COMPUTING MINIMUM SPANNING FORESTS
ON 1- AND 2-DIMENSIONAL PROCESSOR ARRAYS

(Extended Abstract)

Friedhelm Meyer auf der Heide *
Informatik II, Universitat Dortmund
D - 4600 Dortmund 50, Fed. Rep. of Germany

Abstract: Minimum spanning forests (MSFs) can be computed in time
O(n?/l) on a 1-dimensional processor array of length ! < n. For this result
we apply a new algorithmic approach different from e.g. Sollin’s. It holds for
arbitrary input conventions if we only count communication rounds. If we also
take internal computation into account it still holds for a wide class of input
conventions, generalizing a result by Doshi and Varman. For [x l-meshes,
vn < 1 < n, we present two input conventions for which computing MSFs
needs different numbers of communication rounds. For one of them we prove
the interesting phenomenon that the complexity is not monotone in [It is
~n for | = /n and [= n, but takes its minimum, & n®/%, for [= n3/4,

1. Introduction
In this paper we present upper and lower bounds for computing minimum spanmng

forests (MSFs) of weighted graphs on simple parallel computation models, namely the 1-

dimensional processor-array with [processors (l-array), and the 2-dimensional processor-

array with [? processors (I x l-mesh).
There is a variety of approaches to compute MSFs sequentially due to Sollin, Prim-

Dijkstra, and Kruskal (compare e.g. [M]). Most known parallel algorithms parallelize

Sollin’s approach (for an overview see [QD]).
Therefore we give here a recursive, high-1

simplicity we assume all edge weights to be different.)

evel description of this algorithm. (For

ALGO 0 (Input: Weighted graph G with n nodes)
Step 1: Compute the min-subforest F of G, i.e. the subforest of G consisting of the

cheapest edges incident to each node. (F is part of an MSF of G.)

Step 2: Compute the connected components A= (Ay,... As)of F (s <n/2).
Step 3: Compute the A-contraction @' of G. Le.: Contract the nodes from each A, to
one node p, join p and ¢ with the cheapest edge in G between Ap and A,

Step 4: Compute recursively an MSF F fof G'. .
Step 5: Compute the subforest F of G consisting of those edges the edges 1n F' descend

from (F U F is an MSF of G.)

The algorithm has recursion depth log(n).

* Supported in part by DFG-Grants ME-872/1-2 and WE 1066/2-1

182

There are many papers presenting implementations of this algorithm on several
parallel computation models. For shared memory machines (PRAMs) the optimal
time-processor product ©(n?) (which is the sequential time) can be achieved for up
to n?/log(n)? processors, as shown by Chin,Lam,Chen in [CLC]. Clearly, on an l-array,
a lower bound Q(!) holds, if the input is distributed evenly among the processors. Thus
an optimal time-processor product is impossible for | = w(n).

Doshi and Varman have shown in [DV] that the optimal time bound can indeed
be achieved for [< n. They designed an algorithm on l-arrays, [< n, that computes
MSF's in time O(n*/l). They implement Sollin’s algorithm. The disadvantage of their
solution is that it is heavily based on their choice of the input convention. They assume
that each processor gets an (I/y/n) x (I/4/n)-submatrix of the adjacency matrix, and
that these submatrices are distributed over the processors in “shuffled row and column”
order. This makes it possible that the critical step 3 of Sollin’s algorithm becomes
cheaper on lower recursion levels, because communication only has to take place over
short distances. This is no longer true if we change the input convention. Then, e.g.
for [= n, each recursion level needs ©(n) steps (the diameter of the n-array). Thus the
runtime becomes ©(nlog(n)).

A different, simpler approach due to Preilowski [P] computes (not necessarily min-
imum) spanning forests in O(n) time for a large variety of input conventions.

