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Singularities of Transmission Problems
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Federal Republic of Germany

L. Introduction

Let M bea ¢ manifold. Let SCM be a closed submanifold of codimension 1.
Assume that the conormal bundle N*S¢ T*M is oriented. Let P be a second order
lincar differential operator in M —S with coefficients in C'*(M — ), the space of
C* functions in M —S having locally C* extensions across S from.elt.her side.
Assume § to be non-characteristic for P from both sides. ‘Unc_ler pr1n01/pal type
conditions on P we can discuss the C* singularities of a di§tr1but10n ue (M - Sl),
where /(M — S) is the space of distributions in M — S which are locally extendible
dcross § from either side, solving the transmission problem

PueC*(M-5),
(T) ulS, —ulS_eC*(S),
D,uS.+D_uS_eC(S).

Here ulS . and u|S_ denote the boundary valuf-’:s ofuonS$ .wh?n fagproac(:!hlf?feg
from its positive and its negative side, respectively. (The sides of § are : ;:' red
through the orientation of N *S.) These boundary values, as well as those o f‘1glds
derivatives of u, exist by Peetre’s theorem. D, gr}d D _ arethe normgl vegzlor 1ef S,
“anonmically associated with P, for the positive and the neggtwe{ 51Se czl fo;
Iespectively, To define them let x € C*(M)bealocal deﬁmqg fungt.]on or§an "

the orientation of N*S,ie. SnU=x Y0)nU and dx|]UnS is positively onen'te n
4n open subset U ¢ M. D, equals, in U, the principal part of the commutator

I
— P[P, +x].
2Igf [

The function g= —1[[P, x].x] has nonvanishing restrictions giS ,. g?ltélouftlé 3} 1;
May depend on the choice of x the restriction D, u|S . does not. Let Q, den
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function on S given by Q, =sign(g|S ). Assume that
Q,=Q_ onS.

This completes the setup of (7). o

Note tfl)lat no further generality is gained by relaxing the last condition mf(Tt) t;’f
D,uSy+a-D ulS_eC*(S) with some positive function ae C=(S). I/n_ baI(’: -
be C*(M—S)is positive up to § then the normal vectorfields of P and P'=
related through D', =1/h|S -D,.

We shall %ntroauce, leliowiﬁg Melrose’s theory [5], the siqgular SP;C;E)“;‘;
ss¢(u) of a solution u of (T) and the characteristic variety 2 ; associated wit 1( g
closed conic subsets of T*(M, S), the cotangent bundle of M comp-ressed a gn’%he-
The Hamilton vectorfield H p 18 defined on X°, the part of 2 not Iy_mg Overfo'r he
gliding fields H, and H _ are defined on 2P and X2 the glancing sets
positive and the negative side of S, respectively. i e

We shall assume that P is of real principal type with respect to S. By thl

. T%(M.S)
mean that the principal symbol p of P is a realvalued function on T*(M.5)
singular over S, such that

(1.1)  the radial direction in T*(M, S) is linearly independent of
H,at 2",

(L2)  at ZPUX? the radial direction in T*(M,S) is linearly

independentof H, , H  and of any convex combination of H .,

H_ whenever these are defined .

J
Using only the Hamilton vectorficld and the gliding fields we shall define 13y
for P. Our result can then be stated as follows.

; eal
(1.3) Theorem. Let ue (M —S$) be a solution of (T). Suppose that P is of T

- : : : imally
principal type with respect to S. Then ssp(u)C 2y and ssy(u) is a union of max
extended rays.

oS
Away from glancing points rays just consist of pieces of H p'bichar-aCtel'—lrf ttllfe
reflected and refracted at § in the natural way. The propagation result given! 9
theorem is wellknown for this case (see Hormander [1], Nosmas [8], Taylor cing
That essentially the same Propagation result holds true when the only gf}ﬁ lo}
points involved are nondegenerate diffractive points was shown by h oiem
[10. 11]. Near a point over § which is glancing for just one side of S the t emain
can readily be deduced from the results of Melrose and Sjostrand [7] Th.eh are
novelty in the theorem above is a propagation result near points Wthf
glancing for both sides of S. In proving this result we shall follow the ideas Oot
very closely. We should mention that the result stated in Theorem 1.3 may ,
optimal at points which are gliding for one side of §, diffractive for the Other’wis
where the glancing sets, £ apd 5 ) do not intersect symplectically. Also W& ™

. : R 5 DY
to point out that we do not g1ve results on uniform approximation of ray
broken bicharacteristics,

The plan qf this paper is as follows.
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also some of their geometric properties are exhibited. Finally, in Sect. 5, we com-
plete the proof of Theorem 1.3 by iterating the estimates on ssp(u) obtained in
Sect. 3 to construct rays which are completely contained in ss{(u).

2. Singular Spectrum and Characteristic Variety

We recall some concepts and results of Melrose [5], referring to this paper for
details, on the microlocal analysis of boundary problems on a C* manifold M,
with boundary dM,. The boundary singular spectrum ss,(u) [or boundary
wavefront set WF,(u)] of a distribution u supported on M, is a closed conic subset
of the compressed cotangent bundle T*M,,. It is defined using the algebra of totally
characteristic operators on M, Ly(M). The principal symbols of these operators
are sections in a line bundle over T*M , and, therefore, their characteristic varieties
are subsets of T*M o- 55,(u) is the intersection of the characteristic varieties_of all
those zeroth order totally characteristic operators mapping u into the space A(M o)
of Lagrangian distributions, supported in M,, which are associated with the
Conormal bundle of dM,,. Boundary Fourier integral operators transform ss,(u)
naturally,
There is a natural map
n:T*M,—»T*M,

given by (x, ¥y o (x, y, A, 1), A=xy, in local canonical coordinates, x=01n M,,.
Its range is

which can be regarded as a subset of T*M . Under this identification ss, agrees, in
T*M, with the usual notion of singular spectrum in manifolds without boundary.
Solutions to noncharacteristic boundary problems belong to the space ‘of
normally regular distributions, .1°(M,). A normally regular distribution has its
bo”“dafy singular spectrum contained in (2.1). Furthermore, choosing any local
coordinates (x, y) with x>0 in M,, and with coordinate patch U, we have

A (M CH (R} Z(RI )

InUn{0 < x <g! forsome &> 0. Forue .t (M) one can determine T*EM sy (1),
Over U, with tangential pseudodifferential operators Q(x. ¥, D) using the Wf,,—
definition given in [6]. In fact, choosing J € Ly(M,) such that Id—J is smoothing
on .4 (M,) and such that the symbol of J vanishes in |A=cyl. TJ becomes a
bOlmdary Fourier integral operator, with the same ellipticity properties as T at
T*Mo if Tis a tangential Fourier integral operator. .

