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The indecomposable modules over special biserial algebras are known to
be of a specially simple form, so-called “tree” and “band” modules
(cf. [6, 27). Crawley—Boevey has shown how to describe the homo-
morphisms between tree modules (cf. [37]) and our objective in this paper
IS to extend this result to band modules,

Tree and band modules occur as indecomposable representati0n$ of
arbitrary algebras,. Nevertheless we follow Crawley-Boevey and consider
zero-relation algebras as the appropriate context. Given two tree or ban'd
modules we fipt study certajn quiver homomorphisms between their
underlying trees or bands and it turns out that g map between the
representations g completely described by k-linear maps which are
associated to these quiver homomorphisms.

It is interesting to note that ip general the classification of maps between
fepresentations of a special biserial algebra 4 s 4 wild problem. In fact the
Maps are equivalent to the representations of T5(A4). For instance take for
A the path algebra of ap A,, 126 then T,(A4Y) is wild although the maps
between indecomposable representations of 4 are eastly to describe.

Throughout, 4 will be a fixed algebraically closed field. Maps are written
on the left.

This paper results from 3 stay at the University of Liverpool supported

by the Deutscher Akademischer Austauschdienst. | am very grateful to
Sheila Brenner for her suggestions.

TREE anD Banp MobDuLEs

L;t Q=(Q,, Q,)bea quiver, that is 3 locally finite oriented graph w_ith
vertices Q) and arrows 1+ The path algeprq kQ is the algebra which

“ Present address: Fakulgt fiir Mathematik, Universitiit Biclefeld, Postfach 8640, 4800
Biclefeld, Bundesrepublik Deutschlang.

186
0021-8693.91 5300

Copyright ©199] by Academic Press. Inc,
All rights of feproduction in any form reserved.



MAPS BETWEEN TREE AND BAND MODULES 187

has as basis the paths in Q, ie., formal compositions of arrows. A locaily
bounded factor kQ/I (cf. [1]) is called a cero-relation algebra if I 1s
generated by a set of paths of length at least two.

We denote by mod(Q, I) the category of finite dimensional kQ/I-modules.
An object M in mod(Q, I} is given by finite dimensional spaces M{(x). on¢
for each vertex x in Q, with M{x)=0 for all but a finite number of vertices.
together with linear maps M(x): M(x) — M( 1) for each arrow %X — ¥ in
O satisfying M(x,)---M(x,)=0 for each path x,---2, in I A map
f2M - Nin mod(Q, 1) is a family of linear maps f(x): M(x) - N(x). xe @,
satisfying N(a) f(x)=f(») M(x) for cach arrow z: x— y in Q.

We call a quiver a tree or cyclicif it is a finite quiver whose underlying
graph is simply connected or an A,. Now let S be such a quiver. A quiver
homomorphism F: S —» @ which satisfies the following conditions (W1)
and (W2) is called a winding of S on Q:

(W1) Fis injective on Sinks and sources, 1.e., there 18 no subquiver of
the form

x I % B
. —_— > - Or —— s —
in S with F(x)= F(f).
(W2) If S is cyclic, then F is non-periodic. ie., there is no

automorphism o # id of S with Fo=F.

If S is cyclic, then we call a winding F: S — Q cvclic and we associate
with S a fixed arrow x in S. Morphisms between windings are com-
mutative triangles. where ¢ is a quiver homomorphism,

§—2— 8

V4

Y

The notation ¢: S — S always implies F=F'o. Observe that ¢ 18 an
1somorphism if S is cyclic. Then we may assume that @(xg) = %g -
If 1S — Q is a winding which satisfies
(W3) There is no path in S whose image lies in I. Then F induces a
push-down functor F,: mod(S, 0} = mod(Q. I) defined by

F.Ma)= & M(x) for a either a vertex or an arrow in 0.
Flx)y=u

If Sis a tree, we denote by Mg 1 the kS-module which 18 one-dimgn—
sional at each vertex and in which arrows arc¢ represented by the identity.
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For cyclic S denote by Mg, ., ne{l1,2,3, ..} and vek*, the kS-_modl_lle
which is n-dimensional at each vertex and in which the identity

corresponds to every arrow except xg, where M, (x) is the n x n Jordan
block J, . with eigenvalue v,

The moduies of the form F; M, , are called tree modules if S is a tree
(cf. [3]); otherwise we call them band modules (cf. [2]).

