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Abstract

The fast-paced growth in cell phone usage experienced over the past few decades
offers a huge potential market for speech enabled mobile services. A suitable
technology is Remote Speech Recognition where the actual recognition task is
carried out on a remote server in the network rather than on the mobile terminal.
Despite the advantages of this client-server architecture, an inherent weakness is
that the communication medium may introduce errors which impair recognition
accuracy.

There are numerous research studies which have been concerned with meth-
ods aimed at the creation of remote speech recognition systems which are robust
to transmission errors. A widely used error concealment technique is to replace
the erroneously received speech feature by an estimate of the “true” transmitted
one and the carrying out of recognition using the resulting point estimate. The
improvement in recognition accuracy afforded by this technique has been limited,
as the estimate does not perfectly match the transmitted value, i.e. is uncertain.

This thesis focuses on modification of the speech recognition framework to
compensate for uncertain features. By reformulation of theclassification problem
we obtain a novel uncertainty decoding rule which, instead of a point estimate,
employs the posterior probability density function of the clean feature. The condi-
tional independence assumption, prevalent in Hidden Markov Model based ASR,
is relaxed to obtain a feature posterior density that is conditioned on the complete
feature vector sequence observed at the output of the communication channel. This
is a more informative posterior than the one conditioned only on the current obser-
vation.

This novel decoding method is used to facilitate a transmission-error robust
remote speech recognition system. It is shown how the clean feature posterior can
be computed for communication links exhibiting either bit errors or packet loss.
The probabilistic model which has been employed combines a priori knowledge
about the clean features and bit reliability of the receiveddata.
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ii Abstract

The proposed techniques are evaluated in experiments measuring recognition
accuracy of small- and medium-vocabulary recognition tasks under various chan-
nel conditions. Recognition results are presented for two types of remote recog-
nition: Distributed and Network Speech Recognition. In thelatter case common
Voice-over-IP codecs are employed.



Kurzfassung

Die Benutzung des Mobiltelefons, die sich in den letzten Jahrzehnten rasant ver-
breitet hat, bietet ein bedeutendes Entwicklungspotenzial für sprachbasierte Dien-
ste an. Dafür ist die Remote-Spracherkennung eine geeignete Technologie, wobei
für die Erfüllung der Erkennungsaufgabe, statt des mobilen Gerätes ein entfer-
nter Server eingesetzt wird. Trotz der Vorteile einer Client/Server-Architektur,
ist die Verschlechterung der Erkennungsgenauigkeit aufgrundÜbertragungsfehler
eine inhärente Schwachstelle dieses Verfahrens.

Die Robustheit der Remote-Spracherkennung gegenÜbertragungsfehler wur-
de durch viele Forschungsarbeiten angesprochen. Eine sehrverbreitete Fehler-
behandlungstechnik basiert auf der Ersetzung des fehlerbehafteten empfangenen
Merkmalsvektor durch einen Schätzwert des fehlerfreien Vektors. Der Schätzwert
wird anschließend für die Klassifikation verwendet. Die durch dieses Verfahren
ermöglichte Qualitätsverbesserung ist jedoch begrenzt, denn der geschätzte Merk-
malsvektor stimmt nicht genau mit dem gesendeten Merkmalsvektor überein, d.h.,
der Schätzwert ist unsicher.

Diese Arbeit konzentriert sich auf diëAnderungen in dem Rahmenwerk der
Spracherkennung, die notwendig sind, um die Unsicherheitsinformation auszuw-
erten. Die neue Darlegung des Klassifikationsproblems ergibt eine neuartige De-
codierregel, die anstatt einen Schätzwert anzuwenden, die Posterior-Verteilungs-
dichtefunktion des gesendeten Merkmalsvektors ausnutzt.Die Annahme, die häu-
fig in der Hidden-Markov-Modellen basierten Spracherkennung gemacht wird,
dass die einzelne Beobachtungen unabhängig voneinander sind, wird hier erle-
ichtert. Somit hängt die Verteilungsdichtefunktion nicht nur von einer Beobach-
tung ab, sondern von der gesamten beobachteten Merkmalsvektorfolge. Dadurch
wird die Aussagefähigkeit der Posterior-Verteilungsdichtefunktion erhöht.

Die neuartige Decodierregel ermöglicht die Realisierungeines gegen̈Uber-
tragungsfehler robusten Remote-Spracherkennungssystems. Es wird aufgezeigt,
wie die oben erwähnte Verteilungsdichtefunktion für Kommunikationsnetzwerke,
die Bitfehlern oder Packetverluste aufweisen, ausgerechnet werden kann. Das
zur Ausrechnung zugrunde gelegte wahrscheinlichkeitstheoretische Modell fasst
sowohl A-priori Kenntnisse über den Merkmalsvektor als auch die Bitzuverlässig-
keitsinformation über die empfangenen Daten zusammen.
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iv Abstract

Die Verbesserung der Robustheit unter verschiedenen widrigenÜbertragungs-
umständen wird für Erkennungsaufgaben mit kleiner und mittlerer Vokabular-
größe experimentell beurteilt. Die Ergebnisse für die beiden Modellen der Re-
mote-Spracherkennung: verteilte und Netzwerk-basierte Spracherkennung sind
dargestellt. Die Letztere setzte für Voice-over-IP verbreitete Sprachcodierungsver-
fahren ein.



Acknowledgments

The research reported in this thesis was carried out at the Dept. of Communications
Engineering, University of Paderborn, Germany. I owe a great debt of gratitude
and appreciation to Prof. Dr. Reinhold Häb-Umbach, my thesis advisor, for giving
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Chapter 1

Introduction

The proliferation of mobile communications technology hasbeen considered to be
the most important lifestyle revolution of the century. While in its early stages of
development the telephone was aimed at oral communication,it now in its new
digital guise provides numerous additional services such as multimedia access,
web surfing, email and instant messaging. Most of the new features need a more
intensive and user-friendly interaction with the user thanis available by using a
small keypad or touch-screen. To facilitate the access to these new services one
has to overcome the limitations of the traditional user interfaces. The extension of
human/machine interface methods to include automatic speech recognition (ASR)
technology has been received with great interest.

At the same time, the widespread adoption of wireless networks offers a huge
potential for deployment of query-based information systems providing constantly
updated travel information, stock price quotations, weather reports, etc. Voice
operation of a device is far more agreeable and effective than manual methods:
This is a key factor in expecting a rapid take up of such speechbased services,
once the technology has been perfected. In addition a speech-enabled interface
permits “hands free” operation and is thus ideal for use by vehicle drivers etc..

To date, in the main, two approaches to a speech-enabled interface have been
proposed. One is the embedding of the ASR technology into themobile terminal
itself. Some basic functionality, e.g. spoken name dialing, is already provided
by most modern cell phones. However, for more complex applications requiring
large-vocabulary ASR, like dictation, the technical limitations are still a hurdle.
Limited computational resources and memory constraints constitute a challenge
to achieving satisfactory recognition accuracy. Nontheless, energy consumption is
strongly dependent on the computational burden and should be low in order to pro-
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2 Chapter 1. Introduction

vide the battery supplied device with long autonomy times. Note that to date, com-
petitive commercial dictation software available on PC platforms requires much
more resources than cell phones can provide. Moreover, since speech recognition
is still an area of dynamic development, costly updates of the cell phone ASR soft-
ware might often be required. This limits the applicabilityof terminal based ASR
solutions to relatively simple tasks.

In the other approach, so-called Remote Speech Recognition(RSR) the ASR
task is hosted on a dedicated server in the communication network infrastructure.
The task of the mobile terminal is reduced to capturing the speech signal, coding
it into a suitable representation, and sending it over the communication channel
to the remote server. In consequence, sophisticated applications like natural lan-
guage understanding, translation and dictation become accessible even on low-end
mobile terminals. The next section provides the necessary background to the two
approaches to RSR: Network-based (NSR) and Distributed Speech Recognition
(DSR). The latter constitutes the recommended approach to speech-enabled ser-
vices in the third generation of mobile networks and it is reviewed in Section 1.2.

In RSR, a parameterization of the speech signal must be transmitted to the
recognition server using the communication medium. The transmission may in-
duce errors in the bitstream of compressed parameters. E.g.in a mobile network
noise, fading, and interference may temporarily corrupt the bitstream inducing bit
errors or, in packet-oriented transmission, erroneous or late datagrams are dropped
resulting in packet loss. If real-time constrains and bandwidth limitations apply,
the errors cannot be corrected by simple mechanisms like data retransmission.

In the context of RSR, this thesis addresses a problem which arrises as a con-
sequence of an imperfect communication medium - the degradation of recognition
accuracy due to transmission errors. Techniques which aim to reduce or even elim-
inate the effect of transmission errors on the quality as perceived by the consumer
of the transmitted data are termed “error concealment” (EC). In classical speech
transmission, where the data consumer is a human, the EC attempts to reconstruct
the signal, i.e. to reconstruct the original signal, so as toreduce the annoying ef-
fects of corrupted bits or lost packets. If the data consumeris a speech recognizer,
as is in RSR, the goal of reconstruction is to reduce the word error rate. Chapter
2 presents the current state of research regarding EC techniques employed in a
distributed ASR scenario.

The main idea of this work is that the speech recognizer, which is in fact a sta-
tistical classifier, can benefit from knowledge about the estimation error variance
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or, in other words, the reliability of the reconstructed speech feature. The re-
constructed speech feature, along with its reliability information, has been termed
“soft-feature” since, initially, the reliability computation was based on “soft-outputs”
from the channel decoder provided to the ASR unit [1]. Chapter 3 presents the ob-
jectives and the organization of this dissertation.

1.1 Remote Speech Recognition

Remote Speech Recognition is built on a client-server architecture. The basic
rationale is to displace the computationally intensive part of ASR to a recogni-
tion server residing in the infrastructure. This allows theusers to share network
resources and facilitates service and technology upgrades. The task of the mo-
bile client is reduced to generating a suitable parameterization of the input speech
signal. Depending on what kind of speech parameterization is performed by the
mobile client, we can distinguish between Network-based Speech Recognition and
Distributed Speech Recognition. These are detailed in the following paragraphs.

1.1.1 Network-based Speech Recognition

In Network-based Speech Recognition the speech signal captured by the termi-
nal is coded into a low bit rate data stream using a network specific conventional
speech coding algorithm such as GSM-EFR (GSM-Enhanced Full-Rate) or AMR
(Adaptive Multi-Rate). The resulting bitstream is transmitted over a dedicated
speech channel to the server. The speech channel comprises specific channel cod-
ing, decoding and the actual physical wireless or wired channel. At the server side,
the speech signal must be first re-synthesized from the received bitstream and sub-
sequently processed using feature extraction in order to obtain speech features for
ASR.

A typical NSR architecture is shown in Figure 1.1.

CLIENT SERVER

ASRSpeech SpeechSpeech
coder channel decoder

Feature
extraction

Figure 1.1: Block diagram of Network-based Speech Recognition
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Note, that some variations from this architecture exist. For example termi-
nals, such as Personal Digital Assistants (PDA’s) , operating in a wireless environ-
ment may use voice-over-ip (VoIP) speech coding and a packet-switched channel.
While the primary goal of speech coding is to achieve high compression rates
with a gracefull degradation of subjective quality, experiments have proven that
the recognition of decoded speech suffers from serious performance degradation
[2]. This is the result of lossy compression and of channel errors. Hence, to avoid
the reconstruction of signal waveform, some authors proposed the so called “bit-
stream based” NSR in which the speech features are directly computed from the
coded speech [3, 4, 5]. Although bitstream based NSR is more robust, it cannot be
used effectively if the transmission occurs over networks using different codecs,
as is often the case nowadays, since this requires transcoding.

In conclusion, as the speech channel has to adhere to bandwidth and low la-
tency constrains, NSR recognition performance is highly dependent on the codec
and network conditions. These aspects have been extensively studied by researchers
and are addressed by DSR.

1.1.2 Distributed Speech Recognition

An alternative approach to NSR is “Distributed Speech Recognition” (DSR). This
eliminates the network dependent speech channel and uses instead a data channel
to send coded features more suitable for recognition. By computing the speech
features at the client side, lossy speech coding/decoding steps are avoided.

Figure 1.2 shows the block diagram of a DSR system. The ASR task is split be-
tween a “front-end” running on the terminal and a “back-end”hosted on the server.
The front-end computes the speech features from the microphone signal. They are
compressed, i.e. quantized in order to reduce the bit rate, and provided with error
protection codes. The resulting low-bitrate data stream issent over an error pro-
tected data channel. At the server side, the back-end has first to decompress the
incoming data stream and mitigate the possible transmission channel errors. The
speech features are then decompressed and used in ASR.

In the year 2000, the Aurora working group of the European Telecommuni-
cations Standards Institute (ETSI) standardized this approach to support the com-
patibility between various networks providing speech services. Section 1.2 gives
an overview of DSR standardization by ETSI and describes theDSR front-end
employed throughout this work.



1.1. Remote Speech Recognition 5

CLIENT SERVER

ASRData
channel

decompressioncompression & Err. concealment

FeatureFeatureFeature
extraction

Front-end Back-end

Figure 1.2: Block diagram of Distributed Speech Recognition

1.1.3 Network-based vs. Distributed Speech Recognition

This section gives a brief comparison between NSR and DSR in terms of recog-
nition word accuracy, bit rates required, noise and transmission error-robustness,
and compatibility with existing devices.

According to numerous studies, recognition word accuracy suffers due to using
a speech codec before feature extraction [3], [2]. The low bit rate representation
of the speech signal is not suitable for speech recognition.Moreover, due to non-
linear transformations, it is difficult to suppress additive ambient noise from the
low bit rate coded speech. This leads to degraded performance in noisy environ-
ments. Hence, the main benefit of DSR is the avoidance of the use of a speech
codec and, instead, performing the feature extraction at the terminal side on the
original waveform.

In [6] it has been shown that the noise and channel robustnessof DSR in a
GSM network is superior to that of NSR using the GSM-EFR speech codec. The
degradation is more pronounced in the case of large-vocabulary systems. They
concluded that DSR provides a viable and robust alternativeto NSR.

Another benefit of the DSR solution is the inherent support for multimodal in-
terfaces and combined speech and data services. The data channel used to transmit
the compressed features can be used as well to send other kinds of additional infor-
mation. In implementing the same services using NSR, an additional data channel
needs to be available, besides the dedicated speech channel.

Unlike speech recognition, some other speech-enabled applications require,
e.g. for validation purposes, the signal waveform to be stored. While reconstruc-
tion of the speech waveform at the receiving end is the main goal of speech cod-
ing, a DSR codec does not necessarily provide this. MFCC features alone are not
enough for speech reconstruction. However, the latest variant of the DSR stan-
dard includes pitch and voicing classes of each frame thus allowing for speech
waveform reconstruction.
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A very important economic advantage of NSR is its compatibility with any
existing speech terminal. Implementation of an additionalcodec, i.e. the DSR
front-end, is not necessary.

NSR and DSR were the subject of an extensive evaluation conducted by 3GPP
(3rd Generation Partnership Project) aimed at selecting the most suitable codec for
“Speech Enabled Services” (SES). The two candidate codecs were the ETSI-DSR
codec and the AMR speech codec. Evaluation results published in [7] confirmed
the advantage of the DSR solution over the network-based solution using the AMR
speech codec in terms of recognition accuracy. The ETSI-DSRcodec became the
recommended codec for SES in 3GPP networks.

In conclusion the main benefits (+) and disadvantages (-) of NSR and DSR are
summarized in Table 1.1.

Table 1.1: NSR vs. DSR

Criterion NSR DSR

Word Accuracy - +
Bit Rate - +
Noise Robustness - +
Transmission Error Robustness - +
Compatibility + -
Multimodality - +
Reconstruction + -,+

1.2 DSR Standardization

1.2.1 Overview of standardization activities

The compatibility between terminals and remote recognizers plays a crucial role in
introducing the benefits of DSR to the wider mobile communications market. The
STQ Aurora DSR Working Group of the European Telecommunications Standards
Institute was formed to develop DSR standards that provide client-server interop-
erability. The standards need to adhere to a series of requirements as follows:
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• Low data transmission rate

• Low computational and memory requirements for implementation in mobile
terminals

• Low latency

• Robustness in noisy acoustic environments

• Robustness to transmission errors

The first DSR standard, the “ETSI standard front-end for DSR”(ETSI-SFE)
[8] was published in February 2000. It defines the front-end processing stages
to obtain speech features using a Mel-cepstrum algorithm and the compression
algorithm to obtain a 4800 bps (bits per second) data stream.The feature extraction
algorithm processes independently each 25 ms length segment of speech sampled
at 8 kHz to generate a feature vector which consists of 13 cepstral coefficients
and the logarithmic energy parameter. The frame overlap is 10 ms. The resulting
feature rate is 100 vectors per second. Operation modes at 11and 16 kHz sampling
frequencies are also provided.

In order to evaluate the performance of the front-end in noisy conditions, an
audio database has been designed and made publicly available through the Euro-
pean Language Resources Association (ELRA) under the name “Aurora 2”. The
database contains connected spoken digits originating from the TIdigits database.
The clean speech signal has been mixed artificially with various real-world noises
at signal-to-noise ratios between -5 and 20 dB.

An evaluation of the front-end in noisy conditions [9] showed that using acous-
tic models trained in clean conditions, the average accuracy over all noisy condi-
tions dropped to 61% (although the word accuracy achieved onthe clean test set
was about 99%). By retraining the acoustic models under “multi-conditions”, i.e.
using both clean and noisy training data, the average accuracy increased to 86%.
However, the main concern was that in a real-world scenario the statistics of the
noise which contaminates the speech signal are not fully predictable at the training
stage. Hence, since the models have not been trained with thespecific noise, this
multi-condition training might improve accuracy only to a small extent. The eval-
uation addressed also the degradation of accuracy due to lowbit rate compression,
but the observed loss of performance was negligible. An overview of the first ETSI
standard for DSR can be found at [10]. The reference acousticmodels and their
WER performance are to be found at [9].
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The next objective of Aurora DSR Working Group was to devise anoise ro-
bust front-end. In [11] the set of performance requirementsfor the so-called “ad-
vanced front-end for DSR” (ETSI-AFE) are specified. According to these, the
new standard must provide at least a 50% performance improvement over the pre-
vious standard on the small-vocabulary task and under high mismatch conditions,
i.e. without multi-condition training. The computationalcomplexity must allow
implementation within the typical resources of a cell phoneterminal and must
therefore not exceed that of the AMR speech codec used in GSM.

For evaluation purposes, two other databases were recommended. “Aurora
3”, a small-vocabulary task consisting of spoken digits collected in noisy environ-
ments (driving vehicle) in five languages: Danish, Finnish,German, Italian and
Spanish. The other is “Aurora 4”, a large-vocabulary database obtained by artifi-
cial addition of noise to the Wall Street Journal (WSJ0) 5000-words corpus.

The ETSI Advanced Front-end for DSR [12] was published in October 2002,
after a selection process. The key component in achieving noise robustness has
been a noise reduction approach composed of two-stage Wiener filtering. The
front-end achieved 53% reduction in word error rate [13] compared to the previous
front-end.

The activity of the Aurora DSR Working Group continued with the develop-
ment of an extended version of the standard which enables thereconstruction of
the speech waveform from speech features and which has better support for tonal
languages. This is the ETSI Extended Advanced Front-end forDSR [14], pub-
lished in November 2003.

Regarding the protocols for the transport of compressed features, the DSR stan-
dards provide a packetization scheme for a circuit-switched data network. Trans-
mission over packet-based network is also possible using the Real Time Protocol
(RTP) payload for DSR recommended by Internet Engineering Task Force (IETF)
in [15].

The experimental evaluations reported in this thesis have been performed us-
ing the ETSI Advanced Front-end for DSR. For this reason an overview of it is
given in Section 1.2.2, however, it is only focused on transmission issues and ro-
bustness to transmission errors. The topic of robustness toenvironmental noise is
not addressed.
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1.2.2 The ETSI Advanced Front-end for DSR

Figure 1.3 depicts the functional blocks of the ETSI Advanced Front-end [12].
The front-end processing is distributed between the terminal side (Terminal front-
end) and the server side (Server front-end). The terminal front-end specifies the
algorithms for computation of the feature vectors from the sampled input speech
(Feature extraction), for quantization of the speech feature vectors into a bitstream
(Feature compression), and the subsequent processing of the bitstream (Bitstream
formattingandError protection) in order to be transmitted through the channel.

The server front-end specifies the inverse processing steps(Bitstream decod-
ing, Feature decompression) required to obtain the feature vectors from the re-
ceived bitstream. In addition, theServer feature processingblock computes the
feature temporal derivatives, i.e. delta and delta-delta features, resulting in the
complete feature vector for ASR, usually having 39 components.

A brief description of each block is given in the remainder ofthis section.

Terminal front-end
Feature extraction

Input
signal

Noise
reduction

Waveform

processing

processing
Cepstrum

Calculation
Blind
equal.

Feature

Feature
compression

Bitstream

Bitstream
formatting,

Error

Error
protection

To

channel

channel

mitigation

decoding,
decompression

Server feature

Server front-end

Back-end
From

Figure 1.3: Block diagram of the ETSI Advanced Front-end forDSR

1.2.2.1 Feature extraction

The feature extraction part consists of:

• Noise Reduction
This is performed basically by a two-stage Wiener filtering.The algorithm
exceeds the scope of this work and therefore is not detailed.
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• Waveform Processing
The portions of signal with a good SNR are further enhanced inorder to
improve the overall SNR.

• Cepstrum Calculation
Computation of cepstral coefficients (e.g. for 8 kHz) consist of: segmenta-
tion into overlapping frames of 25 ms (200 samples), multiplication with a
Hamming window and zero padding to 256 samples, computationof mag-
nitude spectrum, computation of 23-channels Mel frequencyfilter bank out-
puts, computation of the natural logarithm of each Mel filteroutput, and
transformation of logarithmic filter bank outputs into 13 cepstral coeffi-
cients,c0, . . . c12 using Discrete Cosine Transform.

• Blind EqualizationThe cepstrum is normalized in order to increase the ro-
bustness to convolutional distortion, e.g. caused by different microphone
characteristics in training and testing.

The output of the feature extraction block is a 14-dimensional vector consisting
of 13 MFCCs (c1, . . . , c12, c0) and the logarithm of frame energylogE.

1.2.2.2 Feature compression

The feature vector(c1, . . . , c12, c0, logE) is compressed using a Split Vector Quan-
tization (SVQ) schema. This is done by splitting the 14 dimensional feature vector
into 7 two-dimensional subvectorssv1, . . . , sv7 as shown in Table 1.2.

Table 1.2: Splitting and bit allocation scheme of ETSI Advanced Front-end

Subvector sv1 sv2 sv3 sv4 sv5 sv6 sv7

Features c1, c2 c3, c4 c5, c6 c7, c8 c9, c10 c11, c12 c0, logE

M 6 6 6 6 6 5 8

Each subvector is vector-quantized withM bits using its own codebook (which
is provided by the standard). The front-end also computes a Voice Activity Detec-
tion (VAD) flag which is coded using one bit. The resulting 88 bits of two consec-
utive frames (feature vectors), i.e. a frame pair (FP), are completed using a 4-bit
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CRC (Cyclic Redundancy Check) code for error detection purposes. This sums up
to 92 bits (11.5 Bytes) per frame pair.

1.2.2.3 Framing, bitstream formatting and error protection

For transmission over circuit-switched channels the standard defines a multiframe
bitstream format schematized in Figure 1.4. A multiframe consists of a synchro-
nization sequence (2 Bytes), header field (4 Bytes) and 12 frame pairs (138 Bytes).
This totals to 144 Bytes per multiframe and codes a portion of240 ms of speech.
The equivalent bit rate is 4800 bps. At the receiving end, thebeginning of a multi-
frame in the bitstream is detected by means of the synchronization sequence. The
header field contains information about the sampling rate, the front-end employed,
and a multiframe counter. The synchronization and header data fields are critical
and are therefore protected by a (31, 16) extended systematic code which is able
to correct up to three bit errors and to detect up to 7 bit errors.

sync. header FP 1 FP 2 FP 12
· · · 11.5 B11.5 B11.5 B

138 B

144 B

2 B 4 B

Figure 1.4: Multiframe format used for DSR over circuit-switched channels

In a packet-oriented network the transmission of the feature bitstream using
Real Time Protocol (RTP) is envisaged. This is the de facto standard for real-
time media streaming in IP networks. The data payload to be accommodated in a
RTP packet was defined in [15]. Figure 1.5 shows the structureof a data packet.
The first 40 Bytes are allocated for IP, UDP and RTP protocol headers. The
following Bytes represent payload data. The choice of the number of frame pairs
accommodated in a packet is flexible but must be specified in the RTP header. The
choice of the number of frame pairs per packet must be chosen in accordance with
data rate limitations, latency and channel robustness considerations. E.g. If it is
one, only 12 Bytes of the total 52 Bytes are user data whereas the other 40 are
header data. Bandwidth is not efficiently used in this case. On the other hand,
fewer frame pairs per packet provides higher robustness against packet loss, since
less information is lost on any one failure occasion. Regarding latency: it increases
proportionally to the number of frame pairs per packet.
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It is expected that future networks will provide a robust header compression
scheme (RoHC) which will reduce the overhead from 40 to 4 Bytes and therefore
even a packetization with one frame pair per packet will use the bandwidth effi-
ciently. However, according to [7], for current GPRS data networks the usage of 4
or 8 frame pairs per packet is recommended.

IP UDP RTP FP 1 FP 2 FPn· · ·

20 B 8 B 12 B n x 12 B

Figure 1.5: Packetization scheme for DSR over packet-networks. The packet con-
tainsn frame pairs (FP) representing2n feature vectors.

In the case of a circuit-switched network, transmission errors may affect any
of the bits of the multiframe. While the synchronization sequence and the header
are relatively robust to bit errors, the bitstream of features is not. The standard pro-
vides a method for detecting the errors in a frame pair at reception. This consists
of computing and appending a 4-bit CRC to the frame pair before transmission.

In the case of a packet-switched network, e.g. IP network, the packets which
are erroneously received are usually rejected by the low-layer network protocols.
The user either receives a correct packet or does not receiveit at all. The absence
of a packet in the received packet sequence is signalled by the RTP protocol for
error concealment purposes. Note, that packet loss may alsohave other causes, as
will be explained in Chapter 5.

1.2.2.4 Bitstream decoding, Error mitigation

The presence of bit errors is detected by two methods: CRC validation (media-
independent FEC) and a data integrity check (media-specificFEC). On reception
the 4-bit CRC is computed again from the received, possibly corrupted, bits and
compared with the received CRC code. In case of mismatch the whole frame
pair is deemed erroneous. Furthermore, a data integrity check is performed on
the frame pairs sourrounding the erroneous one. The underlying rationale is that
since the errors appear in short series (error bursts), it may be possible that the
neighboring frame pairs are also erroneous but have not beendetected as such by
CRC. This may happen since CRC cannot detect every error pattern. The data
integrity check is a heuristic algorithm based on the continuity of feature vector
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components. The algorithm computes aBad Index Flag(BIF) for each dimension
of the feature vector as:

BIFi =







1 if |xi(t + 1) − xi(t)| > Ti or
|xi+1(t + 1) − xi+1(t)| > Ti+1

0 otherwise,
(1.1)

wherexi, xi+1 are components of any subvector andTi are subvector depen-
dent thresholds estimated on training speech in absence of channel errors. If the
BIF is one for at least two subvectors, the frame pair is deemed erroneous.

To increase robustness against transmission errors, the standard provides a sim-
ple error concealment method based on repetition of the nearest correct frame. If
a sequence ofL frame pairs (2L feature vectors) encoded by the ETSI front-end
for DSR has been corrupted, the firstL feature vectors are replaced by copies of
the last correct feature vector before the corrupted sequence, and the lastL are
replaced by copies of the first correct feature vector after the corrupted sequence.
The sequence of corrupted or lost frames/features is called“error burst” or simply
“burst” throughout this work.

Despite its simplicity, the error concealment method specified by the standard
provides satisfactory robustness to relatively short error bursts, such as the loss of
a single frame pair.

1.2.2.5 Feature decompression

Feature decompression consist of retrieving the multidimensional real-valued fea-
ture vector corresponding to a received bit pattern from theset of codebook cen-
troids. This is a simple inverse mapping operation.

