Efficiency of Universal Parallel Computers (Extended Abstract)

by

Friedhelm Meyer auf der Heide Johann Wolfgang Goethe-Universität Frankfurt Fachbereich Informatik 6 000 Frankfurt a.M. Fed. Rep. of Germany

Abstract:

We consider parallel computers (PC's) with fixed communication network with bounded degree. We construct a universal PC with n 1+0(1/log log (n)) processors which can simulate each PC with n processors with a time loss of 0(log log(n)). This improves a result of [1] where a time loss of 0(log (n)) was achieved but only using 0(n) processors. Furthermore we prove a time-processor trade-off for a very general type of universal PC's, which includes that one above. This generalizes a result for a simpler type of simulations presented in [2], where also all results of this paper are included.

Introduction: Galil and Paul dealt in [1] with parallel computers (PC's) with fixed communication network with bounded degree:

A PC M is specified by a graph with bounded degree and by processors which are attached to the vertices of the graph. We suppose that these processors are Random Access Machines (see [3]) which my in addition to their usual instructions read in one step the content of a fixed register - the communication register - of one of its neighbouring processors. M has fixed input - and outputprocessors. We assume M to be syncronized.

A <u>multi-purpose PC (MPC)</u> is a PC whose processors are universal Random Access Machines (see [3]). We say, $\underline{M_0}$ can simulate a PC M with time loss k, if there is a program for $\underline{M_0}$ (i.e. for every processor of $\underline{M_0}$) such that $\underline{M_0}$ initialized with this program simulates M and the time it needs to simulate T steps of M is at most k·T, i.e. the time for simulating one step is at most k on an average.

 \underline{M}_0 is called n-universal with time loss k, if it can simulate each PC with n processors and degree c with time loss k, where c>2 is fixed all over this paper. In [1], a n-universal PC \underline{M}_0 with 0 (n) processors and time loss 0 (log (n)) is constructed.

In the first chapter, we construct a n-universal PC with n $^{1+0}(1/\log\log(n))$ processors but with a time loss of only $0(\log\log(n))$.

In the second chapter, we present a time -processor trade-off for n-universal

PC's M_0 , which use simulations with the following property: Let M be simulated for T steps. Then at every time t \leq T, each processor of M is simulated by at least one processor of M_0 , its representants at time t. If P and Q are neighbouring processors of M, then for every representant of P at time t, there must be a path to some representant of Q at time (t-1) along which the communication is simulated. The maximal length of such a path for some neighbouring processors P and Q let be K_t . Then the time loss of the simulation is

$$\frac{1}{T} \sum_{i=1}^{T} k_{t}.$$

The simulations of the universal PC from the first chapter are of this type. We prove that every n-universal PC with m processors and time loss k fullfils that $m \cdot k = \Omega(n \log(n)/\log \log(n))$.

In [2] also a trade-off $m \cdot k = \Omega(n \log (n))$ is proved for the case that M_0 only uses simulations in which the representants at time t for some processor are identical for all t. The n-universal PC from [1] fits to this type but not that one from the first chapter of this paper.

Chapter 1: A fast universal PC.

The basic network of the universal PC we want to construct is a generalization of a permutation nerwork, we call it a distributor.

This is a MPC M_0 with m distinguished processors, its base B=[1,m] (={1,...,m}), which are both input -and output- processors. M_0 has the property, that there is a program for M_0 for an arbitrary disjoint partition A_1, \ldots, A_m of B such that M_0 started with $x_i \in N^*$ (*) in processor i of B, i=1,...,m,computes y_j in the j-th processor of B with $y_j = x_i$ iff $j \in A_i$ for all i, $j \in [1,m]$. We than say, M_0 distributes (x_1, \ldots, x_m) according to A_1, \ldots, A_m .

Note that some A 's may be empty.

