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Abstract

The fast-paced growth in cell phone usage experienced begrdst few decades
offers a huge potential market for speech enabled mobildcss. A suitable
technology is Remote Speech Recognition where the actaafnition task is
carried out on a remote server in the network rather than emtbbile terminal.
Despite the advantages of this client-server architecamrenherent weakness is
that the communication medium may introduce errors whicpaimrecognition
accuracy.

There are numerous research studies which have been cedagith meth-
ods aimed at the creation of remote speech recognitionregsiéich are robust
to transmission errors. A widely used error concealmertirtiegie is to replace
the erroneously received speech feature by an estimates dfrtke” transmitted
one and the carrying out of recognition using the resultingppestimate. The
improvement in recognition accuracy afforded by this téghe has been limited,
as the estimate does not perfectly match the transmitteg viag. is uncertain.

This thesis focuses on modification of the speech recognft@mework to
compensate for uncertain features. By reformulation otthssification problem
we obtain a novel uncertainty decoding rule which, instefad point estimate,
employs the posterior probability density function of thean feature. The condi-
tional independence assumption, prevalent in Hidden Makktodel based ASR,
is relaxed to obtain a feature posterior density that is tmmd on the complete
feature vector sequence observed at the output of the comatiam channel. This
is a more informative posterior than the one conditioneg onlthe current obser-
vation.

This novel decoding method is used to facilitate a trandomssrror robust
remote speech recognition system. It is shown how the clesife posterior can
be computed for communication links exhibiting either bitoes or packet loss.
The probabilistic model which has been employed combinesoai gnowledge
about the clean features and bit reliability of the receidati.



ii Abstract

The proposed techniques are evaluated in experiments nrgasecognition
accuracy of small- and medium-vocabulary recognitiongasider various chan-
nel conditions. Recognition results are presented for fypeds of remote recog-
nition: Distributed and Network Speech Recognition. In ldiéer case common
\oice-over-IP codecs are employed.



Kurzfassung

Die Benutzung des Mobiltelefons, die sich in den letztenrZaimten rasant ver-
breitet hat, bietet ein bedeutendes Entwicklungspotéfiziaprachbasierte Dien-
ste an. Daflr ist die Remote-Spracherkennung eine geeigeehnologie, wobei
fur die Erfullung der Erkennungsaufgabe, statt des neobBerates ein entfer-
nter Server eingesetzt wird. Trotz der Vorteile einer Gfi@arver-Architektur,

ist die Verschlechterung der Erkennungsgenauigkeit anfiigbertragungsfehler
eine inharente Schwachstelle dieses Verfahrens.

Die Robustheit der Remote-Spracherkennung gédfsertragungsfehler wur-
de durch viele Forschungsarbeiten angesprochen. Eineveebeitete Fehler-
behandlungstechnik basiert auf der Ersetzung des felnafteten empfangenen
Merkmalsvektor durch einen Schatzwert des fehlerfreiekt®dfs. Der Schatzwert
wird anschlie3end fir die Klassifikation verwendet. Diedafudieses Verfahren
ermoglichte Qualitatsverbesserung ist jedoch begrelenin der geschatzte Merk-
malsvektor stimmt nicht genau mit dem gesendeten Merkraktsv tiberein, d.h.,
der Schatzwert ist unsicher.

Diese Arbeit konzentriert sich auf dignderungen in dem Rahmenwerk der
Spracherkennung, die notwendig sind, um die Unsicheih&tsnation auszuw-
erten. Die neue Darlegung des Klassifikationsproblembeejne neuartige De-
codierregel, die anstatt einen Schatzwert anzuwenderR asterior-Verteilungs-
dichtefunktion des gesendeten Merkmalsvektors ausridiztAnnahme, die hau-
fig in der Hidden-Markov-Modellen basierten Spracherkemmngemacht wird,
dass die einzelne Beobachtungen unabhangig voneinaimdiervard hier erle-
ichtert. Somit hangt die Verteilungsdichtefunktion rticlur von einer Beobach-
tung ab, sondern von der gesamten beobachteten Merkmtdsiodge. Dadurch
wird die Aussagefahigkeit der Posterior-Verteilungstiédunktion erhoht.

Die neuartige Decodierregel ermdglicht die Realisiereimes gegertber-
tragungsfehler robusten Remote-Spracherkennungssystemwird aufgezeigt,
wie die oben erwahnte Verteilungsdichtefunktion fur Koomikationsnetzwerke,
die Bitfehlern oder Packetverluste aufweisen, ausgeertclverden kann. Das
zur Ausrechnung zugrunde gelegte wahrscheinlichkeibsétische Modell fasst
sowohl A-priori Kenntnisse tber den Merkmalsvektor alstedie Bitzuverlassig-
keitsinformation Uber die empfangenen Daten zusammen.



iv Abstract

Die Verbesserung der Robustheit unter verschiedenengeiddbertragungs-
umstanden wird fur Erkennungsaufgaben mit kleiner unttlenér Vokabular-
groRe experimentell beurteilt. Die Ergebnisse fur dielee Modellen der Re-
mote-Spracherkennung: verteilte und Netzwerk-basiept@@erkennung sind
dargestellt. Die Letztere setzte fur Voice-over-IP veitate Sprachcodierungsver-
fahren ein.
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Chapter 1
| ntroduction

The proliferation of mobile communications technology hasn considered to be
the most important lifestyle revolution of the century. \lé¢hin its early stages of
development the telephone was aimed at oral communicatioow in its new
digital guise provides numerous additional services sicimaltimedia access,
web surfing, email and instant messaging. Most of the newafeatneed a more
intensive and user-friendly interaction with the user tieavailable by using a
small keypad or touch-screen. To facilitate the accessdsetimew services one
has to overcome the limitations of the traditional userrfatees. The extension of
human/machine interface methods to include automaticcsp@eognition (ASR)
technology has been received with great interest.

At the same time, the widespread adoption of wireless nddswoifers a huge
potential for deployment of query-based information syst@roviding constantly
updated travel information, stock price quotations, weatteports, etc. \oice
operation of a device is far more agreeable and effective thanual methods:
This is a key factor in expecting a rapid take up of such spbéeded services,
once the technology has been perfected. In addition a speedtied interface
permits “hands free” operation and is thus ideal for use thole drivers etc..

To date, in the main, two approaches to a speech-enablethrgehave been
proposed. One is the embedding of the ASR technology intonthigile terminal
itself. Some basic functionality, e.g. spoken name dialingalready provided
by most modern cell phones. However, for more complex aafitios requiring
large-vocabulary ASR, like dictation, the technical liatibns are still a hurdle.
Limited computational resources and memory constraintstitote a challenge
to achieving satisfactory recognition accuracy. Nontbglenergy consumption is
strongly dependent on the computational burden and sheudtabin order to pro-

1



2 Chapter 1. Introduction

vide the battery supplied device with long autonomy timesteNhat to date, com-
petitive commercial dictation software available on PCtfplans requires much
more resources than cell phones can provide. Moreovek sipeech recognition
is still an area of dynamic development, costly updatesettil phone ASR soft-
ware might often be required. This limits the applicabitfyterminal based ASR
solutions to relatively simple tasks.

In the other approach, so-called Remote Speech Recog(RiBR) the ASR
task is hosted on a dedicated server in the communicatiovonleinfrastructure.
The task of the mobile terminal is reduced to capturing theesp signal, coding
it into a suitable representation, and sending it over thrarnanication channel
to the remote server. In consequence, sophisticated afiphs like natural lan-
guage understanding, translation and dictation beconmesaitie even on low-end
mobile terminals. The next section provides the necessarkdround to the two
approaches to RSR: Network-based (NSR) and Distributeé@®pRecognition
(DSR). The latter constitutes the recommended approacpeech-enabled ser-
vices in the third generation of mobile networks and it iSe@ed in Section 1.2.

In RSR, a parameterization of the speech signal must bentitied to the
recognition server using the communication medium. Thestrassion may in-
duce errors in the bitstream of compressed parameters.irEagmobile network
noise, fading, and interference may temporarily corrugtitstream inducing bit
errors or, in packet-oriented transmission, erroneouaterdatagrams are dropped
resulting in packet loss. If real-time constrains and badtdwlimitations apply,
the errors cannot be corrected by simple mechanisms likerdansmission.

In the context of RSR, this thesis addresses a problem whitdea as a con-
sequence of an imperfect communication medium - the degjoawaf recognition
accuracy due to transmission errors. Techniques whichareduce or even elim-
inate the effect of transmission errors on the quality asqieed by the consumer
of the transmitted data are termed “error concealment” (B@)classical speech
transmission, where the data consumer is a human, the E@psi¢0 reconstruct
the signal, i.e. to reconstruct the original signal, so atiuce the annoying ef-
fects of corrupted bits or lost packets. If the data consusn@ispeech recognizer,
as is in RSR, the goal of reconstruction is to reduce the woat eate. Chapter
2 presents the current state of research regarding EC tpamiemployed in a
distributed ASR scenario.

The main idea of this work is that the speech recognizer, wisiin fact a sta-
tistical classifier, can benefit from knowledge about thérestion error variance
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or, in other words, the reliability of the reconstructed exe feature. The re-
constructed speech feature, along with its reliabilitpmifation, has been termed
“soft-feature” since, initially, the reliability compuian was based on “soft-outputs”
from the channel decoder provided to the ASR unit [1]. Chaptaresents the ob-
jectives and the organization of this dissertation.

1.1 Remote Speech Recognition

Remote Speech Recognition is built on a client-server tachire. The basic
rationale is to displace the computationally intensivet pdrASR to a recogni-

tion server residing in the infrastructure. This allows tisers to share network
resources and facilitates service and technology upgratles task of the mo-
bile client is reduced to generating a suitable parametioiz of the input speech
signal. Depending on what kind of speech parameterizasigreiformed by the
mobile client, we can distinguish between Network-basezESh Recognition and
Distributed Speech Recognition. These are detailed inath@fing paragraphs.

1.1.1 Network-based Speech Recognition

In Network-based Speech Recognition the speech signalirebby the termi-
nal is coded into a low bit rate data stream using a networkipeonventional
speech coding algorithm such as GSM-EFR (GSM-EnhanceeRai#) or AMR
(Adaptive Multi-Rate). The resulting bitstream is tranded over a dedicated
speech channel to the server. The speech channel compéssscschannel cod-
ing, decoding and the actual physical wireless or wired nbarAt the server side,
the speech signal must be first re-synthesized from thevext bitstream and sub-
sequently processed using feature extraction in ordert@irobpeech features for
ASR.

A typical NSR architecture is shown in Figure 1.1.

| CLIENT | SERVER |
[ D Speech \ Speech | Speech Feature [
| coder ‘ channel | decoder extraction ASR |
Lo - - I Lo I

Figure 1.1: Block diagram of Network-based Speech Recimgnit



4 Chapter 1. Introduction

Note, that some variations from this architecture existr &ample termi-
nals, such as Personal Digital Assistants (PDAS) , opegati a wireless environ-
ment may use voice-over-ip (VoIP) speech coding and a pamkiéthed channel.
While the primary goal of speech coding is to achieve high m@ssion rates
with a gracefull degradation of subjective quality, expents have proven that
the recognition of decoded speech suffers from seriousopaence degradation
[2]. This is the result of lossy compression and of chann@lrer Hence, to avoid
the reconstruction of signal waveform, some authors pregtise so called “bit-
stream based” NSR in which the speech features are diremttypuated from the
coded speech [3, 4, 5]. Although bitstream based NSR is notigst, it cannot be
used effectively if the transmission occurs over networsisg different codecs,
as is often the case nowadays, since this requires tramgrodi

In conclusion, as the speech channel has to adhere to bahdavid low la-
tency constrains, NSR recognition performance is highlyetelent on the codec
and network conditions. These aspects have been extgnstivdled by researchers
and are addressed by DSR.

1.1.2 Distributed Speech Recognition

An alternative approach to NSR is “Distributed Speech Raitmgpn” (DSR). This
eliminates the network dependent speech channel and &eadma data channel
to send coded features more suitable for recognition. Bypedimg the speech
features at the client side, lossy speech coding/decotipg are avoided.

Figure 1.2 shows the block diagram of a DSR system. The ASRdagplit be-
tween a “front-end” running on the terminal and a “back-eno$ted on the server.
The front-end computes the speech features from the miorapsignal. They are
compressed, i.e. quantized in order to reduce the bit ratepeovided with error
protection codes. The resulting low-bitrate data streaseig over an error pro-
tected data channel. At the server side, the back-end hagofidecompress the
incoming data stream and mitigate the possible transnmsdiannel errors. The
speech features are then decompressed and used in ASR.

In the year 2000, the Aurora working group of the Europeaed@hmuni-
cations Standards Institute (ETSI) standardized thisagur to support the com-
patibility between various networks providing speech mes. Section 1.2 gives
an overview of DSR standardization by ETSI and describedD@®R front-end
employed throughout this work.
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[ CLIENT

[ SERVER

I
|
! Feature
Feawre |, | Data ||, decompression [— ASR :
I
|

Q Feature | J .
I extraction compressior| channel| | | e Err concealment
Front-end | ! Back-end

Figure 1.2: Block diagram of Distributed Speech Recognitio

1.1.3 Network-based vs. Distributed Speech Recognition

This section gives a brief comparison between NSR and DSBring of recog-
nition word accuracy, bit rates required, noise and tragssimn error-robustness,
and compatibility with existing devices.

According to numerous studies, recognition word accuraffgss due to using

a speech codec before feature extraction [3], [2]. The Idwdié representation
of the speech signal is not suitable for speech recognibtoreover, due to non-
linear transformations, it is difficult to suppress additembient noise from the
low bit rate coded speech. This leads to degraded perforenanwisy environ-

ments. Hence, the main benefit of DSR is the avoidance of thefia speech
codec and, instead, performing the feature extractioneatdtminal side on the
original waveform.

In [6] it has been shown that the noise and channel robustfeBSR in a
GSM network is superior to that of NSR using the GSM-EFR sheedec. The
degradation is more pronounced in the case of large-voagbaystems. They
concluded that DSR provides a viable and robust altern&iiiSR.

Another benefit of the DSR solution is the inherent supporirfaltimodal in-
terfaces and combined speech and data services. The datethaed to transmit
the compressed features can be used as well to send othsiokiadditional infor-
mation. In implementing the same services using NSR, artiaddl data channel
needs to be available, besides the dedicated speech channel

Unlike speech recognition, some other speech-enabledcapphs require,
e.g. for validation purposes, the signal waveform to beestokVhile reconstruc-
tion of the speech waveform at the receiving end is the maih giospeech cod-
ing, a DSR codec does not necessarily provide this. MFCQifeatalone are not
enough for speech reconstruction. However, the latesawvadf the DSR stan-
dard includes pitch and voicing classes of each frame tHowialg for speech
waveform reconstruction.
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A very important economic advantage of NSR is its compatybiith any
existing speech terminal. Implementation of an additimwlec, i.e. the DSR
front-end, is not necessary.

NSR and DSR were the subject of an extensive evaluation cedby 3GPP
(3rd Generation Partnership Project) aimed at selectiagibst suitable codec for
“Speech Enabled Services” (SES). The two candidate codestive ETSI-DSR
codec and the AMR speech codec. Evaluation results publishg] confirmed
the advantage of the DSR solution over the network-basetignlusing the AMR
speech codec in terms of recognition accuracy. The ETSI-B#iRc became the
recommended codec for SES in 3GPP networks.

In conclusion the main benefits (+) and disadvantages (-SR ldnd DSR are
summarized in Table 1.1.

Table 1.1: NSR vs. DSR

| Criterion | NSR | DSR |
Word Accuracy - +
Bit Rate - +
Noise Robustness - +
Transmission Error Robustness - +
Compatibility + -
Multimodality - +
Reconstruction + -+

1.2 DSR Standardization

1.2.1 Overview of standardization activities

The compatibility between terminals and remote recogsipkays a crucial role in
introducing the benefits of DSR to the wider mobile commutidees market. The
STQ Aurora DSR Working Group of the European TelecommuitnatStandards
Institute was formed to develop DSR standards that prowidateserver interop-
erability. The standards need to adhere to a series of ergaints as follows:
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e Low data transmission rate

Low computational and memory requirements for impleméorah mobile
terminals

Low latency

Robustness in noisy acoustic environments

Robustness to transmission errors

The first DSR standard, the “ETSI standard front-end for DERT'SI-SFE)
[8] was published in February 2000. It defines the front-eratessing stages
to obtain speech features using a Mel-cepstrum algorithehth@ compression
algorithm to obtain a 4800 bps (bits per second) data stréamfeature extraction
algorithm processes independently each 25 ms length seégihgpeech sampled
at 8 kHz to generate a feature vector which consists of 13ti@pefficients
and the logarithmic energy parameter. The frame overlap im4d. The resulting
feature rate is 100 vectors per second. Operation modesadl 16 kHz sampling
frequencies are also provided.

In order to evaluate the performance of the front-end inyno@nditions, an
audio database has been designed and made publicly agait@bugh the Euro-
pean Language Resources Association (ELRA) under the nAorera 2”. The
database contains connected spoken digits originatimg fre Tldigits database.
The clean speech signal has been mixed artificially withowerreal-world noises
at signal-to-noise ratios between -5 and 20 dB.

An evaluation of the front-end in noisy conditions [9] shaltkat using acous-
tic models trained in clean conditions, the average acguraer all noisy condi-
tions dropped to 61% (although the word accuracy achieveti®rclean test set
was about 99%). By retraining the acoustic models undertircohditions”, i.e.
using both clean and noisy training data, the average acgimareased to 86%.
However, the main concern was that in a real-world scenagcstatistics of the
noise which contaminates the speech signal are not fulljigiadble at the training
stage. Hence, since the models have not been trained wigp#wfic noise, this
multi-condition training might improve accuracy only toraall extent. The eval-
uation addressed also the degradation of accuracy due toiioate compression,
but the observed loss of performance was negligible. Anweerof the first ETSI
standard for DSR can be found at [10]. The reference acomsigtels and their
WER performance are to be found at [9].
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The next objective of Aurora DSR Working Group was to devisese ro-
bust front-end. In [11] the set of performance requiremémtshe so-called “ad-
vanced front-end for DSR” (ETSI-AFE) are specified. Accaoglio these, the
new standard must provide at least a 50% performance impreneover the pre-
vious standard on the small-vocabulary task and under higmatch conditions,
i.e. without multi-condition training. The computatiormmplexity must allow
implementation within the typical resources of a cell phéoaeninal and must
therefore not exceed that of the AMR speech codec used in GSM.

For evaluation purposes, two other databases were recodaderfAurora
3", a small-vocabulary task consisting of spoken digitdemied in noisy environ-
ments (driving vehicle) in five languages: Danish, FinniGlerman, Italian and
Spanish. The other is “Aurora 4”, a large-vocabulary dadabzbtained by artifi-
cial addition of noise to the Wall Street Journal (WSJO0) 5@@0ds corpus.

The ETSI Advanced Front-end for DSR [12] was published inobet 2002,
after a selection process. The key component in achieviiggmobustness has
been a noise reduction approach composed of two-stage Wiéeeng. The
front-end achieved 53% reduction in word error rate [13] paned to the previous
front-end.

The activity of the Aurora DSR Working Group continued wittetdevelop-
ment of an extended version of the standard which enablestiomstruction of
the speech waveform from speech features and which has bettport for tonal
languages. This is the ETSI Extended Advanced Front-en®8&R [14], pub-
lished in November 2003.

Regarding the protocols for the transport of compressedifes, the DSR stan-
dards provide a packetization scheme for a circuit-swidafeta network. Trans-
mission over packet-based network is also possible usmd@#dal Time Protocol
(RTP) payload for DSR recommended by Internet Engineerasis Force (IETF)
in [15].

The experimental evaluations reported in this thesis haen Iperformed us-
ing the ETSI Advanced Front-end for DSR. For this reason armadew of it is
given in Section 1.2.2, however, it is only focused on traission issues and ro-
bustness to transmission errors. The topic of robustnessviconmental noise is
not addressed.
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1.2.2 TheETSl Advanced Front-end for DSR

Figure 1.3 depicts the functional blocks of the ETSI Advah&egont-end [12].
The front-end processing is distributed between the teahside {Terminal front-
end and the server sideserver front-enfl The terminal front-end specifies the
algorithms for computation of the feature vectors from tAmpled input speech
(Feature extractioh for quantization of the speech feature vectors into driegsn
(Feature compressignand the subsequent processing of the bitstregitstfeam
formattingandError protection) in order to be transmitted through the channel.

The server front-end specifies the inverse processing §B¥stream decod-
ing, Feature decompressipmequired to obtain the feature vectors from the re-
ceived bitstream. In addition, tHeerver feature processifgock computes the
feature temporal derivatives, i.e. delta and delta-deltdures, resulting in the
complete feature vector for ASR, usually having 39 comptsen

A brief description of each block is given in the remaindetto$ section.

I | decompressionn | i
channel Error p rocessin
ml{lzga%on P 9

[
|
\
| Feature extraction !
. . itstream | |
IInput | Noise | | Waveform| | Cepstrum_ | Blind | |, Feature | |formatfting, |, To
iSidnal’leduction | processing |Calculatior] | equal.| | compression Si5fction channel
‘ ;
|
L 77777777777777777777777777777 .l
: Server front-end |
. |
| From Bitstr larsh Feature Server feature | Back-end
|
|

Figure 1.3: Block diagram of the ETSI Advanced Front-endd&R

1.2.2.1 Featureextraction

The feature extraction part consists of:

e Noise Reduction
This is performed basically by a two-stage Wiener filterifipe algorithm
exceeds the scope of this work and therefore is not detailed.
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e Waveform Processing
The portions of signal with a good SNR are further enhanceafdter to
improve the overall SNR.

e Cepstrum Calculation

Computation of cepstral coefficients (e.g. for 8 kHz) cansfs segmenta-
tion into overlapping frames of 25 ms (200 samples), muttgilon with a
Hamming window and zero padding to 256 samples, computafionag-
nitude spectrum, computation of 23-channels Mel frequéiitey bank out-
puts, computation of the natural logarithm of each Mel fibertput, and
transformation of logarithmic filter bank outputs into 13pstral coeffi-
cients,co, . . . c12 using Discrete Cosine Transform.

e Blind EqualizationThe cepstrum is normalized in order to increase the ro-
bustness to convolutional distortion, e.g. caused by miffemicrophone
characteristics in training and testing.

The output of the feature extraction block is a 14-dimeraigactor consisting
of 13 MFCCs ¢, ..., c12, ¢g) and the logarithm of frame enerdyg E.
1.2.2.2 Featurecompression

The feature vectdfc, . . ., c12, co, logE') Is compressed using a Split Vector Quan-
tization (SVQ) schema. Thisis done by splitting the 14 disienal feature vector
into 7 two-dimensional subvectoss, . . ., sv;y as shown in Table 1.2.

Table 1.2: Splitting and bit allocation scheme of ETSI Adweah Front-end

|SUbV€Ct0r| SvU1 | SvU2 | SvU3 | SV4 | SUs | SVg | SvU7 |

Features | ci,co | c3,¢4 | ¢5,¢6 | Cr,08 | Co,C10 | C11,€12 | Co,logh
M 6 6 6 6 6 5 8

Each subvector is vector-quantized withbits using its own codebook (which
is provided by the standard). The front-end also computesi@\Activity Detec-
tion (VAD) flag which is coded using one bit. The resulting 8& lof two consec-
utive frames (feature vectors), i.e. a frame pair (FP), arapieted using a 4-bit
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CRC (Cyclic Redundancy Check) code for error detection psep. This sums up
to 92 bits (11.5 Bytes) per frame pair.

1.2.2.3 Framing, bitstream formatting and error protection

For transmission over circuit-switched channels the steshdefines a multiframe
bitstream format schematized in Figure 1.4. A multiframasists of a synchro-
nization sequence (2 Bytes), header field (4 Bytes) and h2dzairs (138 Bytes).
This totals to 144 Bytes per multiframe and codes a portioP4df ms of speech.
The equivalent bit rate is 4800 bps. At the receiving endb#ganning of a multi-
frame in the bitstream is detected by means of the synchabaizsequence. The
header field contains information about the sampling ragefront-end employed,
and a multiframe counter. The synchronization and headerfidds are critical
and are therefore protected by a (31, 16) extended systeowte which is able
to correct up to three bit errors and to detect up to 7 bit srror

sync. | header FP 1 FP 2 o FP 12
2B 4B 1158 1158 1158
138B
1448

Figure 1.4: Multiframe format used for DSR over circuit-tehied channels

In a packet-oriented network the transmission of the feahitstream using
Real Time Protocol (RTP) is envisaged. This is the de fadodsrd for real-
time media streaming in IP networks. The data payload to beramodated in a
RTP packet was defined in [15]. Figure 1.5 shows the structfieedata packet.
The first 40 Bytes are allocated for IP, UDP and RTP protoceldees. The
following Bytes represent payload data. The choice of thaler of frame pairs
accommodated in a packet is flexible but must be specifieckiRTP header. The
choice of the number of frame pairs per packet must be chasarcordance with
data rate limitations, latency and channel robustnessideradions. E.g. Ifitis
one, only 12 Bytes of the total 52 Bytes are user data wheheasther 40 are
header data. Bandwidth is not efficiently used in this case.th@ other hand,
fewer frame pairs per packet provides higher robustnedastgsacket loss, since
less information is lost on any one failure occasion. Reiggriadtency: it increases
proportionally to the number of frame pairs per packet.
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It is expected that future networks will provide a robustderacompression
scheme (RoHC) which will reduce the overhead from 40 to 4 8gied therefore
even a packetization with one frame pair per packet will iigeltandwidth effi-
ciently. However, according to [7], for current GPRS datawoeks the usage of 4
or 8 frame pairs per packet is recommended.

IP UDP RTP FP1 | FP2 [ FPn

20B 8B 12B nx12B

Figure 1.5: Packetization scheme for DSR over packet-msvd he packet con-
tainsn frame pairs (FP) representilg feature vectors.

In the case of a circuit-switched network, transmissioomrmay affect any
of the bits of the multiframe. While the synchronization seace and the header
are relatively robust to bit errors, the bitstream of feaslis not. The standard pro-
vides a method for detecting the errors in a frame pair atpteme This consists
of computing and appending a 4-bit CRC to the frame pair letf@nsmission.

In the case of a packet-switched network, e.g. IP netwokkptickets which
are erroneously received are usually rejected by the lgerlaetwork protocols.
The user either receives a correct packet or does not reitaivall. The absence
of a packet in the received packet sequence is signalledebiRTP protocol for
error concealment purposes. Note, that packet loss mayalsoother causes, as
will be explained in Chapter 5.

