LOGIC DESIGN AND SIMULATION, E. Hérbst (Editor)
© Elsevier Science Publishers B.V. (North-Holland), 1986 g5

4 MIXED LEVEL MODELLING AND SIMULATION OF VLSI SYSTEMS

Franz J. Rammig

University of Paderborn
D-4790 Paderborn
Federal Republic of Germany

In this chapter various levels of abstraction for the description of
VLS| systems will be discussed. Based upon this discussion basic
external modelling concepts are identified. These concepts are
mapped on only two internal ones. Finally a unified simulation
technique serves to implement these two internal modelling
concepts. The principles of this chapter are illustrated using the
broadband hardware description language CAP/DSDL.

1. Levels of Abstraction

VLSI systems being highly complex systems it is necessary to describe them in a
hierarchical manner on various levels of abstraction. It should be noted that hierarchy
and various levels of abstraction are orthogonal concepts in this context. A hierarchical
description may cover various levels of abstraction while within one level of abstraction
a hierarchical description may be provided. A hierarchical description is constituted by
recursively applying decomposition while a certain level of abstraction is identified by a
spedific conceptual view. It is not surprising that there does not exist a standardized
system of abstraction levels. In the following such a system that seems to reflect some

kind of common understanding is introduced.

Level7: SystemLevel

The basic view at this level is that of cooperating semiautonomous modules. Each of
these modules are interpreted as a processor in a wider sense, i. e. an object that is
capable to execute instructions on demand. Usual processors as well as DMA channels,
memory systems, busses, peripheral controllers may serve as examples. From a more
theoretical point of view these modules are modelled as Abstract Data Types (ADT).
These are objects consisting of an internal carrier structure (invisible from the outside)
and a set of allowed operations on this carrier. The implementation of these operations
isinvisible to the outside world.

S0 the system level may also be interpreted as a view where we have cooperating
Abstract Data Types. The cooperation structure may be given in two different ways:

96 F.J. Rammig

Either there is a hierarchically superior global communication control or contral is
distributed among the modules. In the first case the global contral requests the
individual modules to perform operations in an order that is defined by a concurr?nt
algorithm. In the second alternative the concurrently operating modules are requesting
operations mutually from each other.

In any case the timing model is reduced to a causality structure in most cases.
Level 6: Algarithmiclevel

Each module at the system level being a processor it is necessary to describ.e its
interpretation algorithm for the instruction set. Typically this algorithm is a highly
concurrent one. So it may be given using extended algorithmic constructs of by any
appropriate notation, e. g. using interpreted Petri Nets. included in this algorithm is not
only the control structure but also the performed data manipulation. This is usually

described by having operational modules of the Register Transfer level in mind, e. 8-
registers, busses, combinational logic etc..

The algorithmiclevel is also called Microprogramming level.

o ; ack
As timing model either a causality structure or a discrete time set {counting of d
signals) is used.

Level 5. Register Transfer Level

The RT-level is obtained from the algorithmic level by a certain kind of inversion. The
imperative paint of view (an algorithm is imperative by nature) is replaced by a reactivé
one. I e. the system is compased of a (unordered) set of primitive objects that perform
an action {usually a register transfer) whenever a certain condition becomes true.

‘) - is
Included in the action performed is a modification of the global condition space. By thi
other objects may become active.

it should be noted that the algorithm to be implemented is still present (of course) but
no longer explicitly visible.

The primitive modules are registers, memories, combinational logic, busses. A distinctio

. . . ; t
is made between variables with storing capability (registers) and such withou
(terminals).

. . . l
The timing madel is in most cases a discrete time set (counting of clock signals). But re2

time is handied in some cases, too. By this also the asynchronous behaviour can be
described.

Level 4: Gatelevel

In order to be implemented the modules of the RT level have to be expanded to gate
circuits. By this deabstracting procedure the information about what are control signals

Mixed Level Modelling and Simulation of VLSI Systems 97

and what are data signals is completely lost. Gate level descriptions are purely structural
ones. The behaviour is hidden. It can be constructed from the (known) behaviour of the
primitive objects (gates) and the interconncection structure. This reconstruction of the
behaviour is exactly what is carried out by a gate level simulator. (The gate level
simulator only shows the input/output behaviour, the symbolic behaviour, i. e. the
algorithm has to be constructed by analytical methods.) For a pure gate level only logic
gates are allowed as primitive objects. Usually more general "macro gates” are included
in gate level discriptions. So what really constitutes this level is the point of view of
defining a system by the interconnection structure only. The timing model is usually
given by a continuous time set as the exact time behaviour is of interest at this level.

Level3: Switch level

The basic view at the Switch level is the same as at the gate level. The Switch level is
obtained by further expanding the logic gates to circuits of transistors where the
transistors are viewed at as discrete (ideal) switches. As the implementation of gates
usually makes use of different signal strengths (ratio logic), bidirectional transmission
gates and capacitances for data storage, these features must be describable at this level.
The main difference to the gate level is introduced by the bidirectional transmission

9ate as gate level descriptions are unidirectional by nature.

Various models for this level of abstraction have been proposed [3, 6, 8, 12]. The timing
model ranges from unit delay assumptions [3, 6] to a continuous time set[12].

Level2: symbolic Layout

Concerning behaviour (and that is what we are interested in within the scope of this
Paper) this level is the same as the switch level. The information added with respect to
the switch level is of structural nature: The relative position of the devices and the layer
of interconnection. As no information is known about dimensions and about the

fabrication process, the analogue behaviour is still unknown.

level1: Layout

Again concerning behaviour this level does not constitute an own nature. From this
pPoint of view it is equivalent to the electrical level. The layout jevel abstracts from the
Process information but a certain layout has to be constructed with a fixed process in
mind. Therefore a well defined analogue behaviour can be attached to a description at
the layout level.

Level0: Electrical Level

At this level of abstraction the detailed analogue behaviour of the circuit is described.
Usually this is done by a system of differential equations. There exist precise models of

98 F.J.Rammig

the devices that can be parametrized by a couple of parameters. Primitive objects now
are capacitors, resistors, inductors. Of course a continuous time set is used at this level.

Nr. Level Model primitive elements observable values timing model

—\‘R—\

7 System netof abstract data types type dependent causality
processors
6 Algorith- | concurrent algorithmic constructs | bit string with causality or
mic algorithm registers, logic, busses | interpretation discrete time set
I— S R
5 Reqi conditional
eqister)))))
register registers, logic, busses bit strings discrete time set
Transfer
transfers
\Rx
Boolean continuous time
4 Gate) gates bits
equations

set

__\

continuous time

Multivalued switches, capacitors, discrete, multi- .
3 Switch set or discrete
equations resistors valued "bits”
one
”‘*\R
2 Symbolic
1 1
Layout T T
h\\—x
1 Layout + v ¢ \
\\—K
differential capacitors, resistors, continuous time
0 Electrical

) bounded real values
equations Inductors set l_J
T [rdes el

Table 1: Levels of abstraction

Mixed Level Modelling and Simulation of VLSI Systems 99

Icases only the simulation system is mentioned which of course has a special description
an.guage_ TEGAS [20] may serve as an example at the gate level, MOSSIM [3] for the
switch level and SPICE [21] for the electrical level.