Let G_m be the graph with vertex set $V=\{c_{ij}, i=1, \ldots, m, j=0, \ldots, \lceil \log (m) \rceil -1 \}$. $\{c_{ij}, c_{i'j'}, \} \subset V, j \leq j', \text{ is an edge in } G_m, \text{ if } j'=j+1 \text{ and either } i=i' \text{ or } |i-i'|=2^{j'} \text{ or if } j=j'=0 \text{ and } |i-i'|=1. \text{ The MPC } W_m \text{ is specified by } G_m \text{ and the base } B=\{c_{i,0}, i=1, \ldots, m\}. \text{ (All its processors are universal Random Access Machines).}$

Figure 1 shows W_7 .

Figure 1: The MPC W7.

^(*) $N^* = \bigcup_{i \ge 0} N^i$, N is the set of non-negative integers.

Because of the similarity of W_m to the Waksman Permutation Network (see [4]) one can prove the following (see [2]):

Theorem 1: W is a m-distributor with the properties:

P1: W_m has $m \lceil \log (m) \rceil$ processors and degree 6.

P2: For a,b \in [1,m], a \leq b, the MPC whose graph is the subgraph of G_m with vertex set {c_{ij}, i=a, a+1,...,b; j=0,..., [log(b-a+1)]-1} is identical to W_{b-a+1}.

P3: For every disjoint partition A_1, \ldots, A_m of [1,m], $(x_1, \ldots, x_m) \in (N^*)^m$ can be distributed according to A_1, \ldots, A_m in $O(\log(m)+s)$ steps, where s is the maximum length of the x_i 's.

Now we shall show how W_m (for a suitable m) can simulate a PC M with n processors P_1,\ldots,P_n and graph G with degree c. (We identify the processors and the corresponding vertices of G). For some P_i and $q \in N$ let $U_q(P_i)$ be the set of all processors of M which can be reached along a path of length at most q from P_i . Let $f,g,h:N\to N$ be functions such that f(n) < n and $g(n) \ge n \cdot g(f(n))$ for all n > 1 and $\#U_{h(g)}(P_i) \le q$ for all $q \le n$ and $\frac{h(n)}{h(f(n))} \in N$ for all $n \ge 1$.

We want to simulate M in $W_{q(n)}$.

For $i=1,\ldots,n$ let M_i be a PC with f(n) processors from P_1,\ldots,P_n including those from $U_{h(f(n))}$ (P_i). The graph of M_i is the restriction of G on the processors of M_i . Let $\overline{W}_1,\ldots,\overline{W}_n$ be n exemplaries of $W_{g(f(n))}$ in $W_{g(n)}$. We can find them because of P2 of theorem 1 and the definition of g.

The following simple lemma is the main observation for our algorithm:

Lemma 1: If for some $i \in [1,m]$, M and M execute h(f(n)) steps then the processors P_i in M and M, resp. have executed the same computation.

The simulation of h(n) steps of M by $W_{q(n)}$ works as follows:

If $n \le c$, then use any simulation which uses a number of steps only dependent on n. If n > c, execute $\frac{h(n)}{h(f(n))}$ times the following three parts: (note that $\frac{h(n)}{h(f(n))} \in N$.)

Part 1: For each $i \in [1,n]$ simulate recursively h(f(n)) steps of M_i in \overline{W}_i .

Remark: By lemma 1, there is a processor of \overline{W}_i which simulates P_i correctly relative to M. This is the main representant of P_i . But in \overline{W}_i and in other \overline{W}_i 's, too, there are processors which simulate P_i but make mistakes during the simulation. These are its potential representants.

Part 2: For each i \in [1,n] transport the information about the last h(f(n)) steps P_i has executed from its main representant to its potential representants.

Remark: This can be done because $W_{q(n)}$ is a q(n)-distributor.

Part 3: Each potential representant of some P_i uses the information got in part 2 for computing the right configuration of P_i relative to M.

Obviously we have simulated h(n) steps of M. Let now p \in N, p>1 be fixed. 1 + $\frac{1}{p-1}$ We may choose $f(n) \approx n^{1/p}$, $h(n) \approx \alpha \cdot \log(n)$ for some suitable $\alpha > 0$ and $g(n) = \left\lfloor n \right\rfloor \cdot \frac{1}{p-1}$. Let T(n) be the time necessary to simulate h(n) steps of a PC with n processors by $W_{g(n)}$.

