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Abstract

Given a (measurable) space X and a measurable map f : X → X, the transfer
operator for f is a linear map Pf : M(X) →M(X) de�ned by the prescription
Pfµ(A) = µ(f−1(A)) for all measurable sets A ⊂ X and all µ ∈ M(X). Here
M(X) is a suitably chosen linear space of measures on X.
In this thesis, transfer operators are considered for a particular class of maps:
those that describe a coupled cell system. A coupled cell system is a dynami-
cal system admissible to a coupled cell network. This concept is used both in
applications and in theoretical works to model dynamical systems that are built
up from smaller parts (called cells), that in�uence each other in the temporal
evolution of their internal state. Thus the state space X of a coupled cell system
is the cartesian product of the state spaces Xc of the individual cells, and each
component map fc may depend on c and several other cells.
The structure of the network underlying a coupled cell system can be described in
an algebraic way by means of its so-called symmetry groupoid. Admissibility of
a map f on the network can then be expressed as equivariance of f with respect
to a certain action of this groupoid. In the case of dynamical systems with
�classical� symmetries, expressed by equivariance with respect to group actions,
the results of linear representation theory have implications for a system that
allow far-reaching characterisations of its dynamics. In particular, its transfer
operator can be shown to possess invariant subspaces due to symmetry.
In view of these results, the aim of this thesis is to describe the structural impli-
cations that equivariance with respect to the action of the symmetry groupoid
has for the transfer operator of a coupled cell system. How can the structural
properties of the map f be translated into properties of the transfer operator
Pf? To answer this question, this thesis shows that it is possible to decompose
M(X) into the direct sum of subspaces UD parametrized by the set of subsets
D of the set of cells in such a way that the coupling structure of the network is
re�ected in the corresponding block decomposition of the transfer operator.
Furthermore, to analyse the structure of Pf due to symmetry properties of the
network, a family ΓD of symmetry groups for subsets of the set of cells is associ-
ated to the symmetry groupoid. These groups make it possible to use results from
representation theory to determine further structural properties of the transfer
operator.
The direct application of the theoretical results in a numerical scheme for the
approximation of the transfer operator is prevented by the fact that standard
methods for this task rely on the usage of bases of M(X) that are derived from
discretizations of the state space X in a speci�c manner. These bases appear
to be incompatible with the decomposition of M(X). The reasons underlying
this problem are explained in detail, and an alternative method for the e�cient
approximation of Pf is sketched.
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Zusammenfassung

Ist X ein Messraum und f : X → X eine messbare Abbildung, so ist der Trans-
feroperator zu f eine lineare Abbildung Pf : M(X) → M(X), wobei M(X)
ein geeignet gewählter Vektorraum von Maÿen über X ist und Pf durch die
Vorschrift Pfµ(A) = µ(f−1(A)) für alle messbaren Mengen A und alle Maÿe
µ ∈M(X) de�niert wird.
In dieser Dissertation werden Transferoperatoren für eine spezielle Klasse von
Abbildungen betrachtet, nämlich jene, die ein coupled cell system3 beschreiben.
Ein solches ist ein auf einem coupled cell network zulässiges dynamisches System.
Dieses Konzept wird in anwendungsorientierten wie in theoretischen Arbeiten
verwendet, um dynamische Systeme zu beschreiben, die aus einzelnen Teilen
(genannt Zellen) aufgebaut sind, die sich gegenseitig in der zeitlichen Entwicklung
ihrer inneren Zustände beein�ussen. Der ZustandsraumX des coupled cell system
ist damit das kartesische Produkt der Zustandsräume Xc der einzelnen Zellen,
und jede einzelne Komponentenabbildung fc kann von c und mehreren anderen
Zellen abhängen.
Die Struktur des einem coupled cell system unterliegenden Kopplungsnetzwerks
kann mit Hilfe seines sogenannten Symmetriegruppoiden algebraisch beschrieben
werden. Die Zulässigkeit einer Abbildung f auf einem Netzwerk lässt sich dann
als Äquivarianz der Abbildung in Bezug auf eine bestimmte Wirkung des Grup-
poiden ausdrücken. Im Falle eines dynamischen Systems mit �klassischen�, durch
die Äquivarianz in Bezug auf die Wirkung einer Gruppe ausgedrückten Symme-
trien ziehen die Ergebnisse der linearen Darstellungstheorie Implikationen für ein
System nach sich, die weit reichende Beschreibungen seiner Dynamik erlauben.
Insbesondere lässt sich zeigen, dass der Transferoperator aufgrund der Symmetrie
bestimmte Unterräume invariant lässt.
Im Hinblick auf diese Ergebnisse ist es das Ziel dieser Dissertation, die struk-
turellen Konsequenzen zu beschreiben, die die Äquivarianz in Bezug auf die
Wirkung des Symmetriegruppoiden für den Transferoperator eines coupled cell
system nach sich zieht. Wie lassen sich strukturelle Eigenschaften der Abbildung
f in Eigenschaften von Pf übersetzen? Zur Beantwortung dieser Fragen wird eine
Zerlegung des MaÿraumesM(X) in eine direkte Summe von durch die Teilmen-
gen D der Menge der Zellen parametrisierten Unterräumen UD eingeführt, die
es erlaubt, die Kopplungsstruktur des Netzes in der zugehörigen Blockzerlegung
des Transferoperators wiederzu�nden.
Weiterhin wird zur Analyse der Symmetriebeziehungen dem Symmetriegrup-
poiden des Netzwerks eine Familie von Symmetriegruppen ΓD für Teilmengen von
Zellen zugeordnet, die es erlauben, klassische Ergebnisse der Darstellungstheorie

3Der Autor hat auch nach längerer Suche keinen Beleg für eine Verwendung deutschsprachiger
Äquivalente der Begri�e coupled cell network und coupled cell system in deutschsprachigen
Texten gefunden, und zieht es daher vor, die in der Originalliteratur verwendeten Termini
für die Zwecke dieser Zusammenfassung unübersetzt zu belassen.
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von Gruppen zu nutzen, um weitere Strukturmerkmale des Transferoperators zu
bestimmen.
Der direkten Verwendung der theoretischen Ergebnisse in einem numerischen
Verfahren zur Berechnung einer Näherung an den Transferoperator steht die
Tatsache entgegen, dass übliche Methoden für eine solche Berechnung die Ver-
wendung von Basen von M(X) voraussetzen, die auf eine bestimmte Weise aus
Diskretisierungen des Zustandsraumes X hervorgehen. Diese Basen scheinen
unverträglich mit der Zerlegung von M(X) zu sein. Die diesem Problem zu
Grunde liegenden Ursachen werden detailliert erklärt; weiterhin wird eine alter-
native Methode für die e�ziente Berechnung von Pf skizziert.
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1 Introduction

The title of this thesis combines two concepts � transfer operators and coupled
cell systems � which both come from the same, rather rich and diverse area of
mathematics, that of the study of dynamical systems, but which nevertheless
can justly be described as being quite some distance apart from each other. It
is the purpose of this work to start forming a connection between them which
eventually may help reduce this distance, and to lay foundations that can be used
for a more elaborated transfer operator theory for coupled cell systems. Before
we can describe this aim in greater detail, we need to take closer looks at the
two concepts involved.

Transfer operators

Dynamical Systems A dynamical system is, for the purposes of this thesis, a
pair (X, f) where the state space X is a set of a suitable class: a topological
space, a vector space, a (tangent bundle of) a manifold, or something similar;
and the map f : X → X typically is in a suitable way compatible with the
structure of X. In any case, for this thesis we will require that X is a measurable
space, i. e. equipped with a σ-algebra, and that f is measurable with respect to
this σ-algebra1. This small set of assumptions will already be enough to de�ne
the notion of the transfer operator in the way we will use it in this thesis.

When one considers a map f : X → X as a dynamical system, it is implied that
the interest of one's study lies in trajectories of the map, i. e. in sequences in
X of the form x, f(x), f2(x), f3(x), . . .; and in describing the possible kinds of
behaviour of these sequences2. In the mathematical theory of dynamical systems,
this local, �pointwise� or �trajectory-wise� point of view is complemented by a
global analytical approach that can be called �statistical� or �stochastic�. The
main object of study in this approach is the transfer operator that is associated
with a dynamical system.

1See Section 2.3 for explanations of these terms.
2This is of course a rather short description of the term. A brief general introduction to the
theory of dynamical systems can be found in [47], a detailed reference is [34].
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1 Introduction

Transfer operators In this thesis we will use the term �transfer operator� 3 for
a given dynamical system to describe a linear operator on a space of (signed or
complex) measures. Here the measures are seen as mathematical representatives
of the notion of �ensembles� of initial conditions of the dynamical system. The
dynamical system f : X → X determines the temporal evolution of both single
initial conditions and ensembles of them, and the transfer operator Pf is the
mathematical tool to describe the evolution of associated measures. It is thus
de�ned through the requirement that∫

X

ϕ dPfµ =

∫
X

ϕ ◦ f dµ

for some measure µ and integrable function ϕ on X, or equivalently by

Pfµ(A) = µ(f−1(A))

for measurable subsets A. The name �transfer operator� refers to its task of
�transferring� probability density or mass density between regions of state space.
Maybe the most concise description of the purposes transfer operators are used
for in the analysis of dynamical systems is to say that it is often an appropriate
tool when one wants to look at statistical, or stochastic, properties of a system.
In particular, using the transfer operator formalism is a convenient choice when
one wants to analyse systems subject to random disturbances. More concretely,
functional analytic properties of the transfer operator (usually de�ned on suit-
able Banach spaces of densities of measures) can be linked to properties of the
dynamical system such as ergodicity, mixing, or �chaoticity�; and vice versa. In
certain settings, expansion rates of a system are connected with the essential
spectral radius (see e. g. [43, 29, 35]) of the operator, and often isolated eigenval-
ues with modulus larger than that radius correspond to so-called almost invariant
sets of the dynamical systems [10]. For a well readable introduction to the use
of transfer operators in the theory of dynamical systems, we refer to [36].
On the side of applications, it is the possibility to interpret its action as describing
�mass transport� that makes the transfer operator an interesting tool. It has
proven to be useful for the analysis of transport phenomena in so di�erent �elds
as ocean dynamics (see e. g. [21, 22]), solar system dynamics (e. g. [12, 13]) or
theoretical chemistry (e. g. [7, 14, 15]). The main idea behind these applications
is to use approximations of the transfer operator to compute almost invariant
sets of the system, and also transport rates between these. For this purpose, one
needs to be able to e�ciently compute approximation to the transfer operator.

3The term �transfer operator� is today used for a variety of related, but distinct concepts in
disciplines such as statistical mechanics, functional analysis, ergodic theory, or the theory
of (abstract) dynamical systems. The meaning we will give it in the whole of this thesis
is, to the authors knowledge, the most basic notion behind its usage in dynamical systems
theory.
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Numerics For the numerical approximation of the transfer operator, a simple
recipe is often used that was probably �rst proposed by S. Ulam [46]: One
chooses a su�ciently �ne partition of the state space of the system and computes
transition rates or transition probabilities between the sets in the partition. These
probabilities, arranged as a matrix, can be understood as a �nite-dimensional
approximation of the transfer operator, where the underlying �nite-dimensional
space of measures is the one generated by the measures assigning the value one
to precisely one of the sets of the partition, and zero to the others. Already this
simple description of the procedure allows to get a feeling for the numerical e�ort
necessary for its realisation: Roughly, it is the product of the number of sets in the
partition and of the e�ort necessary for the estimation of transition probabilities
from one box. Typically, the number of sets in a partition is proportional to δ−d,
where δ is a �neness parameter (e. g. the maximal diameter of a set), and d is
the dimension of the state space4.Even neglecting the fact that the costs for the
estimation of transition probabilities from one box will normally depend on d,
it becomes clear that the e�ort grows exponentially with d, so that numerical
realisations normally are feasible only for few dimensions, e. g. d ∈ {1, 2, 3, 4}.
This fact constitutes one half of the speci�c motivation for the research project
behind this thesis.

Coupled cell systems

Networks are nearly ubiquitous in nature, and hence, in the natural sciences. On
a �metalevel�, their appearance is linked to the reductionist view science has on
nature: Often one �nds them while �zooming back out� after one �zoomed in�
on some class of phenomena, studied their individual constituents in detail and
is now trying to put together the parts to some larger �whole�. Brain research
can be cited as an (admittedly, rather ambitious) example here. What looks like
some kind of homogeneous �grey matter� at �rst sight (upon opening a skull,
say), is seen to consist of a large number of highly structured entities (neurons)
on the microscopic level. Studying single neurons, one recognizes their electro-
chemical activity, the importance of electrical potential inside the neuron and
of certain biological substances on its outside. One begins to describe their
spiking behaviour and arrives at mathematical models for this behaviour like the
Hodgkin-Huxley model, or the FitzHugh-Nagumo model. Zooming back out a
little bit, one recognizes that in an indivuals' nervous system large numbers of
neurons are connected with each other to form vast, overwhelmingly complex
networks.
Similar phenomena can be observed not only in many biological systems, but

4This dimension is not necessarily equal to the number of variables used to describe the
system. Systems with a relatively high-dimensional description can possess low-dimensional
attractors, in which case an approximation of the transfer operator is possible, see [33,
Section 3.5.3] for an example.
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1 Introduction

also in the man-made part of the world. Here it is not a reductionist but a
constructivist principle that could be given as a cause: Engineers, in designing
technical systems, tend to link together smaller technical systems (perhaps made
by other engineers). In this way single transistors, reduced to nanometer size,
are connected with each other to form logical units, say NAND-arrays, which are
put together to form processors or memory chips. Several of these again form a
computer, and many computers are connected with each other via the internet.
The mathematical abstraction from these and many more, very diverse examples
is that of a directed graph: a set C of vertices, (sometimes called nodes, in this
thesis usually called cells) together with a set E ⊂ C×C of edges (which are here
often called couplings). The graph alone, however, does not yet describe what we
are interested in in this thesis. Many, though certainly not all networks in science
and engineering exhibit some form of �dynamics�: that is, the individual nodes
are characterized by an internal �state� which evolves with time, and the edges
between nodes represent in�uences that the states of the nodes exert on each
others' evolution. To model this feature mathematically, one attaches a state
space Xc to each cell c of the network, and describes the temporal evolution
in a suitable manner, e. g. through di�erential or di�erence equations, Markov
chains or some other form of stochastic process. (In this thesis, we will restrict
our attention to the case of deterministic dynamical systems with discrete time.)
The edges of the network are represented here through the fact that the equation
for the evolution of the state of cell c depends only on states of cells from which
an edge points to c.
For several years now, the term coupled cell systems has been used in the mathe-
matical literature to describe a class of dynamical systems which are constructed
from subsystems that are coupled together in some way. In particular, this name
is used for a system, or a class of systems, when the interest of the analysis it is
subjected to lies more in the structure of the system than in the particular set
of equations that governs its evolution. The term �structure� here refers to both
the coupling structure, i. e. to the answer to the question �Which cells' behaviour
is in�uenced by which other cells?�, and to what might be called permutational
structure, i. e. to the answer to the question �Which permutations of cells are
possible that result in the same (sub-)system?�
Questions of this kind have been analysed for a long time. In many cases, the
permutational structure can be expressed as equivariance with respect to permu-
tation groups. As an example, one can name the analysis of animal locomotion
modes by Stewart et al. that is summarized e. g. in [25], see also references
therein. There are a number of quite powerful tools from the theory of equiv-
ariant dynamical systems and representation theory of groups (see e. g. [26])
that can be employed for the analysis of such systems. However, being based on
group theory, the applicability of these tools is limited to networks with global
symmetry, that is, to networks that are invariant under permutations of all their
components.
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Figure 1.1: An example of a highly structured network without any global sym-
metry. If cell 9 and the arrows pointing to it are removed, the re-
maining graph admits a S2 × S2 permutation symmetry.

It is not di�cult to imagine cases for which this requirement seems a very strict,
if not to say too strict one. There are many examples of networks as the one
described in Figure 1.1 that posses a very high degree of structure that could
easily be called symmetry, were it not for the fact that there is no permutation
of all cells that leaves the whole network invariant.
As a remedy, Golubitsky, Stewart et al. developed a formalism that is closely
related to the framework of group equivariance. (The earliest description of this
formalism known to the author is given in [45], it was further developed in sub-
sequent publications; an overview is contained in [25]. An equivalent alternative
description that avoids much of the algebraic formalism was given by Field in
[20].) In their framework, the place of the permutations � which are bijections on
the set of all cells � is taken by so-called input isomorphisms, which are mappings
de�ned only �locally�, on certain subsets of the set of all cells. The greater �exi-
bility that this change brings is paid for with a more complex algebraic structure.
The set of all such input isomorphisms forms the so-called symmetry groupoid
of the network. A groupoid is a generalization of a group; the most prominent
di�erence between the two is that a group's composition is de�ned for arbitrary
pairs of elements, while the composition of elements of the groupoid is de�ned
only for particular pairs. It turns out (see e. g. [45]) that dynamical systems
which one would intuitively consider to be admissible to a coupled cell network
can be described as being equivariant to the symmetry groupoid of the network.
(For details, see also Section 2.1.)
If by permutations of cells in a network one arrives at something that is regarded
the same network, one naturally has to have cells in the network that are regarded
to be of the same type. For two such cells it is quite natural to compare their
states, or the sequence of their states over time. In particular it is an interesting
situation when two such cells exhibit the same sequence of states. In such a case
one says the two cells are synchronous.
In the case of symmetric networks (both of the classical group-theoretic kind and
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1 Introduction

the new, groupoid-equivariant kind), it turns out that synchrony often is not ac-
cidental. For such networks, it is possible to show that the network structure
determines the presence of synchronicity patterns that are �robust� in the sense
that they do not depend on the speci�c dynamical system, and hence do not
disappear if the system is slightly changed. In [45] the term �robust polysyn-
chronous subspace� is used for sets of such solutions; their presence is related to
a certain combinatorial property of the network, namely the possibility of �nding
so-called �balanced equivalence relations� on the set of cells.

