SIAM). COMPUT. © 1986 Society for Industrial and Applied Mathematics
Vol. 15, No. 1, February 1986 008

EFFICIENT SIMULATIONS AMONG SEVERAL MODELS
OF PARALLEL COMPUTERS*

FRIEDHELM MEYER AUF DER HEIDE?

Abstract. A parallel computer (PC) with fixed communication network is called fair if the degree of
this network is bounded, otherwise it is called unfair. In a PC with predictable communication each processor
can precompute the addresses of the processors it wants to communicate with in the next ¢ steps in O(1)
steps. For an arbitrary £>0 we define fair PC’s M and M’ with O(n'**) processors each. M(M’) can
simulate each unfair PC with predictable communication and O(log (n)) storage locations per processor
(each fair PC) with n processors with constant time loss. M’ improves a result from [Acta Informatica, 19
(1983), pp. 269-296] where a time loss of O(loglog (n)) was achieved. Assuming some reasonable properties
of simulations we finally prove a lower bound Q(log (n)) for the time loss of a fair PC which can simulate
each unfair PC. Applying fast sorting or packet switching algorithms (Proc. 15th Annual ACM Symposiums
on Theory of Computing, Boston, 1983, pp. 1-9; 10-16; Proc. ACM Symposiums on Principles of Distributed
Compuating, Ottawa, 1982) one sees easily that this bound is asymptotically tight.

Key words. parallel computers, general purpose machines, simulations

1. Introduction. In this paper we deal with the following question: How efficiently
can one parallel computer (PC) with fixed communication network with bounded
degree simulate all members of a certain class of PC’s?

By a PC we mean a finite set of n processors which have the usual sequential
capabilities. They are partially joined by wires. The graph defined by the processors
and the wires is its communication network. In one step each processor is allowed to
read a piece of information from a (relative to the communication network) neighboring
processor. We allow several processors to read from the same processor at the same
time. We assume the PC ig synchronized.

Technological restrictions demand the degree of a PC, i.e. the degree of its
communication network, to be bounded by a small constant.

We shall call such PC’s fair. Those with large degree we call unfair. Later we shall
always assume that their degree is n—1, i.e. that their communication network is the
complete graph. We furthermore assume that each processor only has O(log (n))
storage locations, each able to store one integer.

An important class of unfair PC’s are those with predictable communication
(unfair PC’s with pred. com.).

Such a PC has the additional property that for each integer t, each processor can
compute for itself the sequence of addresses of processors it wants to read from during
the next f steps in O(1) steps.

Famous examples of unfair PC's with pred.com. are the ascend- and descend-
programs for cubes defined by Preparata and Vuillemin in [5]. Such a cube is an unfair
PC with N =2F processors, and its communication network is a k-dimensional cube.
The prediction of the communication is very easy for each processor: Neighbour in
direction of the first dimension, neighbour in the direction of the second dimension,
and so on.

Preparata and Vuillemin could simulate this special, very regular PC with pred.com.
by a fair PC with N processors, the Cube-Connected Cycles, and constant time loss.

* Received by the editors May 19, 1983, and in revised form October 1, 1984.

* Fachbereich Informatik, Johann Wolf; gang Goethe-Universitit, 6000 Frankfurt a.M., Federal Republic
of Germany.

106

SIMULATIONS AMONG PARALLEL COMPUTERS 107

The aim of this paper is to determine the efficiency of the following types of fair
PC’s:

e n-universal PC’s. They can simulate each fair PC with n processors and fixed

degree.

o n-simulators. They can simulate each unfair PC with pred.com. and n processors.

e general n-simulators. They can simulate each unfair PC with n processors.

In [3] an n-universal PC with O(n) processors and time loss Of(log{(n)) is
constructed. In [4] an n-universal PC with O(n'**) processors for some arbitrary £ >0
is constructed which has only time loss O(log log (n)).

In the third chapter of this paper this last result is improved by presenting an
n-universal PC with the same number of processors as above but with constant time
loss only.

In the ‘ourth chapter we refine the ideas of the simulation of the third chapter to
obtain an n-sir.ulator. It alsv has O(n'"®) processors for some arbitrary €>0 and
constant time loss.

For the above constructions we need a PC which can execute packet switching
in a much more general way than for example permutation networks. In the second
chapter, such PC’s, so-called (a, b)-distributors, are introduced.

The last section of this paper shows that we cannot hope for fast simulations if
we want to construct a general n-simulator. We prove a lower bound Q(log (n)) for
the time loss of a general n-simulator, independent on the number of its processors.
This result holds when assuming some reasonable properties of the design of simulations
as they are already defined in [4] for proving a time-processor trade-off for n-universal
PC’s.

By the results of Ajtai, Komlos and Szemeredi [1] or Reif and Valiant [6] one
can show that this lower bound is tight within a constant factor.

The above authors have developed fair sorting PC’s which can sort n numbers
using only O(log (n)) steps (with overwhelming probability in the case of Reif and
Valiant).

One can easily see that with such a fair PC one can simulate one step of an unfair
PC in O(log (n)) steps, using such a fair sorting PC as ““post-office” for transporting
the respective informations between the processors. The same result can be achieved
by using the parallel packet switching algorithm for Cube-Connected Cycles preseqted
by Upfal in [7] who generalizes the corresponding algorithm for cubes due to Valiant
and Brebner [8].

