Lower Bounds for Solving Linear Diophantine Equations
on Random Access Machines

FRIEDHELM MEYER AUF DER HEIDE
Johann Wolfgang Goethe-Uni versitdt, Frankfurt, Federal Republic of Germany

Abstract. The problem of recognizing the language L.(L,) of solvable Diophantine linear equations
with # variables (and solutions from {0, ..., k}") is considered. The languages Uen L., U,ey L,,, the
knapsack problem, are NP-complete. The Q(r?) lower bound for L, on linear search algonthms due to
Dobkin and Lipton is generalized to an Q(n’log(k + 1)) lower bound for L, The method of Klein and
Meyer auf der Heide is further improved to carry over the 2(n?) lower bound for L, to random access
machines (RAMS) in such a way that it holds for a large class of problems and for very small input sets.
By this method, lower bounds that depend on the input size, as is necessary for L, are proved. Thereby,
an X(nlog(k + 1)) lower bound is obtained for RAMs recognizing L, or Lax, for inputs from {0, . . .,
(nkyoyn,

Categories and Subject Descriptors: F.2.2. [Analysis of Algorithms and Problem Complexity]: Nonu-
merical Algorithms and Problems—geometrical problems and computations

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Integer programming, linear search algorithms, random access
machines

L. Introduction

In this paper we prove lower bounds for the time complexity o_f deciding Fhe
solvability of Diophantine linear equations with n van'ablqs; that is, of deciding
whether a given linear equation has a solution with nonnegative integer coefficients,
Formally, we consider the problem of recognizing the language

Lo=1{ab),acR, bER|TaE€N:aa=b

(R = set of real numbers). It is well known that recognizing UnEN L, is NP-
complete [5] (N = set of positive integers). Furthermore, we consider the similar
languages

Liy={a b),ac R, beRITaE,....ki":a-a=b].
The problem of recognizing U,ey Ln 1s the well-known knapsack problem and is
NP-complete [5]. . o

For proving lower bounds for these problems, we _consxder a very reaélsné:
Ccomputational model, namely, random access machines (RAMs) as define
in [1]. . . -

Such a RAM has the capability of executing a direct or indirect storage access,
an arithmetic operation from {+, —}, or an if-question in one step. We assume that
the input is given integer by integer, not bit by bit.
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In [7], Klein and Meyer auf der Heide prove an Q(x?) lower bound for L,, on
RAMs. This proof is done by presenting a method of carrying over lower bounds
from linear search algorithms (LSAs) to RAMs.

An LSA can be considered an abstraction of a RAM in which no indirect storage
access Is allowed and that can work on real inputs. The analogous model of
computation, where the operations {+, /} are also allowed, is introduced by Ben Or
[2] as algebraic computation trees (ACTs).

Dobkin and Lipton [4] prove an Q(log(g)) lower bound for recognizing a language
L C R" that consists of ¢ connected components.

This result is generalized to ACTs by Ben Or [2]. Furthermore, in [4], it is shown
that R"™\L,, has at least 2!/*"* connected components, which implies an (n?)
lower bound for L, on LSAs and ACTs,

In Section 2 of this paper, we generalize this result to an Q(n’log(k + 1)) lower
bound for L, . on LSAs and ACTs.

This lower bound is tight within a factor O(n?) (respectively, O(n’log(n)) if k =
oflog(n))). This is shown for k = 1 by Meyer auf der Heide [10] and can be
generalized. in a straightforward manner, to L, in order to obtain an O(n*(log(n)
+ log(k)) upper bound for L, .

We now want to prove lower bounds for L,. But, in this case, we have to note
that L, cannot be recognized by an LSA or ACT of bounded complexity, because
one can check that R"\L, consists of infinitely many connected components.

This phenomenon is mirrored by the complexities of the best-known algorithms
for L,. If we apply Kannan’s improvement to Lenstra’s integer-programming
algorithm [6, 9] to L, (which is a special type of integer programming), we obtain
an O(n”"log(p)log log(p)) algorithm in which p denotes the maximum size of the
inputs that are assumed to be integers.

This result shows that lower bounds for L, should also be expressed in terms of
the input size. Results of this type are proved by Lautemann and Meyer auf der
Heide [8] for the integer programming problem with two variables.

The proof of the lower bound for L, on RAMs from [7], mentioned above, is
tailored to this problem and does not include bounds for the input size that one
has to demand such that the lower bound holds.