1.2.2.4 Bitstream decoding, Error mitigation

The presence of bit errors is detected by two methods: CRidatadn (media-
independent FEC) and a data integrity check (media-spé&dHic). On reception
the 4-bit CRC is computed again from the received, possibtyupted, bits and
compared with the received CRC code. In case of mismatch ti@ewframe
pair is deemed erroneous. Furthermore, a data integritgkciseperformed on
the frame pairs sourrounding the erroneous one. The uridgngtionale is that
since the errors appear in short series (error bursts), yt Imeapossible that the
neighboring frame pairs are also erroneous but have notdetented as such by
CRC. This may happen since CRC cannot detect every errarpatifhe data
integrity check is a heuristic algorithm based on the cavitynof feature vector
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components. The algorithm computeBad Index FlagBIF) for each dimension
of the feature vector as:

1 if | (t+ 1) —ai(t)| > T; or
BIF; = |J,‘7;+1 (t + 1) — $i+1(t)| > ﬂ_‘,—l (11)
0 otherwise

wherez;, ;1 are components of any subvector ahicare subvector depen-
dent thresholds estimated on training speech in absendeaohel errors. If the
BIF is one for at least two subvectors, the frame pair is dekeneneous.

To increase robustness against transmission errorsathesst provides a sim-
ple error concealment method based on repetition of theesteorrect frame. If
a sequence of frame pairs ZL feature vectors) encoded by the ETSI front-end
for DSR has been corrupted, the fifstfeature vectors are replaced by copies of
the last correct feature vector before the corrupted semjeand the last are
replaced by copies of the first correct feature vector aftercorrupted sequence.
The sequence of corrupted or lost frames/features is catedr burst” or simply
“burst” throughout this work.

Despite its simplicity, the error concealment method dpetby the standard
provides satisfactory robustness to relatively shortrdsuosts, such as the loss of
a single frame pair.

1.2.2.5 Featuredecompression

Feature decompression consist of retrieving the multidsraal real-valued fea-
ture vector corresponding to a received bit pattern fromstiteof codebook cen-
troids. This is a simple inverse mapping operation.

1.2.2.6 Server feature processing

The temporal derivatives delta and delta-delta denote thednd second-order
temporal derivatives of the static feature components (M&€dlog F) computed
in the terminal front-end. They are computed from the stiatures by linear
regression over a limited interval, see (6.24)-(6.25) forendetails.
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Chapter 2

Review of error-robustnesstechniques

2.1 Introduction

In Chapter 1 it has been shown that there are two main appesacimplementing
a remote speech recognition system. The most straightfdragproach is NSR
as it can be directly deployed in the existing networks. Qndther hand, DSR is
more robust against lossy speech coding, noise and trasismishannel errors.

A side effect of using speech channels with NSR is that thetiegj techniques
for robust digital speech transmission are implicitly useor example the channel
coding and error concealment algorithm of a GSM speech @iane specified in
the standard [16]. Therefore, the channel robustness ofSt $ystem deployed
in GSM networks either relies on existing network/codeadsad techniques, or
requires the development of additional techniques, oftetop of existing ones.

The goal of error-robustness techniques for speech trasgmiis to minimize
the detrimental effect of errors on the perceptual speedlitgui.e. as it is per-
ceived by the human listener. Such techniques were extnsitudied since the
beginning of digital speech transmission and are currestiarded as being at a
relatively mature stage. A good reference regarding tipigtwill be found at [17].
However, it has been argued that the perceptual qualityedapquantified by the
MOS (Mean Opinion Score) and the accuracy of an automatiectpescogni-
tion system WAcc (Word Accuracy) are not directly relatetefiefore, robustness
techniques aimed at improving perceptual quality do noessarily achieve the
optimum performance of ASR. An example is “muting”, a comiyarsed chan-
nel robustness technique for speech transmission. Mutegepts annoying noise
patterns generated by erroneously received frames byciaglthe corresponding
regions of the synthesized waveform by silence. In speeabgration, if muting

15
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occurs within a word, this leads mostly to end-point detetérrors [18].

With NSR, transmission transmission errors affect thetigigen of speech
codec parameters. Since one coded frame is usually involvegnthesizing
several frames of the speech waveform, one transmissionsrrears over more
speech features rendering them unreliable. In [19] it has lshown that if fea-
tures are extracted directly from the bitstream of codearpaters, this effect is
minimized. Gomez et al. employed this technique for ke@tn-based NSR using
the GSM-EFR speech codec. The proposed transcoding techexgloits the bad
frame indicator (BFI) flag for error mitigation purposesti#dugh though it even
outperforms DSR in terms of channel robustness, the pifatiat the BFI flag is
usually not accessible at the server side. Unfortunatédyiithplies modifications
in the network, or, installing the feature extraction sygsteentioned above in the
“Transcoder and Rate Adaption Unit” (TRAU) where the BFI\miéable [20].

With DSR, the transmission errors affect the bitstream afpessed features.
An error which corrupts bits of one frame therefore affectly@ne feature vector,
or even only some of its components, and has no effect on beigty features.
The error does not spread over more features as is the cdsB$R.

This chapter gives an overview of the state of research omeH&rror-robust-
ness techniques for DSR. They constitute the backgroundrfderstanding the
motivation for, and objectives of, this thesis. Error-retmess techniques for NSR
operating in other that mel-cepstrum domain are not inaudehis scope, how-
ever, a study concerning the applicability of the proposetiniques to NSR using
\OIP is detailed in Chapter 8.

Error-robustness techniques were categorized in tratesraitiven techniques
and receiver-based techniques [20]. The first categoryinegidirect participation
of the transmitter. The participation can be active, asiredie.g. for retransmis-
sion of an erroneous packet, or it can be passive, as in c&&®and interleaving.
The receiver-based techniques do not imply any coordinatith the sender. The
receiver alone has to detect the errors and to mitigate thewolved in this are
interpolation, estimation and recognizer-based tectesiqu

The transmitter-driven techniques are also referred taras secovery tech-
niques, while the receiver-based techniques are refeored error concealment
[21].

In the following, the error-robustness techniques aresiias into error de-
tection and recovery, error concealment based on “reasctgin” of lost or erro-
neous features, and error concealment based on modificsHtibie classification
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decision rule, i.e. ASR decoder-based techniques.

2.2 Error detection and recovery techniques

Error detection and recovery techniques rely on tranamgittedundant informa-
tion together with the bitstream of the source. This can lieeeithe residual
redundancy present in the source stream after source caatinig is artificially
added by channel coding as “controlled redundancy”. Theuwsnrihof redundancy
that one can afford to transmit depends on specific bit raddatancy limitations.
While in some cases this amount can be enough even to enadleeirection, in
other cases it suffices to only detect it. Although by itselbedetection does not
directly contribute to channel robustness, it constitthesoasis for the error con-
cealment. It has been proven that for remote speech recagajiplications, error
detection is a very important attribute. The authors of [22e shown that the
undetected channel errors may have a disastrous effectcogmiion accuracy,
but the recognizer can operate with no loss of accuracy wittoul5% channel
erasure, when the erroneous frames are detected and sirapgde

Controlled redundancy can be added by FEC algorithms likekbtodes and
convolutional codes or by sending same or similar infororativer different chan-
nels, as multiple description coding (MDC) or layered cadinC) does. The joint
source and channel coding exploits characteristics ofdliece to provide better
error protection.

Interleaving does not add redundancy to the signal, buéaasteorders the
information before transmission in such a way that errostsuare spread over
several frames. Thus, the loss of information per frameeabeses which results
in improved performance of the complementary error regpwegrconcealment
techniques.

2.2.1 Forward Error Correction

With the Forward Error Correction (FEC) approach, the tmaitter generates re-
dundant data which is then combined with the source data amid #\t the re-
ception end this redundancy is exploited to detect or everectthe errors. De-
pending on how the redundant information is created, thexgoencipally two
approaches in existence: linear block coding and conwiaticoding.
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In linear block coding the source bit stream is segmentexitcks of length
k and each block is then independently encoded into a codegfaidcits. The
code is referred to &3, k) code and its error detection and correction capability is
given by the minimunHamming distancel,,;,, between any pair of code words.
The code is able to:

e detectupta errorsifd,,;, >t+1

e correctup ta errors ifd, ., > 2t + 1

Hamming, cyclic, Golay, BCH and Reed Solomon belong to theilfaof
block codes. In convolutional codes the coder has memoryaatwded bit not
only depending on the current input to the coder but also ewmipus input. The
information of one source symbol is distributed over moreceted bits and there-
fore better protected. Convolutional codes are partibulowerful since their
decoding can provide a reliability measure for each decduedTypical algo-
rithms for decoding convolutional codes are the soft-oufiterbi algorithm [23]
and the Max-Log-MAP [24]. The bit reliability measure cather be used for
error detection, i.e. by imposing a reliability threshotddecide about bit cor-
rectness, as it was done in [25], or for more sophisticateal @oncealment al-
gorithms like soft-feature reconstruction or ASR decoolased techniques as will
be shown in Section 2.3.3 and 2.4, respectively. Examplehafnnel coding
using convolutional codes are the speech channel GSM-EBRhardata channel
GSM-TCH/F4.8 in GSM networks [16].

For DSR, block codes are preferred due to their smaller detaylower com-
plexity as well as their independency between blocks [24]Séction 1.2.2 we
have seen that the ETSI-AFE algorithm employs a Golay copeotect the header
of the multiframe and a 4-bit cyclic code to provide erroreadion to each feature
pair. Tan and Dalsgaard [26] showed that error detectioheaframe level, e.g.
4-bit CRC for each frame rather than for each frame pair, @csiderably im-
prove the performance of ETSI-AFE error concealment wihigeltitrate increases
slightly from 4800 to 5000 bps. In their experiments the gggtion word accu-
racy (WAcc) was raised from 47.1% to 85.6% under channelitiond with a 2%
bit error rate.

In [22] the authors studied the performance of various lindack codes un-
der fading channels when employing PLP (perceptual lineadiption) features
for recognition. The vector consisted of 5 LSFs (line spdnequencies) each
quantized with 7 up to 10 bits. For packet-erasure netwdétked-Solomon codes
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were successfully employed in [27] in combination with igaving.

2.2.2 Multiple description and layered coding

Multiple Description Coding (MDC) and Layered Coding (LGllize independent

channels to deliver sub-streams of encoded source infammakhe degree of in-

dependence between channels ensures that it is very yniiial all sub-streams
will be corrupted simultaneously. In MDC the original si¢jnan be reconstructed
to a satisfactory quality from any of the descriptions [2&]more descriptions

are correctly received, they can be combined to increasguhkty of the recon-

structed signal.

MDC is suitable when all channels provide the same level @rgarotection.
An example is the use of two IPv4 channels. However, whenrodarwith un-
equal error protection (UEP) level are used, LC is a bettercgh In LC there is
a base layer stream and several enhancement streams. Fecohstruction the
base layer is mandatory while the other layers are optiaméican progressively
refine the quality of reconstruction. However, they canr®tbed alone. Thus,
the base layer stream is transmitted using the channelg@navhighest protec-
tion and the other layers using channels with less protecfopossible applica-
tion scenario is remote speech recognition over IP chaimelementing the next
generation Internet Protocol (IPv6) [29]. This providempty assignment to the
packets and implicitly UEP.

As a packet-loss recovery technique for voice transmissitiDC has been
proven to outperform FEC techniques based on Reed-Soloouesd30]. In the
area of remote speech recognition there are also studigisieiece about employ-
ing MDC and LC. Zhong et al. [31] suggest the superiority & MDC technique
in a VolP-based NSR scenario. Srinvasamurthy et al. [32p@sed an efficient
scalable speech compression method for NSR using layedigcbased on a dif-
ferential pulse code modulation (DPCM) with two loops. Tlgeyerated a coarse
and a fine reproduction of the MFCCs that constituted the badehe enhance-
ment layer, respectively. The authors of [33] proposed geaf an MDC tech-
nique to transport the bitstream produced by the DSR fradt-&hey used two
independent channels, one transmitting the sub-streataioorg odd-numbered
frames and other, the even-numbered. Since the redundetwgdn consecutive
frames of the ETSI-AFE front-end is quite high, the full fei@ stream can be
approximated at the reception from only one sub-stream higgesrepetition of
each of its frames.
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2.2.3 Joint source and channel coding

Joint source-channel (de)coding is a research topic tisaatteacted much recent
attention. Techniques in this category exploit certainpprties, often termed
priori knowledge of the source. This knowledge can be exploited in the design
of the source coder, as it is done in channel-optimized veptantization [34], or
can provide “inherent” channel robustness as in channedtcained vector quan-
tization [35].

Another approach is to allocate the FEC codes of the chawodelraccording
to the importance of the data. The underlying rationale & for speech trans-
mission we are actually not interested in minimizing thedsitor rate, but the
speech quality degradation. In the case of a Pulse-Code Bsltimtu (PCM) en-
coded speech signal, for example, the most significant bitseosource symbols
can be provided with more controlled redundancy than tredgmificant bits. The
effect is that the most significant bits are better protethed the others thus in-
creasing the overall transmission error robustness. Trie sanount of bandwidth
available for channel coding can in this way be used moreefiily. Such a tech-
nique is utilized at channel coding of the bitstream gemerdly the GSM-EFR
speech codec.

In another technique, termed “source-controlled chaneebding” [36, 37],
the residual redundancy left in the bitstream after souockng is then exploited
at the receiver end. In addition to the source redundaneyinttormation about
the reliability of decoded bits, provided by the soft-outpiterbi algorithm [23],
can be employed resulting Boft decisioror softbit source decodingApplica-
tions of this technique in robust speech decoding were pteden [38] and [39].
They provided good speech quality over GSM channels dowr(6 &arrier-to-
interference) ratio of 6 dB whereas standard error conceatloioes badly already
ata C/l of 7 dB.

Publications more focused on the remote speech recogrppfication are
[25], [27], and [40]. Potamianos and Weerackody were the tiréntroduce the
concept ofsoft-feature speech decoding[25]. They used an UEP scheme for
channel coding and computed the bit error probability ofhesereived bit us-
ing the Max-Log-MAP algorithm [24]. Subsequently bit erqmobability was
employed to estimate the confidence of each feature and tied&8oder was
modified to use that confidence, see also Section 2.4. Bdudis 7] proposed
an UEP scheme for DSR over packet channels based on FEC vath&somon
codes and combined with interleaving. Riskin et al. [40]radded the issue of
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how to assign unequal amounts of FEC to different sub-vedtominimize the
word error rate.

224 Interleaving

Interleaving itself can neither correct nor detect errdismust be used in con-
junction with other techniques to improve their robustnagainst error bursts.
This is easy to understand if we consider channel coding @ying linear block
codes FEC. In Section 2.2.1 we have seen that each code isleagaorrect-
ing/detecting a certain number of errors. If errors occupunsts it is likely that
the capabilities of the code are exceeded and thus erropaigate to the source
decoding. In general, error recovery and concealment tqaba lose their effec-
tiveness when the errors appear in long bursts [20].

By interleaving, the sequence of coded bits is rearrangémd&ansmission
so that error bursts affecting the reordered sequence areided into random
errors after restoring the original sequence order. Thislétively easy to imple-
ment by writing the coded bits into a matrix in row and readiogtransmission
in column order. At reception the inverse operation needietoarried out.

Interleaving can also be implemented at frame level, i.a@rdering the se-
guence of feature vectors rather than the sequence of bits.

The main disadvantage of interleaving is the latency ir#dMn the previous
implementation example, the first column can be transmitey after the entire
matrix has been filled. Whereas for speech transmissiotetieiscy is crucial, for
remote ASR it is not. A reasonably small amount of latenchdsyever, desirable
in order to ensure fluent interaction [20].

On the other hand, interleaving does not require extra battdwand can be
easily combined with other error recovery and concealnmesfiriiques.

The performance of various interleaving schemas in a DSRastehas been
extensively studied by James and Milner [41].

2.3 Featurereconstruction techniques

In contrast to applications were data integrity is crucgag. File Transfer Pro-
tocol (FTP); speech transmission and remote ASR are mageatal of transmis-
sion errors. They can still perform satisfactorily usingegge of approximation
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to the original signal when the original itself cannot beowgred. For example
the speech signal synthesized from a moderately corrujittdelam suffers some
quality degradation but mostly remains intelligible.

Error concealment based on feature reconstruction atssimpteate a replace-
ment for the lost or erroneous packet which is then optim#i wespect to a spe-
cific criterion. For example, in error concealment for sgregansmission one at-
tempts to minimize the perceptual speech quality degraatihereas in a speech
recognition application the goal is to minimize the wordemate.

In order to know when to perform reconstruction instead ofrmad source
decoding, the erroneous frames must firstly be identifiecerdfiore error detec-
tion plays a crucial role in feature reconstruction. Erroag be detected and/or
corrected by media independent FEC, as discussed in Se2tib or by media-
specific FEC. The latter relies on intrinsic redundancy eéngburce to decide about
the reliability of data as described in Section 1.2.2.4.

Generally, error detection is carried out on a frame (blduttata) basis. That
is, it can ascertain as to whether the block of data has berapted or not, but
can neither indicate the number of errors nor their positiothe block. It is
therefore likely that some considerable part of the framstilsintact and this
can be exploited in the reconstruction process. This is digreome sub-vector
insertion-based techniques, e.g. [42].

Another powerful source of information to exploit at rectvastion are the
statistical properties of the source signal. The reconstm of a feature can be
seen probabilistically as an estimation problem. Usutily,unknown value of the
feature vector has to be estimated given a set of previousifodlowing reliable
values.

The remainder of this section reviews some widely used feaconstruction
techniques: insertion, interpolation, and statisticeebagconstruction.

2.3.1 Insertion

Originally employed in audio streaming applications [48]s method insertSll-
in packets in the data stream where losses occurred. In GSMtsfraasmission it
is known as muting or silence insertion. The filled-in frana@ e simply silence
or ambient noise, in which case it does not take into accauwnsmgnal character-
istics; it can also be an estimated value such as the meae eftor-free training
data or it can be the nearest correctly received frame.
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Boulis et al. [27] investigated usability of insertion mets as EC for DSR.
Three approaches were tested: Replacing the erroneousdnaith zeros (similar
to replacement by silence), dropping the erroneous franoes the received se-
guence, and replacing the frame with a mean value computétedraining data.
The latter gave the best performance and “dropping” the wypedormance.

Insertion of a replica of the nearest correctly receivethiaor simply “nearest
frame repetition” (NFR), is the method adopted by the ETSIRDstandard, see
Section 1.2.2. After its publication, researchers havdiooad to address some
problems manifested by this EC technique. One problem of ISFRat, in spite of
its good performance in concealing short bursts, it failemwlonger bursts occur.
This can be attributed to the fact that repetition can exmaly the short-term
self-similarities [43] of the signal. During longer erraursts the signal properties
change and cannot be modeled appropriately by constargs/along the burst.
In this situation it is favorable to drop the features frore thiddle of the long
burst. The method described in [44] has been terpetial splicingand consists
in repetition applied at the extremities of the burst corebimvith splicing in the
middle.

Another problem is that the error detection is carried oth@frame pair level.
In case of error, the whole information content of that frgma& is disregarded,
although possibly only one frame of the pair has been coedipthe authors of
[26] proposed the provision of each frame of the frame pain@RC codes. They
achieved significant improvement by doing so, however,¢hise at the price of
increasing the required data rate and losing compliandetivé standard.

Even if the error detection works satisfactorily at the fealevel as proposed
above, some information will still be disregarded. Sevaradorrupted bits within
an erroneous frame may be dropped possibly due to a one &it €an et al. [42]
have shown how this error-free portion of the frame can béoéegl. They applied
a data consistency check, similar to that of ETSI-DSR, thhsabvector of a frame
and identified the subvectors likely to be corrupted. Theseators labeled as er-
roneous were replaced by copies of the nearest reliablestdn(subvector-based
EC). Obviously, the data consistency check cannot deteremactly whether the
data has been corrupted or not. However it was shown thaapiuisoach reduced
the word error rate of a Danish digits task from 9.7% usingdtaedard EC to
1.5%.
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2.3.2 Interpolation

In contrast to insertion techniques, interpolation attesmp create a replacement
for the lost or erroneous feature, which preserves the woityi of the original
feature. Instead of replicating one (or two) feature vaklesg the error burst as
is done by insertion techniques, interpolation models ¢agure variation between
a start valuex; which is the last correctly received feature before the thansl
an end valuexy which is the first correctly received feature after the huhsta
general form the variation is described by a functjoas:

)A(t:f(t;X_B+2,...,X1,XT,...,XT+F_1). (21)

x; represents the feature at timeelative to the beginning of burst < ¢t < T)
obtained by interpolation using reliable values before and after the burst. The
widely used approach is the Lagrange polynomial interpmiathere the function
f is a polynomial of degre® + I’ — 1. The polynomial coefficients depend &h
pastvectors_po,...,x; and onF future vectorxr, ..., X p_1.

Milner and Semnani [45] deployed a linear interpolation @8R in that the
function was a first degree polynomidl &= 1, B = 1):

XT — X1

T 1 (2.2)

)A(t =X1 + (t - 1)
The feature trajectory is a straight line joining the poirtsandx,. Contrary to
the general expectation that linear interpolation shoeldqrm better than repeti-
tion as the interpolated features are have a smaller Eanlitistance to the original
ones, a number of publications [7, 46, 44] proved experiaignthat it performs
worse. The study of Tan et al. [42] reveals that it is not thelidian distance that
accounts for the word error rate, but tthgnamic programming distance

James and Milner [41] have shown that repetition can be olatpeed by
interpolation using a cubic Hermite polynomial functiaB ¢ F' — 1 = 3). This
ensures not only the continuity of the feature trajectorydiso that of the first
derivative [20].

Some particular cases of interpolation are obtained witft alegree polyno-
mial: ForB = 1, F' = 0 andx; = x; we obtain the so called forward repetition,
whereas folB = 0, I’ = 1 andx; = x7 we obtain the backward repetition. This
is why other authors [20] considered the EC of ETSI-DSR asrigghg to the class
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of interpolation techniques, being a combination of thevemd and backward rep-
etition described above.

Another aspect which must be considered is that an inteipplachema gen-
erates a latency df — 2 + F' frames, with7" being the burst length. This is higher
than the latency df’ — 2 frames produced by the EC of ETSI-DSR.

2.3.3 Statistics based reconstruction

The previously presented repetition technique is moressrdecrude method to ex-
ploit signal redundancy. If there was no residual redungémé¢he coded source
parameters, the consecutive frames would be statisticalgpendent. In this case
the repetition of the nearest correct frame would yield tme word error rate
as randomly generating the fill-in frames. The rationalé&,tassuming statisti-
cal independence, the frames within the burst do not deperideother correct
frames and thus, cannot be inferred from them. However, aédllibe shown
in Section 6.4.1, there exists a large amount of residualrréddncy in the DSR
source coded bitstream. The repetition technique modelseédundancy by as-
suming that the speech feature changes slowly and thus #énesteeceived neigh-
bor is a reasonable approximation of the lost featurexi,e= x; on the first half
andx; = x7 on the second half of the burst.

In [47] this model of redundancy was referred to ag'aorder data-source
model. The authors have proven that the word accuracy campved using
higher order data-source models. For example given a bfitshgth 2L, in the
1%t order model, the sequencelbfeconstructed values of the first half of the burst
depends on the last value before the butiist However, unlike with simple repe-
tition, the reconstructed values are not constant alongpuingt. Their sequence is
the average of all sequences of lengtlof the clean training data prefixed by the
VQ-index ofx;. Thus, to each possible VQ-index there corresponds a sequen
of length L stored in a lookup table. The second half of the burst dependke
x7 and is obtained in a similar fashion as the average of segsesuffixed by the
VQ-index ofxr. In the second-order data-source model, the reconstruateds
depend on the two nearest correct frames. The approach Basben extended
to a N*" order source, however, the memory requirements to storletkep ta-
bles increase exponentially withi so that a special storage strategy is necessary.
Nontheless, the limited amount of training data may alscstitiriie a problem in
estimating the lookup table if the number of table entrigedshigh, as is the case
with N > 1.



26 Chapter 2. Review of error-robustness techniques

Inrecentyears a number of EC techniques have been develmiédclude the
use of statistical a priori knowledge of the data in a more@ilate way. They rely
on a priori information in form of speech models and empldynestion methods
such as Maximum A Posteriori (MAP) or Minimum Mean SquarecbE(MMSE)
to reconstruct the clean feature.

MAP estimation has been successfully used to increase AR oess against
environmental noise. In a first approach the problem of nolservation has been
cast into the missing feature framework, see also Sectibi 2the regions of the
spectrogram that exhibit low signal-to-noise ratio ardéted” resulting in incom-
plete spectrograms. Raj [48] proposed to reconstruct tlssing components of
the spectrograms using the surrounding clean speech canfsoihe estimation
criterion was to maximize the likelihood of the reconstaattomponents condi-
tioned on observed (clean) components and a priori knoweledglean data.

A similar approach to that described above has been appligzheket loss
concealment (PLC) for DSR, i.e. EC for packet-loss chanr®islames et al.
[41]. They estimated the lost feature vectors so as to maeirtieir likelihood
conditioned on the received feature vectors and on the a feature distribution.
This method has been proven as more robust than cubic itdgigrg particularly
with regard to long bursts. A drawback was the high compenati complexity
due to the matrix inversion operations involved.

Gomez at al. [49] proposed to combine their data-sourceaddév] with the
MAP estimation to trade-off memory reduction for compudatl expense.

Besides residual redundancy, another source of informattich can be ex-
ploited for reconstruction is the error-free portion ofeereous frames. Subvector-
based repetition utilizes the reliable subvectors of anreous vector yielding
superior performance to vector-based repetition. In tist filace, the error-free
subvectors must be identified. This is relatively easy in eelegs communica-
tion scenario if the reliability information about each e&ed bit is available as
a complementary output of the channel decoder. Source degethploying bit
reliability has been addressed in a number of studies [38882, 46, 50]. Fin-
gscheidt and Vary [39] termed their approach to EC for spéeatsmissiorsoft-
bit speech decodinglnstead of “hard”-decoding the speech waveform from the
possibly erroneous received bits of coded speech parasbr softened the de-
coding by computing the MMSE estimate of the transmitte@speonditioned by
previous hard-decoded speech parameters. Conditionimgooe than one hard-
decoded speech parameter allowed for modeling the depeieddretween con-
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secutive speech coded frames.

Peinado et al. [46] deployed a similar technique for DSR &t the source and
channel were jointly modeled by a Hidden Markov Model (HMM}, depicted
in Figure 2.1. The transmitted speech features, which acbservable at the

@ @ received

— transmitted

Figure 2.1: Source-channel modeled by HMM

receiver end, were represented by the hidden stated the HMM. The obser-
vations were the received, possibly corrupted speechriesgy. The probability
of observing the received parametgssconditioned on each state was com-
puted using the bit reliability, similarly to Section 6.3tbis work. Subsequently,
the computation of the posterior probability density of ttemsmitted speech fea-
tures, here the model states, conditioned on the receivechene the observation
sequence, reduces to one of the three fundamental probfenidd theory [51].
This can be solved by tHerward-backwardFB) algorithm. Knowing the feature
posterior density, the MMSE estimate can be taken as thesétoted feature:

X = E[xt|y1T] = /xtp(xt|y1T)dxt. (2.3)

Other approaches exploiting bit reliability for reconstiian are given in [25,
1, 22, 50]. However, they do not only reconstruct the errosdeature but also
provide it with a measure of reliability which is the varianaf the estimator. This
assembly has been initially termedft-featurein [25]. As ASR decoding with
soft-features requires modification of the speech recegnihis is in fact within
the scope of the next Section.