2. Anintroduction to CAP/DSDL

. U;ng the design process various descriptions at the different levels of abstraction have
o

e produced (at least if the design process is carried out in a systematic top down
m . .

anner). For this purpose three main approaches may be followed up:

The dedicated languages approach.

bh|s is the classical solution. It has the advantage that relatively simple languages can
e used that are easy to learn, easy to understand and can be processed efficiently.

0
thr\ 'fhe other hand this is a completely chaotic approach with a lot of friction losses at
e interfaces between the languages. In practice dedicated languages are used only

within design processes with a limited scope.

The language family approach.

A possible idea to overcome the problems of the dedicated languages approach is to
construct a family of languages. Each language again is dedicated to a certain level
of abstraction but the members of the family are interrelated with respect to syntax
and semantics. By this solution not so heavy friction losses are to be expected. But
t‘hey are still present. On the other hand the individual languages tend to become a
little bit more complicated than in the pure dedicated languages approach. CONLAN

[16] is a typical example of this idea.

The broadband language approach.

Using a broadband language is just the opposite to a set of unrelated dedicated

languages. As the designer has to work only with one language it is very easy to
describe his design at various levels of abstraction and to transform descriptions to
such ones at lower levels of abstraction. By the same reason it is much easier to
produce mixed level descriptions and to process (e. g. simulate) them. On the other
hand of course there is the danger that a language dinosaur is made. To avoid this
pr-oblem the modelling concepts have to be investigated carefully and reduced to a
minimal set of necessary concepts. This approach will be demonstrated using the

broadband tanguage CAP/DSDL[19].
ng Language/DigitaI Systems

bandwidth between System
AG, Munich and

C

DAP/I?SDL stands for “Concurrent Algorithmic Programmi
Lescrlptlon Language”. It has been designed to cover the
evel and Switch Level. Since 1981 itis very sucessfully in use at Siemens

100 F.J.Rammig

a couple of German universities Various design projects have been supported by this
system.

CAP/DSDL has been designed to be as compatible to PASCAL [10] as possible. As (at. least
in Europe) every younger hardware designer is familiar with PASCAL it is rather simple
for him to learn and to use CAP/DSDL. In addition an integrated hardware/sofFWafe
design process is facilitated. By the broadband nature of the language the user IS'NOt
fixed in a "bed of Procrustes” - like manner 1o a certain style of design and description.

CAP/DSDL is based upon very f
though being rather universal.

21 Objects in CAP/DSDL

Like PASCAL in CAP/DSDL a distinction is made between (object-) types and variables
{o

bjectinstantiations). Unlike PASCAL (but similar to SIMULA [2], MODULA 2, ADA [9]) in
CAP/DSDL also types of complex

instantiations of this types, i, e. the set of Processors in the system are created by
declaration of variables of thig type:

procedure multi-processor

type CPU = Procedure CPy (..)
{procedure body}

’

var CPU1, CPy2, CPU3, CcPU4: cpy

“export procedures” They allow the
- They are procedures having a local data

Mixed Level Modelling and Simulation of VLSI Systems 101

specification of operations allowed on the structure to be defined. These specifications
are given using procedures and functions that are "exported”.

export (operation_1, ..., operation_n) procedure xy
{declaration of carrier-structure, may also be an ADT}

procedure operation_1(....);
{implementation of operation_1}

procedure operation_n (...);
{implementation of operation_n}

end

Any procedure, function or export procedure may be a generic object. The following

example explains this concept:

(Implemented ADT "stack”, implemented on array, generic with attributes type of
“stackelement” and “size” of stack).

type stack =
export (flush, pop, push) procedure stack
[stackelement:type; size:const];
var stackcarrier:array [0:size] of stackelement;
procedure flush;
{procedure body}
procedure pop (out data:stackelement; out empty:bit);
{procedure body}
procedure push (in data:stackelement; out full:bit);
{procedure body}
end;

.

var largebytestack: stack [bit (8), 10 000];
smallarraystack: stack [array [0:16] of bit (32), 64];

Any CAP-procedure includes a monitor mechanism that ensures that concurrent
references are scheduled in a certain manner so that the procedure is active only once at
every point of time. |. e. a piece of hardware is described that exists once but may be
referenced concurrently serving only one request per point of time (time shared
resources).

The basic data object offered by CAP/DSDL is the bitstring of arbitrary length: bit (n). By
certain operators it is interpreted as unsigned integer or as integer in two's complement

102 F.J.Rammig

representation. So arithmetic of arbitrary length is describable in CAP/DSDL as. well.
Special elementary objects are offered for interrupt signals and for places of Petri Nets.
Out of elementary object composite ones may be constructed using the contructors
known from PASCAL: array of arbitrary dimension and record of arbitrary depth. In
order to allow different interpretations of a common physical object (a frequently used
technique in hardware design) a PL/i - like overlay mechanism is offered.

2.2 Assertions

The analysis of large protocols of simulation results is a cumbersome task. In order to
liberate the designer a little bit from this clerical work, in CAP/DSDL it is poswb'? to
formulate error-conditions that are not allowed to accure during the entire simulation
run. So, if the user knows what he is looking for in the simulation protocol he can
formulate this and delegate this analysis to the simulator. The designer also can

. . ; just
formulate what has to happen as reaction to a violation of such an assertion. Usually ju
an error message is produced.

Example:
assertions

clear & preset = error (‘illegal inputvalues at module XYZ');

not (write & (uptime (write) - uptime (data.ready) > = setup))

= > error ('setup-condition between write and data_ready violated');
accu (16) = "1" = > stop (overflowcheck, 'overflow atregister accu’)

e
The last condition says that not only an error message has to be produced but also th

. . . . " " n
simulation has to be stopped, provided that the switch “overflowcheck” has bee
enabled by the simulator-environment.

23 Datamanipulation in CAP/DSDL

ed for arithmetic, permutations (shift/rotate),
- Entire structured data objects may serve as source of

destination of assignments as welj. Unlike PASCAL byt similar to PU/I also restricted
éxpressions are allowed as assignment targets.

Mixed Level Modelling and Simulation of VLSI Systems 103

Example:

Assume the following declarations:

var
register_bank_1, register_bank_2: array [0 : 15] of bit (32);
mbr : record
instr : bit (8);
adr : bit (24);
memory: array [0 : “(4) EFFFFF"] of bit (32);
{nondecimal constant hexa digit following}

mar : bit (24);
indirect_bit : bit ;

With these declarations the following assignments are allowed:

Array to array assignment:
register_bank_1: = register_bank-2;

Conditi i
onditional assignment of array-element to entire record:
mbr - < if ind; .
br: = ifindirect_bit then memory [memory [marl]
else memory [marl;

Assi [[
signment of record component to concatenation of substrings of record components:

register_bank_1[0].(15:0) | register_bank-1[1}.(7:0) : = mbr.adr;

24 Control Structures

Therefore CAP/DSDL allows to
y this also sequential ones). A
d general ones. The first
hat they are suffiently
ntrol structures {Petri

Usually hardware behaves in a highly concurrent manner.
d.essribe concurrent processes very easily (and of course b
distinction is made between structured control structures an
ones are preferable as long as possible. It has been shown in[18]t
general. In certain tricky situations however the use of general co
Nets in our case) is more adequate.