Transfer operators for coupled cell systems � combining

both concepts

From the short descriptions we have given of the two concepts it becomes obvious
that a problem must arise if one wants to use the transfer operator formalism for
the (numerical) analysis of a coupled cell system: While the former is possible
(or at least feasible) only in low dimensions, the latter almost necessarily implies
a high-dimensional state space. So it is immediately clear that a naive, straight-
forward approach of simply using existing numerical solutions with a coupled
cell system plugged in as the dynamical system to analyse will in most cases
be too expensive to be of any practical use. However, this judgement does not
take the additional structure of a coupled cell system into account. For a generic
six-dimensional system a numerical computation of the transfer operator may
not be feasible, but what if the system at hand consists of, for example, six cells
with one-dimensional dynamics, three of one type, the other three of another
type, each cell in�uenced only by one other cell (besides itself). Is it in this case
still clear that it is practically impossible to compute its transfer operator?
To go towards an answer to questions like this one, clearly the in�uence of the
system's structure on the structure of its transfer operator has to be explored.
Here lies the starting point of this thesis' endeavours. The most basic rationale
is that there must be a relationship of the sort �The more structured a system is,
the more can be done to reduce numerical e�ort necessary for the computation
of the transfer operator.� To justify this statement (which at �rst was nothing
more than a �rm, unproven, but apparently plausible conviction), to explore
and describe it, and �nally to use it for algorithms for the numerical analysis
of transfer operators � this is the research programme to which this thesis is
devoted.
When the author started trying to realise this idea, his �rst approach was to
follow a path on which other researchers had been successful before. The argu-
mentation behind this path can be described as follows. We saw that coupled
cell systems are similar to group-equivariant dynamical systems because the cou-
pling structure can be expressed algebraically in such a way that the coupled cell
systems appears to be equivariant with respect to the symmetry groupoid.
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The transfer operator for an equivariant dynamical system is a linear operator
that commutes with a particular linear representation of the underlying group.
For linear mappings of this kind strong structural statements can be made on the
basis of the classical linear representation theory for groups. It seemed plausible
that there had to be some kind of generalisation of the representation theory for
groups to the groupoid case, and it seemed promising to use this assumed gen-
eralisation in order to prove coupled cell system analogs of the theorems already
established for �normal� dynamical systems. This idea did not occur exclusively
to the author of this thesis. In particular, in [25], Golubitsky and Stewart ex-
press a similar line of thought. After explaining how representation theory can
be usefully employed in the bifurcation analysis of equivariant dynamical systems
depending on an additional bifurcation parameter, they go on asking

Is there an analogous theory for network dynamics? Some features
of the group-theoretic case carry over. For example, balanced poly-
diagonals play the same role as �xed-point subspaces. However, it is
not so straightforward to �nd suitable analogs of irreducible represen-
tations and isotypic components. If we ask too much of these analogs,
they do not exist; if we relax the conditions imposed on them, they
may not be very useful.

[25, Section 16, p. 359]

For the research programme this work is devoted to, these comments imply in
particular that one cannot expect to �nd an o�-the-shelf representation theory
for groupoids which only had to be applied to coupled cell systems. On the
contrary, fundamental questions for this approach are apparently wide open. It
seems therefore advisable to look for a more fundamental approach to deal with
a our research programme.
The main principle on which the results developed in this thesis are based is
the observation that the transfer operator described above can be considered a
special case of a more general idea in measure theory. If one has two spaces
X and Y , each equipped with a σ-algebra, a measurable map f : X → Y and
a measure µ on X, then an image measure ν of µ under f can be assigned to
µ by the same formula ν(B) = µ(f−1(B)) (for all measurable B ⊂ Y ) which
we already encountered above. This principle � the forming of image measures
� describes a covariant functor that allows to transport all kinds of mappings
� projections, embeddings, restrictions, group actions etc. � from the �state
space level� to the �measure space level�, and thus gives us a tool to describe the
structure of a coupled cell network on the measure space level, that is in terms
of transfer operators. It is the application of this principle upon which most of
(the theoretical part of) this thesis rests.
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1 Introduction

This thesis

The overall structure of this thesis is as follows. In Chapter 2, the mathematical
background material is presented that will be necessary for the development
of the structural transfer operator theory in the following chapters. For most
aspects, we concentrate on a brief presentation and provide references to more
detailed expositions that can be found in the existing literature. However, we
present in more detail some notions that will be used in this work and which the
author could not �nd explicitly in the literature.5 Finally, in Section 2.4.3 we
present in the form of an �example theorem� an argument showing why a simpler
path for the structural analysis of transfer operators of coupled cell systems, a
path that might seem viable at �rst sight, leads in fact to a dead end.
In Chapter 3, the main matter of the thesis is reached. A structural theory
of the transfer operator for a coupled cell system is developed that draws its
results from two main principles. The �rst is brie�y expressed by stating that
the independence of a particular component map of the dynamical system from
cells that are not in the input set of this cell must be re�ected in the transfer
operator in some way. The second principle could be called the symmetry princi-
ple, relating the (generalized) symmetries of a coupled cell network to structural
properties of a corresponding transfer operator. The main technique that allows
to derive the results is a method to decompose the domain of the transfer oper-
ator into subspaces adapted in certain ways to the structure of the underlying
coupled cell network. Consequently, the results are expressed in terms of these
decompositions.
This fact has an important consequence, the bottom line of which is that at
present the author of this thesis does not see a way to use the structural results
on the transfer operator in numerical algorithms. The core di�culty seems to lie
in incompatibilities between a basis for the linear measure space prescribed by
the structure-adapted decompositions on the one hand, and the basis implicitely
assumed by apparently any numerical method that relies on the evaluation of
the dynamical system at individual points on the other hand.
In the �rst part of Chapter 4, this problem is described in more detail. The only
remedy this thesis has to o�er �lls the remainder of that chapter. Leaving the
structural theory aside, the method for numerical computations that is described
goes back to the de�nition of a coupled cell system, and provides a way to use the
simple observation �A coupled cell system is completely de�ned by its component
maps, and so must be its transfer operator.� for a numerical algorithm. This
algorithm describes a way in which a �nite dimensional approximation of the
transfer operator can be obtained using test points sampling the domains of the
component maps only, in contrast to a test point method that aims at sampling
the complete cartesian product of the state spaces.

5This does of course not mean that the material cannot be found at all; on the contrary, with
some probability it will be there, possibly in much clearer form.
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Depending on the connection graph, in particular on the sum of the dimensions
of the domains of the component maps, the method can save considerable time
for the evaluation of the transition matrix, assuming that a function evaluation
is costly. It does not, however, reduce the dimension of the linear space in which
the transfer operator acts, and therefore does not reduce the costs incurred by
numerical linear algebra in standard uses for this matrix such as uncertainty
propagation using direct evolution, or spectral analysis of the transfer operator
to identify invariant or almost invariant measures. In an application where the
major part of numerical e�ort is due to matrix-vector-products in linear algebra,
the results of this thesis will not be able to o�er much advantage. If however the
simulation of the dynamics is the most costly part, and at the same time each
individual component map has a low-dimensional domain, then a substantial
reduction of computational cost is possible.
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1 Introduction
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2 Mathematical background

2.1 Coupled Cell Systems

2.1.1 Coupled Cell Networks

In the following, we present the coupled cell formalism that will be the basis for
the rest of this work. We will closely follow the works by Golubitsky, Stewart
et al. that were already mentioned above, but we will modify the framework
introduced there with respect to two issues. Firstly, we will not use the so-called
multi-arrow formalism for a network that is used in the more recent publications
[25, 24, 27], but instead use the earlier form of the concept presented e. g. in [45].
The reason for this is that it seems to the author that while the multi-arrow for-
malism has undeniable advantages when considering questions about synchrony
phenomena in coupled cell networks and their related quotient networks, it also
adds a notational overhead that seems to be of little use for the purposes for
which the formalism will be used in this work.
The second di�erence concerns the de�nition of a dynamical system on a coupled
cell network. It is somewhat more than just a formal di�erence. While in the
literature time-continuous dynamical systems expressed by ordinary di�erential
equations are considered, this work will concern itself with time-discrete systems
given by maps on the state space. The reason for this is plain: we want to
consider transfer operators, and transfer operators correspond to maps rather
than to vector �elds. The analogue of the transfer operator for a time-continuous
system is the generator of an operator (semi-)group associated with the �ow of
the system. While it seems to the author that a corresponding theory could
be developed, similar in spirit to the one for transfer operators that is used in
this thesis, it would be much more demanding as far as technical aspects are
concerned. To avoid that the main issues of this thesis are obfuscated by the
resulting technical questions, we restrict our considerations to the case of transfer
operators for maps, noting that a similar analysis for the case of �ows should be
possible, and probably far more di�cult technically.
A coupled cell system is a dynamical system on a network of coupled cells.
To de�ne this concept formally, two main ingredients are needed which will be
introduced one after the other. First comes the network, which de�nes how
many cells of how many types there are, and how they are connected. Given a
network, a dynamical system on it is de�ned by specifying state spaces and maps
in a manner consistent with the network topology.

11



2 Mathematical background

Coupled cell networks

We begin with the �rst ingredient. The concept for the network that will be used
in the following is essentially that of a directed graph with labeled nodes. The
following de�nition was introduced by Golubitsky, Stewart, and Pivato in [45]
and will be used in the remainder of this work.

De�nition 2.1
A coupled cell network is given by a tuple G = (C, E ,∼C,∼E), where

• C is a �nite set, the elements of which are called cells,

• E ⊂ C × C is a set of ordered pairs (c, d) called directed edges or arrows,

• ∼C is an equivalence relation on C,

• ∼E is an equivalence relation on E satisfying

(c1, d1) ∼E (c2, d2) =⇒ c1 ∼C c2 ∧ d1 ∼C d2.

For e = (c, d) ∈ E , c is called the tail of e, and d is called the head of e. An
edge (c, c) with identical head and tail is called the internal edge of cell c. It
is assumed that every cell c ∈ C has an internal edge, i. e. that (c, c) ∈ E for
all c ∈ C. Furthermore it is required that internal edges of equivalent cells are
equivalent, and that internal and non-internal edges are never equivalent, i. e.
that for all c, d, d′ ∈ C the equivalence

(c, c) ∼E (d, d′) ⇐⇒ d = d′ and c ∼C d

holds.

Less formally, a coupled cell network can be depicted as a directed graph with
di�erent kinds of symbols (such as triangles, circles, and so on) as nodes, and
di�erent kinds of arrows as edges. Figure 1.1 shows an example.

De�nition 2.2
Let a coupled cell network G = (C, E ,∼C,∼E) be given. For each c ∈ C, the set

I(c) = {i ∈ C | (i, c) ∈ E}

is called the input set of c. Two cells c and d are called input-isomorphic if
there is a bijection φ : I(c) → I(d) satisfying the requirements φ(c) = d and
(i, c) ∼E (φ(i), d) for all i ∈ I(c). Such a map is called an input isomorphism.
We de�ne B(c, d) to be the set of all input isomorphisms between c and d. If
B(c, d) 6= ∅, we call c and d input equivalent. Finally, for D ⊂ C we write
I(D) = ∪c∈DI(c).

12



2.1 Coupled Cell Systems

Golubitsky et al. note in [45] that the set of all input isomorphisms for a given
coupled cell network, equipped with a �product� given by the composition of
maps where de�ned, forms an algebraic structure called a groupoid.1 We follow
their example and introduce the following notation.

De�nition 2.3
Let a coupled cell network G = (C, E ,∼C,∼E) be given. We de�ne the symmetry
groupoid of G to be

BG =
⋃

c,d∈C

B(c, d).

For later reference, we now brie�y paraphrase parts of the description of BG given
by Golubitsky et al.

Proposition 2.4 (Cf. [45, p. 620])
1. If two cells c and d are not input equivalent, then B(c, d) = ∅.

2. For any cell c ∈ C, the input set I(c) can be written as I(c) = I1∪̇ . . . ∪̇Ik,
where every Ij is a (maximal) set of cells coupled to c by equivalent edges.
Let dj = |Ij|. Then the set B(c, c) is isomorphic to the group Sd1×. . .×Sdk

2,
where the elements of Sdj

act as permutations of Ij.

3. If c 6= d are input equivalent, then we have for any β ∈ B(c, d) that

β ◦B(c, c) = B(c, d) = B(d, d) ◦ β.

We stress in particular that for any cell c, the set B(c, c) is a group. From now
on we will call it the vertex group of the cell c.

2.1.2 From Networks to Systems

With a coupled cell network, one has, so to speak, the skeleton in ones hands
of a dynamical system to be described. To put the �esh on the bones, one has
to de�ne what makes a dynamical system admissible to a given network. This
will be the main concern of the following section. In the de�nition, we will again
essentially follow [45], with the exception that we consider maps instead of vector

1 The notion of a groupoid is a generalization of the concept of a group and was introduced
by Brandt (who was using the term �Gruppoid �) in [4]. It has since been applied in several
�elds to describe notions of symmetry more general than those given by classical groups, see
e. g. [5] for a survey, or [48] for a short �tour through some examples�. The main di�erence
to groups is that in groupoids the product of two elements may not be de�ned for arbitrary
pairs. For example, in our case the composition of φ1 ∈ B(c, d) with φ2 ∈ B(e, f) is de�ned
if and only if d = e. To avoid confusion, the reader should note that what is called a
�groupoid� here is often called a �Brandt groupoid� in the modern algebraic literature, as
the simple term has been given a di�erent meaning in that �eld.

2See also Section Section 2.2.1
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2 Mathematical background

�elds. The restriction on the choice of state space as compact subsets of Rd that
we make here is essentially arbitrary and serves just to simplify the treatment of
technical issues related to the choice of measure spaces later on.

De�nition 2.5
Let a coupled cell network G = (C, E ,∼C,∼E) be given. For each cell c let Xc be
a compact subset of Rdc . The collection (Xc)c∈C is admissible to G i� Xc = Xd

whenever c ∼C d. In that case, Xc is called the state space for cell c, and

X =
∏
c∈C

Xc

is called the total state space.

If D ⊂ C is some subset of the cells, and an admissible collection of state spaces
Xc is given, we also use the notation

XD =
∏
c∈D

Xc

for the partial state spaces, and

πD : X → XD

for the canonical projection from X onto XD. In the case D = {c}, we will omit
the braces and write πc. Also we write xD = πD(x) for all x ∈ X.
If φ : I(c) → I(d) is an input isomorphism and (Xc)c∈C is an admissible collection,
then φ can be used to de�ne a map between the corresponding partial state
spaces. Having done so, we denote the result also by φ, and thus have a map
φ : XI(c) → XI(d) given by

πφ(i)(φ(x)) = πi(x)

for all x ∈ XI(c) and i ∈ I(c).3

De�nition 2.6
Let a coupled cell network G and an admissible state space X =

∏
c∈C Xc be

given. A map f : X → X consisting of component maps fc : X → Xc is
admissible to G i� there is a collection of maps f̂c : XI(c) → Xc such that

for each c ∈ C, fc(x) = f̂c(πI(c)(x)) holds for all x ∈ X, and for each input

isomorphism φ : I(c) → I(d), f̂c(x
′) = f̂d(φ(x′)) holds for all x′ ∈ XI(c).

3The equality sign here expresses equality, but not `sameness'. This is not the only place
where clarity su�ers somewhat from that fact that common mathematical notation makes
it di�cult to distinguish the statement that two objects are the same from the statement
that they are equal. Here it is meant that πφ(i)(φ(x)) ∈ Xφ(i) and πi(x) ∈ Xi are equal
although the two spaces are being thought of as distinct sets.
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2.2 Prerequisites from the Representation Theory for Groups

Remark 2.7
The above requirement can be understood as a generalisation of the equivariance
of the map f with respect to the action of some permutation group. To see this,
imagine that a map g : Rn → Rn is equivariant with respect to the action of Sn

on Rn given by γ.(x1, . . . , xn)T = (xγ−1(1), . . . , xγ−1(n))
T . If g has components gi,

i = 1, . . . , n, then equivariance of g just means that

gγ−1(i) = gi ◦ γ

for all i = 1, . . . , n and all γ ∈ Sn. Now, identifying the spaces Xc and Xd, the
de�ning requirement on the component maps of coupled cell systems can also be
written as

f̂c = f̂d ◦ φ

for all c ∈ C and all input isomorphisms φ : I(c) → I(d), which in turn just
means that

f̂φ−1(d) = f̂d ◦ φ.