2. The construction of (a, b)-distributors. In this section we construct‘ PC’s w}.xich
are able, in a more general way than permutation networks, to broadcast information.
They are constructed similarly to the distributors shown in [4]. These PC’s are ne§ded
for the constructions of the n-universal PC and the n-simulator in the next sections.

Let a, b be integers, a=b. An (a, b)-distributor D, is a fair PC which has a+b
distinguished processors, a input processors A,, - ,A, and b output processors
By, - B, It has the following property:

If each B, ie{l,- - -, b}, has stored an integer aefl, -
initialize itself such that afterwards the following holds:

If each A, je{l,---,a}, contains an integer string x; of length O(log (n)), then
D,, can distribute (x,, - - * , X,) according to (cy, - - » €), i-€. can transport each x;
je{1,---, a}, to each B, with ¢;=j, i€{l,- "~ ,a}, in O(log (b)+log (n)) steps. The
above initialization is called the initialization of Das for (¢y, * - » €), and the time 1t
needs is the initialization time of Das.

-,a+1}, then D,; can

108 FRIEDHELM MEYER AUF DER HEIDE

We now present an (a, b)-distributor based on the well-known Waksman permuta-
tion network (see [9]).

Let b':=21¢®1 The b’-Waksman permutation network W, is a fair PC with b’
input processors A;, - - -, A, and b’ output processors B,, - - -, B,.. For each partial
permutation Il on {1, - - -, b’}, W, can initialize itself for IT such that afterwards there
are marked pairwise disjoint paths of length O(log (b')) in W, form A; to By,
ie{l,- -, b}

In [3], Galil and Paul have shown that this initialization of W,. for II can be
executed in O(log (b')*) steps. Furthermore it is well known that Batcher’s sorting
algorithm [2] can be implemented on W, and sorts b’ numbers in O(log (b)) steps.
W, has 2b"log (b’) processors. W, is shown in Fig. 1.

We now shall insert some additional wires in W, as illustrated for Wj in Fig. 2.
The resulting network we call W, .

A{/< « Output processors

AN,

<
‘
<

/XX
[ANX/

O/
M

Y

\
X

. + Input processors

FIG. 1. The fair PC W,.

X\

<]

\Vi
L/
A
/)

&Y%
KX
XX
v

e
5
58

i
0

.
0
i
’e

/)
(/)
0
(X

\/
(X
)

\\
\X
0h

F1G. 2. The fair pC W,

In addition to the capabilities of W, this network can do the following: If for
ie{l,--- b}, A contains a number ¢, ¢, S =g, W, can mark pairwise disjoint
trees of depth 2 - log (b')—1 in W, one for each x e {e1, -+ -, ¢o}. The leaves of a tree
belonging to some such x are those A; with ¢ =x, its root is that B; with i=
min {i’,c,-f = x}. The existence and construction of such trees is obvious; an example is
shown in Fig. 3.

We shall use these trees for transporting data from one input to many output
processors along the paths in the trees. For ie{1,.-- b} let ce{l,---,at1} be
stored in B. The following algorithm will mark a trees Gy, -+, G, in W,. For

i€f{l,- -, a}, the root of G, is A; and its leaves are all B;’s with ¢;=i. G; has depth

SIMULATIONS AMONG PARALLEL COMPUTERS 109

XA

A\

1>

XN/
“V’V
T
N
N

/\
A
i/
-
/\
X/

XN
(XK
XX
(X}
()
(X

\/
A
A

Y
%
L
%
X

Y,

/X
A
XX
X\

[AV

)
M)
X

/)

1 1 1 2 2 2 2 2 <« theg's

FIG. 3. W, with marked trees for (-,) =(1,1,1,2,2, 2,2,2).

O(log (b")). Each processor of W, lies on at most three such trees. Clearly after such
a marking W, can distribute a strings each of length O(log (n)) according to
(¢, "+, ¢) in O(log(b')+log(n)) steps by sending them along the paths of the
respective trees. Thus W, is initialized for (¢, -~ +).

The algorithm works as follows.

Part 1. W, sorts c;, - -+, ¢, to the sequence dy, - -, d,.

Part 2. W, initializes itself for the partial permutation which maps i to j, if d; = c,

ie{l’ e ,a}.
Remark 1. Now there are pairwise disjoint paths marked for each ie{l, -, b}
from B; to the A; where ¢ is transported to in Part 1. Forie{l,---,a+1}lets; denote

the smallest je{1,- - -, b} with d;=i Then for each ie{l,---,a}, dj=i for each
jedsy -, si— 1}

Part 3. Mark a pairwise disjoint trees in W,. Forie{l,---, a}, the ith tree has
the root B, and the leaves A;, j€ {s5°, s 1}

Remark 2. As shown above such trees can be marked in O(log (b)) steps. Each
tree has depth 2 - log (b)) — 1.

Part 4. W, initializes itself for the partial permutation which maps s; to i, i€
{1’ e a}.

Forie{l,---,a}, G, now is the tree which consists of the ith path from Part 4,
the ith tree from Part 3 and the jth paths from Part 2, je{s, """, Sis1— 1}. ~

By the explanation above we¢ know that we hereby have initialized W, for
(cy, - -+, ¢). Furthermore we know that Part 1 can be executed in O(log (b')?) steps,
Part 3 in O(log (b)) steps and Part 2 and 4 in O(log (b')*) steps each. Thus the
initialization time of W, is O(log (b")*).

