Efficiency of Universal Parallel Computers

(Extended Abstract)

by
Friedhelm Mever auf der Heide
Johann Wolfgang Goethe~Universitdt Frankfurt
Fachbereich Informatik
6 000 Frankfurt a.M.
Fed. Rep. of Germany

Abstract:

We consider parallel computers (PC's) with fixed communication network with bounded

1+0(1/1log log (n _
degree, We eonstruct a universal PC with n (1/10g log ())processors vhich can

simulate each PC with n processors with a time loss of O(leg log(n)). This improves
a result of [1] where a time loss of O(log (n)} was achieved but only using O(n)
processors. Furthermore we prove a time-processor trade-off for a very general type
of universal PC's, which includes thatone above. This generalizes a result for a
simpler type of simulations presented in [2], where also all results of this paper

are included.

Introduction: Galil and Paul dealt in [1] with parallel computers (PC's) with fixed

communication network with bounded degwee:

A PC M is specified by a graph with bounded degree and by processors which are
attached to the vertices of the graph. We suppose that these processors are Random
Access Machines ({see [3]) which my in addition to their usual instructions read in
one step the content of a fixed register - the communication register — of one of
its neighbouring processors. M has fixed input - and outputprocessors. We assume M

to be syncronized.

A multi-purpose PC (MPC) is a PC whose processors are universal Random Access Ma-

chines (see [3]). we say, M_can simulate a PC M with time loss k, if there is a

0 . ;
brogram for MO (i.e. for every processor of MO) such that MO initialized with this

pProgram simulates M and the time it needs to simulate T steps of M is at most k°T,

i.e., the time for simulating one step is at most k on an average.

Eeh;; called n-universal with time loss k, if it can simulate each PC with n pro-

cessors and degree ¢ with time loss k, where

c>2 is fixed@ all over this paper. In

[1], a n-universal PC M_ with O{(n) processors and time loss 0(log (n)) is construc-

0
ted.

R . 1+0(1/log login))
In the first chapter, we construct a n-universal PC with n

Processors but with a time loss of only 0(log log(n)).

In the second chapter, we present a time -processor trade-off for n-universal

222

PC's MO' which use simulations with the following property: Let M be simulated for

T steps. Then at every time tST, each processor of M is simulated by at least cne

processor of MO, its representants at time t. If P and Q are neighbouring processors

of M, then for every representant of P at time t, there must be a path to some rep-

resentant of Q at time (t-1} aleng which the communication is simulated. The maximal

length of such a path for some neighbouring processors P and Q let be Kt. Then the

time loss of the simulation is

1 T

E--Z kt'
i=1

The simulations of the universal PC from the first chapter are of this type. We

prove that every n-universal PC with m precessors and time loss k fullfils that

m*k={(n log(n)/log log(n}}.

In [2] alsoc a trade-off m*k=0(n log (n)) is proved for the case that MO only uses

simulations in which the representants at time t for some processor are identical

for all t. The n-universal PC from [1] fits to this type but not thatone from the
first chapter of this paper.

Chapter 1: A fast universal PC.

The basic network of the universal PC we want to construct is a generalizaticn of a

permutation nerwork, we call it a distributor.

This is a MpC M, with m distinguished processors, its base B=[1,m] (={1,...,n}),
which are both input -and output- processors, MO has the property, that there is a

program for MO for an arbitrary disjoint partition A .+A_ of B such that M, star-
m

' 0

ted with xi € N* (*) in processor i of B, i=1,...,m,computes y, in the j-th proces-
]

sor of B with yj=xi iff j € Ai for all i,3 € {1,m]. We than say, M_ distributes

O
X conygX) according tO A - A -
(1 ! ' m ' m

1
Note that some Aj's may'be empty.
Let G be the graph with vertex set V={Cij' i=1,...,m, j=0,...,[10g (m)]-1}.
{cij' ci'j'} <V, j&j', is an edge in Gm' if j*'=j+1 and either i=i' or]i-i'|=2j
or if j=j'=0 and |i-i'}=1. The MPC W is specified by G_ and the base
m

B={ci 0’ i=1,...,m}. (All its processors are universal Random Access Machines).

r

Figure 1 shows W7.

EiSHES_li The MPC w7.

m w= Vot

30 + N is the set of non-negative integers,

223

Because of the similarity of W to the Waksman Permutation Network {see [4]) one

can prove the following (see [2]}:

Theorem 1: Wm is a m-distributor with the properties:
Pl: Wm has m[log (m)] processors and degree 6.

P2: For a,b € [1,m], asb, the MPC whose graph is the subgraph of G with vertex

set {Cij' i=a, a+1,...,b; j=0,...,[1og(b—a+1)]—1} is identical to wb—a+1'

m

P3: For every disjoint partition Al,...,Am of [1,m], (xl,...,xm) € (N*) " can be

distributed according to Al,...,A in O(log(m)+s) steps, where s is the maximum
m

length of the xi's.