This form of the admissibility condition for a coupled cell system resembles closely
the equivariance condition, the di�erence being that while the set of all γ above
forms a group, the set of mappings φ considered here only forms a groupoid. An
admissible map thus is �equivariant� with respect to the action of the groupoid of
input isomorphisms. This is the reason why Golubitsky, Stewart et al. introduce
the term �symmetry groupoid� for the set of input isomorphisms.

Later on, it will sometimes be convenient to refer to �partial maps� that are
composed from several component maps f̂c. So if D ⊂ C, we denote by f̂D :
XI(D) → XD the map de�ned by πD(f(x)) = f̂D(πI(D)(x)) for all x ∈ X.

2.2 Prerequisites from the Representation

Theory for Groups

One of the mathematical tools that will be used in the following is the classi-
cal linear representation theory for groups. In this short section, the necessary
terms and results will be presented. Depending upon the base �eld that is used
for vector spaces, the theory exists in two variants with slightly di�ering results.
The complex variant often seems to be preferable to the algebraist, while the use
of real vector spaces might be more appropriate for certain applications. We will
leave this question open as often as possible, and merely assume, unless otherwise
stated, that any vector space is built over either the reals or the complex num-
bers4.Furthermore, we here restrict our attention to the case of �nite groups,
although many of the results can be generalised to more general cases. More

4We can do so with some right, as for the case of the symmetric groups Sd, the theory is rather
independent of the choice of base �elds. Their irreducible representations over complex
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2 Mathematical background

complete accounts of the topics touched here can be found in a large number of
textbooks, e. g. in the ones by Serre [44], or by Fulton and Harris [23], and also
in Chapter XII of [26]. These texts were used for the preparation of this thesis.

2.2.1 Basics

While we can state most of the theory which we are going to present in terms
of general �nite groups, we are in fact mostly interested in a particular class of
these groups, and in particular subgroups of the members of this class. More
concretely, we will be looking at permutation groups Sd (for d ∈ N). Sd is the
group of permutations of the set Nd := {1, . . . , d}. Under any such permutation
π, Nd decomposes into invariant subsets. The minimal (with respect to the
partial order de�ned by set inclusion) invariant subsets are called the cycles of
π, and they su�ce to completely de�ne the permutation. If necessary, we will
therefore denote a particular element of Sd in cycle notation, that is, we list its
cycles, excluding those of minimal period one (the �xed elements).
A �nite sequence d1, . . . , dk of natural numbers with sum d de�nes a partition
Nd = {1, . . . , d1}∪{d1 +1, . . . , d1 + d2}∪ . . .∪{

∑k−1
i=1 di, . . . , d}. The elements of

Sd that leave this partition invariant form a subgroup of Sd which is isomorphic
to the product group Sd1×. . .×Sdk

. We have already seen in Proposition2.4 that
subgroups of this kind arise naturally as the vertex groups B(c, c) of a coupled
cell network, consisting of permutations of the input sets I(c) of a cell c that
respect cell and edge equivalence. For this reason we pay special attention to
them.

De�nition 2.8
Let G be a �nite group. Let V be a vector space. A linear representation of G in
V is a group homomorphism θ : G→ GL(V ). The dimension of V is called the
degree of θ. A representation θ is reducible if there is a non-zero proper subspace
of U ⊂ V that is invariant under θ(g) for every g ∈ G. If a representation is not
reducible, it is called irreducible. Two representations θ1 in V1 and θ2 in V2 of the
same group G are isomorphic if there is a vector space isomorphism T : V1 → V2

such that T ◦ θ1(g) = θ2(g) ◦ T for all g ∈ G.

vector spaces are precisely the ones over real vector spaces. This statement can be justi�ed
as follows (see the text below for an explanation of the terms): The number of irreducible
representations of Sd is just the number of conjugacy classes of Sd which is independent of
the choice of base �eld. So it just needs to be decided whether a given complex irreducible
representation of Sd is realizable, i. e. whether it can be written as a representation on a real
vector space. Now from the general representation theory, it is known that the question
whether a given complex representation θ : G → GL(V ) is realizable, is equivalent to
the question whether there is a G-invariant non-degenerate symmetric bilinear form on V
(see e. g. [23, Theorem 3.37]). The complex irreducible representations of Sd are given as
certain G-invariant subspaces of the group algebra CSd, which is naturally equipped with
such a bilinear form. Its restriction to the representation space thus provides the necessary
criterion that allows to say that any complex irreducible representation of Sd is realizable.
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2.2 Prerequisites from the Representation Theory for Groups

Any �nite group can only have a �nite number of distinct (i. e. non-isomorphic)
irreducible representations.
It can be shown that for every representation θ of a �nite group G in a vector
space V , a scalar product can be de�ned on V such that every θ(g) is orthogonal
(in the real case) or unitary (in the complex case)5. If necessary, we will in the
following assume that this is done.
An important consequence of this is the fact that if θ : G → GL(V ) is a rep-
resentation, V can be written as the direct sum V =

⊕
ι∈I Uι of irreducible

subspaces Uι
6. In general, this decomposition is not unique. However, it can be

shown that any decomposition of V into irreducible subspaces leads to a unique
decomposition of V when these subspaces are grouped together by isomorphy of
representations, i. e. if one forms subspaces W1 =

⊕
ι∈I1

Uι, . . . ,Wk =
⊕

ι∈Ik
Uι

with pairwise disjoint subsets Ij satisfying ∪k
j=1Ij = I and such that for every

ι1 ∈ Ii and ι2 ∈ Ij , the representations in Uι1 and Uι2 are isomorphic whenever
i = j, and are not isomorphic whenever i 6= j.

De�nition 2.9
The decomposition V = W1 ⊕ . . . ⊕Wk described above is called the isotypic
decomposition of V with respect to θ. A singleWj is called an isotypic component
of V with respect to θ.

Every direct sum decomposition of a vector space comes with a set of projections
onto the summands of the decomposition. In the case of the isotypic decomposi-
tion, the projections can be described using the character of the decomposition.

De�nition 2.10
Let θ : G → GL(V ) be a representation. The character of θ is the map χθ :
G → C given by χθ(g) = Tr(θ(g)), where Tr(θ(g)) denotes the trace7 of the
endomorphism θ(g).

Lemma 2.11
In the situation of De�nition 2.9, let nj be the degree and χj be the character of
the jth irreducible representation. Then a projection onto the isotypic component
Wj is given by the map

pj :=
nj

|G|
∑
g∈G

χj(g)θ(g).

5This is done essentially through Haar integration over an arbitrary scalar product. For �nite
groups, Haar integration is nothing else but averaging over the group elements.

6This is sometimes also expressed by saying that θ is a completely reducible or semisimple

representation.
7If an endomorphism A : V → V is represented through a matrix (aij), then Tr(A) =

∑
aii.

The trace can also be de�ned in a basis-independent way as the contraction of A viewed as
a (1, 1)-tensor on V .
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2 Mathematical background

The main purpose of this section is to describe the structural implications equiv-
ariance has for a linear map. In the following we de�ne this term and brie�y
sketch the way that leads to the main structural result.

De�nition 2.12
Let G be a �nite group, let θ1 : G→ GL(V1) and θ2 : G→ GL(V2) be represen-
tations of G, and let A : V1 → V2 be a linear map. A is called equivariant with
respect to θ1 and θ2 if A ◦ θ1(g) = θ2(g) ◦ A holds for all g ∈ G.

The main step towards the basic structure theorem is made with the following
famous lemma.

Lemma 2.13 (Schur's Lemma)
Let θ1 : G → GL(V1) and θ2 : G → GL(V2) be irreducible representations. Let
a linear map A : V1 → V2 be equivariant with respect to θ1 and θ2. Then either
A = 0 or A is invertible.

There are two important immediate consequences of this lemma. Firstly, if θ1

and θ2 are not isomorphic, then A has to be zero. Secondly, if A 6= 0, then
θ1 and θ2 are isomorphic. Together with the decomposition of V1 and V2 into
isotypic components, these �ndings yield the following theorem, which describes
the general structure of an equivariant linear mapping.

Theorem 2.14
Let G be a �nite group, let θ1 : G→ GL(V1) and θ2 : G→ GL(V2) be represen-
tations of G. Let A : V1 → V2 be equivariant with respect to θ1 and θ2. Then
the block matrix representation of A with respect to the isotypic decompositions
of V1 and V2 is a diagonal matrix.

We should not forget to mention that the use of so-called symmetry-adapted bases
allows more re�ned statements about the structure of an equivariant mapping.
These are bases for V1 and V2 with respect to which every θi(g) has block diagonal
structure, where the diagonal blocks contain only irreducible representations. For
more details on this see e. g. [44, p. 23 �] for a complex, or [49, Theorem 2.3] for
a real version.
In Chapter 3 we will apply Theorem 2.14 to (parts of) the transfer operator
of a coupled cell system. We do this as we wish to determine as far as possi-
ble the consequences which the structure of the coupling network has for the
transfer operator. In order to carry out this programme, we will need two more
prerequisites: Firstly, we will need to be able to tell, for a given group, which
irreducible representations it has, and secondly, we will need to be able to com-
pute an isotypic decomposition of a given representation. The �rst point is, in
group theoretic terms, the problem of enumerating the di�erent irreducible rep-
resentations. In the classical representation theory this problem has been solved
for many kinds of groups, e. g. for the case of the permutation groups Sd by
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2.2 Prerequisites from the Representation Theory for Groups

using so-called Young diagrams. We will brie�y sketch this solution below. To
deal with the second problem, one can in principle use Lemma2.11. However, for
concrete computations in speci�c examples, the projection formula given often
needs to be analyzed further in order to obtain more concrete expressions for the
isotypic components. For the case of products of symmetric groups acting on
tensor products of vector spaces, this programme has been carried out. To give
a (super�cial) impression of the nature of the result, we sketch it in Section 2.2.3
below. We are going to use it in Example3.28 to give at least a rough estimate of
the savings in numerical e�ort that can possibly result from using the structural
theory we are developing in this thesis.
Finally, we have to note that for practical purposes theoretical answers of this
kind may be of limited value. For this reason, we want to point out that also
algorithmic approaches are possible that compute for a given representation of
some (�nite) group on some vector space the complete isotypic decomposition.
A simple example for an algorithm of this kind is given in [16].

2.2.2 Description of the irreducible representations of Sd

Young diagrams and irreducible representations In the following, we sketch
the theory presented in [23, Chapter 4] as brie�y as possible. Our aim is to
construct all irreducible representations of the permutation group Sd acting on d
elements. First we introduce the group algebra CSd as the vector space of formal
linear combinations of the elements of Sd: CSd := {

∑l
i=1 αiγi | l ∈ N, αi ∈ C, γi ∈

Sd}, and observe that the simple �linear extension� of the group multiplication
equips CSd with a multiplication, thus making it an algebra. Further we observe
that the elements of CSd act as linear operators on CSd by right multiplication.
More generally, any representation θ : Sd → GL(V ) can be extended linearly to
an algebra homomorphism θ : CSd → End(V ). We refer to this extension when
we speak of �the action of c on V � for some c ∈ CSd .
Now we start with an arbitrary size-ordered partition λ of d, that is, a �nite
sequence λ1 ≥ . . . ≥ λk ≥ 1 of natural numbers with

∑k
i=1 λi = d. We asso-

ciate to such a partition a so-called Young diagram, that is, a staircase-like two-
dimensional structure with k rows containing λi blocks in the i-th row, numbered
top-down from left to right (see Figure 2.1 for an example).

1 2 3 1 2

3

1

2

3

Figure 2.1: Young diagrams for the three partitions of the number three.
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Next we de�ne two subgroups of Sd, namely

Pλ := {γ ∈ Sd | γ leaves the rows invariant} and
Qλ := {γ ∈ Sd | γ leaves the columns invariant.}

These subgroups are now used to de�ne three elements of the group algebra,

aλ :=
∑
γ∈Pλ

γ,

bλ :=
∑
γ∈Qλ

sgn(γ)γ, and

cλ := aλ · bλ,

where sgn(γ) denotes the sign of the permutation γ. The element cλ is called
the Young symmetrizer associated to λ. In the following, we cite a fundamental
result on representations of symmetric groups from Lecture 4 in [23].

Theorem 2.15
Consider cλ : CSd → CSd as a linear map and de�ne

Vλ := im cλ.

Then Vλ is invariant under the representation of Sd on CSd, and the restriction of
this representation to Vλ is an irreducible representation of Sd. Every irreducible
representation of Sd can be obtained in this way for a unique partition λ.

Example 2.16
As an example, we show how to obtain the irreducible representations for S3

from the three Young diagrams shown in Figure 2.1. We denote the elements of
S3 in cycle notation, e. g. the notation (123) is used for the permutation that
moves each element �one right�, and (12) for the permutation that �xes 3 and
interchanges 1 and 2.
For the �rst diagram, we have Pλ = S3 and Qλ = {Id}, and hence obtain

cλ

(
l∑

i=1

αiγi

)
=

(
l∑

i=1

αiγi

)
·

(∑
γ∈S3

γ

)

=

(
l∑

i=1

αi

(∑
γ∈S3

γ

))

=
l∑

i=1

αi

∑
γ∈S3

γ.

Thus the image of cλ is one-dimensional, and we obtain the trivial representation
from this diagram.
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2.2 Prerequisites from the Representation Theory for Groups

For the second diagram, we have Pλ = {Id, (12)} and Qλ = {Id, (13)}, hence
aλ = Id +(12) and bλ = Id−(13), and �nally cλ = Id +(12) − (13) − (123).
A direct computation shows that the image of cλ is spanned e. g. by cλ itself
and by (13) · cλ. Therefore this diagram generates a two-dimensional irreducible
representation, which is called the standard representation of S3. It can be
visualised as a representation on R2 by choosing a straight line (e. g. the x-axis)
through the origin and assigning to (13) the re�ection on this line, and to (123)
the clockwise rotation by an angle of 2π

3
around the origin.

In the third diagram, Pλ and Qλ are just interchanged when compared with the
�rst diagram, and so one obtains analogously that

cλ

(
l∑

i=1

αiγi

)
=

l∑
i=1

sgn(γi)αi

∑
γ∈S3

γ.

So this diagram also yields a one-dimensional representation, the so-called alter-
nating representation of S3 that is most simply described by saying that every
group element is mapped to its sign.

Products of groups We have just seen how the irreducible representations of
symmetric groups Sd, d ∈ N, can be constructed. However, most of the groups
with which we will have to deal in Chapter 3 are subgroups of symmetric groups.
While there is in general no simple way to derive the irreducible representations
of a subgroup from those of the larger group, we are in the fortunate situation
that it is indeed possible to construct the irreducible representations of the groups
we are interested in from those of the full symmetric groups Sd. The key for this
construction is the fact that we can write the groups of our interest as product
groups with factors of the form Sd, d ∈ N. Fortunately, there is a simple rule
for the construction of irreducible representations of product groups from those
of the factors. The basic notion we need for this is that of the tensor product of
representations.

De�nition 2.17
Let G1 and G2 be �nite groups, let θ1 : G1 → GL(V1) and θ2 : G2 → GL(V2)
be representations thereof. The representation θ1 ⊗ θ2 : G1 ×G2 → GL(V1 ⊗ V2)
de�ned by θ1 ⊗ θ2(γ1, γ2)(v1 ⊗ v2) = θ1(γ1)(v1) ⊗ θ2(γ2)(v2) is called the tensor
product of the representations θ1 and θ2.

Now the matter is as simple as:

Theorem 2.18 ([44])
If in the setting of De�nition 2.17 θ1 and θ2 are irreducible, then θ1 ⊗ θ2 is an
irreducible representation of G1×G2. Each irreducible representation of G1×G2

is isomorphic to a representation of this form.
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2.2.3 Description of isotypic decompositions of V ⊗d

In the previous section, we have seen how the irreducible representations of Sd

can be described, and Theorem 2.18 tells us how the irreducible representations
of products of the form Sd1 × . . . × Sdk

can be constructed from them. In our
application, the equivariance theory for transfer operators of coupled cell systems,
we will be dealing with a particular kind of representations, and what is missing
until know is a description of the isotypic decomposition of these representations.
We will describe their construction in the following.
Concretely, we will have to deal with vector spaces

V ⊗d = V ⊗ . . .⊗ V︸ ︷︷ ︸
d factors

that are �tensor powers� of some vector space V , and with the representation of
Sd on it that is de�ned via �index permutation�, that is the representation that
assigns to γ ∈ Sd the endomorphism on V ⊗d given through8

v1 ⊗ v2 ⊗ . . .⊗ vd 7→ vγ−1(1) ⊗ vγ−1(2) ⊗ . . .⊗ vγ−1(d).

