Invariant Lorentzian orders on simply
connected Lie groups

J. Hilgert

0. Introduction

The study of the causal structure of space-time in the theory of relativity led
a series of authors to the study of partially ordered Lie groups (cf. [Pa 81, 84], [01 81,
821, [Gu 76], [Le 84], [Se 76], [Vi 80]). We restrict ourselves to orders that satisfy
a certain compatibility condition between the order and the algebraic structure:

Definition 0.1. Let G be a group and = be a partial order on G, then = 1
called an invariant order if the following monotonicity law holds:

(M) -8} = 2, then hglk = hggk fOl‘ an h, ks 81» g2E G.

We can associate with an order = on G its positive cone P ={g€G: g=1} where
Lis the identity of G. It is an easy exercise to sce that an invariant order is completely

determined by its positive cone:

Remark 0.2. Let G be a group and P a subset of G. Define a relation ZCGXG
on G by setting g, #g, if and only if g,g; '€ P. Then & is an invariant order with
P4=P if and only if the following conditions hold:

(i) PAP-1= (¢},
(ify PP P, ie. Pisa semigroup.
(i) gPg=1c P for all geG. O

An invariant order = on a group G will be called directed if for any two g,
8:€G there exist b, h,¢G such that h=gi, g,=h,. Again we can translate this
property of the order = into a property of its positive cone P by a standard
argument :

Remark 0.3. Let G be a gronpand = bean invariant ordering of G. Then the.
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following statements are equivalent

(1) The order = is directed.
(2) P_ generates G as a group. [J

If we now let G be a Lie group the orders that are of most interest are the conti-
nuous (Vinberg’s notation) or infinitesimally generated (our notation) ones. We will
shortly explain what this means: If § is a subsemigroup of a Lie group G such that
S generates G as a group, we may associate with S a tangent object L(S)=
{x€ L(G): exp R* x5} where L(G) is the Lie algebra of G with exponential
function exp: L(G)—G, and § is the closure of S'in G. It is well known (cf. [HL 83),
[Vi 80} etc.) that L(S)is a wedge, i.c. a closed convex set which is also closed under
addition and multiplication by positive scalars. Moreover it satisfies (cf. Loc. cit):

L ¢U*L(S) = L(S) for all x€L(S)N(-L(S)).

The semigroup § is called infinitesimally generated if § and the semigroup T, alge-
braically generated by exp (L(S)), satisfy:

(IG) expL(S)cScT: L(S)-L(S) generates L(G) as Lie algebra.
Now we can state what we mean by an infinitesimally generated order:

Definition 0.4. Let G be a Lie group and = be a directed, invariant order on G,
then = is called infinitesimally generated if P_ is an infinitesimally generated sub-
semigroup of G.

If = is a directed, infinitesimally generated, invariant order on the Lie group
G then L(P_) satisfies a condition that is even stronger than (L):

Proposition 0.5. Let G pe @ Lie group and = pe g directed, infinitesimally

generated, invariant order then L(P,) is a generating invarignt cone, i.e. it satisfies
() L(P)~L(P)=L(G).

(it) e‘“’"é(P§)=£(PS) for all x¢ L(G).

(i) L(P)n( —L{P,))={0).

_ Proof. Note first that the semigroup P generates G as a group since =
directed. I =P and xcL(P.) then exp R*xCS S 5o that exp R*e™’x=
(exp_)-’)(exp R*x}(exp Y)" 1S (exp y) S(exp y)-i1C s for all yeL(G) by property
p-z(li{) and the continuity of inner automorphisms. Thus "7 x¢ L(Ps) and (i)
1s satisfied. But then L(Ps)—L(P<) is an ideal, as we see by differentiating (i)
Hence,.by (IG) it is equal to L(G). Finally note that 0=x€ L(P)n(—L(P =)
would imply exp Rxe P< so that P<nPZ' couldn’t be trivial. O B -

. Natural]y the question arises whether for any generating invariant cone ¥
0 a Lie algebra L there exists an Invariant ordering = of the connected Lie group
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G with L(G)=L such that L(P=)=W. The answer is no in general even if we
assume that G is simply connected as was shown by Ol'shanskii [O] 82b]. But if
one makes additional hypotheses on the geometry of the cone W the answer turns
out to be yes. The kind of cones we want to consider — and again this is motivated
by the study of causal structures (cf. [Le 84]) — are those which are given by a
quadratic form ¢ in L in the sense that {x€L: gq(x, x)=0} is a double cone
(ie. that ¢ has signature (+, ..., +, —)) and W is one half of this double cone.
Such cones and the corresponding forms we call Lorentzign. Then our main result is:

Theorem 0.6. Let G be a simply connected Lie group and W be an invariant
Lorentzian cone in L(G) then there exists a directed, infinitesimally generated, invari-
ant order = on G such that W is the tangent object of its positive cone Pz.