Then the above algorithm shows

 $T(n) \le a_0$ for some $a_0>0$, if n<c. If n>c, then

$$T(n) \le \frac{h(n)}{h(f(n))} [T(f(n)) + 0 (log(g(n)) + h(n))]$$

$$\approx p \cdot T(n^{1/p}) + O(\log(n)).$$

Thus $T(n) = O(\log(n) \log \log(n))$ which quarantees a time loss of $O(\log \log(n))$.

We can improve this result in the following way. At the top of the above recursion we choose $f(n) \approx n^{1/\log\log(n)}$ instead of $n^{1/p}$. For the resulting subproblems of size $n^{1/\log\log(n)}$ we apply the above algorithm.

Thus we obtain for the size of M_0 : $g(n) \approx n \cdot g(n^{1/\log \log(n)}) = n \cdot (n^{1/\log \log(n)}) + 1/(p-1)$ $\leq n^{1+\beta/\log \log(n)}$ for some $\beta > 0$. Thus we may choose $g(n) = \lfloor n^{1+\beta/\log \log(n)} \rfloor$.

As we may choose $h(n) = O(\log(n))$ we obtain:

$$T(n) = 0\left(\log(n) \cdot \frac{\log \log(n)}{\log(n)}\right) \cdot \left(T(n^{1/\log \log(n)}) + O(\log(n))\right)$$

$$= 0(\log \log (n)) \cdot (\log (n^{1/\log \log (n)}) \cdot \log \log (n^{1/\log \log (n)}) + 0(\log (n)))$$

= $0(\log \log (n) \cdot \log (n))$.

Theorem 2: Let $g(n) = \lfloor n^{1+\beta/\log \log (n)} \rfloor$ for some guitable $\beta > 0$.

Then $W_{g(n)}$ is n-universal with time loss log log (n).

Chapter 2: The Time - Processor Trade-Off

Let M_0 be n-universal and M a PC with n processors [1,n], the processors of M_0 let be [1,m]. The degree of the graph G_0 of M_0 let be d, that one of the graph G of M let be c. In the sequel we shall identify the graph of a PC to the PC itself.

A simulation of T steps of M by M_0 is a sequence (B_1,t',\dots,B_n,t',t') with the properties:

For every $t \le T$, $B_{1,t}, \dots, B_{n,t}$ are pairwise disjoint subsets of the vertex set [1,m] of $M_{0,t}$ is the set of representants of the vertex i of M at time t. W_{t} is a set

of pathes in M_0 . It contains for every representant x of some i at time t a path from x to one representant of each neighbour of i in M at time t-1. If k_t is the length of a longest path of W_t , then k_t is called the t-time loss and $\frac{1}{T}\sum_{i=1}^{T}k_t$ the time loss of the simulation. If $h:=\max\{\sum_{i=1}^{H}k_i,t^i,t^i\le T\}$, then we say i=1

that the simulation uses h representants.

A simulation with time loss at most k using at most h representants is called a (h,k)-simulation.

Obviously, the simulations from chapter 1 are $(g(n), 0(\log \log(n)) - \text{simulations})$. It seems to be very unlikely that reasonable simulations can be constructed which are not of this type. Therefore we call a n-universal PC which only uses (h,k)-simulations n-universal of the general type with time loss k using h representants. For such PC's we prove:

Theorem 3: Let M₀ be a n-universal PC of the general type with m processors and time loss k, using h representants, then $h^*k=\Omega(n \log(n)/\log \log(n))$ or $\prod_{m=n}^{n} (n \log(n)/h)$

As h≤m, we obtain the following time-processor trade-off:

Theorem 4: Let M_0 be a n-universal PC of the general type with m processors and time loss k, then $m \cdot k = \Omega(n \log(n))/\log \log(n)$.

Now we prove theorem 3.