Let p denote the principal symbol of a second order differential operator P, on
M, noncharacteristic with respect to ¢M,. The characteristic variety X, of Py 1s
defined as the image under win T*M, of the set p~ '(0)CT*M,. We have, by £2.1),
the decomposition ~ Z,=200Z,  Z=Z,nT*M,.  Z=2,nT*M,
E=T*M o— 20 is the set of elliptic boundary points. On 2, the Hamilton
Vectorfield H, is defined,

r ‘ ¢ cp .
22) _ ., (ia___f_c).
Hy=xg70i=x75, ¢ ? on; T cy;
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. . i i anonical
Here we have chosen local coordinates (x, y), x=0in M 0+ glving ri1se to ¢

. - ]‘ )
coordinates (x, y, ¢, ) in T*M, and compressed canonical coordinates (x, y, 4,7)
A=x¢,in T*M,. Consider

(2.3) r=p—z{p,x}*/{{p, x}. x},
{,} the Poissonbracket, and the (noninvariant) vectorfield
or or cr .

Note that r does not depend on the variable ¢, conormal to x=0. Thf:z)rczs:t(lz’l)%;)ﬁg
ro=r|G, G being the symplectic manifold x — {r,x} =0, and H* (=2)Hr|2b b =0}).
the glancing set, are invariantly defined. By definition, Z b= ﬂ(_Gf‘{r% ; g
Ly =2~ XD s the set of hyperbolic boundary points [6]. HY is the ghdmgtorﬁe'l i
is tangent to T*¢M 0={x=4=0}, and it approximates the Hamilton vec

(2.5) H,f~H,fISC,If"* on KnX°,

Ke T*MO, for every feC “(T*M o). This is easily checked using (2.2), (2'33’;;3
(24). The glancing set can be further decomposed into the set og Izondeget o
diffractive points, x2- - =2 nn({p, {p,x}} >0), and 37 = 52 _ 57 > the Set st
nondegenerate gliding points and all points of higher order bicharac eﬂton
tangency. The characteristic variety X, the decomposition of Z,, the Ham and
vectorfield and the gliding field transform naturally under boundary
tangential canonical transformations,

We can now associate a characteristic variety %, with (T) and deﬁnef:llllz
singular spectrum ssr(u) for solutions y of (T). These are closed conic subsetstcz) e
cotangent bundle compressed along S, T*(, 3), which is the dual bl{ﬂdlc ons.
compressed tangent bundle which has the vectorfields tangent to § as 1ts S¢¢ d the
Let M. and M _ be the manifolds, with boundary S, forming the positive an
negative halfspace in M, respectively. Then we have canonical embeddings
(2.6) T*M, - T*M, 5) ,
agreeing on T*S. The images, ¥ +» of the characteristic varieties of P :'ZP [ ’T
under the mappings (2.6) now give the characteristic variety ZT:Z+:}M—;S),
inherits a natura| decomposition, 2p=2%0%, 30=2%02°CT (( T*s
D=1 U35 o THs) Furthermore, 35 - ZLuXP y D=2,y and 6+ :H a8
- Z}, the set of elliptic points. At 3¢ '_we can dcﬁ_ne the Hamilton vectorfield i,
in (2.2). The symbol

(2.7) ’}:P““%{P,x}"'/{{p,x},x} in +x=0

. are
defines, via H . the gliding fields g +»invariantly at 32, Asin (2.5) H pand Hs
related through B

(28) Hof ~Ho[ISC/hru ' on Knxo,
KeT*M, S), for every fe

also denotes ap €xtension, intg
field by H, .

= . H.
(T*(M, S)). Here and elsewhere in the Papehf ding
A neighbourhood of the glancing set, of the 8
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The radial direction in T*(M, S), referred to in (1.1) and (1.2), is in compressed
canonical coordinates given by

20,4+ S,
J

Let u be a solution of (T). Then ss;(u) is defined as the union of the images
under (2.6) of ss,(u,), 4, =ulM .. u, is normally regular, implying ssp(u) CT*S
UT*(M —). In local coordinates, (x, y), near (0, y) we may write

P:gi(Dx‘*"Vi)z‘{"Ri in ix>0,

withg, eC*, g, -g_>0at x=0, and tangential differential operators V. and R,
of order 1 and 2, respectively. The normal derivatives D, and D _ are the
vectorfield parts of sign(g.,)- ]/Wﬂx and —sign(g_)- WJ - D,, respectively.
Changing P outside a neighbourhood of (0, y,) if necessary, we can find tangential
Fourier integral operators T, in x =0, elliptic near (0, y,) globally in x, restricting
to the identity on x=0 {modulo a smoothing operator), such that (D,+ V)T,
—T.D, is smoothing on normally regular distributions supported near (0, yo)-
(For a proof see the proof of Theorem 5.10in [7]) When studying the singularities
of u near (0, y,) we may thus assume, at the expense of introducing a term fu .,
feC™(8), into the last boundary condition of (T), that P can be written
P=g,DI+R, in +x>0.

Remark. We use the orientation of N*S only as a means to label the sides of S
globally. Changing the orientation does not change (T). Suitably reformulated (T)
3_150 makes sense in the nonorientable case. Our results extend to this situation
since they are essentially local.

As in [7], the tangential pseudodifferential operators Q=q(x,y,D,) we shfill
work with will have variable order. The symbols g are C* functions in x =0 with
values in the symbol classes S(m, g) of Hormander [2], where g is the “variable
order metric”

g, )=y P(log () + TP log (! (),

i=e+ |2, and m(y, ) is a positive weight function satisfying the continuity
and temperateness coﬁditions of [2] (for the nonsymmetric calculus). Lct W(m)
denote the space of tangential pseudodifferential operators correspondlr}g to the
symbolspace C"(R_f; S(m.g)) and equip it with its natural Frechet space
topology. For any e §§ o, (n)*isa weight function and (e S(Opt. g). Note
also the continuous inclusions

St o CS(m* . g)CST 0. KV real.

3. Estimates on ssp(u)

Away from T*S the propagation of singularities of solutions u of { T).is wellknown,
ssp(u)NT*(M — S) is contained in Z° and :nvariant under the Hamilton flow [1].
At T*S but outside 2% wX?_ the analysis of the singularities of u can be redpced to
that of solutions of the Dirichletproblem (for either side of 5) by using the
Neumann operators. We recall this reduction. Let o, € T*S. Neumann operators
Niato o are operators on S which relate the boundary data v, =ulS .,
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wi=D,uS,, of solutions to

(3.1) Pu=0 modC*(M-5)
microlocally near 6, by
(3.2) Goss(w, —N ., v,).

It follows from the theory of elliptic, hyperbolic, and diffractive boundary
problems that there exist pseudodifferentia] operators N, satisfying (3.2) on all
solutions u of (3.1) if gye &, and pseudodifferential operators N%, (respectively
NY, ) satisfying (3.2) on all solutions of(3.1) having no singularities on the forwzar_d
(respectively backward) half-bicharacteristics through g, if 6, X} or 6yl -

These operators are classical first order pseudodifferential operators at & and at
Zy with principal symbols near g,

a(N% )= ~0o(N4)= ~]/—Qiri . OpelX.