We will proceed as follows: In Section 1 we give some general lemmas which
turn out to be useful later on. In Section 2 we will state a classification theorem
for invariant Lorentzian cones (cf. [HH 85c]), prove the main result for important
special cases like the oscillator algebra (cf. § 2 for a definition) and finally put the
results together to show Theorem 0.6.

1. On the existence of semigroups with prescribed tangent objects

~ Let L be a Lie algebra and W be a generating invariant cone in L. If G is the
simply connected Lie group with L(G)=L and § is any subsemigroup of G such
that exp WS then S has interior points and hence generates G as a group. There-
fore we may consider the tangent object L(S) of § and find that W cL(8). If
£(S)=W, then consider the semigroup T’ _generated algebraically by exp W. The
lnclusion exp WTc§ implies that T generates G as a group and that L(T)=
L(S) since L(S)=L(S)=W. But now Theorem 5.9 [HL 83] implies that TnT~'=
{}. Moreover, since L(T')=W is invariant and exp L=exp (W —W) generates
G we know that gTg~'cT for all gcG. This yields

~ Proposition 1.1. Ler G be a simply connected Lie group and W be a generating

invariant cone in L(G). Then the following two statements are equivalent:

() There exist a directed, infinitesimally generated, invariant order = such that
L(Po)=w.

) There exist a subsemigroup S of G which generates G as a group and satisfies
L©S)y=w. o

. Proposition 1.1 reduces the problem of proving the existence of a directed,

Infinitesimalty generated, invariant order to the problem of showing the existence

of a Subsemigroup with a prescribed tangent cone. This problem has been studied

n [Hi 86], [Vi 80], [O1 82, b].
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Before we can describe some methods to construct semigroups with a pre-

scribed tangent cone we have to study the situation if we already know that we
have a semigroup:

Lemma 1.2. Let S be an infinitesimally generated subsemigroup of a Lie grou
G such that L(S) is a generating cone in L(G). Then there exist arbitrary small neigh
borhoods U a_f LinG suchthat S\(Sn%) isa right semigroup ideal, i.e. sgc S\(Sn%)
Jor all s€S\(Sn%) and g¢S8.

Proof. Let W, be a cone (note here that in our terminology a cone is a wedg
containing no nontrivial subspace) in L(G) such that W\ {0}cint W, whert
W=L(S). Now we can find a norm || | on L(G) and a linear functional w: L(G)~R
such that |x||=w(x) for all xcw, (cf. [HL 84)).

Moreover, by [HL. 83] we can find & neighborhood B, of zero in L(G) such that
€xp lg, is a diffeomorphism onto its image and exp~! (Snexp By W,. Moreove!
since W, is a cone we may assume that for all x€B, we have dlg,u(DWE
dexp (x)W, where we identify all the tangent spaces of the (flat) manifold L(G)
and 4, denotes the left translation by g on G.

We calla path y: [0, 1]1-G admissible for W if, up to Cl-parameter transforme
tions it is of the form y: [0, 1] ~G with y(r)= ITESY (exp x)(exp (1—m+1)x,)
t€[m—1,m), m=n where X &W for k=1..n. If now y: [0, 1]-G is admissible
with y(t)€exp By and y is differentiable at ¢, then 7(¢) and hence also #,(1)=
exp™* (y(1)) is differentiable in a neighborhood of ¢, and we obtain

% (0 =dexp (y(0)(dy (D)cd exp=1(y (1) d2,(, (W \{0}) < W\ {0}

since 7 is admissible and exp ls, is invertible. But then llat, ()] = w(az, (1)) 18 dit

ferentiable with respect to ¢ and we have di Hll,ll (2)=0. Thus u is strictly increasin?
t

on any intervall Jc[0, 1) such that Y()Texp B,. If now B, is any open ball 18
By and U,=exp B, then any admissible 7: [0, 1]-G such that y(1)eU, mos
satisfy y([0, 1])cU, since otherwise there exists a 1,610, 1[ such that to"
sup {¢€[0, 1]: ?(1)EG\exp B} and l]uy(t°)||>|lu?(l)]| which contradicts the sti¢
monotonicity of llu,)l on [#, 1].

Now consider the subsemigroup T of G

generated by exp W and let g;, &€ I
Suppose g,g,€U, then we find

an admissible path y: [0, 11-G such that V(O).:l
and y(l).=g2gl. Moreover there exists a 1,€[0, 1] such that y(ty)=g,. But sinet
y(DEU; it follows that £:=7(t)eU,. Thus sc¢ IT\TAU; implies sg€ (AN
for all geT,

Finally note that T is dense in § so that SES\SAU, implies sgeSN\SNU
for all gc§ since S\(SnU,) is closed in S, ]
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We will now use this lemma to show that under certain circumstances it suffices
to establish the existence of subsemigroups on a quotient group of G:

Lemma 1.3. Let G be a Lie group and N be a closed normal subgroup of G.