Tueorem 1. Let a, b be integers, a=b, b’
with O(b log (b)) processors and initialization time O(log (b)*).

Without proof we will point out two possible improvements of this theorem. We
can construct (a, b)-distributors with initialization time O(log (b)) if we are able to
sort b numbers in O(log (b)) steps. Ajtai, Komlos and Szemeredi [1] have done so
with the help of a fair PC with O(b log (b)) processors. This fair PC can also sort
packets of length s according to some keys in O(log (b)+s) steps. With this result we
can construct an (a, b)-distributor with O(b log (b)) processors and initialization time
O(log (b)). A similar construction can be found in [10].

A similar result can be achieved when using the sorting algorithm from [6] due
to Reif and Valiant. They have sorted b numbers on Cube-Connected Cycles using
O(log (b)) steps with overwhelming probability. In order to sort packets of length

—oflee 81 W, s an (a, b)-distributor

110 FRIEDHELM MEYER AUF DER HEIDE

O(log (n)) we here need O(log (n)) such fair PC’s in order to do so in O(log (b)+
log (n)) steps. Thus we obtain an (a, b)-distributor with O(b log ((n)) processors and
initialization time O(log (b)) which allows distributions using O(log (b) +1og (n)) steps
with overwhelming probability.

3. The construction of an n-universal PC. In this section we will construct an
n-universal PC M,, that means a fair PC which can simulate each fair PC with n
processors and fixed degree c.

Let H be a fair PC with n processors R,,- -+, R, and communication network G.

The idea of our simulation is as follows. We construct a fair PC D¥ which can
simulate H for steps, if it is prepared suitably. Furthermore we shall see that we can
apply an (a, b)-distributor to prepare D¥ before each phase of t simulated steps as
demanded above. We shall choose ¢ such that a preparation needs O(t) steps. Thus ¢
steps of H are simulated in O(1) steps which yields constant time loss.

We shall now construct D*. It consists of n copies D}, -+ -, D" of a fair PC D,
whose communication network is a complete c-ary tree of depth . We now show how
to initialize D¥ such that it can simulate ¢ steps of H. First we attach to each processor
P of D¥ an address I(P) of the processor of H, P has to simulate.

For ie{l,---,n} the root P of D! gets I(P)=i If R; has ¢'=c neighbours
Ri,---,R, in H, the first ¢’ neighbours P,,- - -, P. of P get (P)=i,je{l, - -, 't
This attachment is completed in the obvious way.

Let K be a configuration of H represented by the tuple (K, - - -, K,,) of configur-

ations of the processors of H. We say, DF is prepared for K, if each processor P of
D¥ for which I(P) is defined contains K, p,. We say D* simulates ¢ steps of H started
with K, if it computes K/ in the root of D ie{1,---, n}, where K'= (K}, -+, K})
is the rth successor-configuration of K.

LEMMA 2. If D* is prepared for K, it can simulate 1 steps of H started with K in
O(t) steps. O

The proof can be done by induction on t and is obvious. Now suppose that DY
has simulated ¢ steps of H started with some configuration K. We now have to prepare
D for K’, the tth successor configuration of K. We know that for each i e {1,---,n},
the root processor of D! has computed K, but the other processors P of D* with
I(P)=1i have not computed this configuration because they have earlier stopped
simulating. Therefore the root processor of D; has to inform these processors about
K. Applying an idea from [4]it suffices to transport the string Info(K, R,, t) of numbers
R; reads from neighbours during ¢ steps of H started with K. As a processor P of Df
with I(P) =i knows K, it can, with the help of Info(K, R, t), compute K/ in O(1)
steps. Info(K, R;, 1) has length at most ¢. Thus we need a network which transports
Info(K, R, t) from the root processor of D; to each processor P with I(P)=1i, i=
1=+, n Let m be the number of processors of DY, then the above is exactly what
an (n, m — n)-distributor as defined and constructed in the last section can do, if we
identify its input processors with the root processors of Dj,--- D" and its output
processors with the other processors of D¥. This fair PC we call M,.

Thus the exemplary of D¥ in M, can be prepared for K’ needing O(log (m —n)+1)

steps for distributing Info(K, R, t)’s and O(t) steps for computing K| in
each processor P with I(P)y=i

i=1,--- n Therefore, the preparation needs
Ollog (m —n)+1)+0(1) steps. Thus O(log (m ~ n) + 1) steps are necessary to simulate
t steps of H.

We now choose 1=|elog, (n)] for some arbitrary £>0. Then M, has
O(n'** log (n)) Processors and needs O((1+¢)log (n)+¢log(n)) =

SIMULATIONS AMONG PARALLEL COMPUTERS 111

O((1+2¢) log (n)) steps for simulating | & log. (n)] steps of H. Thus its time loss is
O((1+2¢)/€).

THEOREM 3. M, is an n-universal PC with O(n'** log (n)) processors and time
loss O((1+2¢)/ g) (which is a constant for fixed € >0).