[Q: and r. are defined in the introduction and in (2.7), respectively.] Al
nondegenerate diffractive points N%, and N, are nonclassical pse:udodﬂferfmtlal
operators [4].

Let u be a solution of (T) which has no singularities on the forwgrd
(respectively backward) half-bicharacteristics emanating from o, (if they existh
Then v=ulS, =y5_ [modulo C*(5)] satisfies
(3.3) GofsS(NLv+N _p),
where N, = N?, (respectively N =N’)in case 6,eXL UXZ . Then oy ¢ssy(u)
follows from the known regularity results for the Di}ichlétproblem once .the
hypoellipticity of the operator N, +N_isshown. At (&, XL )N(é_ uXl)thisisa
classical elliptic pseudodifferentiaj operator. (Use Q, =Q_ at &, né-.) BY the
symbolic calcylus for Airy operators [4IN,+N is hypoelliptic if 6, is diffr‘aCU'Ve
for at most one side of S.NL+N_isalso hypoelliptic at ¥2 ~~ 2% . This W?S
shown by Taylor [11] via estimates (nonsymbolically). So we know that ss(C>7
and that the assertions in Theorem 1.30n propagatioh of singularities hold at least

. . - ¢
ISOCd“i)OU“‘dC 2% V2% because rays will be broken bicharacteristics there (¢
cct. 4).

. . . 'de Of
€79 € T*S is glancing for precisely one Sln ‘he
(T) and assume that u has no singularitics 0

. : : the
rd he (provided there i one) emanating from do tcziarv
negative side of §, x <. Then y satisfies, microlocally near g, the bounte
problem

(3.4) Pu=0 in x>0,
(D++L)“EC““(S) at x=0,

Retco i T0EE_ and Loyt ifg v The principal symbol / of L sats?®
th:: i): 1N a conic nelghbourhood ofg,. Recalling the definition of D, we _5361
oundary probiem (3.4)is, after Conjugating with a tangential Fourier ] ntegr®



Singularities of Transmission Problems 239

operator, of the type studied in Theorem 2.3 of [7]. When Q,=Q_=1
(respectively @, =Q_ = —1) condition (2.2) [respectively (2.2)_] of [7] holds
true. From this we get the following estimate on ss4(u).

(3.5) Theorem. Let u be a solution of (T). Let 65 € X' — 2. Let £ 0. Suppose that
the forward half-bicharacteristic emanating from o, into X°, provided it exists, is
disjoint from ss;(u) near 6,. If for some t, 0<t<t(cy, &), the set ssp(u) does not
intersect

{oeX,;d(o,exp(tH ,){(o,)) Set]

then 6, ¢ ss;(u). The same assertion holds with forward replaced by backward and
H, replaced by —H ..

_ Heredisametricon T*(M, S) which is induced by some Riemannian metric on
T*(M, S). We shall keep d fixed throughout the paper.

Remark. 1t would be interesting to know whether Theorem 3.5 also hglds at
00 2P~ X% " The reduction to the boundary problem (3.4) is valid in this case,

too. However, L becomes an Airy operator then.
Our main result in this section is the following estimate on ssy(u) at double

glancing points.

(3.6) Theorem. Let u be a solution of (T). Let 65 € 2'P'nZ?. Let ¢>0. If, for some t,
O<r<t(oy,¢), ssp(u) does not intersect the set
{aezr; inf d(o,exp(t(ZH , +(I —»/".)HA)(UO)))§£I},

0<is1
then o ¢ ss,(u).

Proof. We fix coordinates (x. ¥) near the base point of 6, = (0, y,.0,1) such thqt
X>0 precisely on the positive side of S. In a neighbourhood‘of (O,_)*O), U, (T).IS
€quivalent, after changing to a system in x=0 and conjugating with tangential
Fourier integral operators, to the boundary problem for normally regular
distributions Uy

(3.7) P,u,=P_u_=0 mod C"(Un{x20j).
{3.8) (4, —u_)(x=0)=0 mod C {(Uni{x=0}).
(3.9) (D,u, +D_u —fu)l(x=0)=0 mod C(UN{x=0}).
with f a smooth function on x =0. Here

(3.10) P.=g.Di+R.,

(3.11) Dt:sign(gi)-Vlﬁgj'Dx»

where g eC* with ¢.-g_ >0, and where R, is a classical tangential

pseudodifferential operator of order 2 with real princ_:ipal symbol r.. The
restriction of r, to x =0 does not change under the reduction of (T) to (3.7H3.9).

~ Forevery smooth function v, compactly supported in U, we have, using partial
Integrations (c¢f. Lemma 2.2 in [6])

(3.12) (o, Pu)={(P*r,uy— i(]/EjTU, Dup;— i<mva uye— gty e
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where ¢, and <., are continuous extensions of the (s§squ111near) r '—ttlendn?;
products in x>0 and x =0, respectively. To case the notation we havq Olfmrmulas
(3.12) the subscript + at u, P, D, etc., and we will coptmue to dp so in fo o
which are valid for both subscripts. Taking v=Qu in (3.12) with a smoothing

; the
tangential pseudodifferential operator @, and adding {—QPu,u) we get
following identities

(3.13), (P*Q~QPyu, uy = {Qu, Pup—{QPu, u) i
+ i(]/@Qu, Duy,+ i(]/@QDu, ), + (Mu,u;,

where

(3.14) M=g,-0+i)/}4l[D, 0].

Assuming

(3.15) I/lg+'Q+:|/ IQ~IQ7 at x=0

and using the boundary conditions (3.8) and (3.9) we get

1O V010w Do 504 110, D, 304 <)l 101D
+<]/WQHDJL,u‘)EE<MQ+u+,fu+>a+<l/E_‘[Qfug,u_>f

jons
modulo boundary brackets containing in one entry one of thejvmooth fm]]\;tle]N
(.=t (x=0)or (D.u, +p 4 —Ju)i(x=0). Let 8 ¥((n) V), where No

t of
is large enough for (3.13), to make sensc if @, € 48, be bounded as a subse .

sin
P(<n)*) for some p e S1.o- In addition, suppose that the symbols of all opt’:lr?é’l)fofa |
# vanish outside a compact set contained in U. Then, adding the Eqs. (3.13)+
(3:13).- and using (3.7) and (3.16), we obtain the estimate

(3.17) l<(PtQ+~Q+P+)u+,u+>+<(p=tg_~QP-)u-,u&l

§C+‘<M+“+au+>a’+r<M~u—7u—>ﬁ"
uniformly for a]]

Q.exn satisfying (3.15).
Here

(3.18) Me=M+i7lg.le..

M_=M +ilg 0 ¢

If(3.7)+3.9)

is large outside
Weshall fin

in (3.17) are th

(3.19)

hold only microlocally near o then (3.17)is also true, provided —#
& conic neighbourhogd of (yg,n,).

dsucha family of Operators 4 so that for Q € 4 the dominantt
0se involving the modified commutators

R*Q-0Rr.