2.4 ASR decoder-based techniques

In classical speech transmission the recipient of the inétted data is the human
listener. The acoustic signal is captured by a microphorleeasending terminal
end, parameterized and transmitted over a digital chaonile receiver. After
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decoding, the resynthesized waveform is fed into the loedker to generate a
pattern of acoustic pressure waves which can be perceivétbliyuman ear. Here,
the goal of EC is to reconstruct the erroneous data suchhbarnoying effects
of corrupted bits or lost packets [52] are reduced.

The feature reconstruction EC techniques for DSR act in dagifiashion, i.e.
they reconstruct the lost or erroneous features, howelveir, tjoal is to reduce
the degradation of recognition accuracy due to transmmssimrs. Unlike speech
transmission where the only possible input to the humaariest is the acoustic
wave generated by the resynthesized waveform, in ASR tleerdeipient is a sta-
tistical classifier. In addition to the reconstructed sibefeature, the classifier can
also benefit from knowledge about the quality of the recartcsion. The recon-
structed features are actually estimates of the true valndshus, reliable only
to a restricted extent. Their contribution to the classifaradecision must be ac-
cording to their reliability. Therefore, the feature deehtetally unreliable must
produce no discrimination whereas the contribution of tmble features is kept
unchanged.

So far there three approaches to modification of the ASR daqathssifier)
have been proposed to take into account the feature rétyabil

One approach is the missing feature technique (MFT). Indpisroach the
reliability of a feature is quantified on two levels: eitheliable or not. The reliable
features are used in the conventional way whereas the ablelones have no
contribution to recognition hypothesis, i.e. they are nralized.

Another approach is the use of weighted Viterbi decodingreHteliability is
modeled by a weighting factor, usually denoted-pywhich takes values at the
interval[0; 1]. The modification of an HMM based ASR decoder consist inmgisi
the HMM state conditioned observation probability to thevpoof~. Thus, a reli-
able feature has = 1 and its observation probability does not change. In contras
to this, a completely unreliable feature las- 0 and the observation probability
becomed independent of the HMM state and therefore does not prodscar-
ination between word hypotheses.

A relatively new approach termed “Uncertainty DecodingD(Lhas been re-
cently investigated with the goal of attaining noise-ralASR. In contrast to the
other two approaches it involves a probabilistic formulatand avoids heuristics.

This section gives an overview of employing the first two noelhin the con-
text of channel-robust DSR. Uncertainty decoding con&itthe starting point of
the present work and had not been directly proposed as ECS& jrior to our
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work [50]. Therefore, an overview of the state of researctA8R using uncer-
tainty decoding is first given in Section 4.2.

24.1 Missing Feature Theory

The Missing Data Theory (MDT), or Missing Feature Techni¢M€&T) in the con-
text of speech recognition, has increasingly receivedarebers’ attention over the
past decade. The “missing data” problem has been initiabyrened in computer
vision [53] where objects may be occluded by others suchdhbtincomplete
evidence is available for their identification. A similaiopiem occurs when parts
of the spectro-temporal representation of the target $psignal are ‘occluded’
by environmental noise, by other competing speech sigmaigem by some band-
limiting transfer function. Numerous research studieshavestigated the appli-
cation of MDT to noise-robust ASR and more recently to ch&noleust ASR.

The fundamental idea of MFT for noise-robust ASR is to traatrioise dom-
inated regions of the spectrogram as missing or unrelid§ [Consequently,
the classification relies solely on the regions dominatethbytarget speech. This
approach requires solving a two-fold problem; on the onalhtoe unreliable re-
gions in the spectral representation must be detected anitheoother hand, the
classification algorithm must be modified to handle incortgptiata.

The identification of (un)reliable spectrogram regionsegivan additive mix
of speech and noise is still an open research topic. A widébpsed solution is
to evaluate the instantaneous SNR and declare reliable tteggons where the
local SNR exceeds some predefined threshold. The succebss @fpiproach is
highly dependent on the accuracy of the SNR estimation. ISR Bystem where
the speech features such as Mel frequency cepstral coefficgee transmitted
through the channel, the potential corruption due to theeiiget channel occurs
in the time-cepstral domain. Identifying the missing regids straightforward for
packet-oriented transmission where the lost packets geneontiguous missing
regions in the time-cepstral domain. When bit errors ocastelad of packet loss,
the unreliable regions can be identified as the feature w&sttbvectors failing
the FEC check. Another possibility is to derive the feat@l@bility from the bit
reliability if the latter is available as a by-product of sofitput channel decoding.

Regarding the second issue of MFT, i.e. employing the riiialof the data
at the decoding, two solutions have been proposed [54,d8h imputatiorand
marginalization The former is in fact a feature reconstruction technigoeesit
estimates the unreliable regions using a feature posteeiosity conditioned on
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those of reliable regions and on the recognition hypoth&sie latter modifies the
computation of the observation probability by consideramly the reliable parts
and integrating over, or marginalizing, the unreliabletpar

Potamianos and Weerackody applied MFT to EC for DSR overl@gschan-
nels in [25]. They coded each component of the feature vesetparately into a
binary codeword and used the Max-Log-MAP algorithm [24] biain the poste-
rior probability for each bit of the decoded codeword. Thewas declared unre-
liable if its posterior probability was below a predefinedehold. Subsequently,
the feature reliability was obtained by the use of the foltayheuristic: if the
first and second bit of the codeword (in the sense of mostfgignt bits) were
unreliable, the complete feature component was deemediabiee Considering
the feature vector as composed of reliakle and unreliable components,;,
i.e. x¢ = (X¢4, Xuy), the computation of the HMM state dependent observation
probabilityp(x;|s;) was replaced by:

p(etlst) = / p(xe|s¢)dx = / P (et Xus|5) . (2.4)

wheres, is the HMM state angh(x, ¢, x,¢|s:) is the observation probability
of the full feature vector, stored in the acoustic models.

Endo et al. [55] applied MFT to robust speech recognitiorr dRenetworks.
They detected the packet (feature) loss by means of the segumimber in the
RTP transport protocol header. The lost features were deresil to have no reli-
able components resulting in an observation probabilitynaf, cf. (2.4). The work
claimed that marginalization is more effective than datputation and splicing in
the case of high packet loss ratio and long bursts.

James et al. [56] compared MAP estimation, cubic interjamiend marginal-
ization in a packet-loss DSR environment. The results sstggehat marginaliza-
tion is more beneficial than the other two techniques, eafigdbr long bursts.
Thus, they concluded that ASR decoder-based techniquesrdortm feature re-
construction ones. They also investigated the problemfefiiimg the reliability of
the temporal derivatives of the feature vector which aremated at the server side
from the received static components. The best results vedie\aed by computing
the derivatives from interpolated static components amtbpmaing marginaliza-
tion of the feature only if its static components were lost.
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2.42 Weighted Viterbi

Quantifying reliability with only two levels, reliable anghreliable, as it is done
by MFT is disadvantageous for two reasons. Firstly, theufestthat are super-
ficially damaged, though not enough to be declared corruptuaed as if they
were error-free (“true”) transmitted features. Seconidgtures declared uninfor-
mative, e.g. because some of their bits were consideredemus, may contain
useful information in the other bits which is lost in this way

From a probabilistic perspective, the estimate of a featucempletely unre-
liable, or uninformative, if it is statistically indepenuteof the “true” sent feature.
This leads to the equality of the feature prior density wihté posterior density of
the sent features. The estimate is fully reliable if the ¢oowed density (poste-
rior) is a Dirac delta function. In practice, however, imediate situations occur
in that the posterior density has an arbitrary form dendtfiag the estimate is nei-
ther fully reliable nor completely uninformative. For expl® in [57, 58] it has
been found experimentally that in case of the NFR approaekstimated feature
exhibits a high confidence level of being correct for the fnst last frames of a
burst, i.e. for those frames close to one burst end, butiiétiadecreases towards
the middle of the burst. Clearly, a continuous measure ity would be more
appropriate than a binary reliability indicator.

Even in packet-loss networks where the features are efédgtiost, their es-
timatex, may become a useful source of information when considehiagrter-
frame correlation. This information is neglected by maadjzation. In [59] it
has been confirmed that repetition is slightly better tharmginalization for short
bursts, since in this case the NFR estimate is likely to halste.

In the weighted Viterbi approach the reliability of a feaus mapped onto a
continuous parametey, taking values in the intervd0; 1]. This allows a better
modeling of intermediate situations in that the estimateigher fully reliable nor
completely uninformative.

This reliability is utilized in the speech recognizer to glethe contribution of
speech features to the acoustic likelihoods. This can be Bgmrmodification of
the ASR decoder by raising the HMM state dependent observatiobability to
the power ofy;:

p(xielse) = [p(x[se)]. (2.5)

The indext denotes that the exponential weighting factor varies witiet
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In the view of Eq. 2.5 the unreliable observations, for whigh~ 0, yield an
observation probability close to one, independent of thest. In this way their
contribution to the word hypothesis is neutralized. Asatgility increasesy; tends
to 1 and the observation probability gains discriminatory ealu

A weighted Viterbi algorithm was proposed in [60] to incredle robustness
of ASR against additive and convolutional noise. The bastaiwas to take into
consideration the reliability in noise canceling (spddtdtraction) by weighting
each frame according to its segmental SNR. With acousticafsdthving a single
Gaussian per state and diagonal covariance, the exponeetghting factor has
been computed separately for each state as:

D
. + 2.
o dzz: at Var(a al’ (2.6)

where D is the dimensionality of the feature vecter; , is the variance of
the Gaussian of state andVar[i; 4] denotes the variance of the clean speech
estimate. Obviously, in the clean conditions the clean d@pestimate is nearly
perfect and therefore the estimation variance tends toaretdhe weighting factor
equals one.

Potamianos and Weerackody [25] proposed to modify eaéhcomponent of
the Gaussian mixture independently:

P(xe|st) = ZcmH (45 fhm,ds O, )]0, (2.7)

m=1

¢m being the weight ang,,, 4, o2, , the Gaussian mean and variance of the
mt" mixture component of the statg. In order to obtain the factoy, 4 they
defined first a confidenc€, 4 of each feature component as a function of the
estimation variance?w and the a priori feature varianeg@

priori,d*

%2
Cta=1—- 5—— (2.8)

Uapriori,d

The weighting factory; 4 has been computed by smoothing the confidence
according to:
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a+Ciq

arl (2.9

Yt,d =

where the smoothing constamthas been tuned to obtain best performance on
the test set.

Eq. 2.8 states that if the estimation variantjﬁgyd equals the a priori vari-
ancea?,,;,.i.q» the confidence becomes zero, denoting uninformative fieata

contrast, if the variance of the estimator is close to zeeo, mearly perfect esti-
mate, the confidence approaches one. In order to computstiheton variance
Potamianos and Weerackody employed the bit error proliabitielivered by the
channel decoder, similarly to Eq. 2.3 but computing the et second order

moment of the estimator.

Bernard and Alwan [61] proposed to use the bit probabilitiethe channel
decoder to compute the weighting factor in a different walyey postulated that
a good measure of reliability is the relative differeritef the firstd; and second
d, smallest Euclidian distances between any quantizatioelmmak centroid and
the received vector:

o de—dy

B @

(2.10)

This relative Euclidian distance difference has been syuesatly mapped to
the factory; by mean of a sigmoid function:

1

V¢ = Lo 218009 (2.11)

Delaney proposed a stochastic weighted Viterbi recogmitig62] extending
the idea given in [63]. Although classified as a weighted Nit@pproach, it is
rather an uncertainty decoding approach [64, 65]. Instéagmhting the output
probability Delaney modified the variance of the originabastic models by the
estimation variance, in this case the variance of intetfwoiarror. This was com-
puted prior to recognition as a function of the burst lengttl the relative position
of the missing feature in the burst. Additionally, an experntally tuned scaling
factor has been applied to the estimation variance.
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Bernard and Alwan [22] employed the weighted Viterbi altfur for packet-
loss concealment in DSR. They proposed to compute the exftiaheeighting
factor based on the time auto-correlation of features. Téighting factor of the
d" component of the feature vector has been computed as:

Ve =V palt —te), (2.12)

pa(t) denoting the normalized auto-correlation function and ¢. the dif-
ference between the current time instance and that of thedasectly received
feature.

A comprehensive study of the performance of weighted Vitéezoding in a
packet-network environment has been carried out in [57, B8F work investi-
gated three methods of obtaining the weighting fagtaduring the loss burst.

In a first approach; was constant along the burst. The results on the Aurora
3 task (multi language small vocabulary speech databasePi8R environment
with packet loss have shown that the optimal value,oflepends strongly on the
burst length. This dependency has been accounted for inetend approach
where the weighting factor varied along the burst. The Vararule was chosen
heuristically such that; is close to one at the beginning and end of the burst and
decreases toward the middle of the burst. Linearly and expiadly decreasing
laws have been experimented with, with the latter givinglikst performance.
Considering for notational simplicity that the last reeziframe before the burst
has the index = 1 and the first after the burst has the index T, i.e. a burst of
lengthT’, the exponential variation law is given by:

a7t fort=1,...%
Tt =

Tt ift=L41,...T. (2.13)

The parameter has been given various values betwéemd1 to find the best
setting. The best results were obtained with- 0.8 consistently for all languages.

In the third approach they employed a feature vector commiodependent
variation law for the weighting coefficient rather than saome for all components.
When weighting was performed separately for each compotientesults were
slightly better, however, with the drawback of increasedhpatational load.

Cardenal et al. [66] attempted to avoid empirical choicehefariation rule
and investigated a “probabilistic data-driven” approathe weighting factor has
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been estimated in advance as the cumulative distributioction of the Euclidian
distancel(xy,x;) during the first half of the burst:

T
2
The parameted has been obtained by assuming a 95% confidence interval of
the first repetition, i.ens = 0.95, and then solving the equatidi(d(x1,x2) <
d) = 2. Interestingly, they observed that the weighting factos thee same vari-
ation in the first 4 frames of a burst for all languages of Aar8y but exhibits a
language-dependent variation in the subsequent frames.

v = P(d(x1,%x¢) < 0),t=1,... (2.14)

2.5 Discussion

Each error concealment technique presented in this chhpteits own advan-
tages and disadvantages. Choosing the most appropriatedaaly depends on
particular requirements of the DSR system. Beside the wont eate, a perfor-
mance comparison has to also consider other factors, d-gatbj computational
complexity, and compatibility with the ETSI-DSR standar@ich performance
comparison of some error-robustness techniques are gijei].

Comparisons of decoder- based EC techniques in terms of VéEBrmance
were presented in our publication [59] and in the chapterdE€oncealment” of
the more recent [52]. Several experimental results usingwaEC techniques can
be found in the extensive work of Peinado [20]. Note, howetet the absolute
word error rates may depend from site to site due to inher@mtons in training
of the acoustic models, different recognition enginessitds specific details of
numerical implementation, and differing alignment of theoepattern with the bit
stream of speech features. This obviously makes an acauatearison between
results obtained by different research groups difficult.

According to [21], in a DSR scenario over GSM under adversanokl condi-
tions, a Multiple Description Coding (MDC) scheme using teescriptions, was
ranked first in terms of WER performance. The feature extraaf ETSI-DSR
was used and the descriptions were the bit streams of oddewnumbered
frames, respectively. In spite of its best performancetebbnique is not compat-
ible with the ETSI standard for DSR as it needs a bit rate of0532fs (2600 bps
per stream), two uncorrelated channels, and another phipa. The MMSE es-
timation using bit reliability and assuming the first-ordiéairkov source [67] (also
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denoted MMSEL1 in the present work) achieved the second lee&irmance fol-
lowed by MAP estimation. These are compatible with the ET&dard for DSR
however the drawback is a high computational load at theeseside of the DSR
system. Frame reconstruction methods based on repetéiva d lower compu-
tational load, such as subvector repetition, frame-legpektition and frame-pair
repetition of the ETSI-DSR standard. Unfortunately, duthesimplified source
model the performance is degraded, especially under chaanditions exhibit-
ing longer error bursts. Performance can be further enlthifideng bursts are
avoided by interleaving, but the compatibility with thersdard is lost as the inter-
leaved data stream is transmitted. Decoder-based tedméyech as marginaliza-
tion and weighted Viterbi have been outperformed in thisxace by the MMSE
feature reconstruction technique.

In a DSR scenario over a packet channel, the marginalizatimhweighted
Viterbi deliver better performance than the feature retroigon techniques, in-

cluding MMSE. Chapter 7 discusses the possible reasonkifoahd gives exper-
imental results.



Chapter 3
Objectives and organization of thisthesis

In remote speech recognition the errors occurring durenggimission of the speech
parameters from the speech capturing unit, e.g. cell phimnthe recognition
server cause loss of recognition accuracy. The goal of ewncealment tech-
nigues is to minimize the degradation and thus, increasettaenel error-robust-
ness of the remote speech recognition system. An overviesgaant channel
error-robustness techniques has been given in Chapter 2.

The decoder-based techniques reviewed in Section 2.4 greyarly interest-
ing for remote speech recognition purposes. They eitheeleat the erroneous
features from classification, as MFT does, or, modify thecdmination capabil-
ities, as in weighted Viterbi. While these approaches areerapless heuristic, the
first objective of this work is to provide a probabilistic wéunded framework
for classification with unreliable features. This can bei@gdd by reformulation
of the conventional Bayesian framework for ASR. A similaforenulation has
been done in Bayesian Predictive Classification [68] whieogyever, the uncer-
tainty is not in the observations but in the parameters ofattmustic model. To
this end, Chapter 4 reformulates the conventional Baydsimework of speech
recognition such that the reliability in the speech featwaepears explicitly in the
likelihood maximization expression (4.2). The relialyilin the feature is mod-
eled by the feature posterior density which denotes theglitity density of the
unobserved clean feature conditioned on all observediabtelfeatures. The re-
formulation leads to a novel decision rule which requiresfimature posterior at
each time instance. Hence, instead of evaluating the dcqusbability in a sim-
ple point estimate of the clean feature as in conventiondR AtBe uncertainty
decoding rule leads to an integration of the acoustic priibabver the feature
space. Here, special assumptions about the form of theréeptisterior have to
be made in order to obtain a numerically feasible solution.

37
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A key element of the novel decision rule is the feature pastetn order to
properly estimate it in a remote speech recognition scenad. make it most
informative, there are two sources of knowledge which caexjgoited. One is
the reliability of the received data in terms of individudt ®&rror probabilities of
the compressed feature, and the other is the redundanay fedture sequence.

Chapter 5 aims at estimating data reliability, i.e. bitabllity information, in
each of the two representative network types: a circuitedveid network where
the errors consist of corrupted bits and a packet-switcletaark where the er-
rors occur when the network drops contiguous sequences$sof.bi data packets.
In [50], which built upon the concept of softhit speech dengdntroduced by
Fingscheidt and Vary [39], the bit reliability informatiaf the channel decoder
was used to compute the posterior probability of the tratisthbit pattern. This
was then employed in the computation of feature posteriorpractice, the as-
sumption that bit reliability information computed by th@emunication network
channel decoder is available for reconstruction of coedfeatures at the DSR
back-end, is arguable. The channel decoder might not cangut least not out-
put this information, or, the transmission of the bit reiidpinformation from the
channel decoder to the DSR back-end requires bandwidthihvame might not be
willing to dedicate. Thus, another objective of this workdsexplore methods to
estimate the data reliability at the DSR back-end withogtinéng the soft-output
information of the channel decoder.

Furthermore, the intention is to obtain an unified error eahment approach
by separating the network-dependent data reliabilityrestion from the network-
independent uncertainty decoding framework. This is aroirtgmt feature since
in the new generation of network protocols IPv6 or the exgstUDP-Lite, bit
errors and packet loss may coexist. It would therefore befigal if the error
concealment method could deal with both types of error.

Chapter 6 describes how to estimate the feature postesanasg models of
various complexity for the redundancy in the feature vestmuence. The goal
is to find a model which ensures a good trade-off between ctatipnal com-
plexity and ability to realistically reproduce the redundg The simplest model
assumes a memoryless source, i.e. does not utilize the tahgmorelation be-
tween features. This assumption has been widely used im wibrixs on uncer-
tainty decoding regarding noise robustness, see SectnHowever, it yields
poor performance when the errors affect the whole featucéovet once, as in
case of packet loss. Employing the temporal correlatiorxgeeted to perform
better. Furthermore, models including first and secondrdedeporal derivatives
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of the static feature components are studied.

The performance of a DSR system employing the proposed taitgr de-
coding is evaluated in Chapter 7. The transmission fronmtlie server is simu-
lated for both bit-error and packet-loss network scenaridge recognition tasks
comprise a small- and medium-vocabulary task, Aurora 2 asd Wespectively.
The word error rates versus transmission quality are etedussing the proposed
method. For comparison purposes, the word error rates\azhigy some repre-
sentative techniques reviewed in Chapter 2 are given.

Chapter 8 extends the application of the novel decodingtoubn NSR sys-
tem where the coded speech is transmitted using voicelBvE&ince most speech
codecs used in voice-over-1P are provided with Packet Lagsc€alment (PLC)
algorithms which deliver the clean speech estimate in chpaaket loss, the fea-
ture vectors can be computed straightforwardly. Howevés,expected that con-
sidering the feature vector estimation variance causednpgifect clean speech
estimation, i.e. by PLC, the recognition performance caimipgoved.

Chapter 9 is dedicated to computational complexity issEewploying the un-
certainty decoding rule incurs a slowdown of the recognifioocess for at least
three reasons; the computation of the feature posteriemibre complex expres-
sion of the observation probability, and the expansion efatoustic search space
due to reduced discrimination between word hypotheseagpoor network con-
ditions. It is desired to reduce the computational compyexventually by further
simplifying approximations, but without significantly degling performance.

The relation between the other decoder-based error caneaaktechniques,
e.g. marginalization and weighted Viterbi, and the novelartainty decoding rule
is studied in Chapter 10.

A summary, and conclusions drawn in the Chapter 11, conchidevork.
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Chapter 4
Uncertainty decoding for ASR

Statistical pattern classification requires knowledgdads conditioned probabil-
ities and a priori class probabilities. They are used in Bafworem to obtain the
posterior probability of each class. The MAP decision ruke,choosing the class
with highest posterior probability, guarantees the minimzlassification error. In

Bayesian speech recognition, which is nothing else thantterpaclassification

problem encompassing the dimension of time, the classes@s modeled by
temporal sequences of states. The class conditioned plitibatare known as

“acoustic models” whereas the a priori probabilities of d@are known as “lan-
guage models”.

The first section of this chapter reviews the classical Bayeamework of
speech recognition. Section 4.2 reviews the state-oathapproaches proposed
by other authors to compensate for unreliability. The lastisn presents the novel
approach of this thesis and how it is obtained by reformungathe classification
task to consider unreliability in observations.

4.1 Bayesian framework of speech recognition

In ASR the aim of pattern classification is to map the sequenéeature vectors

xT = (x1,...,xr) to asequence of words of a given vocabulary. This task comes
down to finding the sequence of wortlé which maximizes the joint probability
p(W,xT) or, equivalently by using Bayes’ theorem:
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W = argmax p(W,x]) (4.2
W

= argmax p(x] |[W) - P(W). (4.2)
\\%

Eqg. (4.2) is more convenient since it allows for separatida P(W) which
is the a priori probability of the word sequen®é andp(x? |W), the probability
that the sequence of feature vectaisis emitted by uttering that word sequence.
While the former term is a property of tHenguage modelthe computation of
the latter is the main concern of tleoustic model As the language model is
independent of the observations, it is not affected by oladem uncertainties.

A widely used acoustic modeling method is to represent thedsvas se-
quences of states in a Hidden Markov Model (HMM). Thus, a wardtterance
is described by a certain sequence of hidden states, edaehsstamitting one
observationx; at a time. In a isolated word speech recognizer the sequéhce
consist of only one word. For exampl#; in Fig. 4.1 can be modeled by vari-
ous sequences of states (or paths through the mogél):s(V), 52 s(3) () or
s 52 52 s(3) 54 etc., actually all possible paths startingsi¥ and ending
in s(¥). Since the length of the observation sequextds known, only the paths
of lengthT" are allowed. Similarly, in a continuous speech recogrn¥econsists
of more words resulting in sequences of states crossing ¢ine boundaries, e.g.
the paths(M), s(1) | 5(2) s(3) 54 55 56 can model the word sequenidg , Ws.

EEEER

Figure 4.1: Words1;, W5 modeled as sequences of HMM states

Introducing the sequence of hidden statésunderlying the sequence of ob-
servationsc<? the acoustic probability can be expressed as:

P W) = 3 px,sTIW) (4.3)
(1)
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where the summation is carried out over all possible pativetsing the word
sequencdV. This can be further written as:

p(x{ W) = > p(x]|s{, W) P(s] [W) (4.4)
{sT}
= Y p(x{ls) - P(s W)
{s7}

The latter equality is supported by the fact that the coanlitig ons? andwW
in p(xT'|sT, W) is equivalent to conditioning on onlyf’, since thes?" implicitly
models the word sequence.

Eq. 4.5 can be solved recursively if both terms under the senfeatorized:

xi |s1) Hp x|x|” (4.5)

TIw) = H P(s;|st71, W). (4.6)
t=1

Assuming theconditional independencenhich states thak; is statistically
independent of its neighboring feature vectors ifs given, (4.5) turns into:

xi |s1) HP (xt|st). (4.7)

The conditional independence assumption allows the egjoresf the emis-
sion probability of the sequence as a product over indiidtze emission prob-
abilities p(x;|s¢). The emission probability of each state is usually modeked a
a multivariate mixture of Gaussian densities whose pararsetre learned from
the training speech data. Consequently, the estimatednesees are representa-
tive for speech features exhibiting the same statisticapgrties as those of the
training data set.

Eg. 4.6 can also be simplified by exploiting the Markov properf s that
P(s¢]st™1) = P(s¢|s¢_1), thus:

T
=[] P(selsi—r. W). (4.8)
t=1



44 Chapter 4. Uncertainty decoding for ASR

Using (4.7) and (4.8) in (4.5) we arrive at the well known ffesu

Z Hp X¢|st) - P(st]st—1, W). (4.9

T}t 1

An approximate value of (4.9) is then computed by the VitatQorithm as:

T
p(x¥|W) ~ m %}}f H (x¢|st) - P(st|si—1, W). (4.10)
S1 t=1

The approximation assumes that there exists a path havingh higher prob-
ability than all others and which thus dominates in the sum.

4.2 State of research on decoding unreliable data

Perfect knowledge of acoustic and language models, asreghoy the Bayesian
decision rule for minimal word error rate (4.2), poses somaetical difficulties.
On the one hand, the estimation of the acoustic models is pégormed in an en-
vironment different from that of practical system usageerEfiore, the estimated
class conditioned probabilities do not well represent the bnes. On the other
hand, the language model probabilities are usually natéchbn speech corpora
with identical statistical properties as in testing. Thelgem is well-known in
ASR as the mismatch between training and testing conditibhsis been already
demonstrated in [69] that the “plug-in” rule which uses tegreated probabilities
as if they were the true ones is not optimal in the case of ntidm& he probabil-
ities or the parameters of probability density functionBfpare in fact estimates
of the true values and thus have their own estimation ernéanees. They are un-
certain to some degree. To maintain the optimality of theeB&n decision rule,
this uncertainty must be used in a novel formulation of tlessification problem.