Remarks. (1) Tree and band modules are indecomposable. We obtain
this from covering theory if we observe that the push-down F; occurs as a

restriction of F,: mod((Q, f)—+mod(Q, I) which is induced by a covering
F0-Q extending F.

SS— 0  mod(S,0)c—, mod((, /)

VAR

mod(Q, I)

F as an element wr of the fundamenta] group I1(Q, x), xe F(S) acting
freely on the universal cover O, and choose as covering F: J/N - 0, wh_er_e
N is the normal subgroup of 77(Q, x) generated by w,. The covering F 18
Galois (cf [4]) and extends F because F g injective on sinks and sources.
The induced push-down F, preserves indecomposables (cf. [4]).

(;2) Tree and band modules may be defined over an arbitrary algebra
kQ I'if we replace (W3) by the following condition:

(W3 If ¢, . V. are pairwise different paths in (Q with

271 2t,.€ ] for some %€ k¥, then there is no path ¢ in S with Flv)=v,for
any /.

In fact we may then regard F, as the composition
F,:mod(s, 0) - mod(Q, ') » mod(Q, /),

where I'27 is generateq by a suitable set of paths, and mod(Q, ')~

mod((Q, /) is the canonical embedding, Ip this sense all results of this note
Teémain true over an arbitrary algebra.

(3

) An algebra 4 is called specig) biserial (cf. [5]) if 4 is isomorphic
to a locally b

ounded factor kQ/J which satisfies the following condition:
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(S) If F:.S— Q is a winding which satisfies (W3), then there is no
subquiver of Dynkin class D, in S.

For a special biseral algebra tree and band modules correspond to the
representations of the first kind and the representations of the second kind,
respectively, and there are no more indecomposable modules except those
projective-injective modules which are not uniserial (cf. [6, 2]).

THE THEOREM

Let kQ/I be a zero-relation algebra and let X=FM,,, and
Y=G,M,, , be tree or band modules. The theorem gives a description of
Hom(X, Y) which is based on an analysis of maps between the underlying
windings F and G.

Consider triples (U, a,t) connecting F and G, where H:U—~Q 15 a
winding and o: U — S and 1: U — T are winding morphisms. According to
our convention they satisfy Fo = H=Gt.

S’ U———>T

N

A morphism between triples (U, ¢', ') and (U, o, 7) is given by a winding
morphism 1: U’ - U which satisfies o' =01 and t =1 This is an
isomorphism if 1 is an isomorphism and we define (U's’, v )< (L. o, t}if1
is an inclusion. Now choose a complete set # = #(F, () of representatives
of isomorphism classes of triples. The relation < induces a partial order on
# and therefore on any subset of #. An element (U. a. 1) is called cyclic if
U is cyclic. We call a triple (U, 0. 1) admissable if it satisfies the following
conditions:

(A1) If xis a vertex in ' and f§ is an arrow in S ending at o(x), then
there is an arrow x ending at x with a(x)=f.

(A2) Ifxisa vertex in U and f is an arrow in T starting at t(x). then
there is an arrow x starting at x with t(2)= g

LEMMA. Ler i, j be a pair of vertices in S and T, respectively. There is at
most one admissible triple in

U, = {(U, o, 1)|there is avertex X in U witha(x)=1it(x)=] ;.

Proof. Suppose first that there is no cyclic element in ;. It.is an
immediate consequence of (Al)} and (A2) that any admissable triple 1s
maximal in #. Therefore it is sufficient to prove that a maximal element
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(U,o,7)in %, is uniquely determined. Suppose there is a secgnfi ilia?(lrrlal
element (U’, ¢, t') in #;. Consider a maximal triple uw = (0, g, 7) in U
which satisfies y <(U,0,1)and u < (U',a', 7). We may identify U with the
corresponding isomorphic subquivers of U and respectively anﬁ our
claim is U=0= . Otherwise there is an arrow x in Uuu startlpg or
ending at a vertex x in [ We seek to contradict the maximallty’ of
(U, o, t). Therefore attach a2 to U at x and extend ¢ and 1 by a(x)=0'(%)
and t(x)=1'(x) respectively. Tt remains to verify (W1) for the extended
map H=Fg=Gr. Assume there is an arrow f in U T such that z and B
are both starting or ending at x. Since B¢ U, we have a(f)#a'(x)=0l(2)
or T(ff)# t'(2) = t(x); otlerwise 1 would not be maximal. Then, applying
(W) for Fand G, it foliows that H(f)+# H(x), hence (W1 ) for H. Thus we
have constructed a triple of #%,;, which is strictly greater than (U, g, 7).
Contradiction.