4. The construction of an n-simulator. In this section we shall construct an n-
simulator. The basic idea of the construction is similar to the one in the last section.
Let H be an unfair PC with pred.com. and n processors R,, -, R, We again describe
a fair PC T% which can simulate ¢ steps of H in O(1) steps if it is prepared in a
suitable way. But in this case we see that we are not able to prepare T¥ in O(log (n))
steps, if we chose t = O(log (n)). The reason is that in the case of an n-simulator, we
may not demand that a processor of T* simulates the same processor of H all over
the simulation. Therefore we have to inform the processors of T#* after each phase of
t simulated steps which processors of H they have to simulate now. Although it is
possible to compute fast which processor of H has to be simulated by which processor
of T* it turns out that broadcasting this information needs Q(log (n)?) steps if
t = O(log (n)). The idea of how to solve this problem is the following. We shall execute
an initialization of T%* each time before d phases of simulating ¢ steps of H. This
initialization will not be much slower than one preparation and will guarantee that
afterwards d preparations can be done fast. Thus we obtain constant time loss by
choosing d in an appropriate way. For simplifying the description of the simulation
we shall use d copies of T in our simulation, each responsible for one of the d phases
between two initializations. Each of these exemplaries, together with some (a, b)-
distributors, will be called a weak n-simulator.

First we describe the fair PC TF for some fixed integer t. T¥ can simulate ¢ steps
of each unfair PC with pred.com. in O(t) steps if it is prepared in an appropriate way.
T¥ consists of n exemplaries T!,---,T; of afair PC T, which we will define now.
Its communication network is a tree whose vertices are replaced by cycles. The cycle
corresponding to its root is called the root cycle, each processor on it is a root processor
and one of them is the main root.

T, is inductively defined as follows: T, consists of one processor, it is its main
root and forms its root cycle. For t>0, T, consists of exemplaries of To, - - -, T,-; and
t new processors Py, - - -, P,_,. These processors form the root cycle of T, by wires
between P, and P+ 1ymoacn fOT P € {0, - - -, t—1}. Py is the main root. Furthermore, for
each pe{0, - - -, t—1}, P, is joined to the main root of T,

An example of this fair PC is shown in Fig. 4. The following lemma can easily
be proved by evaluating the obvious recursion for the number of processors of T, and
by the above definition.

LEMMA 4. Fort=1, T, has 3 - 2'~1—1 processors and degree 3.
Now let H be an unfair PC with pred. com. and n processors Ry, -+, R, A
configuration K = (K,, - -+, K,) of H consists of configurations K; for each processor

R,of H,ic{l1,- - -, n}. Recall that each processor has only O(log (n)) storage locations.
Thus each K, can be represented by a coding of its program and a list of the contents
of its storage locations. This representation is an integer string of length Oflog (n)).
In the sequel we shall identify this string with the configuration.

Let K=(K,, --,K,) be the pth successor-configuration of K. Then for i€
{1,-- -, n}, K, is the pth successor-configuration of K for R.

For an integer p and i€ {1, - - -, n}, Com (K, R, p) denotes the string of addresses
of processors R; reads from during p steps of H started with K. For gef{l,---,p}
Com (K, R, p), denotes the qth element of Com (K, R, p). If for some such g, H does

112 FRIEDHELM MEYER AUF DER HEIDE

main root
root cycle /

|
v

FI1G. 4. The fair PC T,.

not read from another processor in the gth step started with K, we assume that
Com (K, R, p)=1i.

Letie{1, -, n}. Wesay T, is prepared for K and R, for t steps, if the following
holds:

If t=0 then T, contains K,

i

exemplary of T, joint to the pth root processor is prepared for K and R; for p steps,
if j=Com (K, R, t)pe and j# i, If j =1, there is no condition on T,

T? is prepared for K if for each i {1,--+,n} Tiis prepared for K and R, for
t steps.

The processor of H being attached by the above preparation to some processor
P of TF is said to be represented by P relative to K.

We say T% simulates ¢ steps of H started with K, if T* executes a computation
which finishes with the tth successor-configuration of K for R, in each root processor
of Ty, ie{l, -, n}.

LEMMA 5. If T¥ is prepared for K, it can simulate steps of H started with K in
O(1) steps.

Let t>0. Then each root processor contains K, and for each pe{0,-- -, r—1} the

Proof. Let ic{1,--- n} be fixed, Py,---, P,_, be the root processors of T
Suppose that T? is prepared for K.
Forpe{1,- - t}we say that the root cycle of T is p-preparedif P,_, and P, noa(n

contain the pth successor-configuration of K for R, and for each ge{1,---,p—1},
P p+ 41 mod (1) CONtains the (p — q)th successor configuration of K for R, The root cycle
of T, is O-prepared, if P, contains K. (This is fulfilled for example, when T% is prepared
for K.)

We now want to find an algorithm which transfers a p-prepared root cycle to a
(p+1)-prepared one. For this purpose we first assume that for each qe{0,---,t—1}
the main root Q of the exemplary of T, joint to P, contains the gth successor-
configuration of K for the processor R; being represented by Q. Thus Q contains the
message R; wants to read from R; in the (q+1)th step of H started with K.

Now if the root cycle is p-prepared for pe{0,- - -, t—2}, it becomes (p+1)-
prepared by the following algorithm.

SIMULATIONS AMONG PARALLEL COMPUTERS 113

Part 1. For each ge {1, -, P}, P p+q) moa () Simulates the (p—q+1)th step of R,
with the help of P pig-1)mod(n)-

Remark 1. As P(,4q-1ymoa(n has already executed this step by the definition of
“p-prepared”, Part 1 can be done in constant time.