- - ’C at
gmary part of (3.19) will have a squareroot 4., elh[:trlum_
(Yo, o) modulo cutoffs supported in regions, where u, has no singular spec

This will lead 1o a bound op 1A uy |, as desired.

N B
3uppose that the gliding fields 1, anq are linearly independent at 9o +y,
the principa] type assumption (1.2) we can find symbols in the (y, n)-variables, ¢+

Actually,
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¥;€8% 0 j=1,...,2n—5, and §e S} ,, with
H,o¢:(yo,no)=1, Hipz(y5,10)=0,
H.w{yo,no)=0 forallj.

¢y and all p; vanish at (y,,7,) and are, in a conic neighbourhood I' of (y, #,),
homogeneous of degree zero, ¥ is 1-homogeneous in I', P(ye, o) = 1, and the
differentials

(3.20)

do ., do _,dyp,,....dyp,, s dp,

are linearly independent at (y,, 1,). The assumption on ssp(u) imp!ies thqt, near gy,
the boundary singular spectra of u, and u_ do not contain points with

o, +o_—tl<st, @.>—¢t,

(3.21)
Dlyl<et, O0=x<et,
i

for some small ¢ > 0. Here we have absorbed into ¢ a constant caused by the change
of the metric. . .
Fix C* functions @, and @ _, compactly supported in U, @ .(0, y,) >0, with

g.1P.=|/lg 1. at x=0.
Next, choose a nonnegative C* function b on the real line, b(s).z 1fors<3, b(s) =0
for s>1, such that b'/2 is also C*. Let N2 1. With pe N still to be determined,
depending on ¢, and with ¢ > 0 to be chosen later on, small enough, we consider the
family 2 of operators 0, with symbols

q.(x, 3. =P (x,y) - b(xp/t) - m(y.n),
Where m=m*, 1> 1, is the family of weight functions given by
3:22) (logm)/(log (ny) = — No— N(@+1((¢ 1 + @ —Op/0)+ 1(<mp/2) = 1).

Here ye C*(R;[0,2]), 7(s)=0 for s<%, z(s)=2 for s=1. and, in a conic
neighbourhood of (y,, 1),

B3 el =4@0 . 407+ =40+ Zipy ).

We can extend w, provided ¢t >0 is small enough, as a zeroth order symbol of typer
(L,0) such that formula (3.23) holds, where w < 2. More spemﬁpally, we extend w by
applying to the right-hand side of (3.23) a realvalued C* function f with f(s)=s for
S<2, f(s)=2 for 522, f(s)=3 for s=3, and setting =3 everywhere else. Note
that the sets (o< 2? form a conic neighbourhood basis of (yo, 71) as t shrinks to
zero,

Observe that (3.15) holds and that Q.. € ¥(m). The opgrator R*Q—0QR belc;ngs
o ¥(m{n> log (ny). Moreover, its symbol b(xp/t) - 4, satisfies, modulo symbols in
CRT 2 Somdn, g)),
(3.24) iA={r, dm} = Pm{r,logm}

21
= _N&m-(log(m){r, o+ ({4 )}

in the region, where w <2 and ¢, +¢_ <t, tsmall. If » <2 then, using( 3.20)(3.23),
(3'25) {ri.o}= g(‘") 2({ro, @i Hps— 41?71 + o(t*?)),
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uniformly as t—0, and if, in addition, ¢, +¢_ <2t, p=3, then
(3.26) (p—d0> '<—C 2t

Note that {r, y((n>i 1)} stays uniformly bounded in .S { oforiz l._ l;y((;);f))_g 2(#(’3})
2C{n), C>0,inw<2, 0<x<t/p, and y large. This together with (3.
implies
(3.27) C™' < ~Im(td/mdn) log () £ C

in w<2, 0<x<t/p, Q.+ <t,

with a positive constant ¢ independent of / and .

. imate
Using (3.27), b'? e C*, we can carry out the construction of an approxi
squareroot A, € Y((m{n) log(y>)'2),

(3.28) Re(iR*Q —iQR)=A*4+ W,

ds, 0
with W, e ¥({n>*). Here, and throughout the rest of ﬂthe proof, a]ilib(t)il::niﬂ e
particular those on symbolnorms, hold uniformly for 4> 1. A, s em 501 fr
region, where w <2, O<x<t/2p, ¢, +o_<t puisa zproth orderf;ye o
(1,0), independent of 7, with 1=1—N, holding outside the cutoff reg

(3.29) w<3}, 0Zx<t/p, and o, +o_—t|<t/p.

We can now fix p, of size | /¢,s0 that the region (3.29)is contained in (31-111123 hat the
t>0. Although ¢ may still have to be decreased later on, we car ass

. in particulr,
region (3.29) does not meet the singular spectra of u , and u_. Hence,np
there is a constant C such that

(3.30) K Wat, ud| < C .

ing these as
¢ general remainders W below. F or boun dlt?]% region
sume that ss,(u, ) also does not intersect

We shall encounter mor
i (3.30) it will suffice to as
(3.31) L 0<Z, g +e_<2t, 1/3p<x<2t/p.
A priori this assumption need not h
affecting(3.17) and the regul
H, € L which satisfy

. -+ without
old. However, we can insure }11t2) “é‘rtawrs
arity of u at 0o, by replacing u by u — Hu with op

INo<2, ¢, +o <2, 0<x<2t/p} =0,

and which have tota] symbols v
region (3.31). Such operators
commutators™ their symbols
bicharacteristics of P which ar
Note that these bicharacteristi

!
. <x <l
CS can meet at most one of the regions 0=
(3.31), if ¢ is smali

: in the
anishing, where 0 < x < t/4p and equalmgfl ‘ngact
exist. F ollowing the standard m_ethod 0 those
can be constructed by integrating along< 2o
¢ contained in {w<2, ¢, +¢_ <2t 05X /4p.

_0 and
enough. This follows, using (2.8), from (3.20), H.x

"(J’Os '70) ={.

Given §>0 we shall prove, for sufficiently small r,
(3.32) KUP* ~R*)Q - 0(P— Ry, | <3 duf 4 €,
{3.33)

(KM, w2 <6) aul2 + ¢,
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with a constant C,, depending also on t. Then we have, using (3.17), (3.28), (3.30),
(3.32), and (3.33), a bound '

(3.34) |Au, P+)4 u P<C.

The construction of 4% can be done so that

(3.35) A5 A* as iow,

A e Y((m™ {n) log{n>)"'?), with convergence in ?’(W(n)), say. Here m™ is the

weight function defined as m* above, however, with the term in (3.22) involving 4
omitted. Then (3.34) and (3.35) give

(3.36) |AZu, |2+ | A%u_||* < + oo,

A is elliptic in Y((m* (x> log{n>)"/?) and of high order at o, because eXyq, o)
=3<1. Therefore, N> 1 being arbitrary, the assertion o, ¢ ssy(u) follows from
(3.36).

