
University of Paderborn

Self-Organizing Ad-hoc Mobile
Robotic Networks

Emi Mathews

Dissertation

in Computer Science

A thesis submitted to the

Faculty of Electrical Engineering,

Computer Science, and Mathematics

of the

University of Paderborn

in partial fulfillment of the requirements for the degree of

doctor rerum naturalium

(Dr. rer. nat.)

Paderborn, Germany

July 12, 2012

Supervisors:

Prof. Dr. rer. nat. Franz Josef Rammig, University of Paderborn

Prof. Dr. math. Friedhelm Meyer auf der Heide, University of Paderborn

Date of public examination: 24. August 2012

ii

Acknowledgments

I can no other answer make, but, thanks, and thanks.

William Shakespeare

I would like to sincerely thank Prof. Dr. Franz Rammig for his constant guidance

and support during my research. He always encouraged my ideas and provided

great freedom to carry out research in my area of interest. The scientific opportu-

nities I got through his encouragement to publish papers and attend international

conferences, helped me to grow professionally. Despite his busy schedules, he was

always available for discussions and set apart time to review my work. I have

learned a lot from him especially on how to think positively and optimistically.

Words cannot express my gratitude to him.

I am deeply indebted to Jun. Prof. Hannes Frey for the countless discussions

I had with him. It helped me to sharpen my ideas. His reviews helped me to

publish my works in very reputed conferences.

I would like to extend special thanks to Prof. Dr. Friedhelm Meyer auf der

Heide, the member of my committee and my second reviewer. I would also like to

specially thank other members of my committee, Prof. Dr. Ulrich Rückert and

Dr. Michael Thies.

I also wish to thank whole heartily all the members of the working group and

the International Graduate School for supporting my work. I am grateful for the

discussions and joint work with my colleagues especially Yara Khaluf. I am also

grateful to Peter Janacik, Fahad Bin Tariq, Marcio F. S. Oliveira, Jakob family

and all other friends for making the life enjoyable in Paderborn. I enjoyed playing

soccer with C-Lab robots and as well as C-Lab colleagues.

I wish to thank my students, especially Ciby Mathew, Tobias Graf and Suranga

Kulathunga who helped in formalizing some of the algorithms as well as their

implementations. The painstaking setup procedures for practical multiple robots

experiments were made easy with the support of Rakesh Garimala and Andry

Tanoto.

I specially thank my family members especially my parents, in-laws and sisters

for their unconditional love and encouragement. My parents dedicated their entire

life for my education and deserve more credit than I could ever give them. I

heartily thank my wife Mabel for the enormous support during my work and the

careful often late-night reviews of my papers and this dissertation. I give my

deepest gratitude and love for her support and encouragement that made this

iii

dissertation possible. I thank our baby daughter Joanna for jumping on lap to

play the nursery rhymes on my computer while I write my dissertation and remind

me of the important things in life.

Finally I am grateful to God for showering His love and affection and for giving

me the wonderful opportunity to come to Germany and pursue my research.

iv

Abstract

Ad-hoc Mobile Robotic Network (AMRoNet) consists of a large collection of mo-

bile robots which creates a wireless network for collaborative and co-operative task

accomplishment. Technical advancement and miniaturization of computing, com-

municating, sensing and actuating devices enabled building small and low cost

robots such as swarm robots and Micro Air Vehicles (MAV) for creating such

networks. Self-organization is a key feature that makes AMRoNets adaptive and

useful in many application scenarios such as sensing and monitoring and urban

search and rescue. Self-organizing systems interact locally according to simple

rules and the global behavior of the system emerges from these local interactions.

Self-configuration, self-healing and self-optimization are three key features of self-

organizing networks.

In AMRoNets, self-configuration is achieved through self-deployment which en-

ables the nodes to start from a relatively compact initial configuration and spread

out in an area, maximizing the coverage and keeping the network connected, using

simple local rules. Self-healing mechanisms allow automatic reconfiguration of the

network in case of failures. Coverage requirements vary with applications. We

consider two types of coverage maximization problems: sensing range-based and

communication range-based area coverage. For sensing range-based area coverage

problems, we introduce a new swarm-based algorithm based on the local rules,

namely separation, cohesion and alignment, used in modeling of fish schooling.

Empirical analysis shows that it outperforms most prominent state-of-the-art al-

gorithms by achieving better and faster coverage. The algorithm could also be

used for communication range-based area coverage problems, but it is not optimal

in such cases. Hence a greedy deployment algorithm which could achieve a near

optimal performance in obtaining communication range-based area coverage and

useful in certain application scenarios has also been proposed.

Self-optimization capability enables the network to adjust regularly and route

efficiently in large-scale networks, especially when topology changes are frequent.

We concentrate on the routing aspect of the self-optimizing networks. Routing

algorithm which uses only local rules or local information is the primary choice

for self-organizing AMRoNets. Geographic routing is one such algorithm which

is very useful in AMRoNets because of its simplicity, scalability and low routing

overhead. The basic geographic routing uses a greedy forwarding step and a planar

graph based FACE routing step, whenever packets cannot be forwarded according

v

to the greedy step. FACE routing guarantees message delivery if it is applied on

a planar embedding of the communication network. Challenges in obtaining a

planar graph in real wireless networks with irregular radio range and imprecise

node location information make this algorithm inapplicable in practical scenarios.

To solve this problem, we propose a new localized planarization algorithm based

on a topological cluster-based overlay graph construction. To make the overlay

graphs planar, a new explicit planarization technique has been applied. Empirical

analysis shows that this overlay graph-based macroscopic planarization approach is

location fault tolerant and produces planar graphs in most of the realistic wireless

networks. Thus the highly efficient geographic routing algorithm is now applicable

in practical scenarios and self- optimizing communication is feasible in AMRoNets.

vi

Contents

1 Introduction 1

1.1 Coverage and Connectivity . 4

1.1.1 Sensing range-based coverage 5

1.1.2 Communication range-based coverage 6

1.2 Efficient Routing in AMRoNets . 6

1.3 Contributions . 7

1.4 Organization of the Dissertation . 9

2 Resources and Platforms 11

2.1 Bebot robot . 11

2.2 Player/Stage robotic framework . 12

2.2.1 Player . 12

2.2.2 Configuration file . 14

2.2.3 Client program . 15

2.2.4 Stage . 15

2.3 Framework for multi-robot simulations 17

2.3.1 World Generator . 17

2.3.2 Robot control Generator . 18

2.3.3 Experiment Analyzer . 19

2.4 Teleworkbench . 19

2.5 Bebot software development . 20

2.5.1 Bebot development environment 20

2.5.2 Framework . 21

2.6 Network simulator . 22

vii

CONTENTS

3 Coverage and Connectivity in AMRoNets 27

3.1 Preliminaries . 28

3.1.1 Problem formulation . 28

3.1.2 Sensing range-based coverage 29

3.1.3 Communication range-based coverage 29

3.2 Related Work . 31

3.2.1 Force-based algorithms . 33

3.2.2 Incremental self-deployment algorithms 34

3.2.3 Spanning tree-based algorithms 35

3.2.4 Voronoi-based algorithms . 36

3.2.5 Pheromone-based algorithms 36

3.2.6 Behaviour-based algorithms 37

3.2.7 Wireless signal intensity-based algorithms 39

3.3 Our design direction . 40

4 Sensing Range-based Coverage 41

4.1 Preliminaries . 42

4.2 Swarm-based Algorithm . 42

4.2.1 Swarming rules . 42

4.2.2 Mathematical modeling of schooling behavior 43

4.2.3 Neighborhood definition . 45

4.2.4 Obstacle avoidance . 45

4.3 Experimental Analysis . 46

4.3.1 Geometric patterns . 46

4.3.2 Topological and Metric model 48

4.3.3 Comparison of performance 49

4.3.3.1 Experiment 1 - Coverage analysis: 50

4.3.3.2 Experiment 2 - Coverage maintenance 51

4.4 Summary . 52

5 Communication Range-based Coverage 53

5.1 Preliminaries . 54

5.2 Related Work . 55

5.3 Agent-assisted router deployment algorithm 55

5.3.1 Initialization phase . 56

5.3.2 Greedy deployment phase 56

5.3.3 Triangular deployment phase 58

viii

CONTENTS

5.3.4 Local Coverage Maximization phase 59

5.3.5 Optimization of triangular placement 59

5.4 Experimental Evaluation . 60

5.4.1 Performance analysis . 61

5.4.2 Effect of number of agents and base stations 63

5.5 Discussion . 64

5.5.1 Merits of agent-assisted router deployment 64

5.5.2 Self-spreading version . 65

5.6 Summary . 65

6 Self-optimizing Network 67

6.1 Topology-based routing . 68

6.2 Geographic routing protocol . 69

6.2.1 Greedy routing . 69

6.2.2 FACE routing . 72

6.2.2.1 Improved FACE routing 75

6.2.3 Void handling . 76

6.2.3.1 FACE routing-based void handling 78

6.2.3.2 Other void handling mechanisms 80

6.3 Hybrid routing . 81

6.4 Summary . 82

7 Graph Planarization 85

7.1 Network Model . 85

7.2 Graph planarization algorithms . 87

7.3 Problems of implicit planarization 89

7.4 A new explicit planarization . 89

7.4.1 Local cross link detection and removal 90

7.4.2 Local link addition . 90

7.5 Theoretical Analysis . 92

7.5.1 Graph properties . 92

7.5.2 Planarity . 93

7.5.3 Connectivity . 94

7.5.4 Weak spanner . 96

7.6 Empirical Analysis . 97

7.7 Summary . 98

ix

CONTENTS

8 Geographic Routing in Real Wireless Networks 99

8.1 Real wireless networks . 100

8.1.1 Irregular radio range . 100

8.1.2 Localization errors . 102

8.2 Geographic routing in real wireless networks 103

8.2.1 Greedy Routing . 103

8.2.1.1 Link reliability . 103

8.2.1.2 Location errors . 104

8.2.2 FACE routing and planarization 105

8.2.2.1 Restricted wireless model 108

8.2.2.2 Arbitrary network models 109

8.3 Summary . 110

9 Graph Planarization in Realistic Wireless Networks 111

9.1 Topological Cluster-based planarization algorithm 112

9.1.1 Clustering . 113

9.1.2 Overlay graph . 115

9.1.3 Overlay graph planarization 116

9.2 Modeling and Simulation . 118

9.2.1 Wireless Model . 118

9.2.2 Simulation setup . 119

9.3 Performance Evaluation and Analysis 119

9.3.1 Performance of existing planarization algorithms 121

9.3.2 Effect of model parameters on planarity 122

9.3.3 Effect of localization errors 123

9.4 Summary . 124

10 Conclusion 127

10.1 Summary . 127

10.2 Future Directions . 129

A Player/Stage 131

A.1 Player Configuration file . 131

A.2 World file . 132

Own publications 139

Bibliography 141

x

List of Figures

2.1 Bebot mini-robot . 12

2.2 Player Stage . 13

2.3 Stage simulation environment . 16

2.4 Framework for multi-robot simulations 17

2.5 Covered region of interest . 19

2.6 Teleworkbench environment . 20

2.7 ShoX Architecture . 22

2.8 ShoX visualization . 24

3.1 Optimal coverage . 29

3.2 Optimal coverage when r = rc . 30

3.3 A hexagonal grid . 31

3.4 Regular deployment pattern . 32

4.1 Geometric patterns using swarm-based algorithm 47

4.2 Comparison of coverage in metric and topological neighborhood model 48

4.3 Comparison of coverage performance on a square map 50

4.4 Comparison of coverage performance on relocation scenario 51

5.1 Prototype system for agent-assisted router deployment 56

5.2 Schematic representation of agent-assisted router deployment in an

open region . 58

5.3 An example scenario with 12 agents and 4 base stations 60

5.4 Comparison of deployed robot counts 61

xi

LIST OF FIGURES

5.5 Static placement of regular pattern 62

5.6 Effect of number of agents and base stations on the performance . . 63

5.7 Redundant router deployment during local triangular deployment . 64

6.1 Greedy routing . 70

6.2 FACE routing rules . 72

6.3 FACE routing illustration . 73

6.4 FACE routing failures . 75

6.5 A communication void where greedy routing fails 77

6.6 Greedy-FACE-Greedy routing . 78

6.7 Overlay graphs . 79

7.1 Unit Disk Graph . 87

7.2 Relative Neighborhood Graph . 87

7.3 Gabriel Graph . 88

7.4 Implicit planarization algorithm . 89

7.5 A simple intersection . 90

7.6 Counter example . 92

7.7 Intersecting links and alternate paths in networks with redundancy

and coexistence properties . 95

7.8 Illustration of weak spanner property 96

7.9 Spanning ratio of planarization algorithms 97

8.1 Quasi (Unit) Disk Graph . 101

8.2 Log-normal shadowing . 102

8.3 RNG planarization failures . 106

8.4 Intersections without redundancy property 107

8.5 FACE routing failure . 107

9.1 The general idea of the planarization algorithm 112

9.2 Overlay graphs without redundancy property 117

9.3 Effect of cluster depth on planarity 121

9.4 Comparison of nonplanar graphs in LNS and QUDG modeled net-

works . 122

9.5 Effect of variance on planarity . 123

9.6 Effect of localization errors . 124

xii

List of Algorithms

5.1 Agent-assisted router deployment algorithm 57

7.1 LLRAP planarization algorithm . 91

9.1 k-hop Clustering . 114

9.2 Overlay graph . 116

9.3 Cross Link Detection and Repair 118

xiii

xiv

CHAPTER1
Introduction

The real voyage of discovery lies not in seeking new landscapes, but

in having new eyes.

M. Proust (1871-1922)

Ad-hoc Mobile Robotic Network (AMRoNet) consists of a large collection of mo-

bile robots which create a wireless network for collaborative and co-operative task

accomplishment. Technical advancement and miniaturization of computing, com-

municating, sensing and actuating devices enabled building small and low cost

robots such as swarm robots [47] and Micro Air Vehicles (MAV) [77] for creating

such networks. A good example for an AMRoNet is the Mobile Wireless Sensor

Network (MWSN) where mobility of the nodes is used to improve coverage, con-

nectivity, and lifetime of the network. The key difference between AMRoNet and

a standard Mobile Ad-hoc Network (MANET) is that, the position and motion

of a node in MANETs are determined by its owner and cannot be controlled by

other nodes; whereas in AMRoNets, these properties are controllable from other

nodes in the network.

AMRoNets will facilitate many existing and new application areas. We classify

them into two based on the type of service they provide:

1. Sensing and monitoring: In sensing and monitoring applications, they re-

quire special sensors to monitor ambient conditions such as temperature,

pressure, humidity, stress and movement. Many potential applications in-

clude hazard detection, disaster relief, environmental control, biodiversity

mapping, surveillance, reconnaissance, space exploration etc. Typically Wire-

less Sensor Networks (WSN) are employed for such applications [14]. Replac-

1

ing WSN nodes with AMRoNet nodes eases the deployment phase. Nodes

being mobile are capable of deploying themselves and also compensate the

shortcomings in the deployment process by moving to better positions in post

deployment phases. In sparse networks, when nodes die, mobile nodes can

relocate to connect the lost or weak communication pathways. Moreover, in

some applications which require precise deployment for proper functioning,

but too dangerous or inaccessible for external agents to perform the deploy-

ment, nodes deploying themselves are the best solution. An example is using

mobile nodes to sense and measure poisonous gas or nuclear leakage.

2. Communication infrastructure: In scenarios such as urban search and rescue,

due to the aftermath of natural or man-made disasters such as earthquakes,

tsunamis, hurricanes, wars or explosions, the fixed communication infras-

tructure that could support communication between rescue agents are often

destroyed. In other scenarios such as battlefields or exploration of unknown

terrains, e.g. subterranea or remote planets, no such infrastructure to sup-

port communication exist. There are also scenarios where there is a sudden

increase in network usage, e.g. a large demonstration or large crowd assem-

bling in a disaster area, such that the existing infrastructure cannot provide

the expected quality of service. In these scenarios, AMRoNets could be de-

ployed to act as a temporary infrastructure to facilitate communication, due

to its flexibility in deployment, faster setup time and in many cases cost

effectiveness.

Although AMRoNet can be used in many other applications, we focus on the

above two classes of applications which bear the following key properties:

• Uses the mobility of the nodes for self-deployment or for network optimiza-

tion purposes

• Network is fairly static during the operational mode

Traditional multi-robot systems are centralized. Though they can process

greater amounts of data and achieve more accuracy or even better performances in

certain cases, they often suffer from the common pitfalls, such as poor scalability,

single point of failure and high complexity. AMRoNets are envisioned to work

in environments where there is no infrastructure for centralized administration or

support. Hence purely distributed strategies are more suitable for AMRoNets.

2

CHAPTER 1. INTRODUCTION

Self-organization is a key feature seen in biological world of cells, organisms,

and groups. Self-organizing systems interact locally according to simple rules and

the global behavior of the system emerges from these local interactions. The best

examples are the social insects such as ants, though not very intelligent on an

individual level, perform complex tasks such as nest building, brood care, food

foraging, etc. through simple local interactions. Inspired from nature, we adopt

these principles of self-organization in the design of AMRoNets. It makes the

system adaptive and flexible to the application requirements. Key features of such

systems are best described by the term Self-X: Self-configuration, Self-healing and

Self-optimization.

Self-configuration is the capability of the nodes to deploy themselves and con-

figure networks automatically without any centralized administration or support,

fulfilling application requirements. The networks are expected to work in the

absence of any fixed infrastructure. In AMRoNets, self-configuration is achieved

through self-deployment which enables the nodes to start from a relatively compact

initial configuration and spread out in an area maximizing coverage using simple

local rules. Coverage requirements vary with applications. An important aspect

to consider while maximizing the coverage is to keep the network of robots con-

nected. Thus the problem of coverage maximization maintaining the connectivity,

denoted as C−C, arises when the robots spread out. In this dissertation, we study

this problem from various applications’ point of view and propose algorithms for

solving it.

Self-healing mechanisms aim at reducing the impact of failure in network func-

tionalities due to inoperative nodes or environmental changes by allowing auto-

matic reconfiguration of the network. In AMRoNets, whenever the coverage or

connectivity is lost, the self-healing actions are performed by the nodes automat-

ically which then relocate the nodes to quickly regain coverage and connectivity.

We focus on designing algorithms that are capable of recovering from failures

easily.

In a data communication network, if two nodes are not connected directly by

a communication link, messages between them need to be forwarded by interme-

diate nodes. Finding a path between two nodes through which to send messages

is a fundamental problem called routing [167]. In traditional networks, there are

dedicated routers or access points to relay the messages. However in ad-hoc net-

works the nodes themselves act as routers. This means that whenever nodes which

are not in the direct wireless transmission range want to communicate, they sent

3

1.1. COVERAGE AND CONNECTIVITY

messages to the intermediate nodes in their range, which then forward the message

further until the message reaches the destination, if there is a path between the

sender and receiver nodes.

The decentralized nature of AMRoNet routing makes them suitable for a va-

riety of applications, but it introduces many new challenges compared to the

traditional wired or managed (infrastructure) wireless networks. One important

challenge is the unavailability of a persistent routing table in ad-hoc networks es-

pecially when topology changes frequently. Efficient routing in such scenarios is

non-trivial.

We envision our AMRoNet as a self-optimizing network which is capable of

routing efficiently in large-scale networks with frequent topology changes. We

concentrate only on this important aspect of the self-optimizing networks in our

work. A large number of efficient routing protocols are available that could support

self-optimized routing feature, but none of them are directly applicable for AM-

RoNets because of the following two challenges involved in the AMRoNet routing

scenarios:

• Irregular wireless range

• Imprecise location information of the nodes

In this dissertation we propose new techniques and algorithms which address these

two challenges and make self-optimized routing feasible in AMRoNets.

1.1 Coverage and Connectivity

We have seen that self-configuration in AMRoNet is achieved through self-deployment.

Coverage and connectivity are the two fundamental requirements in AMRoNet

self-deployment process. Finding an optimal self-deployment strategy that would

minimize cost, reduce computation and communication overhead, be resilient to

node failures, and provide a high degree of coverage with network connectivity is

extremely challenging [74].

Coverage requirements vary with applications. In some cases a regular deploy-

ment is needed whereas in some other cases a random deployment is acceptable.

In some cases a high degree of coverage with many nodes covering a particular

point is important whereas in some other cases a low degree of coverage is suffi-

cient. E.g. a military surveillance application require a high degree of coverage

where as a low degree of coverage is sufficient for animal habitat monitoring.

4

CHAPTER 1. INTRODUCTION

Historically, three types of coverages have been defined by Gage [67] for prob-

lems such as detection of targets in a surveillance area:

• Blanket coverage - to achieve a static arrangement of elements that maxi-

mizes the detection rate of targets appearing within the coverage area.

• Barrier coverage - to achieve a static arrangement of elements that minimizes

the probability of undetected penetration through the barrier.

• Sweep coverage - to move a group of elements across a coverage area in a

manner which addresses a specified balance between maximizing the number

of detections per time and minimizing the number of missed detections per

area. (A sweep is roughly equivalent to a moving barrier.)

Our applications focus mainly on blanket coverage according to the above

taxonomy, where the main objective is to maximize the total covered area. We

look at two different area coverage problems in our work: sensing range-based area

coverage and communication range-based area coverage.

1.1.1 Sensing range-based coverage

Each sensor has a physical sensing range within which it is able to detect or

measure a physical property. Sensing range-based coverage tells us how well each

point in the sensing area is covered by the sensors. It can be considered as a

measure of quality of service.

In many AMRoNet applications, especially sensing and monitoring, sensing

range-based coverage is important. Nodes use their locomotive ability to self-

deploy in such areas to maximize the total covered sensing area. Various factors

such as environmental geography, presence of obstacles and resource constraints

affect the quality of coverage in such self-deployment applications. An additional

constraint in our applications is the network connectivity maintenance during the

self-deployment process.

In this dissertation, we focus on designing a bio-inspired algorithm for achiev-

ing optimal sensing range based coverage with connectivity. Bio-inspired algo-

rithms work well in environments where prior-knowledge about the environment

is minimal. They adapt to unforeseen changes in the task environment quickly.

Hence, they are the most suitable choice for our applications. We have designed

a new bio-inspired algorithm referred to as swarm algorithm for achieving cover-

age and connectivity. The main idea used in our swarm algorithm is born from

5

1.2. EFFICIENT ROUTING IN AMRONETS

the schooling behavior of fish which “optimizes” the sensing range-based coverage

with connectivity constraint naturally. We look at this natural model to design

our algorithm.

1.1.2 Communication range-based coverage

The second type of area coverage problem is communication range-based coverage,

where the objective is to maximize the total communication area covered. In

many AMRonet applications, especially in those where they act as a temporary

infrastructure to facilitate communication, it is no longer the sensing-range based

coverage which is relevant; rather the focus is on communication-range based

coverage.

The additional constraint in these applications, i.e. keeping the network con-

nected, makes communication range-based coverage maximization problem differ-

ent from the sensing range-based problem, as the communication range is much

larger compared to the physical sensing range. In such problems, the swarm-based

algorithm is a good solution, but not optimal if the objective is to minimize the

total number of nodes used to cover the given area. Hence we have introduced a

localized greedy deployment approach for such scenarios.

1.2 Efficient Routing in AMRoNets

We have seen that self-optimization capability enables the network to adjust regu-

larly and route efficiently in large-scale networks, especially when topology changes

frequently. Routing algorithm which uses only local rules or local information is

the primary choice for self-organizing AMRoNets. Geographic routing is one such

algorithm which is very useful in AMRoNets because of its simplicity, scalability

and low routing overhead.

The basic geographic routing approach works by greedily forwarding the mes-

sages to nodes which minimize a local forwarding metric, such as distance to the

destination. For all greedy routing variants, forwarding might end up at a node

which is the best compared to its neighbor nodes [34]. However, from these nodes

the messages cannot be forwarded further in greedy mode according to the for-

warding metric, though a path from source to destination may exist.

So far, FACE routing, originally described in [26], is the only known local-

ized single path approach to recover from such greedy forwarding failures. FACE

6

CHAPTER 1. INTRODUCTION

routing uses localized right/left hand graph traversal, to find a path around the

boundaries of the void regions. FACE routing guarantees message delivery if it is

applied on a planar embedding of the communication network. A planar embed-

ding is a graph representation in a plane where edges intersect only at their end

points [34]. In general, a wireless network topology is not a planar embedding.

Hence, a planarization step prior to routing is required.

Planarization methods typically construct planar subgraphs by removing links

from the original network topology. Distributed and localized planarization is

difficult for real wireless networks [99]. Existing localized planarization techniques

[26,69,100], i.e., methods where each node is required to know only its one (or two)

hop neighbors, work well for Unit Disk Graphs (UDG) [40]. They do not work

correctly in realistic wireless networks, which in most cases do not obey the UDG

property. In such network graphs, the planarization causes network partitions,

unidirectional links and intersecting links.

In addition, localized planarization methods assume that the exact node posi-

tion information is at hand. However in practice, geographic location information

is not exact. Location inaccuracies degrade the performance of localized planariza-

tion algorithms. They cause incorrect edge removal during planarization and may

disconnect the planar subgraph. Even small errors can lead to incorrect routing

decisions with noticeable performance degradation [102,155].

Thus, we have real wireless networks with two problems: irregular radio range

and node location inaccuracy, which affect localized planarization algorithm badly

and limits the use of geographic routing in AMRoNets. In our work, we solve this

problem by proposing a new localized planarization algorithm which is location

fault tolerant and produces planar graphs in most realistic wireless networks.

1.3 Contributions

Key contributions of this dissertation are the algorithms listed below:

a) Sensing range-based coverage: For AMRonet applications that require sens-

ing range-based coverage, we designed a swarm-based coverage and connectivity

maintenance algorithm. The algorithm is based on the local rules used by fish

while schooling. Each robot is subject to three forces: i) A separation force that

pushes it away from its neighbours and increases the size of the swarm. ii) A

cohesion force that maintains the connectivity of the swarm. iii) An alignment

force that keeps it aligned to its neighbours and makes relocation faster. Empiri-

7

1.3. CONTRIBUTIONS

cal analysis shows that this swarm-based algorithm outperforms most prominent

state-of-the-art algorithms by achieving better and faster coverage.

b) Communication range-based coverage: For AMRonet applications that re-

quire communication range-based coverage, we introduced a localized agent-assisted

router deployment approach. The algorithm uses a greedy deployment strategy for

deploying routers effectively into the area maximizing coverage and a triangular

deployment strategy to connect different connected components of routers from

different base stations. Empirical analysis shows that the proposed algorithm is a

very efficient localized approach to create AMRoNets.

c) Localized Link Removal and Addition based Planarization algorithm: All

existing localized planarization techniques are implicit planarization, which means

that the links are removed irrespective of the fact whether an intersection exists

or not. They provably produce planar graphs in restricted wireless models such

as UDG. However in graphs that are not UDG, these approaches do not work, as

they cause disconnections or fail to create planar graphs. We propose an explicit

planarization algorithm called Localized Link Removal and Addition based Pla-

narization (LLRAP) algorithm which solves these problems in graphs which are

more generic than UDG. It removes links only when it detects an intersection in

its local neighborhood.

d) Localized planarization algorithm for realistic wireless networks: None of

the localized planarization algorithms including LLRAP are capable of planarizing

arbitrary realistic wireless graphs. Their performance becomes worse when there

are location errors. We proposed a localized planarization algorithm based on

overlay graph creation that creates planar graphs in realistic wireless models and

which is location fault tolerant. The planarization algorithm creates an overlay

graph by topology-based clustering. Using a cross link detection and repair algo-

rithm, the intersections in the overlay graph are removed locally. This localized

planarization algorithm planarizes all networks used in the simulation study.

In addition to the algorithms, our contributions also include new tools as well

as extensions to the existing tools to make multi-robot simulations and real robot

experiments easier and empirical analysis feasible. This includes a new framework

for simplifying multi-robot simulations and their evaluations as well as extensions

to our robot development environment and network simulator.

8

CHAPTER 1. INTRODUCTION

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows:

In Chapter 2, we focus on the resources and platforms used for creating AM-

RoNets and the new tools and extensions to conduct multi-robot simulations and

real robot experiments.

In Chapter 3, we focus on the self-deployment aspect of nodes with an objective

of maximizing area coverage with network connectivity and the self-relocation

aspect which maintains network connectivity in case of failures. We look at two

different area coverage problems: sensing range-based and communication range-

based and provide the theoretical background on the optimal coverage in both

cases. We also provide a list of most prominent algorithms related to the self-

deployment and self-relocation problems in this chapter.

In Chapter 4, we focus on the sensing range-based coverage problem and design

a new bio-inspired algorithm to solve the problem efficiently. In Chapter 5, our

focus is on the communication range-based coverage problem and we propose an

agent-assisted router deployment to effectively deploy router nodes. We adopted

an empirical analysis based evaluation of these algorithms in various scenarios to

show its effectiveness. Simulations as well as real robot experiments are conducted

for the empirical analysis.

We concentrate on the routing aspect of the self-optimizing networks in Chap-

ter 6 and look at various routing protocols which are useful for AMRoNet routing.

Considering the distributed, low overhead and self-configuring routing aspects,

geographic routing is found to be an interesting solution. We describe about the

basic components of geographic routing and the most relevant geographic routing

protocols in this chapter.

FACE routing is a geographic routing protocol which is especially interesting

due to its guaranteed delivery in plane graphs. We look at the various planarization

algorithms to create plane graphs and their limitations in Chapter 7 and also

propose a new planarization algorithms that solves some of these problems.

We look at the practical aspects of the geographic routing in real AMRoNet

scenarios, identifies the main challenges and the impact of these challenges on the

performance of geographic routing and various solutions proposed to overcome

them in Chapter 8. One of the key challenges identified is localized planarization

in real wireless networks. A new algorithm addressing this challenge is presented

in Chapter 9, which is found to be effective in most test cases.

9

1.4. ORGANIZATION OF THE DISSERTATION

Chapter 10 summarizes our work and describes open questions and possible

future directions.

10

CHAPTER2
Resources and Platforms

In this chapter we focus on the resources and platforms used for creating AM-

RoNets. Small and low costs robots such as Swarm-bots, MAVs, MSNs or other

mini-robots are suitable candidates for AMRoNets. In our work, we choose the

mini-robot Bebot [83] developed at our institute (Heinz Nixdorf Institute, Uni-

versity of Paderborn) as the candidate for AMRoNet. Programming the robots,

to instruct them about their tasks and to control their actions, is a non-trivial

problem. Many software platforms and frameworks have been proposed to make

programming robots easier [23]. In robotics, simulators are highly recommended

regardless of whether an actual robot is available or not. We see the details of

the robotic platform and the simulator used for programming Bebot and our own

contributions such as tool chains, framework and various extensions we added,

explained in this chapter.

To predict the behavior of an ad hoc network and evaluate the performance

of communication protocols, typically network simulators are used. We also use a

network simulator called Shox [118] developed in our working group for simulating

AMRoNets. We see the basic features of the simulator and the packages we added

to improve the simulation experience in this chapter.

2.1 Bebot robot

Bebot robot depicted in Figure 2.1 has a size of 9×9×5 cm3 with 12 infrared sen-

sors (sender-receiver pairs) and their controllers mounted directly on the chassis

using Molded Interconnect Device (MID) technology [83]. The actuation consists

of a chain drive. The robot has two slots for extension board. The lower extension

11

2.2. PLAYER/STAGE ROBOTIC FRAMEWORK

board with an ARM 7 micro-controller is responsible for motor control and power

supply. It also contains a three axis acceleration sensor, a yaw rate gyroscope

and a sensor for battery monitoring. The upper board is equipped with a low

Figure 2.1: Bebot mini-robot

power 520 MHz Marvel PXA 270 processor, 64 MB main memory and 64 MB

flash memory. It also has a Field Programmable Gate Array (FPGA) that allows

complex algorithm to be efficiently executed in the hardware. It supports Zig-

Bee, Bluetooth and WLAN standards for communication and provides additional

interfaces, such as USB, MMC/SD card, audio, LCD and camera modules.

2.2 Player/Stage robotic framework

Player/Stage robotic framework [73] is one of the most popular robotic platforms

used in research. We use this platform to develop control programs for the Bebot

robots. The basic parts of the framework are 1) the network server called Player,

which could be considered as a robotic hardware abstraction layer for robotic

devices and 2) the Stage, which is a two-dimensional simulator for mobile robots.

The robot control program acts as a client and talks to the Player server over a

TCP socket.

2.2.1 Player

Three fundamental parts of the Player server are interfaces, drivers and devices

as shown Figure 2.2.

12

CHAPTER 2. RESOURCES AND PLATFORMS

Player Server

Device

Interface

Robot Driver
Stage Driver

libstageplugin

Robot Hardware Robot Model

Robot Control Program

TCP Sockets

Figure 2.2: Player Stage

Interfaces define the syntax of how to interact with a certain class of hardware

such as sensors or actuators. It provides a format in which data or meta-data

can be transmitted from a sensor or to an actuator. An example is the position2d

interface [73] that handles robots’ positions in 2D, which basically interacts with

the odometry sensors and motors of the robot.

The driver is a software that communicates with the actual hardware and it

is written specifically for each hardware type and model. It translates the inputs

and outputs to conform to one or more relevant interfaces. An example is the

sicklms200 driver [73] which communicates with the SICK LMS200, retrieve range

data and convert the SICK-specific format to the format defined by the ranger

interface. Player also allows virtual drivers which encapsulate useful algorithms in

a way that they can be easily reused. A virtual driver usually gets data from other

drivers using their interfaces (instead of getting them from the real hardware),

process the data using advanced algorithms, and provide the results using their

interfaces. An example of a virtual driver is the acml driver based on the Adaptive

Monte-Carlo Localization algorithm [55] which supports the position2d interface

and a more sophisticated localize interface [72].

A device is the topmost abstraction in Player which is basically a driver that

is bound to an interface so that Player can communicate to it directly. The fully-

13

2.2. PLAYER/STAGE ROBOTIC FRAMEWORK

qualified device address consists of 5 parts [145]: key:host:robot:interface:index,

where key is a unique name, host and robot are usually the host name and TCP

port on which the Player server listens, interface is the interface name of the

device, and index is an interface specific sequence number as more than once

device can support the same interface.

Player has a rich set of drivers for commonly used robots and robotic related

hardware. However a driver for Bebot was not available “out of the box”. Player

has a framework that supports writing drivers for new hardware. A new driver

may either be built-in at compile time or plugged-in at runtime, depending on

whether it is included in the next version of Player or maintained as a separate

package. New plugin drivers, such as libbebotmotor providing position2d interface,

libbebotir providing ir interface and libcamerav4l2 providing camera interface has

been developed for the Bebot robots [83].

