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For the analysis of finite-dimensional classical completely integrable Hamilto-
nian systems the representation by action-angle-variables is an essential tool. This
representation can be carried over to the infinite-dimensional situation by use of
mastersymmetries, thus leading to a suitable Viasoro algebra in the vector fields.
For the quantum case, however, such a structure cannot exist in the correspond-
ing operator algebra, due to a classical theorem of Kaplansky, although the con-
cept of mastersymmetries can be used to give a formal description of the infinite-
dimensional symmetry group of those "nonlinear” Quantum systems which are
accessible by the Quantum Inverse Scattering Transform. In order to make that
precise and to transfer classical notions and methods to the quantum case an alter-
native dynamical concept for quantum systems is proposed. We give two examples,
in the discrete case we consider spin chains, like the Heisenberg anisotropic spin
chain, and in the continuous case, where additional difficulties arise, we consider

the quantization of the KdV.

1 Introduction

The Viasoro algebra of mastersymmetries ([11], [21]) is an essential tool for

completely integrable systems. These time-dependent symmetries are closely

connected to recursion operators and to the action-angle representation of

the dynamics [15].
We give the necessary definition in the abstract case of an arbitrary Lie

algebra £. Let £; be a sub-Lie algebra of L. Recall that amapd: £y — L

is said to be a derivation (on L1) if
d[A, B] = [d(A), B] +[A, d(B)] for all A,B € L. (1.1)

Special derivations are given by the adjoint ¢ of elements G € L (i.e. GA:=

[G, A] for all A € L£,). These derivations are called inner. A derivation
on £, is said to be an £,-mastersymmetry if it maps £y into £1. The
mastersymmetries are a sub-Lie algebra.

We briefly explain the use of mastersymmetries. For example, if we
fix K € £ and define £; = K+ = {G € £ | [G, K] = 0} to be the
commutant of K, then a K--mastersymmetry d has the property that
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d(K),d*(K),...,d"(K) are elements of K<L, Hence, we are able to gen-
erate in a recursive way out of K infinitely many elements of K-, maybe
even all of K.

It looks as if for the construction of those mastersymmetries d which can
be used to generate elements of K+ we have to check how d acts on all of
KL Fortunately this is not really necessary when K1 is abelian:
Observation 1.1:  Consider £; ¢ B ¢ L, where L1 and B are sub-Lie
algebras of B and L, respectively. Fizx K € £, such that £y is equal to the
commutant K(B) = {A € B | [A, K| =0} of K in B (not in £). Assume
that £y = K(B) is abelian. Then an inner dertvation d : B — L with
d(Ly)CBisa KL(B)-mastersymmetry if and only if d(K) € K+(B).

Thus, in case of abelian structure we only have to try out how d acts on
K, that means we only have to check if d(K) commutes with K. The proof
of this simple fact is mainly based on a successive application of the Jacobi
identity, see [11]. Under very mild additional conditions, one can show that
in this case the Lie algebra generated by K and d is a Viasoro algebra (see
[15]).

We illustrate this crucial notion in different situations. First we con-
centrate on the classical situation. Let A be a C*-manifold, denote the
variable on M by v and consider an evolution equation u; = K (u) where K
is a C*-vector field on M. Recall that the C™.vector fields are endowed
with a Lie-algebra structure, namely the infinitesimal structure of the group
of C*°-diffeomorphisms on M. Therefore the construction of K+ via mas-
tersymmetries amounts to the construction of the infinitesimal generators
of the one-parameter Symmetry groups. This way of construction works for
all the popular completely integrable systems like KdV, mKdV, SG, BO,
KP ete. (see [11] or [21]). Complete integrability in all these cases implies
that K+ is abelian. In addition to that, the K 1-mastersymmetries have 8
direct meaning in terms of time-dependent symmetry groups. To see this,
consider G(t) := exp(tk )Go for a mastersymmetry Go. Then, due to the
mastersymmetry property, the Taylor series reduces to a polynomial of first
order in t. Thus G(¢) is a time-dependent, Symmetry generator.

Plectic (inverse symplectic operator or Poisson operator) map © [10]. Then
in the space of zero-forms (scalar quantitjes on M) one has a canonical Lie-
algebra structure {, }o induced by © (Poisson brackets with respect to 6)-
A zero form is a conserved quantity with respect to the flow if and only if it
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commutes with H in the Lie algebra of Poisson brackets. Hence, we are able
to construct out of H further conserved scalar fields via commutation with
H'-mastersymmetries. As above, if 7 is a mastersymmetry for H in the
Lie algebra of Poisson brackets, then 4(t) = exp(tH)7o is a time-dependent
scalar field, invariant under the flow, and a polynomial of first order in t;
hence an angle variable.

