A semantics for the integration of

database modifications and transaction brackets
into a logic programming language

Stefan Bottcher
IBM Deutschland GmhH
Scientific Center
Institute for Knowledge Based Systems
P.O.Box 80 08 80
D - 7000 Stuttgart 80
West Germany !

Abstract

The integration of logic programming and databases has up to now focussed on
read access of logic programs to external databases storing permanent data. How-
ever, the integration of write operations modifying existing databases would allow
to use logic programming languages in a much larger field of applications. There-
fore, it is important that the logic programming language not only embeds mod-
ification operations on existing databases, but also embeds transactions in order
to preserve the correctness of the modified database.

This paper describes an integration of database modifications and transactions
into a logic programming language evaluated by a depth first left to right strategy
with backtracking. We propose a semantics of insert and delete operations and
outline why these operations are defined different from assert and retract in Prolog.
Furthermore, we propose a semantics for transaction brackets and describe how
these operations differ from begin_transaction and end_transaction statements in
database programming languages.

¥The research repo-rt-end‘l‘\err; has been carried out within the international EUREKA project
PROTOS (EU56): Prolog Tools for Building Expert Systems.

1 Introduction

During the last years, the integration of logic programming and databases has
become an increasingly important research area, because the integration enables
logic programs to use the knowledge stored in existing databases. However, in
order to fully support high-level database access from logic programs, the integra-
tion of database modifications has been considered to be an important extension
of logic programming (e.g. [Fagin et al, 1986], [Manchanda and Warren, 1988],
[Wilkins, 1986]). In contrast to these approaches we argue that correctness of
database updates additionally requires to integrate a transaction concept and that
this may lead to a different judgement about update semantics.

While the integration of database modifications and transactions into proce-
dural programming languages as e.g. Pascal or Modula-2 is well understood
[Schmidt, 1977], {Schmidt et ql,, 1988], the integration of these concepts into logic
Programming languages leads to the following problem: How shall we integrate
database modifications and a transaction concept into the backtracking evalua-
tion strategy used for logic programming languages ?

The problem can be devided into two subproblems: first, to find a clean integration
of database modifications avoiding “dirty side-effects”, and second, to integrate
a transaction concept into backtracking such that atomicily and persistence of

transaction executions are not violated, when several transactions are executed by
one single logic program.

In this paper we describe a proposal to solve this problem bhased on the logic
Programming langnage PROTOS-L, which is currently developed at IBM Scien-
tific Center in Stuttgart as part of the EUREKA project PROTOS (EU 56).
PROTOS-L [Beierle, 1989], [Beierle and Boticher, 1989] is a logic programming
langnage, providing access to external databases, a polymorphic order-sorted
type concept, and a module concept similar to that of Modula-2 [Wirth, 1983]. A

compiler and an abstract machine? for PROTOS-1, have been implemented on the
IBM-RT 6150 workstation [Semle, 1989].

PROTOS-L is currently used to reimplement a part of an algorithm which is
used in a prototype of a chemical production planning system for Sandoz AG.
This production Planning system uses large sets of heuristic rules coded in logic
and needs access to planning data which is stored in a relational database system.
Therefore it requires to embed database access into a logic programming language.

The next section snmmarizes the requirements, while the third section describes a
proposal for the integration of database modification operations and a transaction
concept into the logic Programming language PROTOS.],.

IThe abstract mnclu';; ;o; PROEOSJ. is an extension of the Warren Abstract Machine
[Warren, 1083).

2 Requirements for the integration of trans-
actions and database modifications into logic
database programming languages

In this section we describe the requirements for the integration of transactions
and database modifications into a logic programming language. The description
focusses on how a given logic programming language can be extended to a logic
database programming language. The requirements for the integration of transac-
tions and backtracking will lead to corresponding requirements for the integration
of database modifications and backtracking.

2.1 Requirements for the integration of transactions and
backtracking

The integration of transactions into a logic database programming language has
some requirements to both the embedding language and program execution. The
embedding logic programming language shall have the following properties in order
to integrate transactions:

1. The code of several transactions can be combined in one single logic program.

2. Transaction steps are programmed in the embedding logic programming lan-
guage.

3. Integrity checking can be programmed in the embedding logic programming
language.

The basic requirements to integrate transaction executions and backtracking are
the following:

4. Transaction executions have to be atomic, i.e. atomicity of transaction exe-
cutions has to be embedded in backtracking.

5. Database modifications of committed transaction execntions have to be per-
sistent, i.e. a concept of transaction persistence has to be integrated with

backtracking.

