees) or (in rarer cases)
over the rules themselves (a property holds for all transitions).

Applying Operational Semantics to Visual Modeling Languages poses a number
of challenges:

Trees vs. Graphs. Models do not generally have a tree as their underlying struc-
ture. The technique of structural induction does thus not work as its
recursions are not guaranteed to terminate.

Missing start states. Models do not necessarily provide a start state. While Pro-
gramming Languages provide mechanisms to determine the start of their
computation (e.g., in a main procedure), models usually have no such
deterministic starting point.

Visual expression of semantics. The visual nature of models is not adequately
reflected in SOS rules. Take, e.g., van der Beeck’s formalization of Stat-
echarts in SOS as an example ([vdB02], see also the reproduced example
rules in Fig. II.16). While it provides the semantics of Statecharts in a
very precise way, its rules are purely textual in nature and can not be con-
sidered as understandable from our point of view. A remedy is proposed
by Corradini et al. [CHM00], who provide a graphical representation of
Operational Semantics using Graph Transformation rules as a basis. Their
approach is called Graphical Operational Semantics (GOS).

Incompleteness of models. Models can be incomplete. SOS usually assumes that
the information given by a program is sufficient to derive its final value(s).
Since this does not necessarily hold for models, GOS [CHM00] provides
two ways of defining the relation between an extension E (a LTS) and an
operational specification S: E satisfies S, if it is closed under derivable
transitions, i.e., transitions which correspond to rules of S must obey
these rules. This notion allows for arbitrary steps in E outside of the

40 Chapter II. Semantics Description Techniques for Visual Modeling Languages

Semantic Domain

«Action Notation»

Actions

Data

Syntactic Domain Rules

semantic

mapping

L

Figure II.17: Overview of the Action Semantics approach

specification’s scope. On the other hand E is generated from S if all
transitions in E correspond to rules in S.

Extensibility of the specification. Extensibility is also an issue for Operational Se-
mantics. The introduction of new concepts often causes the reformulation
of large parts of a rule set [Mos00].

Representation of data structures. A large part of the UML is devoted to model-
ing complex data structures. Representation of such data structures (i.e.,
everything beyond simple values) is difficult in Operational Semantics. An
example for a possible integration of types into an Operational Semantics
framework is given in Chapter 8 of [Mos03]. Types are treated as tuples
of values here and rules dealing with types are restricted to side-effect free
big-step rules of the Modular Operational Semantics style [Mos04b].

We can thus summarize that the interpretational style of operational
semantics represents behavior in a step-wise fashion which is intuitive
for many people. In that it is clearly superior to the denotational ap-
proach. For application to Visual Modeling Languages, the develop-
ment of Graphical Operational Semantics is most relevant as it already
addresses some issues stemming from the application of operational se-
mantics to VMLs. Other questions remain open, however.

The hybrid approach of Action Semantics tries to combine the different strengths
of operational and denotational approaches. We discuss Action Semantics in the
next subsection.

II.3.4 Hybrid Semantics Descriptions

As denotational approaches are very successful in many regards but proved to
be very unsatisfactory for anything but purely functional behavior, attempts
were made to combine denotational semantics with operational semantics. One
result is the Action Semantics approach as defined by Mosses [Mos92].

II.4. Concept of the Dynamic Meta Modeling Approach 41

The basic idea of Action Semantics is visualized in Fig. II.17. Syntactic elements
are mapped (denotational style) to a semantic domain which is formulated in
a language called Action Notation. Action Notation provides constructs to de-
scribe data and actions. Actions are predefined entities which express behavior
in a number of so called facets (control flow, data flow, data processing, commu-
nication etc.). The behavior of these actions is defined using Structural Opera-
tional Semantics rules. The denotation thus expresses that a certain language
element has a behavior (by relating it to an action or possibly a combination
thereof), the operational part of the specification expresses what this behavior
actually does. Note that in the figure we set the rules apart from the seman-
tic domain as they form the semantics of the Action Notation and not directly
the semantics of the syntactic domain. See [Mos96] for an extensive overview
of Action Semantics, including examples and practical applications, e.g., for
automated compiler generation.

An application of Action Semantics to Visual Modeling Languages has not yet
been undertaken. There was, however, a usage of the term ’Action Semantics‘
in some versions of the UML specification [Obj03e]. While there is no direct
relation between Mosses’ Action Semantics and the UML’s Action Semantics,
some similarities can be observed [Mos04a]. In the UML, so called Actions
were pre-defined to express atomic behavior. In that they were rather similar
to Mosses’ Action Notation. The UML Actions did, however, neither provide
a concrete notation nor a formal semantics. In the move to UML 2 the term
’Action Semantics‘ was consequently reduced to ’Actions‘ only.

II.3.5 Conclusions from the Survey

We can conclude from our survey that no existing approach to the defi-
nition of a Visual Modeling Language’s semantics completely meets our
criteria. Especially the requirements of understandability and adequacy
are hard to achieve. Yet, the survey presented a number of promising
ideas which have complementary strengths and might thus be assembled
in a way as to combine their advantages.

II.4 Concept of the Dynamic Meta Modeling Ap-
proach

The approach which achieved a high degree of understandability and promised
the most potential for adequate semantics definitions was the denotational meta
modeling approach. It could express static semantics in a precise, yet mostly
visual way without constraining the semantic domain to a set of predefined
elements. Its weak point was the inadequate expression of dynamic semantics.
Action Semantics have shown a way how to overcome this inherent weakness of
denotational approaches by combining them with operational semantics.

42 Chapter II. Semantics Description Techniques for Visual Modeling Languages

Semantics Definition

Syntax

Definition

Meaning «LTS»

States

Expression

Model elements

Dynamic Semantics

conforms to

Static Semantics

conforms to

«Meta Model»
«Graph

Transformation Rules»

L

M

semantic

 mapping
«Meta Model»

Figure II.18: Outline of the DMM approach

We follow this line of thought and provide a semantics description method
for Visual Modeling Languages which combines a denotational meta modeling
framework for expressing static semantics with operational rules capturing the
behavior of elements. Fig. II.18 illustrates the outline of our approach. Since
denotational meta modeling leaves the choice of adequate semantic elements to
the Language Engineer, the operational semantics of these elements can not be
predefined. Rather, a technique for their definition must be supplied which also
conforms to our criteria.

The approach of Core Semantics propagates the use of UML diagrams for un-
derstandable specifications of behavioral semantics but it is plagued with the
problems of circular definitions. Graph Transformations on the other hand
are a formal technique which allows for the precise specification of behavior
while promising good understandability. We believe that a combination of
both approaches allows for a combination of their advantages: The specifica-
tion of behavioral semantics should look like a UML diagram, thus exploiting
the user’s existing knowledge. Technically, however, the specifications should
be Graph Transformations, thus having a precise semantics and avoiding all
meta-circularity issues arising in Core Semantics and the MOF.

This combination of denotational meta modeling and operational graph trans-
formation rules, presented as UML diagrams is the approach which we elaborate
in this thesis. To emphasize its support for behavioral elements, our approach
is called Dynamic Meta Modeling (DMM for short)10.

10The presentation of ideas in this chapter does not accurately reflect the historic devel-
opment of the different approaches. In fact, DMM has been developed in parallel with most

II.4. Concept of the Dynamic Meta Modeling Approach 43

Dynamic Meta Modeling promises a high degree of understandability in its se-
mantics specifications with a formal and precise background. To actually judge
whether DMM fulfills these promises and to evaluate it against the complete
set of criteria we set out, we need to flesh out the approach with technical de-
tails first. In the following two chapters we describe the two main technical
components of DMM: First, we turn to a technique to formalize the semantic
mapping. Chapter III introduces a novel approach to specify such inter-meta
model mappings called Meta Relations. Then we focus on Graph Transforma-
tions in Chapter IV. We explain the basic formalism, evaluate different variants
of Graph Transformations and propose an innovative mechanism to provide the
features which we require to combine adequacy, understandability, and analyz-
ability for DMM.

above mentioned works toward the definition of a VML’s semantics. Meetings and discussion
at different scientific venues lead to a mutual pollination of ideas by good or bad examples.

Chapter III

Meta Relations

Denotational Semantics (see Subsect. II.3.2) comprise the concept that elements
of a syntactic domain are connected via a semantic mapping to elements of a
semantic domain. In denotational meta modeling both of these domains are
expressed by meta models (cf. Fig. III.1). There is, however, no standard
mechanism defined in the Meta Object Facility (MOF) [Obj03a] to express such
a mapping between meta models. Thus, to express a semantic mapping between,
say, the UML meta model and some semantic domain meta model, one has to
rely either on external mechanisms or on (ab)using associations. For various
reasons (see Section III.1) we find these solutions unsatisfying.

In this chapter, Meta Relations are introduced to fill this gap. Meta Relations
are a diagrammatic language which can be seamlessly integrated with the meta
modeling framework of the MOF and which allows expressing connections be-
tween different meta models without actually merging them. Meta Relations are
not only a useful concept for expressing denotational semantics. They can be
applied to many other areas like code generation (cf. [HK03] for an example of a
UML - Java mapping based on Meta Relations), reconciliation (cf. [HHS02b]),
and MDA in general (as discussed in [Hau03]). Here we focus on their use in
semantics definitions only.

Syntax Definition

Expression

Semantics Definition

Meaning

Language

Level

Instance (Model)

Level

«Meta Model» «Meta Model»
semantic

 relations

conforms to’

semantic

 pairs

L

M

Figure III.1: Denotational Meta Modeling and the role of relations

45

46 Chapter III. Meta Relations

Meta Relations Syntax Definition

Syntax Definition

Expression

Semantics Definition

Meaning

«Meta Model» «Meta Model»

Expression

semantic

 relations

Meaning

semantic

 pairs

Concrete Syntax Abstract Syntax

«Meta Model»

Meta Relations Semantics

Definition

conforms to

conforms to’’

semantic

 relations

L

M

Concrete Syntax Abstract Syntax

«Meta Model»

semantic

pairs

Figure III.2: Illustration of the connections between the definition of Meta
Relations and their usage in language definition

One of the achievements of denotational meta modeling is the explicit distinc-
tion between the type and instance level in semantics definitions (see Fig. III.1).
Consequently, what is usually called the semantic mapping also has an explicit
definition part (connecting general language elements to general semantic en-
tities) and an instance part (connecting the elements of one concrete language
expression to its meaning). We call this instance level mappings pairs and the
type level concepts relations in this thesis. If this explicit distinction is not
required, we use the term mapping. The capitalized terms ‘Relation’ and ‘Pair’
are used to refer to our specific realization of the general concept of relations.

In the definition of Meta Relations it is important to separate the different levels
of concepts which we are talking about. On the one hand, Meta Relations are
a language with the usual distinction in syntax and semantics. On the other
hand, expressions in this language are used in the definition of other languages.
Making things even harder is the fact that Meta Relations are both used in and
defined by a denotational meta modeling approach.

Fig. III.2 illustrates the different parts of the Meta Relation definition and their
use for language definition. This usage (semantic mapping in the L-level of
the language to be defined) is an expression in the language of Meta Relations
(as indicated by the light package notation). To define these expressions, Meta
Relations need a definition of concrete syntax (see Sect. III.3) and a meta model
specifying their abstract syntax (provided in Sect. III.4).

Using Meta Relations to express a semantic mapping constrains the way se-

III.1. On the Need for Meta Relations 47

mantic pairs relate language expressions to meaning on the M-level. From the
viewpoint of Meta Relations as a language, these semantic pairs are the mean-
ing to its expressions, i.e., a concrete semantics. The general semantics of the
language Meta Relations are provided in the denotational meta modeling style.
Sect. III.5 provides the semantic domain meta model of Meta Relations. We
also need to make explicit the semantic mapping between the syntactic and se-
mantic meta model of Relations. Here, the Meta Relation definition encounters
the usual circularity of meta modeling approaches as we define this mapping
using Meta Relations themselves (in the figure the dashed and dotted arrow).
In addition to this application of the general denotational meta modeling frame-
work, we also supply a special concrete syntax for depicting the instances of a
Relation’s meaning.

Note that from the Meta Relations point of view, the language level of
the language to be defined (i.e., the contents of the L box) is the instance
level/expression side. Similarly the language’s instance level (M box) forms the
Meta Relations instance level/meaning side. The connection between the two
is thus expressed by semantics Pairs (dashed and dotted arrow in the figure).
In the illustrations we are sticking with the placement of elements from the
viewpoint of the language to be defined and place the Meta Relations definition
at an angle to it to indicate its orthogonality to these levels.

III.1 On the Need for Meta Relations

In this section we argue that there is a need for a special construct to map meta
models. The application scenario is provided by denotational meta modeling
(cf. Fig. III.1). We will at first derive requirements for the mapping technology
from the general requirements for a semantics definition in Subsect. III.1.1 and
survey existing approaches according to these requirements in Subsect. III.1.2.
We close the section by formulating our concept of Meta Relations in contrast
to the afore discussed approaches.

III.1.1 Requirements for Mappings

In Subsection II.2.4 we pose requirements toward a technique suitable for the
expression of a VML’s semantics. Since semantic mappings form a part of
our proposed solution DMM, they need to adhere to these requirements as
well. A suitable mapping technique should thus be precise and formal, yet
allow for underspecification. It should also be highly understandable and in the
denotational meta modeling framework this implies a visual technique aligned
to the MOF framework of meta modeling.

Adequacy applies to a mapping technique in that it must be able to handle com-
monly encountered situations with dedicated elements. One such situation is the
nested mapping . Nested mappings occur when the domain (i.e., syntax) meta
model uses aggregation. The tight relation between syntactic classes formed by
aggregations is often reflected in the semantic domain and needs to be preserved
by the semantic mapping. Regard Fig. III.3 for an example. Here, we map a

48 Chapter III. Meta Relations

Syntax Definition Semantics Definition

Class Object

Attribute Slot

L

Figure III.3: Example for nested mappings

class to an object and an attribute to a slot. We intuitively expect, however,
that each attribute of a class is mapped to one slot of its objects and not to
slots of arbitrary other objects. The domain and range of a nested mapping are
thus derived from a pair of another relation. This pair is called the scope of
the nested relation. As such situations occur frequently, adequate support for
nested mappings is desirable in a mapping technology.

Relations must be able to express two different aspects of the Pairs they define:
On the one hand they express constraints on the construction of a single Pair,
i.e., restraining the type of Objects which might partake in Pairs of the Relation.
On the other hand Relations need to express completeness properties of the set
of their Pairs, resulting in (right/left) total Relations.

A specific requirement is that mappings must not interfere with the meta models
on either side of the mapping. There are a lot of (syntactic) meta models around
and knowledge and tools have been build on these meta models. The addition
of semantic mappings must respect these previous investments by forming a
neutral addition to the existing meta models.

A further distinction between mapping technologies is whether the pairs defined
by a relation are temporarily computed ad-hoc or retained as persistently stored
instances. The former is usually the preferred in fully computable scenarios (i.e.,
in scenarios where the definition allows for a precise determination of the unique
corresponding element given one element of a Pair), the latter if the pairs contain
additional information not derivable from the relations (e.g., a user’s selection
between different alternatives). As we explicitly want to support the mapping
of incomplete models, we cannot assume fully computable semantic relations.
A technique for the expression of semantic mappings in DMM has to provide
persistent pairs.

III.1.2 Existing Approaches

In practice (see the overview of approaches in Sect. II.3.1) we commonly en-
counter natural language descriptions of mappings (which are informal and im-
precise) and operational transformation approaches (rule-based, tool-based, or
programming language-based) which usually assume complete computability
and fail to produce persistent instances. We are mainly interested in descrip-
tive and visual (i.e., model-based) approaches to the formulation of meta model

III.1. On the Need for Meta Relations 49

Syntax Definition Semantics Definition

Class Object

Attribute Slot

*1 maps1

*1 maps2

L

Figure III.4: Using associations to express mappings

mappings here and discuss them in the following paragraphs.

Our first choice of looking for a suitable model-based mapping technique is the
MOF, the OMG’s meta modeling language. In [Obj03a], p.51 we find that
the only kind of relationship which MOF supports is an association. Associ-
ations are bidirectional, have well-known semantics, and OCL constraints can
be used to express further properties. Examples for the use of associations as
model mappings can, e.g., be found in the OCL 2.0 specification [Obj03c] or the
denotational meta modeling approaches discussed in Subsect. II.3.2. In fact,
the absence of standardized alternatives makes associations probably the most
commonly used construct to express inter-model relations.

The use of associations as meta model mappings is rather problematic, though.
As [Obj01] specifies and, e.g., [Ste02] elaborates, associations are meant to repre-
sent structural or behavioral connections between elements of one model. Tools
(and modelers) interpret them in this way and, e.g., generate code accordingly.
Using associations to express the semantic mapping results in fusing the syn-
tactic and semantic domain to a single, integrated meta model. The clear dis-
tinction of the denotational approach between the domains is reduced to sep-
aration by packaging only (cf. Fig.II.10). The technical feasibility of encoding
mappings in the models themselves depends on all participants respecting the
different roles packages and associations play in this integrated meta model.
Practically, this distinction is all too often ignored and semantic concepts are
simply connected directly to syntactic meta model elements (compare, e.g., the
so called Abstract Semantics of CMOF [Obj03a] p.58ff). In principle, the usage
of associations to realize mappings ignores that mappings are supposed to be
between meta models, not in them. It thus severely violates the requirement of
neutrality.

A further technical disadvantage of using associations as mappings is that com-
pleteness criteria can only be expressed by using multiplicities which are defined
on the set of all instances of a class. To understand why this is not adequate for
mappings consider the following scenario: Taking up the scenario from Fig. III.3,
we want to map Class and Attribute to Object and Slot respectively. We want
to express that a class may be mapped to an arbitrary number of objects. For
each of these objects, however, we need to make sure that it has slots for all
attributes of its class. Looking at the only possible solution of this scenario by
associations in Fig. III.4, we find that associations are able to precisely capture
the former constraint only. Each class may be related (via maps1) to an ar-

50 Chapter III. Meta Relations

ARelB

A BAB
1 1

1

* element

relation

range**domain

Figure III.5: Model pattern for Relations

bitrary number of objects. For the nested relation maps2, however, we cannot
strengthen the cardinality at the Slot end beyond the non-committal ’*‘ as there
are (in a global scope) attributes (of classes without instances) which are not
mapped at all and attributes which are mapped to a multitude of slots. While
we can use OCL constraints to ensure that attributes are only mapped to slots
of its class’s objects, we simply cannot specify with associations that for each
mapped class all of its attributes have to be mapped, too.

To understand this inability, we have to take the point of view of a single
association instance (a link), since this is the context for evaluating the OCL
constraints defined for the association. From this point of view we can navigate
to the endpoints of the link (i.e., instances of the domain and range classes),
but never back to other mapping links as the models should be unaware of the
mappings. Thus from this point of view we can never establish the completeness
of all pairs of a relation.

A specific pattern to overcome these limitations of associations is presented by
Akehurst and Kent in [AK02a] (see Fig. III.5). It promotes the introduction of a
relationship (ARelB) and a pair class (AB) for each intended mapping of model
elements (A and B). OCL specifications are used to define domain, range and
additional constraints of the relationship. Special predefined OCL constraints
also ensure that the instances of the pattern correctly express nested relations.
The trick here is that an instance of the ARelB class can capture all domain
and range elements and determine the completeness of the set of Pairs (i.e.,
instances of AB).

While this pattern provides the means to express nested mappings and com-
pleteness criteria, it comprises applicability problems: Every time a relation
according to this pattern is built, two new classes are created and all OCL def-
initions that accompany the pattern have to be replicated with respect to the
new names of the classes. The resulting structure is quite complex, and it is
hard to separate the original model classes from the classes capturing the re-
lation. Again we are faced with the problem of mixing the content of a meta
model with its mappings by using identical elements to express both.

III.2. Concept of Meta Relations 51

Class

Attribute

Object

Slot

C2O
domain

1

range

*

A2S
domain

1

range

1

Figure III.6: Example for the use of Meta Relations: Definition

III.2 Concept of Meta Relations

The idea we are following in this thesis is to introduce Meta Relations as a
first-class feature in the meta modeling language (in the OMG’s framework
that would translate to an extension of the MOF). This avoids the problems
of other approaches: All Meta Relations are visually and technically distinct
from standard meta model elements. They can be provided with the necessary
means to express completeness criteria and to support nested relations in a con-
venient way. Further constraints can be placed upon a Meta Relation to address
specifics of the mapping. Relations are always binary and may connect either
two single classes or tuples expressing a combination of classes. Associations be-
tween Relations can be used to capture references to existing mappings. These
enable modular and redundancy-free mapping specifications which are better
maintainable.

Figs. III.6 to III.9 give an exemplary overview of the central concepts of Meta
Relations (we will provide the exact definitions in the succeeding sections):
Fig. III.6 shows the definition of Relations for the Attribute-Slot example. While
Relations C2O exposes no difference to the realization of relations with associa-
tions, Relation A2S can now conveniently express that every Attribute needs to
be mapped to exactly one Slot (in the context of one C2O Pair). The reason
we can provide this strengthened cardinality is because in the accompanying
OCL constraints we formulate that the domain/range of A2S is formed by all
attributes/slots of a specific class/object pair.

context A2S

-- Attribute to Slot

domain=scope.domelement.Attribute

range=scope.ranelement.Slot

The definition of the domain and range objects first navigates to the scope Pair.
The name scope is pre-defined to address the Pair which defines the scope of
the nested relation (as defined by the aggregation between the Relations). The
names domelement and ranelement allow access to its respective endpoints.
Thus the domain of the nested Relation A2S is defined by accessing a Pair of
the C2O Relation, navigating to its domain end (yielding an instance of Class)
and selecting the set of its Attributes.

As this definition relies on a specific Pair of the scope Relation C2O, the do-
main/range of A2S is recalculated for every instance of this relation. And for
these specific sets, the relation must indeed be bijective. Note the difference to
associations, which can only express cardinalities in a global scope.

52 Chapter III. Meta Relations

A:Class

B:Class

Name:Attribute

ID:Attribute

Priority:Attribute

o1:Object

id1:Attribute

n1:Attribute

o2:Object

id2:Attribute

n2:Attribute

:C2O

Figure III.7: Example for the instances of Meta Relations: Instance of the C2O
Relation

A:Class

B:Class

Name:Attribute

ID:Attribute

Priority:Attribute

o1:Object

id1:Attribute

n1:Attribute

o2:Object

id2:Attribute

n2:Attribute

r1:A2S

Figure III.8: Example for the instances of Meta Relations: Instance of the A2S
Relation

A:Class

B:Class

Name:Attribute

ID:Attribute

Priority:Attribute

o1:Object

id1:Attribute

n1:Attribute

o2:Object

id2:Attribute

n2:Attribute

r2:A2S

Figure III.9: Example for the instances of Meta Relations: Instance of the A2S
Relation

III.3. Concrete Syntax for Meta Relations 53

Class

Attribute

Object

Slot

C2O
domain

1

range

*

A2S

Generalisation

domain

1

domain

1

range

*

range

1

G2O

1

supermap

1

submap

Figure III.10: Example for the concrete syntax of Meta Relations

Figs. III.7 to III.9 illustrate how the instances of Meta Relations are structured
to manage the compliance to these nested definitions (all three figures show
excerpts from the same instance, the splitting has been done for presentation
purposes only): Of relation C20 there is only one instance (see Fig. III.7) which
has a global scope, i.e. it has all Classes (A and B) in its domain and all Objects
o1 and o2 in its range. Its pairs (dotted lines) show that both objects are of
type A, none of B. This complies with the relation definition which calls for a
class per object but allows for zero objects per class.

For both pairs of C2O there are now separate instances of A2S (r1 and r2) (also
separately depicted in Figs. III.8 and III.9). Each of these relation instances
has the attributes of A as its domain and the slots of its object as its range.
This information is derived by accessing the S2O-Pair which forms the scope of
this Relation instance.

Note how the Pairs of r1 and r2 fulfill the constraints of the A2S relation: both
relation instances are bijective. Yet, there are unmapped attributes in the global
scope (Priority).

The instance level structure is thus adapted from the pattern introduced above.
An instance of a Relation is thus not a single element but a pattern of elements.

After this brief introduction to Meta Relations we now proceed to lay out their
technical details in more detail, starting with the concrete syntax.

III.3 Concrete Syntax for Meta Relations

We describe the concrete syntax’ symbols informally here only. See Fig. III.10
for an accompanying example rendering.

A Meta Relation is depicted as a dashed line between the classes it connects.
These classes define the type of the domain and range objects participating in
the Relation’s Pairs (which may be further restricted by accompanying OCL
specifications). A diamond shape in the middle of the Relation contains its
name. Associations between Relations can be attached to the diamond shapes.
The multiplicities and role names of the Relation ends are visualized in the same
way as a UML AssociationEnd. If associations and relations appear in the same
diagram, we usually provide the labels at the relation ends in bold and italics

54 Chapter III. Meta Relations

to set them apart. Tuples are visualized by a black dot which is attached to
one Relation end. The role name and multiplicity of the Relation end are then
shown near the tuple. The tuple itself has connections to its elements. Nested
Relations (Relations that are defined in the context of another Relation) are
depicted by connecting the nested Relation by an aggregation association to its
context Relation.

The example in Fig. III.10 thus expresses that a class Class is related by Relation
C2O to the class Object. The role names designate Class as the domain of the
Relation and Object as its range1. The multiplicities specify that Relations C2O
and G2O are inverse functional and that A2S is bijective. Note that A2S is de-
fined in the context of C2O, thus a Pair of C2O determines which Attributes and
Slots form the domain and range of (instances of) this Relation. The association
between G2O and C2O is a normal association that enables G2O to access the
C2O Pairs that map its endpoints to their respective objects. The additional
OCL constraints defining the specifics of how this association is employed are
omitted here.

III.3.1 Concrete Syntax of Relations Instances

Besides the Relations (i.e., the type level), users also need to inspect Pairs (i.e.,
the instance level) occasionally: As semantic mappings usually relate syntactic
elements to (unlimited) sets of semantic entities, users need to select appropriate
examples from this set to enable validation/verification tasks. Similarly, the
results of these tasks need to be inspected in relation to the original model’s
syntax. Thus a visual notation for Pairs is also required.

Fig. III.11 shows the concrete syntax for this instance level. RelInstances are
rendered as a diamond shape. It contains the name of the instance and its type
(the name of the Relation definition). In line with the UML object notation
these names are separated by a colon and are underlined. All domain and range
objects are connected to this diamond by dashed lines again. Pairs are depicted
as dotted lines between the domain and range objects. All Pairs belonging to
a RelInstance are connected to it by solid lines with a half circle forming the
connector between the lines. If a RelInstance is defined by a nested relation,
the RelInstance is connected to the defining Pair of the scope relation again
using the composition notation. This re-use of visualization concepts from the
definition level allows for an easy transfer of concepts and makes for an intuitive
understanding of the diagram.

Even in this small example it becomes apparent that such instance level dia-
grams have an easily cluttered structure. Simplifications are needed to make
these diagrams more accessible. One important simplification is the projection
on relation types. This means that a view of an instance level diagram can
focus on a single relation instance and show only its domain and range objects
as well as its Pairs. The domain and range objects can furthermore be more
conveniently visualized by capturing them in a shaded shape. This way the

1To avoid cluttered diagrams, one of the related meta models can be designated as the
domain/range model thus making all relation ends connected to this meta model the do-
main/range ends by default.

III.4. Abstract Syntax for Meta Relations 55

Person:Class

Name:Attribute

O1:Object

Name:Slot

r1:C2O
domain range

r2:A2S

ID:Attribute ID:Slot

domain

domain range

range

Figure III.11: Example for the instance notation of Meta Relations

Name:Attribute Name:Slot

r2:A2S

ID:Attribute ID:Slot

domain range

Figure III.12: Simplified projection on r2 of Fig. III.11

intersection of the dashed lines from the pairs and the domain/range definition
is avoided. Fig. III.12 shows a projection on r2 of the diagram in Fig.III.11.

This diagram now closely resembles the intuitive notation that is mostly used
when introducing relations in a mathematical context. It shows two sets (de-
picted as shaded shapes), elements in these sets and the connections (pairs)
between them in conformance to a given relation definition. We believe that
this kind of visualization is very intuitive for most users, yet we still retain a
formal level of definition.

III.4 Abstract Syntax for Meta Relations

The meta model defining the abstract syntax of Meta Relations containing rela-
tions is given in Fig. III.13. Following the MOF architecture [Obj03a] it reuses
elements of the UML 2.0 Infrastructure [Obj03b] (from the Core:Constructs pack-
age) whenever applicable and combines them with new elements to express our
relation concepts.

Relation is the main class of the new model. This class captures the definition of
a connection between two model elements. It therefore refines the concept of a
DirectedRelationship from the Constructs package. Since Relations have instances
and contain OCL constraints for them, they inherit from Classifier. Similar to
associations, Relations are connected to two ends which contain information
about the way the instances of the relation can be constructed. While the
domain and range ends only indicate the type of the connected elements, OCL

56 Chapter III. Meta Relations

C
la

s
s
if

ie
r

(f
ro

m
C

o
re

::
C

o
n

s
tr

u
c
ts

)

R
e
la

ti
o

n
E

n
d

*

/s
o
u
rc

e
1

*

/t
a
rg

e
t

1

-R
e
lE

n
d

*

-t
y
p
e

1

-r
e
la

ti
o
n

1

-d
o
m

a
in

1

-r
e
la

ti
o
n

1

-r
a
n
g

e
1

D
ir

e
c
te

d
R

e
la

ti
o

n
s
h

ip

(f
ro

m
C

o
re

::
C

o
n

s
tr

u
c
ts

)

N
a
m

e
d

E
le

m
e
n

t

(f
ro

m
C

o
re

::
C

o
n

s
tr

u
c
ts

)

-l
o
w

e
r:

In
te

g
e
r

-u
p
p

e
r:

U
n
lim

it
e
d
N

a
tu

ra
l

M
u

lt
ip

li
c
it

y

(f
ro

m
C

o
re

::
C

o
n

s
tr

u
c
ts

)

0
..

1

1

T
u

p
le

-t
u
p
le

*

-e
le

m
e
n
t *

-/
is

O
n
to

:B
o
o
le

a
n

-/
is

T
o
ta

l:
B

o
o
le

a
n

-/
is

F
u
n
c
ti
o
n
a
l:
B

o
o
le

a
n

-/
is

In
v
e
rs

e
F

u
n
c
ti
o
n
a
l:
B

o
o
le

a
n

-/
is

In
je

c
ti
v
e
:B

o
o
le

a
n

-/
is

B
ije

c
ti
v
e
:B

o
o
le

a
n

R
e
la

ti
o

n

-i
s
C

o
m

p
o
s
it
e
:B

o
o
le

a
n

P
ro

p
e
rt

y

(f
ro

m
C

o
re

::
C

o
n

s
tr

u
c
ts

)

A
s

s
o

c
ia

ti
o

n

(f
ro

m
C

o
re

::
C

o
n

s
tr

u
c
ts

)

2
..

*

-m
e
m

b
e
rE

n
d 0

..
1

*

0
..

1

Figure III.13: Meta model defining the abstract syntax of Meta Relations

III.5. Semantics of Meta Relations 57

constraints may be used to further refine these sets. The source and target links
are redefined from DirectedRelationship and indicate the classifiers connected to
the domain and range RelationEnds.

context Relation

source=domain.type

target=range.type

For mathematical relations there are well-known properties like functional, total
etc. When modeling relations we encode this information in the multiplicity
constraints at the RelationEnds (e.g., an upper limit of 1 on the range end of a
relation indicates that every domain element may participate at most in one pair
of the relation; this corresponds to the definition of functional relations). Thus,
the meta class Relation only has derived attributes for easier access. Further
properties like is bijective can be combined out of these basic features.

isFunctional = (range.multiplicity.upper=1)

isInverseFunctional = (domain.multiplicity.upper=1)

isTotal = (domain.multiplicity.lower=1)

isOnto = (range.multiplicity.lower=1)

Note that in contrast to [AK02a] these definitions are not derived from the
actual instance of the relation but are definitions on the specification level. The
attribute isOnto thus states that an instance of the Relations should cover all
range elements but situations may arise (e.g. by adding new elements to the
model) in which the constraint does not hold. This may trigger inconsistency
detection and reconciliation mechanisms (see, e.g., [HHS02b]).

A RelationEnd is similar to an AssociationEnd as known from Class Diagrams.
It contains a role name by which the relation can address the Classifier that
forms the type of the RelationEnd. RelationEnds contain multiplicities. These
specify in how many Pairs of a Relation a domain or range instance may or must
participate. Note that these specifications are not global like with associations
but rather dependent on the concrete instance of the relation. This is necessary
to provide the facilities for nested relations. It is also the fundamental difference
to AssociationEnds2. If no multiplicity is explicitly specified, ”*“ is used as the
default value.

A tuple is a necessary addition to the meta model to enable the mapping of
structures. It is a classifier itself and may thus participate in relations. A tuple
comprises an ordered set of elements. We do not provide additional details
here because tuple is just an auxiliary construct which is, e.g., also defined in
[Obj03c].

III.5 Semantics of Meta Relations

As Relations are a purely static concept, their semantics can be expressed ad-
equately by the denotational meta modeling framework. We thus supply a
semantic domain meta model and the semantic mapping to define the meaning

2In the UML 2.0 submission AssociationEnds have been integrated in the more general
concept of Property, see [U2P03] for details.

58 Chapter III. Meta Relations

RelInstance

Pair

-type:String

Instance

-ranelement
1

*

-domelement 1

*

-domain
*

*-range

*

*
-relation 1

*

*

-scope
0..1

-isOnto:Boolean
-isTotal:Boolean
-isFunctional:Boolean
-isInverseFunctional:Boolean
-/isInjective:Boolean
-/isBijective:Boolean

Figure III.14: Semantic domain meta model for Meta Relations

of Meta Relations. Note that as Meta Relations are intended to be used in deno-
tational meta modeling, they are used to express their own semantic mapping.
We discuss a way out of this meta-circularity later on.

III.5.1 Semantic Domain

The semantic domain meta model is given in Fig. III.14. It comprises three
classes: Instance, RelInstance, and Pair, which we detail in the next paragraphs.

Instance is a generic class that captures the fact that an element of the semantic
domain corresponds to some defining element (its type).

A RelInstance is an instance of a Relation. It contains the set of all domain and
range elements (according to the specification given in its defining Relation). A
RelInstance contains a set of Pairs. These Pairs must be unique in the RelInstance.
A Pair can form the scope of a RelInstance (though never for the one it belongs
to).

context RelInstance

inv:

self.Pair->forAll(x,y|(x.domelement=y.domelement)

and (x.ranenelemt=y.ranelement)

implies x=y)

not self.Pair->includes(scope)

A Pair embodies the combination of elements from domain and range included
in the RelInstance. Each Pair is linked to its containing RelInstance and one
element from the domain (domelement) and the range (ranelement). It has got
to be ensured that only elements from the sets defined by the RelInstance are
connected.

context Pair inv:

III.5. Semantics of Meta Relations 59

relation.domain->includes(domelement)

relation.range->includes(ranelement)

The tricky bit here is that Relations as we understand them do not conform to
the usual concept of instantiation where a classifier describes a set of (isolated)
instances that conform to its specification. Rather, a set of patterns made
up from a RelInstance and Pairs contained in the RelInstance is defined by the
Relation. The specification present in the Relation has an impact on different
parts of this pattern. The domain and range sets of the RelInstances conform to
the description provided by the Relation. The Pairs contained in the RelInstances
conform to additional constraints provided by the Relation. The set of all Pairs
in one RelInstance conforms to the multiplicities specified at the RelationEnds.
Composition associations between Relations will result in scope links between a
Pair that stems from the RelInstance of the containing Relation and a RelInstance
conforming to the nested Relation.

These connections can now be made precise and explicit by using Meta Relations
to specify the semantic mapping.

III.5.2 Semantic mapping of Meta Relations

Fig. III.15 provides the mapping between the abstract syntax and semantic
domain for Meta Relations. Note that only parts of the meta models are shown
here to avoid cluttering the figure.

The most basic Relation is C2I, the Classifier to Instance mapping. This map-
ping expresses the general semantics of classifiers which says that each classifier
describes a set of instances. The instances have a type attribute that indicates
the classifier they conform to.

context C2I

-- Classifier to Instance

domain= Classifier.allInstances

range= Instance.allInstances

inv: ranelement.type=domelement.name

The Relation capturing the semantics of Relation is R2RI, Relation to Relation-
Instance. It contains several constraints to ensure that the specifications in the
abstract syntax are correctly related to the elements of the semantic domain.

context R2RI

-- Relation to RelInstance

domain= Relation.allElements

range= RelInstance.allElements

inv: domelement.isOnto=ranelement.isOnto

domelement.isTotal=ranelement.isTotal

domelement.isFunctional=ranelement.isFunctional

domelement.isInverseFunctional=ranelement.isInverseFunctional

The pairs conforming to a RelInstance must obey the multiplicity constraints
imposed by the defining Relation (we only show one of these constraints, the
others are constructed similarly).

ranelement.domain->forAll(i| ranelement.pair->select(p|

p.domelement=i)->size>domelement.range.multiplicity.lower)

60 Chapter III. Meta Relations

R
e
lI

n
s
ta

n
c
e

P
a
ir

-t
y
p
eIn
s
ta

n
c
e

C
la

s
s
if

ie
r

(f
ro

m
A

s
s
o

c
ia

ti
o

n
)

R
e
la

ti
o

n
R

e
la

ti
o

n
E

n
d

M
u

lt
ip

li
c
it

y
(f

ro
m

M
u

lt
ip

li
c
it

ie
s
)

P
ro

p
e
rt

y
(f

ro
m

A
s
s
o

c
ia

ti
o

n
)

A
s

s
o

c
ia

ti
o

n
(f

ro
m

A
s
s
o

c
ia

ti
o

n
)

R
2
R

I

C
2
I

S
A

2
L

d
o
m

a
in

d
o
m

e
le

m
e
n
t

ra
n
g

e

ra
n
e
le

m
e
n
t

re
la

ti
o
n

1
 d

o
m

a
in

1
 d

o
m

a
in

ra
n
g

e
m

a
p

d
o
m

a
in

m
a
p

s
c
o
p
e
m

a
p

ri
m

a
p

1

1

s
c
o
p
e

R
2
P

1

d
o

m
a
in

1

d
o

m
a
in

d
o
m

a
in

ra
n
g

e

1
1

ty
p
e

ra
n

g
e

*

* ra
n

g
e*

ra
n

g
e

Figure III.15: Mapping syntactic and semantic domain meta models of Meta
Relations

III.5. Semantics of Meta Relations 61

To check whether the domain and range objects are correctly typed, an access
to the C2I mapping is necessary. This is denoted by the associations between
R2RI and C2I which can be accessed from R2RI using the role names domainmap
and rangemap. Since invariants in a relation will be evaluated in the context
of a Pair (of the R2RI relation), the navigation self.domelement will result in a
Relation and self.ranelement in the corresponding RelInstance.

domainmap.domelement->includes(self.domelement.domain.type)

rangemap.domelement->includes(self.domelement.range.type)

domainmap.ranelement->includes(self.ranelement.domain)

rangemap.ranelement->includes(self.ranelement.range)

The relation R2P connects Relations and Pairs. It expresses that the invariants
of the Relation constrain the way the Pairs in its RelInstance are built. Thus this
relation can only happen in the context of an R2RI mapping. The containing
Relation can always be addressed from the contained relation using the role
name scope.

context R2P

-- Relation to Pair

domain=scope.domelement

range=scope.ranelement.Pair

The R2P relation thus connects the concept of a Relation with the Pairs defined
by it by referring to the (already established) R2RI Relation. From a Pair of R2RI
forming the scope of an R2P Relation Instance, we can derive which Relation is
to be mapped (its domelement) and which Pairs should be mapped (all Pairs of
the RelInstance forming the ranelement of the scope Pair.

To give a formalization of the constraint evaluation, the abstract syntax and
semantic domain of OCL expressions have to be defined as meta models. This
is accomplished by the OCL 2.0 specification [Obj03c]. Yet the structures de-
fined there are quite complex and using them here would require considerable
explanations without providing much insight to the relation technique. They
are thus omitted here.

The fourth Relation connecting abstract syntax and semantic domain is called
SA2L, ScopeAssociation to Link. A composition between two Relations in mapped
to a Pair and a RelInstance.

context SA2L

-- Scope Association to RelationInstance-Pair Link

domain= collect(a:Association|(a.property.isComposite=(true)

and (a.property.type=Relation))

range= collect(t:tuple|t.RelInstance.scope=t.Pair)

The Pair contained in the tuple forming the range must be the scope of the
RelInstance. By referring to an R2RI and an R2P mapping it is ensured that
only instances of the correct relations are connected.

inv: tuple.relInstance.scope=tuple.pair

scopemap.domelement.property->exists(p|p.isComposite=true

and p.association=self.domelement)

scopemap.ranelement->includes(self.ranelement.pair)

rimap.domelement.property.association->includes(self.domelement)

rimap.ranelement->includes(self.ranelement.relInstance)

62 Chapter III. Meta Relations

III.6 Summary and Discussion

Meta Relations as introduced in this chapter allow for a visual speci-
fication of mappings between meta models. They provide facilities for
nested mappings and associations between Relations. Their semantics
is precisely defined. Meta Relations thus fulfill our requirements for
a technique to specify semantic mappings in Dynamic Meta Modeling.
Their suitability for this task is demonstrated by their use in defining
the semantic mapping in their own definition.

Several aspects of Meta Relations remain to be addressed, though: While Meta
Relations provide a visual notation, the core of their specification lies in the
associated OCL formulae. We do not currently see viable diagrammatic alter-
natives to OCL although several visualizations are suggested in the literature,
e.g. [BKPPT01, Ken97]. The conciseness of textual logic formulae is the decid-
ing factor here. To judge the impact of this decision on the overall framework of
DMM we have to distinguish between our user groups. Language Engineers who
write language specifications can be expected to be proficient in OCL as it is an
established part of the OMG’s modeling framework. Advanced Language Users
as readers of such a specification on the other hand can obtain most information
from the visual part of the specifications. The OCL specification needs to be
inspected for very intrinsic details only. Thus we see only a very limited impact
on the overall understandability of the approach.

Two other issues are left open: formalization and operationalization of Meta
Relations. The former is an issue if one wants to avoid the circularity of the
meta modeling definition. As the core of Meta Relations lies in their OCL
formulae, we can rely on existing OCL formalizations [Baa02, FM03, HHB02]
to provide the required external foundation.

A tool which operationalizes Meta Relations specifications is not yet available.
Such a tool would compute a (partial) domain/range model, given its opposite.
There are, however, two approaches very similar to our Meta Relations3 which
are backed by transformation tools. One is the work of Akehurst and Patrascoiu
[AKP03] which is based upon the relationship pattern. The other is the QVT
Partners work [QVT] which features a notation which is very similar in spirit
to Meta Relations but adorned with operational modules to enable transforma-
tions. If the latter approach is able to deliver the expected general mapping
notation and transformation engine for the OMG’s meta modeling framework,
we might consider replacing Meta Relations with this standardized technique in
the long term.

3The similarity is due to common roots of all three approaches

Chapter IV

Graph Transformations

The technique of Graph Transformations forms the backbone of DMM’s op-
erational component. Thus, in this chapter we turn to the notion of Graph
Transformations in general and the particular variant of it which allows us to
use them in DMM as outlined in Sect. II.4.

Graph Transformations are a well established theoretical notion with a simple
and intuitive core: Given a graph (a structure of nodes and connecting edges),
a graph transformation produces another graph which is altered in some way.
The alteration performed by the transformation is captured by a Graph Trans-
formation rule.

Graph Transformations have been a topic of intense theoretical research for
more than thirty years now. Based upon fundamental concepts by Pfaltz
[PR69], Montanari [Mon70], Schneider and Ehrig [EPS73], and others, a wealth
of slightly different formalisms has emerged. An overview of these different
variants of Graph Transformations and their applications can be gained from
the Handbook of Graph Grammars [Roz97]. The differences between the ap-
proaches concern the definition of the underlying graph notion, the way a rule
is applied, and the way a single rule application can be controlled and combined
with other rule applications. In the following sections we investigate each of
these three aspects. We discuss existing approaches from the literature, pick
the features useful for the DMM approach, and provide formal definitions for
the innovative mechanism of rule invocations which is introduced specifically
for DMM.

The usefulness of Graph Transformations (and their detailed features) for the
DMM approach is measured according to the following criteria:

Understandability We choose Graph Transformations as the underlying formal-
ism because they already provide a high degree of understandability in
their basic form. This basic form is also easily visualizable in UML’s
Communication Diagram notation. We need to make sure that this claim
still holds if the base formalism is extended with special features.

Adequacy For the practical application of a formalism it is not only important
that it is able to express certain concepts but that the expression of com-

63

64 Chapter IV. Graph Transformations

monly encountered situations is possible in a convenient way. As we need
to manipulate graphs which are essentially meta model instances, ade-
quate support for object-oriented concepts is mandatory. For realistically
sized examples adequacy also extends to the maintainability of the for-
malism. If local changes can only be realized by altering large parts of
an already existing specification, no realistic use of a formalism can be
expected.

Analyzability A benefit of basing DMM on the formal specification concepts of
Graph Transformations is the possible application of existing theoretic
results to enable the analysis of semantics specifications. Different GT
variants support different analysis notions. In general, the more basic and
restricted a GT approach is, the more analysis results can be gained from
it.

Tool Support There are a number of tools which allow to create, apply, or an-
alyze Graph Transformation rule sets. The GT approaches and features
used in these tools differ widely. While DMM is not geared toward a
particular tool, utilizing this existing support is an aim of our approach.
DMM should thus only employ those features of GTs which are either
well-known and broadly supported or which can be reduced to basic GTs
in a simple way.

IV.1 Graphs

The most basic notion of a graph G is a set of nodes N and a set of edges E
with E ⊆ N × N . Note that this definition disallows multiple edges between
identical nodes. So called multi-graphs explicitly allow multiple edges by defin-
ing a Graph as G = (N,E, sE , tE) with functions sE : E → N and tE : E → N
designating the source and target node of each edge. All edges in this graph
variant are unidirectional and connect exactly two nodes. Undirected graphs
and Hypergraphs (with edges connecting more than two nodes) also exist but
are not considered here.

Labeled graphs add labels to nodes, edges, or both. Labels are used for different
purposes: Early GT approaches used them for denoting type information (now
specified by typed graphs, see below), we use them to denote the names of
elements. We assume a combined label alphabet Λ which provides labels for
edges, nodes, and further elements alike. The amount of labels is not bounded
and we assume an operation new to provide a yet unused label. Λ contains
a special label ⊥ which denotes an undefined name. Comparisons between ⊥
and any other symbol will always yield false, ⊥ compared to ⊥ yields true. An
extended alphabet Λ′ (=Λ ∪ {•}) introduces the special symbol • called the
wildcard which yields true when compared to any other label of Λ′, even for
⊥. A basic graph for the purpose of our approach is an edge and node labeled
multi-graph.

Definition 1 (Graph)
G = 〈N,E, lN 〉 with

N the finite and non-empty set of nodes

IV.1. Graphs 65

E the finite set of edges, E ⊆ N × Λ′ × Λ′ × Λ′ ×N
lN : N → Λ′ the labeling function for nodes.

For convenience, we define the functions
sE : E → N the function indicating the source node of an edge,
tE : E → N the function indicating the target node of an edge,
lE : E → Λ′ × Λ′ × Λ′ the labeling function for edges.

Note that the name of an edge (designated by lE) is a triple of labels. This
reflects the structure of UML’s Class Diagrams, in which associations can be
distinguished either by an association name or by a role name at either end.
Thus the name of an edge has the structure 〈role name source side, association
name, role name target side〉. The definition implies that two edges running
between identical nodes must be distinct in at least one of these labels. In
practice, differences in all three label components are desirable.

Labeling is (in general) non-injective as there are situations in which different
nodes may carry the same name. The most common example is the occurrence
of multiple anonymous nodes in a rule which are all labeled by ⊥.

Definition 2 (Edge-Label Preserving Graph Morphism (elp-morphism))
An elp graph morphism is a structure and edge label preserving morphism
between graphs.

m(G, H) =mN with
mN : NG → NH the node mapping function1,
and ∀〈a, l1, l2, l3, b〉 ∈ EG :〈mn(a), l′1, l

′
2, l

′
3,mn(b)〉 ∈ EH

with l1 = l′1, l2 = l′2, l3 = l′3

Note that due to the existence of the wildcard symbol in Λ′, the equality of
labels does not imply complete identity.

IV.1.1 Typed Graphs

For application in a UML context, the notion of a typed graph [CMR96, CEL+96,
BEdL+03, EEPT05] is important. In typed graphs, a structure is imposed on
the way different nodes and edges can connect. A type graph is employed to
describe this structure. Thus, the definition of a typed graph is

Definition 3 (Typed Graph)
GT = 〈G, type〉 with

G a graph as defined above,
type : G → TG the typing elp-morphism and
TG a graph with the additional requirement that lTG

N is injective2

In an object-oriented interpretation, TG is the type definition level and the
typed graph GT is an instance of that definition. Note that it is usually sufficient
to provide the typing of nodes only as the edge typing is implied by the label
preservation.

1The upper index always indicates the superordinate element, i.e. the graph name in this
case.

2Injectivness of the node labeling guarantees unique class names.

66 Chapter IV. Graph Transformations

IV.1.2 Inheritance in Typed Graphs

Inheritance is a central concept in object-orientation. Inheritance in Typed
Graph Transformations is studied by Ehrig et al. [BEdL+03, EPT04]. The
following definitions are adapted from there.

Definition 4 (Type Graph with Inheritance)
Inheritance in the type graph TG is expressed by special edges I

GI = 〈TG, I,A〉 with
TG a graph with the additional requirement that lTG

N is injective
I ⊆ NTG ×NTG the set of inheritance edges which must not form a circle
A ⊆ NTG the set of abstract nodes.

The edges of I denote the existence of an inheritance relation between two
classes. Tuples of this relation connect sub classes to super classes (i.e., the
direction of these edges corresponds to the UML generalization symbol). The
simple relational definition of an edge suffices here, as inheritance edges neither
have labels nor are multiple inheritance edges between two classes possible.
Circular inheritance relations must not occur. The semantics of the constructs
A and I are that any node in A may not have a direct instance in a graph (i.e.,
nodes in A represent abstract classes). Any node n which is connected to a
node m by an inheritance relation (i.e., 〈n, m〉 ∈ I) inherits all properties from
m. Instances of n may thus have edges which are not defined for n in the type
graph but which are defined for m. Inheritance is transitive, thus a node may
have a tree of subclasses (called its clan).

Definition 5 (Inheritance Clan for a Type Graph with Inheritance)
For a node n in a type graph with inheritance its inheritance clan is defined by

clanI(n) = {n′ ∈ N |∃ path n′
∗→ n in I}

A closure of a type graph with inheritance ”flattens“ the inheritance hierar-
chies by promoting normal edge definitions along the inheritance relations. The
result is a graph without inheritance edges, i.e., a graph as defined above. In
[BEdL+03] two closures are distinguished: the abstract closure retains the ab-
stract nodes (it does not, however, distinguish them in any way from normal
nodes) while the concrete closure does not contain any nodes from the set A
anymore. We adapt the definition with respect to our labeling concept.

Definition 6 (Abstract Transitive Closure)
Given 〈TG, I,A〉 with TG = 〈N,E, lN 〉 the abstract transitive closure is the

graph TG = 〈N,E, lN 〉 with
E = {〈n1, l1, la, l2, n2〉|∃o ∈ E :

n1 ∈ clanI(sE(o))
∧n2 ∈ clanI(tE(o))
∧(l1, la, l2) = lE(o) }

Definition 7 (Concrete Transitive Closure)
Given 〈TG, I,A〉 with TG = 〈N,E, lN 〉 the concrete transitive closure of

〈TG, I,A〉 is the graph T̂G = 〈N \A,E|N\A, lN |N\A〉, with E as defined above.

IV.1. Graphs 67

Depending on the context they appear in (i.e., either as a instance graph or
as part of a rule) typed graphs are either typed over TG (rule graphs) or T̂G
(instance graphs).

IV.1.3 Attributes

A further OO concept that needs to be represented in the graph formalism is
that of attributes. Classes may define attributes, i.e., names which instances of
this class can bind to a value. Typically, the set of possible values is restricted
by the definition of a data type for the attribute. Supporting the notion of at-
tributes in Graph Transformations has been proposed in [LKW93, GHV03]. The
most flexible and precise way to handle attributes is the integration of algebras
into the definition a graph [LKW93]. Here, the type graph contains arbitrary
algebraic signatures to define the data types and their operations. These alge-
braic structures need to be taken into account for all succeeding definitions (e.g.,
morphisms and single-pushouts are redefined in [LKW93], typed and attributed
graphs are studied in [EPT04], typed attributed graphs with inheritance are
mentioned in [BEdL+03] and studied in [EEPT05]).

A second possible treatment of attributes avoids these redefinitions: Data types
can be represented as a subset of nodes (DT) in the type graph. These nodes are
being connected via special attribute declaration edges to normal (class) nodes.
For each such data type s ∈ DT there is a domain Ds containing all possible
values of the data type. Instance graphs will contain these values in special
nodes and connect them to the normal (object) nodes. This representation of
attributes does not extend the usual notion of graph but rather constrains it
slightly (some nodes may only have certain edges, cf. [GHV03] for details).
While this handling of attributes is limited in its capabilities (for comparison
as well as manipulation of these nodes), it allows for integration of the concept
without changes to the underlying formalism. We make use of this notion of
attributed graphs in [HHS02b, HHS02a] where DMM rules relying heavily on
attribute manipulations are presented. In this thesis attributes do not play a
prominent role but they are supported by DMM.

The treatment of attributes by Steinert and Plump in [PS04] can be seen as
a way to combine the advantages of both techniques. They employ algebraic
notation for the formulation of so called rule schemas but instantiate the vari-
ables in these schemas to plain value nodes before application of the rule. Thus
they avoid the generation of large rule sets and retain the full power of algebraic
attribute specifications. The price for this is a pre-processing step before rule
application. A more general investigation of this pre-processing approach to
attribute handling has recently been performed by Hoffmann [Hof05]. There,
a concept of variables is introduced which does not only cover attribute ma-
nipulations but which forms a complete meta-level in that variables might also
represent nodes and edges.

68 Chapter IV. Graph Transformations

IV.2 Graphs in Dynamic Meta Modeling

The graph notion that is underlying the DMM approach is a typed,
attributed, node and edge labeled multi-graph that allows for node in-
heritance in the type graph and uses special datatype nodes (DT) for
the representation of attributes. We will call this combination a DMM
type graph, a DMM instance graph, and a DMM rule graph respectively.

Definition 8 (DMM Type Graph)
GDMMT = {〈N,E, lN , I, A,DT 〉 with

〈〈N,E, lN 〉, I, A〉 a type graph with inheritance
DT ⊂ N the set of data types
lN (N) ⊆ Λ \ {⊥}
E ⊆((N \DT)× Λ× Λ× Λ× (N \DT))∪

((N \DT)× {⊥}×{⊥}×Λ×DT)}

Note that data type nodes can only be the target of special edges which carry
the name of the attribute at the target end label (and have no other labels).
Node labels in type graphs may not contain the special symbols • and ⊥.

Definition 9 (DMM Instance Graph)
GDMMI = {〈G, type〉 with

type : G → T̂G the typing elp-morphism
TG ∈ GDMMT

lN (NG) ⊆ Λ
lE(EG) ⊆ Λ× Λ× Λ
∀s ∈ DTTG : type−1

N (s) ⊆ Ds}

Definition 10 (DMM Rule Graph)
GDMMR = {〈G, type〉 with

type : G → TG
TG ∈ GDMMT

lN (NG) ⊆ Λ′

lE(EG) ⊆ Λ′ × Λ′ × Λ′

∀s ∈ DTTG : type−1
N (s) ⊆ Ds}

In contrast to DMM instance graphs, rule graphs allow the use of abstract nodes
and wildcards as label names. The formulation of rules is thus more flexible.

Graphs are usually represented as diagrams rather then textually. We do thus
provide rendering/parsing relations between graphical elements and their con-
ceptual counterparts as presented above. Adhering to our goal of combining
Graph Transformations with UML, we chose graphical symbols which also ap-
pear in the UML Class and Instance Diagram notation.

Table IV.1 contains an exemplary overview of the correspondences. Label strings
are placed in quotes and Greek characters are used for node identities. Both

IV.2. Graphs in Dynamic Meta Modeling 69

Element Example (conceptual) Example (graphical)

Nodes N = {α, β},
lN = {〈α, ”A“〉, 〈β, ”B“〉}

A B

Edges
N = {α, β},
E = {〈α,⊥, ”name“,⊥, β〉,

〈α, ”a“,⊥, ”b“, β〉}
a b

name

Typed
Nodes

N = {δ},
lN = {〈δ, ”d“〉},
type = {〈δ,∆〉},
TG = 〈{∆}, {}, {〈∆, ”D“〉}〉

d:D

Inheritance

N = {Γ,∆},
A = {Γ},
lN = {〈Γ, ”A“〉, 〈∆, ”B“〉},
I = {〈Γ,∆〉}

C

«abstract»
D

Attributed
Nodes
(in type
graphs)

N = {∆,Σ},
DT = {Σ},
lN = {〈∆, ”A“〉, 〈Σ, ”String“〉},
E = {〈∆,⊥,⊥, ”name“,Σ〉}

name:String

D

Typed
Attributed
Nodes

N = {δ, ”Slim Shady“},
E = {〈δ,⊥,⊥, ”name“, ”Slim Shady“〉},
lN = {〈δ, ”a“〉},
type = {〈δ,∆〉, 〈”Slim Shady“,Σ〉}
TG given in the previous row

name=“Slim Shady“

d:D

Table IV.1: Correspondence of graph concepts and their graphical rendering

special labels render to an empty string. This does not prohibit parsing, as ⊥
is used in type and instance graphs and • in rule graphs only.

As the graphical correspondence in Tab.IV.1 shows, our graph notion allows for
a visual representation of type, rule, and instance graphs in terms of UML Class
and Instance Diagrams.

A different question which needs to be discussed is the reverse direction: Can all
UML Class Diagrams be represented by our graph notion? Several features of
UML are not directly supported by DMM graphs. Most important among these
omissions is the concept of constraints and its special case of multiplicities.
While type graphs impose structural restrictions on their instances, they do
not provide the finer grained control of multiplicities, let alone those of OCL.
A UML Class Diagram may thus express that some instance of class A must
be associated to at least one and at most three instances of class B but the
corresponding type graph can only express that there is a connection between
A and B. Consequently, if a UML Class Diagram is represented as a DMM type
graph, all legal instances of the Class Diagram can be represented as DMM
instance graphs. However, there are legal DMM instance graphs (typed over

70 Chapter IV. Graph Transformations

the type graph) which do not have a legal correspondence on the UML side. We
need to keep this over-approximating nature of our graph notion in mind.

Another difference which needs to be overcome is that associations in UML
Class Diagrams are usually undirected while our graph notion supports directed
edges. There are basically two ways to deal with this difference: Either all UML
associations are interpreted as a pair of (conversely) directed edges in a DMM
graph or an arbitrary but consistent direction is fixed for associations in a UML
Class Diagram and all Instance Diagrams and rules typed over it. While the
first solution is conceptually more clean, it bloats the graph representations.
We thus assume that UML associations contain an (implicit) direction which is
respected by all instances.

IV.3 Graph Transformation Rules

If information is encoded in a graph structure, a way to manipulate this structure
is needed. For graphs, Graph Transformations (GT) form this manipulation
facility. Usually, one is not only interested in a single concrete manipulation
but in a general pattern for them. Thus, the concept of Graph Transformation
rules (GTR) is central to Graph Transformations.

IV.3.1 Basic Terminology

To enable concise discussions, we introduce some common terms: A Graph
Transformation rule r consists of two graphs: The so called left-hand side (L)
of the rule designates the portion of the host graph which is to be manipulated
by the rule. The right-hand side (R) depicts the post-state after application of
the rule. A production morphism between both graphs can be used to relate
identical elements in both graphs. In practice, this morphism is usually implied
by equality of the labels.

Elements in both the left and the right hand side graph are called the application
context or the interface of the rule (in the example in Fig.IV.1, the application
context consists of the nodes labeled A,B,C and the edge labeled u). Elements
in L \ R are deleted by an application of the rule (in the example node D and
edges v,w) and elements in R\L are newly created (in the example edge x). We
refer to rules textually as L

r−→ R.

The graph on which to apply the rule is called the host graph (G). A matching
mt has to be identified between the elements of L and G for the rule to apply.
The image of L in G under mt is called the occurrence of L (marked gray in the
figure). If the changes encoded in the rule are applied to G, a new graph H is
derived from G. The post-application matching function mt′ is identical to mt
for elements of the application context.

The detailed formulation of these common notions differ between the different
approaches to Graph Transformation.

IV.3. Graph Transformation Rules 71

L

A B

C

u

v

D

w

A B

C

u

x

A

B

C

u

v

D

w

y

r

B

u

E

z

m
t

m
t’

A

B

C

u

x

B

u

E

z

d

R

G H

Figure IV.1: Basic graph transformation rule concepts

IV.3.2 Double Pushout vs. Single Pushout

The basic notion of Graph Transformation rules has been formalized in a number
of ways. The most wide-spread approaches are the algebraic formulations of
the Single-Pushout approach (SPO) [LE90, Löw93, EHK+97] and the Double-
Pushout-Approach (DPO) [EPS73, EHK+97]. Besides theoretic differences, the
main practically relevant distinction (assuming injective matchings) between
the two approaches is the handling of dangling edges. If a node rn in the left
hand side of a rule matches a node hn in the host graph, hn may have more
edges attached to it than rn. If the rule application now calls for a removal of
hn, the question arises what happens to edges in the host graph which have lost
one of their anchoring nodes (they are called dangling edges) but which are not
explicitly deleted by the rule application. Under the DPO approach, such a rule
application is interdicted while the SPO approach calls for an implicit deletion
of the dangling edges. The example in Fig.IV.1 demonstrates this difference:
Under the DPO scheme, the derivation d would not be possible, as the y edge is
not matched by rule r. Under SPO, however, it is implicitly deleted (as shown
in Fig. IV.1).

While the DPO approach ensures that all Graph Transformations are reversible
(which enables elegant proofs), it also forces modelers to specify rules for every
possible edge grade of a node which is to be deleted. The SPO approach is more
flexible in its matching and is thus preferred for practical applications. We also
follow the SPO approach in DMM.

Choosing SPO over DPO does not prohibit the application of theoretic results
gained for DPO. In [EHK+97] a generic embedding construction for DPO into
SPO is given. Thus, theoretic results for either approach may—in principle—be
transferred to the other, albeit with some restrictions.

72 Chapter IV. Graph Transformations

IV.3.3 Rules

Definition 11 (Graph Transformation rule)
A Graph Transformation rule r : (L,R) consists of two DMM-rule graphs L and
R and a name r.

Note that for all following definitions, we assume that the different graphs are
defined over a common base set such that, e.g. L∩R is defined. We furthermore
assume that all involved rule and instance graphs are typed over a common type
graph (with inheritance).