Surprisingly, this representation seems not to have been given a name in rep-
resentation theory. For ease of further descriptions, we will call it the factor
permutation representation of Sd in the rest of this thesis.
The construction we are going to sketch in the following is due to Hermann
Weyl and presented in a large number of textbooks, e. g. in [23, Chapter 6]. We
already know one of its ingredients, namely the irreducible representations Vλ

of Sd, parametrized by the partitions λ of d. These spaces were constructed as
images of the Young symmetrizers cλ, de�ned as linear mappings on the group
algebra CSd. For the second main ingredient, we consider the action of cλ on
V ⊗d (see p. 19) and de�ne the Weyl module corresponding to λ as

SλV := im
(
cλ : V ⊗d → V ⊗d

)
.

Having de�ned these terms, we can now formulate the result that is of interest
to us.

Theorem 2.19 (Exercise 6.30 in [23])
Let V be a vector space. The isotypic decomposition of the factor permutation
representation of Sd on V ⊗d is given by

V ⊗d =
⊕

λ

(SλV ⊗ Vλ) ,

where the summation is over the partitions λ of d.

8This statement su�ces to de�ne the automorphisms as the elementary tensors span the
whole tensor power V ⊗d.
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In order to be able to estimate the amount of potential savings achievable by using
a block-diagonalization based on the isotypic decomposition, it will be helpful
to know about the dimensions of the parts in this decomposition. Fortunately,
expressions for the dimensions both of Vλ and SλV are available, e. g. in [23, p.
50 (Equation (2.1)) and p. 78 (Equation (2.2))]. Not surprisingly, they depend
on three factors, namely d, the partition λ, and the dimension k of V . More
precisely, the partition λ determines a set of d so-called hook lengths hij, the
product of which enters the dimension formulas. These are de�ned as follows:
The box (i, j) located in row i, column j of the Young diagram corresponding to
λ determines a hook whose corner it is. This hook is the set of boxes that are
either below or to the right of the box (i, j), together with the box (i, j) itself.
Now the hook length hij is simply the number of boxes in the hook corresponding
to box (i, j). With this notation, we can de�ne

Hλ :=
∏
(i,j)

hij,

where the product is de�ned over the boxes in the Young diagram associated to
λ. Now we have the following formulas.

dimVλ =
d!

Hλ

(2.1)

dim SλV =
1

Hλ

∏
(i,j)

(k − i+ j) (2.2)

We notice that for the case k >> d, which will be of principal interest for our
application, dim SλV ≈ kd

Hλ
, so that Hλ roughly determines the potential savings.

As an example, and for later reference, in Table 2.1 the hook lengths and dimen-
sions for the cases d ∈ {2, . . . , 5} are listed.

2.3 Measure Theoretical Prerequisites

In the following section measure theoretical prerequisites that will be needed
in the rest of this work will be presented. Its main purpose is to �x notation.
Everything that is presented in the section titled `Basic concepts' can be found
in virtually every textbook on measure theory, although the speci�c manner
of the presentation often di�ers substantially from the choice we made for our
exposition. For the preparation of this work, the textbooks by H. Bauer [2] and
J. Elstrodt [19], and especially J. L. Doob's conception of measure theory [18]
were helpful sources. The section titled `Speci�c concepts' presents the speci�c
notation we will adopt in this work to deal with measure spaces for coupled cell
networks. Most of its contents is not taken from existing literature, but has been
developed by the author of this thesis during his e�orts to understand transfer
operators for coupled cell systems.
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d = 2 d = 3
2 1 2

1
3 2 1 3 1

1
3
2
1

Hλ = 2 2 6 3 6
dim Vλ = 1 1 1 2 1

dim SλV = 55 45 220 330 120
d = 4

4 3 2 1 4 2 1
1

3 2
2 1

4 1
2
1

4
3
2
1

Hλ = 24 8 12 8 24
dim Vλ = 1 3 2 3 1

dim SλV = 715 1485 825 990 210
d = 5

5 4 3 2 1 5 3 2 1
1

4 3 1
2 1

5 2 1
2
1

4 2
3 1
1

5 1
3
2
1

5
4
3
2
1

Hλ = 120 30 24 20 24 30 120
dim Vλ = 1 4 5 6 5 4 1

dim SλV = 2002 5148 4950 4752 3300 1848 252

Table 2.1: Young diagrams for the irreducible representations of S2, S3, S4, and
S5. The boxes in the Young diagrams are �lled with their hook lengths,
the lines below the diagrams give the hook length products, the di-
mension of the irreducible representation and, as an example, the di-
mension of the Weyl module for a vector space V with dimension
k = 10.

2.3.1 Basic concepts

Measurable maps and measures. To begin, we remember a number of basic
concepts. A σ-algebra Σ on a set X is a collection of subsets of X with the
properties that ∅ ∈ Σ, that A ∈ Σ implies X \ A ∈ Σ, and that for any in�nite
sequence A1, A2, . . . ∈ Σ also ∪∞i=1Ai ∈ Σ holds.
A measurable space is a pair (X,Σ), where X is a set and Σ is a σ-algebra on
X. The cases most important to this work are those of topological spaces X,
for which there is a natural choice of algebra, namely the Borel σ-algebra on
X, which is de�ned to be the smallest σ-algebra on X that contains all open
subsets of X. We note that an equivalence relation on X is de�ned by regarding
two elements x, y ∈ X as equivalent whenever χA(x) = χA(y) holds for the
characteristic functions χA of all A ∈ Σ. The equivalence classes for this relation
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are called the atoms of Σ. Atoms are the �smallest� entities in Σ in the sense
that no non-empty proper subset of an atom is contained in Σ. Given two
measurable spaces (X,ΣX) and (Y,ΣY ), a map F : X → Y is called measurable
if F−1(A) ∈ ΣX for all A ∈ ΣY .
A signed measure on a measurable space (X,Σ) is a function µ : Σ → R ∪
{−∞,∞} with the properties that µ(∅) = 0, that µ is countably additive, which
means that for a sequence of pairwise disjoint subsets Ai ∈ Σ the equality

µ

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai)

holds, and that at least one of the values −∞,∞ is not taken. The signed
measure µ is called �nite if µ(X) is �nite, and σ-�nite if X is a countable union
of sets with �nite µ-measure. A measure is non-negative if it takes only non-
negative values. A non-negative measure µ on a space X with µ(X) = 1 is
called a probability measure. Given a non-negative measure µ and a signed or
complex measure ν over the same σ-algebra Σ, ν is called absolutely continuous
with respect to µ if for all sets A ∈ Σ, µ(A) = 0 already implies ν(A) = 0. At
the other end of the spectrum are the δ-measures which concentrate all weight
in one point: δx(A) = 1 if x ∈ A, otherwise δx(A) = 0.
Normally, in the literature a distinction is made between complex measures,
signed measures and (�true�) measures, the latter being signed measures which
only take non-negative values. As the measures this work will be concerned with
will always be thought of as being elements of vector spaces, we will not make
this distinction, and mean �complex measures� or �signed measures� whenever we
speak of �measures� unless otherwise stated. Furthermore, for the same reason
we will often assume that all measures that are considered are �nite. Finally, in
the literature, the term �measure space� is usually applied to a tuple (X,Σ, µ)
�xing a speci�c measure on a speci�c σ-algebra over a speci�c space. For this
work, it will be more convenient to use that term as a short version of the
somewhat longish �linear space of measures�. So in the following that term is to
be understood with this meaning, unless it is explicitely said or otherwise clear
that the standard meaning is intended.

Integrals. Measures are there, of course, to integrate real- or complex-valued
functions. So to complete this brief exposition, we sketch a path for the de�-
nition of integrable functions with respect to a given measure space (X,Σ, µ).
This path has three stages: measurable step functions, limits of non-negative
measurable step functions, and �nally linear combinations of those. Here we will
only describe the steps one goes towards the stages, and we refer the reader to
the literature for all questions about correctness, well-de�nedness, or alternative
constructions. Step functions are functions ϕ : X → R that take only �nitely
many values y1, . . . , yk ∈ R. If such a function is measurable, its integral with
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respect to the measure µ can quite simply be de�ned as∫
X

ϕ dµ =
k∑

j=1

yjµ(ϕ−1(yj)).

The basis for the next step is the fact that every non-negative measurable func-
tion can be obtained as the pointwise limit of a monotone sequence of non-
negative measurable step functions. Also, the sequence of integrals of functions
in such a sequence is convergent, and this allows to de�ne the integral of non-
negative measurable functions as the limit of the sequence of integrals. Thus
the second stage is reached, and an integral is de�ned for all non-negative step
functions, which (at this stage) is allowed to take the value in�nity. For the last
step, one notices that complex-valued measurable functions can be written as
(complex) linear combinations of two real-valued measurable functions (namely
their real and imaginary parts), and that real-valued measurable functions can
be written as a linear combination (in fact, as the di�erence) of two non-negative
measurable functions. Thus it is obvious that the integral of arbitrary measur-
able functions should be de�ned as the corresponding linear combination of the
integrals of its constituents. To do this, one has to take care, however, that in
the �nal linear combination no expression of the form �∞−∞� can occur, and
therefore one performs the �nal step only for those real- or complex-valued mea-
surable functions whose positive and negative parts of their real and imaginary
parts have all �nite integrals. These functions are called µ-integrable functions.

Image measures. If µ is a measure on (X,ΣX), a measurable map F : X → Y
induces a measure ν on (Y,ΣY ) by means of the formula

ν(A) = µ(F−1(A)).

The measure ν is also called the image measure of µ under the map F . The
e�ect of image measures on the integration of functions is given by the fact that
if φ is a ν-integrable function on Y , then φ ◦ F is a µ-integrable function on X,
and ∫

X

φ ◦ F dµ =

∫
Y

φ dν. (2.3)

Remark 2.20
We remark that the construction of image measures can be repeated: Let, in
addition to the above situation, a map G : Y → Z be given that is measurable
with respect to the σ-algebras ΣY on Y and ΣZ on Z. If we write ν = F (µ) for
the image measure of µ under F , and G(ν) for the image measure of ν under G,
then we have

G(F (µ)) = (G ◦ F )(µ).
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A short way of saying this is to state that forming an image measure measure
represents a covariant functor from the category of measurable spaces into a
suitably chosen category of spaces of measures.

Restrictions of measures If µ is a measure on (X,ΣX) and A ∈ ΣX , then the
restriction µ|A of µ to A is de�ned by µ|A(B) = µ(A ∩B) for all B ∈ ΣX .

Product measures. Let arbitrary measure spaces (X,ΣX , µ) and (Y,ΣY , ν) be
given, and de�ne a σ-algebra ΣX×Y as the smallest σ-algebra that contains all
sets of the form A × B with A ∈ ΣX and B ∈ ΣY . Then it can be shown that
there is a unique measure µ⊗ ν on X ×Y satisfying µ⊗ ν(A×B) = µ(A) · ν(B)
for all A ∈ ΣX and B ∈ ΣY . This measure is called the product measure of µ
and ν. By iterating this construction, product measures with an arbitrary �nite
number of factors can be de�ned.

Remark 2.21
In the notation µ1 ⊗ µ2 ⊗ · · · ⊗ µN(A1 ×A2 × · · · ×AN) that is used for product
measures, a speci�c order for both the factor measures and for the factors of the
cartesian product is implicitely assumed. It is worth to note that this requirement
indeed purely stems from the particular notation and is in no way intrinsic to the
notion itself. This is helpful for the cases in which product spaces and measures
will be used in this thesis, as the index set that is typically used is the set of all
cells C, or some subset thereof. These sets are not naturally equipped with any
order, and we do not need to impose one. In particular, we remark that when
we write down expressions like[⊗

c∈C

µc

](∏
c∈C

Ac

)
,

we assume that �every term �nds its correct counterpart� even when ambiguous
choices due to identical copies of a space in the product would be possible.

For later use, we brie�y remind of the Radon-Nikodým theorem which states that
a measure that is absolutely continuous with respect to some other measure can
be expressed as an integral with respect to this measure by means of a density.

Theorem 2.22 (Radon-Nikodým, cited from [19])
Let µ be a σ-�nite measure on a space X, and let ν be a signed measure that
is absolutely continuous with respect to µ. Then there is a measurable function
h : X → R ∪ {∞} such that ν(A) =

∫
A
h dµ for every measurable set A. The

function h is µ-integrable if and only if ν is �nite, and h is real-valued if and only
if ν is σ-�nite.
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2.3.2 Speci�c concepts

Building upon the basic ideas just described, we now introduce concepts speci�c
to this thesis.
Dealing with transfer operators and with coupled cell systems, we will have to
consider measure spaces over the cartesian product of some or all of the state
spaces for the cells, and linear mappings between those measure spaces. Given
a coupled cell system with a collection of state spaces, there may be di�erent
choices for these collections of measure spaces, each of which can be deemed
interesting in its own right and each of which may be suitable for its own kind
of problems. Instead of developing separate theories for each of these settings,
we prefer taking a more abstract point of view, formulating once the require-
ments we have for a particular setting, and providing examples that meet these
requirements afterwards.

Suitable settings

In the following, we assume we are given a coupled cell system with a set of
cells C and with a state space Xc for each cell c. We assume that each Xc is
equipped with a σ-algebra Σc. For each subset of cells D ⊂ C we equip the partial
state space XD with the product σ-algebra ΣD formed from the σ-algebras Σc,
c ∈ D. Note that this implies that all canonical projections πD : X → XD are
measurable maps.

De�nition 2.23
In the context described above, a pair ({M(XD) | D ⊂ C}, {F(XD) | D ⊂ C}),
where each M(XD) is a subspace of the linear space of complex9 measures on
(XD,ΣD), and each F(XD) is a vector space of measurable functions on XD, is
called a suitable setting, if the following properties are satis�ed.

1. Whenever D1,D2 ⊂ C with D1 ∩ D2 = ∅, µ ∈ M(XD1) and ν ∈ M(XD2),
one has µ⊗ ν ∈M(XD1∪D2).

2. For each D ⊂ C and each measure µ ∈ M(X), the image measure of µ
under the canonical projection πD must be contained in M(XD).

3. Each φ ∈ F(XD) is integrable with respect to every element of M(XD).

4. The weak topology on M(XD) with respect to F(XD) is Hausdor�, i. e.
for any µ ∈M(XD),

∀φ ∈ F(XD) :

∫
XD

φ dµ = 0

implies that µ = 0.

9In this place one could equally well write �signed measures� to consider real vector spaces.
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5. Conversely, M(XD) separates the elements of F(XD), i. e. for any φ ∈
F(XD),

∀µ ∈M(XD) :

∫
XD

φ dµ = 0

implies that φ = 0.

Furthermore, for any D ⊂ C, we de�ne

FD(X) = {φ ∈ F(X) | ∃φ̂ : XD → R : φ = φ̂ ◦ πD}

as the subspace of functions depending only on cells in D.

De�nition 2.24
Condition 2 from De�nition 2.23 implies that the process of forming the images
of measures in M(X) under the canonical projections πD : X → XD de�nes a
linear map from M(X) to M(XD). From here on, the notation πD will also be
used to denote this map, that is

πD : M(X) → M(XD)

µ 7→ µ ◦ π−1
D .

The measure πDµ is called the marginal measure of µ with respect to the space
XD.

Example 2.25
The e�ect of applying πD can be described as �integrating out� the factors in the
product space that are not in D. To see what this means, we consider the case of
a product measure on X. More concretely, let µ ∈ M(XD) and ν ∈ M(XC\D).
Then µ⊗ ν ∈M(X), and for A ⊂ XD measurable we have

πD(µ⊗ ν)(A) = (µ⊗ ν)(A×XC\D)

= µ(A) · ν(XC\D),

so that πD(µ⊗ ν) = ν(XC\D) · µ.

In the following, we will present examples for suitable settings M(X) together
with corresponding function spaces F(X).

Example 2.26
The probably simplest example is that of �nite-dimensional measure spaces. Let
a coupled cell system be given with a set C of cells and state spaces Xc with
σ-algebras Σc. Assume that each σ-algebra Σc has a �nite number nc of atoms.
(The simplest example is the case where each Xc has only �nitely many elements
and Σc is its power set.) Let Ac ⊂ Xc be an atom for each c ∈ C. Then it is
easy to see that for any D ⊂ C, the cartesian product

∏
c∈D Ac is an atom of ΣD,
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and that all atoms of ΣD can be obtained in this way. Therefore the number of
atoms in ΣD is also �nite and given by the product of the numbers of atoms in
the Xc, i. e. ΣD has

∏
c∈D nc atoms. A suitable setting for this situation is given

as follows.
For any c ∈ C, we take F(Xc) to be space of complex valued Σc-measurable
functions. As these functions have to be constant on the atoms, each F(Xc) is
isomorphic to Cnc . Likewise, for any D ⊂ C we de�ne F(XD) to be the space
of ΣD-measurable complex valued functions, which can be written as the tensor
product

F(XD) =
⊗
c∈D

F(Xc) ∼=
⊗
c∈D

Cnc ∼= C
Q

c∈D nc .