In this paper we present a new algorithmic approach which finds a way around the
high amount of communication for step 3. We allow that a processor does not necessarily
know the correct weight of the cheapest edge between nodes in order to start the next

recursion level, i.e. we allow wrong edge-weights. Qur approach leads to the following
result for l-arrays, 1 <! < n:

o The number of communication rounds to compute an MSF on an l-array is ©(n?/1),
independent of the input convention.

Here we assume that internal computation is free, and that, in order to be fair, only
names of nodes or names and weights of edges can be communicated to neighbouring
processors in one round., If we take internal computation into account, we have to
put some restrictions on the input conventions in order to achieve O(n?/1) runtime.
These restrictions still allow a variety of “reasonable” input conventions including that

from Doshi and Varman as well as the “most natural” convention where processors get
adjacency lists of nodes.

Furthermore we consider ! x l-meshes, v <1 < n. Here we only count the
number of communication rounds, because this seems to mirror the inherent parallelism
of computing MSFs. It turns out that the time-processor product can become as small
as n%/2 instead of n?, if we measure time by number of communication rounds.

Atallah and Kosaraju [AK] have designed an algorithm that takes O(n) steps on
an n X n-mesh. Thus, for a suitable input convention, we can emulate the n x n-mesh
on an | x I-mesh with optimal timeloss achieving O(n®/12) runtime. This is also the
best bound for the number of communication rounds known in the literature.

183

We shall see in this paper that, in contrast to l-arrays, the number of communication
rounds in I x l-meshes depends on the choice of the input convention, even if we demand
that each processor gets the same number of edges.

To illustrate this we consider two input conventions.

Convention A: The [x I-mesh is partitioned into n I’ x I'-meshes, I' = I/y/n, each of
which stores an adjacency list of a node.

Convention B: The adjacency matrix is partitioned into I? submatrices of size n/Ixn/l.
Each processor gets the respective submatrix.

We show that convention B allows substantially faster algorithms than conven-
tion A.

For the lower bounds, we assume that each processor can only communicate one
bit per round, and that at the end of the computation each processor knows those edges
from its input that belong to the MSF. On the other hand we prove the lower bounds
even for the case that only weights 1 and 2 are allowed. Thus, messages allowed for
the upper bounds have length O(log(n)), and our lower bounds need only be divided

by log(n) in order to be directly comparable to the upper bounds.
We achieve the following upper and lower bounds for our two input conventions.

o The number of rounds needed by an [x I-mesh (vn <1< n) to compute an MSF of
an n-node graph given by convention B 18 Q(I). This 1s tight within a logarithmic

factor.

o For convention A, the number of rounds is Q(n3/2 1+ 1). Also this is tight within

a logarithmic factor.

The result for convention A proves an interesting phenomenon: The number of
rounds is not a monotone function in . Instead, within logarithmic factors, it is O(n)
for I = \/n and [= n and takes its minimum, Q(n3/%), for I = n®/4.

The paper is organized as follows. In Chapter 92 we introduce graph-theoretical
notions and properties of MSFs needed for the algorithms. In Chapter 3 we define
our computation models and state the results. Chapter 4 presents the algorithms for
l-arrays, Chapter 5 the lower bounds and Chapter 6 the upper bounds for I x I-meshes.

2. Properties of MSTs

In this paper, G always denotes a weighted graph G = (V, E,w) with vertex set
V={1,...,n},edgeset EC (‘2/) and weight function w : E — IN. The min-subforest
of G is the forest on vertex set V that contains, for each non-isolated node i € V, an
edge {i,7} € E with smallest weight. Ties are broken in favour of the smallest j. (It is
easily checked that these edges form a forest.) .

Let A = {A;,...,A,} be a disjoint partition of V. The A-contraction of G, G/ a,

is the graph with vertex set V' = {1,... ,s}, edge set E' with {a, B} € E" iff there are

184

1 € A4, J € Ag with {i,j} € E, and weight function w' : E' — IN with w'(a, f) =
min{w(2,7),7 € Aa, J € Ap, {1,7} € E}. I w(i,7) is this minimum, then we say that
{a, B} decends from {1, ;}.