Now suppose there exists a cyclic element in U,. A cyclic triple (U, g, 1)
is unique because ¢ and ¢ are isomorphisms by a previous remark. Any
non-cyclic element (U, 4, T) €U, consists of windings of the linear quiver U
round S'and T by ¢ and T respectively. A simple argument shows that they
do not satisfy (A1) and (A2).

¢ associate to each admissible triple « = (U, 7, 7} a space H , of k-linear
maps. Define

Hom, (k" k™ ). if ais non-cyclic:
H, =<{f¢ Hom, (k" k™) f=(x)], if aiscyclic and v = u:
0, if aiscyclicand v # 4,
where (x) is of form
0 0 K, ko Ky
(4)=| : o "
0 0 x,
or
K, Ka o Ky
0 K
()= K,
0
0 0

with x, e k and r=min(n, m).
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THEOREM. Let kQ/I be a zero-relation algebra and let X=F Mg, . and
Y=G,M,,, be tree or band modules. If o/ = </ (F. G) denotes the set of
all admissable triples in #4(F,G), then there is an isomorphism between
Hom(X, Y) and @ ,. ., H..

The proof provides the construction of k-lincar maps @: Hom(X, Y) -
D, H, and ¥: D, . H,— Hom(X, Y) which are inverse to each
other. This requires the choice of a single vertex dq in U for each
a=(U,6.7) in ./ which is arbitrary. A homomorphism f:F,Ms,. =

G, My, in mod(Q, ) 1s given by a collection of maps

‘/‘(x) = C_B j‘f:f: @ MS.H_\'(‘[) - @ MTJn_,u(j)’ XE QO

Fli)=x Glji=x

and we may alternatively use the matrix f = (fidiesojers OF k-linear maps.

Moreover to each arrow & s— ¢ in @ there corresponds a commutative
square

X(‘S) = @ MS.M.\'(II) __GB_I‘L,) @ MT.m.y(Ji) = Y(S)

Fli)=s Gljy=+
D Fin—: MSM(Z)J @z Mrmd b (**)
= M) =Y(D)
X(I): @ in'.rz.\'(p)d—’ @ T.m.,u(q -
Ftp)y=1 Glyg)=1

since  Y(&) f(s)= f(r) X(¢). In particular one obtains from (#%) the
fOiIOWiﬂg commutative square for a pair of arrows . i—pin Sand fiij—y¢
In T with F{x)= G(p):

‘Mﬁ'.n,\(i) —_ie *MT,m_,u(j)

* ¥ K
My o2 thmﬂﬁ; ( }

"MS_ r!_r(p) L ﬂ[?".m\,u(q}

This decomposition of (*x*) follows from (W1) for Fand G.

First Step. We describe the map @ fr=> (f)ue For each
a=(U,o,7)esd put f,=f; where i=0lao) and j=Tt{do)- Clearly
f.€ Hom,(k", k™). In order to show that f,€ H_ we have to verify an addi-
tional property if a is cyclic. To this end we may arrange the squares of
form (xxs), where the pair (z, §) runs through {(o(;), 7(7))|v€ U1} in 2
sequence as follows, using the fact that o and  are isomorphisms between
cyclic quivers:

481 137 |13
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Mg, i) 2250 My o M ()

e by ]

MT_m,,u(j) M’) MT.m.,u(j’) o MT_m.,u(j)

For convenience we have choosen d, as the starting vertex of «,.. The dots
indicate the maps M, (%) and My, (%), where x runs through all
arrows of S and T, respectively, except « and 27. The vertical maps are
the corresponding summands of /. Since the horizontal arrows, except the
first, in each row represent the identity of &7 and &7 respectively we obtain
f3Jue=J, Sy This implies Jy=01f vs£p and, if v =y, then £, if of form
(*) as in the definition of H,.

For later use we observe that, given a pair i,jeS,x T, such that

aeU,n o/, the maps f, and f, are equal up to certain isomorphisms which
depend on the choice of X5, 27 and a,:

Si=Tn T, for some integers s and 1.

Second Step.  We shall construct maps ¥ .:H,— Hom(X, Y) which
extend to a map - D... H,—Hom(X, Y). Let a=(U, o, t)eo and
JE€H,. Define ¥,(f)=(,) by f,= £ if i=s(a,) and j=1(a,). and by
claiming commutativity of the diagrams (+*x), where the pair (2, f) _runsr
through {(a(;), Wy By e U, ). Finally put /. =0 if there is no vertex x in U
with i=g(x) and j= 7(x). If we summarize the commutativity of all single
squares, then we obtain the commutativity of the square (+*) for each

arrow < in Q because 4 is an admissable triple and fe H,. Hence ¥, (f)1s
a homomorphism in mod(Q, /).