To prove (3.32) we note that [recall (3.10)]

(337) (P*—R*)Q—Q(P—R)=[D,.[D,.901]+2[D.. 901D, +[g. Q1D;.

with [D,,[D,.gQ1], [D,,gQ]e ¥(m), [g, Q1€ Pminy ™ Hlog(n)). Let A be the
tangential pseudodifferential operator with symbol (5~ '. We can solve, modulo
Operators W satisfying (3.30),

(3.38) [D,.,[D,.gQ]]=A*BAA,
(3.39) [D,.gQ]=A*BAA,
(3.40) [9.Q]=A*BA*A.

Here and in the following B, and B’, denote operators in ¥(1) which are, in generazi,
different in different formulas. Recall that operators in (1) are bounded on L*.

Therefore, (3.38) implies

341) K[D [DygQT1u, ] S81 AUl +C,. 50
Using (3.39) we get
3.42) 2[D,. 401D, ud| £ CIAAD - | Auf +C.

Modulo an operator which stays bounded on u, we have
[4A4,D]=BAA.

Thus, showing

(3.43) |AAD || S0)Aul +C;,  0>0,

Is equivalent to showing

(344 |D AAul €3] Auf +C5,  6>0.

A classical interpolation inequality on the halfspace x20 gives

| D, AAu| £C| Au| - | DIA* Au] .
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We can write
[DF, A’A]=BA*A+BA%4D,,
modulo an operator which stays bounded on u,. Hence,
I[DZ, A*ATuli €6 Aul| +0lAADu|+C;, >0,
thereby reducing the proof of (3.43) and (3.44), to that of
(3.45) |AAD2u| <5 Au| +C,, 6>0.

Replacing D? by 1(P—R) (3.45) follows from (3.7) and
g

1
A*A-Ru
g

= 0|l Adull + C;.

incipal
This inequality holds for 0 < ¢ <ts{C; may also depend on ¢) because the princip

: : 0) we
symbol of R is small, where <2, 0<x<t/p, when t is small. Using (340)
obtain

(3.46) KL, Q1DZu, up| SC|| A2 ADZul - | Aul.

The estimates (3.41)43.46) now give (3.32).

Finally, we show (3.33). By (3.14) and (3.18), we can write

M=A*ATEBAY2 4 4 g2 g\ 2B p32 4D

modulo an operator W+ W'D, bounded on u., ic.

KW+ WD )u,uy,<C.
Hence,

(MUt CUA™ A2 4 C) A2 AD ) AV Au],+ C
The classical trace inequality

1A 2012 Clof - | 4D |
then implies

(347)  |(Mu, W= ClAul - | AD, Au|

(3.43)-(3.45), and analo
This completes the

linearly independent
can find by (1.2)

| +ClAAD u| - | AD,AAD | +C.

gOus estimates now give (3.33). dH.ae
proof of the theorem in the case, where H, an ( (;0 we
al 6. In case the gliding fields are linearly dependent 2

- : 0 i_ 2n—4 80
an fi symbolsmthe(y,q)—varlableS,wiy%esl-o’j—l"”, (Yoo
VeS; o, 0- and I-homogeneous near (y,,n,), respectively, @+Uo
=¥(¥o:1p) =0, with

Ht‘Pi(.Vth))zls
P+=a-¢_ with a positive con

4> dy are linearly i
ugh with only o

Hy(yo,16)=0 for all j,

. : d(p.p
stant 4, and such that the dlﬁerentlalioo
odependent at (y,, ). Now, the same F; to the
bvious modifications, We may leave thes
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4. Rays

Acurvey:I-N,ICR aninterval, N a C* manifold, is called locally Lipschitz if it
is locally Lipschitz with respect to every chart of N. For such a curve y it makes
sense to define its derivative y'(t), t € I, as the subset of TN consisting of all limit
points of the difference quotients

_, 96D —oy(r))
S

C*(N)2¢ —

as s—t, s+t. The restrictions s>t and s<t define the forward, y’,(¢), and the
backward derivative, y’_(t), respectively. y is differentiable at ¢ precisely when y(¢)
consists of only one tangent vector in which case y'(t) will also be regarded as an
element of TN It is clearly meaningful to call y tangent to a submanifold N'CN
at (e N'iff 3(1) C T, N

(4.1) Definition. A ray (for P) is a locally Lipschitz curve y:1->T*(M,S) with
WeZ;for all te I, ICR an interval, satisfying the following conditions

(4.2) I y() e 2°, tel, then y'(t) = H (3(1)).
(4.3) If (1) ¢ 250X tel, then y(s)e X° for |s—1| >0 small.
(44) If y(t)e 29— 3P, tel, then

As)e X%,  s—t>0 small, orelse y.(6)=H.(y(1),

and

As)eX%, t—s>0 small, orelse y (1)=H,(y(t)).
[45) I 2(6)e 29, AE? or y(t)e 22 ~Z2, tel, then

Y(OC{GAH . +(1=AH ) (x(1); 054215

[46) Remark. Let y:1—>2, be a ray. For any t€[ the derivative y7¢) can only
consist of convex combinations of the gliding fields H, and of (limits of) the
Hamilton field H, at y(1). In fact, y(t) =74 ()Uy-(1), and if y(s)e 3% for s—t>0
small, s, re 1, then

v () = lim H,((s) € T, (T*(M.S)).
By (2.8) the limit equals H , (y(1)) if 7(t) € 2. The corresponding assertion for ;.
also holds. This allows one to estimate the variation, along 7, of smooth functions f
defined in a neighbourhood of y(I) in terms of H,f and H . f because
fGO)—fGs)=at-s), t>s, Stel,
for some 2 =a(t, s) contained in the closed convex huil of

U dfGga).y(@>-

te(s,1)
(Compare Lemma 5.10 below.)

. We now discuss the geometry of rays. Locally outside 2% w2% a ray consists of
Pieces of bicharacteristics reflected, refracted and diffracted according to the usual
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laws of geometric optics. This follows from the known behaviour (_)f
bicharacteristics away from boundary points of higher order bicl}aragtensFlc
tangency [3]. Note that a compressed conormal variable A=xE 18 Llpschltl
continuous on broken bicharacteristics whereas the usual conormal variable ¢
has jumps at hyperbolic boundary points. '

A ray passing through a point which is gliding and of ﬁmt'e OrC_!ef
bicharacteristic tangency with respect to one side of S and nonglancing with
respect to the other side consists of a gliding ray segment (possibly degeqeratlﬂg to
a point) in the boundary exiting or entering as a bicharacteristic on the
nonglancing side or running into boundary points of higher order degeneracy.
This essentially follows from the fact (see Melrose and Sjdstrand [6, Sect. 3]) that
the gliding field is transversal to each 2% k=3,4, ..., the set of glancing_PomtS of
bicharacteristic tangency precisely k—1. At gliding points of infinite order
bicharacteristic tangency a ray may contain an infinitely reflected ray instead of 4
glding ray.