The following lemma collects properties of MSFs which are easy implications of the
“matroid property” of spanning forests.

Lemma (The MSF-lemma):

a) There is an MSF of G which contains the man-subforest of G.

b) Let A= {A;,..., A} be the partition of V given by the connected components of
its min-subforest. Let F be an MSF of G/ 4, and E be the subset of E containing
ezactly those edges, the edges of F' descend from. Then E together with the min-
subforest of G forms an MSF of G.

¢) Let G = (V,E,w), G, = (V, Ey,w1), and Gy = (V,Eq,w;) be weighted graphs,
E = E UEy, w(i,j) = min{wi(i,),ws(s,;)}. Let Fy,F, be MSFs of G1,Gy.
Then Fy UFy contains an MSF of G.

d) Let G' = (V,E',w) be a subgraph of G, F' = (V,E",w) an MSF of G', G* =
(V,(E\NE)UE",w). Then each MSF of G* is an MSF of G.

a) and b) form a correctness proof of Sollin’s algorithm mentioned in the introduc-
tion. c) is the heart of our new linear time algorithm on n-arrays described in chapter 4.

3. Definitions and Results

In this paper we deal with two well-known paralle]l computation models, the {-array
and the ! x [-mesh.

An l-array consists of [processors Py,...,P. Communication links only exist
between Py and Pryy, 1<k <11,

An I x l-mesh consists of 12 processors Pri,1 < h,k < 1. Communication links
from Py & go to Phiyx and P g1y (if these processors exist). Communication links can
be used in both directions.

In one communication round, each processor can execute an arbitrary amount of
nternal computation and can send one message to one of its neighbours. In order to be
fair we do not allow that a processor encodes much information in one message, because
this would make it capable of communicating e.g. its whole configuration in one step.
Instead, in case we want to compute an MSF of G, messages may only consist of a
weight of some input edge, or the name of a node.

We consider two complexity measures:

1) number of communication rounds

2) runtime (Here we also take internal computation into account, assuming the usual
uniform cost measure.)

As we shall prove later, it is crucial for the efficiency of an algorithm on [-arrays
or I x | meshes how the input is represented, i.e. which processor initially knows which
mput variables. Thus we have to consider input-conventions.

185

An input convention on l-arrays (for graphs G) is a disjoint partition (Ey, ..., Er)
of (‘2/) The interpretation is that Py knows the weighted edges of G that are in Ex N E.
Input conventions (Ej x,1 < h,k < 1) on I x l-meshes are defined analogously.

Now we are ready to state our results.

Theorem 1: For each input convention on l-arrays, 1 <1 < n, there is an algorithm
on l-arrays that computes an MSF of a graph G in O(n?/l) communication rounds.

We shall see later that this algorithm is conceptually different from all known
algorithms, e.g. from Sollin’s algorithm.

In order to achieve linear runtime, we have to put some restrictions on the allowed
input conventions.

An input-convention (Ey,...,E,) on n-arrays is nice, if the following holds for each
input G = (V, E, w):
a) For each 1 < k < n, an MSF T} of Gy = (V, E,w) can sequentially be computed
in time O(n),
b) For each 1 < k < n, and for each disjoint partition A = (A1,...,As) of V, an MSF
of Ty / 4 can sequentially be computed in time O(s + n/log(n)).

(E1,...,E) is nice on l-arrays, | < n, if there is (E!,...,E;) nice on n-arrays such
that E; = B U...UE,, a=(i—1)n/l+1, b=1i-n/lfor 1<z <l

Examples for nice input conventions on n-arrays:

(i) Ex = {{k,j},j # k}. (This is the appearently “most natural” input convention :
Each processor gets a weighted adjacency hst of one node.)