If : G—G/N is the canonical projection and W is a generating cone in L(G) such

that dn(1)(W) is a cone in L(G/N) for which there exists a subsemigroup S, of

IN with L(S,)=dn(1)(W), then there exists a subsemigroup S of G such that
L(S)=w.

Proof. Note first that by the theory of local semigroups [HL 83] we can find
a neighborhood B of 0 in L(G), a relatively closed set Zc U=exp B and a cone
W, in L(G) such that the following statements are true:

(D) exp |, is a diffeomorphism onto its image.
(i) dr(1)W, is a cone.
(iii) W\ {0}int W,.
(v) exp=1 T W,
W) IZnUCcs.
(D) W={xc L(G): exp (R*xnB)CZ}.

Since W, is a cone there exists a neighborhood V. of 0 in L(G/N) such
that dr(1)(x)€ ¥, and x€W, imply x€B,, where By is an open neighborhood of 0
In L(G) such that (exp B,)2c:U. Moreover we may assume that S, is infinitesimally
gencrated, and by Lemma 1.2 we find a neighborhood ¥, of 0 inside ¥, such that
fg*\(sn”expam V) is a right semigroup ideal in S,. Making V, smaller we may
Just as well assume that ¥,=V, and that expgnly_ 15 @ diffeomorphism onto its
image,

Now let S be the subsemigroup of G generated by e€xp W and suppose
g=H:=x exp x, ¢ U,=exp B, where xEWnB, for k=1..n and B, is a neigh-
borhood of 0 in B, such that 7 (UpCexpew V- Then we calculate:

Q)= JI;_,(mexpx) = [[; (expen dr(1)(x))€ SN eXpon Vz
S0 that for g, =JJ"  (exp x,) we have m(g,)€S:NeXPe/n V,. Let us assume
that g ¢ ¥ Then y, =exp~l g EW, and 7(g,,)€ SxNeXPon V= imply that y,€B,
Sothat g, ,,=g, exp Xp+1€(exp B U and hence g, +1€Z. Thus we have shown
that g€ since clearly g,—expx;¢Z. But this means that SnU,cZ so that
L®)=w by (vi). O

One important point in the proof of Theorem 0.6 is a good knowledge of invariant
cones in the so called oscillator algebra (cf. § 2 for definitions) and their Images
under the exponential map in the oscillator group. Even though these images can
It;e described very explicitly we need to resort to the following general lemma which

€lps us to get around very messy calculations. :
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The lemma can be obtained from [HH 85b] using the tecl.lnique of analyittl}c1
continuation. We will only sketch the proof which will appear in [HHL 87] w
all details.

Lemma 1.4. Let G be a Lie group and W be an invariant generatirfg wedge i
L=L(G). Let D be an open subset of LXL with the following properties

i
O I (o 2)eD, then (rx,0), ¢y, 0D for all O=r<1 and (x,sy)ED for a
0=s=1.

D
(i) There is an analytic function m: D—L such that . 2, (3, 2), (m(x, ), 2)¢

implies (x, m(y, 2))€ D and m (m(x, y), z)=m(x, m(y, z)), and that exp (m(x, »)=
(exp x)(exp y) for all sufficiently small x, y¢ L. oW
If we set D'={(x, y)D: (m(x, 1), 0)ED for all 1€[0, 1]} then m(W XWnD)E}

. : 5
Sketch of proof. We remark first that this really is a lemma about semialgebra
(cf. [HH 85b] for definitions). Let E—= {xcL: (x,0)cD}. For x¢E we define

Us={eL: (% 0)€D} and A, U,~L by A.(y)=mx )

. . . ; er-
Then dA,(0) turns out to be an analytic continuation of g(ad x) where g is the pow

. — )
series given by the function g(T):1 7. Moreover the map u(r)=m(x¥ )
—e

for te {reR: (x, ty)€D} is the maximal solution of the initial value problem pi/t ;;
dA,»0)(»), u(0)=x. Now one can show as in [HH 85b] that dA,(0)

f
(W—R*x)". Finally the convexity properties (i) allow us to use the methods o
{HH 85b] to derive the desired result. [