Now we can simply de�ne the measure spaceM(XD) as the linear algebraic dual
spaces of their function space counterparts, that is, we de�ne for any D ⊂ C

M(XD) := (F(XD))∗ ∼= C
Q

c∈D nc .

Example 2.27
Let the state spaces Xc be compact subsets of Rdc for some �nite dc, equipped
with the Borel σ-algebra. Then we take as measures in M(Xc) all �nite mea-
sures that are absolutely continuous with respect to the Lebesgue measure mc

on Xc. By the Radon-Nikodým theorem there is a density in L1(Xc,mc) for
every one of these measures. Conversely, each function in L1(Xc,mc) de�nes a
�nite signed Lebesgue-absolutely continuous measure, and therefore the above
described M(Xc) can be identi�ed with L1(Xc,mc). For the spaces M(XD),
D ⊂ C, we take the �nite measures on XD that are absolutely continuous with
respect to the product ⊗c∈Dmc of the individual Lebesgue measures, and note
that these contain the products of measures from the individual measure spaces
M(Xc). (The density of the product measure is given by the product of the
densities, which by the Fubini theorem is in L1 if the individual densities are in
L1.)
A suitable choice for a test function space F(X) in this case is given by the
continuous functions on Xc, as the weak topology onM(X) with respect to this
F(X) is Hausdor� (cf. e. g. [19, Ch. VIII.4.2]).

Example 2.28
For a third example, let the state spaces be as in the previous setting, and again
de�ne F(XD) to be the space of continous functions. We note that these spaces,
equipped with the ‖ · ‖∞-norm, are Banach spaces, and take their dual spaces as
the spacesM(XD), which can be identi�ed with the space of (signed or complex)
measures. We note that in this example, M(X) is larger than in the previous
example and contains e. g. the δ-measures.

Remark 2.29
At least two of our examples share the property that the measure space over
the cartesian product of a collection of state spaces can be understood as the
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tensor product of the measure spaces over the individual state spaces. We ex-
plicitely described this for the �nite-dimensional setting in Example 2.26. The
analogue property for the L1-setting of Example 2.27 was shown by Alexandre
Grothendieck10 in his doctoral thesis. While this property is not crucial for the
theory we are going to develop below (for our purposes, the �rst condition in
De�nition 2.23 is su�cient), it is probably instructive for the reader to add it to
the mental picture about the relationships between the measure spaces.

Structure of M(X)

In the rest of this section, we begin to explore the structure of suitable settings
in the just de�ned sense. First we show how elements of the several spaces are
linked with each other by means of �projections�11and their right inverses, then
we characterise the kernels of these projections.

Lemma 2.31
Let a coupled cell system and a suitable setting for it be given. For all c ∈ C
choose λc ∈ M(Xc) with λc(Xc) = 1 and λc = λd whenever c ∼C d. Then for
D ⊂ C, the map

M(XD) →M(X) µD 7→

(⊗
c 6∈D

λc

)
⊗ µD

is a right inverse to πD and denoted by π−1
D .

10In essence, this is the question for the relation between the tensor product L1(µ) ⊗ L1(ν)
and L1(µ⊗ ν). It has been given a rather general answer by Alexandre Grothendieck, who
in his doctoral thesis [28] considers topological tensor products of vector spaces. If one
considers tensor products of topological vector spaces E and F , it turns out that in general
there is more than one sensible possibility for a topology on the tensor product E ⊗ F .
One reasonable choice is the so-called π-topology which is de�ned as the �nest topology on
E ⊗ F such that the natural bilinear map E × F → E ⊗ F is continuous. If one considers
the tensor product with this topology, it is written E ⊗π F . In the following theorem by
Grothendieck, which is cited here in English translation (from the original French) and with
mildly adapted notation, the completion of L1(µ)⊗π L1(ν) with respect to this topology is
shown to be isomorphically homeomorphic to L1(µ⊗ ν).

Theorem 2.30 (Grothendieck, [28, p. 61f, Corollaire 4])
Let X and Y be locally compact spaces equipped with positive measures µ and ν, respectively.

The space L1(µ)⊗π L1(ν) can be identi�ed with the space L1(µ⊗ ν).

11This term is used here not in the sense of projection operators, i. e. of idempotent linear
endomorphisms, but in the sense borrowed from the geometry of Rn, where �picking� certain
components of an n-vector can be understood as projection onto a certain coordinate plane.
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Proof: A very simple computation su�ces. Let µD ∈M(XD). Then

πD ◦ π−1
D (µ) = πD

[(⊗
c 6∈D

λc

)
⊗ µD

]

=

(∏
c 6∈D

λc(Xc)

)
· µD

= µD.

With this lemma, we obtain the possibility to embed the spaces M(XD) (for
D ⊂ C) into the measure space M(X), which will be extensively used in the
developments in the next chapters.

De�nition 2.32
For D ⊂ C, the map π−1

D (and sometimes its image) is called the embedding of
M(XD) into M(X).

Example 2.33
In the �nite dimensional setting (Example 2.26), the map πD is given by sum-
mation over the indices belonging to cells not in D. More concretely, we as-
sume that the cells are enumerated in such a way that C = {1, . . . , N} and
D = {K + 1, . . . , N} for some K < N . Then a measure µ ∈ M(X) can be
written as a tensor in Cn1 ⊗ . . .⊗ CnN , that is

µ =
(
µi1,...,iN

)
1≤i1≤n1,...,1≤iN≤nN

,

and one readily sees that

πD(µ) =

(
n1∑

i1=1

. . .

nK∑
iK=1

µi1,...,iN

)
1≤iK+1≤nK+1,...,1≤iN≤nN

.

With measures λc ∈ Cnc chosen such that
∑nc

i=1 λ
i
c = 1, the right inverse π−1

D
takes the form

π−1
D (µ̃) =

(
µ̃iK+1,...,iN · λi1

1 . . . · λ
iK
K

)
for µ̃ ∈M(XD).

Remark 2.34
1. To simplify notation, we will in the following sometimes write λC\D instead of⊗

c 6∈D λc.
2. For further use, we remark that for any D ⊂ C, the composition πD ◦ π−1

D is
the identity mapping onM(XD), while the composition π−1

D ◦ πD is a projection
onto im π−1

D ⊂M(X):

(π−1
D ◦ πD)2 = π−1

D ◦ (πD ◦ π−1
D ) ◦ πD = π−1

D ◦ πD.
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3. Furthermore, we remark that the measures λc can be used for a similar
construction on the side of the test functions. Using these measures, a linear
map F(X) → F(XD) can be de�ned by assigning to a function φ on X the
function φD on XD obtained from �integrating out� the factors not in D:

φD(ξD) =

∫
XC\D

φ(ξD, η) dλC\D(η)

Using this map, we can express the right inverse π−1
D through its behaviour on

integrals. If φ ∈ F(X) and µD ∈M(XD), then∫
XD

φD dµD =

∫
X

φ d(π−1
D µD),

which is in essence again an application of the Fubini theorem.

Lemma 2.35
In a suitable setting, the kernels of the linear maps πD, D ⊂ C, have the following
characterisation:

µ ∈ kerπD ⇐⇒
∫

X

φ dµ = 0 ∀φ ∈ FD(X).

Proof:

⇒ Let µ ∈ M(X) with πD(µ) = 0, and let φ ∈ FD(X). Then there is
φ̃ ∈ F(XD) such that φ = φ̃ ◦ πD, and then∫

X

φ dµ =

∫
X

φ̃ ◦ πD dµ =

∫
XD

φ̃ dπD(µ) = 0.

⇐ Let
∫

X
φ dµ = 0 for all φ ∈ FD(X). Using the above equation, this implies∫

XD

φ̃ dπD(µ) = 0 for all φ̃ ∈ F(XD),

and thus πD(µ) = 0 by Condition 4 from De�nition 2.23.

Corollary 2.36
If D1 ⊂ D2 ⊂ C, then kerπD2 ⊂ kerπD1 .

Proof: This follows from FD1(X) ⊂ FD2(X) and Lemma 2.35.

The next lemma can be seen as the analog of Lemma 2.35 on the test function
side.
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Lemma 2.37
In a suitable setting, the spaces of functions depending only on a subset D ⊂ C
of all cells have the following characterisation:

φ ∈ FD(X) ⇐⇒
∫

X

φ dµ = 0 ∀µ ∈ kerπD.

Proof:

⇐ Let φ ∈ F(X) be such that
∫

X
φ dµ = 0 for all µ ∈ kerπD. De�ne

ψ = φ − (φD ◦ πD). For any µ ∈ M(X) de�ne µ1 = π−1
D ◦ πD(µ) and

µ0 = µ− µ1, so that µ0 ∈ kerπD. Then we have∫
ψ dµ =

∫
ψ dµ0 +

∫
ψ dµ1

=

∫
φ− (φD ◦ πD) dµ0 +

∫
φ− (φD ◦ πD) dµ1

=

∫
φ dµ0︸ ︷︷ ︸

=0 by assumption

−
∫
φD dπDµ0︸ ︷︷ ︸

=0, as µ0∈ker πD

+

∫
φ dµ1 −

∫
φD ◦ πD dµ1

=

∫
φ dµ1 −

∫
φD dπDµ1

=

∫
φ dµ1 −

∫
φ d π−1

D πDµ1︸ ︷︷ ︸
=µ1

= 0.

But then, using Condition 5 from De�nition 2.23, ψ = 0, and this means
nothing else than φ ∈ FD(X).

⇒ Let φ ∈ FD(X) be given and a function φ̂ on XD such that φ = φ̂◦πD. Let
µ ∈ kerπD. Then∫

X

φ dµ =

∫
X

φ̂ ◦ πD dµ =

∫
XD

φ̂ dπDµ = 0.

Lifts of permutations

We now begin to combine the measure-theoretical concepts that were just in-
troduced with the concepts describing �symmetry� in coupled cell networks. In
principle we are going to describe a straightforward construction, that of the
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�lift� of permutations of cells to state spaces and to measure spaces. Although
these constructions are not particularly di�cult or mathematically demanding,
we perform them in detail, as we think this will contribute a good deal to the
clarity of the whole thesis.
We assume that we are working in a suitable setting in the above de�ned sense.
We are going to look at permutations of cells, and how these permutations can
be made �act� on state spaces XD, on measure spaces M(XD), and on the em-
beddings of these into M(X). More precisely, let us assume that D ⊂ C and
that ϕ : D → C is an injective mapping respecting the cell types, i. e. such that
c ∼C ϕ(c) for each c ∈ D. Such a mapping can be visualised as �picking� the
cells from D and putting them into the places ϕ(c). If one additionally visualises
the state spaces Xc as �attached� to the cells, this immediately de�nes mappings
between the state spaces, and also between their cartesian products.
To express this in a more precise way, we note that as ϕ respects the cell types, Xc

is identical to Xϕ(c) for each c ∈ D. Therefore ϕ de�nes a map ϕ̂ : XD → Xϕ(D)

by
(ϕ̂(x))c′ = xϕ−1(c′) ∀c′ ∈ ϕ(D) ∀x ∈ XD,

that is by assigning to the c′-component of ϕ̂(x) the value of the component
�where c′ was before application of ϕ �.12 Now this map de�nes a linear map
ϕ̄ : M(XD) → M(Xϕ(D)) through the assignment of image measures, that is
through the prescription

ϕ̄(µ)(A) = µ(ϕ̂−1(A)) ∀A ⊂ Xϕ(D) measurable ∀µ ∈M(XD).

Finally, the mapping ϕ̄ can be �embedded� intoM(X) via the maps πD and π−1
ϕ(D)

to obtain a map between subspaces of M(X). With the following de�nition we
subsume these developments.

De�nition 2.38
We call ϕ̄ the lift of ϕ to M(XD). Furthermore, we call the map

ϕ̃ : M(X) ⊃ im π−1
D → im π−1

ϕ(D) ⊂M(X)

de�ned by
ϕ̃ = π−1

ϕ(D) ◦ ϕ̄ ◦ πD
the lift of ϕ to M(X).

2.3.3 Probabilistic concepts

While there is no reason not to see probability theory simply as a part of measure
theory, there is also plenty of reason to see it as a part of mathematics of its

12We implicitely already encountered this construction in the de�nition of admissibility of a
map on a coupled cell network.
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own right, not the least of which are its history, the large number of genuinely
probabilistic (or stochastic) concepts which often stand quite apart from the rest
of measure theoretic notions, and its seemingly in�nite applicability to real world
problems. This is the reason why we introduce the small set of probabilistic terms
which we will need in the later chapters into a section of its own. Basically, the
aim of this section is to introduce the notion of a Markov chain. In order to keep
up some consistence of this thesis, we will start in the base camp to which the
section on basic concepts from measure theory brought us, and from there begin
to climb a steep mountain, from the ridges of which we will be able to see, but
not to climb, its higher peaks. (That is to say, we will sketch the de�nition of a
Markov chain, but we will not say many words about the vast theory that has
been developed around the concept).
Again, the material presented here is standard knowledge contained in virtually
any textbook on probability theory from the graduate level onwards. To mention
a reference, we mention two and refer the reader to the classical textbook [17]
by J. L. Doob, or the more modern, extensive account [41] by S. P. Meyn and
R. L. Tweedie.

Random variables and conditional probabilities Let (Ω,Σ, P ) be a measur-
able space with a probability measure P . If B ∈ Σ with P (B) > 0, then B
de�nes another probability measure P (· | B) on Ω via

P (A | B) =
P (A ∩B)

P (B)
for all A ∈ Σ.

This measure is called the conditional probability under the condition B. Let
(Y,ΣY ) be any other measurable space. A random variable Z with values in Y
is a measurable map Z : Ω → Y . For some set A ∈ ΣY one uses the notation
P (Z ∈ A) for P (Z−1(A)) and reads this as �the probability that Z is in A�.
Likewise, if X is another random variable on Ω with values in Y and B ∈ ΣY

with P (X ∈ B) > 0, then P (Z ∈ A | X ∈ B) denotes the probability that Z
is in A under the condition that X is in B. Analogously one de�nes conditional
probabilities for conditions consisting of more than one term, i. e. conditional
probabilities of the form P (Z ∈ A | X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn). To shorten
notation, one often leaves out explicit mention of the sets A,B1, . . . , Bn and
simply writes P (Z | X1, . . . , Xn), as we shall do from here on. In this notation,
the set Ω has completely vanished, and often the measure P (Z ∈ · | X1, . . . , Xn)
is seen as a probability measure on Y , that is, it is identi�ed with its image
measure under the map Z.

Stochastic processes and Markov chains A (discrete-time) stochastic pro-
cess with values in Y is a sequence (Zt)t∈N of random variables with values in Y .
The space Y is also called the state space of the process, especially in the case
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of Markov chains to which we will come in a moment. This is a rather general
concept, and in a moment, we will add some important conditions to this de�-
nition in order to de�ne the notion of a Markov chain. However, before we do
this, we acknowledge that it is time now to explain, rather than only describe,
what is going on.
A stochastic process as just de�ned should be thought of as a probabilistic version
of a dynamical system. One could think of trajectories in an ω-wise sense, that
is, as sequences of points (Zt(ω))t∈N with ω ∈ Ω. These sequences are called the
sample paths of the process. While there is sometimes a good reason to speak
of a stochastic process in terms of its sample paths13, often this point of view is
not appropriate. A more probabilistic view is better suited, and thus one often
speaks about a stochastic process in terms of its probability measures and their
evolution. As an example, the sequence (P (Zt ∈ · | Z0 = y0))t∈N of probability
measures is used to describe the process under the condition that it starts in
y0 ∈ Y .
Amongst all stochastic processes, Markov chains14are those processes that share
an important feature with a deterministic dynamical system: the property that
it is �memoryless�. This means that in a deterministic dynamical system, the
position of a particle at time t+1 depends only on its position at time t, but not
on its �history�, i. e. the sequence of positions at times 0, . . . , t. Translated into
the probabilistic setting, this property de�nes a Markov process. More precisely,
a stochastic process (Zt)t ∈ N is a Markov chain if it satis�es

P (Zt+1 | Z0, . . . , Zt) = P (Zt+1 | Zt),

that is, if the conditional probability of Zt+1 under the condition of the complete
history is equal to the conditional probability under the condition of the last
time step only. A chain for which the probability P (Zt+1 | Zt) does not depend
on t, i. e. for which

P (Zt+1 | Zt) = P (Z2 | Z1) for all t ∈ N

holds, is called a stationary Markov chain.
We will now specialize our considerations to the case of a (�nite or in�nite)
countable state space Y = (y1, y2, . . .) with the power set as σ-algebra. A prob-
ability measure on Y can then be written as a sequence (or vector) p1, p2, . . .
of non-negative numbers with

∑∞
i=1 pi = 1. Then it is an easy consequence of

Bayes' theorem that

P (Zt+1 = yi) =
∞∑

j=1

P (Zt+1 = yi | Zt = yj)P (Zt = yj).

13For example, one may think of the Wiener process whose sample paths are almost all con-
tinuous with bounded second variation.