(ii) The weighted adjacency matrix of G is partitioned into n \/n x y/n-submatrices
By, 1 < a,b < \/n. Each processor gets one of them. (This is — frorr.x the algo-
rithmic point of view — the simplest input convention. For one special distribution
of the B, ,'s over the processors according to the “shuffled row and column assign-
ment scheme”, Doshi and Varman have presented an algorithm with linear runtime
in [DV]. Their algorithm only works for this input convention.) .‘

(i1) Ey is a subset of (‘2/), #E) < n, which only touches at most n/ log(n) noFles.

(iv) If (Ey,...,E,) is nice, then also (E,,(l),...,E,,(n)) for every permutation 7 on

{1,...,n}.

(i) and (iv) are clear, (ii) and (iii) are easily checked using well known sequential algo-
rithms for MSFs (see [M]).

Theorem 2: For each nice input convention on l-arrays, [< n, there 13 an algorithm

on l-arrays that computes an MSF of a graph G in 0(”2/1) runtime.

This result generalizes the result from [DV] mentioned in (ii) above. As n?, the
number of input variables, is clearly a sequential lower bound, the algorithms from the

above two theorems are asymptotically optimal.

186

Remark: It suffices to prove the upper bounds of Theorems 1 and 2 for n-arrays.

The generalization to l-arrays, | < n, is simply done by the following simulation:
Each processor of the l-array executes the work of n/l consecutive processors of the
n-array. This slows down the runtime and the number of communication rounds only
by a factor O(n/l), which yields the theorems. (Note that the definition of nice input
conventions on l-arrays is consistent with this simulation.)

We now turn to ! x -meshes, vn <1< n. Here we only consider communication
rounds. It turns out that, in contrast to l-arrays, the input convention is crucial for the
efficiency of the algorithms. To illustrate this we consider two input conventions:

Convention A: The [x l-mesh is partitioned into n I x I'-submeshes, I' = 1/ /n,
each of which knows the adjacency list of one node of G, distributed evenly among the
processors of the submesh.

Convention B: The adjacency matrix of @ is partitioned into {2 n' x n'-submatrices,
n' =n/l. The h-th submatrix in the k-th row of submatrices is known to Py k.

These conventions correspond to the conventions (i) and (ii), resp., for l-arrays
described earlier.

Theorem 3: Let /n <1< n.
a) Eachl x l-mesh that computes an MSF of a graph G given by convention A needs
QI+ n¥2 /1) communication rounds.
b) The above lower bound is tight within a log(n) factor.

This result shows that, for convention A, the best choice of [is n3/4. In this case
the number of communication rounds is @(n®/ *) (up to a log(n) factor), whereas both
for I = \/n and | = n we get a linear number of rounds.

For convention B, we obtain different bounds.

Theorem 4: Let \/n <1< n,
) Each x |-mesh that computes an MSF of @ graph G given by convention B needs
Q) communication rounds.
b) The above lower bound is tight within g log(n) factor.

In this case it turns out that the (trivial) lower bound ! (& diameter of the ! x I-

mesh) can, up to a log(n) factor, be reached in the whole range of [between /n and n,
not only between n®/% and n as for convention B.

4. Upper bounds on n-arrays

In this chapter we prove Theorems 1 and 9. By the remark from Chapter 3 we only

have to consider n-arrays. We start with an algorithm that only takes communication
rounds into account.

187

In order to make our recursive approach work, we have to define an even more
general type of input convention, where we allow that processors know wrong weights
of edges.

A representation of G = (V, E,w) is a tuple ((Ey,w1),...,{En,wn)), where By C
F, and wy : By — IN is a weight function on E, 1 < k < n, with the properties:
(i) E ==, Ex (The E}’s are not necessarily disjoint)
(i1) For all {1,5} € E, w(i,j) = min{wi(i,7),{t,7} € Ex}.

ALGO 1 (Input: a representation of a graph &)

Step 1: Compute the min-subforest F of G.