For quantum systems the Lie-algebra under consideration are the oper-
ators on a suitable Hilbert space. The Lie-product is given by the usual
commutation of operators (denoted in the following by [ [ ). Given an op-
erator H then, via HL-mastersymmetries, we would be able to construct in
a recursive way operators commuting with H. This would be most interest-
ing, because if H is normal, then knowing a maximal abelian subalgebra of
H4 is the same as knowing the spectral resolution of H. Hence finding H-
mastersymmetries is a big step forward towards the diagonalization of H.
But at this point one gets disillusioned since there is a well known theorem
of Kaplansky [17] (see [20] for the unbounded case), stating that for every
continuous derivation d on an operator algebra, fullfilling [H, d(H )] =0, the
spectral radius of d( H) must be equal to zero. So, mastersymmetries cannot
exist in the proper sense. The way out of this is to consider mastersymme-
tries of outer type which can be represented by operators which are ”very
unbounded”. This actually will be our concept for spin chains.

2 Canonical formulation of quantum systems

We embed the usual formulation of quantum mechenics into the frame of
classical hamiltonian systems. The manifold M under consideration is the
space of selfadjoint operators on some Hilbert space H. Since M is a linear
space we can identify M with the typical fiber of its tangent bundle. If some
selfadjoint operator H is fixed, then a dynamic on M is described by the

linear evolution equation

Symmetries of this system are given in the well-known way: Conside.:r an-
other flow of this type A(t) = i] Hi, A] , then it commutes with (2.1) if and
ounly if [ Hy, H] =0.

For the moment we restrict our attention to the specia :
dimensional Hilbert space in order to avoid convergence difﬁcul@es. In
that case we have a well defined duality on the tangent bundle given by
< A, B >:= trace{ AB}. Via this duality we can identify tangent space TM

] case of finite
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and cotangent space T*M and we can compute gradients. For example if
P(A) =(1/2) < A, A > then VP(A) is given by

< VP(A),B >= %ge-l <A+eB,A+eB>=<AB>.
e=0

Hence VP(A) = A. It is easily seen that whenever a selfadjoint H;€F com-
mutes with H, then F(A) =< A, H1A >= trace{AH A} is a conservation
law for (2.1). So, from this aspect, for quantum mechanical systems there
is no essential difference between symmetries and conserved quantities, or,
in other words, all symmetries are hamiltonian.

We can use Noethers theorem (mapping conserved quantities to sym-
metry generators) to construct dynamical laws which are not of the type
(2.1). We introduce a map © : TM* — TM by ©(A) = i[ HA]. It
is easily verified that © is skew-symmetric with respect to the duality in-
troduced before. So © must be implectic because it is independent of the
particular manifold point. The system (2.1) is hamiltonian in the classical
sense because it can be rewritten as A(t) = ©°VP(A). One should remark
that this dynamical law is truly linear whatever the form of the hamiltonian
is. This observation is puzzling insofar as, by the technique of the quantum
inverse scattering transform, nonlinear methods really yield relevant results
for certain quantum systems: Take some H; with [ H, H;] = 0 then using
the image (under ©) of VF we find that the flow A(t) = if H, AH, + H)A]
commutes with (2.1).

So, on the first view, there are additional symmetries for quantum sys-
tems. However, some of these additional symmetries may not really be rele-
vant because either they destroy the commutation relations between canon-
ical variables or they do not lead to new information. To some extent, this
is due to the linear nature of the dynamics given by (2.1). Therefore, one
of the aims of this paper is to see how some quantum systems can be con-

sidered as truly nonlinear systems. We illustrate this new viewpoint first in
case of spin chains.

3 Hamiltonian Mastersymmetries for spin chains
We present a direct method for the computation of the commutants of the
hamiltonians of the XYZ-model in ferromagnets. For details concerning the
importance and the physical relevance of these spin chains we refer to the

literature ([3]-[5}, [1], {7], see also [2] where similar results can be found for
the XY h-model).



AN ALTERNATIVE DYNAMICAL DESCRIPTION OF QUANTUM SYSTEMS 169

At each point n of the lattice Z a three-component spin operator Sp =
(§X,SY SZ) is given. We assume spin-1/2 operators. i.e.