Part 2. P, simulates the (p+1)th step of R,

Remark 2. This can be done in constant time because we have assumed that the
message R; perhaps wants to read from another processor is stored in the main root
of the T, joint to P,

Part 3. For each gef{l,---,p+1}, Porgymoan simulates the (p —g+2)th step
of R; with the help of P, 4-1)mod (-

Remark 3. This works in constant time, because in step 1 (resp. step 2)
Pp+q-1)mod (just has simulated this step.

Thus T* is (p+1)-prepared in a constant number s’ of steps. Now we may
inductively assume that after s’ - p steps the root cycle of the exemplary of T, joint to
P, is p-prepared. But this means that its main root contains the message R; needs to
execute its (p+ 1)th step after s’ - p steps.

By our algorithm this message is needed after s’ - p+(time for step 1) many steps
that means it is available when it is required by P,. Thus P, contains the tth successor-
configuration of K for R; after s’ -1 steps. Clearly in further s”- t steps each root
processor can have stored this configuration.

Executing this algorithm in parallel for each ie{l,---,n} we have simulated ¢
steps of M started with K in (s'+s") - 1 steps. 0

Figure 5 shows the states of the p-prepared root cycle of Tg for some ief{l, -, n}
and each pe{l,- - -,8}. A number [in the gth column and pth row, g€{0,---,7},
pe{l,---,8) means: If Tyis p-prepared, P, contains the Ith successor configuration
of K for R..

P, P, P, P P, P Py P,
1 1 1 0 0 0 0 0 0
2 0 2 2 1 0 0 0 0
3 0 0 3 3 2 1 0 0
4 0 0 0 4 4 3 2 1
5 2 1 0 0 5 5 4 3
6 4 3 2 1 0 6 6 5
7 6 5 4 3 2 1 7 7
8 8 7 6 5 4 3 2 8

FI1G. 5. The design of a p-prepared root cycle.

In order to obtain a fast simulation of arbitrarily many steps of H we have to
prepare T* before each phase of t steps for the appropriate configuration of H. In
order to obtain an n-simulator of at most polynomial size we have to choose t=
O(log (n)) because of Lemma 4. But then we have to preparc T* before each phase
of t steps in O(log (n)) time in order to obtain a constant time loss. We shall see later
that such algorithms would need Q(log (n)?) steps. They have to execute Q(log (n))
initializations of (a, b)-distributors sequentially each of which needs Q(log (n)) steps
(see § 2). Therefore we will execute an initialization each time before d such phases
of t steps, where d is chosen suitably. It turns out that this initialization for d
preparations can be done in parallel and does not need much more time than one
preparation.

114 FRIEDHELM MEYER AUF DER HEIDE

The effect of this initialization is that afterwards d preparations can be executed,
each in O(log (n)) steps. This trick will guarantee constant time loss. Let in the sequel
£ >0 be fixed and = | ¢ log (n}]. Then by Lemma 4, T* has at most 3n'** processors.

Now we shall first define a type of fair PC’s, so-called weak n-simulators, which
will be used for constructing n-simulators. An explicit construction of a weak n-
simulator will be given later.

A weak n-simulator M is a fair PC with the following properties.

* M contains an exemplary of T%*.

* If K=(K;," -+, K,) is some configuration of H and for each ie{l,---, n}
each root processor of T} contains Com (K, R, t), then M can initialize itself such
that afterwards the following holds: If for each i€ {1, - - -, n}, each root processor of
T; contains K, then M can prepare T7 for K in O(log (n)) steps.

The above initialization we call the initialization of M for K and the time it needs
the initialization time of M. Note that the initialization does not include the preparation
of TF but only guarantees that this preparation can be done fast.

We now shall construct n-simulators. Let M be some weak n-simulator with
initialization time d. Then the fair PC M* consists of r:=[d/t] exemplaries of M
called M°, - - -, M"™'. For each 10, - - -, r—1}, ie{l,- - -, n}, each root processor
of T} in M'is joint to the corresponding processor in M1 mod ()

THEOREM 6. Let M be a weak n-simulator with initialization time d. Then M* is
an n-simulator which can simulate | steps of some arbitrary unfair PC with pred. com.
and n processors in O(d + 1/ €) steps. If M has m processors, M* has [d/t] - m processors.
(For fixed € >0, we thus have achieved constant time loss, if | =Q(d).)

Proof. The computation of the number of processors of M* is clear. We shall
construct an algorithm which simulates d’:=¢- r steps of H started with K°=
(K%, -+, K%). For je{1,--- 7}t let K'=(K4,---,K’) be the (t-j)th successor-
configuration of K°.

Assume that for each ie{1,-- -, n}, q€{0,---,r—1}, K? is stored in each root
processor of T} in MY

Now d’ steps of H started with K° can be simulated as follows.)

Part 1. For each qe{0,- -, r—1}, i€{l,---, n}, each root processor of T} in
M? computes Com(K*, R, t).

Remark 1. This can be done in O(r- t) = O(d’) steps because of the definition of
predictable communication.

Part 2. For each qe{0,---,r— 1}, M initializes itself for K9.