2.2.2 Configuration file

To provide access for client control programs, the Player server has to be started

with a configuration file initially. Player server needs this configuration file which

informs it about the drivers to initialize along with definitions and settings for

each driver. Driver settings are specific to each driver and must contain the name

of the driver and a list of the devices the driver provides, and for virtual drivers,

a list of devices they require at startup [145].

The configuration file is composed of one or more driver sections, each of which

instantiates and configures a single driver. An example of a configuration file is

given below:

driver

(

name "bebotmotor"

provides ["position2d:0"]

plugin "Player/libbebotmotor"

device "/sys/bus/i2c/devices/0-0058/speed"

)

The name and provides parameters are mandatory information and they in-

dicate which driver to use and what kind of information is received from the

driver. Player instantiate the bebotmotor driver physically connected to the hard-

ware device over the I2C port. It provides a position2d device under the address

14

CHAPTER 2. RESOURCES AND PLATFORMS

position2d:0, where no key is declared, host and robot are implicitly defined as

localhost and 6665. Hence they are not explicitly mentioned in the configuration

file.

2.2.3 Client program

Player allows user control programs to be written in high level languages such

as C, C++, Java or Python that supports TCP sockets by providing client-side

utilities and libraries. Client libraries are built on a service proxy model in which

clients maintain local objects that are proxies for remote services [73]. There are

two kinds of proxies: 1) a special server proxy PlayerClient to establish connection

with the Player server and 2) the various device-specific proxies to subscribe to

the respective devices. An example is given below:

PlayerClient client_name(hostname, port);

Position2dProxy positionProxy_name(&client_name,index);

RangerProxy rangerProxy_name(&client_name,index);

User programs first create a PlayerClient proxy object using a given host name

and port number to connect to the server and use it to create the device specific

proxies.

Now a read-think-act loop is implemented. It is the actual control program

for the robot. In the loop, the client periodically processes incoming messages to

update the proxy objects with information containing latest sensor data.

2.2.4 Stage

Stage is the two-dimensional multi-robot simulator aimed at providing fairly sim-

ple and computationally cheap models to control large population of robots with-

out accessing real hardware and environments [73]. Thus it allows rapid develop-

ment of controllers that will eventually drive real robots. Though it is usable as

a stand-alone simulation library, together with Player it works as a driver which

provides a simulator back-end. Figure 2.3 shows a simulated stage environment.

Stage has a configurable and composable device models which support various

sensors and actuators. The basic model simulates an object with its body made up

of a list of lines and with basic properties such as position, size, velocity, color and

visibility to various sensors. These models are available through Player’s standard

interfaces. Hence from the client’s point of view, there is no difference between

15

2.2. PLAYER/STAGE ROBOTIC FRAMEWORK

Figure 2.3: Stage simulation environment

the real robot devices and their simulated Stage equivalents. A sample Player

configuration file is given below:

driver

(

name "stage"

provides ["simulation:0"]

plugin "stageplugin"

load the named file into the simulator

worldfile "bebot.world"

)

Create a Stage driver and attach position2d, ranger and wifi

interfaces to the model "bebot"

driver

(

name "stage"

provides ["6665:position2d:0" "6665:ranger:0" "6665:wifi:0"]

model "bebot"

)

which specifies that the stage driver is used by using the plugin libstageplugin.

It also specifies interfaces the simulated robot model bebot provides, namely pos-

tion2d, ranger and wifi. The world file describes the models and the environment

which the Stage simulates. The length of the simulation, update cycle interval

etc. can also be specified.

16

CHAPTER 2. RESOURCES AND PLATFORMS

2.3 Framework for multi-robot simulations

Player client library allows multiple clients to communicate with player server.

However there is no support for controlling multiple robots simultaneously in an

efficient manner. We have created a framework that would simplify multiple robot

control and simulation. It also helps to setup and run experiments quickly and

very easily.

CRobot Framework

Initialization

Robot Generation
& Initialization

Experiment control loop

Configuration Parser World Generator

Robot Factory Algorithm

Robots
1 . . . n

Robot
Controller

Player/Stage

Logger
Log files

Experiment
Analyzer Plots

Figure 2.4: Framework for multi-robot simulations

The architecture of the framework is given in Figure 2.4. The basic components

of the framework are:

2.3.1 World Generator

The World Generator creates the .world, .cfg and .inc files required by Player/Stage

to run the robot simulator. These are not complex files but generating them auto-

matically is helpful because Player/Stage does not natively support the dynamic

creation of robots. On executing

./bebotgenerator [world] [config] [nrobots] [bitmap] [width]

[height] [comm_range] [seed]

specifying the world directory, configuration details for deployment such deploy-

ment mode (random or regular), region (inside base station or entire region),

number of robots, bitmap of the environment (our institute’s floor plan, cave or

17

2.3. FRAMEWORK FOR MULTI-ROBOT SIMULATIONS

empty region), width and height of the region, communication radius and seed for

random generator, we get we get .world, .cfg and .inc files required by Player/Stage

simulator. Examples files can be found in the Appendix. The bebotgenerator

respects the terrain bitmaps and carefully places the robots in the free space.

The generator could be easily extended for different experimental setups. One

could also use existing configuration and world files available in the Player/Stage

repository.

2.3.2 Robot control Generator

The CRobot Framework block has an initialization phase which uses a Config.

Parser to parse the world generator files to identify the type and number (n)

of robots. The CRobot Framework then creates n instances of CRobots with

the server proxy PlayerClient and device-specific proxies specifying hostname

and ports. The Robot Factory block of the Framework setup the robot control

algorithm such that during the robot initialization stage, the robot controller is

dynamically linked to desired robot control logic.

The CRobot Framework then executes the main control loop which could be run

in a threaded or sequential manner. Each robot controller is executed according to

the control logic specified. The controller access the Player/Stage to get data from

the drivers. It then update its position and neighbor list based on the data, create

new goal point according to the control logic and write commands to the driver

to navigate to the goal point avoiding obstacles. For behavior-based control, we

have written a set of commonly used behaviors such as obstacle avoidance, wall

following and goto goal. The Framework uses a logger to log the new position

information and other details into a log file according to the sampling interval

specified. When the maximum simulation time is reached the control loop is

exited.

The user’s control logic can be easily implemented by extending the CRobot

class and implementing the onControl function.

class CRobotAlgorithm : public CRobot {

public:

CRobotAlgorithm();

virtual ~CRobotAlgorithm();

virtual void onControl();

};

18

CHAPTER 2. RESOURCES AND PLATFORMS

(a) Initial Coverage (b) Final Coverage

Figure 2.5: Covered region of interest

void CRobotAlgorithm::onControl() {

.......

}

2.3.3 Experiment Analyzer

In our framework we have an experiment analyzer which contains a set of analysis

and plotting tools. The calmetric tool takes the generated log file and find covered

region of interest (ROI) at each point of time and generate an output file for

the plotting tools. Figure 2.5 shows an example of the initial coverage and final

coverage in a sample run. The plotting tool uses R language/environment [175]

and gnuplot [179] for creating statistics and graphics from the log files created by

the multiple independent runs.

2.4 Teleworkbench

Teleworkbench is a tele-operated platform or testbed for managing multi-robot

experiments [168]. It allows remote users to set-up, execute, visualize and analyze

their experiments over Internet. It is depicted in Figure 2.6. Key features of the

Teleworkbench are:

• automatic environment building

19

2.5. BEBOT SOFTWARE DEVELOPMENT

Figure 2.6: Teleworkbench environment

• remote execution of user programs

• integration with Player/Stage robotic framework

• data logging

• robot tracking (upto sixty-four robots)

• visualization and analysis tool

The Teleworkbench system has a field of size 3.6 × 3.6 m2 which could be

divided into four sub-fields for parallel experiments. A 6-bit barcode-like marker

placed on the top of robots allows the Video Server to identify the robots and helps

in estimating their position and orientation in the field. The server also encodes

the video and streams it to provide a live video of the experiment.

Robots can communicate with each other or with the Teleworkbench Server

over Bluetooth. After the experiments, the server also generates a video with

superimposed computer generated objects for better analysis of the experiments.

2.5 Bebot software development

2.5.1 Bebot development environment

The operating system which runs on Bebot robot is the Embedded Linux with

a modified Linux kernel 2.6.24 [83].The software building is done via OpenEm-

bedded [113] development environment which allows the creation of a fully us-

able Linux operating system. OpenEmbedded is a collection of metadata used

20

CHAPTER 2. RESOURCES AND PLATFORMS

to cross-compile, package and install software packages [113]. It handles cross-

compilation and inter-package dependencies efficiently, creates images and feeds

from packages of different formats such as tar, rpm, deb and ipk and supports

many machines, distribution and architectures. It uses bitBake [61] tool to cross-

compile and build packages. The OpenEmbedded software has been extended

with an overlay called OpenRobotix to include robot specific information, patches

and additional software like the Player network server and drivers for the robotic

hardware. OpenRobotix generates operating system images, and the software

development environment (SDE) for Bebot robot systems. The commands:

bitbake openrobotix-image

generates the root file system (rootfs) and the Linux image (uImage) and

bitbake meta-toolchain-openrobotix

generates the Cross Compiler Tool-chain of the software development environment.

User control programs use the Cross Compiler Tool-chain to generate exe-

cutable code for ARM processors.

2.5.2 Framework

For making the evaluation of experiments easier, the algorithms tested on simu-

lators need be run on the robots more or less without any change. A hardware

framework is designed replacing the low level functionalities of the simulation

framework with new features. One new feature is the use of an additional position

proxy. As the position2d driver implemented on the lower board of the Bebot do

not work properly, we had to rely on the Teleworkbench server to get an estimate

of the current position of the robots. So we had two position2d proxies one for

issuing motor commands for steering the robot and the other to communicate with

the Teleworkbench to estimate the location information.

Another new feature is use of blackboard proxy for neighborhood estimation.

In Stage simulations, Wi-Fi device is used to collect information about neighboring

robots and the range of these devices can be easily adjusted in the configuration

file. Using real Wi-Fi or Bluetooth devices in the Teleworkbench, all robots will

be in the communication range of other robots and hence using Wi-Fi is not useful

for multi-hop scenarios. To solve this problem, we use a filter at the server which

filters the recent position information from the position log files in the server and

write them on a blackboard. Bebot robots subscribe to blackboard and whenever

21

2.6. NETWORK SIMULATOR

there is an update on the blackboard, they get the updated information. From

this information, the framework then finds the neighbor information.

2.6 Network simulator

To evaluate the performance of communication protocols, typically network simu-

lators are used. We use the Shox network simulator [118] developed in our working

group for testing the protocols. Shox is a discrete-event simulator, where events

such as node movements, packets, internal messages and timers are inserted into

a global event queue (a priority queue) based on the delivery time. The delivery

time specifies the time at which events have to be removed from the queue and

delivered to the address where they have to be processed. An event has a unique

ID and a timestamp which denotes the delivery time. The central manager called

SimulationManager fetches events from the queue and delivers them to the ap-

propriate target event handlers. The simulation time is not an absolute quantity

but a virtual quantity which is updated to the value stored in the current event

that is being processed. Thus, true parallel event handling is possible [118].

hind this separation is to put the core behavior into the fast
C++ part, while control behavior is put into the easy-to-
change OTcl scripts. Unfortunately, in practice, this dis-
tinction is often not made clearly. This greatly impedes get-
ting used to ns-2. ns-2 offers a reduced OSI layer model
in which presentation and session layer are left out. This is,
however, not so much reflected in the protocol classes them-
selves, but rather in the Tcl configuration where a protocol
class is assigned to a specific layer.

GloMoSim [6] is a simulator based on the C-library par-
sec [7]. As such, it has no object-oriented architecture. Its
focus is on scalability to many nodes, thus on paralleliza-
tion. Although it provides skeletons for the different OSI
layers, inheritance would be a much easier and less error-
prone concept. GloMoSim has no GUI support for configu-
ration and statistics. Visualization is done with an external
tool called visualization tool (VT) which is written in Java.
However, its quality is pretty moderate and the feature set is
small.

Although there are many other simulators, it is impossi-
ble to introduce all of them in this paper. Hence, we pre-
sented only the most prominent and established ones in this
section. Detailed simulator comparisons can be found in
[11, 8, 12].

3 ShoX

3.1 Architecture

Like other popular network simulators, ShoX is a
discrete-event simulator. This means that there is a global
event queue into which all network events (node move-
ments, packets, internal messages, timers, etc.) are inserted.
Each event has a unique ID and a timestamp which specifies
its delivery time, i.e. the time when it should be removed
from the queue and delivered to its addressee where it is
processed. The delivery time also defines the order accord-
ing to which the events are stored in the event queue. The
central entity in ShoX is the SimulationManager. It man-
ages the event queue by always fetching the first event from
the queue and delivering it to the specified node. While do-
ing so, it updates the current simulation time to that stored
in the current event. That way, it is possible to simulate true
parallelism.

ShoX follows the object-oriented software paradigm. All
concepts known from the domain of wireless networks like
OSI layers, packets, mobility models, and so on, are mod-
eled as abstract classes (cf. Figure 1). By subclassing those
classes in order to define new implementations, the required
interface is already given. This makes it very easy and safe
to define own mobility models or protocols. To ensure infor-
mation encapsulation and modularization, ShoX normally
does not provide access to other layers or models directly.

Interference
Handler

Packet Event EventQueue

Simulation
Manager

Movement
Manager

Traffic
Generator

Physical
Model

Energy
Model

Node

Layer

Application
Layer

Network
Layer

LogLink
Layer

MACLayer
Physical
Layer

AirModule

*

*

Figure 1. Architecture of ShoX.

Rather, individual components communicate with one an-
other through messages which are put into the event queue
and delivered to the appropriate component by the Simula-
tionManager.

Packets are nothing but special events. When a packet
is created in a certain layer, say the application layer, it is
sent downwards in the layer stack until it reaches the phys-
ical layer. Actually, layers are not supposed to make any
assumptions about the neighboring layers. Even though, by
default, ShoX conforms to the OSI seven-layer model, it is
explicitly possible to introduce new layers at any point in
the layer stack. Below the physical layer, there is a spe-
cial artificial layer called AirModule. This layer manages
the radio state of a node (sending, receiving, idle listening,
sleeping, off) and is also responsible for keeping track of
potential interferences from other nodes. When a packet
arrives at a node, it is first of all processed by an interfer-
ence handler which gets notified by the AirModule about all
interferences at the node during the packet’s transmission.
The interference handler is again an abstract class for which
different implementations are available (but which can also
be extended by the user for more advanced logic). It de-
cides how the packet is to be handled. Depending on the
actual implementation, it could completely ignore interfer-
ences, or, as another extreme, it could discard the packet
as soon as a single interference occurred. Generally, it will
insert some errors into the packet and forward it to the phys-
ical layer of the receiver. From there it goes upward until it
reaches the destination layer.

To model signal propagation effects, an abstract class
called PhysicalModel is provided. Given the geographic
positions of sending and receiving node, and the signal
strength with which the sender transmits the packet, imple-
mentations of the PhysicalModel compute whether or not
the receiver is reachable by the sender, or, in case it is not,
whether it still is in the interference range of the sender. If
the receiver is in a reachable or at least interfering distance,
the PhysicalModel also returns the received signal strength.
With this generic concept, very simple as well as arbitrarily

Figure 2.7: ShoX Architecture [118]

Architecture of ShoX is given in Figure 2.7. It follows the OSI layered architec-

ture [167] with five among the seven OSI layers are present by default. Additional

layers can be included easily at any point in the layer stack by deriving from the

abstract super classes which specify the interfaces and functionalities. An example

of simulation specific mac layer and network layer extension is given below:

22

CHAPTER 2. RESOURCES AND PLATFORMS

public class MAC_IEEE802_11bg_DCF extends MACLayer{

...

}

public class AodvNetworkLayer extends NetworkLayer{

...

}

In addition to the basic OSI layers, an additional layer called AirModule which

manages radio states of a node such as sending, receiving and idle listening as well

as handles channel related issues such as signal interferences, is present. A packet

arriving at a node is first processed by an interference handler which also gets

notification from the AirModule regarding the interferences during the packet’s

transmission. Depending on the implementation logic of the handler and inter-

ference, the packet is discarded or forwarded to the physical layer of the receiver.

The PhysicalModel compute whether the receiver is reachable; if not, whether

it is in the interference range, based on the geographic positioning of the sending

and receiving node and the estimated signal strength.

There is also a TrafficGenerator which support different traffic models and

generates traces. Users can also use their own existing traffic trace files. For simu-

lating node mobility, different mobility models are supported. MovementManager

creates node movements according to the mobility model used. ShoX has an

EnergyManager that uses the concept of devices which are basically special com-

ponents of a node like the network interface card, the power manager, the CPU or

attached sensors. Different devices can be registered as power suppliers or power

consumers.

We have seen that SimulationManager fetches events from the EventQueue

and processes them. Events can be of the following types: Simulation events,

events for a node or events for a specific layer. Simulation events (e.g.movements)

are used internally by the simulation and cannot be issued by the protocols being

simulated. Events for a node (e.g. initialize) are directed to all layers of a node,

whereas event for a layer (e.g. packets, WakeupCall) are dispatched to certain

layers of a node. Packets are special events which are sent downwards in the

layer stack until they reach the physical layer from which they are sent over the

physical network to reach the target node and then go upward until they reach

the destination layer. WakeUpCall is used to schedule future events in the system

by setting a timeout and an event is issued when the timeout expires.

23

2.6. NETWORK SIMULATOR

To run a simulation, the configuration details such as number of nodes, the

size of the deployment area, the layer stack of the nodes, the signal propagation,

mobility, and traffic models needs to be specified. Currently Shox uses a GUI

to input the parameters either by reading from a configuration file or providing

them manually. During the simulation, ShoX records all relevant events in a log

file. Shox visualization unit plays back the recorded events. However, none of

the controls provided such as pausing, step back or forward works correctly and

visualization gets stuck. Parsing log files with large number of events need a long

waiting time to begin the simulation.

We have designed a simple visualization tool for Shox which displays interesting

events at run time. A snapshot of the visualization is shown in Figure 2.8, which

Figure 2.8: ShoX visualization

displays network topology and routing paths taken in specific routing protocol

simulation. The visualization tool contains classes for drawing shapes such as

points, lines, and curves, handling multiple drawing windows and saving drawings

to a file in different formats. We extended the simulator by creating a set of utilities

for handling geometric objects such as line, circle and hexagon and for serialization.

A pool of algorithms, e.g Delaunay tessellation, BFS, Dijkstra, planarization and

planarity testing algorithms and many state of the art network protocols; e.g.

FACE routing and Hexagonal Cluster Routing were also added. New mobility

24

CHAPTER 2. RESOURCES AND PLATFORMS

models; e.g. TerrainRespectingRandomWaypoint and tools for evaluation e.g.

Plot were also added to the code base.

25

26

CHAPTER3

Coverage and Connectivity in

AMRoNets

Self-configuration enables the AMRoNet nodes to deploy themselves and config-

ure networks automatically which is achieved mainly through self-deployment. It

is especially useful in situations where a precise deployment is infeasible, but a

desired amount of coverage is required for proper functioning. Self-deployment

capability helps the nodes to achieve a configuration that maximizes area cover-

age. The coverage problem can be defined as placing minimum number of nodes

in a given field such that every point is optimally covered. Achieving optimal

coverage by self-deployment in presence of obstacles, noise and varying topogra-

phy is extremely challenging. Keeping the network of robots connected is equally

important while maximizing coverage, as a configuration that maximizes coverage

with disconnected nodes is often not useful from the higher-level objective of the

applications which deploy AMRoNets. Thus coverage and connectivity together

can be considered as a quality of service in AMRoNet applications.

Self-healing mechanisms allow automatic reconfiguration of AMRoNets in case

of failures. Whenever coverage or connectivity is lost, the self-reconfiguration

process allows the nodes to relocate quickly to regain coverage and connectivity.

This makes the system adaptive to hostile environmental conditions.

In this chapter we study the self-deployment and self-relocation problems.

27

3.1. PRELIMINARIES

3.1 Preliminaries

Let N denote the total number of robots and R denote an individual robot. The

environment where the robots spread out is a 2-D area, denoted as A. Let Ai = πr2

denote the coverage area of a robot Ri with r denoting its coverage radius.

The objective of our algorithm is to maximize the total area covered, where

the total coverage is calculated as follows:

Coverage =

N⋃
i=1

Ai

A
(3.1)

Degree of coverage, often denoted in literature as k-coverage, can be defined

as the number of nodes that cover a particular point in the given area A [74].

We have seen in Chapter 1 that coverage requirements vary with applications

and some applications require high degree of coverage. However, in this work we

concentrate on those applications where 1-coverage is sufficient, i.e. at least one

node covers any point in A.

We model the AMRoNet as a graph G = (V,E) with the finite set of vertices

V that corresponds to the nodes in the network and the set of edges E which

corresponds to the communication links between the nodes. If the network is con-

nected, we mean that the underlying graph G is connected; i.e. between any two

nodes there exists a (single-hop or multi-hop) communication path consisting of

consecutive edges in G. A k-connected network implies that there are k indepen-

dent paths among every pair of nodes [147]. For k > 1, the network can remain

connected even when some of its nodes or links fail. In our work, our goal is to

achieve at least 1-connected network.

3.1.1 Problem formulation

The self-configuration and self-healing problem can be formulated as:

Given N mobile nodes, how should they deploy themselves so that the resulting

configuration maximizes the total coverage formulated in 3.1 with the constraint of

keeping the network connected and how should they relocate to maintain coverage

and connectivity whenever there is a failure.

Before looking at the algorithms which maximize and maintain area coverage

with network connectivity, we look at two different area coverage problems: sensing

range-based and communication range-based.

28

CHAPTER 3. COVERAGE AND CONNECTIVITY IN AMRONETS

3.1.2 Sensing range-based coverage

In sensing range-based area coverage problems, we assume that all robots are

equipped with some isotropic radial sensors of range rs with which they sense

and detect events in the environment. The area coverage in such cases can be

calculated using equation 3.1, with Ai = πr2s ; i.e. the coverage radius r is set

equal to the sensing radius rs.

The theoretically optimal coverage in terms of the number of nodes needed to

achieve full coverage is when the nodes form a triangular lattice (or, equivalently

hexagonal pattern with nodes at the center of each hexagon) [148] as shown in

Figure 3.1.

√
3rs

Figure 3.1: Optimal coverage

If we assume an isotropic radio communication of range rc, within which the

nodes can communicate with each other, following results are known in the liter-

ature [16]:

• When rc ≥ 2r (with r = rs in this case), coverage of a region implies

connectivity in the network.

• If rc ≥
√

3r (with r = rs in this case), then deploying sensors in the triangu-

lar lattice pattern shown in Figure 3.1 provides both coverage and connec-

tivity, and is optimal in terms of number of sensors required.

As communication radius rc is much greater than the sensing radius rs in AM-

RoNet applications, a self-deployment algorithm that tries to achieve the optimal

coverage configuration, automatically guarantees network connectivity.

3.1.3 Communication range-based coverage

In communication range-based area coverage problems, the coverage formulated in

equation 3.1 is determined by setting the coverage radius r to the communication

29

3.1. PRELIMINARIES

range rc. Hence the area covered by one robot Ai in this case is πr2c . Here also we

assume an isotropic radio communication of range rc for our robots.

β

| |α

Figure 3.2: Optimal coverage when r = rc

The theoretically optimal coverage and connectivity of the triangular lattice

pattern shown in Figure 3.1 is valid only when rc ≥
√

3r, but in communication

range-based area coverage problems rc = r. Hence, it is not the optimal solution.

What is optimal in such cases is a strip based structure shown in Figure 3.2. It

is asymptotically optimal for achieving both full coverage and 1-connectivity, not

just for rc = r, but for all rc <
√

3r values [16]. The strip can be constructed as

follows:

• Nodes on the horizontal strips are placed on a line at regular intervals with

a separation of α = min{rc,
√

3r}.

• Horizontal strips are stacked with a vertical distance of β = r+
√
r2 −

(
α
2

)2
between the rows and alternate rows are shifted with an offset of α

2
.

• An additional vertical strip is placed in between the horizontal strips to

connect the vertical strips.

Instead of placing one vertical strip, if two vertical strips are placed at the left and

the right boundary of the deployment region, we get the optimal configuration that

30

CHAPTER 3. COVERAGE AND CONNECTIVITY IN AMRONETS

guarantees coverage and 2-connectivity [16]. The optimality of this configuration

to achieve full coverage and 2-connectivity is proved for all values of rc
r

, provided

the vertical strips are removed when rc ≥
√

3r [16].

Repeated
Pattern

r

r/2

Figure 10: HEX: Hexagonal-grid based topology. (The bold
dots denote the sensor nodes. The bold straight lines are the
edges of the connectivity graph. The circles denote the cover-
age/connectivity radii.)

(b)

(a)

(0,0)
x

Figure 11: (a) A strip, (b) STR: A connected strip-based topol-
ogy. (The bold dots denote the active sensor nodes. The bold
straight lines are the edges of the connectivity graph. The cir-
cles denote the coverage/connectivity radii.)

in Section 3.1. Let us assume that the spatial density of the de-
ployed sensors is d. Thus, if N sensors are deployed in a region
of dimension D � D, then d = (N=D2). Also assume that the
targeted spatial density of active nodes in �. Based on our obser-
vations in Section 3.1, we choose � between 1:6

r2
and 1:9

r2
, Then, in

the a-RAND algorithm, in any iteration, each node in the network
should wake up independently with probability (p = �/d). Such a
choice of p is adequate to give good performance in dense networks
as shown in Section 3. However in less dense networks, through
simulations we have found that its prudent to use more conserva-
tive (higher) values of p. This is because the required probability
of active nodes to construct cc-topologies is based on an uniform
distribution of nodes within the region of interest, which intuitively
holds in very dense networks. However, the lower the density of
sensor deployment, the less uniform the consequent node distribu-
tion is. Hence we choose a conservative (higher) wakeup probabil-
ity, p0. In general the choice of this conservative estimate should
depend on the actual spatial density of deployed nodes. By choos-
ing this higher value for p0 we increase the number of nodes in
each cc-topology which can negatively impact the performance of

Level of Distance Sense of
Algorithm coordination information direction

required ? required ?
a-RAND Zero No No
a-HEX Low Yes Yes
a-STR Low Yes Yes
c-BFS Low Yes No

Table 1: Comparative requirements and complexity of the four
algorithms.

our proposed scheme. Through simulations (presented later in this
section) over different low deployment densities that we considered
we found that a choice of p0 which was 1.5 times the value of pwas
adequate for good performance.

Based on the value of p0 the number of nodes thus woken up con-
tribute to one connected-covered set. This process can be repeated
to form multiple connected-covered sets, between which the sens-
ing activity can be time-shared. Note that the node wakeup proce-
dure of the a-RAND algorithm do not require the individual sen-
sor nodes to know their absolute or relative location or any other
information regarding the network topology, and can therefore be
implemented with no coordination. This a very attractive feature of
the algorithm, from the viewpoint of practical implementation.

4.2 Approx-STR and Approx-HEX
The approx-STR (a-STR) and the approx-HEX (a-HEX) are prac-

tical approximations to the STR and HEX topology solutions de-
scribed in Section 3.2. Recall that we constructed the STR and
HEX topologies under the assumption that the network is so dense
that there is a node close to any chosen location, and so we could
activate a sensor node at any location of our choice. However, in
a realistic setting, this is not exactly true, particularly if the sen-
sor network is only moderately dense. In the a-STR and a-HEX
solutions, we try to approximate the STR and HEX topologies as
closely as possible. Here we try to wakeup nodes according to
the STR and HEX topologies, but if a node is not available as the
precise chosen location, we pick a node that is closest to that lo-
cation, provided that the node is within a conservative estimate of
the communication radius. This conservative estimate, r0 is set to
be r(1� �). We make such a choice of r0 for two reasons: (1) Re-
alizing that in practical wireless environments, wireless signals are
not isotropic and instead attenuate unequally in different directions.
Hence such a conservative estimate helps us deal with irregulari-
ties of the communication range. (2) In less dense networks, if the
a-HEX and a-STR algorithms decide to optimize choice of nodes
such that they are exactly r apart, then a slight shift in the actual
location of nodes will cause disconnection. Note that by choos-
ing higher values of � the performance, each scheme needs to find
more nodes to construct each cc-topology, thereby reducing the to-
tal number of cc-topologies. In our simulations (discussed later in
this section) we observed that choosing � = 0:2 is an adequate
value to construct multiple good cc-topologies. Similarly, in the
a-STR scheme, instead of choosing a single vertical strip to guar-
antee connectedness of each topology, we use multiple such strips
(� 10) to provide redundancy in face of small random shifts be-
tween expected and actual locations of the sensors. Such a choice
is redundant in dense networks but is useful in the less dense sce-
narios.

Note that the wakeup policies in this case require a sensor node to
know its location. Specifically, since nodes are woken up based on
their proximity to a precalculated location, information about dis-

339

Figure 3.3: A hexagonal grid [94]

Efficiency of deployments can be measured by finding the spatial density which

is defined as the number of nodes per unit area. The optimal strip-based deploy-

ment pattern has a density of DSTR = 0.536
r2

, when r = rc [94]. Hexagonal grid

structure shown in Figure 3.3 has a spatial density of DHEX = 0.769
r2

[94]. It is often

considered for practical deployment purposes, as it is more efficient than randomly

constructed topologies [94]. Other commonly considered deployment patterns are

square and triangular lattice structures shown in Figure 3.4a and Figure 3.4b re-

spectively. Square grid has a spatial density of DSQR = 1
r2

and triangular grid has

a spatial density of DTRI = 1.155
r2

[94].

3.2 Related Work

The coverage and connectivity problem has been studied previously in many re-

lated fields. The area coverage problem is related to the traditional art gallery

problem [135] in computational geometry, where the objective is to find the min-

imum number of static guards to be placed in an environment, such that every

point is monitored. The variant of the art gallery problem, Watchman Route prob-

lem [135], focuses on computing the routes the watchmen should take to guard an

entire area. There exist different algorithms to solve these problems. However, all

31

3.2. RELATED WORK

(a) Square grid

| |
r

(b) Triangular grid

Figure 3.4: Regular deployment pattern

of them assume that a prior model of the environment is available.

In the static wireless sensor networks domain, proper node deployment is con-

sidered as a very important problem as it has a dramatic impact on the effective-

ness of the network and the efficiency of its operation. Optimal node placement is

a very challenging problem that has been proven to be NP-Hard for most of the

formulations of sensor deployment and several heuristics have been proposed to

find sub-optimal solutions [46, 49, 138]. Node placement strategies could be clas-

sified according to the deployment methodology into deterministic or stochastic

strategies [92]. In deterministic strategies nodes are placed at predefined locations

in a controlled manner whereas in stochastic strategies they are placed randomly.

According to the optimization objective of the placement such as achieving max-

imal coverage, coverage with connectivity, network longevity, and data fidelity,

several approaches has been presented [27, 43, 46, 68, 94, 148]. There are also role

based placement strategies such as node acting as a sensor, relay, cluster head and

base station [13,25,87,124]. A comparison of the characteristics of the static node

placement mechanisms is provided in [182].

There are similar problems considered in cooperative mobile robotics. The

formation problem in which robots attempt to maintain a formation based on

local sensing and computation [17, 56], Simultaneous Localization and Mapping

(SLAM) [172] where robots aim to build a global map of the environment and

the multi-robot exploration problem where they simultaneously explore different

regions of an environment [28,159] are good examples. Techniques such as frontier-

based navigation [181], topological matching [45], fuzzy inference [125] and particle

filters [171] are used for multi-robot exploration and map-building problems.

32

CHAPTER 3. COVERAGE AND CONNECTIVITY IN AMRONETS

We are focusing on the self-deployment and self-relocation problems. Some re-

searchers have explored the multi-robot dispersion problem which is quite similar

to this problem. Although the main objective is to disperse robots into the envi-

ronment, i.e. start out in a relatively compact space and spread out in an area, the

term dispersion is used in a broad sense where it could also indicate multi-robot

exploration problem. Some dispersion approaches focus on complete coverage of

the environment with their sensors whereas others attempt to maximize their net-

work coverage area. Hence a careful attention is needed to understand the correct

objective of approaches listed as dispersion problem.

Let us now specifically look at the coverage and connectivity problems in multi-

robotic and swarm robotic fields. A large body of literature is available in the

domain of area coverage by multiple robots. A taxonomy of coverage algorithms

is presented by Choset [38], which distinguishes the proposed approaches between

offline algorithms, in which a map of the environment is known in advance, and

online algorithms, in which map is unknown. The survey further divides the

approaches for area coverage into two based on the methods they employ for de-

composing the area: 1) approximate cellular decomposition where the free space

is approximately covered by a grid of equally-shaped cells, and 2) exact decom-

position where the free space is decomposed to a set of regions, whose union fills

the entire area exactly. Another way of classification of existing approaches is:

model-based approach where the environment is modeled or mapped during ex-

ploration and model-free approach which does not attempt to characterize the

environment. Some algorithms are decentralized whereas others are centralized

or semi-centralized. Some algorithms run completely parallel whereas some oth-

ers run sequentially. We will now list some of the representative algorithms and

classify them based on the approach they used for achieving coverage.

3.2.1 Force-based algorithms

The force based algorithms consider robots as virtual particles driven by virtual

forces. The most popular force based algorithms use artificial potential field-

based forces for coverage maximization. Potential field techniques for robotic

applications were introduced by Khatib in [101] and have been widely used in the

mobile robotics community for various tasks.

It has been first proposed in [89] for area coverage problem, where each robot

is subjected to a force F = −∆U which is the gradient of the scalar potential

33

3.2. RELATED WORK

U . Obstacles and other robots exerts a repulsive force Fcover, which is inversely

proportional to the square of the distance between them. A viscous frictional force

makes the system attain a state of static equilibrium. Later in [147], an extension

of this approach to assure K-connectivity has been presented, where an attractive

force Fconnect, refrains the node degree getting too low by making them attract

when the node degree becomes critical (≤ K). The repulsive force Fcover and

attractive force Fconnect exerted on node i by its jth neighbor are:

Fcover(i, j) =

(−Kcover

distance2ij

)(
pi − pj
|pi − pj|

)
︸ ︷︷ ︸
unitvector

(3.2)

Fconnect(i, j) =

{ (
Kdegree

(distanceij−rc)2

)(
pi−pj
|pi−pj |

)
, if critical connection;

0 otherwise.
(3.3)

where pi and pj are the position of nodes i and j respectively, and Kcover and

Kdegree are the force constants. We refer this approach as Force in our article.