14The term �chain� signi�es that a discrete time process is described. The analogous concept
for a continuous time variable t ∈ R≥0 is usually called a Markov process.
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This means that the probability measure for Zt+1 is derived from the one for Zt

by means of a simple �matrix-vector-product�. If (Zt)t∈N is a stationary Markov
chain, the t-independent matrix Pij = P (Zt+1 = yi | Zt = yj) appearing therein
is called the transition matrix of the chain. The transition matrix of a stationary
Markov chain is the stochastic counterpart of the transfer operator of a deter-
ministic autonomous dynamical system, which will be the topic of the following
section.

2.4 Transfer Operators

2.4.1 Transfer Operators for Dynamical Systems

As we already saw in Chapter 1, the basic idea behind the notion of the transfer
operator of a dynamical system is the observation that, when performed on a
linear space of measures, the process of assigning to a measure its image measure
under a measurable map de�nes a linear operator. We also mentioned that this
operator is a useful tool for di�erent kinds of analysis of dynamical systems, and
that there is a wide range of possible applications of this tool, from purely math-
ematical ergodic theory to the analysis of uncertainty propagation for �noisy�
systems.
In this section, we will introduce the formal mathematical de�nition of the trans-
fer operator for a dynamical system that we will be using in the rest of this thesis.
While our focus will be on the case of (deterministic) maps as dynamical sys-
tems, we will also mention the stochastic counterpart of the transfer operator,
the transition matrix of a Markov chain. Our reason for doing so is twofold: on
the one hand, most of the following developments could be applied to �coupled
cell Markov chains�15as well, and we will have to resist the temptation to elab-
orate this idea in this thesis in order not to loose the focus on the consequences
of the network structure. On the other hand, whenever we will be looking at
numerical approximations of a transfer operator, we will in fact be looking at
the transition matrix of a suitably de�ned Markov chain.
The de�nition we give now is somewhat more general than what is found in the
literature, in that it refers to maps between two spaces X and Y . The reason

15This term is used here to describe a Markov chain version of a coupled cell system. It is
di�erent from and should not be confused with notions of �coupled�, �uncoupled� or �almost
uncoupled� Markov chains in the literature, see e. g. [38, 40], or [39] for an overview. The
main di�erence lies in the fact that the concept considered in these publications assumes
that the state space of a Markov chain is given as the disjoint union of smaller spaces,
such that each of these is viewed as the state space of a smaller Markov chain on its own,
which is coupled (in a suitable sense) to the other ones. The concept of �coupledness� that
is considered in this thesis, in contrast, assumes that the state space is given as a cartesian

product of spaces. The former concept is contained as a special case in our concept, and
one could formulate a Markov chain version of Theorem 2.42 that explains the relations
between the concepts.
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for this is that in the context of coupled cell systems, in addition to the �full�
dynamical system f : X → X, we will need to consider the constituent maps
f̂c : XI(c) → Xc, and the projections πD : X → XD between total and partial
state spaces. It will be convenient to have the notion of the transfer operator
also for these maps.

De�nition 2.39
Let measurable spaces X, Y and a measurable map f : X → Y be given. Let
M(X) be a subspace of the vector space of complex-valued measures on X, and
let M(Y ) be a subspace of the vector space of complex-valued measures on Y ,
such that the image measure under f of any measure in M(X) is contained in
M(Y ). Then the transfer operator Pf : M(X) → M(Y ) associated with f is
de�ned by the equation

Pfµ(A) = µ(f−1(A))

for every measurable A ⊂ Y .

Example 2.40
Let f : X → X be a dynamical system. If the measure space M(X) contains
the δ-measures, then it is possible to fully recover the map f from its transfer
operator Pf . Indeed, for x ∈ X one has

Pfδx(A) = δ(f−1(A)) = δf(x)(A)

for every measurable A, so that Pfδx = δf(x).

Remark 2.41
1. For a usual dynamical system f : X → X one normally requires that both
subspaces of measures are identical. Then the condition on f that M(X) is in-
variant under the forming of image measures takes di�erent concrete realisations
for di�erent kinds of spaces M(X).
The probably most classical setting is the case where there is a distinguished
measure m on X, such as Lebesgue measure on compact subsets of Rd, and
one takes as M(X) the space of m-absolutely continuous �nite measures. By
the Radon-Nikodým theorem this space can by be identi�ed with L1(X,m).
Then the condition on f is that f is non-singular, which means that whenever
m(A) = 0, also m(f−1(A)) = 0 has to hold.
In the literature devoted to the study of functional analytic properties of the
transfer operator, very often spaces are considered that are tailor-made for the
system at hand. These spaces are usually Banach spaces obtained either as the
closure of a speci�c subset of L1(X,m) with respect to speci�c norms, or as
dual spaces of equally carefully crafted spaces of functions. Their construction
may depend on the dimension d of X, on whether f is e. g. expanding, con-
tracting or otherwise hyperbolic, and on the degree of smoothness of f . Also,
in these settings one often �nds that, although f is a map on one space X, the
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transfer operator is de�ned as an operator between two di�erent Banach spaces.
By means of so-called Lasota-Yorke inequalities it can then be shown that the
transfer operator is quasi-compact, from which further conclusions can be drawn
on ergodic properties of the dynamical system. For a well-readable introduction
into this �eld see [37], a more detailed reference is e. g. [1].
2. In order to employ the �nite-dimensional setting, one has to equip X with a σ-
algebra ΣN generated by �nitely many atoms A1, . . . , AN . (For example, one can
think of the atoms as disjoint boxes covering X.) The only requirement which f
has to ful�ll is that of measurability with respect to such a σ-algebra. However, in
this setting, the transfer operator does not fully resolve the dynamics of f . There
may be di�erent measurable maps f, g : X → X which satisfy f−1(Ai) = g−1(Ai)
for all i = 1, . . . , N , and thus have the same transfer operator. (For an example,
see Figure 2.2.) Thus the transfer operator does not represent the map in a
sensible way. One can, however, use any of these maps to de�ne a Markov chain
whose transition matrix is essentially the transfer operator of f with respect
to the σ-algebra ΣN . To see this, equip the measurable space (X,ΣN) with a
probability measure P , take as state space the set Y = {1, . . . , N} with the
power set as σ-algebra, and de�ne the Markov chain as the sequence of random
variables (Fk)k∈N with Fk : X → Y, x 7→ i(fk(x)) where i(x) is the unique index
such that x ∈ Ai(x). (These maps are measurable as f is ΣN -measurable.) One
easily sees that this de�nes a stationary Markov chain with transition matrix
given as

pij = P (Ft+1 = i | Ft = j) =
P (Aj ∩ f−1(Ai))

P (Aj)
for i, j ∈ Y. (2.4)

We will shortly see that this Markov chain plays a prominent role in the numerical
approximation of the transfer operator for a dynamical system.

2.4.2 Numerical Approximation of the Transfer Operator

In this section, we will brie�y discuss a popular method for the numerical ap-
proximation of transfer operators, in order to provide the foundations for the
discussion of numerical questions in Chapter 4. Besides, this method gives the
reason for which we also consider the setting of �nite-dimensional measure spaces.

Ulam's method The probably most popular, and probably also oldest sugges-
tion for a numerical approximation of a transfer operator of a dynamical system
was made by S. Ulam in [46], where he suggests to approximate an invariant
density of a map f on the open interval (0, 1) by a sequence of eigenvectors
for the eigenvalue one of matrices that are obtained as follows: For a parti-
tion {A1, . . . , An} of the interval into n parts, the matrix (aij) is de�ned by

aij =
m(f−1(Ai)∩Aj)

m(Aj)
, where m is the Lebesgue measure on (0, 1). These matrices
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Figure 2.2: Two maps on the unit interval which are measurable with respect
to the partition shown by the dotted lines. Although the maps are
clearly di�erent, they have the same transfer operator with respect
to the σ-algebra generated by that partition.

are easily seen to all have the row sum one, and therefore they all have an eigen-
value one, together with a corresponding left eigenvector. In a by now famous
conjecture on this subject, Ulam asks when, assuming that an invariant density of
f exists, the left eigenvectors, viewed as step functions on the interval, converge
(for increasingly �ne partitions) to the invariant density. While this question has
been answered positively in a number of settings16, the extended question of con-
vergence of a sequence of Ulam matrices to the corresponding transfer operator
has only been given partial answers. However, in this thesis we will not pursue
this question further and shall be content with a short exposition of a concrete
implementation of a numerical scheme going back to Ulam's proposal.

Numerical realizations of Ulam's method For completeness' sake, we are
now going to sketch a numerical realization of Ulam's approach for the approx-
imation of the transfer operator of a dynamical system. We have seen in equa-
tion (2.4) how matrix entries can be de�ned that form the transition matrix of a
Markov chain which approximates a given dynamical system on a given σ-algebra
with �nitely many atoms. For a concrete implementation of this idea, three ques-
tions have to answered: How to obtain the σ-algebra, which probability measure
P to take, and how to approximate the right hand side of (2.4).
A common answer to the �rst question is the use of box coverings of X obtained
e. g. from schemes that start with one box and iteratively subdivide and select
boxes until a su�ciently �ne covering of the state space X is achieved. Varia-
tions of this approach are known in the literature under the names cell mapping

16See e. g. [37] for an overview, or [42] for a detailed exposition of this topic.
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methods (see e. g. [31, 30, 32]), subdivision schemes (e. g. [8, 9]) or more gener-
ally set-oriented numerics (e. g. [33, 6, 11]). For want of better possibilities, the
second question is often answered by using (normalized) Lebesgue measure m on
the (compact) state space as the probability measure. The third question, how
to approximate the value of m(Aj ∩ f−1(Ai)) for two sets Ai and Aj from the
box collection, normally �nds an answer as it is e. g. described in [33] or [6]. The
basic idea is to use a su�ciently large number of test points in Aj, and to form
the fraction of the number of test points that are mapped by f into Ai with the
total number of points. We will consider this approach again in Chapter 4.

2.4.3 A Structural Theorem for Transfer Operators of

Coupled Cell Systems

In the �nal section of this preparatory chapter, we will take a �rst closer look
at the transfer operator for a coupled cell system. We will present a theorem
the consequences of which help explain why the undertaking of the following
chapters is necessary. The basic thought that leads to this theorem is as follows.
When starting freshly to think about how structural properties of a transfer
operator Pf depend on the structure of the underlying dynamical system f :
X → X with component maps fc : XI(c) → Xc, one might �rst be guided by the
observation that as f is determined by its components, so must Pf : M(X) →
M(X) be determined by the component transfer operators Pfc : M(XI(c)) →
M(Xc). Further, as one is considering a problem where all involved mappings
are linear mappings, one might be trapped into thinking that this is equivalent
to saying that any image vector Pfµ must be determined �in a linear way� from
vectors of the form PfcπI(c)µ ∈ M(Xc). This amounts to saying that there
should be linear mappings between ⊕c∈CM(Xc) and M(X) and a mapping P̃
on ⊕c∈CM(Xc) constructed from the Pfc such that the diagram

M(X)
Pf−−−→ M(X)y x⊕

c∈CM(Xc) −−−→
P̃

⊕
c∈CM(Xc)

commutes. Written in this way, it becomes clear that this conjecture is too am-
bitious. As the space M(X) is, intuitively put, �much larger� than the space
⊕c∈CM(Xc), the mapping on the right side of this diagram can at best be in-
jective, but cannot be expected to be surjective. Consequently, the image of Pf

had to be restricted to the image of that mapping. However, e. g. for invertible
mappings f , Pf must be invertible also, which leads to a contradiction. At this
point, one is forced to weaken the conjecture. If one cannot �nd a P̃ that could
fully replace the operator, maybe one can �nd one that reproduces, in some way,
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2.4 Transfer Operators

the �essential� properties of Pf? For example an operator P̃ that is contained as
a factor in Pf , such that this diagram commutes.

M(X)
Pf−−−→ M(X)

⊕πc

y y⊕πc⊕
c∈CM(Xc) −−−→

P̃

⊕
c∈CM(Xc)

For this to be true it is necessary that the kernel of the map ⊕c∈Cπc is invariant
under the action of Pf . It turns out that this is a very special property that
is essentially the result of independence of maps, and that the above idea is
wrong for most �proper� coupled cell systems. We will see this in the following
from a simpli�ed example17. To bring forth the argument, we consider a very
simple coupled cell system that is given by two independent dynamical systems
f : X → X and g : Y → Y which are simply viewed as one coupled system - with
trivial (i. e. non-existent) coupling. Now while formally the transfer operator of
this coupled system is de�ned on the space M(X × Y ) it is immediately clear
that it is not necessary to consider an operator acting on so large a space in
order to capture the dynamics of the two systems. In fact, by just taking the
two individual transfer operators Pf and Pg one can de�ne a linear operator P̃ on
the much smaller spaceM(X)⊕M(Y ) simply by prescribing that P̃ (µX , µY ) =
(PfµX , PgµY ), i. e. by viewing the individual transfer operators as diagonal blocks
of P̃ . This operator is able to reproduce everything the formal transfer operator
on M(X × Y ) can describe, while it is at the same time not only de�ned on a
smaller space, but even comes in a block-diagonalised form.
This �result� of course does not come as a surprise. Block-diagonalisability of a
linear map is equivalent to the existence of invariant subspaces on each of which
the map is independent from the other ones, and thus with reducibility of a system
into smaller parts. In our example the reducibility of the operator is a direct
consequence of the reducibility of the dynamical system. Therefore, one cannot
expect to �nd a block-diagonal form of the transfer operator for interconnected,
truly coupled cell systems. As we argued above, one might however suspect
that it is possible to de�ne an operator on the direct sum, instead of the tensor
product, of the constituent measure spaces that is able to describe at least an
�essential� part (de�ned in a suitable manner) of the dynamics of the system.
With the following result we show that this hope has to be frustrated. It states
that whenever the full transfer operator for a coupled cell system has a factor
that is an operator de�ned on the direct sum of the constituent spaces, then the
system is of a very special nature, consisting of two parts that are either indeed

17As the result that is exempli�ed is a negative result, just showing which way one cannot go,
the author deemed it acceptable for this thesis to refrain from formulating a more general
version, assuming that the fundamental idea necessary to convince the reader is carried
across best by simplicity.
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uncoupled, or ignorant of their own state and governed only by the other cell18,
or of a master-slave nature where one cell's evolution depends on its own state
only, while it at the same time completely determines the other cell's evolution.
We will formulate the theorem only for two cells, but it is easy to see that it can
be generalised to any coupled cell network by successive application. Similarly,
while the theorem is formulated in a speci�c setting of operators between L1-
spaces, it should not be di�cult to generalise it to the other settings considered
in this thesis, and probably to more general ones.

Theorem 2.42
Let compact state spaces X ⊂ Rn, Y ⊂ Rm with non-empty interior be given.
Denote by λ the Lebesgue measure on X, on Y and on X × Y . Let M(X) =
L1(X,λ), M(Y ) = L1(Y, λ) and M(X × Y ) = L1(X × Y, λ). Let f : X × Y →
X×Y be a continuous non-singular map such that Pf : M(X×Y ) →M(X×Y )
is its transfer operator. Let π : M(X×Y ) →M(X)⊕M(Y ) be de�ned by πµ =
(πXµ, πY µ). If there is a linear operator P̃ : M(X)⊕M(Y ) →M(X)⊕M(Y )
such that π ◦ Pf = P̃ ◦ π, then f is of the form

f(x, y) =


(fX(x), fY (y)) or
(fX(y), fY (x)) or
(fX(x), fY (x)) or
(fX(y), fY (y)).

For the proof of this statement we will need the following lemma. As a side
remark we want to note that it is related to Lemma 2.35, in that it draws a
similar, but weaker conclusion from similar, but weaker assumptions. The proof
given here, however, is quite di�erent from the proof used for Lemma2.35, and it
would be interesting to see whether there is a similar proof, or whether Lemma
2.43 can be proved from Lemma 2.35.

Lemma 2.43
If in the setting of Theorem2.42 there is a closed set A ⊂ X×Y with non-empty
interior for which µ(A) = 0 holds for all measures µ ∈ kerπ, then there are closed
sets Ax ⊂ X and Ay ⊂ Y with positive Lebesgue measure such that one of the
statements

A ⊂ X × Ay and λ(A) = λ(X × Ay)

or

A ⊂ Ax × Y and λ(A) = λ(Ax × Y )

is true.

18In this case, the dynamical system obtained by looking only at every second step is uncoupled
again.
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2.4 Transfer Operators

Proof: Before we start, we note the following fact. Whenever we consider an
open non-empty set in X × Y , we can assume that this open set contains a
cartesian product A × B of open sets A ⊂ X, B ⊂ Y . To see this is true,
remember that all norms on Rn+m are equivalent and thus generate the same
topology. So we can safely assume that any open set contains an open ball with
respect to the ‖ · ‖∞-norm. But the open balls with respect to this norm are just
cartesian products as required.
To start with the proof of the lemma, de�ne Ax = πX(A) and Ay = πY (A),
and note that these sets are closed, with non-empty interior. From λ(A) > 0 it
follows that λ(Ax) > 0 and λ(Ay) > 0. We will now show that one of these sets
has to have full measure. To see this, assume that this is not case, i. e. that both
λ(Ax) < λ(X) and λ(Ay) < λ(Y ). Then de�ne Bx := X \ Ax and By := Y \ Ay

which are both open and have positive Lebesgue measure. De�ne now

µx :=
1

λ(Ax)
·λ|Ax , µy :=

1

λ(Ay)
·λ|Ay , νx :=

1

λ(Bx)
·λ|Bx , and ν

y :=
1

λ(By)
·λ|By .