The idea of this proof is as follows:

To each (h,k)-simulation of a graph with n vertices by M_0 , we attach a fragment, i.e. an object which still specifies the graph being simulated. For technical reasons we only consider graphs which contain a balanced, binary tree. The set of these graphs let be called E, Now the number Y of fragments of (h,k)-simulations of graphs from E is an upper bound for the number of graphs from E which can be simulated by M_0 with time loss k using h representants.

(Note that this bound is smaller then the number of (h,k)-simulations, because different such simulations may have the same fragment.)

On the other hand we bound #E from below. As every graph from E must be simulated by M_0 with a (h,k)-simulation, $y \ge \#E$, which will prove the theorem.

We first state the bound for $\#E_n$. A proof can be found in [2].

Lemma 2:
$$\#E_n \ge n$$
 2^{-an} for some $a>0$.

Before defining and counting the fragments, we state some estimations from [2] which we will need in the sequel.

Lemma 3: a) For all $k, n \in \mathbb{N}$, $1 \le k \le n$, $\binom{n}{k} \le n^k$.

b)
$$\#\{(a_1,\ldots,a_n) \in (N \setminus \{0\})^n \mid \sum_{i=1}^n a_i \leq h\} \leq 2^h$$

c) Let
$$(a_1, ..., a_n), (b_1, ..., b_n) \in (N \setminus \{0\})^n$$
.

Let $p \in N$ such that $p \cdot a_i \ge b_i$ for every $i \in [1,n]$,

and
$$\sum_{i=1}^{n} a_i \leq h$$
, $\sum_{i=1}^{n} b_i \leq h$. Then $\prod_{i=1}^{n} (b_i) \leq e^{2h} \cdot p^h$.

Now we define the fragments. Let D be a balanced, binary tree with vertices [1,n]. D has depth |log(n)|.

Now let A \in N be fixed, A \leq n. A will be specified later.

Let $r \in N$ and V_1, \dots, V_r be r subsets of [1,n] of cardinality A, which cover [1,n], such that for every $i \in [1,r]$, the subgraph of D induced by $V_{\underline{i}}$ is a balanced, binary tree of depth $\lfloor \log(A) \rfloor$. Obviously, V_1, \dots, V_r can be chosen such that $r \leq \frac{2n}{A}$ and every $i \in [1,n]$ is contained in at most two of the V_i 's.

We assume that $T \ge 2 \lfloor \log(A) \rfloor + 1$. Let $(B_1, t', \dots, B_n, t', w_t) t \le T$

be a (h,k)-simulation for some graph from E $_{n}$. For t \in [1,T] let k_{t} be the t-time loss of the simulation.

We count the number of graphs for which there is a (h,k)-simulation as follows: For some t₀ we count the number of possible choices of $B_1, \dots, B_n = B_1, \dots, B_n$ in a strategy. Afterwards we estimate the number of possible choices of sets S of edges of graphs which can be simulated by a strategy with the above representants at time t₀ and (t_0+1) -time loss t_0+1 . Unfortunately, this method, i.e. the choice of (B_1,\ldots,B_n,S) as fragments, is to weak for our purpose, because there are too many choices for B₁,...,B_r. Therefore we first fix the representants B'₁,...,B'_r of r suitably chosen vertices of G - one from each V_i - at time $t_0^{-2\lfloor \log{(A)} \rfloor}$. There number is not too large if t_0 is chosen reasonably. As all considered graphs contain a balanced binary tree, after having fixed $B_1' \dots B_r'$ the number of choices of B_1, \ldots, B_n decreases considerably.

Formally a fragment is defined as follows:

Formally a fragment is defined as follows. t_0+1 Let $t_0 \in [2[\log(A)], T-1]$ be chosed such that $\sum_{t=t_0-2[\log(A)]+1}^{t} k_t$ is minimal relative to the choice of t_0 . This sum is called R_0 Now a fragment of (B_1,t',\dots,B_n,t',t') is specified by a tupel

$$(B_1, ..., B_n, B_1', ..., B_r', S)$$
 as follows:
 $(B_1, ..., B_n) = (B_1, t_0, ..., B_n, t_0)$.