A GT rule r can be divided into three different partitions: elements to be
deleted, elements to be newly created, and application context.
rdel = {Ndel, Edel} with Ndel = NL \NR and Edel = EL \ ER

rnew = {Nnew, Enew} with Nnew = NR \NL and Enew = ER \ EL

rac = {Nac, Eac} with Nac = NL ∩NR and Eac = EL ∩ ER

A necessary restriction is that nodes in Nnew must never be typed as abstract
nodes.

IV.3.4 Rule Application under SPO

Definition 12 (Matching of a rule)
The matching of a rule r = 〈L,R〉 against a graph host ∈ GDMMI is a mapping
of the left hand side rule graph:

match(r, host) =mt : L → host an injective morphism with
∀n ∈ NL : typeN (mtN (n)) ∈ clanI(typeN (n))

The injective matching used in this thesis is a restriction of Graph Transforma-
tions in general. When allowing for non-injective matchings, an element in a
host graph may actually satisfy two roles in one rule. This can be a convenient
feature to handle special situations (e.g., reflexive and non-reflexive transitions
in a Statechart might be handled by the same rule). It can also incur un-
wanted matchings and conflicts3. Since recognizing potential problems with
non-injective matches is not trivial (especially taking subtyping into account),
we restrict our approach to injective matching only.

A matching might induce a set of edges to be deleted (if one of their anchoring
nodes is being deleted):

Definition 13 (Deleted Edges)
The set of deleted edges de induced by a matching is defined as

de(match(r, host)) = {e ∈ Ehost|∃n ∈ Nr
del : sE(e) = mtN (n) ∨ tE(e) =

mtN (n)}

Note that this definition does not distinguish between edges which are explicitly
and implicitly deleted.

3A conflict arises if a node in the host graph simultaneously matches nodes from Ndel and
Nac.

IV.3. Graph Transformation Rules 73

Definition 14 (Derivation)
Applying a rule r to a host graph pre yields a derivation relation:

pre
r=⇒ post with

pre, post ∈ GDMMI

∃mt′ a matching with mt(rac) = mt′(rac)
pre \ (mt(rdel) ∪E de(mt(r))) = post \mt′(rnew) 4

A graph derivation leaves the graph untouched apart from the parts to be either
explicitly or implicitly deleted. The elements which are to be added to the graph
need to form a new matching mt′ in relation to the right hand side of the rule.
Operationally speaking, one can also say that the application of the rule removes
all nodes and edges in the image of rdel and all edges in de. Then new elements
for the elements of rnew are created. For each element in rnew a new element in
H is constructed which has the same type as its correspondent in R. The labels
for new nodes are chosen by new(Λ), the labels for edges are identical to the
labels of edges in the type graph, as identified by the rule’s typing. We express

a concrete derivation textually as G
mt(r)
=⇒ H where r is the name of the applied

rule and mt is the matching function designating the occurrence of the rule in
G.

IV.3.5 Negative Application Conditions

Rule application usually requires the presence of certain structures. There are
situations, however, where the absence of a structure is of interest. Think, for
instance, of a rule which moves some element to a buffer, provided no other
element occupies the buffer yet. To check for such absent structures, negative
application conditions (NACs) are defined for Graph Transformation rules in
[HHT96]. A NAC is an extension of the left hand side of a rule. The semantics
of a NAC is that the structure of the NAC must not be present in the context of
the rule occurrence for the rule to apply. The effect of a NAC is demonstrated
in Fig. IV.2. Rule r1 requires a Buffer and will match on either b1 or b2 in
the given host graph (matchings mt1 and mt2). Rule r2 explicitly forbids the
occurrence of an Element in the context of the matched Buffer and can thus
be applied to the empty buffer b2 only. Negative application conditions are
supported by the majority of GT tools and widely used in theory.

IV.3.6 Application and Consistency Conditions

The application of a rule may be subject to additional conditions which cannot
(or at least not easily) be captured by the left-hand side of the rule. Examples
include complex conditions on the state of attributes or values outside of the
GTR’s scope or the existence of unbounded structures (e.g., paths of arbitrary
length).

Conditions may either be notated in the rule itself (e.g., PROGRES provides
a special path construct), but often a textual logic notation external to the

4∪E denotes the union for the edge component of a graph

74 Chapter IV. Graph Transformations

:Buffer

b1:Buffer

r1

e1:Element

b2:Buffer

mt1 mt2

mt3

:Element

:Buffer

:Element

:Buffer

r2
:Element

:Buffer

:Element

:Element

Figure IV.2: Example for the matching of Negative Application Conditions

rule is used (e.g., in [Sch96b]). Negative Application Conditions (as introduced
in the previous subsection) are a special and very common case of application
conditions.

An important task for application conditions is their deployment to guarantee
adherence of the host graph to certain restrictions. If, e.g., the host graph
represents an object configuration, the type level usually imposes multiplicity
constraints or other restrictions which must not be violated. Using application
conditions, one can ensure that the application of Graph Transformations Rules
to a graph which is valid with respect to these constraints will always yield a
valid graph again. In [HW95] a procedure is provided which allows encoding
such application condition in SPO rules directly, using the notion of weakest
precondition. Taentzer and Rensink [TR05] extend that work to apply to typed
graphs with inheritance.

IV.3.7 Universal Quantification

Elements in the left hand side of a rule usually have an existential quantification,
i.e., they need to find exactly one correspondent in the host graph for a successful
matching. In many situations, however, a universal quantification is not only
convenient but necessary. As an example think of a rule which flushes a buffer. If
this buffer can contain multiple elements, the rule will have to match and delete
all of them to achieve its aim (cf. Fig. IV.3). Universally Quantified Structures
(UQS) in the left hand side of a rule will thus match to all elements in the host
graph which fulfill the given constraints. In Fig. IV.3, the UQS :Element thus
matches e1 to e4 in the hostgraph, as all of them are contained in the buffer.
As displayed by the figure, universal quantification poses the problem that the
functional character of the matching morphism cannot be retained.

IV.3. Graph Transformation Rules 75

:Buffer
flush

:Element :Buffer

b1:Buffer

e1:Element e2:Element e3:Element e4:Element

Figure IV.3: Example for the matching of universally quantified elements

Parallel Graph Transformation [Tae96, dLETE04] is a formal approach which
can be used to express universally quantified structures in Graph Transforma-
tions. Instead of rules, PGT assumes the specification of rule schemas. A rule
schema consists of the base rule (also called elementary rule), subrules, and
interaction schemes which specify the possible connection between base and
subrule. The process of amalgamation is used to produce a plain GT rule by
gluing multiple instances of the base rule(s) with the subrule, thus providing a
universal interpretation of the base rule’s elements. The usual matching notion
can then be applied to these amalgamated rules. Thus, parallel graph transfor-
mation circumvents the problems posed by universal quantification by using a
pre-processing step5 which yields simple rules. Rule schemas are realized by the
tools AGG [LB93] and ATOM3 [dLETE04]. Obvious drawbacks of the approach
are a significant rise in the complexity of the rule notation and a conceptually
unlimited number of amalgamated rules for a single rule schema. In practice,
the amalgamation is either done on the fly when applying a rule or by specifying
a maximal number of subrule occurrences. The concept of Graph Transforma-
tions with variables [Hof05] also allows for the formulation of UQS under the
name of clone variables. Variables are also pre-processed to yield ”plain“ GT
rules.

A second way to support universal quantification is the adoption of a different
matching notion. Schürr studies this kind of matching in [Sch91, Sch96b] for
the PROGRES language. PROGRES allows specifying elements with universal
quantification directly in the rule graph. The matching notion then degener-
ates from a graph morphism to a general relation with special properties (cf.
[Sch96b]). This degeneration has serious impacts on the underlying theory as
the resulting structure is not a algebraic pushout anymore and rule applications
are no longer invertible in the general case. The application of existing theory
is hampered.

The use of universal quantification in Graph Transformation rules is usually re-

5It is in fact called a two-level derivation in [Tae92].

76 Chapter IV. Graph Transformations

Representing First-Order Logic Using Graphs 323

lt lt lt lt

x y x y

Fig. 1. Graph predicates for lt(x, y) ∨ lt(y, x) resp. ∃z: lt(x, z) ∧ lt(z, y)

x
next

next
next

next

Fig. 2. Graph predicate for ∃y:next(x, y) ∧ ∀z: (next(x, z) ⇒ z = y)

It follows that the base case, depth(p) = 0, corresponds to p = ∅. Conditions have
positive depth. We propose Pred[〈X〉] as representations of FOL formulae over X . Note
that in the introduction we discussed predicates consisting of a single condition only,
and in the pictorial representation we omitted the source graph 〈X〉 (which anyway
would be empty since the constraints discussed there are closed) and only displayed the
structure from Tc onwards. Fig. 1 depicts two constraints with free variables accurately;
Fig. 2 is another example, which shows multiple levels of conditions. The following
defines satisfaction of a predicate p ∈ Pred[G], for arbitrary θ ∈ Graph(G, H):

θ |= p iff ∃c ∈ p: ∃µ: Tc →H : θ = µ ◦ αc, µ �|= pc . (1)

On the model side this generalizes |= over FOL: here the source of θ can be an arbitrary
graph, whereas there it was always discrete. An example is given in Fig. 3, which shows
a model of the right-hand predicate of Fig. 1.

αc

η

θ

ltlt

x y

lt lt

Fig. 3. Model satisfying the graph predicate for ∃z: lt(x, z) ∧ lt(z, y)

Figure IV.4: Example for a graph predicate (taken from [Ren04b])

stricted. Universally quantified structures may only be attached to an existen-
tially quantified node with the semantics of a complete match in this element’s
context. In general, however, further characterizations of the matched element
set and other constructions are possible which cannot be fully expressed within
these restrictions. In contrast, Rensink studies graph predicates [Ren04b] in
which a graph is not only extended by one layer of application conditions but
by several such layers, each forming a logical negation to the one above it. Since
negation of existential quantification yields universal quantification, it is shown
that using such a notion of a graph, an expressive power equal to the of first
order logic is achieved . While this technique is very powerful, the graph predi-
cates produced by it are rather hard to read. The example in Fig. IV.4 specifies
the condition that ∃y : next(x, y) ∨ ∀z : (next(x, z) ⇒ z = y). Moreover, the
application of graph predicates for the use in Graph Transformations is not
straightforward as a matching notion taking the multiple layers into account
needs to be formulated.

A final issue is the manipulation of universally quantified elements. Deletion
of such elements entails the deletion of all matches but, e.g., the creation of an
edge to or from an universally quantified node could mean either the creation
of a single edge (to one node of the set) or the creation of edges to all members
of the set. Even more complicated is the creation of edges between universally
quantified nodes: either a single connecting edge, the complete Cartesian prod-
uct of nodes, or an injective/surjective/bijective and right/left total set of edges
may be intended. Up to date no graph transformation approach takes these
possibilities into account and provides distinguishing notations.

IV.4 Graph Transformation in DMM

The notion of graph used in DMM has been defined in Subsect. IV.1 and the
succeeding notion of basic SPO Graph Transformations has been build upon
this notion of graph. The overview in the previous subsection demonstrates
that this basic notion can be extended in a number of ways. We now proceed
to select the features useful in the scope of DMM.

u DMM does support Negative Application Conditions. NACs are widely

IV.4. Graph Transformation in DMM 77

supported by theory and tools and provide required expressiveness to GT
specifications.

u DMM does not support other application conditions. Application condi-
tions are usually notated in textual format outside of the rule. Although
they can help to fine tune the application of GT rules, they also extend
the required formalization substantially, invalidating most theoretic re-
sults and diminishing the visual appeal of GT rules. Few tools support
application conditions.

u DMM does support universal quantification, but only in a very limited
way. We do not see the need to employ the full power of graph predicates.
Combinations of rules can be used for the processing of more complex
situations.

IV.4.1 Rules in DMM

Rules are visually represented in a special way in DMM. As laid out in Sec-
tion II.2, the meta modeling approach of UML is about re-using the modeling
notations of the UML in its definition. We already use UML Class and Instance
Diagram notations for the presentation of graphs (cf. Tab. IV.1) and use UML
Communication Diagram notations to represent Graph Transformation rules.
The basic idea for this visual representation can also be found in the Story
Diagrams notation used in Fujaba [FNTZ00, HZ01].

Table IV.2 provides an example for the correspondence of DMM rule concepts
and their visual representation. In the first row we see the representation of
basic rule constructs. Elements in racc (i.e., node a) are notated without special
markup, elements in rdel (node b and edge type) and rnew (node c and edge
edge container) carry the constraints {destroyed} and {new} next to their labels
respectively. The signature of the rule (its name plus additional information) is
located on the top left hand corner in a pentagon shaped compartment.

IV.4.2 Negative Application Conditions in DMM

We use Negative Application Conditions in rules as defined by Habel, Heckel,
and Taentzer [HHT96]. Formally, an application condition (positive or negative)
is an extension of the left hand side graph of a rule. We only use NACs in DMM,
thus the following definition suffices for our purposes:

Definition 15 (DMM Rule with NAC)
NAC(r) ⊂ GDMMR a finite set with

∀L̂ ∈ NAC(r) : Lr ⊂ L̂

Each NAC is thus an extension of the left hand side of the underlying rule.

A matching mt = match(r, host) satisfies its conditions, if for no L̂ ∈ NAC(r)
an extended matching m̂t : L̂ → host can be found which is identical to mt for
elements of the underlying rule’s left hand side.

6Typing information is omitted in all examples.

78 Chapter IV. Graph Transformations

Example (conceptual)6 Example (graphical)

Rule foo=
NL = {α, β},
lLN = {〈α, “a“〉, 〈β, “b“〉},
EL = {〈α, “type“, •, •, β〉},
NR = {α, γ},
lRN = {〈α, “a“〉, 〈γ, “c“〉},
ER = {〈α, “container“, •, •, γ〉}

foo

c:C

{new}
a:A

b:B

{destroyed}

type

{destroyed}

container
{new}

Rule bar=
NL = {α},
lLN = {〈α, “a“〉}
(right hand side omitted)
NAC:
N L̂ = {α, π},
lL̂ = {〈α, “a“〉, 〈π, •〉},
E〈L̂ = {α, ”type“, •, •, π〉}

bar

c:C

{new}
a:A

:N

type

container
{new}

Rule scheme baz=
NL = {α},
lLN = {〈α, “a“〉}
EL = {}
R = L
UQS:
N L̄ = {α, δ},
lL̄N = {〈α, “a“〉, 〈δ, •〉},
EL̄ = {〈α, ”type“, •, •, δ〉},
N R̄ = {}, ER̄ = {}

baz

a:A
:D

{destroyed}

type

{destroyed}

Table IV.2: Correspondence of rule concepts and their graphical rendering in
DMM

IV.5. Controlling Graph Transformations 79

The notation for NACs (also adopted from [HHT96]) is a dashed ellipse enclosing
the NAC’s elements with a dashed line crossing out the NAC. Note that edges
crossed by the dashed borderline are always part of the NAC. The second row
in Tab. IV.2 provides an example, in which rule bar() can only be applied to an
A if no N can be matched in its context, connected via a type edge. Multiple
NACs per rule are possible; by the definition given above each of them must
hold for a successful match.

IV.4.3 Universal Quantification in DMM

Universally quantified structures (UQS) are supported in DMM rules in a very
limited way. A UQS in DMM is based on specially marked nodes. A UQS
is formed by such a node and all of its adjacent edges. If marked nodes are
directly connected, they form a single UQS. Multiple UQS per rule are allowed.
The marking of UQS nodes is done in DMM rules by the notational element
multinode of UML Collaboration Diagrams. In row three of Tab. IV.2 we find
an example in which the node :D is notated as a multinode and thus the UQS
is formed by node :D and the adjacent edge.

Conceptually, a UQS matches the maximal set of elements which fulfill its con-
ditions. Technically, we adopt the idea of rule schemes (cf. [Tae96]) which can
be ’unfolded’ to a number of simple rules. Unfolding is a process which takes
the core rule and the different UQS as its input and produces simple GT rules
as its output which are formed by combining the core rule with multiple copies
of the UQS. This unfolding process is illustrated in Fig. IV.5 which shows a
rule schema r3 and two unfolded rules r3’ and r3”. The universally quantified
node in r3 is supposed to match to all nodes of type U in the context of a. The
unfolding works by combining a number of duplicates of the universally quanti-
fied node together with a NAC to ensure the completeness of the match. Note
that this construction works due to the restriction to injective matching. Such
an unfolding will potentially produce an unlimited number of rules and thus
needs to be restricted to ”expected“ numbers of duplicates of U . In the exam-
ple in Fig. IV.5, a maximum of two Us is being handled by the unfolded rules.
Multiple universally quantified elements increase the number of unfolded rules
even more as different nodes are unfolded independently. Note that universal
quantification implies the existence of at least one match.

As laid out in Subsect. IV.3.7, manipulation of universally quantified elements is
not trivial. To avoid these problems, we disallow the use of universally quantified
structures in rnew, i.e., universally quantified elements are either preserved or
deleted (resulting in a deletion of all matched elements in the host graph).

The formalization of UQS is given in Subsection IV.6.7.

IV.5 Controlling Graph Transformations

The application of a single Graph Transformation rule usually happens in the
context of a Graph Transformation System.

80 Chapter IV. Graph Transformations

r3

a:A
:U

{destroyed}

type

r3'

a:A :U
type

:U

{destroyed}

type

r3''

a:A :U
type

:U

{destroyed}

type

:U

{destroyed}

type

Figure IV.5: Examples for unfoldings of a rule schema

Definition 16 (Graph Transformation System)
A Graph Transformation System is formed by a set of Graph Transformation
rules GTRs and a start graph G0.

The idea behind a Graph Transformation System is to apply rules from the
given rule set repeatedly to the underlying host graph which is manipulated by
the rule applications. The extension of a Graph Transformation System is thus
the set of derivation sequences obtained by applying its rules on G0.

Definition 17 (Derivation Sequence)
A derivation sequence G

∗=⇒ H is a sequence of derivations G
ra1=⇒ G1

ra2=⇒
G2 . . . Gn−1

ran=⇒ H with rai being rule applications, i.e., matchings of rules.

A Graph Transformation System thus defines a set of such derivations with all
applied rules stemming from GTRs

From an operational point of view, this general notion of Graph Transformation
Systems entails two kinds of non-determinism: The rule to be applied next in
the derivation sequence is chosen non-deterministically as is its matching in the
host graph (if multiple such matchings are possible). While this construction
is very simple and powerful, it has some rather undesired properties from a
practical point of view. Since a single rule application is the only available
unit of synchronization, complex graph manipulations need to be expressed as
a single rule. This situation leads to complex rules and large rule sets as each
variation of a possible scenario requires a separate rule.

IV.5. Controlling Graph Transformations 81

From a practical point of view it is beneficial to have the ability to split com-
plex manipulations into smaller parts (i.e., separate rules) and to control the
application of these parts to some degree. This ability simultaneously reduces
the size of the rules (by splitting large rules) and the number of rules in a set
(as variations can be expressed by recombining existing parts). Thus, several
such controlling mechanisms have been proposed in the literature. We provide
an overview of these different approaches here as (especially for practical GT
approaches) these control constructs form their main distinguishing element.

IV.5.1 Priorities and Layers

By assigning priorities to rules in a graph transformation system, one can con-
trol their application, as rules with higher priority will be checked for applicabil-
ity first. Priorities have been studied by Litovski and Metevier [LM93, LMS95]
and have been implemented, e.g., in the GROOVE tool set [Ren04a]. Similar
to priorities is the concept of layered graph grammars [RS97]. Layered Graph
Grammars are supported by the AGG tool [TB94]. Both layers and priorities re-
tain theoretical properties of rule sets, thus allowing for analysis, but are rather
unwieldy to handle in practice. Unexpected changes may cause a re-assignment
of priorities throughout the rule set. Additional measures must be taken to
avoid conflicts between rules of identical priority.

IV.5.2 Triggers and Invocations

Triggers were introduced in the GOOD system which applies Graph Transfor-
mations to databases [GPTdB93]. A trigger is a special kind of node created
in the host graph which determines the next rule to be applied. Triggers can
thus be regarded as an invocation of another rule. The same mechanism is
employed in the GRRR system the primary concern of which is graph drawing
[Rod98, Rod00, RV00]. GRRR extends the original trigger node idea by allow-
ing multiple triggers to be present at the same time in the graph and applying a
LIFO strategy to their processing. Thus, an invocation stack is simulated. Trig-
gers keep control local to a rule and allow for the formulation of sequences (by
direct invocation) and loops (by recursive invocations). A disadvantage can be
seen in the fact that in the GRRR approach the organization of the invocation
stack has to be encoded in the rules themselves and that multiple NACs have to
be employed just to ensure a consistent handling of this stack by all rules. Going
beyond the GRRR concepts is PROGRES which allows not only for invoking
other rules but also caters for passing information to this rule application in the
form of parameters.

IV.5.3 Transformation Units

Transformation Units have—in different specifications and under different
names—been proposed by a number of authors. Common to them is the intro-
duction of an additional control level in the GTS which constrains its possible
derivation sequences. Usual control conditions include sequentialisation of rule

82 Chapter IV. Graph Transformations

sets, fixpoint iteration of a single rule, or graph coverage by rule matchings.
The general case of such control conditions and their effects on different graph
transformation approaches is studied by Kuske [Kus00, AEH+96]. Küster uses
a concrete instance of transformation units in [Küs04] to encode a language
translation by Graph Transformations. His choice of control constructs pre-
serves confluence properties of the rule set [HKT02]. Varró [Var02] encodes
control conditions in control flow graphs which are expressed as a Statechart-
like formalism. Habel and Plump show that with additional control conditions in
the form of sequential composition and iteration, graph transformation systems
become a computational complete language [HP01]. A practical implementa-
tion of this result is Steinert and Plump’s work towards a Graph Programming
Language [Ste03, PS04].

Additionally, transaction properties may be applied to transformation units (or
other groupings of rules). These are especially interesting if additional consis-
tency constraints are used in the approach. Such constraints may be violated
during a transaction but have to apply again before committing the transac-
tion’s result. PROGRES supports transactions and in [HMTW95] the transac-
tion concept is formalized within the SPO context for the AGG system.

IV.5.4 Programmed Graph Transformations

Programmed Graph Transformations take the concept of explicit application
control even further as the application of Graph Transformations is embed-
ded in completely programmed control flow, including conditional, branching,
and looping constructs usually found in programming languages. The most
elaborated example here is PROGRES [Sch90, Zün95, Sch95, SWZ95, SWZ99,
MSW00, BR04] which provides very rich facilities to control the application
sequence of Graph Transformations. In fact the facilities are so rich that PRO-
GRES can be rather seen as a (textual) programming language with Graph
Transformations in it.

The FUJABA system [fuj] also provides rich facilities for programming the
graph transformation application but specifies this control in a graphical no-
tation called Story Diagrams [FNTZ00]. Providing similar facilities to classical
programming languages, these approaches are very powerful and can specify
even industrial systems in a convenient and rather compact way but they loose
the analyzability of the base formalism. The claim of intuitive understanding is
also weakened by the introduction of the additional control structures.

IV.6 Control in DMM—The Mechanism of Rule In-
vocation

Our choice between these different proposed control mechanisms for Graph
Transformations is guided by the criteria set out at the beginning of this chapter.
Especially important is understandability. We feel that the notation for appli-
cation control should not introduce another level of specification. This greatly
decreases understandability, as the reader has to combine both specifications

IV.6. Control in DMM—The Mechanism of Rule Invocation 83

mentally to grasp the overall meaning. The basic appeal of Graph Transfor-
mations is lost in such an approach. This concerns Transformation Units and
(especially) programmed Graph Transformations. Priorities and triggers can be
notated in the rules themselves and are thus better in this regard.

Analyzability also decreases with the richness of control features. Especially for
Programmed Graph Transformations, the application of theoretical results is
very hard. Transformation units and the simpler mechanisms of priorities and
triggers are more amendable to analysis.

Tool support can be seen from different angles: For programmed Graph Trans-
formations, rich environments exists, which allow the application of these ap-
proaches in a practical context. This close connection between tool and formal-
ism also makes the approaches very proprietary. No other tools exist to process
such formalisms.

Adequacy finally rules out priorities as they do not scale to realistically sized
problems and cannot deal with the changes inevitable in realistic problems.

Combining these judgments we find the approach of triggers to be a (potentially
good) compromise between sparseness of features (enabling analysis and general
tool support), fine grained control and good maintainability.

From the viewpoint of understandability, triggers also present another advan-
tage: We assumed OO knowledge in our target audience. In the OO view,
control flows are realized by having one behavior (operation) invoke other be-
haviors. Employing this idea to control the application of rules seems a very
promising approach to us.

The practical elaboration of the basic trigger idea in the GRRR system is
nonetheless lacking in several ways. Neither is the idea fully thought through,
nor is a proper formalization given. The approach furthermore contains se-
vere applicability problems as a lot of auxiliary nodes clutter the rules and the
underlying graph.

In this section we thus introduce a novel approach to control the application
of Graph Transformation rules called Rule Invocation. Rule invocations as the
main structuring mechanism of Dynamic Meta Modeling allow the modeler to
specify complex graph manipulations in a convenient manner by distributing
the manipulation over multiple rules. Control in this approach is notated in the
rules which retain their intuitive character. This localized control also allow for
an OO-like structurization of complex behaviors. In contrast to the basic idea
of triggers [Rod98], invocations are established as a first class language feature
for Graph Transformation rules. Invocations promise a high understandability
(especially from an OO mindset) and are simple enough to be processed by
standard GT tools (as demonstrated in Chapter VIII).

To get an intuition on the way invocations work let us regard a small example:
Suppose we have a ListManager which knows a number of lists each of which
lists Elements of a different ElementType. Lists can furthermore be organized
according to different ordering schemes. Fig. IV.6 provides two DMM rules
without invocations describing the main operation of a ListManager, namely the
integration of a new element. The left hand rule in Fig. IV.6 describes this
integration for the case of a first-in, first-out (FIFO) list which contains at least

84 Chapter IV. Graph Transformations

integrateNew()

:ListManager

ordering:FIFO

:List

new:Element

:ElementType
type

type

last:Element

last

{destroyed}

next

list

{new}

last

{new}

integrateNew()

:ListManager

ordering:FIFO

:List

new:Element

:ElementType
type

type

last

{destroyed}

list

{new}

last

{new}

Figure IV.6: Example specification without invocations

man.integrateNew()

man:ListManager

:List

new:Element

:ElementType
type

type

enqueue(new)

list.enqueue(new:Element)

new:Element
ordering:FIFO

:List

last

{destroyed}

list
{new}

last
{new}

list.enqueue(new:Element)

new:Element
ordering:LIFO

:List

first

{destroyed}

list
{new}

first
{new}

Figure IV.7: Example specification with invocations

one element. We can observe the selection of the correct list (by the matching of
the common ElementType node) and the correct integration of the new element
into the list structure (by assigning the necessary pointers). The right hand side
rule displays the same operation for an empty FIFO queue.

We can observe several properties in this example: Each rule handles one specific
scenario. Each additional ordering scheme would add (at least) two new rules
and the introduction of further crosscutting features (e.g., upper bounds for
lists) would multiply the total number of rules. Furthermore, each rule is global
in handling all aspects of a scenario. Both rules perform the selection of the
correct list as well as the integration of the element according to the ordering
scheme of the list. Conversely, the manipulation of a list’s ordering structure is
embedded in a multitude of rules, impeding the integration of changes to this
structure. Finally, the rules are already rather complex and the introduction of
additional features would rapidly increase this complexity.

IV.6. Control in DMM—The Mechanism of Rule Invocation 85

In contrast, Fig. IV.7 presents the same example using rule invocations. Here,
we see three rules. The left hand side rule presents the rule for the list manager.
Its sole responsibility is the selection of the correct list. It then invokes the
rule enqueue on the list it selected. How exactly this enqueuing works is of no
concern for the listmanager rule. The two rules on the right hand side of the
figure specify different scenarios for the execution of the enqueue invocation.
The upper rule specifies the enqueuing in an empty FIFO list, the lower the
enqueuing in an empty LIFO list. Thus, different scenarios can be handled by
different rules with the invoker being unaffected by the multitude of detailed
differences.

We can observe several properties of DMM rules in this small example:

u The rules become individually simpler to understand as each rule only
has one responsibility and carries out the necessary manipulations for its
aspect. The rules thus employ less elements, making them easier to grasp.

u The invocation mechanism is easily understandable from an OO point of
view as it closely resembles the way an OO program would structure its
behavior.

u The notation of the control structure smoothly integrates in the rule pre-
sentation.

u Each rule is concerned only with a single aspect. Internals of the pointer
structure of the lists need not be known in the listmanager rule. The rule
set becomes more maintainable by this separation of concerns.

u Adding new list ordering schemes will not increase the number of rules
exponentially but will only require the addition of few rules. No other
rules must be changed for this introduction.

Technically, the example raises some questions which we will answer in the
following subsections:

. How do invocations embed into a rule? Can there be multiple invocations
per rule? Can information be passed as parameters?
All of these questions concern the invocation notation. Subsection IV.6.1
provides the details of embedding invocations in DMM rules.

. How do invocations apply? Which rule exactly is applied to answer an
invocation? The application mechanism does not directly call a deter-
mined rule but issues a request for the application of a rule described by
the elements of the invocation. How this request is issued is the topic
of Subsection IV.6.2, how rules specify which requests they can answer
is described in their signature (Subsection IV.6.3), and how a invocation
request and a signature are matched is described in Subsection IV.6.4.

. How do invocations interact with the usual (non-deterministic) rule appli-
cation?
This question goes right to the heart of the invocation mechanism as
invocations allow for a combination of the loose control of rule-based sys-
tems with the tight control of invocations as known from OO. The (short)
answer to this question is that all DMM rules get partitioned into two
groups: Small-step rules which can only apply when they are invoked

86 Chapter IV. Graph Transformations

lman.resort()

lman:ListManager

new:List

elem:Element

:ElementType type
type

2: enqueue(elem)

current:List

list1: dequeue(elem)

Figure IV.8: Example for the use of sequence numbers

by another rule and big-step rules which can apply non-deterministically.
Subsection IV.6.5 provides details on these rule types.

. The example shows how graph manipulations can be distributed into other
rules, can matching conditions also be distributed in this way?
Yes, they can. There is a third kind of rule called the precondition rule,
which allows for influencing an invoking rule’s match. Subsection IV.6.6
provides details on precondition rules.

. But how does it all work together?
In Subsection IV.6.7 we provide the complete formalization of the invoca-
tion notion for Graph Transformations and its impact on the applicability
of rules.

IV.6.1 Rule Invocation

Invocations of rules are the main control mechanism of DMM. The basic idea
is that a rule can specify one or more invocations. If a rule specifies such
invocations it influences the set of succeeding rules in a derivation sequence,
i.e., the invoked rules must apply (directly) after the invoking rule has been
applied.

The visual representation of an invocation is an arrow pointing to a node (its
so called target node). The label at the arrow contains the name of the rule
to be invoked and parameters notated in parenthesis. If multiple invocations
are used in a single rule, a sequence between these invocations can be fixed
using sequence numbers. This visualization resembles the notation used in UML
Communication diagrams for messages (cf. [Obj04], p.561)7.

Figure IV.8 presents an example for the use of rule invocations with sequence
numbers. Here, a Listmanager re-sorts an Element after it changed its type. The
rule invokes two other rules in a determined sequence to perform its task. First,
the Element is dequeued from its current List, then it is enqueued in the new

7A difference is that in Communication Diagrams messages always need to run along an
association while rule invocations may freely be attached to their target node.

IV.6. Control in DMM—The Mechanism of Rule Invocation 87

List. The listmanager rule only coordinates this behavior by using invocations
with sequence numbers.

Formally, invocations extend the right hand side of a rule

Definition 18 (Rule with Invocation)
A rule with Invocations rInvoc consists of a rule r : L → R and an invocation

relation inv = {〈seq, name, args〉 with seq ∈ IN, name ∈ Λ \ {⊥}, args ∈ 2NR \
{}}.

The three elements of an invocation represent sequence number, rule name, and
parameters, respectively:

Sequence Number A sequence number indicates the (partial) order of invoca-
tions if multiple invocations are used in a rule. A value of 0 indicates a
not explicitly specified sequence number. Sequence numbers define the
way the DMM system must process rule invocations. Invocations with
a sequence number of 0 can in fact be processed in arbitrary order. A
modeler should make sure that no interdependencies exist between rules
invoked without explicit order. An executing system may place these rules
anywhere in the execution order and is not bound to try all possibilities
(i.e., ordering of these rules is arbitrary but not non-deterministic).

Rule Name The rule to be invoked is identified by its signature, the main part
of which is its name.

Parameters The remaining part of the invocation is formed by a set of nodes of
R. These nodes represent the information to be passed as parameters to
the invoked rule. The first parameter always represents the target node
of the invocation. There is always a target node for an invocation. While
the sequence number restricts the order of invoked rules, the parameters
and the target node restrict the possible matchings of the invoked rule in
the host graph by fixing its matching for some elements.

IV.6.2 Applying Invocations

A special case worth pointing out is that invocations can be used to construct
recursive loops. This allows processing unbounded sets of elements in a conve-
nient way. An example is provided in Fig. IV.9. These rules specify the reversal
of a list ordering. It starts with the rule for list.reverse which triggers the process
and takes care of changing the first to the last element. To actually reverse the
pointers between all elements, it calls the rule element.reverse. The right hand
side rules in the figure specify this operation as a recursive loop. The upper
rule specifies the processing of an element which is not yet the last in the list.
It re-attaches the necessary pointers and calls itself recursively. If a situation
is encountered in which there is no more next element (i.e., the old last element
is reached) the lower rule applies and forms the recursion end as it invokes no
other rules.

Several technical details need to be clarified to understand the mechanism of
invocations correctly:

88 Chapter IV. Graph Transformations

list.reverse()

list:List :Element

first
{destroyed}

last

{new}

reverse()

element.reverse()

element:

Element
:Element

next
{destroyed}

reverse()
next

{new}

element.reverse()

list:List
element:

Element

first

{new}

last

{destroyed}

Figure IV.9: Example for rule invocations

u Invocations do apply after the manipulations specified in the rule’s body
itself. Thus, invoked rules extend the effects of the invoking rule.

u ”Deep“ invocations have precedence, i.e., if a rule invokes two other rules
in sequence and the first of these rules also specifies an invocation, this
invocation is processed first before continuing the sequence of the originally
invoking rule.

u For every invocation there always must be a fulfilling rule application. If
an invocation cannot be fulfilled by any rule of the system, the invocation
is said to be failed. This results in the invoking rule being considered as
failed, too. Transitively, a whole invocation hierarchy can be considered
to be failed. Thus, even though a rule itself might have been applied
successfully to the host graph, it might still fail due to the failure of its
invocations.

IV.6.3 The Signature of a Rule

An invocation in a rule is a request for some other rule to apply. Symmetrically,
rules need to be extended with information about the invocations they will
answer to. This information is called a rule’s signature. The signature of a rule
consists of four parts:

Context Node The context node is the first element of a rule’s signature. Tech-
nically, the context node is only one parameter for possible invocations of
a rule. From an object-oriented point of view, one can also say that the
context node (or rather its type) owns the behavior expressed in the rule8.
The context node thus has a special relevance. Technically, the context
node is referred to by name only (cf. Fig. IV.9), however, keeping the
object-oriented interpretation in mind, we recommend choosing the name
of the context node in a way as to easily allow for determining its type (as
demonstrated in Fig. IV.9).

8A point of view which will be emphasized if these rules are employed in combination with
a semantic domain meta model, see Chapter V.

IV.6. Control in DMM—The Mechanism of Rule Invocation 89

lman.doSomething(e:Element)*

lman:ListManager e:Element

l:List

1: process(e,f)

Rule Signature: context node name "." rule name "(" (parametername ":" type ",")* ")" [big-step indicator]

Invocation: [sequence number ":"] rule name "(" (parameter name ",")* ")"

f:Element
nextContext node for

rule doSomething

Target node for

Invocation 1

Signature Parameter and

Invocation Parameter for

Invocation 1

Invocation Parameter for

Invocation 1

Figure IV.10: Illustration of the differences between signature and invocation
in a rule

Rule Name The rule’s name is the second part of the rule’s signature and the
only technical constraint posed to it is that in general it must not begin
with the sequence“P “ (as this sequence identifies premise rules).

Parameters The list of Parameters is the third part of the rule’s interface. Each
Parameter is specified as name, colon, type and needs to appear as a node
in the left hand side of the rule. If the rule is invoked, the nodes passed as
parameters already have fixed matches in the host graph. Parameters in
the rule’s signature are separated by commas, the whole set is enclosed in
parentheses. Empty parenthesis ”()“ signify the empty list of parameters.

Big-Step indicator The last part of the rule’s signature may be formed by a ”*“
which signifies that the rule belongs to the group of big-step rules (see
below).

It is especially important to note that there is no constraint that a rule’s signa-
ture must be unique in the rule set. In fact multiple rules with identical signa-
tures are used to handle different variants of a general behavior. In Fig. IV.9,
e.g., the general behavior is the reversing of an element’s pointers and the two
rules element.reverse (with identical signature) handle different cases of this gen-
eral behavior.

While signatures look rather similar in their structure to invocations, they form a
strictly different concept. Fig. IV.10 illustrates both concepts in comparison for
an example rule. The signature of the rule provides information about the rule
itself. The invocation specifies information about another rule which should be
applied next. Parameters of the signature are (in programming language terms)
formal parameters while the parameters passed with an invocation are actual
parameters. As both kinds of parameters use names to reference the relevant
nodes, such nodes must not be anonymous.

90 Chapter IV. Graph Transformations

IV.6.4 Invocation Fulfillment

We have now introduced both the syntactic structure of invocations (requesting
a rule application) and signatures (offering information about a rule). We now
define when a signature matches a given invocation. Three conditions must be
satisfied for a rule to fulfill a given invocation:

u The name of the rule and the name given in the invocation must be iden-
tical.

u All parameters (including the target/context node) must match. A rule’s
parameter matches an invocation’s parameter if the former’s type is equal
to or a subtype of the latter’s type. For instance, an invocation drive on a
node of type Vehicle can be fulfilled by a rule van.drive, if Van is a subtype
of Vehicle. The order of parameters must be retained between invocation
and signature.

u The rule’s left hand side must match taking the passed parameters into
account.

The application of a rule in the above enumerated circumstances fulfills an
invocation. A rule application can fulfill at most one invocation.

IV.6.5 Small-Step and Big-Step Rules

The notion of invocation fulfillment raises the question, whether a rule must
fulfill an invocation (i.e., can only be applied if it is invoked) or whether it
retains the original rule-notion of applying whenever its left hand side matches.
In DMM this distinction is made for every rule. A rule can either be a small-step
rule or a big-step rule. The distinction between both rule kinds is made visible
by big-step rules having a ”*“ at the end of their signature.

Small-step rules are rules which can only be applied to the host graph if another
rule invokes them. Thus, small step rules are much like procedure definitions
which supply functionality to a main program. Small-step rules may themselves
invoke other rules. This kind of rule usually forms the bulk of a DMM rule set.

Big-step rules are rules which can be applied to the host graph without fulfilling
an invocation. Thus, big-step rules behave like usual graph transformation
rules. The application of a big step rule may trigger a whole hierarchy of rule
applications interconnected by invocations. Since each of these rule applications
may fail the original big step rule, the application of a big step rule is not
considered to be successful until all invocations have been fulfilled. Big-step
rules thus begin a kind of transaction process. To avoid unwanted interferences,
only one such transaction may be active at any time in a DMM system. A
big-step rule can thus not match until the previously applied big-step rule (and
all of its invocations) have finished executing.

Effectively, the execution of a Graph Transformation System with Invocations
thus comprises alternating phases: Either no invocations are open, then the set
of big-step rules can freely match in the graph, or an invocation has been issued
and is not yet fulfilled, then the next (small-step) rule application must fulfill

IV.6. Control in DMM—The Mechanism of Rule Invocation 91

ndlist.create()*

ndlist:NDList
e:Element

{new}

enqueue(e)

ndlist.remove()*

ndlist:NDList e:Element

1:dequeue(e) 2:destroy()

Figure IV.11: DMM big-step rules for the NDList example

s0

:NDList

s1

:NDList

e1:Element

s2

:NDList

e1:Element

s3

:NDList

e1:Element

s4

:NDList

e1:Element

s5

:NDList

e1:Element

e2:Element

s6

:NDList

e1:Element

e2:Element

s8

s9

:NDList

e1:Element

e2:Element

:NDList

e1:Element

e2:Element

s10

s11

:NDList

e1:Element

e2:Element

:NDList

e1:Element

e2:Element

ndlist.
create()*

ndlist.
enqueue(E1)

ndlist.
remove()*

ndlist.
create()*

ndlist.
enqueue(E2)

ndlist.
dequeue(e1)

ndlist.
create()*

ndlist.
remove()*

ndlist.
remove()*

e1.
destroy()

ndlist.
dequeue(e2)

ndlist.
dequeue(e1)

...

...

...

Figure IV.12: Illustration of derivation sequences of the NDlist example

this invocation. Note, however, that this fulfillment might also include non-
deterministic choices as different rules may be able to fulfill the invocation and
the occurrence of the rule in the host graph may not be completely determined
by the passed parameters.

Figures IV.11 and IV.12 illustrate this effect. Fig. IV.11 provides two big-step
rules for a non-deterministic list (NDList) which creates and destroys its elements
randomly. Both of these behaviors can occur spontaneously, thus these are
big-step rules. The small-step rules enqueue, dequeue, and destroy are invoked
by the big-step rules. These rules are omitted here as their content is trivial.
Fig. IV.12 illustrates possible derivation sequences of this specification. Starting
with an empty ndlist (State s0), only the rule ndlist.create()* can apply. States
without open invocations are shaded grey. In state s1 only the application
of ndlist.enqueue() is possible since this rule has been invoked. In state s2
there is now the choice, whether the buffer will destroy the created element e1
or create yet another element. In state s6 this choice is extended further as
ndlist.destroy()* may match on either element (e1 or e2). Note how big-step
rules only apply to grey states (no open invocations) and small-step rules only
to white states (open invocation).

92 Chapter IV. Graph Transformations

stack.delete()

stack:Stack

{destroyed}

P_isEmpty()

stack.P_isEmpty()

Stack:Stack :Element

top

stack.P_isEmpty()

Stack:Stack :Bottom

top

Figure IV.13: Example for the use of premise rules

IV.6.6 Premise Rules

Invocations are usually carried out after the application of the invoking rule,
thus extending the invoking rule’s effects on the host graph. To allow for a
similar decomposition of a rule’s application conditions, the concept or premise
rules is introduced. Invoking a premise rule extends the left hand side of the
invoking rule. To distinguish premise rules from usual rules, their name always
starts with the prefix ”P “. We assume these labels to form the set ΛP ⊆ Λ.

The advantages of using premise rules are similar to the advantages of small-step
rules: On the one hand they allow for less complex rules (by splitting complex
left hand sides) and less complex rule sets (variations of a scenario can elegantly
be covered by having different premise rules cover the different cases). On the
other hand, the use of premises allows for re-use and easy maintenance in the
OO sense. If a number of rules depends on a certain fact (e.g., different elements
need to check for the availability of a resource) this fact can be encoded in a
premise rule which all of the rules invoke. If one needs to change the formulation
of this condition later on (e.g., there are additional constraints to check) one
can integrate this change by adapting only the premise rule instead of adapting
all rules relying on this fact.

As an example for the use of premise rules regard Fig. IV.13. Here, the rule
stack.destroy depends on the premise rule P isEmpty. Two variants of this rule
exist: Either the stack contains no element at all or a dummy element is used to
indicate an empty stack. Two rules for stack.P isEmpty handle these different
situations. Thus a stack may be destroyed in both of these situations.

Technically, premise rules are treated rather differently from other rule invo-
cations. Since they influence the matching of the invoking rule, they have to
matched together with it. To achieve this effect, premise rules apply as separate
rules (i.e., they do not produce their own steps in a derivation sequence) but they
are integrated in the matching of the invoking rule. This entails some restric-
tions on premise rules: Premise rules are always identity rules, i.e., L = R and
they may not invoke small-step rules. They may, however, invoke other premise
rules. NACS may be used in premise rules, but no UQS. In the invoking rule,
however, premise rule invocations may be targeted at UQS nodes.

IV.6. Control in DMM—The Mechanism of Rule Invocation 93

stack.delete()

stack:Stack

{destroyed}
:Element

top

stack.delete()

stack:Stack

{destroyed}
:Bottom

top

Figure IV.14: Amalgamated rules from the example in Fig. IV.13

To achieve the desired effect, we use the technique of rule amalgamation (cf.
[Tae96]) to combine a premise rule with its invoking rule. As with the unfolding
of UQS, the amalgamation process takes a complex specification (a rule with the
invocation of premise rules and several premise rules to fulfill this invocation)
as its input and produces a set of plain GT rules in which the contents of the
rules have been integrated. The results of performing the amalgamation for the
stack.destroy example are presented in Fig. IV.14. We can see that the premise
invocation has been resolved by creating two different versions of stack.destroy
which integrate the information of the different premise rules respectively.

IV.6.7 Formalization of DMM Systems

To formally capture the mechanisms of rule invocation a number of previous
definitions must be extended. The most important basic distinction is that
between rule and rule schema. We have already indicated that both the concept
of UQS and the concept of premise rules go beyond the capabilities of a rule
and must be handled by a pre-processing step. Thus, what we colloquially call
a DMM rule is technically a rule schema which visually combines a number of
overlapping but technically distinct specification parts of a rule schema.

Fig. IV.15 illustrates this idea. On top of the figure we see a DMM rule schema in
the previously introduced visual notation. This example rule schema combines
all of DMM’s features. The five rule graphs below this combined representations
show how the visually distinct elements of a.foo() indicated their membership
to different parts of the specification. The most important part of the rule
schema is its core rule (given separately for the left and right hand side). We
can explicitly see the deletion of node e:E and the creation of node :F (both with
their respective edges). We can also see that the invocations of the rule schema
are an information which belongs to the right hand side of the core rule. The
Universally Quantified Structures (node :B and its adjacent edges) are defined
as a separate rule which contains and extends the core rule. As UQSs may
be deleted, UQS extensions also have both a left and a right hand side. Note,
that the premise rule invocation is formally an information belonging to the left
hand side of a rule (in this example the left hand side of the UQS extension
of the core rule). Finally, the NAC is an extension of the left hand side of the
core rule. No right hand side is required here as NAC elements may never be
matched, let alone manipulated.

From the definitions in Sect. IV.3 we know how the core rule and NACs are
matched. As of yet unformalized is the effect that UQS, premise, and small-
step invocations have on the matching of a rule and the ensuing derivation

94 Chapter IV. Graph Transformations

a.foo() [Rule Schema]

a:A

e:E
{destroyed}

:B

d:D {destroyed}

type

:F
{new}

{new}

P_hasC()

1:bar(f)

:G

a.foo() [Core Rule L]

a:A

e:Ed:D

a.foo() [Core Rule R]

a:A

d:D

:F

1:bar(f)

a.foo() [UQS L]

a:A

e:E

:B

d:D

type

P_hasC()

a.foo() [UQS R]

a:A :B

d:D

type

:F

a.foo() [NAC]

a:A

e:E
d:D :G

Figure IV.15: Illustration of the different parts of a rule schema

IV.6. Control in DMM—The Mechanism of Rule Invocation 95

sequences. In the following definitions we will provide this information in 3
distinct steps:

u UQS and premise rules are unfolded, i.e. a rule schema is processed to
yield a set of final DMM rules (Definitions 19 ff.).

u The application of a single final rule has to take the core rule, NACs, and
invocations into account (see Definitions 27 ff.).

u The formalization of a DMM system finally ensures that the control en-
coded in invocations is properly respected in a derivation sequence (Defi-
nitions 31 ff).

The notion of a rule is extended with structures to capture additional infor-
mation about the rule itself (its name and parameters), its NACs, and the
invocations which are specified in the rule.

Definition 19 (DMM Rule with Invocations (final rule))
A DMM rule with invocation is a six-tuple:

rDMMInv= {〈L,R,NAC, inv, Params, name〉 with
L, R ∈ GDMMR usual rule graphs,
NAC ⊆ GDMMR a set of negative application conditions,
inv an invocation relation as introduced in Def.18,
Params ⊆ NL,
∀p ∈ (Params ∪ inv.args 9}) : lN (p) 6= •,
name ∈ Λ \ ⊥}

The additional constraint on the labels of nodes used as parameters (formal or
actual) is necessary to allow for a textual representation of these nodes either
in the head of the rule or along the invocation arrow. The name of a rule must
not be empty.

Note that this definition does not yet support UQS or premise rules as these
are captured in the notion of rule schema only:

Definition 20 (DMM Rule Schema with Premises and UQS)
A DMM rule schema consists of a core DMM rule core ∈ rDMMInv, an in-
vocation relation pre, and a set of universally quantified structures UQS ⊆
rDMMInv:

RS = 〈core,pre, UQS〉 with
core ∈ rDMMInv, UQS ⊆ rDMMInv, pre an invocation relation
pre ⊆ {0} × ΛP × 2core.L.N ,
∀u ∈ UQS: core.L ⊆G u.L, core.R ⊆G u.R, 10

u.name = ⊥, u.Params = u.NAC = {}

Premise rule invocations must have special names (those starting with“P “)
and must not carry a sequence number. A UQS is a complete rule which always

9For the following definitions we use the symbol ”.“ to navigate through hierarchical struc-
tures, i.e., a.b.c is the expression for a c which is part of b, which in turn is part of a.

10⊆G denoting the subgraph relation

96 Chapter IV. Graph Transformations

contains the core rule. The ”truly“ universally quantified structures (UQSt),
i.e., the parts can thus be obtained by

⋃
u∈UQS u\ core. Note that the elements

of UQSt are not graphs anymore as edges may be left dangling. UQS are only
extensions of a core rule, thus their signatures are empty. A UQS rule must
not contain NACs, but it may contain invocations (cf. Fig. IV.15 in which the
premise rule P hasC() is part of the UQS rule for node B).

DMM Rule schema are unfolded to final DMM Rules in two steps: The first
unfolding resolves the universally quantified structures (UQS) to simple nodes,
edges and NACs. The second unfolding glues the premise rules with the core
rules.

Applying both of these unfoldings yields final DMM rules (including only NACS
and invocations). Fig. IV.16 illustrates this process: The rule schema on top of
the figure contains universally quantified elements, an invocation of a premise
rule, and an invocation of a small-step rule. The first unfolding yields a number
of rules without universally quantified elements, i.e., UQS B is unfolded into two
distinct elements here. The second unfolding glues the premise rule, yielding a
final DMM rule. If multiple premise rules meet the requirements of the invoca-
tions, multiple rules may emerge from this unfolding. Invocations of small-step
rules are not affected by the unfoldings.

An auxiliary definition is that of a rule embedding. A rule embedding basically
means that all structures of one rule (sub) (including NACS and invocations)
can be found in another rule (super) under consistent renaming of nodes.

Definition 21 (Rule Embedding)
An embeddingof rule sub in rule super is an elp-morphism emb
emb : (sub.L ∪ sub.R) → (super.L ∪ super.R) with

sub.L|emb ⊆G super.L, 11

sub.R|emb ⊆G super.R
sub.NAC|emb ⊆ super.NAC
sub.inv|emb ⊆ super.inv

A rule schema may contain multiple universally quantified structures and each
of these can be expanded to a number of rules which each contain a different
number of copies of the UQS. The concept of ”contain a copy of“ can now be
captured using the notion of rule embedding. In an algebraic definition of Graph
Transformations, this construction would amount to a co-limes.

Additionally to the positive (i.e., existential) copies of the UQS, a limiting NAC
must be created in the unfolding to prevent partial matches. These two concepts
are captured in the notion of positive and negative expansion respectively. Note
that the definition requires a non-empty set of positive expansions, i.e., each
universally quantified structure implies existential quantification.

Definition 22 (UQS expansion)
The positive expansion of a (universally quantified) rule u n times in the
context of a rule r yields a rule expp(u, r, n) with

11with |emb renaming all nodes according to emb

IV.6. Control in DMM—The Mechanism of Rule Invocation 97

:B :A

P_hasC() foo()

Rule Schema

:B :A

P_hasC()
foo()

:B

P_hasC()

:B

... ...

:B :A

foo()

Rule

:B

:B

unfolding1

unfolding2

... ...

:C

:C

Figure IV.16: Example for the unfolding of a DMM rule schema

98 Chapter IV. Graph Transformations

∃ a finite set of embeddings copy with
∀e ∈ copy :

e is the identity function for all elements of r.L ∪ r.R and
6 ∃f ∈ copy withf 6= e and

∃n ∈ UQSt.N : e(n) = f(n)
|copy| = n, there are exactly n copies of the UQS and
expp(u, r, n) =

⋃
e∈copy e(u) no other elements are in expp

Note that the different embeddings of the set copy form disjoint copies in the
expanded rule.

The negative expansion of a (universally quantified) rule u in the context of a
rule r is a rule

expn(u, r) with
∃ elp-morphism ncopy : (u.L ∪ u.R) → (expn.NAC.L ∪ expn.NAC.R) with

(u, expn.NAC, ncopy) is an embedding,
ncopy is the identity function for all graph elements of r.L ∪ r.R and
expn(u, r) = r ∪ ncopy(u)

Both types of extensions define a rule which contains the core rule part of
the UQS (identity function) and a number of disjoint copies of the true UQS
structures as either parts of the rule itself (positive expansion) or its NACs
(negative expansion). Due to the identical core part, both extensions can be
combined by a simple union.

Combining a positive and negative expansion yields a single rule with n copies
of the UQS and an additional copy of the UQS as a NAC. Such a rule matches if
the universally quantified structure appears exactly n times in the host graph.

Definition 23 (Unfolding 1)
An unfolding1 uf1 ⊆ Sr × Sr × IN+ is a relation between rule schemas and for
〈S, S′, i〉 ∈ uf1 the following conditions hold:

S′.r =
⋃

x∈S.UQS (expp (x, S.r, i) ∪ expn (x, S.r))
S′.UQS = {}

The unfolding1 expands all universally quantified structures. The result is a
rule schema in which all universally quantified structures have been resolved to
existentially quantified structures and NACs (cf. the example in Fig. IV.5). As
a rule schema may specify multiple UQS for a rule, the outer union combines
all of these separate expansions. Using the parameter i, an unlimited number
of unfoldings can be constructed from a single rule schema with UQS.

The unfolding of premise rules works analogously to the unfolding of UQS: We
first define the expansion of a single premise rule and use this definition to form
the unfolding of all premise rules of a schema.

Definition 24 (Premise expansion)
The expansion of a rule schema S by a premise rule rpre, invoked by ipre is the
rule

IV.6. Control in DMM—The Mechanism of Rule Invocation 99

exppre(S, ipre, rpre) = (L′, R′, NAC ′, inv′, Params′, name′) with
matches(ipre, rpre) an invocation matching as defined below
L′ = S.L ∪ rpre.L|matches

R′ = S.R ∪ rpre.R|matches

NAC ′ = S.NAC ∪ rpre.NAC|matches

inv′ = (S.inv \ ipre) ∪ rpre.inv|matches

Params′ = S.params, name′ = S.name

A premise expansion glues the invoked premise rule rpre with the invoking rule
r. All structures of the premise rule are merged with the structures of the in-
voking rule with the passed parameters forming the interface. The union is thus
performed under the parameter matching found in matches. Since a premise
rule may contain invocations of premise rules itself, these will be transferred
to the expanded rule. We use exp∗pre to denote the transitive application of
exppre to the point of premise-freeness.

We need to define the notion of matching an invocation to a rule:

Definition 25 (Invocation-Rule matching)
An invocation invoc and a rule r are said to match under the following conditions
∃matches : invoc.args → rule.params a bijective function
∀〈a, p〉 ∈ matches :

a.name = p.name
a.type ∈ clanI(p.type)

and invoc.name = rule.name

Invocations can thus match to rules which work on subtypes of their defined
parameters.

Unlike the unfolding of UQS which are local to the rule schema, an unfolding
of premise rules has to happen in relation to a given rule set. This rule set may
yield one or more possible rules matching the premise invocation to unfold.

Definition 26 (Unfolding 2)
The unfolding uf2 ⊆ Sr × rDMMFinal × 2rDMMF inal is a relation and for
〈S, fr, Rules〉 ∈ uf2 the following conditions hold:

fr =
⋃

x∈S.pre

(⋃
y∈Rules (exp ∗pre (S, x, y))

)
The second unfolding produces final DMM rules, i.e., rules which no longer
contain any premise invocations. Again, a union over all premise expansions is
possible due to the preserving of the invoking rule in each expansion.

Applying unfolding1 and unfolding2 to a rule schema thus yields an (possibly
unlimited) set of final DMM rules.

While premise rule invocations and UQS were dealt with in this way, the invo-
cation of small-step rules influences the way a rule is applied:

Definition 27 (Rule Application under Invocation)
The notion of rule application has to be extended to handle the invocation
mechanism. A rule application is now a quadruple 〈r, m, caller, level〉 of a final

100 Chapter IV. Graph Transformations

rule r, a matching m, and two natural numbers caller and level. The former
indicates the number of the rule application which triggered the invocation
fulfilled by this rule application (0 for big-step rules). The latter is used to
distinguish between the levels of nested invocations.

Definition 28 (Concrete Invocation)
A concrete invocation ci = 〈inv, d〉 is a tuple of an invocation and a derivation
d with inv ∈ d.ra.rule.inv.

A concrete invocation can be considered as the instance of the invocation spec-
ification in a rule. Once a rule is applied, its invocations are concrete and need
to be fulfilled by other rule applications. For the interval between the creation
of a concrete invocation and its fulfillment we call a concrete invocation an open
invocation. An invocation is said to be fulfilled if a later rule application in the
derivation sequence applies a small-step rule which conforms to the invocations,
i.e., which has the correct name and utilizes the elements passed as parameters
at invocation time.

Definition 29 (Fulfillment of Invocations)
Fulfillment is a relation, fulfills : 〈ci, d〉 between a concrete invocation ci and a
derivation d with the following restrictions:
d.ra.caller = ci.ra the caller of the rule application is the issuer of the concrete
invocation
matches(ci.inv, d.ra.r) the invocation and the rule do match
ci.ra.level = d.ra.level − 1 the fulfillment is always a nesting level below the
invocation.

Definition 30 (Open invocations)
For any particular derivation state Gi in a derivation sequence there is a set
of open invocations OI defined as OI(Gi) = {concrete invocation x|x.ra =
raj , 1 ≤ j < i :6 ∃rak, j < k < i : fulfills(rak, x)}

Moving from a single rule application to a complete systems, we introduce the
concept of big-step rules (BRules). This subset of the rules has to obey special
constraints in that it can only be applied if no invocations are currently open:

Definition 31 (DMM System)
A DMM System is defined by two sets of final rules BRules and SRules and a
start graph G0 :
SDMM = 〈BRules, SRules,G0〉
It describes derivation sequences {G0

ra1=⇒ G1
ra2=⇒ G2, . . . , Gn−1

ran=⇒ Gn} with

u ∀1 ≤ i ≤ n : rai.rule ∈ BRules ∪ SRules
Big-step and small-step rules may be applied in the system.

u ∀Gi
x=⇒ Gi+1 with x.rule ∈ BRules : OI(Gi) = {}

Big-step rules may only be applied if there are no open invocations.

u ∀Gi
y

=⇒Gi+1 with y.rule ∈ SRules :
∃z ∈ OI(Gi) : fulfills(z, y)
and ∀u with Gj

z=⇒ Gk
∗=⇒ Gl

u=⇒ Gm
∗=⇒ Gi :

IV.7. Discussion 101

(u.ra.level < z.ra.level) or
(u.ra.level = z.ra.level and u.ra.caller = z.ra.caller)

The application of small-step rules is only possible if they have been pre-
viously invoked. All derivations between an invocation and its fulfillment
must either process other rules invoked by the same derivation or lower
level rules. This constraint ensures the stack-like behavior of the open
invocations.

u ∀Gi
v=⇒ Gi + 1withfulfills(ci, v) and ci.inv.seq > 0 : 6 ∃w ∈ OI(Gi) :

(w.ra = ci.ra) and (0 < w.inv.seq < ci.inv.seq)
Rules may not be applied unless invocations stemming from the same rule
application with a lower (positive) sequence number have been processed
first.

u OI(Gn) = {}
The last state in a derivation must be free of open invocations.

Note that the last constraint forbids the existence of derivation sequences which
are stuck due to an unresolved invocation. A DMM system only contains valid
sequences in which no invocations are open anymore. This does not imply
termination as the application of big-step rules may still be possible in Gn.

IV.7 Discussion

This chapter provides an overview of existing graph and graph trans-
formation notions. Our usage of these notions for DMM was guided by
criteria derived from the general requirements of the DMM approach.
We obtained a formalism which provides convenient means to manipu-
late graphs representing object structures. The rules of this approach
can be represented using symbols from UML Communication Diagrams.
The main control concept of DMM rules is the innovative mechanism of
rule invocations. It combines in a unique way the loose control of rules
(ideal for expressing non-determinism and for easy extensibility) and
the tight control of invocations (ideal for distributing complex manipu-
lations over different rules and for reuse of existing specifications). The
extensive application example in Chapter VI proves that these features
work in the way we intend them to and that it is possible to formulate
concise rules and rule sets with DMM rules.

A remaining open point is the analyzability of the approach as one motivation
to base the operational part of DMM on an established formalism was the re-use
of existing knowledge. There are a number of analysis techniques to determine
properties of a set of Graph Transformations. Direct application of these tech-
niques is difficult, though, as the invocation mechanisms are not taken into
account by these techniques. Termination analysis [Plu98, HKT02, EEdL+05]
is one such technique which can be applied to prove that a given GT system

102 Chapter IV. Graph Transformations

yields only finite derivation sequences. Termination is not a generally required
property for DMM specifications, though. As models may legally express non-
terminating behavior, the semantics must be able to reflect this. One can,
however, regard each big-step rule and its transitively invoked rules as a special
kind of forward closure (see [Mül96]) and look for monotonicity criteria to argue
for the termination of each big-step. Analysis of conflicting pairs as carried out
by the AGG tool set [TB94, LB93] is also rather meaningless for DMM rules
as invocations impose dependencies between the rules which are not taken into
account by AGG. Confluence [HKT02] is not an issue for semantic specifications
as non-determinism is a feature here and not a bug.

It turns out that in fact all usually gained analysis results for graph transforma-
tion specification have little or no relevance in the DMM context. We do believe,
however, that practice will show which properties of a DMM specification are
desirable. Analysis methodologies can then be devised to answer such needs.
This is a topic of future work along the general technique of DMM.

Chapter V

The Architecture of Dynamic
Meta Modeling

The outline of Dynamic Meta Modeling as introduced in Sect. II.4 is displayed
in Fig. V.1. Having introduced the technical means to express the seman-
tic mapping (Meta Relations, Chapter III) and operational rules (DMM rules,
Chapter IV) we focus on the architecture of the DMM approach and its detailed
construction in this chapter.

Section V.1 targets the static semantics part of DMM and explains the motiva-
tions for and benefits of constructing the semantic domain meta model and its
accompanying Meta Relations. Section V.2 turns to the dynamic component of
the semantics and details its connections to the static semantics (i.e., the small
and as of yet unlabeled connection between the static and dynamic semantics
package in Fig. V.1). The effect of combining these techniques is made visible
in Sect. V.3 which demonstrates how DMM specifications serve to determine a
concrete model’s meaning in terms of a Labeled Transition System.