2.
5 Structured Control Structures

ware. So they are to be prefered
following kind:

S
t;uctured control structures reflect structured hard
w ; i
enever possible. They are made by nesting statements of the

empty statement
assignment statement

104 F.J. Rammig

- compound statement
- while - statement

- repeat-statement

- for-statement

- case -statement

- if-statement

Any statement can be prefixed by an at-clause or a when-clause in order to describe
clocked systems.

By the compound statement it is specified whether the included statements have to be

executed sequentially, concurrently (i.e. not synchronized a priory) or in parallel
(synchronized a priory)

Example:

Sequential execution:

seqbegin
A:=Band(;
B:=shl(s, 10)
end

Concurrent execution of asequence of two assignments and a single one:

conbegin
segbegin
A:=Bandc;
8 :=shl(B,10)
end;
Fi=G
end

Synchronized parallel €xecution, no data conflict:

parbegin
A:=B;
B:=A
end

The while-statement and the repeat-statement are used to describe cyclic activities.

They have the same meaning asin PASCAL

Mixed Level Modelling and Simulation of VLSI Systems 105

Example:

while not stop_bit do
seqgbegin
instruction_fetch;
operand-fetch;

execute
end

repeat countup until overflow

. ; ial swee
In contrary to PASCAL the for - statement describes a loop only. if a sequent:éai\ilz)n ,2
over the index values is specified. Otherwise a shorthand notation for a replic

meant.

Example:
Roundshift on a buffer array, 10 assignments performed in parallel:

forl: = 0parto9do
buffer [(I + 1) mod 10] : = buffer[i]

; i ntrol flows.
The case-statement and the if-statement are used to describe alternative co

These statements have the same meaning as in PASCAL.

Example:
Control by FSM:

case state of
0: case input of
0:state:. = 1;
1: parbegin
state : = O;
output: =1
end;

end

All the above mentioned statements serve to describe logical control slti;:::;e-":”mt::t
<ase of an asynchronous implementation this may directl.y reflect tI';: reaSCheme- -m order
cases, however, the physical realization is carried out using a cloc 'SanL
to specify this the at-prefix and the when-prefix is offered by CAP/DSDL-

106 F.J. Rammig

A statement prefixed with at-condition is executed if it has to be executed due to the
control flow it is embedded in and (after this) the specified condition has become true.
The at-prefix describes the edge trigged approach. The when-prefix serves for the same
purpose in level oriented techniques.

Example: (pipelined instruction cycle, synchronized by raising edge of clocksignal
mainclock)
conbegin
atup (mainclock) do_instruction_fetch;
atup (mainclock) do operand_fetch;

atup (mainclock) do execution
end

2.6 General Control Structrures

In CAP/DSDL it is also possible to specify control structures directly via a (modified) Petri
net.In addition structured control specifications may be embedded.

transitions are described using constructs of the form on_("input places”) do mark

("output places”) as prefix of arbitrary CAP/DSDL statements. Such a statement is
executed whenever the attached transition fires.

Example: {same as above, but without clocking)

varstart, if, of, ex, ifdone, ofdone, exdone place;
on (start) do mark (if & of & ex);

on (if) do mark (ifdone) instruction-fetch;

on {of)do mark (ofdone) operand_fetch;

on (ex) do mark (exdone) execution;

on (exdone & ifdone & ofdone) do mark (start);

2.7 Data driven Control

This is done using “implicit variables”,
control activations”.

Mixed Level Modelling and Simulation of VLSI Systems 107

circuit). Optionally the assignment can be conditioned, i.e. carried out as long as a
certain condition is true. If not, the value assigned lastis maintained (e.g. D-latch).

Example: (description of an asymetric clock generator and a D-latch)

var clock : implicit bit; D, Q : bit;

impdef
clock : = not clock delay (up 10, down 20);
when clockdo Q : = D;

Implicit control activations are CAP/DSDL statements with an at-prefix embedded in the
impdef part. Such a statement is initiated whenever the condition of the prefix becomes
true.

Example:

impdef
atdown (clock) or change (ext_signal) do action-1;
atup {(clock) do action_1;

It should be noted that the relative ordering of the statements within an impdef part

has no semantical meaning.

28 Modularization

CAP/DSDL is a blockoriented language like PASCAL in the sense that there are nested
namespaces, organized as in PASCAL. On the other hand, of course, all objects are static
ones that exist and keep their values independently from the activation of the block
they are embedded in. Blocks are constituted by procedures, functions and export
Procedures. Each block may contain own resources which are not accessable from the
outside. In addition a block has access to every object of the block it is embedded in,
Provided it has no object of the same name. External biocks have no access to global
objects.

e) that may contain an own

A block describes a once existing resource (piece of hardwar
ently from different sides.

control. This piece of hardware may be requested concurr
Therefore an arbitration mechanism is included.

The interface between a block and its static environment is given by access to global
fesources. The interface to the dynamic environment is described by a pair (formal
Parameter list, actual parameter list). There is a distinction between input-, output- and
bidirectional signals. Their correct usage is checked by the compiler. Checked too is the

type compatibility of the actual and formal parameters.

108 F.J.Rammig

Example:

function abs (in something: bit(128)) : bit(128);
begin
abs : = if something > =0 then something

else something
end;

procedure rsflipflop (in R.S - bit : out Q.NQ : bit);
var state : bit;

x : bit (32);
assertionsR &S = > error (‘bloody misuser!")
seqbegin
Q, state : = case R IS of
0 : state;
10717
2:70";
3 : {randint (0, 1, x)).(0)
end;
NQ: = notQ
end

Procedures, functions and export procedures an also be declared as types. Objects of

such a type can be instantiateq using usual var declarations. In this case also generic
objects are allowed.

Example: {abs-function for arbitrary data types)

type abs = function abs [t: type]
(in something : t) : t;
begin
abs: = f something > = 0 then something

else - something
end;

var long-abs : abs [bit (7938)]
array.abs : abs | array [32:1, 15:0] of bit (16)];

Mixed Level Modelling and Simulation of VLSI Systems 109

29 interrupts

The concurrent control structure of CAP/DSDL may be superimposed by an additional
level.

Interrupt signals are special objects with domain {set, not set}. They can be set either
internally by special functions or externally. Interrupt signals correspond to interruPt
service routines (ISR) that can be declared in every block. If an ISR is activated by its
corresponding interrupt signal only the block it is declared in is interrupted. The
remaining part of the entire description remains unaffected, i. e. proceeds normally. The
interrupted block is resumed after the termination of the ISR.

Example: (Skeleton of a handshaking protocol between concurrently active proce-

dures module_1and module-2)

procedure int_.demo
varinterseq, intack : interrupt (1)

procedure module_1; priority
interrupts
oninterrupt (intseq) do begin sint (intack) end

conbegin module_1; module_2 end

210 Timing

tement
Empty statements and assignments may be delayed. In the case of an empty sta

this means that the initiation of a sequentially following statement is delayed. “" the
case of an assignment statement the arguments are evaluated immediately whsle tlhe
target variables get the value to be assigned after the speciflgd delay. This dde a);
specification may contain arbitrary expressions in order to describe state depel: er;)
delay. Additionally intervals of uncertainty may be specified. In the case of bit (

assignments different rise/fall times may be given.