1.2.2.6 Server feature processing

The temporal derivatives delta and delta-delta denote the first and second-order
temporal derivatives of the static feature components (MFCC andlog E) computed
in the terminal front-end. They are computed from the staticfeatures by linear
regression over a limited interval, see (6.24)-(6.25) for more details.
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Chapter 2

Review of error-robustness techniques

2.1 Introduction

In Chapter 1 it has been shown that there are two main approaches to implementing
a remote speech recognition system. The most straightforward approach is NSR
as it can be directly deployed in the existing networks. On the other hand, DSR is
more robust against lossy speech coding, noise and transmission channel errors.

A side effect of using speech channels with NSR is that the existing techniques
for robust digital speech transmission are implicitly used. For example the channel
coding and error concealment algorithm of a GSM speech channel are specified in
the standard [16]. Therefore, the channel robustness of an NSR system deployed
in GSM networks either relies on existing network/codec standard techniques, or
requires the development of additional techniques, often on top of existing ones.

The goal of error-robustness techniques for speech transmission is to minimize
the detrimental effect of errors on the perceptual speech quality, i.e. as it is per-
ceived by the human listener. Such techniques were extensively studied since the
beginning of digital speech transmission and are currentlyregarded as being at a
relatively mature stage. A good reference regarding this topic will be found at [17].
However, it has been argued that the perceptual quality of speech quantified by the
MOS (Mean Opinion Score) and the accuracy of an automatic speech recogni-
tion system WAcc (Word Accuracy) are not directly related. Therefore, robustness
techniques aimed at improving perceptual quality do not necessarily achieve the
optimum performance of ASR. An example is “muting”, a commonly used chan-
nel robustness technique for speech transmission. Muting prevents annoying noise
patterns generated by erroneously received frames by replacing the corresponding
regions of the synthesized waveform by silence. In speech recognition, if muting

15
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occurs within a word, this leads mostly to end-point detection errors [18].

With NSR, transmission transmission errors affect the bitstream of speech
codec parameters. Since one coded frame is usually involvedin synthesizing
several frames of the speech waveform, one transmission error smears over more
speech features rendering them unreliable. In [19] it has been shown that if fea-
tures are extracted directly from the bitstream of codec parameters, this effect is
minimized. Gòmez et al. employed this technique for bitstream-based NSR using
the GSM-EFR speech codec. The proposed transcoding technique exploits the bad
frame indicator (BFI) flag for error mitigation purposes. Although though it even
outperforms DSR in terms of channel robustness, the pitfallis that the BFI flag is
usually not accessible at the server side. Unfortunately this implies modifications
in the network, or, installing the feature extraction system mentioned above in the
“Transcoder and Rate Adaption Unit” (TRAU) where the BFI is available [20].

With DSR, the transmission errors affect the bitstream of compressed features.
An error which corrupts bits of one frame therefore affects only one feature vector,
or even only some of its components, and has no effect on neighboring features.
The error does not spread over more features as is the case with NSR.

This chapter gives an overview of the state of research on channel error-robust-
ness techniques for DSR. They constitute the background forunderstanding the
motivation for, and objectives of, this thesis. Error-robustness techniques for NSR
operating in other that mel-cepstrum domain are not included in this scope, how-
ever, a study concerning the applicability of the proposed techniques to NSR using
VoIP is detailed in Chapter 8.

Error-robustness techniques were categorized in transmitter-driven techniques
and receiver-based techniques [20]. The first category requires direct participation
of the transmitter. The participation can be active, as required e.g. for retransmis-
sion of an erroneous packet, or it can be passive, as in case ofFEC and interleaving.
The receiver-based techniques do not imply any coordination with the sender. The
receiver alone has to detect the errors and to mitigate them:Involved in this are
interpolation, estimation and recognizer-based techniques.

The transmitter-driven techniques are also referred to as error recovery tech-
niques, while the receiver-based techniques are referred to as error concealment
[21].

In the following, the error-robustness techniques are classified into error de-
tection and recovery, error concealment based on “reconstruction” of lost or erro-
neous features, and error concealment based on modificationof the classification
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decision rule, i.e. ASR decoder-based techniques.

2.2 Error detection and recovery techniques

Error detection and recovery techniques rely on transmitting redundant informa-
tion together with the bitstream of the source. This can be either the residual
redundancy present in the source stream after source coding, or, it is artificially
added by channel coding as “controlled redundancy”. The amount of redundancy
that one can afford to transmit depends on specific bit rate and latency limitations.
While in some cases this amount can be enough even to enable error correction, in
other cases it suffices to only detect it. Although by itself error detection does not
directly contribute to channel robustness, it constitutesthe basis for the error con-
cealment. It has been proven that for remote speech recognition applications, error
detection is a very important attribute. The authors of [22]have shown that the
undetected channel errors may have a disastrous effect on recognition accuracy,
but the recognizer can operate with no loss of accuracy with up to 15% channel
erasure, when the erroneous frames are detected and simply erased.

Controlled redundancy can be added by FEC algorithms like block codes and
convolutional codes or by sending same or similar information over different chan-
nels, as multiple description coding (MDC) or layered coding (LC) does. The joint
source and channel coding exploits characteristics of the source to provide better
error protection.

Interleaving does not add redundancy to the signal, but instead reorders the
information before transmission in such a way that error bursts are spread over
several frames. Thus, the loss of information per frame decreases which results
in improved performance of the complementary error recovery or concealment
techniques.

2.2.1 Forward Error Correction

With the Forward Error Correction (FEC) approach, the transmitter generates re-
dundant data which is then combined with the source data and sent. At the re-
ception end this redundancy is exploited to detect or even correct the errors. De-
pending on how the redundant information is created, there are principally two
approaches in existence: linear block coding and convolutional coding.
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In linear block coding the source bit stream is segmented into blocks of length
k and each block is then independently encoded into a codewordof n bits. The
code is referred to as(n, k) code and its error detection and correction capability is
given by the minimumHamming distance, dmin between any pair of code words.
The code is able to:

• detect up tot errors ifdmin ≥ t + 1

• correct up tot errors ifdmin ≥ 2t + 1

Hamming, cyclic, Golay, BCH and Reed Solomon belong to the family of
block codes. In convolutional codes the coder has memory anda coded bit not
only depending on the current input to the coder but also on previous input. The
information of one source symbol is distributed over more encoded bits and there-
fore better protected. Convolutional codes are particularly powerful since their
decoding can provide a reliability measure for each decodedbit. Typical algo-
rithms for decoding convolutional codes are the soft-output Viterbi algorithm [23]
and the Max-Log-MAP [24]. The bit reliability measure can either be used for
error detection, i.e. by imposing a reliability threshold to decide about bit cor-
rectness, as it was done in [25], or for more sophisticated error concealment al-
gorithms like soft-feature reconstruction or ASR decoder-based techniques as will
be shown in Section 2.3.3 and 2.4, respectively. Examples ofchannel coding
using convolutional codes are the speech channel GSM-EFR and the data channel
GSM-TCH/F4.8 in GSM networks [16].

For DSR, block codes are preferred due to their smaller delayand lower com-
plexity as well as their independency between blocks [21]. In Section 1.2.2 we
have seen that the ETSI-AFE algorithm employs a Golay code toprotect the header
of the multiframe and a 4-bit cyclic code to provide error detection to each feature
pair. Tan and Dalsgaard [26] showed that error detection at the frame level, e.g.
4-bit CRC for each frame rather than for each frame pair, can considerably im-
prove the performance of ETSI-AFE error concealment while the bitrate increases
slightly from 4800 to 5000 bps. In their experiments the recognition word accu-
racy (WAcc) was raised from 47.1% to 85.6% under channel conditions with a 2%
bit error rate.

In [22] the authors studied the performance of various linear block codes un-
der fading channels when employing PLP (perceptual linear prediction) features
for recognition. The vector consisted of 5 LSFs (line spectral frequencies) each
quantized with 7 up to 10 bits. For packet-erasure networks,Reed-Solomon codes
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were successfully employed in [27] in combination with interleaving.

2.2.2 Multiple description and layered coding

Multiple Description Coding (MDC) and Layered Coding (LC) utilize independent
channels to deliver sub-streams of encoded source information. The degree of in-
dependence between channels ensures that it is very unlikely that all sub-streams
will be corrupted simultaneously. In MDC the original signal can be reconstructed
to a satisfactory quality from any of the descriptions [28].If more descriptions
are correctly received, they can be combined to increase thequality of the recon-
structed signal.

MDC is suitable when all channels provide the same level of error protection.
An example is the use of two IPv4 channels. However, when channels with un-
equal error protection (UEP) level are used, LC is a better choice. In LC there is
a base layer stream and several enhancement streams. For thereconstruction the
base layer is mandatory while the other layers are optional and can progressively
refine the quality of reconstruction. However, they cannot be used alone. Thus,
the base layer stream is transmitted using the channel providing highest protec-
tion and the other layers using channels with less protection. A possible applica-
tion scenario is remote speech recognition over IP channelsimplementing the next
generation Internet Protocol (IPv6) [29]. This provides priority assignment to the
packets and implicitly UEP.

As a packet-loss recovery technique for voice transmission, MDC has been
proven to outperform FEC techniques based on Reed-Solomon codes [30]. In the
area of remote speech recognition there are also studies in existence about employ-
ing MDC and LC. Zhong et al. [31] suggest the superiority of the MDC technique
in a VoIP-based NSR scenario. Srinvasamurthy et al. [32] proposed an efficient
scalable speech compression method for NSR using layered coding based on a dif-
ferential pulse code modulation (DPCM) with two loops. Theygenerated a coarse
and a fine reproduction of the MFCCs that constituted the baseand the enhance-
ment layer, respectively. The authors of [33] proposed the use of an MDC tech-
nique to transport the bitstream produced by the DSR front-end. They used two
independent channels, one transmitting the sub-stream containing odd-numbered
frames and other, the even-numbered. Since the redundancy between consecutive
frames of the ETSI-AFE front-end is quite high, the full feature stream can be
approximated at the reception from only one sub-stream by a single repetition of
each of its frames.
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2.2.3 Joint source and channel coding

Joint source-channel (de)coding is a research topic that has attracted much recent
attention. Techniques in this category exploit certain properties, often termeda
priori knowledge, of the source. This knowledge can be exploited in the design
of the source coder, as it is done in channel-optimized vector quantization [34], or
can provide “inherent” channel robustness as in channel-constrained vector quan-
tization [35].

Another approach is to allocate the FEC codes of the channel coder according
to the importance of the data. The underlying rationale is that for speech trans-
mission we are actually not interested in minimizing the biterror rate, but the
speech quality degradation. In the case of a Pulse-Code Modulation (PCM) en-
coded speech signal, for example, the most significant bits of the source symbols
can be provided with more controlled redundancy than the less significant bits. The
effect is that the most significant bits are better protectedthan the others thus in-
creasing the overall transmission error robustness. The same amount of bandwidth
available for channel coding can in this way be used more efficiently. Such a tech-
nique is utilized at channel coding of the bitstream generated by the GSM-EFR
speech codec.

In another technique, termed “source-controlled channel decoding” [36, 37],
the residual redundancy left in the bitstream after source coding is then exploited
at the receiver end. In addition to the source redundancy, the information about
the reliability of decoded bits, provided by the soft-output Viterbi algorithm [23],
can be employed resulting insoft decisionor softbit source decoding. Applica-
tions of this technique in robust speech decoding were presented in [38] and [39].
They provided good speech quality over GSM channels down to aC/I (carrier-to-
interference) ratio of 6 dB whereas standard error concealment does badly already
at a C/I of 7 dB.

Publications more focused on the remote speech recognitionapplication are
[25], [27], and [40]. Potamianos and Weerackody were the first to introduce the
concept ofsoft-feature speech decodingin [25]. They used an UEP scheme for
channel coding and computed the bit error probability of each received bit us-
ing the Max-Log-MAP algorithm [24]. Subsequently bit errorprobability was
employed to estimate the confidence of each feature and the ASR decoder was
modified to use that confidence, see also Section 2.4. Boulis et al. [27] proposed
an UEP scheme for DSR over packet channels based on FEC with Reed-Solomon
codes and combined with interleaving. Riskin et al. [40] addressed the issue of
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how to assign unequal amounts of FEC to different sub-vectors to minimize the
word error rate.

2.2.4 Interleaving

Interleaving itself can neither correct nor detect errors.It must be used in con-
junction with other techniques to improve their robustnessagainst error bursts.
This is easy to understand if we consider channel coding employing linear block
codes FEC. In Section 2.2.1 we have seen that each code is capable of correct-
ing/detecting a certain number of errors. If errors occur inbursts it is likely that
the capabilities of the code are exceeded and thus errors propagate to the source
decoding. In general, error recovery and concealment techniques lose their effec-
tiveness when the errors appear in long bursts [20].

By interleaving, the sequence of coded bits is rearranged before transmission
so that error bursts affecting the reordered sequence are converted into random
errors after restoring the original sequence order. This isrelatively easy to imple-
ment by writing the coded bits into a matrix in row and readingfor transmission
in column order. At reception the inverse operation needs tobe carried out.

Interleaving can also be implemented at frame level, i.e. reordering the se-
quence of feature vectors rather than the sequence of bits.

The main disadvantage of interleaving is the latency involved. In the previous
implementation example, the first column can be transmittedonly after the entire
matrix has been filled. Whereas for speech transmission thislatency is crucial, for
remote ASR it is not. A reasonably small amount of latency is,however, desirable
in order to ensure fluent interaction [20].

On the other hand, interleaving does not require extra bandwidth and can be
easily combined with other error recovery and concealment techniques.

The performance of various interleaving schemas in a DSR scenario has been
extensively studied by James and Milner [41].

2.3 Feature reconstruction techniques

In contrast to applications were data integrity is crucial,e.g. File Transfer Pro-
tocol (FTP); speech transmission and remote ASR are more tolerant of transmis-
sion errors. They can still perform satisfactorily using a degree of approximation
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to the original signal when the original itself cannot be recovered. For example
the speech signal synthesized from a moderately corrupted bitstream suffers some
quality degradation but mostly remains intelligible.

Error concealment based on feature reconstruction attempts to create a replace-
ment for the lost or erroneous packet which is then optimal with respect to a spe-
cific criterion. For example, in error concealment for speech transmission one at-
tempts to minimize the perceptual speech quality degradation, whereas in a speech
recognition application the goal is to minimize the word error rate.

In order to know when to perform reconstruction instead of normal source
decoding, the erroneous frames must firstly be identified. Therefore error detec-
tion plays a crucial role in feature reconstruction. Errorscan be detected and/or
corrected by media independent FEC, as discussed in Section2.2.1 or by media-
specific FEC. The latter relies on intrinsic redundancy in the source to decide about
the reliability of data as described in Section 1.2.2.4.

Generally, error detection is carried out on a frame (block of data) basis. That
is, it can ascertain as to whether the block of data has been corrupted or not, but
can neither indicate the number of errors nor their positionin the block. It is
therefore likely that some considerable part of the frame isstill intact and this
can be exploited in the reconstruction process. This is doneby some sub-vector
insertion-based techniques, e.g. [42].

Another powerful source of information to exploit at reconstruction are the
statistical properties of the source signal. The reconstruction of a feature can be
seen probabilistically as an estimation problem. Usually,the unknown value of the
feature vector has to be estimated given a set of previous and/or following reliable
values.

The remainder of this section reviews some widely used feature reconstruction
techniques: insertion, interpolation, and statistics based reconstruction.

2.3.1 Insertion

Originally employed in audio streaming applications [43],this method insertsfill-
in packets in the data stream where losses occurred. In GSM speech transmission it
is known as muting or silence insertion. The filled-in frame can be simply silence
or ambient noise, in which case it does not take into account any signal character-
istics; it can also be an estimated value such as the mean of the error-free training
data or it can be the nearest correctly received frame.
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Boulis et al. [27] investigated usability of insertion methods as EC for DSR.
Three approaches were tested: Replacing the erroneous frames with zeros (similar
to replacement by silence), dropping the erroneous frames from the received se-
quence, and replacing the frame with a mean value computed onthe training data.
The latter gave the best performance and “dropping” the worst performance.

Insertion of a replica of the nearest correctly received frame, or simply “nearest
frame repetition” (NFR), is the method adopted by the ETSI-DSR standard, see
Section 1.2.2. After its publication, researchers have continued to address some
problems manifested by this EC technique. One problem of NFRis that, in spite of
its good performance in concealing short bursts, it fails when longer bursts occur.
This can be attributed to the fact that repetition can exploit only the short-term
self-similarities [43] of the signal. During longer error bursts the signal properties
change and cannot be modeled appropriately by constant values along the burst.
In this situation it is favorable to drop the features from the middle of the long
burst. The method described in [44] has been termedpartial splicingand consists
in repetition applied at the extremities of the burst combined with splicing in the
middle.

Another problem is that the error detection is carried out atthe frame pair level.
In case of error, the whole information content of that framepair is disregarded,
although possibly only one frame of the pair has been corrupted. The authors of
[26] proposed the provision of each frame of the frame pair with CRC codes. They
achieved significant improvement by doing so, however, thiscame at the price of
increasing the required data rate and losing compliance with the standard.

Even if the error detection works satisfactorily at the frame level as proposed
above, some information will still be disregarded. Severaluncorrupted bits within
an erroneous frame may be dropped possibly due to a one bit error. Tan et al. [42]
have shown how this error-free portion of the frame can be exploited. They applied
a data consistency check, similar to that of ETSI-DSR, to each subvector of a frame
and identified the subvectors likely to be corrupted. The subvectors labeled as er-
roneous were replaced by copies of the nearest reliable subvector (subvector-based
EC). Obviously, the data consistency check cannot determine exactly whether the
data has been corrupted or not. However it was shown that thisapproach reduced
the word error rate of a Danish digits task from 9.7% using thestandard EC to
1.5%.



24 Chapter 2. Review of error-robustness techniques

2.3.2 Interpolation

In contrast to insertion techniques, interpolation attempts to create a replacement
for the lost or erroneous feature, which preserves the continuity of the original
feature. Instead of replicating one (or two) feature valuesalong the error burst as
is done by insertion techniques, interpolation models the feature variation between
a start valuex1 which is the last correctly received feature before the burst and
an end valuexT which is the first correctly received feature after the burst. In a
general form the variation is described by a functionf as:

x̂t = f(t;x−B+2, . . . ,x1,xT , . . . ,xT+F−1). (2.1)

x̂t represents the feature at timet relative to the beginning of burst (1 < t < T )
obtained by interpolation usingB reliable values before andF after the burst. The
widely used approach is the Lagrange polynomial interpolation where the function
f is a polynomial of degreeB + F − 1. The polynomial coefficients depend onB

past vectorsx−B+2, . . . ,x1 and onF future vectorsxT , . . . ,xT+F−1.

Milner and Semnani [45] deployed a linear interpolation forDSR in that the
function was a first degree polynomial (F = 1, B = 1):

x̂t = x1 + (t − 1)
xT − x1

T − 1
. (2.2)

The feature trajectory is a straight line joining the pointsx1 andxT . Contrary to
the general expectation that linear interpolation should perform better than repeti-
tion as the interpolated features are have a smaller Euclidian distance to the original
ones, a number of publications [7, 46, 44] proved experimentally that it performs
worse. The study of Tan et al. [42] reveals that it is not the Euclidian distance that
accounts for the word error rate, but thedynamic programming distance.

James and Milner [41] have shown that repetition can be outperformed by
interpolation using a cubic Hermite polynomial function (B + F − 1 = 3). This
ensures not only the continuity of the feature trajectory but also that of the first
derivative [20].

Some particular cases of interpolation are obtained with a0th degree polyno-
mial: ForB = 1, F = 0 andx̂t = x1 we obtain the so called forward repetition,
whereas forB = 0, F = 1 andx̂t = xT we obtain the backward repetition. This
is why other authors [20] considered the EC of ETSI-DSR as belonging to the class
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of interpolation techniques, being a combination of the forward and backward rep-
etition described above.

Another aspect which must be considered is that an interpolation schema gen-
erates a latency ofT − 2+ F frames, withT being the burst length. This is higher
than the latency ofT − 2 frames produced by the EC of ETSI-DSR.

2.3.3 Statistics based reconstruction

The previously presented repetition technique is more or less a crude method to ex-
ploit signal redundancy. If there was no residual redundancy in the coded source
parameters, the consecutive frames would be statisticallyindependent. In this case
the repetition of the nearest correct frame would yield the same word error rate
as randomly generating the fill-in frames. The rationale is that, assuming statisti-
cal independence, the frames within the burst do not depend on the other correct
frames and thus, cannot be inferred from them. However, as itwill be shown
in Section 6.4.1, there exists a large amount of residual redundancy in the DSR
source coded bitstream. The repetition technique models this redundancy by as-
suming that the speech feature changes slowly and thus the nearest received neigh-
bor is a reasonable approximation of the lost feature, i.e.x̂t = x1 on the first half
andx̂t = xT on the second half of the burst.

In [47] this model of redundancy was referred to as a0th order data-source
model. The authors have proven that the word accuracy can be improved using
higher order data-source models. For example given a burst of length2L, in the
1st order model, the sequence ofL reconstructed values of the first half of the burst
depends on the last value before the burstx1. However, unlike with simple repe-
tition, the reconstructed values are not constant along theburst. Their sequence is
the average of all sequences of lengthL of the clean training data prefixed by the
VQ-index ofx1. Thus, to each possible VQ-index there corresponds a sequence
of lengthL stored in a lookup table. The second half of the burst dependson the
xT and is obtained in a similar fashion as the average of sequences suffixed by the
VQ-index ofxT . In the second-order data-source model, the reconstructedvalues
depend on the two nearest correct frames. The approach has been even extended
to aN th order source, however, the memory requirements to store thelookup ta-
bles increase exponentially withN so that a special storage strategy is necessary.
Nontheless, the limited amount of training data may also constitute a problem in
estimating the lookup table if the number of table entries istoo high, as is the case
with N > 1.
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In recent years a number of EC techniques have been developedthat include the
use of statistical a priori knowledge of the data in a more elaborate way. They rely
on a priori information in form of speech models and employ estimation methods
such as Maximum A Posteriori (MAP) or Minimum Mean Squared Error (MMSE)
to reconstruct the clean feature.

MAP estimation has been successfully used to increase ASR robustness against
environmental noise. In a first approach the problem of noisyobservation has been
cast into the missing feature framework, see also Section 2.4.1: the regions of the
spectrogram that exhibit low signal-to-noise ratio are “deleted” resulting in incom-
plete spectrograms. Raj [48] proposed to reconstruct the missing components of
the spectrograms using the surrounding clean speech components. The estimation
criterion was to maximize the likelihood of the reconstructed components condi-
tioned on observed (clean) components and a priori knowledge of clean data.

A similar approach to that described above has been applied as packet loss
concealment (PLC) for DSR, i.e. EC for packet-loss channels, by James et al.
[41]. They estimated the lost feature vectors so as to maximize their likelihood
conditioned on the received feature vectors and on the a priori feature distribution.
This method has been proven as more robust than cubic interpolation, particularly
with regard to long bursts. A drawback was the high computational complexity
due to the matrix inversion operations involved.

Gomez at al. [49] proposed to combine their data-source method [47] with the
MAP estimation to trade-off memory reduction for computational expense.

Besides residual redundancy, another source of information which can be ex-
ploited for reconstruction is the error-free portion of erroneous frames. Subvector-
based repetition utilizes the reliable subvectors of an erroneous vector yielding
superior performance to vector-based repetition. In the first place, the error-free
subvectors must be identified. This is relatively easy in a wireless communica-
tion scenario if the reliability information about each received bit is available as
a complementary output of the channel decoder. Source decoding employing bit
reliability has been addressed in a number of studies [39, 38, 37, 22, 46, 50]. Fin-
gscheidt and Vary [39] termed their approach to EC for speechtransmissionsoft-
bit speech decoding. Instead of “hard”-decoding the speech waveform from the
possibly erroneous received bits of coded speech parameters they softened the de-
coding by computing the MMSE estimate of the transmitted speech conditioned by
previous hard-decoded speech parameters. Conditioning onmore than one hard-
decoded speech parameter allowed for modeling the dependencies between con-



2.4. ASR decoder-based techniques 27

secutive speech coded frames.

Peinado et al. [46] deployed a similar technique for DSR in that the source and
channel were jointly modeled by a Hidden Markov Model (HMM),as depicted
in Figure 2.1. The transmitted speech features, which are unobservable at the

replacements

yt−1 yt

xt−1 xt

received

transmitted

Figure 2.1: Source-channel modeled by HMM

receiver end, were represented by the hidden statesxt of the HMM. The obser-
vations were the received, possibly corrupted speech featuresyt. The probability
of observing the received parametersyt conditioned on each statext was com-
puted using the bit reliability, similarly to Section 6.3 ofthis work. Subsequently,
the computation of the posterior probability density of thetransmitted speech fea-
tures, here the model states, conditioned on the received one, here the observation
sequence, reduces to one of the three fundamental problems of HMM theory [51].
This can be solved by theforward-backward(FB) algorithm. Knowing the feature
posterior density, the MMSE estimate can be taken as the reconstructed feature:

x̂t = E[xt|y
T
1 ] =

∫

xtp(xt|y
T
1 )dxt. (2.3)

Other approaches exploiting bit reliability for reconstruction are given in [25,
1, 22, 50]. However, they do not only reconstruct the erroneous feature but also
provide it with a measure of reliability which is the variance of the estimator. This
assembly has been initially termedsoft-featurein [25]. As ASR decoding with
soft-features requires modification of the speech recognizer, this is in fact within
the scope of the next Section.

2.4 ASR decoder-based techniques

In classical speech transmission the recipient of the transmitted data is the human
listener. The acoustic signal is captured by a microphone atthe sending terminal
end, parameterized and transmitted over a digital channel to the receiver. After
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decoding, the resynthesized waveform is fed into the loudspeaker to generate a
pattern of acoustic pressure waves which can be perceived bythe human ear. Here,
the goal of EC is to reconstruct the erroneous data such that the annoying effects
of corrupted bits or lost packets [52] are reduced.

The feature reconstruction EC techniques for DSR act in a similar fashion, i.e.
they reconstruct the lost or erroneous features, however, their goal is to reduce
the degradation of recognition accuracy due to transmission errors. Unlike speech
transmission where the only possible input to the human listener is the acoustic
wave generated by the resynthesized waveform, in ASR the data recipient is a sta-
tistical classifier. In addition to the reconstructed speech feature, the classifier can
also benefit from knowledge about the quality of the reconstruction. The recon-
structed features are actually estimates of the true valuesand thus, reliable only
to a restricted extent. Their contribution to the classification decision must be ac-
cording to their reliability. Therefore, the feature deemed totally unreliable must
produce no discrimination whereas the contribution of the reliable features is kept
unchanged.

So far there three approaches to modification of the ASR decoder (classifier)
have been proposed to take into account the feature reliability.

One approach is the missing feature technique (MFT). In thisapproach the
reliability of a feature is quantified on two levels: either reliable or not. The reliable
features are used in the conventional way whereas the unreliable ones have no
contribution to recognition hypothesis, i.e. they are marginalized.

Another approach is the use of weighted Viterbi decoding. Here reliability is
modeled by a weighting factor, usually denoted byγ, which takes values at the
interval[0; 1]. The modification of an HMM based ASR decoder consist in raising
the HMM state conditioned observation probability to the power ofγ. Thus, a reli-
able feature hasγ = 1 and its observation probability does not change. In contrast
to this, a completely unreliable feature hasγ = 0 and the observation probability
becomes1 independent of the HMM state and therefore does not produce discrim-
ination between word hypotheses.

A relatively new approach termed “Uncertainty Decoding” (UD) has been re-
cently investigated with the goal of attaining noise-robust ASR. In contrast to the
other two approaches it involves a probabilistic formulation and avoids heuristics.

This section gives an overview of employing the first two methods in the con-
text of channel-robust DSR. Uncertainty decoding constituted the starting point of
the present work and had not been directly proposed as EC for DSR prior to our
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work [50]. Therefore, an overview of the state of research onASR using uncer-
tainty decoding is first given in Section 4.2.

2.4.1 Missing Feature Theory

The Missing Data Theory (MDT), or Missing Feature Technique(MFT) in the con-
text of speech recognition, has increasingly received researchers’ attention over the
past decade. The “missing data” problem has been initially examined in computer
vision [53] where objects may be occluded by others such thatonly incomplete
evidence is available for their identification. A similar problem occurs when parts
of the spectro-temporal representation of the target speech signal are ‘occluded’
by environmental noise, by other competing speech signals or even by some band-
limiting transfer function. Numerous research studies have investigated the appli-
cation of MDT to noise-robust ASR and more recently to channel-robust ASR.