A virtual force algorithm to enhance the coverage of an initial randomly de-

ployed sensors has been presented in [187], where the net force on a node is sum

of three forces a) repulsive force exerted by obstacles, b) attractive force exerted

by areas of preferential coverage and c) an attractive or repulsive force by another

node depending on its distance and orientation. Once the effective sensor positions

are identified, a one-time movement is carried out to redeploy the sensors at these

positions.

Inspired by the equilibrium of molecules, a Distributed Self Spreading Algo-

rithm (DSSA) has been presented in [82], where the force exerted on node i by

its jth neighbor is calculated as:

F (i, j) =
D

µ2
(rc − |pi − pj|︸ ︷︷ ︸

distance

)
pj − pi
|pj − pi|︸ ︷︷ ︸
unitvector

where D is the current local density and µ2 is the expected average density which

is N ·π·r2s
A

.

3.2.2 Incremental self-deployment algorithms

Another self-deployment approach is the incremental greedy deployment algorithm

where nodes are deployed sequentially by making use of the information of previ-

34

CHAPTER 3. COVERAGE AND CONNECTIVITY IN AMRONETS

ously deployed nodes. A robot carrying multiple immobile nodes and deploying

them in an unexplored area with the assistance of previously deployed node has

been presented in [21]. In [88] and [90], an incremental and greedy self-deployment

algorithm for mobile nodes is presented which is similar to the frontier-based ap-

proach [181]; however, here the occupancy maps are built from live sensory data.

The goal is to maximize network coverage under the constraint that nodes main-

tain line-of-sight with each other. One obvious drawback of the algorithm would

be, it is very difficult for the network to reconfigure itself, which is one of the main

advantages of using mobile robots.

3.2.3 Spanning tree-based algorithms

Spanning tree-based approach is also used to solve coverage problems in known and

unknown environments. In this technique each robot decomposes its environment

into cells of equal size referred to as approximate cellular decomposition by Choset

[38] and uses a minimum spanning tree-based algorithm to determine the path to

traverse while navigating those cells. Unlike other area coverage or exploration

problems where a sensory coverage of an unknown environment is sufficient; here

the focus is on the physical sweeping of a tool over every point of a given work-

area. A polynomial time Spanning Tree Coverage algorithm (STC) for complete

offline and online coverage of the terrain by a single robot is introduced in [66].

Hazon et al. extended the idea of STC in [78] to a multi-robot setting where

the problem is to compute the trajectory for each robot so that the cover time

(the largest travel cost of any robot) is minimized. This problem is NP-complete.

The approach called as Multi-Robot Spanning Tree Coverage (MSTC) described

in two versions: a non-backtracking MSTC, and backtracking MSTC, guarantee

robust, time-efficient and complete coverage. A polynomial-time multi-robot cov-

erage heuristic, Multi-Robot Forest Coverage (MFC), based on an algorithm for

finding a tree cover with one tree for each robot with balanced weights (travel

costs) is presented in [184]. In [79], an online version of STC coverage that runs

in parallel and builds a local spanning tree of uncovered cells by a depth-first-like

procedure which generates the path for the controlled robot is proposed. For the

boundary coverage problem of regular structures, a minimal spanning-tree-based

algorithm to achieve complete coverage of an unknown grid by incrementally con-

structing the tree and using a low-level reactive control with deliberative planning

for traversing the tree is presented in [41]. The approaches in [184] and [41] assume

35

3.2. RELATED WORK

that the environment is known a priori, either fully or partially, and its graphical

representation is available to the robots.

3.2.4 Voronoi-based algorithms

Voronoi-based algorithms use the structure of Voronoi diagrams for finding cov-

erage holes and minimizes them by relocating the robots. In [177], three Voronoi

based algorithms VEC, VOR and Minimax, has been proposed. VEC uses Voronoi

polygon for finding coverage holes, but its movement is based on virtual force ex-

erted by neighbouring sensor and field boundary. In VOR, if several coverage

holes are detected, the node would move towards its farthest Voronoi vertex to

cover the hole; whereas in Minimax the node moves to a point called Minimax

point which reduces the variance of the distances to all the Voronoi vertices of the

Voronoi polygon.

In [178], a bidding protocol for hybrid sensor networks where the static nodes

find coverage holes by constructing Voronoi diagram and bid the mobile nodes to

move to the holes is introduced.

3.2.5 Pheromone-based algorithms

Ants and other insects use chemical substance called pheromones for various com-

munication and coordination tasks [176]. An ant inspired heuristic for distributed

area coverage is presented in [176]. Here robots can leave chemical odor traces

that evaporate with time, and are able to evaluate the strength of smell. The

environment is decomposed into cells (grids) and on visiting a cell robots de-

posit the virtual pheromones. Robots use either a hill-climbing approach called

ANT-WALK-1 or a multi-level depth first search with backtracking called ANT-

WALK-2 to select the next cell to visit. A similar grid-based approach for cell

decomposition and an ant inspired mechanism for selecting the next action is pre-

sented in [105]. They also assume that robots can leave behind physical trails

within the environment which can be sensed by other robots or all robots deposit

virtual pheromone on a centralized pheromone map that is shared by all robots.

The coverage information is exchanged through the pheromone trails. In [137],

each robot deposits virtual pheromone within a map of the environment (or part of

the environment) maintained within its memory. At certain intervals robots com-

municate their local virtual pheromone maps to each other and fuse the virtual

pheromone obtained from other robots.

36

CHAPTER 3. COVERAGE AND CONNECTIVITY IN AMRONETS

The virtual pheromone concepts applied to the problem of dispersion is intro-

duced in [140]. A virtual pheromone is encoded as a single modulated message

consisting of a type field, a hop count field, and a data field. Each robot sends the

message to its neighbors and they forward it by decreasing the hop count till the

hop count reaches zero. Similar to the potential field approach robots attract and

repel each other based on the strength of received virtual pheromone messages

which in turn depends on the distance of neighboring robots. They also use the

concept of bud where one robot designated as bud gets a repulsive force stronger

than attractive force, which pushes it further away and other robots then expand

to fill in the space to maintain connectivity.

In [141], a dispersion behavior for a group of miniature robots inspired by insect

colony coordination behavior is introduced. It uses repellent virtual pheromones to

guide several miniature robots (Scouts) to get deployed and dispersed quickly. An

overhead camera or a camera mounted on a command/control robot provides each

miniature robot the estimation of positions of other nearby robots, using a vision-

based analysis of the location of the colored markers on these robots. Virtual

pheromones are modeled similar to potential fields and cumulative repellent force

of virtual pheromones is calculated to find the moving direction.

Another pheromone-based algorithm called Mark-Ant-Walk for coverage max-

imization is presented in [136]. In this algorithm the ant-like robot marks a ra-

dius around them and then moves to the point with the least marking within

visual range. It requires accurate pheromone marking and sensing the level of

the pheromone marks. Sensing pheromone marks of other robots provides an in-

direct communication between the robots. The algorithm provides a theoretical

bound on covering time, and ensures complete and efficient covering of arbitrary

connected domains.

3.2.6 Behaviour-based algorithms

One of the earlier works in this direction is the self-organizing behavior in swarm

robots that search for pollutants [71]. A behavior-based approach for dispersion of

robot-teams by using a random-wandering behavior coupled with moderate robot

repulsion as well as more significant obstacle repulsion is addressed in [15]. Inspired

by the group behavior seen in nature, combining basic behaviors with higher level

group behaviors such as aggregation, and dispersion can be synthesized [127]. In

the synthesized dispersion behavior, agents move away from the centroid of the

37

3.2. RELATED WORK

local density distribution of the other agents that are visible to their sensors.

In [180], autonomous robot dispersion for mobile nodes in a scenario where

mobility is required to cover the entire region due to a lack of wireless network

connectivity has been presented. The author used a random diffusion method

for node deployment while collecting data over a fixed surveillance region. The

behavior-based approach focuses on developing a set of simple local behaviors for

maximizing area coverage.

In [22], four behaviors are specified: obstacle avoidance, walk, observe, and

dance. Obstacle Avoidance causes robots to steer away from each other and other

objects in the environment. Walk causes a robot to move forward in the direc-

tion it is currently facing. Observe behavior chooses the most promising direc-

tion for exploration. Dance behavior is implemented differently for two spreading

techniques: Informative and Molecular. In the Informative technique the dancer

robot performs a stylized motion which is observed by the observer robot. A local

coalition is formed to decide the subsequent motion that increases total coverage

based on the exchanged relative position and bearing information. In the Molec-

ular Technique, it relies only on vision and the dancer selects a direction which is

diametrically opposite to the average angle subtended by all its neighbors in its

visual field. It is thus repelled away from its neighbors.

Dispersion of mobile robot swarms without any active communication is pre-

sented in [130]. Four different simplistic coverage strategies namely, a random walk

behavior in which robots move forward with a small random turn factor updated

at short intervals, a follow wall behavior to find obstacles to follow and thereby

explore an environment, a seek open behavior to move in the opposite direction

of the average obstacle vector and a fiducial behavior in which a fiducial device

allowed robots to localize relative to each other and use that information to move

away from each other, are proposed in the paper. Robots are assumed to have line

of sight communication to avoid collision with each other and obstacles. Experi-

mental results with simulated robots in different environments show that fiducial

behavior performed is the best.

In [128], a Directed Dispersion algorithm is presented which has a disperse

uniformly algorithm to spread robots evenly and a frontier guided dispersion al-

gorithm to direct robots towards unexplored areas. Another frontier guided dis-

persion algorithm is described in [91]. Robots use a wall-following algorithm with

one robot acting as the leader who detects the frontier from its neighboring cells.

If the leader fails to detect the frontier, strategies such as breadth-first and depth-

38

CHAPTER 3. COVERAGE AND CONNECTIVITY IN AMRONETS

first search are used to determine a frontier. In [151], a utility based frontier guided

mechanism where each robot selects between maintaining connectivity with the

rest of the team and visiting frontier cells is presented.

In [137] a semi-centralized algorithm that combines artificial potential fields

and behaviors together with leader election, counting hops from the leader, and

sending alarms to prevent disconnections, has been presented. The artificial po-

tential fields use three forces: The first one is a radial force whose magnitude is

determined by distance to obstacles. The second one is an open force that pulls

a robot towards empty regions and the last one a tangential force to make the

robot follow the wall. The robots select a leader and use the leader to coordinate

movements. The leader does not move and provides an anchor for the entire net-

work. Robots count hops to the leader and when they move, at least one neighbor

with a lower hop count is maintained. To prevent disconnections alarm messages

are sent. It uses the following set of behaviors: random, random turn, scatter,

forward, backward and freeze for dispersion.

3.2.7 Wireless signal intensity-based algorithms

Dispersion of a swarm of robots based on wireless signal intensity has been ad-

dressed in [126,174]. Even though they do not know the relative locations of other

robots, using the wireless signal intensity information of neighbors, the direction

to maximize coverage has been determined. In [126], the wireless signal intensity

is assumed to be inversely proportional to the square of the distance between the

robots. In the Clique Intensity Algorithm they proposed, one robot is selected

as sentry (stationary) for every maximal clique in the connectivity graph. Other

robots in the clique attempt to move away from the sentry by monitoring the

change in the signal intensity over time. Robots share connectivity information

with each other so that they can all agree on a set of sentries by following a set of

specific rules.

The signal intensities are realistically modeled using sampling technique, tak-

ing both the distance and relative orientations of the wireless sensors into account

in [174]. If the wireless intensity decreases during their movement (for same ori-

entations), it can be deduced that the robot is moving away from other robots.

An inversely proportional relation between wireless signal intensity and distance

between robots would hold for small changes in relative orientations. Based on

this assumption, moving direction for dispersion is found out.

39

3.3. OUR DESIGN DIRECTION

3.3 Our design direction

We are focusing on the self-deployment aspect of nodes with an objective of maxi-

mizing area coverage and the self-relocation aspect which maintains network con-

nectivity in case of failures. The robot deployment and relocation are then com-

pletely autonomous processes. In our scenarios prior models of the environment

are incomplete, inaccurate or non-existent. We also concentrate on model-free ap-

proaches which do not attempt to characterize the environment, as model based

approaches which create maps or other internal representation of the environment

are expensive in terms of storage and computation requirements. This is particu-

larly important when we consider small and low cost robots such as swarm robots

as AMRoNet nodes. Moreover, the approaches that do not keep track of the past

actions and coverage history of all robots in the environment or itself, are partic-

ularly interesting for such swarm robotic AMRoNets with limited capabilities.

In our design, we focus on fully distributed and localized approaches where

each node need to gain only limited knowledge of the environment. Hence cen-

tralized, semi-centralized approaches are not suitable for our purpose. In localized

approaches, robots need not know how many other robots are there in the envi-

ronment, where they are located or where those robots have been. Thus expensive

storage and computation requirements are completely avoided.

We plan to adopt swarm-based techniques for our algorithmic design, which

are indeed based on local rules. The global behavior of the system such as achiev-

ing coverage and connectivity emerges from the local interactions based on these

simple rules. The main challenge in the swarm-based design is to identify correct

local rules that lead to such emergent behaviors. In the next chapter, we introduce

such an algorithm for coverage maximization with connectivity

40

CHAPTER4
Sensing Range-based Coverage

By viewing Nature, Nature’s handmaid Art,

Makes mighty things from small beginnings grow.

John Dryden

In this chapter we focus on applications that need sensing range-based coverage

with network connectivity. We design an algorithm that achieves both in practical

scenarios. We focus on using bio-inspired algorithms in our design, as they work

well in environments where prior-knowledge about the environment is minimal

and adapt to unforeseen changes in the task environment quickly. The key idea of

these algorithms is to write simple local rules to achieve coverage and connectivity

as an emergent property of the algorithm.

The main idea used in our swarm-based coverage and connectivity mainte-

nance algorithm is born from the schooling behavior of fish which “optimize” the

coverage-connectivity C − C constraint naturally, i.e.

• The swarm needs to stay together to appear as one fish. So they maintain

connectivity.

• The appearance needs to be as large as possible to frighten predators. So

they try to increase the coverage.

Thus, nature offers a natural concept for solving the coverage-connectivity prob-

lem. We look at this natural model and design our new swarm-based coverage

and connectivity maintenance algorithm. We show that our bio-inspired approach

achieves better and faster coverage.

41

4.1. PRELIMINARIES

4.1 Preliminaries

Let N denote the total number of robots and R denote an individual robot. The

environment where the robots spread out is a 2-D area, denoted as A. No prior

map of the environment is available.

We assume that our robots have isotropic radial sensors of range rs, with

which they sense and detect events in the environment and an isotropic radio

communication of range rc, with which they can communicate with other robots.

The radio communication range is usually very large compared to the sensing

range. When rc ≥ 2rs, coverage of a region implies connectivity in the network [16].

Hence we set rc ≥ 2rs in our experiments.

An important objective of our algorithm is to maximize the total area covered

with network connectivity. A metric commonly used in evaluating the performance

of C−C algorithms is rate of coverage, which indicates the increase or decrease in

coverage over time. Our next important objective is to design an algorithm that

has good rate of coverage. A third important objective is to design an algorithm

which maintains coverage over time. This means that whenever a coverage hole

appears, due to failures of robots or changes in the environment, after all robots

have reached their equilibrium state, they should be able to recover it by relocating

the robots.

4.2 Swarm-based Algorithm

4.2.1 Swarming rules

The swarm-based coverage and connectivity maintenance algorithm is inspired

from the schooling behavior of fish where fish usually of the same species, age

and size stay together and maximize “coverage”. The basics of schooling behavior

could be summarized in 3 rules given below [165]:

• Avoid collisions with your neighbors: In the zone of repulsion, the focal fish

seeks to distance itself from its neighbors in order to avoid a collision.

• Remain close to your neighbors: In the zone of attraction, the focal fish

seeks to move towards a neighbor.

• Move in the same direction as your neighbor: In the zone of alignment, a

focal fish seeks to align its direction of motion with its neighbors.

42

CHAPTER 4. SENSING RANGE-BASED COVERAGE

Basic rules behind the schooling behavior are same in all animal aggregation

behaviors such as flocking of birds, the swarming of insects, and herding of land

animals. Reynolds [150] first modeled the flocking behavior with his simulation

program called Boids and uses the following three rules in order of decreasing

precedence to simulate flocking.

• Collision Avoidance: Avoid collisions with nearby flockmates.

• Velocity Matching: Attempt to match velocity with nearby flockmates.

• Flock Centering: Attempt to stay close to nearby flockmates.

4.2.2 Mathematical modeling of schooling behavior

To solve the C −C problem, we use a force-based variant of these rules instead of

the priority-based behavioral model used in Boids [150]. The force-based variant

of the swarm rules are:

• Fseparation: A force which pushes away from neighbors, increasing the size of

the swarm.

• Fcohesion: An attractive force towards the centroid of the neighbors, main-

taining the connectivity of the swarm.

• Falignment: A force matching the average force of the neighborhood.

The three forces Fseparation, Fcohesion and Falignment exerted on each member of

the swarm are calculated as follows:

Fseparation =
1

|neighbors|
∑

i∈neighbors

K

(|~p− ~pi|)2
~p− ~pi
|~p− ~pi|

(4.1)

Fcohesion =

(
1

|neighbors|
∑

i∈neighbors

~pi

)
− ~p (4.2)

Falignment =
1

|neighbors|
∑

i∈neighbors

~Fi (4.3)

where p is the position of the current member of the swarm, ~pi is the position of

its ith neighbor, ~Fi is the force of its ith neighbor and K is a repulsion parameter.

43

4.2. SWARM-BASED ALGORITHM

The resulting force F on each robot is the weighted sum of the three forces

Fseparation, Fcohesion and Falignment

F = w1 · Fcohesion + w2 · Fseparation + w3 · Falignment (4.4)

where w1, w2 and w3 denote the weights of the forces. The sum of the weights

w1, w2 and w3 is set to 1. Usually the weight w1 is set equal to w2 and w3 to a

smaller value compared to w1 and w2. Setting w3 to a small value ensures that

the alignment force gets weakened each time it spreads through the network and

results in a more stable behavior. It is also possible to set the alignment weight

to zero.

A robot reaches a state of equilibrium when the total force exerted on it is zero.

We design the repulsion parameter K in such a way that when a robot reaches

an aimed distance DAIM from its neighbors, the sum of two forces, Fcohesion and

Fseparation becomes zero. Let n be the number of neighbors of the current robot.

At the aimed distance,

Fcohesion + Fseparation = 0 (4.5)

Fcohesion = (
1

n

∑
i∈n

~pi)− ~p

=
1

n
(~p1 + ~p2 + . . .+ ~pn)− ~p

=
~p1 + ~p2 + . . .+ ~pn − n~p

n
(4.6)

Fseparation =
1

n

∑
i∈n

K

(|~p− ~pi|)2
~p− ~pi
|~p− ~pi|

=
1

n

∑
i∈n

K · (~p− ~pi)

(|~p− ~pi|)3

=
1

n

K((~p− ~p1) + (~p− ~p2) + . . .+ (~p− ~pn))

(|DAIM |)3

=
−1

n

K(~p1 + ~p2 + . . .+ ~pn − n~p)
(|DAIM |)3

(4.7)

From equation 4.6 and 4.7, we calculate K as follows:

~p1 + ~p2 + . . .+ ~pn − n~p
n

=
1

n

K(~p1 + ~p2 + . . .+ ~pn − n~p)
(|DAIM |)3

K = (|DAIM |)3 (4.8)

44

CHAPTER 4. SENSING RANGE-BASED COVERAGE

When the number of neighbors of a robot drops to zero, due to failure of all its

neighbors or other errors in the system, the robot starts a random walk behavior

to find a possible new neighbor.

4.2.3 Neighborhood definition

There are two basic models used to define the neighborhood of bird flocks or fish

schools [18]:

• Topological model: Nearest n members of the swarm regardless of dis-

tance.

• Metric model: All members of the swarm within certain fixed range rn.

In the topological model the number of interacting individuals is fixed irrespective

of their metric distance. There are always at most N neighbors and there is

no difference between the force exerted by a neighbor who is far away or near.

However, in the metric model, the number of neighbors varies with density, i.e., a

fixed range metric model has more neighbors in a very dense swarm than a very

sparse one. Moreover, the neighbors which are nearer are more important (exert

more force) than those which are far away.

In the formalization of the forces given in equations 4.1, 4.2, and 4.3, we also

use the metric model, where the impact of force is weighted according to the metric

distance. However, recent empirical results [18] show that swarms use topological

model with n about 6 − 7. A pure topological model is not practical in swarm

robotics due to the limitation of finding n neighbors irrespective of the distance.

Hence, we propose a hybrid topological model for the swarm robots, where we

take at most n nearest neighbors in the force calculation instead of all neighbors

within the fixed range rn.

4.2.4 Obstacle avoidance

In realistic scenarios robots always encounter obstacles. So they need an obstacle

avoidance algorithm that fits with the force calculation. Each robot has a sensor

or sensor array that detects the obstacles. When they detect an obstacle a force

Fobstacle is calculated based on the direction and the distance of the obstacle.

The force is calculated in the same way as Fseperation is calculated, but the

magnitude of the force is changed by multiplying with a factor 1/distance, i.e.

45

4.3. EXPERIMENTAL ANALYSIS

force from an obstacle is of order O(1
distance3

). This is because of the following

reason: If a robot detects an obstacle which is getting pushed by many neighboring

robots from the other side, then Fseperation adds up too much compared to Fobstacle

due to the outdated position information of the robots. This is inevitable due to

the delay in the sense-act loop in estimating the robots’ actual positions. This

causes the robot to crash into the obstacle. In order to avoid deadlock situations

where the total force becomes zero, a Gaussian noise with 0-mean and a small

standard deviation of 0.02 arbitrarily selected is added to the sensor values during

the Fobstacle calculation.

4.3 Experimental Analysis

We use the Player-Stage robotic platform and Bebot robots for our experiments.

Experiments with the Bebot robots are conducted in the Teleworkbench environ-

ment. The Teleworkbench server estimates the position of the robots and writes

them on to a Blackboard device provided by Player, whenever there is a position

update. Each robot communicates with the Blackboard proxy and estimates the

position of its neighbors. Simulation based experiments use a virtual model of

the Bebot robot with infrared range sensors and wireless units. The position of

neighbors is easily obtained from the simulator.

In our experiments each robot tries to spread up to DAIM from each other

based on the equation 4.4, with weights w1 and w2 set to 0.4 and w3 set to 0.2.

Coverage increases with the distance of separation between two robots until it

reaches 2rs. An optimal coverage in terms of number of robots needed to cover

an area is achieved when they form a triangular lattice pattern with inter-robot

separation of
√

3rs. Hence, we set DAIM to
√

3rs with an rs value of 0.5 m for

simulation based experiments. In real experiments, as Bebot robots have infrared

sensors of maximum range 20 cm, we set rs to this value. When rc ≥ 2rs, then

coverage of region implies connectivity in the network and hence we set rc to the

minimum value 2rs for our experiments. The fixed range rn used in the definition

of neighborhood is set to rc; i.e. each robot considers all robots located within a

distance of rc as its neighbors.

4.3.1 Geometric patterns

In this experiment each robot tries to spread up to the DAIM from each other and

forms the geometric patterns such as line, triangle, square and hexagon (triangular

46

CHAPTER 4. SENSING RANGE-BASED COVERAGE

lattice) when the number of robots is varied between 2, 3, 4 and 7. We perform this

experiment with the Stage simulator and with Bebot robots in the Teleworkbench

environment.

(a) Initial configuration in simulation (b) Final configuration in simulation

(c) Initial configuration in Teleworkbench (d) Final configuration in Teleworkbench

Figure 4.1: Geometric patterns using swarm-based algorithm

Figure 4.1a and Figure 4.1c shows the initial configuration in the Stage and

Teleworkbench environment respectively. Despite the unsynchronized execution

of the algorithm in simulation environment, the robots reach the final configu-

ration as shown in Figure 4.1b and create almost perfect geometric patterns. In

Teleworkbench environment, the robots are completely independent and many ad-

ditional issues arise, e.g. delay in communication, imprecise location estimation

etc. Still they are able to reach the final configuration as shown in Figure 4.1d

and create almost perfect geometric patterns.

47

4.3. EXPERIMENTAL ANALYSIS

0 10 20 30 40 50 60 70

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Time [s]

R
O

I [
%

]

Map: Square / Topological vs Metric

Topological 1.0
Topological 1.5
Topological 2.0
Topological 2.5
Topological 3.0
Metric 1.0
Metric 1.5
Metric 2.0
Metric 2.5
Metric 3.0

Figure 4.2: Comparison of coverage in metric and topological neighborhood model

4.3.2 Topological and Metric model

In this experiment we test the effect of neighborhood models on coverage using

a simulation based analysis. As explained in Section 4.2.3, the metric model

considers all members within certain fixed range as its neighbors, whereas the

topological (hybrid) model considers at most 6 nearest neighbors within this fixed

range. We set the minimum fixed range rn to 2rs = 1.0, to keep the robots

connected even at maximum possible coverage.

We consider an empty field of size 6×6 meters and deploy 56 robots randomly

in the field. This is the minimum number of robots needed to achieve full coverage

based on the triangular lattice structure. As the number of neighbors varies with

density in metric and hybrid topological models, to test its effect on coverage, we

vary rn and record the coverage over time. Each experiment is repeated 50 times

with different initial configurations.

Figure 4.2 shows the results of these experiments when rn is varied from 1.0 m

to 3.0 m at steps of 0.5 m. The curves are averaged over the 50 independent runs

and show the covered region of interest (ROI) at a certain point of time. They

indicate that coverage increases over time rapidly during the initial phase and

becomes constant towards the end. They also show that the hybrid topological

48

CHAPTER 4. SENSING RANGE-BASED COVERAGE

model is better than the metric model in coverage and stability. The metric model

has more variation with density changes, whereas the hybrid topological model is

not much affected by the change in density.

4.3.3 Comparison of performance

We now compare the performance of our swarm-based algorithm, referred to as

Swarm, with the state of the art algorithms. From Section 4.3.2, we find that the

topological (hybrid) neighborhood model is better than the metric model in cover-

age and stability. So here onwards we consider only this model in our experiments,

with the fixed range set to the minimum value, i.e. rn = 2rs.

Among the state of the art approaches mentioned in Section 5.2, our approach

matches best with the force-based approaches and we use them as our references

for comparison. Voronoi-based algorithms described in Section 5.2 also use similar

assumptions, but need to be extended to make them work in our scenarios. We

consider them in those experiments where these extensions are possible. Other

approaches mentioned in Section 5.2 have different objective and use different

assumptions. Hence, we do not consider them in our analysis.

For the Swarm algorithm, we find the net force on each robot according to

equation 4.4. The implementations of Force and DSSA algorithms are straight

forward. For Force implementation, we find the constants Kcover and Kdegree of

equation 3.2 and 3.3 exactly as mentioned in [147] and assign the same values 0.25

and 0.8 for the damping and safety factors used in the paper. For DSSA, the

expected density µ and the local density D are calculated exactly as mentioned

in [82].

During the implementation of Voronoi based algorithms, the following issue

arises: If robots are cluttered together in a small area, the robots at the border of

the cluttered area might construct open Voronoi polygons. Checking the existing

Voronoi points cannot detect coverage holes in such cases and the coverage is

unimproved. To solve this issue, we assume that the area where the robots are

deployed is defined with known boundaries. When the Voronoi polygons are open

or the existing Voronoi points are located outside the boundary, new Voronoi

points from the boundary are added. This makes the polygons closed within the

defined area and moves the robots from cluttered regions towards sparser regions.

49

4.3. EXPERIMENTAL ANALYSIS

(a) Without obstacles (b) With obstacles

Figure 4.3: Comparison of coverage performance on a square map

4.3.3.1 Experiment 1 - Coverage analysis:

The first experiment to compare the performance of the algorithms is conducted on

a square field of size 6×6 m2 for the simulation based analysis and 2.4×2.4m2 for

the Teleworkbench based analysis. In the latter case, we deploy 10 Bebot robots

randomly in the given area, whereas in the former case, we consider three scenarios,

an under-deployed with 28 robots, an exact deployed with 56 robots and an over-

deployed with 80 robots. During these deployments, we consider different initial

configurations such as robots deployed in one small region at the center of the

field or at two corners of the field or all corners of the field or random deployment

in the entire field. We consider 50 different configurations for simulation-based

experiments and 5 for real robot experiments.

We also consider scenarios with different obstacles in the field, e.g. Figure

2.3. Force from the obstacles Fobstacle specified in Section 4.2.4 is added to the

force calculated by the Swarm, DSSA and Force algorithms. However, such an

addition does not suit the Voronoi-based algorithm as it is not force-based and we

do not consider them in scenarios with obstacles.

Figure 4.3a shows the performance of Swarm, DSSA, Force, V EC, V OR and

Minimax algorithms averaged over the different independent runs in scenarios

without obstacles. It shows that the Swarm algorithm (in black color) achieves

better coverage than the state of the art algorithms. The new force-based rules

allow them to reach the optimal triangular lattice structure better than the state

of the art algorithms.

Minimax algorithm performs better than V OR and V EC algorithms in [177].

50

CHAPTER 4. SENSING RANGE-BASED COVERAGE

However, in our experiments V EC achieves better coverage than Minimax and

V EC. One reason for this variation could be the difference in the simulator, where

the robots do not move to the Minimax point or farthest Voronoi vertex in each

iteration of the algorithm due to the randomness and unsynchronized execution

of the algorithms in the Stage simulator.

Figure 4.3b shows the performance of Swarm, DSSA and Force algorithms

in scenarios with obstacles. In these experiments, ROI is the total area minus the

area occupied by the obstacles. Figure 4.3b shows that the performance of our

algorithm is better than the Force algorithm and same as DSSA algorithm.

4.3.3.2 Experiment 2 - Coverage maintenance

In this experiment we test how fast the algorithm regains coverage in case of failure

of robots or coverage holes using simulation based analysis. For this, we consider

an over-deployed scenario with 80 robots in a square field of size 6 × 6 meters

without obstacles. Robots are initially deployed randomly in the given area and

are allowed to spread in the area as in Experiment 1. Now we simulate a coverage

hole or failure of robots by removing all robots located within a distance of 2 m

from the center point of the field.

0 50 100 150

0.
80

0.
85

0.
90

0.
95

1.
00

Time [s]

R
O

I [
%

]

Map: Crash / CR: 1

swarm
dssa
force
vec
vor
minmax

Figure 4.4: Comparison of coverage performance on relocation scenario

Figure 4.4 shows how fast and good the robots relocate according to the respec-

51

4.4. SUMMARY

tive algorithm, to regain coverage. It shows that the Swarm algorithm performs

better than the state of the art algorithms by recovering from failure better and

faster. The faster coverage regain of the Swarm algorithm is mainly achieved

by the alignment rule, which uses the information about the failure much bet-

ter than other force based algorithms. In differential drive robots where robots

have to turn to change their direction, alignment of direction is useful. As we

are not just aligning the direction, but averaging the neighbors’ force, the robot

considers alignment force as a forecast of what its neighbors are performing and

starts adequate counter actions earlier. These factors contribute for the improved

performance of our algorithm.

Failure of a large number of robots may cause network partition. However, in

our scenarios we assume that there are more redundant robots than the number

of robots failing. Hence, even when robots fail and network may get partitioned,

as the total number of working robots in the system is always greater than the

optimal number of robots needed for full coverage, the network will get connected

after relocation.

4.4 Summary

In this chapter, we proposed a new swarm-based coverage and connectivity main-

tenance algorithm inspired from the schooling behavior of fish. The algorithm is

a force-based variant of the local rules seen in such animal aggregation behaviors.

The three basic rules namely separation, cohesion and alignment are formalized

into equivalent forces. The separation force pushes the robots away from their

neighbors and increases the size of the swarm. The cohesion force maintains the

connectivity of the swarm. The alignment force keeps the robots aligned to their

neighbors and makes relocation faster. Empirical analysis shows that our bio-

inspired swarm-based algorithm achieves better and faster coverage than the state

of the art algorithms tested, in scenarios with and without obstacles. Moreover,

it regains coverage faster than these algorithms from the coverage holes occurring

due to robot failures.

52

CHAPTER5
Communication Range-based

Coverage

In this chapter we focus on AMRoNet applications where the nodes act as a tempo-

rary infrastructure to facilitate communication between agents. The agents could

be humans or powerful robots moving autonomously on a terrain for missions such

as urban search and rescue or exploration of unknown terrains. In such scenarios,

the fixed infrastructure that could support communication is often destroyed or no

such infrastructure exists. The agents themselves could form an ad-hoc network

for communication. However, their number is often limited and the area to be

explored is often very large. The presence of obstacles significantly reduces the

line of sight communication distance. Hence the movements of robots get severely

restricted, if they try to remain in a connected network.

Creating an AMRoNet layer that acts as an infrastructure to support the

communication of the agents, would not restrict their movements. Thus we have

a two tier network, with the agents and base stations lying at the upper layer and

the AMRoNet routers deployed at the lower layer. AMRoNet could also provide

various other services to the agents, such as location information, topological maps

and shortest path to base stations, and assist the search and rescue operation of

the agents. Whenever there is disconnection they could relocate and maintain the

connectivity.

The swarm-based approach proposed in Chapter 4 tries to achieve optimal

coverage in sensing range-based coverage problems by forming triangular grid

structure with aimed inter-robot distance DAIM =
√

3rs and creates a connected

53

5.1. PRELIMINARIES

network when rc
r
≥
√

3 with r = rs. However, in communication range-based area

coverage problems where r = rc, the strip-based structure shown in Figure 3.2 is

optimal for achieving both full coverage and 1-connectivity. If we use the swarm-

based approach with DAIM = rc for area coverage, the triangular grid structure

intended to form has a spatial density of only DTRI = 1.155
r2

compared to the spatial

density of the optimal strip-based structure DSTR = 0.536
r2

.

Creating an optimal strip-based structure may not be a good solution if the

environmental conditions are hostile, as the optimal structure has no room for

automatic reconfiguration to regain coverage and connectivity in case of node

failures or any changes in the environment. An over deployed structure that has

redundant coverage area is more suitable in environments where failure of nodes

are very common. In such environments the swarm-based approach would be an

ideal choice as it allows faster relocation. However, in environments where such

failures are uncommon and achieving the optimal configuration with least number

of robots for full coverage and connectivity is very important; the swarm-based

algorithm is no longer the best choice. Hence in this chapter, we focus on designing

a new algorithm which also uses local rules, yet achieves a configuration that is

close to the optimal solution. Here the main objectives are:

• Maximize the communication area coverage keeping the network connected.

• Use minimum number of robots in the deployment process.