Example:

Output : = arg1 & arg 2 delay (20);

A:=notA delay (up 20, down 15t0 17);

Sum: = arg1 + arg2 delay (ifarg 2 > 15 then 20 to 25,
else 10 to 12);

110 F.J. Rammig

3. External Modelling Concepts

As explained above, descriptions at the system level usually are given by a set of abstract
data types, their instantiations and a communication structure between them. This
communication between the components of a system (i.e. the instantiated ADTs) may be

specified either using a global algorithm or in a distributed way. This reflects basic
architectural concepts.

In the case of CAP/DSDL we observe these two different approaches either as the
existence of a global, concurrent algorithm or an interrupt structure. It can be observed

that both the imperative point of view and the reactive one are present at the system
level.

The algorithmic level is uniquely characterized by a single modelling concept: The
imperative point of view. Even if we have (as usual in hardware descriptions) a highly

concurrent control structure there is still the single central control that governs the
entire system.

At the register transfer level we have a single concept, too. But now the imperative
point of view is completely inverted to a reactive one. The system now is described by
passive components that react only on demand, i.e. perform a certain action whenevera
specific condition is true. A third modelling concept is present at the gate level. Here we
have an unordered set of equations. These equations may he disturbed from their
equilibrium by external (or internal) events. After being disturbed they try to restabilize
in equilibrium. So we have the concept of stimulated equations at this level. The same
model is present at the lower levels. Only the domain of the variables is enriched. At the
switch level a finite set of classes of conductance and capacitance is used as domain for
variables while at the electrical level this finite set is expanded to an infinite one.

To sum up: We abserved that the six different (concerning behaviour) levels of

abstraction are covered by only three external modelling concepts. This is illustrated in
the following figure

System || MO0~ RT Gate Switch

Level Level Level Level Level
Imperative Reactive Stimulated
Control Control Equations

j 1M1
Mixed Level Modelling and Simulation of VLSI Systems

4. Internal Modelling Concepts

4.1 PetriNets

: system level (in
The above discussion showed that concurrent algorith ms are .used alt 'cht?m):ermc.re o con
the case of a centralized global control) and at the 2.,1gon'fhm|c "?": 'n uhowever wan be
be observed that there are various notations. This entire varnatio

reduced to one single concept:
Timed Interrupted Petri Nets

Definition 3.1

PG = (P, T, E) is called Petri Net Graph: < =>
Pfinite set (of "places”)

Tfinite set (of "transitions”)

ECPxTuTxP

PrT=g

YXEPUT: 3yePuT: (x,y)eE v (y.x)€ E.

Definition 3.2

PN =(PG, m, R)is called Petri Net: < =>

PG =(P, T, E) Petri Net Graph

MM ={mim:P>x} (initial marking)

Re{rirT 5 £} with vteT: (fr: M-M) (firing rute of t).

i associated condition
Places are used to model conditions. If a place contains a token the

i ition is firable if a
is assumed to be true. Actions are modelled by tran'smons. |A trsa::;t::d'; ay firing i
- ain condition on its input places 18 f11¢ feg. 2! Inputlp :sce(e g. demarks all input
Manipulates the marking of its input places an.d output p aCe use‘a'heterogeneous ot
places and marks every output place). By technical reasons w

of firing rules, but this is not essential.

Definition 3.3

IPN = (PN, I, D) is called Interpreted Petri Net: < =>
PN=((P,T, F) m,, R) Petri Net

™ cXD
Ie{iti: Toou{A}} with o={o 0:dom(0)C XD »codom(0)C XD}
Dmany-sorted set (of "data objects”).

112 F.J. Rammig

Interpreted Petri Nets are obtained by attaching a datamanipulation o(t) to transition t.

Whenever such a transition fires its attached operation is performed. We call this an
interpreted firing.

Definition 4

TIPN =(IPN, V) is called Timed Interpreted Petri Net: < = >
IPN = (((P,T,E),mO,R),I,D) interpreted Petri Net
Ve{818:T>1} with 1= {0" 0:dom(0")c XD -7}

A timed interpreted firing of a transition is defined as follows:

Assume transition t becomes firable at time pointt,. At this time point the attached
operation (if existent) i(t) = o is initiated. That means the values of dom(o) at this time
point are evaluated. At the same time point the delay function §(t)=0' is evalua‘ted
based or the values of dom(0') at time pointt,, The result of 0’ may be K. Then at time

point ¢, + K the values calculated by o are stored in codom(o) and the firing (i.e. the
token game) takes place.

CAP-nets are Timed Interpreted Petri Nets with a heterogeneous set of firing rules. In
the following we will denote the set of input places of a transition t by *t={peP

(p.0)€E}. Similarly we define t* = {p<Pi(tp)cE} and for places p, *p ={t1(t,p)eE}; p*={t!
(p.t)eE}.

Definition 5

Let PN =((P, T,E),mO,R) be a Petri Net, teT.

Transition tis called an AND-transition - < = >

1) tis firable under markingm: < = > Vp¢*t: m(p)>0

2) ft: MaMis called firingoft: <= >

flm(p)) = m(p)-1 iff P €t tfirable
mp)+1 iff p €t* Atfirable
m(p) else.

Let A(PN)C T denote the set of all AND-transitions of a Petri Net PN.

The AND-transition s the single type of transition commonly used in Petri Nets.

Mixed Level Modelling and Simulation of VLSI Systems

Symbol

Definition 6

Letbe PN = ((P,T,E),m,,R) a Petri Net, teT.

Transition tis called an OR-transition : < = >

1) tisfirable under marking m: < => 3p € *t: m(p)>0

2) fe: MsMis called firing of t: < = >

fim(p)) = m(p)-1 iff p et Am(p)>0ntfirable
m(p) +1 iff p¢t*atfirable
m{p) else

Let O(PN)C T denote the set of all OR-transitions of a Petri Net PN.

7..¢

Symbol

113

114 F.J. Rammig

Definition 7

Let IPN=(((P,T,E),m0,R),I,D) be an Interpreted Petri Net, teT, *t={p, }, t* ={Dfatse Ptrue}
()=d-d,i(t)(d) =d, value(d)e{true, false}.

Transition tis called a DECIDER-transition : < = >

1) tis activated under markingm: < => m(p,}>0

2) ft: M>Mis called firingoft: <= >
fdm(p,)) = m{p,)-1 iff tfirable
flm(pfarse)) = M(pfasse) + 1 iff tfirable Ad = false
flm(perye)) = m{Ptrye) + 1 iff tfirable d =true
fdm(p) m(p) else

Let D{IPN)C T denote the set of all DECIDER-transitions of an Interpreted Petri Net /PN.

3

O

Symbol

Of course this definition can be generalized to an n-br

anch decider in a straight forward
manner.