Remark: Using pipelining, this can be done as follows: P; sends, one after another,
packets (i,v(1),7),1 € i < n, along the array to P,. Initially, j = 12, v(¢) = oo. If
(1,v(1),) arrives at P, Py checks whether it knows an edge {,5'} incident to ¢ with
wi(i,') < v(i) or wi(i,j') = v(s) and j' < j. If yes, it chooses such an edge (¢,;') with
smallest weight, or with smallest j', resp., and replaces (7,v(i),5) by (¢, w(,5'),7').
Thus, after O(n) rounds, P, knows the min-subforest F of G.

Step 2: P, computes the connected components A = (4,...,4,) of F and broadcasts

them to Py,...,Pa.
Remark: This takes O(n) rounds. (We do not count for the internal computation of

P,.) Furthermore, s < n/2.

Step 3: For each 1 < k < n, P computes the A-contraction G} = (V', E},w}) of
Gy = (V, Ex,wy) (with V' ={1,... ,5})-

Remark: This step needs no communication. As 2 result we get the following: Let
G, = (V',E*,w') and G; = (V', E?,w?) be the graphs represented by ((E},wh), ..,
(;/2,10:1/2)) and ((E;/2+1,w:1/2+1),..., (E!,w!)), resp. Let G* = (V',E*,w*) be
the A-contraction of G. Then E* = E' U E? and for each {z,5} € E*, w*(¢,5) =
min{w'(:,7), w*(,j)}. Thus the MSF-lemma suggests the following two steps to com-
plete the algorithm.

Step 4: In parallel, recursively, P1,..., Poy2 and Pyj241,-- . P, compute MSFs F} and
F, of G and G, resp. (Note that Gy and G, have s < n/2 vertices.)

Step 5: Send F), and F; to Pi. P computes an MSF F” of F; U F; and, from that,
the subset F' C E the edges in F* descend from.

Remark: This step needs O(n) communication rounds, because Fy U F3 only has O(n)

edges. It follows directly from the MSF-lemma that F'UF* is an MSF of G. (F denotes

the min-subforest of G.)

By the remarks, the algorithm is shown to be correct. Let T(n) denote its worst
case number of communication rounds for graphs with n nodes on an n-array. As steps
1,2,3,5 need O(n) rounds together, and Step 4 needs at most T(n/2) rounds, we obtain
T(1) = 0(1), and for n > 1, T(n) = T(n/2) + O(n). Thus T(n) = O(n), which proves

Theorem 1.

188

In order to prove Theorem 2 we have to define nice representations of graphs G =
(V,E,w). A representation ((E1,w,),...,(En, wy)) of G is nice if the following holds:
a) For each 1 <k <n, an MSF T} of Gy = (V, E}, wg) can sequentially be computed
in time O(n),
b) For each 1 <k < n, and for each disjoint partition A = (4,,...,4,) of V, an MSF
of Tx/ a can sequentially be computed in time O(s + n/log(n)).

We always assume that the graph G} stored in P is represented as adjacency lists,
where each list is ordered according to the weights, and ties are broken in favour of the
smaller node.

ALGO 2 (Input: a nice representation of a graph G)

Step 1: Compute the min-subforest F of G.

Remark: This is done as described in Step 1 in Algo 1. Each processor only needs
constant time to find the edge {z, '}, because of the internal representation of Gy in P;
mentioned above. Thus Step 1 needs O(n) steps.

Step 2: P, computes the connected components 4 = (A1,...,A,) of F and broadcasts
them to Py,..., P,.

Remark: This can be done in O(n) steps sequentially using e.g. depth first search.
The broadcast clearly needs also O(n) steps.

Step 3a:For each 1 < k < n, Py computes an MSF F of G} = (V, Ex,wy).

Remark: This can be done in time O(s+n/ log(n)) by definition of nice representations.
This step is necessary as we cannot compute G/ 4 in time O(n), because G can have
w(n) edges, whereas F} has at most n — 1 edges.

Step 3b:For each 1 < k < n, Py computes the A-contraction ¢ = (V', By, wy) of Fk.
Remark: This can be done in time O(n), because F; has at most (n — 1) edges.
The MSF-lemma d) guarantees that we obtain a correct algorithm if we now go on as

described in Algo 1 following the remark for step 3 (with our new interpretation of G}).
We now use the notations from Algo 1.