In the “Bayesian Predictive Classification” (BPC) [68] thextor of model pa-
rameters is described by a PDF rather than a sole point dstimibe variance of
the PDF is a measure of uncertainty in model parameters. tBgriating the obser-
vation probability over the model space the mismatch betviregning and testing
conditions is reduced. The BPC framework can also be usedriefth from the
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uncertainty in the feature. This requires the posterior BXRe clean feature con-
ditioned on the observed feature and performs integrati@n the feature space
rather than model space.

In the context of noise robust speech recognition, emptpihie uncertainty in
the feature at the decoding stage has been proposed in [[#4,7/85] and yielded
very promising results.

The optimal classification strategy proposed by Kristjamebal. [71] was
based on using the class posterior conditioned on noisychpese

T Ty _ - p(xely:) i
piyTlsh) =] pr p(xe|se)dxs - P(s¢[se-1), (4.11)
t=1 .

wherey? is the sequence of observatiogs,the current observation, and
the current unobserved clean feature.

Comparing with the conventional class posterior condétbon the clean fea-
ture sequence:

T
p(xT|s7) = [ [ pGeelse) Plsilsi—1), (4.12)

t=1

it can be readily observed that the sole modification is chrayitpe observation
probabilityp(x¢|s:) into p(y:|s:) given by:

D(yilst) = /%p(xﬂs]‘/)dm (4.13)
If the p(x¢) is assumed to be constant within the interval whefe;|y:)
p(x¢]s¢) is not zero, the denominatgix,) can be neglected, as done in [64],
since it results in a multiplicative constant which doesaftgct the MAP decision.
A closed form solution of (4.13) was then obtained assumiagsSian feature
posteriorp(x:|y:) = N (x¢; tix, |y, » Zx,|y,) @nd @ Gaussian mixture with weights

P(m|s;) for p(x|s:):

p(xt|3t) = Zp(m|5t)N(xt;M7rz,7Em)- (4.14)

m
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Under these assumptions Eq. (4.13) becomes:

plyelst) = Zp(m|5t)/N(Xt;/ixtlymExtlyt)/\/(xt;ﬂm,zm)dxt

Z P(mlst)'/\[(uxt\yt s Homs X+ Ext‘yt) (415)

The last expression shows that in order to account for uaicgytin estimat-
ing the value of the clean featuyg, )y, the original acoustic models have to be
adapted by increasing the variances of the Gaussian migensity components

by the estimation variancBy, |y, -

4.3 Bayesian framework in thepresenceof corrupted
features

In a DSR scenario and many other practical cases, such assiyemvironments,
there is a mismatch between training and testing conditidhat is, the probabil-
ities of the acoustic model estimated on a training set areapoesentative of the
speech features of the testing situation as the latter mafféeted by other factors
not presentin training, e.g. channel errors or acoustissdn the following let us
denote byx! the sequence of clean features which are representatitie arfdin-
ing conditions but are not directly observable. Insteadhis, ta corrupted version
y¥ can be observed. The corruption may either be caused byoamvéntal noise,
or by errors during transmission over a communication ngtwoa remote ASR
setup.

The relation between the observedl and the hidderx? cannot usually be
analytically described since it may depend on some unknagtofs. Hence,
it is more convenient to model it statistically as chantmahsition probability
p(yT|xT). In DSR,x; is the channel input value ang the output. The channel
transition probability is the PDF of the channel output fgineen input. Obviously,
in the case of error-free transmission, input and outpueqrel. The estimation
of the transition probability in a remote ASR scenario isadiged in Chapter 5.
In the following it is assumed thafy, |x;) is known.

In a remote recognition scenario the classification is edraut at the server
side where the uncorrupted speech featwrgsre not available. Thus, the con-
ventional pattern recognition problem of Section 4.1 hasgeeformulated. The
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task is now to find the word sequen®é most likely to yieldy? at the other end
of the channel:

W = argmaxp(yl |W)-P(W). (4.16)
w

The most straightforward approach to solve (4.16) is toanetthe acoustic
models in the particular mismatch condition and apply theveational decoding
rule of Section 4.1. The practical drawback of retraining, learningy(y? |W),
is that it requires computing power and a large amount ofyn@isrrupted) data.
Instead of retraining the models, we can simply consideras an estimate of!
and use itin (4.2). But, this results in the well-known poerfprmance of speech
recognition in mismatched conditions.

To maintain the optimality of the Bayesian framework but g8ing the acous-
tic models trained in error-free conditions, we introduke sequence of clean
speech features! in (4.16) as a hidden variable:

Py IW) = [{ , PTIDped TW)in] (4.17)

where the notatio{x{ } indicates that the integration has to be carried out
over all possible feature sequences of lerigtBy again introducing the sequence
of hidden HMM states? to model the acoustic probabilip(x?|W) we obtain:

pyTIW) = /{  POTIE) 32 o) Plodsr-)ix (418)
. {1

= Z/T}P(}’1T|X1T)P(XIT|81T)dx1TP(st|st1). (4.19)
(nt

Applying Viterbi approximation similarly to Eq. 4.10, théservation proba-
bility of a corrupted sequence becomes:

plyTIW) = s /{ PTG DT Pl (420
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In comparison to Eq. 4.10, the observation probability obaupted sequence
considers the acoustic model probabilitx? |s?') and the channel transition prob-
ability p(y¥ |xT). This is equivalent to a combined source-channel modelthih
emission probability given by:

p(yTIsT) = /{ P it o (4.21)

X1

Itis instructive to investigate (4.21) in the extreme cadean error-free trans-
mission and of completely corrupted observations. In efnex conditions the re-
ceivedy? is equal to the transmitted! . In our statistical framework this relation
turns intop(y?|x¥) = 6(yT — x{), whered(.) denotes the Dirac delta func-
tion. The integration of (4.21) over! reduces to the evaluation of the originally
trained acoustic probability(x?|sT) atx? = y{. This is equivalent to carrying
out the recognition with the received feature sequenceh®other hand, the case
of completely uninformative observations is expressedatyssical independence
between the received and the sent feature sequencesi(¥é|x?) = p(y?).
Replacing this in (4.21) yields the same emission prokbgheigual top(y?) in-
dependent of the state sequence, since the integralgf/s?) over the feature
space equals one. Therefore, in this case the recognizes caily on the prior
word probabilitiesP (W) to find W.

In order to recursively compute the most likely path of th&ekli algorithm,
the observation probability (4.21) must be factorized, naust be put in a form
similar to (4.10). The following subsections present sifgjplg assumptions which
allow us to elegantly factorize (4.21) and evaluate it in gistexg HMM based
recognizer.

4.3.1 Conditional independence assumption

In a first approximation we consider that the transmittedufiesavector sequence
contains no temporal auto-correlation, which is equiviieronditional indepen-
dence ofx; from its neighbors .., x; 1,x:+1,... etc. The Bayesian network
associated to this model is shown in Fig. 4.2.

Bayes’ theorem allows decompositionfy? |x7') as:
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G G
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Figure 4.2: Bayesian network assuming conditional inddpane

- p(y1,...,yT|X1T)
p(yily2, - yr.x1) - p(y2, - yrlxi)
= pyilyz, .-y, x1)  p(yelys, ..., yr.x1 ) ... (4.22)

Considering, for example, the first term of the product (%.2Zan be read-
ily observed that due to the statistical dependencies sgpceby the graphical
model, the conditioning oy, ...,yr,x! is equivalent to conditioning oR;.
This equivalence can be explained on the basis of the Bayasiavork by the fact
that the graph nodg; can only be reached by traversing the nade Thus, the
product (4.22) simplifies to:

plyixi) = plyilx)-plyzlx2)... plyr|xr) (4.23)
T

= [[rix) (4.24)
t=1

Using (4.22) and (4.7) allows factorization of (4.21):

T
p(yilst) = / Hp(yt|xt)p(xt|8t)dxt (4.25)
x1} i
T
= 11 / p(ye[xe)p(xe]se)dx (4.26)
t=1"%t

Assuming conditional independence, the reformulatiomefBayesian frame-
work in the presence of corrupted features comes close tagpmach presented
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in [72] in the context of environmental noise compensatiéaivery similar result
already discussed in Section 4.2 [71, 65, 73, 74] is obtabyedpplying Bayes’
rule for conditional probabilities to (4.26):

yilsT) ocH/ th’f p(Xt|st)dxe. (4.27)

Comparing the last equation with (4.7) yields that the utagety in observa-
tion is taken into account by integration over the featumcsp

In other works [75], [76] the denominatp(x;) has been neglected, which is
definitely an approximation, but has not been identified ah.surhis approxi-
mation can be suggested on the grounds that the pfiqn should have a larger
variance than posterior. Thus the denominator can be ceresicconstant for the
range of values ok;, where the posterior density assumes values significantly
larger than zero. However, this argument holds no longérarptesence of strong
distortions, e.g. low SNR or long error bursts when the paste(x;|y;) tends to
equal the denominator. The use of the approximate decisienwhich neglects
the prior density, results in poor performance [77].

The major drawback of the model presented in Fig. 4.2 is thdades not ex-
ploit the temporal correlation between consecutive festuthus, the redundancy
in the transmitted feature sequence is not used at all. Thditaning in the
feature posteriop(x;|y) is only on the receiveg,. To illustrate this disadvan-
tage, let us consider that the featyreis completely unreliable, whereas all other
features of the received sequence are reliable. As distyssgiously, complete
unreliability denotes statistical independencepdy;:|x;) = p(y:). Using this in
(4.26) the observation at timt@s marginalized, i.e. it does not contribute to classi-
fication. On the other hand, it is known that the featireould be estimated from
neighboring features which, due to the strong correlatiooyld have resulted in
performance better than marginalization, see also exgatmhresults of Chapter
7.

Obviously, adopting a model able to handle the temporaletation in the
sequence! would be advantageous. To this end, the stringent conditionle-
pendence assumption is relaxed in the following section.
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4.3.2 Relaxed conditional independence assumption

Whereas in the previous section the correlation betweeffetitere vectors was
neglected, in this section the dependency between featieggproximated by a
first-order Markov model:

p(Xt|Xt—1,Xt—2,...) = p(Xt|Xt—1) (4.28)
Figure 4.3 depicts the associated Bayesian network.
GG
]} )
— o

Figure 4.3: Bayesian network modeling temporal correfatietween features

The factorization op(x?|s?') becomes in this case:

p(xT[sT) = p(xrlxr_1,sT)p(xr_1|xr_2,57). .. (4.29)
T
= p(xals) [ p(xelxio1,s7) (4.30)

o~
I|

2

e

~ p(xils1) | | p(xelxi—1,5¢) (4.31)

o~
I|

2

The last approximation was made to keep the observatiorapility compu-
tationally tractable and is justified by the fact that theelagency betweex; and
(x¢—1, s¢) is stronger than betweeq and the other statés?, ;) and therefore the
latter can be neglected.

The probabilitie(x:|x:—1, s¢) describe an acoustic model which takes into
account the temporal correlation. However, in a convealioacognizer only
p(x¢|s¢) are usually estimated during training. A convenient apjmnaxion for



52 Chapter 4. Uncertainty decoding for ASR

p(x¢|x¢—1, s¢) can be obtained assuming that ; ands; are statistically inde-
pendent:

p(xi—1,5t) = p(x¢—1)p(st) (4.32)

Note that this assumption is less stringent than the camditiindependence
assumption of the previous section as it still captures satee-frame correlation.
Eq. 4.32 allows the double conditioning to be split into:

p(xelxir,sy) = ECXupls) (4.33)

p(Xt)

The observation probability of becomes:

I e D | B

1o p(x¢)
T

p(Xl)Hp(Xt|Xt—1) T
/{ N T pxlse)ast
1 pex) [[px)

i
- /T}p<yf|x?>-p<xf>-r[p )y

B /{xf} i) lf[

The last expression can be rearranged as:

dx1 (4.34)

T
Xf|5t
p(yi |51 H/

[/ L / xl,y1 )clx1 1clxtTJrl dx;
x } xt+1}

XS
H / t't p(x y T ). (4.35)
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To obtain (4.35) we exploited that the integraljgfx?, y?) over the space
of feature vector sequences, excludings nothing else but the marginal density
p(xe,y1).

A more intuitive expression is obtained by applying Bayeserto p(x;, y1)
and leaving out the resulting terpiy? ), as it is irrelevant for the classification
task, i.e. has the same contribution to all word hypothesiglaus does not change
the maximum. Therefore we obtain:

p(x
p(yilst) o H/ t|y1 p(xe|se)dx;. (4.36)

The observation probability of expression (4.36) diffexani (4.27) in that it
is able to exploit the correlation in the sequendesince the posterign(x;|y?)
is computed by conditioning not only on the instantaneoablservedy; but also
on past and future observations. Comming back to the exawifiieone uninfor-
mative observatioly; in a sequence of reliable ones, the observation probability
(4.36) no longer results in marginalization. The discriation is now possible
as long as the feature posterjgix,;|y?) does not equal the prign(x;) since the
former is more informative than the latter. That is, some pathe lost informa-
tion can be recovered from the reliable neighboring featuFer this reason, the
approach of this section has the potential of being sup@ritrat of the previous
one.

The computation of (4.36) or (4.27) requires knowledge iditah to the con-
ventional acoustic modelx;|s.). The feature priop(x;) can be easily estimated
on the same training data as the acoustic model. The congutdtthe posterior,
on the contrary, may turn out to be very complicated. A slgtabodel of the
perturbation, be it acoustic noise or distortions due tocttramunication channel
is additionally required, as well as the model of interattigth the clean speech
feature. Chapter 6 shows how the feature posterior can laénelotfor the case of
remote speech recognition where the perturbation is tlog prone transmission.

In conclusion, the reformulation of the Bayesian framewgetds a modified
expression of the observation probability which if facted appropriately, can
be further used in a Viterbi decoder. The original obseovaprobability of the
acoustic models(x;|s;) changes either into:
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X
/ Mp(xtlst)dxt (4.37)
Xt p(xt)
if the inter-frame correlation is neglected, which is dembby “Uncertainty
Decoding considering the'” order a priori knowledge”YDO0) throughout this
work, or into:

x T
/ %p(xqst)dxt (4.38)

if inter-frame correlation is considered, denoted by “Utaiety Decoding
considering the ** order a priori knowledge”yD1).

The following section presents a possible way to integragedbservation
probability computation of (4.37) or (4.38) into an exigtiliMM based speech
recognizer.

4.3.3 Integration into therecognizer: Gaussian assumption

Itis well-known that the observation probability compidatis the most time con-
suming processing step in a speech recognizer. Certdielyumerical evaluation
of the integral in the modified observation probability (4).®r (4.38) would be
prohibitive since it would increase the computational leurtheyond the limits of
practical interest. This section presents an approachtmgdhe integral analyt-
ically under the following simplifying assumptions:

1. The state conditioned observation probability of theaungpted feature is a
Gaussian mixture:

M
p(xtlst) = Z CS,,,WLN(Xt; ustﬂna Est,m) (439)
m=1

wherecs, ., is the weightu,, ,,, the mean vector antl, ,,, the covariance
matrix of them!™ mixture component of the observation probability of state
s¢. This is a standard assumption in speech recognition.

2. The a priori probability density of the uncorrupted featis a Gaussian:

p(xs) = N(x¢; py, ). (4.40)
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Experimental data show that this assumption is quite validh certain
reservations concerning the log energy component, its R two modes.
The Gaussian parametgig andX are learned from training data.

3. The feature posterior, given the observations, is Ganssi

p(xely) = p(xely) = N (Xt5 B, 1y Zixe |y )- (4.41)

Here the notatiox; |y stands for eithex,|y; orx;|y?, depending on which
observation probability is going to be used, (4.37) or ($.3Bq. 4.41 is

the most debatable assumption, as we often observed a Ml shape
of the posterior. Some researchers therefore suggestaedgt¢ha Gaussian
mixture model instead [76]. As this, however, has a majoraatpn the

computational effort, we prefer to stick to a single Gaussiedel here.

Under these assumptions the integral of (4.37) or (4.38jstwut to be the
evaluation of the modified observation probability of anieglent feature:

M N(Xt' 12 3 )
» Hoxy |y s “xily
Csim N(Xt5 B, ms Zsm) dx
2 /{x,,} e N (%t; py, Bx) '

m=1

M
= N (i by s ey + Be)  (4.42)

m=1
M
x Z CsmmN(p'e; p’st,mﬂ ESmm + 26) (443)
m=1

The equivalent featurg,, the varianceZ, and the new mixture weight$
are given by following equations:

t,m

e = By (Bx — Ty y) Sk (4.44)
e = B gy — Bk (4.45)
N(0; g, 1y i
Copm = Csim Oty Bly) (4.46)

’ N(Oyuxa EX)N(O;N’m 26)

Since the new mixture weights differ from the original ongsbmultiplicative
constant, the modified observation probability is propordl to expression (4.43).
It is therefore not necessary to compute the new mixture ligig
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Whereas the Eq. 4.44-4.46 are for the general case when t&siaas have
full covariance matrices, more intuitive expressions daimed assuming diag-
onal covariance matrices. In this case, along one featw®wndimension the
observation probability becomes:

M : .
) N(xt,/lacﬂyvo—ztly)

E Csyym N(xt; Hsg,mo Ustvm) . N( ; 2) o

m=1 Tt e O-(T/

M
Z CISt,mN(:U’e; Hsyms Uit,m + 0'5) (447)
1

m

CormN (15 sy m> Oy + 02) (4.48)

<L
i[7]=

n

where the equivalent mean, variance and weight are givehéfotlowing equa-
tions:

1 1 1
LI R (4.49)

e zely x

e Hay|y Ha
he _ by s (4.50)

O¢ 0$t|y Ti
y . N(O; pray: 07, 1y) (4.51)

S¢,m ‘s“mN(O;ﬂzao—%)N(O;ﬂeao—g). .

Comparing (4.15) and (4.43) it can be noted that both ineréas variances
of the original mixtures and evaluate the resulting PDF otgquivalent feature.
However, the way in which the equivalent feature is compuated the amount
added to variances is different. In the former, the equivaleaturep, is the
mean value of the Gaussian posterior. In the latter, it dépatso on the prior
parameters:, and .. Similarly, the equivalent variancE. encompasses the
effect of the prior variance.

The evaluation of (4.49) and (4.50) has to be performed omyufireliable
features. The ca&eﬁtly = 0 is excluded since this correspond to a fully reliable
feature for which the posterigr(x¢|y) is equal tod(x¢ — y¢). Therefore the
evaluation of expressions (4.37) and (4.38) simplifies tlweation ofp(x¢|s;) at
Xt = Yt-

However, some numerical problems may appear in the case amnaletely

unreliable feature wheaﬁt‘y ~ ¢2. This results in a large, potentially infinite
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variances2. To avoid such a situation (4.49) is evaluated only if theoraetween
the variance of the posterior density and that of the priorsitg is smaller than
one minus a small threshold. If this is not the case, i.e. Hréaxces are very
close to each other, we also force the means to be egual (= x.) and thus
the denominator in (4.43) or (4.48) becomes equal to thespost This results
in marginalization since the observation probability of timcorrupted feature is
integrated over the feature space yielding unity. The agpration that we have
made here can be seen to be based on information theory: tioggof the ran-
dom variablex, is greater than that af;|y and the equality occurs when the ob-
servations are uninformative and thus the two PDF’s arelehaging implicitly
the same mean. Note that, practically, the prior and theepostare estimated
under simplifying assumptions such as being Gaussianstdthés reason it may
occasionally occur that the posterior variance is gredian the prior variance.
However, as long as we know that this is only an artifact, weaenfpound the vari-
ancec? | to the a priori variance so that the validity of (4.49)-(4.&ensured.

Ty
Similar consideration has to be made for (4.44)-(4.45).

The computation of (4.48) is certainly more time consumhmantthe evalua-
tion of the original observation probability (4.39). Secti9.3 of this work shows
how (4.39) is usually evaluated in a HMM-based recognizéhn diagonal covari-
ance mixture densities and what slowdown occurs due to Y4.88ction 9.4 of
this work evaluates the impact of uncertainty on the acousarch space and
implicitly on the recognition speed.
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Chapter 5
Data reliability estimation

Applying the uncertainty decoding of the previous chaptex remote recognition
setup requires knowledge of the statistical dependenaydsst the received and
sent feature. This can be modeled by the channel transitmvapility p(y:|x:).
Since we assume a digital channel connecting the clientemeés the speech fea-
tures are compressed prior to transmission, i.e. quaniized bit pattern. The
instantaneous bit error probability (reliability) of eadecoded bit can be used
to determine the channel transition probability of the kittern. This chapter
presents approaches to obtain data reliability at the V@ vhich is subsequently
used to infer the feature reliability in a remote speechgad®n setup. The two
possible types of network that we are studying are a cimwitehed transmission
in which each bit may be independently corrupted, and a piemkiiched trans-
mission where the smallest unit which may be corrupted ista jplacket. In both
cases, the causes of the channel distortion, the channadisnechployed for the
performance evaluation of EC, and the estimation of theaiitaneous bit error
probability are described.

5.1 Datareliability estimation in mobile networks

A typical example of a circuit-switched channel is the datarmel of a GSM
network, e.g. GSM-TCH/F4.8 [16]. For data transmissionr @&8M the user data
is channel coded and modulated resulting in a signal whidhega transmitted
over the air interface in the form of a GSM burst. At the retgjvend the signal
consists typically of a sum of channel noise and delayedna#ted replicas of
the original signal, as a consequence of various reflectiDesnodulation of the
received signal followed by channel decoding results inqueace of received

59
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bits.

5.1.1 Transmission errorsin mobile networks

This section briefly summarizes the causes of transmissi@nsein mobile net-
works. They serve as a basis for the channel models employtkd experimental
section of this work to simulate data transmission in an RgResn.

In a wireless communication medium it is very common for ads be ad-
ditively combined with the transmitted signal. The sigt@hoise ratio (SNR),
defined as the power of the signal divided by the power of thisends the typ-
ical measure of this distortion. As the distance betweerstmler and receiver
increases, the signal strength is attenuated whereas¢kgroand noise level re-
mains approximately constant. The SNR decreases corrésbyn This degra-
dation is referred to apath lossand results typically in randomly distributed bit
errors.

Another degradation factor of the radio channdiiding Due to reflections
from various objects, the transmitted signal may arrivehat teceiver through
multiple paths. Hence, the incoming signals summed in tbeiver antenna have
different amplitudes and phases which can either have droamtige contribution
to the sum, or a destructive one, in the case of opposite phaSmce the re-
ceiver and other reflecting objects may be moving, the recesignal exhibits
rapid fluctuations of the envelope, an effect known as “Rghleor “fast fading”.
The temporary gaps of the envelope strength have very low 8ihRcause bit
errors concentrated in bursts. The bursty errors are méfreudtito eliminate than
randomly distributed errors. This is because commonly esexd protection tech-
niques such as FEC or channel coding, have specific comecsipabilities that
are easily exceeded if the errors are concentrated.

A particularly important type of additive distortions isussed by signals from
other radio channels, known agerference This may be an effect of intermodu-
lation in the receiver front end circuitry, or as result ohAgshg the same communi-
cation medium by multiple users, as in networks with COMAess: A measure
of the interference from adjacent channels is the caraenterference (C/1) ratio.

In GSM networks the most important degrading factors areriatence and
fast fading. The recommendations [78] present some tygioaharios of GSM
channels which have to be taken into account at the netwarknghg phase. Ac-
cording to this, the C/I should usually be about 10 dB whenntiobile terminal
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is located well inside a cell, 7 dB at the cell boundary and than 4 dB outside
the cell. The recommendations also specify some topolbgioéiles, e.g. typical
urban, typical rural etc. with a predefined number of progiaggaths and delay
spreads.

5.1.2 Channd Models

A very flexible and accurate way to model wireless transmis$ to simulate
the network physical layer. Such a simulation includes tlgrfiodulation, chan-
nel (de)coding, (de)interleaving and the channel modebepassing multipath
propagation, fast fading, and co-channel interferenceysieal layer simulation
is computationally expensive and needs software moduléshwimplement the
above mentioned processing steps. In the experimentabptis work we em-
ployed the GSM library of the “Signal Processing WorksystégPW) software
suite [79] to simulate a complete transmission over the GISIH/F4.8 data chan-
nel. The software allows for flexibly setting the channel mlqgzhrameters such as
C/l1, receiver input SNR, GSM profile, terminal speed etc.

A much simpler and widely used simulation method is errotguas injection.
This is more convenient in situations where the simulatiba set of a few par-
ticular conditions is needed. The representative errdepafe;, . . ., er) for each
particular channel condition has to be prepared in advagittesr by physical layer
simulation, or by actual measurements. This can be doneropanng each bit of
the transmitted bit stream with the corresponding bit of the received bit stream
b, by an exclusive OR (XOR) operation; = b; & b,. The lengthl’ must be large
enough so that the pattern is statistically representad@deling the erroneous
transmission by error patterns injection consists in caimguhe “received” data
b, by an XOR operationb; = b, & e;.

In comparison with physical layer simulation, error paigemjection is less
flexible but easier to implement, provided that the errotgras are available.

Pearce [10] used GSM error patterns originally createdMaluation of speech
guality under adverse channel conditions and adapted édETSI-DSR data rate
of 4.8 kb/s. The error patterns labeled EPO, EP1, EP2, ER8gept an error-free
channel, good, medium and poor channel quality, respégtiidey correspond
to C/I ratios ofco, 10, 7 and 4 dB and gross bit error rates (GBER) of 0%, 5%,
8% and 13%. The GSM error patterns became the de facto sthfwda@avaluating
DSR channel robustness, being widely used in works on this.to
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Another alternative for modeling the error charactersstita wireless channel
is theGilbert-Eliot model [80, 81, 82]. It consist of a Markov chain with two state
The one represents the temporafdgodand the other thBadchannel condition,
each one being assigned a constant bit error rate. In eaehtstebit errors occur
independently of each other but with a higher rate in Bael state. The state
transition probabilities of the chain determine the fragweof bursts and their
average length. A similar approach was applied in [46], whke GSM channel
was simulated by superimposition of two additive white Gaus noise (AWGN)
channels with different noise leveldi, - the background andy; - the burst noise
level, with NV, >> N, (see also Section 5.1.3). The resulting noise level was a
weighted sum ofV, andN,. By changing the weighting coefficients according to
a Poisson distributed random variable, the model genesatas periods of high
noise levels, sporadically producing higher bit error sate

The channel modeling methods of the previous paragrapheasedomplex
than physical layer simulation and more flexible than therguatterns. However,
they have the disadvantage that their parameters deperaatbiparticular network
condition. They can be directly related neither to chanaeameters such as C/I,
number of propagation paths, terminal speed, etc. nor tecifgpchannel coding
scheme. The common practice is to tune them experimentattyat the resulting
bit error distribution approaches that of the true channel.

Note, however, that the soft-output information of the aelecoder needed
to estimate the feature posterior in this work can be obthlme physical layer
simulation but it is not available if GSM error patterns angpdoyed.

5.1.3 Instantaneous bit error probability estimation

This section presents two methods for obtaining the inatedus bit error prob-
ability, which is the probability that the bit is decoded hwi&n error. The first
method exploits the soft-output of the channel decodingestae. the log-likeli-
hood ratio of each bit. In the absence of soft-output infdioma we propose an
alternative method based on CRC and data consistency cgedRbth methods
are described in the following paragraphs.