5.1 Preliminaries

We have a two tier network when we use AMRoNet as an infrastructure layer to

support the communication of the agents. The agents and base stations form the

upper layer. The environment where the agents explore is a 2-D area denoted as A

and has n base stations. There are Na agents which are humans or robots capable

of performing tasks such as urban search and rescue. As our focus is mainly on the

AMRoNet, we do not specify the requirements of the agents and the base stations,

which vary according to the scenario considered. The only assumption we make

is that they have wireless devices to support communication.

The lower layer is the AMRoNet which consists of in total Nr routers. The

routers denoted by R, are very simple robots compared to the agents with limited

sensing capabilities with which they avoid obstacles and perform local navigation.

Routers are equipped with wireless transceivers for communication.

54

CHAPTER 5. COMMUNICATION RANGE-BASED COVERAGE

We assume an isotropic radio communication range of rc, where each node

(agent, router or base station) can communicate with others located within a

circle of radius rc. We also assume that the communication area of one node, πr2c ,

is much less than A. Hence, the agents have to send packets over several routers

to reach a particular destination (other agent or base station).

5.2 Related Work

Existing approaches to support the communication of the agents are mostly based

on mobile routers making a chain. In [48,112] the authors present different strate-

gies such as Manhattan-Hopper, Hopper, Chase explorer and Go-to-The-Middle,

to maintain the connectivity of an explorer with a base station. In [170], depending

on whether the knowledge of the agent’s trajectory is available or not, the trajec-

tories for the routers are estimated. These approaches maintain connectivity of

the agents, if the routers move as fast as the agents. However, this assumption is

not valid as the routers used to create AMRoNet are very simple robots and their

speed is usually very small compared to the speed of the agents. The approaches

in [48, 112] need routers that can move faster than the agents and the approach

in [170] needs twice the speed of the agent, to keep the chain connected. Moreover,

they cannot support connectivity of multiple exploring agents. Hence they are not

useful in our scenario.

The self-deployment algorithms discussed in Section 3.2 or the swarm-based ap-

proach proposed in Chapter 4, though not meant for maintaining the connectivity

of agents, could be used for creating the AMRoNet layer to facilitate communi-

cation between agents. Here also the spreading algorithms need router moving as

fast as the agents to keep them connected. Using simple routers that are slower

than the agents, the multi-robot spreading algorithms-based approaches work only

if the deployment phase is finished prior to the exploration of the agents. However,

in scenarios such as urban search and rescue, such proactive pre-deployment is not

feasible.

5.3 Agent-assisted router deployment algorithm

We propose a greedy router deployment approach called agent-assisted router de-

ployment for AMRoNet creation which does not need any fast moving routers

or proactive pre-deployment phase. In agent-assisted router deployment, agents

55

5.3. AGENT-ASSISTED ROUTER DEPLOYMENT ALGORITHM

carry routers during the exploration. They deploy routers greedily into the envi-

ronment to those locations that maximize the local coverage maintaining connec-

tivity. Routers move locally to maximize coverage. Such an approach is feasible,

as our robots are very small and the agents can carry several robots during their

exploration. A prototype system is shown in Figure 5.1, where the larger Ranger

robots are used to deploy the mini-robot Scout, using a spring-based delivery

mechanism [141].

Figure 5.1: Prototype system for agent-assisted router deployment [141]

The agent-assisted router deployment algorithm given in Algorithm 5.1 has

the following phases:

5.3.1 Initialization phase

In the initialization phase, the agents begin their exploration from the base sta-

tions. Each base station BSi has a unique id i and has one node BNi that acts

as a base station server for all communications. The group index of BNi is set to

base station id i. Routers are denoted as Rij and agents as Axy, where the first

subscript indicates their current group index and the second one indicates their

unique id. The agents moving out of BSi are initially connected to BNi and other

agents in the base station. Hence, each agent Axy set its index x to i, the group

index of its current reference node BNi. All routers are initially enabled for a

special deployment called triangular deployment discussed in Section 5.3.3.

5.3.2 Greedy deployment phase

The agents explore the area based on their own navigational algorithm. Figure 5.2

shows a schematic representation with two base stations and two agents (one agent

56

CHAPTER 5. COMMUNICATION RANGE-BASED COVERAGE

Algorithm 5.1 Agent-assisted router deployment algorithm

1. Initialization phase
for all BSi ≤ n do

Set group index of BNi to i
Set index of agent Axy to the group index of current reference (BNi)
Set all routers enabled for triangular placement

end for

2. Greedy and triangular deployment phase
/* Agents move autonomously to explore the environment */
if Axy is about to lose connection with its only reference Rij then

Deploy a new router with its index set to i
Set the position of the released router Rik to Axy’s current position
Update Axy’s current reference to Rik

else if Axy enters the range of a router Rpq from the current reference Rij

then
if reference indices i and p are equal then

Update Axy’s current reference to Rpq

else if Rij or Rpq is enabled for triangular placement then
Release a new router to connect Rij and Rpq with its index set to i
Instruct the released router Rik to move to the goal point G
Disable Rij, Rik and Rpq for triangular placement

end if
end if

3. Local Coverage Maximization phase
if deployed router Rik is instructed to move to the goal point G then

if goal location reached then
Stop navigation

else if obstacles encountered then
if connections with Rij and Rpq are maintained then

Avoid obstacles
else

Stop navigation
end if

else
Goto goal location G

end if
else

Stay where deployed
end if

57

5.3. AGENT-ASSISTED ROUTER DEPLOYMENT ALGORITHM

per base station) exploring an open area.

A11

a > rc

G

rc rc
R13

R12

R25

R26

A22

R11 R24

BN1 BN2

Figure 5.2: Schematic representation of agent-assisted router deployment in an open
region

During the exploration, if Aiy is about to lose its connection to BNi, it places

a new router with its index set to i and position set to Aiy’s current position. The

new router Rik, for any k ≤ Nr, is placed very close to the current location of Aiy

in the direction towards current reference BNi. This ensures that Rik released is

always connected to the current reference. Rik becomes the new reference for Aiy

and for all other agents within Rik’s communication rage.

During the navigation, Aiy may move out of Rik’s communication range and

enter the range of a router Rpq for any p ≤ n and q ≤ Nr that has already

been deployed. In this case Rpq becomes Aiy’s current reference. Aiy asks Rpq

for its index and updates its index to p and becomes Apy. The agent repeats the

placement steps when it is about to lose its connection to its current reference.

If an agent has wireless links to many reference robots, any one of them acts as

the agent’s current reference. The agent releases a new router only when it loses

connection to the last reference node in its communication range. We call this

placement strategy as greedy deployment.

5.3.3 Triangular deployment phase

The greedy agent-assisted router deployment builds a graph G with the nodes

at the base stations and with routers released during agents’ exploration as its

vertices. Agents exploring from one base station form a connected component,

denoted as CC, of G. However, such CCs created from multiple base stations are

not connected. When an agent Axy enters into the range of Rpq from the current

reference Rij, for i 6= p and i = x, CCi and CCp are temporarily connected.

During the navigation, if Axy loses it connection to Rij but still has connection to

58

CHAPTER 5. COMMUNICATION RANGE-BASED COVERAGE

Rpq, Aij does not place another router, as it has Rpq as its current reference. In

this case, Axy loses connection to its previous base station (BSi), and therefore

CCi and CCp get disconnected again.

To solve the disconnection problem, in such situations we adopt another de-

ployment strategy called triangular deployment. In triangular deployment, when

an agent Axy encounters Rpq from the current reference Rij, for i 6= p and i = x, it

releases a new router Rik, for any k ≤ Nr. This new router permanently connects

CCi and CCp.

5.3.4 Local Coverage Maximization phase

In order to maximize the local coverage, the newly released router Rik could move

to a goal point G which still keeps Rij and Rpq connected and also improves the

local coverage. The goal point can be calculated as follows: If a is the distance

between Rij and Rpq, the goal point lies at a distance
√
r2c − a

2
2 from the midpoint

of the line joining Rij and Rpq on the same side of the agent as shown in Figure 5.2.

During the goto goal behavior, if the new router encounters an obstacle that cannot

be avoided in few steps, it stops navigating to the goal location, as the obstacle

could be too large to overcome without disconnecting Rij and Rpq.

5.3.5 Optimization of triangular placement

To optimize the number of robots used during the triangular deployment, we

propose two strategies. The first one needs global communication and the second

one needs only local communication.

In the global strategy, when an agent Axy entering into the range of Rpq from

the current reference Rij with i 6= p for triangular deployment, it first checks

with Rij and Rpq if CCi and CCp are already connected. If not, it performs

the triangular deployment and connects CCi and CCp. The router connecting

CCi and CCp sends a message to all references connected to it either directly or

by multi-hop networking, informing the new connected components. All these

references update the information about the connected components in G.

In the local strategy, the router deployed sets the references Rij, Rpq and itself

as disabled for further triangular deployment. When a router Rxy or an agent

Axy entering into the range of Rpq from the current reference Rij with i 6= p, it

checks if both Rij and Rpq have already been disabled from triangular deployment.

This ensures that CCi and CCp always get connected and prevents redundant

59

5.4. EXPERIMENTAL EVALUATION

deployment at the locations of triangular placements.

5.4 Experimental Evaluation

We evaluate the proposed agent-assisted router deployment using a simulation

based empirical analysis. We use the Player server and Stage 2D simulator for

our experiments. We consider a square area of size 32 × 32 m2, which maps the

floor plan of our institute as shown in Figure 5.3 for evaluation. The agents are

modeled as Pioneer2dx robots, routers as Bebot robots and base stations’ reference

robots as Amigobot robots playerstagemanual. All robots are equipped with WiFi

modules for communication. The base station robots are located at the corner of

the simulation environment and are immobile. The scenario shown in Figure 5.3

Figure 5.3: An example scenario with 12 agents and 4 base stations

has 4 base stations and 12 agents (3 per base station). The agents start their

exploration from a point very close to the base station robots and are initially

connected to them. We have chosen a random exploration strategy for the agents.

They detect obstacles using their sonar sensors which have maximum range of

2 m and avoid them using the obstacle avoidance behavior implemented in the

framework. The release of a new router by the agent is implemented by moving

a router located outside the simulation environment to its placement point by

the simulator. Routers released during the triangular placement use the goto goal

behavior to navigate towards the goal points. They avoid collisions using their IR

sensors which have maximum range of 20 cm.

60

CHAPTER 5. COMMUNICATION RANGE-BASED COVERAGE

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 6 8 10

N
u
m

b
e
r

o
f
ro

b
o
ts

Communication radius (rc)

ARD
RSTRmin

HEXmin
SQRmin
TRImin

Figure 5.4: Comparison of deployed robot counts

5.4.1 Performance analysis

To analyze the performance of the agent-assisted router deployment algorithm, we

vary parameters such as rc and Na. Figure 5.4 shows the result of the algorithm,

when rc is varied from 4 to 10 in a square area of size 32 × 32 m2. The graph

plot with label ARD shows the average number of routers (including the reference

robot in the base station) deployed to cover the entire region, when all agents begin

their exploration from one base station. Here, Na is varied from 1 to 4. For each

Na, the simulation is repeated 5 times and the agents are assigned different start

locations. So the graph plot with label ARD given in Figure 5.4 is the average of

20 simulations with confidence interval at 95% [42].

The expected number of robots required to cover an area by the static place-

ment strategies of the commonly used regular patterns such as r-strip tile, hexago-

nal grid, square grid and triangular grid can be calculated using the spatial density

of the patterns, i.e dSTR = 0.536
r2

, dHEX = 0.77
r2

, dSQR = 1
r2

and dTRI = 1.155
r2

. Since

the area is bounded, the minimum number of robots actually required to cover

the entire region is often higher than the expected values. This is clearly visible in

the example figures, Figure 5.5a and Figure 5.5b, where the estimated (expected)

number of robots needed for the r-strip RSTRest is 35 and the hexagonal grid

HEXest is 50, but the minimum required number for r-strip tile RSTRmin is 44

and the hexagonal grid HEXmin is 55. The figures also show that there are still

uncovered areas, e.g. the location of the robots highlighted with small circles.

We cannot place additional routers to cover these areas, as they would be placed

outside the specified area according to the regular placement pattern.

We compare the performance of our agent-assisted router deployment algo-

61

5.4. EXPERIMENTAL EVALUATION

(a) R-strip tile based topology (b) Hexagonal-grid based topology

Figure 5.5: Static placement of regular pattern

rithm with the estimated number of robots required by an ideal agent-assisted

static placement strategy. In the ideal agent-assisted static placement strategies,

we assume that there is only one agent deploying the nodes and this agent moves

in a controlled fashion so that it creates r-strip, hexagonal, square and triangular

grid-based structures as desired. This assumption is made because any agent-

assisted greedy deployment algorithms used for localized strip or grid structure

creation would probably restrict the movement of agents or cause network discon-

nection.

The above issues are caused due to the following problems of such approaches:

The routers released during the greedy deployment phase need to move to their

goal points to create strip or grid, but they move very slowly compared to the

agents. If the agents use these moving routers as their references, to prevent dis-

connections they may have to release new routers before the current references

reach their goal points. Another problem is the presence of obstacles which pre-

vents the routers from reaching the optimal goal point. A third problem occurs

when we have multiple base stations. The pattern created from one base station

may not be aligned with the other from another base station. There is also a

problem that is specific to r-strip tile creation: instead of using only one router

to connect two horizontal strips, if agents move in an adversarial manner, it may

need one router per second router in the horizontal strip. Hence, the structure

created by such algorithms may not be the expected strip or grid structure.

Figure 5.4 shows that the number of routers needed for agent assisted router

62

CHAPTER 5. COMMUNICATION RANGE-BASED COVERAGE

deployment algorithm (in red color) is quite close to the RSTRmin value of the

ideal agent-assisted static placement strategy. It is much lower than TRImin,

SQRmin, and HEXmin values. Hence it is one of the best localized approaches to

create an AMRoNet, especially when we consider the fact that we compared the

agent-assisted router deployment algorithm with an ideal algorithm performing

static placement strategies.

If we calculate the expected number of robots needed for the hexagonal grid

HEXexp = 0.77∗A
r2

in the specified square region for different rc values and plot

it, this curve would closely match the ARD curve shown in Figure 5.4. Hence

we could use the equation ARD = 0.77∗A
r2

to get an approximate estimate of the

total number of routers needed to cover a given area A (if known in advance) by

our agent assisted router deployment algorithm. This helps the agents in making

an estimate on the number of routers they need to carry, before beginning their

exploration.

5.4.2 Effect of number of agents and base stations

To analyze the effect of number of agents and base stations on the agent-assisted

router deployment algorithm, we now vary the number of agents per base station

Napbs and the number of base stations n, for a fixed rc. Figure 5.6 shows the

average number of robots (including the base station robots) needed to cover the

square area of size 32 × 32 m2 for Napbs = 1, 2 and 3, when n is varied from 1 to

4.

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4

N
u
m

b
e
r

o
f
ro

b
o
ts

Number of base stations

Napbs=1
Napbs=2
Napbs=3

Figure 5.6: Effect of number of agents and base stations on the performance

Increasing the number of agents without increasing n do not affect the perfor-

mance, as the deployments performed by the agents are based on the local rules

63

5.5. DISCUSSION

R11

R22

R44

R33

BS1 BS4

BS3BS1

Figure 5.7: Redundant router deployment during local triangular deployment

which are in turn based only on losing or establishing connection with other routers

and not with other agents. Hence the number of routers deployed is independent

of the number of agents. The data points for a particular n shown in Figure 5.6

with different Napbs confirm this.

Increasing the number of base stations may result in more triangular deploy-

ments. The total area covered by three robots in a triangular deployment is usually

lesser than the total area covered by them in an optimal deployment. The largest

overlap in a triangular deployment occurs when two references are separated by a

distance slightly greater than rc. However, such deployments do not increase the

number of routers considerably. Even the greedy deployment may produce similar

less optimal overlapping regions, e.g. when an agent connected to two references

move out of the communication radius of both references simultaneously.

Figure 5.7 shows a scenario where three routers are released during the trian-

gular deployment. Actually at most 2 routers are needed to make the four chains

connected. Such redundant deployment increases with the number of base sta-

tions. We could add more local rules to make the increase bounded, but this is

not actually needed as the agents move independently (in our experiments, they

move randomly) and the structures similar to the one shown in Figure 5.7 occur

very rarely. The graph plots for Napbs = 1 and Napbs = 2 depicted in Figure 5.6

also show that the total number of routers deployed is more or less the same for

different base station counts.

5.5 Discussion

5.5.1 Merits of agent-assisted router deployment

From our experiments, we found that the proposed algorithms work well irrespec-

tive of the presence of obstacles in the area, where as in any localized approaches

64

CHAPTER 5. COMMUNICATION RANGE-BASED COVERAGE

for regular pattern creation their presence would cause severe problems. Our ap-

proach even works in areas where we do not have any prior model or map of the

environment. It could be extended to make it work without any location infor-

mation, in which case we require just the link quality estimate provided by the

Wi-Fi devices. In such cases, the greedy deployment strategy is performed when

the link quality drops below a threshold. Routers deployed during the triangular

deployment, move in the direction where the link quality tends to be weak, in

order to maximize the coverage area.

5.5.2 Self-spreading version

In those applications where a proactive pre-deployment of AMRoNet for support-

ing the agent communication is feasible, we could easily extend the agent-assisted

router deployment algorithm into a self-spreading algorithm. There instead of

agents deploying the routers, the routers themselves navigate and deploy. The

routers could perform random-walk with an obstacle avoidance algorithm and on

reaching the points that maximizes local communication area coverage, they could

stop their navigation and become references for others to spread further.

We have tested a preliminary version of this approach and found that the fi-

nal coverage achieved by this approach is better than the swarm-based approach

presented in Chapter 4, as the swarm-based approach is not optimal for commu-

nication area coverage problems. However, the rate of coverage during the initial

stages is much lower than the swarm-based approach. Combining swarm-based

and self-spreading algorithms may achieve better performance.

5.6 Summary

In this chapter, we have presented a new localized and distributed algorithm for

creating an ad-hoc mobile router network that facilitates communication between

the agents without restricting their movements. The agent-assisted router de-

ployment algorithm has a greedy deployment strategy for releasing new routers

effectively into the area and a triangular deployment strategy for connecting dif-

ferent connected components created by the agents exploring from different base

stations. Empirical analysis shows that the number of routers deployed by the

agent-assisted router deployment algorithm is quite close to the number of routers

needed for an ideal algorithm while placing nodes in the optimal r-strip tile pat-

65

5.6. SUMMARY

tern in a bounded region. The performance of our algorithm is not affected by the

number of agents or obstacles present in the environment. Increase in the number

of base stations did not make any noticeable performance difference either.

66

CHAPTER6
Self-optimizing Network

Self-optimization capability is one of the key features of self-organizing networks

which enables the network to adjust regularly in varying loads and route efficiently

in large-scale networks, especially when topology changes frequently. In our work

we concentrate on the routing aspect of the self-optimizing networks. Routing

refers to the most common unicast routing in our terminology, which involves

routing of data packets from a single source to a single destination. Moreover, we

are interested in routing protocols that provides guaranteed delivery, which means

that if there is a path in the network between source and destination, the packets

are always successfully delivered. We assume that the network is provided with an

ideal medium access control (MAC) layer [167] where packets are not lost during

forwarding steps.

Traditional routing protocols used for the wired networks cannot be used di-

rectly in ad-hoc wireless networks due to the highly dynamic network topology,

absence of infrastructure for centralized administration and resource constrains.

There have been a large number of routing protocols proposed for wireless ad

hoc networks since 1980s and the design choices and approaches varies consider-

ably. The MANET routing protocols focusing on distributed, low overhead and

self-configuring routing aspects are of particular interest to AMRoNets. In this

chapter, we briefly look at various routing protocols and focus on the protocols

which are useful for AMRoNet routing.

Routing protocols could be classified into several types based on the structure,

state information, cast property etc. [132]. From the perspective of information ex-

ploited, the existing routing protocols can mainly be classified into two categories:

topology-based routing and geographic routing (also referred as location-based,

67

6.1. TOPOLOGY-BASED ROUTING

position-based and geometric routing in the literature) [132].

6.1 Topology-based routing

Topology-based routing protocols are based on the topological connectivity infor-

mation, which basically uses the information about the links between the nodes

to establish and maintain end-to-end paths for routing. Based on the routing in-

formation update mechanism the topology based routing could be classified into

proactive (or table-driven), reactive (or on-demand), and hybrid approaches [132].

Proactive approaches maintain network topology information in the form of

routing tables by periodically exchanging routing information and hence the rout-

ing information is readily available when it is needed. Proactive protocols such

as Destination Sequenced Distance-Vector (DSDV) [142] and Optimal Link State

Routing (OLSR) [95] has been proposed for ad-hoc networks by modifying the

classical routing protocols such as Distance-Vector [39] or Link State [129] used

in packet switching networks. Other prominent proactive protocols are Wireless

Routing Protocol (WRP) [133], Cluster-head Gateway Switch Routing Protocol

(CGSR) [37] and Source-Tree Adaptive Routing Protocol (STAR) [70].

The reactive algorithm does not maintain the topology information but gath-

ers it only when it is needed such as at the beginning of a data session or in an

existing route failure. As they typically require a route discovery process some

delay is incurred before the packets are exchanged. The most prominent reactive

routing protocols are Dynamic Source Routing (DSR) [97], Ad-hoc On-demand

Distance Vector (AODV) routing [144] and Temporally Ordered Routing Algo-

rithm (TORA) [139].

Hybrid algorithms combine the best features of these two categories. For rout-

ing within certain regions or zones a table driven approach is used and for beyond

this zone an on-demand approach is used. Core Extraction Distributed Ad-hoc

Routing (CEDAR) [160], Zone Routing Protocol (ZRP) [76] and limited-radius

variants of DSDV [143] are some of the hybrid approaches.

Topology-based routing protocols could also be classified into flat and hierar-

chical protocols based on whether there is a logical hierarchy in the network or

not. Hierarchal State Routing (HSR) [93] , Fisheye State Routing (FSR) [93],

CGSR are good examples of hierarchal routing protocols whereas DSR, AODV

and OLSR are flat routing protocols.

Topology based routing has significant overhead in establishing and updating

68

CHAPTER 6. SELF-OPTIMIZING NETWORK

path information (routing table) between source and destination when topology

changes frequently. It also has scalability issues as the overhead increases with

increase in the number of nodes in the network which in turn increases the size of

the routing table and the number of control packets sent to update path states [34].

6.2 Geographic routing protocol

Geographic routing protocol makes use of the geographic information of nodes

(i.e., actual geographic coordinates or virtual relative coordinates) to deliver a

message to its intended destination [34]. Unlike the traditional topology based

routing which uses network addresses and routing tables to make routing decisions,

here a forwarding node decides the next hop node by considering the geographic

location of its neighbor nodes. Any changes in the network topology, like link or

node failures, require routing information updates only at the nodes located close

to that change. Traditional topology-based routing in contrast requires global

routing information updates in such cases. This makes the geographic routing

highly scalable and an attractive solution for large scale wireless ad hoc networks

such as AMRoNets.

The main requirement for geographic routing is a positioning system. With the

availability of small, inexpensive, and low-power Global Positioning System (GPS)

receivers [85] or other localization systems [84], location information is available

in wireless ad-hoc networks. As AMRoNet nodes are mobile robots, position in-

formation is available at-least from the dead-reckoning navigation systems [158].

An additional requirement for geographic routing is the knowledge of the desti-

nation location. In many applications especially sensing and monitoring tasks,

destination is a base station node which is often fixed. Hence it is easy to obtain

the destination location information. When the destination location is not known

in advance, nodes use a location service [62], which provides a mapping of node

addresses to their physical locations. Location service is often considered inde-

pendent of routing in literature. Further information is available in [62, 161]. We

now look at some of the most prominent geographic routing protocols in detail in

the following sections.

6.2.1 Greedy routing

The basic idea of geographic routing was developed in the 1980s for packet radio

networks [86, 166]. In these works, nodes forward messages according to locally

69

6.2. GEOGRAPHIC ROUTING PROTOCOL

optimal forwarding rules and hence named as greedy forwarding or greedy routing.

The greedy routing uses the positions of the sender, its neighboring nodes, and the

destination to move the packet further towards the destination at every hop. The

next hop nodes selected varies on the optimization objectives such as distance,

direction and energy [34].

a

A

A′

P

P ′

s
M

r

t

e

b

g

c

f

Figure 6.1: Greedy routing

Two most commonly used distance-based optimization criteria are progress

and advance [34]. Progress is defined as the orthogonal projection of the line

connecting the sender and the next-hop node onto the line connecting the sender

and the destination. The region with positive progress for the source node s

towards the destination (target) node t given in Figure 6.1 is P −M − P ′ − P .

Advance denotes the distance gain towards the destination and is defined as the

difference in distance between the sender and the destination and distance between

a neighbor and the destination. The region with a positive advance for s towards

t in Figure 6.1 is A −M − A′ − A. In the example shown in Figure 6.1, node

a is selected based on Most Forward within Radius (MFR) scheme (maximum

progress) [166], node b is selected based on Nearest with Forward Progress (NFR)

scheme [86], node c is selected based on Most Advance within Radius (MAR)

scheme [54] and node b is again selected based on the Nearest Closer (NC) (nearest

node with positive advance) scheme [163]. NFR and NC schemes are proposed

based on the observation that energy consumption can be reduced by using short

links.

70

CHAPTER 6. SELF-OPTIMIZING NETWORK

Usually, the next hop nodes are chosen among the neighbors with a positive

progress or with a positive advance. The most widely used forwarding strategy is

the greedy scheme proposed in [54]. It selects the neighbor node which minimizes

the Euclidean distance to destination which is equivalent to the MAR scheme

which selects the neighbor node that has the greatest positive advance. Not all

positive progress based schemes guarantee loop-free paths [34]. However selection

based on maximum progress such as MFR or any positive advance, guarantees

loop-free paths.

The direction based criterion select the next-hop node that tries to minimize

the angular separation with respect to the destination. In the example given in

Figure 6.1, node c is selected based on the criterion defined in compass routing

[106], i.e. choose next hop node that has the direction closest to the line between

the sender and the destination. However, this scheme is also not loop-free.

Energy-aware forwarding criterion select the next-hop node for which the total

amount of power consumed for transmission from source to the next-hop node and

from the next-hop node to destination is minimized. NC is such an energy aware

scheme. However, same node might be selected by many routing tasks, which

depletes the energy very fast leading to node failures. In order to maximize the

number of successful routing tasks a power-cost metric considering the remain-

ing battery power information along with the transmission power factor is intro-

duced in [163]. Other criteria such as Maximum Weighted Progress (MWP) [53]

which selects the neighbor with maximum advance per unit transmitted power

and Energy-Advance-Random [31] which considers advance, residual energy and

a random value for selecting the next hop node are considered in the literature.

The greedy forwarding schemes described so far require the locations of 1-

hop neighbors which is usually acquired by a regular exchange of beacon (“hello”)

messages containing own position information [152]. However, in contention-based

or beacon-less routing [64, 81], such beacon exchanges are not required. In such

cases, the forwarding node cannot select the next-hop node explicitly, but the

next-hop node can select itself in a contention with other neighbors. The basic

principle is the same: the source broadcasts the message to its unknown neighbors

and the neighbors located in a forwarding area, an area closer to the destination

and where all nodes can overhear each other (e.g. dotted circle in Figure 6.1),

contend for the message. They set a timer in accordance to their distance to

the destination. So the node closest to the destination (most advance) has the

shortest timeout and it retransmits the packet first. The remaining nodes overhear

71

6.2. GEOGRAPHIC ROUTING PROTOCOL

the re-transmission and cancel the scheduled packet.

6.2.2 FACE routing

FACE routing also referred to as planar graph routing, originally proposed in

1999 under the names “Compass routing II” [106] and “FACE-2” [26], was the

first geometric routing algorithm that guarantees message delivery if applied on

a planar embedding of the communication network. A planar embedding is a

graphical representation in a plane where edges intersect only at their end points.

The edges of a planar graph constitute polygons which partition the plane into

one outer and several inner faces as depicted in Figure 6.2c.

u

v w
(predecessor)(successor)

(current)

(a) Left hand rule

u

v

w

(predecessor)

(successor)

(current)

(b) Right hand rule

F1

F2

F3

F4

s

t

t′

(c) Faces

Figure 6.2: FACE routing rules

The basic idea of planar graph routing is to forward messages along the inte-

riors of a sequence of adjacent faces providing progress towards the destination as

depicted in Figure 6.2c. FACE routing is based on face traversal and face changing

rules [152].

Face traversal of a single face can be done in a localized way by applying the

well-known left or right hand rule used for exploring mazes. The rule sates that,

if the maze is simply connected, by keeping one hand in contact with one wall of

the maze the player is guaranteed not to get lost and will reach a different exit if

there is one; otherwise the player will return to the entrance [152]. Considering the

link order during face traversal, right-hand or left-hand rule is similar to sending

the message from the current node u along the edge uw which is lying next in

clockwise or counterclockwise direction from the previous visited edge vu as shown

in Figure 6.2a and 6.2b respectively. However considering the path taken during

72

CHAPTER 6. SELF-OPTIMIZING NETWORK

face traversal shown in Figure 6.2c, right-hand rule follows the boundary of an

inner face in the counterclockwise direction and an outer face in the clockwise

direction as depicted by the dotted line in the figure.

Face changing rules determine the condition for switching from one face to

the adjacent face. Face changing rule has different variants in literature. In the

Compass Routing II (FACE-1 routing), the rule is stated as follows: During the

face traversal the algorithm finds the exit point where the edge intersects the

line connecting the source and destination and which is closest to the destination

compared to all other intersections encountered. After traversing the whole face,

it goes back to that particular exit point and switches to the next face. Figure 6.3

tv1

v2(q2)

s p1 p2 p3 p4

q1

F1

F2
F3

F4

F5

F6

Figure 6.3: FACE routing illustration

shows an example to illustrate FACE-1 routing protocol. Here a packet is sent

from source s to destination t. The first face for traversing is F1, the face that

contains s and intersects s− t line. On traversing along the boundary of face F1

according to the left hand rule, it finds the intersection points p1, p2 and p3 and

completes the traversal. As p3 is the closest point to t, the packet traverse F1

again to reach the point p3. It is better to consider the shortest among the two

possible paths to reach the closest point. Now the FACE routing is repeated by

considering p3 as the new s. So a face change to F3 occurs, as it is the new face

intersecting s− t (p3− t) line and containing p3. On traversing this face according

to the left hand rule it finds p4 as the closest intersection, switches to face F4 and

reaches the destination node t located in this face.

73

6.2. GEOGRAPHIC ROUTING PROTOCOL

FACE-1 routing terminates on any simple planar graph in O(n) steps, where n

is the number of nodes in the network. To speed up the FACE-1 routing, FACE-2

routing has been proposed. In this algorithm it does not search for the whole face

for the best exit point, but switches the face on encountering the first exit point and

thus avoids traversing huge faces that point away from the destination. Though

this algorithm is practically more efficient than FACE-1 routing, the theoretical

worst case is worse than the FACE-1, i.e. O(n2). In the example given in Figure 6.3

FACE-2 algorithm traverse along the boundary of face F1 according to the left and

finds p1 as the first intersecting point. It changes to face F2 at this first exit point,

as it intersects s− t (p1− t) line and contains p1. On exploring the face F2, it finds

the next new intersecting point p2. It changes back to the face F1, explore F1 and

finds the next new intersecting point p3. It moves to face F3, explores F3 and finds

the next point p4. It advances to face F4 and finally reaches the destination t.

The above face routing protocols are classified as continuative strategies [60],

where they keep the line s − t as a reference for the whole face routing process.

However, in volatile strategies [60] the reference line changes at each node where

the face change occurs. In these FACE routing variants, the line connecting these

nodes and the destination is considered as the new reference. The face traversal

is restarted at these nodes. An example for volatile FACE routing is Other FACE

routing (OFR+) [108], where instead of finding the intersecting point on s− t line

located closest to destination, it finds the node located closest to the destination.

In the example given in Figure 6.3, after a complete exploration of face F1, OFR+

finds the closet node v1. The packet traverse again F1 to reach v1 and the face

routing is restarted at this node. The reference line changes to v1−t. Now the face

routing changes to the next face F4. On traversing F4, it reaches the destination

t. The authors also propose a variant of this rule OFR, where instead of sending

the message to the closest node, it is sent to the closest point on the boundary

of the current face towards destination [107]. In the example given in Figure 6.3,

the closest point on the boundary of face F1 is q1. OFR switches to the face F5

containing q1 and intersecting the q1 − t line. The routing is then restarted. In

F5, the closest point q2 is the node v2. Routing switches to the new face F6 and

finally reaches the destination t.

FACE routing protocols varies according to the face changing rule as explained

above. Face changing rule is also a critical condition which determines whether

the algorithm provide delivery guarantee in arbitrary planar graphs or only in

a certain types of planar graphs. Compass Routing II (FACE-1), FACE-2 and

74

CHAPTER 6. SELF-OPTIMIZING NETWORK

OFR routing provide delivery guarantee on arbitrary planar graphs, whereas the

FACE routing proposed in Greedy Perimeter Scale Routing (GPSR) [100], OFR+,

Greedy Path Vector Face Routing (GPVFR) [117], does not guarantee delivery on

arbitrary planar graphs [60].

The planarity and connectivity of the network graph are very important for

assuring delivery guaranty. Crossing links can cause detours and routing loops as

shown in Figure 6.4a where the intersecting links causes FACE routing failure. A

packet send from s destined to t follows the path s−a− b− c−a− s according to

the left hand rule and reaches back to the node s. To avoid routing loops, FACE

routing remembers the first edge of the current face exploration and when the first

edge is traversed once again, the message gets dropped. Hence the packet gets

dropped in this example. There are also scenarios where there is no path from

t

sa

b

c

(a) Cross links

F1

F2

F3

F4

s

t

(b) Disconnection

Figure 6.4: FACE routing failures

source to destination due to disconnections in the network. Figure 6.4b shows an

example where the destination t is disconnected from the rest of the network. On

planar graphs, the message will reach the face containing the destination node

(face F2 in the example) and traverse the face without detecting another face

providing progress towards the destination node. In such cases on reaching again

the first edge of the face traversal, the message gets dropped.

6.2.2.1 Improved FACE routing

FACE routing can be performed locally like the greedy routing with additional

information such as the first edge traversed on the current face and the position

of the last intersection where a face change occurred. Choosing the appropriate

traversal direction while starting a face traversal is important for efficient oper-

75

6.2. GEOGRAPHIC ROUTING PROTOCOL

ation. However, finding the appropriate direction is impossible just with local

information. In improved FACE routing the number of edges of each face that

must be traversed can be bounded by restricting the search area.