Step 4: In parallel, recursively, P, ... yPajz and P, /a4y, ..., P, compute an MSF Fy
and Fy of G| and Gy, resp.

Step 5: Compute an MSF F* of F, U F, and the set ' C E of edges from which the
edges of F™* descend.

Remark: We cannot, as in Algo 1, compute F* sequentially, because this would take
w(n) steps. There are many ways of computing F* in O(n) time. One way is as follows:
Broadcast Fy U F} to all processors. This takes O(n) time, because F; U Fy has O(n)

edges. As a result, we are ready to apply any O(n) algorithms for an arbitrary input
convention. Thus we may use the algorithm by Doshi and Varman from [DV].

The correctness of this algorithm follows directly from the remarks in Algo 1 and
Algo 2. In order to compute the runtime, we have to be careful because of Step 3a.
First let us assume that Step 3a takes O(s) steps for graphs with s nodes on s-arrays.

189

Then we would get the same recursion as in Algo 1, i.e. Algo 2 would have runtime
O(n). In order to also take the additional O(n/log(n)) steps in each of the d iterations
of step 3a into account, we have to add O(d - n/log(n)) steps. But as d = log(n) we
obtain O(n) runtime.

5. Lower bounds on 1x]l-meshes

In this chapter we prove the lower bounds from Theorems 3 and 4. The €(!) lower
bound in both theorems is clear because this is the time needed to send a message
through an ! x I-mesh.

Thus it remains to prove the (n3/2/1) lower bound from Theorem 3 under con-
vention A.

Let M be the upper left I' x I-submesh of the [x l-mesh, I = I/\/n. By the
definition of convention A, it contains all the weighted edges incident to one node, e.g.
to node 1.

The outline of the proof is as follows: We show that (almost) each subset of the
edges I'(1) = {{1,2},...,{1,n}}, known in M can belong to the MSF. Thus needs
to get ~ n bits of information in order to distinguish beween these & 2™ situations. In
one round, M can only get 2//+/n bits of information (this is the number of links leaving
M in the I x I-mesh). Thus, at least = nf(2l//n) = %n?’/?/l rounds are niecessary. In
order to make this precise, we first show:

Claim: For each D C T(1)\ {{1,n}}, there is a graph G = (V,E,w) with I'(1) C E,
w(T(D\ {{1,n}}) = {2}, w(E) = {1,2} such that for each MSF F of G, FNT(1) =
DU {{1,r}} holds.

Proof: Let D C I'(1)\ {{1,n}} be fixed, V' = {j,{1,5} € D}, V' =V \ (V' u{l}).
Clearly, the following graph G fulfils the claim.

- V" is connected in G,

- V' is independent in G,

- the edges in T(1) \ {{1,n}} have weight 2, all others weight 1.

Now consider as inputs all graphs with edge weights 1 or 2, which contain all edges
from (1), weighted as in the claim. Restricted to these graphs, the part of the input
known to M, the upper left ' x!'-submesh, is constant. Therefore, in order to distinguish
between the possible outputs D C I'(1) for M, M needs n — 2 bits of information from
outside M. This is true because, by the claim, 2”2 choices of D are possible. Thus,
the argument before the claim proves the lower bound.

6. Upper Bounds on 1x]l-meshes

In this chapter we present the upper bounds from Theorems 3 and 4.

190

First we consider Theorem 4, where the input is given by convention B. We again
have to generalize this convention in order to make our recursive approach work.

A B-representation of a graph G = (V,E,w) is a tuple ((Epg,wp), 1 < bk < 1),
where B CE, wy Ej — IN with the properties:
(i) U1gh,k<1 Epp=E
(ii) For each e € E, w(e) = min{wy 1(e), e € Ey i}
(i11) For each 1 < h, k < [, there are sets I, Jk C©V, #In,#Je = O(n/l), such that all
nodes incident to edges from E} x belong to I, U Jy.