Additionally, a modularity concept for DMM specifications is discussed and
introduced in Sect. V.4. This modularity concept allows for maintenance and
extension of existing specifications.

The concluding Section V.5 reviews the concepts of DMM and evaluates how
DMM fulfills the requirements posed in Subsect. II.2.4.

Throughout this chapter we use a small excerpt of the UML Activity Diagrams
case study presented in Chapter VI. The example illustrates the way the differ-
ent sections in this chapter fill the abstract parts in Fig. V.1 with the concrete
concepts of DMM. We already know the UML’s syntax structure thus Fig. V.2
illustrates the starting point for the semantics definition. We can see that the
model (lower left corner) under consideration consists (partially) of an ActionN-
ode called ’do something‘ and an outgoing ControlFlow. The fragment of the
UML meta model defining these elements is show in the top left corner. Here,
we can see the concepts of Node, ActionNode, and Controlflow being defined
together with their connections and a restricting multiplicity.

103

104 Chapter V. The Architecture of Dynamic Meta Modeling

Semantics Definition

Syntax Definition

Meaning «LTS»

States

Expression

Model elements

Dynamic Semantics

conforms to

Static Semantics

conforms to

«Pairs»

«Meta Model»
«DMM Rules»

L

M

semantic mapping

«Meta Relations» «Meta Model»

Figure V.1: Overview of the DMM architecture

L

M

Syntax Definition

«Meta Model»

Expression

Semantics Definition

Meaning

name=“do something“

:ActionNode

:ControlFlow

source

ControlFlowname:String

ActionNode

Node

1

*

source

Figure V.2: Example expression in UML

V.1. Expressing Static Semantics in DMM 105

L
Semantics Definition

«DMM»

Static Semantics

«SD meta model»

Syntax Definition

«Meta Model»

name:String

ActionNode

ActionExecution

Action

1

*

specification

A2AE

1
*

Arep
1

1

Figure V.3: Example for the expression of static semantics in DMM

V.1 Expressing Static Semantics in DMM

DMM makes use of denotational meta modeling (cf. Subsect. II.3.2). For the
definition of a Visual Modeling Language’s static semantics we thus formulate
a Semantic Domain Meta Model (SD meta model) and a precise semantic re-
lation between the syntactic and the semantic elements. Geisler, Klar, and
Ponds use the terminology of intensional elements for elements of the syntax
and extensional elements for the semantic concepts [GKP98]. We employ this
terminology in the following discussions. In the DMM approach we use Meta
Relations as introduced in Chapter III to express the mapping between inten-
sional and extensional elements. Employing the denotational meta modeling
approach serves several purposes:

Definition of Semantic Concepts Expressing the semantics of a language usu-
ally requires different concepts than the ones used to construct expressions in
the language. For instance, to understand Class Diagrams one refers to the
notion of objects, for Petri Nets and Activity Diagrams the notion of token and
offer are central to their interpretation, and Statecharts are usually explained
based on the notions of active state and firing. All of these concepts are cru-
cially important, in fact it is not possible to provide a semantics in syntactic
terms only. To actually form a reliable basis for a model’s interpretation, such
concepts and their details need to be formulated precisely. Meta models (i.e.,
Class Diagrams) provide the means to achieve such a detailed formulation of
semantic concepts.

In our running example (illustrated in Fig. V.3) the semantic concept of Ac-
tionExecution is defined (by being a class in the semantic domain meta model).
This class denotes a currently running execution of an Action. Additionally,
structures (i.e., associations), constraints (e.g., the multiplicities at the associ-
ation to the specifying Action), and generalizations (Action is a subclass of the
general concept BehaviorExecution, cf. Fig. B.63) can be used to specify details
of the semantic domain’s structure. The explicit formulation of the semantic

106 Chapter V. The Architecture of Dynamic Meta Modeling

domain in this way enables a Language Engineer to clarify and detail his ideas
about the semantic concepts underlying the language.

Explicit mapping Not only the extensional elements are clearly expressible, but
—using the techniques of Meta Relations— their connection to the intensional
elements can also be precisely defined and laid out visually. Regarding Fig. V.3
(and disregarding Relation Arep for the moment) we can see that the semantics
of an ActionNode is given by a set of ActionExecutions. This ability of relating
intensional and extensional elements is called ”a remarkable feature of meta
modeling“ in [GKP98].

For elements without dynamic semantics this denotational meta modeling se-
mantics is their whole semantics. The (syntactic) concept of a Class, e.g., can be
fully expressed by relating it to the (semantic) concept of an Object. All spec-
ifications of the class (attributes, associations, constraints) must be respected
by the objects defined by this class. For elements with dynamic semantics,
however, additional effort is necessary.

Basis for dynamic semantics Beyond establishing a structure of extensional
elements and their interrelations, the semantic domain meta model also forms
the basis for the dynamic semantics. The mechanism employed here is again
aligned to the object-oriented concepts of the UML. Each semantic concept
which expresses dynamic semantics (i.e., it has behavior) captures this behavior
in a set of operations. In the example in Fig. V.5 the class Action in the SD
meta model defines the operation action.start*(), which encapsulates the notion
of starting an execution of a certain action.

Preparation for operational rules In an ideal world, the denotational part of
the semantics would be completely independent from the dynamic part. While
DMM allows for such complete independence, it is not easy to achieve in prac-
tice. In fact, the ease of formulating operational rules to express the dynamic
semantics greatly depends on the way the static semantics are formulated. It is
thus advisable to allow for certain modifications to the semantic domain meta
model which aid the subsequent formulation of DMM rules. An example for a
simple modification is the introduction of an ordering pattern to iterate over
sets (cf. Subsection VII.2.3).

A rather far reaching manipulation is the replication of intensional elements
in the semantic domain. From a conceptual viewpoint this is inadvisable for
reasons of conceptual cleanness and avoidance of redundancy. Intensional (i.e.,
syntax) elements should be kept in the syntactic domain and related to the
semantic domain by means of Relations only. An operational interpretation of
the system state will, however, heavily depend on the intensional elements to
compute the next system state. This computation would have to take Pairs
into account to actually access these intensional elements. Pairs are, however,
not covered in the notion of DMM rules as defined in Sect. IV.4 nor do they
find support in Graph Transformation tools. With regard to meta operations
forming the base for operational behavior it is also often the case that operations
are quite naturally located in meta classes representing intensional rather than

V.2. Expressing Dynamic Semantics in DMM 107

L

«Meta Model»

Syntax Definition

Semantics Definition «DMM»

«SD meta model»

Static Semantics

«DMM rules»

Dynamic semantics
typed over

implements

operations

Figure V.4: Detailed view on the structure of semantics definition in DMM

extensional concepts. Regard, e.g., the UML semantics description which uses
the terms ’an action executes‘ or ’a transition fires‘, both of which refer to
syntactic elements.

From a practical point of view it is thus advisable to replicate parts of the
specification into the semantic domain meta model. If you regard the example
in Fig. V.5 you will notice that the semantic domain fragment provided there
contains a replication of the Action class as well as its extensional counterpart,
the ActionExecution class.

V.1.1 Summary

Denotational meta modeling semantics form the first part of the DMM tech-
nique. They allow for the relation of syntactic and semantic concepts of a
language. If we think of the semantics as being an interpreter semantics (cf.
Subsect. II.3.3) we can also view the semantic domain meta model as the def-
inition of the runtime states of the interpreter. In these runtime states the
specification information (replicated intensional elements) forms the ”program“
while extensional and auxiliary elements provide the control and data state of
the interpretation.

V.2 Expressing Dynamic Semantics in DMM

While denotational semantics descriptions have their strengths in expressing
static semantics, elements with behavior semantics are better served by being
expressed in an operational style (see the discussion in Sect. II.4). DMM thus
adds an operational component to the denotational part. This operational com-
ponent is expressed by DMM rules as defined in Sect. IV.4. Figure V.4 illustrates
the two parts of a semantics specification in the DMM approach.

The semantic domain meta model forms the base for the operational semantics
component of DMM in two ways: on the one hand the meta models provides
the type graph over which DMM rules are to be formulated. On the other hand
the DMM rules ’implement‘ the operations defined in the classes of the semantic
domain.

The DMM rules allow for the formulation of dynamic semantics. For instance,
while the semantic domain meta model defines the notion of an Offer for an

108 Chapter V. The Architecture of Dynamic Meta Modeling

Semantics Definition

«DMM»

Dynamic semantics «DMM Rules»

action.start()*

action:Action :InputPin

p_hasOffer(ae)execute()

:Activity ae:ActivityExecution
specification

L

Static Semantics

«SD meta model»

Syntax Definition

«Meta Model»

name:String

ActionNode

ActionExecution

start()*

Action

1

*

specification

A2AE

1

*

Arep
1

1

Figure V.5: Example DMM specification including a SD meta model and a
DMM rule

Activity Diagram, a rule can express the concept of ’accepting an offer‘ by
expressing the changes to the system state. Using the invocation mechanism
introduced in Subsection IV.6.1, complex behavior can be split up over a number
of interconnected small-step and premise rules.

The connection between operations and rules (cf. Fig. V.4) is based upon the
signatures of the rules which must correspond to that of the (meta) operations.
There may be multiple rules per operation. Multiple rules per operation usually
express different situations (cases) in which the behavior may execute. Each
rule in the DMM rule set must have a corresponding operation in the semantic
domain meta model.

Adding dynamic semantics to our running example results in the situation in
Fig. V.5. The class Action has been extended by an operation action.start*1

describing the start of an action’s execution. The rule implementing this oper-
ation is provided in the right hand part of the semantics definition. This rule
expresses that an action may only start if it carries offers on all of its inputs.

The correspondence of rules and operations takes subtyping into account. If a
class in the semantic domain meta model is a subtype of another class, it inherits
these class’ attributes and operations. It is thus possible to have the (abstract)
class Action which defines the operation execute(context:ActivityExecution) (cf.
Fig. V.6), yet the rules for this operation are formulated for concrete subclasses
of Action, namely CallBehaviorAction and DummyAction. This mechanism en-
ables the formulation of interface-like abstract classes which leave the imple-
mentation of defined operations to the specialized subclasses. It is also possible
to extend the behavior of super classes by adding new rules to an existing (and
already implemented) operation. Suppressing or overwriting existing rules is
not possible.

1The ”*“ indicates big-step rules, see Section IV.6 for details.

V.3. Model Semantics in DMM 109

start()*

execute(context:ActivityExecution)

Action

CallBehaviorAction DummyAction

cba.execute(context:ActivityExecution)

cbae:

CallBehaviorActionExecution

{new}

cba:CallBehaviorAction

:Activity
:ActivityExecution

{new}

specification
{new}

behavior
invoker

{new}

specification
{new}

1: createSlots()

2: collectInputs()

invoker
{new}

context:ActivityExec

ution

3:executeBehavior()

dummy.execute(context:ActivityExecution)

dummy:

DummyAction

2:createOutputs() 3:destroy()

context:

ActivityExecution

invoker
{new}

DummyActionExecution

{new}

1:collectInputs()

specification
{new}

Figure V.6: Example for DMM rules with subtyping of the context node

V.3 Model Semantics in DMM

The semantics of a (concrete) model is a set of Labeled Transition Systems
(LTSs).

A single LTS is constructed by states and transitions between these states. The
states a model represents are the set of all instances of the SD meta model which
can be mapped by Pairs (conforming to the semantic Relations) to the model
at hand. In Fig. V.7 two such states are illustrated: One (S2) having a single
active execution of the action do something, the other (S1) executing this action
twice concurrently. In the figure the compliance to the semantic relations is
illustrated only for S1 by showing the pairs connecting it to the model.

We call these states interpretation states or system states. Internally, these
states are represented by state graphs, i.e., they form instance graphs to the
type graph provided by the SD meta model (cf. Section IV.4). This corresponds
to the notion of Extended Transition Systems as defined in [GR01, WC90] or
Labeled Graph Transition System as defined in [CHM00]. Usually, we expect
the set of all such legal interpretation states for a single model to be unlimited.

The transitions between interpretation states have to conform to the DMM
rules defined for the language. Each transition is labeled with the name of the
applied rule and details on its application. In Fig. V.7 we can thus observe that
the application of actionExecution.terminate on the state S1 yields the state S2
(details are omitted in the figure).

The set of all possible states will thus form one or more (in most cases even
unlimitedly many) connected Labeled Transition Systems. Each of these sys-
tems is characterized by the start state it originates in. Each system must
furthermore form a DMM system as defined in Sect. IV.6, i.e., invocations must
correctly be fulfilled and may not remain open in final states. Constructively,
the LTSs of a model may thus be generated by supplying a set of legal system
states of the model and deriving the transition systems from them by repeated

110 Chapter V. The Architecture of Dynamic Meta Modeling

L

M

Semantics Definition «DMM»

Static Semantics

«SD meta model»

Syntax Definition

«Meta Model»

Expression

Meaning

«LTS»

name=“do something“

:ActionNode

name:String

ActionNode

ActionExecution

Action

1

*

specification

 S1

name=“do something“

:Action

:ActionExecution

specification

 S2

name=“do something“

:Action

:ActionExecution

:ActionExecution

specification

Arepdomain
range

a
c
ti
o
n
E
x
e
c
u
ti
o
n
.t
e
rm
in
a
te

Dynamic semantics

«DMM Rules»

actionExecution.terminate

A2AE

1
*

Arep
1

1

Figure V.7: Example LTS illustrating a model’s semantics under DMM

application of the DMM rules. Note that in addition to the number of such
DMM systems being unlimited, each of them may also be of indefinite length if
the model describes a non-terminating behavior.

V.4 Modularity and Extensibility

Modularity has not been an explicit requirement of a semantics description
technique. In Subsect. V.4.1 we elaborate how modularity serves to achieve
the desired qualities of adequacy, understandability and universality (the latter
by providing support for UML’s extension mechanism). Modularity for (seman-
tics) specifications has been regarded before, thus we review relevant literature in
Subsect. V.4.2. We then proceed to detail how packages can be used to structure
a DMM specification into separate modules and how restrictions placed upon
these packages serve to guarantee conservative behavioral extensions (Subsec-
tion V.4.3).

V.4.1 Motivation for Modularization

A semantics description for Visual Modeling Languages (especially UML) needs
to provide modularity concepts for three reasons:

V.4. Modularity and Extensibility 111

Understandability While DMM aims to achieve precise and concise semantics
specifications, there can be no doubt that a complete formalization of a
language like UML will result in a very large specification. Understanding
such a specification can only succeed if it is broken up into thematically
grouped modules.

Adequacy Up to now we regarded adequacy as a static concept, capturing the
ease of use of specifying certain concepts formally. It has, however, also a
dynamic aspect in that a semantic specification is as prone to change as
its underlying language. Thus maintenance of such a specification needs
to be considered, too. Again, clearly structured modules help to localize
errors and to determine the impact of changes.

Universality The UML provides explicit means to adapt the language to special
application areas. On the syntactic side, the profile mechanism captures
user-defined syntax elements. An equivalent construction is necessary on
the semantics side to fill these new constructs with meaning. Using DMM
such additions should integrate seamlessly with the existing specification.
Semantic modules thus help to support this important aspect of the UML.

A first observation is that the concepts of modularity and extensibility can be
regarded uniformly. In both cases we require a mechanism to combine different
parts of a specification. Whether these parts have been designed for a standard
(i.e., are part of the core language) or for specific domains/projects needs to
make no difference. It is in fact beneficial for understandability if only a single
mechanism is employed for both purposes. We thus provide a single extension
mechanism which can facilitate both the combination of pre-defined (i.e., UML
standard) modules and user-defined modules.

As DMM is intended for the expression of semantics, it is a prime requirement
that extensions must be conservative. The notion of conservative extensions is
important as it guarantees that a language extension does not change the way
in which pre-extension models are to be interpreted. Without this guarantee all
investments in the general language (i.e., knowledge, analysis results, tools) have
to be re-evaluated upon the introduction of a language extension. An example
for the introduction of a language extension in the form of a UML profile and
the subsequent conservative extension of the DMM semantics can be found in
[HHS01].

V.4.2 Related Work

Modularity for semantics specification techniques is studied by Mosses in
[Mos00]. He compares the impact of extending a language specification by data
references, exceptions, and concurrency for different operational, denotational,
and hybrid approaches. One finding of the investigation is that the modular-
ization approach of Action Semantics allows for a stepwise extension without
changes to the existing specification. Applicability of these results to DMM
is very limited as data references and concurrency are naturally supported by
DMM and exceptions are not usually a first-class language element in model-
ing languages. We do, however, agree with the author that modularity must be

112 Chapter V. The Architecture of Dynamic Meta Modeling

measured by concrete examples and do thus evaluate our case study accordingly
(see Sect. VI.3).

The introduction of a modularization concept for Graph Transformations is be-
ing discussed by Ehrig and Engels in [EE93]. Three different types of modular-
ity are being distinguished: graph partitioning allowing for local transformations
which can be re-synchronized via interfaces to a global state, system inheritance
which allows a graph transformation system to extend existing specifications,
and the import-export interface concept which allows reuse of specifications at
runtime. The first of these modularity concepts is rather aimed at parallel
execution of graph transformations and is not investigated any further in this
thesis. The second modularity concept has since been extended to the notion of
typed graph transformations with inheritance [BEdL+03] which DMM supports.
The third modularity concept finally calls for the (abstract) definition of graph
transformation rules which rely on imported rules to execute. Such a notion
(albeit without modules yet) is present in DMM by the invocation concept.

Different practical GT approaches have implemented concepts outlined in
[EE93]. In DIEGO [TS95], modules export partial views on Graph Transforma-
tions which can be imported by other modules. By supplying identically named
rules, an importing package can add its own specification to imported rules. The
mechanism of rule amalgamation is used to combine the different fragments of
a rule specification. Compared to the invocation mechanism of DMM rules, the
DIEGO module concept does not allow for the combination of imported rules
but only for their extension.

Realization of import/export interfaces in PROGRES is discussed by Winter
and Schürr in [WS97]. A key issue for them is to retain the visual appeal of
graph transformation rules even if they only form wrappers for imported func-
tionality. Thus, they argue for an interface definition in terms of graph trans-
formation rules which provide a visual representation of the pre- and the post
state. The use of visual operation specifications leads to a dilemma: As the rules
comprise data types to express their behavior, information about the (usually
hidden) data structure can be laid open and are thus accessible to rules from
other modules (see also the discussion in [BR04]). For DMM, however, we are
less concerned with the graphical representation of interfaces as the invocation
mechanism embeds the invocation into a rule and pure textual specifications are
avoided.

V.4.3 Modularity Concepts of DMM

Modularity in DMM is based on the concept of classes and packages. Classes
are used as explained above to form the semantic domain meta model and to
anchor the DMM rules by their operations. Rules are called via the invoca-
tion mechanism based on the rule’s signature. It is thus possible to modify or
interchange rules with identical signatures without causing adaptions in other
rules. The rules themselves, however, are free to match and change every part
of the underlying graph. DMM does thus not natively support the notion of dis-
tributed state space as formulated in [EE93]. While we recognize the increased
maintainability of clearly separated state spaces, a consequent separation comes

V.4. Modularity and Extensibility 113

at a heavy price in terms of understandability.

Class Inheritance

The simplest form of extending a concept is to define a new class in the semantic
domain meta model and add a generalization to an existing class. Subclasses
may add new operations and may also add rules for operations defined by their
superclass (cf. Fig. V.6). Eventually existing rules for the operation are unaf-
fected by this addition.

As instances of the subclass are automatically typed over the superclass(es) and
no behavior restrictions may occur, all behavioral sequences permittable for the
superclass also apply to the subclass. This kind of behavior inheritance is called
protocol inheritance by van der Aalst [AB99] and invocation consistency by
Engels et al. [EHK01, EE95]. Note, however, that the term protocol inheritance
does not make much sense here as a DMM system is not reactive as the term
protocol implies.

Projection inheritance (or observational consistency) on the other hand is not
implied by the restrictions of DMM rules. Subtypes are free to add rules to
inherited operations and may thus extend the behavior in observable ways.

Packages

On top of the class level, we use packages as means of structuring a DMM
specification. The type of package used in DMM supports only a limited form of
modularization. Each package contains a type graph of the classes, associations
and inheritance relations it defines. It furthermore contains a number of DMM
rules (or technically precise: rule schemas). When packages are combined by
package imports (see below), their type graphs are merged to a single type
graph.

Definition 32 (DMM Packages)
PDMM = {〈TG, Rules〉} with

TG ∈ GDMMT a type graph
Rules ⊆ RS a set of rule schemas typed over TG

Package Imports

If a class from one package needs to refer to or extend a class from an existing
package, an import must be performed. Imports may concern single elements
from other packages (ElementImport) or the package as a whole (PackageImport).
UML furthermore differentiates between �access�, �import�, and �merge� im-
ports. These relationships differ in the restrictions they impose on the use of
imported classes. The exact nature of these restrictions and in fact the detailed
semantics of the merge construct are still under intense debate (cf. [FTF], issue
6279 or [Stö05c], p.115).

114 Chapter V. The Architecture of Dynamic Meta Modeling

In DMM we use the �import� and �merge� relationships. The merge relation-
ship as the more powerful relation allows for the redefinition of model elements
by the importing class. The only kind of structural redefinition we allow is
the addition of associations to a class. Additionally, imported classes may be
extended behaviorally with new operations and additional rules for existing op-
erations.

When using the �import� relationship, imported classes may only be used to
derive new subclasses.

To capture these properties formally, we define the imported type graph TG∗
which is then extended to the package’s own type graph TG.

Definition 33 (Package Import)
A Package import PI : PDMM×PDMM is a function between a receiving Package
R and a providing Package P with
R.TG∗ =

⋃
{x.TG|∃PI(R, x)}

R.TG∗ ⊆ R.TG
6 ∃e ∈ R.TG.E : (sE(e) ∈ TG∗.N∧tE(e) 6∈ TG∗.N)∨(sE(e) 6∈ TG∗.N∧tE(e) ∈
TG ∗ .N)
6 ∃(i1, i2) ∈ R.TG.I : i1 ∈ TG ∗ .N ∧ i2 6∈ TG ∗ .N

When using the �import� package import, imported elements may only serve as
the basis for generalizations. The last two constraints ensure this condition by
interdicting edges between nodes of the imported type graph and nodes defined
in the package and by interdicting inheritance relationships from imported to
newly defined nodes.

The �merge� import is defined similarly, albeit with less restrictions. The type
graph of the merged packages is called TG◦.

Definition 34 (Package Merge)
PM : PDMM × PDMM and for (R,P) ∈ PM holds:
R.TG◦ =

⋃
{x.TG|∃PM (R, x)}

R.TG◦ ⊆ R.TG

In the Class Diagram of the importing package, all imported classes are marked
by the label ’from PackageName‘ near their name. The elements in a package’s
type graph can thus be partitioned in imported (TG∗∪TG◦) and original TG\
(TG ∗ ∪TG◦) elements.

Rule Restrictions

The rules in a package underlie several restrictions which strengthen the modu-
larity of the specification. All rules in a package conform to a single type graph
which is the unification of the type graph defined by the original classes of the
package (and their interconnections) and all imported packages. Technically, a
rule may manipulate any element of the underlying graph. Thus, DMM rules
are very powerful and a strict separation of responsibilities for data manipu-
lation is not technically enforced by DMM. Rules may only invoke other rules

V.4. Modularity and Extensibility 115

which are accessible to it, i.e., whose interface is defined as an operation in one
of the original or imported classes in the package.

Conservative Extensions

Extending a specification by introducing a new package may introduce new
concepts and thus alter the semantics. But if such alterations are allowed in
an unrestricted way, important relations to the base formalism can get lost. In
DMM we thus allow a behaviorally conservative kind of extensions only.

Formally, a DMM specifications consisting of a type graph TG (assuming a
flattening of the specification in packages) and a set of rules Rules is extended
conservatively by a package P ′ = 〈TG′, Rules′〉, iff for all start graphs typed over
TG the derivation sequences are identical in 〈TG, Rules〉 and 〈TG∪TG′, Rules∪
Rules′〉. Furthermore, the LTSs gained by interpreting start graphs typed over
TG′ according to Rules (i.e., new diagrams interpreted according to the old
semantic rules) must be a subset (or rather subsystem) of the LTSs gained by
applying Rules′.

The intention of such conservative extensions is that users as well as tools can
rely on the fact that a certain kind of knowledge may never be invalidated by
later extensions. In fact it is existential knowledge which will prevail through
all extensions. If, e.g., a tool can prove that a basic UML Statechart allows for
a certain invocation sequence, it can check this property even on Statecharts
extended by a UML profile. Universal and negative properties on the other hand
(e.g., proving that a certain condition will never be reached) are not guaranteed
to be conserved. From a users perspective, an understanding about a certain
kind of diagram can never be invalidated, even if the diagram is extended later
on.

Syntactically, conservative extensions are enforced by the restriction that every
rule in a package needs to have at least one original element of the package
in its left hand side. This constraint guarantees conservative extensions: If all
rules in Rules′ require the presence of an element in TG′ \ TG, they are never
applicable to models typed over TG only and thus these extensions are trivially
conservative. As rules can never be overwritten in extensions, the interpretation
under Rules is always preserved.

V.4.4 Discussion of the Modularization Concepts of DMM

Packages are a practically very important feature of DMM. They allow to struc-
ture complex specification into manageable parts. The case study in Chapter VI
gives evidence to both the need for such a mechanisms and the suitability of
DMM packages to fulfill this need.

Technically, however, the DMM package notion is rather weak. It does neither
provide separate namespaces (like UML packages do) nor does it restrict the
rules in their ability to manipulate the whole underlying graph.

The former feature, however, is most required in situations where very large
specifications are composed from different, possibly independent components.

116 Chapter V. The Architecture of Dynamic Meta Modeling

M

L

Syntax Definition

«Meta Model»

Expression

Semantics Definition

«Dynamic Meta Modeling»

Meaning

«Labeled Transition Systems»

Model Elements

Static Semantics Dynamic Sem.

Semantic

concepts

Language

Elements

Operational

Rules

Relations

States
Transitions

Semantic Packages

Pairs

Figure V.8: Architecture of the DMM approach

A rather far reaching trade-off is the abandonment of data encapsulation for
packages. The strong visual appeal of Graph Transformations stems from their
ability to showcase the manipulation of complex object structures in a intuitively
accessible way. Restricting rules to show/manipulate only elements originating
in their own package and relying on invocations extensively would have greatly
devalued their appeal. We thus accept a decline in maintainability for the sake
of higher visual impact of the rules.

V.5 Summary and Discussion

The architecture of DMM can be summarized as follows (cf. Fig. V.8):
For a given Visual Modeling Language we provide a semantic domain
meta model which contains explicit representations of the semantic con-
cepts. The language’s (syntax) elements are related to these semantic
concepts by explicit semantic relations. Semantic concepts may con-
tain behavior, which is expressed by one or more DMM rules. These
definitions are themselves structured in packages. For a given model
(i.e., an expression in the modeling language), a number of states may
be constructed (which are valid instances of the semantic domain and
have valid instances of the semantic relation to the model). From these
start states and the DMM rules, Labeled Transition Systems can be
constructed which express the models semantics.

At this pivotal point of the thesis we are at the end of the part which motivates

V.5. Summary and Discussion 117

the problem and introduces our solution concepts. Before we proceed to realizing
and applying these concepts, we shall discuss achievements and limitations of
the DMM approach. In Chapter I we identified six criteria for an approach
to the definition of semantics for Visual Modeling Languages. In the following
subsections we discuss DMM under each of these requirements.

V.5.1 Understandability

The prime goal of DMM is to enable the formulation of semantics for Visual
Modeling Languages in a way that is easily perceived by our intended target
group. All features of the various technique involved have been selected accord-
ing to this criterion. For the discussion we need to distinguish two scenarios: To
understand a language’s semantics, a user may either inspect the specification
itself, or he may be interested in the concrete semantics of examples, in which
case he will inspect the Labeled Transition System(s) for these models. For
DMM in general the former case is more relevant. We discuss interpretation of
an LTS in Sect. VIII.5.

It also needs to be pointed out that the DMM technique only supplies the
provisions to formulate a semantics in a certain way. We will discuss these
provisions under the optimistic assumption that they are utilized correctly. The
case study in the next chapter reveals the feasibility of this assumption and
Chapter VII provides modelers with guidelines for an understandable semantics
definition in DMM. Technically, however, it is quite possible to abuse all of
DMM’s features in a way as to obscure meaning, rather then to reveal it and
to confuse the reader. There is thus no guarantee that every concrete DMM
specification in fact fulfills all properties discussed here.

Regarding the inspection of rules to understand the constructs of a language we
can observe an important property of the DMM approach: The interpretation
of DMM rules and their working on the systems state is (almost completely)
possible without any knowledge of the underlying formalisms at all. In fact,
someone with knowledge in UML only can interpret the communication dia-
grams in the UML way and reach the same results as someone interpreting
the rules on their Graph Transformation background. Notational differences
to ’pure‘ UML communication diagrams are the message notation without an
underlying association, the existence of NACs and the constraints {new} and
{destroyed}. The latter are well known in the UML community as they were an
established part of UML 1.x Collaboration Diagrams (which have been renamed
to Communication Diagrams in the move to UML 2). Experienced UML users
will thus have no problems in understanding them. Semantic clarifications need
to be supplied on the concept of NACs which is not part of UML communication
diagrams and the execution order of the different rule types.

Beyond these rather local deviations, the correct interpretation of DMM rules
also calls for an understanding of the rule-based character of big-step rules.
As the notion of spontaneously occurring (or pro-active) behavior is used in a
number of advanced OO concepts (e.g., agent-based systems or user interfaces),
understanding about big-step rules should not be problematic. On the other
hand the mechanism of big-step rules nicely structures the rule set into different,

118 Chapter V. The Architecture of Dynamic Meta Modeling

independent ’transactions‘ which can be understood separately. A user can thus
acquire knowledge about a language a construct at a time. In this way, big-steps
add a further structurization means to a semantics definition by DMM.

Expressing semantics of a Visual Modeling Language by our approach really is
meta modeling as the approach makes use of Class and Communication diagrams
only and is able to explain the whole language’s semantics based on this core.
Advanced users of UML are thus spared the effort of learning an additional
formalism for expressing the language’s semantics.

In designing the techniques for formulating DMM rules and their invocation
mechanism we stressed the need for manageable rules and rule sets; the base idea
being that a specification should consists of a number of easy to understand basic
rules which are combined to form more complex manipulations. The invocation
mechanism of DMM rules allows for this kind of structurization. It neither
enforces additional textual specifications nor does it rely on the existence of
numerous auxiliary elements in the underlying graph. We do thus believe that
DMM allows for a clear formulation of both the semantic domain meta model
and the operational rules. It should be noted, however, that for easier analysis of
the rule sets we have restricted the supported control features (as, e.g., compared
to the Fujaba or PROGRES approach). This restriction enforces a certain style
of specification which can be regarded as uncomfortable in places.

V.5.2 Precision and Formality

As Dynamic Meta Modeling is (internally) founded upon Graph Transforma-
tions, respectively its set-theoretic definition provided in Chapter IV, the nota-
tion and application of DMM rules is clear and unambiguous. The definition of
UML Relations also harks back to formal logics (in the form of OCL). The preci-
sion of the formalism is exemplified by the fact that an automatic interpretation
of a DMM specification can occur (as demonstrated in Chapter VIII).

By using Graph Transformations as the technical back-end, we are also free of
the meta-circularity problems plaguing Core Semantics or true meta modeling
approaches as witnessed by the OMG’s MOF (see the discussion in Subsec-
tion II.2.3). Thus, DMM specifications are formal and precise in the semantics
mapping, the semantic meta model, and the operational rules.

V.5.3 Analyzability

While DMM is not geared toward specific types of analysis, being a general
semantics definition technique, its technical components are based upon es-
tablished theoretical formalism. Analysis techniques for these formalisms are
available, yet it needs to be discussed whether they are profitably employable in
the DMM context. Essentially two different parts of DMM can be subject to an
analysis: Either the specification itself is analyzed, proving general properties
of the language, or a single model’s semantics is analyzed, proving properties of
that model.

V.5. Summary and Discussion 119

Labeled Transition Systems are the most common basic format for Model Check-
ing and other analysis techniques. The realization of the case study in GROOVE
(cf. Chapter VIII) shows that basic model checking is already possible based on
DMM specifications and more sophisticated features are under way as GROOVE
is being developed further.

Analysis of the DMM rule set is discussed in Sect. IV.7, albeit with the disap-
pointing result that standard analysis methods are either technically not appli-
cable or that their results are not relevant for DMM. A property of the rule set
which would be very interesting is its conformance of a rule set to the type graph
and the semantic relations. Both place restriction upon the way a state may be
constructed. As the rules modify this state, there need to be mechanisms to en-
sure that these manipulations produce a legal state. While this problem is hard
for Graph Transformations in general (cf. Subsect. IV.3.6), it is even harder for
DMM. On the one hand, the constraints are spread over two sets of specifica-
tions: one set constraining the state space in general (the semantic domain meta
model) and the other one (the semantics relations) imposing restrictions from
the concrete model under interpretation. On the other hand, manipulations
are usually carried out by a sequence of rules, interconnected by invocations.
One might argue that intermediate states in such a distributed state manip-
ulation may temporarily violate the given constraints as long as the resulting
stable state is compliant again. A technique which automatically checks a given
rule set for guaranteed conformance to the semantic domain meta model and
the semantics relations while taking Invocation into account is currently not
available.

V.5.4 Adequacy

Adequacy, i.e., the measure of convenience of a semantics definition has been ad-
dressed in two ways: First, the flexible construction of the semantic constructs
employed to express a language’s semantics allows for maximum adequacy. The
Language Engineer may choose as many or as few semantic concepts as he
deems adequate. All semantic elements can have their own extensional repre-
sentations or complex mappings can express complex syntactic constructs in
terms of few basic semantics entities. DMM provides the means to realize all of
these definition styles.

Second, DMM provides modularization concepts which aid maintenance of large
specifications. Thus, we hope that even complex languages (the whole UML as
the ultimate case) can be expressed in DMM. The missing data encapsulation
endangers this kind of maintainability and Language Engineers have to make
sure to follow a suitable style of specifications (cf. Chapter VII).

V.5.5 Universality

Whether a specification technique is able to address all of UML’s features is
captured in the term universality. The main characteristics as elicited in Sub-
section II.2.2 were expression of static as well as behavioral notations (both

120 Chapter V. The Architecture of Dynamic Meta Modeling

supported in DMM), extensibility, and support for underspecification. The lat-
ter two terms warrant some additional discussions.

Extensibility Semantics definitions have to be extensible to support modular
and/or extensible languages. The extensions mechanism is structurally based
on UML packages which is an established mechanism also known from OO
programming languages. Being rule-based, the operational part of DMM sup-
ports extensions natively. Rules can be added for completely new behavior (i.e.,
adding new big-step operations) or for extended existing behavior (adding rules
for existing operations). The restriction of rules to ensure conservativity of the
extensions is reasonable, usually new syntactic elements are used to carry new
meanings.

A more severe restriction is the fact that existing behavior can never be sup-
pressed or overridden. A harmful side effect of this restriction is that adding
new elements to influence the semantics (e.g., adding a weight attribute to ac-
tivity edges) can only specify additional behavior. It is possible to express that
tokens may traverse weighted edges in groups of the specified size. It is not ex-
pressible that they may only traverse in such groups. In fact the basic behavior
of an edge, namely allowing for single tokens to pass can never be suppressed by
later extensions. To add edge weights correctly, the core rules of activity edges
would have to be re-formulated with a NAC disallowing weight specifications.
The core rules would thus have to prepare for changes which are out of their
scope (another such anomaly is discussed in Sect. VI.3). Yet, the case study in
Chapter VI reveals such cases to be a rare exception.

By providing a clearly defined extension mechanism for DMM we do also provide
a clear notion of behavioral extensions for UML model. In the DMM frame-
work, a UML Profile with (syntactic) stereotypes would be complemented by
a corresponding package with DMM specifications. The additional semantics
such a Profile could express would then be restricted as described above and
the extension would be guaranteed to be semantically conservative. This clear
notion of extensibility is very beneficial for the UML as especially in the area of
Profiles a wide variety of interpretations of the UML standard prevail. DMM
provides a clear benchmark to curb such rank growth. If a new semantic con-
cept is expressible within the boundaries of DMM, it is a legal UML profile. If
it is not expressible then it does not fall into the category of models describable
with the UML. To avoid too strict a cutoff of non-suitable profiles, the UML
core semantics specification (in DMM) should prepare for a number of likely
extensions by providing their rules with sufficient NACs.

The clear extension mechanisms would, on the other hand, also force the core
UML specification to be provided in a way which is purely additive. The benefit
for users is that if they understand a meaning of a (basic) construct once, this
knowledge will prevail through all further extensions. And while this strict re-
quirement may be uncomfortable in places, it adds necessary rigor to a language
specification.

Underspecification Underspecification appears in the UML in two ways: In-
formation can be missing in the language specifications (semantic variation

V.5. Summary and Discussion 121

points) or models can be incomplete in their representation of a system. Both
of these situations are addressable in DMM.

Handling semantic variation points (SVP) depends on the type of the variation
point. If multiple alternative interpretations are available and it’s just a matter
of picking the right one for a given domain, then different packages with rules
expressing the different workings of the element under consideration can be
provided by a Language Engineer. If no semantics are given at all (as, e.g., for
the aggregation construct), it is possible to leave the semantics of an element
completely open in not providing any rules for its operations. The consequence
of this treatment of semantic variation points is that a model’s interpretation
which encounters such an SVP would stop at that point. Those parts of the
model which are independent of the SVP could be interpreted, though. Thus,
valuable information about a model can be gained, even though some elements
remain unspecified. Special constraints must ensure that the missing semantics
have no implicit impacts on the remainder of the model. We expect, however,
that such completely unspecified elements are resolved by at least providing a
replaceable default meaning in the formalization of a Visual Modeling Language.

For the support of incomplete models we first have to distinguish between scrib-
bles and models. A scribble is some drawing which uses (amongst others) UML
shapes to express certain concepts. Scribbles are not legal UML models and can
thus not be the target of a formal semantics definition. An incomplete model
does thus at least conform to the UML meta model. This rather limits the
amount of incompleteness a model may contain since the meta model enforces
a lot of syntactical constraints (it is, e.g., not possible to specify a CallBehav-
iorAction without indicating which behavior is meant to be called by it). There
are, however, also a number of elements which explicitly express the fact that
detailed information is missing here. For Actions, e.g., the OpaqueAction is an
action which performs some behavior not specified in UML (if at all). As these
elements are well integrated in their surrounding model (e.g., an OpaqueAction
is an Action, can thus have Pins and so on), we can easily specify their static
semantics. Concerning the rules specifying their behavior such elements can
be treated like SVPs, i.e. we can either refuse to formulate semantic rules for
them, which is the most accurate way of treating these elements but it results in
fragmented LTSs, or we can provide some default interpretation which tries to
capture at least the outline of the probably intended behavior. Since the latter
approach highly depends on the application domain of UML, we recommend
placing such default definitions into extra packages which can be incorporated
in the semantics definition if requested.

We can summarize that Dynamic Meta Modeling as a specification tech-
nique fulfills all requirements we posed. For some of these requirements,
however, the concrete level of fulfillment depends not on the specification
technique as such but on the concrete language definition formulated in
DMM.

In the next chapter we demonstrate how such a DMM specification is con-
structed for a subset of the UML.

Chapter VI

Case Study: Formalizing UML
Activity Diagrams

In this chapter we will demonstrate how the technique of Dynamic Meta Mod-
eling can be applied to define the semantics of behavioral UML diagrams.

In UML 2 the three main behavioral diagrams are the Statechart, the Se-
quence/Communication diagram, and the Activity Diagram. Statecharts (in
their UML 1.x incarnation) have been formalized using DMM in [Hau01,
EHHS00]. Sequence Diagrams have been the running example in a number
of papers on DMM, including extensions of sequence diagrams incorporating
timing information [HHS01, HHS02a, HHS04]. For the case study here we focus
on the formalization of UML Activity Diagrams using the techniques presented
in the previous chapters. For readers unfamiliar with Activity Diagrams a short
introduction to the notation is provided in Appendix A.

The case study serves both as a proof of concepts and as a further examination
and proof of claims made in preceding chapter of this thesis. Its presentation
proceeds in three sections:

u Section VI.3 discusses the current state of the semantic description for
Activity Diagrams as found in the UML Specification. Here we demon-
strate the shortcomings of the current style of UML’s semantics definition
by pinpointing contradictions, inconsistencies and omissions. Especially
the intended token flow semantics of Activity Diagrams and its relation to
Petri-Nets are discussed in depth. The section concludes with an outline
of our interpretation of Activity Diagrams.

u Section VI.2 provides excerpts from the formalization of this interpretation
in DMM. The complete DMM specification of UML’s Activity Diagrams
is given in Appendix B.

u Section VI.3 reviews the DMM system for Activity Diagrams with respect
to its qualities. While Sect. V.5 discusses such qualities for DMM in
general, we can focus on one concrete specification here and gain additional
results.

123

124 Chapter VI. Case Study: Formalizing UML Activity Diagrams

VI.1 Eliciting the Semantics of UML Activity Dia-
grams

There is a vast difference between defining semantics and formalizing them.
Defining semantics means determining the meaning of constructs, formalizing
them is just the activity to write these meanings down in a formal way. The
semantics of UML have been defined by the UML specification. Thus, to formal-
ize them, we have to examine the text of the specification to elicit the intended
meaning of Activity diagrams captured therein. In the process of this close look
at the UML semantics description we uncover a number of deficiencies of the
specification. The existence of these deficiencies is a strong argument for the
introduction of DMM as a formal specification for the UML’s semantics.

That the provided semantics description for Activity Diagrams would be pre-
cise and unambiguous was improbable from the beginning. Activity Diagrams
in their UML 2 incarnation are a completely new formalism. Given their sub-
stantial complexity (the description covers roughly 100 pages), the occurrence
of omissions and inconsistencies was almost inevitable. Furthermore, the in-
tended integration of ideas from different application areas and at very different
levels of abstraction is a very difficult task. Even in the Finalization Task Force
(the body concerned with creating the specification and fixing flaws in it) there
is deep suspicion that the amalgamation of these concepts does not work in a
smooth way. To quote Jim Rumbaugh (e-mail):

I think there may well be issues related to activity semantics (es-
pecially the ”partial token” options that seem to me to be unsound,
but they were pushed because they are familiar to the business mod-
eling community [and should we expect precise semantics from that
source?])

Currently, there are over 100 issues recorded in the OMG’s issues database
related to the specification of Activity Diagrams, many of which also deal with
semantic issues1.

Subsection VI.1.1 lists a number of (rather local) deficiencies of the UML speci-
fication for Activity Diagrams. Going vastly beyond these flaws is the confusion
around the central semantic concept of UML Activity Diagrams: token flow. We
investigate this concept in depth in Subsect. VI.1.2 and evaluate alternatives for
its realization. The conclusions from this investigation are summarized in our
(informal) interpretation of Activity Diagrams provided in Subsection VI.1.3.
Note that we intentionally do not refer to the formalization concepts of DMM in
this section as we are not aiming at an interpretation that fits easily into DMM
but we rather try to elicit the ”real“ semantics of UML Activity Diagrams using

1Note that during the writing of this thesis, the OMG has advanced the UML 2.0 super-
structure specification from the status Final Adopted Specification [Obj03d] over an interme-
diate Convenience Document [Obj04] to a Published Specification [Obj05]. This finalization
process entailed changes to the specification to address noted issues [FTF]. Our own research
has contributed to the submission and resolution of issues 3391, 6512, and 7221 [FTF]. Some
of the problems mentioned in this thesis have thus found resolution in the finalized version.
The statements in this chapter are mostly based upon the Final Adopted Specification of the
UML 2.0 Superstructure [Obj03d]

VI.1. Eliciting the Semantics of UML Activity Diagrams 125

technology independent discourse only. Formalizing these concepts in the DMM
framework is the task of the next section.

VI.1.1 Deficiencies in the Definition of Activity Diagrams

In the UML specification for Activity Diagrams a number of deficiencies can be
identified which hinder a precise interpretation and formalization.

Elements without concrete notation

Several elements that have an impact upon the execution of an Activity Diagram
do not have a prescribed syntax. Examples for this are edge transformations
or join specifications. In the abstract syntax, these elements are encoded as
an opaque expression, i.e., an expression given in a language external to UML.
Without a defined syntax and without limitations to what can be included
in these specifications, it is impossible to integrate these elements in a formal
semantics. As a direct consequence, we do not support guards, thus rendering
all decision nodes to points of non-deterministic choice.

Also without a concrete notation are the elements of the Structured Activities
package. This package provides high-level notations to encode loops, choices etc.
in a single notational element. Meant for concise representations of algorithms,
this part of Activity Diagrams is not supplied with any concrete notational
symbols and is thus rather useless at the moment.

Missing elements

An example for missing elements in the syntax of the UML is the connection
between Pins and Parameters. If an activity contains an action node which
requires input data to proceed, this is denoted by one or more input pins. If
the processing of this data is in turn specified by a behavior (i.e., the action
is a call action) these inputs are regarded as parameters of the behavior. One
would certainly expect that the information passed as parameters to the called
behavior are identical to the objects that arrived at the input tokens of the
calling action. But the UML does not allow for defining this connection, neither
visually nor in the meta model. Bock proposes some correspondence relying
on the order of pins and parameters but also points out that not even this is
possible in the current incarnation of the meta model ([Boc03b], footnote 8).

Contradictory semantics

With some elements, the provided rationale for their existence and their se-
mantics description are at odds. The ForkNode can serve as an example: The
rationale ([Obj04] p.319) states that ” Fork nodes are introduced to support
parallelism in activities. [. . .]UML 2.0 activity forks model unrestricted paral-
lelism. “ This does especially imply that the different flow emerging from a fork
node should be able to execute independently. The semantics for fork nodes

126 Chapter VI. Case Study: Formalizing UML Activity Diagrams

A C

DB

Figure VI.1: Example for an implicit dependency with standard semantics of
fork nodes

([Obj03d] p.318) provides the following restrictions: ” When an offered token
is accepted on all the outgoing edges, duplicates of the token are made and one
copy traverses each edges. “ According to the traverse-to-completion semantics
a token can only be accepted by a downstream object or action node. An action
node will only accept tokens, if it has offers on all of its inputs. Thus, regarding
the example presented in Fig. VI.1, the action D can only accept tokens, if A
and B have finished executing. Action C should -according to the rationale- be
able to execute, once A terminates. But the semantics of the fork node will only
let tokens pass, if all of the outgoing flows will accept tokens, thus making C
also dependent on the termination of B.

This effect is not only against the stated rationale of the fork node element, it
is also quite unintuitive, as dependencies are supposed to be revealed by flows
in Activity Diagrams and not hidden implicitly.

As a result of this analysis, we submitted an issue to the Finalization Task Force
and cooperated with Conrad Bock in drafting a new semantics for fork nodes.
In the proposed2 solution a fork node will have the ability to buffer tokens
for currently unavailable flows, provided one of its outgoing flows accepts the
offered token.

Another contradiction can be identified in the rationale/semantics of a Deci-
sionNode with an attached decision input behavior. The rationale given for this
construct is [Obj04] p. 288: ”Decision input behaviors are introduced to avoid
redundant recalculations in guards.“

One of the illustrating examples offered by the UML specification is reproduced
in Fig. VI.2. Here, a complex condition is evaluated (once) in the decision
input behavior and the subsequent guards at the outgoing flows can simply test
on the result of this evaluation. Yet, the semantics of decision nodes caution
([Obj03d] p. 287):

If a decision input behavior is specified, then each token is passed
to the behavior before guards are evaluated on the outgoing edges.
The output of the behavior is available to the guard. Because the
behavior is used during the process of offering tokens to outgoing
edges, it may be run many times on the same token before the token
is accepted by those edges.

This warning against multiple evaluations is directly contradictory to the ratio-

2at the time of writing the ballot on this proposal has not yet been held

VI.1. Eliciting the Semantics of UML Activity Diagrams 127

390 UML Superstructure 2.0 Draft Adopted Specification

falls below a prespecified reorder point, more of the same type of item should be reordered.

Rationale

Decision nodes are introduced to support conditionals in activities. Decision input behaviors are introduced to avoid redundant

recalculations in guards.

Changes from previous UML

Decision nodes replace the use of PseudoState with junction kind in UML 1.5 activity modeling.

12.3.23 ExceptionHandler (from ExtraStructuredActivities)

Issue 7367 - add superclass pointers

Generalizations

• “Element (from Kernel)” on page 63

Description

(ExtraStructuredActivities) An exception handler is an element that specifies a body to execute in case the specified exception

occurs during the execution of the protected node.

Associations

• protectedNode : ExecutableNode [1..1]

The node protected by the handler. The handler is examined if an exception propagates to

the outside of the node.

• handlerBody : ExecutableNode [1..1]A node that is executed if the handler satisfies an uncaught exception.

• exceptionType : Classsifier [1..*]The kind of instances that the handler catches. If an exception occurs whose type is any

of the classifiers in the set, the handler catches the exception and executes its body.

Issue 6133 - add multiplicity

• exceptionInput : ObjectNode [1..1] An object node within the handler body. When the handler catches an exception, the

exception token is placed in this node, causing the body to execute.

Figure 252 - Decision node example

Pull
Order Item

Prepare Item
for Delivery

«decisionInput»

inventoryLevel

Reorder
Goods

[true]

< reorderPoint

Ship
Order

from Stock

[false]

Figure VI.2: Example for a decisions node with decision input behavior (repro-
duced from [Obj05], p.351)

nale of avoiding redundant recalculations. It remains unclear which role decision
input behaviors really play in Activity Diagrams.

VI.1.2 Token Flow in Activities

Token flow is the central semantic concept in UML Activity Diagrams. The
UML specification should thus take utmost care to convey its intentions re-
garding this concept as clear as possible to allow for a precise understanding.
Unfortunately, this is not the case.

Discussion the concept of token flow in UML’s Activity Diagrams rather pro-
vides an excellent example for the problems of the current style of UML’s se-
mantics specification: Different statements in the UML specification allow for
different interpretations of the token flow concept. There is no systematic way
to prove which interpretation takes precedence over the others. There is not
even a systematic way to detect all statements relevant to token flow. Users are
thus reduced to arguing about the intended semantics with different opinions
supported by different statements in the text. In this subsection we illustrate
the extent of such an argument by (1) collecting relevant information for token
flow from the UML specification, (2) investigating the probable intentions of the
authors using external sources, and (3) evaluating different operationalizations
of token flow to achieve the intentions elicited in (2).

Tokens are introduced in the semantics section of the metaclass Activity [Obj05],
p.308:

A token contains an object, datum, or locus of control, and is
present in the activity diagram at a particular node. Each token is
distinct from any other, even if it contains the same value as another.

This statement is refined in a succeeding paragraph:

Tokens cannot ”rest“ at control nodes, such as decisions and
merges, waiting to moving downstream. Control nodes act as traffic
switches managing tokens as they make their way between object

128 Chapter VI. Case Study: Formalizing UML Activity Diagrams

nodes and actions, which are the nodes where tokens can rest for a
period of time.

Thus, given the choice of activity nodes defined in the meta model, we can
conclude that in a valid state of an activity diagram execution, each token
is located either in an object node or in an action node. Yet, in the semantics
section of Actions ([Obj03d] p. 280f) we find the following statement concerning
the conditions to be met for an action execute:

Except where noted, an action can only begin execution when
all incoming control edges have tokens, and all input pins have ob-
ject tokens. The action begins execution by taking tokens from its
incoming control edges and input pins.

Thus, control edges also seem to be able to hold tokens. The following paragraph
reads:

An action execution consumes the input control and object to-
kens and removes them from the sources of control edges and from
input pins. The action execution is now enabled and may begin
execution.

Wile the precondition states that all incoming control edges must have tokens,
the consumption of these tokens happens by removing them from the source of
these edges. Note, that the source of a control edge may also be a control node,
a place which may explicitly not hold a token.

Object edges on the other hand receive a different treatment:

An action execution is created when all its object flow and control
flow prerequisites have been satisfied (implicit join). Exceptions to
this are listed below. The flow prerequisite is satisfied when all of the
input pins are offered tokens and accept them all at once, precluding
them from being consumed by any other actions.

Note that the statement in the third sentence cannot hold for control flow pre-
requisites as, by definition, a flow targeting an input pin is an object flow. The
quote introduces the notion of offering a token, which seems to target (at least)
object nodes. Other clauses in the text imply that it may also target control
edges:

When completed, an action execution offers object tokens on all
its output pins and control tokens on all its outgoing control edges
(implicit fork).

The semantics of Actions ([Obj03d] p.225) extend the notion of offering also to
object edges:

Object and data tokens are offered on the outgoing object flow
edges as determined by the output pins.

To summarize, on the basis of the UML specification it is neither clear where
a token may reside, nor what exactly the process of offering entails. To clarify
these questions, one has to go beyond the context of the official specification and
take external sources into account. A primary source for information about the
intended semantics of activity diagrams is Conrad Bock’s article series in the

VI.1. Eliciting the Semantics of UML Activity Diagrams 129

Journal of Object Technology [Boc03a, Boc03b, Boc03c, Boc04]. Conrad Bock
is the member of the Finalization Task Force responsible for Activity Diagrams.
Large parts of the specification have been written by him and in the articles in
JOT he describes the new semantics independent from the format of the UML
specification:

The terminology of the UML 2 specification is that the output
pin ”offers” the token to the outgoing edges, which in turn offer it
to their respective targets. The traversal of the edge cannot take
effect until all the elements between source and destination object
node accept the offer, including the destination. This article calls
the principle traverse-to-completion. [Boc04]

We take up the term traverse-to-completion (or TTC-semantics) and use it in
this thesis. Following the quotation by Conrad Bock, offering and accepting
these offers seems to be a way to construct a path between a given source node
(which currently holds a token) and a possible target node. The rationale given
for this kind of behavior is:

Preventing control nodes and edges from holding tokens ensures
that values do not get ”stuck” when alternative paths are open. In
any particular direction of flow it may take a long time to select
tokens, decide how to route them, for backups to clear, and so on.
Traverse-to-completion means that tokens move along the path of
least resistance by going to the first available object node. Data and
object values are always residing in object nodes or being operated
on by actions, moving instantly between them when all the criteria
along the path between source and destination are satisfied. The
decision of where to route tokens may take time, but no tokens move
until the decision process is complete. [Boc04]

To understand the reason for this choice of semantics one has to inspect one of
the inspiring sources for the new activity diagram semantics: Petri Nets.

Petri Net Semantics

In 1961 Carl Adam Petri defined a formalism to model the execution of con-
current processes [Pet62]. This formalism was later named Petri Nets in his
honor. A Petri Net3 is a directed graph with two kinds of nodes, named places
and transitions. It is bipartite in that all edges must connect a place and a
transition (in either direction). In Fig. VI.3 an example Petri Net is exhibited.
Places are notated as circles, transitions as bars. For the purpose of reference,
all nodes carry a name label in the figure.

The semantics of Petri Nets is provided by the so called token game [Rei85]: The
state of a Petri Net (also called its marking) is determined by a configuration
of tokens which exist in the places. Each place may hold zero, one or arbitrary
many tokens. A transition is said to be enabled in a state, if all of its input

3Since Petri Nets have been an object of scientific study up to the current day, a multitude
of variants has emerged. For the discussion here we use the very basic formalism of unbounded
Place/Transition nets.

130 Chapter VI. Case Study: Formalizing UML Activity Diagrams

A

B

C

D

E
t

2

t
1

Figure VI.3: Example of a Petri Net

places (i.e., all places which are connected to the transition via an incoming
edge) carry a token. From a place’s point of view one could also say that a
place is offering its tokens to the outgoing transitions.

The transition between states is carried out by the firing of an enabled transi-
tion. This firing consists of removing a token from each of its input places and
putting a token on each of its output places (i.e. places which are connected to
the transition via an outgoing edge).

Three properties that are important in respect to traverse-to-completion seman-
tics of activity diagrams:

(PN1) Transitions capture all of their input tokens in one atomic step. A partial
consumption of tokens does not occur.

(PN3) Tokens will only be consumed by an enabled transition, i.e., a transition
which can and will fire.

(PN3) If multiple enabled transitions require the same token (in the example
in Fig. VI.3 this might happen if only one token was lying on places A,B,
and C respectively) the firing of one transition (e.g., t1) will consume the
token and thus make it unavailable for the other transition (t2), possibly
disabling it. This effect is called token competition.

Comparing Petri Nets to Activity Diagrams

While the simplicity of Petri Nets allows for a clean and precise semantics and
useful analysis results, they are a fairly low level formalism as compared to
other behavior models. Activity Diagrams provide a lot of higher-level features
which allow users to encode complex semantics in a single element. Still, Ac-
tivity Diagrams are supposed to have ”a Petri-like (sic!) semantics“ ([Obj05]
p.292). One possibility of substantiating such a claim would be a mapping from
Activity Diagrams to Petri Nets. The UML specification does not provide such
a mapping and the opinions on how to establish it vary. In an email message,
Jim Rumbaugh suggested:

edges→places; a token on a edge represents the static presence
of a value, which is how I have always viewed Petri net places.
actions→transitions; that corresponds to a PN transition taking in-
puts and producing outputs. Activity nodes are a mixed lot; some

VI.1. Eliciting the Semantics of UML Activity Diagrams 131

(such as object nodes) correspond to places, others (such as control
nodes) correspond to transitions. I don’t think it was a very elegant
modeling job, from that point of view, but it works at a low level.

Another opinion by Conrad Bock (again by email):

PN’s have a traverse-to-completion principle between places.
UML built on this by generalizing transition to other control nodes,
and using the transition semantics for action inputs.

This statement indicates that, rather than mapping elements of Petri Nets to
those of Activity Diagrams, the authors intended to build the semantic proper-
ties of Petri Nets into Activity Diagrams:

(AD1) Actions will capture all of their input tokens in one atomic step. A
partial consumption of tokens does not occur.

(AD2) Tokens will only move down a completely open path, i.e. move to an
action which can and will execute or an object node which will buffer the
token.

(AD3) If multiple paths originate in an object node, they compete for the token.

Yet, the syntactic structure of Activity Diagrams is quite unlike Petri Nets. Petri
Nets are always bipartite graphs with Transitions and Places forming the two
groups of nodes. Thus, the firing of a transition affects only its local context, i.e.
the places which are directly connected to it. Activity Diagrams are much more
flexible as they consist of three basic types of nodes and place no restrictions
on the way these nodes are connected. It is possible to construct large Activity
Diagram fragments consisting only of control nodes and activity edges. We call
these fragments control structures. In an activity diagram containing control
structures, the enforcement of (AD2) can become extremely complex as the
search for an open path might include branching as well as merging of flows. A
detailed inspection of these problems is given in the next subsection.

Despite the syntactic differences, Petri Nets are still semantically close enough
to Activity Diagrams to attempt a denotational semantics. The most complete
approach to this has been published by Störrle in several papers [Stö05a, SH05,
Stö04c, Stö04a, Stö04b]. Störrle uses Colored Petri Nets as the semantic domain
and maps the elements of activity diagrams into this formalism (the mapping
is depicted in Fig.VI.4). In a combination with ideas for Procedural Petri Nets
he achieves a formalization which allows for multiple invocations of an activity
concurrently without interference of the tokens and without copying the net.
However, this formalization does not address the problem of enforcing property
(AD2). Since several control nodes as well as most edges are mapped to places
or structures involving places, tokens move stepwise, resting at control nodes
and possibly moving into ”dead ends“. This is not a problem of this particular
mapping, but rather a general issue for denotations to Petri Nets on the element
level. Since control structures enforce a coordination of remote elements in the
net, they either have to be translated as a whole into a Petri Net pattern or
higher level control structures must be used with the Petri-Net (e.g., zero-safe
nets [BM97]).

132 Chapter VI. Case Study: Formalizing UML Activity Diagrams

color is a total function P → Σ assigning a sort (“color”) to each place;

guard is a total function T → Expr assigning a boolean expression to each
transition, the default is the constant tt;

effect is a total function A → Expr assigning a expression to each arc, its
type being the color of the place of the arc.

For convenience, color , guard , and effect may be specified partially, with
black dot tokens as the default. That is, if color(p) is undefined, then
color(p) = TOKEN is intended, and analogously for guard and effect .

The definition of the behavior of net systems is a little more complicated,
as we now need to take into account the values of tokens and the meanings
of operations on them. A marking of a CPN is a multiset (or word) over
{〈p, v〉 | p ∈ P, v ∈ color(p)}. As we lack the space for a complete definition,
we have to make do with an example: consider Figure 8 for a sample run of
the net of Figure 7, representing the Activity Diagram of Figure 3.

Observe, that the net elements for CPNs are orthogonal to those of pro-
cedural petri nets. Thus, the semantics for data flow defined here may be
combined with procedure call semantics defined in [19].

3.2 Semantic mapping

In this section, we first sketch the intuition behind the semantic mapping,
and then provide a precise definition. With respect to control flow, Ex-
ecutableNodes become net transitions, ControlNodes become net places or
small net fragments, and ActivityEdges become net arcs, possibly with aux-
iliary transitions or places. With respect to data flow, ObjectNodes become
net places, and ObjectFlows become net arcs. See Figure 6 for an intuitive
account of the translation.

activityactivity

ExecutableNodes

fork/join

ControlNodes except:

auxiliary

unless:

ActivityEdges

ObjectNodes
TYPE

TYPE
ObjectFlows

expr expr

Petri-netsUML ADs Petri-netsUML ADs

Fig. 6. The intuition of the semantic mapping for control and data flow of Activities.Figure VI.4: Proposal for a mapping of Activity Diagrams to Petri Nets (repro-
duced from Störrle [Stö05a])

In [SH05] we have investigated the problems of mapping Activity Diagrams
to Petri Nets in greater depth. The conclusion of this investigation is that
many advanced concepts introduced by Activity Diagrams (exceptions, stream-
ing, traverse-to-completion) do not only require a new Petri Net formalism to
express their semantics properly, but that in many cases this extension also re-
quires modifications to the basic intuitive mapping. At the time of writing, no
reasonably complete denotational mapping to Petri Nets (especially none taking
(AD2) into account) has been published, let alone one that retained a simple
and intuitive core.

Operationalization of Traverse-To-Completion Semantics

The properties (AD1)-(AD3) given in the previous subsection are high level
semantic properties of Activity Diagrams. For the evaluation of a concrete
Activity Diagram, these properties have to be broken down into detailed and
precise semantics for the elements comprising an Activity Diagram. The current
formulation of the UML specification fails in this task (as discussed before). In
this section we discuss several alternatives in providing an operationalization of
the intended properties.