Bounded Face Routing (BFR) [109] is an improved face routing that restricts

the search area of face traversal by a bounding ellipse E. Let the upper-bound

on the Euclidean length cd(p
∗) of a shortest path p∗ from s to t be ĉd. The ellipse

E with foci s and t and the length of the major axis set to ĉd will contain the

shortest path from s to t. As in the FACE-1 routing, BFR begins the exploration

of the face in one of the two possible directions (clockwise or counterclockwise) and

remembers the best exit point p during the traversal. Whenever the packet hits

the ellipse during the face traversal, it turns back and continues its exploration

of the current face in the opposite direction until the ellipse is hit for the second

time. The face traversal is finished when the ellipse is hit for the second time, or

the traversal reaches the starting point without hitting the ellipse as in the normal

FACE routing. After the traversal, the packet is sent to the closest exist point p

found during the traversal as in the FACE routing and the routing switches to the

new face. As the number of times an edge is traversed is bounded by a constant,

and the number of edges in the ellipse is bounded by O(|st|2), the cost of BFR is

bounded by O(ĉd
2).

If the exploration of the current face does not yield a better exit point p, BFR

does not find a route to the destination. This is because the upper-bound on the

length of the best route is unknown. To avoid such situation an Adaptive Face

Routing (AFR) [109] has been proposed, where the estimate c̃d for the unknown

length of the shortest path cd(p
∗) is initialized to twice the Euclidean distance

between s and t, i.e. 2|st| and BFR is executed. If BFR does not succeed, the

estimate for the length of the shortest path is dynamically increased (doubled), i.e.

c̃d = 2c̃d. If s and t are connected, AFR will finally find a path to t. The cost of

AFR is dominated by the routing steps taken in the final ellipse and consequently

it is also O(cd(p
∗)2). In the same way how AFR improves FACE Routing, Other

Adaptive FACE Routing (OAFR) improving OFR has also been proposed [107].

6.2.3 Void handling

Greedy routing algorithm if successfully delivers a packet, the routing paths they

used has a weight that is comparable to the weight of the shortest possible path.

In greedy routing variants, even if forwarding ends up at a node which is the best

76

CHAPTER 6. SELF-OPTIMIZING NETWORK

compared to its neighbor nodes, further forwarding from these nodes might be

impossible according to the forwarding metric, even though a path from source

to destination exists. This is depicted in Figure 6.5 where none of the neighbors

s t

a

b c

d

Figure 6.5: A communication void where greedy routing fails

of the sender s can be selected as the next-hop node according to the positive

advance-based (progress-based) forwarding metrics described in Section 6.2.1, but

there exists topologically valid paths from s to t, e.g. s − a − b − c − d − t.

This is commonly referred to as communication void or local minimum [34]. The

simple greedy routing drops the packet in such situations and the delivery fails.

To solve this problem, an alternate mode is needed for the greedy routing which

is commonly called as void handling or recovery mechanism [34].

A simple recovery strategy would be to allow the packet to travel in the back-

ward direction for one hop from the void node and then forward it again excluding

the previously visited void node. For example in Figure 6.5, the source s sends

the packet back to a and on excluding the previously visited node s, it finds the

path a − b − c − d − t to the destination t. This scheme is proposed in the Ge-

ographical Distance Routing (GEDIR) [162] algorithm and it is loop-free. There

are also strategies proposed to improve the delivery rate of greedy routing such as

selecting a suitable neighbor out of the 2-hop neighborhood and forwarding the

packet to the direct neighbor which is connected to the selected node [162]. In the

above example, b is the two hop neighbor selected for the source s and a will be

the direct neighbor considered. However, such simple approaches cannot always

overcome void nodes. We need void handling solutions which provide guaranteed

message delivery.

77

6.2. GEOGRAPHIC ROUTING PROTOCOL

6.2.3.1 FACE routing-based void handling

FACE routing when applied on a planar embedding of the communication network,

guarantees message delivery. However, planarization process typically removes

edges and often results in paths longer than the shortest path between source and

destination. Using a combination of FACE routing and greedy routing is mutually

beneficial for them. The most prominent combination is using FACE routing as

void handling solution when the greedy routing fails at communication voids. It is

the only known localized single path approach to recover from such greedy routing

failures [60].

us

t

u′

Figure 6.6: Greedy-FACE-Greedy routing

FACE routing may return to greedy routing when the current node’s or its

neighbors’ distance to the destination node is smaller than the distance between

the node which initiated planar graph routing and the destination node. This

results in a Greedy-FACE-Greedy (GFG) routing path. In example shown in

Figure 6.6, for a source s and destination t a packet is routed in the greedy mode

from s till node u where it encounters the communication void and then switches

to the FACE routing mode. The packet is forwarded till u′ which is closer to t

than u and hence the routing switches back to greedy mode from u′. The solid

line indicates the greedy routing path and dotted line indicated the FACE routing

path.

In the greedy and FACE routing combination, when the face routing variant

AFR is combined with greedy routing we get GAFR [107]. However, the asymp-

totic optimality of AFR is lost in this combination. To solve this problem, the

authors propose OAFR or the variant OAFR∗, which when combined with greedy

78

CHAPTER 6. SELF-OPTIMIZING NETWORK

(a) Hexagonal grid based
overlay graph

(b) Square grid based overlay
graph

Figure 6.7: Overlay graphs

routing gives GOAFR or GOAFR∗ [107] which are both average-case efficient and

asymptotically optimal. We have seen in Section 6.2.2 that Compass Routing

II (FACE-1), FACE-2 and OFR∗ provide delivery guarantee on arbitrary planar

graphs. Their combination with greedy routing also provides this delivery guar-

antee [60]. Most of the greedy and FACE routing combinations return to greedy

routing as soon as possible, but considering other rules before switching to greedy

routing shows better performance [108].

So far we have seen FACE routing applied directly at the planar network

graphs for recovering from greedy routing failures. There are other approaches

where FACE routing is applied at virtual overlay-based planar graphs [57,58,123,

146, 169]. In these approaches, a proactive construction of planar overlay graphs

is carried out. The overlay graphs are created as follows: The plane is partitioned

into an infinite mesh of regular polygons such as square or hexagonal grids called

geographic clusters, with the grid diameter set to the transmission range of the

nodes as shown in Figure 6.7a and Figure 6.7b. Nodes are aggregated to such

clusters based on their current location. Virtual nodes are created at the center of

the clusters containing at least one network node. These virtual nodes constitute

the overlay graph vertices. Two clusters are considered as adjacent, if there exists

at least one edge in the original network graph, with the end nodes located in

those clusters. Virtual edges connecting virtual nodes are drawn between such

adjacent clusters [58, 146].

Creating an overlay graph first and removing intersecting links in the overlay

graph to make it planar may cause disconnections and cannot guarantee message

delivery [58,146]. An alternate idea is to prevent intersecting links in the original

79

6.2. GEOGRAPHIC ROUTING PROTOCOL

network graph by planarizing it first, create an overlay graph from this planarized

subgraph. However, such overlay graphs are not planar and to planarize these

graphs, intersecting links are removed locally. To preserve connectivity during

such link removals virtual edges are added. This approach guarantees planarity

and connectivity of overlay graphs [57].

6.2.3.2 Other void handling mechanisms

There are several other void handling mechanisms that do not use FACE routing

variants for recovery. A comprehensive overview is provided in [32,34]. We provide

here a brief overview of some of the prominent approaches.

One approach that exploits the geometric properties of voids is presented in

[50]. Each node exploits the geometric properties of neighbors to locally detect

the possibility of being a void node. It then initiates the BoundHole algorithm

that uses greedy sweeping to set up a path around the void regions such that when

a packet in greedy mode arrives at the void node, it could use this precomputed

path. BoundHole algorithm does not guarantee packet delivery [34].

Another approach is link-reversal-based void handling [34]. In the presence

of communication voids, the network graph becomes a destination-disoriented

DAG as the void nodes have no outgoing links. Link-reversal-based approaches

try to transform a destination-disoriented Directed Acyclic Graph (DAG) into a

destination-oriented DAG by reversing the directions of the links. When the void

node reverses the directions of all incoming links it is a full reversal method, oth-

erwise it is a partial reversal method. Cost-based forwarding in Partial-partition

Avoiding Geographic Routing-Mobile (PAGER-M) [186] is an example for full re-

versal algorithm and Distance Upgrading Algorithm (DUA) [36] is an example for

partial reversal algorithm. This is a localized void handling solution with guaran-

teed delivery. However, it is meant for networks with nodes delivering their data

packets to a fixed destination (base station).

A proactive construction that creates hull trees for void handling is presented in

[116]. The associated routing protocol Greedy Distributed Spanning Tree Routing

(GDSTR), switches to routing on a spanning tree instead of routing on planar

faces. Each node stores the convex hull of all node locations in the subtree and

also the convex hull information of its descendants. When greedy routing fails

the algorithm searches the descendants of the stuck node and if unsuccessful it

passes the packet to the parent towards the root. The packet is routed upwards

in the tree until a node is found, whose convex hull contains the destination and

80

CHAPTER 6. SELF-OPTIMIZING NETWORK

then routed downwards in the tree until the destination is reached. However, this

approach is not localized.

There are also topology-based void handling solutions which rely on topological

connectivity information to overcome voids. Protocols using topology-based void

handling solutions are hybrid routing protocols in a strict sense instead of pure

geographic routing protocols. It uses partial flooding [33] or depth-first search

[164] techniques to discover a path to another node where greedy forwarding can

be reactivated. Cartesian Routing [54], one-hop flooding [162], Partial Source

Routing (PSR) in On-demand Geographic Forwarding (OGF) [33] and Partial

Hop-by-hop Routing (PHR) in Geographic Routing Algorithm (GRA) [164] are

some of the prominent topology-based void handling solutions.

There are many heuristic void handling solutions such as passive participa-

tion [185], active exploration [30, 53] and also hybrid solutions that combine two

different void handling solutions such as BoundHole plus restricted flooding [51]

and active exploration plus passive participation [30].

6.3 Hybrid routing

Hybrid Routing combines topological and geographic routing. Algorithms such as

LAR [104] makes use of location information for improving topology based routing.

LAR designates two geographical regions, an ExpectedZone in which destination

node is expected to be present and RequestZone where the path-finding control

packets are propagated, for selective forwarding of control packets. The flooding

in LAR is restricted to small geographical region.

Topology-based routing that uses location information for creating grids and

routing on the overlay grids has been reported in [96, 121]. In the Zone-based

Hierarchical Link State Routing Protocol (ZHLS) [96], physical area is partitioned

into a number of squares grids called zones and nodes are associated to their

respective zones based on their geographic location. Routing is then performed

in a two-level manner, i.e. an intra-zone routing and an inter-zone routing. Each

node in a zone is aware of other nodes in the zone and the neighboring zones using

links state packet exchange (a proactive protocol). Using zone link state packet,

links changes between zones are updated. Thus, any intra-zone link state change

will be propagated to all other nodes in the zone, and any inter-zone link state

change to the whole network. In the GRID protocol [121], one mobile host (if any)

will be elected as the leader of the grid and routing is performed in a grid-by-grid

81

6.4. SUMMARY

manner through grid leaders. As long as there exists a leader in each grid that

constitutes the route, the route is considered alive. If a leader leaves its original

grid, a “handoff” procedure occurs and the leader will pass the routing table to

the next leader. Only grid leaders are responsible for route searching and avoids

broadcast storm problem.

Segment-by-Segment Routing [29] is also a similar approach considering the

grid formation. The cluster heads maintains a k-hop vicinity routing table in

the overlay graph for remote routing and an inter cluster routing table for local

routing. The k-hop information is used in the greedy forwarding to select the

most progress node and at voids the right hand rule is used to circumvent holes

boundary.

Landmark-based or anchor based geographic routing is presented in [24, 52]

where a global map of the anchors are discovered and maintained by the source or

obtained from the global information such as maps for greedy-packet-forwarding

along anchored paths. In Terminodes [24], packets are routed according to Ter-

minode Local Routing, a proactive distance vector scheme, if the destination is

close to the sending node. For long distance routing, it uses Terminode Remote

Routing, a greedy-packet-forwarding approach along an anchored path. The set

of anchors form a route vector for greedy forwarding without falling into voids.

The anchored paths need to be discovered and maintained by the source, as in

FADP protocol or obtained from the global information such as maps, as in GMPD

protocol [24].

In GLIDER [52], a set of landmarks is selected. For each landmark, a tile is

created which is a set of points that are closer to this landmark than to any other

landmark. An overlay graph with tiles as graph nodes and tile adjacency as graph

edges is created. Routing consists of two steps: 1) at each hop the overlay graph

is consulted to determine the next tile and 2) the neighbor that is closest to the

landmark of the next tile is chosen as next hop. On encountering void nodes, the

intra tile routing switches to tile flooding.

6.4 Summary

We have seen some of the most prominent routing protocols proposed for ad hoc

networks. Among these protocols, considering the distributed, low overhead and

self-configuring routing aspects, geographic routing is an interesting solution. The

localized and stateless nature of the protocol makes it highly scalable and useful for

82

CHAPTER 6. SELF-OPTIMIZING NETWORK

large scale wireless ad hoc networks such as AMRoNets. The main requirement for

geographic routing is a positioning system which is readily available in AMRoNet

nodes as they are mobile robots. The basic geographic routing has a greedy routing

mode which forward messages according to locally optimal forwarding rules, but

packets might get stuck at void regions. Using planar graph-based routing (also

known as FACE routing) as a void handling solution keeps the stateless property

of greedy routing and helps in overcoming void regions.

Greedy forwarding if successfully delivers a packet finds routing paths compa-

rable to the shortest possible path, but it alone does not guarantee the delivery of

packets because of void regions. FACE routing on a plane graph does guarantee

the delivery of packets but often has paths longer than the shortest path. For

improved performance, FACE routing is often combined with greedy forwarding

and is used as the void handling solution to overcome dead-ends when greedy for-

warding fails. It is the only known localized single path approach to recover from

such greedy routing failures. Hence it is the ideal combination for a stateless and

localized geographic routing.

83

84

CHAPTER7
Graph Planarization

In Chapter 6 we have seen that geographic routing is a highly scalable and an

attractive solution for AMRoNets. The basic geographic routing has a greedy

routing mode which forward messages according to locally optimal forwarding

rules, but packets might get stuck at void regions. Using planar graph-based rout-

ing (also known as FACE routing) as a void handling solution keeps the stateless

property of greedy routing and helps in overcoming void regions.

In general, a wireless network topology is not a planar embedding. Hence, a

planarization process is often required which typically removes a set of links and

makes the graph planar. In large scale wireless networks, distributed planariza-

tion algorithms are indispensable and essential. Algorithms with low overhead

in terms of additional computing or message exchange are highly desirable. Lo-

calized planarization algorithms where each node requires to know only its one

hop neighbors or at least neighbors up to a limited number of hops, and where

messages propagated for planarization are limited to the single hop or limited hop

neighbors, are good choices for algorithms with low overheads.

7.1 Network Model

We model the wireless network as a graph G = (V,E) embedded in two dimen-

sional Euclidean space R2. The graph has a finite set of vertices V that corresponds

to the nodes in the network. Each node knows its 2D position. The set of edges

E corresponds to the wireless links between the nodes. An edge e ∈ E consisting

of vertices u and v, is denoted by e = uv, where u and v are the endpoints of

the edge and are neighbors in the network. A path P = v1v2 . . . vk is a non-null

85

7.1. NETWORK MODEL

sequence of vertices with ∀i ∈ 1 . . . k − 1 : vivi+1 ∈ E. A path with no repeated

vertices is called a simple path. In our work path always refers to simple path.

The planar graph Gp = (V,E ′) of a graph G = (V,E) has the same vertex set

V , but the edge set E ′ ⊆ E due to the removal of some of the edges, during the

planarization process. There are a few metrics to judge the quality of planarization

algorithms.

• Connectivity: The edge removal during planarization should not cause

network partitions, i.e. if there is a (multi-hop) path between any two nodes

u and v in G, then there should also be some path between these nodes in

Gp. Thus, connectivity is a mandatory property of the planarization process.

• Planarity: The objective of the planarization algorithm is to create a planar

graph Gp from a given graph G. Most of the planarization algorithms work

only if the input graph G obeys certain structural properties. Hence if we

apply those algorithms in graphs which do not obey these properties, Gp

may still contains intersecting links. Algorithms which have less restriction

on the structural properties are highly desirable.

• Spanning ratio: Another metric to determine the quality of the planariza-

tion process is the spanning ratio, which is defined as,

S = max
u,v∈V

PLGp(u, v)

d(u, v)
,

where PLGp(u, v) is the length of the shortest path between u and v in the

planarized graph Gp and d(u, v) is the Euclidean distance between u and v.

A graph is a c-spanner, if for all u, v ∈ V there exists a path from u to v

with |p(u, v)| ≤ c · d(u, v) and it is a weak c-spanner, if this path is covered

by a disk of radius c · d(u, v) centered at the midpoint of u and v [153].

The edge removal during planarization process may increase the path length

between two nodes in planarized graph. Showing a spanner graph which

is still spanner after the planarization process reflects the quality of the

planarization process.

The most commonly used network model to model the topology of ad-hoc

wireless networks is Disk Graph Model [98]. In this model an edge between two

nodes u and v exists, iff the d(u, v) ≤ R, where R is the radius of the disk.

The special case where R = 1 is called the Unit Disk Graph (UDG) [40]. Here we

86

CHAPTER 7. GRAPH PLANARIZATION

u v
w

R

Figure 7.1: Unit Disk Graph

assume that transmission range of all nodes is set to a precise radius R and beyond

this range communication is impossible. Figure 7.1 shows an example with three

nodes u v and w with radius R. The edges uv, vw exists as d(u, v) and d(v, w)

are less than or equal to R.

7.2 Graph planarization algorithms

In computational geometry, to create planar graphs for a given set of points

P in R2, graph algorithms such as Relative Neighborhood Graph (RNG) [173],

Gabriel Graph (GG) [65], and Delaunay Triangulation (DT) [44] are commonly

used. Though there are many efficient and fast ways to find such graphs, most

of them usually uses centralized approaches. In wireless networks, the focus is

on distributed localized planarization techniques as they have less overhead in

maintaining the planar topology, especially when the topology changes frequently.

The Relative Neighborhood Graph of a set of points P , RNG(P), contains all

edges uv, ∀u, v ∈ P , such that the intersection of the two circles with centers u

and v, and radii |uv| contains no other node as depicted in Figure 7.2. Formally,

∀u, v ∈ V : uv exists, iff @w ∈ V : max{d(u,w), d(v, w)} < d(u, v).

u v

w

u v

w

Figure 7.2: Relative Neighborhood Graph

RNG is not a c-spanner. The worst-case spanning ratio is Ω(|V |) [26]. Hence,

nodes that are only a few hops apart in the original graph may become very distant

in the RNG planarized graph. RNG(G) of a graph G can be easily constructed

with local algorithms. Each node u keeps only those outgoing edges uv which

satisfy the RNG condition. For input graphs which obey UDG property, RNG

87

7.2. GRAPH PLANARIZATION ALGORITHMS

planarized graph, RNG(G), is always connected if the original graph G is also

connected.

The Gabriel Graph of a set of points P , GG(P) contains all edges uv, if the

circle with diameter |uv| and nodes u and v on its circumference contains no

other node as depicted in Figure 7.3. Formally, ∀u, v ∈ P : uv exists, iff @w ∈
V : d2(u,w) + d2(v, w) < d2(u, v). GG can also be easily constructed with local

u v

w

u v

w

Figure 7.3: Gabriel Graph

algorithms where each node u keeps only those outgoing edges uv which satisfy the

GG condition. It also guarantees connectivity if the original UDG G is connected.

The worst-case spanning ratio of GG is Ω(|
√
V |) [26].

The Delaunay Triangulation (DT) is the dual of the Voronoi diagram, and is

widely used in various application areas. The main advantage of DT is that it is

a spanner. The DT for a set of points P , DT(P), contains all triangles (u, v, w),

∀u, v, w ∈ P , such that the circumcircle of u, v, and w contains no other node. This

is called the empty circle rule [44]. Constructing DT via empty circle rule requires

global knowledge and localized construction is not possible. However, it is possible

to locally construct Delaunay Triangulation-like topologies which are constant

unit disk graph spanners, e.g. Restricted Delaunay Triangulation (RDT) [69] and

Localized Delaunay triangulation (LDEL) [120]. LDEL is a spanner with factor

2.5. The basic approach used in these Localized Delaunay triangulation (LDT) is

that each node computes the Delaunay triangulation of its 1-hop neighbors using

the empty circle rule. From the subset of outgoing Delaunay edges, each node

preserves all outgoing edges which are preserved by the node on the other edge

end point as well.

There also other localized planarization approaches in the literature. A local-

ized construction based on spanning trees called Local Minimum Spanning Tree

(LMST) is given in [119]. MST ⊆ RNG ⊆ GG ⊆ DT [119]. They are also not

spanners. A reactive planar spanner construction using angle-based and Delaunay-

based Direct Planarization (DP) techniques is presented in [59].

88

CHAPTER 7. GRAPH PLANARIZATION

7.3 Problems of implicit planarization

All existing localized planarization techniques [26,59,69,100,119] are implicit pla-

narization, which means that links are removed irrespective of the fact whether

an intersection exists or not. Figure 7.4b shows an example where the Local-

ized DT-based algorithm (LDT) removes a link due to implicit planarization.

These implicit planarization techniques provably produce planar graphs in re-

u v

x

w

(a) A UDG modeled network

u v

x

w

(b) LDT planarized graph removes a
non-intersecting link

(c) A non-UDG modeled network (d) LDT planarized graph causes disconnection

Figure 7.4: Implicit planarization algorithm

stricted wireless models such as UDG [40]. However in graphs that are not UDG,

these approaches do not work, as depicted in the Figure 7.4d where LDT causes

disconnection.

7.4 A new explicit planarization

We solve the non-intersecting link removal and network disconnection problem

of implicit planarization by presenting an explicit planarization algorithm called

Localized Link Removal and Addition based Planarization Algorithm (LLRAP),

which removes links only when it detects an intersection in its local neighborhood.

The localized link removal and addition based planarization (LLRAP) algo-

rithm has two phases: 1) Local cross link detection and removal, which detects

intersecting links locally and removes links to make the network planar. 2) Local

89

7.4. A NEW EXPLICIT PLANARIZATION

link addition, which adds links to ensure the connectivity of the network. Algo-

rithm 7.1 summarizes the two phases.

7.4.1 Local cross link detection and removal

The local cross link detection phase detects all intersections in the local neighbor-

hood. An intersection is detected, if any outgoing edge of a node intersects with

the outgoing edges of its one hop neighbors. If such an intersection is found, one

of the intersecting links is removed.

u v

w

x

A simple intersection

Figure 7.5: A simple intersection

A node u executing LocalCrossLinkDetectionAndRemoval function of the al-

gorithm 7.1, first makes a copy of the neighbors and then picks a neighbor v that

has not been removed. It checks if the edge towards v, uv, intersects an edge

wx (line 6), where w is another 1-hop neighbor of u and x is any 1-hop neighbor

of w, as shown in Figure 7.5. If an intersection is detected, u then checks if the

edge wv is present in the network. If wv is present, an alternate path from u to

v, i.e. uwv, exists in the network. Hence, the edge uv is removed from the copy

of neighbors. When all nodes perform this localized link removal operation, the

resulting network becomes planar.

7.4.2 Local link addition

The second phase of the planarization algorithm is the local link addition phase.

After the local cross link detection and removal phase, the network may get par-

titioned due to the localized removal process. Hence each node checks locally, if it

could add any of the removed neighbors without causing any local intersections.

For this, the node uses the original neighbor list and checks if a new link towards

the removed neighbors causes any intersection in its current local neighborhood.

This check is done from both end nodes of the new link and if no intersection is

found the link is added.

90

CHAPTER 7. GRAPH PLANARIZATION

Algorithm 7.1 LLRAP planarization algorithm

1: function LocalCrossLinkDetectionAndRemoval(Node u)
2: N(u) := origN(u)
3: for all v ∈ N(u) do
4: for all w ∈ origN(u)\{v} do
5: for all x ∈ origN(w)\{u, v} do
6: if uv intersects wx then
7: if v ∈ origN(w) then
8: N(u) := N(u)\{v}
9: end if

10: end if
11: end for
12: end for
13: end for
14: end function

15: function LocalLinkAddition(Node u)
16: for all v ∈ origN(u)\N(u) do
17: uv.markAddition = true
18: for all w ∈ origN(u)\{v} do
19: for all x ∈ N(w)\{u, v} do
20: if uv intersects wx then
21: uv.markAddition = false
22: end if
23: end for
24: end for
25: if uv.markAddition = true then
26: if receive enableMsg from v then
27: N(u) := N(u) ∪ {v}
28: Instruct v to perform N(v) := N(v) ∪ {u}
29: else
30: send enableMsg to v
31: end if
32: end if
33: end for
34: end function

91

7.5. THEORETICAL ANALYSIS

A node u executing LocalLinkAddition function of the LLRAP algorithm 7.1,

checks if an edge uv towards its removed neighbor v intersects the edge wx, where

w is any original 1-hop neighbor of u and x is any current 1-hop neighbor of w. If

an intersection is found, it sets the marking of the edge uv for addition to be false.

After checking all 1-hop neighbors of u and still the marking for addition remains

true, u now checks if it has already received enableMsg from v. The enableMsg is

a message which indicates that the sender node has finished the intersection check

and wishes to add the new link. If u has not yet received this message from v, it

sends the enableMsg to v. On the other hand, if it has received this message, it

adds v to its current neighbor list and instructs v, to add u to v’s current neighbor

list.

7.5 Theoretical Analysis

7.5.1 Graph properties

Our algorithm assumes one key property called redundancy property [146] for the

input graphs to planarize them correctly.

Definition 1. A graph satisfying redundancy property has: for any two intersect-

ing edges, at least one node of the intersecting edges is directly connected to the

remaining three nodes of the intersecting edges.

When they satisfy the redundancy property, we claim that the local cross link

detection detects intersections locally and the link removal process removes one

of the intersecting edges and makes the network planar. We prove these claims in

Section 7.5.2. However, the redundancy property alone is not sufficient to prove

that our algorithm creates a connected planar graph for a connected input graph

with redundancy property. This is illustrated in Figure 7.6, where the input graph

which has redundancy property gets disconnected after LLRAP algorithm.

(a) Original graph with
redundancy property

(b) After local cross link
detection and removal

(c) After some steps of local
link addition

Figure 7.6: Counter example

92

CHAPTER 7. GRAPH PLANARIZATION

Hence, we introduce a new property called coexistence property.

Definition 2. In a graph satisfying coexistence property, for any three existing

edges uv, vw and wu in the graph, if there exists a node x lying inside the triangle

4uvw, then the edges ux, vx and wx also exist in the graph.

We make a stronger assumption that our input graph satisfies coexistence

property.

UDG is a subclass of graphs obeying these two properties. The redundancy

property of UDG modeled networks is proved in [146]. We now show that UDG

has coexistence property.

Lemma 1. UDG modeled networks have coexistence property.

Proof. A circle drawn with its center at one of the nodes of an existing triangle in

the network and its radius as the maximum transmission radius of UDG, covers

the entire area of the triangle. Hence any point inside the triangle is connected to

the vertices of the triangle.

7.5.2 Planarity

Lemma 2. The local cross link detection and removal phase of LLRAP algorithm

detects all intersecting edges with local 2-hop information and creates a planar

network in graphs with redundancy property.

Proof. Every intersecting edges has at least one redundant node joining the other

three nodes of the intersecting edges due to the redundancy property. Let the

intersecting edges be uv and wx as shown in figure 7.7 and the redundant node

be w. When the LocalCrossLinkDetectionAndRemoval function is performed at

the nodes u (or v), the intersection is locally detected with its 2-hop neighbor

information and the node v (or u) is removed from its neighbor list’s copy. Re-

moving nodes from the copy of the neighbor list ensures that the node could still

use all existing edges to detect and remove other intersections in its 2-hop neigh-

borhood. Since all intersections are detected locally and one of the intersecting

links is always removed, the network is planar after the local cross link detection

and removal phase.

Lemma 3. The planar network graph remains planar after the local link addition

phase of LLRAP algorithm in graphs with redundancy property.

93

7.5. THEORETICAL ANALYSIS

Proof. The local link addition phase adds a link that was in the original network

graph but removed during the local cross link detection and removal phase, only

if this link does not intersect any of the outgoing links from the one hop neighbors

of both end nodes of the link which is to be added. Since all intersections are

locally detectable with the 2-hop information according to lemma 2, the new

probable intersection due to a link addition, is also locally detectable from one of

the end nodes. Hence when a link is added without causing any local intersection

detectable from both end nodes, this link does not cause nonplanarity and the

planar network graph remains planar after the local link addition phase.

7.5.3 Connectivity

Lemma 4. The initially connected network remains connected after the local link

addition phase of LLRAP algorithm in graphs with redundancy and coexistence

properties.

Proof. Consider a link uv, which was removed during LocalCrossLinkDetectio-

nAndRemoval and which cannot be added during LocalLinkAddition from u, that

causes network partition as depicted in Figure 7.7. The edge uv cannot be added

during LocalLinkAddition only if this edge intersects another existing edge. Let

wx be the existing edge that intersects uv and was kept during LocalCrossLinkDe-

tectionAndRemoval at u which hinders uv addition. If wx is kept during Local-

CrossLinkDetectionAndRemoval at u, from algorithm 7.1 line 7, it is evident that

the edges wv and uw exist at that point of time.

Our assumption that the network is disconnected becomes true occurs only

when no alternate path connecting u and v exists in the network. Let us consider

all nodes lying inside the triangle 4uwv and the corresponding alternate paths

connecting u and v. Let uw′v be the shortest path among them. If there is no

such node in the uwv, then w′ = w. The links uw′ and w′v exist according to the

coexistence property.

However, if uw′, w′v or both uw′ and w′v are removed later during other

LocalCrossLinkDetectionAndRemoval operations the path uw′v does not exist in

the network. In these cases if uw′ or w′v has been removed, it would be for the

same reason uv was removed for: i.e. due to any link w′′x′′ intersecting with uw′

or w′v, respectively.

Let u0 = u, v0 = v, w0 = w, w′0 = w′ and x0 = x as shown in Figure 7.7. If uw′

was removed, we set u1 = u and v1 = w′, else if w′v was removed, we set u1 = w′

94

CHAPTER 7. GRAPH PLANARIZATION

u
(u0)

v
(v0)

w′
(w′0)

w
(w0)

x
(x0)

w′′
(w1 = w′1)

x′′
(x1)

Figure 7.7: Intersecting links and alternate paths in networks with redundancy and
coexistence properties

and v1 = v. We also set w1 = w′′ and w′1 to the node that connects u1 and v1 that

has the shortest alternate path and lying inside the triangle u1w1v1. In the same

way we find the vertices u1, v1, w1 and w′1 from u0, v0, w0 and w′0, we recursively

find the vertices ui, vi, wi and w′i from ui−1, vi−1, wi−1 and w′i−1.

To prove connectivity, it is sufficient to show that no cycle occurs in this recur-

sion, i.e. uiw
′
i, w

′
ivi 6∈ {ujvj : j < i}. In words, the two links needed to connect the

end points of a removed link should not be the links removed before. As uiw
′
ivi is

the shortest alternating path connecting uivi inside the triangle 4uiwivi, ∀i > j

w′i lie outside the triangle ujw
′
jvj. This means that in each step of the recursion

w′i moves to a new distinct location that lies outside the region A formed by the

union of previous triangles, i.e. 4ujwjvj, ∀j < i. Moreover, the locus of w′i always

lies on one side of a line passing through uv and limited to the region where it does

not intersect any wjxj∀j < i, as the network considered during the link addition

phase is planar.

As w′i which becomes ui+1 or vi+1 in the next recursion step is never the same

uj or vj, for all j < i, no cycle occurs in this recursion. Therefore, the network is

connected after this phase.

Theorem 1. The LLRAP algorithm produces a connected planar graph in a con-

nected graph with redundancy and coexistence properties.

Proof. Lemma 2 and Lemma 3 prove that the network is planar when LLRAP

algorithm is applied in graphs with redundancy property. In Lemma 4, we prove

that the local link addition phase of LLRAP algorithm ensures the connectivity of

planar graph created by the local cross link detection and removal phase in con-

nected graphs with redundancy and coexistence properties. Hence the LLRAP

95

7.5. THEORETICAL ANALYSIS

u
(u0)

v
(v0)

w
(w0 = w′0)

x

w1

x1

A BO

C

D

Figure 7.8: Illustration of weak spanner property

algorithm produces connected planar graphs for connected graphs with redun-

dancy and coexistence properties.

7.5.4 Weak spanner

Theorem 2. The planar graph created by the LLRAP algorithm is a weak spanner

in UDG modeled networks.

Proof. For proving the weak spanner property, we follow the same arguments

used to prove Lemma 4. We consider an edge uv, which was removed during

LocalCrossLinkDetectionAndRemoval and cannot be added due to an existing link

wx. If the links uw or wv is removed afterwards, an alternate path connecting the

end nodes of the removed links exists in the network as the network is connected

according to Lemma 4. This path lies inside the triangle 4uwv (including the

border path uwv) due to the coexistence property, unless there is another w1x1

with w1 located on one side of a line passing through through u and v and outside

the triangle 4uwv, and x1 on the opposite side of the line, as shown in Figure 7.8.

The link wixi cannot intersect any wjxj for all j < i, as the network considered

during the link addition phase is planar and it has to intersect the edge uivi. ∀j < i,

wi lie outside the triangle ujwjvj. Hence all wixi intersect the uv line. Since ∀i,
|wixi| ≤ R in a UDG modeled network, if we consider a circle whose center is at

the middle of the line segment joining u and v and with radius 1.5R, all ui, vj,

wi, and xi lie inside this circle. This proves that the planar graph created by the

2-hop planarization algorithm is a weak spanner with c = 1.5.

96

CHAPTER 7. GRAPH PLANARIZATION

7.6 Empirical Analysis

Theoretical analysis shows that planar graphs created by LLRAP algorithm are

weak c-spanners at least in UDG modeled networks. We now perform an empirical

analysis on the spanning ratio of the planar graphs created by LLRAP algorithm

and localized RNG, GG, and DT algorithms in UDG modeled networks.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 2.5 3 3.5 4 4.5 5

N
o
n
 p

la
n
a
r

g
ra

p
h
s
 (

%
)

Average node degree parameter (ρ)

UDG
RNG

GG
LDT

LLRAP

Figure 7.9: Spanning ratio of planarization algorithms

We create different networks in Shox network simulator by varying the average

node degree, D, defined as:

D =
πr2

A
∗N , (7.1)

where r is the transmission radius, A is the area of the field, and N is the total

number of nodes in the network, keeping the area constant. Nodes are distributed

randomly with a uniform distribution in this area. For each specific node degree

parameter ρ = D
π

, 100 connected networks are created. We set the UDG radius to

50 units.