To justify our definition of rays near double gliding points we show that
condition (4.5) implies that rays behave very much in the way one expects pmform
limits of bicharacteristics and gliding rays to behave. We consider the special cases
of symplectic and of involutive intersection of the two glancing hypersurfaces.

(4.7) Proposition. [t 7: 1=, be g ray. Suppose y(to)eZ‘f’ﬂf@ a;d
a3 (ee)) 40 for some toe L. Then y(0)¢ P 2O for [t—1,] >0 small an

7+(to)=H  (3(t)) or Velto)=H (y(to)),
7ty = H, (V(to)) or y_(ty)= H_((10)).

Proof. We may assume {rir Yoy >0, 6=7(t,). So, in a neighbourhood
of g,

(48) H+rﬁ>0., Hﬁr+<0’ and Hi_riZO.

Using(2.8) and (4.8), we can find forevery § >0 a neighbourhood U, C U of 6 such
that

(4.9) OHy >|Hyr.| in U,n30

“(SHpr+>errﬁf in UémZO,.

o Vv of Remark 46 the estimates (4.8) and (4.9) imply that the funct”
(r——=0r,)(x(e)), 60, is strictly increasing in an open interval containing fo-

partic_:ular, the first assertion of the proposition follows. Furthermore, (4.8) 3%
(49) imply the following alternative. Either

(4.10)
or else

(4.11)

for all §>0: |r_(y(t))[<5(—r+(y(t))), t—~to>0 small,

there is a Sequence 1, \ ¢, with r—((t))>0 and x(y(t,))20.
In fE}Ct, Ir_|+dr, =0 cap hold at
{ip(c)r++r_)<0 in U;n30 w
4=1when(iH _ +(1-A)H

ince
W) eU,, t>t,, only if r_(y(t))>0 anfi sTies
€ then also have X(y(£)) = 0. (4.10) clearly lm,p(to
)00 €7, (1,). We now show that (4.11) implies 7+
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:_{11’_+(00). Starti-ng a.t a point p(t)e U,, t>t,, with x(y(t)) =0, the function r _ 7y
wi Umcrease until y e.lther leaves U, or enters x <0, because H,r >0, H r_=0
}Fhe lfand Hr >0 in U,nZ%. In particular, r_ will stay positive if r_(y(1))>0.
smafle I(){re, assuming (4.11), we have 7'(1)=H .(y(t)) or x(y(t))>0 for t—¢,>0
o ) . t;llllce, by Remark 4.6, y;(te) = H +(0,). Since the proof of the assertion on
(,:(;m% o e same except for obvious sign changes the proof of the proposition is
 Acurvey:I— 3% A2 whichis pi : . : :
: I 2% which is piecewise a H , gliding ray is, of course, ara
.. - ? i y n
the sense of Definition 4.1. We call such rays gliding ray polygons.

(Sg?*ETOP(;lsntlon. Suppos'e that r, and r_ can be extended to an open subset
and su wit h{r+,r} =0 in V. Furthermore, suppose {r, =r_=0}nV 2% 2%
" gé)ose tg at H, and H _ are linearly independent on {r. =r_=0}nV. Let y: 1

N4 N be aray. Then y is locally a uniform limit of gliding ray polygons.

Proof. Fix t,€I. Using Darboux’s theorem we find coordinates r., r_, g3, ...,

?I;“ ll}f: J:j-a Sy fyoyin a neighbourhood U of y(t,) with {r., f,} ={g;, fi} =1

oo Il all (.)ther. Poissonbrackets vanishing in U. The submanifold

ClOEStar;t—l?}'mU 1s folhated by the two-dimensional leaves on which g, f; are

Hecessar. tlslmg tha? y1is a ray, we may assume, after passing to a subinterval of I if

ate o Y, that y(I) is co_nt.amed in some leaf L. On LNU the functions f, and f_
oordinates. The gliding flows commute on L. We have

(AH  +(1=DH )(fs +/)o)=1,
0<(iH, +(1-DH.)f:(0)=1,

f .
orall0</i<1, 6e LAU. In view of Remark 4.6 we thus get

(fr +1)GO) = (f+ +f)G)=t=s, tsel,
fe G —fo () =a(t—s), tsel, 4,20, A.+i =1

It
g IS now easy to construct gliding ray polygons approximating ;. We leave the
¢tails to the reader.

fuer':gr(ic_ 1‘3‘ ray PaSSing_through a point in 2 ’{"' 29 may continue as an integral

C Sinmulas Le. as a gliding ray in the diffractive set % . In boundary problems

Siﬂgula%it'amles do not propagate along such rays. Thereforc,_onf: may expect that

condiia l_es of solut10n§ to (T) propagate along rays satisfying the stronger

o ZI;. The assumptions in (4.4) hold with y(r)€ 2% — 2D replaced by 1)

U’Ue:at - . Singularities would propagate in this way if Theorem 3.5 were also
Ooe X P32t -,

5, .

Propagation of Singularities
onstruct a pontrivial ray, starting at o,
f of Theorem 1.3. Indeed,
is globally Lipschitz
Pifyisaray

In th; :
thtlgils iSSeCtlon we sh.all, forany o, € ssy(u), ¢
just HOIeC(t)}?tamed in SS.T(u). This will complete_ the proo
“ontinuoy at a ray with relatively compact image in 27
or p. s (see Remark 4.6) and that 7, J(1)=7(—1), 18 2 1y for —
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(5.1) Definition. Let ICIR be compact and let y:I-21 be cpminuous. (Ly) s
called an approximate ray of mesh <¢, 0<e<1, if and only if

sup inf |t'—t<g
tel t*t'el

and for every t,el, to<supl,

(52)  If y(t;)€2° then tel for t—t,>0 small and the forward
derivative ', (t,) exists and equals H (y(t,)) .

(53)  H(to)¢2%U29 thentel and Wtye Z° for t—t,> 0 small.

(54 K y(tg)ers —x@ [respectively y(to) e 29 — 2] then either
teland y(t)e X% [respectively y(t)e X 7 fort—t,>0 small or
else there exists tel, t> tos (Lo, )NI=0, such that y(r)¢Z5
[respectively ()¢ 2° ] and

d(y(t), exp(t—to)H _((te))) Selt— 1o
[respectively d(y(t), exp(t ~to)H , (5(t,))) < et — 1 ol]-

(35 Ify(te) € 25 A XD or o) € ZPNEY then thereexiststel, 1,<t,
(to, t)nI=0, such that for some 0<1<1

ACAD. exp((t~ 1) GH . + (1= )H )(y(to)))) < el —to].