5.1.3.1 Estimation based on the soft-output from a channel decoder

In the receiving device, obtaining the sequence of trariethhits from the real or
complex valued output sample of the matched filter can be agarclassification
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problem. For simplicity let us consider uncoded binary hetsft keying (BPSK)
transmission over an additive white Gaussian noise (AWGN)noel with con-
stant power spectral density,/2. Each real valued output sampjecarries in
this case one bib;. Assuming maximum likelihood (ML) decoding, it is well-
known that the average bit error probability is given by:

1 B,
= - — A
pe = serfey 5 (5.1)

where theZ, is the energy per transmitted bit andf ¢() denotes the Gaussian
error function.

While (5.1) is an average, the instantaneous bit error fitiyeis the proba-
bility of a specific bitb; being erroneously decoded. This depends on the vglue
which corresponds to that bit and can be readily computed as:

1

S — (5.2)
1+ exp(|4q:))

Pey

The combination of the decoded it and its error probability., has been
termedsoftbitin the literature [39].

Haykin [83] found that an expression similar to (5.2) apjpnwetes well to the
instantaneous bit error probability for the Gaussian mimmshift keying (GMSK)
modulation technique used in GSM.

The ratioE;, /Ny which appears in (5.2) is related to the signal-to-noisegrow
ratio (SNR). This has to be known or estimated in order toiohtg, using the
following equation:

Eb Rs
SNR = N B (5.3)

HereR; is the bitrate and the bandwidth.

In the presence of channel coding, the so-called “softutitphannel de-
coders, e.g. the Bahl decoder [84] and the less complexostyfiit Viterbi al-
gorithm [23], can be used to provide the instantaneous kot @robability (5.5).

They are able to deliver the decoded bit stream and the kagiHood ratio of each
bit, the latter being defined as:
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P(by = 1|q)

L, =log —t =19
LT %% B, = 0lq)

(5.4)

The bold notatiory denotes that a sequence of matched filter output samples
may be used instead of one sample, as the channel coder neag<pe informa-
tion of one bit over more samples. With the soft-output (B)instantaneous bit
error probability is given by:

1

= 5.5
1+ exp | L] (5.5)

Dey

5.1.3.2 Estimation based on CRC and data consistency

Inwireless communication, a likely architecture is th& @SM base station (or an
equivalent platform) performs the soft-output channeloding and sends the de-
coded bits over another, e.g. wired reliable network, toDB& server. However,

transmission of bit reliability information would increathe required bandwidth
and render this approach unattractive. Hence, there dtigeseed to estimate
the instantaneous bit error probabiljty, of the decoded bit, at the recognition

server side in the absence of soft-output from the chanreldbs.

The idea is to estimate the average bit error rate over a sequi bits, e.g. the
bits of a DSR frame or of a subvector within the frame, as thie &t the number
of (assumed) bit errord/, to the total number of bitsV within the sequence.
Assuming that the instantaneous bit error rateis constant for all bits of that
sequence, an estimatormf, is:

N.

ﬁet = W (56)

One option is to employ the CRC check of ETSI-AFE to detectditerrors
within a frame of 92 bits, and estimate the average bit eat# on this interval.
A problem is, however, that although the CRC check dete@sethors with a
high level of confidence, it cannot provide information abtheir number\..
Another problem is that the bit sequence on which the esitimad performed is
relatively long (corresponds to 20 ms). During this rekeljMong time interval the
assumption that the instantaneous bit error probabilitpisstant may not hold.

A more accurate estimat¥, of the number of bit errors can be obtained by
the data consistency test of ETSI-DSR, see Section 1.2B2a¢gically, this checks
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the continuity of a parameter within the frame pair. If théetence between two
consecutive values of a parameter exceeds a fixed threghsldecided that the
frame pair is not reliable since some bit errors occurredtaidy, not every bit
error can be caught by this test, but only those that lead ¢eexling the thresh-
olds. Thus, there is a high probability of underestimaging In spite of this, our
experiments have shown [85] that better results are olitagmenpared to the case
when the cyclic redundancy check (CRC) alone is employed.

The length of the sequence, over whibh is estimated has to be chosen ac-
cording to conflicting requirements. On one hand, a longrualels preferable,
because this will deliver more reliable estimaf§s. The estimation error de-
creases with the length of observation interval. On therdthad, a small interval
is desirable since it is unrealistic to assume fhat constant over longer periods
of time.

Two obvious choices were used. In the first one, referrefifaame oriented
(FR), the errors were counted over the whole frame-pair of 86 (@kcluding
the 4 bits for CRC code) by applying the data consistencyttesach parameter.
For each consistency test failure the error counter for fifaawe is increased by
one. Note that in this case the same valugsofs shared by all 86 bits of the
frame-pair. In the second procedure the bits of one subreotustitute the esti-
mation sequencesubvector oriente@SV). The consistency test is triggered by a
CRC failure, and the errors are counted on a subvector bA&isassumed that a
consistency test failure reveals one bit error. Note thatlwector encodes two
components of the feature vector. Thasfor all bits of the subvector is estimated
as the number of bit errors occurring in that subvector @ity the number of
bits allocated to that subvector over the frame-pair, wigch\/, see Table 1.2.

In [85] it has been shown that both methdd® andSV achieve a performance
in a DSR scenario using GSM data channel which comes close foerformance
using the instantaneous bit error probability computechftbe soft-output of the
channel decoder. In the experimental part of this work we ame EC perfor-
mance of DSR employing the “true” soft-output of the chargetoder and the
proposed estimation approach based on data consist8gy (

5.2 Datareliability estimation in | P networks

In a packet-switched network the user data is fragmenteddiioicks named “data
packets” which are then routed from source to destinatiompr@dminent exam-
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ple of a packet-switched network is the public Internet. Doewumerous ad-
vantages over the circuit-switched solution, the paclétebed solution has wit-
nessed rapid expansion over the last decades. Its maintistied ability to share
network resources among the users. Unlike circuit-swdametworks, where a
physical channel is exclusively used for connecting ther@and destination
points, packet-switched networks allow the use of the sama@rmel to transport
data from/to several users. Furthermore, there may exi#tipieurouting paths
between two connection points so that the bandwidth ressuran be more ef-
ficiently managed. An inherent property arising from thishatecture is that the
network cannot ensure whether a packet is going to arrivestirchtion or how
long this process will take. Hence, the network offers séedddest effordelivery
service.

The packets that do not arrive at the destination in a reddetiane are con-
sidered lost. The maximum delay which can be allowed dependse real time
constraints of the application. For example in VoIP theriayeshould not exceed
200 ms, otherwise the conversation flow is impaired.

5.2.1 TCPI/IP protocol suite

TCP/IP denotes a family of protocols developed by the IeEngineering Task
Force (IETF) aiming at providing a simple and flexible franogk/for developing
network applications and services. The protocols are dgzgdrnto a stack of four
layers, each layer being implemented on top of the other aodding specific
services. The layers at the top are closer to the applicatlile those near the
bottom are closely related to the physical channel.

1. Application layemrovides methods to pass the data from the program to the
transport layer in an application-specific format. E.g. HTFTP.

2. Transport layeris responsible for transferring data from source to destina
tion in an abstract manner, independently of the underiyieigvork. Ap-
plications are connected through the use of ports. Thernresgon can be
either connection-oriented (TCP) or connectionless (UOR)P provides
a reliable link which guarantees that packets arrive in ovdéh minimal
error. This is ensured mainly by retransmission of lost scaided pack-
ets. UDP does not guarantee a reliable transmission. Thedag&ets are
not retransmitted and the erroneous one, detected by aslmackgorithm,
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are discarded. UDP is typically used in data streaming egiins such as
\VoIP where timely delivery is more important than reliatyili

3. Network layemprovides mechanisms to transmit the packets of the trahspor
layer from source to destination independently of the dataldyer. This is
specified by the IP protocol. The whole network is virtuadibg associating
IP addresses with the source and destination points.

4. Data link layeris network dependent. There are a large variety of networks
(including mobile networks) in which TCP/IP can be deploy&kamples
of protocols on this layer are the PPP protocol for interoeeas over a dial-
up modem, IEEE 802.11 for a local wired network, GPRS for padata
over GSM, etc.

For the particular case of data streaming application, sisctolP, where on-
time delivery of the packets is crucial, the IETF develogeziReal Time Transfer
Protocol (RTP) [86]. The protocol is built on top of UDP anaywides methods
to reorder the incoming packets, handle the time delay dged synchronization
of multiple data streams transmitted over separate chanhige UDP, it is a best
effort data delivery service since the data reliability mainbe guaranteed.

The data packet in an RTP communication consists of 1P, URFAM head-
ers, and the real-time user data. The IP header (in IPvdaten®0 bytes of
protocol specific data protected by a checksum. If the cheuls the header bits
at reception does not match the checksum field, the packebjgdd. The UDP
comprises 8 bytes and contains the source and destinatits) fie length of the
header and encapsulated data, and the checksum of the wduetgincluding
encapsulated data). In IPv4 the packets containing errerdiscarded. IPv6 may
also accept erroneous UDP packets. This feature was irttealdn the new ver-
sion of IP in order to support those applications which areensensitive to packet
loss than to bit errors in payload.

The RTP header has 12 bytes of protocol specific data inajutthe payload
type and a sequence number. The payload type identifiesrdeokiencapsulated
data (e.g. the speech codec used) so that they can be prdpeolged at the recep-
tion. The sequence number is used to reorder the sequeneeldtp in the jitter
buffer at the reception, since their trip delay may not bestamt. The size of the
jitter buffer is dictated by the maximum latency toleratgdthe application. The
packets that do not arrive within that time span are consity be lost packets.
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5.2.2 Transmission errorsin IP networks

In IP networks there are two factors responsible for trassion errors. One is the
error prone communication medium and the other arises fn@specific network
architecture. Both are explained as follows:

The data link layer is error prone due to the inherent noigeércommunica-
tion medium. If the data link layer consists of a wireless ahbife network, the
same distorting factors, e.g. path loss, fading, as digclissthe previous section,
apply. If the data link layer is a wired network, such as Etle¢rthe SNR level
in the communication medium is usually high so that the trassion approaches
the noiseless scenario. The result of such channel dstogithat the data link
layer of the receiver may pass erroneous packets to the lgymar In the latter,
however, the checksum of the data is checked and the errsmpealets are dis-
carded (in IPv4), that is, the application layer does natirecerroneous packets at
all. Therefore, in IP networks the bit errors occurring i thata link layer usually
turn into packet loss at the application layer level.

The other degradation is related to the IP network architectThe users are
connected to the network by meansrofiter devices. A router has a number of
input and outputiueuesconnected by awitcher The packets received from the
user are buffered first in an input queue and the switcheddsciaccording to a
switching logicalgorithm, the route that the packet has to follow, i.e. tdolh
output queue the packet is to be redirected to. The packébteinutput queues
are stored ready to be sent; however, transmission doescoat onmediately.
The packets may wait an undefined time until they are sengr#ipg on network
load, packet and queue size, routing policy, etc. Thus, #neylikely to be ran-
domly delayed. This is known d@sne delay spreadBesides variable latency at
reception, packet-switched architecture may be confrbwith two critical situa-
tions in practice [87]: either some input queue may overflow th an input flow
higher than the processing capacity of the switcher, or,esoatput queue may
overflow when the switcher delivers packets at a higher ree the transmission
medium can manage. Overflows lead immediately to the drgpgfipackets from
queues in order to ensure the continuation of data flow. Sinopped packets
never reach their destination, this effect is knowpasket lossFurthermore, it is
likely that once an overflow has occurred, it may last some timtil the queue is
in a free-flowing steady state. Dropping successive padéatts to bursty packet
loss [88, 27].

Further loss of packets may occur at reception in the agmicéayer if real-
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time constraints apply. The media streaming applicatisash as VoIP, expect
data to arrive within a specific time span. This is necessarder to keep the
latency within reasonable limits by avoiding the accumatabf packet delays. At
the receiving end the incoming packets are buffered inittee buffer before pro-
ceeding with decoding. The aim of buffering is twofold. Ejitenables delayed
packets to be stored in an orderly fashion. The playbacksstenen the buffer
is full, that is, after a time proportional to the buffer sizas elapsed. Secondly,
since the packets usually do not arrive in order, they carebedered in the jitter
buffer by mean of the sequence number in the RTP header. Addiiback must
be performed synchronously, the frame which has to be delcoebet is expected
to be already in the jitter buffer. If not present, the apgiien has to consider it
lost (since it is useless to decode it later) and needs to@ngbkpecific packet
loss concealment (PLC) technique in order to reconstracsgieech signal of the
lost segment.

Although with IPv6 or UDP-Lite the propagation of bit errdosvards the ap-
plication layer is not excluded, to date it has been widesuased that the main
source of degradation in IP networks is packet loss [21, 2B next section de-
scribes channel models that can be employed to simulateepbds in a remote
speech recognition scenario over an IP network.

5.2.3 Channe Modds

As mentioned in Section 5.1.2 the burstiness of channetsecan be conveniently
reproduced by a Markov chain [80, 81]. The same principleapgsied in [27, 89,
90, 20] to model packet loss in an IP network. The simplestaostly used model
consists of a 2-states Markov model, similar to the Gilbextiel [80], schematized
in Figure 5.1.

Figure 5.1: 2-state Markov model for packet loss in IP neksor

Each packet triggers a transition from the current to the siete according to
the transition probabilities of the chain. The packet isectty received if the cur-
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rent state imon-losotherwise it is declared lost. This model is completely defin
by the two parameteysandq representing the transition probabilities between the
states. These can be used to derive two other more intuairaeters. One is the
mean loss probabilitymip) which is the average probability of packet loss and
is given bymip = p/(p + ¢). The other is theonditional loss probabilitfcip)
defined as the probability of packet loss given that the previpacket was lost
clp = 1 — q. The values of model parameters can be chosen so that theatgghe
loss pattern approaches that corresponding to a certaiorietoad, packet size,
etc. They can be obtained by estimatingp andcip from real packet traces char-
acterizing that network scenario. For simulation purpesese authors including
[27, 91, 47] extensively used the settings given in Tablenh®h model realistic
situations of low losses and short loss bursts (C1,C2) ujigto lbsses and longer
bursts (C3,C4). These conditions were also used in the iempetal part of this
work.

In addition to the two-state Markov chain, other models gileir complexity
have been proposed. Milner and James [89] proposed addhigdastate which
models randomly received packets inside the loss periosisyation which may
occur by freeing the router queues for a very short time perithe model pro-
posed by ETSI [92] for VoIP Quality of Service evaluation adu fourth state
which models the isolated (not bursty) packet losses. Theelation between
losses can be even more accurately represented by emplogtmey order Markov
models as shown in [93], however, the disadvantage is thHeehigumber of pa-
rameters that have to be set.

While an accurate modeling of packet loss is desired, thpgagr of this work
is, however, not to deliver absolute values of the word aaxyfor a particular
network scenario, but to allow performance comparison wttier state-of-the-
art approaches under the same network conditions. Fronptiig of view the
two-state Markov chain is a convenient choice.

Alternatively, if the absolute WER of a recognition task de#o by predicted
for a particular network condition, e.g. a technique simtitaVolP Quality of Ser-
vice evaluation applicable to DSR, the burst length distidn of that particular
condition has to be known. The WER can be estimated as a veeiglin of word
error rates achieved by the task under random losses of &xedH. They can be
estimated in advance as shown in [94].



5.3. Discussion 71

5.24 Instantaneous bit error probability estimation

In packet-loss networks, the term “bit error probabilityaynat first seem inap-
propriate. The bits within a lost packet do not exist in pi@since they have
not actually been received. Even though the bits are lostameassume (without
loosing generality) that they are generated at random iapipdication layer. This
can be equivalent to a situation of severe channel degoadativhich the channel
decoder generates uninformative bits.

Assuming that the sent bits are uniformly distributed, byegating zero or
one at random in the application layer with probabilitieend1 — a, respectively,
the probability of error becomes:

pe; = Py=0lby=1)-P(by=1)+ (5.7)
P(by = 1|b; = 0) - P(b; = 0)
1 11
= a5+(1—a)5—§,

independent of the value of

Note the bits need not be generated in fact. If the bit errobability is1/2,
their actual value does not matter. As it will become morearcia Chapter 6,
the aim of estimating instantaneous bit error probabititioicompute the channel
transition probability(y|x; ). By randomly generating the lost bits independently
of the sent ones, it is in fact ensured that the “receivedtuieay,; and the sent
onex; are statistically independent. Thygy:|x:) equalsp(y:) which does not
depend orx,, and therefore does not change the feature posterior.

In conclusion, the bit error probabilities of the correatygeived bits are zero
denoting that the bits are reliable, while those of the ldtstdre set td /2 accord-
ing to (5.7). Note that in genergl, = % denotes the maximum level of degree of
unreliability. Higher values are not possible assuming the decoder uses MAP
decision.

5.3 Discussion

Working with instantaneous bit error probability in both éiror and packet loss
cases, allows for a unified error concealment approach @8Ht the details of the
underlying network do not need to be known. The feature piesteomputation
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presented in Chapter 6 can be applied in both circuit andgiaskitched networks
if the received bit$; and their error probabilities., are available.

Moreover, the next generation of IP networks (IPv6) is sggoloto support
applications such as VoIP better, in that the receiving diglly damaged payload
is preferable to discarding it in the transport layer.

For example the UDP-Lite [95] transport protocol allows kets with failing
checksums to reach the application. This enables the apiplicto decide itself
how to handle the erroneous packets. This feature has atsdglbeen proven to
be advantageous for DSR applications. Here, the neareséfrepetition method
is more efficient on a subvector basis, i.e. reconstructirlg the erroneous part
of the vector, than on frame basis where the whole frame tadied possibly due
to a single bit error [42].



Chapter 6
Feature posterior estimation

This Chapter describes our approach to estimate the fegadsterior in DSR sys-
tems, where compressed features are transmitted overameone channel. The
features can be extracted and compressed at the termimalsidg any of the
ETSI-DSR standards [8, 12, 14]. For simplicity, howeverr approach is ex-
plained in detail here for the ETSI Advanced Front-end (EABE) [12] which
has been described in Section 1.2.2. The short-hand notatidenotes in the
following any of the seven subvectors of the 14-dimensioeal valued vector
produced by the feature extraction part, see Table 1.2.

Figure 6.1 depicts the DSR system considered in this secftidre feature
extractionblock, Quantizer Index generatoandCodeboolare those of the ETSI-
AFE. Note that only one subvectey is being considered since, as long as it is not
otherwise specified, the operations are performed iddlytica any subvector.

The subvectow; is quantized ¢;) and coded into a bit patteis, of M bits.
This constitutes the source coding part of the system. Theabiernb, is then
transmitted through an equivalent channel which inclutiexhannel (de)coding
and the other components. The channel output consists oeiteded bit pattern
b, and the instantaneous bit error probabilities of each altbits. The depen-
dency between received bit, transmitted bit, and chanaét st at that time is
modeled statistically by the transition probabil}ﬂ(l}t|bt, z:). The latter variable
z; has been introduced to allow us to model the time varying cbbproperties
(state) using instantaneous bit error probability comgie described in Chap-
ter 5.

The channel state gives in fact the probability of a bit eatthat time. The
posterior probability of the bit pattern is then computethgghe redundancy of
the bitstream 4 priori knowledge) and the transition probability. Once the bit

73
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pattern posterior is known, the static feature posteriarezsily be inferred. The
above processing steps are described in the following.

b,

ct Index |__bt Equiv.

n
gen. channel

Pey
Codebook m Trans. prob

p(vily,z) Feature vector| P(b:|b)| Bitpattern | P(bi|b¢,z¢)
~——————] posterior posterior

Feature | Vt,
extraction Quantizer

Figure 6.1: Block diagram of processing elements relevanfdature posterior
estimation in a DSR system.

6.1 Source coding

Generally, a source coder is a mapping of Malimensional Euclidian space into
a finite set o2 indices. It consists of two components: the quantizer aadrth
dex generator. The quantizer searches the finite codebodttketaV-dimensional
codeword (centroid} which best represents thié-dimensional input vector. The
search criterion is usually the Euclidian distance meastihe codeword is then
mapped to an indek of length M bits.

The source coder of ETSI-AFE employs a split vector quan{@¥Q) for the
quantization of the static components of feature. The imptiie 14-dimensional
vector consisting of 13 MFCCs and the logarithmic frame gnerhis is split into
7 two-dimensional subvectord/(= 2) which are then separately quantized to bit
patterns of lengttd/ according to Table 1.2.

6.2 Equivalent channel

Both circuit and packet-switched channels are modeledieaa equivalent time-
variant binary symmetric channel. The binary input symlzoks corrupted with
probabilityp., which may vary with each transmitted bit. The input of theramel

at each time instanasis the bit pattern produced by source coding corresponding
to the centroict;. The bit patternd, are sentin a sequenggo0), ..., b:(M —1),

M being the number of bits allocated for the subvector. NaeithChapter 5 this
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detail was intentionally omitted for clarity since there tindext was associated
with each bit of the sequence. The channel output consistiseoflecoded bit
patternb, = b;(0),...,b,(M — 1) and the vector of bit error probabilitigs,, =
Der(0), ..., pes (M — 1) of each decoded bit.

6.3 Channel transition probability

The channel transition probability is defined here as théadity of receiving

a particular pattern given the sent pattern and the presamnel state. This can
be obtained considering the Bayesian network of the Figu2e 6lere we use
the capitalized notatioﬁ’(Bt|bt, z,) since the bit patterns can be seen as discrete
random variables.

>
bi(m — 1) bi(m)
¥ ¥

— | bi(m—1) b(m) |—»

\ 4

Figure 6.2: Bayesian Network for computing channel tramsiprobability of the
bit pattern(b;(0), - - - b, (M — 1))

The model captures both, possible dependencies betwebriigtudb,, which
corresponds to a source with memory, and dependencies déreteansecutive
channel states, which correspond to a channel with mematyasia bursty error
channel. However, the received bj{m) depends only on the sent bit(m) and
z¢(m) at that time instance. This allows us to express the tramsgirobability of
each bit as:

1= pe,(m) if by(m) (m) (6.1)

P(by(m) by (m), z(m)) = { Pey(m) if by (m) ; le(m)-

The transition probability of the bit pattern becomes:
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M-—1
P(by|by,z) = ] Pbr(m)[be(m), z:(m)) (6.2)

m=0

For the purpose of further processing it is enough to evelteg above expres-
sion only at the particular received pattdsnbut for all possible values df,, i.e.
0,...,2M — 1. Thus, the output of the blockransition probabilitiesn the Figure
6.1 is a vector o2 probability valuesP (b, |b\"”, z,), withi = 0...27 — 1,

It is instructive to analyse the expression (6.2) for a paekasure channel. In
this case, a data packet which carries a number of bit patieither completely
lost or received without any bit errors. Thus, the chanretest, (m) is binary,
the possible values corresponding to two situations»bhlielongs to a received
(z¢(m) = 0) or to a lost packet(m) = 1). As shown in the previous chapter, in
the packet loss scenario the bit error probability can takg two values:0 and
1/2. Assuming that all bits of a bit pattern are carried in the saata packet, i.e.
zt(m) =z, ,forallm = 0... M — 1, the transition probability becomes now:

1 if zZy = 0 andE)t = bt
P(bi|bs,z;) = ¢ 0 if z, = 0 andb, # b, (6.3)
(%)M if Zy — 1

In the view of (6.3) it makes no difference how the channelodiec “recon-
structs” the lost bits. The equation states that if the paiskest, P(b;|b;, z;) is
independent ob,.

6.4 Bit pattern posterior computation

In Chapter 4 we have seen that for the purpose of uncertaagtyding, the tem-
poral correlation of the feature vectors can either be reégde(Section 4.3.1), or it
can be taken into account (Section 4.3.2). The first casds/geimemoryless dis-
crete source of bit patterns whereas the second correspmadsiscrete Markov
source. This section shows how the bit pattern posteriobeatomputed in each
case using the bit reliability information and priori kn@abe of the source.
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6.4.1 A priori knowledge

The knowledge of source statistics is contained in the béopkori of Figure 6.1.
This is modeled by the prior probability mass function of UnepatternP(b( ))

withi = 0...2M —1, and the conditional probability mass functiib,’ )|b(’) ),
1,7 =0. 2M — 1 for the case of first-order Markov source. Both are estimated
in advance on a training set by quantlzmg the feature veaad counting the
occurencesV () of each bit patterrb and the occurrences of the sequences
(b{”, b)) denoted byN()). The ML estimates (notation withfor estimate
was omitted for convenience) are:

; N®
Py = v (6.4)
; . N (@d)
P b)) = (65
e P(b” b))
PO = =
P(b”)

Here the process stationarity was assumed such that tfetist@des not change
over time, i.e.P(b{"),) = P(b?).

The average information contained in a bit pattern can besored by the
source entropy:

oM _q
H(by) =— Y P(b{’)log P(b{") (6.6)
=0

The first line of Table 6.1 gives the entropies of the bit pagecorresponding
to individual subvectors. The values have been obtaineti®training set of the
Aurora 2 database using the ETSI advanced feature extnattat-end. It can
be observed that the entopy values are closé&/tothe number of bits used at
guantization. This denotes that the redundancy is smdiinvé bit pattern.

An indication of inter-frame correlation is theutual informatiorof consecu-
tive vectors defined as:

I(bi;by 1) = H(by) — H(by[by_1) 6.7)
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Table 6.1:Entropies and mutual information among the subvectors ypeed by
the ETSI advanced DSR front-end.

|Subvector | 1 | 2 [ 3] 4|5 ] 6] 7]
M 6 6 6 6 6 5
H(b;) 58| 58|58|58|58|48| 7.7
I(by;by—q) || 26]21|16]14|12|10| 34
I(bi;b, ) |[30] 24| 19| 17| 15| 13|45

where the conditional entropy is computed as:

21%_1 21\4_1
H(bib,1) ==Y Y PO b)) log P(b{” b)) (6.8)
i=0 j=0

The mutual informatior! (b;; b;_1) is a measure of how much information
about the current bit pattetsy is already present in the previous vedter ;. The
higher the mutual information, the better a bit pattern carpbedicted from its
predecessor. Statistical independence (no correlatids) patterns at andt — 1
would lead toH (b;|b;—1) = H(b;) and the mutual information would become
zero.

The second line of Table 6.1 gives the mutual information jgotad for each
subvector. Here can be observed that the values are réjatigg, denoting that
the assumption of a Markov source is more appropriate thaassumption of a
memoryless source.

Even more accurate modeling of the memory source can bevachiiyy con-
sidering a higher-order Markov process. For example in ¢oesd-order Markov
source, the current bit pattetn depends on two predecessbs 1, b;_». How-
ever, the complexity and memory requirements increaserexg@lly with the
order of the Markov source. A good compromise can be madeilbyassum-
ing first-order but extending the static feature vector bgeaqgling the dynamic
features, e.g. first and second-order temporal differenBgsdoing so, the first
predecessor of a feature vector contains to some extemmafmn about the sec-
ond, third, etc. predecessor.