Figure 7.9 shows the average spanning ratio of 100 networks at a confidence

level of 95%, created in a field of size 500× 500, when ρ is varied from 2 to 5. It

shows that the spanning ratio of the planarized networks using Localized Delaunay

Triangulation (LDT) and LLRAP algorithms are really close to the spanning ratio

of the original UDG modeled networks. RNG and GG planarized networks have

97

7.7. SUMMARY

the largest and second largest deviations respectively from the original values.

7.7 Summary

In this chapter, we proposed a new explicit localized graph planarization algorithm

LLRAP that detects intersections locally and planarizes networks by removing

them. Each node collects 2-hop neighbor information to detect local intersections

and removes an edge that causes intersection, if it has a redundant path to the

other node of the edge. A link addition phase ensures that the network remains

connected after the planarization phase. LLRAP provably planarizes graphs with-

out causing disconnection if the graph satisfies redundancy property and a new

property introduced by us called coexistence property. Graphs satisfying these

two properties are more generic than UDG. Theoretical analysis shows that pla-

nar graphs created by our algorithm are at least weak spanners in UDG modeled

networks. Empirical analysis shows that LLRAP algorithm is as good as the best

state of the art localized planarization algorithm, LDT.

98

CHAPTER8
Geographic Routing in Real

Wireless Networks

You can avoid reality, but you cannot avoid the consequences of avoid-

ing reality.

Ayn Rand (1905-1982)

We have seen in Chapter 6 that among the various routing protocols for ad-

hoc networks geographic routing is an attractive solution that could support self-

optimized routing features. Geographic routing protocol consists of three main

components [155]: (a) Greedy routing, (b) Planarization, and (c) FACE routing.

Greedy routing if successfully delivers a packet finds routing paths comparable

to the shortest possible path, but it alone does not guarantee the delivery of

packets because of void regions. FACE routing on a plane graph does guarantee

the delivery of packets, but often has paths longer than the shortest path. For

improved performance, FACE routing is combined with greedy routing and is used

as a void handling solution to overcome dead-ends when greedy routing fails. To

make the network graph planar, localized planarization algorithms are used.

Existing geographic routing protocols discussed in Chapter 6 are not directly

applicable for AMRoNets because they often make too idealistic assumptions on

network graph properties or node location accuracy which do not hold in reality.

For practical wireless network protocol designs, the performance of the protocols

in wireless networks with

• Irregular radio range and

99

8.1. REAL WIRELESS NETWORKS

• Imprecise node location information

are very important to ensure successful operation in real AMRoNet routing sce-

narios. In this chapter we look at how these two factors adversely affect the

performance of the existing geographic routing protocols discussed in Section 6.2

and the various solutions proposed to overcome them.

8.1 Real wireless networks

The main assumptions commonly used in the geographic routing are: (a) nodes

detect their accurate locations and announce them (except in beacon-less routing),

(b) changes in the topology are slow compared to the announcements and all

nodes have a consistent view of the network, (c) radiation patterns of all nodes

are exact and symmetric, and (d) there are no obstacles and hence nodes within

the radio range can always communicate. However, in reality obstacles do exist,

radiation patterns have irregular shapes, location measurements are often noisy

and erroneous and nodes do not have a consistent view of the network. Violation

of the first two factors leads to location inaccuracies and the last two to radio

range irregularities.

8.1.1 Irregular radio range

Radiated pattern of nodes are often assumed to be perfect circles. Even for omni-

directional antennas, this assumption does not hold [183]. Wireless channel char-

acteristics (fading) and obstacles’ presence make it highly irregular.

In literature, the evaluations of geographic routing protocols are often carried

on an ideal network connectivity graph based on the Unit Disk Graph (UDG)

model described in Section 7.1. UDGs are simple enough to derive strong theo-

retical results on cost and guarantee of routing protocols [110]. However, it is far

from reality due to radio range irregularity.

A more general model considered in the literature is the Quasi (Unit) Disk

Graph [110]. In a Quasi Disk Graph, two nodes are connected by an edge if their

distance is less than or equal to a shorter radio range r and no edge exists between

the nodes if it is greater than a longer range R as depicted in Figure 8.1. In the

range between r and R the existence of an edge is not specified. The special case

where R = 1 is called the Quasi Unit Disk Graph (QUDG or d-QUDG), where

d = r
R

and has a value between 0 and 1.

100

CHAPTER 8. GEOGRAPHIC ROUTING IN REAL WIRELESS NETWORKS

r

R

Figure 8.1: Quasi (Unit) Disk Graph

A more realistic model is the Log Normal Shadowing (LNS) [149]. It takes

the presence of obstacles into account in the model. The path loss, the ratio of

radiated power to the received power Ptx

Prcvd(d)
, at a distance d expressed in decibel

is:

PL(d)[dB] = PL(d0)[dB] + 10γ log10

d

d0
+Xσ[dB], (8.1)

where γ is the path loss exponent, Xσ is a zero-mean Gaussian random variable

with variance σ2, and PL(d0) is the reference path loss at a reference distance d0.

The random component Xσ is added to the signal attenuation to reflect the signal

strength variations caused by shadowing.

The Received Signal Strength Indicator (RSSI) at a distance d, for a given

transmitter output power Ptx[dBm], is:

RSSI(d)[dBm] = Ptx[dBm]− PL(d)[dB] (8.2)

Two nodes separated at a distance d are considered as neighbors when theRSSI(d)[dBm]

is greater than the receiver’s sensitivity, RxS.

Given a certain distance d, we need to find out whether the probability of the

received power RSSI(d) is below the threshold RxS. Since only the path loss

PL(d) is random, the probability can be expressed as a probability involving path

loss, i.e. P (RSSI(d) < RxS) = P (PL(d) > β), where β is maximum tolerable

path loss. As PL(d) is a Gaussian random variable and for any Gaussian random

variable X with mean α and standard deviation σ, P (X > β) can be expressed

101

8.1. REAL WIRELESS NETWORKS

as:

P (X > β) = Q

(
b− α
σ

)
(8.3)

where Q is the error function which is defined as Q(z) = 1√
2π

∫ +∞
z

exp
(
−x2

2

)
dx. Q

can be calculated using numerical integration or look up tables. Figure 8.2 plots

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1 σ/γ = 0.2
σ/γ = 0.5
σ/γ = 1
σ/γ = 2

Figure 8.2: Connection probability versus the node distance for log-normal
shadowing [131]

the connection probability for log-normal shadowing with node distance. The

function is shown for different values of the shadowing deviation σ normalized to

the path loss exponent γ, as the shape depends only on this ratio. For small ratios,

the connection function becomes a step function and the resulting network graph

a unit disk graph [131].

8.1.2 Localization errors

Geographic routing protocols assume that exact node position information is at

hand. However, in practice, geographic location information is not exact; because

of the unavailability or limitation of resources or because of errors in the local-

ization techniques. In [102], location errors are classified into four metrics: a)

absolute location inaccuracy, b) relative distance inaccuracy, c) absolute location

inconsistency and d) relative distance inconsistency. Absolute location inaccuracy

is the difference between the true location and the estimated location. Relative

distance inaccuracy is the difference in relative distances. Absolute location in-

consistency represents the difference of the same target node locations perceived

by two nodes. Relative distance inconsistency is the difference in relative distance

inaccuracy perceived by two nodes. In all localization systems, some of these er-

rors are inevitable and magnitude of the error depends on the localization system

type used, its implementation and the environment in which it is used [84]. A

localization error of 1 - 10% of the radio range is very common in the best exist-

102

CHAPTER 8. GEOGRAPHIC ROUTING IN REAL WIRELESS NETWORKS

ing localization schemes [155]. Hence we need to take into account node location

errors in the protocol designs.

To model location errors the most commonly considered error model is the

Gaussian error model [155]. The mean value is usually set to 0 and standard

deviation σerr is a variable. The σerr is often varied between 0 and 20% of the

radio range. Radio range of UDG model is the radius R. For QUDG, radio range

could be approximated to mean of the two radii, i.e. r+R
2

. For LNS model, the

radio range can be calculated using the equation 8.4, assuming σ = 0.

radio range = 10(Pt−PL(d0)−RxS)/(10∗gamma)) (8.4)

8.2 Geographic routing in real wireless networks

We now look at the impact of radio range irregularity and location errors on the

performance of greedy and FACE routing.

8.2.1 Greedy Routing

8.2.1.1 Link reliability

In real wireless networks, wireless links can be extremely unreliable and [183]

demonstrated the existence of a large transitional region where link quality has

high variance. If greedy routing based on maximum advance is chosen in such

cases, it might take a few transmission attempts to successfully forward a packet

to a node in the transitional region with low link quality. Another node with

a smaller advance could be reached on the first attempt. Hence, the cost for

re-transmissions should be considered by the forwarding strategies. The cost for

re-transmissions can be estimated by the number of transmissions needed to send

a data packet over a specific link [152]. Thus by comparing the cost and advance,

a balance between costly retransmissions over longer links and the increased hop

count cost over shorter links can be made.

The expected number of re-transmissions can be derived from the packet re-

ception rate (PRR) [152] which is defines as the ratio of successfully received

packets over the total number of transmitted packets over a specific time period.

It can serve as a reception probability metric for future transmissions. Choosing

the neighbor with the highest value for the product of packet reception rate and

the advance is considered in [156]. This criterion is an optimal metric for making

103

8.2. GEOGRAPHIC ROUTING IN REAL WIRELESS NETWORKS

localized geographic forwarding decisions in lossy wireless networks with Auto-

matic Repeat reQuest (ARQ) mechanisms and is also a good metric for No-ARQ

scenarios [156]. Nodes using this criterion avoid selecting lossy links.

Another metric called Normalized Advance (NADV) [115] uses the advance

achieved per unit link cost as the forwarding criterion and chooses the neighbor

with largest NADV as the next hop node. Various types of link costs such as packet

error rate, link delay, and energy consumption can be included in NADV. It tries

to find the best trade-off between link cost and geographic proximity. Another

similar metrics proposed is the cost-over-progress ratio presented in [111], which

finds the minimal cost for transmission per progress towards the destination. Here

the cost metric is the expected hop count based on the packet reception proba-

bility including acknowledgements, and the progress is considered as the advance

towards the destination. Considering such cost metric significantly increases the

packet delivery rate.

Greedy routing algorithms considering link reliability information such as the

packet reception rate or packet error rate has to access the MAC layer for ob-

taining such information. Such greedy routing protocols are actually cross-layer

protocols, as routing being a task of the network layer cannot utilize the MAC

layer information directly in a traditional layered protocol design [34].

8.2.1.2 Location errors

The effect of localization errors on the performance of greedy routing is studied

in [80]. They found that routing performance is not significantly affected when

the error is less than 40% of the radio range. Location errors are not always bad

as the packet drop in greedy routing due to voids (with precise location) may be

avoided if location inaccuracy leads to a valid greedy forwarding path. However,

the conditions for location inaccuracy to have good impact on geographic routing

are very stringent and simulation studies in [102] shows that the bad effects such

as increased packet drop and path length, outweighed the good effects.

In [102], an extensive simulation based analysis of the impact of location errors

such as absolute and relative location inaccuracy and absolute and relative location

inconsistency on the performance of greedy routing has been conducted. The

authors reported increased packet drop rate with increase in location errors. The

main reason for packet drop is the false void nodes encountered due to location

errors. Most of the packet drop occurs within the destination range. This is due

to the location inconsistency, where the last hop forwarding node perceives the

104

CHAPTER 8. GEOGRAPHIC ROUTING IN REAL WIRELESS NETWORKS

destination at a different location than the location perceived by the source node.

Hence, the packet gets dropped at this void node. A small percentage (less than

2%) of packet drop was due to loops (single-hop and multi-hop) occurred due to

relative distance inconsistency. Another side effect of location error was increase

in the path length.

8.2.2 FACE routing and planarization

We have seen in Section 8.2.1 that for unreliable wireless links considering the

link cost during greedy routing mitigates the problem considerably. The effect

of localization errors degrades the performance of greedy routing. However, most

of the packet drop occurs due to false local minimum and in geographic routing

where such failures occurred are recovered by using FACE routing. Failures in the

FACE routing lead to persistent protocol failures. Hence they are more critical in

geographic routing.

We have seen the working of FACE routing in Section 6.2.2. During the FACE

routing, the packet keeps moving to closer faces until it reaches the face containing

destination node. FACE routing failures occurs due to the following two reasons:

• A disconnection or

• A cross-link

This has already been illustrated in Figure 6.4.

On analyzing these two problems, it has been identified that these problems

occur because of planarization failures [155]. A correct planarization algorithm

should not disconnect the connected network graph and should remove all cross-

links in the graph. Hence, FACE routing failures are attributed to planarization

failures. Let us now look at the impact of irregularity in radio range and location

errors on planarization. Figure 8.3 shows examples of failures in RNG planariza-

tion due to radio irregularity and location errors resulting in disconnection and

cross-links [155]. In Figure 8.3a, due to the irregularity in radiation pattern or

due to the presence of obstacle, the link wv is absent. In Figure 8.3b, due to

location errors w is considered as the witness node located at w′. In both cases,

executing RNG algorithm at u removes the link uv and causes disconnection (if

v also removes vu following uv removal) or at least an asymmetric link vu. In

Figure 8.3c, due to radio irregularity and in Figure 8.3d, due to location errors, u

fails to remove uv link resulting in cross-links.

105

8.2. GEOGRAPHIC ROUTING IN REAL WIRELESS NETWORKS

u v

w

v′s range

(a)

u v

w′

w

(b)

u v

w

x

u′s range

(c)

u v

w

x

w′

(d)

Figure 8.3: RNG planarization failures due to radio range irregularities and location
errors

Localized planarization techniques such as GG, LDT, LMST and DP seen in

Section 7.2 also fail to planarize the network correctly when radio irregularity

or location errors are present. All these algorithms provably yield a connected

planar graph only if the network graph obeys the UDG property. The explicit

planarization algorithm LLRAP proposed by us planarizes graphs more general

than UDG. However, arbitrary network graphs do not obey redundancy property

or co-existence property. Example of violation of redundancy property due to

radio range irregularity is shown in Figure 8.4. It has been proved in [155] for

arbitrary connectivity graphs, it is not possible to avoid disconnections and cross-

links at the same time. Figure 8.4b is an example that illustrate this fact, where

the connected network graph gets disconnected on removing any of the cross-links

uv or wx.

106

CHAPTER 8. GEOGRAPHIC ROUTING IN REAL WIRELESS NETWORKS

u v

x

w

(a)

u v

x

w

(b)

u v

x

w

w′s range

u′s range

(c)

Figure 8.4: Intersections without redundancy property

t

s

w

x

u

v
v′

(a)

t

s w

t′

x

u

v

(b)

t

sa

b

c

x

w

vu

(c)

Figure 8.5: FACE routing failure due to radio range irregularities and location errors

Figure 8.5a shows an example where location error of a single node v introduces

new cross-links wx intersecting sv′ and uv′. In these intersections redundancy

property is not satisfied. If there was no error, FACE routing from source s to

destination t follows the path s− v − x and reaches t. With the error, the packet

from s take the path s − v′ − x − w − u − v′ − s and gets dropped. Figure 8.5b

shows another example of location error causing FACE routing failure.

We have seen that both irregularity in radio range and location error can cause

disconnections and cross-links in the network which in turn causes FACE routing

failure. Even small location errors can lead to incorrect routing decisions with

severe performance degradation [102,155]. For graphs with arbitrary connectivity,

107

8.2. GEOGRAPHIC ROUTING IN REAL WIRELESS NETWORKS

local algorithms that use only single-hop information or even a fixed number of

hops cannot detect all cross-links in the graph and cannot guarantee delivery

for FACE routing [155]. Any search of a fixed number of hops is not sufficient

to guarantee the detection of all cross-links with arbitrary connectivity. This is

illustrated in Figure 8.5c, where the cross links uv and wv are detected by searching

the path v− u− a− b− x−w− c which could be arbitrarily large and cannot be

bounded.

8.2.2.1 Restricted wireless model

Let us now look at the planarization algorithms developed for network graphs

which are more general than UDGs. The mutual witness approach presented

in [155] addresses the network disconnection problem due to incorrect edge removal

during GG or RNG planarization process. An edge is only removed, if both

endpoints are connected to the witness node. Thus by considering a mutual witness

node, the disconnection problem could be eliminated. However, the cross-link

problem is not eliminated by this approach.

In Quasi Unit Disk Graphs computing a Gabriel graph may produce discon-

nections. However, after adding virtual edges in a d-QUDG with d ≥ 1√
2

and

applying Gabriel Graph results in a planar connected graph with a mixture of real

and virtual edges [20]. For an edge uv, any witness node w within the Gabriel

circle is connected either to u or v if d ≥ 1√
2
. Hence during the uv link removal

due to w, it is possible to add a virtual link between w and u or v, if the link

does not exist in the original graph. After planarizing the extended graph, FACE

routing can be applied. Routing over virtual edges is then performed by commu-

nication between endpoints, which could be multiple hops in the original graph.

The length of this routing path can be bounded if there is a minimum distance

between any two nodes; otherwise, it is unbounded. The route length bound can

be preserved without the minimum distance assumption as shown in [110] where

a connected dominating set (CDS) is first extracted from the network graph and

clustering is then used to reduce the number of edges of the CDS. In such graphs

the planarization algorithm of Barrière et al. [20] is applied and geographic routing

with asymptotically optimality could be achieved [110].

An alternate idea to planarize graphs is to use virtual nodes instead of the

virtual links [122]. To obtain planarity, each edge intersection is replaced with

a virtual node and a real node serves as a proxy for the virtual node. In d-

QUDG with d ≥ 1√
2
, these intersections can be detected locally and the algorithm

108

CHAPTER 8. GEOGRAPHIC ROUTING IN REAL WIRELESS NETWORKS

guarantees that an edge between a virtual node and a neighbor is realized by

a constant-hop path in the real network. It works only if the intersections are

detected locally, i.e. when d ≥ 1√
2
.

Another approach presented in [63] selects a set of landmark nodes forming a

k-hop independent set. Nodes are associated to these landmarks and the plane is

partitioned into Voronoi tiles. From the Voronoi tiling, a Combinatorial Delaunay

Map (CDM) is constructed which is planar for any d-QUDG with d ≥ 1√
2
. The

routing protocol uses the CDM as a macroscopic guide for routing; i.e. a node

uses locations of nearby landmarks to determine to which neighboring Voronoi tile

the packet needs to be forwarded. The packet is then forwarded to that tile using

a gradient descent method.

8.2.2.2 Arbitrary network models

FACE routing protocol that works on arbitrary network graphs is the Cross-Link

Detection Protocol (CLDP) [103]. In CLDP, each node probes its links to see

if they are crossed by other links. A probe initially contains the locations of

the endpoints of the link being probed, and traverses the graph using the right-

hand rule. When the probe is sent along a face, each node checks whether the

next link on the traversal intersects the edge specified in the probe message. If

an intersection is detected, the link is marked non-routable unless the probing

message has traversed this link twice in opposite directions. In such cases, marking

a link as non-routable (i.e. removing a link) causes network partition. The set of

routable links forms a safe routable subgraph where FACE routing is guaranteed

not to fail. Greedy routing uses the full graph, i.e. it includes the links marked

non-routable by CLDP. Only the FACE routing uses the CLDP-derived routable

subgraph to recover from void nodes.

When there are multiple crosslinks, repeated probing is required. Concurrent

probing will lead to disconnections, if two crossing links are marked non-routable

at the same time. Locking schemes and tie breaking rules are needed to avoid such

situations. CLDP always produces a safe routable subgraph from any arbitrary

input connected graph. As the probe messages cause significant overhead in the

network, an alternative approach called Lazy Cross-Link Removal [75] that does

not proactively remove the cross links, but applies CLDP when loops are found

has been proposed.

109

8.3. SUMMARY

8.3 Summary

We have seen in this chapter that irregular radio range and imprecise node location

information are the two main challenges for geographic routing protocols in real

wireless networks. We considered two models, QUDG and LNS, that could model

radio irregularities better than UDG models. We also analyzed how to model

location errors. We looked at the various greedy routing protocols that consider

link reliability in the forwarding decisions and the impact of location errors on

greedy routing. Location errors degrade the performance of greedy routing. How-

ever, most of the packet drops occur due to false local minimum and in geographic

routing such failures are recovered by using FACE routing. FACE routing fails

when there are disconnections or cross-links in the network graph which lead to

persistent protocol failures. These problems are due incorrect planarization pro-

cess which removes incorrect edges causing network partitions and unidirectional

links or fail to remove edges causing intersecting links. Hence planarization in

real wireless network is very important for geographic routing protocols. We also

looked at some of the localized planarization approaches for d-QUDG with d ≥ 1√
2

and nonlocal approaches for arbitrary network graphs1.

1They do not create planar graphs but a safe routable subgraph for FACE routing

110

CHAPTER9
Graph Planarization in Realistic

Wireless Networks

We have seen in Chapter 8 that irregular radio ranges and location errors degrade

the performance of geographic routing protocol. FACE routing failures attribute

to most of the geographic routing failures and leads to persistent protocol failures.

FACE routing failures arise from incorrect planarization which removes incorrect

edges causing network partitions and unidirectional links or fail to remove edges

causing intersecting links.

Localized planarization algorithms are highly preferred for geographic routing

to preserve its locality characteristic, as it is the base for its scalability and effi-

ciency. Existing localized planarization techniques discussed in Section 7.2 work

well for restricted wireless models such as UDG or d-QUDG with d ≥ 1√
2
. They do

not work correctly in realistic wireless networks, which in most cases do not obey

these restrictions. The planarization algorithm LLRAP works in graphs more gen-

eral than UDG, but it also fails in arbitrary network graphs. In addition, location

inaccuracies degrade the performance of localized planarization algorithms. Even

small errors can lead to incorrect routing decisions with noticeable performance

degradation [102,155].

The planarization protocols [75, 103] designed for arbitrary networks are non-

local. The probe message in these protocols may have to travel more than con-

stant hops between the nodes to detect intersections. Thus, we have the following

dilemma: there are topology control schemes which transform arbitrary 2D graphs

(including localization faults) into a topology where FACE routing is always suc-

111

9.1. TOPOLOGICAL CLUSTER-BASED PLANARIZATION ALGORITHM

cessful. However, these approaches are not localized. On the other hand, all

known localized approaches cannot be correctly applied on arbitrary 2D graphs

and do not work when location errors are present. In this paper, we solve this

dilemma utilizing a basic structural property of realistic wireless networks; i.e. the

links cannot be arbitrarily long. We describe a localized planarization algorithm

for realistic wireless networks which is location fault tolerant and produces planar

graphs in most cases, using this property.

9.1 Topological Cluster-based planarization al-

gorithm

The key idea of our approach is that, at a local scale even though the network

graph might contain many intersecting links which are not detected by local al-

gorithms, at a larger scale those intersections disappear or easily detectable by

local algorithms. This is based on the observation that Euclidean edge lengths in

ad-hoc wireless network graphs cannot be arbitrarily long, as seen in Figure 9.1a.

Thus when we aggregate nodes into clusters, the limited edge length assures that

the cluster interconnections do not intersect in most cases.

(a) Clustering of nodes

graphs and do not work when location errors are present. In

this paper, we solve this dilemma utilizing a basic structural

property of realistic wireless networks; i.e. the links cannot

be arbitrarily long. We describe a localized planarization

algorithm for realistic wireless networks which is location

fault tolerant and produces planar graphs in most cases,

using this property.

The remainder of this paper is structured as follows. Sec-

tion II describes the planarization algorithm. In Section III,

we explain the wireless models used in this work. Next,

in Section IV we present a simulation based performance

evaluation and analysis of the proposed algorithm. Related

approaches known from the literature are then discussed in

Section V. Finally, Section VI summarizes the main results

of this work and provides an outlook on possible future

research.

II. TOPOLOGICAL CLUSTER-BASED PLANARIZATION

ALGORITHM

We assume ad-hoc wireless networks as a graph G =
(V,E) embedded in the two dimensional Euclidean space.

The graph has a finite set of vertices V that corresponds to

the nodes in the network. Each node knows its 2D position

which need not be the exact one. The set of edges E
corresponds to the wireless links between the nodes. We

consider dynamic networks with frequent link changes but

stationary nodes. This is typical for WSN or WMN .

The algorithm is based on the observation that Euclidean

edge lengths in ad-hoc wireless network graphs can not be

arbitrarily long, as seen in Figure 1a. The key idea of our

approach is that, at a local scale even though the network

graph might contain many intersecting links, at a larger

scale those intersections disappear. More precisely, when

we aggregate nodes into clusters, the limited edge length

assures that the cluster interconnections do not intersect in

most cases.

Our planarization algorithm starts with topology-based

clustering to aggregate nodes into clusters. The topology-

based clustering is a distributed process which uses only

local information exchange. Clustering creates a logical

hierarchy in the network with dedicated cluster heads han-

dling all inter-cluster routing decisions. An overlay graph is

constructed with the cluster heads constituting its vertices.

Links joining the neighboring cluster heads constitute the

edges in the overlay graph. Figure 1b shows an overlay graph

created by topological clustering for illustration.

The overlay graphs may contain a few intersections and

may not be planar. Hence a localized cross link detection

and repair algorithm is executed afterwards, which finally

makes the overlay graph planar in most cases.

The details of the planarization process stages are de-

scribed next. The pseudo-code showing their implementa-

tions can be found in the Appendix A.

(a) Clustering of nodes

v w

V CH1

V CH2

(b) An overlay graph construction

Figure 1: The general idea of the planarization algorithm

A. Clustering

The first stage of the planarization algorithm is cluster

formation. In this stage the nodes are grouped into clusters

based on any multi-hop clustering algorithm. We have de-

veloped a clustering algorithm called k-hop clustering based

on the CONID (connectivity ID) [12], where k is the cluster

depth or hop count. Our algorithm differs from [12] in the

selection process of cluster head and cluster member nodes.

This makes it more robust against node location errors, as

we see later in the analysis. The k-hop clustering algorithm

creates clusters with cluster heads that are separated at least

k-hops apart. It uses connectivity as the primary key in

clustering decisions, where connectivity is defined as:

Definition 1: The connectivity of a node u, Con(u) =
|Su|, where Su = {v1, v2, . . .} such that ∀ nodes vi ∈ Su, a

path |p(u, . . . , vi)| ≤ k from u to vi exists and nodes along

|p(u, . . . , vi)| do not belong to another cluster.

For k = 1, the connectivity is equivalent to the node degree.

The k-hop clustering algorithm works as follows. All

nodes periodically check their status to determine whether

they are clustered or not. If there exists any node which

does not belong to any cluster, it is triggered to create a new

cluster or join an existing cluster. If the triggered node is an

isolated node, i.e. without any neighbors, it changes its status

to clustered and creates a new cluster with the current node

as its only member node. All other triggered nodes create

a k-hop neighbor list S and calculate their connectivity as

given in definition 1.
The node with higher connectivity is preferred to nodes

with lower ones. The nodes which have the highest connec-

tivity among their k-hop neighbors become winner nodes.

If two nodes u and v have the same connectivity and their

connectivities are maximum in the set Su∪{u} and Sv∪{v}
respectively, then their node ids are compared to make the

decision. The one with the lower id then wins.

Prior to the cluster creation, a check is done to determine

whether the connectivity of the node is above a threshold

size, which is usually k. If connectivity is not above the

threshold size, the node finds a cluster in which the majority

(b) An overlay graph construction

Figure 9.1: The general idea of the planarization algorithm

Our planarization algorithm starts with topology-based clustering to aggregate

nodes into clusters. The topology-based clustering is a distributed process which

uses only local information exchange. Clustering creates a logical hierarchy in the

network with dedicated cluster heads handling all inter-cluster routing decisions.

112

CHAPTER 9. PLANARIZATION IN REALISTIC WIRELESS NETWORKS

An overlay graph is constructed with the cluster heads constituting its vertices.

Links joining the neighboring cluster heads constitute the edges in the overlay

graph. Figure 9.1b shows an overlay graph created by topological clustering for

illustration.

The overlay graphs may contain a few intersections and may not be planar.

Hence we apply planarization algorithms at the overlay level to make it planar.

The details of the planarization process stages are described next.

9.1.1 Clustering

The first stage of the planarization algorithm is cluster formation. In this stage

the nodes are grouped into clusters based on any multi-hop clustering algorithm.

We have developed a clustering algorithm called k-hop clustering based on the

CONID (connectivity ID) [35], where k is the cluster depth or hop count. Our

algorithm differs from [35] in the selection process of cluster head and cluster

member nodes. This makes it more robust against node location errors, as we see

later in the analysis. The k-hop clustering algorithm creates clusters with cluster

heads that are separated at least k-hops apart. It uses connectivity as the primary

key in clustering decisions, where connectivity is defined as:

Definition 3. The connectivity of a node u, Con(u) = |Su|, where Su = {v1, v2, . . .}
such that ∀ nodes vi ∈ Su, a path |p(u, . . . , vi)| ≤ k from u to vi exists and nodes

along |p(u, . . . , vi)| do not belong to another cluster.

For k = 1, the connectivity is equivalent to the node degree.

The k-hop clustering algorithm works as follows. All nodes periodically check

their status to determine whether they are clustered or not as given in the pro-

cedure cluster-all-node in Algorithm 9.1. If there exists any node which does not

belong to any cluster, it is triggered to create a new cluster or join an existing

cluster as given in the procedure trigger-cluster-node in Algorithm 9.1. If the trig-

gered node is an isolated node, i.e. without any neighbors, it changes its status

to clustered and creates a new cluster with the current node as its only member

node. All other triggered nodes create a k-hop neighbor list S and calculate their

connectivity as given in definition 1.

The node with higher connectivity is preferred to nodes with lower ones. The

nodes which have the highest connectivity among their k-hop neighbors become

winner nodes. If two nodes u and v have the same connectivity and their con-

nectivities are maximum in the set Su ∪ {u} and Sv ∪ {v} respectively, then their

113

9.1. TOPOLOGICAL CLUSTER-BASED PLANARIZATION ALGORITHM

Algorithm 9.1 k-hop Clustering

1: procedure cluster-all-nodes
2: while ∀ Node n ∈ V : n.status ! = CLUSTERED do
3: if neighbors(n) = ∅ then
4: node.status = CLUSTERED
5: else
6: trigger-cluster-node (n)
7: end if
8: end while
9: end procedure

10: procedure trigger-cluster-node (Node n)
11: Determine k-hop neighbor set, S
12: Calculate the connectivity, Con(n)
13: if Winner(n, S) = true then
14: Cluster, C ← ∅
15: C ′ =

⋃
i∈neighbors(n)C(i)

16: if Con(n) < Threshold & C ′! = ∅ then
17: C = Mode(C ′) ∪ {n}
18: else
19: C = {n}
20: n.state = CLUSTER HEAD
21: for all node vi ∈ S do
22: C = C ∪ {vi}
23: vi.status = CLUSTERED
24: end for
25: end if
26: end if
27: end procedure

28: procedure Winner (Node n, Set S)
29: for all Node vi ∈ S do
30: if Con(n) < Con(vi) then
31: return false
32: else if Con(n) = Con(vi) & ID(vi) > ID(n) then
33: return false
34: end if
35: end for
36: return true
37: end procedure

114

CHAPTER 9. PLANARIZATION IN REALISTIC WIRELESS NETWORKS

node ids are compared to make the decision (see the procedure Winner in Algo-

rithm 9.1). The one with the lower id then wins.

Prior to the cluster creation, a check is done to determine whether the connec-

tivity of the node is above a threshold size, which is usually k. If connectivity is

not above the threshold size, the node finds a cluster in which the majority of its

neighbors are members, and joins that cluster. The node then requests all nodes

in S to join this cluster. This connectivity-threshold step prevents the formation

of clusters with very few members in the network. Though prevention of numer-

ous small clusters is optional from the point of view of planarization, it helps to

make the algorithm robust against node location errors. Due to the joining of new

nodes, the cluster depths are increased at most by the threshold size. Usually it is

increased only by a small fraction of the threshold size. Choosing small threshold

values keeps this increase limited. In our experiments, the threshold is chosen to

be the cluster depth k.

9.1.2 Overlay graph

The next process in the planarization algorithm is the overlay graph construction

given in Algorithm 9.2. An overlay network could be constructed using the winner

nodes which initiated the cluster creation; but to make the overlay vertices location

fault tolerant, we create virtual nodes at the geometric center of the clusters.

Virtual node averages out location errors in the cluster. The position of the

virtual nodes is calculated as:

Pv(x, y) =
∑
i=1..,n

Pi
n

, (9.1)

where n is the number of nodes in the cluster and Pi is the position of the ith

member of the cluster. These nodes constitute the virtual cluster heads (V CH) of

the clusters. In practice, the winner node or a node which is close to the centroid

of the cluster serves the functions of V CH. The node id of V CH is the actual id

of the node which is serving it. The cluster is also represented by this id. After

creating the V CH, the information about the V CH and the node serving it, is

passed to all members of the cluster.

A virtual overlay graph OG = (V ′, E ′) is created with the virtual cluster heads

as its vertices. For a network graph G = (V,E), the set of vertices of the overlay

graph V ′ =
⋃
i{V CH(vi)} for all vi ∈ V , where V CH(vi) is the virtual cluster

115

9.1. TOPOLOGICAL CLUSTER-BASED PLANARIZATION ALGORITHM

Algorithm 9.2 Overlay graph

1: procedure Overlay (Cluster Ci)
2: Create virtual cluster head V CH
3: V CH.id = Winner.id
4: j=1
5: for all Node nj ∈ Ci do

6: PosV CH =
PosV CH∗(j−1)+Posnj

j

7: for all Node n ∈ neighbors(nj) do
8: if n.clusterId ! = V CH.id then
9: neighbors(V CH).add(n.V CH)

10: end if
11: end for
12: end for
13: end procedure

head of node vi. The set of edges of the overlay graph E ′ =
⋃{ei}, where an edge

ei exists between V CHi of cluster Ci and V CHj of cluster Cj, if ∃v ∈ Ci and

w ∈ Cj such that, an edge (v, w) ∈ E exists in G. For example, the virtual edge

between V CH1 and V CH2 shown in Figure 9.1b exists, as there is a link between

nodes v and w in the network graph.

For constructing the virtual links, each V CH sends queries to the boundary

nodes of its cluster. If any boundary node has a link to another node with a

different V CH, a virtual link is created between these cluster heads.