In Section 3. we generalize this result to a large class of problems. In that section,
we consider languages L C R” that are unions of hyperplanes in R”. If the
hyperplanes that make up L are defined by linear equations with integer coefficients
from {—A. .. .. k}. we say that L is defined by hyperplanes with description size k.
For example. L, is defined by hyperplanes with description size k.

For languages, like those mentioned previously, with g-connected components,
we prove a log(q) — nloglog(g) lower bound on RAMs in Section 3. This bound is
shown to hold already for a very small input set (dependent on k).

In Section 4, we finally apply this result to L. and L, and obtain that each
RAM recognizing L, or L, needs QUn’logk + 1)) steps for some input from
10, ..., {hn)Pmgn

We finish this section with some notations from linear algebra, and a combina-
torial result that we shall use frequently.

A hyperplane (left, right halfspace) in R s a set {X € R", a-x = (<, >)b} where
a € R”, b € R are fixed. The hyperplane is linear iff 5 = 0. A polytope is an
Intersection of (left or right) halfspaces of hyperplanes. Thus, polytopes are convex.
In [7], the following lemma is shown. We use it frequently in this paper.

HLENL?'V’A 1 [7] Let Hl, ey H,,, be hyperp[anes n Rn, n om = 2. Then
RNULLL H; consists of at most m"-connected components. They are polytopes.
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2. A Lower Bound for L, on LSAs and ACTs

In this section, we prove lower bounds for L, on two computational models that
can be looked upon as abstractions of RAMs. An algebraic computation tree isa
rooteq tree with outdegree 0, 1, or 2. To each node v of the tree, a function f: R"
—->Ris attaphed. If v has outdegree |, then f= 81082, 0 € {+, —, *, /}, where g; and
g are previously computed, that is, attached to some nodes on the path from the
root to v. Furthermore, g; or g» may be a constant or on¢ of the input variables
Xlll, ..., X, If v has outdegree 2, then an instruction “if f(xy, . ... Xx) >0, then
f oose the left branch, else the right branch” is attached to v, where [is attached
g sor:1e node on the path from the root to v. If v has outdegree 0, that is, is a leaf,
:hen accept” or “reject”‘ is attached tov. The complexity of an ACT is its depth;
e recognized language is the set of inputs that choose a path in the tree arriving
at an accepting leaf.
\ 3‘{"1,6:6” search algori[hm (LSA) is an ACT in which only the operations “+”
nd “—” are allowed. In this case the functions attached to the nodes of the tree

are linear.
Dobkin and Lipton [4] and Ben Or [2] prove the following general lower bound

for LSAs and ACTs.

LST“EOREM 1[2,4. LeLCR" consist of g-connected cOmMponents. Then each
A (ACT) recognizing L has complexity at least log(q) (0.38 log(q) — 0.61n).
ower bound for L, by bounding

In [4], this theorem is applied to prove an UnH)1
Now, in order to obtain a lower

Lhe number of connected components of R™L,. ;-
ound for L, ,, we bound the number of connected components of R\L,, where

2: denotes the set of nonnegative real numbers. We only consider components in
+ because later we want to prove lower bounds for RAMs that can only work
with nonnegative inputs. For k = 1, a bound for the number of these components
1s proved in [7].

LEMMA 2. R™\L,, has at least

1

k + (1/2)n(n—1)
kD

connected components.

heorem | vields the desired lower bounds for L,

has complexity at least
) — 1.61n).

Applying this result to T
ThEOREM 2. Each LSA (ACT) recognizing Lnx
In(n - Diogtk + 1) — 1 0.19n(n — Dlog(k + 1

It remgins to prove Lemma 2.
For this purpose, we generalize the proof from [7] for the case k=1

We first introduce threshold functions. A function f: {0, . - ., k" =10, 1} is an
(n, k) threshold function if there isa € R, b€ R+ such that, for every a €
{0, ..., ki, it holds that &-a < b if fla) = | and a-a > b if fla) = 0, where 4
is the weight vector and b is the threshold of . Let N(n, k) denote the set of (71, k)
threshold functions. The following two claims prove Lemma 2.

CLam 1. RTN\Ly has #N(n, k) connected components.