Third Step.  To conclude the proof of the theorem we verify that the
maps ¥ and @ which we have constructed are inverse to each other. The
key for this is the lemma. Let /=(1),. ., be an element of ®,.., H, and
let @’ .o/ be a fixed triple. The equality PV, (f,)s=f, is trivial, and the
fact ®¥ (£,), =0 for all a#d’ is a consequence of the lemma. Thus
PY( 1), =1, for any fand any «'. hence ¢y — id.

We now show that YO(f)=f for a map f:X - Y. Fix a palr

LJES,x T,. Suppose first that there is no admissable element in #,. Then
£;=90 for cvery ge Hom(yx, Y) follows from the commutativity of the
diagram () (after replacing f by g). This proves ¥&(f), =0=f;. Sup-
POse now that %, n o7 % . Then there is a unique admissible a’ € %;. I_f we
write @(f)=( f.), then f. and S, are related by certain isomorphisms
which were discussed ip the first step. The definition of ¥,., eValuatc(_i al

€se relating isomorphisms and gives

L, involves the inverse of th
Wa'(fa’)tj:-ﬁfi; the lemma provides Yuf);=0 for all a# a' and therefore



MAPS BETWEEN TREE AND BAND MODULES 193

Wa(f),=f; Hence P@=id holds and the proof of the theorem 1is
complete.

Remark. 1f we restrict ¥: @®,_., H,—Hom(X, Y)toa fixed summand
H,, then we may describe f=Y(/f,): X~ Y, where 0#f,eH,, by a

as

natural factorisation, whose form depends on a = (U, o, 7) as follows:

- d . . - .
rX ryy iy 7= (H, M_ ), %f UlS not f:ychc,
H Mg . if Uis cyclic.

He're H denotes the winding Fo = Gt and d=dim, Im /,. If ¢ is monic then
f, is an epimorphism and if t is monic then /. 1s a monomorphism.

AN EXAMPLE

Given two windings F: S— 0 and G: T — Q, calculation of the elements
(U, 6, 7)e.o =.o/(F, G) is fairly simple. In fact the injectivity on sinks and
sources of ¢ implies that U may be identified with a connected subquiver
S" of the universal cover § of S. Thus (U, o, 1) is described by a
homomorphism ¢: §' — 7. We give a precise alternative description of .+/.

Let 7: § — S be the universal covering of the quiver S and denote by &/
the set of maps of form ¢: $' =T which satisfy the following conditions:

(H1) S'is a finite connected subquiver of S.

(H2)} ¢ is a quiver homomorphism with Fm = Go.

(H3) If x is a vertex in S" and x IS an arrow in § ending at x then
x lies in S

(H4) If x is a vertex in S’ and f is an arrow in T starting at @{x)
then there is an arrow 2 in S’ starting at x with ¢(2)=§.

PROPOSITION.  The map ¢ — (S’ 1w, @), where @ staris dl S and 1 is the
nclusion S’ S, defines u bijection between <" and the non-cyclic triples of
. There is a cvelic triple in o, which is necessarily unique, if and only if
Fand G are isomorphic cyvclic windings.

Note that according to the lemma the cardinality of ./ is bounded by

card o/ <card{ (i, j)€So % Tol Fli)y=GUY

although § may be infinite.
As an example we consider the following quive

Q:x GO B ﬂazaﬁ:a":ﬁ3=0.

r with relations:
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The cyclic quivers § and T in this example are obtained by identifying th_e
ends of the following linear quivers. Their arrows are labeled with their
images under F and G respectively.

S I«Lg__“_,3<_fi_4<i_5_“_,6_i+7<—”—8—1>l
LN SN

The following table shows the maps in .2/". A map ¢,:S, > T in o is

given by their images ®,(q) which are listed horizontally. Here ¢ runs
through the vertices of S,.

g= 1 2 3 4 5 6 7 8
0, — 4 | 2 3 4 1 2
¥ 1 2 — — — — — 4
3 - — — 1 2 — — —
@Dy - — — — 4 1 — -
Ps - 1 — — — — - —
7" — — — — 1 — — —
@ — — — — — — — 1
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