9.1.3 Overlay graph planarization

The last stage of the algorithm is the overlay graph planarization. Overlay graphs

are mostly planar especially when the k values are large, but when k is small and

network density is very high, they may not be planar. To make the overlay graphs

planar, existing implicit planarization algorithms cannot be used as they do not

obey UDG property. Implicit link removal based on geometric properties leads to

disconnection as seen in Section 7.3. Explicit planarization algorithms are better

choice in such scenarios. We choose LLRAP algorithm described in Section 7.4

for planarizing overlay graphs.

The first phase of LLRAP algorithm, the local cross link detection and removal

phase, detects all intersections in the local neighborhood. For cross link detection,

all nodes v′i ∈ V ′ in the overlay graph OG(V ′, E ′), collect their 2-hop neighbor

information. The 2-hop neighbors of v′i are those nodes which are at-most 2-hops

116

CHAPTER 9. PLANARIZATION IN REALISTIC WIRELESS NETWORKS

away from v′i, when traversed over the virtual links e′ ∈ E ′. An intersection is

detected, if any of the outgoing edge of a node intersects with the outgoing edges

of its one hop neighbors.

u

w

y

v

x

(a)

u

w

y

v

x

(b)

Figure 9.2: Overlay graphs without redundancy property

A node u executing local cross link detection and removal phase checks if the

link uv intersects the link wx and if so, it removes the link uv when the link

wv is present in the network. When the network graph satisfies the redundancy

property, checking wv’s presence works correctly. However, if we apply LLRAP

at the overlay graphs that has no redundancy property, e.g. in graphs shown in

Figure 9.2, overlay node u detects the intersection locally, but does not remove

it as link wv is absent. Hence we modify the condition of link removal with the

following rules:

• if there exists a path from u to v, other than the direct link uv, with path

length at-most 2-hops, then remove the link uv

• else, if there exists a path from u to x, not through the node w, with path

length at-most 2-hops, then instruct w to remove the link wx

The second phase of the planarization algorithm, the local link addition phase,

adds those removed links whose additions do not cause any violation to planarity.

This is done carefully with several message exchanges as described in Section 7.4.2.

As the virtual links of the overlay graphs are realized with multi-hop paths, the

local link addition phase incur considerable message overhead at the overlay level.

Hence we propose a simple alternative which avoids the local link addition phase,

but also takes care to prevent network partitions during local cross link detection

and removal phase. We call this variant of local cross link detection and removal

phase as Cross Link Detection and Repair (CLDR). The pseudo code of the algo-

rithm is given in Algorithm 9.3. In CLDR, when a node removes an outgoing edge,

117

9.2. MODELING AND SIMULATION

Algorithm 9.3 Cross Link Detection and Repair

1: procedure CLDR (OverlayNode u)
2: N(u) := origN(u)
3: for all v ∈ N(u) do
4: for all w ∈ origN(u)\{v} do
5: for all x ∈ N(w)\{u, v} do
6: if uv intersects wx then
7: if ∃y ∈ N(u)\{v} & uy, yv ∈ E then
8: N(u) := N(u)\{v}
9: Send message uv removed

10: else if (∃y ∈ N(u)\{w} ∪ {u} & uy, yx ∈ E) then
11: Instruct w to remove wx
12: end if
13: end if
14: end for
15: end for
16: if receive message vx removed then
17: N(u) := N(u)\{v}
18: N(v) := N(v)\{x}
19: end if
20: end for
21: end procedure

it informs all nodes in its neighborhood about the link removal. On receiving this

notification, nodes update their 2-hop neighborhood list and ignore removed links

during cross link detection checks. Concurrent link removals may cause network

disconnection which could be avoided by using simple tie-break rules or locking

methods [103].

9.2 Modeling and Simulation

9.2.1 Wireless Model

We evaluate our planarization algorithm using the Log Normal Shadowing Model

(LNS) described in Section 8.1.1. The path loss exponent γ varies between 2 (free-

space) and 6 (obstructed in-buildings) whereas, variance σ2 varies between 3.7 and

12.8 [98,157]. In indoor environments, for a frequency of 2.45 GHz, γ = 2 for line

of sight (LOS) and γ = 3.5 for non-line of sight (NLOS) [114]. We choose γ = 3.25,

slightly less than the NLOS value and σ = 2.5 for most of the experiments, but we

118

CHAPTER 9. PLANARIZATION IN REALISTIC WIRELESS NETWORKS

also vary them to study their effects on planarity. The reference path loss PL(d0),

for a reference distance d0 = 1 m varies between −50 and −30 dBm [98] and we

set PL(d0) to −40 dBm. The path loss can be calculated from equation 8.1 using

these values.

The transmission power levels of IEEE 802.11 often vary between −15 dBm

to 15 dBm [134]. We set the Ptx to 15 dBm. The receiver sensitivity varies with

data transmission rates. E.g. IEEE 802.11g’s RxS is −88 dBm at 6 Mbps and

−66 dBm at 54 Mbps [134]. We set the RxS to −80 dBm for our experiments.

Besides LNS, we consider Unit Disk Graph (UDG) and Quasi Unit Disk Graph

(d-QUDG) models as well in our simulations. In UDG, we set R to 50 units in

our tests. For d-QUDG, we set d to 0.5, with r = 25 and R = 50 units. The

performance of our algorithm at this d value, which is less than 1√
2

is specially in-

teresting, as existing localized planarization algorithms cannot guarantee planarity

at such low values as discussed in Section 8.2.2.1.

9.2.2 Simulation setup

We create different networks in ShoX network simulator by varying the parameters

like field size and average node degree, D, defined in equation 7.1. Now onwards we

use a parameter ρ = D
π

to represent the node degree. In most of the experiments,

we use the field size 500× 500 square units, with N varying from 100 to 500. To

test the scalability of the algorithm, we also consider a field size of 2500 × 2500

square units, with N varying from 2500 to 12500. The tests conducted on the

former field are evaluated on 100 different network configurations while on the

latter field, are evaluated only on 10 different network configurations due to the

enormous time consumption of each test.

A graph planarity test is conducted to check the planarity of the overlay graph.

It classifies the graphs into planar and nonplanar groups and reports the total

number of intersecting links in nonplanar cases.

9.3 Performance Evaluation and Analysis

To analyze the performance of the planarization algorithm, we vary parameters

such as hop count k used in k-hop clustering and node degree ρ. We record the

percentage of nonplanar graphs in the LNS modeled networks. Table 9.1 shows the

result of the planarization algorithm on two field sizes, 500× 500 and 2500× 2500

119

9.3. PERFORMANCE EVALUATION AND ANALYSIS

Field Size 500× 500

ρ
Hop Count

1 2 3 4 5 6
a b a b a b a b a b a b

2 59 0 17 0 3 0 1 0 0 0 0 0
3 99 0 51 0 9 0 1 0 1 0 0 0
4 100 0 73 0 10 0 1 0 0 0 0 0
5 100 0 84 0 17 0 2 0 0 0 0 0

Field Size 2500× 2500

ρ
Hop Count

2 4 6 8 10 12
a b a b a b a b a b a b

2 100 0 60 0 50 0 50 0 20 0 20 0
3 100 0 100 0 70 0 50 0 20 0 10 0
4 100 0 100 0 100 0 70 0 30 0 10 0
5 100 0 100 0 100 0 50 0 40 0 50 0

Table 9.1: Performance of the planarization algorithm

square units, with ρ varying from 2 to 5. Hop count k varies from 1 to 6 in the

first field and 2 to 12 in the second field. The column k.a indicates the percentage

of nonplanar graphs before applying CLDR step and the column k.b indicates the

percentage after applying CLDR.

Table 9.1 shows that the planarity of the graphs increases with the hop counts

and decreases with the node degrees and most important, overlay graphs are always

planar in all test cases when CLDR is applied. Figure 9.3 shows the effect of hop

count on planarity more clearly, where the percentage of nonplanar graphs without

CLDR is plotted at a confidence level of 95% for three different network models.

The field size used in these experiments is 500 × 500 square units and the node

degree (ρ) is 3. It shows that, for smaller k values we get fewer planar overlay

graphs. With increasing k value, more graphs become planar. When k is increased

to values comparable to 25% of the network diameter, most of the overlay graphs

are planar.

The experiments conducted on the field size 2500×2500 square units also affirm

that planarity increases with the hop count. At higher k values like 10 or 12, the

majority of the test cases are planar. If we increase k further to values comparable

to the network diameter, the probability of getting planar overlay graphs is very

high as the total number of clusters in the network at large k values is very small.

This decreases the probability of having intersecting links.

120

CHAPTER 9. PLANARIZATION IN REALISTIC WIRELESS NETWORKS

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

N
o
n
 p

la
n
a
r

g
ra

p
h
s
 (

%
)

HopCount (k)

UDG
d-QUDG

LNS

Figure 9.3: Effect of cluster depth on planarity

To obtain planar overlay graphs with low k values, the CLDR step is needed.

Columns b of table 9.1 shows that with the CLDR step, all graphs are planar

irrespective of the average node degree. It is also interesting to note that for small

hop counts such as k=1, the overlay graphs are planar in all simulation runs.

However, we may need k > 1 in certain situations, as discussed in Section 9.3.2

and Section 9.3.3.

9.3.1 Performance of existing planarization algorithms

We have seen in Section 7.2 graph algorithms such as RNG, GG and LDT create

planar sub-graphs locally from the full network graph using distributed algorithms.

These algorithms provably yield connected planar graphs in connected UDG net-

works. We now evaluate their performance in LNS and QUDG modeled networks.

Figure 9.4 shows the results of the experiments at a confidence level of 95%

on the field of size 500 × 500 square units, when ρ is varied from 1 to 5. The

figure shows that LDT , GG and RNG perform very badly in planarizing realistic

wireless network graphs. For ρ > 2, less than 10% of the GG subgraphs are

planar and for the same ρ value, none of the LDT subgraphs are planar. The

planarization algorithm we proposed, always created planar graphs, irrespective

of node degrees in the LNS and QUDG modeled networks.

121

9.3. PERFORMANCE EVALUATION AND ANALYSIS

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

N
o
n
 p

la
n
a
r

g
ra

p
h
s
 (

%
)

Average node degree parameter (ρ)

LDT in LNS
LDT in QUDG

GG in LNS
GG in QUDG
RNG in LNS

RNG in QUDG
k=1 in LNS/QUDG

Figure 9.4: Comparison of nonplanar graphs in LNS and QUDG modeled networks

9.3.2 Effect of model parameters on planarity

The experiments discussed in the above section are based on fixed values for path

loss exponent γ and variance σ2 of LNS model. In this section, we analyze the

effect of these parameters on the planarity of the graphs.

To study the effect of LNS variance, we vary σ fixing the γ value. Figure 9.5

shows the result of the planarization algorithms at a confidence level of 95% on

field size 500× 500 square units with ρ ≈ 3 and γ = 3.25. Empirical studies show

that σ2 varies between 3.7 and 12.8 [98,157]. Hence, we vary σ from 0 to 4 (σ2 from

0 to 16) in our experiments. The results of LDT , GG and RNG planarization

algorithms show that the variance has significant impact on the planarity of the

graphs. Planarity decreases with the increase in variance. As variance increases,

nodes that are closer may not be connected any more, but those far apart may get

connected. Such link irregularities lead to intersections which cannot be repaired

without causing disconnection.

The results of our planarization algorithm with CLDR, show that the proposed

algorithm is robust against the σ variations. The k = 1 planarization algorithm

has a few nonplanar cases, but only at σ values outside the normal range. The

k = 2 planarization algorithm always creates planar graphs even for extreme

variances. This is because larger k values subside local link irregularities better.

In a study on the effect of path loss exponent on planarity by varying γ fixing

122

CHAPTER 9. PLANARIZATION IN REALISTIC WIRELESS NETWORKS

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

N
o
n
 p

la
n
a
r

g
ra

p
h
s
 (

%
)

Standard deviation (σ)

k=1
k=2
GG

RNG
LDT

Figure 9.5: Effect of variance on planarity

σ, we could not find any direct impact of γ on planarity.

9.3.3 Effect of localization errors

To study the effect of location inaccuracy on the performance of the planarization

algorithm, location errors are added to the true node positions. We used the

Gaussian error model described in [154] for our analysis. There the mean value is

set to 0 and standard deviation σerr is varied from 0 to 20% of the radio range. In

our experiments, we vary σerr from 0% to 150% of the radio range, to find out the

effect of extreme σerr values. The radio range used in the LNS model is calculated

using the equation 9.2, assuming σ = 0.

radio range = 10(Pt−PL(d0)−RxS)/(10∗gamma)) (9.2)

Figure 9.6 shows the results of the experiments at a confidence level of 95% on

the field size 500× 500 square units with ρ ≈ 3 in the LNS networks. LDT , GG

and RNG produce nonplanar graphs in most of the simulations when there is a

small location error; but our algorithm produces planar graphs in all test cases for

σerr < 100% of the radio range. In addition to nonplanarity, location errors also

cause disconnection in some networks when LDT , GG or RNG is used, whereas

our algorithm does not disconnect any connected networks in our experiments.

When the location error increases, especially when σerr ≥ 100% of the radio

123

9.4. SUMMARY

 0

 20

 40

 60

 80

 100

 0 25 50 75 100 125 150

N
o
n
 p

la
n
a
r

g
ra

p
h
s
 (

%
)

Standard deviation (σerr) in percentage of radio range

DT
GG

RNG
k=1
k=1*

k=2, k=2*

Figure 9.6: Effect of localization errors

ranges, our algorithm with k = 1 produces a few nonplanar graphs. The k = 1∗
plot shows the results of our algorithm without the connectivity-threshold step,

in the clustering stage. It shows that clustering with the connectivity-threshold

step reduces nonplanarity.

As soon as k is increased to 2, non-planarity disappears, even at extreme

location inaccuracies. Hence, in networks with extremely high node localization

errors, we propose using larger cluster depths. In those networks with reasonable

location accuracy, i.e. σerr < 100% of the radio range, one hop clustering is

sufficient to create planar overlay graphs.

The location fault tolerance of the planarization algorithm is due to the fact

that edge removal occurs at the V CH level rather than the node level. Moreover,

the position of the V CH is robust against individual location errors, especially

when the cluster depth increases as the errors are averaged out. Hence the virtual

link removal is less vulnerable to location errors than the physical links.

9.4 Summary

We proposed a localized planarization algorithm that creates planar graphs in

realistic wireless models and which is location fault tolerant. The planarization

algorithm creates an overlay graph by topology-based clustering. Using a cross

link detection and repair algorithm, the intersections in the overlay graph are

124

CHAPTER 9. PLANARIZATION IN REALISTIC WIRELESS NETWORKS

removed locally. Simulation studies show that the existing localized planariza-

tion algorithms perform badly in planarizing networks with realistic wireless mod-

els, whereas this overlay-based macroscopic planarization approach proposed pla-

narized all networks used in the simulations.

Node location errors worsen the performance of the existing localized planariza-

tion algorithms. With small location errors, σerr = 5% of the radio range, these

algorithms failed to produce any planar graphs in the simulated networks. Lo-

cation errors cause disconnections too in some of the simulated networks. The

planarization algorithm we proposed does not disconnect any network. Moreover,

it is location fault tolerant, which is achieved by increasing the cluster depth. In

networks with reasonable location accuracy, one hop clustering algorithm is suf-

ficient to create planar overlay graphs. The additional overhead of our algorithm

due to the clustering step is significantly low in this case. By increasing hop count

to 2, the algorithm could achieve location fault tolerance in networks with extreme

location inaccuracies as well.

125

126

CHAPTER10
Conclusion

This dissertation described three key features of a self-organizing ad-hoc mobile

robotic network, namely self-configuration, self-healing and self-optimization, and

the algorithms designed for realizing such networks. In this chapter, we summa-

rize our work and discuss some open questions and possible directions for future

research.

10.1 Summary

Self-configuration capability enables the robots to deploy themselves and configure

networks automatically fulfilling application requirements and self-healing capa-

bility enables them to automatically reconfigure the network in cases of failures.

In AMRoNets, self-configuration is achieved through self-deployment which en-

ables the nodes to spread out in an area maximizing coverage keeping the network

connected using simple local rules. Whenever coverage or connectivity is lost, the

self-healing actions are performed.

Coverage requirements vary with applications. We considered two types of cov-

erage maximization problems in our dissertation: sensing range-based and com-

munication range based area coverage. For sensing range-based area coverage

problems we introduced a new swarm-based algorithm based on the local rules,

namely separation, cohesion and alignment, used in modeling of fish schooling.

Empirical analysis using simulations as well as real robot experiments conducted

in various test scenarios shows that this swarm-based algorithm outperforms most

prominent state-of-the-art algorithms by achieving better and faster coverage. The

127

10.1. SUMMARY

algorithm could also be used for communication range-based area coverage prob-

lems, but it is not optimal in such cases.

In the communication range-based area coverage applications, AMRoNets act

as a temporary infrastructure to facilitate communication between agents. Con-

sidering the slower speed of AMRoNet nodes compared to the agents and the

infeasibility of a proactive pre-deployment prior to agent exploration, we pro-

posed a simple greedy agent assisted strategy for deploying routers effectively into

the area. Empirical analysis shows that the number of routers deployed by the

agent-assisted router deployment algorithm is quite close to the optimal number

needed in a bounded region.

Self-optimization capability enables the network to adjust regularly in vary-

ing loads and route efficiently in large-scale networks, especially when topology

changes frequently. In our work we concentrate on the routing aspect of the

self-optimizing networks. On analyzing the existing routing protocols, geographic

routing was found to be a very interesting solution for AMRoNet routing because

of its simplicity, scalability and low routing overhead.

The basic geographic routing uses a greedy forwarding step and a planar graph

based FACE routing step, whenever packets cannot be forwarded according to

the greedy step. FACE routing guarantees message delivery if it is applied on

a planar embedding of the communication network. On looking at the various

existing localized planarization algorithms, problems such as link removal even

from planar graphs that could lead to disconnections have been identified. This is

because of the implicit nature of the planarization algorithm. Hence we proposed a

new explicit planarization algorithm called Localized Link Removal and Addition

based Planarization (LLRAP) algorithm , that detects intersections locally and

planarizes networks by removing them. It provably planarizes graphs more generic

than UDG without causing disconnection, if the graph satisfies redundancy and

coexistence properties.

Looking at the practical aspects of the geographic routing in real AMRoNet

scenarios, two main challenges were identified: a) irregular radio range and b)

imprecise node location information. On analyzing their impact on geographic

routing, severe performance degradation has been identified. FACE routing fail-

ures attribute to most of the geographic routing failures and leads to persistent

protocol failures. FACE routing failures arise from the incorrect planarization pro-

cess. Localized planarization algorithms that works in real wireless networks and

that are location fault tolerant are very significant for geographic routing. None of

128

CHAPTER 10. CONCLUSION

the localized planarization algorithms including LLRAP has these characteristics.

Hence we proposed a new localized planarization algorithm based on a topological

cluster-based overlay graph construction.

The planarization algorithm creates an overlay graph by topology-based clus-

tering. As overlay graphs may contain intersections, to make them planar, explicit

planarization algorithms are selected as they are more suitable than implicit algo-

rithms in such non UDGs. A tailored version of the LLRAP algorithm called Cross

Link Detection and Repair has been applied to remove intersections in the over-

lay graph locally. Empirical analysis shows that this overlay-based macroscopic

planarization approach is location fault tolerant and produces planar graphs.

10.2 Future Directions

The swarm-based algorithm works well in simulations and Teleworkbench where

the position information is available readily. A real world test of this approach

would be highly interesting, especially relying only on the dead reckoning based

position information and dealing with localization errors. Testing the agent as-

sisted router deployment algorithm relying only on link quality estimate is yet to

be done.

The sensing range-based area coverage is a well-studied problem, but only few

works concentrate on the communication range-based area coverage problem. In

the communication range-based area coverage applications, when a proactive pre-

deployment prior to agent exploration is feasible, the self-deployment of the nodes

is an interesting question. We could extend the agent-assisted router deployment

algorithm to develop a self-spreading algorithm for such scenarios, but it may not

be the best solution. A localized self-deploying algorithm that has good coverage

metrics is yet to be done.

Considering the self-optimized routing, the specification of a complete routing

protocol needs to be done. We could use two different routing modes, an inter-

cluster mode and an intra-cluster mode. In the intra-cluster routing mode, nodes

could use greedy forwarding to send packets to their destinations. For inter-

cluster routing, nodes could send packets to those V CHs in their neighborhood

that minimizes the forwarding metric. At a void V CH, planar graph routing along

the virtual faces of the overlay graph could be employed.

Besides the routing protocol, we plan to make theoretical analysis about the

planarity of overlay graphs created from the topological clustering in restricted

129

10.2. FUTURE DIRECTIONS

network models such as UDG or d-QUDG with d ≥ 1√
2
. We also plan to investigate

the potential improvements that could be achieved with our algorithm in reducing

the overhead of current location services by keeping virtual cluster heads instead

of real nodes. This needs to be validated with more quantitative results.

130

APPENDIXA
Player/Stage

A.1 Player Configuration file

File:bebot.cfg

Desc: Player sample configuration file for controlling Stage devices

Load the Stage plugin simulation driver

driver

(

name "stage"

provides ["simulation:0"]

plugin "stageplugin"

load the named file into the simulator

worldfile "bebot.world"

)

Create a Stage driver and attach position2d and ranger interfaces

to the model "bebot"

driver

(

name "stage"

provides ["6665:position2d:0" "6665:ranger:0" "6665:wifi:0"]

model "bebot-1"

)

.....

131

A.2. WORLD FILE

driver

(

name "stage"

provides ["6669:position2d:0" "6669:ranger:0" "6669:wifi:0"]

model "bebot-55"

)

A.2 World file

File: bebot.world

include "bebot.inc"

include "map.inc"

include "nbebot.inc"

time to pause (in GUI mode) or quit (in headless mode (-g)) the simulation

quit_time 3600 # 1 hour of simulated time

interval_sim 100 # simulation timestep in milliseconds

interval_real 250 # real-time interval between simulation updates in milliseconds

paused 0

resolution 0.005

configure the GUI window

window

(

size [1300.000 700.000] # in pixels

scale 50 # pixels per meter

show_data 1 # 1=on 0=off

center [-0.040 -0.274]

rotate [0 0]

)

load an environment bitmap

floorplan

(

132

APPENDIX A. PLAYER/STAGE

name "hospital_section"

boundary 1

size [24 12 0.3]

pose [0 0 0 0]

bitmap "bitmaps/cage.png"

)

File: bebot.inc

Desc: The bebot with IR array

IR sensors

define ir sensor

(

define the size of each transducer [xsize ysize zsize] in meters

size [0.001 0.002 0.001]

define the range bounds [min max]

range [0 0.5]

define the angular field of view in degrees

fov 30

define the number of samples spread over the fov

samples 1

define the color that ranges are drawn in the gui

color_rgba [0 1 0 0.2]

)

define bebot_ir ranger

(

12 transducers spread about the robot as follows

define the pose of each sensor [xpos ypos zpos heading]

ir(pose [0.0455 0.014 0 15])

ir(pose [0.0425 0.041 0 45])

ir(pose [0.0195 0.044 0 75])

ir(pose [-0.0195 0.044 0 105])

ir(pose [-0.0425 0.041 0 135])

ir(pose [-0.0455 0.014 0 165])

133

A.2. WORLD FILE

ir(pose [-0.0455 -0.014 0 -165])

ir(pose [-0.0425 -0.041 0 -135])

ir(pose [-0.0195 -0.044 0 -105])

ir(pose [0.0195 -0.044 0 -75])

ir(pose [0.0425 -0.041 0 -45])

ir(pose [0.0455 -0.014 0 -15])

)

define bebot_base position

(

color "red" # Default color.

drive "diff" # Differential steering model.

gui_nose 1 # Draw a nose on the robot so we can see which way it points

obstacle_return 1 # Can hit things.

ranger_return 0.5 # reflects sonar beams

blob_return 1 # Seen by blobfinders

fiducial_return 1 # Seen as "1" fiducial finders

localization "gps"

localization_origin [0 0 0 0] # Start odometry at (0, 0, 0).

alternative odometric localization with simple error model

localization "odom"

Change to "gps" to have impossibly perfect, global odometry

odom_error [0.05 0.05 0.1]

Odometry error or slip in X, Y and Theta (Uniform random distribution)

)

define bebot bebot_base

(

actual size

size [0.091 0.088 0.09]

center of region

134

APPENDIX A. PLAYER/STAGE

origin [0 0 0 0]

draw a nose on the robot so we can see which way it points

gui_nose 1

estimated mass in KG

mass 1.0

differential steering model

drive "diff"

block

(

points 8

point[7] [-0.0455 0.0390]

point[6] [-0.0450 0.0440]

point[5] [0.0450 0.0440]

point[4] [0.0455 0.0390]

point[3] [0.0455 -0.0390]

point[2] [0.0450 -0.0440]

point[1] [-0.0450 -0.0440]

point[0] [-0.0455 -0.0390]

z [0.037 0.090]

color "gray50"

)

bebot_ir(pose [0 0 -0.03 0.8])

)

File: nbebot.inc

bebot

(

can refer to the robot by this name

name "bebot-1"

pose [1.84812 1.99941 0 0]

report error-free position in world coordinates

135

A.2. WORLD FILE

localization "gps"

localization_origin [0 0 0 0]

wifi(

ip "192.168.0.1"

mac "09:56:45:ae:ae:01"

essid "bebot netwok"

model "simple"

range 1

)

)

.....

bebot

(

can refer to the robot by this name

name "bebot-55"

pose [6.955 1.99623 0 0]

report error-free position in world coordinates

localization "gps"

localization_origin [0 0 0 0]

wifi(

ip "192.168.0.55"

mac "09:56:45:ae:ae:55"

essid "bebot netwok"

model "simple"

range 1

)

)

File: map.inc -

Desc: Useful setup for a floorplan bitmap

Authors: Richard Vaughan

define floorplan model

(

136

APPENDIX A. PLAYER/STAGE

sombre, sensible, artistic

color "gray30"

most maps will need a bounding box

#boundary 1

gui_nose 0

gui_grid 0

gui_move 0

gui_outline 0

gripper_return 0

fiducial_return 0

ranger_return 0.5

)

define zone model

(

color "orange"

size [2 2 0.02]

gui_nose 0

gui_grid 0

gui_move 1

gui_outline 0

insensible to collision and range sensors

obstacle_return 0

ranger_return -1 # transparent to range sensors

)

137

138

Own publications

[1] Peter Janacik, Emi Mathews, and Dalimir Orfanus. Self-organizing data

collection in wireless sensor networks. International Conference on Advanced

Information Networking and Applications Workshops, pages 662–667, 2010.

[2] Yara Khaluf, Emi Mathews, and Franz Josef Rammig. Self-organized

cooperation in swarm robotics. In 14th IEEE International Symposium

on Object/Component/Service-Oriented Real-Time Distributed Computing

Workshops (ISORCW), pages 217–226, California, USA, March 2011. IEEE,

IEEE Computer Society.

[3] Yara Khaluf, Emi Mathews, and Franz Josef Rammig. Swarm robotic time

synchronization for object tracking. In Teresa Higuera, Uwe Brinkschulte, and

Achim Rettberg, editors, Self-Organization in Embedded Real-Time Systems.

Springer, 2012, to appear.

[4] Emi Mathews. Maintaining connectivity of autonomous agents using mobile

ad-hoc robotic network. In Kai Bollue, Dominique Gückel, Ulrich Loup, Jacob

Spönemann, and Melanie Winkler, editors, Proceedings of the Joint Workshop

of the German Research Training Groups in Computer Science, Algorithmic

synthesis of reactive and discrete-continuous systems (AlgoSyn 2010), page

187, Dagstuhl, Germany, May-June 2010.

139

OWN PUBLICATIONS

[5] Emi Mathews. Planarization of geographic cluster-based overlay graphs in

realistic wireless networks. In 9th International Conference on Information

Technology : New Generations (ITNG), Las Vegas, USA, April 2012. IEEE

Computer Society.

[6] Emi Mathews and Hannes Frey. Topological cluster based geographic routing

in multihop ad hoc networks. In The Fourth International Conference on Mo-

bile Ubiquitous Computing, Systems, Services and Technologies, UBICOMM,

October 2010.

[7] Emi Mathews and Hannes Frey. A localized planarization algorithm for re-

alistic wireless networks. In IEEE International Symposium on a World of

Wireless, Mobile and Multimedia Networks (WoWMoM), pages 1–9, Lucca,

Italy, June 2011. IEEE Computer Society.

[8] Emi Mathews and Hannes Frey. A localized link removal and addition based

planarization algorithm. In 13th International Conference on Distributed

Computing and Networking (ICDCN), Lecture Notes in Computer Science,

Hong Kong, China, 2012. Springer.

[9] Emi Mathews, Tobias Graf, and K.S.S.B Kulathunga. A bio-inspired cov-

erage and connectivity maintenance algorithm. In Sixth International ICST

Conference on Bio-Inspired Models of Network, Information, and Computing

Systems, York, UK, December 2011. Lecture Notes of ICST.

[10] Emi Mathews, Tobias Graf, and K.S.S.B Kulathunga. Biologically inspired

swarm robotic network ensuring coverage and connectivity. In IEEE Interna-

tional Conference on Systems, Man, and Cybernetics (SMC 2012), October,

to appear 2012.

[11] Emi Mathews and Ciby Mathew. Connectivity of autonomous agents us-

ing ad-hoc mobile router networks. In Third International Conference on

Networks and Communications, LNICST, Bangalore, India, January 2012.

Springer.

[12] Emi Mathews and Ciby Mathew. Deployment of mobile routers ensuring

coverage and connectivity. International Journal of Computer Networks and

Communications, 4, January 2012.

140

Bibliography

[13] Ameer Ahmed Abbasi and Mohamed Younis. A survey on clustering al-

gorithms for wireless sensor networks. Computer Communications, 30(14-

15):2826–2841, October 2007.

[14] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless

sensor networks: a survey. Computer Networks, 38(4):393 – 422, 2002.

[15] Ronald C. Arkin and Khaled S. Ali. Integration of reactive and telerobotic

control in multi-agent robotic systems. In Third International Conference on

Simulation of Adaptive Behavior: From Animals to Animats, pages 473–478.

MIT Press, 1994.

[16] Xiaole Bai, Santosh Kumar, Dong Xuan, Ziqiu Yun, and Ten H. Lai. Deploy-

ing wireless sensors to achieve both coverage and connectivity. In Seventh

ACM international symposium on Mobile ad hoc networking and computing

(MobiHoc 2006), pages 131–142, New York, NY, USA, 2006. ACM.

[17] Tucker Balch and Maria Hybinette. Behavior-based coordination of large-

scale robot formations. In Fourth International Conference on MultiAgent

Systems, ICMAS-2000, pages 363–364, Washington, DC, USA, 2000. IEEE

Computer Society.

141

BIBLIOGRAPHY

[18] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Gi-

ardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and

V. Zdravkovic. Interaction ruling animal collective behavior depends on

topological rather than metric distance: Evidence from a field study. Pro-

ceedings of the National Academy of Sciences, 105(4):1232–1237, 2008.

[19] Lali Barriére, Pierre Fraigniaud, and Lata Narayanan. Robust position-

based routing in wireless ad hoc networks with unstable transmission ranges.

In Fifth international workshop on Discrete algorithms and methods for mo-

bile computing and communications (DIALM 2001), pages 19–27, New York,

NY, USA, 2001. ACM.

[20] Lali Barriére, Pierre Fraigniaud, Lata Narayanan, and Jaroslav Opatrny. Ro-

bust position-based routing in wireless ad hoc networks with irregular trans-

mission ranges. Wireless Communications and Mobile Computing, 3(2):141–

153, 2003.

[21] M.A. Batalin and G.S. Sukhatme. The design and analysis of an efficient

local algorithm for coverage and exploration based on sensor network de-

ployment. IEEE Transactions on Robotics, 23(4):661 –675, August 2007.

[22] Maxim A. Batalin and Gaurav S. Sukhatme. Spreading out: A local ap-

proach to multi-robot coverage. In Sixth International Symposium on Dis-

tributed Autonomous Robotic Systems, pages 373–382, 2002.

[23] Geoffrey Biggs and Bruce Macdonald. A survey of robot programming sys-

tems. In Australasian Conference on Robotics and Automation, CSIRO,

page 27, 2003.

[24] Ljubica Blažević, Silvia Giordano, and Jean-Yves Le Boudec. Self organized

terminode routing. Cluster Computing, 5(2):205–218, 2002.

[25] A. Bogdanov, E. Maneva, and S. Riesenfeld. Power-aware base station po-

sitioning for sensor networks. In Twenty-third AnnualJoint Conference of

the IEEE Computer and Communications Societies (INFOCOM 2004), vol-

ume 1, March 2004.

[26] Prosenjit Bose, Pat Morin, Ivan Stojmenović, and Jorge Urrutia. Routing

with guaranteed delivery in ad hoc wireless networks. In Third interna-

tional workshop on Discrete algorithms and methods for mobile computing

142

BIBLIOGRAPHY

and communications (DIALM 1999), pages 48–55, New York, NY, USA,

1999. ACM.

[27] Jonathan L. Bredin, Erik D. Demaine, MohammadTaghi Hajiaghayi, and

Daniela Rus. Deploying sensor networks with guaranteed capacity and fault

tolerance. In Sixth ACM international symposium on Mobile ad hoc net-

working and computing (MobiHoc 2005), pages 309–319, New York, NY,

USA, 2005. ACM.

[28] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank Schneider. Co-

ordinated multi-robot exploration. IEEE Transactions on Robotics, 21:376–

386, 2005.

[29] Jiannong Cao, Lifan Zhang, Guojun Wang, and Hui Cheng. SSR: Segment-

by-segment routing in large-scale mobile ad hoc networks. In IEEE In-

ternational Conference on Mobile Adhoc and Sensor Systems Conference,

volume 0, pages 216–225, Los Alamitos, CA, USA, 2006. IEEE Computer

Society.

[30] Dazhi Chen, Jing Deng, and P.K. Varshney. On the forwarding area of

contention-based geographic forwarding for ad hoc and sensor networks. In

Second Annual IEEE Communications Society Conference on Sensor and Ad

Hoc Communications and Networks (SECON 2005), pages 130–141, Septem-

ber 2005.

[31] Dazhi Chen, Jing Deng, and P.K. Varshney. A state-free data delivery

protocol for multihop wireless sensor networks. In IEEE Wireless Com-

munications and Networking Conference (WCNC 2005), volume 3, pages

1818–1823, March 2005.