The last line of Table 6.1 gives the mutual information betwé¢he current
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bit pattern of the static componertis and the bit pattern of the previous frame
b, ; = (b;_1,Ab;_1,A%b,_;), which consists of the coded static feature com-
ponentsb;_; and the coded first- and second-order derivatives. Whilestiugc
components were coded by the ETSI-AFE, for the dynamic corapis of each
subvector we had to design our own vector quantizers [96]tHeoexperiment re-
ported in Table 6.1 we employdd;, = 3 bit vector quantizers fof (velocity) and

D, = 1 bit for A? (acceleration). Obviously, the dynamic parameters of teeip
ous frame provide additional knowledge about the statiampeters of the current
frame, since the mutual information is higher than the orseoked betweeb,
andb;_;.

6.4.2 Memoryless source

Assuming a memoryless source, the correlation betvigemdb, _;, which rep-
resents most of the bitstream redundancy, is neglectedholfitemporal depen-
dencies, the bit pattern posteri&t(b,|b,) can be easily computed by applying
Bayesian rules for conditional probabilities:

P(b{" by, z) 6.9)
P(by|bf”,2,)P(b}"|z,)
P(by|z;)
P(b|by”,2,)P(by")
P(b¢|z)
= =Pz P,

P(b{"[b,)

i=0...2M 1

Here we theorized that the sent bit pattern and channel atatendependent
resulting inP(b"”|z,) = P(b{"). The denominatoP(b,|z,) is assimilated into
the constankC since it does not depend an It can be computed by forcing the
posterior to sum to one:

2M 1
K=" P(bib,2)P(b;") (6.10)

=0
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The vector of probabilitie®*(b[b{”, z;),i = 0...2M — 1 is provided by the
blocktransition probabilities see Figure 6.1.

6.4.3 Markov source

The feature posterigi(x;|y?) which captures the temporal correlation between
features can be computed from the bit pattern posté?(chrt|BlT). In specifying

the correlation a good compromise between accuracy andlegityds to assume
that the sequende,, t = 1,2, ... is a homogeneous first-order Markov process.
Let bf), i =0,...,2M — 1 be the discrete state space of this process, i.e. the
values that the bit pattern may take, ang = P(bij)|b§1_)1), i,j=0...2M -1

are the elements of the transition probability matrix.

The bit pattern posterioP(bE”|BlT) conditioned on all received bit patterns
b7 = (by,...,br) can be computed by the Forward-Backward algorithm [51].
Let o (i) be the forward probabilitiess; (i) the backward probabilities ang ()
the posterior probabilities of each bit pattéra- 0...2 — 1. They are defined
as follows:

ar(i) = P(bl,by"|a]) (6.11)
Bi(i) = P}, b 2]) (6.12)
w(i) = P(b’[b]) (6.13)
The algorithm details are given below:
Initialization:
ar1(i) = POYPHBBY, 2) (6.14)
Br(i) = 1
Recursion

(starting from¢ = 1 for forward andt = 7" for backward probabilities)

oM _q

aa()) = > () Pb) b)) P(biabl)) 2i01)  (6.15)
7=0
2]\/171 . . ~ .

Bioa(i) = Bi(G)P(by b)) P(by[b{, )

J=0
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Posterior computation

i) = e (6.16)

> a(f)Be())
7=0
The implementation of recursion (6.15) needs special prtemas since the
multiplication of small probability values can quickly & numerical problems.
In order to avoid this, the forward and backward probabk#itivere scaled, i.e.
multiplied by a constant’,, and/Cg,, respectively, at each steégsuch that they
summed to one. The scaling coefficients do not affect the fesallt since:

) = KB B g
> Koo)X ali)i)

6.4.4 Extended Markov source

A typical feature vector for ASR consists of static mel fregay cepstral coeffi-
cients (MFCC) and their first- and second-order temporé&taihces, the so-called
dynamic features. In [96] we have shown that the source nmmaglean be im-
proved if we consider that the sequerge= (b;, Ab;, A?b,),t = 1,2,..., i.e.
coded static, delta and delta-delta components, is a Mgrkmsess. The bit pat-
tern posterior can be determined in a similar fashion as@b®he complete bit
pattern has in this cas€ = M + D, + D bits and the state space is extended to
2N elements.D, and D, denote the number of bits for quantization of delta and
delta-delta components. Since only the bit pattern cooeding to the static com-
ponents is transmitted, the channel transition probghilfithe complete pattern
is:

P(be|b{"™™ ) = P(by|b{", 2,), (6.18)
for all
i = 0,...,2M 1,
m 2P )
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Hereb!"™™ = (b{"’), Ab{™ A2b{") is the bit pattern consisting of thi"
static,m'" velocity andnt" acceleration bit pattern.

The bit pattern posterior of the static compone‘ﬁ(bi” |bT) is obtained from
the bit pattern posterior of the whole vector (computed tgyftrward-backward
as previously shown) by marginalizing the dynamic compdsien

oP1_19P2_3

PbYBT) = Z Z (b{=m ™ BT, (6.19)

foranyz:O,...,ZM —1.

Similarly to Eq. 6.19, the bit pattern posterior of the dym@anomponents can
be obtained from the posterior of the full vector by margizia the static com-
ponents. Experimental evaluation showed, however, thgintlethod yields poor
results due to the rough quantization for delta and delt&deat was employed.
Therefore, the posterior of dynamic components is compusat) an alternative
suboptimal approach presented in Section 6.5.2.

Note that there are technical limits to increasing the rggmh of the dynamic
features. The number of states to be evaluated by the FoiBackiward algorithm
grows exponentially with the number of bits of the bit pattedgven with the rough
quantization of dynamic components used in our experinveatalready needed
12 bits (8 for static, 3 for delta and 1 for delta-delta) foe thbeventh subvector,
resulting in 4096 model states. More details on computatioomplexity can be
found in Chapter 9.

6.5 Featureposterior

The feature posterior is the probability density functiéthe sent feature; con-
ditioned either on only the received featyreor on the whole sequenge’, see
also Eq. 4.37 and 4.38. In speech recognition the featur®weg usually con-
sists of static components, e.g. cepstral coefficients,dymdmic components
which are obtained by linear regression of static companehiheighboring vec-
tors. While in (4.37) and (4.38) the notatigphas been used for the complete fea-
ture vector, eventually including dynamic componentshis sectionx; denotes
only the static components. The full vector is denoted hgréx, Ax;, A%x;).
This distinction has to be made as in DSR only the static corapts are trans-
mitted through the channel. Thus, the corruption procdssafdirectly only the
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static components. The indirect corruption of the dynaraioponents as an effect
of erroneous static components is discussed separatedctios 6.5.2.

6.5.1 Posterior of static components

As the observed feature vectgy is obtained by one-to-one mapping of the re-
ceived bit pattern of each subvector into the correspondi@gentroid, the con-
ditioning ony is equivalent to conditioning ob,. The continuous posterior of
the subvector can therefore be expressed as:

oM _1

p(vilys) = p(vilby) = 3 p(vib{?)P(b{" b,), (6.20)
=0

or, conditioning on the whole sequence:

oM _q

pvilyT) = pvilb) = 3 p(vi[bi”)P(b{” BT). (6.21)
=0

The termp(vt|b,(f)) is the probability density function of the subvector given
thes*" bit pattern. That s, the distribution of those subvectdngivare coded into
the bit pattern. It must be zero outside th#&" cluster and non zero within. While
this can be specified exactly through knowing the prior iigtion of the feature
and the quantization clusters, we prefer to use an apprmbaiaparameterization
having less parameters. Thus, we employed Gaussian PDRs; c; ), 2 )for
each cluster. The mean value parameﬁé?r is the VQ centroid mapped tbt ,
and 2§ the within-cell covariance matrix. The latter can be easgfimated on
the training data by assuming the mean value toiﬂeand computing the second
order moment of feature subvectors quantized into the h)iépab(“ An even
simpler parametenzauon is the Delta-Dirac distributgamtered on the VQ cen-
troid, (v — ct ) which does not need any parameter estimation. This neglects
however, the uncertainty due to the quantization procekss,Tin explaining the
approach we use the Gaussian approximation since it is neorergl. To particu-
larize for Delta-Dirac distribution the Gaussian covadgesmust be set to zero.

In the following, we use the notationfor eithery, or y7 andb for eitherb,
orb?.
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For the reason explained in Section 4.3.3, the subvectéeposdensity needs
to be approximated by a Gaussian density, but Eq. 6.20 arlda#8e2 Gaussian
mixtures with2™ components. The mixture coefficients are the posteriordiit p
tern probabilitiesP(bg” |b). The single Gaussigi(v,|y) = N (v¢; Hy,lys Zv,ly)
which best approximates the mixture is obtained by miningzihe Kullback-
Leibler divergence betwegitv,|y) and the original posterigr(v;|y). This yields
the following estimates:

oM _q
oy = > Pbb)c’ (6.22)
1=0
oM _q
Svy = . PBIB) (e = py,y) - (e = pyy)T
=0
+2). (6.23)

In Eg. 6.23 the covariance matrix can be seen as the sum oféhage between-
cell covariance and the average within-cell covariancénalt been observed ex-
perimentally that ifM is sufficiently large, as it is the case with the ETSI-AFE
quantization, the within-cell covariance can be negleciéds is none other than
using Delta-Dirac approximation fqn(vt|b§i)).

As the correlation between the subvectors of the same fegaator is rather
small [85], the posterior of the static feature can be oletdias the product of
all subvector posteriors. This yields a Gaussian with patersu, |, and%,, |,
which are obtained by simply concatenating the parametex subvectors.

6.5.2 Posterior of dynamic components

Let x,, Ax, and A?x, denote the static, first-order and second-order temporal
derivatives of subvectors of,. They are usually computed as a linear function of
the static components (linear regression):

K

Axt = Z WXtk (624)
k=—K
L

A’k = ) upAxg (6.25)

k=—L
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Here,w; anduvj are the linear regression parameters. Usual settings éor th
regression interval length aré = 3 andL = 2.

The posterior of the delta componepta\x;|y) could be computed as:

p(Axily) = [ bk xikly)dx kg, (620
Dax,
whereDay, is the domain containing all sequences x, . . ., X:+x Which

yield the same value oAx,. A similar expression can be obtained fafx;.
Unfortunately, this approach is not practically applieathlie to the complexity of
computing the joint probability (x;:— k., . . . , Xt K |Y)-

The suboptimal approach which we employed is to infer thegums of dy-
namic features from the posterior of static ones. The fureddat approximation
allowing this is that the consecutive featuses g, . . ., x4 x are Gaussians and
statistically independent, givegn According to (6.24) Ax; is a linear combina-
tion of independent and normally distributed random vdeialand therefore it is
also a Gaussian distribution with parameters:

K
quf,‘y = Z wk’l’l’xwrk‘y (627)
k=—K

K
_ 2
EAxt\y — E wkEXt+k\y
k=—K

Note that the expression for the covariance in (6.27) isdviali diagonal co-
variance matrices which is implicitly our case since we asstithat the individual
feature vector dimensions are independent.

With the same considerations the posterior of delta-deltamputed as:

L
lj'Azxdy = Z Uklj’Ax,,+k|y (628)
k=—L
L
_ 2
Yincxly = Z UkEAxt+k|y
k=—L

In practice, since the independence approximation doesaidf the variances
of dynamic components tend to be over-estimated.
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6.5.3 Posterior of complete vector

Assuming now that the three types of feature, static, deith delta-delta, are
independent (given the observations), the posterior ottimeplete feature vector
becomes:

P(x¢, Axy, Agxtb’) = p(Xt|Y1T) 'p(Ath’) 'p(Agxtb’)- (6.29)

Thus, the Gaussian feature vector posterior to be used3@)4r (4.38) has
the parameters:

uxt,Ax,,A2xt|y = (“x,,|y) “Axt|ya HA2xt|y) (630)
Ext,Axt,A2xt|y = (Exdy’ EAxtlyv EAzxt\y) (6.31)



Chapter 7

The application of uncertainty decoding to
channel-error robust DSR

In this Chapter it is shown how uncertainty decoding can legl@s an error con-
cealmenttechnique in a DSR scenario to alleviate the detriat effect of channel
errors. There are three sections. The first describes arrimedal setup of a
DSR system and the speech recognition tasks employed fforpemce evalua-
tion. The second section evaluates a simulated DSR systenmé@twork where

the channel exhibits bit errors, a typical case for cirewitched data links such
as the GSM data channel. In the third section the DSR systeimiglated in a

packet-switched network where the channel errors confgistaket losses. Typical
example used here is the transmission of data over the pguakdimet (TCP/IP).

The word error rates were determined for each scenario watEus chan-
nel conditions and employing different error concealmenhhiques. The results
obtained with the error concealment of ETSI-AFE and somerattate-of-the-art
techniques such as weighted Viterbi and MFT are also predent

7.1 Experimental setup

The simulation system was realized for the most part in SPABpeech_IPo-
cessing ad Recognition Toolk), a simulation software package developed at the
Department of Communications Engineering of the Universit Paderborn. It
consists in feature extraction at the client side, a trassiom channel model, and
recognition supporting uncertainty decoding at the sesiger. The front-end part

is compliant with ETSI-AFE standard. The simulation of th8N& physical layer
has been carried out using the GSM library of the CoWare SRywé&bProcessing
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Worksystem) software suite [79].

For the training of the acoustic models we employed the HTiKIdlen Markov
Model Toolkit) speech recognition software suite [97]. Bpeech recognition was
carried out using our own speech decoder software with SPARK offers more
flexibility in modifying the observation probability comfation required by the
uncertainty decoding rule. This is an one-pass Viterbi decavith dynamically
constructed lexical pronunciation trees which suppomsam language models.

7.1.1 DSR simulation system

The block diagram of the DSR simulation system is given iruFégr.1.

Speech ETSI-AFE Bitstream c
DB Feature extraction formatting %
Clentsiee E
i 7]
Server side 5
: c
=
g
ASR EC Bltstregm @)

Post. Comp  : decoding

Figure 7.1: Block diagram of the DSR simulation system.

The blockSpeech DRomprises the speech data of the test set. They are pro-

cessed irETSI-AFEresulting in the bitstream of compressed feature vectdis T

is formatted according to ETSI specifications and entersCihannel simulation
block, which is described in Section 7.2 and 7.3. The bigstrebtained at the
channel output is decoded into feature vectors which eh&eetror concealment
(EC) block and, subsequently, the speech recognizer. Whiteishihe case of
reconstruction-based EC, in decoder-based techniquesrthreconcealment takes
place within the recognizer itself. For simulations withcertainty decoding the
block EC is labeled alternativefyosterior computation

The performance in terms of WER has been evaluated for edble &C tech-
niques listed below:

e ETSI-DSR: the EC provided by the DSR standard that is basically neares
frame repetition (NFR), see Section 2.3.1. This setup githe reference
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WER performance.

e M: marginalization, according to MFT, see Section 2.4.1. dllable fea-
tures do not contribute to the acoustic score. The featusre @eemed
unreliable either by means of CRC or, in case of packet lcssgiypacket
loss indication.

e WYV: weighted Viterbi EC as in Section 2.4.2. In case of the GSlinciel
the weighting coefficient has been computed by (2.9) using bit reliability.
The parametedtr in the above equation was tuned for best performance un-
der the worst channel conditions. In case of the IP channetwgloyed
the exponentially decaying weighting coefficient duringddursts (2.13), a
method proposed in [66].

e UDO: uncertainty decoding with feature posterior conditiomadnstanta-
neous observation only (4.37).

e UD1: uncertainty decoding with feature posterior conditionadhe whole
sequence of observations (4.38).

e UD1-dyn: uncertainty decoding with feature posterior conditionedthe
whole sequence of observations (4.38) and employing egtesolurce mod-
eling of Section 6.4.4.

e MMSEO: the MMSE point estimate of the clean feature is the Gaussian
mean of the feature posterior conditioned on instantanebsesrvation only
(4.37). ASR uses the conventional decoding rule.

e MMSE1: the MMSE point estimate of the clean feature is the Gaussian
mean of the feature posterior conditioned on the whole sempief obser-
vations (4.36). ASR uses the conventional decoding rule.

¢ MMSE1-dyn: the MMSE point estimate of clean feature is the Gaussian
mean of the feature posterior computed adfbrl-dyn.

Note thatETSI-DSR, MM SEO, MM SE1, and MM SE1-dyn do not imply
changes in the speech recognizer. The EC is therefore segdram the recog-
nition process. In contrast, the other techniques are aeduased and require
modification of the decoding rule in the recognizer. In allesthere are, however,
no changes at the client side.
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The experimental results are given in terms of WERs undeéowarchannel
conditions: different C/I ratios for the GSM and a set of eg@ntative packet-loss
conditions for IP.

7.1.2 Speech recognition tasks

The EC performance has been evaluated on two recognitikst tAsirora 2 which
is a small-vocabulary digit recognition task without a laage model, and Wall
Street Journal (WSJO0) a medium-vocabulary task with apps600 words and a
bigram language model. Each task is briefly described below.

1. Aurora 2 task The small-vocabulary task is the clean test set of the Auror
2 database, see [9] for an overview, consisting of 4004 arits (continu-
ously spoken digit strings) from 52 male and 52 female spsakiestributed
over four subsets of 1001 utterances. The sampling rateHz.8Khere is
no language model for this task. The acoustic models, tdaimelean con-
ditions as described in [9], have 16 states per word with 3sGians per
state and diagonal covariance. With feature vectors coadpoy the ETSI
DSR standard [12] the WER in error-free conditions (i.e.haiit channel-
induced errors) was 0.86%.

2. WSJO0 task The medium-vocabulary task is the Wall Street Journal WSJO
5k Nov. '92 evaluation test set [98] comprising about 5000dgan 330
utterances of 4 male and 4 female speakers, summing up to¥d@fspeech.
Here, the sampling rate is 16kHz. Recognition experimerevearried
out using a closed vocabulary bigram language model. Thesdicanodel
consisted of 3437 tied states. The parameters of the 10-@oamb mixture
densities were trained on the SI-84 set of the WSJ corpug@8Jinsing the
HTK toolkit. With features computed by ETSI DSR standard][11BkHz
extension, the WER in error-free conditions was 8.99%.

7.2 Evaluation of robustnessto hit errors

A GSM data channel was considered as an example of a transmigzannel
exhibiting bit errors. Figure 7.2 shows the details of thdx38nulation system for
this particular scenario. Note that the block diagram isvaht only forM M SEO,
MMSE1, UDO, andUDL1 techniques.
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Figure 7.2: Block diagram of the DSR simulation system ovBM;channel and
server side processing.

The transmission of the formatted bitstre&mobtained at the client side is
simulated in the bloclGSM channel simulationThe method employed here is
either physical layer simulation or error pattern injestid’he output consists of
the decoded bitstreaby and, in the case of physical layer simulation, the associ-
ated bit error probabilitiep.,. The computation of feature posterior is carried out
using either the bit error probabilities delivered by the/gibal layer (the switch
K on position 1), or the estimated bit error probabilitidse(switch K on position
2). For details regarding bit error probability estimatibie reader is referred to
Chapter 5.

The Gaussian parametgrg, |, 3, |, of the feature posterior are fed into the
recognizer where the classification takes place accordingtertainty decoding
rules (4.37) or (4.38).

Under each channel condition, a complete recognition taslken performed
using one of the EC technique listed in Section 7.1.1. Nod since the trans-
mission errors are random, the word error rates obtainedsfightly differ if the
initialization of random number generators or the aligntweith the utterance is
changed. This effect has been also noticed in [94] the WE#RTrdifices between
simulations with different initializations were in avem.04% (max. 0.69%) for
Aurora 2 and 0.16% (max. 4.32% !) for WSJO. Hence, it is palaidy difficult
to exactly reproduce the WERs obtained by other researalpgrosing MMSE,
weighted Viterbi or even NFR. In order to reduce these viarnat a much larger
test set should be used, which is not possible since thigésmdaed by the speech
database, or enough results obtained with different liméiions should be aver-
aged. In this work, for a fair comparison of performances,\thrious EC tech-
niques are examined under identical error patterns, thheibit errors or packet
loss occurred exactly at the same positions in the utterance
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7.21 GSM physical layer simulation

In this experiment the GSM physical layer was simulateduiiog channel cod-
ing/decoding, interleaving/deinterleaving, modulatd@modulation, interference
and fading of the channel. The channel coding was TCH/F48 [&hich uses
convolutional coding with rate 1/3. The channel decodingleyed the Bahl
(Forward-Backward) algorithm after [84] which providestaliability along with
the decoded bits. The channel model approximated a “typitein” (TU) profile
as specified by COST 207 [78] with 12 propagation paths, dgpegad 1.03:s
and Rayleigh fading at a terminal velocity of 50 km/h. Ther&arto-Interference
(C/l) power ratio was set to 2.5, 4, 5.5, 7 and 10 dB resultmavierage bit error
rates of 3.6%, 1.2%, 0.34%, 0.078% and 0.0025%, respectNete that a C/I of
10 dB is close to error-free transmission.

One set of simulations was carried out using the bit relighihformation of
the channel decoder (K on position 1 in Figure 7.2). The otkéwas carried out
using the bit reliability estimated from the decoded bitgat (K on position 2) as
described in Section 5.1.3.2. This allows the quantifyifigss of performance by
imperfect estimation of bit reliability, when the soft-put of the channel decoder
is not available.

For the Aurora 2 task, Figure 7.3 presents the word erros naesus channel
quality expressed by the C/I ratio. The bit error probaletip., were obtained
from the channel decoder (soft-output).

In Figure 7.4, the simulations were repeated on this ocnassing bit error
probabilities estimated from received data. The corredponcurves have the
suffix-EST (estmated). For ease of comparison they are plotted along wHR®/
computed with channel decoder soft-output (those of Figusg

The same testing procedure was applied to the WSJO task emndbtid error
rates are shown in Figures 7.5 and 7.6.

7.2.2 Channel errorssimulated by GSM error patterns

Another method to simulate the bit errors in a GSM transrorss the injection of
channel specific error patterns into the data stream, asonedtin Section 5.1.2.
The simulation with error patterns can be easily set up sinicerolves only an
“exclusive or” operation between the sent bitstream ancethar pattern in order
to obtain the received bitstream. A disadvantage is thatrtethod is unable to
provide bit reliability information (decoder soft outpat$ the channel decoder is
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Figure 7.3: WERs on the Aurora 2 task, with bit error prokigibg from the chan-
nel decoder

not explicitly part of the setup. To circumvent this problamestimate of the bit
reliability with the method described in Section 5.1.3.Zwaployed, i.e. switch
K on position 2 in Figure 7.2.

Tables 7.1 and 7.2 present the word error rates using diff&€ techniques,
for the Aurora 2 and WSJO tasks, respectively. The transom&srors were sim-
ulated by the GSM error patterns EP1, EP2, and EP3 introdncgelction 5.1.2.

Table 7.1: Word error rates on the Aurora 2 task for GSM eratrgons

| EP | ETSINFR)| M | WV | UDO | UD1 | MMSEO | MMSEL1 |
|EP1] 090 [090][0.90[0.90]090| 090 | 090 |
|EP2] 090 [1.01]1.22]097][097| 143 | 096 |
|EP3| 543 |7.68[820] 267|195 1180 | 2.26 |
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Figure 7.4: WERs on the Aurora 2 task, with bit error probi&ibg estimated from
data

Table 7.2: Word error rates on the Wall Street Journal (W&HK for GSM error
patterns

| EP [ETSINFR)| M | WV | UDO | UD1 | MMSEO | MMSEL1 |
|EP1| 897 | 895]885]| 896] 895| 899 | 897 |
| EP2| 9.75 9.73] 919 [ 9.00 | 902 | 9.42 | 9.02 |
| EP3| 3275 | 26.23| 17.63] 14.33| 11.43| 22.06 | 12.24 |

7.2.3 Discussion

The results on the small-vocabulary task Aurora 2 and theumedocabulary task
WSJO0 show analogous behaviour. The following observatqppdy to both tasks.

The importance of considering the inter-frame correlafimnerror conceal-
ment is emphasized by comparing the curtd&0 andUD1. While both of them
account for unreliability due to transmission errors, titeer performs better since,
under the same conditions, it delivers a feature posteritbr a'smaller variance.



7.2. Evaluation of robustness to bit errors 95

-5-ETSI(NFR)
-v-MMSEO
-9-MMSE1
-+UDO0
—--UD1
=WV

10

7
C/I[dB]

Figure 7.5: WERs on the WSJO0 task, with bit error probaksifrom the channel
decoder

This means that the clean feature estimate is frequentsedo the true trans-
mitted value. The variance is so small that even neglectirssM M SE1 does,
yields hardly any degradation in WER. This explains thetgldjfference between
MMSE1 andUD1.

If the inter-frame correlation is not considered, elM SEO and UDQ, the
clean feature is poorly estimated. Consequemi SEO performs even worse
than the EC of ETSI-AFE. The improvement bYp0 overM M SEO shows that if
the variance of the feature posterior is high, speech ratiogrcan benefit from
the use of the modified decoding rule.

The marginalisatioM exploits neither the inter-frame correlation nor the error
free portion of the feature vector. A feature vector doepnotiuce discrimination
even if it is only partially corrupted, e. g. only one compoheas affectedWV
does not exploit the inter-frame correlation, too, but canttoM, it is able to
gradually deemphasise the discrimination produced byliabte features.

When the instantaneous bit error probability is estimatethfreceived data,
small performance losses occur for all techniques empgpigirhowever only at
low C/I ratios, i.e. bad channel conditions. This validates method used to
derive the instantaneous bit error probability and prowes powerful EC tech-
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Figure 7.6: WERs on the WSJO task, with bit error probabkdgitestimated from
data

niques such aMMSE1 andUD1 can be applied as well, even if the soft-output
information of the channel decoder is not accessible ateghees side of the DSR

system.

7.3 Evaluation of robustnessto packet loss

In order to evaluate the impact of packet loss on the recmgngerformance, a
DSR system deployed in an IP network was considered. As shiov@ection
5.2 packet erasure is the dominant error pattern in thisss@enThe setup of the
simulation system is shown in Figure 7.7.

b
b P Packet loss
t detection and Feature | Mx,|ys Zx|y | UD
channel Bit error Pey posterior ASR
simulation probability computatio

Figure 7.7: Block diagram of the DSR simulation system owrdhannel and
server side processing.
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The bitstream produced by the front end is packetized acupitd the RTP
payload for DSR. In the blockP channel simulatiorthe resulting data packets
are randomly dropped. At the server side the missing packetsietected by
means of the RTP sequence number. The packet sequence ietioerred by
inserting packets containing random data (or zeros, sino@kes no difference,
see Section 5.2.4). The bit error probabilities of the bit®oeived packets is zero
since they are reliable, while the bit error probabilitiéshe inserted bits are set
to 1/2. The feature posterior is then computed and its paemhare fed into the
uncertainty decoding ASR.

The following section presents the word error rates of Aatband WSJO tasks
while packet loss has been simulated by a 2-state Markowchai

7.3.1 1P channd with packet loss simulated by 2-state M arkov
chain

The simulation of packet loss was carried out by droppingsetscaccording to the
state of a 2-state Markov chain, a model already present8edgtion 5.2.3. The
parameters of the model were set to obtain particular cHaomelitions C1, ...,
C4 as given in Table 7.3.