Regiurement 4 implies that all modification operations execnted in a transaction
have to be undone in case of a transaction abort. In order to meet this requirement,
we will propose a semantics of write operations which is free of side effects in this

case (c.f. sections 3.1 and 3.3).

Further, both atomicity and persistence of transaction executions require that
backtracking is prevented from jumping inside an already commitied transaction
(c.f. section 3.2).

2.2 The integration of write operations and backtracking

The requirements for the integration of write operations and backtracking can

be derived from the requirements 4 and 5 for the integration of transactions and
backtracking:

6. Write operations are undone if the transaction they occur in is aborted, i.e.

we want to avoid that write operations have side-effects that survive the
transaction abort.

7. Write operations are made permanent if the transaction they occur in is
committed,

Finally, we require what follows in order to keep Programming in the language
simple:

8. Write operations do not influence the flow of PIogram execution, i.e. write
operations are always successful (c 1. section 3.1)

N

3 A solution based on PROTOS-I,

1989] is a typed logic program-
ming langnage which is developed and implemented at IBM Stuttgart. PROTOS-L
embeds read access {o external databases, a module concept similar to that of
Modula-2, and a polymorphic order-sorted type system supporting fast program

execution. A detajled description of PROTOS-L as a database query language is
given in [Boticher, 1990a), whereas the PROTOS-

e.g. in [Beierle, 1989], (Bottcher and Beierle, 1989] and [Béticher, 1990b)].

in the last section.

3.1 A proposal for database modifications in the pProgram-
ming language PROTOS-L

Under the aspect of database access, PROTOS-L,
database query language, not to be a databas
less, insert (:+) and delete (:\) operations

is basically intended to be a
¢ modification lan gauge. Neverthe
can be embedded in the Programming

language PROTOS-L as follows. Insert and delete operations are goals, i.e. they
can occur in any right hand side of a rule.

In order to describe the semantics of insert and delete operations we outline in

this section,

o what are the preconditions for the operations,
o whether these operations sometimes fail or they have always success, and

o how the database state is changed when program execution passes these
operations from left to right.

In section 3.3 we complete this description by explaining how the database state
is changed when backtracking passes these operations from right to left.

We use the following example instead of giving a full set of definitions.

Let R be a database relation and A,,..., A, be arguments, i.e. A; is either a
variable or a constant. The precondition for the execution of the operations

R:+(A,...,A4,) and R:\(A4,...,4,)

is that each argument which is a variable is bound to a constant at the calling time
of the operation. Hence, at calling time all arguments are bound to constants, say

Cly...yCp.

We further have to decide whether a delete operation (and an insert operation
respectively) is always successful, or it is only successful if the tuple to be deleted
(inserted) exists (does not exist) in the database relation. In order to meet require-
ment 8, insert and delete statements are always successful in the suggested exten-
sion of PROTOS-L, independent of the tuples currently stored in the database

relation R.

The database state after the execution of the write operation (by passing it from
left to right) is the same as the database state hefore the execution of the write
operation with the following exception: If R,,, is the value of the relation R before
the execution of a write operation, then

Rp't U {(ch- .- ,C,,)}

is the value of the relation R after the execntion of the insert operation and
Rre \ {(ch'- ’Cn)}
is the value of the relation R after the execution of the delete operation.

The description how the database state is changed when backtracking passes
database modifications will be delayed, until we have described the PROTOS-L

transaction concept.

Finally, we give an example for a delete and an insert operation from a program
part of our chemical production planning application. An execution of the follow-
ing database rule changes the location, where a (chemical) product P is planned
to be stored within the time interval [T1, T2], from location] to location2.

change location (P , T1 , T2 » ’locationi’ , ’location2’) :-
Product is_ at :\ (P, T1 , T2 » 'locationt’) ,
Product_is_at :+ (P, T1 , T2 » 'location2’)

3.2 A proposal for transactions

In order {0 describe the scope of transactions, we suggest that the programming
language PROTOS-L offers transaction brackets ({ and }) as language constructs,
l.e. the action sequence of the transaction is enclosed in these transaction brackets.
Note however, that the meaning of the transaction brackets ({and }) differs
from the meaning of the begin_transaction and end_transaction statements within
procedural database programming languages, e.g. DBPIL [Bottcher, 1989]. Fur-
ther, the transaction brackets ({ and }) influence the flow of program execution
and backtracking in order to meet requirements 4 and 5. We give the following
example from onr chemical production planning application? in order to discuss
both aspects of the suggested transaction concept.

The transaction change_if legal changes the planned storage location of a chem-
ical product for the time intervall [T1,T2] from location L1 to location L2, only if
the succeeding integrity_checks are successful.

change_ii_legal(P,T:l sT2,L1,L2) :-
{, change_location(P,Ti,T2,L1,L2) .
integrity_checks(P,Tl,T2,L1,L2) y } .