Clearly, convention B is a B-representation.

ALGO 3 (Input: a B-representation of a graph G)
Step 1: Compute the min-subforest F of G as follows:

a) For each 1 < h < I, compute, for each i € I, the edge {,7; 1} incident to ¢ with

smallest weight v,(¢) among the weights known for edges incident to ¢ by processors
in column h. Ties are broken in favor of smaller nodes.
Remark : As each column can be looked upon as an [-array this can be done in
O(n/l+1) = O(l) rounds (note that v/n <1< n), similar to Step 1 of Algo 1. Asa
result, we have computed #I} = O(n/!) many triples (¢,v4(7), 7;,») in each column,
thus O(n) triples altogether.

b) Do the same as in a) for each row k, for each i € k.

Remark: As a result, analogously to a), we need O(I) rounds and get O(n) triples
(2,vk(2), j 4). Thus we have O(n) triples (2,v1(2),7i.n) and (3,v¢(7),Ji x)- The edge
incident to ¢ that belongs to the min-subforest is given by the third component
of the triple with first component ¢ and lexicographically minimum pair (second
component, third component).

¢) Sort the O(n) triples lexicographically (first priority 2, second priority vy (7) (resp.
vi (7)) third priority j; 5 (resp. Jie)

Remark: This can be done in O(l) steps, because the number of elements to be

sorted 1s linear in the number of processors (Compare [SS]). As a result, the first

triple in the ordered sequence with first component : represents the edge incident

to 2 in F. Thus we have computed F in time o).
Step 2: Compute the connected components 4 = (A1,...,4,) of F as follows:

a} Expand each node with degree d in F' to d nodes of degree 3.

Remark: This can easily be done in time O(l). The resulting forest F' still has
O(n) vertices, because F only has O(n) edges.

b) Distribute the O(n) edges of F evenly among the processors of the upper left
V1 X \/n-mesh.

¢) Compute the connected components A},... A, of F' in this V1 X y/n-mesh.
Remark: This can be done with an algorithm described by Nassimi and Sahni in
[NS] in time O(+/nlog(n)).

d) Compute A4,,. ., A, from Af ., AL
Remark: This is done in O(!) rounds by reversing the expansion from a). Thus

Step 2 takes O(l + \/nlog(n)) rounds.

191

Step 3: For each p € {1,...,s}, j € A,, send (p,j) (= “node j of G belongs to 4,”)
to each processor Py x with j € Iy U Jy as follows:

a) For each 1 < h <1, send each (p,j), j € I, to column h.

Remark: Initially, each processor in the upper left \/n x \/n-mesh knows O(1)
many pairs. These pairs are pipelined within their rows over the whole mesh. This
takes time O(I + v/n) = O(!).

b) For each 1 < h < [, broadcast each pair in column k to all processors in column h.
Remark: As there are only O(n/I) pairs in column h, this takes O(n/l+1) = O(I)
rounds.

¢) Do the analogue to a),b) for each row.

Remark: After this, each processor Py x knows, for each node 7 from [U Ji,
the component A, to which 1 belongs. Thus Pj x can internally compute the
A-contraction G}, , = (V', h g wh) of the graph Gy = (V, Epkywn i) (V' =
{1,...,5)}). Let G' = (V', E',w') be the graph with B-representation ((Eh g Whk)s
1 < hk <1I). G'isthe A-contraction of G. Thus the MSF-lemma suggests the
following steps to complete the algorithm.

Step 4: Recursively compute an MSF F* of G'. (The recursion terminates if G" has
one vertex, i.e. after log(n) iterations.)

Step 5: Compute I, the set of edges in E from which the edges in F™ descend.
Remark: This step needs no communication. The MSF-lemma shows that FUF'is an

MSF of G. (F is the min-subforest, compare step 1.)