SiSk = gy +1) ™Sy, (3.1)
l

where £i% is the cyclic totally antisymmetric tensor with eX¥Z = 1. We
either consider the unbounded case, where no periodicity of the lattice is
assumed, i.e. where all spin operators at different places commute [Si,Sk] =
0 for n # m, or we consider the periodic case where some N is given such
that S¥ = Sk 4+ and where the spin operators only commute for those
n # m which are different modulo N. The manifold of polynomials in the
Sk fulfilling the constraints (3.1) we denote by M(1/2).
The Hamiltonian of the XYZ-model is

Hxyz = Y JxSxSn-1 (32)
n,k
where the sum for k goes over {X,Y,Z} and for n it either goes over all
n €Z (unbounded case) or from 1 to N (periodic case with periodicity N).
The equation of motion is S; = i[ H,S] or explicitly:

Sk =25 M 1, 5,(Sn-1 + Sa4) - (3.3)
Lr
To describe the commutants of this hamiltonian we look for hamiltonian
mastersymmetries. Here, hamiltonian mastersymmetries are operators (in
some extended operator algebra) such that if they are commuted with the
operator H, then we obtain again operators commuting with H.

For the two Systems (XYZ and XYh) such hamiltonian mastersymme-
tries can be found in the literature ([13], [2]). Indeed, by a computer algebra
package [14], developed for this purpose, we were able to find such operators
systematically.

For the XYZ-model we obtain that Mo = T, nJkSkSh_ is such a
hamiltonian mastersymmetry. Indeed, commuting this operator formally
with Hyy 7 we find the well known operator H1 = } k- JiJ ¥ Sk SkSy -1
(see [18], [13]), as first symmetry (or conservation law, if one likes). This
process can be continued indefinitely and leads to an infinite sequence (?f
hamiltonians which commute with Hxyz. Of course, the quantity M, is
not really an operator, it only defines an outer derivative.

One observes that Mp does not give a translation invariant operator, 0
it is not compatible with the reductions leading to periodic lattices. D{ev—
ertheless one can also use this mastersymmetry in case of periodic lattices
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because a successive application of the commutator given by My to the
original Hxy 7 always leads to translation invariant operators.

We did not find higher order mastersymmetries for the XYZ-model (con-
trary to the situation encountered for the XYh-model), although the one
mastersymmetry already allows a simple construction of commuting hamil-
tonians. However, the XYZ-model is considered to be completely integrable,
and in case of classical complete integrability we always can find a complete
set of action-angle variables, and only the action variables are found, since
these correspond to the commuting hamiltonians. The angle variables should
correspond to mastersymmetries, and since these do not exist, some doubts
seem to be cast upon the complete integrability of this system.

These doubts are not really Jjustified, because the quantum mechanical
formulation of the system only allows for hamiltonian vector fields, since all
dynamical laws have to be given by operators, thus leading to hamiltonian
structure. Even in the classical case of complete integrability, angle variables
on infinite dimensional manifolds do not always exist, only nonhamiltonian
mastersymmetries exist in these cases, which then yield the angle variables
if finite dimensional reductions are taken. The point is, that the dynamical
laws given by the quantum mechanical formulation are not a rich enough
structure to allow for nonhamiltonian quantities. So, we have to look for an
extension of the dynamics in such a way that for hamiltonian quantities the

usual quantum mechanical dynamic prevails and nevertheless nonhamilto-
nian dynamical laws are possible.

4 An alternative description of the dynamics

Consider a vector operator S; = (SJX , SJ}-’ ) .S'J-Z ) associated with every lattice
point j. Let P(S) be the polynomials in S7, wheren = XY, Z and j €Z .
Define the space of densities (see.[13] or [2]) to be the quotient of P(S) with
respect to Q(S) := linear span {AB~BA | AB ¢ P(S)} . Equivalence
classes will be denoted by [ ], and the equivalence by =. The construction
of density space is done in such a way that Q(S) can be understood as the
kernel of a tracelike operation; it is exactly that in case the operators are
Hilbert-Schmidt.