Remark 2. This can (after having executed Part 1) be done in d steps as d is the
initialization time of the M?’s,

Part 3. For ¢=0,---,r—1do (sequentially)

Begin

a) M“ prepares the exemplary T' of T#* in MY for K9,

b) T simulates ¢ steps of H started with K"

Comment. Now for each ie{1, - - - , n} each root processor of T' in T’
contains K {77V,

¢) Foreach ie{l,- - n}, each root processor of T in T’

transports K{7*V tg the corresponding processor in M {9+ med (1),

End

Remark 3. Now for each ie{l,---, n}, each root processor of T in M° has
stored K], the d'th successor-configuration of K° for R,

SIMULATIONS AMONG PARALLEL COMPUTERS 115

Remark 4. Each pass of the loop of Part 3 needs O(log (n)) steps: O(log (n)) for
a) because of the definition of a weak n-simulator, O(t) for b) because of Lemma 2,
O(log (n)) for c) because we have assumed that each configuration of a processor is
represented by an integer string of length O(log (n)). Thus Part 3 needs O(r - log(n))=
O(d/¢) steps.

Part 4. For each ge{0,---,r—1},ie{l, -+, n}, K| is transported to each root
processor of T} in M7 -

Remark 5. This can be done in O(r- log (n)) = O(d’) steps because of the above
bound for the lengths of the representations of configurations.

Now we have achieved all preconditions for starting this algorithm again with
K%< K'. Remarks 1, 2, 4 and 5 guarantee that we have only needed O(d/¢) steps for
simulating d’ steps of H. Repeating this algorithm we obtain that we need O(l/e)
steps for simulating ! steps of H, if I=Q(d). If [is smaller, we still have to execute
Parts 1 and 2 once. Thus we need O(d) steps also in this case. Therefore in general
we need O(d +1/¢) steps for simulating [steps of H O

Now the problem of constructing n-simulators is reduced to constructing weak
n-simulators.

This will be done with the help of (a, b)-distributors.

For je {0, -, t—1} let L; be the following subset of the set of processors of T#.

L, is the set of root processors of T, -, T

For j>0, L, is the set of all processors which belong to cycles which are joint to
processors of L,_, and which do not belong to L; > or L;_,.

Informally, L; consists of those processors which belong to a cycle in depth j of

some T'in T* Let # L= m, je{0,- -, 1—1}

For je{0,---,t—1}let D; be an (n, m;)-distributor with initialization time d,.

Then the fair PC M based on Dy, - -, D, 1s defined as follows; M consists of
T* and D,, - -, D,_, where for je{0,- -, t—1} L, is the set of input processors of
D; and the jth root processors of T!,---, T} are its output processors.

LEMMA 7. M is a weak n-simulator with initialization time O (log (n)2+zl';:, d).

Proof. Let K =(K,, -, K,) bea configuration of H, and suppose that for each
ie{l,-- -, n}, each root processor of T has stored Com (K, R, 1). Let for each
processor P of T* I(P) be the number i€ {1,- - -, n} such that R, is represented by P
relative to K. Clearly, for each ie{l,---,n}, I(P)=i for each root processor P of

T!. The following algorithm initializes M for K.

For j=0,---,t—1 do (sequentially)
Begin

a) D, initializes itself for (I{P), Pe L)). .

b) D, distributes (Com(K, R, 1), i€ {1,---,n}p according to (/{ P'), PelL)).

c) For each Pe L;; If for gell, -, t—1}, pei0,- - ,q—1}, P is the pth root
processor of an exemplary of T, in T*, then P sends 2= Com (K, Ryp,, Ups
to its neighbour Q in Ly and [(Q)=z _
Comment: Now for each cycle whose processors belong to L; one of its
processors Q knows Q). ’

d) For each Qe L;,, which knows L(Q): Q transports 1(Q) to each processor Q
of the cycle it belongs to, and I(Q"):= Q).

End

Obviously this algorithm attaches the correct address I(P) to each processor P of
T*. Because of the initializations of Dy, -+, D, in step a) of the passes of the loop,
finally M is initialized for K.

116 FRIEDHELM MEYER AUF DER HEIDE

For je{0, -+, t—1}, the jth pass of the loop needs O(d;)+ O(log (nz))+lqgl)+
O(1) = O(d; +log (n)) steps. Thus the initialization time of M is O(log (n) X0 d).
Now a preparation of T# in M can be executed in O(max; {log (d;) +log (n)}) =
O(log (n)) steps. O

We now apply Theorem 1 to Lemma 7 and obtain a weak n-simulator M,. Because
of the choice of t the number of processors of T¥ is at most 3n'*". The dis}ﬁbutors
Do,---,D,_; all together have Z;;:) O(m; log (m;)) = O(log (n) Lo My)=
O(n'"* log (n)) processors, as ZJ'. : m; is the number of processors of T*.

Thus M, has O(n'** log (n)) processors.

Inserting the bound for the initialization time of W, from Theorem 1 in Lemma
7, we obtain that the initialization time of M, is O(log (n)®).

Inserting these results in Theorem 6 we obtain

THEOREM 8. M¥ is an n-simulator with O(n'*“log (n)°) processors. M* can
simulate | steps of some arbitrary unfair PC with pred.com. and n processors in O(log (n)°+
l/e) steps.

With the help of the two distributors mentioned at the end of § 2, one can construct
weak n-simulators M, and M.