To fulfill the intended properties (AD1)-(AD3) for Activity Diagrams, the au-
thors of the UML (particularly Conrad Bock) have envisioned an evaluation
mechanism based on tokens and offers. Offers are never defined in the UML
specification and there are basically two interpretations for them: On the one
hand offering can be regarded as a process of evaluation. On the other hand
offers can be seen as run-time entities in the activity diagram. To exemplify
the differences between both interpretations, we introduce a common example
below. First, however, we need to precisely define the terms we are discussing:

VI.1. Eliciting the Semantics of UML Activity Diagrams 133

Definition 35 (Activity Graph)
An Activity Graph (AG) is a tuple 〈CNodes, ONodes, ANodes, Edges〉 where
CNodes is the set of Control Nodes
ONodes is the set of Object Nodes
ANodes is the set of Action Nodes and
Edges is a set of tuples CNodes ∪ ONodes ∪ ANodes × CNodes ∪ ONodes ∪
ANodes4

Definition 36 (Control Structure)
A Control Structure is a tuple 〈CSNodes, CSedges〉 that is part of an enclosing
AG 〈CNodes, ONodes, ANodes,Edges〉 with

CSNodes ⊆ CNodes
CSEdges⊆ Edges such that

∀〈A,B〉 ∈ Edges: A ∈ CSNodes ∨B ∈ CSNodes
⇒ 〈A,B〉 ∈ CSEdges,

and ¬∃〈C,D〉 ∈ CSEdges :C ∈ (CNodes− CSNodes)
∨D ∈ (CNodes− CSNodes)

This definition means that a control structure is the maximal part of an Activity
Graph that is only comprised of control nodes and edges. Note that control
structures are not proper subgraphs as they contain dangling edges (the ”outer“
edges connecting the control nodes to surrounding action or object nodes).

Definition 37 (Input and Output)
The input of a control structure (CSinput) is the set of all object and action
nodes that may supply tokens to the control structure. Formally:

CSinput = InNodes ⊆ (ONodes ∪ANodes) such that
∀〈M,N〉 ∈ CSEdges : M ∈ CSNodes ∨M ∈ InNodes

The output is defined symmetrically:

CSoutput = OutNodes ⊆ (ONodes ∪ANodes) such that
∀〈M,N〉 ∈ CSEdges : N ∈ CSNodes ∨N ∈ OutNodes

The union of input and output is called the context of the control structure.
The context complements a control structure to form a proper graph.

Definition 38 (Path)
A path is a connection inside of the control structure, recursively defined as

path(A,B) with A,B ∈ CSNodesholds, iff 〈A,B〉 ∈ CSEdges
or ∃C ∈ CSNodes with 〈A,C〉 ∈ CSEdges
∧path(C,B)

4We abstract from the well-formedness conditions imposed by the UML specification.

134 Chapter VI. Case Study: Formalizing UML Activity Diagrams

A

B

C

D

E

F

d1

d2

d3

f1

j1

j2

OB

OA

IC

ID1

ID2

IE

IF

Figure VI.5: Example of a Control Structure

We say a node A is downstream from a node B, iff path(B,A). Conversely,
a node A is upstream from A, iff path(A,B). Note, that Activity Graphs can
contain loops and thus a node may simultaneously be up- and downstream from
another. While a path is a structural property of an Control Structure, the term
open path is used if a path can be traversed by a token in the current situation,
taking all conditions into account.

In Fig. VI.5 a sample Activity Diagram is provided. For reasons of reference, we
also labeled the usually unnamed control nodes and pins. Applying the above
given definitions to this example yields the following sets:

u ANodes={A,B,C,D,E,F}

u CNodes={d1, d2, d3, f1, j1, j2}

u ONodes={OB, OA, IC, ID, IE, IF, IG}

u Edges = {〈OB, j1〉, 〈j1, IC〉, 〈OA, d1〉, 〈d1, j1〉, 〈d1, ID1〉, 〈OA, f1〉, 〈f1,
d2〉, 〈f1, d3〉, 〈d2, ID2〉, 〈d2, j2〉, 〈d3, j2〉, 〈d3, IF〉, 〈j2, IE〉}

and we can identify one control structure consisting of

u CSNodes = {d1, d2, d3, f1, j1, j2}

u CSEdges = Edges

u InNodes = {OB, OA}

u OutNodes = {IC, ID, IE, IF, IG}

It is obvious that these sets satisfy the properties required for a Control Struc-
ture and that no other such structure exists in the example.

To actually determine which paths are open through this control structure (as-
suming tokens to be placed on OA and OB), we need to evaluate it. Intuitively,
the following flows should satisfy all properties of activity diagrams:

VI.1. Eliciting the Semantics of UML Activity Diagrams 135

u Action C gets both tokens from A and B.

u Action E gets the token from A.

u Action F gets the token from A and a copy of that token is placed at the
non-successful outgoing flow of f1.

We now discuss different alternatives for obtaining this intuitive’ result in a
systematic way.

Evaluation semantics A first possibility for realizing the intended properties
of activity diagrams can be called evaluation semantics. Evaluation semantics
defines the state of the activity diagram as one where all tokens reside in action
or object nodes. An evaluation algorithm is employed to calculate a possible
succeeding state. In this semantics, offering is a step in the execution algorithm
but not in the state of the diagram execution. The advantages of this inter-
pretation are that activity diagrams are always in a defined state because the
computation would be atomic.

Starting from a given token at a node in the input, the evaluation would try to
find a path through the succeeding control structure, possibly employing back-
tracking to support non-deterministic choices. Classic depth-first or breadth-
first strategies can be employed to traverse the control structure. If we assume
an output token of Action A to be the stating point of the evaluation, the
evaluation could visit d1 and detect an open path to Action D.

When encountering nodes that synchronize several incoming flows (actions and
join nodes) the evaluation becomes difficult, however. In these situations, a
backward search over the other flows would be needed to find other available
tokens to completely satisfy the synchronization criteria. Take, e.g., an evalua-
tion that has detected the partial path A, f1 and d2 . To decide whether j2 is a
valid next step, the algorithm needs to make sure that d3 can also deliver a to-
ken. As d3 is a control node which cannot hold a token, the backward traversal
continues toward possible sources of the needed token.

The evaluation of edges against their flow direction comprises several problems.
One is that every element needs to have two semantics: One for ”forward“ and
one for ”backward“ evaluation. Not only does the UML specification only pro-
vide the ”forward“ direction and the ”backward“ part has to be constructed,
but it also has to be constructed in a way as to be consistent with the ”forward“
interpretation. Fir a correct interpretation, users would have to keep both se-
mantics in mind. Branching (upon encountering merges) and reversing of search
direction into forward evaluation again (upon encountering forks) may occur.
Backward evaluations become impossible if transformation specifications are
used. Transformation specifications can adorn edges and provide information
on modifications to each passing token. These modifications are not necessary
reversible and thus an evaluation could not determine which input tokens would
yield output tokens.

To summarize, evaluation semantics promises to realize all intended properties
of activity diagrams but synchronizing elements pose great problems for this
style of evaluation.

136 Chapter VI. Case Study: Formalizing UML Activity Diagrams

Offer semantics The interpretation provided by Conrad Bock is called offer
semantics in this thesis. Two statements (taken from an email) outline his
opinion on the topic:

The offers act like ”tentative“ tokens, laying out a possible path
the token can choose from. [. . .]
Offers ”buffer“ in the sense that they can remain at a control node
until withdrawn.

In this semantics, offers are entities and thus part of the state an activity diagram
can be in. Offers represent the possibility that a token might flow down from
the node where it is resting now to the elements where the offer now resides. In
this view, offers cache partial results of the evaluation. Since these results can
be buffered, the evaluation of synchronizing elements becomes trivial, as they
once again only have to check their local context for the right conditions. Thus
the problem of backward evaluation is avoided.

Yet, another fundamental problem occurs with this kind of semantics: Since
offers embody cached evaluation results and are part of the system state, it
has to be ensured that they are kept up to date with a concurrently changing
environment (which might influence the evaluation results). An obvious change
would be that the base token of an offer is accepted by some element. All other
possible ways the token might have moved become instantly invalid. This must
be reflected by removing the respective offers. Changes in the environment of
the Activity Diagram might also modify data values that have been used to
evaluate guard conditions. As these changes happen outside of the scope of the
activity diagram and their impact cannot be determined without a complete
reevaluation of the net, it is hard to ensure that offers remain valid with respect
to these changes. The UML authors, however, chose to disregard this problem,
as the following quote by Conrad Bock (personal email) states:

Only modelers using token competition will need to know about
the token/offer distinction. They will naturally distinguish the de-
cision to move a token (which might take time) versus the actual
movement, because the timing of the decision cause race conditions.
UML just says they need to understand offers to structure the deci-
sion process.

Actually, I think this is an interesting area to explore. Deci-
sions to go down a certain path might be revoked. This is usually
addressed by transactions, and workflow has the concept of com-
pensation, which is a way of ”undoing” a transaction that is already
completed. We decided not to bring this into UML until we under-
stood it better, but it does have some tools for this, such as exception
parameters and protected nodes.

Thus, the offer semantics in UML allows for concurrent changes to past decisions
without the offers becoming invalid. Accepting an offer then means a ”jump“
of the base token to the accepting place rather than a flow of the token along
the path taken by the successful offer (since this path might not be open any
longer).

Since this evaluation style is the one advocated by the UML’s authors and
the locality of decisions is easy to understand, we proceed to investigate this

VI.1. Eliciting the Semantics of UML Activity Diagrams 137

interpretation of Activity Diagrams.

The general framework of token/offer semantics can be realized in various ways.
Once again, details are neither supplied by the specification nor by supplemental
publications.

Offers at places and at edges It is not yet clear on which elements an offer
can reside. As offers represent tokens, they obviously have to be able to exist
on a certain place (see also Conrad Bock’s quoted remark above). Rumbaugh’s
clear statement that activity edges resemble Petri Net places (see above) can
be used to justify the existence of offers also on edges. Since edges can impose
quite complex conditions on the tokens moving over them, it might be beneficial
to separate the evaluation of these conditions from the evaluation of conditions
imposed by the target node. This modularity is one of our goals, thus we allow
offers to reside on edges. However, by buffering offers on edges, additional
steps are introduced into the evaluation process and one has to take care not
to introduce additional and unwanted effects due to the increased possibility of
concurrent interactions. To avoid effect like the ”overtaking“ of offers on an
edge, we allow only one offer to reside on an edge.

Static versus moving offers Offers can be seen as static information, i.e., they
represent the fact that the element they currently reside upon is connected by
an open path to the element that holds the base token of the offer. In this
interpretation, all elements along this path will also carry offers. The advantage
of this interpretation is a flexible evaluation as all partial evaluations are stored
and the algorithm can advance any of them. Even guards changing concurrently
to the evaluation could be taken into account (at least in the enabling case).
The disadvantage of static tokens is that a multitude of offers exist for one
token. Whenever this token is removed, an extensive cleanup operation has to
be initiated to delete all these—then invalid—offers.

The other possibility is that offers represent only the recently visited elements
of this path and once the impact of this offer has been taken into account,
it is removed. In this interpretation, offers ”move“ along the paths, possibly
duplicating at forks. This interpretation of offers is closer to the formulations
chosen in the semantics guide but it requires an algorithm that exhaustively
evaluates elements which might result in multiple offers, i.e., a breadth-first
search. The effort for cleaning up invalid offers is reduced with moving offers
(in control structures that do not involve token competition or forks no cleanup
is needed). We thus employ the concept of moving offers in our definition of
AD’s semantics.

Non-determinism Further variations can be identified in the treatment of non-
deterministic choices. Non-determinism exists naturally in situations of token
competition and may additionally occur because conditions can not properly
be evaluated5. There are basically three ways of dealing with these situations:
Either all choices are evaluated concurrently, a backtracking mechanism is used

5Currently, there is no prescribed syntax for the formulation of guard conditions

138 Chapter VI. Case Study: Formalizing UML Activity Diagrams

to exhaustively search all possibilities, or a non-deterministic evaluation mech-
anism is employed. Each of these methods comprises certain disadvantages:

Backtracking requires storing information on taken decisions and information
to roll back the effect of failed decisions. For human consumption, this large
overhead of organizational data is not suitable.

Evaluating all possibilities in parallel is certainly the most suitable approach
(for Activity Diagrams) since it conforms best to the notion of ”competition“.
Parallel evaluation would also allow the introduction of fairness conditions to the
token competition6. The disadvantage of parallel evaluation of non-determinism
is that a multitude of offers may exist in a state of the evaluation. Since these
offers might originate in mutually exclusive decisions, an interaction between
them must be prohibited. Regard the action D in Fig. VI.5. Even if both
incoming edges carry offers, Action D should not execute under an parallel
evaluation scheme since the offer at the upper incoming edge represents the fact
that the upper edge leaving action A gets the token, while the offer at the lower
edge entering action D depends on action A supplying its token to the lower
outgoing edge. Thus, these offers represent two mutually exclusive possibilities
and can never be synchronized by a join or an action with multiple inputs.
Keeping track of these exclusivity constraints is possible but again introduces a
large amount of data overhead.

Relying on external non-determinism is possible in our approach as graph trans-
formation rules are applied non-deterministically on a host graph. We can thus
assume that the complete LTS generated by the set of DMM rules will evaluate
the ’right’ choice anyway (if one exists). While we are aware that using this
style of evaluation is not entirely correct with respect to the UML author’s in-
tentions (as unsuccessful paths will also be evaluated and will thus become part
of the resulting LTS, forming ”dead ends“), the benefits in reducing the overall
complexity of the specification justify this deviation. We use this option in our
definition of AD’s semantics.

VI.1.3 Summary of Our Understanding of Activity Diagrams

At various points in discussion in the previous subsection we made decisions
on the way we choose to interpret UML’s activity diagrams, thereby clarifying
open points or resolving inconsistencies. We will summarize these decisions here
before we provide the formalization for this understanding.

Tokens Tokens are defined by the UML specification and we only give a brief
overview here: Tokens represent either some data or computational object or a
focus of control. Control tokens can only rest at action and object nodes. It is
important to note that object tokens are only pointers to the underlying data or
object, thus manipulations to the token (e.g. destroying it) will leave the data
unchanged.

6currently such fairness conditions are not imposed in activity diagrams

VI.1. Eliciting the Semantics of UML Activity Diagrams 139

B

A

C

D

E

B

A

C

D

E

Figure VI.6: Example for the effect of accepting a spawned offer

Offers An offer is an entity that represents a token for evaluation purposes.
Each offer represents the fact that the evaluation has found an open path from
the current position of the base token(s) to the current position of the offer.
This position may be at nodes as well as on edges. An offer ”flows“ in a step-
wise fashion downstream through the activity graph. The movements of the
offer underlie the conditions the different elements pose to its underlying token.
Nodes can increase or decrease the number of offers in the graph by copying
offers or merging them.

Action and Object Nodes An offer can only be accepted by a node whose type
allows the base token of the offer to rest, i.e., an action or object node. Once an
offer is accepted, the base token(s) are moved from their original position and
placed on the accepting node. The number of departing and arriving tokens
may differ due to forking and joining of tokens. All other offers referring to the
base token(s) are immediately notified of the removal of their base token and
cease to exist.

Control Nodes If an offer encounters a fork node, copies (spawns) of the offer
are placed on each outgoing edge of the fork node. If one of these offers is being
accepted, copies of its token must be enqueued at the edges of the other (non-
successful) offers. Fig. VI.6 illustrates this process. The left hand side of this
figure shows an activity diagram state with a token at the output of action A
and three of its offers with the dotted lines indication their spawnpoint(s). The
right hand side of the figure shows the state of the same diagram after action
B accepted the uppermost offer. All other offers have been withdrawn and
tokens have been enqueued at the intermediate forks to enable the subsequent
execution of the remaining actions.

If all incoming edges of a join carry an offer, these offers are removed and a
new offer is being created on the outgoing edge. This new offer has the union
of all base tokens of the removed offers as its base token and the union of all
spawnpoints of the removed offers as its spawnpoint. Note that it is as of now
unclear how different data tokens are joined (cf.[FTF], issue 7013), thus offers
referring to data tokens will not be joined, unless they all refer to the same base

140 Chapter VI. Case Study: Formalizing UML Activity Diagrams

token (cf. [FTF], issue 6367).

Edges Edges can carry at most one offer at a time. The base token of the
offer must conform to the criteria given by the guard of the edge7. If an offer
has multiple base tokens, only one needs to be evaluated (since multiple base
tokens need to be control tokens (cf. semantics of the join) and control tokens
are indistinguishable).

VI.2 Excerpts from the DMM Specification of Ac-
tivity Diagrams

Our intuitive understanding about UML’s Activity Diagram has been success-
fully formalized in the DMM technique. The complete results of this formal-
ization are presented in Appendix B. Here, we only show a few excerpts of
this formalization to demonstrate the feasibility of the concepts introduced in
Chapters III to V. In particular we show the package structure of the semantic
domain meta model for Activity Diagrams (Subsect. VI.2.1), some of its classes
(Subsect. VI.2.2), and the rules specifying the token/offer flow mechanism as
outlined above (Subsect. VI.2.3).

VI.2.1 Package Structure of the Semantic Domain Meta
Model for Activity Diagrams

The semantic domain meta model for Activity Diagrams contains more than
30 classes, despite not supporting all features of activity diagrams. It should
therefore be subject to a high-level structurization as described in Sect. V.4.
Fig. VI.7 provides an overview of the different packages we defined and their
relationships.

We can see that a nice structure emerges in which core packages (which define
central concepts like Instance or BehaviorExecution are imported and supple-
ments by the more specialized packages of Activity Diagrams. All packages
conform to the restrictions set out in Sect. V.4.

VI.2.2 Class Structure of the Core Activities Package

Zooming into the Core Activities package we find the class structure depicted
in Fig. VI.8.

In this package the core concepts of Activities are captured. Replicated in-
tensional classes are Activity, capturing an Activity specification build up from
ActivityElements, which are Nodes and Edges. The extensional elements are con-
centrated on the left hand side of the figure, with ActivityExecution being the
main class to capture the execution of an Activity. Such an ActivityExecution

7Since no notation is provided for the formulation of guard conditions and introducing one
would go beyond the scope of this thesis, we treat all guards as being constantly true.

VI.2. Excerpts from the DMM Specification of Activity Diagrams 141

Core Structure

Ordering

Core Behavior

Core Activities

Buffernodes

Core Actions Controlnodes

Actions

«merge»

«import»

«import»

«merge»

«import»

«merge»

«merge»

«merge»

«merge»«import»

«import»

«merge»

«merge»

«merge»

Figure VI.7: The package structure of the semantic domain’s meta model for
Activity Diagrams

Token
Offer

Edge

ControlToken

ObjectToken

Node

ActivityElement

1

*

carries ◄

ValueSpecification

guard0..1

target incoming

*1

source

outgoing

*

1

1

base *

Object

(from Core Structure)

content

reference*

1

Activity

*

1

OrderableElement

(from Ordering)

Root

(from Ordering)

Behavior

(from Core Behavior)

BehaviorExecution

(from Core Behavior)

ActivityExecution

*

Core Activities

*

spawnpoint

Figure VI.8: The contents of the Core Activities package

142 Chapter VI. Case Study: Formalizing UML Activity Diagrams

getAccepted()

notifySpawnpoints()

destroy()

Offer

copyContent(original:ObjectToken)

withdrawOffers()

destroy()

Token

Figure VI.9: Details of the Token and Offer class

can comprise a number of Tokens which come either as a ControlToken or as an
ObjectToken. All Tokens can form the base for an Offer which is moves over the
elements of the activity. Note that the placement of tokens is not yet specified
as tokens can be placed on Buffernodes only which are defined in a separate
package. An Offer can designate a certain node as its spawnpoint, indicating
that it has been spawned at this particular node.

The display of this class structure substantiates several claims we made in the
conception of DMM:

u The semantic concepts become more precise. For an offer, e.g., we can
clearly perceive that it is an entity and not an evaluation procedure. We
can also see that an offer always has a base token but not necessarily only
one.

u The replicated intensional elements are tightly coupled with their exten-
sional counterpart. Thus the replication really makes sense as navigation
between the relevant elements is easier than referring to the external se-
mantic Relations.

u Replicated intensional elements undergo slight changes. If you compare
the class Edge to its syntactical counterpart you will notice that UML
defines two kinds of edges: Dataflow and Controlflow. These, however, are
syntactically important concepts only as they are used for ensuring that
complex paths are traversable by either control or object tokens. Seman-
tically, these edges perform the same functions and thus the difference
between them is not replicated here.

u Auxiliary elements are introduced to facilitate the formulation of concise
rules. The package Ordering defines a mechanism to order sets for an
iterative processing. We can see it being used in the Core Activities package
by making Token, Node, and Edge OrderableElements. These elements can
be ordered in some context, e.g., the set of outgoing edges from a fork
node will be ordered. The class Node can also play the role of a Root for
such an order.

VI.2.3 DMM Rules for Tokens and Offers

As Fig. VI.8 omits internal details of the classes, Fig. VI.9 provides these details
for the Token and Offer class. We proceed to discuss the rules for some of their
operations.

VI.2. Excerpts from the DMM Specification of Activity Diagrams 143

offer.GetAccepted()

new:Nodeoffer:Offer
carries

t:ObjectToken

base

old:Node

2:withdrawOffers()

container
{destroyed}

container{new}

offer.GetAccepted()

new:Nodeoffer:Offer

carries

{destroyed}

t:ControlToken
base

s:ControlToken

{new}

2:withdrawOffers()

container

{new}

3:destroy()

:ActivityExecution {new}

1:notifySpawnpoints()

1:notifySpawnpoints()

Figure VI.10: DMM Rules implementing the operation offer.getAccepted()

Operation offer.getAccepted

The rules implementing offer.getAccepted are shown in Fig. VI.10. We can see
that there are two rules specifying this operation. The rules differ in that the
upper rule describes the acceptance of offers based on an object token while the
lower rule describes the acceptance of an offer based on one (or more) control
tokens. In the former case we can observe structural manipulations in the graph
which amount to moving the underlying token to its new location (deletion
and re-creation of the container link). The rule also invokes the operations
notifySpawnpoints on the accepted offer and withdrawOffers on the moved token.

For control tokens, movement of the token is realized differently (see the lower
rule in Fig. VI.10). Since different flows of control may be combined at a join
node, an offer may represent several control tokens at once. As control tokens
do not carry any information, the simplest way of dealing with this situation is
to delete the set of all base tokens of the offer and creating a new control token
at the accepting node.

The rules for offer.getAccepted demonstrate several features of DMM rules:

Encapsulation of behavior The operation getAccepted describes the process of
accepting an offer. All other behaviors which entail the acceptance of
offers (e.g., the start of an action) simply invoke this operation which
performs all necessary manipulations. The operation is, on the other hand,
not directly responsible for the consequences the movement of the token

144 Chapter VI. Case Study: Formalizing UML Activity Diagrams

offer.notifySpawnpoints()

queue:CentralBufferN

ode
offer:Offer

t:Token
base

:Forknode

queue

spawnpoint

{destroyed}

1:offerAccepted(t,queue)

offer.notifySpawnpoints()

:Nodeoffer:Offer

spawnpoint

2:notifySpawnpoints()

destroy()

Figure VI.11: DMM Rule implementing the operations offer.destroy()

has on other offers. For this it simply invokes other rules dealing with
these issues. In this way, responsibilities for complex manipulation can
be distributed between different rules, keeping the single rules simple and
avoiding redundancy and inconsistencies in the complete rule set.

Treatment of different cases The two rules for the operation getAccepted also
demonstrate how different cases can be treated by a single operation.
Other rules invoking getAccepted need not care about the different treat-
ment of object and control tokens. Internally the different rules imple-
menting the operation distinguish between these situations and treat them
accordingly.

Execution Order The execution order of the rule’s own manipulations and its
invocations is also showcased by these rules. As the rule’s own manip-
ulations are carried out before the invocations of other rules, the direct
deletion of the set of control nodes (i.e., labeling the UQS node ControlTo-
ken with {destroyed}) would not allow for the withdrawing of its offers
anymore, resulting in an illegal system state (offers without a base to-
ken). Thus, an explicit destructor operation for the token class is used
which is specified (by the sequence number) to apply after the invocation
of notifyOffers.

Operation offer.notifySpawnpoints

The operation notifySpawnpoints is responsible for initiating the enqueuing of
token copies at the relevant fork nodes. This operation is performed by the
accepted offer. Two rules implement this operation (see Fig. VI.11). The lower
rule in the figure states the fact that there is nothing to do for offers without
spawnpoints. The upper rule applies to offers which have a spawnpoint. It nav-
igates over the spawnpoint to its forknode and invokes the operation offerAccept

VI.2. Excerpts from the DMM Specification of Activity Diagrams 145

token.destroy()

:Offer
token:Token

{destroyed}
base

destroy()

token.destroy()

:Offer
token:Token

{destroyed}
base

Figure VI.12: DMM Rule implementing the operation token.destroy()

on this node. Note that this rules is not part of the package Basic Activities but
of Buffernodes.

Again, we can demonstrate several principles and features of DMM rule in these
rules:

Recursive loops As indicated by the example in Fig. VI.6, an offer may have
more than one spawnpoint. The upper rule in Fig. VI.11 thus calls itself
recursively. By deleting the links to the already processed spawnpoints, it
ensures that the number of unprocessed spawnpoints steadily decreases.
If no more spawnpoint links remain to be processed, the lower rule of
applies and the recursion terminates. This is one way of processing sets
of elements.

Using NACs for disjoint matchings The rules implementing the operation noti-
fySpawnpoint differ in the existence or non-existence of a spawnpoint link.
The lower rule uses the construct of a NAC to ensure that it only applies
to situations in which there is no such link, thus ensuring that no conflict
occurs between the upper and the lower rule.

Parameter passing The invocation of offerAccepted carries information in the
form of parameters. The base token of the offer is being passed as it forms
the original to be copied to the other edges and the spawnpoint of the
accepted offer is passed to suppress enqueuing a token there.

Operation token.destroy()

The operation token.destroy() is a classical destructor. It is responsible for de-
stroying the object it is called upon while ensuring a legal system state. As the
token to be destroyed may have emitted offers which depend on its existence,
these must be destroyed, too. The upper rule in Fig. VI.12 thus localizes all
offers based on the token and triggers their destruction together with the to-
ken. Note that a UQS requires at least one match, this rule is not applicable
to tokens without offers. Thus, the lower rule in the figure takes care of this
situation.

146 Chapter VI. Case Study: Formalizing UML Activity Diagrams

The excerpts presented here give an impression of the way the DMM con-
cepts are applied to formalize our understanding of Activity Diagrams.
The complete specification is given in Appendix. B. We now move from
concrete details of the specification to a more abstract evaluation of its
properties.

VI.3 Discussion of the DMM Specification of Ac-
tivity Diagrams

When discussing the qualities of the DMM approach and how it meets the re-
quirements set of for semantics descriptions (see Sect. V.5), we point out that
due to the flexibility of the approach, some of its qualities depend upon the
concrete specification rather than on the general technique. In the following
subsections we thus discuss these qualities for the concrete example of the DMM
specification for UML’s Activity Diagrams. In particular these include quanti-
tative evaluations supporting the claim of understandability (Subsect. VI.3.1),
modularity discussions (Subsect. VI.3.2), addressing the inherent concurrency in
Activity Diagrams (related to the general quality universality, Subsect. VI.3.3),
and finally the adequacy of the specification (Subsect. VI.3.4).

VI.3.1 Understandability

One requirement for the technique of Dynamic Meta Modeling is that it should
provide a human-readable specification. While the diagrammatical nature and
the UML representation of our rules provides an intuitive appeal, we need to
discuss whether this appeal is retained in a full specification. Too large and too
complex rules and rule sets will hinder the understandability of a specification.
We thus evaluate relevant measurements of the DMM specification for Activity
Diagrams in this subsection.

The DMM specification for the basic and intermediate elements of Activity Dia-
grams contains 73 DMM rules. This can be considered a rather large number at
least in terms of comprehensibility by human readers. Aiding the comprehension
of the rules is the fact that they do not come in a single set but are structured into
operations of 35 classes which are themselves partitioned into 8 packages. No
single operation is specified by more than 4 rules (CallBehaviorAction.createSlot()
uses 4). Especially when rules are directly invoked, it should thus be rather easy
for a human reader to locate the candidates for the next rule application.

Another question of size is the complexity of the single rules. The rule with the
most elements is parameternode.accept with a total of 9 nodes, 12 edges and one
invocation. Most complex in terms of using special control features is the rule
fork.spawnOffer featuring two multinodes and a negative application condition.
Finally, in terms of invocations cba.execute is the most complex rule by using
three invocations. While these rules are certainly not trivial, their content is
still easy to grasp.

VI.3. Discussion of the DMM Specification of Activity Diagrams 147

We can thus state that the invocation mechanism of DMM rules indeed allow
for small rules without creating overly bloated rule sets or too complex control
constructs. To actually quantify how understandable such rules really are and
which additional techniques might be used to aid the reader in comprehending
the specification further research is needed. In particular, experimental studies
with intended users of the technique have to be conducted.

VI.3.2 Modularity and Extensibility

The structurization of the semantic domain into 8 distinct packages which all
obey the restrictions formulated in Sect. V.4 proves that modularity is achiev-
able in a DMM system. In fact the rule set lend itself to this structurization
rather easily in that is was originally conceived without the concrete packages
in mind and was partitioned afterward with only minimal changes. The rather
large number of �merge� relationships between the packages should not be a
reason of concern since (as explained in Sect. V.4) these stem mostly from the
introduction of new associations. In fact the only real behavioral extension of an
element in another package is the addition of an additional rule to the operation
offer.notifySpawnpoints. It can thus be stated that the necessary modularity can
be achieved.

Extensibility on the other hand poses some problems. In Sect. V.4 restrictions
are imposed on the way new specifications can extend old ones. In particular the
overwriting and modification of existing rules is not possible. Upon reviewing
the formalization of Activity Diagrams one can now state that it is possible to
obey these restrictions when formulating DMM rules. Yet, the example of the
class Offer also shows that this is not without problems. As the presentation
in Subsect. VI.2.3 shows, the semantics of class Offer are (partially) tailored to
support the way fork nodes are supposed to work. This now leads to the situa-
tion that the Core Activities package defines an association spawnpoint between
Offer and Node which at this point does not make any sense since fork nodes are
defined in the Buffernodes package. Unless fork nodes are involved in an activity
graph, no instance of this edge will ever be created. Likewise, allowing multiple
base tokens for a single offer is a design decision which can only be understood
if joining of offers is taken into account. And not only the structural features
but also the semantic rules have to take the extension into account: The rule for
offer.notifySpawnpoints is explicitly designed in a way to allow a later extension.
Thus the Core Activities package already provides design foundations which are
required by other packages. This situation can be regarded as an indication
that other concepts which we do not yet support also require the definition of
some fundamental structures and thus an adaption of the core packages.

VI.3.3 Degree of Concurrency

One core feature of UML’s activity diagrams is the expression of concurrency.
The explicit modeling of concurrency (by using forks/joins) as well as the lo-
calized control in the form of independent tokens are its most distinguishing
features in comparison to the other UML behavioral diagrams. Using DMM for

148 Chapter VI. Case Study: Formalizing UML Activity Diagrams

action.start*

inputpin.P_hasOffer

cbae.initialize
actionexecution.

collectInputs
cbae.executeBehavior

actionexecution.

collectInput

inputpin.acceptOffer

offer.getAccepted node.destroyTokenscbae.consumeData

token.destroy

offer.destroy

offer.notifySpawnpoints

cbn.enqueueCopy

cbn.enqueue

cbae.createSlot activityexecution.start

ParameterNode.

createToken

InitialNode.

createToken

action.execute

token.withdrawOffers

fork.OfferAccepted

Figure VI.13: Action related part of the call graph of the DMM system for
activity diagrams

VI.3. Discussion of the DMM Specification of Activity Diagrams 149

offer.getAccepted node.destroyTokens

token.destroy

offer.destroy

offer.notifySpawnpoints

cbn.enqueueCopy

cbn.enqueue

cbae.end*

cbae.

createOutputs

cbae.

createOutput

behaviorexecution.

destroy

outputpin.

createToken

cbae.

supplyData

activityexecution.

end*
cbae.accept* parameternode.accept*flowfinal.accept*

flowfinal.

destroyToken

activityfinal.accept*

activityexecution.

terminate

cbae.

terminate

token.withdrawOffers

fork.OfferAccepted

Figure VI.14: Part of the call graph of the DMM system for activity diagrams
concerning behavior ending and acceptance rules

offer.destroy

inputpin.flow*

outputpin.flow*

edge.P_canCarry

valuespecification.

evaluate

cbn.dequeue*

parameternode.

flow*

decision.flow*

merge.flow*

fork.getOffer*

fork.spawnOffer

initialnode.flow*join.flowin*

edge.P_hasOffer join.collectOffers

join.collectOffer join.add

join.flowOut*

Figure VI.15: Part of the call graph of the DMM system for activity diagrams
concerning flow rules

150 Chapter VI. Case Study: Formalizing UML Activity Diagrams

the specification of semantics, we can address concurrency by forming indepen-
dent big-step rules which apply non-deterministically. The LTS then contains
the set of all possible interleavings of the different concurrent behavioral steps.
The granularity units for this interleaving are formed by the big-step rules (and
their transitive invocation closure). Since the size of big-step rules is a modeling
decision it is worthwhile to investigate the size of big-steps in our specification.

We do this by investigating the invocation graph of the activity diagram DMM
system. Each node in this graph represents an operation in the semantic domain
meta model (i.e., one or possibly multiple rules). Operations with Big-Step rules
are shaded in gray and placed toward the top of the figures. A directed edge
runs between two nodes A and B if one of the rules representing operation A
calls operation B. Reflexive edges are possible and indicate recursive loops. The
graph is divided into several figures for reading convenience. Figs. VI.13 to
VI.15 show different portions of the graph.

We can observe that the operation action.execute has the most complex invo-
cation tree. Much of this complexity is caused by the fact that we modeled
the CallBehaviorAction which is one of the most complex action types. Alto-
gether a total of 20 rules can be involved in executing the big-step operation
action.execute. Since some of the rules have reflective edges, the number of ac-
tual rule occurrences might even be much higher (depending on e.g., the number
of input and output pins and the number of offers emitted by tokens accepted
by this action). An interpreter will thus spend a lot of time executing this
rule and will not permit concurrent evaluations. However, the semantics of ac-
tions demand that all their input tokens must be consumed at once. It is thus
impossible to divide this invocation tree since the detection of the necessary
preconditions (inputpin hasToken) and the consumption of the tokens need to
happen atomically. The execution of the actual action (cbae.execute) could be
separated from the invocation tree. However, we felt that this would not ac-
complish much to reduce the complexity. The effect of the invocations (i.e., the
execution of the invoked activity) and the execution of the originally invoking
activity happen concurrently.

Acceptance of tokens and terminating of executions (cf. Fig. VI.14) create
invocation trees of moderate size. Much of the complexity here stems from
withdrawing unsuccessful offers. Flows, the probably most commonly applied
rules, have a very shallow invocation tree, most flows only rely on the predicate
edge.P canAccept. Thus, the evaluation of control structures can indeed pass
in a very concurrent manner with an offer passing a single control node as its
atomic steps. This is equivalent in size of granularity to Petri Nets where tokens
passing a single transition form the atomic steps of the execution.

VI.3.4 Adequacy - Limits and Semantic Shortcuts

After discussing some more technical properties of the created DMM system,
we also want to critically review the adequacy, i.e. the semantic ”closeness“ to
the UML semantics description which we achieved with the formalization. In
should be clear from the extended discussions in Section VI.1 that we tried our
best to understand the intentions of the UML designers and act accordingly.

VI.3. Discussion of the DMM Specification of Activity Diagrams 151

We are aware, however, that we cut a few minor corners with our formalization.
These include the suppression of token duplication at outgoing edges from a fork
with failing guards and the restriction of object token joining to tokens with an
identical base object. We believe that the official semantics of the UML are not
very convincing in these points and that their formalization would have caused
an undue amount of additional specifications.

Another issue is the use of non-determinism in our formalization. We decided
to solve token competition situations by placing an offer on one outgoing edge
only. The same mechanism was employed in the case of decision nodes with
multiple enabled outputs. If a complete transition system is generated from the
DMM system, all possible decisions are evaluated. Thus, both elements work
in the same way. Upon close inspection, this is not precisely the case in UML.
Token competition situations are to be resolved by competing offers while a true
non-deterministic choice happens at decision nodes. Our formalization does not
reflect the intrinsic (if minuscule) difference in this point.

Overall, however, we can confidently state that our formalization does not only
reflect the UML author’s stated opinions (in the specification and in external
publications) but that it also manages to stay rather close to the terminology
and structure of the UML specification text. The only term which we explic-
itly introduced was the spawnpoint of an offer. All other extensional elements
(action execution, offers, tokens, etc.) appear in the UML specification text.
The semantic closeness is also indicated by the fact that the semantic mapping
is rather straightforward in most parts. in fact, we believe that based upon
the DMM specification, a clearer re-formulation of the UML specification text
would be possible.

The case study of formalizing UML Activity Diagrams provides proof
for the claims made in previous chapters. We can observe that in fact
the specification of semantics in the DMM framework is not only possi-
ble but that it is also modular, extensible, and stays within reasonable
limits in terms of size and complexity. Such qualities are, however, only
achievable in a specification if the Language Engineer aims for them.
In other words, it is perfectly possible to specify a DMM rule set for
Activity Diagrams which does not contain these qualities at all. In the
next chapter we thus provide a set of pragmatic rules which help future
users of this technique to produce DMM rule sets of high quality.

Chapter VII

Pragmatic Guidelines for
Formulating DMM
Specifications

Languages (be they technical or natural) provide the means to express certain
concepts. In this sense we can view Dynamic Meta Modeling as a language
which allows the user to express semantics of visual modeling languages. In
every sufficiently expressive language the problem arises that a vast number of
expressions can be constructed to describe the same concept in different ways.
This fact also holds true for DMM. A given set of semantic concepts can be
formalized by very different DMM specifications. Potential users thus require
guidance on the way an expression in the technique is to be constructed. This
chapter provides such guidance for the creation of DMM specifications.

A Language Engineer employing DMM to define a new Visual Modeling Lan-
guage is basically faced with the task of at first identifying the semantic concepts
that should be expressed by this VML. These concepts can then be formalized
using the techniques of DMM. While the formalization process yields a formal
specification, in itself it is not formalized. Bertrand Morand [Mor99] remarks:

It is more an activity that belongs to experimental sciences even
though it uses logic resources.

Does the term ”experimental science“ then imply that Language Engineers may
obtain DMM semantics specifications only by means of trial and error? Fortu-
nately, no! While there is no precise algorithm to describe the creation of DMM
specifications, assistance can be provided to a Language Engineer in a number
of ways.

In Software Engineering we usually distinguish between the definition of qual-
ities (global properties a specification should have), heuristics (guidelines for
local decisions aiming at certain qualities), methodologies (sets of ”best“ prac-
tices usually recommending an order of steps in which to create a specification)
and development processes (formal embodiments of methodologies including an

153

154 Chapter VII. Pragmatic Guidelines for Formulating DMM Specifications

organizational framework).

In this chapter we provide the former three types of assistance for the creation of
DMM specifications. We lay out qualities of a DMM specification in Sect. VII.1
and directly derive heuristics to achieve these qualities. As these heuristics are
solely focused upon the achievement of a single quality (which usually impedes
others), they must be applied in a balanced way. A methodology striving for
this balance is presented in Sections VII.2 and VII.3, providing guidelines for
formulating the semantic domain meta model and the rule set respectively.

Note, however that the methodology presented here is neither complete nor
universal. It is based upon our experience with applying the DMM technique
for a specific purpose and on specific examples (formalizing different parts of
UML’s semantics). The priorities underlying the design choices in Sections VII.2
and VII.3 reflect our intention to create primarily understandable specifica-
tions. For language semantics with different intentions (e.g., supporting efficient
analysability) these guidelines need not be appropriate. We do furthermore not
claim that we discovered all relevant qualities, heuristics, and guidelines for the
formulation of UML’s semantics, let alone that of other languages. But we
firmly believe that the information given in this chapter forms a widely applica-
ble set of such notions and that the assistance provided here can help new users
of DMM to employ the formalism quickly in a profitable way.

VII.1 Qualities of DMM Specifications and Heuris-
tics for their Achievement

The first step in guiding a Language Engineer to creating good DMM specifi-
cations is to actually define what we mean by the term ”good“, i.e., we need to
define qualities of a DMM specification. The qualities we identify and discuss
in this section are Correctness, Understandability, Modularity, and Efficiency.
These are, in our experience, the most relevant qualities for actually formulating
DMM specifications. Other quality notions (e.g., as explained for programs by
Ghezzi et al. [GJM91]) may also be applicable to DMM specifications; they will
emerge in the future application of DMM.

Two of these qualities (understandability and modularity) are already exten-
sively discussed for DMM in general (in Section V.5). The technique of DMM,
however, only allows for the achievement of these qualities. It is up to a concrete
specification and its use of DMM’s features whether it actually is understandable
and modular. We also discuss correctness and efficiency of a given specification.

Each of the (global) qualities discussed here is complemented by a list of heuris-
tics. These heuristics aim at providing support for local decisions to achieve the
global quality. Conflicts occur at two levels: On the one hand the quality goals
themselves are conflicting and need to be balanced. On the other hand even
different heuristics striving for the same goal may formulate conflicting ways to
achieve this goal. The methodology presented in the next sections attempts to
procure these conflicts.

VII.1. Qualities of DMM Specifications and Heuristics for their Achievement 155

VL Specification

Syntax

Semantics

«Dynamic Meta

Modeling»

«Language Engineer»

«syntactical

correctness»

Definition of DMM

«semantical

correctness»

Figure VII.1: Illustration of the difference between syntactic and semantic cor-
rectness of a DMM specification

VII.1.1 Correctness of DMM Specifications

There are actually two notions of correctness of a specification, both of which
are not subject to concrete heuristics: The first notion is that a specification
should be correct in regard to the technique used (syntactic correctness), the
second notion is that the specification expresses what it is supposed to express
(semantic correctness)

Syntactic Correctness

Language definitions provide precise guidelines to decide syntactic correctness.
For every expression in a language we can decide whether it meets the criteria
set out by the definitions and can thus be considered as a syntactically correct
expression. In Fig. VII.1 this situation is illustrated by the dashed arrow be-
tween the (formal) definition of the DMM technique and the specification under
consideration.

For DMM these formal definitions are provided in the Chapters III to V. If, e.g.,
a specification contains rules which do not obey the restrictions necessary for
behavioral conservatism (cf. Sect. V.4) then this specification is not a syntacti-
cally correct DMM specification. As the definitions provided there are precise
and formal, we will not discuss this notion of correctness in the following any
further but we will assume all specifications to be at least syntactically correct
DMM specifications.

Semantic Correctness

The second notion of correctness is semantic correctness. It is comparable to
the notion of functional correctness for programs:

156 Chapter VII. Pragmatic Guidelines for Formulating DMM Specifications

A program is functionally correct if it behaves according to the
specification of the functions it should it should provide (called func-
tional requirements specifications) [GJM91], p.20.

Note that functional correctness is expressed in relation to a given specification.
For a semantics definition, no such previous specification exists. In Fig. VII.1
this fact is illustrated by the thought cloud of the modeler which contains his
imaginations of semantic concepts. Since this ”reference“ is intangible to all
external verification, the only person able to judge whether a specification is
semantically correct is the modeler himself.

For DMM specifications this situation means that a DMM specification can
be considered to be semantically correct by the simple fact that the Language
Engineer creating it (or the standardizing body publishing it) claims it to be
correct.

Semantic correctness is the prime requirement for a specification and is not
subject to compromises with other qualities. It simply does not make sense
to consider highly efficien, but unfortunately incorrect specifications. For the
following discussions we will assume that DMM specifications exist which are
equal in their semantic correctness but which differ in regard to other criteria.
Among such a choice we can then proceed to optimize with regard to other
qualities.

VII.1.2 Understandability of DMM Specifications

Understandability (from a human reader’s point of view) is a prime requirement
for the whole DMM technique and care has been taken to enable the creation of
understandable DMM specifications. It is, however, perfectly possible to provide
DMM specifications which are highly unintelligible1. To provide a high degree
of understandability, the following heuristics should be applied:

(U1) Use clear terminology. The actual mechanics of a DMM specification are
in large parts based upon the terms defined in the semantic domain meta
model. These terms should be as meaningful as possible.

(U2) Do not change replicated intensional elements. Advanced users of a lan-
guage can be assumed to know its (syntactic) meta model. Replicating
these intensional elements in the semantic domain should not alter their
definition. Thus users can rely on their existing knowledge in the inter-
pretation of the semantic domain meta model.

(U3) Modularize according to meaning. The conception of what should actually
constitute a rule or which elements make up a package should be founded
upon the intention and behavior of such elements.

(U4) Make information explicit. A DMM specification is subject to manual in-
spection as much as to automatic interpretation. One should avoid to rely
on implicit information when formulating DMM specifications.

1Using confusing names is usually a good strategy to sabotage understandability.

VII.1. Qualities of DMM Specifications and Heuristics for their Achievement 157

:BufferNode

A:Token

B:Token

C:Token

next

next

first

:BufferNode

A:Token

B:Token

C:Token

next

next

first

queued

queued

queued

Figure VII.2: Different alternatives in encoding the queued property, implicit
(left) and explicit (right)

As an example for such implicit information can be found in the queuing
of tokens at buffer nodes. The fact that a token is queued in a node can
be implicitly derived from the fact that the token is in an ordered list for
which the buffer node forms the root element. For human users, however,
the explicit introduction of a queued link between all queued tokens and
the queuing buffer node is much more intuitive. Fig. VII.2 illustrates this
difference with two examples.

(U5) Avoid auxiliary constructions. Auxiliary constructions which do not serve
any semantical but solely a technical purpose should be avoided.

(U6) Keep rules small. A single rule should not be too complicated. Cognition
theory indicates a number of 7 to 9 nodes to be the maximum of what can
be easily perceived by a human reader.

(U7) Keep rule sets small. A rule set should be as small as possible. While com-
plex semantics certainly require large rule sets, excess should be avoided.

(U8) Limit invocation hierarchies. Language readers can have trouble deriving
the meaning of operations if their effects are spread over very deep or broad
invocation trees. The graph manipulations implied by an operation then
have to be assembled from all involved rules. Combining manipulations
in single self-contained rules is preferable.

(U9) Prefer UQS to iterations. The Universally Quantified Structures feature of
DMM is a very concise way to specify sets of elements. From the viewpoint
of understandability it is preferable over the mechanism of iterating over
elements of a set.

158 Chapter VII. Pragmatic Guidelines for Formulating DMM Specifications

VII.1.3 Modularity of DMM Specifications

At several places in this thesis we emphasize the need for modular and exten-
sible semantics specifications. Again, DMM provides mechanisms which enable
modular specifications, but the characteristics of a concrete rule set determine
whether it is truly modular, maintainable, and extensible:

(M1) Highly modularize operations. Each graph manipulation and meaningful
condition should ideally be separated in its own operation. Examples
are, e.g., dedicated destructor and creator operations which ensure that
manipulation to the graph structure are always carried out in a consistent
way. Changes to the underlying graph structure (by language extensions)
can thus be dealt with by changing only the accessor rules of the respective
elements. If used consequently, newly added rules only have to specify the
additional behavior and can invoke existing operations for everything else.

(M2) Pass relevant information as parameters. Information which is relevant to
invoked operations should be passed as parameters. This reduces the
reliance of invoked rules upon structures outside of their context and im-
proves modularity.

(M3) Keep rules minimal. Rules should only match the elements necessary for
their own execution. The matching of additional elements (i.e., early pre-
conditions checking) relies on implicit information about the construction
of the invoked rules. Such implicit connections break the modularity and
reduce maintainability.

VII.1.4 Efficiency

Efficiency is not an explicit requirement for the construction of the DMM tech-
nique. In general, we assume all activities relating to DMM specifications (i.e.
validating test cases, proving semantic equivalence etc.) neither to occur very
frequently nor to be very time-critical. These assumptions justify the use of
graph transformations in our approach. Executing graph transformation rules
is—in general—not very efficient.

In fact, matching rules on a graph (i.e., finding a subgraph isomorphism) is an
NP-complete problem (problem GT48 in [GJ79]). In practical applications—like
the use in DMM—most graph transformation rules expose benign properties:
Rules are small in comparison to the underlying host graph, graphs are typed,
applicable rules limited by control structures, occurrences are (partially) de-
termined by already matched elements, and the node grades constrained. Un-
der such circumstances, a single graph matching can be computed efficiently
[Zün96, Dör95].

A second factor which influences the efficiency of the automatic interpretation of
DMM specifications for a concrete model is the size of the ensuing LTS. For each
state resulting from the application of a rule, an isomorphism check has to decide
whether it is already contained in the known part of the LTS. This check is also
computationally complex (while not proven to be NP-complete [GJ79]). The

VII.1. Qualities of DMM Specifications and Heuristics for their Achievement 159

number of already generated states and their size are the determining factors
for this check.

Within the limits posed by the general use of graph transformations, a Language
Engineer can strive for efficiency in a rule set by ensuring that a single rule
matching can happen efficiently (heuristics (E1) through (E6)) and that the
size of the ensuing LTS is kept minimal ((E6) to (E11) with (E6) effecting both
goals).

(E1) Avoid large rules. Each rule element must find a correspondent in the host
graph. Smaller rule can thus be matched faster. Rules should be small in
comparison to the underlying state graph.

(E2) Minimize rule sets. The complexity of rule matching is proportional to the
set of rules to check for possible matchings. Thus the number of rules
should be reduced to a minimum.

(E3) Minimize state graphs. In formulating the semantic domain meta model,
the structures of the state graph are determined. When creating this meta
model one should aim for a minimal set of classes. Information which
can be encoded in attributes should not be exposed as separate classes.
Redundancy should be avoided.

(E4) Avoid long paths. If nodes in a rule are connected via long paths (maybe
even arbitrarily long ones via the use of preconditions) the matching of
the rule will become extremely slow. If possible, the introduction of direct
connections (”shortcuts“) abbreviating these paths helps to facilitate an
efficient match.

(E5) Create large interfaces. The more elements are passed as parameters in a
rule invocation, the easier the matching of the invoked rule becomes since
many of its elements can only find a single pre-determined match.

(E6) Avoid unconnected rule nodes. A high connectivity between nodes of a rule
allows for a more efficient matching as candidate sets for unmatched rule
nodes can be quickly determined. Unconnected nodes can be matched by
every node of the correct type causing broad branching in the LTS.

(E7) Avoid invocations. Each rule invocation creates a new intermediate state
in the transition system and requires an additional rule matching. A high
number of self-contained rules or relatively small invocation trees thus
help to make the interpretation more efficient.

(E8) Use UQS. For matching or manipulating sets of elements the mechanism
of the UQS should be applied whenever possible as it results in the ap-
plication of a single rule only, while an iteration usually comprises the
application of (at least) three rules, thus enlarging the LTS.

(E9) Specialize rule nodes. Nodes in rules should always have the most spe-
cial subtype applicable. This reduces the chances of (possibly erroneous)
matches with unintended nodes. The worst case in terms of efficiency is
an anonymous node in a rule as every host graph node can fill this role.
The LTS expands dramatically upon applying rules with anonymous (and
possibly unconnected, see above) nodes.

160 Chapter VII. Pragmatic Guidelines for Formulating DMM Specifications

(E10) Generalize state graph nodes. Nodes created in the state graph should
be as general as possible. Especially the assignment of names for auxil-
iary elements should be avoided as anonymous elements can be identified
during isomorphism checks, thus reducing the size of the ensuing LTS
significantly.

(E11) Avoid failing invocations. Big-step rules should (as far as possible) check
that the preconditions for their successful execution (including called
rules) are present. This avoids the unrolling of long derivations which
are ultimately unsuccessful.

It is obvious that these heuristics are highly contradictory. Following, e.g., the
advice of Heuristic (E8) and using UQS for the processing of sets will usually
result in larger rule sets, thereby violating (E2) as the UQS is unrolled to plain
graph transformations. Similarly, (E1) and (E2) cannot be both fulfilled opti-
mally as a splitting of large and complex rules will increase the size of the rule
set. The methodology provided in the next sections will place these heuristics
in a pragmatic context.

VII.2 Guidelines for Formulating the Semantic Do-
main Meta Model and Relations

The purpose of the semantic domain meta model is to explicitly introduce se-
mantic concepts and to form the basis for the formulation of DMM rules (cf.
Section V.1). The process of its conception and the creation of the necessary
semantic relations can be divided into five separate steps:

u The conception of extensional entities and their structure

u The replication of intensional elements and their modification

u The introduction of auxiliary elements and structures

u The relation of syntactic and semantic domain

u The definition of packages

The following subsections provide details on each of these steps. As a running
example we provide an extract of the case study of UML Activity Diagrams.

VII.2.1 Conception of Extensional Entities

The first step in creating a suitable semantic domain is the explicit formulation
of semantic concepts. It has to be clarified which concepts are considered to
be part of an interpretation state and do thus constitute extensional entities.
Classes in the semantic domain meta model represent these entities. Associ-
ations between the classes express the relations between the different entities.
Attributes and multiplicities can be used to further refine the structures of the
meta model.

VII.2. Guidelines for Formulating the SD Meta Model and Relations 161

Token Offer
*base

1..*

Figure VII.3: Extensional elements in the semantic domain meta model

Token

ControlToken ObjectToken

Object

1 content

*

type: Tokentype

Token

Object

0..1 content

*

Token

Object

0..1 content

*

(a) (b) (c)

Figure VII.4: Three different alternatives to capturing different token types in
a semantic domain meta model

The discussion in Sect. VI.1 demonstrates this process. It is aimed at clarifying
the role of the term ”offer“ for the semantic domain meta model for Activity
Diagrams. The conclusion is that the term offer as used in the UML semantics
description constitutes an entity and is thus part of the semantic domain meta
model. Figure VII.3 illustrates that our semantic domain meta model contains
the classes Token and Offer and the detailed association between them.

Regarding the level of detail present in the definition of the extensional elements,
one has to bear in mind that elaborate meta models allow for elaborate state
graphs. On the one hand this increases the possibilities for a high number of
big-step rules in the operational rule set as much information can be encoded in
the state graph. On the other hand, elaborate state graphs impede efficiency of
rule matching. The aim is thus to strive for conciseness here, without sacrificing
readability (i.e., weighing (U8) against (E4))

Another design decision is whether to formalize necessary information as sep-
arate classes, as attributes, or by association. Different requirements from un-
derstandability and efficiency need to be respected in this decision.

Fig. VII.4 illustrates such a design problem for the case of tokes. To distinguish
between tokens representing an object and tokens representing control one may
either (a) create separate classes (and a generalization to the common concept),
(b) encode the information in an attribute, or (c) rely on the fact that the
existence of a content object is sufficient to mark object valued tokens. The
latter solution complicates the formulation of rules as they always have to check
for the presence or absence of the content element. The solution (b) allows for

162 Chapter VII. Pragmatic Guidelines for Formulating DMM Specifications

a local check on the type of the token by introducing an attribute but conceals
the token differences rather than revealing them (violating (U4)). Additional
constraints have to ensure that the attribute and the attached object always
remain consistent. Solution (a) involving separate classes is to be preferred
in this case. While it is the most verbose it also serves best to exemplify the
differences between the two types of tokens (U1). Rules can either be formulated
for the superclass Token (for common behavior) or for the special behaviors of
the subclasses. As the UML specification also explicitly coins the two terms
control and object token (U2), this solution is adequate.

VII.2.2 The Replication of Intensional Elements and their
Modification

In Sect. V.1 we argue for the replication of intensional elements in the semantic
domain meta model. The following considerations guide this replication process.

Omission of Purely Syntactic Elements

The primary purpose of the syntax meta model of a language is to describe the
possible constructions of its syntactic expressions. There may be elements in
the (syntactic) meta model which do not directly express semantics or which do
not express semantics in a formalizable way.

In the case of UML Activity Diagrams, the element ActivityGroup is such a purely
syntactic element. An ActivityGroup allows for grouping elements together. No
specific semantics is denoted by it, it is solely used for presentation purposes.
ActivityGroup is thus not replicated to the semantic domain meta model for
UML Activity Diagrams.

A distinction which is relevant from a syntactic but not from a semantic point
of view is that of ObjectFlow and ControlFlow. As discussed in Subsect. VI.2.2,
these elements can be unified to the semantic concept Edge (cf. the example in
Fig. VII.5).

Modifications to Replicated Intensional Elements

While (U2) discourages modifications to the replicated intensional elements,
such changes are sometimes useful to allow for more uniform processing or to
account for distinctions between syntactic elements and their semantic inter-
pretations. An example here is the extension of the concept of pins to cover
control-valued in- and outputs for actions. The problem stems from the fact
that UML uses pins as a syntactic element to distinguish between object and
control in- and outputs of an action. Semantically, this raises the question at
which element offers for control tokens are supposed to buffer until acceptance
by the action. Introducing pins for control tokens as well as for object tokens
allows for iterating over all in- and outputs of an Action uniformly. Thus we
accept a modification of the replicated intensional structures to allow for easier
formulation of the operational semantics part.

VII.2. Guidelines for Formulating the SD Meta Model and Relations 163

:Objectflow

:Controlflow

:InputPin

:Actionnode

:Edge

:Edge

:InputPin

:Action

:InputPin

Figure VII.5: Modifying the Actionnode element in the semantic domain (dis-
played on the right hand side)

:Object

A:Class B:Class

:Generaliz

ation

type

specific general

:Object

A:Class B:Class

type type

Figure VII.6: Illustration of the type flattening

The element Action also presents a modification in that its syntactic counterpart
is called ActionNode. While this name is suitable from a syntactic point of
view (Actions form nodes in an activity graph), the removal of the directly
connected edges and the semantics of actions, which is different from all other
nodes, makes it unsuitable for the semantic domain meta model. Thus Actions
are neither in character nor in name nodes anymore. An illustrating example
for this modification can be found in Fig. VII.5.

Introductions of Shortcuts

For efficiency (E4) as well as for understandability (U6) reasons the navigation
along long paths in rules is undesirable. In formulation of the semantic domain
meta model, one is able to introduce shortcuts which enable more direct naviga-
tion. An example for the use of this technique is the ”flattening out“ of type and
generalizations relations in the semantic domain meta model for UML Activity
Diagrams. Here, each object is connected to each of its types by a direct associ-
ation rather than by a direct type association and a path of generalizations (as
specified by the UML meta model). Fig. VII.6 illustrates this modification by
displaying a sample instance of the UML meta model on the left hand side and
its counterpart (an instance of the semantic domain meta model) on the right
hand side.

164 Chapter VII. Pragmatic Guidelines for Formulating DMM Specifications

Activity Activity

ActivityExecution

AtiRep

A2AE

11

1

*
*

1

Figure VII.7: Example for the relation of intensional and extensional classes

VII.2.3 Introduction of Auxiliary Elements and Structures

To facilitate an easier formulation of rules, auxiliary elements may be introduced
to the semantic domain meta model. These additional elements should be used
sparsely, though. Since they do not really comprise semantic information they
may confuse readers (U5). They furthermore extend the state space and may
thus impair efficiency (see (E3)).

An almost indispensable auxiliary construct is the linked list. Linked lists allow
to impose an explicit and graphically specified order on sets of elements. This
order then allows for an iteration over the set. An example for the application
of the linked list pattern can be found in Fig. VII.2, where tokens are queued
in an ordered list at a buffernode.

VII.2.4 Relation of Syntactic and Semantic Domain

The formulation of Relations connecting the elements of the syntactic and se-
mantic domain meta model is closely connected to the introduction of elements
as described above.

Relations to Pure Extensional Elements

Extensional elements usually serve to make the semantics of some specifica-
tion element tangible in the semantic domain. ActivityExecution, e.g., is used
to denote the execution of activities, thus Meta Relations between the UML
construct Activity and the extensional element ActivityExecution are introduced
(compare Fig. VII.7). Such Relations to purely extensional elements usually
carry the cardinalities of 1 at the syntactic and *(unbounded) at the semantic
end.

Relations to Replicated Intensional Elements

The replication process for intensional elements must be documented and con-
strained by the introduction of Relations. Usually, a 1:1 Relation connects the
original intensional element with its replicated extensional counterpart. Care
must be taken if modifications have been made to these elements: additional

VII.2. Guidelines for Formulating the SD Meta Model and Relations 165

constraints to the Relation might be required to ensure that information is repli-
cated in a suitable way. Especially in the case of introducing shortcuts for paths,
the features of OCL for handling (recursively defined) sets come in handy.

Relations to Auxiliary Elements

Auxiliary elements are usually not targeted by Relations as they are of a purely
technical nature and have no counterparts in the syntactic domain meta model.
Quite frequently, however, they influence other mappings, e.g., when introducing
orders to sets.

An overall concern when defining Relations is the consistency of the constraints
formulated for the syntactic domain meta model (e.g., its multiplicities), the
semantic domain meta model, and the Relations. For replicated structures,
this consistency is easy to achieve but other elements must be carefully checked
whether the given constraints are not contradictory. As a general rule the
constraints of the semantic domain meta model should at least be as restrictive
as the Relations targeting the semantic domain. In the example the association
between the (extensional) classes Activity and ActivityExecution thus carries the
same cardinalities as the Relation A2AE.

VII.2.5 The Definition of Packages

Packages (cf. Sect. V.4) are DMM’s way to achieve modular specifications.
Finding a good package structure allows for separating a complex specification
into several manageable parts. A good package structure can be characterized
by the properties of high internal cohesion and low external coupling.

Starting points for a package structure can be formed by considering which
elements have similar tasks (e.g., separating buffer and control nodes), which
elements interact frequently (behavior definitions and their executions) or which
are used in combination.

VII.2.6 Discussion

The methodology described in the previous subsections cannot be seen as a
single, one-pass process. It is rather a guideline along which an iterative devel-
opment of the semantic domain meta model can be structured. Especially the
construction of the rule sets (see next section) will probably induce changes in
the meta model as rules may call for the introduction of additional auxiliary el-
ements or a restructuring of packages (see Subsection VII.3.4). A major change
is that up to now no operations have been added to the classes. These opera-
tions (and their detailed interfaces) depend heavily on the detailed structure of
the rule set.

166 Chapter VII. Pragmatic Guidelines for Formulating DMM Specifications

VII.3 Guidelines for Formulating DMM Rule Sets

The methodology for formulating DMM rule sets is organized in four steps

u Partition behavior into big-step rules

u Distribute behavior on small-step and premise rules

u Formulate single rules

u Align rules with package structure

The following subsections provide details on these steps.

VII.3.1 Partitioning of Behavior into Big-Step Rules

The first step in the creation of a DMM rule set is the partitioning of behavior
into big-step rules. The following considerations underlie this separation.

Express Independent Behavior

Big-step rules provide units of synchronized behavior. They should thus ex-
press a unit of behavior which is ideally self-contained and concerns only a
single aspect. While these ideals strive for understandability (U3), sometimes
synchronization requirements enforce the combination of rather large blocks of
behavior under a single big-step rule (e.g., the starting of an action in UML
Activity Diagrams).

Enabling Concurrency by Big-Step rules

In states without open invocations, all big-step rules compete for the next match.
If two behavior steps are thus to be carried out concurrently (albeit not syn-
chronous) to each other, they should be specified in separate big-step rules. The
interpretation mechanism will then compute all possible application orders, i.e.,
an interleaving. The complexity of manipulations effected by the big-step rules
(an the rules they invoke) determines the granularity of the interleaving.

In the DMM rule set for UML Activity Diagrams, the flowing of offers over the
different elements is separated into big-step rules. Thus any of the existing offers
can be advanced in a big-step and the LTS will contain all possible interleavings
of the different offer movements.

Preparing for Change

Injecting new big-step rules is the easiest way to extend the behavior of DMM
specifications. Creating numerous smaller big-step rules (M1) provides more
possibilities for later additions. This does, however, come at the price of effi-
ciency losses (E2).