The fundamental idea of MFT for noise-robust ASR is to treat the noise dom-
inated regions of the spectrogram as missing or unreliable [54]. Consequently,
the classification relies solely on the regions dominated bythe target speech. This
approach requires solving a two-fold problem; on the one hand, the unreliable re-
gions in the spectral representation must be detected and, on the other hand, the
classification algorithm must be modified to handle incomplete data.

The identification of (un)reliable spectrogram regions given an additive mix
of speech and noise is still an open research topic. A widely adopted solution is
to evaluate the instantaneous SNR and declare reliable those regions where the
local SNR exceeds some predefined threshold. The success of this approach is
highly dependent on the accuracy of the SNR estimation. In a DSR system where
the speech features such as Mel frequency cepstral coefficients are transmitted
through the channel, the potential corruption due to the imperfect channel occurs
in the time-cepstral domain. Identifying the missing regions is straightforward for
packet-oriented transmission where the lost packets generate contiguous missing
regions in the time-cepstral domain. When bit errors occur instead of packet loss,
the unreliable regions can be identified as the feature vectors/subvectors failing
the FEC check. Another possibility is to derive the feature reliability from the bit
reliability if the latter is available as a by-product of soft-output channel decoding.

Regarding the second issue of MFT, i.e. employing the reliability of the data
at the decoding, two solutions have been proposed [54, 48]:data imputationand
marginalization. The former is in fact a feature reconstruction technique since it
estimates the unreliable regions using a feature posteriordensity conditioned on
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those of reliable regions and on the recognition hypothesis. The latter modifies the
computation of the observation probability by consideringonly the reliable parts
and integrating over, or marginalizing, the unreliable parts.

Potamianos and Weerackody applied MFT to EC for DSR over wireless chan-
nels in [25]. They coded each component of the feature vectorseparately into a
binary codeword and used the Max-Log-MAP algorithm [24] to obtain the poste-
rior probability for each bit of the decoded codeword. The bit was declared unre-
liable if its posterior probability was below a predefined threshold. Subsequently,
the feature reliability was obtained by the use of the following heuristic: if the
first and second bit of the codeword (in the sense of most significant bits) were
unreliable, the complete feature component was deemed unreliable. Considering
the feature vector as composed of reliablexrt and unreliable componentsxut,
i.e. xt = (xrt,xut), the computation of the HMM state dependent observation
probabilityp(xt|st) was replaced by:

p(xrt|st) =

∫

p(xt|st)dxut =

∫

p(xrt,xut|st)dxut. (2.4)

wherest is the HMM state andp(xr,t,xu,t|st) is the observation probability
of the full feature vector, stored in the acoustic models.

Endo et al. [55] applied MFT to robust speech recognition over IP networks.
They detected the packet (feature) loss by means of the sequence number in the
RTP transport protocol header. The lost features were considered to have no reli-
able components resulting in an observation probability ofone, cf. (2.4). The work
claimed that marginalization is more effective than data imputation and splicing in
the case of high packet loss ratio and long bursts.

James et al. [56] compared MAP estimation, cubic interpolation and marginal-
ization in a packet-loss DSR environment. The results suggested that marginaliza-
tion is more beneficial than the other two techniques, especially for long bursts.
Thus, they concluded that ASR decoder-based techniques outperform feature re-
construction ones. They also investigated the problem of inferring the reliability of
the temporal derivatives of the feature vector which are computed at the server side
from the received static components. The best results were achieved by computing
the derivatives from interpolated static components and performing marginaliza-
tion of the feature only if its static components were lost.
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2.4.2 Weighted Viterbi

Quantifying reliability with only two levels, reliable andunreliable, as it is done
by MFT is disadvantageous for two reasons. Firstly, the features that are super-
ficially damaged, though not enough to be declared corrupt, are used as if they
were error-free (“true”) transmitted features. Secondly,features declared uninfor-
mative, e.g. because some of their bits were considered erroneous, may contain
useful information in the other bits which is lost in this way.

From a probabilistic perspective, the estimate of a featureis completely unre-
liable, or uninformative, if it is statistically independent of the “true” sent feature.
This leads to the equality of the feature prior density with the posterior density of
the sent features. The estimate is fully reliable if the conditioned density (poste-
rior) is a Dirac delta function. In practice, however, intermediate situations occur
in that the posterior density has an arbitrary form denotingthat the estimate is nei-
ther fully reliable nor completely uninformative. For example in [57, 58] it has
been found experimentally that in case of the NFR approach the estimated feature
exhibits a high confidence level of being correct for the firstand last frames of a
burst, i.e. for those frames close to one burst end, but reliability decreases towards
the middle of the burst. Clearly, a continuous measure of reliability would be more
appropriate than a binary reliability indicator.

Even in packet-loss networks where the features are effectively lost, their es-
timatex̂t may become a useful source of information when considering the inter-
frame correlation. This information is neglected by marginalization. In [59] it
has been confirmed that repetition is slightly better than marginalization for short
bursts, since in this case the NFR estimate is likely to be reliable.

In the weighted Viterbi approach the reliability of a feature is mapped onto a
continuous parameterγt taking values in the interval[0; 1]. This allows a better
modeling of intermediate situations in that the estimate isneither fully reliable nor
completely uninformative.

This reliability is utilized in the speech recognizer to weigh the contribution of
speech features to the acoustic likelihoods. This can be done by modification of
the ASR decoder by raising the HMM state dependent observation probability to
the power ofγt:

p̂(xt|st) = [p(x̂|st)]
γt . (2.5)

The indext denotes that the exponential weighting factor varies with time.
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In the view of Eq. 2.5 the unreliable observations, for whichγt ≃ 0, yield an
observation probability close to one, independent of the statest. In this way their
contribution to the word hypothesis is neutralized. As reliability increases,γt tends
to 1 and the observation probability gains discriminatory value.

A weighted Viterbi algorithm was proposed in [60] to increase the robustness
of ASR against additive and convolutional noise. The basic idea was to take into
consideration the reliability in noise canceling (spectral subtraction) by weighting
each frame according to its segmental SNR. With acoustic models having a single
Gaussian per state and diagonal covariance, the exponential weighting factor has
been computed separately for each state as:

γst
=

1

D

D
∑

d=1

σ2
st,d

σ2
st,d + V ar[x̂t,d]

, (2.6)

whereD is the dimensionality of the feature vector,σ2
st,d is the variance of

the Gaussian of statest andV ar[x̂t,d] denotes the variance of the clean speech
estimate. Obviously, in the clean conditions the clean speech estimate is nearly
perfect and therefore the estimation variance tends to zeroand the weighting factor
equals one.

Potamianos and Weerackody [25] proposed to modify eachmth component of
the Gaussian mixture independently:

p̂(xt|st) =

M
∑

m=1

cm

D
∏

d=1

[N (x̂t; µm,d, σ
2
m,d)]

γt,d , (2.7)

cm being the weight andµm,d, σ
2
m,d the Gaussian mean and variance of the

mth mixture component of the statest. In order to obtain the factorγt,d they
defined first a confidenceCt,d of each feature component as a function of the
estimation varianceσ2

x̂t,d
and the a priori feature varianceσ2

apriori,d:

Ct,d = 1 −
σ2

x̂t,d

σ2
apriori,d

(2.8)

The weighting factorγt,d has been computed by smoothing the confidence
according to:
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γt,d =
α + Ct,d

α + 1
, (2.9)

where the smoothing constantα has been tuned to obtain best performance on
the test set.

Eq. 2.8 states that if the estimation varianceσ2
x̂t,d

equals the a priori vari-

anceσ2
apriori,d, the confidence becomes zero, denoting uninformative feature. In

contrast, if the variance of the estimator is close to zero, i.e. nearly perfect esti-
mate, the confidence approaches one. In order to compute the estimation variance
Potamianos and Weerackody employed the bit error probabilities delivered by the
channel decoder, similarly to Eq. 2.3 but computing the centered second order
moment of the estimator.

Bernard and Alwan [61] proposed to use the bit probabilitiesof the channel
decoder to compute the weighting factor in a different way. They postulated that
a good measure of reliability is the relative differenceβ of the firstd1 and second
d2 smallest Euclidian distances between any quantization codebook centroid and
the received vector:

β =
d2 − d1

d1
. (2.10)

This relative Euclidian distance difference has been subsequently mapped to
the factorγt by mean of a sigmoid function:

γt =
1

1 + e−21.8(β−0.3)
(2.11)

Delaney proposed a stochastic weighted Viterbi recognition in [62] extending
the idea given in [63]. Although classified as a weighted Viterbi approach, it is
rather an uncertainty decoding approach [64, 65]. Instead of weighting the output
probability Delaney modified the variance of the original acoustic models by the
estimation variance, in this case the variance of interpolation error. This was com-
puted prior to recognition as a function of the burst length and the relative position
of the missing feature in the burst. Additionally, an experimentally tuned scaling
factor has been applied to the estimation variance.
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Bernard and Alwan [22] employed the weighted Viterbi algorithm for packet-
loss concealment in DSR. They proposed to compute the exponential weighting
factor based on the time auto-correlation of features. The weighting factor of the
dth component of the feature vector has been computed as:

γt =
√

ρd(t − tc), (2.12)

ρd(t) denoting the normalized auto-correlation function andt − tc the dif-
ference between the current time instance and that of the last correctly received
feature.

A comprehensive study of the performance of weighted Viterbi decoding in a
packet-network environment has been carried out in [57, 66]. The work investi-
gated three methods of obtaining the weighting factorγt during the loss burst.

In a first approachγt was constant along the burst. The results on the Aurora
3 task (multi language small vocabulary speech database) ina DSR environment
with packet loss have shown that the optimal value ofγt depends strongly on the
burst length. This dependency has been accounted for in the second approach
where the weighting factor varied along the burst. The variation rule was chosen
heuristically such thatγt is close to one at the beginning and end of the burst and
decreases toward the middle of the burst. Linearly and exponentially decreasing
laws have been experimented with, with the latter giving thebest performance.
Considering for notational simplicity that the last received frame before the burst
has the indext = 1 and the first after the burst has the indext = T , i.e. a burst of
lengthT , the exponential variation law is given by:

γt =

{

αt−1 for t = 1, . . . T
2

α(T−t) if t = T
2 + 1, . . . T.

(2.13)

The parameterα has been given various values between0 and1 to find the best
setting. The best results were obtained withα = 0.8 consistently for all languages.

In the third approach they employed a feature vector component dependent
variation law for the weighting coefficient rather than sameone for all components.
When weighting was performed separately for each component, the results were
slightly better, however, with the drawback of increased computational load.

Cardenal et al. [66] attempted to avoid empirical choice of the variation rule
and investigated a “probabilistic data-driven” approach.The weighting factor has
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been estimated in advance as the cumulative distribution function of the Euclidian
distanced(x1,xt) during the first half of the burst:

γt = P (d(x1,xt) < δ), t = 1, . . . ,
T

2
(2.14)

The parameterδ has been obtained by assuming a 95% confidence interval of
the first repetition, i.e.γ2 = 0.95, and then solving the equationP (d(x1,x2) <

δ) = γ2. Interestingly, they observed that the weighting factor has the same vari-
ation in the first 4 frames of a burst for all languages of Aurora 3, but exhibits a
language-dependent variation in the subsequent frames.

2.5 Discussion

Each error concealment technique presented in this chapterhas its own advan-
tages and disadvantages. Choosing the most appropriate onecertainly depends on
particular requirements of the DSR system. Beside the word error rate, a perfor-
mance comparison has to also consider other factors, e.g. bit-rate, computational
complexity, and compatibility with the ETSI-DSR standards. Such performance
comparison of some error-robustness techniques are given in [21].

Comparisons of decoder- based EC techniques in terms of WER performance
were presented in our publication [59] and in the chapter “Error Concealment” of
the more recent [52]. Several experimental results using various EC techniques can
be found in the extensive work of Peinado [20]. Note, however, that the absolute
word error rates may depend from site to site due to inherent variations in training
of the acoustic models, different recognition engines, possible specific details of
numerical implementation, and differing alignment of the error pattern with the bit
stream of speech features. This obviously makes an accuratecomparison between
results obtained by different research groups difficult.

According to [21], in a DSR scenario over GSM under adverse channel condi-
tions, a Multiple Description Coding (MDC) scheme using twodescriptions, was
ranked first in terms of WER performance. The feature extraction of ETSI-DSR
was used and the descriptions were the bit streams of odd- andeven-numbered
frames, respectively. In spite of its best performance, thetechnique is not compat-
ible with the ETSI standard for DSR as it needs a bit rate of 5200 bps (2600 bps
per stream), two uncorrelated channels, and another payload type. The MMSE es-
timation using bit reliability and assuming the first-orderMarkov source [67] (also
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denoted MMSE1 in the present work) achieved the second best performance fol-
lowed by MAP estimation. These are compatible with the ETSI standard for DSR
however the drawback is a high computational load at the server side of the DSR
system. Frame reconstruction methods based on repetition have a lower compu-
tational load, such as subvector repetition, frame-level repetition and frame-pair
repetition of the ETSI-DSR standard. Unfortunately, due tothe simplified source
model the performance is degraded, especially under channel conditions exhibit-
ing longer error bursts. Performance can be further enhanced if long bursts are
avoided by interleaving, but the compatibility with the standard is lost as the inter-
leaved data stream is transmitted. Decoder-based techniques such as marginaliza-
tion and weighted Viterbi have been outperformed in this scenario by the MMSE
feature reconstruction technique.

In a DSR scenario over a packet channel, the marginalizationand weighted
Viterbi deliver better performance than the feature reconstruction techniques, in-
cluding MMSE. Chapter 7 discusses the possible reasons for this and gives exper-
imental results.



Chapter 3

Objectives and organization of this thesis

In remote speech recognition the errors occurring during transmission of the speech
parameters from the speech capturing unit, e.g. cell phone,to the recognition
server cause loss of recognition accuracy. The goal of errorconcealment tech-
niques is to minimize the degradation and thus, increase thechannel error-robust-
ness of the remote speech recognition system. An overview ofrecent channel
error-robustness techniques has been given in Chapter 2.

The decoder-based techniques reviewed in Section 2.4 are particularly interest-
ing for remote speech recognition purposes. They either leave out the erroneous
features from classification, as MFT does, or, modify their discrimination capabil-
ities, as in weighted Viterbi. While these approaches are more or less heuristic, the
first objective of this work is to provide a probabilistic well-founded framework
for classification with unreliable features. This can be achieved by reformulation
of the conventional Bayesian framework for ASR. A similar reformulation has
been done in Bayesian Predictive Classification [68] where,however, the uncer-
tainty is not in the observations but in the parameters of theacoustic model. To
this end, Chapter 4 reformulates the conventional Bayesianframework of speech
recognition such that the reliability in the speech features appears explicitly in the
likelihood maximization expression (4.2). The reliability in the feature is mod-
eled by the feature posterior density which denotes the probability density of the
unobserved clean feature conditioned on all observed unreliable features. The re-
formulation leads to a novel decision rule which requires the feature posterior at
each time instance. Hence, instead of evaluating the acoustic probability in a sim-
ple point estimate of the clean feature as in conventional ASR, the uncertainty
decoding rule leads to an integration of the acoustic probability over the feature
space. Here, special assumptions about the form of the feature posterior have to
be made in order to obtain a numerically feasible solution.

37
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A key element of the novel decision rule is the feature posterior. In order to
properly estimate it in a remote speech recognition scenario, i.e. make it most
informative, there are two sources of knowledge which can beexploited. One is
the reliability of the received data in terms of individual bit error probabilities of
the compressed feature, and the other is the redundancy in the feature sequence.

Chapter 5 aims at estimating data reliability, i.e. bit reliability information, in
each of the two representative network types: a circuit-switched network where
the errors consist of corrupted bits and a packet-switched network where the er-
rors occur when the network drops contiguous sequences of bits, i.e. data packets.
In [50], which built upon the concept of softbit speech decoding introduced by
Fingscheidt and Vary [39], the bit reliability informationof the channel decoder
was used to compute the posterior probability of the transmitted bit pattern. This
was then employed in the computation of feature posterior. In practice, the as-
sumption that bit reliability information computed by the communication network
channel decoder is available for reconstruction of corrupted features at the DSR
back-end, is arguable. The channel decoder might not compute or at least not out-
put this information, or, the transmission of the bit reliability information from the
channel decoder to the DSR back-end requires bandwidth which one might not be
willing to dedicate. Thus, another objective of this work isto explore methods to
estimate the data reliability at the DSR back-end without requiring the soft-output
information of the channel decoder.

Furthermore, the intention is to obtain an unified error concealment approach
by separating the network-dependent data reliability estimation from the network-
independent uncertainty decoding framework. This is an important feature since
in the new generation of network protocols IPv6 or the existing UDP-Lite, bit
errors and packet loss may coexist. It would therefore be beneficial if the error
concealment method could deal with both types of error.

Chapter 6 describes how to estimate the feature posterior assuming models of
various complexity for the redundancy in the feature vectorsequence. The goal
is to find a model which ensures a good trade-off between computational com-
plexity and ability to realistically reproduce the redundancy. The simplest model
assumes a memoryless source, i.e. does not utilize the temporal correlation be-
tween features. This assumption has been widely used in other works on uncer-
tainty decoding regarding noise robustness, see Section 4.2. However, it yields
poor performance when the errors affect the whole feature vector at once, as in
case of packet loss. Employing the temporal correlation is expected to perform
better. Furthermore, models including first and second order temporal derivatives
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of the static feature components are studied.

The performance of a DSR system employing the proposed uncertainty de-
coding is evaluated in Chapter 7. The transmission from client to server is simu-
lated for both bit-error and packet-loss network scenarios. The recognition tasks
comprise a small- and medium-vocabulary task, Aurora 2 and WSJ, respectively.
The word error rates versus transmission quality are evaluated using the proposed
method. For comparison purposes, the word error rates achieved by some repre-
sentative techniques reviewed in Chapter 2 are given.

Chapter 8 extends the application of the novel decoding ruleto an NSR sys-
tem where the coded speech is transmitted using voice-over-IP. Since most speech
codecs used in voice-over-IP are provided with Packet Loss Concealment (PLC)
algorithms which deliver the clean speech estimate in case of packet loss, the fea-
ture vectors can be computed straightforwardly. However, it is expected that con-
sidering the feature vector estimation variance caused by imperfect clean speech
estimation, i.e. by PLC, the recognition performance can beimproved.

Chapter 9 is dedicated to computational complexity issues.Employing the un-
certainty decoding rule incurs a slowdown of the recognition process for at least
three reasons; the computation of the feature posterior, the more complex expres-
sion of the observation probability, and the expansion of the acoustic search space
due to reduced discrimination between word hypotheses during poor network con-
ditions. It is desired to reduce the computational complexity eventually by further
simplifying approximations, but without significantly degrading performance.

The relation between the other decoder-based error concealment techniques,
e.g. marginalization and weighted Viterbi, and the novel uncertainty decoding rule
is studied in Chapter 10.

A summary, and conclusions drawn in the Chapter 11, concludethis work.
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Chapter 4

Uncertainty decoding for ASR

Statistical pattern classification requires knowledge of class conditioned probabil-
ities and a priori class probabilities. They are used in Bayes’ theorem to obtain the
posterior probability of each class. The MAP decision rule,i.e. choosing the class
with highest posterior probability, guarantees the minimum classification error. In
Bayesian speech recognition, which is nothing else than a pattern classification
problem encompassing the dimension of time, the classes arewords modeled by
temporal sequences of states. The class conditioned probabilities are known as
“acoustic models” whereas the a priori probabilities of words are known as “lan-
guage models”.

The first section of this chapter reviews the classical Bayesian framework of
speech recognition. Section 4.2 reviews the state-of-the-art approaches proposed
by other authors to compensate for unreliability. The last section presents the novel
approach of this thesis and how it is obtained by reformulating the classification
task to consider unreliability in observations.

4.1 Bayesian framework of speech recognition

In ASR the aim of pattern classification is to map the sequenceof feature vectors
xT

1 = (x1, . . . ,xT ) to a sequence of words of a given vocabulary. This task comes
down to finding the sequence of wordŝW which maximizes the joint probability
p(W,xT

1 ) or, equivalently by using Bayes’ theorem:

41



42 Chapter 4. Uncertainty decoding for ASR

Ŵ = argmax
W

p(W,xT
1 ) (4.1)

= argmax
W

p(xT
1 |W) · P (W). (4.2)

Eq. (4.2) is more convenient since it allows for separation into P (W) which
is the a priori probability of the word sequenceW andp(xT

1 |W), the probability
that the sequence of feature vectorsxT

1 is emitted by uttering that word sequence.
While the former term is a property of thelanguage model, the computation of
the latter is the main concern of theacoustic model. As the language model is
independent of the observations, it is not affected by observation uncertainties.

A widely used acoustic modeling method is to represent the words as se-
quences of states in a Hidden Markov Model (HMM). Thus, a wordor utterance
is described by a certain sequence of hidden states, each state st emitting one
observationxt at a time. In a isolated word speech recognizer the sequenceW

consist of only one word. For exampleW1 in Fig. 4.1 can be modeled by vari-
ous sequences of states (or paths through the model):s(1), s(1), s(2), s(3), s(4) or
s(1), s(2), s(2), s(3), s(4), etc., actually all possible paths starting ins(1) and ending
in s(4). Since the length of the observation sequencexT

1 is known, only the paths
of lengthT are allowed. Similarly, in a continuous speech recognizerW consists
of more words resulting in sequences of states crossing the word boundaries, e.g.
the paths(1), s(1), s(2), s(3), s(4), s(5), s(6) can model the word sequenceW1, W2.

W1 W2

s(1) s(2)
s(3) s(4) s(5) s(6)

Figure 4.1: WordsW1, W2 modeled as sequences of HMM states

Introducing the sequence of hidden statessT
1 underlying the sequence of ob-

servationsxT
1 the acoustic probability can be expressed as:

p(xT
1 |W) =

∑

{sT
1 }

p(xT
1 , sT

1 |W) (4.3)
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where the summation is carried out over all possible paths traversing the word
sequenceW. This can be further written as:

p(xT
1 |W) =

∑

{sT
1 }

p(xT
1 |s

T
1 ,W) · P (sT

1 |W) (4.4)

=
∑

{sT
1 }

p(xT
1 |s

T
1 ) · P (sT

1 |W)

The latter equality is supported by the fact that the conditioning onsT
1 andW

in p(xT
1 |s

T
1 ,W) is equivalent to conditioning on onlysT

1 , since thesT
1 implicitly

models the word sequence.

Eq. 4.5 can be solved recursively if both terms under the sum are factorized:

p(xT
1 |s

T
1 ) =

T
∏

t=1

p(xt|x
t−1
1 , sT

1 ) (4.5)

P (sT
1 |W) =

T
∏

t=1

P (st|s
t−1
1 ,W). (4.6)

Assuming theconditional independencewhich states thatxt is statistically
independent of its neighboring feature vectors ifst is given, (4.5) turns into:

p(xT
1 |s

T
1 ) =

T
∏

t=1

p(xt|st). (4.7)

The conditional independence assumption allows the expression of the emis-
sion probability of the sequence as a product over individual state emission prob-
abilities p(xt|st). The emission probability of each state is usually modeled as
a multivariate mixture of Gaussian densities whose parameters are learned from
the training speech data. Consequently, the estimated parameters are representa-
tive for speech features exhibiting the same statistical properties as those of the
training data set.

Eq. 4.6 can also be simplified by exploiting the Markov property of sT
1 that

P (st|s
t−1
1 ) = P (st|st−1), thus:

P (sT
1 |W) =

T
∏

t=1

P (st|st−1,W). (4.8)
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Using (4.7) and (4.8) in (4.5) we arrive at the well known result:

p(xT
1 |W) =

∑

{sT
1 }

T
∏

t=1

p(xt|st) · P (st|st−1,W). (4.9)

An approximate value of (4.9) is then computed by the Viterbialgorithm as:

p(xT
1 |W) ≃ max

{sT
1 }

T
∏

t=1

p(xt|st) · P (st|st−1,W). (4.10)

The approximation assumes that there exists a path having a much higher prob-
ability than all others and which thus dominates in the sum.

4.2 State of research on decoding unreliable data

Perfect knowledge of acoustic and language models, as required by the Bayesian
decision rule for minimal word error rate (4.2), poses some practical difficulties.
On the one hand, the estimation of the acoustic models is often performed in an en-
vironment different from that of practical system usage. Therefore, the estimated
class conditioned probabilities do not well represent the true ones. On the other
hand, the language model probabilities are usually not trained on speech corpora
with identical statistical properties as in testing. The problem is well-known in
ASR as the mismatch between training and testing conditions. It has been already
demonstrated in [69] that the “plug-in” rule which uses the estimated probabilities
as if they were the true ones is not optimal in the case of mismatch. The probabil-
ities or the parameters of probability density functions (PDF) are in fact estimates
of the true values and thus have their own estimation error variances. They are un-
certain to some degree. To maintain the optimality of the Bayesian decision rule,
this uncertainty must be used in a novel formulation of the classification problem.

In the “Bayesian Predictive Classification” (BPC) [68] the vector of model pa-
rameters is described by a PDF rather than a sole point estimate. The variance of
the PDF is a measure of uncertainty in model parameters. By integrating the obser-
vation probability over the model space the mismatch between training and testing
conditions is reduced. The BPC framework can also be used to benefit from the
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uncertainty in the feature. This requires the posterior PDFof the clean feature con-
ditioned on the observed feature and performs integration over the feature space
rather than model space.

In the context of noise robust speech recognition, employing the uncertainty in
the feature at the decoding stage has been proposed in [70, 71, 64, 65] and yielded
very promising results.

The optimal classification strategy proposed by Kristjanson et al. [71] was
based on using the class posterior conditioned on noisy speech as:

p(yT
1 |s

T
1 ) =

T
∏

t=1

∫

p(xt|yt)

p(xt)
p(xt|st)dxt · P (st|st−1), (4.11)

whereyT
1 is the sequence of observations,yt the current observation, andxt

the current unobserved clean feature.

Comparing with the conventional class posterior conditioned on the clean fea-
ture sequence:

p(xT
1 |s

T
1 ) =

T
∏

t=1

p(xt|st)P (st|st−1), (4.12)

it can be readily observed that the sole modification is changing the observation
probabilityp(xt|st) into p̃(yt|st) given by:

p̃(yt|st) =

∫

p(xt|yt)

p(xt)
p(xt|st)dxt (4.13)

If the p(xt) is assumed to be constant within the interval wherep(xt|yt) ·

p(xt|st) is not zero, the denominatorp(xt) can be neglected, as done in [64],
since it results in a multiplicative constant which does notaffect the MAP decision.
A closed form solution of (4.13) was then obtained assuming Gaussian feature
posteriorp(xt|yt) = N (xt; µxt|yt

,Σxt|yt
) and a Gaussian mixture with weights

P (m|st) for p(xt|st):

p(xt|st) =
∑

m

P (m|st)N (xt; µm,Σm). (4.14)
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Under these assumptions Eq. (4.13) becomes:

p̃(yt|st) =
∑

m

P (m|st)

∫

N (xt; µxt|yt
,Σxt|yt

)N (xt; µm,Σm)dxt

=
∑

m

P (m|st)N (µxt|yt
; µm,Σm + Σxt|yt

) (4.15)

The last expression shows that in order to account for uncertainty in estimat-
ing the value of the clean featureµxt|yt

, the original acoustic models have to be
adapted by increasing the variances of the Gaussian mixturedensity components
by the estimation varianceΣxt|yt

.

4.3 Bayesian framework in the presence of corrupted
features

In a DSR scenario and many other practical cases, such as in noisy environments,
there is a mismatch between training and testing conditions. That is, the probabil-
ities of the acoustic model estimated on a training set are not representative of the
speech features of the testing situation as the latter may beaffected by other factors
not present in training, e.g. channel errors or acoustic noise. In the following let us
denote byxT

1 the sequence of clean features which are representative of the train-
ing conditions but are not directly observable. Instead of this, a corrupted version
yT

1 can be observed. The corruption may either be caused by environmental noise,
or by errors during transmission over a communication network in a remote ASR
setup.