Definition 8

Let IPN = (((P,T,E),mO,R),I,D) be an Inter

preted Petri Net, teT, *t = {enable,req, | i=0:n},
t*={run, retii=0:n},i(t) =dd,

i(t{d) =d, va/ue(d)e{{req, 1i=0:n}-[0,n]}.
Translation tis called BLKHD-transition : < = >
1) tis firable under marking m:< = > m(enable)>Q A3pe{req;1 i=0:n}: m{p)>0
2) ft: MsMis called firingoft: <= >

fdm(enable)) = m{enable) -1 iff tfirable

flm(run)) =m(run) + 1 iff tfirable
ft(m(req,.)) =m(reg) -1 iff tfirable
ft(m(ret,)) =m(ret) + 1

iff value(d)(req,.) = max{(value(d)(feqj) ! m(reqi)>0}

Let BUPN)CT denote the set of all BLKHD-transitions of an Interpreted Petri Net IPN.

Mixed Level Modelling and Simulation of VLSI Systems 115

Symbol X

It should be noted that by definition a BLKHD-transition includes an arbitration
mechanism between input places req,, i =0:n.

Definition 9

Let IPN=(((P,T,E),m0,R),I,D) be an Interpreted Petri Net, t¢T, *t = {finished,ret, 1 i=0:n},
*t={enable, back,1i=0:n}.

Transition tis called BLKEND-transition 1< = >

Ntisfirable under marking m: < = > m(finished) >0 A3p€{ret,. vi=0:n}: m(p)>0

) ft: M>Mis called firing of t: < = >
f{m(finished)) = m(finished)-1 iff tfirable
f{m(enable)) =m(enable)+1 iff tfirable
fm(ret)) =m(ret) - 1

: ' i i t)>0
ft(m(backi)) = m(back) + 1 } iff tfirable A m{ret)

Let MIPN)C T denote the set of all BLKEND-transitions of an Interpreted Petri Net IPN.

Symbo} f

116 FJ. Rammig

BLKHD- and BLKEND-transitions are only allowed to be used pairwise. In such a pair t‘hﬁ
places called ret,and enable are identified. Between run and finished arbitrary nets wit
exactly one input place and one output place can be connected.

Symbol

Definition 10

Let PN = ((P, T,E),mO,R) be a Petrj Net, teT,

*t ={synch,ord},*t= {out}.

Transition t is called AT-transition < = >

Dtis firable under markingm:< = > m(synch)>0

2) ft: MaMis called firingoft: <=

flm(synch)) =m(synch) - 1 iff tfirable
f{m{ord)) =m{ord) - 1 . .
fmlout)) = mlout) + 1 } iff tfirable A m{ord) >0

Let Y(PN)C T denote the set of al} AT-transitions of a Petr; Net PN

1 117
Mixed Level Modelling and Simulation of VLS| Systems

Symbol

iti been
The AND-transition is the basic transition of Petri Nets. The? OR_U:.[;:U{:: ;ZSGDER_
introduced in order to model backward conflicts by transutlgns ";’l Iw + hierarchical
transition models the foreward conflict. BLKHD./BLK'END paf:; :;e A transition 3
description of nets with encapsulated subnets whllg with the a; e be deseibed
synchronization with a cyclic external event (typically t.he ::och o enent tipes of
Instead of a direct definition as used here, the semantics of the

i i i Nets.
transitions can also be given in terms of ordinary Petn

We restrict ourseives to a subclass of such nets:

Definition 11
LetIPN = (P, T,E),m,,R),I,D) be an Interpreted Petri Net.
IPNis called SRCN (Safe Restricted CAP Net) : < =>

T = AIPN)UO(IPN)UD(1PN)UB(IPN)UN(IPN)U Y (IPN)

2)YpeP: "pi=1p*i =1

3)¥peP vmeM: m(p)e{0,1} - =>i(t)=2A
A)VEeT: (teD(IPN) v t¢ BUPN) v te AUPN)N{teT1 't =1t = 1} =>1i

SRCNs
42 Algorithmic Constructs of CAP/DSDL Expressed by

onstrate how the
In order to demonstrate the power of SRCNs we Sho:l—_yNjeSTmnaﬂy comparable
algorithmic constructs of CAP/DSDL are transformgd to S OCC.AM ceh 17 ean be
constructs of ADA (rendevous), SIMULA (coroutine) of
transformed.

118 F.J. Rammig

Procedures and Functions

Let S be a <compound statement>, F a <formal parameter list>, T a <data type>.

The construct
procedure pname; .. S
is equivalent to

procedure pname mark(p,), ...
neton(p,) do return S end

The construct
procedure pname(F); .S
is equivalent to

procedure pname mark(p)(F)
neton(p,) do return S end

The construct

function pname: T,..S

is equivalent to

function pname mark(p,): T; ..
neton(p,) do return S end

The construct

function pname(F).T; ..

is equivalent to

function pname mark(p,)(A): T; ...
neton(p sub 1) do return Send

Compound Statements

LetS toS bea <statement>, M a construct of the form return, nomark or
mark(<mark list>).

The construct

on(p)doMm segbegins, --.S,end

1 119
Mixed Level Modelling and Simulation of VLSI Systems

is equivalent to

on(p,) onmark(p,) S,
on(p,) do mark(p,) S,

on(p }doMsS,

The construct
on{p,): M conbeginS,...S_end
is equivalent to

on(p,)do mark(p, & .&p,)
on(p,) do mark(p,,) S,

on{p_)do mark(p_) S,
on(p, & .&p,)doM

Case Distincton
return, nomark or
Let E be an <expression>, S, to Sp a <statement>, M of the form
mark{<mark list>).
The construct
on(p,)doif E then S, else S,

is equivalent to

on(p,) do if E then mark(p,,) S, else mark(p,} S,
on(p1tlp1f) doM

Loops and Replications

n, nomark or
Let E be an <expression>, S a <statement>, M of form retur
mark(<mark list>).
The construct
on(p.) doMwhileEdo S

is equivalent to

on(pﬂpy) doif E then mark(p) S else M

120 F.J. Rammig

The construct
on{p,) do M repeat S until E

is equivalentto

on(p,) do mark(pip) do if E then mark(p) $ else M

Guarded Commands

. . jooking
Having investigated a common concept for all algorithmic aspects we are now 0aCh 0
i 0
for such a unifying approach for the nonprocedural concepts as well. This appr
given in a natural way by guarded commands:

{{(<condition> : <action>);t i=1,..,n}

with the semantics that <action>; has to be performed whenever <condlt’0n;;
becomes true. The nonprocedural point of view is expressed by the set nature Oft ‘n
approach. By properly restricting the nature of the conditions this d{efmltl:e
corresponds directly to our different kinds of guarded register transfers. Simllarl'y t .
interrupt concept can be covered by the same technique (it can be covered by Petni Ne
as well {7] so that we have two options in this case). Finally the stimulated equatlorl\lS
point of view as used at the gate level and switch level fits into this framework as well:
We just have 10 replace the <condition> by the constant condition “true”.