Let A and B be three-component operator-valued vectors whose com-
ponents are in P(S). Define for A,B ¢ P(8) the inner product by

(A,B):=[)" Aj BY] = equivalence class of 3 A}B} . (4-1)
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Define the directional derivative of a density F in the direction of B by

, d
F[B]=—=— [F(S+€eB). (4.2)
O€ =0

Since cyclic permutations of factors are allowed in densities we obtain the
result ([13] or [16]) that there is a unique operator VF in P(S) such that
F'[B] = (VF,B) . The operator VF is defined to be the gradient of F. For
example, one obtains the gradient of [Hxy z], the equivalence class givgn by
Hxyz, to be V[Hxyzl; = (Ix(SKy + SK1), Jr(Sfir + 510, J2(Si +
SZ 1)) or for example (VSh,)5 = éixbmn. Next one introduces a vector prod-
uct, whose k-th component on the n-th place is given as

1 rs T
(BxAﬁ:§§kkﬁmﬁﬂﬂﬂp. (4.3)

For example S x S = 0. Now equation (3.3) can be written as
§ = —2(S x V[H}), (4.4)

where H = Hxyz. This suggests to consider this dynamical formulation.as a
flow on M(1/2). Observe that all flows of the form (4.4) leave this manifold
M(1/2) invariant. We define a Lie algebra structure (Poisson brackets) by

{[G], [H]}e = —2(VIG],S x V[H]) (4.5)

which fulfills the Jacobi identity on this special manifold. A density G is
invariant under the flow (4.4) if and only if G; + {G, H}e =0 .

Therefore, also in this formulation, H, or rather the density given by it, is
said to be the hamiltonian of (4.4). Furthermore, the map G — —28x VG
is as usual a Lie algebra homomorphism from the Poisson brackets ir.xto the
vector fields. Hence © = —2Sx constitutes an implectic operator, 1.e. an
operator which can be used to define Poisson brackets not only for scalar
fields but as well for covector fields. This yields in addition that for the
system (4.4) © maps invariant covector fields onto invariant vector fields.
These statements hold true for any flow of the type (4.4).

Observe, that we found a new hamiltonian structure for the given dy-
namical systems which drastically differs on the structural level from the
one we had before. The main differences are:

The manifold under consideration is not anymore the manifold of all Sfelfad-
joint operators but rather the manifold M(1/2) of suitable functions in the
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spin variable S. Thus we have reduced the dynamics to a manifold which is
considerably smaller.

® The dynamical system now truly is a nonlinear one, whereas in its canon-
ical formulation if was linear.

This new approach, which completely fits into the classical formulation
of hamiltonian systems, now allows us to look for flows on the new manifold
which are not anymore of hamiltonian nature. It turns out that, at least for
reductions to the periodic case, action angle variables can be found (a result
which also follows from 7] or from Baxters work [3]-[5]).

5 Quantization of KdV

Recall that for the KAV u; = 4., + 6uu, the Poisson bracket structure for
scalar fields is defined by

+00
(Fiw), Fo(w)} = [ (VFi()(VFy(w)adz (5.1)
where V denotes the usual gradient. We shall follow the rule that quan-
tum brackets are operator generalizations of the classical Poisson brack-
ets. First we rewrite (5.1) for the case Fj(u) = I3 pi(z)u(z)de where
wi(z) are suitable test functions. For these special fields we find {F1, P2} =
f_+°°.f’ wi(z)p2(z)zdz . Now, taking limits such that p1(z) — 6(%) and po(z) —
6(z ~ £), then we obtain {u(2),u(z)} = 6z(Z — %) and the Poisson bracket
between field variables at different points is a derivative of the §-distribution.
So quantization of the KdV-field must lead to

[u(z), u(Z)] = ib(z — 7) . (5.2)

Serious difficulties are to overcome in order to make this heuristic approach
precise. To show that an algebra, fulfilling this relation, exists at all, we
have to give an interpretation of terms like (u(z)u(%®) — u(Z)u(z))? which
would be equal to §,(z — £)2, a quantity not yet defined. So, we first have
to make some remarks about distribution multiplication. We follow closely
the concept introduced in [12] and [8].

A distribution ¢(z) is said to be almost-bounded if, for every n € N,
its n-th derivative is of the form o™ (z) = b(z) + A(x) where b is a lo-
cally bounded function and where A is & distribution with discrete support
without accumulation point.