The relation between the observedyT
1 and the hiddenxT

1 cannot usually be
analytically described since it may depend on some unknown factors. Hence,
it is more convenient to model it statistically as channeltransition probability
p(yT

1 |x
T
1 ). In DSR,xt is the channel input value andyt the output. The channel

transition probability is the PDF of the channel output for agiven input. Obviously,
in the case of error-free transmission, input and output areequal. The estimation
of the transition probability in a remote ASR scenario is described in Chapter 5.
In the following it is assumed thatp(yt|xt) is known.

In a remote recognition scenario the classification is carried out at the server
side where the uncorrupted speech featuresxT

1 are not available. Thus, the con-
ventional pattern recognition problem of Section 4.1 has tobe reformulated. The
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task is now to find the word sequenceW most likely to yieldyT
1 at the other end

of the channel:

Ŵ = argmax
W

p(yT
1 |W) · P (W). (4.16)

The most straightforward approach to solve (4.16) is to retrain the acoustic
models in the particular mismatch condition and apply the conventional decoding
rule of Section 4.1. The practical drawback of retraining, i.e. learningp(yT

1 |W),
is that it requires computing power and a large amount of noisy (corrupted) data.
Instead of retraining the models, we can simply consideryT

1 as an estimate ofxT
1

and use it in (4.2). But, this results in the well-known poor performance of speech
recognition in mismatched conditions.

To maintain the optimality of the Bayesian framework but still using the acous-
tic models trained in error-free conditions, we introduce the sequence of clean
speech featuresxT

1 in (4.16) as a hidden variable:

p(yT
1 |W) =

∫

{xT
1 }

p(yT
1 |x

T
1 )p(xT

1 |W)dxT
1 , (4.17)

where the notation
{

xT
1

}

indicates that the integration has to be carried out
over all possible feature sequences of lengthT . By again introducing the sequence
of hidden HMM statessT

1 to model the acoustic probabilityp(xT
1 |W) we obtain:

p(yT
1 |W) =

∫

{xT
1 }

p(yT
1 |x

T
1 )

∑

{sT
1 }

p(xT
1 |s

T
1 ) · P (st|st−1)dx

T
1 (4.18)

=
∑

{sT
1 }

∫

{xT
1 }

p(yT
1 |x

T
1 )p(xT

1 |s
T
1 )dxT

1 P (st|st−1). (4.19)

Applying Viterbi approximation similarly to Eq. 4.10, the observation proba-
bility of a corrupted sequence becomes:

p(yT
1 |W) ≃ max

{sT
1 }

∫

{xT
1 }

p(yT
1 |x

T
1 )p(xT

1 |s
T
1 )dxT

1 P (st|st−1). (4.20)
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In comparison to Eq. 4.10, the observation probability of a corrupted sequence
considers the acoustic model probabilityp(xT

1 |s
T
1 ) and the channel transition prob-

ability p(yT
1 |x

T
1 ). This is equivalent to a combined source-channel model withthe

emission probability given by:

p(yT
1 |s

T
1 ) =

∫

{xT
1 }

p(yT
1 |x

T
1 )p(xT

1 |s
T
1 )dxT

1 . (4.21)

It is instructive to investigate (4.21) in the extreme casesof an error-free trans-
mission and of completely corrupted observations. In error-free conditions the re-
ceivedyT

1 is equal to the transmittedxT
1 . In our statistical framework this relation

turns intop(yT
1 |x

T
1 ) = δ(yT

1 − xT
1 ), whereδ(.) denotes the Dirac delta func-

tion. The integration of (4.21) overxT
1 reduces to the evaluation of the originally

trained acoustic probabilityp(xT
1 |s

T
1 ) atxT

1 = yT
1 . This is equivalent to carrying

out the recognition with the received feature sequence. On the other hand, the case
of completely uninformative observations is expressed by statistical independence
between the received and the sent feature sequences, i.e.p(yT

1 |x
T
1 ) = p(yT

1 ).
Replacing this in (4.21) yields the same emission probability equal top(yT

1 ) in-
dependent of the state sequence, since the integral ofp(xT

1 |s
T
1 ) over the feature

space equals one. Therefore, in this case the recognizer relies only on the prior
word probabilitiesP (W) to findŴ.

In order to recursively compute the most likely path of the Viterbi algorithm,
the observation probability (4.21) must be factorized, i.e. must be put in a form
similar to (4.10). The following subsections present simplifying assumptions which
allow us to elegantly factorize (4.21) and evaluate it in an existing HMM based
recognizer.

4.3.1 Conditional independence assumption

In a first approximation we consider that the transmitted feature vector sequence
contains no temporal auto-correlation, which is equivalent to conditional indepen-
dence ofxt from its neighbors. . . ,xt−1,xt+1, . . . etc. The Bayesian network
associated to this model is shown in Fig. 4.2.

Bayes’ theorem allows decomposition ofp(yT
1 |x

T
1 ) as:
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yt−1 yt

xt−1 xt

st−1 st

Figure 4.2: Bayesian network assuming conditional independence

p(yT
1 |x

T
1 ) = p(y1, . . . ,yT |x

T
1 )

= p(y1|y2, . . . ,yT ,xT
1 ) · p(y2, . . . ,yT |x

T
1 )

= p(y1|y2, . . . ,yT ,xT
1 ) · p(y2|y3, . . . ,yT ,xT

1 ) . . . (4.22)

Considering, for example, the first term of the product (4.22), it can be read-
ily observed that due to the statistical dependencies expressed by the graphical
model, the conditioning ony2, . . . ,yT ,xT

1 is equivalent to conditioning onx1.
This equivalence can be explained on the basis of the Bayesian network by the fact
that the graph nodey1 can only be reached by traversing the nodex1. Thus, the
product (4.22) simplifies to:

p(yT
1 |x

T
1 ) = p(y1|x1) · p(y2|x2) . . . p(yT |xT ) (4.23)

=

T
∏

t=1

p(yt|xt) (4.24)

Using (4.22) and (4.7) allows factorization of (4.21):

p(yT
1 |s

T
1 ) =

∫

{xT
1 }

T
∏

t=1

p(yt|xt)p(xt|st)dxt (4.25)

=

T
∏

t=1

∫

xt

p(yt|xt)p(xt|st)dxt (4.26)

Assuming conditional independence, the reformulation of the Bayesian frame-
work in the presence of corrupted features comes close to theapproach presented
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in [72] in the context of environmental noise compensation.A very similar result
already discussed in Section 4.2 [71, 65, 73, 74] is obtainedby applying Bayes’
rule for conditional probabilities to (4.26):

p(yT
1 |s

T
1 ) ∝

T
∏

t=1

∫

xt

p(xt|yt)

p(xt)
p(xt|st)dxt. (4.27)

Comparing the last equation with (4.7) yields that the uncertainty in observa-
tion is taken into account by integration over the feature space.

In other works [75], [76] the denominatorp(xt) has been neglected, which is
definitely an approximation, but has not been identified as such. This approxi-
mation can be suggested on the grounds that the priorp(xt) should have a larger
variance than posterior. Thus the denominator can be considered constant for the
range of values ofxt, where the posterior density assumes values significantly
larger than zero. However, this argument holds no longer in the presence of strong
distortions, e.g. low SNR or long error bursts when the posterior p(xt|yt) tends to
equal the denominator. The use of the approximate decision rule, which neglects
the prior density, results in poor performance [77].

The major drawback of the model presented in Fig. 4.2 is that it does not ex-
ploit the temporal correlation between consecutive features. Thus, the redundancy
in the transmitted feature sequence is not used at all. The conditioning in the
feature posteriorp(xt|yt) is only on the receivedyt. To illustrate this disadvan-
tage, let us consider that the featureyt is completely unreliable, whereas all other
features of the received sequence are reliable. As discussed previously, complete
unreliability denotes statistical independence or,p(yt|xt) = p(yt). Using this in
(4.26) the observation at timet is marginalized, i.e. it does not contribute to classi-
fication. On the other hand, it is known that the featurext could be estimated from
neighboring features which, due to the strong correlation,would have resulted in
performance better than marginalization, see also experimental results of Chapter
7.

Obviously, adopting a model able to handle the temporal correlation in the
sequencexT

1 would be advantageous. To this end, the stringent conditional inde-
pendence assumption is relaxed in the following section.



4.3. Bayesian framework in the presence of corrupted features 51

4.3.2 Relaxed conditional independence assumption

Whereas in the previous section the correlation between thefeature vectors was
neglected, in this section the dependency between featuresis approximated by a
first-order Markov model:

p(xt|xt−1,xt−2,...) = p(xt|xt−1) (4.28)

Figure 4.3 depicts the associated Bayesian network.

yt−1 yt

xt−1 xt

st−1 st

Figure 4.3: Bayesian network modeling temporal correlation between features

The factorization ofp(xT
1 |s

T
1 ) becomes in this case:

p(xT
1 |s

T
1 ) = p(xT |xT−1, s

T
1 )p(xT−1|xT−2, s

T
1 ) . . . (4.29)

= p(x1|s1)

T
∏

t=2

p(xt|xt−1, s
T
1 ) (4.30)

≈ p(x1|s1)

T
∏

t=2

p(xt|xt−1, st) (4.31)

The last approximation was made to keep the observation probability compu-
tationally tractable and is justified by the fact that the dependency betweenxt and
(xt−1, st) is stronger than betweenxt and the other states(sT

t+1) and therefore the
latter can be neglected.

The probabilitiesp(xt|xt−1, st) describe an acoustic model which takes into
account the temporal correlation. However, in a conventional recognizer only
p(xt|st) are usually estimated during training. A convenient approximation for
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p(xt|xt−1, st) can be obtained assuming thatxt−1 andst are statistically inde-
pendent:

p(xt−1, st) = p(xt−1)p(st) (4.32)

Note that this assumption is less stringent than the conditional independence
assumption of the previous section as it still captures someinter-frame correlation.
Eq. 4.32 allows the double conditioning to be split into:

p(xt|xt−1, st) =
p(xt|xt−1)p(xt|st)

p(xt)
(4.33)

The observation probability ofyT
1 becomes:

p(yT
1 |s

T
1 ) =

∫

{xT
1 }

p(yT
1 |x

T
1 ) · p(x1|s1)

T
∏

t=2

p(xt|xt−1)p(xt|st)

p(xt)
dxT

1

=

∫

{xT
1 }

p(yT
1 |x

T
1 ) ·

p(x1)
T

∏

t=2

p(xt|xt−1)

p(x1)

T
∏

t=2

p(xt)

T
∏

t=1

p(xt|st)dx
T
1

=

∫

{xT
1 }

p(yT
1 |x

T
1 ) · p(xT

1 ) ·
T

∏

t=1

p(xt|st)

p(xt)
dxT

1

=

∫

{xT
1 }

p(xT
1 ,yT

1 ) ·
T

∏

t=1

p(xt|st)

p(xt)
dxT

1 . (4.34)

The last expression can be rearranged as:

p(yT
1 |s

T
1 ) =

T
∏

t=1

∫

xt

p(xt|st)

p(xt)
·

[

∫

{x
t−1
1 }

∫

{xT
t+1}

p(xT
1 ,yT

1 )dxt−1
1 dxT

t+1

]

dxt

=

T
∏

t=1

∫

xt

p(xt|st)

p(xt)
p(xt,y

T
1 )dxt. (4.35)
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To obtain (4.35) we exploited that the integral ofp(xT
1 ,yT

1 ) over the space
of feature vector sequences, excludingxt is nothing else but the marginal density
p(xt,y

T
1 ).

A more intuitive expression is obtained by applying Bayes’ rule top(xt,y
T
1 )

and leaving out the resulting termp(yT
1 ), as it is irrelevant for the classification

task, i.e. has the same contribution to all word hypothesis and thus does not change
the maximum. Therefore we obtain:

p(yT
1 |s

T
1 ) ∝

T
∏

t=1

∫

xt

p(xt|yT
1 )

p(xt)
p(xt|st)dxt. (4.36)

The observation probability of expression (4.36) differs from (4.27) in that it
is able to exploit the correlation in the sequencexT

1 since the posteriorp(xt|yT
1 )

is computed by conditioning not only on the instantaneouslyobservedyt but also
on past and future observations. Comming back to the examplewith one uninfor-
mative observationyt in a sequence of reliable ones, the observation probability
(4.36) no longer results in marginalization. The discrimination is now possible
as long as the feature posteriorp(xt|yT

1 ) does not equal the priorp(xt) since the
former is more informative than the latter. That is, some part of the lost informa-
tion can be recovered from the reliable neighboring features. For this reason, the
approach of this section has the potential of being superiorto that of the previous
one.

The computation of (4.36) or (4.27) requires knowledge in addition to the con-
ventional acoustic modelp(xt|st). The feature priorp(xt) can be easily estimated
on the same training data as the acoustic model. The computation of the posterior,
on the contrary, may turn out to be very complicated. A suitable model of the
perturbation, be it acoustic noise or distortions due to thecommunication channel
is additionally required, as well as the model of interaction with the clean speech
feature. Chapter 6 shows how the feature posterior can be obtained for the case of
remote speech recognition where the perturbation is the error prone transmission.

In conclusion, the reformulation of the Bayesian frameworkyields a modified
expression of the observation probability which if factorized appropriately, can
be further used in a Viterbi decoder. The original observation probability of the
acoustic modelsp(xt|st) changes either into:
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∫

xt

p(xt|yt)

p(xt)
p(xt|st)dxt (4.37)

if the inter-frame correlation is neglected, which is denoted by “Uncertainty
Decoding considering the0th order a priori knowledge” (UD0) throughout this
work, or into:

∫

xt

p(xt|yT
1 )

p(xt)
p(xt|st)dxt (4.38)

if inter-frame correlation is considered, denoted by “Uncertainty Decoding
considering the1st order a priori knowledge” (UD1).

The following section presents a possible way to integrate the observation
probability computation of (4.37) or (4.38) into an existing HMM based speech
recognizer.

4.3.3 Integration into the recognizer: Gaussian assumption

It is well-known that the observation probability computation is the most time con-
suming processing step in a speech recognizer. Certainly, the numerical evaluation
of the integral in the modified observation probability (4.37) or (4.38) would be
prohibitive since it would increase the computational burden beyond the limits of
practical interest. This section presents an approach to solving the integral analyt-
ically under the following simplifying assumptions:

1. The state conditioned observation probability of the uncorrupted feature is a
Gaussian mixture:

p(xt|st) =

M
∑

m=1

cst,mN (xt; µst,m,Σst,m) (4.39)

wherecst,m is the weight,µst,m the mean vector andΣst,m the covariance
matrix of themth mixture component of the observation probability of state
st. This is a standard assumption in speech recognition.

2. The a priori probability density of the uncorrupted feature is a Gaussian:

p(xt) = N (xt; µx,Σx). (4.40)
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Experimental data show that this assumption is quite valid,with certain
reservations concerning the log energy component, its PDF having two modes.
The Gaussian parametersµx andΣx are learned from training data.

3. The feature posterior, given the observations, is Gaussian:

p(xt|y) ≈ p̂(xt|y) = N (xt; µxt|y,Σxt|y). (4.41)

Here the notationxt|y stands for eitherxt|yt orxt|yT
1 , depending on which

observation probability is going to be used, (4.37) or (4.38). Eq. 4.41 is
the most debatable assumption, as we often observed a multi-modal shape
of the posterior. Some researchers therefore suggested theuse a Gaussian
mixture model instead [76]. As this, however, has a major impact on the
computational effort, we prefer to stick to a single Gaussian model here.

Under these assumptions the integral of (4.37) or (4.38) turns out to be the
evaluation of the modified observation probability of an equivalent feature:

M
∑

m=1

cst,m

∫

{xt}

N (xt; µst,m,Σst,m)
N (xt; µxt|y,Σxt|y)

N (xt; µx,Σx)
dxt

=

M
∑

m=1

c′st,m
N (µe; µst,m,Σst,m + Σe) (4.42)

∝
M
∑

m=1

cst,mN (µe; µst,m,Σst,m + Σe) (4.43)

The equivalent featureµe, the varianceΣe and the new mixture weightsc′st,m

are given by following equations:

Σe = Σxt|y(Σx − Σxt|y)−1Σx (4.44)

Σ−1
e µe = Σ−1

xt|y
µxt|y − Σ−1

x µx (4.45)

c′st,m = cst,m

N (0; µxt|y,Σxt|y)

N (0; µx,Σx)N (0; µe,Σe)
. (4.46)

Since the new mixture weights differ from the original ones by a multiplicative
constant, the modified observation probability is proportional to expression (4.43).
It is therefore not necessary to compute the new mixture weights.
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Whereas the Eq. 4.44-4.46 are for the general case when the Gaussians have
full covariance matrices, more intuitive expressions are obtained assuming diag-
onal covariance matrices. In this case, along one feature vector dimension the
observation probability becomes:

M
∑

m=1

cst,m

∫

xt

N (xt; µst,m, σ2
st,m) ·

N (xt; µxt|y, σ2
xt|y

)

N (xt; µx, σ2
x)

dxt

=
M
∑

m=1

c′st,mN (µe; µst,m, σ2
st,m + σ2

e) (4.47)

∝
M
∑

m=1

cst,mN (µe; µst,m, σ2
st,m + σ2

e) (4.48)

where the equivalent mean, variance and weight are given by the following equa-
tions:

1

σ2
e

=
1

σ2
xt|y

−
1

σ2
x

(4.49)

µe

σ2
e

=
µxt|y

σ2
xt|y

−
µx

σ2
x

(4.50)

c′st,m = cst,m

N(0; µxt|y, σ2
xt|y

)

N(0; µx, σ2
x)N(0; µe, σ2

e)
. (4.51)

Comparing (4.15) and (4.43) it can be noted that both increase the variances
of the original mixtures and evaluate the resulting PDF of anequivalent feature.
However, the way in which the equivalent feature is computedand the amount
added to variances is different. In the former, the equivalent featureµe is the
mean value of the Gaussian posterior. In the latter, it depends also on the prior
parametersµx andΣx. Similarly, the equivalent varianceΣe encompasses the
effect of the prior variance.

The evaluation of (4.49) and (4.50) has to be performed only for unreliable
features. The caseσ2

xt|y
= 0 is excluded since this correspond to a fully reliable

feature for which the posteriorp(xt|y) is equal toδ(xt − yt). Therefore the
evaluation of expressions (4.37) and (4.38) simplifies to evaluation ofp(xt|st) at
xt = yt.

However, some numerical problems may appear in the case of a completely
unreliable feature whenσ2

xt|y
≃ σ2

x. This results in a large, potentially infinite
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varianceσ2
e . To avoid such a situation (4.49) is evaluated only if the ratio between

the variance of the posterior density and that of the prior density is smaller than
one minus a small threshold. If this is not the case, i.e. the variances are very
close to each other, we also force the means to be equal (µxt|y = µx) and thus
the denominator in (4.43) or (4.48) becomes equal to the posterior. This results
in marginalization since the observation probability of the uncorrupted feature is
integrated over the feature space yielding unity. The approximation that we have
made here can be seen to be based on information theory: the entropy of the ran-
dom variablext is greater than that ofxt|y and the equality occurs when the ob-
servations are uninformative and thus the two PDF’s are equal, having implicitly
the same mean. Note that, practically, the prior and the posterior are estimated
under simplifying assumptions such as being Gaussians. Dueto this reason it may
occasionally occur that the posterior variance is greater than the prior variance.
However, as long as we know that this is only an artifact, we upper bound the vari-
anceσ2

xt|y
to the a priori variance so that the validity of (4.49)-(4.50) is ensured.

Similar consideration has to be made for (4.44)-(4.45).

The computation of (4.48) is certainly more time consuming than the evalua-
tion of the original observation probability (4.39). Section 9.3 of this work shows
how (4.39) is usually evaluated in a HMM-based recognizer with diagonal covari-
ance mixture densities and what slowdown occurs due to (4.48). Section 9.4 of
this work evaluates the impact of uncertainty on the acoustic search space and
implicitly on the recognition speed.
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Chapter 5

Data reliability estimation

Applying the uncertainty decoding of the previous chapter in a remote recognition
setup requires knowledge of the statistical dependency between the received and
sent feature. This can be modeled by the channel transition probability p(yt|xt).
Since we assume a digital channel connecting the client and server, the speech fea-
tures are compressed prior to transmission, i.e. quantizedinto a bit pattern. The
instantaneous bit error probability (reliability) of eachdecoded bit can be used
to determine the channel transition probability of the bit pattern. This chapter
presents approaches to obtain data reliability at the bit level which is subsequently
used to infer the feature reliability in a remote speech recognition setup. The two
possible types of network that we are studying are a circuit-switched transmission
in which each bit may be independently corrupted, and a packet-switched trans-
mission where the smallest unit which may be corrupted is a data packet. In both
cases, the causes of the channel distortion, the channel models employed for the
performance evaluation of EC, and the estimation of the instantaneous bit error
probability are described.

5.1 Data reliability estimation in mobile networks

A typical example of a circuit-switched channel is the data channel of a GSM
network, e.g. GSM-TCH/F4.8 [16]. For data transmission over GSM the user data
is channel coded and modulated resulting in a signal which isthen transmitted
over the air interface in the form of a GSM burst. At the receiving end the signal
consists typically of a sum of channel noise and delayed, attenuated replicas of
the original signal, as a consequence of various reflections. Demodulation of the
received signal followed by channel decoding results in a sequence of received

59
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bits.

5.1.1 Transmission errors in mobile networks

This section briefly summarizes the causes of transmission errors in mobile net-
works. They serve as a basis for the channel models employed in the experimental
section of this work to simulate data transmission in an RSR system.

In a wireless communication medium it is very common for noise to be ad-
ditively combined with the transmitted signal. The signal-to-noise ratio (SNR),
defined as the power of the signal divided by the power of the noise, is the typ-
ical measure of this distortion. As the distance between thesender and receiver
increases, the signal strength is attenuated whereas the background noise level re-
mains approximately constant. The SNR decreases correspondingly. This degra-
dation is referred to aspath lossand results typically in randomly distributed bit
errors.

Another degradation factor of the radio channel isfading. Due to reflections
from various objects, the transmitted signal may arrive at the receiver through
multiple paths. Hence, the incoming signals summed in the receiver antenna have
different amplitudes and phases which can either have a constructive contribution
to the sum, or a destructive one, in the case of opposite phases. Since the re-
ceiver and other reflecting objects may be moving, the received signal exhibits
rapid fluctuations of the envelope, an effect known as “Rayleigh” or “fast fading”.
The temporary gaps of the envelope strength have very low SNRand cause bit
errors concentrated in bursts. The bursty errors are more difficult to eliminate than
randomly distributed errors. This is because commonly usederror protection tech-
niques such as FEC or channel coding, have specific correction capabilities that
are easily exceeded if the errors are concentrated.

A particularly important type of additive distortions is caused by signals from
other radio channels, known asinterference. This may be an effect of intermodu-
lation in the receiver front end circuitry, or as result of sharing the same communi-
cation medium by multiple users, as in networks with CDMA access. A measure
of the interference from adjacent channels is the carrier-to-interference (C/I) ratio.

In GSM networks the most important degrading factors are interference and
fast fading. The recommendations [78] present some typicalscenarios of GSM
channels which have to be taken into account at the network planning phase. Ac-
cording to this, the C/I should usually be about 10 dB when themobile terminal



5.1. Data reliability estimation in mobile networks 61

is located well inside a cell, 7 dB at the cell boundary and less than 4 dB outside
the cell. The recommendations also specify some topological profiles, e.g. typical
urban, typical rural etc. with a predefined number of propagation paths and delay
spreads.

5.1.2 Channel Models

A very flexible and accurate way to model wireless transmission is to simulate
the network physical layer. Such a simulation includes the (de)modulation, chan-
nel (de)coding, (de)interleaving and the channel model encompassing multipath
propagation, fast fading, and co-channel interference. Physical layer simulation
is computationally expensive and needs software modules which implement the
above mentioned processing steps. In the experimental partof this work we em-
ployed the GSM library of the “Signal Processing Worksystem” (SPW) software
suite [79] to simulate a complete transmission over the GSM-TCH/F4.8 data chan-
nel. The software allows for flexibly setting the channel model parameters such as
C/I, receiver input SNR, GSM profile, terminal speed etc.

A much simpler and widely used simulation method is error patterns injection.
This is more convenient in situations where the simulation of a set of a few par-
ticular conditions is needed. The representative error pattern(e1, . . . , eT ) for each
particular channel condition has to be prepared in advance,either by physical layer
simulation, or by actual measurements. This can be done by comparing each bit of
the transmitted bit streambt with the corresponding bit of the received bit stream
b̂t by an exclusive OR (XOR) operation:et = bt ⊕ b̂t. The lengthT must be large
enough so that the pattern is statistically representative. Modeling the erroneous
transmission by error patterns injection consists in computing the “received” data
b̂t by an XOR operation:̂bt = bt ⊕ et.

In comparison with physical layer simulation, error patterns injection is less
flexible but easier to implement, provided that the error patterns are available.

Pearce [10] used GSM error patterns originally created for evaluation of speech
quality under adverse channel conditions and adapted for the ETSI-DSR data rate
of 4.8 kb/s. The error patterns labeled EP0, EP1, EP2, EP3 represent an error-free
channel, good, medium and poor channel quality, respectively. They correspond
to C/I ratios of∞, 10, 7 and 4 dB and gross bit error rates (GBER) of 0%, 5%,
8% and 13%. The GSM error patterns became the de facto standard for evaluating
DSR channel robustness, being widely used in works on this topic.
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Another alternative for modeling the error characteristics of a wireless channel
is theGilbert-Eliotmodel [80, 81, 82]. It consist of a Markov chain with two states.
The one represents the temporarilyGoodand the other theBadchannel condition,
each one being assigned a constant bit error rate. In each state the bit errors occur
independently of each other but with a higher rate in theBad state. The state
transition probabilities of the chain determine the frequency of bursts and their
average length. A similar approach was applied in [46], where the GSM channel
was simulated by superimposition of two additive white Gaussian noise (AWGN)
channels with different noise levels:Ng - the background andNb - the burst noise
level, with Nb >> Ng (see also Section 5.1.3). The resulting noise level was a
weighted sum ofNg andNb. By changing the weighting coefficients according to
a Poisson distributed random variable, the model generatesshort periods of high
noise levels, sporadically producing higher bit error rates.

The channel modeling methods of the previous paragraph are less complex
than physical layer simulation and more flexible than the error patterns. However,
they have the disadvantage that their parameters depend on each particular network
condition. They can be directly related neither to channel parameters such as C/I,
number of propagation paths, terminal speed, etc. nor to a specific channel coding
scheme. The common practice is to tune them experimentally so that the resulting
bit error distribution approaches that of the true channel.

Note, however, that the soft-output information of the channel decoder needed
to estimate the feature posterior in this work can be obtained by physical layer
simulation but it is not available if GSM error patterns are employed.

5.1.3 Instantaneous bit error probability estimation

This section presents two methods for obtaining the instantaneous bit error prob-
ability, which is the probability that the bit is decoded with an error. The first
method exploits the soft-output of the channel decoding stage, i.e. the log-likeli-
hood ratio of each bit. In the absence of soft-output information, we propose an
alternative method based on CRC and data consistency checking. Both methods
are described in the following paragraphs.

5.1.3.1 Estimation based on the soft-output from a channel decoder

In the receiving device, obtaining the sequence of transmitted bits from the real or
complex valued output sample of the matched filter can be seenas a classification
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problem. For simplicity let us consider uncoded binary phase shift keying (BPSK)
transmission over an additive white Gaussian noise (AWGN) channel with con-
stant power spectral densityN0/2. Each real valued output sampleqt carries in
this case one bitbt. Assuming maximum likelihood (ML) decoding, it is well-
known that the average bit error probability is given by:

pe =
1

2
erfc

√

Eb

N0
(5.1)

where theEb is the energy per transmitted bit anderfc() denotes the Gaussian
error function.

While (5.1) is an average, the instantaneous bit error probability is the proba-
bility of a specific bit̂bt being erroneously decoded. This depends on the valueqt

which corresponds to that bit and can be readily computed as:

pet =
1

1 + exp(| 4Eb

N0
qt|)

. (5.2)

The combination of the decoded bitb̂t and its error probabilitypet has been
termedsoftbit in the literature [39].

Haykin [83] found that an expression similar to (5.2) approximates well to the
instantaneous bit error probability for the Gaussian minimum shift keying (GMSK)
modulation technique used in GSM.

The ratioEb/N0 which appears in (5.2) is related to the signal-to-noise power
ratio (SNR). This has to be known or estimated in order to obtain pet using the
following equation:

SNR =
Eb

N0

Rs

B
. (5.3)

HereRs is the bitrate andB the bandwidth.