VII.3. Guidelines for Formulating DMM Rule Sets 167

VII.3.2 Distribution of Behavior by Using Small-Step and
Premise Rules

Following the initial conception of which parts of a behavior should be synchro-
nized in a big-step rule, the Language Engineer needs to decide how to distribute
the manipulation over different rules. The following situations indicate that the
invocation of a separate rule is advisable.

Rules become too complex

The prime motivation for employing the invocation mechanism is when the rule
at hand becomes too complex. (U6) suggests 7 to 9 elements as the maximum
number of nodes. If rules require more elements than that, splitting the behavior
into two rules connected by an invocation should urgently be considered.

Distributing Responsibilities

In keeping with the Object-oriented alignment of the DMM approach one moti-
vation for splitting a rule is to distribute the responsibility for behavioral steps
between different elements. Instead of a large complex rule with a central con-
trol, different nodes can carry out certain local manipulations in their context
with the invoking rule only coordinating these behaviors.

Execution order

Invocations allow for the ordering of executions. If a complex manipulation
requires a certain order of steps to be taken in its application, a rule can ex-
press this sequence by formulating these different steps in separate operations
and calling them in a specific order. A good example for such a rule is ac-
tivityfinal.accept which first accepts a token and then proceeds to destroy the
activity.

Rule exists

If for a particular manipulation a rule/operation has already be formulated,
all other rules should refrain from specifying the manipulation themselves and
invoke the responsible rule. Especially in the case of constructors/destructors,
only their consequent use ensures that the promised gains in maintainability
can be realized.

Rule may be reused

If the modeler suspects that a particular behavior can be used at different places
in the rule set, it should be separated into its own operation (following (M1)).
The offsets in terms of efficiency (E7) have to be accepted here.

168 Chapter VII. Pragmatic Guidelines for Formulating DMM Specifications

Branching

Whenever a behavioral step varies depending on the existence/absence of a
certain condition it should be placed in a separate operation which is then
detailed with a number of rules, each implementing one specific case of this
operation.

Handling sets of elements

Manipulating sets of elements can be handled in two ways: Either a UQS is
used and an invocation is posed to the UQS (which then results in the respective
behavior being carried out by all elements matched by the UQS) or an iteration
is created by a set of rules. Both mechanisms require the invocation of another
rule to actually carry out the manipulations.

Using UQS has advantages in terms of understandability (U9) and efficiency
(E8), albeit the latter depend on the native support of the interpreting mech-
anism for UQS2. In GROOVE (cf. Chapter VIII) no such support is provided,
thus the advantages are largely offset by the increased size of the rule set (as a
result of the unfolding mechanism). Without native support for UQS there are
also necessary limitations to the maximum number of elements matched by a
UQS. Should a host graph exceed this number, the rule set will not specify the
correct behavior.

In the AD rule set, e.g., the rule activityfinal.accept (Fig. B.37) makes use of a
UQS to terminate all running behaviors of an activity.

The alternative to using UQS is the explicit formulation of a (usually recursive)
iteration. This typically results in three rules: A first rule identifies the first
element of the set and invokes a processing operation on it. This processing
operation itself is implemented by two rules: one for processing an element
and invoking the processing of the next element and one to end the recursion
upon encountering the last element of the set. Variations of this general pattern
can occur. We recommend specifying explicit orders (see Subsect. VII.2.3) to
guarantee termination of the recursions.

As a general style we furthermore recommend following a naming pattern: The
rule for the identification of the first element should be named similar to the
processing operation, with the distinction of being formulated in plural. For
instance the rule actionexecution.collectInputs triggers the recursive application
of the rule actionexecution.collectInput on all inputs of an executing activity (cf.
Figs. B.53 and B.54).

VII.3.3 Formulating a single rule

The formulation of a single rule gives rise to considerations on the formulation
of its interface, its preconditions, and the manipulations actually carried out by
the rule’s body.

2To our knowledge no GT tools exist which natively support our notion of UQS.

VII.3. Guidelines for Formulating DMM Rule Sets 169

Construction of a Rule’s Interface

A rule’s signature or interface (and its corresponding operation’s interface) de-
termines the context object of the rule/operation and the parameters passed at
invocation time.

The context element, i.e., the node on which the rule is invoked, should a) have
direct connection to most if not all elements of the rule, b) determine most of
the other nodes in the rule by ”to one“ associations and c) be defined in the
same package as all elements which are being created or deleted. If a Language
Engineer consequently employs this style of specification, the rule set becomes
easily maintainable as all manipulations to elements of a package happen in
operations belonging to classes of this package. Efficient rule matching is also
supported as this style follows (E4) and (E6).

Note further that it is a general convention that the name of the context node
should reflect the class of the context node. This allows for a much easier
navigation of the rule set. For complicated class names, abbreviates may be
(consistently) used. For instance the context nodes of the operations of CallBe-
haviorActionExecution are called CBAE uniformly in the case study’s rule set.

Formulation of a Rule’s Preconditions

The formulation of a rule’s preconditions determine in which situations it is
applicable. Care must be taken to precisely determine the type of situation in
which the rule may be safely applied. If multiple rules implement the same op-
eration they must usually not be in conflict. Two rules are said to be in conflict
if the may match (partially) on the same elements of the host graph. To avoid
such a conflict the rules need to apply either to disjoint scenarios (e.g., the two
rules implementing offer.getAccepted (cf. Fig. B.16) differ in applying to offers of
object and control tokens respectively) or they depend on the presence/absence
of certain structures. In the latter case the absence must be formalized by using
a NAC (e.g., the rules for join.collectOffer (cf. Fig. B.47) differ in the presence
or absence of a next link to another input pin).

If the rule to be formulated is a small-step or premise rule, several elements (at
least the context node) are pre-determined since they are passed as parameters.
Note that all of these elements need to appear in the rule’s body. All other
elements of the rule can easily be matched if they are reachable from already
given elements by associations identifying the next element uniquely (E5). In
the ideal case such a matching is possible in direct connection to the elements
pre-determined by the interface (E6). If such direct and unique connections are
not possible, one should think about introducing shortcuts to the meta model
to allow for such direct connections (E4). Especially if long paths need to be
followed in a rule, one should take this optimization criterion into consideration.

Early Precondition Checking A big issue for the formulation of rule precon-
ditions is the question of early precondition checking : Especially big-step rules
initiate the execution of complex behavioral steps which most likely incorporate

170 Chapter VII. Pragmatic Guidelines for Formulating DMM Specifications

r1

:A :B

:U

r2

:A

:U
P_hasB

u.P_hasB

:B

u:U

Figure VII.8: Example for the different usages of the UQS construct

the invocation of other rules. The question is now to which extend should an in-
voking rule ensure that the preconditions for the application of all (transitively)
invoked rules apply?

The one extreme is that rules only ensure that the preconditions for their own
manipulations apply. The drawbacks here are that human readers are left some-
what guessing on the ”real“ applicability of the rule as the probability for later
failures is rather high (violating (U4)). In the creation of the LTS, numer-
ous attempted big-step applications will ensue, which ultimately fail (strongly
violating (E11)). Thus the effects of this alternative are most adverse to under-
standability and efficiency.

The other extreme is that rules try to ensure that all their invoked rules can
apply. Beside the point that this is not technically feasible in the general case
(as invoked rules may contains recursive loops etc.), it may also swell rules out
of proportion. Modularity of the rule set is in this case non-existent as rules
require detailed knowledge about all other rules which may be involved in their
invocations (severely violating (M3)).

A reasonable compromise is that big-step rules incorporate all preconditions
which either aid understanding or which prevent frequently occurring applica-
tion failures. As an example from the Activity Diagrams case study take the
rules for action.start in Fig. B.52. The rule checks whether all of its inputs have
acquired offers. This is a necessary precondition to understand when an action
executes and it prevents actions trying to start prematurely. Small-step rules
should in general not perform early precondition checking.

UQS in preconditions Using universally quantified elements in a rule’s pre-
condition gives rise to two additional considerations:

A basic difference in using UQS is whether information appended to the UQS
should serve as a characterization of the set expressed by the UQS or whether
it formulates a predicate over this set3. Figure VII.8 illustrates this difference.

In the rule r1 of the figure, a UQS (U) is connected to two existentially quantified
nodes (A and B). This rule will match on the hostgraph if its core rule matches
(i.e., if there are nodes of type A and B). Additionally, it will match all nodes of
type U which have a connection to both nodes matched by the core rule. The
set of matched Us is thus characterized by the attached elements A and B. Each

3Technically, characterization is also a predicate, but one defining the set.

VII.3. Guidelines for Formulating DMM Rule Sets 171

further element attached to the UQS will strengthen the characterization of the
set, possibly reducing the number of actual elements matched by the UQS.

The rule in the middle of Fig. VII.8, r2, expresses something else. Here, the
core rule only matches a single node of type A and the elements matched by the
UQS are all Us connected to A. There is also a premise rule P hasB attached to
the UQS. This premise rule has to hold for all nodes matched by U. Thus this
premise rule is not an additional characterization of the set expressed by the
UQS but a predicate over this set. Rule r2 now expresses that it will match an
A provided all Us attached to this A also have a B attached. Rules r1 and r2
thus have very different meanings.

A second issue arising from the formalization of UQS in Section IV.4 is that
UQS imply an existential match. The left hand side rule in Fig. VII.8 will thus
only match on an A and a B if at least one connecting U exists. The effect of this
definition is that all structures visible in a rule will (at least) be present once
in the rule’s matching. Universal Quantification in the literature does usually
include the empty match, though. Language Engineers with a background in
Graph Transformations should be aware of this difference. A practical effect is
that the complete absence of the UQS (if that is a situation of interest) must
be explicitly treated by a separate rule.

Formulation of a Rule’s Manipulations

The graph manipulations in a DMM rule are expressed by marking elements with
the constraints {new} or {destroyed}. When formulating such manipulations
the modeler needs to ascertain that no consistency constraints toward the rest
of the specification are violated by them.

A very simple and general rule is that elements of the host graph which repre-
sent specification information, i.e., elements whose types are replicated syntax
elements in the semantic domain meta model (cf. Subsect. VII.2.2), are never
subject to manipulations. Creating and deleting such model elements would
constitute an evolution of the original specification (cf. [GKP98]) which is not
supported by DMM. The maximum amount of modification such elements may
experience is the creation and destructions of links leading to nodes representing
purely extensional elements.

Another type of consistency is that multiplicity constraints in the semantic
domain meta model may forbid or require the existence of certain structures.
Looking at Fig, VII.3, we can, e.g., note that an offer may not exist without
a base token it represents. Thus no rule may create offers without simultane-
ously creating this link. Conversely, the destruction of a token ”orphans“ its
offers. Explicit constructor and destructor operations help to consistently build
and destroy such structures. In the Activity Diagram rule set, the operation
token.destroy (cf. Fig. B.13) initiates the destruction of all emitted tokens when
destroying the token itself.

Finally, the manipulations of a rule may violate constraints posed by the map-
ping between the underlying specification model and the state graph. This kind
of consistency violation is as rare as it is hard to detect. Usually the interdiction

172 Chapter VII. Pragmatic Guidelines for Formulating DMM Specifications

Conception of

extensional entities

Replication of intensional

entities

Introduction of auxiliary

structures

Relation of syntax and

semantics

Definition of packages

Partition into big-step

rules

Distribution of behavior

on small-step and

premise rules

Formulation of rules

Alignment with package

structure

Figure VII.9: Overview of the steps in the methodology for the creation of DMM
specifications

of manipulations to replicated intensional elements suffices to prevent problems
in regard to the semantic relations.

VII.3.4 Alignment of Rules and Packages

A final step in constructing a DMM rule set is the alignment of package struc-
tures defined for the meta model with the rule set. Each rule is assigned to
a package; the most likely package is the one which also defines their context
element. This assignment implies that all elements used in the rules must a)
be accessible in the package the rule is defined in and that b) at least one left
hand side element is an original element of the package. The latter condition
is problematic only for rules not defined together with their context elements
(and will thus mainly apply to a posteriori language extensions). Condition a),
however, provides new insights to the formulation of the package structure. If
rules violate this condition, either the rules need reformulation or the package
structure conceived upon the static information only does not correctly reflect
the implicit connections of the semantic domain. The alignment of rules and
packages may thus well result in a redesign of the packages.

VII.4 Summary and Discussion

The methodology for creating DMM specifications is summarized in Fig. VII.9.
The basic structure of the steps follows the order of presentation in the preceding
sections with the dashed arrows indicating possible iterations over previously
conceived constructs.

From a purely technical and scientific point of view, this chapter does not add
much (if any) information to the technique of DMM. It does, however, lend
weight and justification to the term Language Engineer which we use throughout
this thesis. The creation of a new language specification is in fact an undertaking

VII.4. Summary and Discussion 173

similar to programming. The fundamental concept of Software Engineering is
that such creations need to be performed systematically, i.e., engineered.

The contribution of this chapter is to provide the fundamentals of such a sys-
tematical approach for the formulation of semantic specifications. Future work
can complement the results presented here in several directions. Additional
qualities, heuristics and best practices guidelines may be discovered in apply-
ing DMM to further languages. Tools may provide further assistance, e.g., in
supplying automated checks to guarantee a rule set’s consistency to the formu-
lated meta model. Other engineering techniques like systematic testing can also
find application in this area. Finally, a formal process can be devised which
integrates all of these ideas in an organizational framework.

All of these contributions to the field of what may then be called Language
Engineering4 need to be bred from broad experience. In this chapter we supplied
readers with the necessary knowledge to actually start applying DMM and thus
to add to the (hopefully growing) experience in using DMM. The next chapter
will continue along this line in allowing Language Engineers as well as Language
Users to actually experience the effect of a DMM specification.

4The term Language Engineering was coined by Reiko Heckel for a Dagstuhl Seminar
[BH05] in which (amongst other techniques) DMM was presented.

Chapter VIII

Automatically Applying DMM
Specifications

Given a language specification with DMM, every model of the language can—
in principle—be precisely and exhaustively interpreted by a human user of this
language. The formal foundations in Chapters III to V allow for an unambiguous
construction of the LTS originating in the model’s start state. In practice,
however, this kind of manual interpretation is limited to exemplary situations
only. For an exhaustive rule application on even minimal examples automation
is essential. We call the tool to carry out this task a DMM interpreter . A
DMM interpreter is a generic tool which takes a start graph and a DMM rule
set as its inputs and produces the complete LTS defined by these inputs1. Note
that the DMM interpreter does not add any information to an existing DMM
specification and neither does it define the semantics in the way that reference
implementations of programming language compilers do. It simply automates
and speeds up a process which is solely based on the previously presented DMM
specifications.

Since DMM specifications are internally based on Graph Transformations we
can rely on existing technologies for the prototypical realization of a DMM in-
terpreter. Unrolling an LTS from a given rule-based specification is the purpose
of model checking tools. We discuss the state of the art in model checking of
Graph Transformation systems in Sect. VIII.1. The result of this survey is
our decision to employ the GROOVE tool set for the prototypical realization
of the DMM interpreter. We introduce the GROOVE tool set and its input
format in Section VIII.2. As this format supports less control constructs than
DMM, a systematic translation of the provided DMM rules is necessary (see
Sect. VIII.3 for details of this translation). Achievements and shortcomings of
the translation of our case study to GROOVE are presented in Sect. VIII.4 and
consequences for future work toward a dedicated DMM interpreter are discussed
in Sect. VIII.5.

1We assume the LTS to be finite

175

176 Chapter VIII. Automatically Applying DMM Specifications

VIII.1 Model Checking approaches for Graph Trans-
formation Systems

Graph Transformation rules are a very powerful formalism. Their concise and
visual descriptions are leveraged by non-determinism in both selecting and ap-
plying a rule. Thus, even very small rule sets can create rapidly expanding
transition systems. For a long time research was thus focused on investigating
properties of the rule sets directly (e.g., the notion of conflicting rules as checked
by the AGG tool set [Bey93]). In practical applications of Graph Transforma-
tions, the non-determinism is usually heavily restricted to yield deterministic,
provably terminating, and confluent transition systems (e.g., for code generation
in Fujaba or model transformations in the Consistency Workbench [Küs04]).

For the description of semantics, however, this heavy restriction of non-deter-
minism is not appropriate. Not only do semantics often contain intentional
non-determinism, but concurrency can also be addressed by applying rules non-
deterministically (i.e., expressing concurrency by interleaving). And while prop-
erties of the rule set might help to validate properties of the semantics definition,
we are ultimately interested in the semantics of a single model, i.e., the tran-
sition systems originating in the start states of this model. Only completely
producing these transition systems yields the semantics of a model.

Advances in computing power as well as successful research in the field of model
checking during the last years opened up new possibilities in actually comput-
ing and handling transition systems with a large state space. In two different
approaches, researchers tried to apply these techniques to graph transformation
rules: The CheckVML approach by Dániel Varró, and the GROOVE (GRaphi-
cal Object-Oriented VErification) tool set by Arend Rensink. Both approaches
face the same task: starting from a Graph Transformation System (i.e., a set of
Graph Transformation rules and a start graph) they produce the set of all pos-
sible derivation sequences (i.e., the Graph Transition System) originating in the
start graph. They approach this problem in very different ways (cf. Fig. VIII.1).

The CheckVML approach [SV03, Var03] is basically a denotational approach in
which the whole input transformation system is converted into the input speci-
fication of a model checker. This translation already curbs some of the inherit
complexity of Graph Transformations as the number of elements which might
possibly created when applying the rule set must be limited a priori. The result-
ing specification is then processed by a dedicated model checker (SAL) which
produces an LTS and checks properties on the LTS. Advantages of the approach
(cf. [RSV04]) are that the employed translation and model checking framework
is highly optimized for efficiently generating such state spaces (cf. Section 5.3 of
[Var04]) and that properties can be expressed using the full power of temporal
logic. A drawback is that the basic result of the model checker is a single value
indicating success or failure of the checked property (plus counterexamples in
the case of failure). The visualization and exploration of the complete LTS is
not supported.

The GROOVE tool set in contrast works directly on a set of graph transfor-
mations. An editor is supplied which allows for editing graphs as well as graph
transformation rules, using a visual format similar to ours or Fujaba’s (i.e.,

VIII.2. Introduction to the GROOVE Tool Set 177

GT system

Graph

Transformation

Rules

Start State
«SAL input

language»

GROOVE
SAL Model

Checker

«LTS»

Property

satisfaction

Property

«LTL»

GROOVE approach

CheckVML approach

Figure VIII.1: Illustration of the differences between the CheckVML and the
GROOVE approach to model-checking Graph Transformation systems.

rule sides are combined into a single graph with element labels providing the
necessary distinctions). Based upon a rule set and a start graph, GROOVE
can then produce and visualize the complete LTS originating in the start state.
GROOVE can also perform basic model checking by allowing the state space
generation to be bounded by rules specifying required or unwanted properties
(i.e., reachability and safety checks). Complex and temporal properties cannot
be formulated in GROOVE. The advantages of GROOVE are that it allows for
unlimited element creation and that it visualizes the resulting LTS.

In a comparison of the two tools [RSV04], CheckVML displays clear advan-
tages in terms of generation time for relatively static systems (i.e., systems in
which element creation/deletion occurs only rarely) while GROOVE is able to
process dynamic systems much better (in fact, CheckVML completely failed to
process some of the more dynamic examples). Since we are interested only in
a prototype, the lower efficiency of GROOVE is not a real drawback while the
visualization of the complete LTS is a very strong advantage. We thus choose
GROOVE as the basis for a prototype DMM interpreter.

VIII.2 Introduction to the GROOVE Tool Set

The GROOVE tool set currently comprises four separate tools which are
briefly introduced in the next subsections. The whole project is developed
by Arend Rensink and Harmen Kastenberg and information about it is avail-
able in several papers [Ren04a, Ren04c, Ren03b, Ren03a] and the website
http://groove.sourceforge.net/groove-index.html. The toolset is imple-
mented in Java, is placed under the GNU Public License (GPL), and is open
source.

Of particular interest for us is the concrete Graph Transformation mechanism

178 Chapter VIII. Automatically Applying DMM Specifications

Figure VIII.2: The GROOVE Editor tool

which GROOVE employs. As the discussions in Chapter IV show, a lot of
technical details can distinguish two Graph Transformation approaches. We will
carefully examine the GROOVE mechanisms to find out which features of DMM
rules are natively supported and which require a translation (see Sect. VIII.3).

VIII.2.1 GROOVE Editor

The GROOVE editor (a screenshot of which is displayed in Fig. VIII.2) allows
for the editing of graphs and graph rules. For graph rules, special labels new:,
del:, not: are used to signify that an element should be created, deleted, or is
part of a negative application condition. The editor also supports a rule view,
in which the different groups of elements are distinguished by using different
colors and line styles. Newly created elements are displayed with green solid
lines, elements to be deleted are displayed with blue dashed lines, and elements
of NACs are displayed with red dotted lines. We can thus use the groove editor
to create either start states (file format .gst) or rules (file format .gpr).

VIII.2.2 GROOVE Imager

The GROOVE imager is an auxiliary component which allows for the visual
display and layouting of graphs and graph rules. It is mainly used in the editor
and simulator components although it can also be used as a stand-alone tool.
The layouting algorithms currently supported are spring layout (for displaying
state graphs) and forest layout (for displaying LTS graphs).

VIII.2. Introduction to the GROOVE Tool Set 179

VIII.2.3 GROOVE Generator

The GROOVE generator is the component responsible for generating full or
partial transition systems. It is used by the other components and only allows
for command line access. The algorithmic solutions for efficiently performing
the graph matchings, performing checks on isomorphism of state graphs (using
graph certificates), and storing the graphs are described in [Ren04c].

VIII.2.4 GROOVE Simulator

The GROOVE simulator is the main tool of the GROOVE tool set and allows for
the unrolling of an LTS from a given graph transformation system. A screenshot
of the simulator component is displayed in Fig. VIII.3. One can either explore
the LTS interactively in a stepwise fashion or request a full generation. Addi-
tionally, the simulator offers the possibility to select a rule form the underlying
grammar as the bounding rule. If a branch in the transition system reaches a
possible application of this rule, it is not generated any further. Similarly, the
non-applicability of the rule can be used to limit the generation of the transition
system. Using such bounding rules allows for reachability (is a certain situation
reachable in a derivation sequence) and safety analysis (is a certain property
never violated in the system).

The simulator component also allows for the export of a created LTS. The
export format is GXL, an XML dialect for the description of graphs [Win01]. If
further analysis of the LTS is required, this exported file can serve as the basis
for additional tools.

The Simulator has three different views. In the state view (Fig. VIII.3) a graph
state is visible. The elements of this graph are automatically layouted (by the
imager tool) but can be moved by the user. Convenient operations to emphasize
certain elements and hide others allow for a purposeful exploration of the state
graph. A special feature when viewing states of an LTS is that rule matchings
can be highlighted by the simulator. A user can thus perceive which elements
of the state partake in the application of the next rule(s).

The rule view (see Fig. VIII.4) can be used to display a rule graph. Rules are
displayed as graphs with color and line style distinguishing the elements (see the
editor component). Layouting and highlighting/hiding of elements is possible
in this view as well.

The LTS view (see Fig. VIII.5) is used to present the LTS as far as it is currently
generated. The start state is always marked green and terminal states (in which
no more rules are applicable) are marked red. If an LTS is only generated
partially, the nodes which allow for further rule applications are shaded grey.
By clicking on such a node the user prompts the system to generate and display
all possible derivation steps originating in this node. A user can thus explore
exactly that part of an LTS which is relevant to him. By using this manual
exploration style, even unlimited LTS (originating in non-terminating rule sets)
can be (partially) explored. By default, the LTS view employs a forest layout
which emphasizes the sequences of rule applications.

180 Chapter VIII. Automatically Applying DMM Specifications

Figure VIII.3: The state view of the GROOVE Simulator

Figure VIII.4: The rule view of the GROOVE Simulator

VIII.2. Introduction to the GROOVE Tool Set 181

Figure VIII.5: The LTS view of the GROOVE Simulator

VIII.2.5 Graph Transformations in GROOVE

The graph notion of GROOVE is that of a directed graph with labeled edges.
The node labels displayed in the GROOVE tools (cf., e.g., Fig. VIII.2) are
technically labeled loop edges attached to the nodes. Using this technique, a
node may even be multi-labeled (in Fig. VIII.3 several nodes carry multiple
labels). Note that we will also display GROOVE graphs as node and edge
labeled graphs since the layout of the label carrying loop edges makes for very
cluttered and unclear presentations.

GROOVE follows the SPO approach to Graph Transformations and supports
non-injective matches. It does, however, allow for a local suppression of non-
injective matches by defining a special edge called a merge embargo edge. Two
nodes which are connected by a merge embargo edge must not be matched to
the same element in the host graph. Using merge embargo edges exhaustively
results in injective matching.

Negative Application Conditions are supported in GROOVE. Connected ele-
ments whose labels are prefixed with not: form a NAC. Multiple NACS per rule
are possible.

Universally Quantified Structures are not supported by GROOVE.

GROOVE allows control over rule applications in the form of priorities. Priori-
ties are assigned to rules by prefixing a rule’s file name with an integer. Higher
priority numbers mean higher application priority. No other control constructs
are supported by GROOVE.

182 Chapter VIII. Automatically Applying DMM Specifications

We call this combination of features GROOVE rules in the remainder of this
chapter.

VIII.3 Translation of DMM Specifications into
GROOVE Specifications

The graph transformation approaches used in DMM (cf. Chap. IV) and
GROOVE (see previous section) are rather different in many details. To ac-
tually execute DMM rules by the GROOVE tool set, we need a translation
which expresses the additional DMM features in terms of GROOVE rules. We
start by defining the translation of graphs and then move on to rules and control
constructs.

VIII.3.1 Translation of Graphs

Graphs in DMM can either be type graphs, rule graphs or instance graphs.
GROOVE does not support typing, thus type graphs are not translated. Only
rule and instance graphs are translated, resulting in rules and state graphs
respectively.

The graph notions of DMM and GROOVE are very similar, but several de-
tails differ. Basically, each node in a DMM graph is translated to a node in
a GROOVE graph, each edge in a DMM graph to an edge in the GROOVE
graph. Details of this translation are as follows:

Translation of Nodes

The encoding of state graphs is the more general case: Nodes in DMM can
have a name(label), a type, and attributes. The name of the DMM node is
transferred to a GROOVE node label. To distinguish it from type information,
transferred node names are prefixed with the special character ” “. The typing
information of a DMM node is encoded by placing the name of the node’s types
in the GROOVE node’s labels2. Note that the complete typing hierarchy of a
node is encoded in this way (cf. Tab. VIII.1).

Encoding rule graphs is simpler: Since the most specific type of a node suffices
to match only the correctly typed nodes (all super types are implied), nodes
which are part of the left hand side can be labeled with their direct type only.
Node names are not translated in rules as they are only used in connection with
the invocation mechanism (see below).

Concerning rule graphs, the differences in the matching notion between DMM
and GROOVE must also be taken into account: GROOVE supports the more
general notion of non-injective matchings but in DMM we assumed injective
matchings only. To ensure that the translated DMM specification keeps its

2This kind of typing by labels was the usual way to handle typed nodes before the formal
introduction of type graphs

VIII.3. Translation of DMM Specifications into GROOVE Specifications 183

Concept DMM GROOVE

Node

Edge

Table VIII.1: Correspondence of graph concept in DMM and GROOVE

behavior, we need to explicitly disallow injective matchings in all GROOVE
rules: All nodes in a rule graph that have either identical types or where one is
a supertype of the other need to be connected by merge embargo edges.

Translation of Edges

Fundamentally, each DMM edge is translated into a corresponding GROOVE
edge, i.e., an edge which runs between the translated DMM nodes.

GROOVE does not support the threefold label structure as defined for DMM.
Encoding the DMM matching concept correctly would have necessitated a
tripling of edges, creating three separate GROOVE edges (if all label compo-
nents were used) for each DMM edge. We decided to use a simpler approach
and fixed a single label for each edge in the DMM type graph.

VIII.3.2 Encoding of Rules

The rule notions of GROOVE and DMM are very close, thus all elements of
rdel are marked with ”del:“ in GROOVE, elements from rnew with ”new:“, and
elements from NACs with ”not:“ (cf. Tab. VIII.2).

The rule signature of the DMM rule becomes the file name under which the
GROOVE rule is stored. As the asterisk character ”*“, used in DMM to indicate
big-step rules, is not a legal character for filenames under Microsoft Windows,
it is replaced by the hash character ”#“.

Encoding UQS

Universally Quantified Structures pose big problems for the rule translation.
Similarly to the unfolding procedure formalized in Subsect. IV.6.7, a DMM
rule with universally quantified elements needs to be translated to multiple

184 Chapter VIII. Automatically Applying DMM Specifications

Concept DMM GROOVE

Rule

UQS

Table VIII.2: Correspondence of graph transformation rule concepts in DMM
and GROOVE

GROOVE rules. Each of these rules will handle the case that a concrete number
of instances of the UQS exists in the host graph. Several problems are apparent:

The number of potential occurrences of UQS is unlimited, thus the number of
unfolded rules is infinite. For a practical translation we will thus have to fix the
maximal number of UQS unfoldings the translation will produce. In Tab. VIII.2
a translation with two positive copies of the UQS is provided.

No unfolded rule may match if it does not cover all potential matches for the
UQS, i.e., no elements may be forgotten. To achieve this, either the mechanism
of priorities can be employed (giving rules with more copies higher priority) or
an additional NAC must be employed to ensure that a further copy of the UQS
would not find a valid match. We employ the latter approach.

Due to the non-injective matching supported by GROOVE, additional measures
must be taken to prevent GROOVE from matching all positive copies of the
UQS on the same elements. Merge embargo edges (as illustrated in Tab. VIII.2,
row 2) are used to enforce injective matching in this case. A special kind of
edge (labeled ”!=“) also prevents the NAC from matching on elements already
matched by the positive copies of the UQS (cf. Tab. VIII.2).

VIII.3.3 Encoding of Application Control

Control of rule application is performed in DMM by the mechanism of rule
invocations. GROOVE on the other hand supports no other control mechanisms
than priorities. The invocation mechanism thus has to be encoded in a way as
to retain its properties, but using only basic Graph Transformation constructs.

VIII.3. Translation of DMM Specifications into GROOVE Specifications 185

Figure VIII.6: Example state of the invocation stack

The suitable construction here is the explicit modeling of the invocation stack
in the state graph. Each state graph contains a special singleton node called
DMMSystem. Attached to this node are a number of invocation nodes, each of
which signifies an open invocation in the system in this state. Each invocation
node carries three pieces of information: A label with the name of the operation
to be invoked, a self edge pointing to the node the rule was invoked upon,
and a (possibly empty) set of param edges to nodes which have been passed as
parameters at invocation time. Fig. VIII.6 illustrates the situation where the
operation a.do(b:B) has been called on the node a1 and the node b2 has been
passed as a parameter.

Invocation nodes form a linked list with the DMMSystem keeping a pointer to
the first element and each invocation linking to the next open invocation. The
bottom invocation is a special element which marks the empty stack and allows
for uniform handling of the stack (i.e., there is always an invocation to push
down).

When translating start graphs, a single DMMSystem node needs to be added to
the translated graph. Attached to this by a first edge is the bottom invocation
node. If the start state requires an open invocation to start (i.e., the state itself
is not sufficient to initiate the behavior) additional Invocation nodes can be
queued in the DMMSystem.

Rules manipulate the DMMSystem stack by either enqueuing new invocations
or fulfilling existing ones:

Translating Invocations

If a DMM rule specifies a rule invocation, the corresponding GROOVE rule must
ensure that an invocation node is being created and pushed on the DMMSystem

186 Chapter VIII. Automatically Applying DMM Specifications

stack. Invocation nodes are always placed on top of the existing stack, thus the
existing first edge is redirected to point to the new invocation and the rest of
the stack is linked by a new:next edge. See Table VIII.3 for an illustration.

If multiple invocations are made in a DMM rule, several such invocation nodes
need to be created in the GROOVE rule. The ordering of these rules depends on
the sequence number preceding invocation in DMM rules. If no such sequence
number is given, an arbitrary order is chosen.

Translating Small-Step Rules

Small-step rule may only match when invoked. Thus in the GROOVE equivalent
of a small-step rule, an Invocation node with the correct name and with the
correct self-object needs to be present. As the invocation is fulfilled by the
rule’s application, the Invocation node can be deleted and the pointer structure
of the stack is adapted accordingly. The illustration in Tab. VIII.3 displays
very prominently how the binding of self and parameter objects works. The
rule application can only match if the objects passed with the invocations can
be integrated in the match of the rule. In the example, the rule itself requires the
presence of an (arbitrary) Y and Z node. As the rule is being invoked, however,
both nodes are already fixed by the parameters passed with the invocation: the
Z node by being the context object (self edge) and the Y node by being passed
as an invocation parameter (param edge).

Translating Big-Step Rules

While small-step rules depend on a (particular) invocation to apply, big-step
rules depend on the absence of open invocations to apply. Thus, all GROOVE
rules corresponding to big-step DMM rules are adorned with a construction
requiring the DMMSystem to have a bottom invocation as the first element in
the invocation stack (cf. Tab. VIII.3).

Encoding Premise Rules

Premise rules are encoded differently than the other rule types. As they directly
influence the invoking rule’s ability to match, they are merged to the invoking
rule. Thus, the invoking rule is extended by the information provided in the
premise rule. Elements which are passed as parameters comprise the interface
of this merge.

NACs and UQS present in the premise rule are treated like elements of the
invoking rule. Invocations of other premise rules (the only kind of invocations
allowed in premise rules) are handled transitively. If the invoked premise opera-
tion has multiple rules implementing it then each of them is merged separately
to the invoking rule.

VIII.4. Interpreting Activity Diagrams with GROOVE 187

Figure VIII.7: Rule checkInvocation to separate failed and stable final states

Encoding Invocation Application

The execution of a DMM system does not guarantee that all invocations are
successful. In final states (i.e., states where no rules are applicable anymore)
we thus have to distinguish between failed states (in which an open invocation
cannot be fulfilled) and stable states. To allow for this distinction in GROOVE,
we insert a special rule CheckInvocation (see Fig. VIII.7) in the GROOVE rule
set which checks whether the invocation stack still contains invocations (apart
from bottom). To restrict the application of this rule to final states only, it is
given a lower priority than all translated rules. If none of the translated rules
can match anymore, the application of the CheckInvocation rule signifies that
the reached state is failed. If the rule is not applicable, the state is stable.

VIII.3.4 Combination of Translation Concepts

The separate translation concepts introduced in this section need to be combined
to form a complete translation. The combination is straightforward and works
along the order of presentation in this section. First, simple nodes and edges are
being translated, then UQS are unrolled, and finally the invocation mechanisms
are being encoded.

A complete rule translation is displayed in Fig. VIII.8 which shows the rule
cbae.end from the DMM specification of UML Activity Diagrams in both the
DMM representation and the corresponding GROOVE representation. We
can observe that especially the encoding of the invocation features bloats the
GROOVE rule in comparison with its DMM original. The GROOVE represen-
tations of premises and UQS can also create a lot of additional nodes. Under-
standability is significantly decreased during the translation. The GROOVE
rules are thus regarded as an internal format only and are not intended for user
presentation.

VIII.4 Interpreting Activity Diagrams with
GROOVE

Along the translation concepts introduced in the previous section the DMM
specification for UML Activity Diagrams has been translated into a GROOVE
specification. Since no automatic facility is currently available for this task,

188 Chapter VIII. Automatically Applying DMM Specifications

Concept DMM GROOVE

Invoc.

Small-
Step

Big-
Step

Premises

Table VIII.3: Correspondence of application control concepts in DMM and
GROOVE

VIII.4. Interpreting Activity Diagrams with GROOVE 189

cbae.end()*

cbae:

CallBehaviorActionExecution
:CallBehaviorAction executes

:ActivityExecution

invoker
createOutputs()

Figure VIII.8: Translation example: DMM rule cbae.end (top) and its GROOVE
translation (bottom)

190 Chapter VIII. Automatically Applying DMM Specifications

the translation has been performed manually3. The unfolding of UQS has been
limited to a maximum of three copies. As a result the rule set grew from 75
DMM rules to nearly 180 GROOVE rules.

The automatic application of (translated) DMM rules by the GROOVE tool set
also allows for a two-stage validation process. The first stage of this process is
interesting to the Language Engineers using DMM. Upon conceiving a DMM
specification of a VML, Language Engineers can now validate this specification
by using test models. Each test model is a model in the described VML and
the output of the automated DMM interpretation of these test models gives
the Language Engineers insights whether their specifications correctly reflects
their ideas. For these test models, positive as well as negative examples can
be used, i.e., it can be tested whether things which should work do so and
also whether things which are not supposed to work are correctly detected by
the specification. Most interesting in this stage of validation is whether all
expected outcomes of certain test models are computed by the DMM interpreter.
The specification of the test’s expected results is thus the Language Engineer’s
intuition on what should happen according to a specific test model. If these
validations fail, changes to the DMM specification have to be made until the
automated interpretation matches the intuitively expected results.

The second stage of validation actually works the other way around: After a
DMM specification is defined as the language’s standard semantics, users of this
language can build an understanding about the language by automatically in-
terpreting sample models. Similar to leaning a new programming languages, the
user can thus learn about language concepts from the specification or accompa-
nying texts and validate his understanding by submitting sample models to an
automated interpretation. If the DMM interpreter does not confirm his intuitive
interpretation, the user can follow the interpretation in a step-wise fashion to
detect the point at which his interpretation diverges from that produced by the
machines. He can then proceed to refine his understanding about the language
by investigating this difference and its cause more closely. This process is again
well-known to software engineers as it closely resembles the testing and debug-
ging of programs. Once again we see that DMM employs skills present in the
target audience. Thus, automated DMM interpretations add to DMM’s claim
to understandability.

VIII.4.1 Validating the Activity Diagrams Specification

We performed the former kind of validation for our DMM specification of Ac-
tivity Diagrams. A number of (minor) errors was detected (and subsequently
corrected) in the specification. We can now state confidently that the rule set
provided in Chapter VI works well and that it reflects our interpretation of
Activity Diagrams.

The following test models (amongst others) were use to validate the specifica-
tion:

3Performed by the very diligent and patient Daniel Beverungen

VIII.4. Interpreting Activity Diagrams with GROOVE 191

 Simple Activity Diagram

«Dummy»

«Central Buffer

Node»

«Central Buffer

Node»

Figure VIII.9: Test model: Simple Activity Diagram

Simple Activity Diagram The simple Activity Diagram (cf. Fig. VIII.9) com-
prises control flows and some commonly found control nodes. The starting
configuration for the test case includes an invocation for ActivityExecution.start.

Control Structure The control structure example is introduced in Sub-
sect. VI.1.2 and showcases the difficulties of evaluating complex and interwoven
paths between actions. We tested two configurations of this example. In the
first configuration we assumed that actions A and B had created their outputs,
i.e., both carried a token on their output pin. In the second configuration we
placed two tokens on the output pin of A and none on the output pin of B.

Nested Activities The third example describes the process of designing, pro-
ducing and mailing party invitations in two activities. The example comprises
object flows, action invocations and actions with mixed inputs. Note that all
actions apart from Produce invitations are Dummy actions (i.e., they don’t do
anything beyond consuming and producing tokens). The start state for this
example entails an invocation of Invite Guests.

Carpenter Deadlock The Carpenter Deadlock example is taken from Conrad
Bock’s article on data flow in Activity Diagrams [Boc04]. It is intended to high-
light the synchronization of input pins on an action. The starting configuration
comprises one object token in each �centralbuffer�.

VIII.4.2 Results of the Test runs

The described models were processed by the GROOVE tool with the (trans-
lated) specification of Activity Diagrams. Figure VIII.13 gives an impression

192 Chapter VIII. Automatically Applying DMM Specifications

 Control Structure

B

A

C

D

E

F

Figure VIII.10: Test model: Control Structure

 Invite guests

Design

invitation

Choose

guests

Design

Guestlist

Produce

invitations

Invitations
Mail

invitations

 Produce invitations

Buy

Stamps

Print

invitations

Printouts

Envelope

invitations

Invitations

Guestlist

Design

invitations

Figure VIII.11: Test model: Invitations

VIII.4. Interpreting Activity Diagrams with GROOVE 193

UML 2 ACTIVITY AND ACTION MODELS, PART 4: OBJECT NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1 38

Figure 14: Avoiding Deadlock

5 DATA STORE NODES

Earlier forms of data flow and storage have the following characteristics [6][7]:
• Passive: the presence of data in the store does not initiate actions. Actions take

data as needed.
• Non-depleting: the use of data in the store does not remove it from the store.
• Persistent: data in the store remains there after the activity containing it

terminates.
This might be informally called the "pull" form of data flow and storage. Later forms of
data flow and storage, including UML 2 object nodes, have exactly the opposite
characteristics, which might be called "push":

• Active: the presence of values in an object node initiates downstream actions by
sending inputs to them.

• Depleting: values in an object node used by an outgoing edge are not available to
other outgoing edges. This is token competition.

• Transient: values do not remain in object nodes after the activity containing the
object node terminates.21

21 Tokens are only references to objects, so the objects themselves are not deleted, even if the activity is
terminated, for example with an activity final [4].

Drilling
by Carpenter 1

Drilling
by Carpenter 2

«centralbuffer»

Drill

«centralbuffer»

Extension
Cord

Drilling
by Carpenter 1

Drilling
by Carpenter 2

«centralbuffer»

Drill

«centralbuffer»

Extension
Cord

Figure VIII.12: Test model: Carpenter Deadlock

on the size and presentation of the generated LTS. All of these results conform
to our intuitive expectations.

Three interpretation results were especially interesting:

u With the Control Structure test model (configuration 1) our intuitive ex-
pectation about the possible action executions was confirmed (cf. Sub-
sect. VI.1.2). However, the interpretation additionally revealed that only
one of these executions (execution action D) allowed for the enclosing ac-
tivity to terminate as all other possible action executions left remaining
tokens in the activity graph. This was an effect which we overlooked in our
manual inspection and which proves the necessity of having a systematic
(i.e., automatic) facility for applying DMM specifications.

u The difference between the two configuration of the Control Structure ex-
ample was unexpectedly wide. While the configuration 1 produced 224
states, the LTS of configuration 2 was almost ten times bigger. This rapid
growth was caused by the high degree of concurrency by having offers for
two tokens competing in their traversal of the control structure.

u A third interesting observation is that despite the obvious non-termination
of the Carpenter Deadlock test model, the resulting LTS is finite. The rea-
son for this effect is that GROOVE checks encountered states for isomor-
phism and thus produces a circular LTS.

Beyond validating our DMM specification of Activity Diagrams, the test runs
also give an impression on the efficiency and limitations of the GROOVE system.
Table VIII.4 provides a number of measurements taken when testing different
test cases. All measurements were taken on a Personal Computer, 2,4 GHz
processor speed, 1024 MB main memory, Microsoft Windows XP operating
system with a standard installation of Java 1.5. The GROOVE generator version
1.2 was used as a stand-alone tool, i.e., we measured only generation time for
the LTS without any layouting overhead. The generation time given in the table

194 Chapter VIII. Automatically Applying DMM Specifications

Test Case tfull #states #transitions #big − st.
(in sec)

Simple AD 1,45 118 125 31
Control Structure (Conf. 1) 3,10 224 266 108
Control Structure (Conf. 2) 33,12 2882 3468 1064
Invitations 7,74 581 666 184
Carpenters 2,46 201 258 130

Table VIII.4: Measurements of test runs with the Activity Diagram rule set
applied by GROOVE

is the average of three independent runs of the system.

VIII.5 Discussion of the GROOVE Prototype

Two kinds of conclusions can be drawn from our prototypical realization of a
DMM interpreter with GROOVE. On the one hand we can focus on the short-
comings of the prototype and derive ideas for dedicated DMM interpreters from
it. On the other hand we can focus on its merits and discuss which implication
these have for the DMM technique as a whole.

VIII.5.1 From the GROOVE Prototype to a Dedicated DMM
Interpreter

Concerning the efficiency of the GROOVE tool set we can state that generation
times remained within reasonable limits for all examples. These are, however,
only small examples and the underlying rules set only covered a subset of Activ-
ity Diagrams which are themselves only a part of UML. An important observa-
tion is that especially the amount of concurrency in the system is a determining
factor for the size of the generated LTS and thus for the generation time. This
is especially apparent in the two configurations of the Control Structure exam-
ple which yielded vastly different results. Note that the degree of concurrency
depends on a) the formulation of the rule set, b) the model under consideration,
and c) the given start state. A slight change in the latter (moving one token
to another pin) caused the LTS of the control structure to expand by factor
10. This is a specific instance of the state space explosion problem generally
encountered in model-checking. We can thus expect that examples with a high
degree of concurrency will only be amendable to automatic interpretation in a
very limited way. Further experiences with the DMM approach are necessary
to provide guidance for evading this problem.

For human comprehension of the generated LTS, however, generation efficiency
is not even the main problem. A much more noticeable restriction is the effi-
ciency of the GROOVE imager component which is barely able to handle graphs
with several hundred nodes. Basic operations like zooming or panning the view
in the 2000+ nodes graph generated by the Control Structure examples took an

VIII.5. Discussion of the GROOVE Prototype 195

Figure VIII.13: LTS of the Simple AD example

196 Chapter VIII. Automatically Applying DMM Specifications

Figure VIII.14: Example State of the Simple AD LTS (original GROOVE lay-
out)

VIII.5. Discussion of the GROOVE Prototype 197

unacceptably long time (30-60 seconds). From the efficiency point of view, this
component is thus the weakest point of the GROOVE tool set at the moment.

Looking beyond the efficiency issues of the tool set we also detect a number
of problems for an efficient human comprehension of the generated results.
Fig. VIII.13 gives an impression of the smallest LTS generated by our examples
(the LTS of Simple AD). Note that the figure shows the complete LTS, i.e., no
reductions have been performed. Each of the nodes in the LTS in the figure
represents a state graph which itself contains around 30 nodes (as depicted in
Fig. VIII.14). Even if we assume a reduction of the LTS to big-step rules only
(see the last column of table VIII.4), the comprehension of transitions systems
of this size remains a considerable task.

Essential for comprehending a complete LTS is the comprehension of its states.
The display in Fig. VIII.14 shows a state of the LTS generated by the Simple
AD example in GROOVE’s standard (spring) layout. Several severe problems
are evident:

Overlaps The first obvious deficiency of the state display is a weakness of the
layouting algorithm of the GROOVE imager component. Many labels
overlap each other and make it impossible to perceive the graph’s elements.
The graph must be manually untangled before it can be comprehended.

Element overload The graph has a high degree of connectivity, making a clean
layout very hard. Especially the central Activity node which aggregates all
of its elements (via the consistsOf links) introduces a lot of edges which
carry little information.

Loss of diagram layout Comprehending the state fundamentally means compre-
hending its purely extensional elements, i.e. the Token, its Offer and their
respective connections to the Activity Graph. To quickly grasp this cru-
cial information it would be helpful to keep constantly present elements is
a fixed spatial arrangement, preferably that of the original diagram.

Lack of element distinction Since the state graph is a GROOVE graph, all of its
elements are labeled nodes, uniformly rendered as boxes. For the compre-
hension of a state graph, however, the re-introduction of concrete syntax
would be most helpful to quickly distinguish between the different types
of elements.

As GROOVE is only a prototype for a DMM interpreter we can use these short-
comings to derive a vision of an ideal visualization of an LTS. For the complete
LTS such a visualization would not only comprise an automatic projection to
big-step rule applications only but also an improved (overlap-free) layout and
additional information in the transition labels. Fig. VIII.15 gives an impression
of the effect of these improvements.

The visualization of information in a state graph can be enhanced even further.
Fig. VIII.16 displays a possible visualization of the information also present
in Fig. VIII.14. Here, we retained the original diagram notation and layout
and added symbols to indicate semantic entities. A shaded square is used to
designate the token, a shaded circle to indicate an offer and a dashed line to
signify their connection. The box in the upper right hand side of the figure
indicates the state of the invocation stack. Upon choosing a derivation sequence

198 Chapter VIII. Automatically Applying DMM Specifications

Figure VIII.15: Manually improved view on the Simple AD LTS

 State of: Simple Activity Diagram

da1:DummyAction

cbn2:CentralBufferNode

cbn1:CentralBufferNode

o1

ct1

cbn1.enqueueIncoming()

o1.getAccepted(cbn1)

DMM Stack

Figure VIII.16: Example of a state graph visualization

VIII.5. Discussion of the GROOVE Prototype 199

through the LTS, a user could even watch an animation of the changing elements
in such a kind of visualization.

To achieve these improvements in presenting the results of an automatic DMM
rule application, a tight integration of an editor component with the imager
would be necessary to transfer the required information on the model’s symbols
and their spatial placement. A suitable technology to complement extensional
elements with concrete syntax symbols would also be required. Such works
toward an integrated editing/generation/visualization environment for DMM
specifications are not the topic of this thesis anymore but remain open problems
to be solved in future work along the topic of DMM.

VIII.5.2 On the Impact of the DMM Interpreter Prototype on
DMM

The prototype DMM interpreter proves a number of points we made in this
thesis:

DMM specifications are precise and formal enough to warrant an automatic
interpretation. Using the prototype and the DMM specification of Activity
Diagrams it is now possible to derive the meaning of every activity diagram
(using only the basic and intermediate constructs) automatically. Debates on
the meaning of certain models can thus be settled without need for human
interpretation.

DMM allows for the testing of sample specifications. While the automatic inter-
pretation does not add any information which cannot be gained from a manual
inspection of the rules, it shifts the emphasis to the generated LTS. Here, the
step-wise behavior induced by the operational semantics component of DMM is
displayed very prominently. Our experiences showed us that it is easily possible
to detect errors in the DMM specification by applying it to test models, to trace
the origins of these errors, and to rectify them.

A major help in this process is the syntactic closeness of the test model, its
semantic representation, and the rules defining its semantics. This is a further
advantage which DMM holds against the denotational approaches presented
in Sect. II.3 which use specific languages for the formulation of the semantic
domain, making the tracing of errors and interpretation of analysis results rather
hard.

The ability to perform a step-wise generation of the LTS also allows for a useful
interpretation of models which produce unlimited LTS. While full generation
of such LTS is not possible, users can still gain useful information about their
behavior.

In terms of analyzability, the automatic interpretation also reveals an urgent
need for notions of abstraction. The constructed LTS grows quickly and the
rich structure of its states (each containing the whole system state graph) forms
a vast body of information. To quickly gain useful results from such a system,
information must be reduced, either by reducing the state information (in the
extreme case discarding all state internals) or by reducing the set of observable

200 Chapter VIII. Automatically Applying DMM Specifications

transitions (e.g., observing only big-step rules or observing only a selected set
of rule applications).

To summarize: GROOVE allows for the convenient and efficient applica-
tion of DMM specifications to concrete examples, proving the feasibility
of the DMM approach. The practical application of DMM with such
a tool has been demonstrated by validating the DMM rule set for Ac-
tivity Diagrams. For visualization as well as for analysis purposes, the
quantity of the generated information present problems to be tackled in
future work.

Chapter IX

Summary and Conclusions

In this chapter we summarize the contributions of this thesis (Section. IX.1).
Complementing this summary is a brief overview of related publications on
DMM and their connections to the contents presented here (Section. IX.2).
We also cast a critical glance at our results and discuss achievements and open
questions in Sect. IX.3. Finally, a summarizing conclusion is given in Sect. IX.4.

IX.1 Summary of the Contributions of this Thesis

The main contribution of this thesis is the definition of Dynamic Meta Modeling,
a technique to express the semantics of Visual Modeling Languages. The tech-
nique is especially geared toward understandability for a wide audience with the
stated goal of being fit to serve in a published language standard. It reaches this
goal by combining established techniques in an innovative way to form a precise
and formal core. To present this formal core it re-uses established notations
of the UML which are very well known to the intended audience. In contrast
to many other approaches, DMM is also very flexible in the way a Language
Engineer may formalize his intentions. Both the semantic domain meta model
and the rules can be specifically tailored to express the intended concepts. A
methodology to guide the user in this task has also been provided.

Two main technical parts of DMM are innovative contributions in themselves:
Meta Relations have been the subject of two publications [HK03, Hau03] and
form a necessary addition to the OMG’s meta modeling framework. The invoca-
tion mechanism of DMM rules is a novel concept for controlling the application
of Graph Transformation rules. It expresses this control within the rules and in
a way which it is aligned to object-oriented structurization concepts.

A final contribution is the content of the case study. It forms—to our
knowledge—the first formalization of UML 2’s Activity Diagrams which takes
the fundamental traverse-to-completion mechanism into regard.

201

202 Chapter IX. Summary and Conclusions

IX.2 Overview of Publications on DMM

The first mention of the term Dynamic Meta Modeling and an outline of its
construction (as a pure operational semantics description then) can be found
in [EHS99]. The elaboration of these ideas was the topic of a master’s thesis
[Hau01] and resulted in a contribution to the UML 2000 conference [EHHS00].

Issues of tooling for the approach were explored in [HHS00] and the theoretic
relations between Structured Operational Semantics and Graph Transforma-
tions were elaborated in [CHM00]. The extensibility of UML and its support
in DMM were the topic of [HHS01]. This work also broadened the underlying
example from UML Statecharts to UML Sequence Diagrams. The combination
of these two diagram types in a consistency testing approach employing DMM
was outlined in [EHHS02]. The handling of diagrams which express temporal
information by DMM was introduced in [HHS02a] and elaborated in [HHS04].

A first work toward Meta Relations was an application of Graph Transforma-
tions to Stuart Kent’s Relationship pattern [HHS02b]. In cooperation with
Stuart Kent the concept of Meta Relations was developed during a research
stay at the University of Kent at Canterbury. The language of Meta Relations
was introduced in [HK03] and its use for MDA laid out in [Hau03].

The final conception of DMM as a hybrid semantic approach has been presented
at a Dagstuhl seminar on Language Engineering [BH05]. The elaboration of the
Activity Diagrams case study formed the basis for scientific tutorials [HH04,
HH05] and a cooperation with Harald Störrle, resulting in [SH05].

IX.3 Discussion of DMM

Some critical questions can be posed to the claims made in this thesis:

. Are DMM specification really as understandable as you claim?

Understandability for the intended user group has permeated every aspect of
DMM’s construction. No special formal notations/concepts need to be grasped
to read or to actually write DMM specifications. We do thus believe that DMM
has strong potential to be very understandable.

In the scientific community, the DMM idea has been received very favorably.
The underlying concept of expressing operational semantics by Graph Trans-
formations has since been taken up by other researchers. Experiences from
a lecture/exercise at the 2004 Segravis Summer School also indicate that the
technique is rather easy to pick up. Participants were able to specify Statechart
semantics with simple rules very quickly and got to the point of debating the
realization of finer points like inter-level priorities.

What we can not say at the moment is how the non-scientific audience reacts to
DMM. To actually embark upon acceptance tests in this group, a suitable tool
environment (beyond the GROOVE based prototype of a DMM interpreter)
would be necessary.

IX.3. Discussion of DMM 203

Future work toward improving the understandability of our approach should
provide a way to present DMM specifications (i.e., DMM rules) as well as model
semantics (i.e., LTSs) using the concrete notation of the formalism. A first
example for such a style of presentation has been provided in Fig. VIII.16.

. Is DMM really universal with regard to the UML? Can it formalize all of
UML’s features?

We have provided formalizations of (substantial subsets of) Activity Diagrams
in this thesis, of UML Statecharts in [EHHS00], and of an prescriptive inter-
pretation of Sequence Diagrams in [HHS04]. We do not see any fundamental
problems in formalizing the remaining elements of UML’s prescriptive behavioral
diagrams with DMM. Interaction Diagrams, however, follow a descriptive style
of specification, i.e., they define which interaction traces are allowed/forbidden
without exactly detailing the cause-effect relation between these interactions.
The semantics of these diagrams could be captured in the DMM technique by
interpreting their contents as constraints on the derivation sequences in the LTS.
The exact nature of this constraining relation is as of yet unclear. First attempts
to cover these descriptive diagrams with DMM can be found in [HKS01] which
differentiates semantic dimensions of Sequence Diagrams and in [EHHS02] which
tests the consistency of prescriptive against descriptive behavior specifications.

Static constructs have been mentioned only in passing in our works as they
pose no great challenge. Such elements (Classes, Instance Specifications etc.)
are supported well by the denotational meta modeling framework which is in-
tegrated in DMM.

Some parts of UML, however, have a informal semantics only. Most notably
Use Cases defy every formalization since they are intentionally imprecise and
informal. Such elements cannot be formalized without altering their character.

. DMM seems tailored to the UML’s needs. But how well does it support the
definition of other VMLs?

DMM’s claim to understandability rests for large parts on its UML-like appear-
ance. For users of other visual languages who do not know UML this appearance
effects no advantage. While it is possible to envisage other concrete presenta-
tions for DMM specification (resembling the modeling notion to be defined),
we do not currently see other candidates readily available. But UML knowl-
edge is rather far spread, thus we believe that DMM specifications can also be
understood by users of other VMLs.

Another issue is the question which concepts can adequately be addressed by
DMM specifications. We have to be aware that DMM expresses dynamic se-
mantics in discrete steps. This is sufficient to support the discrete behavioral
notions of the UML but if other modeling languages provide notations for truly
continuous concepts, DMM will not be able to correctly express their semantics.

. What are strengths, what are weaknesses of the DMM technique?

The strength of the DMM as a whole is its flexibility in expressing the seman-
tics of a language in adequate terms. It can thus be employed to express the
semantics in a way which is not only visually appealing but which also allows
targeting the intended audience by employing notions already known to it. A

204 Chapter IX. Summary and Conclusions

weakness of this approach can be seen in the fact that the resulting semantic
domain is newly invented, thus there are no theoretic results or tools readily
available to analyze/process DMM specifications.

The Meta Relation Technique has its main strength in situations where single
elements of both the syntax and the semantic meta model correspond. The more
elements of the syntax need to be expressed by complex patterns on the semantic
side (a sign for a wide semantic gap and an inadequate semantic domain) the
less appealing Meta Relations become. Meta Relations thus advocate the use of
rich semantic domain meta models in which the granularity of semantic concepts
corresponds to the granularity of syntax elements.

The DMM rules employed for the definition of dynamic semantics are very
suitable to describe complex local state manipulations. By using the invocation
mechanism, such local manipulations can be combined to express more complex
behavior. Behavior which either depends on global conditions or which has
global effects can only be expressed in DMM by means of loop constructs.

. Will applying DMM guarantee that UML only has one consistent, precise and
stable semantics?

DMM is a technique to formalize the semantic concepts expressed by a language.
If these concepts are not consistent to begin with, the formalization will only
make it easier to reveal such problems, it will not necessarily resolve them. The
same holds for the precision of the semantics: If elements are supposed to have
multiple possible meanings, a DMM formalization will only reflect this fact. The
precision of DMM concerns the form of the semantics definition, not its content.

DMM does, however, allow for a more focused discussion on what the semantics
of the specified language actually should be. It allows for clear demonstrations
of the impacts of semantic decisions.

For the UML, we expect that the formalization of its semantics by DMM would
result in a strengthening of the language. The (semantic) extensibility notion
of DMM also suggests the definition of a common UML core with domain spe-
cific extensions allowing for additional interpretations and concepts. Multiple
possible interpretations of UML elements could thus coexist but in a clearly
structured framework, avoiding the semblance of semantic arbitrariness which
today often prevails in debates.

. Which tools are available to start using DMM?

Currently only the application of (translated) DMM rule sets on a state graph is
automated (by using the GROOVE tool set). The design of DMM specifications,
the translation of the rule set and the creation of a suitable start state for a
concrete model are currently done by hand. All of these activities should be
supported by a semantic workbench in the future. Developing such tool support
is the next step in realizing DMM’s potential as only with these tools the benefits
of DMM can be demonstrated efficiently to our intended audience.

. What are the tangible benefits in using a DMM-specified language?

The most tangible benefit in having a DMM specification is that disputes over
the exact meaning of certain combinations of language constructs, special situ-
ations, etc. can be unambiguously settled. Users either inspect the semantics

IX.4. Closure 205

specification directly or create sample models to be interpreted automatically.
Models of DMM-specified languages are thus more reliable in that they can be
exchanged without fear of diverging interpretations.

Especially for suppliers of language related technology, DMM specifications pro-
vide a clear base against which to build their approaches. This concerns re-
searchers (interested in, e.g., model analysis or consistency) and tool builders
(interested in, e.g., model transformation of code generation) alike. For DMM-
specified languages research efforts toward these topics can be concentrated
on a common base. We expect such language-related technologies to become
available faster with a higher interoperability by using DMM in a language
specification.

IX.4 Closure

Visual Modeling has found wide-spread acceptance in Software Engineering.
Especially the UML has managed to permeate industry and academia alike. Yet,
its informal semantics definition gives rise to endless discussions on the meaning
of certain diagrams. Models are thus relegated to being informal sketches rather
than precise and reliable development artifacts.

Many approaches have promised to rectify this situation by proposing formal
techniques for the definition of the UML. What sets DMM apart from these
previous works is that it takes the expected (advanced) users into account and
aims for a semantics definition which both in its concepts and in its notations
appeals to their previous knowledge. In this user-orientation, its integration
of static and dynamic semantics, and its advanced features like support for
extensibility of semantics, DMM is a unique proposal to realize the potential of
formal semantics in a practical context. We believe that DMM stands a good
chance of shaping the way Visual Modeling Languages will be defined in the
future.

Appendix A

Overview of Activity Diagrams

For readers not familiar with UML Activity Diagrams this chapter provides a
brief overview of their purpose, usage, and notations. An understanding of this
diagram type must take its history and its role in UML 2.0 into account. We
describe these aspects in Sect. A.1 and A.2, respectively. In Section A.3 we
provide an overview of the central elements of the notation. The examples in
this section revolve around a simple and intuitive party planning example also
used in [HH04, HH05].

A.1 History of Activity Diagrams

Activity Diagrams are UML’s version of dataflow modeling techniques. When
the UML was incepted, flow-modeling techniques were first dismissed as being
not object-oriented. But their popularity lead to a late integration in the UML
1.1 standard as a special kind of Statechart. While this design prevented an
extension of the UML syntax meta model, it implied that Activity Diagrams
had to obey the semantics for Statecharts. This entailed two major drawbacks:

u Forks and joins in Activity diagrams corresponded to concurrent states
(also called And-States) in Statecharts. As such, they had to be well
nested, i.e., a join could only integrate flows that originated in a corre-
sponding fork. This was unsuitable for a number of application areas,
notably workflow modeling (cf. [Pen03]), where behaviors from a whole
range of participants have to be orchestrated in a number of ways that do
not necessarily conform to this notion of well-formedness.

u UML Statecharts follow the run-to-completion (RTC) semantics. Essen-
tially, this means that all events present during an execution step of the
Statechart have to be completely processed before new events can be ac-
cepted. Since Activity Diagrams were also considered to be (a kind of)
Statechart, this lead to a rather unwanted synchronization of concurrent
activities.

207

208 Appendix A. Overview of Activity Diagrams

Being rather a last-minute addition to UML, Activity Diagrams also lacked
notational and conceptual support for modeling program logic (no high-level
concepts to express loops, exceptions, etc.), had only a very weak model of
resource assignment (swim lanes were not even represented in the meta model),
and were generally not supported by many tools in a useful way.

Due to these deficiencies, the Request for Proposals for the UML 2 Superstruc-
ture states one of its four main goals as ”Remove restrictions on activity graph
modeling due to the mapping to state machines.“ [Obj00].