43 Summary of Internal Modelling Concepts

We have to cover five levels of abstraction:

- System level

- Algarithmic level

- Register Transfer level
- Gate level

- Switch level

We observed three main concepts for modelling these levels:

- Algorithmic control (imperative control)
- Nonprocedural control (reactive controt)
- Stimulated equations (thidden control)

These three external modelling concepts can be covered by two internal concepts:
- Timed Interpreted Petri Nets
- Guarded Commands

Mixed Level Modelling and Simulation of VLSI Systems 121

System rﬁ:ﬁgn?i_c RT Gate Switch
Level Level Leve! Level Level
Algorithmic Nonprocedural Stimulated

Control Control Equations

Timed Interpr. . Guarded
Petri Nets Commands

The mapping from external concepts to the internal one typically is perfomed by a
compiler. So it is done in the case of CAP/DSDL.

44 Simulation Techniques

The < .) ‘ .
he simulation algorithm has to map the internal modeiling concept to the architecture

0f the host computer. This can be carried out either by interpretation ("table driven
simulation”) or by generating proper code ("compiled node simulation”). The basic
concept is the same for both purposes. Similarily this basic concept is valid for different
host architectures. The actual algorithms however are completely dependent on the
actual host architecture. Here we will assume 3 sequential v. Neumann architecture.
Based on this assumption two simulation techniques will be discussed: "Equitemporal

teration” P
ration” and "Critical Event Scheduling”.

4, i
4.1 Equitemporal Iteration

over the entire model
ime is increased by a
e for all components

This techni

of is technique has a global point of view. The idea is that 3 sweep

o the system takes place iteratively. After each sweep the global t
ep wi .

i F: V‘;"Ch may vary from iteration to iteration butis always the sam
sited.

E .
ach component of the system to be simulated is modelled by a triplet (¢, a, d).

Component c stands for the executability condition attached to the component. in the
Case of simulating a Petri Net this may be part of the firing rule while in the case of
Gu?’ded Commands this may be the guard. Assume that c is true in an iteration. Then
action a is performed. As a consequence some variables get new values. This assignment

122 F.J. Rammig

is not carried out directly to the target variables but to buffers in order to make sure
that the components visited next during the actual sweep are not affected by this
assignment. After the entire sweep all buffers are copied into the target variables stored

in a common memory. Graphically this algorithm may be represented in the following
way:

| Time Advancing / \ BufferCogQinQ |

Conditions

Actions

Buffers

This simulation technique is very simple and easy to implement. Therefore it has been
very popular for gate fevel simulation and is still popular at the RT-level. Unfortunately
it is very inefficient in most cases. The reason is that typically at a certain point of time
more than 95 percent of a circuit is stable. But this means that the probability that an

operation ather than the identity has to be performed for a certain component during @
given iteration is less than 0.05.

4.42 EventScheduling for Petri Nets

First of all we have to decide what are the events in a Petri Net. It seems to be the most
natural approach to treat the firing of a transition as an event. As we have timed Petri
Nets, i.e. timed firings we in fact have two subevents per event: The initation of the
firing and the termination. CAP-nets are defined in such a way that the firing of 3
transition is initiated exactly at the time point where the firing conditions of this
transition become true. At the same time point the attached data operation is initiated
and based on values of this time point the proper delay is calculated. The data operation
is terminated, i.e. the assignments take place, after the calculated delay time has

Mixed Level Modelling and Simulation of VLSI Systems 123

i i ing to
elapsed. At the same time point the firing terminates, i.e. the token gamhe accc:;:;ngm
the firing rule of the transition takes place. A closer view at this mode! shows y
the termination subevent has to be scheduled by the algorithm.

Definition 12
LetIPN = (P, T,E),m,R),1,D) be an Interpreted Petri Net; t, t'¢T.

iti ! ! <=2
The transition t is called predecessor of transition t {and t’ successor of t)
t*n'tzp

p EdECESSOI O| a transition 1S also Ca ed an i"”ue"cel O' tIIS tla“sitio” \Nllile a
SUCCesso f . . i
ot a trar Sitio” iS a|SO (a”eda |ln’luenceo‘tl||s transition.

Corollary 1 ' .
; i = i f at least one o

The firing of a transition t is initiated at time pointr => the firing o

its predecessors is terminated at the same time pointr.

Proof B
i i i ts input pla

This is obvious as a transition can become firable only |_f.the mark|r|19 «:)tfclme zf N

change its value. This can happen only due to the firing of at leas

decessors.

ces

inati iri as an event. The
This corollary allows us to treat only the termination of a firing

initiation is treated as part of the execution of the firing eveth of that pred;c::;oirnti\::
caused the initiation. So the basic algorithm for event scheduling can be modi
fOHowing way:
begin
time : =0;
while time < final_time and queue = empty do
begin -
extract event £, with t minimal from queue,
assign values of data operations;
modify marking due to firing rule;
for allinfluencees do
if firable then
begin
calculate hatching time for firing;
initiate data operation;
insert E, properly in queue
end
end
end

124 F.J. Rammig

412 Critical Event Scheduling

We are looking for a simulation algorithm that skips all unneccessary computations: Thls
algorithm has to be useful for both of our internal modelling concepts. By examining
these models we observe:

® The time of the next occurrence of an event is predictable.

In the case of Petri Nets this is trye as the firing time of a transition ¢ is determined. by
the time of the activation of ¢ and the associated delay which is known at activation
time. In the case of guarded commands the variables of the guard are known and

whenever an assignment to such a variable is initiated at this time point the associated
delay is known.

® If the time of the next occurrence of an event is not predictable this event does not
take place until it becomes predictable by the occurrence of other events.

If we look at Petri Nets 3 transition t becomes firable only if the marking of its input
places change. This can happen only if another transition t'fires, i.e. another event takes

No assignments are carried out.

rom these three statements the crj

F tical event simulation algorithm can be deduced
directly. This technique is a local one

ncontrary to equitemporal iteration.
The following skeleton illustrates the algorithm:

begin
time : =Q;
while time < final_time and queue = empty do
begin
extract event E, with t minima| from queue;
execute event E,;
for ali predictable events E,.....E,influenced by £,do
begin
calculate hatching time of E;
insert E properly into queue
end
end
end

Mixed Level Modelling and Simulation of VLS| Systems 125

Obviously this algorithm reduces the number of components to be visited and the
operation to be executed drastically. The price to be payed is the overhead of keeping
the queue sorted. But this is neglectable as the queue typically holds less than 5 percent
of all components of a model.

5. Event Scheduling Techniques for Internal Modelling Concepts

Event scheduling has been considered as the most powerful simulation technique. The
above general discussion showed that this technique can be used for Petri Nets and
Guarded Commands. However it has to be investigated which are the most adequate
implementation methods for the two models.

It can be observed that a scan over all successors of a transition is included in the action
to be carried out at a firing event of this transition. Fortunately in practice this is not so
bad as typically

® atransition has only very few output places in most cases and
® atransition has only very few input places in most cases.

By the first oberservation only few transitions have to be visited by a scan. The second
overservation makes the probability that an influenced transition has become firable
due to the firing of the actual transition relatively high. In addition an uncertainty exists
onlyin the case of visiting transition of type AND, BLKHD, or AT.