By the remarks, the algorithm is shown to be correct. The number of rounds needed

for each of the log(n) recursive calls is O(1 + /nlog(n)). (Note that deeper recursive

calls do not become cheaper, because they still work on the whole [x l-mesh.) Thus

the algorithm needs O({log(n) + /nlog(n)*/?) rounds.

Also for the algorithm for Theorem 3 we need a generalization of the input con-
vention. For 1 < r,q < v/n let B, , denote the I' X I'-mesh, I' = I/\/n, consisting of the
processors Py x with (r—1)I'+1<h < rl' (g-1)I'+1 < h < gl'. An A-representation
of a graph G = (V, F,w) is defined like a B-representation, except for (iii), which has
to be replaced by

(iii)": #Epy = O((n/)}) for 1 < hk < I, and each By, contains a subset of ()N E

for some node i € V.

ALGO 4: (Input: an A-representation of a graph G) ' . _
Step 1 is easier than in Algo 3: First each By, computes its edge with smallest weight

in O(1/\/n) rounds. Then, for all 1 < ¢ < n, among the edges chosen in those By g’s
that know weights of edges in I'(:) N E, the smallest can be computed in O(l) rounds,

which finishes the computation of F.

Step 2 can be done as in Algo 3.

192

Step 3 takes longer than in Algo 3. It takes at least n/(4 - I/v/n) = in*/? /1 rounds,
because each B, , has to obtain up to n pairs (p,), but can only obtain 4 I/1/n such
pairs per round. (Compare the lower bound argument from Chapter 5.) We shall show
how this time bound can be achieved. (Note that, after Step 2, each of the first /2
rows know O(+/n) pairs, O(1) pair per processor.

a) For 1 < h < /n, broadcast the pairs known in row % to all Processors in row A.
Remark: This takes O(\/n + 1) = O(I) rounds. Now in each column all pairs are
known, O(y/n) per processor. Assume that we have partitioned the set of pairs in
' sets Ly,..., Ly, #L; = O(n/l").

b) Foreach 1 <r < /7, for each 1 < <, broadcast L; to all processors in the j-th
row of the r-th column of B, ,’s.

Remark: This takes O(n/l'+1) = O(n®/?/141) rounds. As a result, the connected
components A = {A;,..., A,} of F are known in each B, ,.

Step 4, Step 5 are as in Algo 3.

The correctness of the algorithm follows from the correctness of Algo 3. The number
of rounds in each of the log(n) levels of recursion is

O(n*/ +14 \/nlog(n)) = O(n*/? /1 + 1).

Thus the algorithm needs
O((n*2)1+ 1) log(n))

rounds.

Acknowledgement: I would like to thank Martin Dietzfelbinger for many helpful
discussions.

References

[AK] M.J.Atallah, S5.R.Kosaraju: Graph problems on a mesh-connected processor ar-
ray, Proc. 14th ACM-STOC, 345-353, 1982,

[CLC] F.Y.Chin, J.Lam,L.N.Chen: Efficient parallel algorithms for some graph prob-
lems, Comm. ACM 25(9), 659-665, 1982.

DV} K.Doshi, P.Varman: Efficient graph algorithms using limited communication on
a fixed size array of processors, Proc. 4th STACS, Passau, Fed. Rep. Germany,
76-87, 1987.

[M] K.Mehlhorn: Data structures and algorithms, Vol. 2, Springer-Verlag, Berlin
Heidelberg New York, 1984.

[NS] D.Nassimi, S.Sahni: Finding connected components and connected ones on a
mesh-connected parallel computer, SIAM J. Comp. 9(4), 744-757, 1980.

[P] W.Preilowski: Parallele Algorithmen fiir lineare Prozessorenarrays, Diplomar-
beit, Paderborn, 1987.

[QD] M.J.Quinn, N.Deo: Parallel graph algorithms, Computing Surveys 16(3), 319-
348, 1984.

[SS] C.P.Schnorr, A.Shamir: An optimal sorting algorithm for mesh connected com-
puters, Proc. 18th ACM-STOC, 255-263, 1986.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12