A.2 The Role of Activity Diagrams in UML 2.0

Consequently, Activities (and Activity Diagrams as their primary notation) are
one of the concepts which changed most in the move from UML 1.x to UML
2.0. They are now supposed to cover a wide range of behavioral models from
the specification of use cases, over workflow modeling, down to the implemen-
tation of operations [Boc03d]. Together with the Actions definition, they form
a computationally complete language. Integration to the other diagrams of the
UML can happen in one of two ways:

u Activities as behaviors of classifiers: If classifiers have behavior (e.g., by
declaring operations) an Activity Diagram can be used to specify this
behavior. In Fig. A.1 (reproduced from [Boc03a]), the activity deliver
mail can be used to ”implement“ the corresponding operation of the class
POEmployee.

u Activities as stand-alone behavior: Activities can also represent behavior
that is important (e.g., in a given problem domain) but which is not (yet)
aligned with an object structure. Workflow definitions are examples for
such stand-alone behavior. In Fig. A.1, the action deliver mail can be such
a stand-alone behavior, independent of any class containing it. In this case
it can define properties, associations, and (meta-)operations of its own.

Having these two styles of using Activities available in UML allows for a gradual
introduction of object orientation during a development. One can, e.g., move
from Activities which describe essential behaviors of the problem domain to Ac-
tivities which describe the behavior of computational objects solving problems
in this domain.

Activities have become a first class behavior model in the UML, i.e., they now
have their own meta model representation and are independent of Statecharts
or other formalisms of the UML. Their role as compared to the other behavioral
models (Statecharts and Sequence/Communication Diagrams) is described in
the specification [Obj04], p.317 as follows: ”Activity modeling emphasizes the
sequence and conditions for coordinating other behaviors, rather than which
classifiers own the behavior.“

An important distinction is that between Activity and Activity Diagram. The
former is the model element (i.e., Activity is a class of the UML syntax meta
model) which expresses an behavior in a certain way. The latter is the (usual)
graphical rendering of this kind of behavior model. Other equivalent renderings

A.3. Activity Diagram Elements 209

UML 2 ACTIVITY AND ACTION MODELS

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

Figure 9: UML 2 Behavior

UML 2 user-defined behaviors are also classes. Each time a behavior is executed at
runtime, a new runtime instance of the user’s behavior class is created. The instance is
destroyed when the behavior terminates. Behavior classes, like all classes, can support
attributes, associations, operations, and even other behaviors, such as state machines.
This reflects common practice in systems that manage processes, for example, workflow
and operating systems. The bottom of Figure 8 shows the behavior class for the DELIVER
MAIL activity with an attribute for how long each execution of DELIVER MAIL has been
running, an operation to abort the execution, and an association for the truck it is using.
Applications can also put state machines on the behavior class to describe the status of
each execution, such as NOT_STARTED, SUSPENDED, and so on [5] [6].

UML 2 behavior classes enable the definition of standard functionality for process
management, even though UML 2 does not define standard features itself. Behavior class
features can be defined by domain standards, vendors, or user groups as reusable model
libraries containing abstract behavior classes with normative attributes and operations
such as ABORT and so on. Then these classes can be used as supertypes of user-defined
behaviors such as DELIVER MAIL in Figure 9.

8 CONCLUSION

This article begins a series on the UML 2 activity and action models. It reviews progress
in UML flow modeling, package structure needed to serve the wide range of flow

POEmployee

sortMail()

deliverMail(k : Key)

Put Mail
In Boxes

Deliver Mail

Key

Deliver Mail

HowLong : Time

Abort()

Truck
10..1

resource

Get
Truck

POEmployee

sortMail()

deliverMail(k : Key)

Put Mail
In Boxes

Deliver Mail

Key

Deliver Mail

HowLong : Time

Abort()

Truck
10..1

resource

Get
Truck

Figure A.1: Activities as behaviors and classifiers, reproduced from [Boc03a]

of the content of an Activity exist [Boc03d]. Usually, however, an Activity
Diagram in the prescribed UML syntax will be used to represent an Activity.
We thus use both terms synonymously.

The following subsection provides a brief overview of the main syntax elements
of Activity Diagrams, enabling readers unfamiliar with this notation to follow
the more in-depth discussions later on.

A.3 Activity Diagram Elements

Activity Diagrams are a diagrammatic way to represent Activities. An Activity
Diagram consists of an enclosing rectangle with rounded corners, the name of
the activity, and a directed graph. The graph is made up from three kinds of
nodes (control, action, and object nodes) and two kind of edges (control and
object flows). Note that a change of terminology has taken place in UML 2:
Activities are now the high level units of behavior specification and their steps
are called Actions (in UML 1 both levels were called activity).

The general notion of semantics as given in [Obj04] is that of token flow, i.e.,
when executing an activity, there exists a number of tokens flowing through
the graph. Tokens can either represent control or objects/data. Action nodes
will start executing upon the arrival of the necessary tokens, object nodes will
temporarily store tokens, and edges and control nodes direct the tokens flows.

Action Nodes Action nodes are usually notated as small rectangles with
rounded corners (examples for this and other notations are displayed in
Fig. A.2). They capture (a part of) the actual behavior that is to be car-
ried out within an execution of the enclosing activity, while all other elements
only determine the order of actions to be executed. Each action node represents

210 Appendix A. Overview of Activity Diagrams

Heckel / Hausmann
ATPN Tutorial – 21.6.2004

51

Some Actions

CallAction: will invoke some other
activity (rake notation optional)

AcceptEventAction: waits for the
occurrence of an event

Special notation for time events

SendSignalAction

plan party

receive
complaint

4am

notify
neighbors

Figure A.2: Different kinds of UML actions. From top to bottom: CallAction
with rake notation, AcceptEventAction, AcceptEventAction for TimeEvents,
SendSignalAction

Heckel / Hausmann
ATPN Tutorial – 21.6.2004

54

Decision Nodes

multiple outgoing edges with logically disjoint
guards

predefined guard [else]

each arriving token can traverse only one outgoing
edge

inspired by XOR-branching in WfMS

[a>3]

[else]

Figure A.3: Example for a decision node

a certain UML action that specifies the behavior executed by the node. Actions
are UML’s behavioral primitives. They can be used to perform low level modifi-
cations of the runtime state of a system (read/write variables/objects), carry out
communication tasks (send/receive signals) and invoke other behaviors. Using
the latter kind of action allows the construction of hierarchical Activity Dia-
grams, where one Activity Diagram might at some point execute a CallAction
to invoke a behavior which is in turn specified by another Activity Diagram.

Each action node can have a number of incoming and a number of outgoing
edges. To start executing the contained action, tokens must be offered on all
incoming edges of the node. After the execution of the action is finished, a token
is offered to each outgoing edge.

Control Nodes Control nodes do not have a behavior of their own. They are
used to specify the sequences of actions to be executed in an activity. There are
a number of different control nodes for this purpose, namely decision and merge
nodes for alternative branching, join and fork nodes for concurrent branching,
and initial and final nodes for starting and terminating activity execution. The
following paragraphs will introduce these nodes in more detail. Common to all
control nodes is the fact that they are unable to buffer tokens, i.e., a token will
only pass control nodes to reach executable or object nodes.

A.3. Activity Diagram Elements 211

Heckel / Hausmann
ATPN Tutorial – 21.6.2004

13

Fork nodes

initiates independent (concurrent) branches

Tokens arriving at a fork are duplicated across the
outgoing edges

(!) No true parallelism!
fade out track

fade in track

buy beverages

plan party

prepare room

commence party

Figure A.4: Example for the use of fork and join node

Decision nodes Decision nodes are notated as a diamond with one incoming
and multiple outgoing flows. Each of the outgoing flows is adorned with a guard
condition. The intention of the decision node is to guide incoming tokens along
one of the outgoing flows depending on certain conditions. A token will only
move down one outgoing flow (so called XOR-branch) even if multiple guards are
satisfied (in this case the choice is non-deterministic). The example in Fig. A.3
shows a decision node which will pass tokens along the upper flow if variable a
is greater than 3, along the lower flow otherwise (the guard else is predefined
and holds if all other guards fail).

Merge nodes Merge nodes are also notated as diamond shapes, only with
multiple incoming and one outgoing flow. Their semantics is to pass every
incoming token down the outgoing flow. Merge nodes can be used to re-integrate
flows that have been split up at a decision node (analogous to an endif statement
which integrates the then and else part of an if statement), but they can also
be used without directly corresponding to a decision node. One thing to note is
that merge nodes will pass on all offered tokens. In that regard they resemble
a multi-merge or OR-merge and are thus not perfectly symmetric to decision
nodes.

Fork nodes Fork nodes are notated as a bar with one incoming and multiple
outgoing flows. The semantics of a fork note is to pass (duplicates of) each
incoming token along all outgoing flows. This kind of node is used to indicate
that the following portions of the activity can be executed concurrently. In
the example in Fig.A.4 the end of the activity plan party enables the execution
of buy beverages as well as prepare room. The different outgoing flows are not
synchronized to achieve parallelism but can execute independently, i.e., it is
possible to buy beverages first and prepare the room later on, or to clean the
room first, or to do both of these things in an interleaved way.

Join nodes Join nodes complement fork nodes in that they integrate multi-
ple flows. Using also a bar as the notational element, they are distinguished
from fork nodes by having multiple incoming and only one outgoing flow. The
semantics of join nodes is to produce an outgoing token if all incoming flows
offer a token. Thus, a join node has the ability to re-unite concurrent flows
that emerged from a fork node. In contrast to UML 1.x Activity Diagrams, no
correspondence between forks and joins is required. Referring to the example

212 Appendix A. Overview of Activity Diagrams

Heckel / Hausmann
ATPN Tutorial – 21.6.2004

60

Activity Final Nodes

A token arriving at an activity final node aborts all
flows in the containing activity

(!) Handle with care if using re-entrant behavior

draw beer

play music

[by police]receive
complaint

draw beer
[all kegs empty]

[else]

Figure A.5: Example for the use of final nodes

in Fig.A.4, the join node requires the actions buy beverages and prepare room to
be complete before enabling commence party.

Initial nodes Initial nodes indicate the start of an activity. If the activity is
invoked, each initial node produces a token. Initial nodes are notated as a small
filled circle. Several flows may originate at an initial node. Guard conditions
should ensure that the choice between these outgoing flows is deterministic.

Final nodes Final nodes consume tokens and thus stop the execution of an
activity. There are two kinds of final nodes: flow final nodes and activity final
nodes.

Flow final nodes consume all incoming tokens, thus ending a single flow of
execution within an activity. If other tokens exist in the activity, they remain
unaffected. In the example in Fig. A.5 a flow final node terminates the loop
around the action draw beer if the kegs are empty. This does not affect any of
the other flows, i.e., play music may still be executed.

Activity final nodes have an abort semantics: Once a token reaches an activity
final node, all tokens currently existing in the activity will be destroyed, effecting
a termination of all behavior. In the example (Fig. A.5) the reception of a
complaint by the police will terminate the actions draw beer and play music
immediately.

Object nodes Sometimes the triggering of subsequent actions is not facilitated
by an explicit passing of control (i.e., a control token) but rather by supplying
some kind of information or an object. To handle these situations Activity
Diagrams supply object nodes and object flows.

Object nodes have angular corners and come in three kinds: The may be at-
tached to an action node, then they are called pins and represent input and
output data of that action. Other possibilities are that they describe parame-
ters of an activity or appear as stand-alone elements in the form of data store

A.3. Activity Diagram Elements 213

Heckel / Hausmann
ATPN Tutorial – 21.6.2004

20

Pins

A pin is an object node for inputs and outputs to
actions

Design invitation Print invitations
design design

Mail invitations
printout

Figure A.6: Example for the use of pins

Heckel / Hausmann
ATPN Tutorial – 21.6.2004

67

Parameters

Parameters pass objects/data in and out of
activities

Mail Registered Letter

letter

address

confirmation

print
envelope

apply
stamp

insert
letter

mail
letter

print registration form

Figure A.7: Activity with in and out parameters and control and object flows

or central buffer nodes. The next paragraphs will provide details on these spe-
cializations.

Common to all object nodes is the ability to buffer one or more object tokens.
Object nodes may specify the type and state of objects that they can store
and may also specify a maximum buffering capacity. For nodes with a capacity
greater than one, a selection scheme can be specified which determines the next
token to be taken out of the buffer (pre-defined schemes include FIFO and
LIFO). A notable semantic property of object nodes is that if multiple flows
emerge from an object node, a token will only move down one of these (token
competition).

Pins Pins represent data inputs and outputs to action nodes and are notated
as small boxes attached to its border. When an action has both control and
data dependencies (i.e. incoming flow both going directly into the action and
into its input pins) all of these dependencies must be satisfied for the action to
start. In Fig.A.6 the input pin attached to Print Invitation indicates that this
action is to start when an invitation design is provided. Similarly, the output
pin of the action indicates that the output produced by this action consists of
(printed) invitations.

In the Fig. A.7 most action nodes are adorned with pins. An example for mixed
dependencies is insert letter which requires a control token from print envelope
and an object token letter.

Parameters Analogous to pins passing data into or out of an action execution,
parameters capture data present when a whole activity starts or terminates its

214 Appendix A. Overview of Activity Diagrams

Heckel / Hausmann
ATPN Tutorial – 21.6.2004

68

Central Buffer Nodes

Collecting from multiple sources

Buffering for multiple consumers

draw at
tap 1

draw at
tap 2

«centralbuffer»
beer

serve
at bar

serve by
waiter

Figure A.8: Central buffer nodes collecting from multiple producers and dis-
tributing to multiple consumers

execution. Parameters are notated as boxes overlapping the borders of activities.
The example in Fig. A.7 states that the mailing of a registered letter has two
input (letter and address) and one output parameter (registration).

Central buffer and data store nodes Central buffer nodes are nodes in the
activity graph that are notated as rectangles and carry the stereotype �central-
buffer�. Their role is to serve as a buffer for object tokens independent from any
action. Buffering is useful in situations where the output from multiple actions
is to be collected at a central place for later consumption or where multiple
consuming actions draw from a common source. In the example in Fig. A.8
these possibilities are combined in that beers either drawn at tap 1 or tap 2 are
collected in a central buffer node to be served at the bar or to be taken by a
waiter.

Data store nodes specialize central buffer nodes in that only copies of buffered
tokens are supplied to outgoing flows. Thus, data stores are a non-depleting
form of buffer and retain all tokens ever passed to them.

Flows The arcs connecting the different kinds of nodes are called flows in
Activity Diagrams. One can distinguish between control flows (carrying control
tokens) and object flows (carrying object tokens). Each flow connects two nodes
which can be of any of the above enumerated types. A flow can be adorned with
a guard which specifies the conditions under which a token can pass the edge.
If a weight is given for a flow, it specifies the number of tokens that pass the
edge together.

A.4 Advanced Activity Diagram Elements

The previous paragraphs introduce the basic elements of Activity Diagrams but
there are a number of concepts that have not been covered. Some of these
are orthogonal to the basic elements (e.g., interrupt modeling), others extend
the basic elements presented here (e.g., join specifications). The full details on
all of these elements can be found in the UML specification [Obj04]. Good
descriptions are also available in textbooks, e.g., [Stö05b, Pen03].

Appendix B

The DMM Specification of
UML Activity Diagrams

This chapter provides the formalization of Activity Diagram’ semantics in terms
of DMM. We present this formalization by first giving a high-level overview of
the package structure (Sect. B.1) of the semantic domain meta model. Along
these packages we then introduce the details of the semantic classes, their op-
erations, and the Meta Relations they participate in (Sect. B.2 to B.10). An
excerpt of the information presented here is contained in Section. VI.2.

Note that this case study only formalizes the core elements of UML’s Activity
Diagrams, i.e., those elements described in App. A.

B.1 Overview of the SD Meta Model for Activity
Diagrams

The semantic domain meta model for (the core elements of) Activity Diagrams
which we provide as a case study for the feasibility of the DMM approach con-
tains more than 30 classes. It is therefore subject to a high-level structurization
by packages. Fig. B.1 provides an overview of the different packages we defined
and their relationships.

In the remainder of this section we proceed to introduce the different packages
and the classes they define. All descriptions are given in a standardized format
which resembles the structure of the UML specification. We proceed in (roughly)
the hierarchical order provided by the vertical placement of the packages in
Fig. B.1. For each package we provide an overview which provides the rationale
for grouping the elements of the package. Then we detail the classes contained
in the package and provide information on their properties. Especially the
operations of these classes are detailed in the form of DMM rules. For concepts
which also appear in the UML specifications (either as syntax elements or as
concepts in the semantics description) we specifically point out if we performed

215

216 Appendix B. The DMM Specification of UML Activity Diagrams

Core Structure

Ordering

Core Behavior

Core Activities

Buffernodes

Core Actions Controlnodes

Actions

«merge»

«import»

«import»

«merge»

«import»

«merge»

«merge»

«merge»

«merge»«import»

«import»

«merge»

«merge»

«merge»

Figure B.1: The package structure of the semantic domain meta model for
Activity Diagrams

B.2. Package Ordering 217

OrderableElement

Root

0..1

next

prev

0..1

0..1

first 0..1 last 0..1

0..1

Ordering

Figure B.2: The contents of the Ordering package

any modification to their original meaning. This is especially helpful for readers
deeply familiar with the UML specification.

Note that for improved readability we included all information on a class in
the package in which it is originally defined (even if some of its properties are
not defined in that package but elsewhere). As we only have very few elements
added by importing packages, this style of presentation works well here and
allows for quickly localizing relevant information.

B.2 Package Ordering

Description The Ordering package (Fig. B.2) is an auxiliary package which
provides means to order lists of elements. This facility is imported by multiple
packages to provide structures which can easily be traversed by loop constructs.

B.2.1 Class Root

Description The Root Class is part of the order pattern illustrated in Fig.B.3.
It denotes an element that holds a pointer to the first or last element of an
ordered set (i.e., a list).

Package Root is defined in the Ordering package.

Associations

first [0..1] The first entry of the list.

last [0..1] The last entry of the list.

218 Appendix B. The DMM Specification of UML Activity Diagrams

:Root

:OrderableElement :OrderableElement :OrderableElement

first
prev

next
prev

next

prev
next

last

...

Figure B.3: Illustration of the ordering pattern

Constraints

context Root

inv

self.first.prev->isEmpty()

self.last.next->isEmpty()

The first and last element of a list must not be connected to further elements.

Operations (none)

Semantics A Root holds pointer to the head or tail of an ordered list. It is
possible that both pointers are set, point to the same object (list with a single
element), or are both null (empty list). Lists are not explicitly typed, but we
expect them to mostly contain elements of a single type only.

Differences to standard UML Root is not a part of the UML syntax. It is an
auxiliary element introduced to order sets.

B.2.2 Class OrderableElement

Description An OrderableElement is part of a list of elements of the same type.
Lists can be ordered forward, backward or both.

Package OrderableElement is defined in the Ordering package.

Associations

next [0..1] Points to the next element in the list.

prev [0..1] Points to the previous element in the list.

Constraints

B.3. Package Core Structure 219

context OrderableElement

OrderableElement::allSuccs:Set(OrderableElement)

OrderableElement::allPrevs:Set(OrderableElement)

OrderableElement::selfAllSuccs:Set(OrderableElement)

OrderableElement::selfAllPrevs:Set(OrderableElement)

allSuccs= next->union(next->collect(e|e.allSuccs()))

allPrevs= next->union(next->collect(e|e.allPrevs()))

selfAllSuccs= allSuccs->union(self)

selfAllPrevs= allPrevs->union(self)

inv:

not(allSuccs->includes(self))

not(allPrevs->includes(self))

Lists must never contain loops. The (recursive) queries allSuccs and allPrevs can
be used for this check. The queries selfAllSuccs and selfAllPrevs yield the set of
all succeeding/preceding elements including the element the query was invoked
on. These queries are employed by elements using the ordering feature to ensure
the totality of the order.

Operations (none)

Semantics An OrderableElement can be part of an ordered list. The ordering
between elements of a list is bidirectional, i.e., an element knows its predecessor
as well as its successor.

Differences to standard UML OrderableElement is not part of the UML syn-
tax. It is an auxiliary element introduced to order sets.

B.2.3 Mappings

The classes of the Ordering package are auxiliary elements which are not directly
related to elements of the syntax.

B.3 Package Core Structure

Description The package Core Structure as depicted in Fig. B.4 provides the
basic structural parts of the semantic domain. For the current purpose (for-
mulation of the semantics of activity diagrams), a very sparse population by
just two classes is sufficient. A formalization of, say, Class Diagrams would add
considerable detail in this package.

B.3.1 Class Class

Description A class is an instantiable concept. In the context of activity dia-
grams it is mostly used to type parameters of data objects.

220 Appendix B. The DMM Specification of UML Activity Diagrams

ObjectClass
instancetype

* *

Core Structure

Figure B.4: The contents of the Core Structure package

Package Class is defined in the Core Structure package and extended by the
packages Core Behavior and Buffernodes

Associations

Object [*] The objects that are direct of indirect instances of this class.

Parameter [*] (added by the Basic Behavior package) The Parameters which are
of this type.

BufferNode[*] (added by the Buffernodes package) A class can define the type
of a buffer node. Only object tokens with an underlying object of this
class can be buffered on such a node.

Constraints (none)

Operations (none)

Semantics Classes are only used as the definition of data types in this domain
and do thus not contain any dynamic semantics.

Differences to standard UML (none)

B.3.2 Class Object

Description An object is an instance of a class.

Package Object is defined in the Core Structure package and extended by the
packages Core Behavior and Core Activities

B.3. Package Core Structure 221

Associations

type [1..*] The class(es) that form the type(s) of the object. An object always
has a direct type which is the class its instantiated from. If that class
inherits from other classes, however, the object can also claim to be of
the type pf the super classes. Thus the type association also connects an
object with all classes in the inheritance hierarchy above its direct type.

Slot [*] (added by the Core Behavior package)An object can be used to fill a
slot, i.e. act as the concrete value in a behavior invocation. This also
implicates that in this particular formalization, parameters are always
passed as references and not as values.

ObjectToken [*] (added by the Core Activities package) An object can be refer-
enced by ObjectTokens. There can be many such references, with different
tokens flowing through the same or through concurrent activities.

Constraints (none)

Operations (none)

Semantics Objects represent only (complex) data values in this domain. They
do thus not have any dynamic semantics.

Differences to standard UML It is noteworthy that the association type ref-
erences the direct type and all supertypes. In the UML meta model, type edges
usually only indicate the direct type.

B.3.3 Mappings

The Meta relations targeting the Core Structure package are depicted in Fig. B.5.
Two Relations define the connection between the syntax (UML meta model, left
hand side of the figure) and the semantics (package Core Structure, right hand
side of the figure)1

CRep - The Class Replication Relation

context CRep

inv

domelement.name=ranelement.name

The name of the class has to be preserved in the mapping.

1As a presentation convention, we always place the UML meta model at the left hand of
the mapping figures and assume it to form the domain of all Meta relations. The range of
these Relations is always placed at the right hand side of the figures and labeled with the
name of the semantic package under consideration.

222 Appendix B. The DMM Specification of UML Activity Diagrams

Object

Class

instance

type*

*

Core Structure

Class

Generalization

1 general1 specific

CRep
1 1

C2O

UML Meta Model

1

*

cmap1..*

Figure B.5: Semantics mappings of the Core Structure package

C2O - The Class to Object Relation

context C2O

inv

cmap.domelement=domelement.allParents->union(domelement)

cmap.ranelement=self.ranelement.type

The constraints of the C2O Relation ensure that a) the objects of a (syntactic)
class are always typed over its (semantic) counterpart and b) that all (syntac-
tical) types are flattened. An object in the semantic domain will thus be typed
over all classes which are (transitive) super types of its direct type2.

B.4 Package Core Behavior

Description The Core Behavior package (Fig. B.6) provides the basic notions
which underlie all behavioral semantics in UML. These are partially the equiv-
alents of UML’s core behavior package and partially their runtime equivalents.
The Core Behavior package builds upon the Core Structure package (since param-
eters are typed) and the Ordering package (since parameters are ordered with
respect to their defining behavior).

B.4.1 Class Behavior

Description A behavior is an executable specification.

Package Behavior is defined in the Core Behavior package and extended by the
Actions package.

2This flattening does not aim to resolve name conflicts of provide semantics for multiple
inheritance.

B.4. Package Core Behavior 223

Core Behavior

OrderableElement

(from Ordering)
Root

(from Ordering)

Behavior

{abstract}
Parameter

formal

paramater

0..1
*

Slot
BehaviorExecution

{abstract}

supplier

1 *

0..*

 invoked
0..1

invoker

1

* execution

specification

consumer

1 *

result

0..1 *

1

*realization

definition

Object

(from Core Structure)* value

0..1

Class

(from Core Structure)0..1*

type

Figure B.6: The contents of the Core Behavior package

Associations

Parameter (as formal parameter) [*] A behavior can depend on a number of ob-
jects that are passed at its invocation. The type of these objects is defined
by the formal parameters of an behavior.

Parameter (as result) [*] A behavior might produce a number of objects during
its execution which it needs to pass on for further computation. The type
pf these objects is defined by the result parameters.

BehaviorExecution [*] Whenever a behavior is executed, a BehaviorExeceution is
created for it which controls the execution of the behavior. Since concur-
rent execution can occur, there might be a number of executions for one
behavior simultaneously.

CallBehaviorAction (added by the Actions package) Behaviors can be invoked by
other behaviors. A CallBehaviorAction is one such behavior which is able
to invoke a behavior. In this formalization it is the only behavior with
this ability, but there are more in the scope of the full UML.

Constraints (none)

Operations (none)

Semantics Every kind of conceivable executable specification is a behavior in
UML. This includes the behavioral diagrams in UML (Activity Diagrams, Stat-
echarts, Interaction Diagrams) as well as operations and other specifications.

Differences to standard UML (none)

224 Appendix B. The DMM Specification of UML Activity Diagrams

behaviorexecution.destroy()

behaviorexecution:

BehaviorExecution

{destroyed}

:Slot

{destroyed}

consumer

behaviorexecution.destroy()

behaviorexecution:

BehaviorExecution

{destroyed}

:Slot
consumer

Figure B.7: DMM rules describing the destructor of a behavior execution

B.4.2 Class BehaviorExecution

Description A BehaviorExecution is the actual instance of a behavior. An
instance of this class is present for every running behavior.

Package BehaviorExecution is defined in the Core Behavior package.

Associations specification [1] The behavior which is being executed

Slot [*] (as supplier) Slots which supply values to the execution, i.e. concrete
values for formal parameters.

Slot [*] (as consumer) Slots which hold result objects of the execution.

BehaviorExecution [0..1] (as invoker) The behavior execution which has invoked
the current execution.

BehaviorExecution [*] (as invoked) The behavior executions which the current
execution has invoked. In the case of asynchronous invocation, there might
be multiple such invoked executions.

Constraints

context BehaviorExecution

BehaviorExecution::allInvokedExecutions:Set(Behaviorexecution)

allInvokedExecutions= invoked->union(invoked->collect(e |

e.allInvokedExecutions()))

inv:

not(allInvokedExecutions->includes(self))

A behavior execution might not be its own invoker.

B.4. Package Core Behavior 225

Operations destroy() The operation destroy facilitates the destruction of the
BehaviorExecution itself and all slots for which it forms the consumer (cf.
Fig. B.7). Slots for which the execution is the supplier are untouched by this
rule since they might contain results that an invoking execution might want to
consume later.

Semantics A BehaviorExecution is the representation of an execution of the
specifying behavior. Its concrete semantics are determined by its subclasses as
different behaviors have different executions (see semantics of ActionExecution
and ActivityExecution). The only fixed semantics for all forms of BehaviorEx-
ecution is the responsibility for removing slot elements upon the execution’s
end.

Differences to standard UML Behavior Execution is not present in the UML
syntax.

B.4.3 Class Parameter

Description A Parameter is the definition of a data value that is to be passed
into or out of an invoked behavior.

Package Parameter is defined in the Core Behavior package and extended by
the Buffernodes package

Associations

Behavior [1] (as formal parameter or result) A parameter always belongs to a
behavior. It can either be a formal parameter and represent data that is
to be passed to an execution of this behavior or it can be a result and
represent data passed from this execution.

Slot [*] Whenever a behavior is executed, slots are created which can hold ob-
jects for the different parameters a behavior has. Since behaviors can be
called concurrently, multiple such slots can exist for a parameter.

ParameterNode[*] (added by the Buffernodes package) Parameters can get rep-
resented in activity diagrams by the graphical element ParameterNode.
Each such node must correspond to one parameter, but multiple such rep-
resentations can exist. Note that Parameter nodes represent parameters
”internally. i.e. from the viewpoint of the executed behavior, while input
and output pins are used to pass data to a behavior that is to be invoked
(”external view).

Class [1] Each parameter has a fixed type, i.e. it can only represent objects
instantiated from a certain class (or one of its subclasses).

InputPin [*] (added by the Core Actions package) A formal parameter of a be-
havior can be represented in an activity as an input pin on a CallAction.
Thus, input pins are mapped to the parameter they represent.

226 Appendix B. The DMM Specification of UML Activity Diagrams

OutputPin [*] (added by the Core Actions package) A result of a behavior can be
represented in an activity as an output pin on a CallAction. Thus, output
pins are mapped to the parameter they represent.

Constraints

context ParameterNode

inv

not(self.Behavior->isEmpty())

self.represents.oclType=OutputPin implies

self.Behavior.result->includes(self)

self.represents.oclType=InputPin implies

self.Behavior.formalParameter->includes(self)

A Parameter is always owned by a Behavior (either as a formal parameter or as
a result). Parameters mapped to output pins must always be results for their
owning behavior Parameters mapped to input pins must be formal parameters
for their owning behavior.

Operations (none)

Semantics Parameters simply define slots which are used to pass data into
and out of behavior executions in a defined way. They do not have dynamic
semantics.

Differences to standard UML (none)

B.4.4 Class Slot

Description A slot can temporary hold objects for the transfer into or out of
behavior executions.

Package Slot is defined in the Core Behavior package.

Associations

BehaviorExecution The BehaviorExecution for which this slot holds values. The
slot can either play the role of supplier or consumer (holding formal and
result parameters respectively)

Parameter[1] Each slot is defined by a parameter.

Object [0..1] Each slot can hold at most one object as it value. Since some slots
represent results, they do not carry any values as long as the execution
runs. Likewise the objects from the formal parameters can be removed or
modified during the execution of the behavior.

B.4. Package Core Behavior 227

Core Behavior

Behavior

{abstract}

Parameter

formal

paramater

1

*

Slot

BehaviorExecution

{abstract}

supplier1

*

1

*execution

specification

consumer1

*

result

1

*

1

*

realization

definition

Class

(from Core Structure)

0..1

*

type

BehRep

1

1

Behavior

Parameter

UML Meta Model

ParaRep1 1

P2S
*

1

B2BE
1

*

Classifier

type

paramap

1

specmap

1

ownedParameter

CRep

cmap

Figure B.8: Semantics mappings of the Core Behavior package

Constraints

context Slot

inv:

self.value.type->includes(self.definition.type)

The value objects must conform to the type of the underlying parameter.

Operations (none)

Semantics Slots are the concrete places where the values for parameters are
stored. They are created and destroyed with the execution of the activity they
belong to. They do not have dynamic semantics of their own.

Differences to standard UML (none)

B.4.5 Mappings

The semantic mappings targeting the Core Behavior package are BehRep, B2BE,
ParaRep, and P2S (cf. Fig. B.8)

BehRep - The Behavior Replicaton Relation

context BehRep

inv:

domelement.name=ranelement.name

The names of all behaviors must be preserved in the semantic domain.

228 Appendix B. The DMM Specification of UML Activity Diagrams

B2BE - The Behavior to Behavior Execution Relation

context B2BE

inv:

specmap.domelement=self.domelement

specmap.ranelement=self.ranelement.specification

These constraints ensure that the BehRep mapping is correctly respected when
mapping BehaviorExecutions.

ParaRep - The Parameter Replication Relation

context ParaRep

domain=scope.ranelement.ownedParameter

range=scope.domelement.Parameter

inv:

domelement.name=ranelement.name

(scope.ranelement.ownedParameter->select(par|par.direction=in or

par.direction=inout))->includes(self.domelement) implies

scope.ranelement.formalparameter->includes(self.ranelement)

(scope.ranelement.ownedParameter->select(par|par.direction=out or

par.direction=result))->includes(self.domelement) implies

scope.ranelement.result->includes(self.ranelement)

cmap.domelement=self.domelement.type

cmap.ranelement=self.ranelement.type

The domain and range definition of the Parameter mapping ensure that all
Parameters of a behavior are mapped with it to the semantic domain. The
invariants ensure three things: First, the name of the mapped parameter is
preserved. Second, the parameter direction is preserved3. Third, the typing of
the parameter is preserved.

P2S - The Parameter to Slot Relation

context P2S

domain=scope.domelement.ownedBehavior

range=scope.ranelement.Slot

inv

parmap.domalement=self.domelement

parmap.ranelement=self.ranelement.definition

(scope.ranelement.ownedParameter->select(par|par.direction=in or

par.direction=inout))->includes(self.domelement) implies

self.ranelement.consumer=scope.ranelement

(scope.ranelement.ownedParameter->select(par|par.direction=out or

par.direction=result))->includes(self.domelement) implies

self.ranelement.supplier=scope.ranelement

The last two invariants ensure that the Slot is connected to its BehaviorExe-
cution in the correct role. Slots for formal parameters of a behavior are read

3The preservance of the parameter direction has become more complicated as the OMG
changed the encoding of what is a result parameter during the finalization of UML 2.0. What
was an association before (as it still is in the semantic domain meta model) is now a specific
attribute only. Employing the flexibility which the semantic mapping provides, we can address
this change without adapting the semantic domain meta model.

B.5. Package Core Activities 229

Token
Offer

Edge

ControlToken

ObjectToken

Node

ActivityElement

1

*

carries ◄

ValueSpecification

guard0..1

target incoming

*1

source

outgoing

*

1

1

base *

Object

(from Core Structure)

content

reference*

1

Activity

*

1

OrderableElement

(from Ordering)

Root

(from Ordering)

Behavior

(from Core Behavior)

BehaviorExecution

(from Core Behavior)

ActivityExecution

*

Core Activities

*

spawnpoint

Figure B.9: The contents of the Core Activities package

(consumed) by the execution of the behavior, slots for results are written (sup-
plied) by the execution of the behavior.

B.5 Package Core Activities

Description The Core Activities package (Fig. B.9) defines the core concepts of
activities, namely the (syntactic) structure of nodes and edges and the runtime
concepts of tokens and offers. Again, the Ordering package is employed to allow
for traversing collections of elements and the Core Structure package is merged
to associate an Object to an ObjectToken.

B.5.1 Class Activity

Description Activity is the base class that contains all other structural and
runtime elements.

Package Activity is defined in the Core Activities package.

Associations

ActivityElement[*] The elements defining the Activity’s behavior.

Constraints

230 Appendix B. The DMM Specification of UML Activity Diagrams

context Activity

inv::

self.first.selfAllSuccs=self.Parameter

All parameters (formal as well as result parameters) of an Activity must be in a
total order.

Operations none

Semantics An Activity captures a definition of behavior in the form of an
activity graph. The ActivityElements define the graph of nodes and edges which
specify the inner structure of the Activity. This behavior is twofold: On the one
hand the flow semantics of activities specify the order in which actions contained
in the graph can be executed. The actions on the other hand specify the single
steps of behavior which, when combined, form the activity’s behavior. An
activity is only the structural composition of elements whose dynamic semantics
are combined to form the semantics of an ActivityExecution.

Differences to standard UML (none)

B.5.2 Class ActivityElement

Description ActivityElement is the fundamental building block of activities.
An ActivityElement can carry any number of offers.

Package ActivityElement is defined in the Core Activities package.

Associations

Offer [*] the set of offers carried by the ActivityElement.

Activity [1] the Activity of which this ActivityElement is a part.

Constraints (none)

Operations (none)

Semantics Offers are carried by an ActivityElement. An ActivityElement does
not have dynamic semantics of its own. The subclasses of ActivityElement con-
tain rules how offers can move onto and from an ActivityElement.

Differences to standard UML ActivityElement is not part of the UML syn-
tax. The UML meta model defines the notion of ActivityGraph instead which
contains Nodes and Edges.

B.5. Package Core Activities 231

activityexecution.start()

:Activity
activityExecution

:ActivityExecution

param:ParameterNode

specification

:InitialNode

createToken(activityExecution)createToken(activityExecution)

Figure B.10: DMM rule describing the start of an ActivityExecution

activityexecution.end()*

activityExecution

:ActivityExecution
:Token

:BehaviorExecution
invoked

destroy()

Figure B.11: DMM rule describing the end of an ActivityExecution

B.5.3 Class ActivityExecution

Description An ActivityExecution is the representation of an actual execution
of an Activity.

Package ActivityExecution is defined in the Core Activities package.

Associations Token [*] The token(s) which represent the current execution
state of the activity.

Constraints (none)

Operations

start() If an ActivityExecution is started, control tokens are created on all initial
nodes and object tokens are created on all parameter nodes of the respec-
tive activity. The rule in B.10 provides the formal specification of this
operation.

232 Appendix B. The DMM Specification of UML Activity Diagrams

activityexecution.terminate()

activityExecution

:ActivityExecution
:Token

:BehaviorExecution
invoked

3:destroy() 1:destroy()

2:terminate()

Figure B.12: DMM rule describing the cancellation of an ActivityExecution

end()* An ActivityExecution ends (cf. Fig. B.12) if no more tokens can advance
the state of the activity execution and there are no more running behavior
executions invoked by the activity execution (in particular there are no
more action executions of this activity). In this case the activity execu-
tion is being destroyed (see BehaviorExecution for semantics of the destroy
operation)

terminate() The terminate operation (Fig. B.12) can be invoked to stop a run-
ning execution. Termination of an ActivityExecution entails the termina-
tion of all subordinate behaviors and the deletion of all currently existing
tokens of this ActivityExecution. The difference between ending and termi-
nating an activity execution is that termination is an active process, trig-
gered from the outside, which interrupts running behaviors, while ending
an activity execution only consists of the recognition that the execution
has come to its natural end and may thus be deleted.

Semantics An ActivityExecution represents the actual execution of a behavior
specified by an activity. An ActivityExecution keeps track of the different tokens
and invoked ActionExecutions which represent the state of the execution. If
all tokens have been consumed and no contained action executes anymore, the
ActivityExecution ends.

Differences to standard UML (none)

B.5.4 Class Token

Description Tokens are used to represent the location of control or data.

Package Token is defined in the Core Activities package and extended by the
Buffernodes package.

B.5. Package Core Activities 233

token.destroy()

:Offer
token:Token

{destroyed}
base

destroy()

token.destroy()

:Offer
token:Token

{destroyed}
base

Figure B.13: DMM rules for the token destructor

Associations

ActivityExecution [1] A Token is owned by an ActivityExecution.

Buffernode [1] (as extended by the Buffernodes package) A Token is always con-
tained by a BufferNode.

Constraints

context Token

inv:

this.activityExecution.specification=this.container.activity

Tokens of an ActivityExecution can only be contained by nodes of the defining
activity.

Operations

destroy() When destroying a token (see Fig. B.13) all offers representing this
token have to be destroyed as well.

copyContent(original:ObjectToken) A Token has the ability to copy its content to
a newly created token. This operation has different semantics for control
and object tokens. Since control tokens do not have any content, the
operation does nothing (see Fig. B.14, bottom). For Object Tokens (see
Fig. B.14, top) it copies the link to the content object to the new token.
This overloading of the operation allows a more uniform handling of tokens
by other rules.

withdrawOffers() The withdrawing of offers becomes necessary if changes hap-
pen to the underlying token which invalidate its currently emitted offers.
In this formalization this withdrawing is only triggered when the token
moves. All offers (if any are emitted) are deleted by this operation (cf.
the rule in Fig. B.15).

234 Appendix B. The DMM Specification of UML Activity Diagrams

token.copyContent(original:ObjectToken)

:Objecttoken:ObjectToken
content

{new}

original:ObjectToken

token.copyContent(original:ControlToken)

token:ControlToken original:ControlToken

Figure B.14: DMM rules for copying the content of an object or control token

token.withdrawOffers()

:Offertoken:Token base

destroy()

token.withdrawOffers()

:Offertoken:Token base

Figure B.15: DMM rules for withdrawing the offers of a token

B.5. Package Core Activities 235

Semantics Tokens represent control or data that is currently available for the
execution of actions. Tokens move to another node if that node has accepted
one of their offers. Actions need tokens to execute. When an action executes,
all input tokens are consumed (since the data/control is currently used) and
after the execution of the action, new tokens become available on its outputs.
See the operations of ActionExecution for the respective rules. Tokens do not
move on their own upon any element. They emit offers along the downstream
paths and elements decide (by their respective semantics) whether they accept
the offered token.

Differences to standard UML The class Token represents the term Token from
the text of the UML specification.

B.5.5 Class ControlToken

Description A ControlToken represents a locus of control.

Package ControlToken is defined in the Core Activities package.

Associations (none)

Constraints (none)

Operations (none)

Semantics ControlTokens do not have semantics that differ from general to-
kens. They rather represent the standard case, wheras ObjectTokens have special
features.

Differences to standard UML ControlTokens formalize the identical term from
the text of the UML specification. They differ from the UML specification in
that they can be temporarily stored in untyped BufferNodes, particularly in
InputPins and OutputPins.

B.5.6 Class ObjectToken

Description An ObjectToken represents an object.

Package ObjectToken is defined in the Core Activities package.

Associations content [1] The object that is represented by the ObjectToken.
Multiple ObjectTokens can represent the same object.

236 Appendix B. The DMM Specification of UML Activity Diagrams

Constraints (none)

Operations (none)

Semantics An ObjectToken represents a piece of data that is routed through
the activity graph.

Differences to standard UML ObjectTokens formalize the respective term
from the text of the UML specification. In this case study we do not con-
sider object tokens which represent not objects but rather single data values
(the UML specification sometimes refers to this second interpretation of object
tokens).

B.5.7 Class Offer

Description An Offer represents the fact that a token might move from its
current position to the element where the offer resides. Offers are used to mark
partially evaluated paths through control structures. They are passed along by
the different nodes and edges which make up the control structures.

Package Offer is defined in the Core Activities package and extended by the
Controlnodes package.

Associations

Token [1..*] The base token that is represented by the offer. If an offer is formed
by joining several offers at a join node, an offer can have more than one
base token. Multiple base tokens are necessarily control tokens.

ActivityElement [1] The ActivityElement that currently carries the offer. Both
nodes and edges can carry an offer.

Node [0..*] If the offer has been spawned at a fork node, it retains a link to
the queue of the outgoing edge it travels along. This queue is called its
spawnpoint. An offer can have multiple spawnpoints if it is joined from
multiple offers with different spawnpoints. Note that while this association
is defined in the Core Behavior package, it is only used in connection with
fork nodes (from the Controlnodes package).

Constraints

context Offer

inv:

this.base->count>2 implies this.base.OCLtype=Controltoken

this.spawnpoint.OCLtype=CentralBufferNode

If multiple base tokens exists, they have to be control tokens. The spawnpoint
must always be a central buffer.

B.5. Package Core Activities 237

offer.GetAccepted()

new:Nodeoffer:Offer
carries

t:ObjectToken

base

old:Node

2:withdrawOffers()

container
{destroyed}

container{new}

offer.GetAccepted()

new:Nodeoffer:Offer

carries

{destroyed}

t:ControlToken
base

s:ControlToken

{new}

2:withdrawOffers()

container

{new}

3:destroy()

:ActivityExecution {new}

1:notifySpawnpoints()

1:notifySpawnpoints()

Figure B.16: DMM rules describing how an offer is being accepted

Operations

getAccepted() One of the most crucial behaviors in the token/offer mechanism
is the acceptance of an offer. If an offer reaches a node that is able to
store/process its underlying token, the base token moves to the accepting
node. The rules in Fig. B.16 describe this behavior for control and object
tokens respectively. In both cases, the remaining offers are withdrawn and
potential spawnpoints are informed of the offer’s acceptance. A significant
difference is that offers can have only one object token as their base but
several control tokens (due to joining). The joining of the underlying to-
kens is facilitated by deleting all base tokens and creating a new control
token at the target node. No information loss occurs in this process as
control tokens do not carry any information. An important property of
both rules for getAccepted is that only a single token arrives at the ac-
cepting node, even though a number of tokens might depart from their
source nodes. In the case of control tokens, the arriving token is newly
created, i.e., it is not even part of the departing token set. This is impor-
tant since other rules cannot match the token previous to the application
of getAccepted.

destroy() The destroy operation is the standard destructor for offers and deletes
an offer (cf. Fig. B.17).

notifySpawnpoints() When an offer is accepted, its spawnpoints need to be in-
formed of this process as they need to enqueue copies of the underlying

238 Appendix B. The DMM Specification of UML Activity Diagrams

offer.destroy()

offer:Offer

{destroyed}

Figure B.17: DMM rule for the destructor of Offer

offer.notifySpawnpoints()

queue:CentralBufferN

ode
offer:Offer

t:Token
base

:Forknode

queue

spawnpoint

{destroyed}

1:offerAccepted(t,queue)

offer.notifySpawnpoints()

:Nodeoffer:Offer

spawnpoint

2:notifySpawnpoints()

destroy()

Figure B.18: DMM rule describing the notification of spawnpoints by an Offer

B.5. Package Core Activities 239

token (see. Fig. VI.6 for an illustration of this process). The rules in
Fig. B.18 specify this process by a recursive loop. The upper rule applies
to cases where a spawnpoint link is present. It triggers the enqueueing
of token copies at the relevant fork node, deletes the spawnpoint link and
class itself recursively. The bottom rule in the figure provides the recursion
end which is reached if no more spawnpoint links need to be processed.
this rule also forms the default case for offers which have not been spawned
at all.

Semantics Offers represent partial evaluations. They get moved (flow) as
further evaluation steps occur and get accepted whenever they reach a node
which might process or store their base token. On acceptance an offer is deleted,
the base token is moved, and all competing offers of this token are withdrawn.
At join nodes several offers are fused into one. This is only possible for offers of
control tokens or offers which represent the same base token.

Differences to standard UML Offers are a representation of the term offer
used in the semantics description of the UML specification. They have been
made more precise in that their meaning and possible operations on them has
been clarified. In particular, we made the notion of acceptance more clear: if a
node accepts an offer this implicates the movement of the underlying token(s).
Offer acceptance is thus clearly distinguished from offer flows. The UML spec-
ification uses the term acceptance more freely and ambiguously. The concept
of a spawnpoint is newly added to allow for an operationalization of the new
semantics of fork nodes.

B.5.8 Class Node

Description Nodes are one type of element which forms an Activity.

Package Node is defined in the Core Activities package.

Associations

Edge [*] as incoming The edges which run into the node.

Edge [*] as outgoing The edges which run out of the node.

Constraints (none)

Operations (none)

Semantics Nodes in general have no dynamic semantics. The different sub-
classes add dynamic semantics for specific types of nodes.

240 Appendix B. The DMM Specification of UML Activity Diagrams

Differences to standard UML No changes.

B.5.9 Class Edge

Description Activity edges are directed connection between the nodes of the
activity. They determine the way tokens/offers can move between the nodes.

Package Edge is defined in the Core Activities package.

Associations

Node (as target) [1] The node which the edge is targeting. Tokens can move
over the edge to this node.

Node (as source) [1] The node where the edge is originating. Tokens can move
over the edge from this node.

ValueSpecification [0..1] An edge can be adorned with a guard condition.

Constraints (none)

Operations

P canCarry(o:Offer), P canCarry(t:Token) The operation P canCarry is a predi-
cate that tests whether an offered token meets the requirements of the
edge. Since edges can have guards, it needs to be checked whether an
offered token meets the requirements of the guard. The two upper hand
rules in Fig. B.19 depict this situation. They pass the token under consid-
eration on to the guard which has to evaluate it in a positive way for the
rule to succeed. Two rules are necessary since for reasons of convenience
the operation takes either the token directly as its input parameter or an
offer based on this token. If no guard is present (lower hand rules), the
only condition to be met is that no other offer is currently occupying the
edge.

P hasOffer() The predicate P hasOffer (cf. Fig. B.20) checks whether the edge
in question does currently hold an offer.

Semantics Edges guide the token flow. They do not play an active role in this
but rather contain offers which are moved according to the rules specified for
the various node types. Edges can only carry one offer at a time.

Differences to standard UML The UML syntax distinguishes between edges
which can be traversed only by object tokens (so called ObjectFlows) and edges
which can only be traversed by control tokens (ControlFlows). By using this
distinction, the correct typing of control structures can be checked. Semanti-
cally, however, there is no difference in how the different kinds of edges treat

B.5. Package Core Activities 241

edge.P_canCarry(o:Offer)

edge:Edge

:ValueSpecification

o:Offer

guardP_evaluate(t)

edge.P_canCarry(o:Offer)

edge:Edge

:ValueSpecification

o:Offer

t:Token

base

edge.P_canCarry(t:Token)

edge:Edge

:ValueSpecification

P_evaluate(t)

t:Token

edge.P_canCarry(t:Token)

edge:Edge

:ValueSpecification

t:Token

:Offer

carries

:Offer

carries

:Offer

carries

:Offer

carries

guard

Figure B.19: DMM rules describing how edges determine whether they can
carry an offer

edge.P_hasOffer()

edge:Edge :Offercarries

Figure B.20: DMM predicate rule for determining whether an edge carries an
offer

242 Appendix B. The DMM Specification of UML Activity Diagrams

valuespecification.evaluate(t:Token)

valuespecification:

Valuespecification
t:Token

Figure B.21: DMM rule for evaluating a ValueSpecification

the passing tokens. We do thus integrate both concepts into a single class in
this formalization. There are furthermore advanced elements which can adorn
an edge to express a modification of tokens and the passing of token groups.
These elements are not regarded in this case study.

B.5.10 Class ValueSpecification

Description A ValueSpecification contains a specification which yields a truth
value when being evaluated.

Associations

Edge[1] In this domain, ValueSpecifications only occur as guards attached to
edges.

Constraints (none)

Operations

evaluate(t:Token) The single operation of this class is evaluate(). Evaluating a
ValueSpecification yields a boolean truth value, with respect to the token
under consideration. Since UML does not provide any language for actu-
ally writing down ValueSpecifications the rule in Fig. B.21) is the identity
rule and thus always returns successfully. Since DMM does not support
explicit return values, failure (i.e., evaluation to false) would be modeled
by not finding a correct rule application for evaluate and thus creating an
error situation.

Semantics ValueSpecifications always evaluate to true in our formalization.

Differences to standard UML UML provides the element ValueSpecification
without any concrete syntax. We have added ValueSpecification for means of
completeness but have fixed its semantics to always be true. If a notation for
the actual expression of ValueSpecifications is standardized, the rule for evaluate
needs to be adapted.

B.5. Package Core Activities 243

Edge

Node

ValueSpecification

guard0..1

target

incoming *

1 source

outgoing *

1

Activity

BehaviorExecution

(from Core Behavior)
ActivityExecution

Core

Activities

Activity

ActivityNode

ActivityEdge

ValueSpecification

UML Meta Model

AtiRep
1

1

ControlFlow ObjectFlow

NodeRep

0.1

1

EdgeRep
1

1

VSRep

1
1

Ati2AE

1

*

target source

1 tomapfrommap 1

1 atimap

Behavior

(from Core Behavior)

Figure B.22: Semantic mapping appings of the Core Activities package

B.5.11 Mappings

The mappings of the Core Activities package are depicted in Fig. B.22.

AtiRep - The Activity Replication Relation The Activity Replication Rela-
tion has no intrinsic details which haven’t been addressed by the more general
Behavior Replication Relation. It only serves to ensure that Activities are in-
deed mapped to Activities and to no other form of behavior.

NodeRep - The Node Replication Relation

context NodeRep

domain=scope.domelement.node

range=scope.ranelement.Node

inv::

domelement.name=ranelement.name

Note that the syntactic end of this Relations allows for Nodes without a corre-
sponding ActivityNode. This is necessary to account for differences between the
semantic and the syntactic domain (treatment of control inputs and implemen-
tation of fork behavior).

EdgeRep - The Edge Replication Relation

context EdgeRep

domain=scope.domelement.edge

range=scope.ranelement.Edge

inv:

frommap.domelement=self.domelement.source

244 Appendix B. The DMM Specification of UML Activity Diagrams

Token

(from Core Activities)

Node

(from Core Activities)

BufferNode
container

*

1

Class

(from Core Structure)

Parameter

(from Core Behavior)

CentralBufferNode

0..1 *

type

ActivityFinalNodeFlowFinalNodeInitialNodeParameterNode

1

*
represents◄

Buffernodes

Figure B.23: The contents of the Buffernodes package

frommap.ranelement=(self.ranelement.source)or

(self.ranelement.source.Forknode)or

(self.ranelement.source.Action)

tomap.domelement=self.domelement.target

tomap.ranelement=(self.ranelement.target) or

(self.ranelement.target.Action)

The invariants of the Edge Replication Relation address the differences between
syntactic and semantic domain meta model. While each edge gets translated, in
some cases the endpoint of the replicated edge are modified to suit the semantic
domain better. In particular for outgoing edges of forknodes, the introduction of
queues is allowed and for edges attached to Actions, the introduction of (control-
valued) pins is allowed. See the InRep, OutRep and ForkMod Relation for details.
Note that the specific edge types Controlflow and ObjectFlow are not directly
matched. All edges are thus unified in their semantic interpretation.

VSRep - The ValueSpecification Replication Relation

context VSREp

inv:

domelement.expression = ranelement.expression

The replication of a ValueSpecification ensures that its defining expression gets
replicated to the semantic domain.

B.6 Package Buffernodes

Description The Buffernodes package contains the definition of the Buffernode
class and its subclasses (cf. Fig. B.23). Since buffernodes can be typed, the
package Core Structure is merged as well as the packages Core Behavior and Core
Activities. Note that due to their close semantic entanglement with actions the
classes InputPin and OutputPin are defined in the Core Actions package.

B.6. Package Buffernodes 245

buffernode.destroyTokens()

buffernode:

Buffernode
:Token

container

destroy()

buffernode.destroyTokens()

buffernode:

Buffernode
:Token

container

Figure B.24: DMM rule for destroying all tokens in a node

B.6.1 Class Buffernode

Description BufferNodes are nodes that can buffer tokens.

Package BufferNode is defined in the Buffernodes package.

Associations

Class [0..1] indicates the class that determines the type of the buffer node.

Token [*] the tokens which are currently contained by the node.

Constraints

context Buffernode

inv:

not(self.type.isEmpty()) implies

(self.token.object.type->includes(self.type))

If a buffernode is typed, only object tokens with objects of the correct type may
be contained within it.

Operations

destroyTokens() Upon the termination of an activity execution (e.g., by activa-
tion of an ActivityFinalNode) a node can be requested to destroy all of its
tokens. This is facilitated by calling the destructor operation of all tokens
which reside in the node (cf. Fig. B.24).

Semantics A BufferNode is an abstract superclass. Common to all its sub-
classes is that they can store tokens (either object or control tokens). The rules
for accepting and releasing these tokens are special to each subclass. Typed
BufferNodes can only store ObjectTokens referring to objects of the indicated

246 Appendix B. The DMM Specification of UML Activity Diagrams

initialnode.flow()*

Initialnode:

InitialNode
:Edge

source

o:Offer

carries

{destroyed}

carries

{new}

P_canCarry(o)

Figure B.25: DMM rule describing the flow of offers from an initial node

type (or one of its subclasses). Untyped buffer nodes can store any kind of
token (including control tokens). No special behavior is prescribed by this su-
perclass apart from the destruction operation.

Differences to standard UML The BufferNode extends the notion of UML’s
ObjectNode in that it allows the buffering of ControlTokens. The different name
hints at this more general definition. Note also that our semantic domain meta
model does not provide a special class to group non-buffering nodes (i.e., we
have no counterpart to UML’s control node).

B.6.2 Class InitialNode

Description Initial nodes are supplied with control tokens if an activity starts.

Package InitialNode is defined in the Controlnodes package.

Associations (none)

Constraints

context InitialNode

inv:

not(this.token->isEmpty())) implies this.token.OCLtype=Controltoken

self.type->isNull()

An initial node can only contain control tokens, it is thus untyped

Operations

flow()* This operation describes how offers flow from the initial node into the
activity graph (cf. the rule in Fig. B.25). Note that if multiple edges leave
the initial node, one of them is chosen non-deterministically.

B.6. Package Buffernodes 247

initialnode.createToken(ae:ActivityExecution)

Initialnode:

InitialNode

:Controltoken

{new}

container

{new}

o:Offer

{new}

carries

{new}

base
{new}

ae

:ActivityExecution

{new}

Figure B.26: DMM rule describing creation of tokens on an initial node

createToken(ae:ActivityExecution) The rule shown in Fig. B.26 describes the pro-
cess of creating a new control token and a corresponding offer at an initial
node. This rule is invoked once for each initial node when an activity
execution starts. The ActivityExecution passed as the parameter forms
the context for the newly created token.

Semantics Initial nodes emit their offer into the activity graph, thereby ini-
tializing the behavior expressed by the activity.

Differences to standard UML No changes.

B.6.3 Class ParameterNode

Description A ParameterNode holds the tokens for objects which are passed
as parameters to the activity or which leave the activity as parameters.

Package ParameterNode is defined in the Buffernodes package.

Associations

Parameter [1] The parameter which the ParameterNode represents.

Constraints

context ParameterNode

inv:

not(self.type->isEmpty())

self.type=self.Parameter.type

ParameterNodes are always be typed. The type of a parameter node must be
the same as the type of the parameter it represents.

248 Appendix B. The DMM Specification of UML Activity Diagrams

parameternode.accept()*

:Edge
parameternode:

ParameterNode

target

:Offer

carries

{destroyed}

carries

{new}

:Token :Object

:Class

base

content

type

type

1:getAccepted()

2:destroyTokens

:Parameter

:Slot

:ActivityExecution

supplier

represents

value
{new}

Figure B.27: DMM rule describing the acceptance of offers on a parameter node

parameternode.flow()*

parameternode:

ParameterNode
:Edge

outgoing

o:Offer

carries

{destroyed}

carries

{new}

P_canCarry(o)

Figure B.28: DMM rule describing the flow of offers from a parameter node

Operations

accept()* A parameter node will accept offers if their tokens have the cor-
rect type. The underlying object is passed to the corresponding slot (cf.
Fig. B.27) and the token is being deleted as it has fulfilled its purpose.

flow()* Offers can flow out of a parameter node if an outgoing edge can carry
them. The rule in Fig. B.28 implements this operation.

createToken(ae:ActivityExecution) The rule shown in the top half of Fig. B.29 de-
scribes the process of creating a new object token representing the value of
the parameter and a corresponding offer at a ParameterNode. The new to-
ken is furthermore registered in the activity execution to which it belongs.
For ParameterNodes which represent a result of an activity, the opera-
tion createToken is not useful, thus the lower half of Fig. B.29 provides a
rule which amounts to a no-op in this case. Curiously, while UML dis-
tinguishes different types of tokens, edges, and nodes by subclassing, the

B.6. Package Buffernodes 249

parameternode.createToken(ae:ActivityExecution)

parameternode:

ParameterNode

:Parameter :Slot

ae:

ActivityExecution

:Object
realization

consumer

value

:Objecttoken

{new}

:Offer

{new}

represents

content

{new}

base
{new}

container
{new}

{new}

:Activity
specification

formal parameter

parameternode.createToken(ae:ActivityExecution)

parameternode:

ParameterNode

:Parameter

ae:

ActivityExecution

represents

:Activity
specification

result

carries

{new}

Figure B.29: DMM rules describing creation of tokens on a parameter node

250 Appendix B. The DMM Specification of UML Activity Diagrams

different kinds of ParameterNode are distinguished by association only4.
We stuck to the UML design, although it enforces this kind of ”empty“
rule.

Semantics ParameterNodes capture the data being passed at the invocation of
an activity as parameters. They emit offers into the activity graph to initialize
the behavior described therein. At the end of this behavior they store the data
that is to be passed out of the behavior in a slot for a parameter.

Differences to standard UML ParameterNodes formalize the semantics of the
UML metaclass ActivityParameterNode.

B.6.4 Class CentralBufferNode

Description CentralBufferNodes (CBNs for short) are buffer nodes which occur
explicitly in the activity graph. CBNs can store multiple tokens (typically object
tokens) and order them according to specified schemes (FIFO, LIFO). CBNs also
serve as queues for forknodes.

Package CentralBufferNode is defined in the Buffernodes package.

Associations

Offer [*] The offer for which the CBN is a spawnpoint.

Forknode [0..1] CBNs can be used to model the queues of fork nodes. In this
case they are aggregated with the forknode and sit between the fork node
and the outgoing edges.

Token [*] The token(s) which are currently buffered in the CBN.

Constraints

context CentralBufferNode

inv:

exists(o:Offer|o.spawnpoint=self) implies exists(f:ForkNode|f.queue=self)

exists(f:ForkNode|f.queue=self) implies (self.OrderingScheme=FIFO) and

(self.type->isEmpty())

CBNs can only be spawnpoints if they act as queues. If a CBN acts as a queue,
it can only have FIFO ordering and it is untyped.

Operations

accept()* There are two scenarios in which a central buffer node accepts an offer
that is carried by an incoming edge: Either the CBN is typed (left hand

4A fact which is furthermore inconsistent with the handling of parameters in the UML 2
Infrastructure, cf. [FTF], issue 7343

B.6. Package Buffernodes 251

centralbuffer.accept()*

o:Offer

t:ObjectToken

base

centralbuffer:

Centralbuffer

2:enqueue(t)

1:getAccepted()

:Object:Class

type

type

content

:Edge

target

carries

{destroyed}

centralbuffer.accept()*

o:Offer

t:Token

base

centralbuffer:

Centralbuffer

2:enqueueIncoming()

1:getAccepted()

:Class

type

:Edge

target

carries

{destroyed}

carries

{new} carries

{new}

Figure B.30: DMM rules describing the acceptance of offers on typed and un-
typed central buffer nodes

centralbuffer.enqueue(t:Token)

Centralbuffer:

CentralBufferNode
tail:Token

t:Token
first

{new}

last

last

{new}

centralbuffer.enqueue(t:Token)

Centralbuffer:

CentralBufferNode
tail:Token

last
{destroyed}

t:Token

next

{new}

last
{new}

queue

{new}

queue

{new}

Figure B.31: DMM rules describing the enqueuing of arriving tokens in a central
buffer node

rule of Fig. B.30) then it will only accept offers for object tokens of the
correct type, or it is untyped (right hand rule of Fig. B.30) and will accept
any offer.

enqueue(t:Token) The operation enqueue is described by the two rules in
Fig. B.31. The upper rule covers the case of an empty queue and results
in the creation of the first and last links to the enqueued token. The lower
rule describes enqueuing a token in a non-empty queue and comprises the
redirection of the last link as well as the linking of the list elements.

dequeue()* The dequeuing operation is strongly dependent on the ordering
scheme which has been specified for the node. In Fig. B.32 we provide
the rules for the dequeuing under a FIFO scheme. Dequeuing can either
happen on a list with at least two elements (upper rule of Fig. B.32) or it
can empty the list (lower rule). Dequeuing will only occur if an outgoing
edge can carry a newly created offer for the dequeued token. Note that
as each rule checks for the non-existence of already offered tokens, a cen-

252 Appendix B. The DMM Specification of UML Activity Diagrams

centralbuffer.dequeue()*

:Edge

head:Token

:Token

next

source

P_canCarry(head)

:Offer

{new}

{new}

carries

{new}

base

first

{destroyed}

{destroyed}

{new} first

Ordering=FIFO

centralbuffer:

CentralBufferNode

:Token

:Offer

container

base

centralbuffer.dequeue()*

:Edge

head:Token

{destroyed}

source

P_canCarry(head)

:Offer

{new}

{new}

carries

{new}

base

firstCentralbuffer:

CentralBufferNode

:Token

:Offer

container

base

last
{destroyed}

queue
{destroyed}

queue
{destroyed}

Figure B.32: DMM rule describing the dequeuing of tokens in a central buffer
node

B.6. Package Buffernodes 253

centralbuffer.enqueueCopy(t:Token)

Centralbuffer:

CentralBufferNode

new:Controltoken

{new}

t:Controltoken

centralbuffer.enqueueCopy(t:Token)

Centralbuffer:

CentralBufferNode

new:Objecttoken

{new}

t:Objecttoken:Object

content

content

{new}

enqueue(new)

enqueue(new)

:ActivityExecution

container
{new}

{new}

:ActivityExecution

{new}

container
{new}

Figure B.33: DMM rules specifying the duplication of tokens on a central buffer
node

tral buffer node will only release a token from the queue if the previously
dequeued one has moved on.

enqueueCopy(t:Token) The operation enqueueCopy duplicates the token passed
as the parameter (see Fig. B.33) and places this copy in the queue. Two
rules are necessary to describe this operation as control tokens and object
tokens need different handling.

enqueueincoming() The operation enqueueincoming (see Fig. B.34) Has a special
purpose. As the acceptance of a control token will result in a newly created
token, it cannot be passed as a parameter between buffernode.accept and
buffernode.enqueue. Rather, this operation determines the newly arrived
token (already contained in the buffernode but not yet queued) and passes
it on to the enqueue operation.