With this, de�ne µ := µx ⊗ µy + νx ⊗ νy − µx ⊗ νy − νx ⊗ µy. Now πX(µ) =
µx · 1 + νx · 1−µx · 1− νx · 1 = 0 and similarly πY (µ) = 0, so that µ ∈ kerπ. But

µ(A) = µx ⊗ µy(A)︸ ︷︷ ︸
=1

+ νx ⊗ νy(A)︸ ︷︷ ︸
=0

−µx ⊗ νy(A)︸ ︷︷ ︸
=0

− νx ⊗ µy(A)︸ ︷︷ ︸
=0

= 1,

which is a contradiction to the assumptions of the lemma. So for the following,
we assume without loss of generality that λ(Ax) = λ(X).
Now we wish to show that λ(A) = λ(X × Ay). Assume again that this is not
the case, i. e. that λ(A) < λ(X × Ay). Then we de�ne C := (X × A◦

y) \ A and
see that it is open in X × Y with positive Lebesgue measure. Remembering
the initial remark, we see that there are open sets C̃x ⊂ X and C̃y ⊂ Ay such
that C̃x × C̃y ⊂ C. As π−1

Y (C̃y) ∩ A◦ is open, it contains a cartesian product
Dx×Cy of open sets in X and C̃y, respectively. Similarly we assert the existence
of open sets Cx ⊂ C̃x and Dy ⊂ Ay such that Cx×Dy ⊂ A. Altogether, we have
Cx × Cy ⊂ C, Cx ×Dy ⊂ A and Dx × Cy ⊂ A. (About the location of Dx ×Dy

not more can be said than that it may be contained in A, in C, or may intersect
both.) Now we proceed in a similar way as before. We de�ne

µx =
1

λ(Cx)
·λ|Cx , µy =

1

λ(Cy)
·λ|Cy , νx =

1

λ(Dx)
·λ|Dx , and ν

y =
1

λ(Dy)
·λ|Dy ,

and µ just as above. In the same way as above we can conclude that µ ∈ kerπ,
but

µ(A) = µx ⊗ µy(A)︸ ︷︷ ︸
=0

+ νx ⊗ νy(A)︸ ︷︷ ︸
∈[0,1]

−µx ⊗ νy(A)︸ ︷︷ ︸
=1

− νx ⊗ µy(A)︸ ︷︷ ︸
=1

= νx⊗νy(A)−2 < 0,
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as 0 ≤ νx ⊗ νy(A) ≤ 1. So we have again found a contradiction, which leaves us
to conclude that the statement is true.

Proof of Theorem 2.42: Write P̃ as a block matrix

P̃ =

(
P11 P12

P21 P22

)
.

Pick an arbitrary µ ∈ kerπ = (ker πX ∩ kerπY ) ⊂M(X1 ×X2). Then π ◦ Pf =
P̃ ◦ π implies π1Pfµ = P11π1µ + P22π2µ = 0 and likewise π2Pfµ = 0, i. e.
Pfµ ∈ kerπ. To show now that the X-component of f is of the form stated in
the theorem, let A ⊂ X be an arbitrary open set. Then the preimage f−1

X (Ā)
of the closure Ā is closed, as f is continuous. Both sets have positive Lebesgue
measure, as they contains open sets. Let 1Ā×Y be the characteristic function of
Ā× Y . Then 1Ā×Y ∈ FX(X × Y ), and with Lemma 2.35 we can conclude that

0 = Pfµ(Ā× Y ) = µ(f−1(Ā× Y )) = µ(f−1
X (Ā)).

So we have established that whenever µ ∈ kerπ, then µ(f−1
X (Ā)) = 0 for A ⊂ X

open. By Lemma2.43 this means that the closed set f−1
X (Ā) is either of the form

Ã× Y with Ã ⊂ X or of the form X × B̃ with B̃ ⊂ Y . But this implies that fX

depends either only on X or only on Y , just as stated. To prove the statement
about fY we can repeat this proof with the roles of X and Y interchanged.
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Systems

In this chapter, transfer operators associated with admissible maps on a coupled
cell system are considered in detail. As was described in Section 2.1, the fact
that a mapping f : X =

∏
c∈C Xc → X is admissible to a given coupled cell

system has implications on the internal structure of the map in terms of (in-)
dependencies of the component maps fc on other components. The aim in this
chapter will be to derive consequences of the structure of f for the structure of
Pf . To this end, the following standing assumptions will be made throughout
this chapter.

1. A �xed coupled cell system (C, E ,∼C,∼E) is given.

2. A choice of state spaces Xc has been made.

3. A consistent choice of spaces M(Xc) and M(X) has been made.

4. An admissible map f : X → X is given such that Pf : M(X) →M(X) is
the transfer operator to be analysed.

5. A consistent choice of measures λc ∈M(Xc) has been made, which de�nes
right inverses π−1

D as in Lemma 2.31.

3.1 Consequences of Independence � Block

decompositions of Pf

In our e�ort to analyse the structure of the transfer operator Pf resulting from the
structure of a coupled cell network on which the map f is admissible, we want
to understand the operator as something that is build up from smaller parts.
More precisely, we want to �nd a way to write Pf as a block matrix, preferably
with blocks that are easier to describe (or to compute) than the whole operator
itself. Writing a linear operator as a block matrix is tantamount to �nding a
direct sum decomposition of the underlying linear space, so our results about the
transfer operator go hand in hand with suitable decompositions of M(X). In
particular, the second part of this section will be devoted to the description of a
�universal� decomposition ofM(X) that will enable us to describe all structural
features of the transfer operator that result from independence (as described in
the Introduction), and many of the features that result from symmetry.
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3 Transfer Operators for Coupled Cell Systems

3.1.1 Coarse Block Decompositions of Pf

Our analysis of the structure of Pf starts with the following simple observation.

Lemma 3.1
For each c ∈ C,

Pf

(
kerπI(c)

)
⊂ kerπc.

Proof: Let µ ∈ kerπI(c). As for all φ ∈ Fc(X) one has φ ◦ f ∈ FI(c)(X) and
therefore ∫

X

φ dPfµ =

∫
X

φ ◦ f dµ = 0,

Lemma 2.35 implies that Pfµ ∈ kerπc.

Despite its simplicity, this observation is of some importance for the subsequent
developments. First of all, note that by Corollary 2.36, kerπc ⊂ kerπI(c). The
fact that a subspace of M(X) is mapped into a space containing this subspace
suggests to consider direct sum decompositions of M(X) into three subspaces,
so that the operator Pf is represented by a block matrix structure.

Lemma 3.2
For c ∈ C de�ne

1. N1(c) = kerπI(c),

2. N2(c) = kerπc ∩ im π−1
I(c), and

3. N3(c) = im π−1
c .

Then M(X) = N1(c)⊕N2(c)⊕N3(c).

Proof:

1. To see that N1(c) +N2(c) +N3(c) = M(X), observe that

M(X) = kerπc + imπ−1
c = ker πc +N3(c),

as π−1
c is an injective mapping. Therefore it su�ces to show that N1(c) +

N2(c) = kerπc. As kerπI(c) ⊂ kerπc, one has trivially that N1(c)+N2(c) ⊂
kerπc. To prove the inclusion N1(c) + N2(c) ⊃ kerπc, let µ ∈ kerπc and
de�ne µ1 = π−1

I(c) ◦πI(c)(µ) and µ2 = µ−µ1. Then µ1 ∈ N2(c), as π
−1
I(c) ◦πI(c)

is a projection onto im π−1
I(c), and µ2 ∈ N1(c), as

πI(c)(µ2) = πI(c)(µ− µ1) = πI(c)(µ)− πI(c)(π
−1
I(c) ◦ πI(c)(µ))

= πI(c)(µ)− πI(c)(µ) = 0.

Therefore µ = µ1 + µ2 ∈ N1(c) +N2(c).
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2. To assert that Ni(c)∩Nj(c) = 0 for i, j ∈ {1, 2, 3} with i 6= j, consider �rst
the cases {i, j} = {1, 2} and {i, j} = {2, 3}, and remember that the images
of the right inverses have to have zero intersection with their respective
kernels, for otherwise they were no right inverses. For the case {i, j} =
{1, 3} remember N1(c) ⊂ kerπc and apply the same argument.

Corollary 3.3
With respect to the decomposition M(X) = N1(c)⊕N2(c)⊕N3(c), Pf has the
block matrix structure

Pf =

 ∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗

 .

Proof: It su�ces to show that if µ ∈ N1(c), then Pfµ ∈ N1(c) ⊕ N2(c). By
Lemma 3.1, Pfµ ∈ kerπc = N1(c) ⊕ N2(c) which can be seen from the proof of
Lemma 3.2.

While the introduction of the direct sum decomposition in Lemma 3.2 was mo-
tivated from the statement of Lemma 3.1, it has relevance going beyond that
relation. The subspaces N1(c), N2(c) and N3(c) allow to write down embeddings
of the measure spaces M(XI(c)) and M(Xc) into M(X). These spaces are do-
main and image space of the transfer operator of the component map f̂c. The
next proposition presents consequences of this fact.

Proposition 3.4
Let M(X) = N1(c) ⊕ N2(c) ⊕ N3(c) as in Corollary 3.3 be given, let Pf̂c

:

M(XI(c)) →M(Xc) be the transfer operator for f̂c, and let P̃f̂c
: N2(c)⊕N3(c) →

N3(c) be given by

P̃f̂c
= π−1

c ◦ Pf̂c
◦ πI(c).

With respect to this decomposition, the transfer operator Pf has the block matrix
structure

Pf =

 ∗ ∗ ∗
∗ ∗ ∗
0 P̃f̂c

 .

Proof: From πc ◦ f = fc = f̂c ◦ πI(c) one obtains πc ◦ Pf = Pf̂c
◦ πI(c). For P̃f̂c

as
above this implies

P̃f̂c
= π−1

c ◦ Pf̂c
◦ πI(c)

= (π−1
c ◦ πc) ◦ Pf .

The left factor of this factorization is just the projection upon the third summand
N3(c) of the direct sum decomposition of M(X).
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On the one hand, this proposition can be deemed quite satisfactory. As far as the
component maps f̂c are considered as building blocks of the coupled cell system
f , it is natural to �nd the corresponding transfer operators Pf̂c

as building blocks
of Pf , and no further re�nement can be expected in this direction.
On the other hand, the situation as it stands now is quite unsatisfactory. Each
Pf̂c

can be `seen' only with respect to a direct sum decomposition speci�c to a
particular cell c. Not only is this more than unfortunate for practical purposes,
but also from a structural (mathematical) point of view the question is immediate
whether these di�erent pieces of information on Pf can be combined into one view
that shows everything `at once'. In the following section we will see that this is
indeed possible.

3.1.2 A Finer Block Decomposition of Pf

In the previous section, for every cell c ∈ C the vector space decomposition
M(X) = N1(c)⊕N2(c)⊕N3(c) was introduced as a decomposition with respect
to which the transfer operator corresponding to the map fc can be identi�ed
within Pf . To combine the pieces of information obtained from each single de-
composition, it is desirable to have a joint re�nement of these decompositions.
In this section, it is shown that for the cases of interest in this thesis, joint
re�nements always do exist, and how they can be constructed.

De�nition 3.5
Let V be a vector space, let C be a �nite set, let k ∈ N, and for each c ∈ C, let

V = N1(c)⊕ . . .⊕Nk(c)

be a given direct sum decomposition of V . A decomposition

V =
n⊕

j=1

Uj

is called a joint re�nement of the given decompositions if for each c ∈ C and for
each i ∈ {1, . . . , k} there is J(c, i) ⊂ {1, . . . , n} such that

Ni(c) =
⊕

j∈J(c,i)

Uj.

Example 3.6
For general vector space decompositions, joint re�nements need not exist even
in the simplest cases. For the standard basis e1, . . . , e5 of R5 consider the two
decompositions

R5 =< e1, e2 > ⊕ < e3, e4 > ⊕ < e5 >

=< e1 + e3, e2 + e4 > ⊕ < e1 − e3, e2 − e4 > ⊕ < e5 > .
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There is no joint re�nement, although the dimensions of the �rst two subspaces
would allow for a further re�nement of the decompositions.

In the following we will prove that for the decompositions ofM(X) obtained for
a coupled cell system, a joint re�nement always exists. In our development, we
are going to deal with subsets D ⊂ C. To simplify the presentation and avoid
a lot of special considerations for the case D = ∅, we want to introduce the
following
Notation: We de�ne

im π−1
∅ :=

⋂
∅6=D⊂C

im π−1
D =< ⊗c∈Cλc >

and
kerπ∅ :=

∑
∅6=D⊂C

kerπD.

(Note that in the latter de�nition, the sign
∑

signi�es normal vector space
addition and not the direct sum.) With these de�nitions, we again have that
M(X) = kerπ∅ ⊕ im π−1

∅ , as im π−1
∅ has trivial intersection with every kerπD.

With the following lemma, we make the �rst step towards the proof of the exis-
tence of a joint re�nement of the decompositions of M(X).

Lemma 3.7
Let D1, . . . ,Dk ⊂ C be given, and let the maps

qi = π−1
Di
◦ πDi

: M(X) →M(X) and pi = Id−qi
be the projections onto im π−1

Di
and kerπDi

respectively. Then arbitrary compo-
sitions of these projections are also projections.

Proof: At the heart of the proof lies the fact that all these projections commute.
Once this is established, it is easily shown that arbitrary compositions are pro-
jections. The commutativity is shown by means of the following computation,
for which it su�ces to consider the qi only, because pi = Id−qi.
Let µ ∈M(X). To show that the measures (qi ◦ qj)(µ) and (qj ◦ qi)(µ) are equal
it su�ces to show they are equal on sets of the form A =

∏
c∈C Ac, with Ac ⊂ Xc

measurable. First, observe that

qiµ = (π−1
Di
◦ πDi

)µ = λC\Di
⊗ πDi

µ (3.1)

and therefore

(qi ◦ qj)(µ)(A) = λC\Di
⊗ πDi

(qjµ)(A)

= λC\Di
⊗ πDi

(λC\Dj
⊗ πDj

µ)(A)

= λC\Di

(∏
c 6∈Di

Ac

)
· πDi

(λC\Dj
⊗ πDj

µ)

(∏
c∈Di

Ac

)
︸ ︷︷ ︸

(∗)
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We take a close look at the expression (∗) and see that

(∗) = λC\Dj
⊗ πDjµ

∏
c∈Di

Ac ×
∏
c 6∈Di

Xc


= λC\Dj

 ∏
c∈Di\Dj

Ac ×
∏

c 6∈(Di∪Dj)

Xc

 · πDjµ

 ∏
c∈Di∩Dj

Ac ×
∏

c∈Dj\Di

Xc


= λC\Dj

 ∏
c∈Di\Dj

Ac ×
∏

c 6∈(Di∪Dj)

Xc

 · µ

 ∏
c∈Di∩Dj

Ac ×
∏

c∈Dj\Di

Xc ×
∏

c 6∈Dj

Xc


= λC\Dj

 ∏
c∈Di\Dj

Ac ×
∏

c 6∈(Di∪Dj)

Xc

 · µ

 ∏
c∈(Di∩Dj)

Ac ×
∏

c 6∈(Di∩Dj)

Xc

 .

Altogether, this gives us

(qi ◦ qj)(µ)(A) =
∏
c 6∈Di

λc(Ac) ·
∏

c∈Di\Dj

λc(Ac) ·
∏

c 6∈(Di∪Dj)

λc(Xc) · µ

 ∏
c∈(Di∩Dj)

Ac ×
∏

c 6∈(Di∩Dj)

Xc


=

∏
c 6∈(Di∩Dj)

λc(Ac) ·
∏

c 6∈(Di∪Dj)

λc(Xc) · µ

 ∏
c∈(Di∩Dj)

Ac ×
∏

c 6∈(Di∩Dj)

Xc

 .

A close inspection of the last line reveals that it remains invariant under exchange
of i and j, which shows that (qi ◦ qj) = (qj ◦ qi).
We now show that arbitrary compositions of these projections are also projec-
tions. The proof is performed by induction on the number j of maps in the
composition. For j = 2, from the above argument we have directly

(qi1 ◦ qi2)2 = (qi1 ◦ qi2) ◦ (qi1 ◦ qi2)
= (qi1 ◦ qi2) ◦ (qi2 ◦ qi1)
= qi1 ◦ q2

i2
◦ qi1

= qi1 ◦ qi2 ◦ qi1
= qi1 ◦ qi1 ◦ qi2 = qi1 ◦ qi2 .