Table 7.3: The conditional loss probabilityif) and mean loss probabilityr{/p)
of the IP network conditions simulated in this work.

| Conditon| C1 | c2 | C3 | C4 |
clp 0.147| 0.33] 05 | 0.6
mip | 0.006| 0.09 | 0.286] 0.385

Note that the conditions C1 and C2 are characterized by $hosts and a
relatively low packet loss ratio while C3 and C4 exhibit lendpursts and high
packet loss ratios, e.g. up to 38%. Additionally the conditCO denoting no loss
was simulated.

The number of feature vectors per packet was either two, énset of exper-
iments, or four in the other set. Note that by using more festper packet, the
average feature loss rate does not change, but the avenagéelmgth increases.

Figures 7.8 and 7.9 show the word error rates as a functioheothannel
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Figure 7.8: Word error rates on the Aurora 2 task at transarissver the packet-
switched network with 2 feature vectors per packet.

condition. The results of Figure 7.8 were obtained with 2evelas those of the
latter were obtained with 4 features per packet.

The procedure was repeated with the WSJO task and the reseltgven in
Figure 7.10 and 7.11.

7.3.2 Discussion

In the packet loss scenario the feature vector during am bunst has no reliable
components. Thus, the feature posterior, without conulitigp on reliable vectors
before and after the burst, is same as the feature prior (uittaned) probability

density. TheUDO methods reduces in this case to marginalisatiO(M), see

also discussion in Section 4.3.1. Another consequenceai$ti SEO reduces to
simply inserting the feature priori mean value in the gapqu. The experimental
results show thdt/DO(M) andMM SEO perform poorly.

An importantimprovement is obtained if the inter-frameretation is consid-
ered UD1andMMSEL). The feature posterior becomes more informative in this
case, i.e. more focused on the clean (transmitted) feako®r Contrary to the
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Figure 7.9: Word error rates on the Aurora 2 task at transamssver the packet-
switched network with 4 feature vectors per packet.

\ -8~ ETSI(NFR)
\ -v-MMSEO

s -¢-MMSE1

\ -0--MMSE1-dyn
\ - UDO(M)
v —-UD1

N ~¢-UD1-dyn
—=WV

WER [%]

24 c3 c2 c1

Co
Condition

Figure 7.10: Word error rates on the WSJO task at transmissier the packet-
switched network with 2 feature vectors per packet.
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Figure 7.11: Word error rates on the WSJO task at transmmissier the packet-
switched network with 4 feature vectors per packet.

bit error scenario (GSM transmission), here employing #éawice of the feature
posterior density at recognition D1, yields better results than by neglecting it,
as is done bMiM SE1. This can be attributed to the fact that the feature posterio
variance can be high, especially in the middle of long burskere it approaches
the variance of the feature prior. Obviously, since all infation is lost during
bursts, the longer the distance from the unreliable featutbe burst ends, the
smaller the amount of mutual information that can be utilize

The use of more complex source models, which are better alskproduce
redundancy, e.dJD1-dyn, MM SE1-dyn, is also beneficial in this case, contrary
to the scenario with bit errors where modeling of featuréstomponents alone
was enough to obtain a feature posterior having a smallvegia

The WV technique performs close tdD1. Although it does not explicitly
exploit the correlation between consecutive featé¥, assumes that the obser-
vation probability of the lost feature vector depends on tliahe closest neigh-
boring vector. As shown in [66], an exponential dependescyppropriate and
can be confirmed by measurements on experimental data.

If the loss bursts are very long, which is more likely to hapger example, by
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using more features per packet under poor channel congljtaanshown in Figure
7.11, the uncertainty decoding tends to lose effectiveoesgaring toVV. This
can be an effect of the simplifying approximations that waeesle about the feature
posterior and prior densities, and possibly insufficieainting of the latter. They
become critical in the middle of long bursts when the feaposterior and prior
densities should be almost equal, but the estimation yietthstantly different
values. The observation probability is therefore still HMk&te dependent which
means that marginalization is not correctly performed. sTdan be avoided in
practice by simply applying marginalization in middle ohbpbursts rather than
by computing the posterior by FB, see also Section 9.2.3.1.

Note that the similar performancedfV andUD1 is normally to be expected.
In the Chapter 10 it is even demonstrated that weighted Wiiisrnothing more
than a particular case of more general uncertainty decoding
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Chapter 8

The application of uncertainty decoding to
channel-error robust NSR

In Network Speech Recognition the feature vectors are ctadgt the server side
from the decoded speech waveform. The channel errors &fféds case the data
stream of coded speech rather than the compressed feaknes.concealment
methods able to deliver the posterior probability of theadksxl speech have been
already proposed in [39, 38]. While the goal there was to agdmpn estimate
(MMSE or MAP) of the decoded speech, we are interested harddothe pos-
terior of the feature vector from the posterior of the decbgpeech. However,
since the computation of one feature vector involves séwamraples of speech
and non-linear operations, this inference is difficult. sSTbhapter shows that in
the case of packet-oriented transmission of coded speech,as voice-over-IP,
an approximation of the feature posterior can be readilgiobt. The basic idea
is to consider the feature vector lost, similarly to DSR opacket channels, if
all (or most of the) speech samples required for its comjmutdtad been lost at
transmission and subsequently reconstructed by PLC. Ttaerieposterior com-
putation methods of Section 7.3 can be easily adapted. Tt¢lepkoss indicator
(PLI) which indicates loss of coded speech frames is useérivala feature loss
indicator (FLI) for the estimation of the feature posterior

The following section presents the setup of a conventiotaiR Nystem which
has been used for evaluating WER under adverse channeliomsdiSection 8.2
explains in detail how the FLI is obtained from the PLI in artieestimate the fea-
ture posterior. The last section of this chapter presentgpenative results on the
Aurora 2 task (see Section 7.1.2) using three widely usedcspeodecs: G.711,
G.729A and G.723.1. The WERs achieved using the codec speeifket loss
concealment (PLC) to reconstruct the speech waveform ameeational recogni-
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tion are compared to those employing proposed uncertagugding.

8.1 NSR simulation system using Vol P

The conventional approach to NSR is depicted in Figure 8.1.

Speech Speech Bitstream
bB coder formatting

c

i)

<

=}

Client side £
_________________ 7]
Server side )
c

@

SR ETSIDSR dsepceo%C; Bitstream G

Adv. FE & PLC PLI decoding

Figure 8.1: Block diagram of the conventional NSR simulagstem.

The coded speech is sent to the server through a packet ¢haBinee the
common transport protocol for VoIP is RTP, the data must beédted according
to some codec specific payload specifications irBitetream formattindplock. At
reception, the incoming data is decoded and usually pacgstioncealment s ap-
plied to reconstruct the missing speech. ETSI feature etxdrais then performed
and the features used for speech recognition.

The performance of NFR over VoIP channels using this setigewvaluated on
the Aurora 2 task. The speech coding was carried out usingldI00], G.729a
[101], and G.723.1 [102]. The packet erasure channel wastledds in the sce-
nario with DSR over packet networks of Section 7.3.1. Theaieder of this
section gives a brief description of the speech codecs aidRhC algorithm:

e G.711[100] has to be supported by all VoIP equipments [108¢ output of
the coder represents logarithmic pulse-code modulatimpkss obtained at
8 kHz. In order to increase robustness in packet networkdeabeding stage
can be optionally provided with a packet loss concealmdnEjRalgorithm
to hide the transmission losses [104]. The PLC assumesntissisn in
packets of 10 ms speech. When a packet is lost, the pitchinsagst using
the most recent 20 ms of speech. Using the estimate, a syn#ighal
is generated for the duration of the lost frame (10 ms). Fes lengths
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exceeding one frame, the synthetic signal is linearly atitad by 20% per
frame and then suppressed (silence) after 6 consecutivigdoses.

e G.729Ais a speech codec using conjugate structure algetode-excited
linear-prediction (CS-ACELP) [101]. The speech signal gked at 8 kHz is
framed into 10 ms chunks. This codec provides a more advapicEdThe
LSF parameters for the lost frame are repeated from thequrslyi received
frame. Similarly, the adaptive and fixed codebook gainsaken from the
previous frame but gradually attenuated. The excitatioritfe lost frame
depends on the classification of the previous frame as vaicadvoiced.

e G.723.1is adualrate coder for multimedia communicati@2]11t belongs
to the class of CELP analysis-by-synthesis hybrid codedse dlgorithm
codes frames of 30 ms signal and can operate at two bit ratgh:rate,
6.3 kbit/s (used in our simulations) and low rate, 5.3 kbit&milarly to
G.729A, it also has a built-in PLC.

Note that for each codec the RTP payload is specified by IET&menenda-
tions. Due to latency constraints a data packet transp0sslof speech for G.711
and G.729A, and 30 ms for G.723.1. Packetization with moezsp frames per
packet, such as is done for DSR, are therefore not of inteezst

8.2 Derivation of featurelossindicator

The speech reconstructed by PLC in the case of a packet eriasiill corrupted.
Consequently, this leads to an unreliable feature in the efeChapter 4. In order
to apply the uncertainty decoding rule, the posterior offésure vector condi-
tioned on decoded speech is required. The method proposedsh® cast the
packet loss indicator (PLI) of the received coded speedhanbinary indicator
of feature reliability (FLI) as follows: If the feature is o@puted from a speech
segment containing predominantly corrupted speech samipde speech recon-
structed by PLC in the speech decoder, it is marked unreliaplksetting the fea-
ture loss indicator. The FLI is subsequently used for fegpaisterior computation,
analogous to PLI in DSR over packet networks.

The block diagram of the NSR system with uncertainty deap@ngiven in
Figure 8.2. For convenience only the server side is depiciee feature vectors
are computed from the decoded speech and quantized int(atﬁmrrpsﬁt. The
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FLI is computed in the blocEquivalent loss indicatorThe algorithm to compute
the FLI depends of the speech codec, as it will be shown Idtee FLI is then
used to generate the bit error probability, i.e. 0 if the deatwas extracted from
reliable speech samples (FLI=0) and 1/2 if the speech sampéee unreliable
(FLI=1). Note that the vector quantization and bit errorlability are still neces-
sary since the a priori knowledge used for feature posteoarputation consists
of prior probabilities of the bit patterns. The posteriongamutation and uncertainty
decoding are carried out as already shown in Section 7.3.

b
N L Speech AFE | [ Feature |k, |ys Zx,ly| UD
channel | p || decoder Pe, | posterior ASR
simulation—1— &PLC vVQ

Equiv. |g | Equiv.
loss Bit error
ind. probability

Figure 8.2: Block diagram of the simulation system for NSRroN° with uncer-
tainty decoding (only server side processing).

The algorithm to derive the feature reliability from the getloss indication
provided by the communication channel is given in the follayassuming the
G.711 speech codec. In the absence of losses, the decodimg speech frame
uses only the information from one data packet. Thus, a ladtet affects exactly
one speech frame and has no effect on subsequent framesedthesfextraction
process is depicted in Figure 8.3.

The dashed region in the upper part of the figure denotesligat’t frame
of coded speech has been lost. The 10 ms of speech correspgdadhis packet
is reconstructed by PLC and thus is unreliable, and is repted in dark gray,
whereas the other frames are reliable and represented &s nebtangles. Ac-
cording to ETSI-AFE, the feature vectors are computed fremrlapping speech
segments of 25 ms (200 samples at an 8 kHz sample rate). Howveator the
window shifts 10 ms (80 samples). E.g. the windofrom which the feature is
computed contains 10 ms from decoded speech frad@®ms fromt — 1 and 5 ms
fromt — 2. Thus, it can be easily observed that an unreliable speaantefat time
t affects not only the featurebut also its successotst 1 andt + 2 since their
windowed signal contains samples of unreliable speech.hAsvindow is cen-
tered on the middle of the frame, the feature at1 (dark gray) is more affected
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Figure 8.3: Derivation of the feature loss indicator (FLhrh the packet loss in-
dicator (PLI)

than those at andt¢ + 2 (light gray). It means that the most unreliable feature is
obtained in the next frame after the loss, i.e. after=10 ms. By the subscript
F'E (Feature Ktraction) it is meant that the latency in reaching the maxmof
unreliability after a lost frame is a characteristic of teature extraction and does
not depend on the speech codec.

Another effect which has to be considered when deriving thlei$-"codec
memory noise”, as it was termed in [19]. The authors obsetivat] due to the
predictive nature of the encoding process, the speech decmegds some time
(frames) to recover after a lost/bad frame until it can poedan output which
is again close to the original uncoded speech. This meanstea if the PLI
indicates a correctly received frame, the decoded speegtitistill be affected by
some preceding lost frames. The time elapsed between thketdass event and
observing its effect on decoded output is denoteddgnd depends on the speech
codec. Note that G.711 codes each sample independentlg oftlers and shows
therefore no memory noise effect. The packet loss is imnielgimoted at the
output f = 0), as the reconstructed frame significantly differs fromdhiginal
one. For the G.729A and G.723.1 we have experimentally ohted arc of 10
and 15 ms, respectively. This has been done by measuringtaimtg decoding
performance with various: to find an optimum.

In order to encompass both effects described above, the &ayed byr =
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TrE + 7o gives a binary indication about the reliability of each 10segment of
decoded speech. Under these considerations we devisetlltiveirig rule to clas-
sify a feature vector: The feature vector is consideredugted, i.e. FLI indicates
feature loss, if at leasB segments of 10 ms involved in its computation contain
corrupted speech. Since a feature vector is computed usimys2of speechp
may take the values 1, 2, or 3 and therefore can be easilyndieted on an exper-
imental basis.

This is shown in Table 8.1 which gives the WERs obtained u#iegG.711
(a-law) speech codec with PLC and performing uncertaintpdang for possible
values of B. The best choice i#=2 which yields the best performance. With a
smallerB, i.e. B = 1, the feature is declared lost even if only 10 ms of the 25 ms
window (less than half) is affected by the erasure. Thisalidetoo much useful
information. With B=3, features classified as reliable might exist althoughoup t
20 ms of the windowed speech is corrupt. Thus, corruptedifeatare deemed
reliable which leads to mismatch.

Table 8.1: WERSs [%] on the Aurora 2 task with NSR employing 3. Ta-law)
with PLC and uncertainty decoding is the minimum number of cor-
rupted 10 ms-segments required to declare a feature veuteliable.

| Condition| C1 | C2 [ C3 | C4 |
B=1 ]0.99]1.19] 4.83] 10.25

B=2 099 1.02| 1.68| 2.95
B=3 0.99| 1.06| 2.20| 3.61

8.3 Evaluation of robustnessin an NSR scenario

The setup of Figure 8.1 was employed first to carry out redagntasks using
each of G.711, G729A and G.723.1 codecs. The channel modelemnel con-
ditions (CO,...,C4) were those used for DSR over IP netwofke goal of these
experiments was to obtain the performance of the conveailtdd8R system where
the features are extracted from decoded, possibly PLC sticarned, speech.

The simulations with uncertainty decoding used the setdjgafre 8.2 and the
threshold for declaring the feature unreliablefas- 2.
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The WERs obtained with G.711 speech coding algorithm arevshio the
Table 8.2.

Table 8.2: WERS [%] on the Aurora 2 task with NSR employing13.7

| Condition | CO | C1 | C2 | C3 | C4 |
G711 [0.90] 0.95] 5.23] 29.5[ 48.9
G.711-PLC| 0.90| 0.94 [ 1.22] 358 8.64
G.711-UD [ 0.91] 0.93] 0.98 | 1.60[ 2.95

Since the PLC is an optional part of G.711, the row labeledlG shows the
WERSs obtained without PLC. The missing segments of the $peageform were
simply filled with zero (silence). The second row shows theREEvhen PLC is
performed. It can be seen that the PLC is beneficial for reitiogrsince WER
drastically decreases particularly under adverse camditi The row G.711-UD
shows the results for recognition with uncertainty(1, exploiting temporal cor-
relation, Eq. 4.38). The features computed from more tham&@peech recon-
structed by PLC B = 2) were considered lost and their posterior density was
estimated as in DSR over packet channels scenario, otleetinéy were deemed
reliable. By considering the uncertainty, the system bexowery robust as re-

gards packet erasure, e.g. at 38% loss ratio (C4) the WER iis than halved
compared to G.711-PLC.

The Tables 8.3 and 8.4 present the WER achieved using along with the
G729A and G.723.1 codecs, respectively.

Table 8.3: WERS [%] on the Aurora 2 task with NSR employingZ9A&.

| Conditon | co| c1 ]| c2| c3 | c4 |
G.729A-PLC[ 1.60] 1.77] 3.99 [ 16.47] 27.36
G.729A-UD | 1.60| 1.65] 2.91| 7.62 | 11.90

Note that even in the error-free condition (C0) the mismattiween the acous-
tic model trained with uncoded speech and the features ctwdpgrom decoded
speech produces a degradation in WER. While with G.711 apadely the same
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Table 8.4: WERSs [%)] on the Aurora 2 task with NSR employingZ3.7.

| Conditon | co | c1 | c2| c3 | c4 |
G.723.1-PLC[ 1.88] 2.60 7.30 [ 26.76] 40.00
G.723.1-UD | 1.88] 1.98] 3.56 | 11.36| 19.97

word error rate is achieved as without speech coding (0.86%¢reases to 1.60%
and 1.88% for G.729A and G.723.1, respectively.

For all three codecs, the improvement achieved by unceéytdeacoding com-
pared with the performance of the same codec by standardm#iom ignoring
uncertainty is considerable. Note, however, that the tigarhere is not a perfor-
mance comparison between codecs, as this would also needrikigleration of
bit rates, packetization schemes etc.



Chapter 9

Computational complexity and speed-up
methods

The novel uncertainty decoding rule proposed in this wonilies inherent latency

(algorithmic delay), additional computational expensetifie feature posterior es-
timation and for the feature log-likelihood evaluationgaso an expansion of the
acoustic search space. This chapter analyses the negativesf mentioned above
and proposes simplifying assumptions and techniques aahsgdeeding up the

computation.

9.1 Error burstsdetection

In the computation of the feature posterior at the tirreccording to (4.38), all
past and future observatioss, . .., yr of the utterance are required. This im-
plies that the computation has to be performed off-linerafte whole sequence
of features has been observed. Whereas this is the gensealtere all observa-
tions are assumed unreliable, in a practical situatiorh) ag@ packet loss scenario,
the reliable and unreliable regions of an utterance altersa that the latter can
be isolated in bursts as depicted in Figure 9.1. The figurevshibbe received se-
guence of feature vectors (observations) of an utterdfice, 9. The unreliable
observations, i.e. where transmission errors occurredregoresented as dark ar-
eas while the reliable observations are shown in white. Baéufe posterior of
a reliable feature vector is, as discussed in Chapter 4,ta Balac distribution,
e.g. p(x2ly?) = p(x2ly2) = d(x2 — y2). Since the observey is reliable, it
already contains all knowledge abaut rendering the neighboring observations
unnecessary. Due to similar considerations, within arréwicst, e.g. at = 5, the

111
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Figure 9.1: Sequence of feature vectors of an utterancete®eaireas are cor-
rupted.

feature vector posterior is conditioned on all unreliabbservations within that
burst as well as on the last and first reliable observatioareeind after the burst,
respectivelyp(xs|y?) = p(xs|y7).

In the case of DSR the burst detection by CRC and data consjstsheck
described in [12] can be used for our purpose. Thus, it cambeleded that if the
observatiory; is reliable, the computation of the feature vector posterig; |y?)
implies no algorithmic delay, i.e. does not need the futlrseovation(s). Within
an error burst the algorithmic delay can be as high as thd langth, as in the
case of the nearest frame repetition approach of ETSI-AFE.

Note that the speech decoding process itself, even unddimeaconstraints,
implies a variable latency from the end of word, until the deequence up to that
point is decoded. Compared to this, the latency due to thareaector posterior
computation during error bursts is quite small, but is antgatthl disadvantage.

Besides making on-line processing possible, error butsttien significantly
contributes to computational reduction. This is becausectimputationally ex-
pensive estimation of the posterior by the forward-backledgorithm needs to be
done only within bursts, whereas outside them the postegstmation is trivial,
as it is a delta Dirac PDF.

9.2 Featureposterior computation

Assuming that the feature posterior is Gaussian with a diabmovariance matrix,
the evaluation of (4.43) requires first the estimation offhdimensional meap,

and D-dimensional variance vecter?. These parameters are obtained from the
probability mass function of the transmitted bit pattereagl@scribed in Section 6.5
at relatively low computational expense. The most commratly intensive step

is obtaining the posterior probability mass function of ttesmitted bit patterns,
since it (only that ofUD1) implies the forward-backward (FB) recursion. The fol-
lowing paragraphs evaluate the computational compleXityeoFB algorithm and
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propose approximations that lead to a drastic reductiomwofdexity at marginal
cost or even no loss in accuracy.

9.2.1 Complexity of the Forward-Backward algorithm

In the view of Section 6.4.3, the unobserved sent bit pattezpresent the states
of a hidden Markov model. There are as many states as thepoaséle values
for the sent bit patterr2¢/, with M being the number of quantization bits). The
forward recursion (6.15) gives a computational complegitthe order of22M
operations per iteration if we assume for simplicity that HIMM states are fully
connected. This is because there 2té - 2 possible transitions that must be
evaluated at each iteration. Since there is a forward anctlanzad recursion, a
factor of two must be also considered. These altogetheltiesa complexity of
the order22™+1 per subvector and frame. For the vector quantization scleme
ETSI-AFE, the contribution of the seventh subvectoy (M = 8) dominates, as
the other subvectors are quantized with 6 or 5 bits. Hencedheplexity may be
as high as abowt'” operations per frame. This is an upper bound of complexity
since in practice the HMM states are not fully connectedltiespin fewer transi-
tions to be evaluated. This is a consequence of continuitgtcaints along each
dimension to which the feature vector has to adhere. That@ni between two
frames cannot therefore exceed some specific threshold ¢dasistency test of
ETSI-AFE exploits the same principle) and therefore notralhsitions between
consecutive VQ centroids (HMM states) are possible. By ictamsg only the
non-zero probability transitions in the FB recursion, tbenplexity is well below
the computed upper bound. Measurements on a workstatitn2:8t GHz Intel
Xeon 5140 have shown that feature posterior computatiocti(®e6.4.3) includ-
ing FB and subsequent steps, needs about 0.3 ms per framespamding to a
real time (RT) factor of 0.03. Depending on the recognitiasktthis may repre-
sent a significant portion of the processing time. This abersition shows that a
reduction of computational effort is highly desirable.

9.2.2 Forward approach for computation of the feature poste-
rior
The computational burden of the feature posterior comjmtatin be easily halved

by considering only the forward recursion. This approxiorahas been used in
[50, 67, 90]. By doing so, the correlation between the curbénpattern and its
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successors is neglected and thus, only the dependency pretiiecessors is con-
sidered:

P |bT) ~ P(b{”|b}) 9.1)

In this case the bit pattern posterior is computed using einwerd probabilities
oy (i) (see Eg. 6.15) as:

Oét(i)
2M 1

> u(d)

Jj=0

P(b{’[b}) = (9.2)

Note that by using only the forward recursion, the algorithdelay, see Section
9.1, associated to the backward recursion is eliminatet dan be an advantage
for applications that do not tolerate such a processingydelg. [39].

The approximation (9.1) results in performance loss esfigcunder poor
channel conditions. Tables 9.1 and 9.2 show for comparfs®recognition WERs
on the Aurora 2 task obtained using the forward-backwangrséan UD-FB (which
is same as$JD1 of Section 7.1.1) and forward-only recursion UD-F. The ekpe
mental setup was DSR over GSM with physical layer simulafionTable 9.1 and
DSR over IP for Table 9.2, respectively.

Table 9.1: WERs on the Aurora 2 task for DSR over GSM

[CN[dB] | 25] 4 | 55| 7 [ 10 |
| UD-FB | 1.15] 0.90| 0.89] 0.87 | 0.86 |
| UD-F [1.32]0.93]0.90] 0.88] 0.86 |

It can be observed that in the GSM scenario, the loss of pagnce by only
making the forward approximation is not significant. Thisdze attributed to
the fact that, unlike with the IP scenario, usually not afbimation of a frame
is erroneous (lost). The observed feature vectors ardrftiimative enough to
produce a good posterior estimate, even conditioned orepesgors only. The
amount of information gained by also considering the susmsss small.

In the IP scenario, the gap between forward and forwardibaak is more
pronounced. Since there are no observations during thélossts, the posterior is
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Table 9.2: WERs on the Aurora 2 task for DSR over IP, two feattgctors per
packet

| Cond. | C4 | c3 | c2[ c1] Co |
| UD-FB | 3.09] 1.66] 0.98] 0.90| 0.86 |
| UD-F [ 4.93]2.50] 1.09] 0.90] 0.86 |

in fact conditioned on the last observation before and tisedinservation after the
burst, respectively. Clearly, the forward recursion ekplonly the last observation
before the burst which becomes less informative toward tideoé burst, resulting
in degraded performance.

In conclusion, the forward approach is suitable for DSR @#euit-switched
channels but yields poor robustness to packet loss.

9.2.3 Tablelookup approach

This section presents a method to speed up the forward-taadkecursion, which
is applicable in case of DSR over lossy packet channels.r&igi2 depicts a se-
guence of bit patterns observed at the channel output, wwhergark areas corre-
spond to lost bit patterns. The bit pattern sequence wasmeered starting from
the last correctly received bit pattern before the losstbui¢e are interested in
computing the bit pattern posterior for= 2...7 — 1, since for the correctly
received frames conventional decoding can be used, seiers8ct.

lost

T
A\

received ! : received
: —

Figure 9.2: Sequence of bit patterns affected by a loss.dDaited areas are lost.

As has already been mentioned in Section 6.3, the trangtmability for the



116 Chapter 9. Computational complexity and speed-up methods

bit patterns within the burst is constant and independeth@®bit pattern index
(i), i.e. P(Bt|bf’),zt) =const.i=0,...,2 —1;t=2...7 — 1. Thus, using
that the posterior is invariable to particular scalingwdf) and3(:), the forward-
backward (6.15) recursion can be simplified to:

oM _1

arn(i) = > ()P b)) (9.3)
7=0
oM _1

Bi()P(bY bl )

Be—1(1)

j=0
Further, by defining the row vectors:
oy = (Oét(O), ey ozt(ZM — 1)) (94)
By = (Bi(0),....5:2" 1))

and the(2M x 2M)-dimensional matrix of HMM state transitiongA);; =
P b{",), the Egs. 9.3 become:

oyl = atA = alAt (95)
Bi1 B A’ = Br (AT, (9.6)

whereA’ denotes the transposed matrix and the initialization veetg and
B are:

ar(i) = P(bi[bl") =0(i i) (9.7)
Br(i) = Pbrbl)=0d(i i), (9.8)

with i, andi. being the indices ob, andb respectively.

9.2.3.1 Matrix lookup

The Egs. 9.5 and 9.6 show thatAf* and A”—**+! are computed in advance and
stored, the most computation during runtime can be savede siomputingx; 1
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reduces to selecting thg-th row of the matrixA?, whereas computing, re-

duces to selecting thg-th column of A”—t*1_ If the matricesA, A%, ... AL

are stored, the Egs. 9.5 and 9.6 allow the processing ofsofsa maximum
length L. Obviously, the memory demands increase correspondirsglyeaneed
to storeL, matrices instead of one. For the quantization scheme ugéeé BTSI-
AFE for DSR [12] this amounts td x (5-2%6 +1.225 +1.228) = [ x 87040

values.