Semantics CentralBufferNodes are used to temporarily store tokens. Arriv-
ing offer will be accepted (if they are conformant to the type of the CBN).
Limited capacity buffers are currently not supported. The semantic domain
provided here does support FIFO and LIFO ordering schemes; other schemes
(e.g., priority-based ones) might require additional structures to maintain that
specific order. If directly attached to a fork node, CBNs work as queues which
can store the tokens for outgoing edges in the case that an offer is accepted on
only one of the outgoing paths.

254 Appendix B. The DMM Specification of UML Activity Diagrams

centralbuffer.enqueueIncoming()

Centralbuffer:

CentralBufferNode

:Offer

incoming:Token
container

base
enqueue(incoming)

queue

Figure B.34: DMM rules specifying the duplication of tokens on a central buffer
node

Differences to standard UML CBNs support the basic operations of the cor-
responding type in UML. Not supported are exotic ordering schemes5, capacity
limits and transformation behaviors.

B.6.5 Class FlowFinalNode

Description The FlowFinalNode accepts every offered token and destroys it,
thereby terminating a single flow of control in the activity.

Package FlowFinalNode is defined in the Buffernodes package.

Associations (none)

Constraints (none)

Operations

accept()* The operation accept() as specified by the rule in Fig. B.35 accepts
each offer that is provided by an incoming edge and proceeds to destroy
it. The destruction itself has to be separated into another operation since
acceptance might create a new (control) token on the final node which
cannot be matched by this rule

5The UML specification hints at possible priority-based ordering but does not provide any
details on it

B.6. Package Buffernodes 255

flowfinal.accept()*

final:FlowFinalNode :Edge

:Offer

carries

{destroyed}

carries

{new}

target

1:getAccepted()

2:destroyToken()

Figure B.35: DMM rule describing the acceptance of an offer by a flow final
node

flowfinal.destroyToken()

flowfinal:FlowFinalNode :Token
container

destroy()

Figure B.36: DMM rule for destroying tokens at a flow final node

destroyToken() To destroy a token, the rule in Fig. B.36 simply calls the destroy
operation of the accepted token.

Semantics Flow finals are used to end single threads of control in an activity.

Differences to standard UML In UML syntax flow final nodes are control
nodes. In this semantic domain meta model we model them as BufferNodes.
The reason for this difference is that flow final nodes have to accept offers to
obtain their tokens. Thus, the token moves to the flow final node and briefly
rests there until it is destroyed.

B.6.6 Class ActivityFinalNode

Description Upon receiving a token, activity final nodes terminate the execu-
tion of the whole activity instantly.

Package ActivityFinal is defined in the Buffernodes package.

Associations (none)

Constraints (none)

256 Appendix B. The DMM Specification of UML Activity Diagrams

activityfinal.accept()*

activityFinal:ActivityFinal

:Activity

:ActivityExecution

specification

2:terminate()

:Edge

:Offer

carries

{destroyed}

target

carries

{new}

1:getAccepted()

Figure B.37: DMM rule describing the acceptance of an offer by an ActivityFi-
nalNode and the subsequent termination of all activity executions.

Operations

accept()* The operation accept() as specified by the rule in Fig. B.37 accepts
an offered token and instantly triggers the termination of all executions
of the current activity. Note that activity final nodes are not restricted
to destroying just the execution they are part of. The UML specification
states clearly: ”A token reaching an activity final node terminates the
activity. In particular, it stops all executing actions in the activity, and
destroys all tokens in object nodes, except in the output activity parameter
nodes“ Note that in our formalization, object tokens arriving on parameter
nodes directly pass on their information to the corresponding slots and the
definition of CallBehaviorActionExecution.end creates the proper tokens for
these results. If not all required results have been produced when the
activity final node terminates the activity, an error situation occurs.

Semantics ActivityFinalNodes accept all tokens offered to them. Upon this
acceptance they trigger a termination of all execution of the activity they reside
in. This includes the termination of all invoked behaviors.

Differences to standard UML Like flow final nodes, activity final nodes are
control nodes in UML but buffer nodes in our formalization. While there would
be no semantic difference in terminating the activity without accepting the offer
beforehand (the token is destroyed by the termination operation anyway), we
modeled the semantics this way to be more consistent with the semantics of flow
final nodes.

B.6. Package Buffernodes 257

BufferNode

{abstract}

Class

(from Core

Structure)

Parameter

(from Core

Behavior)

CentralBufferNo

de

0..1

*

type

ActivityFinalNode

FlowFinalNode

InitialNode

ParameterNode 1*
represents◄

Buffernodes

ObjectNode

CentralBufferNode

ActivityFinalNode

FlowFinalNode

InitialNode

Activity

ParameterNode

UML Meta Model

AFRep
1

1

FFRep

CBNRep

INRep

PNRep

ONRep

1

0..1

1

1

0..1

1

1

1

1

CRep

1
cmap

1 cmap

ParaRep

1 pmap

Figure B.38: Semantic mappings for the Buffernodes package

B.6.7 Mappings

The semantic mappings targeting the elements of the Buffernodes package are
depicted in Fig. B.38.

ONRep - The ObjectNode Replication Relation

context ONRep

inv:

cmap.domelement=self.domelement.type

cmap.ranelement=self.ranelement.type

The ONRep mapping elicits the renaming that occurs to reflect the changes
nature of Buffer nodes. This is also reflected by the cardinality at the syntax
side which allows for BufferNodes which do not correspond to ObjectNodes. The
constraints ensure that the typing of the node is preserved by the replication.

PNRep - The ParameterNode Replication Relation

context PNRep

inv:

pmap.domelement=self.domelement.parameter

pmap.ranelement=self.ranelement.Parameter

domelement.name=ranelement.name

The ParameterNode replication references the replication of Parameters to ensure
that the mapping respects the mapping of the underlying parameter.

258 Appendix B. The DMM Specification of UML Activity Diagrams

Offer

(from Core Activities)

Node

(from Core Activities)

CentralBufferNode

(from Buffernodes)

DecisionNode

MergeNode

JoinNode

ForkNode
0..1

*
queue

Control Nodes

Figure B.39: The contents of the Controlnodes package

INRep - The InitialNode Replication Relation The InitialNode replication
does not have any details.

CBNRep - The CentralBufferNode Replication Relation

context PNRep

inv:

cmap.domelement=self.domelement.type

cmap.ranelement=self.ranelement.type

domelement.name=ranelement.name

The CBN replication has to respect the underlying type mapping of the CRep
Relation. Note that not all semantic CBNs have a corresponding syntactic CBN.

FFRep - The FlowFinalNode Replication Relation FinalFlowNodes are repli-
cated without additional details.

AFRep - The ActivityFinalNode Replication Relation ActivityFlowNodes are
replicated without additional details.

B.7 Package Controlnodes

Description The Controlnodes package contains the definition of controlnodes
in the activity diagram (Fig. B.39), i.e., all nodes which cannot contain a to-
ken. Note that due to the specific semantics of the fork node, this package is
dependent upon the Buffernode package.

B.7. Package Controlnodes 259

decision.flow()*

in:Edge
decision:

DecisionNode
out:Edge

o:Offer {new}{destroyed}

P_canCarry(o)

target source

Figure B.40: DMM rule describing the flow of offers over a decision node

B.7.1 Class DecisionNode

Description At decision nodes an incoming flow can be directed into one of
multiple alternative outgoing flows.

Package DecisionNode is defined in the Controlnodes package.

Associations (none)

Constraints (none)

Operations flow()* The operation flow (cf. Fig. B.40) checks whether the
incoming edge holds an offer that an outgoing edge might carry and proceeds
to move the offer to that edge.

Semantics Decisions guide the flow of offers according to the conditions on
their outgoing edges. Note that if several outgoing edges might carry an offer
(i.e., their guard conditions are not disjoint), the decision node will choose one
of these edges nondeterministically.

B.7.2 Class MergeNode

Description At merge nodes offers from multiple incoming flows are directed
into the single outgoing flow.

Package MergeNode is defined in the Controlnodes package.

Associations (none)

Constraints (none)

260 Appendix B. The DMM Specification of UML Activity Diagrams

merge.flow()*

in:Edge
merge:

MergeNode
out:Edge

o:Offer {new}{destroyed}

P_canCarry(o)

target source

Figure B.41: DMM rule describing the flow of offers over a merge node

Operations flow()* The operation flow (cf. Fig. B.41) checks whether one
of the incoming edges holds an offer that the outgoing edge might carry and
proceeds to move the offer to that edge.

Semantics MergeNodes are used to integrate alternative flows into a single
outgoing flow. Therefore they pass on all incoming offers (provided these of-
fers meet the requirements of the outgoing edge). If multiple incoming edges
provide offers, the merge node will pass on all of theses offers sequentially in a
nondeterministic order.

B.7.3 Class ForkNode

Description Fork nodes split an incoming flow into multiple concurrent out-
going flows.

Package ForkNode is defined in the Controlnodes package.

Associations

queue [*] The buffernodes that queue up tokens for non-successful edges. Note
that these queues connect the fork to its outgoing edges, i.e., a fork node
does not have outgoing edges directly attached to it.

Constraints

context ForkNode

inv:

self.outgoing->isEmpty()

Forks cannot have outgoing edges, these are all handled via its queues.

Operations

B.7. Package Controlnodes 261

fork.getOffer()*

in:Edge
fork:

ForkNode
e:Edge

o:Offer

{new}

carries{destroyed}

target

first
spawnOffer(e)

carries
:Offer

carries

source

:Edge
P_canCarry(o)

Figure B.42: DMM rule describing how a fork node acquires an offer from an
incoming edge

getOffer()* The operation getOffer takes an offer from the incoming edge (cf.
Fig. B.42) and triggers the mechanism of distributing spawns of this offer
over the outgoing edges. The rule has the precondition that all outgoing
flows must be able to carry the incoming offer.

spawnOffer(o:offer,e:Edge) The operation spawn offer creates a new copy of the
offer indicated by its first parameter and places this new spawn on the
edge indicated by the second parameter. To actually copy the offer, the
newly created offer must have the same base token as the original one.
The new offer must furthermore retain information about its spawnpoint
by keeping a link to the corresponding queue. The two rules in Fig. B.43
differ in that the upper rule includes a recursive call of the operations while
the lower rule forms the recursion end, if all edges have been supplied with
spawns of the offer. The original incoming offer is then destroyed.

offerAccepted(t:token,exclude:Buffernode) if an offer spawned at a fork node is
being accepted, there must be copies of the successful token enqueued
for all other outgoing edges. The rule in Fig. B.44 performs this task by
triggering the enqueuing of token copies on all of its queues, excluding
only the queue for the already successful edge.

Semantics Forks perform a concurrent split of the incoming flow. This split
has to be realized for offers and tokens in different ways: Offers will be picked
from the incoming edge and copied to all outgoing edges. All of these spawned
offers will retain information about their point of origin. This information is
necessary because if one (or more) of the offers originating in a fork get accepted,
the unsuccessful edges are provided with copies of the token. These copies are
stored in the queues of the fork node and emit fresh offers which can in turn be
accepted.

262 Appendix B. The DMM Specification of UML Activity Diagrams

fork.spawnOffer(o:Offer, e:Edge)

fork:

ForkNode
e:Edge

o:Offer

carries

new:Offer

{new}

carries

{new}

:CentralBufferNo

de

source

spawnpoint

{new}

queue

:Edge

next

fork.spawnOffer(o:Offer, e:Edge)

fork:

ForkNode
e:Edge

o:Offer

carries

:Token
base

new:Offer

{new}

{new}
base

carries

{new}

:CentralBufferNo

de

source

spawnpoint

{new}

queue

next:Edge

next
spawnOffer(o.next)

:CentralBuffer

Node

spawnpoint spawnpoint
{new}

:Token
base

{new}
base

:CentralBuffer

Node

spawnpoint spawnpoint
{new}

destroy()

Figure B.43: DMM rule describing how a fork node spawns new offers

B.7. Package Controlnodes 263

fork.offerAccepted(t:Token,exclude:CentalBufferNode)

exclude:CentralBuffer

Node

t:Token

fork:Forknode

queue

:CentralBufferNodequeue

enqueueCopy(t)

Figure B.44: DMM rule describing the information of a fork node of the fact
that an offer spawned by it has been accepted

Differences to standard UML The semantics of fork nodes represented here
correspond to the finalization changes suggested by Conrad Bock based upon
our input (see Sect. VI.3 for a discussion). We have however excluded the case
of outgoing arcs being blocked by unfulfilled guard conditions. Combining forks
and guards makes for clumsy semantics and it can easily be avoided by inserting
an extra decision node downstream from the fork.

B.7.4 Class JoinNode

Description A join node fuses offers from all incoming edges into a single
outgoing offer.

Package JoinNode is defined in the Controlnodes package.

Associations (none)

Constraints

context JoinNode

inv:

self.incoming=self.selfAllSuccs)

All incoming edges of a join node must be ordered.

Operations

flowin()* The Operation flowIn (see the rule in Fig. B.45) triggers the collection
of offers under the condition that no such process is currently running and
that all incoming edges carry an offer.

collectOffers() / collectOffer (in:Edge) The collection of offers from the incom-
ing edges is a sequential process which works along the ordered incoming

264 Appendix B. The DMM Specification of UML Activity Diagrams

join.flowIn()*

join:JoinNode

:Edge

incoming P_hasOffer

1:CollectOffers()

:Offer
carries

Figure B.45: DMM rule describing how a join node starts acquiring offers

join.collectOffers()

join:JoinNodein:Edge

target

first:Offer

carries

{destroyed}

next:Edge

collectOffer(next)

next

{new}

first

Figure B.46: DMM rules describing how a join node starts collecting offers from
incoming edges

B.7. Package Controlnodes 265

join.collectOffer(in:Edge)

join:JoinNodein:Edge

target

new:Offer

carries

{destroyed}

next:Edge

3:collectOffer(next)

old:Offer

next

1:add(new)

2:destroy()

join.collectOffer(in:Edge)

join:JoinNodein:Edge

target

next:Edge

old:Offer

next

1:add(new)

new:Offer

carries

{destroyed}

2:destroy()

Figure B.47: DMM rules describing how a join node sequentially collects offers
from incoming edges

edges. The operation collectOffers (Fig. B.46) starts the process by mov-
ing the offer from the first edge to the join node. The operation collectOf-
fer(in:Edge) (Fig. B.47) continues this process by processing the succeeding
edges. Offers from these edges are added to the existing offer, resulting in
a fusion of the information contained in the offers.

add(new:Offer) The add operation takes an offer as parameter. It adds the
information contained in this offer to the offer already residing in the join
node. Two rules describe this operation. In general, offers for the same
token can be merged. The lower hand rule in Fig. B.48 describes this case.
Here, the information about the spawnpoints of the new token is copied
to the existing token. This rule works for control and object tokens. For
control tokens there is also the option of adding offers being based on
different tokens (since control tokens do not carry any information). The
upper hand rule in Fig. B.48 specifies this case.

flowout() After all offers have been collected from the incoming edges, the newly
formed offer can move downstream. The rule (Fig. B.49) is decoupled from
the actual joining process to allow for temporary blocks on the outgoing
edge to clear.

Semantics Join nodes combine different incoming flows by fusing several offers
into one. The resulting offer carries the combined information of the original
tokens. Since control tokens do not have identity or carry information, control

266 Appendix B. The DMM Specification of UML Activity Diagrams

join.add(new:Offer)

old:Offer new:Offer

:CentralBufferNo

de

spawnpointt:ControlToken

{new}
spawnpoint

base
{new}

base

t:Token
base

base

join.add(new:Offer)

old:Offer new:Offer

:CentralBufferNo

de

spawnpoint

{new}
spawnpoint

t:Token
base

base

join:Joinnode carries

join:Joinnode carries

Figure B.48: DMM rules describing how a join node adds the information of a
new offer to an already existing offer

join.flowOut()*

join:JoinNode out:Edge
source

o:Offer

{destroyed}

carries
{new}

carries

P_canCarry(o)

Figure B.49: DMM rule describing the passing of an offer out of a joinnode

B.7. Package Controlnodes 267

Node

(from Core Activities)

CentralBufferNode

(from Buffernodes)

DecisionNode

MergeNode

JoinNode

ForkNode

0..1
*queue

Control Nodes

DecisionNode

MergeNode

JoinNode

ForkNode

UML Meta Model

ForkRep
1 1

ActivityEdge

JoinRep

MrgRep

DecRep

1

1

1

1

1

1

ForkMod

1
1

EdgeRep

1
emap

Figure B.50: The semantic mappings of the Controlnode package

tokens can be joined regardless of their base tokens. Object tokens on the
other hand can only be joined if they belong to the same base token. An
offer flowing out of a joinnode can thus have several base tokens and several
spawnpoints. This needs to be taken into account when accepting such an offer
(see offer.getaccepted).

Differences to standard UML The UML semantics description does not really
exclude the joining of offers for different object tokens. It also does not especially
mention this situation or give any semantics for it. In the finalization phase there
was a proposal to output a sequence of different tokens in this case. We have
not adopted this interpretation since we believe the idea of a single fused offer
emerging from a joinnode should be identical for all inputs.

B.7.5 Mappings

The semantics mappings targeting the elements defined in the Controlnodes
package are depicted in Fig. B.50.

DecRep - The DecisionNode Replication Relation DecisionNodes are repli-
cated without additional details.

MrgRep - The MergeNode Replication Relation MergeNodes are replicated
without additional details.

268 Appendix B. The DMM Specification of UML Activity Diagrams

Action

BufferNode

(from Buffernodes)

ActionExecution

Behavior

(from Core Behavior)

Parameter

(from Core Behavior)

InputPin

OutputPin

input1

*

output

1

*

BehaviorExecution

(from Core Behavior)

0..1

◄ represents

0..1

◄ represents

Core Actions

Figure B.51: The contents of the Core Actions package

JoinRep - The JoinNode Replication Relation JoinNodes are replicated with-
out additional details.

ForkRep - The ForkNode Replication Relation ForkNodes are replicated with-
out additional details.

ForkMod - The ForkNode Modification Relation

context ForkMod

domain=scope.domelement.outgoing

range=scope.ranelement.CentralBufferNode

inv:

emap.domelement=self.domelement

emap.ranelement.source=self.domelement

The ForkMod Relation captures the modifications which are performed in map-
ping Fork nodes. Outgoing flows of fork nodes are not directly connected to
the forknode in the semantic domain but a CentralBufferNode which forms the
queue for this outgoing edge is inserted. Note that the definition of domain and
range of this nested Relation ensure a bijective mapping of the relevant elements
only. The Relation refers to EdgeRep to ensure a correct connection.

B.8 Package Core Actions

Description The Core Actions package (see Fig. B.51) defines the core concepts
of actions. These are in particular the classes Action and ActionExecution. By
including InputPin and OutputPin in this package, we made it dependent on the
package Buffernodes which disallows the use of Actions outside of Activities. The
UML specification has a more general notion of actions being usable in every
kind of behavior specification. To correctly support this general semantics, the
introduction of abstract input and output classes as well as another package
where the pins would inherit from these abstract classes would be needed. We
decided to forgo this more general solution in favor of brevity of our specification.

B.8. Package Core Actions 269

action.start()*

action:Action
:InputPin

P_hasOffer(ae)

execute()

:Activity ae:ActivityExecution
specification

Figure B.52: DMM rule describing the starting of an action

B.8.1 Class Action

Description Actions are predefined basic units of behavior in UML. The ex-
ecution of actions is controlled by an enclosing activity which determines the
sequence(s) of action executions.

Package Action is defined in the Core Actions package.

Associations

InputPin [*] The input pins which must hold tokens for the action to execute

OutputPin [*] The output pins which hold tokens after the action executes

Constraints

context Action

inv:

self.input=(self.first->select(OCLtype=InputPin)).selfAllSuccs

self.output=(self.first->select(OCLtype=OutputPin)).selfAllSuccs

Operations

start()* An action is a specification of behavior. The operation execute starts
the execution of this behavior. This entails a number of steps as displayed
by the rule in Fig. B.52. A precondition (P hasOffer) ensures that all
inputs of the action contain a valid offer, i.e., the action can acquire all
tokens necessary for its execution (collectInputs). The concrete execution
of the behavior is handled by a new instance of ActionExecution, which is
created, initialized, and started. The ActionExecution occurs in the context
of the current ActivityExecution (thus the invoker edge).

Additionally, Action specifies an operation (interface) to be implemented by its
concrete subclasses:

270 Appendix B. The DMM Specification of UML Activity Diagrams

execute(context:ActivityExecution) The execute operation must be implemented
by all subtypes of Action. It usually creates a specific execution instance,
registers it with the invoking ActivityExecution (which is passed as a
parameter) and process their inputs.

Semantics An action specifies a unit of behavior which is being invoked in the
course of an ActivityExecution. An action can execute if it can obtain tokens on
all inputs (i.e., control as well as data tokens). Upon execution it accepts all
offers on its inputs simultaneously and executes its behavior. Since an action
might execute multiple times, a separate ActionExecution is created for each
invocation. This mechanism is generic for all actions. The different subclasses
of action differ in the way their respective executions initialize and execute.

Differences to standard UML The class Action as presented here serves as
both, a part of the structure of an activity (since it connects input and output
ports) and as a specification of behavior. It thus integrates the UML concepts
Action and ActionNode. Since the roles of input and output pins were extended
to handle control tokens in this domain, no edges need to be directly attached
to an action. It should also be noted that an action in this formalization only
executes if it can obtain tokens stemming from the same ActivityExecution. This
conforms to the notion of separate execution as described in [Obj04], Sect.
12.3.2.

B.8.2 Class ActionExecution

Description The ActionExecution is the runtime representation of the execu-
tion of an Action.

Package ActionExecution is defined in the Core Actions package.

Associations (none)

Constraints (none)

Operations ActionExecution provides a number of operations which specify
uniform behavior for all of its subtypes.

collectInputs() / collectInput(pin:InputPin) The operation collectInput starts col-
lecting the tokens from the input pins of the action. collectInput(pin) con-
tinues this task until all tokens have been collected. The rules in Figs. B.53
and B.54 provide the formalization of this collection loop.

createOutputs() / createOutput(pin:OutputPin) To produce the necessary out-
puts after an action has finished executing its behavior, the operation
createOutputs (see Fig. B.55) is employed to locate the first output pin.

B.8. Package Core Actions 271

actionexecution.collectInputs()

first:InputPin:Action

first

collectInput(first)

actionexecution:

ActionExecution

specification

Figure B.53: DMM rules to start the collection of input tokens by an action

actionexecution.collectInput(pin:InputPin)

pin:InputPin

actionexecution

:ActionExecution

2:collectInput(next)

next:InputPin

next

1:acceptOffer(actionexecution)

actionexecution.collectInput(pin:InputPin)

pin:InputPin

actionexecution

:ActionExecution next:InputPin

next

1:acceptOffer(actionexecution)

:Action

specification

:Action

specification

Figure B.54: DMM rule to continue/end the collection of input tokens by an
action

actionexecution.createOutputs()

first:OutputPin:Action

first

createOutput(first)

actionexecution:

ActionExecution

executes

actionexecution.createOutputs()

first:OutputPin:Action

first

destroy()

actionexecution:

ActionExecution

executes

Figure B.55: DMM rules to start creating the outputs of an action

actionexecution.createOutput(pin:OutputPin)

pin:OutputPin

actionexecution:

ActionExecution

2:createOutput(next)

next:OutputPin

next

1:createToken(actionexecution)

:Action

executes

output

output

actionexecution.createOutput(pin:OutputPin)

pin:OutputPin

actionexecution:

ActionExecution

next

1:createToken(actionexecution)

:Action

executes

output

output

next:OutputPin

2:destroy()

Figure B.56: DMM rules to continue/end creating the outputs of an action

272 Appendix B. The DMM Specification of UML Activity Diagrams

Successively the operation createOutput is used to produce a token for
each output pin (see Fig. B.56).

Additionally, ActionExecution defines three operations which are to be imple-
mented by concrete subtypes of this abstract class:

consumeData(ip:InputPin) The operation consumeData is responsible for pro-
cessing an input object of the action execution in a way as to make it
acessible for the actions behavior.

supplyData(op:OutputPin) The operation supplyData needs to assign an inter-
nally produced value/object to an object token which flows in the sur-
rounding activity graph.

terminate() All action executions must implement a terminate operation to en-
force their external abortion.

Semantics The class ActionExecution encapsulates the actual execution of an
Action. An ActionExecution is structured in three phases: initialization, exe-
cution and end. In the initialization phase, slots are created which can host
data passed to the action by object tokens on input pins. The execution phase
performs the intended behavior of the action. Note that these first phases are
triggered in sequence by the operation action.execute. The end phase is trig-
gered separately from this invocation to allow for interleaving (especially for
CallBehaviorActions). The end phase deals with information passing out of the
action, the creation of tokens on all output pins and the destruction of the exe-
cution instance and its associated slots. The general class Action Execution does
only provide the standard functionality of collecting all tokens upon starting the
execution and creating tokens upon finishing it. The initialization, execution
and end phases are implemented by the concrete subclasses of Actions.

Differences to standard UML (none)

B.8.3 Class InputPin

Description InputPins collect the tokens necessary for the execution of actions.

Package InputPin is defined in the Core Actions package

Associations

Action [1] Each InputPin belongs to a specific action

Parameter [0..1] An InputPin can represent a parameter for the invoked behavior.

Constraints (none)

B.8. Package Core Actions 273

inputpin.flow()*

inputpin:InputPin

carries

{destroyed}
:Offer

:Edge
target

:Offer

:Class

carries

{new}

type

carries

inputpin.flow()*

inputpin:InputPin

carries

{destroyed}
:Offer

:Edge :Offer

:Class
type

carries

:Objecttoken

base

:Object
content

type

target

carries

{new}

Figure B.57: DMM rules describing the flow of an offer onto an InputPin

274 Appendix B. The DMM Specification of UML Activity Diagrams

inputpin.acceptOffer(ae:ActionExecution)

inputpin:InputPin

base
:Offer

1:getAccepted()

ae:ActionExecution

carries

:Controltoken

2:destroyTokens()

inputpin.acceptOffer(ae:ActionExecution)

ip:InputPin

ae:ActionExecution

:ObjectToken

carries

:Offer

base

3:destroy()
1:getAccepted()

:activityExecution

invoker

:ActivityExecution

invoker

2:consumeData(ip)

Figure B.58: DMM rules describing the acceptance of an offer by an InputPin

Operations

flow()* An offer can flow onto an input pin, if the node does not already contain
an offer6 and if the input pin is untyped (upper rule of Fig. B.57). If the
input is typed, however, then the typing of the underlying object has to
be checked (lower rule of Fig. B.57)

acceptOffer(ae:ActivityExecution) The two rules in Fig. B.58 describe the accep-
tance of control tokens (upper rule) and object tokens (lower rule). The
acceptance of an offer by an input pin is triggered by the execution of an
action (since the acceptance of all input pins must be synchronized) thus
the rules does pose no additional constraints.

The rules differ in the way the token resulting from the acceptance of
the offer is being treated. Control tokens have fulfilled their purpose of
enabling the execution of the action. They can thus be deleted upon being
moved to the action. A separate operation is necessary to accomplish this
deletion as the control token will be created in the process of moving to the

6we do not support input pins with multiplicity in this case study

B.8. Package Core Actions 275

inputpin.P_hasOffer(ae:ActivityExecution)

inputpin:InputPin

:Offer

carries

:Token

ae:ActivityExecution

base

Figure B.59: DMM rules describing the acceptance of an offer by an InputPin

action (see the semantics of offer.getAccepted) and it cannot be matched
beforehand.

Object tokens carry information which must be passed down to the behav-
ior of the action. Since different actions can process this data in different
ways, the action execution is invoked to consume the data obtained by the
input pin.

P hasOffer(ActionExecution) The predicate hasOffer is employed to check
whether an input pin holds an offer for a token of a specific action ex-
ecution (cf. Fig. B.59).

Semantics An input pin has the task of storing an offer until all input pins
of an action can accept their offers at once, thus enabling the execution of the
action. Since all tokens and offers are destroyed in this process of acceptance,
no flow will occur out of an input node.

Differences to standard UML In contrast to the UML notational element
InputPin, which is only able to store object tokens, InputPins in this semantic
domain are more general as they buffer offers for object as well as control tokens.
In fact, all inputs of an action are handled by InputPins. This deviation from
the standard UML structure enables a more uniform handling of the inputs.

B.8.4 Class OutputPin

Description OutputPins store the tokens produced by the execution of actions.

Package OutputPin is defined in the Core Actions package.

Associations

Action [1] Each OuputPin belongs to a specific Action

276 Appendix B. The DMM Specification of UML Activity Diagrams

outputpin.createToken(context:ActionExecution)

outputpin:OutputPincontext:ActionExecution

outputpin.createToken(context:ActionExecution)

outputpin:OutputPincontext:

ActionExecution

:ObjectToken

{new}

carries

{new}

:Class

:Offer

{new}

base
{new}

type

:Class
type

:ControlToken

{new}

container

{new}

carries

{new}

:Offer

{new}base
{new}

container
{new}

:ActivityExecution

invoker

{new}

:ActivityExecution

invoker

{new}

supplyData(outputpin)

Figure B.60: DMM rules describing the creation of a token by an OutputPin

Parameter [0..1] OutputPins can be external representations for values passed
out of an invoked behavior. On the behavior’s level, this information is
represented by a parameter.

Constraints (none)

Operations

createToken(context:ActionExecution) If an action finishes its execution it trig-
gers the creation of tokens on its output pins. The two rules in Fig. B.60
describe this process for control and object tokens respectively. For con-
trol tokens this is rather easy as they are simply created along with an
offer that may then move downstream.

The creation of object tokens entails a binding to the underlying object.
This binding is highly reliant on the results produced by the executed
action, thus there will be rules for the different kinds of actions available
in UML. The rule provided in the lower half of Fig. B.60 thus calls the
operation supplyData on the execution object to bind the correct data to
the created token.

Both rules for this operation create an offer along with the new token.
This offer will in turn flow out of the pin (see the operation flow).

flow()* The operation flow facilitates the flow of offers out of an OutputPin (see

B.8. Package Core Actions 277

outputpin.flow()*

outputpin:OutputPin

carries

{destroyed}

o:Offer

:Edge

carries

{new}

source

P_canCarry(o)

Figure B.61: DMM rule describing the flow of offers from an output pin

the rule in Fig. B.61). Note that in the case of multiple outgoing edges
which might possible carry the offer, the rule will match on one of them
non-deterministically.

Semantics An OutputPin has the task of storing tokens which result from the
execution of an action until these tokens can move downstream.

Differences to standard UML Like InputPins, OutputPins have a broader
meaning in this formalization than their syntactic counterparts in the UML
meta model. They are mandatory elements between an action and its succeed-
ing edges. They may contain object as well as control tokens. Using OutputPins
in this way clarifies where a token (especially a control token) resides until it
moves downstream and allows for a more uniform handling of in- and outputs
of an action.

B.8.5 Mappings

The semantic mappings targeting elements of the Core Actions package are de-
picted in Fig. B.62

AtoRep - The Action Replication Relation

context AtoRep

inv:

domelement.name=ranelement.name

The name of the action is preserved by the mapping.

IPRep - The InputPin Replication Relation

context IPRep

domain=scope.domelement

range=scope.ranelement.input

278 Appendix B. The DMM Specification of UML Activity Diagrams

Action

ActionExecution

Behavior

(from Core Behavior)

InputPin

OutputPin

input

1

*

output

1

*

BehaviorExecution

(from Core Behavior)

Core Actions

Action

InputPin

OutputPin

ControlFlow

UML Meta Model

OPRep

0..1

1

IPRep

InMod

AtoRep

Ato2AE

0..1

1

1

1

1

0..1

*

1

OutMod

1

0..1

Figure B.62: Semantic mappings of the Core Actions package

The IPRep mapping does define special constraints. Note that as InputPins in
the synatacic domain are ObjectNodes, the correct preservance of the typing
is already guaranteed by the ONRep mapping. As the InpMod Relation will
introduce additional InputPins on the semantic side, the domain side of IPRep
is 0..1.

InpMod - The Input Modification Mapping

context InpMod

domain=scope.incoming->(select f|f.OCLtype=ControlFlow}

range=scope.input->(select i|i.type->isEmpty())

The InMod mapping ensures that for all directly incoming control flows of a
(syntactic) action there is a untyped input pin on the semantic side. As UML
also supports untyped input pins, this Relation is not onto.

OutMod - The Output Modification Mapping

context OutMod

domain=scope.outgoing->(select f|f.OCLtype=ControlFlow}

range=scope.output->(select i|i.type->isEmpty())

The OutMod Relation works symmetrically to the inpMod Relation.

OPRep - The OutputPin Replication Mapping

context OPRep

domain=scope.domelement

range=scope.ranelement.output

The OPRep Relation works symmetrically to the IPRep Relation.

B.9. Package Actions 279

Action

(from Core Actions)
CallBehaviorAction

Behavior

(from Core Behavior)

1

*

behavior

Actions

CallBehaviorActionExecution
ActionExecution

(from Core Actions)

Figure B.63: The contents of the Actions package

B.9 Package Actions

Description The Actions package contains the concrete Actions as defined in
the UML specification. We only provide semantics for the CallBehaviorAction
here7 (cf. Fig. B.63) since it is one of the most common actions and also because
it requires rather complex constructions for the correct passing of data and
control back and forth. For each additional action type we would add another
subtype of Action and its corresponding execution class.

B.9.1 Class CallBehaviorAction

Description A CallBehaviorAction is an action which invokes other behaviors.

Package CallBehaviorAction is defined in the Actions package.

Associations behavior [1] The behavior that is to be invoked by the action.

Constraints (none)

Operations

execute(context:ActivityExecution) The operation execute (cf. Fig. B.64) pro-
vides the details on a CallBehaviorAction’s execution. In particular it de-
tails that a new instance of CallBehaviorActionExecutions is created (in the
context of the passed ActivityExecution. Then it processes the inputs of
the action (by calling createSlots to create the slots to hold the objects
passed as parameters of the call and collectInputs to fill these slots) and
triggers the execution of the behavior to be called by it.

7and the auxiliary DummyAction. , see Sect. B.10

280 Appendix B. The DMM Specification of UML Activity Diagrams

cba.execute(context:ActivityExecution)

cbae:

CallBehaviorActionExecution

{new}

cba:CallBehaviorAction

:Activity
:ActivityExecution

{new}

specification

{new}

behavior

invoker
{new}

specification

{new}

1: createSlots()

2: collectInputs()

invoker
{new}

3:executeBehavior()

context:ActivityExecution

Figure B.64: DMM rule describing the execution of a CallBehaviorAction

Semantics A CallBehaviorAction will execute by invoking some other behavior.
Here, this other behavior will be another activity. In general, however, other
means can be used to specify this behavior. The execution of the Action itself is
described in the superclass Action. The specific semantics of a call action result
in different rules for an ActionExecution.

Differences to standard UML (none)

B.9.2 CallBehaviorActionExecution

Description A CallBehaviorActionExecution (CBAE for short) is the execution
class for a CallBehaviorAction.

Package CBAE is defined in the Actions package.

Associations (none)

Constraints (none)

Operations

createSlot(param:Parameter)/createSlots() The operation createSlot creates slots
for the execution of Call Actions. These slots will hold the data being
passed into the invoked behavior as parameters or passed back from this
behavior as results. Four rules (provided in Figs. B.65 and B.66) provide
the different cases (again, we resort to recursive calls to implement a loop).
Each rule application creates a new slot and registers it with the correct
execution classes.

B.9. Package Actions 281

cbae.createSlot(param:Parameter)

cbae:

CallBehaviorActionExecution

:Activity

:ActivityExecution

param:Parameter

invoker

invoked

specification

createSlot(next)

next:Parameter

next

:Slot

{new}

consumer

{new}

supplier

{new}

definition

{new}

cbae.createSlot(param:Parameter)

cbae:

CallBehaviorActionExecution

:Activity

:ActivityExecution
param:Parameter

invoker

invoked

specification

result

next:Parameter

next

:Slot

{new}

consumer

{new}

supplier
{new}

definition

{new}

result

cbae.createSlot(param:Parameter)

cbae:

CallBehaviorActionExecution

:Activity

:ActivityExecution

param:Parameter

invoker

invoked

specification

formal parametercreateSlot(next)

next:Parameter

next

:Slot

{new}

supplier

{new}

consumer

{new}

definition

{new}

cbae.createSlot(param:Parameter)

cbae:

CallBehaviorActionExecution

:Activity

:ActivityExecution
param:Parameter

invoker

invoked

specification

formal parameter

next:Parameter

next

:Slot

{new}

supplier

{new}

consumer
{new}

definition

{new}

Figure B.65: DMM rules to create slots for parameter passing into an action
execution

282 Appendix B. The DMM Specification of UML Activity Diagrams

cbae.createSlots()

cbae:

CallBehaviorActionExecution
cba:CallBehaviorAction

:Activityfirst:Parameter

specification

behavior

first

cbae.createSlots()

cbae:

CallBehaviorActionExecution
cba:CallBehaviorAction

:Activityfirst:Parameter

specification

behavior

first

createSlot(first)

Figure B.66: DMM rule to begin the creation of slots

cbae.executeBehavior()

cbae:

CallBehaviorActionExecution
:CallBehaviorAction

specification

:ActivityExecution

invoker

start

Figure B.67: DMM rule to start the actual behavior of an Action

B.9. Package Actions 283

cbae.end()*

cbae:

CallBehaviorActionExecution
:CallBehaviorAction

specification

:ActivityExecution

invoker
createOutputs()

Figure B.68: DMM rule to end the execution of an Action

executeBehavior() The operation executeBehavior triggers the actual execution
of the behavior specified by the action. The rule in Fig. B.67 describes
the execution of a CallBehaviorAction, i.e., the invocation of the underlying
behavior.

end()* The operation end specifies the end of an action execution. Here
(Fig. B.68), the end of a CallBehaviorAction is indicated by the fact
that the underlying behavior terminated (i.e. the execution instance is
no longer present). If an ActionExecution is about to end, the necessary
outputs need to be created to enable further execution of the enclosing ac-
tivity. This is achieved by calling the createOutputs operation. Note that
other types of actions (especially those with only a simple and clearly
brief execution) may trigger the creation of outputs directly from their
execution phase. Here, we were aiming for increased concurrency and a
decoupling of the different behaviors.

terminate() The terminate operation is provided to stop an action execution
prematurely. It can be invoked, e.g., if the invoking activity encounters an
activity final node. For CBAE nodes this operation entails the termination
of all invoked behaviors before deletion (see the rules in Fig. B.69). Other
action types might react differently to the termination.

consumeData(ip:InputPin) While the collection of tokens on the input nodes is
a common feature to all types of action (and thus handled by the general
ActionExecution class, the processing of received data inputs is specific for
each type of action. Thus the operation consumeDate is invoked to request
a special action execution instance to process an object token encountered
on an InputPin (passed as the parameter). In the case of the CBAE (cf.
Fig. B.70), all data inputs represent parameters of the behavior that is to
be invoked. These inputs need to be stored in the respective slots for later
consumption.

supplyData(op:OutputPin) Similar to the processing of data inputs, the creation
of data outputs is specific to each action type. While, e.g., a CreeateOb-
jectAction passes on the newly created object, a CBAE passes all results of
the invoked behavior on to its invoking activity. This passing is performed

284 Appendix B. The DMM Specification of UML Activity Diagrams

cbae.terminate()

cbae:

CallBehaviorActionExecution
:ActivityExecution

invoker

2:destroy() 1:terminate()

cbae.terminate()

cbae:

CallBehaviorActionExecution
:ActivityExecution

invoker

1:destroy()

Figure B.69: DMM rule to terminate the execution of an action

cbae.consumeData(ip:InputPin)

ip:InputPin
cbae:

CallBehaviorActionExecution

:ObjectToken

carries

{destroyed}

:Parameter

:Object

{new}

content

value

represents

:Slot

definition
supplier

:Class

type

type

Figure B.70: DMM rule to end the execution of an action

B.9. Package Actions 285

cbae.supplyData(out:OutputPin)

out:OutputPin

cbae:

CallBehaviorActionExecution

:ObjectToken

:Parameter

:Object
content

{new}

value

represents

:Slot

realisation

supplier

container

Figure B.71: DMM rule to end the execution of an action

by the operation supplyData (cf. Fig. B.71). In the operation, the object
sitting in a slot i bound to an (yet unbound) object token on an output
pin.

Semantics CBAE is the class which expresses the steps which a Call Action
needs to perform when invoked. In particular it details how data slots for pa-
rameter passing are instantiated, how they are filled with data from the received
object tokens and how the underlying behavior is invoked. Upon the end of this
invoked behavior, th results are supplied to outgoing object tokens. Note that
this concrete action execution class only needs to fill in detailed rules for oper-
ations not defined by its super classes.

Differences to standard UML The whole process of passing objects as pa-
rameters back and forth between different behaviors is not detailed in the UML
semantics description.

B.9.3 Mappings

The semantic mappings targeting elements of the Actions package are depicted
in Fig. B.72.

CBARep - The CallBehaviorAction Replication Relation

context CBARep

inv:

rmap.domelement=self.domelement.behavior

rmap.ranelement=self.ranelement.behavior

286 Appendix B. The DMM Specification of UML Activity Diagrams

CallBehaviorAction

Behavior

(from Core Behavior)

1*behavior

Actions

CallBehaviorAction

Behavior

(from Core Behavior)

1

*

behavior

UML meta model

CBARep
1 1

BehRep

bmap1

Figure B.72: The semantic mappings of the Actions package

Dummy Actions

Action

(from Core Actions)
DummyAction

DummyActionExecution
ActionExecution

(from Core Actions)

Figure B.73: Package Dummy Actions providing auxiliary elements for the for-
mulation of incomplete Activity Diagrams

The behavior to be called must be preserved in the replication of the CallBehav-
iorAction.

B.10 Package Dummy Actions

The package Dummy Actions is not a regular package of the formalization of
UML’s Activity Diagrams. As discussed in Subsect. V.5.5., one possibility of
handling incomplete models is the supplication of auxiliary elements which pro-
vide some generic default behavior to allow for a complete interpretation of
incomplete diagrams. The package Dummy Actions provides such auxiliary
elements for Activity Diagrams.

The idea of this package is to provide a type of Action which is neither one
of the base level actions which UML specifies nor is it refined into such base
actions. When drawing Activity Diagrams, modelers often use actions which
are characterized by their name only. Their exact behavior is left open as it is
currently not of interest. Formally, however, such Actions must have one of the
predefined types of the UML. The package Dummy Actions provides the formal
means to interpret such sketched Activity Diagrams.

B.10. Package Dummy Actions 287

dummy.execute(context:ActivityExecution)

dummy:

DummyAction

2:createOutputs()

3:destroy()

context:

ActivityExecution
invoker

{new}

DummyActionExecution

{new}

1:collectInputs()

specification
{new}

Figure B.74: DMM rule for executing a dummyAction

B.10.1 DummyAction

Description A DummyAction is an action which has no internal behavior but
performs its external ”duties“ in an Activity Diagram.

Associations (none)

Constraints (none)

Operations

execute(context:ActivityExecution) The only operation of a dummy action is ex-
ecute (cf. Fig. B.74). The execution of a dummy action entails the whole
life cycle of this execution as a new execution is being created, inputs are
collected, outputs created and the execution is destroyed again. No inner
behavior is performed by this kind of action.

Semantics Dummy actions serve as placeholders for later refinements in an
Activity Diagram. They may represent behavior which is not specified in any
way yet and which is not relevant to the Activity Diagram at hand. When
executed, Dummy Actions consume all offered inputs and (superficially) produce
all required outputs (see also the semantics of DummyActionExecution).

Differences to standard UML Dummy Actions are an auxiliary construct
which has no correspondence in the standard UML. To actually use Dummy
Actions in a model, the construct has to be formally introduced in a UML Pro-
file. We omitted this formal declaration here and simply use this kind of action
in our examples.

288 Appendix B. The DMM Specification of UML Activity Diagrams

dummyExec.consumeData(ip:InputPIn)

dummy:

DummyActionExecution
Ip:InputPin :ObjectToken

container

:Object

{destroyed}

content

Figure B.75: DMM rule describing the consumption of input data by a Dum-
myActionExecution

dummyExec.supplyData(out:OutputPin)

out:OutputPin

dummyExec:

DummyActionExecution

:ObjectToken

:Class

:Object

{new}

type

{new}

content
{new}

type

container

Figure B.76: DMM rule describing the supplication of output data by a Dum-
myActionExecution

B.10.2 DummyActionExecution

Description A Dummy Action Execution represents the execution of a Dummy
Action.

Associations (none)

Constraints (none)

Operations DummyActionExecution implements the minimal set of operations
defined by ActionExecution:

consumeData(ip:InputPin) A DummyAction consumes destroys all objects passed
to it (cf. Fig. B.75.

B.10. Package Dummy Actions 289

dummyExec.terminate()

dummyExec:

DummyActionExecution
destroy()

Figure B.77: DMM rule describing the termination of a DummyActionExecution

supplyData(op:OutputPin) A DummyAction creates empty objects (of the correct
type) for its outputs. Note that this is a minimal default behavior which
probably invalidates cardinalities or other constraints in many cases. It
does, however, allow the surrounding activity to continue its execution
with at least nominally complete tokens (cf. Fig. B.76).

terminate() Termination of a DummyAction simply consists in the deletion of
the execution class (cf. Fig. B.77).

Semantics DummyActionExecutions consume all of their inputs and create
empty outputs without any internal processing. Their sole purpose is to en-
able an at least provisional further execution of the surrounding activity.

Differences to standard UML (none)

290 Appendix B. The DMM Specification of UML Activity Diagrams

Bibliography

[AB99] W. v. d. Aalst and T. Basten. Inheritance of Workflows: An
approach to tackling problems related to change. Computing
Science Reports 99/06, Eindhoven University of Technology, 1999.

[AD94] R. Alur and D. L. Dill. A Theory of Timed Automata. Theo-
retical Computer Science, 126(2):183–235, 1994.

[AE96] M. Andries and G. Engels. A Hybrid Query Language for an Ex-
tended Entity-Relationship Model. Journal of Visual Languages
and Computing, 7(3):321–352, 1996.

[AEH+96] M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski,
S. Kuske, D. Plump, A. Schürr, and G. Taentzer. Graph Trans-
formation for Specification and Programming. Report 7/96,
Univ. Bremen, 1996.

[AES01a] J. Alvarez, A. Evans, and P. Sammut. MML and the meta-
model architecture. In Workshop on Transformations in UML
(WTUML’01), associated with ETAPS’01, 2001.

[AES01b] J. M. Alvarez, A. Evans, and P. Sammut. Mapping between
Levels in the Metamodel Architecture. In UML ’01: Proceed-
ings of the 4th International Conference on The Unified Modeling
Language, Modeling Languages, Concepts, and Tools, pages 34–46,
London, UK, 2001. Springer-Verlag.

[AK01] C. Atkinson and T. Kühne. The Essence of Multilevel Metamod-
eling. In UML ’01: Proceedings of the 4th International Con-
ference on The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, pages 19–33, London, UK, 2001. Springer-
Verlag.

[AK02a] D. H. Akehurst and S. Kent. A Relational Approach to Defining
Transformations in a Metamodel. In J.-M. Jézéquel, H. Huss-
mann, and S. Cook (eds.), UML 2002 - The Unified Modeling Lan-
guage. Model Engineering, Languages, Concepts, and Tools. 5th
International Conference, Dresden, Germany, September/October
2002, Proceedings, volume 2460 of Lecture Notes in Computer Sci-
ence (LNCS), pages 243–258. Springer, 2002.

291

292 BIBLIOGRAPHY

[AK02b] C. Atkinson and T. Kühne. Profiles in a strict metamodel-
ing framework. Science of Computer Programming, 44(1):5–22,
2002.

[AK02c] C. Atkinson and T. Kühne. Rearchitecting the UML infrastruc-
ture. ACM Transactions on Modeling and Computer Simulation,
12(4):290–321, 2002.

[AKHS00] C. Atkinson, T. Khne, and B. Henderson-Sellers. To Meta or
Not to Meta–That Is the Question. Journal of Object-Oriented
Programming, 13, No. 8:32–35, December 2000.

[AKP03] D. H. Akehurst, S. Kent, and O. Patrascoiu. A relational
approach to defining and implementing transformations between
metamodels. Software and Systems Modeling, 2(4):215–239,
2003.

[Alc01] Alcatel et. al. Infrastructure of the Unified Modeling Language
2.0 Specification. OMG document ad/2001-08-11, August 2001.

[AR02] E. Astesiano and G. Reggio. An Attempt at Analysing the Con-
sistency Problems in the UML from a Classical Algebraic View-
point. In M. Wirsing, D. Pattinson, and R. Hennicker (eds.),
WADT, volume 2755 of Lecture Notes in Computer Science, pages
56–81. Springer, 2002.

[Atk99] C. Atkinson. Supporting and Applying the UML Conceptual
Framework. In Bézivin and Muller [BM98], pages 21–36.

[Baa02] T. Baar. How to ground meta-circular OCL descriptions – a
set-theoretic approach –. In T. Clark, A. Evans, and K. Lano
(eds.), Proceedings, Fourth Workshop on Rigorous Object-Oriented
Methods, London, 2002, 2002.

[BCR00] E. Börger, A. Cavarra, and E. Riccobene. An ASM semantics
for UML Activity Diagrams. In T. Rus (ed.), Proceedings of
Algebraic Methodology and Software Technology (AMAST 2000),
volume 1816 of Lecture Notes in Computer Science. Springer, 2000.

[BCR03] E. Börger, A. Cavarra, and E. Riccobene. Modeling the meaning
of transitions from and to concurrent states in UML state machines.
In SAC ’03: Proceedings of the 2003 ACM symposium on Applied
computing, pages 1086–1091, New York, NY, USA, 2003. ACM
Press.

[BEdL+03] R. Bardohl, H. Ehrig, J. de Lara, O. Runge, G. Taentzer, and
I. Weinhold. Node Type Inheritance Concept for Typed Graph
Transformation. Technical report, TU Berlin, Forschungs-
berichte des Fachbereichs Informatik, 2003.

[Bey93] M. Beyer. AGG An Algebraic Graph System, User Manual.
Technical University of Berlin, Department of Computer Science,
1993.

BIBLIOGRAPHY 293

[Bez04] J. Bezivin. In Search of a Basic Principle for Model Driven Engi-
neering. UPGRADE, The European Journal for the Informatics
Professional, 2:21–24, 2004.

[BG01] J. Bzivin and O. Gerb. Towards a Precise Definition of the
OMG/MDA Framework. In ASE ’01: Proceedings of the 16th
IEEE International Conference on Automated Software Engineer-
ing, page 273, Washington, DC, USA, 2001. IEEE Computer Soci-
ety.

[BG04] C. Bock and M. Gruninger. Inputs and Outputs in the Pro-
cess Specification Language. Technical Report NISTIR 7152,
National Institute of Standards and Technology, 2004.

[BG05] C. Bock and M. Gruninger. PSL: A semantic domain for flow
models. Software and Systems Modeling, 4, Issue 2:209 – 231,
May 2005.

[BH05] J. Bezivin and R. Heckel. 04101 Summary – Language Engineer-
ing for Model-driven Software Development. In J. Bezivin and
R. Heckel (eds.), Language Engineering for Model-Driven Software
Development, number 04101 in Dagstuhl Seminar Proceedings. In-
ternationales Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl, Germany, 2005.

[BKPPT01] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. A
Visualization of OCL Using Collaborations. In M. Gogolla and
C. Kobryn (eds.), UML 2001 - The Unified Modeling Language.
Modeling Languages, Concepts, and Tools. 4th International Con-
ference, Toronto, Canada, October 2001, Proceedings, volume 2185
of LNCS, pages 257–271. Springer, 2001.

[BM97] R. Bruni and U. Montanari. Zero-safe nets: The individual to-
ken approach. In WADT ’97: Selected papers from the 12th In-
ternational Workshop on Recent Trends in Algebraic Development
Techniques, pages 122–140, London, UK, 1997. Springer-Verlag.

[BM98] J. Bézivin and P.-A. Muller (eds.). The Unified Modeling Lan-
guage, UML’98 - Beyond the Notation. First International Work-
shop, Mulhouse, France, June 1998, 1998.

[BMS04] A. F. Blackwell, K. Marriott, and A. Shimojima (eds.). Dia-
grammatic Representation and Inference, Third International Con-
ference, Diagrams 2004, Cambridge, UK, March 22-24, 2004,
Proceedings, volume 2980 of Lecture Notes in Computer Science.
Springer, 2004.

[Boc03a] C. Bock. UML 2 Activity and Action Models. Journal of
Object Technology, 2(4):43–53, 2003.

[Boc03b] C. Bock. UML 2 Activity and Action Models, Part 2. Journal
of Object Technology, 2(5):41–56, 2003.

[Boc03c] C. Bock. UML 2 Activity and Action Models, Part 3: Control
Nodes. Journal of Object Technology, 2(6):7–23, 2003.

294 BIBLIOGRAPHY

[Boc03d] C. Bock. UML without Pictures. IEEE Software, 20(5):33–35,
2003.

[Boc04] C. Bock. UML 2 Activity and Action Models Part 4: Object
Nodes. Journal of Object Technology, 3:27–41, 2004.

[BP01a] L. Baresi and M. Pezzè. Improving UML with Petri nets. In
Proc. ETAPS2001 Workshop on Uniform Approaches to Graphical
Process Specification Techniques (UniGra), Genova, Italy, Elec-
tronic Notes in Theoretical Computer Science (ENTCS). Elsevier
Science, 2001.

[BP01b] L. Baresi and M. Pezzè. On formalizing UML with high-level
petri nets. In Concurrent object-oriented programming and petri
nets:Advances in Petri Nets, pages 276–304. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2001.

[BR04] B. Böhlen and U. Ranger. Concepts for Specifying Com-
plex Graph Transformation Systems. In H. Ehrig, G. Engels,
F. Parisi-Presicce, and G. Rozenberg (eds.), Graph Transforma-
tions, Second International Conference, ICGT 2004, Proceedings,
volume 3256 of Lecture Notes in Computer Science (LNCS), pages
96–111. Springer Verlag, 2004.

[CEK+00] T. Clark, A. Evans, S. Kent, S. Brodsky, and S. Cook. A
Feasibility Study in Reachitecting the UML as a Family of Lan-
guages using a Precise OO Meta-modeling Approach. Available
at www.puml.org, September 2000.

[CEK01] A. Clark, A. Evans, and S. Kent. The Meta-Modeling Lan-
guage Calculus: Foundation Semantics for UML. In H. Huß-
mann (ed.), Fundamental Approaches to Software Engineering, 4th
International Conference, FASE 2001, Proceedings, volume 2029 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.

[CEL+96] A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and J. Padberg.
The Category of Typed Graph Grammars and their Adjunction
with Categories of Derivations. In Graph Grammars and their
Application to Computer Science: 5th International Workshop,
pages 56–74. Springer-Verlag, 1996.

[Cer05] M. Cerioli (ed.). Fundamental Approaches to Software Engineer-
ing, 8th International Conference, FASE 2005, Held as Part of the
Joint European Conferences on Theory and Practice of Software,
ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, vol-
ume 3442 of Lecture Notes in Computer Science. Springer, 2005.

[Che76] P. P.-S. Chen. The Entity-Relationship Model - toward a unified
view of data. ACM Trans. Database Syst., 1(1):9–36, 1976.

[CHM00] A. Corradini, R. Heckel, and U. Montanari. Graphical oper-
ational semantics. In Proc. ICALP2000 Workshop on Graph
Transformation and Visual Modelling Techniques. Carleton Scien-
tific, 2000.

BIBLIOGRAPHY 295

[CKM+99] S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and A. C.
Wills. Defining UML Family Members Using Prefaces. In
C. Mingins (ed.), Proceedings of TOOLS Pacific 1999. IEEE Com-
puter Society, 1999.

[CMR96] A. Corradini, U. Montanari, and F. Rossi. Graph processes.
Fundamenta Informaticae, 26(3,4):241–266, 1996.

[Coi96] P. Cointe. Reflective languages and metalevel architectures.
ACM Comput. Surv., 28(4es):151, 1996.

[Com05] Compilers.net. List of Parser Generators. http://www.
compilers.net/Dir/ParserGens.htm, 2005.

[CRS04] A. Cavarra, E. Riccobene, and P. Scandurra. A framework to
simulate UML models: moving from a semi-formal to a formal
environment. In SAC ’04: Proceedings of the 2004 ACM sym-
posium on Applied computing, pages 1519–1523, New York, NY,
USA, 2004. ACM Press.

[DJPV03] W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understand-
ing UML: A Formal Semantics of Concurrency and Communication
in Real-Time UML. In F. de Boer, M. Bonsangue, S. Graf, and
W.-P. de Roever (eds.), Proceedings of the 1st Symposium on For-
mal Methods for Components and Objects (FMCO 2002), volume
2852 of LNCS Tutorials, pages 70–98, 2003.

[dLETE04] J. de Lara, C. Ermel, G. Taentzer, and K. Ehrig. Parallel Graph
Transformation for Model Simulation applied to Timed Transition
Petri Nets. Electr. Notes Theor. Comput. Sci., 109:17–29, 2004.

[DM95] F.-N. Demers and J. Malenfant. Reflection in logic, functional
and object-oriented programming: a Short Comparative Study.
In Proceedings of the IJCAI’95 Workshop on Reflection and Met-
alevel Architectures and their Applications in AI, pages 29–38, Au-
gust 1995.

[Dör95] H. Dörr. Efficient Graph Rewriting and its Implementation, vol-
ume 922 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 1995.

[DP05] B. Dobing and J. Parson. UML in Practice: A Survey of UML
Use. available at www.omg.org/docs/ad/05-02-08.pdf, 2005.

[dRS84] J. des Rivieres and B. C. Smith. The implementation of proce-
durally reflective languages. In LFP ’84: Proceedings of the 1984
ACM Symposium on LISP and functional programming, pages 331–
347, New York, NY, USA, 1984. ACM Press.

[EB04] C. Ermel and R. Bardohl. Scenario animation for visual behavior
models: A generic approach. Software and Systems Modeling,
3:164 – 177, 2004.

[EE93] H. Ehrig and G. Engels. Towards a Module Concept for Graph
Transformation Systems. Technical report, Leiden University,
1993.

http://www.compilers.net/Dir/ParserGens.htm
http://www.compilers.net/Dir/ParserGens.htm
www.omg.org/docs/ad/05-02-08.pdf

296 BIBLIOGRAPHY

[EE95] J. Ebert and G. Engels. Specialization of Object Life Cycle
Definitions. Fachbericht Informatik 19/95, Universität Koblenz-
Landau, Fachbereich Informatik, Koblenz, 1995.

[EEdL+05] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, and S. Varró-
Gyapay. Termination Criteria for Model Transformation. In
Cerioli [Cer05], pages 49–63.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg (eds.).
Handbook on Graph Grammars and Computing by Graph Trans-
formation. Volume 2: Specifications and Programming. World
Scientific, Singapore, 1999.

[EEPT05] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Formal Integra-
tion of Inheritance with Typed Attributed Graph Transformation
for Efficient VL Definition and Model Manipulation. In 2005
IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC’05) , pages 71–78, 2005.

[EFLR99] A. Evans, R. France, K. Lano, and B. Rumpe. Meta-modelling
semantics of UML. In H. Kilov (ed.), Behavioural Specifications
for Businesses and Systems. Kluwer, 1999.

[EH00] G. Engels and R. Heckel. From Trees to Graphs: Defining the
Semantics of Diagram Languages with Graph Transformation. In
ICALP Satellite Workshops, pages 373–382, 2000.

[EHHS00] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Dynamic
Meta Modeling: A Graphical Approach to the Operational Seman-
tics of Behavioral Diagrams in UML. In A. Evans, S. Kent, and
B. Selic (eds.), UML, volume 1939 of Lecture Notes in Computer
Science, pages 323–337. Springer, 2000.

[EHHS02] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Testing the
Consistency of Dynamic UML Diagrams. In Proc. Sixth Inter-
national Conference on Integrated Design and Process Technology
(IDPT 2002), 2002.

[EHK+97] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and
A. Corradini. Algebraic Approaches to Graph Transformation,
Part II: Single Pushout Approach and Comparison with Double
Pushout Approach. In Rozenberg [Roz97], pages 247–312.

[EHK01] G. Engels, R. Heckel, and J. Küster. Rule-based Specification
of Behavioral Consistency based on the UML Meta Model. In
Gogolla and Kobryn [GK01], pages 272–287.

[EHKZ05] C. Ermel, Hölscher, S. Kuske, and P. Ziemann. Animated Sim-
ulation of Integrated Behavioral Models based on Graph Transfor-
mation. In IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC’05). IEEE Computer Society, 2005.

[EHS99] G. Engels, R. Heckel, and S. Sauer. Dynamic Meta Modeling: A
Graphical Approach to Operational Semantics. In Proc. OOP-
SLA’99 Workshop on Rigorous Modeling and Analysis with the

BIBLIOGRAPHY 297

UML: Challenges and Limitations, Denver, CO, USA, November
2 1999.

[EHSW99] G. Engels, R. Hücking, S. Sauer, and A. Wagner. UML Col-
laboration Diagrams and their Transformation to Java. In
R. France and B. Rumpe (eds.), UML’99 - The Unified Modeling
Language. Beyond the Standard. Second International Conference,
Fort Collins, CO, USA, October 28-30. 1999, Proceedings, volume
1723 of Lecture Notes in Computer Science (LNCS), pages 473–
488. Springer-Verlag, October 1999.