In the presence of channel coding, the so-called “soft-output” channel de-
coders, e.g. the Bahl decoder [84] and the less complex soft-output Viterbi al-
gorithm [23], can be used to provide the instantaneous bit error probability (5.5).
They are able to deliver the decoded bit stream and the log-likelihood ratio of each
bit, the latter being defined as:
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Lt = log
P (bt = 1|q)

P (bt = 0|q)
, (5.4)

The bold notationq denotes that a sequence of matched filter output samples
may be used instead of one sample, as the channel coder may spread the informa-
tion of one bit over more samples. With the soft-output (5.4)the instantaneous bit
error probability is given by:

pet =
1

1 + exp |Lt|
. (5.5)

5.1.3.2 Estimation based on CRC and data consistency

In wireless communication, a likely architecture is that the GSM base station (or an
equivalent platform) performs the soft-output channel decoding and sends the de-
coded bits over another, e.g. wired reliable network, to theDSR server. However,
transmission of bit reliability information would increase the required bandwidth
and render this approach unattractive. Hence, there arisesthe need to estimate
the instantaneous bit error probabilitypet of the decoded bit̂bt at the recognition
server side in the absence of soft-output from the channel decoder.

The idea is to estimate the average bit error rate over a sequence of bits, e.g. the
bits of a DSR frame or of a subvector within the frame, as the ratio of the number
of (assumed) bit errorŝNe to the total number of bitsN within the sequence.
Assuming that the instantaneous bit error ratepet is constant for all bits of that
sequence, an estimator ofpet is:

p̂et =
N̂e

N
. (5.6)

One option is to employ the CRC check of ETSI-AFE to detect thebit errors
within a frame of 92 bits, and estimate the average bit error rate on this interval.
A problem is, however, that although the CRC check detects the errors with a
high level of confidence, it cannot provide information about their numberN̂e.
Another problem is that the bit sequence on which the estimation is performed is
relatively long (corresponds to 20 ms). During this relatively long time interval the
assumption that the instantaneous bit error probability isconstant may not hold.

A more accurate estimatêNe of the number of bit errors can be obtained by
the data consistency test of ETSI-DSR, see Section 1.2.2.4.Basically, this checks
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the continuity of a parameter within the frame pair. If the difference between two
consecutive values of a parameter exceeds a fixed threshold it is decided that the
frame pair is not reliable since some bit errors occurred. Certainly, not every bit
error can be caught by this test, but only those that lead to exceeding the thresh-
olds. Thus, there is a high probability of underestimatingp̂et. In spite of this, our
experiments have shown [85] that better results are obtained, compared to the case
when the cyclic redundancy check (CRC) alone is employed.

The length of the sequence, over whichNe is estimated has to be chosen ac-
cording to conflicting requirements. On one hand, a long interval is preferable,
because this will deliver more reliable estimatesN̂e. The estimation error de-
creases with the length of observation interval. On the other hand, a small interval
is desirable since it is unrealistic to assume thatp̂e is constant over longer periods
of time.

Two obvious choices were used. In the first one, referred asframe oriented
(FR), the errors were counted over the whole frame-pair of 86 bits (excluding
the 4 bits for CRC code) by applying the data consistency testto each parameter.
For each consistency test failure the error counter for thatframe is increased by
one. Note that in this case the same value ofp̂e is shared by all 86 bits of the
frame-pair. In the second procedure the bits of one subvector constitute the esti-
mation sequence -subvector oriented(SV). The consistency test is triggered by a
CRC failure, and the errors are counted on a subvector basis.We assumed that a
consistency test failure reveals one bit error. Note that a subvector encodes two
components of the feature vector. Thus,p̂e for all bits of the subvector is estimated
as the number of bit errors occurring in that subvector divided by the number of
bits allocated to that subvector over the frame-pair, whichis 2M , see Table 1.2.

In [85] it has been shown that both methodsFR andSV achieve a performance
in a DSR scenario using GSM data channel which comes close to the performance
using the instantaneous bit error probability computed from the soft-output of the
channel decoder. In the experimental part of this work we compare EC perfor-
mance of DSR employing the “true” soft-output of the channeldecoder and the
proposed estimation approach based on data consistency (SV).

5.2 Data reliability estimation in IP networks

In a packet-switched network the user data is fragmented into blocks named “data
packets” which are then routed from source to destination. Aprominent exam-
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ple of a packet-switched network is the public Internet. Dueto numerous ad-
vantages over the circuit-switched solution, the packet-switched solution has wit-
nessed rapid expansion over the last decades. Its main benefit is the ability to share
network resources among the users. Unlike circuit-switched networks, where a
physical channel is exclusively used for connecting the source and destination
points, packet-switched networks allow the use of the same channel to transport
data from/to several users. Furthermore, there may exist multiple routing paths
between two connection points so that the bandwidth resources can be more ef-
ficiently managed. An inherent property arising from this architecture is that the
network cannot ensure whether a packet is going to arrive at destination or how
long this process will take. Hence, the network offers so calledbest effortdelivery
service.

The packets that do not arrive at the destination in a reasonable time are con-
sidered lost. The maximum delay which can be allowed dependson the real time
constraints of the application. For example in VoIP the latency should not exceed
200 ms, otherwise the conversation flow is impaired.

5.2.1 TCP/IP protocol suite

TCP/IP denotes a family of protocols developed by the Internet Engineering Task
Force (IETF) aiming at providing a simple and flexible framework for developing
network applications and services. The protocols are organized into a stack of four
layers, each layer being implemented on top of the other and providing specific
services. The layers at the top are closer to the applicationwhile those near the
bottom are closely related to the physical channel.

1. Application layerprovides methods to pass the data from the program to the
transport layer in an application-specific format. E.g. HTTP, FTP.

2. Transport layeris responsible for transferring data from source to destina-
tion in an abstract manner, independently of the underlyingnetwork. Ap-
plications are connected through the use of ports. The transmission can be
either connection-oriented (TCP) or connectionless (UDP). TCP provides
a reliable link which guarantees that packets arrive in order with minimal
error. This is ensured mainly by retransmission of lost or discarded pack-
ets. UDP does not guarantee a reliable transmission. The lost packets are
not retransmitted and the erroneous one, detected by a checksum algorithm,
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are discarded. UDP is typically used in data streaming applications such as
VoIP where timely delivery is more important than reliability.

3. Network layerprovides mechanisms to transmit the packets of the transport
layer from source to destination independently of the data link layer. This is
specified by the IP protocol. The whole network is virtualized by associating
IP addresses with the source and destination points.

4. Data link layeris network dependent. There are a large variety of networks
(including mobile networks) in which TCP/IP can be deployed. Examples
of protocols on this layer are the PPP protocol for internet access over a dial-
up modem, IEEE 802.11 for a local wired network, GPRS for packet data
over GSM, etc.

For the particular case of data streaming application, suchas VoIP, where on-
time delivery of the packets is crucial, the IETF developed the Real Time Transfer
Protocol (RTP) [86]. The protocol is built on top of UDP and provides methods
to reorder the incoming packets, handle the time delay spread and synchronization
of multiple data streams transmitted over separate channels. Like UDP, it is a best
effort data delivery service since the data reliability cannot be guaranteed.

The data packet in an RTP communication consists of IP, UDP and RTP head-
ers, and the real-time user data. The IP header (in IPv4) contains 20 bytes of
protocol specific data protected by a checksum. If the checksum of the header bits
at reception does not match the checksum field, the packet is dropped. The UDP
comprises 8 bytes and contains the source and destination ports, the length of the
header and encapsulated data, and the checksum of the whole packet (including
encapsulated data). In IPv4 the packets containing errors are discarded. IPv6 may
also accept erroneous UDP packets. This feature was introduced in the new ver-
sion of IP in order to support those applications which are more sensitive to packet
loss than to bit errors in payload.

The RTP header has 12 bytes of protocol specific data including the payload
type and a sequence number. The payload type identifies the kind of encapsulated
data (e.g. the speech codec used) so that they can be properlydecoded at the recep-
tion. The sequence number is used to reorder the sequence of packets in the jitter
buffer at the reception, since their trip delay may not be constant. The size of the
jitter buffer is dictated by the maximum latency tolerated by the application. The
packets that do not arrive within that time span are considered to be lost packets.
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5.2.2 Transmission errors in IP networks

In IP networks there are two factors responsible for transmission errors. One is the
error prone communication medium and the other arises from the specific network
architecture. Both are explained as follows:

The data link layer is error prone due to the inherent noise inthe communica-
tion medium. If the data link layer consists of a wireless or mobile network, the
same distorting factors, e.g. path loss, fading, as discussed in the previous section,
apply. If the data link layer is a wired network, such as Ethernet, the SNR level
in the communication medium is usually high so that the transmission approaches
the noiseless scenario. The result of such channel distortion is that the data link
layer of the receiver may pass erroneous packets to the upperlayer. In the latter,
however, the checksum of the data is checked and the erroneous packets are dis-
carded (in IPv4), that is, the application layer does not receive erroneous packets at
all. Therefore, in IP networks the bit errors occurring in the data link layer usually
turn into packet loss at the application layer level.

The other degradation is related to the IP network architecture. The users are
connected to the network by means ofrouter devices. A router has a number of
input and outputqueuesconnected by aswitcher. The packets received from the
user are buffered first in an input queue and the switcher decides, according to a
switching logicalgorithm, the route that the packet has to follow, i.e. to which
output queue the packet is to be redirected to. The packets inthe output queues
are stored ready to be sent; however, transmission does not occur immediately.
The packets may wait an undefined time until they are sent, depending on network
load, packet and queue size, routing policy, etc. Thus, theyare likely to be ran-
domly delayed. This is known astime delay spread. Besides variable latency at
reception, packet-switched architecture may be confronted with two critical situa-
tions in practice [87]: either some input queue may overflow due to an input flow
higher than the processing capacity of the switcher, or, some output queue may
overflow when the switcher delivers packets at a higher rate than the transmission
medium can manage. Overflows lead immediately to the dropping of packets from
queues in order to ensure the continuation of data flow. Sincedropped packets
never reach their destination, this effect is known aspacket loss. Furthermore, it is
likely that once an overflow has occurred, it may last some time until the queue is
in a free-flowing steady state. Dropping successive packetsleads to bursty packet
loss [88, 27].

Further loss of packets may occur at reception in the application layer if real-
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time constraints apply. The media streaming applications,such as VoIP, expect
data to arrive within a specific time span. This is necessary in order to keep the
latency within reasonable limits by avoiding the accumulation of packet delays. At
the receiving end the incoming packets are buffered in thejitter bufferbefore pro-
ceeding with decoding. The aim of buffering is twofold. First, it enables delayed
packets to be stored in an orderly fashion. The playback starts when the buffer
is full, that is, after a time proportional to the buffer sizehas elapsed. Secondly,
since the packets usually do not arrive in order, they can be reordered in the jitter
buffer by mean of the sequence number in the RTP header. As theplayback must
be performed synchronously, the frame which has to be decoded next is expected
to be already in the jitter buffer. If not present, the application has to consider it
lost (since it is useless to decode it later) and needs to employ a specific packet
loss concealment (PLC) technique in order to reconstruct the speech signal of the
lost segment.

Although with IPv6 or UDP-Lite the propagation of bit errorstowards the ap-
plication layer is not excluded, to date it has been widely assumed that the main
source of degradation in IP networks is packet loss [21, 20].The next section de-
scribes channel models that can be employed to simulate packet loss in a remote
speech recognition scenario over an IP network.

5.2.3 Channel Models

As mentioned in Section 5.1.2 the burstiness of channel errors can be conveniently
reproduced by a Markov chain [80, 81]. The same principle wasapplied in [27, 89,
90, 20] to model packet loss in an IP network. The simplest andmostly used model
consists of a 2-states Markov model, similar to the Gilbert model [80], schematized
in Figure 5.1.

non-loss loss

p

q

1 − p 1 − q

Figure 5.1: 2-state Markov model for packet loss in IP networks

Each packet triggers a transition from the current to the next state according to
the transition probabilities of the chain. The packet is correctly received if the cur-
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rent state isnon-lossotherwise it is declared lost. This model is completely defined
by the two parametersp andq representing the transition probabilities between the
states. These can be used to derive two other more intuitive parameters. One is the
mean loss probability(mlp) which is the average probability of packet loss and
is given bymlp = p/(p + q). The other is theconditional loss probability(clp)
defined as the probability of packet loss given that the previous packet was lost
clp = 1 − q. The values of model parameters can be chosen so that the generated
loss pattern approaches that corresponding to a certain network load, packet size,
etc. They can be obtained by estimatingmlp andclp from real packet traces char-
acterizing that network scenario. For simulation purposessome authors including
[27, 91, 47] extensively used the settings given in Table 7.3which model realistic
situations of low losses and short loss bursts (C1,C2) up to high losses and longer
bursts (C3,C4). These conditions were also used in the experimental part of this
work.

In addition to the two-state Markov chain, other models of higher complexity
have been proposed. Milner and James [89] proposed adding a third state which
models randomly received packets inside the loss periods, asituation which may
occur by freeing the router queues for a very short time period. The model pro-
posed by ETSI [92] for VoIP Quality of Service evaluation adds a fourth state
which models the isolated (not bursty) packet losses. The correlation between
losses can be even more accurately represented by employinghigher order Markov
models as shown in [93], however, the disadvantage is the higher number of pa-
rameters that have to be set.

While an accurate modeling of packet loss is desired, the purpose of this work
is, however, not to deliver absolute values of the word accuracy for a particular
network scenario, but to allow performance comparison withother state-of-the-
art approaches under the same network conditions. From thispoint of view the
two-state Markov chain is a convenient choice.

Alternatively, if the absolute WER of a recognition task needs to by predicted
for a particular network condition, e.g. a technique similar to VoIP Quality of Ser-
vice evaluation applicable to DSR, the burst length distribution of that particular
condition has to be known. The WER can be estimated as a weighted sum of word
error rates achieved by the task under random losses of fixed length. They can be
estimated in advance as shown in [94].
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5.2.4 Instantaneous bit error probability estimation

In packet-loss networks, the term “bit error probability” may at first seem inap-
propriate. The bits within a lost packet do not exist in practice since they have
not actually been received. Even though the bits are lost, wecan assume (without
loosing generality) that they are generated at random in theapplication layer. This
can be equivalent to a situation of severe channel degradation in which the channel
decoder generates uninformative bits.

Assuming that the sent bits are uniformly distributed, by generating zero or
one at random in the application layer with probabilitiesa and1− a, respectively,
the probability of error becomes:

pet = P (b̂t = 0|bt = 1) · P (bt = 1) + (5.7)

P (b̂t = 1|bt = 0) · P (bt = 0)

= a ·
1

2
+ (1 − a) ·

1

2
=

1

2
,

independent of the value ofa.

Note the bits need not be generated in fact. If the bit error probability is1/2,
their actual value does not matter. As it will become more clear in Chapter 6,
the aim of estimating instantaneous bit error probability is to compute the channel
transition probabilityp(yt|xt). By randomly generating the lost bits independently
of the sent ones, it is in fact ensured that the “received” featureyt and the sent
onext are statistically independent. Thus,p(yt|xt) equalsp(yt) which does not
depend onxt, and therefore does not change the feature posterior.

In conclusion, the bit error probabilities of the correctlyreceived bits are zero
denoting that the bits are reliable, while those of the lost bits are set to1/2 accord-
ing to (5.7). Note that in generalpet = 1

2 denotes the maximum level of degree of
unreliability. Higher values are not possible assuming that the decoder uses MAP
decision.

5.3 Discussion

Working with instantaneous bit error probability in both bit error and packet loss
cases, allows for a unified error concealment approach [85] in that the details of the
underlying network do not need to be known. The feature posterior computation



72 Chapter 5. Data reliability estimation

presented in Chapter 6 can be applied in both circuit and packet-switched networks
if the received bitŝbt and their error probabilitiespet are available.

Moreover, the next generation of IP networks (IPv6) is supposed to support
applications such as VoIP better, in that the receiving of partially damaged payload
is preferable to discarding it in the transport layer.

For example the UDP-Lite [95] transport protocol allows packets with failing
checksums to reach the application. This enables the application to decide itself
how to handle the erroneous packets. This feature has also already been proven to
be advantageous for DSR applications. Here, the nearest frame repetition method
is more efficient on a subvector basis, i.e. reconstructing only the erroneous part
of the vector, than on frame basis where the whole frame is discarded possibly due
to a single bit error [42].



Chapter 6

Feature posterior estimation

This Chapter describes our approach to estimate the featureposterior in DSR sys-
tems, where compressed features are transmitted over an error-prone channel. The
features can be extracted and compressed at the terminal side using any of the
ETSI-DSR standards [8, 12, 14]. For simplicity, however, our approach is ex-
plained in detail here for the ETSI Advanced Front-end (ETSI-AFE) [12] which
has been described in Section 1.2.2. The short-hand notation vt denotes in the
following any of the seven subvectors of the 14-dimensionalreal valued vector
produced by the feature extraction part, see Table 1.2.

Figure 6.1 depicts the DSR system considered in this section. The feature
extractionblock,Quantizer, Index generatorandCodebookare those of the ETSI-
AFE. Note that only one subvectorvt is being considered since, as long as it is not
otherwise specified, the operations are performed identically for any subvector.

The subvectorvt is quantized (ct) and coded into a bit patternbt of M bits.
This constitutes the source coding part of the system. The bit patternbt is then
transmitted through an equivalent channel which includes the channel (de)coding
and the other components. The channel output consists of thedecoded bit pattern
b̂t and the instantaneous bit error probabilities of each of itsM bits. The depen-
dency between received bit, transmitted bit, and channel statezt at that time is
modeled statistically by the transition probabilityP (b̂t|bt, zt). The latter variable
zt has been introduced to allow us to model the time varying channel properties
(state) using instantaneous bit error probability computed as described in Chap-
ter 5.

The channel state gives in fact the probability of a bit errorat that time. The
posterior probability of the bit pattern is then computed using the redundancy of
the bitstream (a priori knowledge) and the transition probability. Once the bit

73
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pattern posterior is known, the static feature posterior can easily be inferred. The
above processing steps are described in the following.

Feature
extraction Quantizer Index

gen.
Equiv.

channel

A priori

Bit pattern

Codebook Trans. prob

posterior posterior
Feature vector

vt ct bt

b̂t

P (b̂t|bt, zt)

pet

P (bt|b̂)p(vt|y, z)

Figure 6.1: Block diagram of processing elements relevant for feature posterior
estimation in a DSR system.

6.1 Source coding

Generally, a source coder is a mapping of theN -dimensional Euclidian space into
a finite set of2M indices. It consists of two components: the quantizer and the in-
dex generator. The quantizer searches the finite codebook for thatN -dimensional
codeword (centroid)c which best represents theN -dimensional input vector. The
search criterion is usually the Euclidian distance measure. The codeword is then
mapped to an indexb of lengthM bits.

The source coder of ETSI-AFE employs a split vector quantizer (SVQ) for the
quantization of the static components of feature. The inputis the 14-dimensional
vector consisting of 13 MFCCs and the logarithmic frame energy. This is split into
7 two-dimensional subvectors (N = 2) which are then separately quantized to bit
patterns of lengthM according to Table 1.2.

6.2 Equivalent channel

Both circuit and packet-switched channels are modeled hereby an equivalent time-
variant binary symmetric channel. The binary input symbolsare corrupted with
probabilitypet which may vary with each transmitted bit. The input of the channel
at each time instancet is the bit pattern produced by source coding corresponding
to the centroidct. The bit patternsbt are sent in a sequencebt(0), . . . , bt(M − 1),
M being the number of bits allocated for the subvector. Note that in Chapter 5 this
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detail was intentionally omitted for clarity since there the indext was associated
with each bit of the sequence. The channel output consists ofthe decoded bit
patternb̂t = b̂t(0), . . . , b̂t(M − 1) and the vector of bit error probabilitiespet =

pet(0), . . . , pet(M − 1) of each decoded bit.

6.3 Channel transition probability

The channel transition probability is defined here as the probability of receiving
a particular pattern given the sent pattern and the present channel state. This can
be obtained considering the Bayesian network of the Figure 6.2. Here we use
the capitalized notationP (b̂t|bt, zt) since the bit patterns can be seen as discrete
random variables.

zt(m − 1)

· · · · · ·

· · ·· · · zt(m)

bt(m)bt(m − 1)

b̂t(m)b̂t(m − 1)

Figure 6.2: Bayesian Network for computing channel transition probability of the
bit pattern(bt(0), · · · bt(M − 1))

The model captures both, possible dependencies between thebits ofbt, which
corresponds to a source with memory, and dependencies between consecutive
channel states, which correspond to a channel with memory such as a bursty error
channel. However, the received bitb̂t(m) depends only on the sent bitbt(m) and
zt(m) at that time instance. This allows us to express the transition probability of
each bit as:

P (b̂t(m)|bt(m), zt(m)) =

{

1 − pet(m) if b̂t(m) = bt(m)

pet(m) if b̂t(m) 6= bt(m).
(6.1)

The transition probability of the bit pattern becomes:
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P (b̂t|bt, zt) =
M−1
∏

m=0

P (b̂t(m)|bt(m), zt(m)) (6.2)

For the purpose of further processing it is enough to evaluate the above expres-
sion only at the particular received patternb̂t but for all possible values ofbt, i.e.
0, . . . , 2M − 1. Thus, the output of the blockTransition probabilitiesin the Figure
6.1 is a vector of2M probability valuesP (b̂t|b

(i)
t , zt), with i = 0 . . . 2M − 1.

It is instructive to analyse the expression (6.2) for a packet erasure channel. In
this case, a data packet which carries a number of bit patterns is either completely
lost or received without any bit errors. Thus, the channel statezt(m) is binary,
the possible values corresponding to two situations: bitm belongs to a received
(zt(m) = 0) or to a lost packet (zt(m) = 1). As shown in the previous chapter, in
the packet loss scenario the bit error probability can take only two values:0 and
1/2. Assuming that all bits of a bit pattern are carried in the same data packet, i.e.
zt(m) = zt , for all m = 0 . . .M − 1, the transition probability becomes now:

P (b̂t|bt, zt) =







1 if zt = 0 andb̂t = bt

0 if zt = 0 andb̂t 6= bt

(1
2 )M if zt = 1

(6.3)

In the view of (6.3) it makes no difference how the channel decoder “recon-
structs” the lost bits. The equation states that if the packet is lost,P (b̂t|bt, zt) is
independent ofbt.

6.4 Bit pattern posterior computation

In Chapter 4 we have seen that for the purpose of uncertainty decoding, the tem-
poral correlation of the feature vectors can either be neglected (Section 4.3.1), or it
can be taken into account (Section 4.3.2). The first case yields a memoryless dis-
crete source of bit patterns whereas the second correspondsto a discrete Markov
source. This section shows how the bit pattern posterior canbe computed in each
case using the bit reliability information and priori knowledge of the source.
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6.4.1 A priori knowledge

The knowledge of source statistics is contained in the blocka priori of Figure 6.1.
This is modeled by the prior probability mass function of thebit patternP (b

(i)
t ),

with i = 0 . . . 2M−1, and the conditional probability mass functionP (b
(i)
t |b

(j)
t−1),

i, j = 0 . . . 2M − 1 for the case of first-order Markov source. Both are estimated
in advance on a training set by quantizing the feature vectors and counting the
occurencesN (i) of each bit patternb(i)

t and the occurrences of the sequences
(b

(i)
t ,b

(j)
t−1) denoted byN (i,j). The ML estimates (notation witĥ· for estimate

was omitted for convenience) are:

P (b
(i)
t ) =

N (i)

N
(6.4)

P (b
(i)
t ,b

(j)
t−1) =

N (i,j)

N · N
(6.5)

P (b
(i)
t |b

(j)
t−1) =

P (b
(i)
t ,b

(j)
t−1)

P (b
(j)
t )

Here the process stationarity was assumed such that the statistic does not change
over time, i.e.P (b

(j)
t−1) = P (b

(j)
t ).

The average information contained in a bit pattern can be measured by the
source entropy:

H(bt) = −
2M−1
∑

i=0

P (b
(i)
t ) log P (b

(i)
t ) (6.6)

The first line of Table 6.1 gives the entropies of the bit patterns corresponding
to individual subvectors. The values have been obtained on the training set of the
Aurora 2 database using the ETSI advanced feature extraction front-end. It can
be observed that the entopy values are close toM , the number of bits used at
quantization. This denotes that the redundancy is small within a bit pattern.

An indication of inter-frame correlation is themutual informationof consecu-
tive vectors defined as:

I(bt;bt−1) = H(bt) − H(bt|bt−1) (6.7)
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Table 6.1:Entropies and mutual information among the subvectors produced by
the ETSI advanced DSR front-end.

Subvector 1 2 3 4 5 6 7

M 6 6 6 6 6 5 8
H(bt) 5.8 5.8 5.8 5.8 5.8 4.8 7.7
I(bt;bt−1) 2.6 2.1 1.6 1.4 1.2 1.0 3.4
I(bt;bt−1) 3.0 2.4 1.9 1.7 1.5 1.3 4.5

where the conditional entropy is computed as:

H(bt|bt−1) = −
2M−1
∑

i=0

2M−1
∑

j=0

P (b
(i)
t ,b

(j)
t−1) log P (b

(i)
t |b

(j)
t−1) (6.8)

The mutual informationI(bt;bt−1) is a measure of how much information
about the current bit patternbt is already present in the previous vectorbt−1. The
higher the mutual information, the better a bit pattern can be predicted from its
predecessor. Statistical independence (no correlation) of bit patterns att andt− 1

would lead toH(bt|bt−1) = H(bt) and the mutual information would become
zero.

The second line of Table 6.1 gives the mutual information computed for each
subvector. Here can be observed that the values are relatively high, denoting that
the assumption of a Markov source is more appropriate than the assumption of a
memoryless source.

Even more accurate modeling of the memory source can be achieved by con-
sidering a higher-order Markov process. For example in the second-order Markov
source, the current bit patternbt depends on two predecessorsbt−1,bt−2. How-
ever, the complexity and memory requirements increase exponentially with the
order of the Markov source. A good compromise can be made by still assum-
ing first-order but extending the static feature vector by appending the dynamic
features, e.g. first and second-order temporal differences. By doing so, the first
predecessor of a feature vector contains to some extent information about the sec-
ond, third, etc. predecessor.

The last line of Table 6.1 gives the mutual information between the current
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bit pattern of the static componentsbt and the bit pattern of the previous frame
bt−1 = (bt−1, ∆bt−1, ∆

2bt−1), which consists of the coded static feature com-
ponentsbt−1 and the coded first- and second-order derivatives. While thestatic
components were coded by the ETSI-AFE, for the dynamic components of each
subvector we had to design our own vector quantizers [96]. For the experiment re-
ported in Table 6.1 we employedD1 = 3 bit vector quantizers for∆ (velocity) and
D2 = 1 bit for ∆2 (acceleration). Obviously, the dynamic parameters of the previ-
ous frame provide additional knowledge about the static parameters of the current
frame, since the mutual information is higher than the one observed betweenbt

andbt−1.

6.4.2 Memoryless source

Assuming a memoryless source, the correlation betweenbt andbt−1, which rep-
resents most of the bitstream redundancy, is neglected. Without temporal depen-
dencies, the bit pattern posteriorP (bt|b̂t) can be easily computed by applying
Bayesian rules for conditional probabilities:

P (b
(i)
t |b̂t) = P (b

(i)
t |b̂t, zt) (6.9)

=
P (b̂t|b

(i)
t , zt)P (b

(i)
t |zt)

P (b̂t|zt)

=
P (b̂t|b

(i)
t , zt)P (b

(i)
t )

P (b̂t|zt)

=
1

K
P (b̂t|b

(i)
t , zt)P (b

(i)
t ),

i = 0 . . . 2M − 1

Here we theorized that the sent bit pattern and channel stateare independent
resulting inP (b

(i)
t |zt) = P (b

(i)
t ). The denominatorP (b̂t|zt) is assimilated into

the constantK since it does not depend oni. It can be computed by forcing the
posterior to sum to one:

K =

2M−1
∑

i=0

P (b̂t|b
(i)
t , zt)P (b

(i)
t ) (6.10)
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The vector of probabilitiesP (b̂t|b
(i)
t , zt), i = 0 . . . 2M − 1 is provided by the

block transition probabilities, see Figure 6.1.