Now we shall show how W (for a suitable m) can simulate a PC M with n processors
m

P .,Pn and graph G with degree c. (We identify the processors and the correspen-

i

ding vertices of G). For scme P, and g £ N let Uq(Pi) be the set of all processors
i

of M which can be reached along a path of length at most q from Pi. Let f,g,h:N*N

be functions such that f(n)<n and g{n)2neg{f(n)) for all n>1 and #Uh(g)(Pi)ﬁq for

h(n)
all g<n d—————ENf 11 n2i.
q an hE@)) € or a n
We want to simulate M in W .
g(n)
For i=1,...,n let M, be a PC with f(n) processors from P1""’Pn including those
i

from U . M is the restriction of G on the processors of M..

h(f(n)) (Pi) The graph of i i

Let W ,...,W i in W . We can find them because of P2
e Wl, ..,Wn be n exemplaries of wg(f(n)) in 4 ()

of theorem 1 and the definition of g.

The following simple lemma is the main observation for our algorithm:

Lemma 1: If for some i € [1,m], M and M, execute h(f{n)) steps then the processors
— 1

Pi in M and M, resp. have executed the same computation.
i

The simulation of h(n) steps of M by wg(n) works as follows:

If nZc, then use any simulation which uses a number of steps only dependent on n.

h(n)
If n>c, execute E%é%%yy times the following three parts: (note that REmT € N.)

Part 1: For each i € [1,n] simulate recursively h(f(n}) steps of M, in W,.

Remark: By lemma 1, there is a processor of Wi which simulates Pi correctly rela-

tive to M. This is the main representant of Pi' But in Wi and in other Wj's, too,
there are processors which simulate Pi but make mistakes during the simulation.

These are its potential representants.

Part 2: For each i € [1,n] transport the information about the last h(f(n)) steps

Pi has executed from its main representant to its potential representants.

224

Remark: This can be done because W is a g(n)-distributor.

g{n)

Part 3: Each potential representant of some Pi uses the information got in part 2

for computing the right configuration of Pi relative to M.

OCbvicusly we have simulated h(n) steps of M. Let now P € N, p>1 be fixed. N 1

1 4+—
1 -1
We may choose f(n)sn /P, h(n)~a*lcg (n) for some suitable >0 angd g(n)=|n P _J.

Let T(n) be the time necessary to simulate h(n) steps of a PC with n processors

by W

g(n)

Then the above algorithm shows

T(n) £ a for some a,>0, if n<c . If n>c, then

0 o}
hin)
T(n) £ E@T [T(£(n)) + 0 (log(g(n)) + h(n))]

i
s peT{n /P) + O(log(n)).

Thus T(n) = O(log(n) log log(n)) which quarantees a time loss of 0(log log(n)).

We can improve this result in the following way. At the top of the above recursion

1
we choose f{n) = n /1og 1og(n) instead of nI/P. Fer the resulting subproblems of

1/10g log(n)

size n we apply the above algorithm.

Thus we obtain for the size of MO: g(n)kh-g(nl/log lOg(n))=n-(n1/log 1og(n)§+1/(p-1)
1
£n *8/10g 1og (n) for some B>0. Thus we may choose g(n) =[n1+8/l°g 1°g(n)J.

As we may choose h(n) = 0(log(n)) we obtain:

log log(n)

T(n) =0{log(n)=* o)

) . (T(nl/log log(n)) + O0(log(n)))

0(log log (n))'(log(nl/lcg lOg(n))'log log(nl/log 1og(n)) + 0{log(n)))

0(log log (n)+*log (n)).

1+
Theorem 2: Let g(n) = |n B/10q 1og(n)J for some guitable B>0.

Then wg(n) is n-universal with time loss log log (n).

Chapter 2: The Time - Processor Trade—Qff

Let M, be n-universal and M a PC with n processors [1,n] , the processors of M_ let

0
be [1,m]. The degree of the graph G0 of MO let be d, thatone of the graph G of M let
be c.In the sequel we shall identify the graph of a PC to the PC itself.
A simulation of T steps of M by MO is a sequence (B R 3 W) with the

operties 1,t n,t” t'tsT
proper :

For every tiT, B1 t""'Bn ¢ are pairwise disjoint subsets of the vertex set [1,m]
’ ’

of HO'Bi,t is the set of representants of the vertex i of M at time t. Wt is a set

225

of pathes in M It contains for every representant x of some i at time t a path

from x to one gepresentant of each neighbour of i in M at time t-1. If kt is the
1ength of a longest path of Wt, then kt is called the t-time loss and
n

% z kt the time loss of the simulation. If h:=max { I #Bi e t<T}, then we say

i=1 i=1 !
that the simulation uses h representants.
A simulation with time loss at most k using at most h representants is called
a (h,k)-simulation.
Obviously, the simulations from chapter 1 are (g(n),0(log log(n)) - simulations.
It seems to be very unlikely that reasonable simulations can be constructed which
are not of this type. Therefore we call a n-universal PC which only uses (h,k)-simu-
lations n-universal of the general type with time less k using h representants. For
such PC's we prove:
Theorem 3: ILet MO be a n-universal PC of the general type with m processors and
time loss k, using h representants, then hek={1(n log(n)/log log(n)) or

m=nQ(n log(n)/h).