Craim 2. #N(n k)= 1/2"— Dk + 1)/,

PROOE OF CLamt 1. Let [K]" = 10, . .-, KI™MO). For & € kT, let Hi(HZ, HE)
denote the linear hyperplane (left, right halfspace)

{(a, b), a € R", peR, da-b=(< >)0}
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in R"'. Then, L,x = UenpHs and each connected component of RTFN\L, . is
defined by some [ C {k]" as
R;:=NH:N N H;NRY.
ael &ELK™N

Now let / be an (n, k) threshold function with weight vector a € R%, threshold
b & R,, and I = f7'({1}). Then, by the definitions of (»n, k) threshold functions and
the set R;, we know that R; # &, because (a, b) € R,. Thus, exactly thqse R, are
nonempty, for which the function f; as above, is an (n, k) threshold function. O

ProoOF oF CLAIM 2. We proceed by induction on ~.

n=1: f:10,..., k} — {0, 1} is a (1, k) threshold function, iff it is monotonically
decreasing and not constant 0. Thus, #N(1, k) =k + 1.

n>1: Letg,...,g be(n—1,k)threshold functions with the same weight vector
@ € R such that, for some b, ¢ € R,, g has threshold b + (k — i)e.

Then one easily checks

*) S0, kT =0, 1)
with

ﬂa19 se ey an) = gan(al, ] an—l)

is an (n, k) threshold function with weight vector (4, ¢) and threshold b + ke.

Now let g be an (n — 1, k) threshold function with weight vector 4 and threshold
b. Then order {0, . . ., k}"™" to a sequence

@,y @, F= (k4 1YY
such that
@-d< ... <a-d
We may assume without loss of generality that the a’;-a are pairwise different. Let
Jo be chosen such that
b € (d/]o' [L dj0+l . a_).
Now we construct a set A, of (n, k) threshold functions as follows. Let
JELL ... ol
b—b
.
For/€10..... k1, we now define an (n — 1, k) threshold function g, as follows:
Let p be chosen such that b+ (k= e e (- d @y - ). Then gla) =1 forl=
-pandgfa)=0for/=p+1,...,r Obviously, g isan (n — 1, k) threshold
function with weight vector  and threshold b, + (k — i)e. By (*), we can now deﬁpe
an (n, k) threshold function f; from g,, . . . . &- Let A, = {fi, ..., f,}. One easily
v;nﬁes that the f’s are pairwise different, thus #4, = j, = #g' ({1}), and that for
different (n — 1, k) threshold functions gand g’, 4, N 4, = @. Thus, we have
constructed 4 = Yeen-1.0 #27' (1)) many (n, k) threshold functions.

In the same way, we can construct B = #o-! (101) many (n, k)
threshold functions. Lesnin-10 #g7 (10}) y

Since A + B = #N(n ~ 1, k)- (k + 1y-!

b € (&-a, ajui-a), b,=b, =

, we may conclude

#N(n, k) = maxid, B} = % EN( = 1, K)-(k + 1)

=

i
(1/2)n(n—1) ]
S Gk 4 e,
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3. A General Lower Bound for RAMs

LI; t}h{l; 1s\/c;ctlon we _generalize the proof from [7] for the @(n?) lower bound for Ly
o f(s).r For lthls purpose we apply a theorem, proved in [7], that describesé
; for applying a ]ows:r bounq argument for LSAs to RAMs, as shown in the
ast section. The idea of this result is as follows:
thg ORII;\thWlthOut indirect storage access can almost be looked upon as an LSA
et on yt as to work correctly for nonnegative integer inputs. If we also allow
by an L; :ra%e access, the result form [7] says .that we still can simulate a RAM
e 0 the same complexity, but this simulation no longer works for all
P ge 1\;16 integer inputs. Ifor some inputs, namely, those belonging to so-called
il n ypf:rpl'anes, the simulation may go wrong because we have incorrectly
mulated an indirect storage access. In the sequel, we denote the set of inputs
passing through a node v of an LSA by ¢(v).

T}Z}ZE[(})]REI)W' 3[7). Let M bea RAM accepting some language L C N in 1 steps.
cah 1 ere is an LSA Ty, with complexity t, that has the following property: For
o eaf v of Ta, there are hyperplanes Hi, . .., Hz in R, the forbidden
yperplanes for v, such that Ty simulates M for all inputs from

272
<c(v)\ U H}') N N".
i=1
2
ChFor eagh.leaf v of T, each connected component ¢(V\ Ufil H: is called a
‘ aracteristic component of M. Since each such component is a subset of a set c(v)
nor some leaf v of Ty, it contains either only accepted or only rejected inputs. We
ow show that the number of characteristic components of M is not too large.

LEMMA 3. M has at most 2" 1" characteristic components. They are polytopes.

2 .
OfPROOF- By Lemma 1, we know that for each leaf v of Ty, c(V\ U,zil H consists
Mat most (272)" = 271" characteristic components. Since T has at most 2' leaves.
has at most 2°*"1%" characteristic components. The second proposition is

clear. O

which we prove lower bounds.