THEOREM 9. M¥ (M%) is an n-simulator with O(n'** log (n)?) processors. M¥
(M¥*) can simulate 1 steps of some arbitrary unfair PC with pred.com. and n processors
in O(log (n)*+1/¢) steps (with overwhelming probability).

5. A lower bound for the time loss of general n-simulators. In this section we show
that we may not hope for such fast simulations as described in the previous sectio'nS,
if we want to construct general n-simulators, i.e. if we remove the restriction “‘predict-
able communication” from the unfair PC’s being simulated.

We now shall define a graph-theoretical model of simulations of unfair PC’S'bY
a fair PC. For this purpose we first note that the problem arising during a simulation
is that of realizing the communications between processors. Therefore we represent
a step of a computation by the directed graph F with n vertices R,,- -+, R,, in which
(R, R)) is an edge for some Lje{l, -+ n}, i} if R; reads a piece of information
from R; in this step. As each processor can read information from at most one other
processor in one step, F has outdegree one. We now call such a directed graph F with
n vertices and outdegree one a computation step. A sequence Fy, -+ -, Fof computation
steps is called a computation (of length).

We now define a graph theoretical model of a simulation of a computation of
length I by a fair PC M with degree ¢ and m processors Q.. - -, Q,, for some integer
m = n. We shall identify M with its communication network.

The following model of simulation is that of a simulation of type 3 as defined in
[4]. This model is very general: for example, each simulation developed so far in the
articles quoted in this paper or in previous sections is of this type.

Let F\,--- Fibea computation. Then a simulation of Fy,---, F, by M consists
of pairwise disjoint, nonempty subsets Aj,--- A’ of {Q),---, Q,} for each te
{0,---,1}. For te{o, - - - b ie{l,- -+ n}, A! contains those processors which simu-
late R; when t steps of the computation are simulated. The members of A’ are called
the representatives of R, at time 1 Ay, -+, Al have one element, each. In order to
simulate the ¢-th step, te{l,--- I}, each Q€A ie{l, -, n}, must be joint by a
path in M to some Q'c A" and some Q"€ Aj”\, if (i, j) is an edge in F, These paths
are called the I-transport paths and their maximal length is k, the t-time loss of
simulation. The time loss of the simulation is

1!
k=3 %k

Jj=1

SIMULATIONS AMONG PARALLEL COMPUTERS 117

We now describe the difference between a simulation of an unfair PC with
pred.com. and an unfair PC whose communication can not become predicted fast. In
the first case we may assume that M knows the whole computation F, - - -, F; already
in the beginning of the simulation, because it can precompute it without loss of time.
In the second case this is impossible; we only may assume that a general n-simulator
simulates “on-line” i.e. it gets to know F, after having simulated Fy, - -+, Fi for each
te{2,---, 1}

Now let the time loss of a general n-simulator M be the maximal time loss of the
simulation of some computation.

We shall prove:

TueoreM 10. Each general n-simulator has time loss Q(log (n)).

As pointed out in the introduction, this bound can be achieved with the help of
the fair PC’s from {11, [6], or [7].

In order to prove this theorem let M be a fair PC with m processors. We shall
define a computation of infinite length for which each finite initial sequence is simulated
by M with time loss Q(log (n)).

If in some step ¢ of a simulation A,, - - -, A, are the sets of representatives at time
t, we say M is initialized with A,, - - -, A,.. Thekey observation of this proof is as follows:

There is a computation F such that either M needs at least y log(n) steps to
simulate it for some suitable y>0 or the number of representatives at time t+1
decreases considerably relative to the number of representatives at time t. As this
number may not become smaller than n, we may not too often simulate fast. This will
prove the theorem.

LEMMA 11. For each ¢ € (0,%) there is y>0 such that for each initialization of M
with some A,, - - - , A, there is a computation step F with the property: M needs at least
vy log (n) steps to simulate F or the sets of representatives Ay, - - *, A, after the simulation
of this step fulfills

€
i=1

Y #A; _S_—l— # A,
i=1 n =
Proof. Let ic{1,---,n} be fixed, and for je{l,---,n}, j#i let F’ be the
computation step with one edge, namely (i, j). Let M be initialized with A, -+, A,

Let £ € (0, %) be fixed.

Claim. There is y>0 such that the following holds: if for each je{l, -, n},
j#i, M can simulate F in less than y log (n) steps, then there isje{l, - -,n}j#i
such that M simulates F’ in at least ylog(n) steps, or such that the set A} of
representatives for R, after the simulation of F fulfills #A/=#A,/n’.

Proof. Let k be the maximal time loss of M when simulating some Fi, qe
{1,--- . n},g#iLetje{l, -, n},j#iLet A}, -+, A, be the sets of representatives
after the simulation of F’. We say, a processor P € A; survives, if there is a transport
path from P to some processor Q of Al In this case we say Q is created by P. We
denote the set of surviving processors form A; by B’. For each Pe B’ we fix some
C(P)e A! which is created by P. The element of A; which is joint to C(P) by a
transport path is called the partner of P. (If there are more than one such element in
A, pick one of them.) We now may conclude the following:

1) The partner of each Pe B’ belongs to U (P)'. ‘

2) Each Q€ A, is the partner of at most # U, (P) processors of B’.

! For a processor P of M, U,(P) denotes the set of all processors of M which can be reached from P
by a path of length at most r. For a subset A of the processors of M, U,(A)=Up.a U(P).