6.4.3 Markov source

The feature posteriorp(xt|yT
1 ) which captures the temporal correlation between

features can be computed from the bit pattern posteriorP (bt|b̂T
1 ). In specifying

the correlation a good compromise between accuracy and complexity is to assume
that the sequencebt, t = 1, 2, . . . is a homogeneous first-order Markov process.
Let b(i)

t , i = 0, . . . , 2M − 1 be the discrete state space of this process, i.e. the
values that the bit pattern may take, andaij = P (b

(j)
t |b

(i)
t−1), i, j = 0 . . . 2M − 1

are the elements of the transition probability matrix.

The bit pattern posteriorP (b
(i)
t |b̂T

1 ) conditioned on all received bit patterns
b̂T

1 = (b̂1, . . . , b̂T ) can be computed by the Forward-Backward algorithm [51].
Let αt(i) be the forward probabilities,βt(i) the backward probabilities andγt(i)

the posterior probabilities of each bit patterni = 0 . . . 2M − 1. They are defined
as follows:

αt(i) = P (b̂t
1,b

(i)
t |zT

1 ) (6.11)

βt(i) = P (b̂T
t+1|b

(i)
t , zT

1 ) (6.12)

γt(i) = P (b
(i)
t |b̂T

1 ) (6.13)

The algorithm details are given below:

Initialization:

α1(i) = P (b
(i)
1 )P (b̂1|b

(i)
1 , z1) (6.14)

βT (i) = 1

Recursion:
(starting fromt = 1 for forward andt = T for backward probabilities)

αt+1(i) =
2M−1
∑

j=0

αt(j)P (b
(i)
t+1|b

(j)
t ) · P (b̂t+1|b

(i)
t+1, zt+1) (6.15)

βt−1(i) =

2M−1
∑

j=0

βt(j)P (b
(j)
t |b

(i)
t−1)P (b̂t|b

(j)
t , zt)
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Posterior computation:

γt(i) =
αt(i)βt(i)

2M−1
∑

j=0

αt(j)βt(j)

(6.16)

The implementation of recursion (6.15) needs special precautions since the
multiplication of small probability values can quickly lead to numerical problems.
In order to avoid this, the forward and backward probabilities were scaled, i.e.
multiplied by a constantKαt

andKβt
, respectively, at each stept such that they

summed to one. The scaling coefficients do not affect the finalresult since:

γt(i) =
Kαt

αt(i)Kβt
βt(i)

2M−1
∑

j=0

Kαt
αt(j)Kβt

βt(j)

=
αt(i)βt(i)

2M−1
∑

j=0

αt(j)βt(j)

(6.17)

6.4.4 Extended Markov source

A typical feature vector for ASR consists of static mel frequency cepstral coeffi-
cients (MFCC) and their first- and second-order temporal differences, the so-called
dynamic features. In [96] we have shown that the source modeling can be im-
proved if we consider that the sequencebt = (bt, ∆bt, ∆

2bt),t = 1, 2, . . ., i.e.
coded static, delta and delta-delta components, is a Markovprocess. The bit pat-
tern posterior can be determined in a similar fashion as above. The complete bit
pattern has in this caseN = M + D1 + D2 bits and the state space is extended to
2N elements.D1 andD2 denote the number of bits for quantization of delta and
delta-delta components. Since only the bit pattern corresponding to the static com-
ponents is transmitted, the channel transition probability of the complete pattern
is:

P (b̂t|b
(i,m,n)
t , zt) = P (b̂t|b

(i)
t , zt), (6.18)

for all

i = 0, . . . , 2M − 1,

m = 0, . . . , 2D1 − 1,

n = 0, . . . , 2D2 − 1.
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Hereb
(i,m,n)
t = (b

(i)
t , ∆b

(m)
t , ∆2b

(n)
t ) is the bit pattern consisting of theith

static,mth velocity andnth acceleration bit pattern.

The bit pattern posterior of the static componentsP (b
(i)
t |b̂T

1 ) is obtained from
the bit pattern posterior of the whole vector (computed by the forward-backward
as previously shown) by marginalizing the dynamic components:

P (b
(i)
t |b̂T

1 ) =

2D1−1
∑

m=0

2D2−1
∑

n=0

P (b
(i,m,n)
t |b̂T

1 ), (6.19)

for anyi = 0, . . . , 2M − 1.

Similarly to Eq. 6.19, the bit pattern posterior of the dynamic components can
be obtained from the posterior of the full vector by marginalizing the static com-
ponents. Experimental evaluation showed, however, that this method yields poor
results due to the rough quantization for delta and delta-delta that was employed.
Therefore, the posterior of dynamic components is computedusing an alternative
suboptimal approach presented in Section 6.5.2.

Note that there are technical limits to increasing the resolution of the dynamic
features. The number of states to be evaluated by the Forward-Backward algorithm
grows exponentially with the number of bits of the bit pattern. Even with the rough
quantization of dynamic components used in our experiment,we already needed
12 bits (8 for static, 3 for delta and 1 for delta-delta) for the seventh subvector,
resulting in 4096 model states. More details on computational complexity can be
found in Chapter 9.

6.5 Feature posterior

The feature posterior is the probability density function of the sent featurext con-
ditioned either on only the received featureyt or on the whole sequenceyT

1 , see
also Eq. 4.37 and 4.38. In speech recognition the feature vector xt usually con-
sists of static components, e.g. cepstral coefficients, anddynamic components
which are obtained by linear regression of static components of neighboring vec-
tors. While in (4.37) and (4.38) the notationxt has been used for the complete fea-
ture vector, eventually including dynamic components, in this sectionxt denotes
only the static components. The full vector is denoted here by (xt, ∆xt, ∆

2xt).
This distinction has to be made as in DSR only the static components are trans-
mitted through the channel. Thus, the corruption process affects directly only the



6.5. Feature posterior 83

static components. The indirect corruption of the dynamic components as an effect
of erroneous static components is discussed separately in Section 6.5.2.

6.5.1 Posterior of static components

As the observed feature vectoryt is obtained by one-to-one mapping of the re-
ceived bit pattern of each subvector into the correspondingVQ centroid, the con-
ditioning onyt is equivalent to conditioning on̂bt. The continuous posterior of
the subvector can therefore be expressed as:

p(vt|yt) = p(vt|b̂t) =
2M−1
∑

i=0

p(vt|b
(i)
t )P (b

(i)
t |b̂t), (6.20)

or, conditioning on the whole sequence:

p(vt|y
T
1 ) = p(vt|b̂

T
1 ) =

2M−1
∑

i=0

p(vt|b
(i)
t )P (b

(i)
t |b̂T

1 ). (6.21)

The termp(vt|b
(i)
t ) is the probability density function of the subvector given

theith bit pattern. That is, the distribution of those subvectors which are coded into
the bit patterni. It must be zero outside theith cluster and non zero within. While
this can be specified exactly through knowing the prior distribution of the feature
and the quantization clusters, we prefer to use an approximative parameterization
having less parameters. Thus, we employed Gaussian PDFs,N (vt; c

(i)
t ,Σ

(i)
t ) for

each cluster. The mean value parameterc
(i)
t is the VQ centroid mapped tob(i)

t ,
andΣ

(i)
t the within-cell covariance matrix. The latter can be easilyestimated on

the training data by assuming the mean value to bec
(i)
t and computing the second

order moment of feature subvectors quantized into the bit patternb
(i)
t . An even

simpler parameterization is the Delta-Dirac distributioncentered on the VQ cen-
troid, δ(vt − c

(i)
t ) which does not need any parameter estimation. This neglects,

however, the uncertainty due to the quantization process. Thus, in explaining the
approach we use the Gaussian approximation since it is more general. To particu-
larize for Delta-Dirac distribution the Gaussian covariances must be set to zero.

In the following, we use the notationy for eitheryt or yT
1 andb̂ for eitherb̂t

or b̂T
1 .
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For the reason explained in Section 4.3.3, the subvector posterior density needs
to be approximated by a Gaussian density, but Eq. 6.20 and 6.21 are Gaussian
mixtures with2M components. The mixture coefficients are the posterior bit pat-
tern probabilitiesP (b

(i)
t |b̂). The single Gaussian̂p(vt|y) = N (vt; µvt|y,Σvt|y)

which best approximates the mixture is obtained by minimizing the Kullback-
Leibler divergence between̂p(vt|y) and the original posteriorp(vt|y). This yields
the following estimates:

µvt|y =

2M−1
∑

i=0

P (b
(i)
t |b̂)c

(i)
t (6.22)

Σvt|y =

2M−1
∑

i=0

P (b
(i)
t |b̂) · ((c

(i)
t − µvt|y) · (c

(i)
t − µvt|y)T

+Σ
(i)
t ). (6.23)

In Eq. 6.23 the covariance matrix can be seen as the sum of the average between-
cell covariance and the average within-cell covariance. Ithas been observed ex-
perimentally that ifM is sufficiently large, as it is the case with the ETSI-AFE
quantization, the within-cell covariance can be neglected. This is none other than
using Delta-Dirac approximation forp(vt|b

(i)
t ).

As the correlation between the subvectors of the same feature vector is rather
small [85], the posterior of the static feature can be obtained as the product of
all subvector posteriors. This yields a Gaussian with parametersµxt|y andΣxt|y

which are obtained by simply concatenating the parameters of all subvectors.

6.5.2 Posterior of dynamic components

Let xt, ∆xt and∆2xt denote the static, first-order and second-order temporal
derivatives of subvectors ofxt. They are usually computed as a linear function of
the static components (linear regression):

∆xt =

K
∑

k=−K

wkxt+k (6.24)

∆2xt =

L
∑

k=−L

υk∆xt+k (6.25)
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Here,wk andυk are the linear regression parameters. Usual settings for the
regression interval length areK = 3 andL = 2.

The posterior of the delta componentsp(∆xt|y) could be computed as:

p(∆xt|y) =

∫

D∆xt

p(xt−K , . . . ,xt+K |y)dxt−K . . . dxt+K , (6.26)

whereD∆xt
is the domain containing all sequencesxt−K , . . . ,xt+K which

yield the same value of∆xt. A similar expression can be obtained for∆2xt.
Unfortunately, this approach is not practically applicable due to the complexity of
computing the joint probabilityp(xt−K , . . . ,xt+K |y).

The suboptimal approach which we employed is to infer the posterior of dy-
namic features from the posterior of static ones. The fundamental approximation
allowing this is that the consecutive featuresxt−K , . . . ,xt+K are Gaussians and
statistically independent, giveny. According to (6.24),∆xt is a linear combina-
tion of independent and normally distributed random variables and therefore it is
also a Gaussian distribution with parameters:

µ∆xt|y =

K
∑

k=−K

wkµxt+k|y (6.27)

Σ∆xt|y =

K
∑

k=−K

w2
kΣxt+k|y

Note that the expression for the covariance in (6.27) is valid for diagonal co-
variance matrices which is implicitly our case since we assumed that the individual
feature vector dimensions are independent.

With the same considerations the posterior of delta-delta is computed as:

µ∆2xt|y =

L
∑

k=−L

υkµ∆xt+k|y (6.28)

Σ∆2xt|y =

L
∑

k=−L

υ2
kΣ∆xt+k|y

In practice, since the independence approximation does nothold, the variances
of dynamic components tend to be over-estimated.
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6.5.3 Posterior of complete vector

Assuming now that the three types of feature, static, delta and delta-delta, are
independent (given the observations), the posterior of thecomplete feature vector
becomes:

p(xt, ∆xt, ∆
2xt|y) = p(xt|y

T
1 ) · p(∆xt|y) · p(∆2xt|y). (6.29)

Thus, the Gaussian feature vector posterior to be used in (4.37) or (4.38) has
the parameters:

µxt,∆xt,∆2xt|y = (µxt|y, µ∆xt|y, µ∆2xt|y) (6.30)

Σxt,∆xt,∆2xt|y = (Σxt|y,Σ∆xt|y,Σ∆2xt|y) (6.31)



Chapter 7

The application of uncertainty decoding to
channel-error robust DSR

In this Chapter it is shown how uncertainty decoding can be used as an error con-
cealment technique in a DSR scenario to alleviate the detrimental effect of channel
errors. There are three sections. The first describes an experimental setup of a
DSR system and the speech recognition tasks employed for performance evalua-
tion. The second section evaluates a simulated DSR system ina network where
the channel exhibits bit errors, a typical case for circuit-switched data links such
as the GSM data channel. In the third section the DSR system issimulated in a
packet-switched network where the channel errors consist of packet losses. Typical
example used here is the transmission of data over the publicInternet (TCP/IP).

The word error rates were determined for each scenario undervarious chan-
nel conditions and employing different error concealment techniques. The results
obtained with the error concealment of ETSI-AFE and some other state-of-the-art
techniques such as weighted Viterbi and MFT are also presented.

7.1 Experimental setup

The simulation system was realized for the most part in SPARK(Speech Pro-
cessing and Recognition Toolkit), a simulation software package developed at the
Department of Communications Engineering of the University of Paderborn. It
consists in feature extraction at the client side, a transmission channel model, and
recognition supporting uncertainty decoding at the serverside. The front-end part
is compliant with ETSI-AFE standard. The simulation of the GSM physical layer
has been carried out using the GSM library of the CoWare SPW (Signal Processing

87
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Worksystem) software suite [79].

For the training of the acoustic models we employed the HTK (Hidden Markov
Model Toolkit) speech recognition software suite [97]. Thespeech recognition was
carried out using our own speech decoder software with SPARKas it offers more
flexibility in modifying the observation probability computation required by the
uncertainty decoding rule. This is an one-pass Viterbi decoder with dynamically
constructed lexical pronunciation trees which supports n-gram language models.

7.1.1 DSR simulation system

The block diagram of the DSR simulation system is given in Figure 7.1.

DB
Speech ETSI-AFE

Feature extraction

Bitstream

Bitstream

formatting

C
ha

nn
el

si
m

ul
at

io
n

decoding
EC

Post. Comp
ASR

Client side

Server side

Figure 7.1: Block diagram of the DSR simulation system.

The blockSpeech DBcomprises the speech data of the test set. They are pro-
cessed inETSI-AFEresulting in the bitstream of compressed feature vectors. This
is formatted according to ETSI specifications and enters theChannel simulation
block, which is described in Section 7.2 and 7.3. The bitstream obtained at the
channel output is decoded into feature vectors which enter the error concealment
(EC) block and, subsequently, the speech recognizer. While this is the case of
reconstruction-based EC, in decoder-based techniques theerror concealment takes
place within the recognizer itself. For simulations with uncertainty decoding the
block EC is labeled alternativelyposterior computation.

The performance in terms of WER has been evaluated for each ofthe EC tech-
niques listed below:

• ETSI-DSR: the EC provided by the DSR standard that is basically nearest
frame repetition (NFR), see Section 2.3.1. This setup yields the reference
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WER performance.

• M: marginalization, according to MFT, see Section 2.4.1. Unreliable fea-
tures do not contribute to the acoustic score. The features were deemed
unreliable either by means of CRC or, in case of packet loss, using packet
loss indication.

• WV: weighted Viterbi EC as in Section 2.4.2. In case of the GSM channel
the weighting coefficientγ has been computed by (2.9) using bit reliability.
The parameterα in the above equation was tuned for best performance un-
der the worst channel conditions. In case of the IP channel weemployed
the exponentially decaying weighting coefficient during loss bursts (2.13), a
method proposed in [66].

• UD0: uncertainty decoding with feature posterior conditionedon instanta-
neous observation only (4.37).

• UD1: uncertainty decoding with feature posterior conditionedon the whole
sequence of observations (4.38).

• UD1-dyn: uncertainty decoding with feature posterior conditionedon the
whole sequence of observations (4.38) and employing extended source mod-
eling of Section 6.4.4.

• MMSE0: the MMSE point estimate of the clean feature is the Gaussian
mean of the feature posterior conditioned on instantaneousobservation only
(4.37). ASR uses the conventional decoding rule.

• MMSE1: the MMSE point estimate of the clean feature is the Gaussian
mean of the feature posterior conditioned on the whole sequence of obser-
vations (4.36). ASR uses the conventional decoding rule.

• MMSE1-dyn: the MMSE point estimate of clean feature is the Gaussian
mean of the feature posterior computed as forUD1-dyn.

Note thatETSI-DSR, MMSE0, MMSE1, and MMSE1-dyn do not imply
changes in the speech recognizer. The EC is therefore separated from the recog-
nition process. In contrast, the other techniques are decoder-based and require
modification of the decoding rule in the recognizer. In all cases there are, however,
no changes at the client side.
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The experimental results are given in terms of WERs under various channel
conditions: different C/I ratios for the GSM and a set of representative packet-loss
conditions for IP.

7.1.2 Speech recognition tasks

The EC performance has been evaluated on two recognition tasks: Aurora 2 which
is a small-vocabulary digit recognition task without a language model, and Wall
Street Journal (WSJ0) a medium-vocabulary task with approx. 5000 words and a
bigram language model. Each task is briefly described below.

1. Aurora 2 task. The small-vocabulary task is the clean test set of the Aurora
2 database, see [9] for an overview, consisting of 4004 utterances (continu-
ously spoken digit strings) from 52 male and 52 female speakers, distributed
over four subsets of 1001 utterances. The sampling rate is 8kHz. There is
no language model for this task. The acoustic models, trained in clean con-
ditions as described in [9], have 16 states per word with 3 Gaussians per
state and diagonal covariance. With feature vectors computed by the ETSI
DSR standard [12] the WER in error-free conditions (i.e. without channel-
induced errors) was 0.86%.

2. WSJ0 task. The medium-vocabulary task is the Wall Street Journal WSJ0
5k Nov. ’92 evaluation test set [98] comprising about 5000 words in 330
utterances of 4 male and 4 female speakers, summing up to 40 min of speech.
Here, the sampling rate is 16kHz. Recognition experiments were carried
out using a closed vocabulary bigram language model. The acoustic model
consisted of 3437 tied states. The parameters of the 10-component mixture
densities were trained on the SI-84 set of the WSJ corpus as in[99] using the
HTK toolkit. With features computed by ETSI DSR standard [12], 16kHz
extension, the WER in error-free conditions was 8.99%.

7.2 Evaluation of robustness to bit errors

A GSM data channel was considered as an example of a transmission channel
exhibiting bit errors. Figure 7.2 shows the details of the DSR simulation system for
this particular scenario. Note that the block diagram is relevant only forMMSE0,
MMSE1, UD0, andUD1 techniques.
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Figure 7.2: Block diagram of the DSR simulation system over GSM, channel and
server side processing.

The transmission of the formatted bitstreambt obtained at the client side is
simulated in the blockGSM channel simulation. The method employed here is
either physical layer simulation or error pattern injection. The output consists of
the decoded bitstream̂bt and, in the case of physical layer simulation, the associ-
ated bit error probabilitiespet. The computation of feature posterior is carried out
using either the bit error probabilities delivered by the physical layer (the switch
K on position 1), or the estimated bit error probabilities (the switch K on position
2). For details regarding bit error probability estimationthe reader is referred to
Chapter 5.

The Gaussian parametersµxt|y, Σxt|y of the feature posterior are fed into the
recognizer where the classification takes place according to uncertainty decoding
rules (4.37) or (4.38).

Under each channel condition, a complete recognition task has been performed
using one of the EC technique listed in Section 7.1.1. Note that since the trans-
mission errors are random, the word error rates obtained mayslightly differ if the
initialization of random number generators or the alignment with the utterance is
changed. This effect has been also noticed in [94] the WER differences between
simulations with different initializations were in average 0.04% (max. 0.69%) for
Aurora 2 and 0.16% (max. 4.32% !) for WSJ0. Hence, it is particularly difficult
to exactly reproduce the WERs obtained by other research groups using MMSE,
weighted Viterbi or even NFR. In order to reduce these variations, a much larger
test set should be used, which is not possible since this is determined by the speech
database, or enough results obtained with different initializations should be aver-
aged. In this work, for a fair comparison of performances, the various EC tech-
niques are examined under identical error patterns, that isthe bit errors or packet
loss occurred exactly at the same positions in the utterance.
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7.2.1 GSM physical layer simulation

In this experiment the GSM physical layer was simulated, including channel cod-
ing/decoding, interleaving/deinterleaving, modulation/demodulation, interference
and fading of the channel. The channel coding was TCH/F4.8 [16], which uses
convolutional coding with rate 1/3. The channel decoding employed the Bahl
(Forward-Backward) algorithm after [84] which provides bit reliability along with
the decoded bits. The channel model approximated a “typicalurban” (TU) profile
as specified by COST 207 [78] with 12 propagation paths, delayspread 1.03µs
and Rayleigh fading at a terminal velocity of 50 km/h. The Carrier-to-Interference
(C/I) power ratio was set to 2.5, 4, 5.5 , 7 and 10 dB resulting in average bit error
rates of 3.6%, 1.2%, 0.34%, 0.078% and 0.0025%, respectively. Note that a C/I of
10 dB is close to error-free transmission.

One set of simulations was carried out using the bit reliability information of
the channel decoder (K on position 1 in Figure 7.2). The otherset was carried out
using the bit reliability estimated from the decoded bit pattern (K on position 2) as
described in Section 5.1.3.2. This allows the quantifying of loss of performance by
imperfect estimation of bit reliability, when the soft-output of the channel decoder
is not available.

For the Aurora 2 task, Figure 7.3 presents the word error rates versus channel
quality expressed by the C/I ratio. The bit error probabilitiespet were obtained
from the channel decoder (soft-output).

In Figure 7.4, the simulations were repeated on this occasion using bit error
probabilities estimated from received data. The corresponding curves have the
suffix -EST (estimated). For ease of comparison they are plotted along with WERs
computed with channel decoder soft-output (those of Figure7.3).

The same testing procedure was applied to the WSJ0 task and the word error
rates are shown in Figures 7.5 and 7.6.

7.2.2 Channel errors simulated by GSM error patterns

Another method to simulate the bit errors in a GSM transmission is the injection of
channel specific error patterns into the data stream, as mentioned in Section 5.1.2.
The simulation with error patterns can be easily set up sinceit involves only an
“exclusive or” operation between the sent bitstream and theerror pattern in order
to obtain the received bitstream. A disadvantage is that themethod is unable to
provide bit reliability information (decoder soft output)as the channel decoder is
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Figure 7.3: WERs on the Aurora 2 task, with bit error probabilities from the chan-
nel decoder

not explicitly part of the setup. To circumvent this probleman estimate of the bit
reliability with the method described in Section 5.1.3.2 was employed, i.e. switch
K on position 2 in Figure 7.2.

Tables 7.1 and 7.2 present the word error rates using different EC techniques,
for the Aurora 2 and WSJ0 tasks, respectively. The transmission errors were sim-
ulated by the GSM error patterns EP1, EP2, and EP3 introducedin Section 5.1.2.

Table 7.1: Word error rates on the Aurora 2 task for GSM error patterns

EP ETSI(NFR) M WV UD0 UD1 MMSE0 MMSE1

EP1 0.90 0.90 0.90 0.90 0.90 0.90 0.90

EP2 0.90 1.01 1.22 0.97 0.97 1.43 0.96

EP3 5.43 7.68 8.20 2.67 1.95 11.80 2.26
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Figure 7.4: WERs on the Aurora 2 task, with bit error probabilities estimated from
data

Table 7.2: Word error rates on the Wall Street Journal (WSJ0)task for GSM error
patterns

EP ETSI(NFR) M WV UD0 UD1 MMSE0 MMSE1

EP1 8.97 8.95 8.85 8.96 8.95 8.99 8.97

EP2 9.75 9.73 9.19 9.00 9.02 9.42 9.02

EP3 32.75 26.23 17.63 14.33 11.43 22.06 12.24

7.2.3 Discussion

The results on the small-vocabulary task Aurora 2 and the medium-vocabulary task
WSJ0 show analogous behaviour. The following observationsapply to both tasks.

The importance of considering the inter-frame correlationfor error conceal-
ment is emphasized by comparing the curvesUD0 andUD1. While both of them
account for unreliability due to transmission errors, the latter performs better since,
under the same conditions, it delivers a feature posterior with a smaller variance.
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Figure 7.5: WERs on the WSJ0 task, with bit error probabilities from the channel
decoder

This means that the clean feature estimate is frequently close to the true trans-
mitted value. The variance is so small that even neglecting it, asMMSE1 does,
yields hardly any degradation in WER. This explains the slight difference between
MMSE1 andUD1.

If the inter-frame correlation is not considered, e.g.MMSE0 andUD0, the
clean feature is poorly estimated. Consequently,MMSE0 performs even worse
than the EC of ETSI-AFE. The improvement byUD0 overMMSE0 shows that if
the variance of the feature posterior is high, speech recognition can benefit from
the use of the modified decoding rule.

The marginalisationM exploits neither the inter-frame correlation nor the error-
free portion of the feature vector. A feature vector does notproduce discrimination
even if it is only partially corrupted, e. g. only one component was affected.WV
does not exploit the inter-frame correlation, too, but contrary to M, it is able to
gradually deemphasise the discrimination produced by unreliable features.

When the instantaneous bit error probability is estimated from received data,
small performance losses occur for all techniques employing it, however only at
low C/I ratios, i.e. bad channel conditions. This validatesour method used to
derive the instantaneous bit error probability and proves that powerful EC tech-
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Figure 7.6: WERs on the WSJ0 task, with bit error probabilities estimated from
data

niques such asMMSE1 andUD1 can be applied as well, even if the soft-output
information of the channel decoder is not accessible at the server side of the DSR
system.

7.3 Evaluation of robustness to packet loss

In order to evaluate the impact of packet loss on the recognition performance, a
DSR system deployed in an IP network was considered. As shownin Section
5.2 packet erasure is the dominant error pattern in this scenario. The setup of the
simulation system is shown in Figure 7.7.
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Figure 7.7: Block diagram of the DSR simulation system over IP, channel and
server side processing.
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The bitstream produced by the front end is packetized according to the RTP
payload for DSR. In the blockIP channel simulationthe resulting data packets
are randomly dropped. At the server side the missing packetsare detected by
means of the RTP sequence number. The packet sequence is thenrecovered by
inserting packets containing random data (or zeros, since it makes no difference,
see Section 5.2.4). The bit error probabilities of the bits of received packets is zero
since they are reliable, while the bit error probabilities of the inserted bits are set
to 1/2. The feature posterior is then computed and its parameters are fed into the
uncertainty decoding ASR.

The following section presents the word error rates of Aurora 2 and WSJ0 tasks
while packet loss has been simulated by a 2-state Markov chain.

7.3.1 IP channel with packet loss simulated by 2-state Markov
chain

The simulation of packet loss was carried out by dropping packets according to the
state of a 2-state Markov chain, a model already presented inSection 5.2.3. The
parameters of the model were set to obtain particular channel conditions C1, . . . ,
C4 as given in Table 7.3.

Table 7.3: The conditional loss probability (clp) and mean loss probability (mlp)
of the IP network conditions simulated in this work.

Condition C1 C2 C3 C4

clp 0.147 0.33 0.5 0.6
mlp 0.006 0.09 0.286 0.385

Note that the conditions C1 and C2 are characterized by shortbursts and a
relatively low packet loss ratio while C3 and C4 exhibit longer bursts and high
packet loss ratios, e.g. up to 38%. Additionally the condition C0 denoting no loss
was simulated.

The number of feature vectors per packet was either two, in one set of exper-
iments, or four in the other set. Note that by using more features per packet, the
average feature loss rate does not change, but the average burst length increases.

Figures 7.8 and 7.9 show the word error rates as a function of the channel
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Figure 7.8: Word error rates on the Aurora 2 task at transmission over the packet-
switched network with 2 feature vectors per packet.

condition. The results of Figure 7.8 were obtained with 2, whereas those of the
latter were obtained with 4 features per packet.

The procedure was repeated with the WSJ0 task and the resultsare given in
Figure 7.10 and 7.11.

7.3.2 Discussion

In the packet loss scenario the feature vector during an error burst has no reliable
components. Thus, the feature posterior, without conditioning on reliable vectors
before and after the burst, is same as the feature prior (unconditioned) probability
density. TheUD0 methods reduces in this case to marginalisationUD0(M), see
also discussion in Section 4.3.1. Another consequence is that MMSE0 reduces to
simply inserting the feature priori mean value in the gap periods. The experimental
results show thatUD0(M) andMMSE0 perform poorly.