As hZm, we obtain the following time-processor trade-off:

Theorem 4: Let M_ be a n-universal PC of the general type with m processors and

time loss k, then m*k={l(n log(n))/log log(m)).
Now we prove theorem 3.

The idea of this proof is as follows:

To each (h,k)-simulation of a graph with n vertices by MO' we attach a fragment, i.e.
an object which still specifies the graph being simulated. For technical reascns we
only consider graphs which contain a balanced, binary tree. The set of these graphs
let be called E , Now the number Y of fragments of (h,k)-simulations of graphs from
En is an upper Eound for the number of graphs from En which can be simulated by MO
with time loss k using h representants.

(Note that this bound is smaller then the number of (h,k)-simulations, because
different such simulations may have the same fragment.}

On the other hand we bound #En from below. As every graph from En must be simulated

by M, with a (h,k)-simulation, y2#E_, which will prove the theorem.

]
We first state the bound for HE . A proof can be found in [2].
c-3 n

2 -a.

Lemma 2: #E 2 n -2 n for some a>0.
n

Before defining and counting the fragments, we state some estimations from [2] which

we will need in the sequel.

Lemma 3: a) For all k,n € N, 15ksn, (kiﬁn .

228

n
p) #{(a_,...,a) € (v~ {0hH™ | © a shicb
1 n i

i=1
n
c) Let (@yseeva)y b,ee,b) € (NN {0h
Let p € N such that p'aigbi for every i € [1,n],
n n

n
and I a.sh, ¥ b.<h. Then ™ (
. 1 . 1 .

i=1 i=1 i=

i 2h h
e *p.

~—
A

Now we define the fragments. Let D be a balanced, binary tree with vertices [1,n].
D has depth [log(n)J.

Now let A € N be fixed, A £ n. A will be specified later,.

Let r € N and Vl,...,Vr be r subsets of [1,n] of cardinality A, which cover [1,n],
such that for every i € [1,x], the subgraph of D induced by V is a balanced,
binary tree of depth llog(A)J Obviously, V

w5

1,---,V can be chosen such that r £
and every i € [1,n] is contained in at most two of the v,

We assume that T22|log(A) | + 1. Let (B B W)

e, e e e £

be a (h,k)-simulation for some graph from En' For t € [1,T] let kt be the t-time
loss of the simulation.

We count the number of graphs for which there ig a (h,k)-simulation as follows:

For some t, we count the number of possible choices of ByseewsB = B:O,...,Bio in
a strategy. Afterwards we estimate the number of possible choices of sets S of edges
of graphs which can be simulated by a strategy with the above representants at time
t0 and (t0+1)—time loss kt e Unfortunately, this method, i.e. the choice of
(Bl,...,Bn,S) as fragments, is to weak for Our purpose, because there are too many
choices for Bl,...,B - Therefore we first fix the representants B' ,...,B' of r
suitably chosen vertices of ¢ - one from each V - at time t -2[1og(A)J There
number is not too large if tO is chosen reasonably. As all considered graphs con-
tain a balanced binary tree, after having fixed Bi...B the number of choices of
Bi""'B decreases con51derably.

Formally a fragment is defined as follows:

t0+1

Let to € [2[log(A)J, T-1] be chosed such that této—leog(A)J+1kt) is minimal rela-
tive to the choice of to. This sum is called R

0 *
Now a fragment of (Bi,t""'Bn t'wt)t<T is specified by a tupel

(Bl,...,Bn,Bi,...,B;,S) as follows:

(B,,...,B) = (B «..,B).
1’ "“n 1,t0' ! n,t,
If j € [1,r] and ij € vj such that B,
’ *3
tive to the choite of i., then B'=B_
i 3 1j,t0—2[iog(A)J.

la-
.t ‘2[10g(A)J has a minimal cardinality re

227

s:={{x,y) € [1,m]2/x € B, . and there is an i € [1,n],

"0
such that there are two (t0+1)—transport pathes in Wt +1 which join
o]
¥ and y to the minimal element of Bi,t0+1}'

Let R be the number

of graphs from E for which there is a (h,k)-simulation in MD' and Y the number of
n

fragments of (h,k)-simulations for graphs from En.