[EK99] A. Evans and S. Kent. Core Meta-Modelling Semantics of UML:
The pUML Approach. In R. B. France and B. Rumpe (eds.),
UML’99: The Unified Modeling Language - Beyond the Standard,
Second International Conference, Fort Collins, CO, USA, October
28-30, 1999, Proceedings, volume 1723 of Lecture Notes in Com-
puter Science. Springer, 1999.

[EKMR99] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg (eds.).
Handbook on Graph Grammars and Computing by Graph Trans-
formation. Volume 3: Concurrency, Parallelism, and Distribution.
World Scientific, Singapore, 1999.

[EPS73] H. Ehrig, M. Pfender, and H. J. Schneider. Graph Gram-
mars: An Algebraic Approach. In IEEE Conf. on Automata
and Switching Theory, pages 167–180, Iowa City, 1973.

[EPT04] H. Ehrig, U. Prange, and G. Taentzer. Fundamental Theory for
Typed Attributed Graph Transformation. In H. Ehrig, G. En-
gels, F. Parisi-Presicce, and G. Rozenberg (eds.), Graph Trans-
formations, Second International Conference, ICGT 2004, Rome,
Italy, September 28 - October 2, 2004, Proceedings, volume 3256 of
Lecture Notes in Computer Science, pages 161–177. Springer, 2004.

[Esh02] R. Eshuis. Semantics and Verification of UML Activity Diagrams
for Workflow Modeling. PhD thesis, University of Twente, 2002.

[ESW+05] A. Evans, P. Sammut, J. S. Willans, A. Moore, and G. Maskeri.
A Unified Superstructure for UML. Journal of Object Technol-
ogy, 4(1):165–182, 2005.

[EW01] R. Eshuis and R. Wieringa. A Real-Time Execution Semantics
for UML Activity Diagrams. In FASE ’01: Proceedings of the 4th
International Conference on Fundamental Approaches to Software
Engineering, pages 76–90, London, UK, 2001. Springer-Verlag.

[EW04] R. Eshuis and R. Wieringa. Tool Support for Verifying UML
Activity Diagrams. IEEE Trans. Software Eng., 30(7):437–447,
2004.

[Fav04] J.-M. Favre. Towards a Basic Theory to Model Driven Engineer-
ing. In Proceedings of the Third Workshop in Software Model
Engineering WiSME 04@UML2004 Lisboa, 2004.

298 BIBLIOGRAPHY

[Fla02] R. G. Flatscher. Metamodeling in EIA/CDIF—meta-metamodel
and metamodels. ACM Trans. Model. Comput. Simul.,
12(4):322–342, 2002.

[FM03] S. Flake and W. Müller. Formal semantics of static and temporal
state-oriented OCL constraints. Software and Systems Modeling,
2(3):164–186, 2003.

[FNTZ00] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story Di-
agrams: A new Graph Transformation Language based on UML
and Java. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozen-
berg (eds.), Theory and Application of Graph Transformations, 6th
International Workshop, TAGT’98, Paderborn, Germany, Novem-
ber 16-20, 1998, Selected Papers, volume 1764 of Lecture Notes in
Computer Science (LNCS). Springer-Verlag, 2000.

[Fow05a] M. Fowler. Language Workbenches: The Killer-App for Domain
Specific Languages? http://martinfowler.com/articles/
languageWorkbench.html, June 2005.

[Fow05b] M. Fowler. UML mode. available online at http://www.
martinfowler.com/bliki/UmlMode.html, 2005.

[FQL+03] J. M. Fuentes, V. Quintana, J. Llorens, G. Genova, and R. Prieto-
Diaz. Errors in the UML metamodel? SIGSOFT Softw. Eng.
Notes, 28(6):3–3, 2003.

[FS00] M. Fowler and K. Scott. UML Destilled, Second Edition. Old-
enbourg, 2000.

[FTF] Finalization Task Force - UML 2 Superstructure Issues Database.
http://www.omg.org/issues/uml2-superstructure-ftf.html.

[fuj] From UML to Java and Back Again: The Fujaba homepage.
www.upb.de/cs/isileit.

[GHV03] S. Gyapay, R. Heckel, and D. Varró. Graph Transformation with
Time. Fundamenta Informaticae, 58(1):1–22, November 2003.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman &
Co., New York, NY, USA, 1979.

[GJM91] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Soft-
ware Engineering. Prentice Hall Int., 1991.

[GK01] M. Gogolla and C. Kobryn (eds.). UML 2001 - The Unified
Modeling Language, Modeling Languages, Concepts, and Tools, 4th
International Conference, Toronto, Canada, October 1-5, 2001,
Proceedings, volume 2185 of Lecture Notes in Computer Science.
Springer, 2001.

[GKM98] R. Geisler, M. Klar, and S. Mann. Precise UML Semantics
Through Formal Metamodeling. In L. Andrade, A. Moreira,
A. Deshpande, and S. Kent (eds.), Proceedings of the OOPSLA’98
Workshop on Formalizing UML. Why? How?, 1998.

http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/bliki/UmlMode.html
http://www.martinfowler.com/bliki/UmlMode.html
www.upb.de/cs/isileit

BIBLIOGRAPHY 299

[GKP98] R. Geisler, M. Klar, and C. Pons. Dimensions and Dichotomy
in Metamodeling. Technical Report Bericht-Nr 98-5, TU Berlin,
1998.

[GPP98] M. Gogolla and F. Parisi-Presicc. State Diagrams in UML: A
Formal Semantics using Graph Transformation. In M. Broy,
D. Coleman, T. S. E. Maibaum, and B. Rumpe (eds.), Proceed-
ings PSMT’98 Workshop on Precise Semantics for Modeling Tech-
niques, pages 55–72. Technische Universität München, 1998.

[GPTdB93] M. Gemis, J. Paredaens, I. Thyssens, and J. V. den Bussche.
GOOD: a graph-oriented object database system. In P. Buneman
and S. Jajodia (eds.), Proceedings of the 1993 ACM SIGMOD In-
ternational Conference on the Management of Data, volume 22(2)
of ACM SIGMOD Record, pages 505–510, 1993.

[GR99] M. Gogolla and M. Richters. Transformation Rules for UML
Class Diagrams. In J. Bézivin and P.-A. Muller (eds.), The
Unified Modeling Language, UML’98 - Beyond the Notation. First
International Workshop, Mulhouse, France, June 1998, Selected
Papers, volume 1618 of LNCS, pages 92–106. Springer, 1999.

[GR01] M. Große-Rhode. Formal Concepts for an Integrated Internal
Model of the UML. In UNIGRA 2001, Uniform Approaches
to Graphical Process Specification Techniques (a Satellite Event
of ETAPS 2001), volume 44(4) of Electronic Notes in Theoreti-
cal Computer Science (ENTCS). Elsevier, 2001.

[GSCK04] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and
Tools. Wiley, 2004.

[GZK02] M. Gogolla, P. Ziemann, and S. Kuske. Towards an Integrated
Graph Based Semantics for UML. In P. Bottoni and M. Minas
(eds.), Proc. ICGT Workshop Graph Transformation and Visual
Modeling Techniques (GT-VMT’2002), Electronic Notes in Theo-
retical Computer Science (ENTCS). Elsevier, October 2002.

[Hau01] J. H. Hausmann. Dynamische Metamodellierung zur Spezifika-
tion einer operationalen Semantik von UML. Master’s thesis,
Universität Paderborn, 2001.

[Hau03] J. H. Hausmann. Metamodelling Relations - Relating Metamod-
els. In Proceedings of the Metamodeling for MDA Workshop
2003, Nov. 2003.

[HG97] D. Harel and E. Gery. Executable Object Modeling with State-
charts. Computer, 30(7):31–42, 1997.

[HH04] R. Heckel and J. H. Hausmann. What’s new in UML 2? Chal-
lenges and Solutions for Model-Driven Development. Tutorial at
the 25th International Conference on Application and Theory of
Petr Nets, Bologna, Italy, June 2004.

300 BIBLIOGRAPHY

[HH05] R. Heckel and J. H. Hausmann. UML 2 - Neue Chancen, neue
Probleme. Tutorial at the Software Engineering 2005, Essen,
Germany, March 2005.

[HHB02] R. Hennicker, H. Hussmann, and M. Bidoit. On the Precise
Meaning of OCL Constraints. In T. Clark and J. Warmer (eds.),
Object Modeling with the OCL: The Rationale behind the Object
Constraint Language, pages 69–84. Springer, 2002.

[HHS00] J. H. Hausmann, R. Heckel, and S. Sauer. Ein Konzept zur an-
wendungsbezogenen UML-Semantikbeschreibung durch dynamis-
che Metamodellierung. In H. Giese and S. Philippi (eds.), Proc.
8th GROOM Workshop: Visuelle Verhaltensmodellierung verteil-
ter und nebenläufiger Softwaresysteme (VVVNS 2000), November
13-14, 2000, Münster, Germany, pages 64–69. Fachbereich Math-
ematik - Informatik, Westfälische Wilhelms-Universität Münster,
2000.

[HHS01] J. H. Hausmann, R. Heckel, and S. Sauer. Towards Dynamic
Meta Modeling of UML Extensions: An Extensible Semantics for
UML Sequence Diagrams. In Minas and Bottoni [MB01], pages
80–87.

[HHS02a] J. H. Hausmann, R. Heckel, and S. Sauer. Dynamic Meta
Modeling with Time: Specifying the Semantics of Multimedia
Sequence Diagrams. In P. Bottoni and M. Minas (eds.),
GT-VMT’2002 Graph Transformation and Visual Modeling Tech-
niques, Barcelona, Spain, 11-12 October 2002, volume 72(3) of
ENTCS. Elsevier, 2002.

[HHS02b] J. H. Hausmann, R. Heckel, and S. Sauer. Extended Model Re-
lations with Graphical Consistency Conditions. In In Proceed-
ings UML 2002 Workshop on Consistency Problems in UML-based
Software Development, Bleckinge Institute of Technology, Research
Report 2002:06, pages 61–74, 2002.

[HHS04] J. H. Hausmann, R. Heckel, and S. Sauer. Dynamic Meta Mod-
eling with Time: Specifying the semantics of multimedia sequence
diagrams. Software and Systems Modeling, 3(3):181–193, 2004.

[HHT96] A. Habel, R. Heckel, and G. Taentzer. Graph Grammars with
Negative Application Conditions. Fundamenta Informaticae,
26(3/4):287–313, 1996.

[HK03] J. H. Hausmann and S. Kent. Visualizing Model Mappings in
UML. In Proc. of the ACM Symposium on Software Visualiza-
tion 2003, 2003.

[HK04] D. Harel and H. Kugler. The RHAPSODY Semantics of State-
charts (or, On the Executable Core of the UML). In Integration
of Software Specification Techniques for Application in Engineer-
ing, volume 3147 of Lecture Notes in Computer Science, pages 325–
354. Springer-Verlag, 2004.

BIBLIOGRAPHY 301

[HKS01] J. H. Hausmann, J. M. Küster, and S. Sauer. Identifying Se-
mantic Dimensions of (UML) Sequence Diagrams. In A. Evans,
R. France, A. Moreira, and B. Rumpe (eds.), Practical UML-Based
Rigorous Development Methods - Countering or Integrating the
eXtremists. Workshop of the pUML-Group held together with the
UML 2001 October 1st, 2001 in Toronto, Canada, volume P-7 of
LNI, pages 142–157. German Informatics Society, 2001.

[HKT02] R. Heckel, J. Küster, and G. Taentzer. Confluence of typed
attributed graph transformation systems. In Graph Transfor-
mation, First International Conference, ICGT 2002, Barcelona,
Spain, October 7-12, 2002, Proceedings, volume 2505 of Lecture
Notes in Computer Science, pages 161–176. Springer-Verlag, 2002.

[HMTW95] R. Heckel, J. Muller, G. Taentzer, and A. Wagner. Attributed
graph transformations with controlled application of rules. In
Proc. Colloquium on Graph Transformation and its Application in
Computer Science, 1995.

[Hof05] B. Hoffmann. Graph Transformation with Variables. In
U. M. Hans-J¨rg Kreowski, F. Orejas, G. Rozenberg, and
G. Taentzer (eds.), Formal Methods in Software and System Mod-
eling (Festschrift for Hartmut Ehrig on the Occasion of his 60th
Birthday), volume 3393 of Lecture Notes in Computer Science,
pages 101 – 115. Springer-Verlag, 2005.

[Hor99] I. Horrocks. Constructing the User Interface with Statecharts.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[HP01] A. Habel and D. Plump. Computational Completeness of
Programming Languages Based on Graph Transformation. In
F. Honsell and M. Miculan (eds.), FoSSaCS, volume 2030 of Lec-
ture Notes in Computer Science, pages 230–245. Springer, 2001.

[HR00] D. Harel and B. Rumpe. Modeling Languages: Syntax, Seman-
tics and All That Stuff - Part I: The Basic Stuff. Technical Re-
port MCS00-16, Faculty of Mathematics and Computer Science,
The Weizmann Institute of Science, Israel, September 2000.

[HR04] D. Harel and B. Rumpe. Meaningful Modeling: What’s the
Semantics of ”Semantics”? Computer, 37(10):64–72, 2004.

[HS99] B. Henderson-Sellers. OML: Proposals to Enhance UML. In
Bézivin and Muller [BM98], pages 349–364.

[HS01] B. Henderson-Sellers. Some Problems with the UML V1.3 Meta-
model. In R. H. Sprague, Jr. (ed.), Proc. 34th Annual Hawaii
International Conference on System Sciences (HICSS-34). IEEE
Computer Society, 2001.

[HW95] R. Heckel and A. Wagner. Ensuring Consistency of Condi-
tional Graph Grammars – A constructive Approach. In Proc. of
SEGRAGRA’95 ”Graph Rewriting and Computation”, volume 2 of
Electronic Notes in Theoretical Computer Science (ENTCS), 1995.

302 BIBLIOGRAPHY

[HZ01] R. Heckel and A. Zündorf. How to specify a graph transfor-
mation approach: A meta model for fujaba. In H. Ehrig and
J. Padberg (eds.), Uniform Approaches to Graphical Process Spec-
ification Techniques, satellite workshop of ETAPS 2001, Genova,
Italy, 2001.

[ITU93] ITU-T, Geneva. Recommendation Z.120: Message Sequence
Chart (MSC), 1993.

[Kas91] U. Kastens. Attributed Grammars as a Specification Method.
In H. Alblas and B. Melichar (eds.), Attribute Grammars, Appli-
cations and Systems, volume 545 of Lecture Notes in Computer
Science, pages 16–47. Springer, 1991.

[KC99] S.-K. Kim and D. Carrington. Formalizing the UML Class Di-
agram Using Object-Z. In R. France and B. Rumpe (eds.),
UML’99 - The Unified Modeling Language. Beyond the Standard.
Second International Conference, Fort Collins, CO, USA, Octo-
ber 28-30. 1999, Proceedings, volume 1723 of LNCS, pages 83–98.
Springer, 1999.

[KC00a] S.-K. Kim and D. Carrington. A Formal Mapping between UML
Models and Object-Z Specifications. Lecture Notes in Computer
Science, 1878:2–21, 2000.

[KC00b] S.-K. Kim and D. Carrington. An Integrated Framework with
UML and Object-Z for Developing a Precise Specification. In
N.N. (ed.), Proceedings of APSEC 2000. IEEE Computer Society,
2000.

[KC00c] S.-K. Kim and D. Carrington. UML Metamodel Formalization
with Object-Z: The State Machine Package. Technical Report
No 00-29, University of Queensland, 2000.

[Ken97] S. Kent. Constraint Diagrams: Visualizing Invariants in OO
Modelling. In Proceedings of OOPSLA97, pages 327–341. ACM
Press, October 1997.

[KER99] S. Kent, A. Evans, and B. Rumpe. UML Semantics FAQ. In
ECOOP’99 Workshop Reader. Springer Verlag, LNCS, December
1999.

[KGKK02] S. Kuske, M. Gogolla, R. Kollmann, and H.-J. Kreowski. An
Integrated Semantics for UML Class, Object and State Diagrams
Based on Graph Transformation. In IFM ’02: Proceedings of
the Third International Conference on Integrated Formal Methods,
pages 11–28, London, UK, 2002. Springer-Verlag.

[KGR99] S. Kent, S. Gaito, and N. Ross. A Meta-model Semantics for
Structural Constraints in UML. In Kilov et al. [KRS99], chap-
ter 9, pages 123–141.

[KHH+97] S. Kent, A. Hamie, J. Howse, F. Civello, and R. Mitchell.
Semantics Through Pictures: towards a diagrammatic seman-
tics for object-oriented modelling notations. In Proceedings of

BIBLIOGRAPHY 303

ECOOP’97 Workshop on Precise Semantics for Object-Oriented
Modelling Techniques, Technical Report TUM-I9725. University of
Munich, June 1997.

[kmf] The Kent Modeling Framework. www.cs.ukc.ac.uk/kmf.

[KMR02] A. Knapp, S. Merz, and C. Rauh. Model Checking Timed UML
State Machines and Collaborations. In W. Damm and E.-R.
Olderog (eds.), 7th Intl. Symp. Formal Techniques in Real-Time
and Fault Tolerant Systems (FTRTFT 2002), volume 2469 of Lec-
ture Notes in Computer Science, pages 395–414, Oldenburg, Ger-
many, September 2002. Springer-Verlag.

[KN03] M. Kardos and U. Nickel. ASMs as Integration Platform towards
Verification and Validation of Distributed Production Control Sys-
tems at Multiple Levels of Abstraction. In E. Börger, A. Gar-
gantini, and E. Riccobene (eds.), Abstract State Machines, volume
2589 of Lecture Notes in Computer Science, page 416. Springer,
2003.

[Kna99] A. Knapp. A Formal Semantics for UML Interactions. In
R. France and B. Rumpe (eds.), UML’99 - The Unified Modeling
Language. Beyond the Standard. Second International Conference,
Fort Collins, CO, USA, October 28-30. 1999, Proceedings, volume
1723 of LNCS, pages 116–130. Springer, 1999.

[KNS92] G. Keller, M. Nttgens, and A.-W. Scheer. Semantische Proze-
modellierung auf der Grundlage ”Ereignisgesteuerter Prozeketten
(EPK)”. Arbeitsbericht Heft 89, Institut fr Wirtschaftsinfor-
matik Universitt Saarbrcken, 1992.

[Kob04] C. Kobryn. UML 3.0 and the future of modeling. Software
and Systems Modeling, 3(1):4–8, 2004.

[KRS99] H. Kilov, B. Rumpe, and I. Simmonds (eds.). Behavioral Specifi-
cations of Businesses and Systems, volume 523 of The Kluwer In-
ternational Series in Engineering and Computer Science. Kluwer
Academic Publishers, 1999.

[KS02] U. Kastens and C. Schmidt. VL-Eli: A Generator for Visual Lan-
guages - System Demonstration. Electronic Notes in Theoretical
Computer Science, 65(3), 2002.

[Kue05] T. Kuehne. What is a Model? [online]. In J. Bezivin and
R. Heckel (eds.), Language Engineering for Model-Driven Software
Development, number 04101 in Dagstuhl Seminar Proceedings. In-
ternationales Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl, Germany, 2005.

[Küh05] T. Kühne. Understanding metamodeling. In G.-C. Roman,
W. G. Griswold, and B. Nuseibeh (eds.), ICSE, pages 716–717.
ACM, 2005.

www.cs.ukc.ac.uk/kmf

304 BIBLIOGRAPHY

[Kus00] S. Kuske. Transformation Units—A structuring Principle for
Graph Transformation Systems. PhD thesis, University of Bre-
men, 2000.

[Kus01] S. Kuske. A Formal Semantics of UML State Machines Based
on Structured Graph Transformation. In M. Gogolla and C. Ko-
bryn (eds.), UML 2001 - The Unified Modeling Language. Model-
ing Languages, Concepts, and Tools. 4th International Conference,
Toronto, Canada, October 2001, Proceedings, volume 2185 of Lec-
ture Notes in Computer Science (LNCS), pages 241–256. Springer,
2001.

[Küs04] J. Küster. Consistency Management of Object-Oriented Behav-
ioral Models. PhD thesis, Universität Paderborn, 2004.

[KW01] A. Kleppe and J. Warmer. Unification of Static and Dynamic
Semantics of UML. Klasse Objecten Whitepaper, 2001.

[Kwo00] G. Kwon. Rewrite rules and Operational Semantics for Model
Checking UML Statecharts. In A. Evans, S. Kent, and B. Selic
(eds.), UML 2000 - The Unified Modeling Language. Advancing
the Standard. Third International Conference, York, UK, October
2000, Proceedings, volume 1939 of LNCS, pages 528–540. Springer,
2000.

[LB93] M. Löwe and M. Beyer. AGG — An Implementation of Alge-
braic Graph Rewriting. In Proceedings of the Fifth International
Conference on Rewriting Techniques and Applications, ’93, volume
690 of Lecture Notes in Computer Science (LNCS), pages 451–456,
1993.

[LB99] K. Lano and J. Bicarregui. Semantics and Transformations for
UML Models. In Bézivin and Muller [BM98], pages 107–119.

[LE90] M. Löwe and H. Ehrig. Algebraic Approach to Graph Transfor-
mation Based on Single Pushout Derivations. In R. H. Möhring
(ed.), WG, volume 484 of Lecture Notes in Computer Science, pages
338–353. Springer, 1990.

[LKW93] M. Löwe, M. Korff, and A. Wagner. An Algebraic Framework
for the Transformation of Attributed Graphs. In M. R. Sleep,
M. J. Plasmeijer, and M. van Eekelen (eds.), Term Graph Rewrit-
ing: Theory and Practice, chapter 14, pages 185–199. John Wiley
& Sons Ltd, 1993.

[LLH02] Z. Liu, X. Li, and J. He. Using Transition Systems to Unify
UML Models. In ICFEM ’02: Proceedings of the 4th Interna-
tional Conference on Formal Engineering Methods, pages 535–547,
London, UK, 2002. Springer-Verlag.

[LLH04] X. Li, Z. Liu, and J. He. A formal semantics of UML sequence di-
agrams. In Proc. of Australian Software Engineering Conference
(ASWEC’2004), 13-16 April 2004, Melbourne, Australia, 2004.
IEEE Computer Society.

BIBLIOGRAPHY 305

[LM93] I. Litovsky and Y. Métivier. Computing with Graph Rewrit-
ing Systems with Priorities. Theoretical Computer Science,
115(2):191–224, 1993.

[LMS95] I. Litovsky, Y. Metivier, and E. Sopena. Different Local Controls
for Graph Relabeling Systems. Mathematical Systems Theory,
28(1):41–65, 1995.

[Löw93] M. Löwe. Algebraic approach to single-pushout graph transfor-
mation. Theoretical Computer Science, 109:181–224, 1993.

[LPP99] J. Lilius and I. Porres Paltor. The Semantics of UML State Ma-
chines. Technical Report 273, TUCS - Turku Centre for Com-
puter Science, Turku, Finland, Jun 1999.

[Lud03] J. Ludewig. Models in Software Engineering. Software and
Systems Modeling, 2(1):5–14, 2003.

[MB01] M. Minas and P. Bottoni (eds.). 2002 IEEE CS International
Symposium on Human-Centric Computing Languages and Envi-
ronments (HCC 2001), September 5-7, 2001 Stresa, Italy. IEEE
Computer Society, 2001.

[MB02] S. J. Mellor and M. Balcer. Executable UML: A Foundation for
Model-Driven Architectures. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2002.

[Mey97] B. Meyer. UML- The Positive Spin. American Programmer,
1997.

[Min04] M. Minas (ed.). Proceedings of the International Workshop on
Visual Languages and Fomral Methods (VLFM 04), 2004.

[MK00] M. Minas and O. Köth. Generating Diagram Editors with Di-
aGen. In Proc. Applications of Graph Transformations With
Industrial Relevance (AGTIVE), Kerkrade (The Netherlands),
September 1–3, 1999, volume 1779 of Lecture Notes in Computer
Science (LNCS), pages 433–440. Springer-Verlag, 2000.

[MLB76] M. Marcotty, H. Ledgard, and G. V. Bochmann. A Sampler of
Formal Definitions. ACM Comput. Surv., 8(2):191–276, 1976.

[Mon70] U. Montanari. Separable Graphs, Planar Graphs and Web Gram-
mars. Information and Control 16, pages 243–267, 1970.

[Mor99] B. Morand. Modeling: Is it Turning Informal into Formal? In
Bézivin and Muller [BM98], pages 37–48.

[Mos92] P. D. Mosses. Action semantics. Cambridge University Press,
New York, NY, USA, 1992.

[Mos96] P. D. Mosses. Theory and Practice of Action Semantics. In
MFCS ’96, Proc. 21st Int. Symp. on Mathematical Foundations of
Computer Science (Cracow, Poland, Sept. 1996), volume 1113 of
Lecture Notes in Conputer Science, pages 37–61. Springer-Verlag,
1996.

306 BIBLIOGRAPHY

[Mos00] P. D. Mosses. Modularity in Meta-Languages. Report Series
RS-00-50, Basic Reserach in Computer Science BRICS, Aarhus.
DK, December 2000.

[Mos01] P. D. Mosses. The Varieties of Programming Language Seman-
tics. In D. Bjørner, M. Broy, and A. V. Zamulin (eds.), Ershov
Memorial Conference, volume 2244 of Lecture Notes in Computer
Science, pages 165–190. Springer, 2001.

[Mos03] P. D. Mosses. Fundamental Concepts and Formal Semantics of
Programming Languages. Lecture Notes http://wiki.daimi.
au.dk/dSprogSem-02/fundamental_concepts_and_.wiki,
BRICS & Department of Computer Science, University of Aarhus,
Denmark, Nov 2003.

[Mos04a] P. D. Mosses. Action Semantics an example of language de-
scription engineering . Dagstuhl Seminar 04101 on Model-
Driven Language Engineering, http://www.dagstuhl.de/files/
Materials/04/04101/04101.MossesPeter.Slides.pdf, March
2004.

[Mos04b] P. D. Mosses. Modular Structural Operational Semantics.
Journal of Logic and Algebraic Programming, 60–61:195–228, 2004.

[MSW00] M. Münch, A. Schürr, and A. J. Winter. Integrity Constraints
in the Multi-paradigm Language PROGRES. In TAGT’98: Se-
lected papers from the 6th International Workshop on Theory and
Application of Graph Transformations, pages 338–351, London,
UK, 2000. Springer-Verlag.

[Mül96] J. Müller. On Termination of Single-Pushout Graph Rewriting.
Technical Report 96-38, TU Berlin, 1996.

[MV93] M. Minas and G. Viehstaedt. Specification of Diagram Editors
Providing Layout Adjustments. In E. P. Glinert and K. A. Olsen
(eds.), Proc. IEEE Symp. Visual Languages, VL, pages 324–329.
IEEE Computer Society, 24–27 1993.

[NLS+02] E. D. Nitto, L. Lavazza, M. Schiavoni, E. Tracanella, and M. Trom-
betta. Deriving executable process descriptions from UML. In
ICSE ’02: Proceedings of the 24th International Conference on
Software Engineering, pages 155–165, New York, NY, USA, 2002.
ACM Press.

[Obe03] I. Ober. An ASM semantics for UML Derived from the meta-
model and incorporating actions. In Abstract State Machines
- Advances in Theory and Applications., volume 2589 of LNCS.
Proceedings 10th International Workshop, ASM 2003, 2003.

[Obj00] Object Management Group. UML 2.0 Superstructure RFP.
OMG document ad/00-09-02, 2000.

[Obj01] Object Management Group. UML Specification Version 1.4.
http://www.omg.org/cgi-bin/doc?formal/01-09-67, Septem-
ber 2001.

http://wiki.daimi.au.dk/dSprogSem-02/fundamental_concepts_and_.wiki
http://wiki.daimi.au.dk/dSprogSem-02/fundamental_concepts_and_.wiki
http://www.dagstuhl.de/files/Materials/04/04101/04101.MossesPeter.Slides.pdf
http://www.dagstuhl.de/files/Materials/04/04101/04101.MossesPeter.Slides.pdf
http://www.omg.org/cgi-bin/doc?formal/01-09-67

BIBLIOGRAPHY 307

[Obj02a] Object Management Group. Meta Object Facility (MOF) Spec-
ification, Version 1.4, 2002.

[Obj02b] Object Management Group. MOF 2.0 Query / Views / Trans-
formations RfP, 2002.

[Obj03a] Object Management Group. Meta Object Facility (MOF) 2.0
Core Specification. http://www.omg.org/cgi-bin/doc?ptc/
2003-10-04, 10 2003.

[Obj03b] Object Management Group. UML 2.0 Infrastructure, 2003.

[Obj03c] Object Management Group. UML 2.0 OCL Final Adopted Speci-
fication. http://www.omg.org/cgi-bin/doc?ptc/2003-10-14,
10 2003.

[Obj03d] Object Management Group. UML 2.0 Superstructure Specifica-
tion -final adopted specification-, 10 2003.

[Obj03e] Object Management Group. UML Version 1.5 Specification.
http://www.omg.org/cgi-bin/doc?formal/03-03-01, 03 2003.

[Obj04] Object Management Group. UML 2.0 Superstructure - FTF con-
venience document-. http://www.omg.org/cgi-bin/doc?ptc/
2004-10-02, 10 2004.

[Obj05] Object Management Group. UML 2.0 Superstructure- Public
Specification-. OMG document formal/05-07-04, August 2005.

[Ode97] J. Odell. Standardization for OO A&D? Distributed Comput-
ing, 1, 1997.

[Øve98] G. Øvergaard. A Formal Approach to Relationships in The Uni-
fied Modeling Language. In M. Broy, D. Coleman, T. S. E.
Maibaum, and B. Rumpe (eds.), Proceedings PSMT’98 Workshop
on Precise Semantics for Modeling Techniques. Technische Univer-
sität München, TUM-I9803, 1998.

[Øve99] G. Øvergaard. A Formal Approach to Collaborations in the Uni-
fied Modeling Language. In R. France and B. Rumpe (eds.),
UML’99 - The Unified Modeling Language. Beyond the Standard.
Second International Conference, Fort Collins, CO, USA, Octo-
ber 28-30. 1999, Proceedings, volume 1723 of LNCS, pages 99–115.
Springer, 1999.

[Øve00] G. Øvergaard. Using the BOOM framework for formal speci-
fication of the UML. In Proc. ECOOP Workshop on Defining
Precise Semantics for UML, 2000.

[Pad82] P. Padawitz. Graph Grammars and Operational Semantics.
Theoretical Computer Science, 19:117–141, 1982.

[Pen03] T. Pender. UML Bible. Wiley & Sons, 2003.

[Pet62] C. A. Petri. Kommunikation mit Automaten. PhD thesis,
Bonn: Institut für Instrumentelle Mathematik, Schriften des IIM
Nr. 2, 1962.

http://www.omg.org/cgi-bin/doc?ptc/2003-10-04
http://www.omg.org/cgi-bin/doc?ptc/2003-10-04
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14
http://www.omg.org/cgi-bin/doc?formal/03-03-01
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02

308 BIBLIOGRAPHY

[PL99] I. P. Paltor and J. Lilius. vUML: A Tool for Verifying UML
Models. In R. J. Hall and E. Tyugu (eds.), Proc. of the 14th
IEEE International Conference on Automated Software Engineer-
ing, ASE’99. IEEE, 1999.

[Plo81] G. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI FN-19, Aarhus University, Computer Sci-
ence Department, 1981.

[Plo04] G. D. Plotkin. The Origins of Structural Operational Semantics.
Journal of Functional and Logic Programming, 60-61:3–15, 2004.

[Plu98] D. Plump. Termination of Graph Rewriting is Undecidable.
Fundam. Inform., 33(2):201–209, 1998.

[POB02] R. Paige, J. Ostroff, and P. Brooke. Checking the Consis-
tency of Collaboration and Class Diagrams using PVS. In Proc.
Fourth Workshop on Rigorous Object-Oriented Methods (ROOM4).
British Computer Society, London,, 2002.

[Por01] I. Porres. Modeling and Analyzing Software Behavior in UML.
PhD thesis, Turku Centre for Computer Science, Nov 2001.

[PR69] J. L. Pfaltz and A. Rosenfeld. Web Grammars. Int. Joint
Conference on Artificial Intelligence, pages 609–619, 1969.

[PS04] D. Plump and S. Steinert. Towards Graph Programs for Graph
Algorithms. In H. Ehrig, G. Engels, F. Parisi-Presicce, and
G. Rozenberg (eds.), Graph Transformations, Second International
Conference, ICGT 2004, Rome, Italy, September 28 - October 2,
2004, Proceedings, volume 3256 of Lecture Notes in Computer Sci-
ence, pages 128–143. Springer-Verlag, 2004.

[QVT] QVT Partners. Submission for MOF 2.0
Query/Views/Trasformations RFP. OMG document ad/2003-
08-08.

[RA01] G. Reggio and E. Astesiano. A Proposal of a Dynamic Core for
UML Metamodelling with MML. Technical Report DISI–TR–
01–1, DISI, Universita di Genova, Italy, 2001.

[RACH99] G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. A CASL
Formal Definition of UML Active Classes and Associated State
Machines. Technical Report DISI-TR-99-16, DISI – Universita
di Genova, Italy, 1999.

[RACH00] G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann.
Analysing UML Active Classes and Associated State Machines –
A Lightweight Formal Approach. In T. Maibaum (ed.), Proc.
Fundamental Approaches to Software Engineering (FASE 2000),
Berlin, Germany, volume 1783 of Lecture Notes in Computer Sci-
ence (LNCS), pages 127–146. Springer-Verlag, March/April 2000.

[RCA01] G. Reggio, M. Cerioli, and E. Astesiano. Towards a Rigor-
ous Semantics of UML Supporting Its Multiview Approach. In

BIBLIOGRAPHY 309

H. Hussmann (ed.), Fundamental Approaches to Software Engi-
neering, 4th International Conference, FASE 2001, Proceedings,
volume 2029 of Lecture Notes in Computer Science (LNCS), pages
171–186. Springer, 2001.

[Reg02] G. Reggio. Metamodelling Behavioral Aspects: The case of the
UML State Machines. In Proc. of the 5th World Conference on
Integrated Design and Process Technology (IDPT 2002). Society
for Process Technology, 2002.

[Rei85] W. Reisig. Petri nets: an introduction. Springer-Verlag New
York, Inc., New York, NY, USA, 1985.

[Ren03a] A. Rensink. GROOVE: A Graph Transformation Tool Set for
the Simulation and Analysis of Graph Grammars. Available at
http://www.cs.utwente.nl/~groove, 2003.

[Ren03b] A. Rensink. Towards Model Checking Graph Grammars. In
M. Leuschel, S. Gruner, and S. L. Presti (eds.), Workshop on Au-
tomated Verification of Critical Systems (AVoCS), Technical Re-
port DSSE–TR–2003–2, pages 150–160. University of Southamp-
ton, 2003.

[Ren04a] A. Rensink. The GROOVE Simulator: A Tool for State Space
Generation. In J. Pfalz, M. Nagl, and B. Böhlen (eds.), Appli-
cations of Graph Transformations with Industrial Relevance (AG-
TIVE), volume 3062 of Lecture Notes in Computer Science, pages
479–485. Springer-Verlag, 2004.

[Ren04b] A. Rensink. Representing First-Order Logic using Graphs. In
H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg (eds.),
Graph Transformations, Second International Conference, ICGT
2004, Rome, Italy, September 28 - October 2, 2004, Proceedings,
volume 3256 of Lecture Notes in Computer Science, pages 319–335.
Springer-Verlag, 2004.

[Ren04c] A. Rensink. Time and Space Issues in the Generation of Graph
Transition Systems. In International Workshop on Graph-Based
Tools (GraBaTs), Electronic Notes in Theoretical Computer Sci-
ence. Elsevier Science Publishers, 2004.

[RG00] M. Richters and M. Gogolla. Validating UML Models and OCL
Constraints. In A. Evans, S. Kent, and B. Selic (eds.), UML 2000
- The Unified Modeling Language. Advancing the Standard. Third
International Conference, York, UK, October 2000, Proceedings,
volume 1939 of LNCS, pages 265–277. Springer, 2000.

[RH04] B. Rumpe and W. Hesse (eds.). Modellierung 2004, Proceedings
zur Tagung, 23.-26. März 2004, Marburg, Proceedings, volume 45
of LNI. GI, 2004.

[Rod98] P. Rodgers. A Graph Rewriting Programming Language for
Graph Drawing. In Proceedings of the 14th IEEE Symposium
on Visual Languages, Halifax, Nova Scotia, Canada. IEEE, IEEE
Computer Society Press, September 1998.

310 BIBLIOGRAPHY

[Rod00] P. Rodgers. Constructs for Programming with Graph Rewrites.
In H. Ehrig and G. Taentzer (eds.), GRATRA 2000: Joint APPLI-
GRAPH and GETGRATS Workshop on Graph Transformation
Systems, pages 59–66, March 2000.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Com-
puting by Graph Transformation. Volume 1: Foundations. World
Scientific, 1997.

[RS97] J. Rekers and A. Schürr. Defining and parsing visual languages
with layered graph grammars. Journal of Visual Languages and
Computing, 8(1):27 –55, 1997.

[RSV04] A. Rensink, A. Schmidt, and D. Varró. Model Checking Graph
Transformations: A Comparison of Two Approaches. In Proc.
ICGT 2004: Second International Conference on Graph Transfor-
mation, Rome, Italy, September 2004. Springer.

[RV00] P. J. Rodgers and N. Vidal. Graph Algorithm Animation
with Grrr. In Proc. Applications of Graph Transformations
With Industrial Relevance (AGTIVE), Kerkrade (The Nether-
lands), September 1–3, 1999, volume 1779 of Lecture Notes in Com-
puter Science (LNCS), pages 379–394. Springer-Verlag, 2000.

[RW99] G. Reggio and R. Wieringa. Thirty one Problems in the Seman-
tics of UML 1.3 Dynamics. In OOPSLA’99 workshop ”Rigorous
Modelling and Analysis of the UML: Challenges and Limitations”,
1999.

[Sch77] H. J. Schneider. Graph Grammars. In M. Karpiński (ed.),
Fundamentals of Computation Theory, volume 56 of Lecture Notes
in Computer Science, pages 314–331, 1977.

[Sch90] A. Schürr. Introduction to PROGRES, an Attribute Graph
Grammar Based Specification Language. In M. Nagl (ed.),
Graph-Theoretic Concepts in Computer Science, volume 411 of Lec-
ture Notes in Computer Science, pages 151–165, 1990.

[Sch91] A. Schürr. Operational Specifications with Programmed Graph
Rewriting Systems. PhD thesis, RWTH Aachen, D-52056
Aachen, Germany, 1991.

[Sch95] A. Schürr. PROGRES for Beginners, 1995.

[Sch96a] D. A. Schmidt. On the need for a popular formal semantics.
ACM Computing Surveys, 28(4es):175, 1996.

[Sch96b] A. Schürr. Logic Based Programmed Structure Rewriting Sys-
tems. Fundamenta Informaticae, 26(3,4):363 – 386, 1996.

[Sei01] E. Seidewitz. What do models mean. OMG document ad/03-
03-31, March 2001.

[Sel04] B. Selic. On the Semantic Foundations of Standard UML 2.0.
In M. Bernardo and F. Corradini (eds.), SFM, volume 3185 of
Lecture Notes in Computer Science, pages 181–199. Springer, 2004.

BIBLIOGRAPHY 311

[SG99] A. J. H. Simons and I. Graham. 30 Things That Go Wrong in
Object Modelling with UML 1.3. In Kilov et al. [KRS99], pages
221–242.

[SH05] H. Störrle and J. H. Hausmann. Towards a Formal Semantics of
UML 2.0 Activities. In Software Engineering 2005, pages 117–
128, Essen, 2005.

[SJM04] R. V. D. Straeten, V. Jonckers, and T. Mens. Supporting Model
Refactorings through Behaviour Inheritance Consistencies. In
T. Baar, A. Strohmeier, A. Moreira, and S. J. Mellor (eds.), UML
2004 - The Unified Modeling Language. Model Languages and Ap-
plications. 7th International Conference, Lisbon, Portugal, October
11-15, 2004, Proceedings, volume 3273 of LNCS, pages 304–319.
Springer, 2004.

[SK02] F. Steimann and T. Kühne. A Radical Reduction of UML’s
Core Semantics. In J.-M. Jézéquel, H. Hussmann, and S. Cook
(eds.), UML 2002 - The Unified Modeling Language. Model Engi-
neering, Languages, Concepts, and Tools. 5th International Con-
ference, Dresden, Germany, September/October 2002, Proceedings,
volume 2460 of LNCS, pages 34–48. Springer, 2002.

[SLKN01] J. Sprinkle, Á. Lédeczi, G. Karsai, and G. Nordstrom. The New
Metamodeling Generation. In ECBS, pages 275–. IEEE Com-
puter Society, 2001.

[SS71] D. Scott and C. Strachey. Towards a Mathematical Semantics
for Computer Languages. In Computers and Automata, pages
19–46. Wiley, 1971.

[Ste01] P. Stevens. On Use Cases and Their Relationships in the Unified
Modelling Language. In H. Hussmann (ed.), Fundamental Ap-
proaches to Software Engineering, 4th International Conference,
FASE 2001, Proceedings, volume 2029 of LNCS, pages 140–155.
Springer, 2001.

[Ste02] P. Stevens. On the interpretation of binary associations in the
Unified Modelling Language. Software and Systems Modeling,
1(1):68–79, 2002.

[Ste03] S. Steinert. Graph Programs for Graph Algorithms. Tech-
nical Report volume 7/03, University of Oldenburg, Fakult”at II,
Department für Informatik, 2003.

[Ste04] F. Steimann. UML-A oder warum die Wissenschaft ihre eigene
einheitliche Modellierungssprache haben sollte. In Rumpe and
Hesse [RH04], pages 121–133.

[Stö03] H. Störrle. Assert, Negate and Refinement in UML-2 Interac-
tions. In International Workshop on Critical Systems Develop-
ment with UML (CSDUML03), pages 79–94, 2003.

312 BIBLIOGRAPHY

[Stö04a] H. Störrle. Semantics of Control-Flow in UML 2.0 Activities.
In IEEE Symposium on Visual Languages and Human-Centric
Computing 2004, pages 235–242, 2004.

[Stö04b] H. Störrle. Semantics of Exceptions in UML 2.0 Activities.
Technical Report 0403, University of Munich, 2004.

[Stö04c] H. Störrle. Semantics of Structured Nodes in UML 2.0 Activi-
ties. In I. Porres (ed.), Proceedings ofNWUML’2004: The 2nd
Nordic Workshop on UML,Modeling, Methods and Tools, pages 19–
32, 2004.

[Stö05a] H. Störrle. Semantics and Verification of Data Flow in UML
2.0 Activities. In M. Minas (ed.), Proceedings of the Work-
shop on Visual Languages and Formal Methods (VLFM 2004), vol-
ume 127(4) of Electronic Notes in Theoretical Computer Science
(ENTCS), pages 35–52. Elsevier, 2005.

[Stö05b] H. Störrle. UML 2 erfolgreich einsetzen. Addison-Wesley,
2005.

[Stö05c] H. Störrle. UML 2 für Studenten. Pearson Studium, 2005.

[SV03] A. Schmidt and D. Varró. CheckVML: A Tool for Model Check-
ing Visual Modeling Languages. In P. Stevens, J. Whittle, and
G. Booch (eds.), Proc. UML 2003: 6th International Conference
on the Unified Modeling Language, volume 2863 of LNCS, pages
92–95, San Francisco, CA, USA, October 20-24 2003. Springer.

[SWZ95] A. Schürr, A. Winter, and A. Zündorf. Graph Grammar Engi-
neering with PROGRES. In Botella and Schäfer (eds.), ESEC’95
Proceedings of the 5th European Software Engineering Conference,
volume 989 of Lecture Notes in Computer Science, pages 219–234,
Berlin, 1995. Springer-Verlag.

[SWZ99] A. Schürr, A. Winter, and A. Zündorf. The PROGRES Ap-
proach: Language and Environment. In Engels et al. [EEKR99],
pages 487–550.

[Tae92] G. Taentzer. Parallel High-Level Replacement Systems. Tech-
nical Report 92/10, TU Berlin, 1992.

[Tae96] G. Taentzer. Parallel and Distributed Graph Transformation:
Formal Description and Application to Communication-Based Sys-
tems. PhD thesis, TU Berlin, 1996.

[Tai97] A. Taivalsaari. Classes Versus Prototypes: Some Philosophical
and Historical Observations. JOOP, 10(7):44–50, 1997.

[Tar44] A. Tarski. The semantic conception of truth and the founda-
tions of semantics. Philosophy and Phenomenological Research,
4, 1944.

[TB94] G. Taentzer and M. Beyer. Amalgamated Graph Transforma-
tions and Their Use for Specifying AGG — an Algebraic Graph
Grammar System. In H. J. Schneider and H. Ehrig (eds.), Graph

BIBLIOGRAPHY 313

Transformations in Computer Science, volume 776 of Lecture Notes
in Computer Science, pages 380–394, 1994.

[Tho03] D. Thomas. UML - Unified or Universal Modeling Language?
UML2, OCL, MOF, EDOC - The Emperor Has Too Many Clothes.
Journal of Object Technology, 2:7–12, 2003.

[TR05] G. Taentzer and A. Rensink. Ensuring Structural Constraints in
Graph-Based Models with Type Inheritance. In Cerioli [Cer05],
pages 64–79.

[TS95] G. Taentzer and A. Schürr. DIEGO, Another Step Towards a
Module Concept for Graph Transformation Systems. In Proc. of
SEGRAGRA’95 ”Graph Rewriting and Computation”, volume 2 of
Electronic Notes in Theoretical Computer Science (ENTCS), 1995.

[U2P03] U2Partners. U2 Partners’ UML 2.0: Infrastructure, 3rd revised
submission. http://www.omg.org/cgi-bin/doc?ad/03-01-01,
2003.

[UML97] UML Partners. Unified Modeling Language v. 1.1. OMG
document ad/97-08-11, August 1997.

[Var02] D. Varró. A Formal Semantics of UML Statecharts by Model
Transition Systems. In A. Corradini, H. Ehrig, H.-J. Kreowski,
and G. Rozenberg (eds.), Graph Transformation, First Interna-
tional Conference, ICGT 2002, Barcelona, Spain, October 7-12,
2002, Proceedings, volume 2505 of Lecture Notes in Computer Sci-
ence (LNCS), pages 378–392, Barcelona, Spain, October 7–12 2002.
Springer-Verlag.

[Var03] D. Varró. Automated Model Transformations for the Analysis of
IT Systems. PhD thesis, Budapest University of Technology and
Economics, 2003.

[Var04] D. Varró. Automated Formal Verification of Visual Modeling
Languages by Model Checking. Journal of Software and Systems
Modeling, 3(2):85–113, May 2004.

[vdB01] M. van der Beeck. Formalization of UML-Statecharts. In
M. Gogolla and C. Kobryn (eds.), UML 2001 - The Unified Model-
ing Language. Modeling Languages, Concepts, and Tools. 4th Inter-
national Conference, Toronto, Canada, October 2001, Proceedings,
volume 2185 of Lecture Notes in Computer Science (LNCS), pages
406–421. Springer, 2001.

[vdB02] M. von der Beeck. A structured operational semantics for UML-
statecharts. Software and Systems Modeling, 1:130 – 141, 2002.

[VP03] D. Varró and A. Pataricza. VPM: A visual, precise and multilevel
metamodeling framework for describing mathematical domains and
UML. Journal of Software and Systems Modeling, 2(3):187–210,
October 2003.

[WC90] J.-P. Wu and S. T. Chanson. Translation from LOTOS and Es-
telle Specifications to Extended Transition System and its Verifica-

http://www.omg.org/cgi-bin/doc?ad/03-01-01

314 BIBLIOGRAPHY

tion. In FORTE ’89: Proceedings of the IFIP TC/WG6.1 Sec-
ond International Conference on Formal Description Techniques
for Distributed Systems and Communication Protocols, pages 533–
549. North-Holland, 1990.

[Wik05] Wikipedia. Language — Wikipedia, the free encyclopedia, 2005.

[Win01] A. Winter. Exchanging Graphs with GXL. Technical Re-
port 9–2001, Universität Koblenz-Landau, Institut für Informatik,
Universität Koblenz-Landau, Institut für Informatik, Rheinau 1,
D-56075 Koblenz, 2001.

[WS97] A. Winter and A. Schürr. Modules and Updatable Graph Views
for PROgrammed Graph REwriting Systems. Technical Report
97-3, RWTH Aachen, FG Informatik, October 1997.

[XB02] F. Xie and J. C. Browne. Integrated State Space Reduction for
Model Checking Executable Object-Oriented Software System De-
signs. In FASE ’02: Proceedings of the 5th International Confer-
ence on Fundamental Approaches to Software Engineering, pages
64–79, London, UK, 2002. Springer-Verlag.

[XLB01] F. Xie, V. Levin, and J. C. Browne. Model Checking for an
Executable Subset of UML. In ASE ’01: Proceedings of the
16th IEEE International Conference on Automated Software Engi-
neering, page 333, Washington, DC, USA, 2001. IEEE Computer
Society.

[ZHG05] P. Ziemann, K. Hölscher, and M. Gogolla. From UML Models to
Graph Transformation Systems. In M. Minas (ed.), Proceedings
of the Workshop on Visual Languages and Formal Methods (VLFM
2004), volume 127(4) of Electronic Notes in Theoretical Computer
Science, pages 17–33. Elsevier Science, 2005.

[Zün95] A. Zündorf. Programmierte Graph-Ersetzungs-Systeme: Spez-
ifikation, Implementierung und Anwendung in einer integrierten
Entwicklungs-Umgebung. PhD thesis, Fakultät für Mathematik,
Naturwissenschaften und Informatik, Rheinisch-Westfälische Tech-
nische Hochschule Aachen, 1995.

[Zün96] A. Zündorf. Graph Pattern Matching in PROGRES. In J. E.
Cuny, H. Ehrig, G. Engels, and G. Rozenberg (eds.), Proc. 5th Int.
Workshop on Graph Grammars and their Application to Computer
Science, volume 1073 of Lecture Notes in Computer Science, pages
454–468. Springer-Verlag, 1996.

Index

abstract syntax, 8
abstract transitive closure, 66
action node, 139, 209
Action Semantics

by Mosses, 40
in UML, 41

Activity Diagram
activity graphs, 132
control structures, 133
deficiencies, 125
difference to Petri nets, 131
evaluation semantics, 135
fork node problem, 125
history of, 207
interpretation by GROOVE, 187
offer semantics, 136
role in UML, 208
token flow, 127
traverse-to-completion semantics,

129
Advanced Language User, 21
attributed graph, 67

big-step rule
formalization, 100
formulation of, 166
introduction, 90

Bremen approach, 29

carpenter deadlock example, 191
central buffer node, 214
CheckVML, 176

comparison to GROOVE, 177
code generation, 24
COMMA meta model, 15
compilation semantics, 28
concrete invocations, 100
concrete semantics, 23
concrete syntax, 8
concrete transitive closure, 66
conservative extensions

discussion of, 120
motivation, 111
restrictions for, 115

control flow, 214
control node, 139, 210
core semantics, 31

dangling edges, 71
data store node, 214
decision node, 210
denotational meta modeling

dynamic extensions, 35
introduction, 32
usage in DMM, 105
usage in OCL, 34

denotational semantics, 28
derivation, 73
derivation sequence, 80
discrete behavior, 13
DMM, see Dynamic Meta Modeling
DMM interpreter, 175

requirements for, 194
DMM package

definition, 113
guidelines for, 165
import, 113
merge, 113

DMM rule
correspondence to operations, 108
difference to Communication Dia-

gram, 117
formulation of, 168
translation to GROOVE rules,

182
DMM specification

efficiency of, 158
modularity of, 158
semantic correctness, 155
syntactic correctness, 155
understandability of, 156

DMM system, 100

315

316 INDEX

Double-Pushout approach, 71
Dynamic Meta Modeling

adequacy of, 119
analyzability of, 118
architecture of, 116
introduction, 41
precision of, 118
underspecification in, 120
understandability of, 117
universality of, 119

dynamic semantics, 11

early precondition checking, 169
edge, 140
edge-label preserving graph morphism,

65
extensional entity, 105

guidelines for formulation, 160
Relations to, 164

final node, 212
final rule, 95
flows, 214
fork node, 211
fork node problem, 125

GOS, see Graphical Operational Se-
mantics

grammar, 8
graph

attributes in, 67
consistency conditions, 73
correspondence to UML, 69
graphical representation of, 69
in DMM, 68
labeled, 64
overview, 64
typed graphs, 65

Graph Transformation
overview, 63

Graph Transformation rule
definition of, 72
in DMM, 76
introduction, 70
presentation in DMM, 78
priorities in, 81
programmed GTs, 82
signature, 88
transformation units in, 81
triggers in, 81

with invocation, 95
Graph Transformation System, 80
Graphical Operational Semantics, 39
GROOVE tool set

comparison to CheckVML, 177
components of, 178
Graph Transformation in, 181
introduction to, 176
merge embargo, 181
rule notion, 181
translation of DMM rules, 182

GRRR system, 81
GT, see Graph Transformation
GTR, see Graph Transformation rule

heuristics, 153
for efficiency, 158
for modularity, 158
for understandability, 156

incompleteness of models, 39
Indefinability Theorem, 10
induction in SOS, 39
inheritance clan, 66
initial node, 212
instance graph, 68
intensional entity, 105

guidelines for formulation, 162
Relations to, 164
replication of, 106

interpretation states, 109
interpreter semantics, 38

in DMM, 107
invocation

application of, 99
concrete invocation, 100
definition, 87
encoding in GROOVE, 184
fulfillment, 100
introduction, 82
matching of, 99
open invocation, 100
rule signature, 88

join node, 211

L-level, 33
Labeled Transition System

definition, 109
generation of, 175

INDEX 317

state of, 109
labels, 64
language, 7
Language Engineer, 21
language extension concept of UML, 13
language level, 33
linguistic instance, 33
LTS, see Labeled Transition System

M-level, 33
merge embargo edge, 181
merge node, 211
meta modeling

criticism of, 15
in DMM, 118
overview, 14
strict meta modeling, 18

Meta Modeling Language, 35
Meta Object Facility

criticism of, 16
introduction to, 15

Meta Relation, see Relation
meta-circularity, 16
methodology, 153
MML, see Meta Modeling Language
model checking

of Graph Transformations, 175
model level, 33
model validation

by GROOVE, 190
of Activity Diagrams, 190

Modular Operational Semantics, 40
MOF, see Meta Object Facility

NAC, see Negative Application Condi-
tion

Negative Application Condition
in DMM, 77
in GROOVE, 181
introduction, 73
matching, 79

nested mapping, 47

Object Constraint Language, 14
object flow, 214
object node, 139, 212
OCL, see Object Constraint Language

visualizations of, 62
offer, 139
open invocation, 100

operational semantics
application to VMLs, 39
introduction, 37
usage in DMM, 107

Pair
concrete syntax, 54
definition, 58
introduction, 46

parameter, 213
Petri nets, 129
pin, 213
premise rules, 92
priorities, 81
process, 153
programmed Graph Transformation,

82
PROGRES system, 82
pUML group, 32

quality of DMM specifications, 153

Relation, 45
concepts of, 51
concrete syntax, 53
definition, 55
instantiation of, 59
introduction, 46
nested, 47
scope, 51

relation pattern, 50
requirements for semantics descrip-

tions, 22
rule graph, 68
rule matching

definition, 72
injectivity in, 72

rule schema
overview, 93
unfolding of, 96
with UQS and premises, 95

scope of a nested Relation, 51
semantic correctness, 155
semantic domain, 10
semantic domain meta model

concept of, 32
inheritance in the, 113
of Activity Diagrams, 140

semantic gap, 22

318 INDEX

semantic mapping, 10
semantic variation point

definition, 13
support in DMM, 121

semantics
dynamic, 11
overview, 10
static, 11

semantics definition
form and content, 19
requirements for, 22

Single-Pushout approach, 71
small-step rule

formulation of, 167
introduction, 90

spawnpoint, 139
static semantics, 11
Story Diagram, 82
Structured Operational Semantics, 37
SVP, see semantic variation point
syntactic correctness, 155

termination analysis, 101
test models, 190
token, 138
token flow, 127
transformation units, 81
translation semantics, 28
traverse-to-completion, 129
triggers, 81
tuple, 57
type graph

definition of, 65
in DMM, 68
inheritance in, 66

UML, see Unified Modeling Language
UML profile

introduction, 13
support by DMM, 120

Unified Modeling Language
achievements, 12
behavioral diagrams, 123
characteristics of, 13
criticism of, 16
dissemination of, 21
language extensions, 13
overview, 12
problems in the definition of, 125
specification documents, 14

Universally Quantified Structure
encoding in GROOVE, 183
in DMM, 79
in preconditions, 170
introduction, 74
restrictions of, 76
unfolding of, 79
vs. iteration, 168

UQS, see Universally Quantified
Structure

Visual Modeling Language
abstract syntax, 8
characteristics of, 12
concrete syntax, 8
overview, 11

VML, see Visual Modeling Language

wildcard label, 64

	Motivation and Overview
	State of the Art
	On the Benefits of Formal Semantics
	Objective of this Thesis
	Structure of this Thesis

	Semantics Description Techniques for Visual Modeling Languages
	Concepts of Languages and their Definition
	Concrete Syntax
	Abstract Syntax
	Semantics

	Visual Modeling Languages and their Definition
	Overview of Visual Modeling Languages
	Characteristics of Visual Modeling Languages
	Definition of the UML's Syntax by Meta Modeling
	Requirements for a Technique for Semantics Definitions

	Survey of Semantic Description Techniques for VMLs
	Overview of Specific Formalizations
	Denotational or Compilation Semantics Descriptions
	Operational or Interpretation Semantics Descriptions
	Hybrid Semantics Descriptions
	Conclusions from the Survey

	Concept of the Dynamic Meta Modeling Approach

	Meta Relations
	On the Need for Meta Relations
	Requirements for Mappings
	Existing Approaches

	Concept of Meta Relations
	Concrete Syntax for Meta Relations
	Concrete Syntax of Relations Instances

	Abstract Syntax for Meta Relations
	Semantics of Meta Relations
	Semantic Domain
	Semantic mapping of Meta Relations

	Summary and Discussion

	Graph Transformations
	Graphs
	Typed Graphs
	Inheritance in Typed Graphs
	Attributes

	Graphs in Dynamic Meta Modeling
	Graph Transformation Rules
	Basic Terminology
	Double Pushout vs. Single Pushout
	Rules
	Rule Application under SPO
	Negative Application Conditions
	Application and Consistency Conditions
	Universal Quantification

	Graph Transformation in DMM
	Rules in DMM
	Negative Application Conditions in DMM
	Universal Quantification in DMM

	Controlling Graph Transformations
	Priorities and Layers
	Triggers and Invocations
	Transformation Units
	Programmed Graph Transformations

	Control in DMM---The Mechanism of Rule Invocation
	Rule Invocation
	Applying Invocations
	The Signature of a Rule
	Invocation Fulfillment
	Small-Step and Big-Step Rules
	Premise Rules
	Formalization of DMM Systems

	Discussion

	The Architecture of Dynamic Meta Modeling
	Expressing Static Semantics in DMM
	Summary

	Expressing Dynamic Semantics in DMM
	Model Semantics in DMM
	Modularity and Extensibility
	Motivation for Modularization
	Related Work
	Modularity Concepts of DMM
	Discussion of the Modularization Concepts of DMM

	Summary and Discussion
	Understandability
	Precision and Formality
	Analyzability
	Adequacy
	Universality

	Case Study: Formalizing UML Activity Diagrams
	Eliciting the Semantics of UML Activity Diagrams
	Deficiencies in the Definition of Activity Diagrams
	Token Flow in Activities
	Summary of Our Understanding of Activity Diagrams

	Excerpts from the DMM Specification of Activity Diagrams
	Package Structure of the Semantic Domain Meta Model for Activity Diagrams
	Class Structure of the Core Activities Package
	DMM Rules for Tokens and Offers

	Discussion of the DMM Specification of Activity Diagrams
	Understandability
	Modularity and Extensibility
	Degree of Concurrency
	Adequacy - Limits and Semantic Shortcuts

	Pragmatic Guidelines for Formulating DMM Specifications
	Qualities of DMM Specifications and Heuristics for their Achievement
	Correctness of DMM Specifications
	Understandability of DMM Specifications
	Modularity of DMM Specifications
	Efficiency

	Guidelines for Formulating the SD Meta Model and Relations
	Conception of Extensional Entities
	The Replication of Intensional Elements and their Modification
	Introduction of Auxiliary Elements and Structures
	Relation of Syntactic and Semantic Domain
	The Definition of Packages
	Discussion

	Guidelines for Formulating DMM Rule Sets
	Partitioning of Behavior into Big-Step Rules
	Distribution of Behavior by Using Small-Step and Premise Rules
	Formulating a single rule
	Alignment of Rules and Packages

	Summary and Discussion

	Automatically Applying DMM Specifications
	Model Checking approaches for Graph Transformation Systems
	Introduction to the GROOVE Tool Set
	GROOVE Editor
	GROOVE Imager
	GROOVE Generator
	GROOVE Simulator
	Graph Transformations in GROOVE

	Translation of DMM Specifications into GROOVE Specifications
	Translation of Graphs
	Encoding of Rules
	Encoding of Application Control
	Combination of Translation Concepts

	Interpreting Activity Diagrams with GROOVE
	Validating the Activity Diagrams Specification
	Results of the Test runs

	Discussion of the GROOVE Prototype
	From the GROOVE Prototype to a Dedicated DMM Interpreter
	On the Impact of the DMM Interpreter Prototype on DMM

	Summary and Conclusions
	Summary of the Contributions of this Thesis
	Overview of Publications on DMM
	Discussion of DMM
	Closure

	Overview of Activity Diagrams
	History of Activity Diagrams
	The Role of Activity Diagrams in UML 2.0
	Activity Diagram Elements
	Advanced Activity Diagram Elements

	The DMM Specification of UML Activity Diagrams
	Overview of the SD Meta Model for Activity Diagrams
	Package Ordering
	Class Root
	Class OrderableElement
	Mappings

	Package Core Structure
	Class Class
	Class Object
	Mappings

	Package Core Behavior
	Class Behavior
	Class BehaviorExecution
	Class Parameter
	Class Slot
	Mappings

	Package Core Activities
	Class Activity
	Class ActivityElement
	Class ActivityExecution
	Class Token
	Class ControlToken
	Class ObjectToken
	Class Offer
	Class Node
	Class Edge
	Class ValueSpecification
	Mappings

	Package Buffernodes
	Class Buffernode
	Class InitialNode
	Class ParameterNode
	Class CentralBufferNode
	Class FlowFinalNode
	Class ActivityFinalNode
	Mappings

	Package Controlnodes
	Class DecisionNode
	Class MergeNode
	Class ForkNode
	Class JoinNode
	Mappings

	Package Core Actions
	Class Action
	Class ActionExecution
	Class InputPin
	Class OutputPin
	Mappings

	Package Actions
	Class CallBehaviorAction
	CallBehaviorActionExecution
	Mappings

	Package Dummy Actions
	DummyAction
	DummyActionExecution

	Bibliography
	Index