118 FRIEDHELM MEYER AUF DER HEIDE

1) and 2) hold because P and its partner are joined by a path of length at most
2k via C(P).

As for each processor P of M, # U, (P)= ¢**"' we may conclude by 2) that there
are at least (#B’) - ¢ 27" different partners of processors from B’ which all belong
to U,x(B’) because of 1).

As this holds foreach je {1, - - -, n}, j # i, and as these sets of partners are pairwise
disjoint we obtain:

1 n .
#Un(A)E S L 8.
C j=1
ji

As on the other hand # U, (A,) = ¢***' - # A, we obtain that

Y #B =4A;-

i=1

i)
Now let j € {1,- - -, n}, j# i, be chosen such that # B’ is minimal.
Then
j 1 4h+2 1
B =—— T A= #A,
n—1 n’*

if we choose k=1v log(n) for some suitably chosen y'>0. Note that g <3, thus
1—2¢>0 and we may choose

v =341-2¢)log(c)>0.

Here we assume that each F’ can be simulated with less then v’ log (n) steps.

As we know that only surviving processors from A, can create members of A,
we know that only processors of B’ can do so if F’ is simulated. We may choose
"> 0 such that # UL,‘/” tog (myy (P)=n° for each processor P of M. Let y=min {y, v}
Now assume that F’ is simulated with less than y log (n) steps. As y =y’ we know
from above that 4 B’ = # A,/n. As y = y" we know that each member of B’ can only
create n° elements of A). Thus # A=+ B’ - n°= #A,/n" which proves the claim. o

We now can define the computation step F demanded in Lemma 11. If there are
i,je{l,---, n}, i#j, such that the simulation of the computation step which only has
the edge (i,j) needs at least y log (n) steps, then this is F. Otherwise, let F contain
all those edges (i, j'), i€ {1, - -, n}, where j' is defined for i in the claim. Now if M
simulates F faster than vylog(n), we know that for the sets of representatives
1o+, AL after this simulation, #A/=#A,/n° for each ie{l,---,n}. Thus
TP #A/=1/n" Y #A, which proves the lemma. 0O

Proof of Theorem 10. Consider the computation F,, F., - - - which is defined step
by step by Lemma 11. Let / be an integer and for t€ {0, - - -, [} let h, denote the number
of representatives at time t. Let k,, - - -, k; be the t-time losses of the simulation of
Fy,---,F andlet Sc{1,-- -, 1} be the set of those indices t for which k, is smaller
than ylog(n), s=#8S. Then

H H
(%) Y k=¥ kz({l-s)ylog(n).
1=1 teS
It remains now to bound s. We know that hy= n, h, = n for each te {1, - - -, I}. Further-
more we know py Lemma 11 that during the simulation the number of representatives
is decreased s times by a factor of at least 1/n°, namely during the simulation of each

SIMULATIONS AMONG PARALLEL COMPUTERS 119

tth step with t€ S. On the other hand it is at most (/—s) times increased by a factor
of at most ¢**! for each re{l,- -, [I\S. Thus we may conclude
1y ! k,+1 1 I+¥1_ K
n=h=hy-{\—) [l " S5m0
n =1 n
12S

If now Z',:‘ k,>1-(e-log. (n)/2—1) the theorem is proved.
Otherwise n=n'*""/?/n* *~" which implies n* *=n'""""* Thus s =1/2.
Inserting this bound in the inequality (*) from above, we obtain Z:,_,, k,

I- (y/2) log (n), which proves the theorem. [

=

REFERENCES

[1] M. AJTAL J. KOMLOS AND E. SZEMEREDI, An O(n log (n)) sorting network, Proc. 15th Annual ACM
Symposium on Theory of Computing, Boston, 1983, pp. 1-9.
[2] K. BATCHER, Sorting networks and their applications, AFIPS Spring Joint Computing Conference, 32

1968, pp. 307-314.
[3] Z. GALIL AND W. J. PAUL, A general purpose parallel computer, J. Assoc. Comput. Mach., 30 (1983),

pp. 360-387.
[4] F. MEYER AUF DER HEIDE, Efficiency of universal parallel computers, Acta Informatica, 19 (1983), pp.

269-296.
[5]1 F. P. PREPARATA AND J. VUILLEMIN, The cube-connected cycles: a versatile network for parallel

computation, Comm. ACM, 24 (1981), pp. 300-310.
[6] J. H. REIF AND L. G. VALIANT, A logarithmic time sort for linear size networks, 15th Annual ACM
Symposium on Theory of Computing, Boston, 1983, pp. 10-16.
[71 E. UPFAL, Efficient schemes for parallel communication, Proc. ACM Symposium on Principles of
Distributed Computing, Ottawa, 1982.
[8] L. G. VALIANT AND G. J. BREBNER, Universal schemes for parallel communication, Proc. 13th Annual
ACM Symposium on Theory of Computing, Milwaukee, W1, 1981, pp. 263-267.
[9] A. WAKSMAN, A permutation network, J. Assoc Comput. Mach., 15 (1968), pp. 159-163.
[10] U. VisHKIN, A paralleI-design-distributed—implementation (PDDI) general purpose computer, Technical
Report No. 96, Dept. Computer Science, New York Univ., New York, 1983.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14