We now define a class of languages, for
n R, where H; is defined by the linear

LEI_H ws . ... H, be linear hyperplanes i
€quation

el i=1,...,nj=1.... m are integers from {—k, ...k} for some k €N,
we say that L = U, H, is defined by hyperplanes with description size k.
that for the LSAs in the

| For such languages we show a lower bound similar to
ast section. But, furthermore, we prove that such a bound already holds for a very

Testricted input set.
Letp’SEN’Bl:-'~’6ne{0a"‘

(LU ﬁ (p-N+ﬁ,»)>ﬂ {O,...,s}"
i=1

,p—1}. Then a set

isan (L, p, s)-set where
p-N+ 8 =16i gi + p, Bi + 2D, X
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THEOREM 4. Let 1. C R” be defined by hyperplanes with description size k. Let
R’\L have g connected components. Then, each RAM recognizing L for inpuls
from an (L, s, p)-set with s = 2k + 127 2" and p < 2k needs at least log(q) —
2nlog log(q) steps.

We prove Theorem 4 for input sets that are (L, p, s)-sets instead of the (L, 1, 5)-
set {0, . . ., s}" only, because, in the next section, we apply it to p = 2 when proving
a lower bound for L,. )

We first prove a lower bound for languages that fulfill certain geometrical
properties, as stated in the next lemma. Later, we show that these properties are
fulfilled for languages as considered in the theorem.

A hyperplane H in R” has permeability r > 0 if each ball B on H with radius 7
contains an element from Z” on H(Z = set of integers).

LemMma 4. Letd, r,sE€ R, pE€E N\{O}. Let L = U H,, where H,, . . ., Hn are
hyperplanes in R" with permeability r. Suppose that [0, s]"\L has q connected
components each containing a ball with radius d. If r=p-vnand d = q- log(g)™"
22.(r + 1)-p, then each RAM recognizing L for inputs from an (L, p, s)-set has
complexity of at least log(q) — nloglog(q).

PROOF. Let M be a RAM recognizing L in ¢ steps. We first assume that the
following property holds:

(*) For each connected component P of [0, 5]"\L, there is a characteristic com-
ponent Q(P) of M such that P N Q(P) contains a ball with radius r.

In this case we show that the Q(P)’s are pairwise different. Let I be an (L, p, s)-
set. Suppose that for two different connected components P; and Pz, QP 1) =
Q(Py) = Q. Then Q N P, and Q N P, contain balls B, and B, with radius 7. Sinc¢
r= p-<n, Q contains elements from /\L and thus Q is rejecting. .

Now, let H, be a hyperplane from H,, . .., H,, that separates P, from Pz. Since
Q is convex and contains a ball with radius  on both sides of H,, it also contains
an ((n — 1)-dimensional) ball with radius r on H. But, by the definition Qf
permeability, this ball contains an element from Z” and, thus, from I N L. This
contradicts the fact, shown above, that Q is rejecting.

Thus. we have proved that M has at least g characteristic components. By
Lemma 3. we may conclude 2*".1*” = ¢, which proves the lemma for the case
that (x) holds.

Now we suppose that () does not hold. Let P be a connected component of
[O. s)"\L such that for each characteristic component Q of M, Q N P has an inper
radius smaller than r. Let B be a ball of radius d contained in P. Then, the following
three properties hold:

(i) #U N B) = (d/(¥n-p)).
(_ii) #FINBNQ)<r-(n+ 1)-(d/py".
(i) #(I N BN H) = (d/p)"™" for every hyperplane H in R".

_.(i) and (i) follow by elementary geometrical considerations. In order to prove
(i1). we apply a theorem from Blaschke [3] that says that the thickness of a convex
polytope § in R”, that is, the minimum distance of two parallel hyperplanes
between which S lies, is at most (n + 1)- (inner radius of S). Thus, Q has thickness
at most r-(n + 1), which implies (ii).