If $j \in [1,r]$ and $i \in V$, such that $B_{ij}, t_0^{-2\lfloor \log(A) \rfloor}$ has a minimal cardinality relative to the choice of i_j , then $B'_j = B_{i_j} t_0^{-2[\log(A)]}$.

S:= $\{(x,y) \in [1,m]^2/x \in B_{i,t_0} \text{ and there is an } i \in [1,n],$

such that there are two (t_0^{+1}) -transport pathes in $W_{t_0^{+1}}$ which join

x and y to the minimal element of B_{i,t_0+1} .

Let R be the number

of graphs from E_n for which there is a (h,k)-simulation in M_0 , and Y the number of fragments of (h,k)-simulations for graphs from E_n .

Obviously a fragment still specifies the graph being simulated. Therefore, the following holds:

Prop. 1: $R \leq Y$.

Before we bound Y, we state some easy properties of the fragment described above.

Prop. 2: a)
$$K_{t_0+1} \le R_0 \le 2k (2 \lfloor \log(A) \rfloor + 1)$$

c) For every $j \in [1,r]$ and every $i \in V_j$, $B_i \subset U_{R_0}$ (B'). (Let G=(V,E) be a graph, $B \subset V$, a $\in N$, then $U_{a}(B)$ is the set of vertices from V, which can be reached by a path of length at most a from some vertex from B.)

b) $\sum_{i=1}^{r} \#B_{i}^{r} \leq \frac{2h}{A}.$

Now we bound Y. 2h Prop. 3: $y \le m$ A $\cdot d^{(h+2cn)(5k \log(A))} \cdot e^{4h \cdot (h \cdot n)}$

<u>Proof</u>: First we bound the number Y_1 of all tupels $(B_1, \ldots, B_n, B_1', \ldots, B_r')$, which belong to a fragment of a(h,k)-simulation of a graph from E,

$$\underline{\text{Claim 1}}\colon\,\,\mathsf{y}_{1}\,\,\leq\,\,\mathfrak{m}^{\,\,\underline{A}}\,\,\bullet\,\mathsf{e}^{\,4h}\,\bullet\,\mathsf{d}^{h\,(\mathsf{R}_{0}+1)}\,.$$

<u>Proof</u>: Let the cardinalities h_1, \ldots, h_n , h_1', \ldots, h_r' of B_1, \ldots, B_n , B_1', \ldots, B_r' be fixed.

- By lemma 2.b) there are at most 2^{2h} possible choices of h_1, \ldots, h_n , h_1', \ldots, h_r' .

 There are at most $\prod_{i=1}^r \binom{m}{h_i'}$ possible choices of B_1', \ldots, B_r' .
- ~ For $j \in [1,r]$ let $V_j' \subset V_j$ chosen such that V_1', \ldots, V_r' form a disjoint partition of [1,n].

By prop. 2.c) it follows for every j $\boldsymbol{\epsilon}$ [1,r] and every i $\boldsymbol{\epsilon}$ V; There are at most

$$\begin{pmatrix} h_{j} & a^{R_{0}+1} \\ h_{i} \end{pmatrix}$$
 possible choices for B_{i} .

Therefore we obtain:

$$Y_{1} \leq 2^{2h} \cdot \pi \begin{pmatrix} \mathbf{m} & \mathbf{r} & \mathbf{r} \\ \cdot \pi \begin{pmatrix} \mathbf{m} \\ \mathbf{h}_{1} \end{pmatrix} & \pi & \pi \\ \mathbf{q} = 1 \quad \mathbf{q} \end{pmatrix} = 1 \quad \mathbf{i} \in V_{j} \begin{pmatrix} \mathbf{h}_{1} \cdot \mathbf{d} \\ \mathbf{h}_{j} \cdot \mathbf{d} \end{pmatrix}$$

Applying lemma 3.a) and c) we obtain

$$y_{1} \leq 2^{2h} \cdot m^{i=1} \cdot d^{h(R_{0}+1)} \cdot e^{2h}.$$

By prop. 2.b), $\sum_{i=1}^{r} h_i^{i} \le \frac{2h}{A}$, which proves claim 1.