Obviocusly a fragment still specifies the graph being simulated. Therefore, the follo-

wing holds:
Prop. 1: R £ Y.

Before we bound Y, we state some easy properties of the fragment described above.

r

Prop. 2: a) K_ +1§R0§2k(2Llog(A)J+1) b) I #B] <

2n
0 i=1 A

c) For every j € [1,r] and every i € Vj, B, U, (B%). (Let G=(V,E) be a
0
graph, B < V, a € N, then Ua(B) is the set of vertices from V, which

can be reached by a path of length at most a from some vertex from B.)

Now we b .
ound Y 2h

A 4h h
Prop. 3: y £m A _d(h+2cn)(5k log(l—\)).e _(;Jn'
Proof: First we bound the number Y1 of all tupels (Bl""'Bn'BI""'B;)' which be-
long to a fragment of a(h,k)-simulation of a graph from En.

2n
Claim 1: v, <m A -e4h-dh(R0+1).

. : e ' .. , B',...,B' b

Proof: Let the cardinalities hl""'hn ' hi""'hr Of Bys.---vBy v By B De
fixed.

- By lemma 2.b) there are at most 22h possible choices of hl..-..hn 0 RN

r : ;
~ There are at most i7 (ﬁ!) possible choices of Bi,...,B;.

1
- For j € [1,r] let v! c v, chosen such that Vi,...,V form a disjoint partition
J

1
of {lln]-

By prop. 2.c) it follows for every j € [1,r] and every i € V5 : There are at most

possible choices for Bj -

Therefore we obtain:

228

r

Yy, <2° «q ()
h'/ |
g=1 g j

R _+1

m h! = d 0
1 ify' \ 7 n,
J 1

(L |

Applying lemma 3.a) and c) we obtain

r

Thy

i= 2h
2h, i=1T | h(Ror1) |

.

¢
A

r which proves claim 1.

T
By prop. 2.b), z hi

i=1

Now we bound for some fixed sets B .+B_ , B!,...,B' the number Y2 of fragments
r

1'°""*'"q 1

of (h,k)-simulations which can be formed by these sets.

2(kt0+1+1)cn
Claim 2: ¥, 5() .a ;

g |

Proof: If (Bl,...,Bn ’ Bi,...,B; + 8) is a fragment of a (h,k)-simulation it follows
for §:

- There are at most n different first components of pairs occuring in S, one in each
Bi' ieg [lrn]-

- At most ¢ second components belong to each first component x.

They are contained in U2(kt +I)(X)'

0

For i € [1,n] let hi = #Bi. Then there are at most

= 3

h, £ (E)n possible
i n

i=1

choices for the n first compcnents of the pairs of S,

In order to fix the second components for some first component x, there are at most
2k +1
t0+1
d possible choices.
c

Therefore it follows by lemma 3.a):

n
n Zkt0+1+1
£ (=) *¥a
Y2 =)
[of
. n {2k e+1+1)cn
£ (= -4 .
n
As Y S Y -

{ YZ’ prop. 3 is proved by claim 1 and 2 and the bounds for RO and kt 1
0
from prop. 2.a),.

229

Now we are able to prove theorem 3.

c-3
By lemma 2, #E 2 n 2 2 .
n
W.l.o.g. we may assume that c 2 4.

As pointed out when describing the idea of the proof, we get:

c~3 2h n
a3 M o,man o, o 'e4h 'd(h+2cn)(5k log(A)) _(%))
Therefore,

A -3
h (EE—) n log(m) - a n-4h log(e))
mz2 2
A
—— {-log(d) {(h+2cn) (5klog(A)} - log(ﬁ)n)
. 22h n

Let a, ra, > 0 be chosen such that E%i > a2=a1(4log(e) + 5(2c+1)log{d)).

and let hek*log(a) £ an login).

Then log C%) < log log(aln) and it follows:

A -
2 (&2 _ .) nelog(n)-a*n-nslog log (a, n))
o 2 22h 2 2 1
A
Q=)
2 n . Now we choose A = [log(n)J and obtain thecrem 3.

References:

[1] z. Ga1i1, A Theory of Complexity of Parallel Computation.
W.J. Paul: Proc. of the 13th Annual ACM Symp. on Theory of

Computing, Milkwaukee, May 1981, pp. 247-262.

(2] F.Meyer auf der Heide: Efficiency of Universal Parallel Computers.

Interner Bericht des Fachbereichs Informatik der

J.W. Goethe-Universitit Frankfurt, 2.82.

(31 w.J. Paul: Kemplexitdtstheorie.
Teubner Verlag, Stuttgart, 1978.

(4] A. waksman: A Permutation Network. Journal of the ACM, 15(1)
(1968) pp. 159-163.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9