We now assume that ¢ < log(g). Then, the whole number of forbidden hyper-
planes in T is at most 2'-2¢% < ¢-2 log(g)2. Thus, by (jii), they together contain
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at most X, = ¢-2log(q)*-(d/p)y""' elements from I N B. Furthermore, we know by
Lemm_a} 3. that M has at most 2/*"- 1" < g 2"-log(¢)*" characteristic sets.
By (i), together they contain at most

n—1
X, = ¢-2"-log(g)*"-r-(n + 1) (g)

elements from I N B. Since the characteristic sets of M and the forbidden
hyperplanes must contain N B, we obtain

X+ X, =#(INB).
Applying (i) and a rough estimation yields

n—1 n
q-2"-log(q)2"~(r+l)-(n+1)-(6—1> >X1+X22(——g—>.
p vn-p

Solving this inequality shows
d<gq-22"-log(q)"-(r+ 1)-p,

which contradicts the bound for d from the lemma. Thus ¢ > log(q), and the lemma
follows. O

m Lemma 4, we have to bound the parameters

In order to conclude Theorem 4 fro
es defining L.

d, r, s in terms of the description size of the linear hyperplan
LEMMA S Let L = U", H; be defined by linear hyperplanes in R"

description size k. Then the following holds:

omponent of [0, s]\L has inner radius at

with

(i) Let s € Ry. Then each connected ¢
 least (k7. n") s, _
(ii) Each H, has permeability 2kvn.

ProOF. It suffices to prove (i) for s = 1, because the inner radius of a compo-

nent of [0, s]"\L grows linearily with s. For s = 1, each component is a convex
polytope defined by a system of linear inequalities with integer coefficients from
{—k, ..., k}. For such polytopes, the desired bound for the inner radius is proved

in [10].
In order to prove (ii), let H; be defined by the equation

2 (,'}‘Xj=0,('1, ... E {—k,...,k}.
=1

Then the (n — 1) vectors
,i—yl = (CQ, —Cy, Os s ey 0)7
J:'Z = (07 C3, —C2, 07 ey O)v

yn—-l = (09 LI ) 09 Cm _Cn—l)

form a basis of H..
.. apy € Z}. Then, S C Z7, because the ji's

Let S be the set { 5 aidi, a1 - - :
have integer coefficients. Now let B be a ball on H; with radius 2k vn and center
X € H. Then, there is a (unique) ¥ € S such that X belongs to the convex hull of
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the set

n—1
{1‘7 + X aidi, an, ..., ap € {0, ”}
=1

For some z € R” let | 2| denote its Euclidean length. Then, for each

n—1

Y b

i=1

(@1, + .y ) €40, 1)1, < vVn.2k,

because the ith coefficient of Y5 a;J; is either (—ci—1) or (¢izy) OF (—¢iy + Ciy) OT
0; thus, its absolute value is at most 2k, which implies the above bound for the
length of ¥/ ;7. N '

Now we may conclude that |x ~ y| = vn2k and therefore ¥y € B, which
proves (11). O

Now we can prove Theorem 4. Since there are only (2k + 1)” — 1 linear
hyperplanes with description size k, the set R"\L from Theorem 4 has at most
2k + l)”z connected components by Lemma 1. Inserting this bound for g, the
bound for s from Theorem 4 and the bounds for d and r from Lemma 5 in the
bounds for r and d in Lemma 3 yield Theorem 4.

4. Lower Bounds for L, and L, on RAMs.
In this section, we apply Theorem 4 to L,iand L,.

THEOREM 5. Each RAM recognizing L, needs at least sn(n — 1)log(k + 1) =
n steps for inputs from

10, ..., Rk + 1Y+ (g 4 [y,

PROOF. L, is defined by hyperplanes with description size k, and R""'\Lnx
has at least 1/(2" — 1)-(k + 1)"/2"1=) connected components by Lemma 2. Thus,
we obtain Theorem 5 from Theorem 4 with the (L, 1, s)-set {0, ..., s}”. O

THEOREM 6. Each RAM recognizing L, needs at least tn(n — 1)log(k + 1) =
n steps for inputs from

{0, ... , 2‘(2/\’ + 1)3{"*“2.(” + 1)2(n+l)2}n‘

PROOF.  We define an (L, 2, s)-set I, such that, for each x € I, it holds that X €

L, T X € L. If we can find such an 1, we obtain Theorem 6 from Theorem 4
and Lemma 2.

Let

= {L,,‘k U <I”I 2N> x (2N + l)}> nio, ..., si"
x=1

This set contains all the inputs {q,, . .

- - an, b}y €10, . . ., s}” for which the equation
i~ ;= b cither has a solution in 10, ..., k}" or consists of even numbers
4, ..., ay and an odd number b, Thus, in this case, there is no solution in N

because for each (xi, ..., x,) € N ", 2i=1 a;x; is even, whereas b is odd. '
Thus, we may conclude: Each RAM recognizing L, for inputs from I recognizes

L, for inputs from I, and therefore we may apply Theorem 4 as in the proof of
Theorem 5 and obtain Theorem 6. O
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