Now we bound for some fixed sets B_1, \dots, B_n , B_1', \dots, B_r' the number Y_2 of fragments of (h,k)-simulations which can be formed by these sets.

Claim 2:
$$Y_2 \leq \left(\frac{h}{n}\right)^n \cdot d^{2(k}t_0^{+1+1)cn}$$
.

<u>Proof</u>: If $(B_1, \dots, B_n, B_1, \dots, B_r, S)$ is a fragment of a (h,k)-simulation it follows for S:

- There are at most n different first components of pairs occuring in S, one in each B_i , i \in [1,n].
- At most c second components belong to each first component x.

They are contained in $U_{2(k_{t_0}+1)}(x)$.

For $i \in [1,n]$ let $h_i = \#B_i$. Then there are at most $\pi h_i \le (\frac{h}{n})^n$ possible choices for the n first components of the pairs of S.

In order to fix the second components for some first component \mathbf{x} , there are at most

$$\begin{pmatrix} 2k & & & \\ t_0 + 1 & & \\ d & & c \end{pmatrix} \quad \text{possible choices.}$$

Therefore it follows by lemma 3.a):

$$Y_{2} \leq \left(\frac{h}{n}\right)^{n} \cdot \left(\frac{2k_{t_{0}+1}+1}{c}\right)^{n}$$

$$\leq \left(\frac{h}{n}\right)^{n} \cdot d \cdot d^{(2k_{t_{0}+1}+1) \cdot cn}$$

As $Y \le Y_1 \cdot Y_2$, prop. 3 is proved by claim 1 and 2 and the bounds for R_0 and $k_{t_0}^{+1}$ from prop. 2.a).

Now we are able to prove theorem 3.

By lemma 2,
$$\#E_n \ge n \frac{c-3}{2} n \cdot 2^{-an}$$
.

W.l.o.g. we may assume that $c \ge 4$.

As pointed out when describing the idea of the proof, we get:

Therefore,

$$m \ge 2^{\frac{A}{2h}} \frac{(c-3)}{2} \quad n \log(n) - a \quad n-4h \log(e)$$

$$\frac{A}{2h} \quad (-\log(d) \quad (h+2cn) \quad (5k\log(A)) - \log(\frac{h}{n}) \quad n)$$

Let a_1 , $a_2 > 0$ be chosen such that $\frac{c-3}{2} > a_2 = a_1 (4\log(e) + 5(2c+1)\log(d))$.

and let $h \cdot k \cdot \log(A) \le a_1 n \log(n)$.

Then $\log \left(\frac{h}{n}\right) \le \log \log(a_1 n)$ and it follows:

$$m \ge 2^{\frac{A}{2h}} \left(\frac{c-3}{2} - a_2 \right) n \cdot \log(n) - a \cdot n - n \cdot \log \log (a_1 n)$$

$$\Omega(\frac{A \cdot n}{h})$$

 $\Omega(\frac{A \ n}{h})$ $\geq n$. Now we choose $A = \lfloor \log(n) \rfloor$ and obtain theorem 3.

References:

- [1] Z. Galil, A Theory of Complexity of Parallel Computation.
 W.J. Paul: Proc. of the 13th Annual ACM Symp. on Theory of Computing, Milkwaukee, May 1981, pp. 247-262.
- [2] F.Meyer auf der Heide: Efficiency of Universal Parallel Computers. Interner Bericht des Fachbereichs Informatik der J.W. Goethe-Universität Frankfurt, 2.82.
- [3] W.J. Paul: Komplexitātstheorie.

 Teubner Verlag, Stuttgart, 1978.
- [4] A. Waksman: A Permutation Network. Journal of the ACM, 15(1) (1968) pp. 159-163.