5.1 Event Scheduling for Guarded Command

Again the basic decision has to be made what is an event. The execution of a guarded
©ommand seems to be the most obvious selection. But again such an event is composed
of two subevents: The initiation of the execution and its terminition. In the case of
CAP/DSDL the operation may either be an assignment or an entire algorithm. In the case
ofan algorithm the initiation of the operation means that the attached algorithm has to
be started. This means nothing else than marking the single input place of the
Interpreted Petri Net that represents this algorihtm. And this also terminates the
Operation. Therefore we restrict ourselves to assignments in this section. In this. case at
the initiation time point the delay is calculated based on values at this time point. The
Operation to be carried out is based on values at this time point, too. The assigf"“f?"t of
values, however, takes place after the calculated delay time. This assignment terminates
the event.

As in the case of Petri Nets only the termination subevent has to be considered

(scheduled).

126 F.J. Rammig

Definition 13

i i i ja..,...,3,
Let C(c;,.....c,) be an expression with argument variables c,,,...,c,; A(d,,,....d,;a,,....3,)
be an assignment with destination variables d”,...,d,.K and argument variables - - P

LetG,=C,: A, and G,=G,: A, be guarded commands.

nt

G, called influencer of G, (and G, influencee of G):<=>
Atleast one destination variable d,;of A, isargumentvariable ¢, ofC,.

It should be noted, that the guarded commands G, and G; may be identical, i. e. a
guarded command may be its own influencer (and influencee).

Corollary 2

A guarded command G = : 4 can be initiated only if at least one guarded command
terminates at the same point of time.

Proof

This is obvious as for an initiation it is necessary that the value of the guard is chahged-
This can happen only if at least one of its variables gets a new value. And this can
happen only due to an assignment carried out as part of an influencer's termination.

When stimulated equations are modelled by guarded commands the same is true. The
variablesin the guard just have to be replaced by the variables of the assignment. So the
following modification of the basic event scheduling algorithm is obtained:
begin
time : =Q;
while time > final_time and queue = empty do
begin
extract event E, with t minimal from queue;
assign values;
forallinfluencees do
if guard becomes true then
begin
calculate hatching time for value assignment;
initiate data operation;
insert E, properly in queue
end

Mixed Level Modelling and Simulation of VLSI Systems 127

Further improvements can be obtained by a selective trace mechanism that of course is
included in the case of CAP/DSDL. Selective trace means that only new values that are
different from the old ones are considered when scanning through the influencees.

6. Event Scheduling for Switch Level Simulation

Having reduced the bandwidth of hardware descriptions to two internal concepts and
having investigated how these concepts can be handled by a common and efficient
simulation algorithm, the major problems seem to be solved. Unfortunately the switch
level causes some additional problems. The main reason is that the algorithm of event
scheduling is local and unidirectional (influencer - influencee - relations!) by nature

while switch level models are bidirectional.

So it is not surprising that the "classical” switch level approach (especially [3, 8, 11] but
also [6]) has an equitemporal iteration in mind. This approach is bound to a unit-delay
assumption (or zero-delay). Therefore both, model fidelity and algorithm efficiency may
cause problems. Here we will discuss shortly a technique for switch level simulation by
event scheduling. This technique has been developed for CAP/DSDL and published first
in[12]. Later Kawai and Hayes proposed a similar approach [11].

All switch level models need an extension of the domain of variables (observation

paints) in order to describe different signal strength. As the basic principles remain the
same independently from the cardinality of the domain we here restrict ourselves on a

minimal” set of three different signal strengths:

So the following set of values is obtained:

Lo: low impedance zero (e.g. GND)

L1: low impedance one (e.g-Vop)

MO: medium impedance zero (e.g.through pulldown)
M1 medium impedance one (e.g. through pullup)
HO: high impedance zero (charging zero)

;”: high impedance one (chargingone)

high impedance

This domain allows to argue about ratio logic and circuits without charge sharing. If

charge sharing occurs charing values at different strength levels are needed, of course.
This can be included in the model without problems.

Following obvious arguments we can define a partial ordering on the set vV = { L0, L1,
M0, M1, Ho, H1,Z}

In order to handle uncertain signals usually a third value is added at every signal
strength. E.g_, following {8, our domain (V, < =) would be transformed to

128 F.J. Rammig

LU
~ ~
LO L1
~ ~
MU
-~ ™~
MO M1
™~ —~
HU
~ ™~
HO H1
™~ -~
P4

This is a nice lattice but unfortunately causes a couple of problems. They originate frCfm
the fact that strength and (logical) value are two orthogonal aspects of a signal while
uncertainty is introduced only forthe aspect (logical) value.

Therefore it is preferable to represent uncertain values just by an enumeration of the
possible values. So 2V (the powerset of V) serves as the basic domain in the model. The

behaviour of components has to be described as mapping F:(2Y)", (2Y)™ where for
convenience we identify ac V with {a}e2v.

Definition 14
Let F: (291, (2vm. A, A E2Y

Fis called well defined - < = >
) HA,..A)=U {Fa,..a) a€A}
(ii) F(A,,_”,An):e <=> 31<i<npn A=0

By (i) all functions can be defined on singletons while by (ii) it is possible to exclude the
€mpty set. The behaviour of devices is defined using two basic functions:

Definition 15

va,beV: sup(a,b): =ifa<bthenp
elseif b= athena
else {a, b}

VA,B¢2Y: sup(A.8):= U sup {(a,b) 1 acA AbeB}
The function sup(A, B) describes the va

lue of a region that is connected with two signals
AandB.

Mixed Level Modelling and Simulation of VLSI Systems 129

Definition 16

vacV: y(a): =ifaef{H1, M1, L1} then H1
else if a¢{HO, MO, LO} then HO
elseZ
VAE2Y: L (A):= U {i(a) | aeA}

T .
he function + (A) models what happens when a charged region becomes isolated. The

following propositions can be proved easily:

Proposition 1

() vAe2v sup(A,A) = A

(i) vA,Be2Y: sup(A,B) = sup(B,A)

(iii) VA,B,Ce2%: sup(A,sup(B,C) = sup(sup(A,B).C)

(iv) veAe2v: (4 (A) = +(A)

or drain

in . . .
order to model transistors we use devices with one gate input, two inputs f

and .
source each and one output fordrain and source each.

g g
e —» | bie aie bie
ai; . . ""II"' bi
.—}_I__L_Q-—bn au_}__r_——l__(—l.
a0 +— bo ao bo

Negative Switch

Positive Switch
(pMOS Transistor)

{(nMOS Transistor)

when the tranisitor's influence is

H 3 ; -
ere aig and bie denote what is offered to the tranistor
fluence. The outputs a0 und bo

n . tramste
deg‘gded, while ai; and bi; include the transistor's in
escribe what is offered by the transistor.

130 F.J. Rammig

Definition 17
Letbe PS:(2Y)5,(2%)2.
PSis called positive switch : < = >
() VgeV:Vaie,ai;a0,bie,bi;boc2v:
PS(g.aie.aijbie,bi;) = (a0,b0) <=>
(a0,bo) = if g€{LO, MO, HO, Z} then (4 (aiy), ¥ (bi))) else (aie,bie)
(i) VG,aie,ai;,a0,bie,bi;,boc2: PS(G,aie,aijbie,biy,): = U {PS(g,aic,ai;,bie,bii) 1 9€G)

The negative switch pMOS transistor is modelled in the same way.