The memory demands are therefore dependent on the maximsinidrgth
which may occur. However, this cannot be known in advancf8hwe observed
that the depth. can be limited to a suitable value without loosing perforoen
The rationale is that there exists a degittbeyond that the matriA*, & > L,
does not significantly changes and can be approximatedl®y This is a known
property of a Markov chain [105] stating that, independdrihe initial state dis-
tribution, after enough iterations, stationarity is aghkig. This means that the state
distribution at timet, which is obtained as a product of initial state distribotémd
A tends to the a priori distribution. The forward and backwagdursions are
schematized in Fig. 9.3.

—>

a1 arA O(1A2 O¢1ALE a1 A>®

BrA® iprAl ... BrA? BrA  Br

Figure 9.3: Forward and backward recursion if transitioobability is constant
within burst. Iterations stopped aftérsteps in each direction.

We carried out experiments for variodisn order find a suitable value. Table
9.3 shows the WERs on the Aurora 2 task assuming a DSR ovetup aed using
the table lookup method with limited depth For convenience the baseline results
using the original forward-backward algorithm (UD-FB) aiieen as well.

It can be concluded that for this recognition task, a depth- 4 provides
enough accuracy for processing bursts of any length.



118 Chapter 9. Computational complexity and speed-up methods

Table 9.3: WERSs on the Aurora 2 task for DSR over IP with lookugthod, two
feature vectors per packet

Cond. | C4 | c3 | c2[ c1] co |

UD-FB | 3.09| 1.66| 0.98 | 0.90 | 0.86
L=1 410| 2.20| 1.09| 0.90 | 0.86
L=2 3.42| 1.88| 1.04| 0.90| 0.86
L=3 297|1.68| 0.99| 0.90| 0.86
L=4 2.80| 1.60| 0.97| 0.90| 0.86
L=5 2.80| 1.60| 0.97| 0.90| 0.86
L=6 292] 1.60| 0.97| 0.90| 0.86
L=8 299| 1.66| 0.98| 0.90| 0.86
L=12 | 3.08| 1.66| 0.98 | 0.90 | 0.86
L=14 | 3.09| 1.66| 0.98 | 0.90| 0.86

9.2.3.2 Suboptimal approach

The above solution is aimed at reducing the computatioriattdfut at the cost
of increased memory demands. While this could be achievéd evily minor

approximations to the original FB algorithm, a dramaticuetitbn of memory de-
mands can be achieved by a suboptimal approach.

This is based on the fact that the correlation between twinifesx; andx;_ ,
weakens by increasing This has been experimentally proven as shown in Table
9.4 which gives the mutual informatiof(b;;b;—.) = H(b;) — H(b|b:—,),
whereH (b;) denotes the entropy of the bit pattdsp I(b;; b,_,) is a measure
of the information aboub,, that is contained i;_, and thus indicates whether
it is useful to utilizeb,_, for the reconstruction ob;,. The values have been
obtained using the ETSI-AFE on the Aurora 2 training set. alt be seen that
I(bs;b,_,) becomes smaller (tends to zero theoretically)-aacreases. Note
that if the conditional entropy equals the unconditionad, tows ofA™, become
equal to the a priori distributio® (b, ) ) [105, p.161]. This property was used
also in the matrix lookup approach. Eq. 9.5 states (Adt);; is none other than
P(bij) |b§27) which becomes independentidir a large enough.

This property can be exploited at least for long bursts wiileeedistancer
between the lost feature and one burst end is large enoudtasthe statistical
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Table 9.4: Entropies and mutual information amép@ndb;_; produced by the
ETSI advanced DSR front-end.

Subvector || SU1 | SV2 | SvU3 | SU4 | SUs | SVg | SvU7 |

M 6 | 6| 6| 6| 6] 5| 8
H(by) 58| 58| 58| 58|58 48| 7.7
I(bisbi1) || 26 | 21| 1.6 | 1.4 | 12| 1.0 3.4
I(biibi2) || 1.7 1.3/ 09] 08| 07| 06 2.8
I(bisbr3) || 1.2 09| 07| 06| 05|04 21
I(bi;br4) || 09| 07| 05| 04| 03| 03] 18
I(biibis) || 07 05]03] 0302|0214

dependency of that burst end can be neglected. Thus, in shddéilf of the burst
the bit pattern posterior depends mainlylenso that is can be approached by the
forward probabilitiese. Similarly, in the second half of the burst the posterior
depends mainly ob so that only backward probabilities can be used.

PbI|by) ift<

o 9.9
P br) ift> (-9)

P(b{"|bT) ~ {

vl s

According to the definition oéx and3, the above equation comes out to:

e itt<3
P(b"[bY) 5 (9.10)
¢ 1Pb1) =~ B, (i) P(b® . .
OO IR
2220 Be ()P (b))
Using the vector notations (9.4) and
c = [C(O),...,C(QM*I)}, (9.11)
M _
2 = [(c<0>)2,...,(c<2 1>)2} (9.12)

for the vector of codebook centroids and their squared galtespectively, the
mean and variance of the feature posterior can be expressed a
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2M 1 .
i ou(i) cay’ a9y,
Nzt|61 Z ()21\4_1 = Eat - ZalAt [ 28] (913)
=0 > a(j)
7=0
el (i)
2 7 2 t
UT/tlBl = Z (C( ) - Mmtll;l) ’ 21%_1 (914)
=0 > au(j)
7=0
_ o2 Ay ) (A", s
= ¢ .ZalAt.al_QMxﬂblC.ZalAt.a1+/j/mt‘f)17

where the) " a; denotes the sum of all elements of the veetor

The advantage is that the expressiongAt)’, ¢? - (A?), and}_ a; At are
vectors of lengti2, which need considerably less storage than the maifinf
size2M x 2M and they can be computed prior to recognition.

Similar expressions can be found for the second half of thsthifiwe denote
by P a matrix having a priori probabilitieB(b(*)) on the main diagonal:

oM _1

cD8,(i)P(b™) c(B:P)’ cPAT! /
' = - = = . l
Majt‘bT Z oM _q ) ) ZﬂtP ZPAT,tﬂT IBT (9 5)
=03 B(j)P(bW))
=0
) oM _q o ) Bt(l)P(b(z))
Uzt‘E‘T - Z (C o Mait‘f)T) ’ oM _1 (916)
=0 > Bi(5)P(bWD)
=0
c2PAT? , cPAT-t P
= SPAT gy PT T b SSpAT gy PT T b,

Here, the expression®PAT—*, c2PAT—t, and>_ PAT~!3r are vectors of
size2M,

Thus, for the ETSI-AFE quantization scheme the memory requents are
reduced fromL x 87040, in the previous approach, t x 6 x (5 - 26 + 2° +
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28)=L x 3648. This is a dramatical reduction (23 times) achieved by conigi
the bit pattern posterior estimation and the feature vemsterior estimation into
one step. Moreover, becauag is a vector of zeros except of a one at positipn
its multiplication by another vector, e.g? - (A!)’, results in simply selecting the
st" element of that vector. A similar operation can be done foltiplication by
Br-

Table 9.5 gives the WERs on the Aurora 2 task assuming a DSRBwsetup
and using the above approximation (and limited deptk- 4) in comparison to
the baseline using the original forward-backward algaonith

Table 9.5: WERs on the Aurora 2 task for DSR over IP using tb&up method,
forward probabilities in the first half of burst and backwardhe sec-
ond.

| Cond. | cC4|cC3]|cC2]cC1]cCo|
| UD-FB | 3.09]1.66]0.98]0.90] 0.86 |
| UD-F&UD-B | 3.16 | 1.79] 1.03] 0.90 | 0.86 |

9.2.4 Multi-resolution approach

A complexity reduction approach which can be used for batfetior or packet-
loss channels has been proposed in [106]. Since the corgmahtomplexity

increases exponentially with the number of quantizatids ibiis obvious that a
lower resolution would be beneficial regarding reductiorcafmputation. How-

ever, the vector quantization scheme of the ETSI-AFE DSRdstal [12] ensures
a good trade-off between a limited channel bit rate and adbsscognition accu-
racy due to quantization errors, thus, changing it is nottion.

The idea of the multi-resolution approach is to assume ti@sburce emits
features quantized at a lower resolution only within th@eburst periods. The
reason behind this thinking is that due to channel erroestrigmsmitted feature
cannot be recovered at original resolution anyway, thuyaase representation
should be sufficient. Note that the assumption of lower rég&m during error
bursts does not incur any modification of the standard. Thegsed scheme is
still fully compatible with the standard!
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The following example might be useful in helping to undemsitthis principle.
Let us assume that the channel is completely unreliablesgdtth feature posterior
p(x¢]y) equals the priop(x; ), see also Section 4.3. This happens no matter which
resolution was used for quantization. Consequently, usiagriginal ETSI-AFE
resolution in (6.21) yields the same result as using an edhe coarse quantiza-
tion with one centroid, i.eM = 0. Indeed in this case there is only one term in
the sum of Eq. 6.21 and its bit pattern posterioPib(?)[bT) = 1. The source
model has only one state whose cluster conditioned prabadénsity is the prior
feature probability densityo(xt|b§0)) = p(x¢). Using this in (6.21) we indeed
deduce thap(x:|y) = p(x:), however, avoiding the FB algorithm at the original
ETSI resolution.

Note that the channel transition probabilities requiretthenFB algorithm must
be projected on the lower resolution space by:

oM _q
PO LM = 3" PBP DY) P b") (9.17)
1=0

whereb!™ denotes the:*" bit pattern of the lower resolutior{) codebook,
P(b(k)|b( )) are the channel transition probabilities of the originallation bit
pattern andP(b(L)|b(”)) represents the probability of the sent bit pattéffy
when the corresponding lower resolution quantizationxnad€bit patternbt”))
is known. This latter term is assumed constant for thissilling in then! lower
resolution cluster and zero otherwise. In a packet lossasethis computation
can be saved, except for the burst begin and eéng (1 andt = T') since the
transition probabilities within the burst do not affect thiepattern posterior.

Do (n sent bit patterrbi” received bit patterﬂi)ﬁk)
P(b;"[b;") :

/—\ PO

low resolution (\/) original resolution (/) original resolution (/)

Figure 9.4: Channel transition probabilities from the l@galution feature to the
received one at original resolution.
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While the 0-bit resolution of the previous example is egl@mato marginaliza-
tion, known to cause performance degradation, a finer résolbut still coarser
than the original can provide computational savings at aaiograceful degrada-
tion of performance. This is shown in Table 9.6 where the Aagbtask over an IP
channel was carried out assuming various fixed resolutiariagithe loss bursts.
E.g. in the first column, the string666658 denotes the resolution of the quanti-
zation scheme used in the ETSI-DSR standértits for the first five subvectors
sy, ..., svs, then 5 bits forsvg and 8 bits for the last subvecter;. For the
other resolution settings, we trained correspondingly@orequantizer for each
subvector using the Generalized Lloyd Algorithm.

The second column gives the upper bound of the computataoraplexity
per frame, computed as in Section 9.2.1 and cumulating th&ibation of each
subvector. Additionally, the computing time for error ceatment per lost frame,
measured on a workstation with 2.3 GHz Intel Xeon 5140, isigiwn the third col-
umn. Although the absolute values are highly dependent @pitbcessor speed,
they indicate a reduction of complexity close to the estedaine. Comparing the
complexities of resolutio666658 and 5555555 it can be seen that if all HMM
states were connected, reduction of complexity by a fadtdOneould be possible
without any performance loss. In practice, the computingetivas reduced by a
factor of6.6.

At resolutions lower than 4 bits the performance starts graide, where the
degradation is strongest for the worst channel model C4.

Table 9.6: WERs on the Aurora 2 task at various resolutiommduoss bursts.
| [ [9) [tlus][ c1 [ c2 | c3 | ca ]
6666658 || ~ 217 337 [ 090 098] 1.68 | 3.13
6666657 || ~2-21° [ 190 | 090 | 0.98 | 1.73 | 3.19
6666656 || ~6-213 | 148 | 0.90 | 1.00 | 1.73 | 3.13
5555555 || ~7-21 | 51.0 | 0.90 | 1.00 | 1.76 | 3.21
4444444 ~7.29 | 175 ] 090 | 1.02 | 1.83 | 3.19
3333333 ~7-27 6.4 | 0.90| 1.07 | 1.80 | 3.37
2222222 || ~7-2° 32 | 090 | 1.27| 259 | 4.93
1111111 ] ~7-2% | 193 | 090 | 236 | 7.67 | 13.14

Improved recognition accuracy can be achieved if a Markodehis used for
both the clean static and dynamic components of the featate i.e. the source
model of Section 6.4.4. In the second experiment the impnare by using this
augmented source model is evaluated. In order to limit cerify, only a coarse
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quantization for the dynamic components was used: 3 bitfirgirorder deriva-
tives (velocity) and 1 bit for second-order derivativesfderation). Still, the com-
plexity increase is considerable. While for the quantaatable of the static com-
ponents only, the finest resolution, i.ev; with 8 bit quantization, resulted in a
value of the complexity measure ®f’, this is now increased (28 3+1)2 = 225

in the case of a source model for static and dynamic featilet® that the actual
complexity is much lower since the HMM transition matrix jsasse at that res-
olution. While the number of bits for the dynamic featureswkapt fixed at 3
bit for delta and 1 bit for delta-delta, the resolution of gtatic components was
successively decreased, as is indicated by the left colunTalde 9.7. The re-
sults show that for resolutions down to 5 bits, dynamic fesgyield noticeable
improvements. At resolutions of 4 bits and lower, the worcugacy is limited by
the resolution of the static features, i.e. the augmentectsanodel no longer has
a pay off in increased word accuracy.

Table 9.7: WERs with the augmented source model (static gnerdic compo-
nents): 3 bit delta, 1 bit delta-delta.
| [ 6] [tms] | C1 [ C2 ] c3 | C4 |
6666658 ~ 225 64 | 090 093] 1.53 | 2.54
6666657 || ~ 2223 30 | 090] 094 156 | 2.62
6666656 || ~ 7221 22 | 090 093] 1.53 | 2.60
5555555 || ~ 7219 73 [ 090] 097|161 271
4444444 || ~ 7. 217 23 [ 090] 098] 1.73 | 3.17

It can be concluded that a considerable speed-up (up to &)iméh hardly
any degradation in word accuracy, can be achieved by singdyraing a lower
quantization resolution of the received feature subvscice. M/ = 5. With the
extended Markov source, which includes dynamic featuresdingM = 5 for
static componentsy/ = 3 for delta andM = 1 for delta-delta), the state space
and thus computational complexity of the FB algorithm issidarably increased
requiring as much time as the feature sampling period (10 rjte that the
average computation time per frame is actually lower siheétt pattern posterior
need to be evaluated by FB only for unreliable/lost framdsgnas for reliable
onesitis a Dirac PDF.

The resolution at which the erroneous frames are to be psedessin be either
fixed or can be changed on-the-fly according to the burst tereg we did in
[106]. In the latter case the variable resolution contesub further reduction of
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computational complexity. E.g. by processing the burstiodpngth 8 atM = 3

and those longer a/ = 4, the processing time per frame decreases from 17.5
(fixed M = 4, see Table 9.6) to 1fls. This corresponds to a 30-times reduction
of the processing time per frame at original resoluti66658 (337uS).

9.3 Computation of observation log-likelihood

In an HMM based recognizer with diagonal covariance mixtlemsities, the com-
putation of (4.39) is usually done in log-likelihood doma@onsidering for sim-
plicity one mixture component, the log-likelihood comptida is usually imple-
mented as:

D D
1 1 (x (Tt,d — ps,,a)”
log p(x¢|st) = —5 log H 210l 4 — 3 E fd M 2)’ (9.18)
d=1 d=1 Sud

with D denoting the feature vector dimensionality. Since the pecbdh (9.18)
does not depend oxy, its logarithm can be computed in advance for each state
s and stored as part of the acoustic model. By doing so, the atatipnal load
reduces to the evaluation of the sum.

By applying the uncertainty decoding rule (4.48) the rigand side of (9.18)
becomes:

1 1 (1 f7 MSf d)
—51091_[277(0?1‘,,(1"‘0;,(1 ~5 < (9.19)

Since the varianceghd changes according to instantaneous channel proper-
ties, the logarithm of the product and the sum in (9.19) havieet evaluated for
each active state. The computation of the logarithm of tloelypect can no longer
be done in advance. In the experiments the computation 48400k 1.4 times
longer than (4.39). Note, however, that (4.48) needs to bgpcted only for un-
reliable features, i.e. within the error bursts. For théat#é features the simpler
expression (4.39) can be used.
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9.4 Theimpact of uncertainty on the acoustic search
space

An unfavorable side effect of techniques which broaden treeovation probabil-
ity densities, such as weighted Viterbi recognition or uteiaty decoding, is that
the search space increases considerably due to reduceiniistion capabili-

ties between the word hypotheses in the presence of untetiaervations. As
the observation probability of an unreliable feature tetudbe the same for all
model states, the beam pruning loses efficiency and the nuofibactive” states

increases. This effect is illustrated in Figure 9.5 whee tiamber of states is
plotted over the time during an utterance. The curve PLI tesiihe binary packet
(feature) loss indicator which is zero for a lost featuretoeclt can be observed
that during periods without losses the number of statesiated per frame using
uncertainty decoding rule tends to be the same as that ebt&imo-loss condi-
tions. When a feature loss occurs, the uncertainty decadiqgires to evaluate
significantly more states than in no-loss conditions.

4000 T T
conventional
L with UD L
g 3000 PLI
Ic]
o 2000 3
2
3
1000 -
0 / 1 \ [\/—\ [\ /\ 1 \ 1 /\ /\/—\ 1 1 [\ 1 1 1
20 40 60 80 100 120 140 160 180 200 220

time [10ms]

Figure 9.5: Number of active states vs. time in the conveaiiand uncertainty
decoding of an utterance.

Table 9.8 shows the average number of active states per fiantiee WSJO
task during thaJD1 experiment of Section 7.3. The beam pruning threshold was
kept constant. The last line shows the slowdown factor ofélcegnition, relative
to decoding time in error-free condition, when the uncetiadecoding rule is
employed for unreliable features. Under the most crititelrmel condition (C4)
recognition was slowed down by a factor of 2.3. This is exm@diby the increased
search space on one hand, and by the more intensive congouta(i4.48) on the
other.
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Table 9.8: Average number of active states per frame for tBdOtask.

Conditon | CO | C1 | C2 | C3 | C4 |
Active states/framg 1035| 1038 | 1098 | 1319 | 1516
slowdown factor 1.0 1.0 1.2 1.8 2.3
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Chapter 10
Special cases of uncertainty decoding

This chapter is aimed at strengthening the focus of this Wgrtudying how other
decoder-based robustness techniques, namely the Missatgreé Technique and
weighted Viterbi recognition (see Section 2.4) are reldtedncertainty decod-
ing. It is shown that they can be obtained as special casdseaibre general
uncertainty decoding rule proposed in this thesis.

10.1 Missing Feature Theory

According to MFT, a feature vector (or a component of it) ighei reliable, in
which case its contribution to the acoustic score, i.e. theeovation probability,
is computed as usual, or it is unreliable and does not catériat all. There is no
intermediate case in that the feature vector is partly iadsld, to be accounted for
by an attenuated contribution to the score. The principfelmapplied to each
feature vector component. By separating the full vegtomto reliablex,, and
unreliablex,,; subvectors, the observation probability can be express&adb2.4.

In the context of DSR, the reliable feature vector composeatrespond to a
delta shaped posterior probability density function:

p(xrt|Y1T) = 0(%Xrs — yt‘t)? (10.1)

wherey,, are the observations deemed reliable at the channel output.

The posterior probability density function of unreliabéafure vector compo-
nents equals their a priori probability density functios tlae observations are not
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relevant (not informative) for the transmitted feature paments:

P(Xuely?) = p(Xuy)- (10.2)

Replacing the posterior probability in observation prdlitglfor uncertainty
decoding (4.36) yields:

T
Xr Xu
/ / t|Y1 p( t|YI)p(Xrt,Xut|5t)erthHt (10.3)
Xrt Y Xut er p(xut)
Xr r Xut
/ / t yf p( f)p(xrt,xut|3t)dxl‘tdxut (104)
Xrt ¥ Xut XI.t p(xut)
_ / PO Xulst) o (10.5)
xa,  P(Yre)
x / P(Yrss Xue|5t)dXuy (10.6)
= p(yedlse) (10-7)

Note thatp(y,,) is not state dependent and thus can be neglected, having same

contribution for all HMM states. The last expression protfeg, assuming binary
reliability, uncertainty decoding and MFT result in the saabservation probabil-
ity, namely that of reliable components only.

10.2 Weighted Viterbi recognition

As we have seen in Section 2.4.2, a plethora of recipes haae @posed for

the computation of the weighting coefficieptemployed in the weighted Viterbi
recognition technique. Some of them are purely heuristg, 1] which uses a
particular sigmoid function to map a Euclidian distanceoathie weighting coef-

ficient, or assuming an exponential decay of the weightireffaent during the

error bursts [66]. Most of these methods need parameterdwarid thus are prone
to be suboptimal in an unknown real-world scenario. Othethods use train-

ing data to find a relationship between the weighting coefficand some others
exploit statistical properties such as the temporal aotoetation [22, 66].

Since most of these methods lack an obvious probabilistarpnetation, we
are looking here for certain approximations which woulewallus to derive the
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weighting coefficienty; from the mathematically well founded uncertainty decod-
ing rule proposed in this work.

In the following, the same assumptions (1-3) of Sectionza&e made and
additionally, we assume acoustic models sharing a globglatial covariance ma-
trix £, = dz‘ag(o;d),d = 1...D. Note that speech recognizers using a global
covariance matrix are widely used to simplify the obsenratikelihood compu-
tation.

Under these assumptions, the observation probability ofiE yields:

M
Z cmN(u’e; Mo s 0-3 + 0‘5) (108)
m=1
M D
= Z Cm H N(/-‘e,d; Hom,ds 05277,1 + 0'37(1) (]_09)
m=1 d=1
M D
1 (Me d — Nm.gl)2
x Yo [[esn |-l tnd 0.0
m=1 d=1 2 ngd + O-eyd
M D agyd’
& Z Cm H [N (tte,d; am,ds 0o g)] 0¥ e (10.11)
m=1 d=1

For notational convenience we omitted the state indeand the time index, the
expression being evaluated for each feature vector andstaieh

Comparing (10.11) with (2.7) leads to the conclusion thagibpropriate weight-
ing coefficient for each dimensiahis given by:

0'2 d
= 9 10.12
Yd U;d + O_g’d ( )

Note the similarity of the last expression to (2.6) in tha Wheighting coeffi-
cient was state dependent but averaged over the featu vechponents.
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Chapter 11
Summary and conclusions

This thesis addresses the channel robustness of a remethsgeognition sys-
tem by using a novel decoding rule which takes into accowntiticertainty in the
received speech features. As the channel may be error pfmnelean features
emitted by the source are not observable and must be regotestrfrom the ob-
served ones. Unlike point estimation methods, our appréaas advantage of
both the optimally reconstructed clean features and inédion about the relia-
bility of reconstruction. The proposed decoding rule isaittd by reformulating
the classical Bayesian framework of speech recognitioatoyout the classifica-
tion with features observed at the communication channigguiu Under certain
assumptions this simply results in a modification of the oletéon probability
computation, while the structure of the decoder, which seldeon Viterbi search,
remains unchanged.

This chapter summarizes our conclusions based on simugatibsmall- and
medium-vocabulary remote speech recognition tasks usitighiit and packet ori-
ented transmission between a terminal and a recognitimeisérhe major contri-
butions made by this work are highlighted and some ideaaiftinér research are
suggested.

11.1 Summary of results

In the case of DSR over a GSM network exhibiting bit errorspaupted feature
vector can be reconstructed accurately resulting in a sragknce of the feature
posterior. Consequently, point estimation techniquesh 18 MMSE, which ne-
glect the estimation variance, achieve competitive peréorce levels. However,
when the variance of the feature posterior is high, as is #s® ¢n DSR over
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IP channels, a considerable improvement can be obtaineadsriainty decod-
ing. Uncertainty decoding using the extended source moilleldynamic feature
components outperformed the competing error concealraenhtques.

In the case of NSR using VolP channels, the uncertainty degaathieved
drastic improvement over the performance of the same cdotained by conven-
tional recognition under moderate and poor channel canditi This was noticed
for all investigated speech codecs.

Using the uncertainty decoding rule comes, however, at xiperse of in-
creased computational complexity. This is due to additioperations needed
for the computation of the observation probability on the ¢vand, and due to
the expansion of the acoustic search space caused by theetkdiscrimination
capabilities of unreliable features.

11.2 Contributions
The major contributions of this work are summarized below:

e We proposed a novel uncertainty decoding rule which takeargedge of
correlation among successive feature vectors. Takingdntount all, i.e.
also past and future observable values, reduces the uintgraédout the
clean feature compared to conditioning the feature pastenmly on the
currently observed vector. To the best of our knowledgeutieertainty de-
coding rules proposed by other authors in the context ofemabust speech
recognition do not employ correlation in this form.

e Our decoding rule is derived from the very first principle pésch recogni-
tion for minimizing the word error rate and avoids any hetligidt delivers
therefore the optimal solution, provided that the simptiyapproximations
hold.

e We applied the decision rule for decoder-based error cdmesd for dis-
tributed speech recognition and network speech recognitio both cases
the inter-frame correlation turned out to be a powerful klealge source to
overcome temporarily poor channel conditions.

e We proposed an approach to estimating data reliability dase media-
specific FEC which relies on the intrinsic redundancy of seufl his allows
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the employment of uncertainty decoding in situations wttleeesoft-output
from the channel decoder is not available.

e We showed that MFT and weighted Viterbi decoding are specaés of
uncertainty decoding.

11.3 Suggestions for further research

The proposed decoding rule is applicable wherever therenigsmatch between
training and testing conditions, e.g. due to environmentia$e, channel and
speaker variations. However, it may turn out to be a majotlehge to com-
pute the key element of the decoding rule, the clean speatiréeposterior given
all observed feature vectors, for a particular distorticergrio.

While noise robustness techniques based on uncertainbgoherrules which
neglect the inter-frame correlation have already beengweg, e.g. in [70, 71, 65,
64], it would be interesting to study the extent to which tleése robustness can
benefit from using the decoding rule proposed in this work.

Another topic worth exploring is the exploitation of intieame correlation in a
clean scenario, where the observed features are not degtaawvell-known that
the conditional independence assumption, i.e. negleatieg-frame correlation,
represents a major drawback of HMM-based speech recogniiibhe Bayesian
network of Figure 4.3 allows for using inter-frame corriatonly if the obser-
vation is uncertain. In this case the uncertainty in obd@mas reduced by con-
sidering the dependency of neighboring frames. In an drearenvironment the
uncertainty in observations is already minimal so that itrezt be further reduced
by knowledge of neighboring frames. It would be interestm@xplore whether
the model proposed here can be also extended to relax théiooatlindepen-
dence assumption in a clean scenario.
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