A fundamental observation is that in the space of almost-bounded dis-
tributions, there is a canonical algebraic structure fulfilling associativity,
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product-rule of differentiaton, translation invariance with respect to z, and
having the property that it extends the usual pointwise algebra of func-
tions. The algebra is non-commutative, hence there must be two different
algebras (interchange of order of factors). In that canonical algebra the
product of two distributions with discrete support vanishes. The two prod-
uct realizations are given by P(x)p(%) = limejo P(z + €)p(z) or ¢(z)$(Z) =
limeyo ¢(2)d(z + ¢€) . To make the following considerations consistent we
choose one of these realizations, say the last.

Now we denote by u(z) a variable in the space of real almost-bounded
distributions of degree 3 (third order derivatives of continuous functions).
We define F(z) to be the algebra, generated in the space of almost-bounded
distributions, by u(z), all its translations u(z+%),Z €R and by the almost-
bounded distributions. Observe that this is a non-commutative algebra. By
®F(z) we define the algebra of arbitrary tensor products. We will realize an
algebra fulfilling (5.2) by taking suitable congruence classes in that algebra.
Consider the ideal J generated in ®F(z) by the following relations ~:

61(7) ® d2(3) = 61(2)92(5) ® 1 = 1 8 $1(2)2(%)
u(z) ® 1) = u(z)1(F) ® 1 = 18 u(z)$1(Z)
$1(%) @ u(z) = d1(F)u(z) ®1 ~11® é (Z)u(z)
u(®) ® u(z) — uw(f) ® w(f) ~i6:(Z - 2)®1
ARl1~1®A~A (5.3)
for ¢, ¢y arbitrary almost-bounded distributions, and A € ®F (z)-
Taking now the quotient QF(z) = ®F (z)/J of QF(z) with respect

to the ideal J we have found our quantum realization (named QF(z), the
quantum fields generated by F(z)). In this new algebraic structure we then
have u(z) - u(%) — u(&) - u(z) = 16z(z - £). Since elements of QF(z) may be
considered as operators (by multiplication) on QF(z) itself, we have found
the required operator representation of the Poisson structure of the KdV.
Now, we have the prerequisites to define the time evolution for quantum
systems by taking suitable Hamiltonian operators. For example, taking

= [ Suc@mel© + uniou@]} & 54

and defining the action of a commutator on an integral, as integral (in
convolution sense) over the commutator with its integrand, then we find

w(z)e = i H, u(z)] = oax(®) + 3u=(2)u(2) + 3u(z)u=(2) - (5.5)
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This is the quantum version of the KdV, it leaves the crucial relation (5.2)
invariant. The main problem is to prove that this equation is completely
integrable in the usual sense, i.e. that it has infinitely many commuting
symmetry groups (or conserved quantities which are in involution).

6 Densities

In order to give a recursive description of the symmetries and the conserved
quantities of the evolution (5.5), as before an alternative representation of
its dynamics is introduced.

Define the space of densities to be the quotient of QF (), first with re-
spect to £ = linear span {AB—BA| A,B ¢ QF(z)} and then with respect
to L2 = linear span {DA—AD | A e QF(x)} , where D denotes differenti-
ation with respect to the variable . The equivalence relstion coming from
the successive spaces £, and L2 will be denoted by = and the class of A by
[A]. The construction of density space is done in such a way that the factor
spaces can be understood as the kernel of a trace operation such that formal
integrals (from —oo to +00) over total derivatives vanish. Indeed, it were
exactly that kernel, in case our operators were Hilbert-Schmidt operators
vanishing rapidly at z = +o0.

Let A and B elements in QF(z). Define for A,B € QF(z) an inner
product by

+00
< AB >:= equivalence class of / A(z)B(z)dz . (6.1)
—00

Observe that, due to £,, the differential operator is antisymmetric with
respect to that density-valued inner product. Let F = F(u) be a den-
sity depending in some way on the field variable u, define the directional
derivative of F in the direction of B by F'[B] := 0/0¢|,_oF(u + €B). The
equivalence relation yields the result that there is a unique operator V,
mapping densities into density-valued linear functionals on QF(z) such that
F'[B]=<VF,B > for all B € QF(z) . The quantity VF is said to be the
gradient of F. In case that the densities can be understood as kernels of
traces, then the gradient defined this way is indeed the classical gradient of
the corresponding scalar quantity given by the integral over the trace. For
example, one obtains the gradient of [H}], where

= [ (G + wemono 62)
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as Uzzz (2) +3uq (z)u(z) +3u(z)uz(z) . The evolution equation (5.5) therefore
can be rewritten as
Uy = DV[H1] (6'3)

where H, is given above, and where D denotes the operator of taking the
derivative with respect to z. This suggests, to consider this alternative
dynamical formulation of the system (5.5). This is a flow not on all of
QF(z) but rather on the manifold given by those u(z) which are realizations
of (5.2). However, this now is a hamiltonian system in the classical sense
since D is an implectic operator.