[32] Dazhi Chen and P.K. Varshney. A survey of void handling techniques for

geographic routing in wireless networks. IEEE Communications Surveys

Tutorials, 9(1):50 –67, Quarter 2007.

[33] Dazhi Chen and Pramod K. Varshney. On-demand geographic forwarding

for data delivery in wireless sensor networks. Comput. Commun., 30:2954–

2967, October 2007.

[34] Dazhi Chen and Pramod K. Varshney. Geographic Routing in Wireless Ad

Hoc Networks, pages 1–38. Springer London, 2009.

143

BIBLIOGRAPHY

[35] Geng Chen, Fabian Garcia Nocetti, Julio Solano Gonzalez, and Ivan Stoj-

menović. Connectivity-based k-hop clustering in wireless networks. In Thirty

fifth Annual Hawaii International Conference on System Sciences (HICSS

2002), volume 7, pages 205–217, Washington, DC, USA, 2002.

[36] Shigang Chen, Guangbin Fan, and Jun Hong Cui. Avoid void in geographic

routing for data aggregation in sensor networks. Int. J. Ad Hoc Ubiquitous

Comput., 1(4):169–178, July 2006.

[37] Ching-Chuan Chiang, Hsiao-Kuang Wu, Winston Liu, and Mario Gerla.

Routing in clustered multihop mobile wireless networks with fading channel.

In IEEE Singapore International Conference on Networks (SICON 1997),

pages 197–211, April 1997.

[38] Howie Choset. Coverage for robotics - a survey of recent results. Annals of

Mathematics and Artificial Intelligence, 31(1-4):113–126, May 2001.

[39] Hedrick C.L. Routing information protocol. RFC 1058 (Historic), June

1988.

[40] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk

graphs. Discrete Mathematics, 86(1-3):165–177, 1990.

[41] Nikolaus Correll and Alcherio Martinoli. Robust distributed coverage using

a swarm of miniature robots. In IEEE International Conference on Robotics

and Automation (ICRA 2007), pages 379–384, 2007.

[42] D. R. Cox and D. V Hinkley. Theoretical statistics. Chapman and Hall

London, 1974.

[43] Koustuv Dasgupta, Meghna Kukreja, and Konstantinos Kalpakis. Topology-

aware placement and role assignment for energy-efficient information gath-

ering in sensor networks. In Eighth IEEE International Symposium on Com-

puters and Communications (ISCC 2003), pages 341–354, Washington, DC,

USA, 2003. IEEE Computer Society.

[44] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.

Computational Geometry: Algorithms and Applications. Springer-Verlag,

second edition, 2000.

144

BIBLIOGRAPHY

[45] Göksel Dedeoglu and Gaurav Sukhatme. Landmark-based matching algo-

rithm for cooperative mapping by autonomous robots. In Distributed Au-

tonomous Robotics Systems, pages 251–260. Springer-Verlag, 2000.

[46] S.S. Dhillon and K. Chakrabarty. Sensor placement for effective coverage

and surveillance in distributed sensor networks. In Wireless Communications

and Networking (WCNC 2003), volume 3, pages 1609 –1614, March 2003.

[47] Marco Dorigo, Elio Tuci, Vito Trianni, Roderich Groß, Shervin Nouyan,

Christos Ampatzis, Thomas Halva Labella, Rehan O’Grady, Michael Bo-

nani, and Francesco Mondada. SWARM-BOT: Design and implementation

of colonies of self-assembling robots. In G. Y. Yen and D. B. Fogel, edi-

tors, Computational Intelligence: Principles and Practice, chapter 6, pages

103–135. IEEE Computational Intelligence Society, New York, 2006.

[48] Miroslaw Dynia, Jaroslaw Kutylowski, Friedhelm Meyer auf der Heide, and

Jonas Schrieb. Local strategies for maintaining a chain of relay stations

between an explorer and a base station (spaa 2007). In Nineteenth annual

ACM symposium on Parallel algorithms and architectures, pages 260–269,

New York, NY, USA, 2007. ACM.

[49] A. Efrat, S. Har-Peled, and J.S.B. Mitchell. Approximation algorithms for

two optimal location problems in sensor networks. In SecondInternational

Conference on Broadband Networks (BroadNets 2005), volume 1, pages 714–

723, October 2005.

[50] Qing Fang, Jie Gao, and Leonidas J. Guibas. Locating and bypassing holes

in sensor networks. Mobile Networks and Applications, 11:187–200, April

2006.

[51] Qing Fang, Jie Gao, and L.J. Guibas. Locating and bypassing routing

holes in sensor networks. In Twenty-third AnnualJoint Conference of the

IEEE Computer and Communications Societies (INFOCOM 2004), vol-

ume 4, pages 2458–2468, March 2004.

[52] Qing Fang, Jie Gao, L.J. Guibas, V. de Silva, and Li Zhang. Glider: gra-

dient landmark-based distributed routing for sensor networks. In IEEE In-

ternational Conference on Computer Communications (INFOCOM 2005),

volume 1, pages 339–350, March 2005.

145

BIBLIOGRAPHY

[53] D. Ferrara, L. Galluccio, A. Leonardi, G. Morabito, and S. Palazzo.

MACRO: an integrated MAC/routing protocol for geographic forwarding

in wireless sensor networks. In Twenty fourth Annual Joint Conference of

the IEEE Computer and Communications Societies (INFOCOM 2005), vol-

ume 3, pages 1770–1781, March 2005.

[54] Gregory G. Finn. Routing and addressing problems in large metropolitan-

scale internetworks. Technical report, University of Southern California,

1987.

[55] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization:

Efficient position estimation for mobile robots. In National Conference on

Artificial Intelligence, 1999.

[56] Jakob Fredslund and Maja J. Mataric. Robot formations using only local

sensing and control. In IEEE International Symposium on Computational

Intelligence in Robotics and Automation (CIRA 2001), pages 308–313, 2001.

[57] Hannes Frey. Geographical cluster based multihop ad hoc network routing

with guaranteed delivery. IEEE International Conference on Mobile Adhoc

and Sensor Systems Conference, pages 509–519, 2005.

[58] Hannes Frey and Daniel Görgen. Planar graph routing on geographical

clusters. Ad Hoc Networks, 3(5):560–574, 2005.

[59] Hannes Frey and Stefan Rührup. Paving the way towards reactive planar

spanner construction in wireless networks. In Kommunikation in Verteilten

Systemen (KiVS), Informatik aktuell, pages 17–28. Springer Berlin Heidel-

berg, 2009.

[60] Hannes Frey and Ivan Stojmenović. On delivery guarantees of face and com-

bined greedy-face routing in ad hoc and sensor networks. In Twelth annual

international conference on Mobile computing and networking (MobiCom

2006), pages 390–401, New York, NY, USA, 2006. ACM.

[61] Holger Freyther, Richard Purdie, and Chris Larson. Bitbake build tool.

Accessed on July 1, 2012.

[62] R. Friedman and G. Kliot. Location services in wireless ad hoc and hybrid

networks: A survey. Technical report, Israel Institute of Technology, Haifa,

Israel, 2006.

146

BIBLIOGRAPHY

[63] Stefan Funke and Nikola Milosavljević. Guaranteed-delivery geographic

routing under uncertain node locations. In IEEE International Conference

on Computer Communications (INFOCOM 2007), pages 1244 –1252, May

2007.

[64] H. Fussler, J. Widmer, M. Mauve, and H. Hartenstein. A novel forwarding

paradigm for position-based routing (with implicit addressing). In IEEE

Eighteenth Annual Workshop on Computer Communications (CCW 2003),

pages 194–200, October 2003.

[65] Ruben K. Gabriel and Robert R. Sokal. A new statistical approach to

geographic variation analysis. Systematic Zoology, 18(3):259–278, September

1969.

[66] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous

areas by a mobile robot. In IEEE International Conference on Robotics and

Automation (ICRA 2001), volume 2, pages 1927–1933, 2001.

[67] Douglas W. Gage. Command control for many-robot systems. Nineteenth

Annual AUVS Technical Symposium (AUVS 1992), Reprinted in Unmanned

Systems Magazine, 10(4):28–34, June 1992.

[68] Deepak Ganesan, Răzvan Cristescu, and Baltasar Beferull-Lozano. Power-

efficient sensor placement and transmission structure for data gathering un-

der distortion constraints. ACM Transactions on Sensor Networks, 2(2):155–

181, May 2006.

[69] Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu.

Geometric spanner for routing in mobile networks. In Second ACM inter-

national symposium on Mobile ad hoc networking & computing (MobiHoc

2001), pages 45–55, New York, NY, USA, 2001. ACM.

[70] J. J. Garcia-Luna-Aceves and Marcelo Spohn. Source-tree routing in wireless

networks. In Seventh Annual International Conference on Network Protocols

(ICNP 1999), pages 273–283, Washington, DC, USA, 1999. IEEE Computer

Society.

[71] V. Genovese, P. Dario, R. Magni, and L. Odetti. Self organizing behavior

and swarm intelligence in a pack of mobile miniature robots in search of

147

BIBLIOGRAPHY

pollutants. In IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS 1992), volume 3, pages 1575–1582, July 1992.

[72] Brian Gerkey, Richard T. Vaughan, and Andrew Howard. The player

project. Accessed on July 1, 2012.

[73] Brian Gerkey, Richard T. Vaughan, and Andrew Howard. The player/stage

project: Tools for multi-robot and distributed sensor systems. In Eleventh

International Conference on Advanced Robotics (ICAR 2003), pages 317–

323, New York, NY, USA, June 2003.

[74] Amitabha Ghosh and Sajal K. Das. Coverage and connectivity issues in wire-

less sensor networks: A survey. Pervasive and Mobile Computing, 4(3):303

– 334, 2008.

[75] Young-Jin Kim Ramesh Govindan, Brad Karp, and Scott Shenker. Lazy

cross-link removal for geographic routing. In Fourth international conference

on Embedded networked sensor systems (SenSys 2006), pages 112–124, New

York, NY, USA, 2006. ACM.

[76] Z.J. Haas. A new routing protocol for the reconfigurable wireless networks.

In IEEE 6th International Conference on Universal Personal Communica-

tions (ICUPC 1997), volume 2, pages 562–566, October 1997.

[77] Sabine Hauert, Laurent Winkler, Jean-Christophe Zufferey, and Dario Flo-

reano. Ant-based swarming with positionless micro air vehicles for commu-

nication relay. Swarm Intelligence, 2(2-4):167–188, 2008.

[78] N. Hazon and G.A. Kaminka. Redundancy, efficiency and robustness in

multi-robot coverage. In IEEE International Conference on Robotics and

Automation (ICRA 2005), pages 735 – 741, April 2005.

[79] N. Hazon, F. Mieli, and G.A. Kaminka. Towards robust on-line multi-robot

coverage. In IEEE International Conference on Robotics and Automation

(ICRA 2006), pages 1710 –1715, May 2006.

[80] Tian He, Chengdu Huang, Brian M. Blum, John A. Stankovic, and Tarek

Abdelzaher. Range-free localization schemes for large scale sensor networks.

In Ninth Annual International Conference on Mobile Computing and Net-

working (MobiCom 2003), pages 81–95, New York, NY, USA, 2003. ACM.

148

BIBLIOGRAPHY

[81] Marc Heissenbüttel, Torsten Braun, Thomas Bernoulli, and Markus Wälchli.

Blr: beacon-less routing algorithm for mobile ad hoc networks. Computer

Communications, 27(11):1076–1086, 2004. Applications and Services in

Wireless Networks.

[82] N. Heo and P.K. Varshney. A distributed self spreading algorithm for mobile

wireless sensor networks. In IEEE Wireless Communications and Networking

(WCNC 2003), volume 3, pages 1597 –1602, march 2003.

[83] Stefan Herbrechtsmeier, Ulf Witkowski, and Ulrich Rückert. Bebot: A mod-

ular mobile miniature robot platform supporting hardware reconfiguration

and multi-standard communication. In Progress in Robotics, volume 44

of Communications in Computer and Information Science, pages 346–356.

Springer Berlin Heidelberg, 2009.

[84] Jeffrey Hightower and Gaetano Borriella. Location systems for ubiquitous

computing. IEEE Computer, 34(8):57–66, August 2001.

[85] Bernhard Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global Po-

sitioning System: Theory and Practice. Springer-Verlag, 1997.

[86] Ting-Chao Hou and Victor Li. Transmission range control in multihop

packet radio networks. IEEE Transactions on Communications, 34(1):38–

44, January 1986.

[87] Y.T. Hou, Yi Shi, H.D. Sherali, and S.F. Midkiff. On energy provisioning

and relay node placement for wireless sensor networks. IEEE Transactions

on Wireless Communications, 4(5):2579–2590, September 2005.

[88] Andrew Howard, Maja J. Matarić, and Gaurav S. Sukhatme. An incremental

self-deployment algorithm for mobile sensor networks. Autonomous Robots

Special Issue on Intelligent Embedded Systems, 13(2):113–126, 2002.

[89] Andrew Howard, Maja J Mataric, and Gaurav S Sukhatme. Mobile sensor

network deployment using potential fields: A distributed, scalable solution to

the area coverage problem. In Sixth International Symposium on Distributed

Autonomous Robotics Systems (DARS 2002), pages 299–308, June 2002.

[90] M. J. Howard Andrew, Mataric. Cover me! a self-deployment algorithm for

mobile sensor networks. In IEEE International Conference on Robotics and

Automation (ICRA 2002), May 2002.

149

BIBLIOGRAPHY

[91] T. Hsiang, E. Arkin, M. Bender, S. Fekete, and J. Mitchell. Algorithms for

rapidly dispersing robot swarms in unknown environments. In Proceedings

of the Algorithmic Foundations of Robotics, pages 77–94, Berlin, Germany,

2002. Springer.

[92] Mika Ishizuka and Masaki Aida. Performance study of node placement in

sensor networks. In Twenty fourth International Conference on Distributed

Computing Systems Workshops (ICDCSW 2004), volume 7, pages 598–603,

Washington, DC, USA, 2004. IEEE Computer Society.

[93] A. Iwata, Ching-Chuan Chiang, Guangyu Pei, M. Gerla, and Tsu-Wei Chen.

Scalable routing strategies for ad hoc wireless networks. IEEE Journal on

Selected Areas in Communications, 17(8):1369–1379, August 1999.

[94] Rajagopal Iyengar, Koushik Kar, and Suman Banerjee. Low-coordination

topologies for redundancy in sensor networks. In Sixth ACM international

symposium on Mobile ad hoc networking and computing (MobiHoc 2005),

pages 332–342, New York, NY, USA, 2005. ACM.

[95] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Vi-

ennot. Optimized link state routing protocol for ad hoc networks. In IEEE

Multi Topic Conference, Technology for the 21st Century Proceedings, pages

62–68, 2001.

[96] M. Joa-Ng and I-Tai Lu. A peer-to-peer zone-based two-level link state

routing for mobile ad hoc networks. IEEE Journal on Selected Areas in

Communications, 17(8):1415–1425, August 1999.

[97] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc

wireless networks. In Mobile Computing, pages 153–181. Kluwer Academic

Publishers, 1996.

[98] Holger Karl and Andreas Willig. Protocols and Architectures for Wireless

Sensor Networks. John Wiley & Sons, 2005.

[99] Brad Karp. Challenges in geographic routing: Sparse networks, obstacles,

and traffic provisioning. In DIMACS Workshop on Pervasive Networking,

May 2001.

150

BIBLIOGRAPHY

[100] Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for

wireless networks. In Sixth annual international conference on Mobile com-

puting and networking (MobiCom 2000), pages 243–254, New York, USA,

2000. ACM.

[101] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile

robots. The International Journal of Robotics Research, 5(1):90–98, April

1986.

[102] Yongjin Kim, Jae-Joon Lee, and Ahmed Helmy. Modeling and analyzing the

impact of location inconsistencies on geographic routing in wireless networks.

SIGMOBILE Mobile Computing and Communications Review, 8(1):48–60,

2004.

[103] Young-Jin Kim, Ramesh Govindan, Brad Karp, and Scott Shenker. Ge-

ographic routing made practical. In Second conference on Symposium on

Networked Systems Design & Implementation (NSDI 2005), pages 217–230,

Berkeley, CA, USA, 2005. USENIX Association.

[104] Young-Bae Ko and Nitin H. Vaidya. Location-aided routing (LAR) in mobile

ad hoc networks. Wireless Networks, 6(4):307–321, July 2000.

[105] Sven Koenig, Boleslaw Szymanski, and Yaxin Liu. Efficient and inefficient

ant coverage methods. Annals of Mathematics and Artificial Intelligence,

31(1-4):41–76, May 2001.

[106] Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. Compass routing

on geometric networks. In Eleventh Canadian Conference on Computational

Geometry (CCCG 1999), pages 51–54, August 1999.

[107] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Worst-case optimal

and average-case efficient geometric ad-hoc routing. In Fourth ACM Inter-

national Symposium on Mobile ad hoc networking & computing (MobiHoc

2003), pages 267–278, New York, NY, USA, 2003. ACM.

[108] Fabian Kuhn, Rogert Wattenhofer, Yan Zhang, and Aaron Zollinger. Ge-

ometric ad-hoc routing: of theory and practice. In Twenty-second annual

symposium on Principles of distributed computing (PODC 2003), pages 63–

72, New York, NY, USA, 2003. ACM.

151

BIBLIOGRAPHY

[109] Fabian Kuhn, Rogert Wattenhofer, and Aaron Zollinger. Asymptotically op-

timal geometric mobile ad-hoc routing. In Sixth International Workshop on

Discrete algorithms and methods for mobile computing and communications

(DIALM 2002), pages 24–33, New York, NY, USA, 2002. ACM.

[110] Fabian Kuhn and Aaron Zollinger. Ad-hoc networks beyond unit disk

graphs. In Joint workshop on Foundations of mobile computing (DIALM-

POMC 2003), pages 69–78, New York, NY, USA, 2003. ACM.

[111] Johnson Kuruvila, Amiya Nayak, and Ivan Stojmenovic. Greedy localized

routing for maximizing probability of delivery in wireless ad hoc networks

with a realistic physical layer. Journal of Parallel and Distributed Comput-

ing, 66(4):499–506, April 2006.

[112] Jarosaw Kutyowski and Friedhelm Meyer auf der Heide. Optimal strategies

for maintaining a chain of relays between an explorer and a base camp.

Theoretical Computer Science, 410:3391–3405, August 2009.

[113] Chris Larson, Michael Lauer, and Holger Schurig. Openembedded – the

build framework for embedded linux. Accessed on July 1, 2012.

[114] D. Laselva, Xiongwen Zhao, J. Meinila, T. Jamsa, J.-P. Nuutinen, P. Kyosti,

and L. Hentila. Empirical models and parameters for rural and indoor wide-

band radio channels at 2.45 and 5.25 GHZ. IEEE International Symposium

on Personal, Indoor and Mobile Radio Communications, 1:654–658, 2005.

[115] Seungjoon Lee, Bobby Bhattacharjee, and Suman Banerjee. Efficient geo-

graphic routing in multihop wireless networks. In Sixth ACM international

symposium on Mobile ad hoc networking and computing (MobiHoc 2005),

pages 230–241, New York, NY, USA, 2005. ACM.

[116] Ben Leong, Barbara Liskov, and Robert Morris. Geographic routing without

planarization. In Symposium on Network Systems Design and Implementa-

tion (NSDI 2006), pages 339–352, 2006.

[117] Ben Leong, Sayan Mitra, and Barbara Liskov. Path vector face routing:

Geographic routing with local face information. In Thirteenth IEEE In-

ternational Conference on Network Protocols (ICNP 2005), pages 147–158,

Washington, DC, USA, 2005. IEEE Computer Society.

152

BIBLIOGRAPHY

[118] Johannes Lessmann, Tales Heimfarth, and Peter Janacik. Shox: An easy

to use simulation platform for wireless networks. In Tenth International

Conference on Computer Modeling and Simulation (UKSIM), pages 410–

415, 2008.

[119] N. Li, J.C. Hou, and L. Sha. Design and analysis of an mst-based topology

control algorithm. In Twenty second Annual Joint Conference of the IEEE

Computer and Communications (INFOCOM 2003), volume 3, pages 1702 –

in1712, March-April 2003.

[120] Xiang-Yang Li, Gruia Calinescu, Peng-Jun Wan, and Yu Wang. Localized

delaunay triangulation with application in ad hoc wireless networks. IEEE

Transactions on Parallel and Distributed Systems, 14:1035–1047, 2003.

[121] Wen-Hwa Liao, Jang-Ping Sheu, and Yu-Chee Tseng. Grid: A fully location-

aware routing protocol for mobile ad hoc networks. Telecommunication Sys-

tems, pages 37–60, 2001.

[122] Kevin M. Lillis, Sriram V. Pemmaraju, and Imran A. Pirwani. Topology

control and geographic routing in realistic wireless networks. Ad Hoc &

Sensor Wireless Networks, 6(3-4):265–297, 2008.

[123] Junlong Lin and Geng-Sheng Kuo. A novel location-fault-tolerant geo-

graphic routing scheme for wireless ad hoc networks. In IEEE International

Conference on Vehicular Technology Conference, volume 3, pages 1092 –

1096, Melbourne, Australia, 2006. IEEE Computer Society.

[124] Errol L. Lloyd and Guoliang Xue. Relay node placement in wireless sensor

networks. IEEE Transactions Computers, 56(1):134–138, January 2007.

[125] Maite López-Sánchez, Francesc Esteva, de Mántaras López de Mantaras,

Carles Sierra, and Josep Amat. Map generation by cooperative low-cost

robots in structured unknown environments. Autonomous Robots, 5(1):53–

61, 1998.

[126] Luke Ludwig and Maria Gini. Robotic swarm dispersion using wireless inten-

sity signals. In International Symposium on Distributed Autonomous Robotic

Systems, 2006.

[127] Maja J. Mataric. Designing and understanding adaptive group behavior.

Adaptive Behavior, 4:51–80, 1995.

153

BIBLIOGRAPHY

[128] J McLurkin and J Smith. Distributed algorithms for dispersion in indoor

environments using a swarm of autonomous mobile robots. Seventh Inter-

national Symposium on Distributed Autonomous Robotic Systems (DARS

2004), 2004.

[129] John M. McQuillan and David C. Walden. The ARPA network design de-

cisions. Computer Networks, 1:243–289, 1977.

[130] Ryan Morlok and Maria Gini. Dispersing robots in an unknown environment.

In Seventh International Symposium on Distributed Autonomous Robotic

Systems (DARS 2004), 2004.

[131] T. Muetze, P. Stuedi, F. Kuhn, and G. Alonso. Understanding radio irregu-

larity in wireless networks. In Fifth Annual IEEE Communications Society

Conference on Sensor, Mesh and Ad Hoc Communications and Networks

(SECON 2008), pages 82 –90, June 2008.

[132] C. Siva Ram Murthy and B.S. Manoj. Ad Hoc Wireless Networks: Archi-

tectures and Protocols. Prentice Hall PTR, Upper Saddle River, NJ, USA,

2004.

[133] Shree Murthy and J. J. Garcia-Luna-Aceves. An efficient routing protocol for

wireless networks. Mobile Networks and Applications, 1(2):183–197, October

1996.

[134] Bob O’Hara and Al Petrick. The IEEE 802.11 Handbook: A Designer’s

Companion. Standards Information Network IEEE Press, 1999.

[135] Joseph O’Rourke. Art Gallery Theorem and Algorithms. New York: Oxford

University Press, 1987.

[136] Eliyahu Osherovich, Vladimir Yanovski, Israel A. Wagner, and Alfred M.

Bruckstein. Robust and efficient covering of unknown continuous domains

with simple, ant-like a(ge)nts. The International Journal of Robotics Re-

search, 27(7):815–831, July 2008.

[137] Anuraag Pakanati and Maria Gini. Swarm dispersion via potential fields,

leader election, and counting hops. In Second international conference on

Simulation, modeling, and programming for autonomous robots (SIMPAR

2010), pages 485–496. Springer-Verlag, 2010.

154

BIBLIOGRAPHY

[138] Jianping Pan, Lin Cai, Y. Thomas Hou, Yi Shi, and Sherman X. Shen.

Optimal base-station locations in two-tiered wireless sensor networks. IEEE

Transactions on Mobile Computing, 4(5):458–473, September 2005.

[139] V.D. Park and M.S. Corson. A highly adaptive distributed routing algo-

rithm for mobile wireless networks. In Sixteenth Annual Joint Conference

of the IEEE Computer and Communications Societies (INFOCOM 1997),

volume 3, pages 1405–1413, April 1997.

[140] David W. Payton, Mike Daily, Regina Estkowski, Mike Howard, and Craig

Lee. Pheromone robotic. Autonomous Robots, 11(3):319–324, 2001.

[141] J.L. Pearce, P.E. Rybski, S.A. Stoeter, and N. Papanikolopoulos. Disper-

sion behaviors for a team of multiple miniature robots. In IEEE Inter-

national Conference on Robotics and Automation (ICRA 2003), volume 1,

pages 1158–1163, September 2003.

[142] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-

sequenced distance-vector routing (dsdv) for mobile computers. SIGCOMM

Comput. Commun. Rev., 24(4):234–244, October 1994.

[143] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-

sequenced distance-vector routing (DSDV) for mobile computers. SIG-

COMM Computer Communication Review, 24(4):234–244, October 1994.

[144] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-demand distance

vector routing. In Second IEEE Workshop on Mobile Computing Systems

and Applications, pages 90–100, February 1997.

[145] Bue Petersen and Jonas Fonseca. Player/stage - player driver implementa-

tion for ersp. Technical report, Department of Computer Science, University

of Copenhagen, 2006.

[146] S.J. Philip, Joy Ghosh, H.Q. Ngo, and Chunming Qiao. Routing on overlay

graphs in mobile ad hoc networks. In IEEE Global Telecommunications

Conference (GLOBECOM 2006), pages 1–6, December 2006.

[147] Sameera Poduri and Gaurav S. Sukhatme. Constrained coverage for mo-

bile sensor networks. In IEEE International Conference on Robotics and

Automation, pages 165–172, New Orleans, LA, May 2004.

155

BIBLIOGRAPHY

[148] Dario Pompili, Tommaso Melodia, and Ian F. Akyildiz. Deployment anal-

ysis in underwater acoustic wireless sensor networks. In First ACM inter-

national workshop on Underwater networks (WUWNet 2006), pages 48–55,

New York, NY, USA, 2006. ACM.

[149] Theodore Rappaport. Wireless Communications: Principles and Practice.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 2001.

[150] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral

model. SIGGRAPH Computer Graphics, 21:25–34, 1987.

[151] Martijn N. Rooker and Andreas Birk. Multi-robot exploration under the

constraints of wireless networking. Control Engineering Practice, 15(4):435

– 445, 2007.

[152] Stefan Rührup. Theory and Practice of Geographic Routing. Bentham Sci-

ence, 2009.

[153] Christian Schindelhauer, Klaus Volbert, and Martin Ziegler. Spanners, weak

spanners, and power spanners for wireless networks. In Fifteenth inter-

national conference on Algorithms and Computation (ISAAC 2004), pages

805–821, Berlin, Heidelberg, 2004. Springer-Verlag.

[154] Karim Seada, Ahmed Helmy, and Ramesh Govindan. On the effect of lo-

calization errors on geographic face routing in sensor networks. In Third in-

ternational symposium on Information processing in sensor networks (IPSN

2004), pages 71–80, New York, NY, USA, 2004. ACM.

[155] Karim Seada, Ahmed Helmy, and Ramesh Govindan. Modeling and analyz-

ing the correctness of geographic face routing under realistic conditions. Ad

Hoc Networks, 5:855–871, August 2007.

[156] Karim Seada, Marco Zuniga, Ahmed Helmy, and Bhaskar Krishnamachari.

Energy-efficient forwarding strategies for geographic routing in lossy wireless

sensor networks. In Second International Conference on Embedded networked

sensor systems (SenSys 2004), pages 108–121, New York, NY, USA, 2004.

ACM.

[157] T.S. Seidel, S.Y. Rappaport. 914 MHz path loss prediction models for indoor

wireless communications in multifloored buildings. IEEE Transactions on

Antennas and Propagation, 40:207–217, 1992.

156

BIBLIOGRAPHY

[158] Roland Siegwart and Illah R. Nourbakhsh. Introduction to Autonomous

Mobile Robots. Bradford Company, Scituate, MA, USA, 2004.

[159] Reid G. Simmons, David Apfelbaum, Wolfram Burgard, Dieter Fox, Mark

Moors, Sebastian Thrun, and H̊akan L. S. Younes. Coordination for multi-

robot exploration and mapping. In Seventeenth National Conference on

Artificial Intelligence and Twelfth Conference on Innovative Applications of

Artificial Intelligence, pages 852–858. AAAI Press, 2000.

[160] Raghupathy Sivakumar, Prasun Sinha, and Vaduvur Bharghavan. Cedar:

a core-extraction distributed ad hoc routing algorithm. IEEE Journal on

Selected Areas in Communications, 17:1454–1465, August 1999.

[161] Ivan Stojmenović. Location Updates for Efficient Routing in Ad Hoc Net-

works, pages 451–471. John Wiley & Sons, Inc., 2002.

[162] Ivan Stojmenovic and Xu Lin. Loop-free hybrid single-path/flooding routing

algorithms with guaranteed delivery for wireless networks. IEEE Transac-

tions on Parallel Distributed Systems, 12(10):1023–1032, October 2001.

[163] Ivan Stojmenovic and Xu Lin. Power-aware localized routing in wireless net-

works. IEEE Transactions on Parallel and Distributed Systems, 12(11):1122–

1133, November 2001.

[164] Ivan Stojmenovic, Mark Russell, and Bosko Vukojevic. Depth first search

and location based localized routing and qos routing in wireless networks.

In International Conference on Parallel Processing, pages 173–182, Wash-

ington, DC, USA, 2000. IEEE Computer Society.

[165] David J. T. Sumpter. Collective Animal Behavior. Princeton University

Press, 2007.

[166] H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly

distributed packet radio terminals. IEEE Transactions on Communications,

32(3):246–257, March 1984.

[167] Andrew S. Tanenbaum. Computer Networks (4. ed.). Prentice Hall Profes-

sional Technical Reference, 4th edition, 2002.

157

BIBLIOGRAPHY

[168] Andry Tanoto, Jia Lei Du, Ulf Witkowski, and Ulrich Rückert. Telework-

bench: An analysis tool for multi-robotic experiments. In First IFIP Con-

ference on Biologically Inspired Cooperative Computing (BICC 06), pages

179–188, 2006.

[169] Héctor Tejeda, Edgar Chávez, Juan Sanchez, and Pedro Ruiz. Energy-

efficient face routing on the virtual spanner. In Thomas Kunz and S. Ravi,

editors, Ad-Hoc, Mobile, and Wireless Networks, volume 4104 of Lecture

Notes in Computer Science, pages 101–113. Springer Berlin / Heidelberg,

2006.

[170] Onur Tekdas, Yang Wei, and Volkan Isler. Robotic routers: Algorithms and

implementation. International Journal of Robotics Research, 29:110–126,

January 2010.

[171] Sebastian Thrun. Particle filters in robotics. In Seventeenth Annual Con-

ference on Uncertainty in AI (UAI), 2002.

[172] Sebastian Thrun. Robotic mapping: A survey. In G. Lakemeyer and

B. Nebel, editors, Exploring Artificial Intelligence in the New Millenium,

pages 1–35. Morgan Kaufmann Inc., San Francisco, CA, USA, 2003.

[173] Godfried T. Toussaint. The relative neighbourhood graph of a finite planar

set. Pattern Recognition, 12(4):261 – 268, 1980.

[174] E. Ugur, A.E. Turgut, and E. Sahin. Dispersion of a swarm of robots based

on realistic wireless intensity signals. In Twenty Second International sym-

posium on Computer and Information sciences (ISCIS 2007), pages 1–6,

November 2007.

[175] D. M. Smith W. N. Venables and the R Development Core Team. An

introduction to r. http://www.r-project.org/, March 2012. Accessed on

July 1, 2012.

[176] I.A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Distributed covering

by ant-robots using evaporating traces. IEEE Transactions on Robotics and

Automation, 15(5):918 –933, October 1999.

[177] Guiling Wang, Guohong Cao, and Thomas F. La Porta. Movement-assisted

sensor deployment. IEEE Transactions on Mobile Computing, 5:640–652,

June 2006.

158

BIBLIOGRAPHY

[178] Guiling (Grace) Wang, Guohong Cao, Piotr Berman, and Thomas F.

La Porta. Bidding protocols for deploying mobile sensors. IEEE Trans-

actions on Mobile Computing, 6:563–576, May 2007.

[179] Thomas Williams, Colin Kelley, and many others. Gnuplot 4.4.4: an inter-

active plotting program. http://gnuplot.sourceforge.net/, November 2011.

Accessed on July 1, 2012.

[180] Alan FT Winfield. Distributed sensing and data collection via broken ad hoc

wireless connected networks of mobile robots. In Fifth International Sym-

posium on Distributed Autonomous Robotic Systems (DARS 2000), pages

273–282. Springer, October 2000.

[181] Brian Yamauchi. Frontier-based exploration using multiple robots. In

Proceedings of the Second International Conference on Autonomous agents

(AGENTS 1998), pages 47–53, New York, NY, USA, 1998. ACM.

[182] Mohamed Younis and Kemal Akkaya. Strategies and techniques for node

placement in wireless sensor networks: A survey. Ad Hoc Netw., 6(4):621–

655, June 2008.

[183] Marco Zúñiga Zamalloa and Bhaskar Krishnamachari. An analysis of unre-

liability and asymmetry in low-power wireless links. ACM Transactions on

Sensor Networks (TOSN), 3(2), June 2007.

[184] Xiaoming Zheng, Sonal Jain, S. Koenig, and D. Kempe. Multi-robot forest

coverage. In IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS 2005), pages 3852 – 3857, August 2005.

[185] Michele Zorzi and Ramesh R. Rao. Geographic random forwarding (geraf)

for ad hoc and sensor networks: Multihop performance. IEEE Transactions

on Mobile Computing, 2(4):337–348, October 2003.

[186] Le Zou, Mi Lu, and Zixiang Xiong. Pager: a distributed algorithm for the

dead-end problem of location-based routing in sensor networks. In Inter-

national Conference on Computer Communications and Networks (ICCCN

2004), pages 509–514, October 2004.

[187] Y. Zou and Krishnendu Chakrabarty. Sensor deployment and target local-

ization based on virtual forces. In Twenty-Second Annual Joint Conference

159

BIBLIOGRAPHY

of the IEEE Computer and Communications (INFOCOM 2003), volume 2,

pages 1293 – 1303, March-April 2003.

160