After changing the location the integrity checks are performed. If they are suc-
cessful, then the transaction is commitied as soon as the } transaction bracket is
passed from left to right. * On the other hand, if the integrity checks fail, then
the transaction execution can not be completed successfully and the transaciion
is aborted when backtracking passes the Jeft transaction hracket ({)-

The integration of transaction brackets ({ and }) into backtracking described
above can be summarized and generalized as follows:

® If program execution proceeds from left to right over a left transaction

bracket ({), then the begin_of_transaction statement (tBegin for short)
is performed.

* I program execution passes a left transaction bracket ({) from right to left

(i.e. by backtracking , then the abort_of_transaction statement (tAbort for
short) is performed.

3The requirements of this production planning application are summarised in [B5ttcher, 1990c].
*At commit time the modifications of the transaction are made permanent to the database,

¢ If program execution proceeds from left to right over a right transaction
bracket (}), then the commit_transaction statement (tCommit for short) is
petformed.

But, if program execution passes a right transaction bracket { }) from right to left
(i.e. by backtracking), then the following problem arises: Backtracking from right
to left over a right transaction bracket (}) has to be prevented from jumping to
a choice point inside the transaction, because this transaction has already been
committed.

The suggested solution to this problem is that, instead of jumping to a choice point
inside a transaction backtracking has to jump to the last choice point allocated
before the beginning of the transaction. Hence, the suggested solution meets
requirement 4 for the integration of backtracking and transactions that transaction

execution has to be atomic.

Like in other database programming languages, nested transaction calls are not
allowed 1in this proposal. Since the modifications of transactions are made perma-
nent to the database at commit time, and backtracking is prevented from jumping
to a choice point inside a transaction, the proposed solution also meets requirement
5, that modifications of committed transactions are persistent.

3.3 The integration of database modifications and back-
tracking

In this setion we propose what has to be done, if backiracking goes from right to
left over a database modification operation.

Requirement 6 states that all modifications executed in a transaction shall be
undone, if the transaction is aborted, i.e. at the latest when backtracking reaches
the left transaction bracket ({). The goal of this requirement is to avoid that
write operations survive the transaction abort as side-effect of program execution.

The suggested solution to meet this requirement is as follows: Whenever back-
tracking passes a modification operation from right to left, then the modification
operation is undone, i.e. backiracking reestablishes the database state given be-
fore this modification operation was executed. Hence, all database modifications
are undone at transaction abort time, i.e. when backtracking reaches the left
transaction bracket ({).

Note that insert and delete operations are different from assert and retract in Pro-
log [Cloksin and Mellish, 1981], because these modification operations are undone,
as soon as backtracking passes these operations from right to left.

One the other hand, requirement 7 states that modifications of committed trans-
actions have to be persistent. This can be acchieved as follows: When program

execution performs backtracking over a right transaction bracket (}) ie. program
execution goes to the last choice point activated before the transaction execution

has begun, then the modifications made during transaction execution remain in
the database.

To summarize: The only side-effect of write operations to the database during

logic program execution is that side-effect which was required: modifications done
In committed transactions are persistent.

3.4 A proposal for the implementation of transactions in
the PROTOS-L compiler

The transaction concept can be implemented within the PROTOS-L compiler
as follows. The compiler first translates PROTOS-L source code into some in-
termediate language, then it performs transformations and optimizations on this
intermediate language representation of the program, and finally it translates the
intermediate language representation into code for the PROTOS abstract machine.

At the intermediate language level, the code for transactions is transformed into
logic programming code. The implementation of a transaction { ... } includes
a cut in order to prevent backtracking from Jumping from the outside of some
transaction to a choice point allocated inside the transaction.

A transaction rule

transaction(P,Tl,T2,L1,L2) 1~
{, transaction_body(P,Ti,T2,L1,L2) s } .

can be implemented using the three built-ins {Begin, tCommit, and tAbort for
the begin, the commit, and the abort of a transaction. These builts-ins are imple-
mented by calls to the corresponding database system procedures of the underlying
database system (which is in our case the SQL/RT datahase system). At the in-

termediate language level, the transactjon rule is transformed into the following
code:

transaction(P,T1,T2,L1,L2) :-
transaction_implementat ion(P,T1,T2,L1,L2) .

transaction_implementation(p »T1,T2,L1,L2) :-
tBegin , transaction_body(P,T1,T2,L1,L2) » tCommit ,

. .

tranaaction,_implementation(P,Ti,'1‘2,L1,L2) :- tAbort , fail .