We shall call the number supl —inf] the length of the approximate rayi(mlv a/t)e
It will be important to estimate the variation of functions along approx

. ; N imate
rays. To measure this we associate g “field of tangents” with every approx
ray.

n
(5.6) Definition. Let (1,7) be an approximate ray. V(I,y) denotes the closure

o ~ C o the
T(T*(M. $)) of the set of all ((z), 7) T,o(T*(M, S)), te 1, satisfying one of
following conditions

(57 wt)er®and (= H,(5(1)),

(58)  wnyex® r-pgy +(2(1)), provided y does not leave into xg for
times greater thap t.

(39 wneXinz@ o HHeXi Az
’C=(f"~H++(l_/1)H-)("/(t))-

: od
(5.10) Lemma. Let K ¢ 3 r-Let fbea C™ function defined in an open netghb‘mriﬁ;te
of K in T*(M,S). Then there exIsts a constant C >0 such that every approx
ray (1,v) with mesh Seand y(I)CK satisfies

(5.11) G2y SO —at—s)<Cele~s), 1,5el, :
¢
Jor some o ( depending on s qng t) which is an element of the convex hull of the s

KLLG0); (), DeV(l,y)}.
Proof . Let to

1ds
be the supremum of the set of 4] T'c [inf1, sup I] such that (5.1 IL?SOSe
under the additiona] assumptions,t< T, Iy exists since T=inf] belongstot

and, for some 0ZAiZl,
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We have t,€1 and by the continuity of y (5.11) holds for s, te In(— 0, t,]. To
prove the lemma we have to show t,=supl. Assume that t,<supl. If there exists
tyel ty<t,,suchthat(5.11) holds fors,t € In[ty, £, ] then we have fors, te I, s<t,
été tls

L/ ((20) — f () — a(to — ) £ Celto — ),
S GO) = f(p(to)) —o"(t—to)| £ Celt —to)

This implies

|/ = f(p(s)) —alt —s)| = Celt =)

with o =((ty—s)a’ +(t—to)a")/(t —s). Then (5.11) holds for s,reIn(—o0,t,]
contradicting the maximality of ¢,. Using Taylorexpansion it follows from the
definition of approximate rays and from the definition of V(I,y) that such ¢, €1,
ti>1,, exists except (possibly) when y(t,) ¢ 2°uZ% and y(t)e 2S for t—t,>0
small. In the latter case we choose t, >t, such that ¥{¢)e 29 for to<t=<t; and
conclude that (5.11) holds for the approximate rays (In[t,t,], yHn[t, ;1)
fo<t<ty. Letting t—t, we sce that (5.11) holds on In[ty,¢,] in any case. This
proves the lemma.

Since the metric d is locally equivalent to the euclidean metric in any local
coordinate system we get as a corollary to Lemma 5.10 the Lipschitz continuity of
dpproximate rays.

(5.12) Corollary. Let K € X,. There exists C>0 such that every approximate ray
(1,7) with () CK satisfies

d('})(t), y(s))gclt_sl » S’IEI-

Remark. With Definition 5.6 suitably modified Lemma 5.10 and Corollary 5.12
hold also for rays. _
We can now prove the local existence of approximate rays contained in ss{(u).

(3.13) Proposition. Ler u be a solution of (T). Let K,€ssp(u). Then there exists
To>0 such that one can find for every 6 € K, and every £>0 an approximate ray
(1.7) of mesh <& and length T, with y(infl)=0 and y(I) Cssy(u).

Proof. We choose T,>0 with CT,<d(KoK), where K€Zy, K,CK,
4Ky, eK) >0, and where C >0 is the Lipschitz constant on K given in Corollary
32 Lete>0and g € K, be given. Consider the set # of all approximate rays(/,7)
of mesh < ¢ length < T,,, with WinfI)= o and y(I) Css{u). # is not empty becausg
(o, {0}) e A,70(0) = o. We define an ordering < on Z by saying that (I,7) =(I',7) if
and only if there exists some Te R such that I=1'n(—oc, T],y=7'|l. The ordered
Set (#, <) satisfies the hypotheses of Zorn’s lemma. In fact, if 2, CZ is a totally

ordered subset then (I, v,),

I= U I, yll=y forall (I,)eA,

(I.7)ed

is the supremum of &, and (I, 7o) € #. Note that
I— U Ic{suply}

(I,y)e&y
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and that the extension of y, to I o €xists and is unique by Corollary 5.12. y,(supl,)
€ ssr(u) since ssp(u) is closed. So there exists a maximal element (1, 7) of (&, = ). We
have to show that its length T equals T;,. Suppose T < T, By our chmce of T, we
have y(supf)c K Nssp(u). It follows from the ssy(u)-estimates given in Segt. 3 that
there exists an approximate ray (I',7) of positive length, of mesh <¢, with sup!
=1nfl’, y(infl’) = y(sup1), and y(I') C ss;(u). Then (1L T, Vo) € #, Where yll =7 and
Yol =7, 1s strictly greater than (1,7). This contradiction to the maximality of (I,7)
completes the proof of the proposition. '

Recalling that ss,(u) is a closed set Theorem 1.3 now follows from Proposition
5.13 and the following result.

(3.14) Proposition. Let K € 3. Les (I;,7,), jeN, be a sequence of approxifiﬂf_i
rays with meshes tending to zero as J— o and with a positive lower bound T;, on thei

lengths. Assume that infl;~0asj— o and that vi(I,)CK forallj. Then there exisisa
curve y: [0, T,]- K with

(5.15) minf  sup d(y(t),7;(1)=0.

"> telin[0, To}

Moreover, every such curpe 7 1S a ray.

Proof. By Corollary 5.12 the 7;' are uniformly Lipschitz continuous. I.t follon
from the Arzela-Ascoli theorem — or rather its proof — that a continuous 7

satisfying (5.15) exists. We fix such g limit curve y and assume without loss of
generality that

lim  sup d(y;(1), y(1))=0.

j=x ted;n[0, Ty)

. . : t
We have to show that 71saray. It is easy to see that v is Lipschitz continuous. I

follows from Lemma 310 that approximate rays in X0 are ’actua”)t
bicharacteristics. This leaves us with the task of determining y'(¢,), say 74 (to)- 3
PoInts (1) & X%, L X9 1, [0, To), where y(t) € 39 for { — ¢, > 0 small does not ho_tS
if 7{1y) € % . We consider such a point Gy = y(to)_and fix coordinates (x, y) neat le)
basepoint such that x > 0 (FCSpectively x <0)on the positive (respectively negatlV
side o_f S. As before, we have the canonical and the compressed canoﬂlcat
coordinates, (x. v, & ) and (x, V-4, 1), respectively. By the choice of o, we caﬂ;;’
have x(; T))>0 and pr(-,'j(Tj))>O for some sequence T-t,, Tiel; if 6o ¢ h+€
We now study the case ,¢5% more closely. Applying the following lemma t0 1 e
4Pproximate rays v, restricted to 4 suitable neighbourhood of ¢, if necessaty. *
get a sequence 1,—1, such that for small § 0

(5.16) X(7A) L0 for all tel;n[t; 1y+46].