An important improvement is obtained if the inter-frame correlation is consid-
ered (UD1 andMMSE1). The feature posterior becomes more informative in this
case, i.e. more focused on the clean (transmitted) feature vector. Contrary to the
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Figure 7.9: Word error rates on the Aurora 2 task at transmission over the packet-
switched network with 4 feature vectors per packet.
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Figure 7.10: Word error rates on the WSJ0 task at transmission over the packet-
switched network with 2 feature vectors per packet.
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Figure 7.11: Word error rates on the WSJ0 task at transmission over the packet-
switched network with 4 feature vectors per packet.

bit error scenario (GSM transmission), here employing the variance of the feature
posterior density at recognition byUD1, yields better results than by neglecting it,
as is done byMMSE1. This can be attributed to the fact that the feature posterior
variance can be high, especially in the middle of long bursts, where it approaches
the variance of the feature prior. Obviously, since all information is lost during
bursts, the longer the distance from the unreliable featureto the burst ends, the
smaller the amount of mutual information that can be utilized.

The use of more complex source models, which are better able to reproduce
redundancy, e.g.UD1-dyn, MMSE1-dyn, is also beneficial in this case, contrary
to the scenario with bit errors where modeling of feature static components alone
was enough to obtain a feature posterior having a small variance.

The WV technique performs close toUD1. Although it does not explicitly
exploit the correlation between consecutive features,WV assumes that the obser-
vation probability of the lost feature vector depends on that of the closest neigh-
boring vector. As shown in [66], an exponential dependency is appropriate and
can be confirmed by measurements on experimental data.

If the loss bursts are very long, which is more likely to happen, for example, by
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using more features per packet under poor channel conditions, as shown in Figure
7.11, the uncertainty decoding tends to lose effectivenesscomparing toWV. This
can be an effect of the simplifying approximations that weremade about the feature
posterior and prior densities, and possibly insufficient training of the latter. They
become critical in the middle of long bursts when the featureposterior and prior
densities should be almost equal, but the estimation yieldsconstantly different
values. The observation probability is therefore still HMMstate dependent which
means that marginalization is not correctly performed. This can be avoided in
practice by simply applying marginalization in middle of long bursts rather than
by computing the posterior by FB, see also Section 9.2.3.1.

Note that the similar performance ofWV andUD1 is normally to be expected.
In the Chapter 10 it is even demonstrated that weighted Viterbi is nothing more
than a particular case of more general uncertainty decoding.
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Chapter 8

The application of uncertainty decoding to
channel-error robust NSR

In Network Speech Recognition the feature vectors are computed at the server side
from the decoded speech waveform. The channel errors affectin this case the data
stream of coded speech rather than the compressed features.Error concealment
methods able to deliver the posterior probability of the decoded speech have been
already proposed in [39, 38]. While the goal there was to compute an estimate
(MMSE or MAP) of the decoded speech, we are interested here toinfer the pos-
terior of the feature vector from the posterior of the decoded speech. However,
since the computation of one feature vector involves several samples of speech
and non-linear operations, this inference is difficult. This chapter shows that in
the case of packet-oriented transmission of coded speech, such as voice-over-IP,
an approximation of the feature posterior can be readily obtained. The basic idea
is to consider the feature vector lost, similarly to DSR overpacket channels, if
all (or most of the) speech samples required for its computation had been lost at
transmission and subsequently reconstructed by PLC. The feature posterior com-
putation methods of Section 7.3 can be easily adapted. The packet loss indicator
(PLI) which indicates loss of coded speech frames is used to derive a feature loss
indicator (FLI) for the estimation of the feature posterior.

The following section presents the setup of a conventional NSR system which
has been used for evaluating WER under adverse channel conditions. Section 8.2
explains in detail how the FLI is obtained from the PLI in order to estimate the fea-
ture posterior. The last section of this chapter presents comparative results on the
Aurora 2 task (see Section 7.1.2) using three widely used speech codecs: G.711,
G.729A and G.723.1. The WERs achieved using the codec specific packet loss
concealment (PLC) to reconstruct the speech waveform and conventional recogni-
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tion are compared to those employing proposed uncertainty decoding.

8.1 NSR simulation system using VoIP

The conventional approach to NSR is depicted in Figure 8.1.
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Figure 8.1: Block diagram of the conventional NSR simulation system.

The coded speech is sent to the server through a packet channel. Since the
common transport protocol for VoIP is RTP, the data must be formatted according
to some codec specific payload specifications in theBitstream formattingblock. At
reception, the incoming data is decoded and usually packet loss concealment is ap-
plied to reconstruct the missing speech. ETSI feature extraction is then performed
and the features used for speech recognition.

The performance of NFR over VoIP channels using this setup was evaluated on
the Aurora 2 task. The speech coding was carried out using G.711 [100], G.729a
[101], and G.723.1 [102]. The packet erasure channel was modeled as in the sce-
nario with DSR over packet networks of Section 7.3.1. The remainder of this
section gives a brief description of the speech codecs and their PLC algorithm:

• G.711 [100] has to be supported by all VoIP equipments [103].The output of
the coder represents logarithmic pulse-code modulation samples obtained at
8 kHz. In order to increase robustness in packet networks thedecoding stage
can be optionally provided with a packet loss concealment (PLC) algorithm
to hide the transmission losses [104]. The PLC assumes transmission in
packets of 10 ms speech. When a packet is lost, the pitch is estimated using
the most recent 20 ms of speech. Using the estimate, a synthetic signal
is generated for the duration of the lost frame (10 ms). For loss lengths
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exceeding one frame, the synthetic signal is linearly attenuated by 20% per
frame and then suppressed (silence) after 6 consecutive lost frames.

• G.729A is a speech codec using conjugate structure algebraic-code-excited
linear-prediction (CS-ACELP) [101]. The speech signal sampled at 8 kHz is
framed into 10 ms chunks. This codec provides a more advancedPLC. The
LSF parameters for the lost frame are repeated from the previously received
frame. Similarly, the adaptive and fixed codebook gains are taken from the
previous frame but gradually attenuated. The excitation for the lost frame
depends on the classification of the previous frame as voicedor unvoiced.

• G.723.1 is a dual rate coder for multimedia communication [102]. It belongs
to the class of CELP analysis-by-synthesis hybrid codecs. The algorithm
codes frames of 30 ms signal and can operate at two bit rates: high rate,
6.3 kbit/s (used in our simulations) and low rate, 5.3 kbit/s. Similarly to
G.729A, it also has a built-in PLC.

Note that for each codec the RTP payload is specified by IETF recommenda-
tions. Due to latency constraints a data packet transports 10 ms of speech for G.711
and G.729A, and 30 ms for G.723.1. Packetization with more speech frames per
packet, such as is done for DSR, are therefore not of interesthere.

8.2 Derivation of feature loss indicator

The speech reconstructed by PLC in the case of a packet erasure is still corrupted.
Consequently, this leads to an unreliable feature in the view of Chapter 4. In order
to apply the uncertainty decoding rule, the posterior of thefeature vector condi-
tioned on decoded speech is required. The method proposed here is to cast the
packet loss indicator (PLI) of the received coded speech into a binary indicator
of feature reliability (FLI) as follows: If the feature is computed from a speech
segment containing predominantly corrupted speech samples, i.e. speech recon-
structed by PLC in the speech decoder, it is marked unreliable by setting the fea-
ture loss indicator. The FLI is subsequently used for feature posterior computation,
analogous to PLI in DSR over packet networks.

The block diagram of the NSR system with uncertainty decoding is given in
Figure 8.2. For convenience only the server side is depicted. The feature vectors
are computed from the decoded speech and quantized into bit patternsb̂t. The
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FLI is computed in the blockEquivalent loss indicator. The algorithm to compute
the FLI depends of the speech codec, as it will be shown later.The FLI is then
used to generate the bit error probability, i.e. 0 if the feature was extracted from
reliable speech samples (FLI=0) and 1/2 if the speech samples were unreliable
(FLI=1). Note that the vector quantization and bit error probability are still neces-
sary since the a priori knowledge used for feature posteriorcomputation consists
of prior probabilities of the bit patterns. The posterior computation and uncertainty
decoding are carried out as already shown in Section 7.3.

b̂t

pet

IP
channel

simulation & PLCPLI

FLI Equiv.Equiv.
loss
ind.

AFESpeech
decoder

VQ

Bit error
probability

Feature
posterior

UD
ASR

µ
xt|y

,Σxt|y

Figure 8.2: Block diagram of the simulation system for NSR over IP with uncer-
tainty decoding (only server side processing).

The algorithm to derive the feature reliability from the packet loss indication
provided by the communication channel is given in the following assuming the
G.711 speech codec. In the absence of losses, the decoding ofone speech frame
uses only the information from one data packet. Thus, a lost packet affects exactly
one speech frame and has no effect on subsequent frames. The feature extraction
process is depicted in Figure 8.3.

The dashed region in the upper part of the figure denotes that the tth frame
of coded speech has been lost. The 10 ms of speech corresponding to this packet
is reconstructed by PLC and thus is unreliable, and is represented in dark gray,
whereas the other frames are reliable and represented as white rectangles. Ac-
cording to ETSI-AFE, the feature vectors are computed from overlapping speech
segments of 25 ms (200 samples at an 8 kHz sample rate). For each vector the
window shifts 10 ms (80 samples). E.g. the windowt from which the featuret is
computed contains 10 ms from decoded speech framet, 10 ms fromt−1 and 5 ms
from t− 2. Thus, it can be easily observed that an unreliable speech frame at time
t affects not only the featuret but also its successorst + 1 andt + 2 since their
windowed signal contains samples of unreliable speech. As the window is cen-
tered on the middle of the frame, the feature att + 1 (dark gray) is more affected
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Figure 8.3: Derivation of the feature loss indicator (FLI) from the packet loss in-
dicator (PLI)

than those att andt + 2 (light gray). It means that the most unreliable feature is
obtained in the next frame after the loss, i.e. afterτFE=10 ms. By the subscript
FE (Feature Extraction) it is meant that the latency in reaching the maximum of
unreliability after a lost frame is a characteristic of the feature extraction and does
not depend on the speech codec.

Another effect which has to be considered when deriving the FLI is ”codec
memory noise”, as it was termed in [19]. The authors observedthat, due to the
predictive nature of the encoding process, the speech decoder needs some time
(frames) to recover after a lost/bad frame until it can produce an output which
is again close to the original uncoded speech. This means that even if the PLI
indicates a correctly received frame, the decoded speech might still be affected by
some preceding lost frames. The time elapsed between the packet loss event and
observing its effect on decoded output is denoted byτC and depends on the speech
codec. Note that G.711 codes each sample independently of the others and shows
therefore no memory noise effect. The packet loss is immediately noted at the
output (τC = 0), as the reconstructed frame significantly differs from theoriginal
one. For the G.729A and G.723.1 we have experimentally determined aτC of 10
and 15 ms, respectively. This has been done by measuring uncertainty decoding
performance with variousτC to find an optimum.

In order to encompass both effects described above, the PLI delayed byτ =
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τFE + τC gives a binary indication about the reliability of each 10 mssegment of
decoded speech. Under these considerations we devised the following rule to clas-
sify a feature vector: The feature vector is considered corrupted, i.e. FLI indicates
feature loss, if at leastB segments of 10 ms involved in its computation contain
corrupted speech. Since a feature vector is computed using 25 ms of speech,B
may take the values 1, 2, or 3 and therefore can be easily determined on an exper-
imental basis.

This is shown in Table 8.1 which gives the WERs obtained usingthe G.711
(a-law) speech codec with PLC and performing uncertainty decoding for possible
values ofB. The best choice isB=2 which yields the best performance. With a
smallerB, i.e. B = 1, the feature is declared lost even if only 10 ms of the 25 ms
window (less than half) is affected by the erasure. This discards too much useful
information. WithB=3, features classified as reliable might exist although up to
20 ms of the windowed speech is corrupt. Thus, corrupted features are deemed
reliable which leads to mismatch.

Table 8.1: WERs [%] on the Aurora 2 task with NSR employing G.711 (a-law)
with PLC and uncertainty decoding.B is the minimum number of cor-
rupted 10 ms-segments required to declare a feature vector unreliable.

Condition C1 C2 C3 C4

B=1 0.99 1.19 4.83 10.25
B=2 0.99 1.02 1.68 2.95
B=3 0.99 1.06 2.20 3.61

8.3 Evaluation of robustness in an NSR scenario

The setup of Figure 8.1 was employed first to carry out recognition tasks using
each of G.711, G729A and G.723.1 codecs. The channel model and channel con-
ditions (C0,. . . ,C4) were those used for DSR over IP networks. The goal of these
experiments was to obtain the performance of the conventional NSR system where
the features are extracted from decoded, possibly PLC reconstructed, speech.

The simulations with uncertainty decoding used the setup ofFigure 8.2 and the
threshold for declaring the feature unreliable asB = 2.
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The WERs obtained with G.711 speech coding algorithm are shown in the
Table 8.2.

Table 8.2: WERs [%] on the Aurora 2 task with NSR employing G.711.

Condition C0 C1 C2 C3 C4

G.711 0.90 0.95 5.23 29.5 48.9
G.711-PLC 0.90 0.94 1.22 3.58 8.64
G.711-UD 0.91 0.93 0.98 1.60 2.95

Since the PLC is an optional part of G.711, the row labeled G.711 shows the
WERs obtained without PLC. The missing segments of the speech waveform were
simply filled with zero (silence). The second row shows the WERs when PLC is
performed. It can be seen that the PLC is beneficial for recognition since WER
drastically decreases particularly under adverse conditions. The row G.711-UD
shows the results for recognition with uncertainty (UD1, exploiting temporal cor-
relation, Eq. 4.38). The features computed from more than 20ms speech recon-
structed by PLC (B = 2) were considered lost and their posterior density was
estimated as in DSR over packet channels scenario, otherwise they were deemed
reliable. By considering the uncertainty, the system becomes very robust as re-
gards packet erasure, e.g. at 38% loss ratio (C4) the WER is more than halved
compared to G.711-PLC.

The Tables 8.3 and 8.4 present the WER achieved usingUD1 along with the
G729A and G.723.1 codecs, respectively.

Table 8.3: WERs [%] on the Aurora 2 task with NSR employing G.729A.

Condition C0 C1 C2 C3 C4

G.729A-PLC 1.60 1.77 3.99 16.47 27.36
G.729A-UD 1.60 1.65 2.91 7.62 11.90

Note that even in the error-free condition (C0) the mismatchbetween the acous-
tic model trained with uncoded speech and the features computed from decoded
speech produces a degradation in WER. While with G.711 approximately the same
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Table 8.4: WERs [%] on the Aurora 2 task with NSR employing G.723.1.

Condition C0 C1 C2 C3 C4

G.723.1-PLC 1.88 2.60 7.30 26.76 40.00
G.723.1-UD 1.88 1.98 3.56 11.36 19.97

word error rate is achieved as without speech coding (0.86%), it increases to 1.60%
and 1.88% for G.729A and G.723.1, respectively.

For all three codecs, the improvement achieved by uncertainty decoding com-
pared with the performance of the same codec by standard recognition ignoring
uncertainty is considerable. Note, however, that the intention here is not a perfor-
mance comparison between codecs, as this would also need theconsideration of
bit rates, packetization schemes etc.



Chapter 9

Computational complexity and speed-up
methods

The novel uncertainty decoding rule proposed in this work implies inherent latency
(algorithmic delay), additional computational expense for the feature posterior es-
timation and for the feature log-likelihood evaluation, and also an expansion of the
acoustic search space. This chapter analyses the negative factors mentioned above
and proposes simplifying assumptions and techniques aimedat speeding up the
computation.

9.1 Error bursts detection

In the computation of the feature posterior at the timet according to (4.38), all
past and future observationsy1, . . . ,yT of the utterance are required. This im-
plies that the computation has to be performed off-line after the whole sequence
of features has been observed. Whereas this is the general case where all observa-
tions are assumed unreliable, in a practical situation, such as a packet loss scenario,
the reliable and unreliable regions of an utterance alternate so that the latter can
be isolated in bursts as depicted in Figure 9.1. The figure shows the received se-
quence of feature vectors (observations) of an utterance,T = 9. The unreliable
observations, i.e. where transmission errors occurred, are represented as dark ar-
eas while the reliable observations are shown in white. The feature posterior of
a reliable feature vector is, as discussed in Chapter 4, a delta Dirac distribution,
e.g. p(x2|y

9
1) = p(x2|y2) = δ(x2 − y2). Since the observedy2 is reliable, it

already contains all knowledge aboutx2 rendering the neighboring observations
unnecessary. Due to similar considerations, within an error burst, e.g. att = 5, the
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1 2 3 4 5 7 8 96
ASR

Figure 9.1: Sequence of feature vectors of an utterance. Dotted areas are cor-
rupted.

feature vector posterior is conditioned on all unreliable observations within that
burst as well as on the last and first reliable observation before and after the burst,
respectively:p(x5|y9

1) = p(x5|y7
4).

In the case of DSR the burst detection by CRC and data consistency check
described in [12] can be used for our purpose. Thus, it can be concluded that if the
observationyt is reliable, the computation of the feature vector posterior p(xt|yT

1 )

implies no algorithmic delay, i.e. does not need the future observation(s). Within
an error burst the algorithmic delay can be as high as the burst length, as in the
case of the nearest frame repetition approach of ETSI-AFE.

Note that the speech decoding process itself, even under real-time constraints,
implies a variable latency from the end of word, until the word sequence up to that
point is decoded. Compared to this, the latency due to the feature vector posterior
computation during error bursts is quite small, but is an additional disadvantage.

Besides making on-line processing possible, error burst detection significantly
contributes to computational reduction. This is because the computationally ex-
pensive estimation of the posterior by the forward-backward algorithm needs to be
done only within bursts, whereas outside them the posteriorestimation is trivial,
as it is a delta Dirac PDF.

9.2 Feature posterior computation

Assuming that the feature posterior is Gaussian with a diagonal covariance matrix,
the evaluation of (4.43) requires first the estimation of theD-dimensional meanµe

andD-dimensional variance vectorσ2
e. These parameters are obtained from the

probability mass function of the transmitted bit patterns as described in Section 6.5
at relatively low computational expense. The most computationally intensive step
is obtaining the posterior probability mass function of thetransmitted bit patterns,
since it (only that ofUD1) implies the forward-backward (FB) recursion. The fol-
lowing paragraphs evaluate the computational complexity of the FB algorithm and
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propose approximations that lead to a drastic reduction of complexity at marginal
cost or even no loss in accuracy.

9.2.1 Complexity of the Forward-Backward algorithm

In the view of Section 6.4.3, the unobserved sent bit patterns represent the states
of a hidden Markov model. There are as many states as there arepossible values
for the sent bit pattern (2M , with M being the number of quantization bits). The
forward recursion (6.15) gives a computational complexityof the order of22M

operations per iteration if we assume for simplicity that the HMM states are fully
connected. This is because there are2M · 2M possible transitions that must be
evaluated at each iteration. Since there is a forward and a backward recursion, a
factor of two must be also considered. These altogether result in a complexity of
the order22M+1 per subvector and frame. For the vector quantization schemeof
ETSI-AFE, the contribution of the seventh subvectorsv7 (M = 8) dominates, as
the other subvectors are quantized with 6 or 5 bits. Hence thecomplexity may be
as high as about217 operations per frame. This is an upper bound of complexity
since in practice the HMM states are not fully connected resulting in fewer transi-
tions to be evaluated. This is a consequence of continuity constraints along each
dimension to which the feature vector has to adhere. The variation between two
frames cannot therefore exceed some specific threshold (data consistency test of
ETSI-AFE exploits the same principle) and therefore not alltransitions between
consecutive VQ centroids (HMM states) are possible. By considering only the
non-zero probability transitions in the FB recursion, the complexity is well below
the computed upper bound. Measurements on a workstation with 2.3 GHz Intel
Xeon 5140 have shown that feature posterior computation (Section 6.4.3) includ-
ing FB and subsequent steps, needs about 0.3 ms per frame, corresponding to a
real time (RT) factor of 0.03. Depending on the recognition task this may repre-
sent a significant portion of the processing time. This consideration shows that a
reduction of computational effort is highly desirable.

9.2.2 Forward approach for computation of the feature poste-
rior

The computational burden of the feature posterior computation can be easily halved
by considering only the forward recursion. This approximation has been used in
[50, 67, 90]. By doing so, the correlation between the current bit pattern and its
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successors is neglected and thus, only the dependency on thepredecessors is con-
sidered:

P (b
(i)
t |b̂T

1 ) ≈ P (b
(i)
t |b̂t

1) (9.1)

In this case the bit pattern posterior is computed using the forward probabilities
αt(i) (see Eq. 6.15) as:

P (b
(i)
t |b̂t

1) =
αt(i)

2M−1
∑

j=0

αt(j)

(9.2)

Note that by using only the forward recursion, the algorithmic delay, see Section
9.1, associated to the backward recursion is eliminated. This can be an advantage
for applications that do not tolerate such a processing delay, e.g. [39].

The approximation (9.1) results in performance loss especially under poor
channel conditions. Tables 9.1 and 9.2 show for comparison the recognition WERs
on the Aurora 2 task obtained using the forward-backward recursion UD-FB (which
is same asUD1 of Section 7.1.1) and forward-only recursion UD-F. The experi-
mental setup was DSR over GSM with physical layer simulation, for Table 9.1 and
DSR over IP for Table 9.2, respectively.

Table 9.1: WERs on the Aurora 2 task for DSR over GSM

C/I [dB] 2.5 4 5.5 7 10

UD-FB 1.15 0.90 0.89 0.87 0.86

UD-F 1.32 0.93 0.90 0.88 0.86

It can be observed that in the GSM scenario, the loss of performance by only
making the forward approximation is not significant. This can be attributed to
the fact that, unlike with the IP scenario, usually not all information of a frame
is erroneous (lost). The observed feature vectors are stillinformative enough to
produce a good posterior estimate, even conditioned on predecessors only. The
amount of information gained by also considering the successors is small.

In the IP scenario, the gap between forward and forward-backward is more
pronounced. Since there are no observations during the lossbursts, the posterior is
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Table 9.2: WERs on the Aurora 2 task for DSR over IP, two feature vectors per
packet

Cond. C4 C3 C2 C1 C0

UD-FB 3.09 1.66 0.98 0.90 0.86

UD-F 4.93 2.50 1.09 0.90 0.86

in fact conditioned on the last observation before and the first observation after the
burst, respectively. Clearly, the forward recursion exploits only the last observation
before the burst which becomes less informative toward the end of burst, resulting
in degraded performance.

In conclusion, the forward approach is suitable for DSR overcircuit-switched
channels but yields poor robustness to packet loss.

9.2.3 Table lookup approach

This section presents a method to speed up the forward-backward recursion, which
is applicable in case of DSR over lossy packet channels. Figure 9.2 depicts a se-
quence of bit patterns observed at the channel output, wherethe dark areas corre-
spond to lost bit patterns. The bit pattern sequence was renumbered starting from
the last correctly received bit pattern before the loss burst. We are interested in
computing the bit pattern posterior fort = 2 . . . T − 1, since for the correctly
received frames conventional decoding can be used, see Section 9.1.

1 T2 T-1

receivedreceived

lost

· · ·· · · · · ·

Figure 9.2: Sequence of bit patterns affected by a loss burst. Dotted areas are lost.

As has already been mentioned in Section 6.3, the transitionprobability for the
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bit patterns within the burst is constant and independent ofthe bit pattern index
(i), i.e. P (b̂t|b

(i)
t , zt) = const.,i = 0, . . . , 2M − 1; t = 2 . . . T − 1. Thus, using

that the posterior is invariable to particular scaling ofα(i) andβ(i), the forward-
backward (6.15) recursion can be simplified to:

αt+1(i) =

2M−1
∑

j=0

αt(j)P (b
(i)
t+1|b

(j)
t ) (9.3)

βt−1(i) =

2M−1
∑

j=0

βt(j)P (b
(j)
t |b

(i)
t−1)

Further, by defining the row vectors:

αt = (αt(0), . . . , αt(2
M − 1)) (9.4)

βt = (βt(0), . . . , βt(2
M − 1))

and the(2M × 2M )-dimensional matrix of HMM state transitions,(A)ij =

P (b
(j)
t |b

(i)
t−1), the Eqs. 9.3 become:

αt+1 = αtA = α1A
t (9.5)

βt−1 = βtA
′ = βT (AT−t+1)′, (9.6)

whereA′ denotes the transposed matrix and the initialization vectors α1 and
βT are:

α1(i) = P (b̂1|b
(i)
1 ) = δ(i − is) (9.7)

βT (i) = P (b̂T |b
(i)
T ) = δ(i − ie), (9.8)

with is andie being the indices of̂b1 andb̂T respectively.

9.2.3.1 Matrix lookup

The Eqs. 9.5 and 9.6 show that ifAt andAT−t+1 are computed in advance and
stored, the most computation during runtime can be saved, since computingαt+1
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reduces to selecting theis-th row of the matrixAt, whereas computingβt re-
duces to selecting theie-th column ofAT−t+1. If the matricesA,A2, . . . ,AL

are stored, the Eqs. 9.5 and 9.6 allow the processing of bursts of a maximum
lengthL. Obviously, the memory demands increase correspondingly as we need
to storeL matrices instead of one. For the quantization scheme used inthe ETSI-
AFE for DSR [12] this amounts toL× (5 · 22·6 + 1 · 22·5 + 1 · 22·8) = L× 87040

values.

The memory demands are therefore dependent on the maximum burst length
which may occur. However, this cannot be known in advance. In[58] we observed
that the depthL can be limited to a suitable value without loosing performance.
The rationale is that there exists a depthL beyond that the matrixAk, k > L,
does not significantly changes and can be approximated byA∞. This is a known
property of a Markov chain [105] stating that, independent of the initial state dis-
tribution, after enough iterations, stationarity is achieved. This means that the state
distribution at timet, which is obtained as a product of initial state distribution and
At tends to the a priori distribution. The forward and backwardrecursions are
schematized in Fig. 9.3.

1 T2 T-13 T-2L-1 T-L

α1 α1A α1A2 α1AL α1A∞

· · ·· · ·

· · · · · ·

· · ·· · ·

· · ·· · · · · ·

βTβT AβT A2βT ALβT A∞

Figure 9.3: Forward and backward recursion if transition probability is constant
within burst. Iterations stopped afterL steps in each direction.

We carried out experiments for variousL in order find a suitable value. Table
9.3 shows the WERs on the Aurora 2 task assuming a DSR over IP setup and using
the table lookup method with limited depthL. For convenience the baseline results
using the original forward-backward algorithm (UD-FB) aregiven as well.

It can be concluded that for this recognition task, a depthL = 4 provides
enough accuracy for processing bursts of any length.
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Table 9.3: WERs on the Aurora 2 task for DSR over IP with lookupmethod, two
feature vectors per packet

Cond. C4 C3 C2 C1 C0

UD-FB 3.09 1.66 0.98 0.90 0.86
L=1 4.10 2.20 1.09 0.90 0.86
L=2 3.42 1.88 1.04 0.90 0.86
L=3 2.97 1.68 0.99 0.90 0.86
L=4 2.80 1.60 0.97 0.90 0.86
L=5 2.80 1.60 0.97 0.90 0.86
L=6 2.92 1.60 0.97 0.90 0.86
L=8 2.99 1.66 0.98 0.90 0.86
L=12 3.08 1.66 0.98 0.90 0.86
L=14 3.09 1.66 0.98 0.90 0.86

9.2.3.2 Suboptimal approach

The above solution is aimed at reducing the computational effort but at the cost
of increased memory demands. While this could be achieved with only minor
approximations to the original FB algorithm, a dramatic reduction of memory de-
mands can be achieved by a suboptimal approach.

This is based on the fact that the correlation between two featuresxt andxt−τ

weakens by increasingτ . This has been experimentally proven as shown in Table
9.4 which gives the mutual informationI(bt;bt−τ ) = H(bt) − H(bt|bt−τ ),
whereH(bt) denotes the entropy of the bit patternbt. I(bt;bt−τ ) is a measure
of the information aboutbt, that is contained inbt−τ and thus indicates whether
it is useful to utilizebt−τ for the reconstruction ofbt. The values have been
obtained using the ETSI-AFE on the Aurora 2 training set. It can be seen that
I(bt;bt−τ ) becomes smaller (tends to zero theoretically) asτ increases. Note
that if the conditional entropy equals the unconditional, the rows ofAτ , become
equal to the a priori distributionP (b

(j)
t ) [105, p.161]. This property was used

also in the matrix lookup approach. Eq. 9.5 states that(Aτ )ij is none other than

P (b
(j)
t |b

(i)
t−τ ) which becomes independent ofi for a large enoughτ .