A little more complicated is the definition of a node. By a node we mean a certain
region that either may be connected to neighboured nodes or be isolated. When

isolated it is capable to store a value for a finite period of time. This period is called
“charge decay time".

The value behaviour over a certain period of time is represented by a sequence of values
(i.e. a finite resolution of the observation equipment is assumed). Based on these
assumptions a node with two neighboured nodes is defined in the following way:

Definition 18
Let be ng:((212)n., v
nd is called node with charge decay timen : < = >
() va,bev: nd(a¢n,be_n;ag.n.1,by ., 1eganby) =

if(ve'e[t-n, t] : sup(at,by)e{H1,H0,2}) then Z else sup(a.bd
(i) YAB€2": nd(A_1,B, p:..;ALBy = U {ndat_n,be-n;...;anbe) 1ag i€ Ari Abri€Bri}

Mixed Level Modelling and Simulation of VLSI Systems 131

By the above discussion the model offers representations for nMOS transistors, pMOS
ones, and for regions in between. Resistors (depletion mode transitors) are modelled

simply by offering values of medium strength to nodes.

Of course the modell makes sense only if proper interconnection rules are formulated.
For this purpose a graph grammar (being a little bit complicated) seems to be most
adequate [14]. Within this paper an informal definition may be more helpful:

Definition 19

Given a transistor circuit consisting of transistors, pullups, pulldowns, regions, Vop, GND

and terminals in the following way:

*For each transistor use a proper switch
*If two transistors send into one region:
-introduce one node for this region
- connect crosswise xo and xie-terminals
- connect xie-outputs to the node
- connect the node-output to the xij - inputs
® Connect the gate-inputs of switches with the proper node-outputs
*if a pullup or pulldown is connected to a region introduce a node and offer a medium
strength constant.
*If more than two transistors (or pulldowns/pullups) are connected to aregion
- for each transistor t; introduce a node n; with the xo-outputs of all other transistors
asinputs
- collect these node outputs by an additional node ng
- connect the xie-input of the switch for transistor t;j wit
- connect all xij.inputs with the output of node ng
*Bidirectional terminals are handled like additonal transistors.

h the output of node n;

This model works very well as long as no circles are included in the circuit to be

simulated. In this case some additional modifications of the model have to be carried
out. They are a little bit complicated and shall not be discussed in this paper. However it
has been observed that circles occure rather rarely if some typical situations like CMOS-

transmission gates can be excluded by a special preprocessing.

Example:

Justin order to show how a transistor circuit is transformed a simpte memory cell is used.
The benefit of the approach is obvious if it is assumed that there is an array of these
cells. The simulation algorithm being a local one only the addressed (by SEL) cell is
Processed per operation. By experimenting with the model it can easily be seen that

132 F.J. Rammig

even the behaviour of the cell in the case where the refresh cycle is ommitted is
modelled correctly.

The following RAM cell in nMOS technology has to be modelled:

Vbp Vss

Using the rules of definition 19 the following model is obtained:

SEL
M1 L MO
A o[
y —l"—l__ A}
\ %
| | 4
I A
AL N TN

Mixed Level Modelling and Simulation of VLS| Systems 133

References

(1

(2]

(3]

[4]
(5]

{6]

(7]

(8]

(9l

(10

11

[12)

[13]

[14]

[15]

Barbacci, M.R.,Instruction Set Processor Specification (ISPS): The Notation and
its Application, Dept of Computer Science, Carnegie Mellon University (1979).

Belsnes, O., The Use of SIMULA for Real-Time System Implementation,
Norwegian Computing Center, Oslo (1978).

Bryant, R.E., MOSSIM: A Switch-Level Simulator for MOS-LSI, in:Proceedings
18th Design Automation Conference (1981).

Chu, Y., Introducing CDL, IEEE Computer, Dec. 1979.

Duley, J.R. and Dietmeyer, D.L., A Digital system Design Language (DDL), IEEE
Transact. Comp. C-24, No. 2 (1975).

Gordon, M_J.C., Register Transfer Systems and their Behaviour, in: Proceedings
CHDL '81 (Sept. 1981).

Groening, K., Zur Darstellung und Simulation von Interrupts in Parallelen
Systemen durch Petri Netze (Representation and Simulation of Interrupts in
Parallel Systems by Petri Nets), in German, Diploma Thesis, CS Dept., Univ.

Dortmund (1979).

Hayes, J.P., A Unified Switching Theory with Applications to VLSI Design,

Proceeding of the IEEE, 70, No.10 (1982).

ichbiah, J.D. et. al., Preliminary ADA Reference Manual, ACM sigplan Notices,

14, No.6 (June 1980).

Jensen, K. and Wirth, N., Pascal User Manual and Report,
1978).

(Springer, Berlin,

ult Simulation Program

Kawai, M., and Hayes, J.P., An Experimental MOS Fa
Conference (1984).

CSASIM, in: Proceedings ACM IEEE 21st Design Automation

Lewke, K.D. and Rammig, F.J., Description and simulation of MOS Devices in
Register Transfer Languages, in: Proceedings of VLS| '83 (North Holland,

Amsterdam 1983.

May, M.D., OCCAM, ACM SIGPLAN Notices, 18,No. a(Apr. 1983).
altungen (Logik simulation of

Muliyanto, E., Logiksimulation fuer MOS-Sch
Univ. Dortmund (1984).

MOS Circuits), in German, Diploma Theses, CS Dept.,

Noe, J.and Nutt, G., Macro E-Nets for Representation of Parallet Systems, |EEE

Transact. Comp. C-22, No. 8 (1978).

134

[16]

7]
[18]

[19]

(20]

[21]

[22]
(23]

F.J. Rammig

Piloty, R., Barbacci, M., Borionne, D., Dietmeyer, D., Hill, F. and Skelly, P.,
CONLAN Report (Springer, Berlin, 1983.

Peterson, J.L., Petri Nets, ACM Computing Surveys (1977).

Rammig, F.J., Structural Parallel Programming with a Highly Concurrent
Programming Language, in: Atti di Congresso Annuale AICA '80 (1980).

Rammig, F.J, Preliminary CAP/DSDL Language Reference Manual,
Forschungsbericht der Abt. Informatik, Universitat Dortmund, No. 129 (1981).

Szygenda, S.A., TEGAS 2 - Anatomy of a General Purpose Test Generation and

Simulation System for Digital Logic, in: Proceedings Design Automation
Workshop (1972).

Vladimirescu, A. and Liu, S., The Simulation of MOS integrated Circuits Using
SPICE, Memo VCB/ERLM 80/7, Univ. of Calif., Berkeley (1980).

Wirth, N., Programming in Modula 2, (Springer, Berlin, 1982.
Zeigler, B.P., Theory of Moadelling and Simulation, {Wiley & Sons, 1976).

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22
	Seite 23
	Seite 24
	Seite 25
	Seite 26
	Seite 27
	Seite 28
	Seite 29
	Seite 30
	Seite 31
	Seite 32
	Seite 33
	Seite 34
	Seite 35
	Seite 36
	Seite 37
	Seite 38
	Seite 39
	Seite 40