(5.17) Lemma. Lo ([0, T1
satisfying either inf]pr[

2% n([o. T]). Assume thg
hen,

) 0.
-7} be an approximate ray with x(§0)) <0=1, 5(;@'
>0 or infHPx >0, the infima being mkﬁ" >0.
tihereisnote [0, T] with x(5(t))>0 and H px(}‘(f))

XANZ0 forall ;e [0, 71, >,

where T=C.5'2 T}, constant C>( and H® ovéf
the set X9 ~y( [0, 7). only depends on bounds on H o~ P
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Proof. Note that x(7(r)) £0 holds if x(5(t)) £0,0 <t <t < T. Infact, j can only leave
as a bicharacteristic into x>0 with either H x>0 o0r Hx>0and H?x>0. It
suffices to assume T< T and to show that the function a(t)=x(51)), te[0, T,
cannot satisfy simultancously « >0 and «'<0 on [0, T]. Assume to the contrary
that o satisfies these inequalities on [0, T']. If |[H x| hasa positive lower bound C’ on
X% ~3([0, T7) then o’ < — C” on [0, T]. This contradicts a >0 when T>8/C’ since
%0) <. In case H'Vx has a positive lower bound on X% n§([0, T]) we have with
some positive constant C,

Colsa"<Cy on[0,T].

It follows from elementary calculus that this cannot hold together with «>0 and
¥'<0o0n [0,7T] and T=C6'72, a(0)< 4, if C>0 is large enough. This proves the
lemma.

Continuing with the proof of Proposition 5.14 we get as an immediate
consequence of (5.16), after letting j— o,

(3.18) x(y(1) 0 for t—1,>0 small.

[Of course, we also obtain x(p(£)) = 0 for t —t, > 0 small if 6, ¢ 2% just by changing
signs.] To show that 97, (1,) is tangent to x=0 it now suffices, in view of (5.18), to
consider the case g, € ¥ and to show that for every 6>0

(5.19) +x(¥(1) SOt —ty] if [t —to| is small.
Applying (2.8) with f=x and noting that H, x=0 we obtain
H,x(3(1))»0 as t-t, and (1) €2,

This implies (5.19) since a violation of (5.19) leads to a sequence t;—t, with
H,x(3(t,))| > 8. Since ¢ = 4/x stays bounded on Z°n K we have actually shf)wn t%]gt
(o) istangent to x = =0, 1.e. 7, (1,) C T, (T*S). Consider the case 6, € 2% — X%,
We have to show

20 o(to)=H_(a0).
With t; as in (5.16) introduce the approximate rays (I, 7;;), 0>0,
Ijazfjﬂ[tj,fo—l-é], .I’ja:}'_}'lljtf

Using (5.16) we get for small 4> 0

(5.21) U VL5 756)C Vi
]
Where
(3.22) V,={(c, H(0)); 6 KnZ%, d(a,0,) < C3}

u{(o, H_(0)); ce Kn2?, d(o, 6,) = Coy.

We may choose functions @y, ...s P2, - defined ina neighbourhood of o, forming
together with x and 4 a coordinate system near g, such that

H-¢;(ao)zl, H._(Pk(o'o)zo fOl’ k>l
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Using (2.8) we get a constant C>0 such that
N NIGES RSN
1K @i (0)|£C6 for k>1,

for all (g,{) € V;,0 < & small, We apply Lemma 5.10 with f = ¢, (I,7) =(I 7,5 and
obtain using (5.21) and (5.23) and letting j— o

(5.23)

21 () —91(00) — (1~ )| S CBlt 1),
(D)= i(a0) S Colt—t for k>1,

for all re[ty,t,+0]. The preceding estimates also hold with y(f) rcpla(;effitizg
eXp((t—1o)H _(5,)). Comparing these estimates we conclude (5.20) after le
0

— U,

. _}=0b
Finally, we consider the cage aoe 29 NED. y(1,) is tangent to x=A=0Dby
(5.19). We still have to show

(5.24) 7o) CHAH 1 (00) + (1~ A)H (ap); 0<i<1) .

. : find
First, assume that H,(s,) and H ~(0¢) are linearly independent. We can fi
smooth functions ¢, defined near o, with

Hip,(00)=1, Hiop (00)=H_¢p,(5,)=0.
Thus,

(5.25) (AH, +(1——)V)H‘)(p4_.(0'0)§0, 0sisl,

and, setting ¢ = 0+,

(5.26) (AH , H=HH Yo(s)=1, 0<i<l.

Using (2.8), (5.25), and (5.26)
(5.27)

(5.28)

We get a constant C >0 such that
<Ca(pi>(a)g‘_C5, 5>07
K& odo)~11< 5. 0>0,

for all (4,¢) e W, d(e, 00) <0, where

W=l(o.H (0)); ce K59

s - . p \ - (20
0eK-X ’0<’~1”'~++"~:1~"~¢>0 only if e 2%} .

We define the approximate 1ays (I5,7,), je N, 0>0,
Ifé:ljn[t0‘5/C0s ty+d/Cy], Vis=Villjs -

. . he
Here Co>01is chosen Strictly greater than the uniform Lipschitz constant fort
(Ij, '}"j)'S. Then, for Smal] 5>0,

(5.29) Vs, 1) C W (o, ): d(o,60)<6} if j is large.

we get from (5.27)5.29) afier letting j— o0
?+((0)~0,(05)2 - Cole—1,],

Using Lemma 5,19
(5.30)
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(5.31) lp(r(1) — @(00) — (t— 1)l S Clt — o],
for [t —1,] £6/C,. Similarly, we get for any C* function y near ¢, with
(5.32) H,ylog)=0

an estimate
(5.33) () — (@) SCOlt—tol, =1 £6/C.

From (5.25), (5.26), and (5.30)-(5.33) we conclude that there exists A€[0,1],
depending on ¢t and 4, such that

02 ((0)— @ s (exp(t—to) (AH ;. +(1 = DH ) (90))| £ Colt —to]
[(2(2)) — plexp(t—to) (AH . + (1= DHH Nao))| = Colt—to] -

Choosing finitely many v’s such that the differentials of the y’s together with the
differentials of x, 4, ¢, and ¢ _ span the cotangent space to T*(M, §) at ¢, we
obtain the inclusion (5.24), after letting 6—0.

IfH (s,) and H (o,) are lincarly dependent we may find, by (1.2),a s_mooth
function ¢ near o, with H.¢p(c,)=1 and H_¢(c,)>0. Choosing fupctlon_s P
which together with x, 4 and ¢ form a coordinate system near g, and which s.atlsfy
H . y{6,) =0 we obtain the inclusion (5.24) also in this case by reasoning as in the

preceding case. .
Since we have analysed —up to trivial sign changes —all possible cases the proof
of the proposition, and thus, also of Theorem 1.3, is now complete.
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