2. The main results
We start by discribing the classification of invariant Lorentzian cones. Com"
sider h,=R*XR, the 2m+ 1-dimensional Heisenberg algebra with bracket
(v, 2), (v, z)] = (0, {dvlv™)

i
where (|} denotes the scalarproduct on R* and g4 R2" R is 3 skewsymmetr!
automorphism with spectrum {&. —i}. We denote h,XR with the bracket

v, 2,7, (v, Z,r)] = (rdv’ — r'dv, {dv|v"), 0)
by 0, and call it the oscillator algebra of dimension 2m+-2. Then
qm((vx z, r)9 (D’, Z’, r,)) = rZ'+r'z+(u]v’)

1san invariant Lorentzian form op 0,. The following theorem is proved in [HH g5
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Theorem 2.1. Let L be a finite dimensional real Lie algebra and W be an invariant
Lorentzign cone in L, then W is defined by a Lorentzian form q: LXL—-R such
that (L, q) is isomorphic to the orthogonal direct sum of a compact Lie algebra (X, p)
with a positive definite form p and a Lie algebra (Ly, q,) which is isomorphic to one
of the following types:

@ L=R, q,(x,y)=—x-
(11) L=s1(2, R), g, is the Killing form.
(i) L,=0,, g,=q, for some m=1,2,3, ...

Moreover all the forms are invariant in the sense that q([x, Y], z):q(x, [y, 21} for
all x,y,z¢L. OO0

Theorem 2.1 tells us that we only need to consider three types of groups in
order to prove Theorem 0.6. Moreover it shows that the projection of the invariant
cone along the compact subalgebra is again a proper cone. If the subgroup corre-
sponding to this algebra is closed Lemma 1.3 applies as soon as we have established
the existence of subsemigroups of the groups corresponding to R, si(2, R) and
0,, with the right tangent object. For R and s1(2, R) we know (cf. [HH 85a]) that
this can be done if and only if the corresponding groups are simply connected,

ie. R and SL(2, R) respectively. It remains to check the case (O, gm)*

Lemma 2.2. Let G be a Lie group such that L(G)=0,, andlet W be an invariant
cone in 0, defined by q,,- Then there exists a subsemigroup S of G with L(S)=W
if and only if G is simply connected.

Proof. 1f G is simply connected we may view it as R¥ X RXR with the product
o, z, N, Z, ) = (v+€V, z«l—z’-!'lz {dvle?v’), r+r).

We denote this group by 0,, and call it the oscillator group. Note that the exponential
map exp: 0,,—~0,, is given by

1 1 1 4 ) . 0
exp(v, z, 1) = (T (1-e?)ydo, 2457 Hu{[’+—272-(dv|e' oprj i
(v 2 0) if r=0.
¢ when

Fro“_‘ this we see immediately that exp is a diffeomorphism onto its imag
Testricted to B= R x R]—2n, 2n[. Moreover for
D= {((v,z ), 7, r))€0,XOn: _ I <r+r <2m}
and m(x, y)=exp~* ((exp x)(exp y)) We s that the hypotheses of Lemma 1.4 are
satisfied. Hence we know that
(exp (v, z, 1) exp (v, 2, r'))€exp W for all (v 27, (Vs> rew
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with —2r<rr' <27, We may assume that Wch xR+ 'repla.CmgziV by ;{KV
if necessary. Now note that (R* < Rx[2x, =[) is a semigroup ideal in R ><R>I< rl'
Hence S=(exp W)U(R™x Rx[2x, f) is a subsemigroup of O,,. But clearly
L(S)=W s0 that the first implication is proved.

any
In order to show the converse note first that the tangent space of oW at any

point (0,z,0) for z=0 is equal to 1y, X {0}. Since exp |z is a diffeomorphism
this shows that for I =Zz we have

{x¢0,: x = lim nx,: eXp X, €(expW)I'} = R¥™ xR XR+.

d
If now G=0_/T, where I'y is any discrete nonzero central subgroup of f{,,La;H
S is a closed subsemigroup of G with L(S)=W then exp WS and by [

we have

L(S) = {x€0,: x = tim nX,5 €Xpg x,€ S},

. ; 18
But since expg is just exp followed by the quotient map =n: Q,,-~0,/I" this me;é
L(S)={xc0,: x€lim, . nx,; EXP &7 1(S)} 2 {x¢0,: xelim, ,  nx,; exp X,
(exp W)r}=Ry R« R+,

This contradiction shows that T'={0}, ie. that G is simply connected. O

o

Thus we have proved t

. . .1
he following result which together with Proposition |
implies Theorem 0.6,

. ; 4
Proposition 2.3, et G pe a Lie group and W be gn invariant Lorentzian Cog
in L(G). If L(G)= L, @L,is the decomposition provided by Theorem 2.1 and G =G, 0;

. the
where G, and G, are the analytic Subgroups of G corresponding to L, and L, then
Jollowing statements are equivaleny:

i) G, is simply connected,

(i) There exists g subsemigroup S of G such thay LS)=w. O
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