This property can be exploited at least for long bursts wherethe distanceτ
between the lost feature and one burst end is large enough so that the statistical
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Table 9.4: Entropies and mutual information amongbt andbt−1 produced by the
ETSI advanced DSR front-end.

Subvector sv1 sv2 sv3 sv4 sv5 sv6 sv7

M 6 6 6 6 6 5 8
H(bt) 5.8 5.8 5.8 5.8 5.8 4.8 7.7
I(bt; bt−1) 2.6 2.1 1.6 1.4 1.2 1.0 3.4
I(bt; bt−2) 1.7 1.3 0.9 0.8 0.7 0.6 2.8
I(bt; bt−3) 1.2 0.9 0.7 0.6 0.5 0.4 2.1
I(bt; bt−4) 0.9 0.7 0.5 0.4 0.3 0.3 1.8
I(bt; bt−5) 0.7 0.5 0.3 0.3 0.2 0.2 1.4

dependency of that burst end can be neglected. Thus, in the first half of the burst
the bit pattern posterior depends mainly onb̂1 so that is can be approached by the
forward probabilitiesα. Similarly, in the second half of the burst the posterior
depends mainly on̂bT so that only backward probabilities can be used.

P (b
(i)
t |b̂T

1 ) ≈

{

P (b
(i)
t |b̂1) if t ≤ T

2

P (b
(i)
t |b̂T ) if t > T

2

(9.9)

According to the definition ofα andβ, the above equation comes out to:

P (b
(i)
t |b̂T

1 ) ≈























αt(i)

2M
−1

P

j=0

αt(j)

if t ≤ T
2

βt(i)P (b(i))

2M
−1

P

j=0

βt(j)P (b(j))

if t > T
2

(9.10)

Using the vector notations (9.4) and

c =
[

c(0), . . . , c(2M−1)
]

, (9.11)

c2 =
[

(c(0))2, . . . , (c(2M−1))2
]

(9.12)

for the vector of codebook centroids and their squared values, respectively, the
mean and variance of the feature posterior can be expressed as:
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µ
xt|b̂1

=

2M−1
∑

i=0

c(i) αt(i)
2M−1
∑

j=0

αt(j)

=
cαt

′

∑

αt

=
(At)′

∑

α1At
· α′

1 (9.13)

σ2
xt|b̂1

=

2M−1
∑

i=0

(c(i) − µ
xt|b̂1

)2 ·
αt(i)

2M−1
∑

j=0

αt(j)

(9.14)

= c2 ·
(At)′

∑

α1At
· α′

1 − 2µ
xt|b̂1

c ·
(At)′

∑

α1At
· α′

1 + µ2
xt|b̂1

,

where the
∑

αt denotes the sum of all elements of the vectorαt.

The advantage is that the expressionsc · (At)′, c2 · (At)′, and
∑

α1A
t are

vectors of length2M , which need considerably less storage than the matrixAt of
size2M × 2M and they can be computed prior to recognition.

Similar expressions can be found for the second half of the burst, if we denote
by P a matrix having a priori probabilitiesP (b(i)) on the main diagonal:

µ
xt|b̂T

=

2M−1
∑

i=0

c(i)βt(i)P (b(i))
2M−1
∑

j=0

βt(j)P (b(j))

=
c(βtP)′
∑

βtP
=

cPAT−t

∑

PAT−tβT

· βT
′ (9.15)

σ2
xt|b̂T

=

2M−1
∑

i=0

(c(i) − µ
xt|b̂T

)2 ·
βt(i)P (b(i))

2M−1
∑

j=0

βt(j)P (b(j))

(9.16)

=
c2PAT−t

∑

PAT−tβT

· βT
′ − 2µ

xt|b̂1

cPAT−t

∑

PAT−tβT

· βT
′ + µ2

xt|b̂T

Here, the expressionscPAT−t, c2PAT−t, and
∑

PAT−tβT are vectors of
size2M .

Thus, for the ETSI-AFE quantization scheme the memory requirements are
reduced fromL × 87040, in the previous approach, toL × 6 × (5 · 26 + 25 +
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28)=L × 3648. This is a dramatical reduction (23 times) achieved by combining
the bit pattern posterior estimation and the feature vectorposterior estimation into
one step. Moreover, becauseα1 is a vector of zeros except of a one at positions,
its multiplication by another vector, e.g.c2 · (At)′, results in simply selecting the
sth element of that vector. A similar operation can be done for multiplication by
βT .

Table 9.5 gives the WERs on the Aurora 2 task assuming a DSR over IP setup
and using the above approximation (and limited depthL = 4) in comparison to
the baseline using the original forward-backward algorithm.

Table 9.5: WERs on the Aurora 2 task for DSR over IP using the lookup method,
forward probabilities in the first half of burst and backwardin the sec-
ond.

Cond. C4 C3 C2 C1 C0

UD-FB 3.09 1.66 0.98 0.90 0.86

UD-F & UD-B 3.16 1.79 1.03 0.90 0.86

9.2.4 Multi-resolution approach

A complexity reduction approach which can be used for both bit-error or packet-
loss channels has been proposed in [106]. Since the computational complexity
increases exponentially with the number of quantization bits it is obvious that a
lower resolution would be beneficial regarding reduction ofcomputation. How-
ever, the vector quantization scheme of the ETSI-AFE DSR standard [12] ensures
a good trade-off between a limited channel bit rate and a lossof recognition accu-
racy due to quantization errors, thus, changing it is not an option.

The idea of the multi-resolution approach is to assume that the source emits
features quantized at a lower resolution only within the error burst periods. The
reason behind this thinking is that due to channel errors, the transmitted feature
cannot be recovered at original resolution anyway, thus, a coarse representation
should be sufficient. Note that the assumption of lower resolution during error
bursts does not incur any modification of the standard. The proposed scheme is
still fully compatible with the standard!
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The following example might be useful in helping to understand this principle.
Let us assume that the channel is completely unreliable so that the feature posterior
p(xt|y) equals the priorp(xt), see also Section 4.3. This happens no matter which
resolution was used for quantization. Consequently, usingthe original ETSI-AFE
resolution in (6.21) yields the same result as using an extremely coarse quantiza-
tion with one centroid, i.e.M = 0. Indeed in this case there is only one term in
the sum of Eq. 6.21 and its bit pattern posterior isP (b(0)|b̂T

1 ) = 1. The source
model has only one state whose cluster conditioned probability density is the prior
feature probability densityp(xt|b

(0)
t ) = p(xt). Using this in (6.21) we indeed

deduce thatp(xt|y) = p(xt), however, avoiding the FB algorithm at the original
ETSI resolution.

Note that the channel transition probabilities required inthe FB algorithm must
be projected on the lower resolution space by:

P (b̂
(k)
t |b

(n)
t ) =

2M−1
∑

i=0

P (b̂
(k)
t |b

(i)
t ) · P (b

(i)
t |b

(n)
t ) (9.17)

whereb(n)
t denotes thenth bit pattern of the lower resolution (M ) codebook,

P (b̂
(k)
t |b

(i)
t ) are the channel transition probabilities of the original resolution bit

pattern andP (b
(i)
t |b

(n)
t ) represents the probability of the sent bit patternb

(i)
t

when the corresponding lower resolution quantization index n (bit patternb(n)
t )

is known. This latter term is assumed constant for thosei’s falling in thenth lower
resolution cluster and zero otherwise. In a packet loss scenario this computation
can be saved, except for the burst begin and end (t = 1 and t = T ) since the
transition probabilities within the burst do not affect thebit pattern posterior.

low resolution (M ) original resolution (M ) original resolution (M )

sent bit patternb(i)
t

received bit pattern̂b(k)
t

n
i

k

P (b
(i)
t

|b
(n)
t

)
P (b̂

(k)
t

|b
(i)
t

)

Figure 9.4: Channel transition probabilities from the low resolution feature to the
received one at original resolution.
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While the 0-bit resolution of the previous example is equivalent to marginaliza-
tion, known to cause performance degradation, a finer resolution but still coarser
than the original can provide computational savings at a cost of graceful degrada-
tion of performance. This is shown in Table 9.6 where the Aurora 2 task over an IP
channel was carried out assuming various fixed resolutions during the loss bursts.
E.g. in the first column, the string6666658 denotes the resolution of the quanti-
zation scheme used in the ETSI-DSR standard:6 bits for the first five subvectors
sv1, . . . , sv5, then 5 bits forsv6 and 8 bits for the last subvectorsv7. For the
other resolution settings, we trained correspondingly a vector quantizer for each
subvector using the Generalized Lloyd Algorithm.

The second column gives the upper bound of the computationalcomplexity
per frame, computed as in Section 9.2.1 and cumulating the contribution of each
subvector. Additionally, the computing time for error concealment per lost frame,
measured on a workstation with 2.3 GHz Intel Xeon 5140, is given in the third col-
umn. Although the absolute values are highly dependent on the processor speed,
they indicate a reduction of complexity close to the estimated one. Comparing the
complexities of resolution6666658 and5555555 it can be seen that if all HMM
states were connected, reduction of complexity by a factor of 9 would be possible
without any performance loss. In practice, the computing time was reduced by a
factor of6.6.

At resolutions lower than 4 bits the performance starts to degrade, where the
degradation is strongest for the worst channel model C4.

Table 9.6: WERs on the Aurora 2 task at various resolutions during loss bursts.

O t[µs] C1 C2 C3 C4

6666658 ≃ 217 337 0.90 0.98 1.68 3.13
6666657 ≃ 2 · 215 190 0.90 0.98 1.73 3.19
6666656 ≃ 6 · 213 148 0.90 1.00 1.73 3.13
5555555 ≃ 7 · 211 51.0 0.90 1.00 1.76 3.21
4444444 ≃ 7 · 29 17.5 0.90 1.02 1.83 3.19
3333333 ≃ 7 · 27 6.4 0.90 1.07 1.80 3.37
2222222 ≃ 7 · 25 3.2 0.90 1.27 2.59 4.93
1111111 ≃ 7 · 23 1.93 0.90 2.36 7.67 13.14

Improved recognition accuracy can be achieved if a Markov model is used for
both the clean static and dynamic components of the feature vector, i.e. the source
model of Section 6.4.4. In the second experiment the improvement by using this
augmented source model is evaluated. In order to limit complexity, only a coarse
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quantization for the dynamic components was used: 3 bits forfirst-order deriva-
tives (velocity) and 1 bit for second-order derivatives (acceleration). Still, the com-
plexity increase is considerable. While for the quantization table of the static com-
ponents only, the finest resolution, i.e.sv7 with 8 bit quantization, resulted in a
value of the complexity measure of217, this is now increased to2(28+3+1)2 = 225

in the case of a source model for static and dynamic features.Note that the actual
complexity is much lower since the HMM transition matrix is sparse at that res-
olution. While the number of bits for the dynamic features was kept fixed at 3
bit for delta and 1 bit for delta-delta, the resolution of thestatic components was
successively decreased, as is indicated by the left column of Table 9.7. The re-
sults show that for resolutions down to 5 bits, dynamic features yield noticeable
improvements. At resolutions of 4 bits and lower, the word accuracy is limited by
the resolution of the static features, i.e. the augmented source model no longer has
a pay off in increased word accuracy.

Table 9.7: WERs with the augmented source model (static and dynamic compo-
nents): 3 bit delta, 1 bit delta-delta.

O t[ms] C1 C2 C3 C4

6666658 ≃ 225 64 0.90 0.93 1.53 2.54
6666657 ≃ 2 · 223 30 0.90 0.94 1.56 2.62
6666656 ≃ 7 · 221 22 0.90 0.93 1.53 2.60
5555555 ≃ 7 · 219 7.3 0.90 0.97 1.61 2.71
4444444 ≃ 7 · 217 2.3 0.90 0.98 1.73 3.17

It can be concluded that a considerable speed-up (up to 6 times), with hardly
any degradation in word accuracy, can be achieved by simply assuming a lower
quantization resolution of the received feature subvectors, i.e. M = 5. With the
extended Markov source, which includes dynamic features (keepingM = 5 for
static components,M = 3 for delta andM = 1 for delta-delta), the state space
and thus computational complexity of the FB algorithm is considerably increased
requiring as much time as the feature sampling period (10 ms). Note that the
average computation time per frame is actually lower since the bit pattern posterior
need to be evaluated by FB only for unreliable/lost frames, whereas for reliable
ones it is a Dirac PDF.

The resolution at which the erroneous frames are to be processed can be either
fixed or can be changed on-the-fly according to the burst length, as we did in
[106]. In the latter case the variable resolution contributes to further reduction of
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computational complexity. E.g. by processing the bursts upto length 8 atM = 3

and those longer atM = 4, the processing time per frame decreases from 17.5
(fixed M = 4, see Table 9.6) to 10µs. This corresponds to a 30-times reduction
of the processing time per frame at original resolution6666658 (337µs).

9.3 Computation of observation log-likelihood

In an HMM based recognizer with diagonal covariance mixturedensities, the com-
putation of (4.39) is usually done in log-likelihood domain. Considering for sim-
plicity one mixture component, the log-likelihood computation is usually imple-
mented as:

log p(xt|st) = −
1

2
log

D
∏

d=1

2πσ2
st,d −

1

2

D
∑

d=1

(xt,d − µst,d)
2

σ2
st,d

(9.18)

with D denoting the feature vector dimensionality. Since the product in (9.18)
does not depend onxt, its logarithm can be computed in advance for each state
st and stored as part of the acoustic model. By doing so, the computational load
reduces to the evaluation of the sum.

By applying the uncertainty decoding rule (4.48) the right hand side of (9.18)
becomes:

−
1

2
log

D
∏

d=1

2π(σ2
st,d + σ2

et,d) −
1

2

D
∑

d=1

(µet,d − µst,d)
2

σ2
st,d + σ2

et,d

(9.19)

Since the varianceσ2
et,d changes according to instantaneous channel proper-

ties, the logarithm of the product and the sum in (9.19) have to be evaluated for
each active state. The computation of the logarithm of the product can no longer
be done in advance. In the experiments the computation of (4.48) took 1.4 times
longer than (4.39). Note, however, that (4.48) needs to be computed only for un-
reliable features, i.e. within the error bursts. For the reliable features the simpler
expression (4.39) can be used.
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9.4 The impact of uncertainty on the acoustic search
space

An unfavorable side effect of techniques which broaden the observation probabil-
ity densities, such as weighted Viterbi recognition or uncertainty decoding, is that
the search space increases considerably due to reduced discrimination capabili-
ties between the word hypotheses in the presence of uncertain observations. As
the observation probability of an unreliable feature tendsto be the same for all
model states, the beam pruning loses efficiency and the number of “active” states
increases. This effect is illustrated in Figure 9.5 where the number of states is
plotted over the time during an utterance. The curve PLI denotes the binary packet
(feature) loss indicator which is zero for a lost feature vector. It can be observed
that during periods without losses the number of states evaluated per frame using
uncertainty decoding rule tends to be the same as that obtained in no-loss condi-
tions. When a feature loss occurs, the uncertainty decodingrequires to evaluate
significantly more states than in no-loss conditions.
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Figure 9.5: Number of active states vs. time in the conventional and uncertainty
decoding of an utterance.

Table 9.8 shows the average number of active states per framefor the WSJ0
task during theUD1 experiment of Section 7.3. The beam pruning threshold was
kept constant. The last line shows the slowdown factor of therecognition, relative
to decoding time in error-free condition, when the uncertainty decoding rule is
employed for unreliable features. Under the most critical channel condition (C4)
recognition was slowed down by a factor of 2.3. This is explained by the increased
search space on one hand, and by the more intensive computation of (4.48) on the
other.
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Table 9.8: Average number of active states per frame for the WSJ0 task.

Condition C0 C1 C2 C3 C4

Active states/frame 1035 1038 1098 1319 1516
slowdown factor 1.0 1.0 1.2 1.8 2.3
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Chapter 10

Special cases of uncertainty decoding

This chapter is aimed at strengthening the focus of this workby studying how other
decoder-based robustness techniques, namely the Missing Feature Technique and
weighted Viterbi recognition (see Section 2.4) are relatedto uncertainty decod-
ing. It is shown that they can be obtained as special cases of the more general
uncertainty decoding rule proposed in this thesis.

10.1 Missing Feature Theory

According to MFT, a feature vector (or a component of it) is either reliable, in
which case its contribution to the acoustic score, i.e. the observation probability,
is computed as usual, or it is unreliable and does not contribute at all. There is no
intermediate case in that the feature vector is partly unreliable, to be accounted for
by an attenuated contribution to the score. The principle can be applied to each
feature vector component. By separating the full vectorxt into reliablexrt and
unreliablexut subvectors, the observation probability can be expressed by Eq. 2.4.

In the context of DSR, the reliable feature vector components correspond to a
delta shaped posterior probability density function:

p(xrt|y
T
1 ) = δ(xrt − yrt), (10.1)

whereyrt are the observations deemed reliable at the channel output.

The posterior probability density function of unreliable feature vector compo-
nents equals their a priori probability density function, as the observations are not

129
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relevant (not informative) for the transmitted feature components:

p(xut|y
T
1 ) = p(xut). (10.2)

Replacing the posterior probability in observation probability for uncertainty
decoding (4.36) yields:

∫

xrt

∫

xut

p(xrt|y
T
1 )

p(xrt)
·
p(xut|y

T
1 )

p(xut)
p(xrt,xut|st)dxrtdxut (10.3)

=

∫

xrt

∫

xut

δ(xrt − yrt)

p(xrt)
·
p(xut)

p(xut)
p(xrt,xut|st)dxrtdxut (10.4)

=

∫

xut

p(yrt,xut|st)

p(yrt)
dxut (10.5)

∝

∫

xut

p(yrt,xut|st)dxut (10.6)

= p(yrt|st) (10.7)

Note thatp(yrt) is not state dependent and thus can be neglected, having same
contribution for all HMM states. The last expression provesthat, assuming binary
reliability, uncertainty decoding and MFT result in the same observation probabil-
ity, namely that of reliable components only.

10.2 Weighted Viterbi recognition

As we have seen in Section 2.4.2, a plethora of recipes have been proposed for
the computation of the weighting coefficientγt employed in the weighted Viterbi
recognition technique. Some of them are purely heuristic, e.g. [61] which uses a
particular sigmoid function to map a Euclidian distance onto the weighting coef-
ficient, or assuming an exponential decay of the weighting coefficient during the
error bursts [66]. Most of these methods need parameter tuning and thus are prone
to be suboptimal in an unknown real-world scenario. Other methods use train-
ing data to find a relationship between the weighting coefficient and some others
exploit statistical properties such as the temporal auto-correlation [22, 66].

Since most of these methods lack an obvious probabilistic interpretation, we
are looking here for certain approximations which would allow us to derive the
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weighting coefficientγt from the mathematically well founded uncertainty decod-
ing rule proposed in this work.

In the following, the same assumptions (1-3) of Section 4.3.3 are made and
additionally, we assume acoustic models sharing a global diagonal covariance ma-
trix Σg = diag(σ2

g,d), d = 1 . . .D. Note that speech recognizers using a global
covariance matrix are widely used to simplify the observation likelihood compu-
tation.

Under these assumptions, the observation probability of Eq. 4.48 yields:

M
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e) (10.8)
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∝
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∝
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+σ2
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For notational convenience we omitted the state indexst and the time indext, the
expression being evaluated for each feature vector and eachstate.

Comparing (10.11) with (2.7) leads to the conclusion that the appropriate weight-
ing coefficient for each dimensiond is given by:

γd =
σ2

g,d

σ2
g,d + σ2

e,d

. (10.12)

Note the similarity of the last expression to (2.6) in that the weighting coeffi-
cient was state dependent but averaged over the feature vector components.
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Chapter 11

Summary and conclusions

This thesis addresses the channel robustness of a remote speech recognition sys-
tem by using a novel decoding rule which takes into account the uncertainty in the
received speech features. As the channel may be error prone,the clean features
emitted by the source are not observable and must be reconstructed from the ob-
served ones. Unlike point estimation methods, our approachtakes advantage of
both the optimally reconstructed clean features and information about the relia-
bility of reconstruction. The proposed decoding rule is obtained by reformulating
the classical Bayesian framework of speech recognition to carry out the classifica-
tion with features observed at the communication channel output. Under certain
assumptions this simply results in a modification of the observation probability
computation, while the structure of the decoder, which is based on Viterbi search,
remains unchanged.

This chapter summarizes our conclusions based on simulations of small- and
medium-vocabulary remote speech recognition tasks using both bit and packet ori-
ented transmission between a terminal and a recognition server. The major contri-
butions made by this work are highlighted and some ideas for further research are
suggested.

11.1 Summary of results

In the case of DSR over a GSM network exhibiting bit errors, a corrupted feature
vector can be reconstructed accurately resulting in a smallvariance of the feature
posterior. Consequently, point estimation techniques, such as MMSE, which ne-
glect the estimation variance, achieve competitive performance levels. However,
when the variance of the feature posterior is high, as is the case in DSR over
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IP channels, a considerable improvement can be obtained by uncertainty decod-
ing. Uncertainty decoding using the extended source model with dynamic feature
components outperformed the competing error concealment techniques.

In the case of NSR using VoIP channels, the uncertainty decoding achieved
drastic improvement over the performance of the same codec obtained by conven-
tional recognition under moderate and poor channel conditions. This was noticed
for all investigated speech codecs.

Using the uncertainty decoding rule comes, however, at the expense of in-
creased computational complexity. This is due to additional operations needed
for the computation of the observation probability on the one hand, and due to
the expansion of the acoustic search space caused by the reduced discrimination
capabilities of unreliable features.

11.2 Contributions

The major contributions of this work are summarized below:

• We proposed a novel uncertainty decoding rule which takes advantage of
correlation among successive feature vectors. Taking intoaccount all, i.e.
also past and future observable values, reduces the uncertainty about the
clean feature compared to conditioning the feature posterior only on the
currently observed vector. To the best of our knowledge, theuncertainty de-
coding rules proposed by other authors in the context of noise robust speech
recognition do not employ correlation in this form.

• Our decoding rule is derived from the very first principle of speech recogni-
tion for minimizing the word error rate and avoids any heuristic. It delivers
therefore the optimal solution, provided that the simplifying approximations
hold.

• We applied the decision rule for decoder-based error concealment for dis-
tributed speech recognition and network speech recognition. In both cases
the inter-frame correlation turned out to be a powerful knowledge source to
overcome temporarily poor channel conditions.

• We proposed an approach to estimating data reliability based on media-
specific FEC which relies on the intrinsic redundancy of source. This allows
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the employment of uncertainty decoding in situations wherethe soft-output
from the channel decoder is not available.

• We showed that MFT and weighted Viterbi decoding are specialcases of
uncertainty decoding.

11.3 Suggestions for further research

The proposed decoding rule is applicable wherever there is amismatch between
training and testing conditions, e.g. due to environmentalnoise, channel and
speaker variations. However, it may turn out to be a major challenge to com-
pute the key element of the decoding rule, the clean speech feature posterior given
all observed feature vectors, for a particular distortion scenario.

While noise robustness techniques based on uncertainty decoding rules which
neglect the inter-frame correlation have already been proposed, e.g. in [70, 71, 65,
64], it would be interesting to study the extent to which the noise robustness can
benefit from using the decoding rule proposed in this work.

Another topic worth exploring is the exploitation of inter-frame correlation in a
clean scenario, where the observed features are not degraded. It is well-known that
the conditional independence assumption, i.e. neglectinginter-frame correlation,
represents a major drawback of HMM-based speech recognition. The Bayesian
network of Figure 4.3 allows for using inter-frame correlation only if the obser-
vation is uncertain. In this case the uncertainty in observation is reduced by con-
sidering the dependency of neighboring frames. In an error-free environment the
uncertainty in observations is already minimal so that it cannot be further reduced
by knowledge of neighboring frames. It would be interestingto explore whether
the model proposed here can be also extended to relax the conditional indepen-
dence assumption in a clean scenario.
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[23] J. Hagenauer and P. Höher, “A Viterbi algorithm with soft-decision outputs
and its applications,” inProc. of IEEE Global Communications Conference,
Dallas, 1989.

[24] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal andsub-optimal max-
imum a posteriori algorithms suitable for turbo-decoding,” in European
Trans. Telecomm, 1997.

[25] A. Potamianos and V. Weerackody, “Soft-feature decoding for speech
recognition over wireless channels,” inProc. of ICASSP, Salt Lake City,
Utah, 2001.

[26] Zheng-Hua Tan and Paul Dalsgaard, “Channel error protection scheme for
distributed speech recognition,” inProc. ICSLP, September 16-20, 2002
Denver, Colorado, USA, 2002.

[27] C. Boulis, M. Ostendorf, E:A. Riskin, and S. Otterson, “Graceful degra-
dation of speech recognition performance over packet-erasure networks,”
IEEE Trans. Speech and Audio Processing, vol. 10, no. 8, pp. 580–590,
Nov. 2002.

[28] V. K. Goyal, “Multiple description coding: compression meets the net-
work,” IEEE Signal Processing Magazine, vol. 18, pp. 74–93, 2001.

[29] S. Deering and R. Hinden, “RFC 2460 - Internet Protocol,Version 6 (IPv6)
Specification,”Internet Official Protocol Standards, 1998.

[30] M. Y. Kim and W.B. Kleijn, “Comparison of transmitter-based packet-loss
recovery techniques for voice transmission,” inProc. of ICSLP 2004, 2004.

[31] X. Zhong, J. Arrowood, A. Moreno, and Clements M., “Multiple descrip-
tion coding for recognizing voice over IP,” inProc. of IEEE Digital Signal
Processing Workshop, 2002.



140 Bibliography

[32] N. Srinivasamurthy, A. Ortega, and S. Narayanan, “Efficient scalable
speech compression for scalable speech recognition,” inProc. of Eu-
rospeech 2001, Aalborg, Denmark, 2001.

[33] Zheng-Hua Tan, Paul Dalsgaard, and Borge Lindberg, “Adaptive multi-
frame-rate scheme for distributed speech recognition based on a half frame-
rate front-end,” inIEEE 7th Workshop on Multimedia Signal Processing,
2005.

[34] N. Farvardin and V. Vaishampayan, “On the performance and complexity
of channel-optimized vector quantizers,”IEEE Transactions on Information
Theory, vol. 37, 1991.

[35] Mikael Skoglund, “On channel-constrained vector quantization and index
assignment for discrete memoryless channels,”IEEE Transactions on In-
formation Theory, vol. 45, 1999.

[36] J. Hagenauer, “Source controlled channel decoding,”IEEE Transactions
on Communications, vol. 43, 1995.

[37] Tim Fingscheidt, Thomas Hindelang, Richard V. Cox, andNambi Se-
shadri, “Joint source-channel (de)coding for mobile communications,”
IEEE Transactions on Communications, vol. 50, pp. 200–212, 2002.

[38] Tim Fingscheidt and Olaf Scheufen, “Robust GSM speech decoding using
the channel decoder’s soft output,” inProc. of EUROSPEECH, 2001.

[39] T. Fingscheidt and P. Vary, “Softbit speech decoding: anew approach to
error concealment,”IEEE Trans. Speech and Audio Processing, vol. 9, no.
3, pp. 1–11, 2001.

[40] E. A. Riskin, C. Boulis, and M. Otterson, S. Ostendorf, “Graceful degra-
dation of speech recognition performance over lossy packetnetworks,” in
Proc. of Eurospeech 2001, 2001.

[41] A. B. James and B. P. Milner, “An analysis of interleavers for robust speech
recognition in burst-like packet loss,” inProc. of ICASSP, 2004.

[42] Z.-H. Tan, P. Dalsgaard, and B. Lindberg, “A subvector-based error con-
cealment algorithm for speech recognition over mobile networks,” in Proc.
of ICASSP, Montreal, 2004.



Bibliography 141

[43] C. Perkins, O. Hodson, and V. Hardman, “A survey of packet loss recovery
techniques for streaming audio,”IEEE Network, vol. 12, pp. 40–48, 1998.

[44] Z.-H. Tan, P. Dalsgaard, and B. Lindberg, “Partial splicing packet loss
concealment for distributed speech recognition,”IEE Electron. Lett., vol.
39, pp. 1619–1620, 2003.

[45] B. Milner and S. Smnani, “Robust speech recognition over IP networks,” in
Proc. of ICASSP, Istanbul, 2000.

[46] A.M. Peinado, V. Sanchez, J.L. Perez-Cordoba, and A. dela Torre, “HMM-
based channel error mitigation and its application to distributed speech
recognition,” Speech Communication, vol. 41, no. 6, pp. 549–561, Nov.
2003.
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