Given this implectic operator ©, define a Lie algebra structure in the
space of densities ( Poisson brackets) by {G,H}e :=< VG, OVH >. These
fulfill the Jacobi identity. A density G(u, t) is then invariant under the flow
w, = OV H if and only if G;+ {G, H}e = 0 . If G does not depend explicitly
on t then @ is invariant if and only if its Poisson bracket with A vanishes.
Therefore, H is said to be the classical hamiltonian of u; = OV H. The map
G —s ©VG is a Lie algebra homomorphism from the Poisson brackets into
the vector fields.

Observe, that we found a new hamiltonian structure, for the given quan-
tum system, which drastically differs from the one we had before in (5.5).
The main differences are:

e The manifold under consideration is not anymore the manifold of all ele-
ments of QF(z) but rather the manifold of all u(z) fulfilling (5.2). Thus we
have reduced the dynamics to a manifold which is considerably smaller.

e The dynamical system now is a truly nonlinear one, whereas in its canon-
ical formulation A; = i[H, A], A€ QF(z) it was a linear one.

This new approach, which completely fits into the classical formulation
of hamiltonian systems, now allows to look for other implectic operators
which generate the same dynamics. So, we may use the bi-hamiltonian for-
mulation, given by that, to construct the recursion operator in the usual
way.

7 Recursion operator and mastersymmetries

We are now able to obtain the second hamiltonian formulation of the quan-
tum KdV. Denote by u the field variable and introduce L(u)A = uA
R(u)A := Au where a € QF(z). These are the operators of multiplica-
tion with u from the left and from the right, respectively. Then set:

6 = D4 DL(u)+ DR(u)+R(u)D-+L(w) D+ (L(u) ~ Rw) D™ (L(w) - R())
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which gives an operator being antisymmetric with respect to the inner prod-
uct defined in the last section. We claim © satisfies, for arbitrary A, B,C €
QF(z), the implectic condition: < A,®'[0B]C > + cyclic permutations =
0 . Hence we can conclude that © is an implectic operator and provides there-
fore the second hamiltonian formulation of (6.3). The actual verification of
the implectic condition is tedious and elaborate. However, the operator ©
is formally, up to a change of sign, the same as the one considered in the
general KP-theory presented in [19] or [6]. So, one may apply formally the
structural arguments found in these papers, although the operator space
considered there is quite different from the one considered here.

Since the operator © satisfies the implectic condition, we may now con-
sider the conserved quantity: Ho := 1 [+ y(£)u(£)d¢. Then from the rules
laid down in the previous section we get V[Hp] = u, whence, u; = OV|Hy]
again results in the flow (5.5).

Thus we have two classical hamiltonian formulations for this quantum
flow. This allows to apply the usual theory of hereditary operators ([9] or
[10] in order to have a recursive generation of conserved densities and vec-
tor fields. We observe that replacing u(z) by u(z) + « in the operator ©
preserves the implectic character of that operator (trivial Backlund transfor-
mation). But this transformation now yields the operator © + 4aD. Hence,
© and D are compatible implectic operators, so ¢ := ©D~! is hereditary
and generates out of the vector field, given by the right side of (5.5), a hier-
archy of commuting flows. All these flows then constitute symmetry group
generators for the quantum KdV, since that equation is among the members
of the hierarchy. On the other hand, we may consider the density [Ho] as
a conserved quantity for (5.5), then recursive application of ®* (transpose)
ylelds other conserved densities. This is an immediate consequence of the
fact that ®* generates, because of its hereditaryness, a sequence of elements
whose Poisson brackets commute.

The complete set of mastersymmetries is now easily found. Define, as in
the commutative situation, a scaling symmetry by 7o := zu, + 2u. Then, if
K(u) is the right side of the quantum KdV, we find for the Lie derivatives
LK (u) = 3K(u) and L7,® = 2®. Using now the hereditary structure
of & we find that the {r, | Ta 1= ®™1y, n € N} is the set of master-
symmetries forming a Viasoro algebra together with the set of symmetries
{K(u)u | K(u)y, := @"K(‘u)o, neN}.
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