Note that the cut behind the tCommit call prevents backtracking from jumping
from outside the transaction to a choice point allocated by the transaction_body.

4 Summary and conclusion

The typed logic programming language PROTOS-L includes subtypes, polymor-
phism, a module concept and high-level read access to databases. We made a
proposal how to integrate write operations and a transaction concept in order to ex-
tend this logic programming language to a database programming language. The
transaction concept allows the application programmer to program transactions
including the enforcement of integrity constraints within the logic programming
language PROTOS-L. Several transactions can be combined in one single logic
program. Further, the only side-effect of write operations during logic program
execution is the side-effect which was required: modifications done in committed
transactions are persistent. Hence, the suggested embedding of database modifica-
tions and transactions in the logic programming language PROTOS-L integrates
backtiracking and basic database programming concepts. The integration allows
to implement integrated systems (using logic programming and embedding the
knowledge of existing databases) in one single logic programming language. This
opens up a large field of applications for logic programming languages.

References

[Beierle, 1989] C. Beietle. Types, modules and databases in the logic programming
language PROTOS-L. In K. H. Blasius, U. Hedtstiick, and C.-R. Rollinger,
editors, Sorts and Types for Artificial Intelligence, Springer-Verlag, Berlin,
Heidelberg, New York, 1989. (to appear).

[Beierle and Béttcher, 1989] C. Beierle and S. Béttcher. PROTOS-L: Towards a
knowledge base programming language. In Procecdings 3. GI-Kongref Wis-
sensbasierte Systeme, Informatik Fachberichie, Springer-Verlag, Berlin, Hei-
delberg, 1989.

[Bottcher, 1989] S. Bottcher. Pradikative Selektion als Grundlage fir Transak-
tionssynchronisation und Dalenintegrildi. PhD thesis, FB Informatik, Univ.
Frankfurt, 1989.

[Bottcher, 1990a} S. Bottcher. Development and programming of deductive
databases with PROTOS-L. In L. Belady, editor, Proc. 2** Infernational
Conference on Software Engineering and Knowledge Engineering, Skokie, Ilki-
nois, USA, 1990.

[Bottcher, 1990b] S. Bottcher. Integrating a deductive database system with a
Warren Abstract Machine. In N. Cercone and F. Gardin, editors, Proc. In-
ternational Symposium Computational Intelligence 90, Milan, Italy, 1990. (to

appear).

10

[Bottcher, 1990c] S. Bttcher. A tool kit for knowledge based production planning
systems. In M. Tjoa, editor, Proc. International Conference on Data Base
and Ezpert Sysiem Applications, Springer-Verlag, Vienna, Austria, 1990. (to
appear).

[Béttcher and Beierle, 1989] S. Béticher and C. Beierle. Data base support for
the PROTOS-L system. Microprocessing and Microcomputing, 27(1-5):25-
30, August 1989.

[Cloksin and Mellish, 1981] W.F. Cloksin and C.S. Mellish. Programming in Pro-
log. Springer-Verlag, Berlin, Heidelberg, New York, 1981,

[Fagin et al., 1986] R. Fagin, G.M. Kuper, J.D. Ullman, and M.Y. Vardi. U'p-
dating logical databases. In P. Kannellakis, editor, Advances in Computing
Research, Jai Press, 1986,

[Manchanda and Warren, 1988] S. Manchanda and D.S. Warren. A logic-based
language for database updates. In J. Minker, editor, Foundations of Deductive
Datsbases and Logic Programming, Morgan Kaufmann, Los Altos, 1988.

[Schmidt, 1977] J.W. Schmidt. Some high level language constructs for data of
type relation. Transactions on Database Systems, 2(3):247-261, 1977.

[Schmidt et al, 1988] . W. Schmidt, H. Eckhardt, and F. Matthes. DBPL Report.
DBPL-Memo 111-88, Univ. Frankfurt, 1988.

[Semle, 1989] H. Semle. Erweiterung einer abstrakien Maschine fir ord-
nungssoriiertes Prolog um die Behandlyng polymorpher Sorten. Diplomar-

beit Nr, 583, Universitit Stuttgart und IBM Deutschland GmbH, Stuttgart,
April 1989,

[Warren, 1983] D. Warren. An Abstract PROLOG Instruction Sei. Technical
Report 309, SRI, 1983.

[Wilkins, 1986] M.W. Wilkins. A model-theoretic ap
databases. In Proceedings of the 5th
of Database Systems, 1986.

[Wirth, 1983] N. Wirth. Pro
New York, 1983.

proach to updating logical
International Conference on Principles

gramming tn Modula-2. Springer, Berlin, Heidelberg,

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10