Now if a composition of any j−1 of the projections is a projection, then we have
for compositions of j projections:

(qi1 ◦ . . . ◦ qij)2 = (qi1 ◦ . . . ◦ qij) ◦ (qij ◦ qi1 ◦ qij−1
)

= (qi1 ◦ . . . ◦ qij−1
) ◦ q2

ij
◦ (qi1 ◦ . . . ◦ qij−1

)

= (qi1 ◦ . . . ◦ qij−1
) ◦ qij ◦ (qi1 ◦ . . . ◦ qij−1

)

= (qi1 ◦ . . . ◦ qij−1
)2 ◦ qij

= qi1 ◦ . . . ◦ qij−1
◦ qij ,
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so that the claim is proved.

Remark 3.8
For the following considerations it should be noted that the range of the com-
position of commuting projections is just the intersection of the ranges of the
projections: Let q1, q2 be projections as above, let Q1 = im q1 and Q2 = im q2,
then q1 ◦ q2 = q2 ◦ q1 implies im(q1 ◦ q2) ⊂ Q1 ∩ Q2. On the other hand,
one has q1 ◦ q2(im q1 ∩ im q2) = q1(im q1 ∩ im q2) = im q1 ∩ im q2, which implies
Q1 ∩Q2 ⊂ im(q1 ◦ q2).

We are now in the position to prove the existence of a joint re�nement of all
decompositions of the form M(X) = kerπD ⊕ im π−1

D for D ⊂ C.

Theorem 3.9
Let P = P(C) = {D1, . . . , D2N} be the power set of the set C of cells of a coupled
cell system. For each D ∈ P de�ne

p1,D = π−1
D ◦ πD, N1(D) = im p1,D = im π−1

D ,
and

p2,D = Id−p1,D, N2(D) = im p2,D = ker πD,

and �nally for every ϑ : P → {1, 2} de�ne

pϑ = pϑ(D1),D1 ◦ · · · ◦ pϑ(D
2N ),D

2N
. (3.2)

A joint re�nement of all decompositionsM(X) = kerπD ⊕ im π−1
D , D ∈ P exists

and is given by the non-trivial elements of the collection of spaces im pϑ, ϑ ∈
{1, 2}P , i. e. by the spaces

im pϑ =
⋂
D∈P

Nϑ(D)(D).

Before we come to the proof of the theorem, we insert a quick note on our
terminology. While the formulation �joint re�nement of the decompositions
M(X) = ker πD ⊕ im π−1

D � is technically correct, it is also terribly longwinded.
To simplify the language, we will in the following often speak of the �joint de-
composition� of M(X).
Proof: For the proof of the statement, two things need to be shown.

1. The intersection of any two di�erent subspaces is trivial. To see this, let
ϑ1, ϑ2 ∈ {1, 2}P with ϑ1 6= ϑ2 be given. Then there is D ∈ P with ϑ1(D) 6=
ϑ2(D). Without loss of generality we assume ϑ1(D) = 1 and ϑ2(D) = 2.
By Lemma3.7, one then has im pϑ1 ⊂ N1(D) and im pϑ2 ⊂ N2(D) (see also
Remark 3.8). This implies im pϑ1 ∩ im pϑ2 ⊂ N1(D) ∩N2(D) = 0.
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2. All subspaces of the form kerπD and im π−1
D can be written as sums of

some of the subspaces im pϑ. To see this for im π−1
D , de�ne I = {ϑ ∈

{1, 2}P | ϑ(D) = 1}. We will then show that∑
ϑ∈I

pϑ = π−1
D ◦ πD,

which implies the statement. To see this, we remember from the proof of
Lemma3.7 that the factors in pϑ commute, and extract the common factor
p1,D out of the sum, so that∑

ϑ∈I

pϑ = p1,D ◦
∑
ϑ∈I

p̃ϑ,

where p̃ϑ is a composition of projections de�ned just as pϑ, execpt that the
factor p1,D is left out. As for each D 6= D′ ∈ P , there is an element ϑ ∈ I
with ϑ(D′) = 1 and also an element ϑ′ ∈ I with ϑ′(D′) = 2, the sum can
be factored out to give∑

ϑ∈I

p̃ϑ = (p1,D1 + p2,D1) ◦ . . . ◦ (p1,D
2N

+ p2,D
2N

)

= Id,

where the factor corresponding to D is left out in the upper line. Remem-
bering the de�nition of p1,D, we see that the proof is �nished. To prove
that kerπD can be constructed from the subspaces im pϑ, one proceeds
analogously, collecting in I those ϑ with ϑ(D) = 2.

Remark 3.10
A particular problem for the description of the joint decomposition is the question
how one denotes the individual elements of the decomposition. The description of
the joint decomposition that is used in the preceding theorem is quite ine�ective
in the sense that a large number of the mappings pϑ are in fact zero mappings. For
example, if for some ϑ ∈ {1, 2}P there are three distinct subsets D1,D2,D3 ∈ P
with D1 ∩ D2 = ∅ such that ϑ(D1) = 1 = ϑ(D2) and ϑ(D3) = 2, then im pϑ = 0.
To see this, note that im pϑ ⊂ im π−1

D1
∩ im π−1

D2
∩ kerD3 . However, as D1∩D2 = ∅,

one easily sees that im π−1
D1
∩ im π−1

D2
is the one-dimensional subspace spanned by

the measure ⊗c∈Cλc. This measure is not contained in the kernel of any of the
maps πD, so that the intersection of its span with kerπD3 is the trivial space.

In the following we propose a description of the elements of the joint decom-
position that appears to be considerably more lucid than the one given by the
projections pϑ which we just used.
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The idea behind it is quite simple to describe. We make use of the facts that
on the one hand every subspace im π−1

D can be written as the direct sum of
some elements of the joint decomposition and on the other hand for D′ ⊂ D we
also have that im π−1

D′ is a subspace of im π−1
D . This allows to assign to every

subset D ⊂ C the sum of those elements of the joint decomposition that are
contained in im π−1

D , but not contained in any of the subspaces im π−1
D′ for proper

subsets D′ ( D. With the proposition following the formal de�nition of this
construction, we describe the relation of these subspaces to the elements of the
joint decomposition.

De�nition 3.11
For all sets D ∈ P(C) we de�ne a subspace UD ⊂ M(X) as follows. For D = ∅
we set U∅ =< ⊗c∈Cλc >, and for ∅ 6= D ∈ P(C) we de�ne UD to be the sum of
those elements of the joint decomposition ofM(X) that are contained in im π−1

D ,
but not in im π−1

D′ for any D′ ( D.

Proposition 3.12
For given ∅ 6= D ⊂ C let ϑD : P → {1, 2} be de�ned through

ϑD(D′) =

{
1 for D ⊂ D′

2 else

Let pϑD be de�ned as in Theorem 3.9. Then UD = im pϑD .

Proof: We perform the proof in three steps. First we will show that im pϑD has
a trivial intersection with im π−1

D′ for any D′ ( D. After that, we are going to
show that im pϑD has the form

im pϑD = im π−1
D ∩

⋂
c∈D

kerπD\{c}. (3.3)

Using this description, we then complete the proof by showing that im pϑD +∑
D′(D im π−1

D′ = im π−1
D .

1. Let D′ ( D. Then ϑ(D′) = 2, and thus im pϑD ⊂ kerπD′ , which implies
im pϑD ∩ im π−1

D′ = 0.

2. The key for the proof of the second part is the commutativity of the pro-
jections that was established in Lemma 3.7, together with Remark 3.8 (in
which we showed that the range of the composition of these projections is
the intersection of their ranges).

Using the commutativity, we can write pϑD as the composition of three
maps, whose e�ects we can analyse separately. To do so, we divide the
subsets of C into the three groups

P0 = {D′ | D ⊆ D′},
P1 = {D′ | D′ ( D}, and
P2 = {D′ | D 6⊂ D′ ∧ D′ 6⊂ D},
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and for i ∈ {0, 1, 2} de�ne pi as the composition of those terms from
equation ( 3.2) belonging to sets in Pi. Then pϑD = p0 ◦ p1 ◦ p2, and
im pϑD = im p0 ∩ im p1 ∩ im p2. (Note that p0 is the composition of projec-
tions onto the ranges of right inverses π−1

D′ , while p1 and p2 are projections
onto the kernels of the maps πD′ .) From im π−1

D ⊂ im π−1
D′ for every D′ ∈ P0

we see that
im p0 = im π−1

D .

As for every D′ ∈ P1 there is a c ∈ D such that D′ ⊂ D \ {c}, we have
kerπD\{c} ⊂ kerπD′ for every D′ ∈ P1 and the corresponding c. Combining
these relations for all c ∈ C, we obtain

im p1 =
⋂
c∈D

kerπD\{c}.

We now want to prove that p2(im(p0 ◦ p1)) = im(p0 ◦ p1), that is, that an
application of p2 remains without e�ect on the intersection of the ranges
of p0 and p1. To see that this is the case, let D′ ∈ P2, and observe that

p0 ◦ p1 = ((Id−π−1
D′ πD′) + π−1

D′ πD′) ◦ (p0 ◦ p1)

= (Id−π−1
D′ πD′) ◦ (p0 ◦ p1) + π−1

D′ πD′ ◦ (p0 ◦ p1).

Note that the �rst summand is of the form occuring in the composition
p2 ◦p0 ◦p1. Accordingly, we have to show that the second summand is zero.
To see that this is the case, assume �rst that ∅ 6= D ∩D′ and observe that

im
(
π−1
D′ πD′ ◦ p0 ◦ p1

)
= im π−1

D′ ∩ im p0 ∩ im p1

= im π−1
D′ ∩ im π−1

D︸ ︷︷ ︸
=im π−1

D∩D′

∩
⋂
c∈D

kerπD\{c}

= 0,

as D ∩ D′ ⊂ D \ {c} for a c. In case that ∅ = D ∩ D′, the same argument
holds, with im π−1

D∩D′ replaced by U∅.

3. For the next step, we �rst note that whenever P is an idempotent linear
endomorphism on M(X) with imP ⊂ im π−1

D , we have

(imπ−1
D ∩ kerP ) + imP = im π−1

D . (3.4)

To see this, note that the inclusion �⊂� is trivially true, and that the
inclusion �⊃� follows from the fact that any µ ∈ im π−1

D can be written as
Pµ + (µ − Pµ), with the �rst part from imP and the second part from
im π−1

D ∩ kerP . Noting that im πD\{c} ⊂ im πD for every c ∈ D, we see that
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we can apply equation ( 3.4) to equation (3.3) with P = π−1
D\{c} ◦ πD\{c} for

every c ∈ D to obtain

im pϑD +
∑
c∈D

im π−1
D\{c} = im π−1

D ,

which implies the statement.

Corollary 3.13
The joint decomposition of M(X) constructed in Theorem 3.9 consists precisely
of the sets UD from De�nition 3.11.

Proof: By de�nition,
∑

D∈P(C) UD = M(X), so every subspace in the joint de-
composition is contained in {UD | D ∈ P(C)}. On the other hand, by Proposition
3.12 every UD consists of precisely one element of the joint decomposition.

Example 3.14
In the �nite-dimensional setting (see Example 2.26), a basis for M(X) can be
obtained by forming all the tensor products of the basis elements of the individual
M(Xc). If we consider a basis of the form {µ(c)

j |j = 1, . . . , nc} for each M(Xc)

with µ
(c)
1 = λc and µ

(c)
j (Xc) = 0 for j = 2, . . . , nc, then UD is spanned by the

basis vectors of the form ⊗c∈Cµ
(c)
jc

for which jc = 1 if and only if c 6∈ D.
To see this, we use the characterization of UD given by equation (3.3). On the
one hand, a measure of the form ⊗c∈Cµ

(c)
jc

is in im π−1
D if and only if jc = 1 for

c 6∈ D. On the other hand, we have

πD\{c}(⊗c′∈Cµ
(c′)
jc′

) =
∏
c′ 6∈D

λc′(Xc′) · µ(c)
jc

(Xc) ·
⊗

c 6=c′∈D

µ
(c′)
jc′
,

and therefore ⊗c∈Cµ
(c)
jc
∈ kerπD\{c} if and only if µ(c)

jc
(Xc) = 0 for c ∈ D, that is,

if jc 6= 1 for c ∈ D.

The motivation for the construction of the joint decomposition came from Propo-
sition 3.4, which gave us a cell-dependent decomposition of Pf . Accordingly, the
�rst result we get using the joint decomposition is a �simultaneous� version of
that proposition, combining the decompositions of Pf not only for all cells, but
even for all (non-empty) subsets D ⊂ C. For its statement we need a little bit of
further notation as follows. We know that the restrictions of the maps πD to the
images of their right inverses are vector space isomorphisms. As for two subsets
D′ ⊂ D ⊂ C we have UD′ ⊂ im π−1

D , we see that πD maps UD′ isomorphically
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onto its image πD(UD′) =: UD
D′ ⊂ M(XD). In this way we obtain a decom-

position of M(XD) that is completely analogous to the joint decomposition of
M(X). It is easy to check that a projection in M(XD) onto UD

D′ is given by the
map πD ◦ pϑD′

◦ π−1
D .

Theorem 3.15
For ∅ 6= D1,D2 ⊂ C let PD1,D2 : UD2 → UD1 be an entry of the block matrix
decomposition of Pf with respect to the joint decomposition of M(X). If D2 6⊂
I(D1), then PD1,D2 = 0. If D2 ⊂ I(D1), then PD1,D2 can be identi�ed with a
block of the transfer operator Pf̂D1

: M(XI(D1)) →M(XD1) with respect to the

decompositions M(XD1) = ⊕D′⊂D1U
D1

D′ and M(XI(D1)) = ⊕D′⊂I(D1)U
I(D1)
D′ .

Proof: The proof can be performed analogously to those of Lemma 3.1 and of
Proposition 3.4. More concretely, in the same way as in Lemma 3.1, we see that

Pf (kerπI(D1)) ⊆ kerπD1 . (3.5)

For the rest, we can conveniently use the machinery of projections in M(X)
we have developed. The block PD1,D2 can be expressed through the mapping
pϑD1

◦ Pf ◦ pϑD2
. If D2 6⊂ I(D1), we have that ϑD2(I(D1)) = 2, and thus UD2 ⊂

kerπI(D1). But then we have

im(pϑD1
◦ Pf ◦ pϑD2

) ⊆ im(π−1
D1
πD1 ◦ Pf ◦ pϑD2

)

⊆ im(π−1
D1
πD1 ◦ Pf (kerπI(D1)))

⊆ im(π−1
D1
πD1(kerπD1))

= 0,

which proves the �rst claim. For the second claim, we �rst use that πD1 ◦ f =
fD1 = f̂D1 ◦ πI(D1) to obtain πD1 ◦ Pf = Pf̂D1

◦ πI(D1). We then note that as

im pϑD1
⊂ im π−1

D1
we can write pϑD1

= pϑD1
◦π−1

D1
πD1 and analogously also pϑD2

=

π−1
I(D1)πI(D1) ◦ pϑD2

. This gives us

pϑD1
◦ Pf ◦ pϑD2

= pϑD1
◦ π−1

D1
πD1 ◦ Pf ◦ π−1

I(D1)πI(D1) ◦ pϑD2

= pϑD1
◦ π−1

D1
◦ Pf̂D1

◦ πI(D1) ◦ pϑD2
,

and thus

πD1 ◦ PD1,D2 ◦ π−1
I(D1) = (πD1 ◦ pϑD1

◦ π−1
D1

) ◦ Pf̂D1
◦ (πI(D1) ◦ pϑD2

◦ π−1
I(D1)).

As the terms to the left and to the right of Pf̂D1
are the projections onto UD1

D1

and U I(D1)
D2

, we see that the right hand side of this equation describes a block of
Pf̂D1

with respect to the corresponding joint decompositions. The identi�cation

between blocks is thus obtained via the maps πD1 and π
−1
I(D1).
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1 2 3 4

Figure 3.1: A four cell linear chain considered in Example 3.16.

Example 3.16
We are now going to illustrate the statement of Theorem3.15 using the example
of a very simple network: Four cells arranged in a linear chain which feed input
forward into the next (see Figure 3.1.) For this network we have I(1) = {1} and
I(c) = {c− 1, c} for c = 2, 3, 4. With the power set of {1, 2, 3, 4} given the order

{1, 2, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2}, {1, 3}, {1, 4},
{2, 3}, {2, 4}, {3, 4}, {1}, {2}, {3}, {4}, ∅,

applying Theorem3.15 to this network leads to the following form of the transfer
operator.

Pf =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ 0 0 0 ∗ ∗ 0 ∗ 0 0 ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ 0 0 0 0 0 ∗ ∗ 0 0 ∗
0 ∗ 0 0 0 ∗ ∗ 0 ∗ 0 0 ∗ ∗ ∗ 0 ∗
0 0 0 ∗ 0 0 ∗ ∗ 0 0 ∗ ∗ 0 ∗ ∗ ∗
0 ∗ 0 0 0 ∗ ∗ 0 ∗ 0 0 ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ 0 0 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 ∗
0 0 0 0 0 ∗ 0 0 0 0 0 ∗ ∗ 0 0 ∗
0 0 0 0 0 0 0 0 ∗ 0 0 0 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 0 0 ∗ 0 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


(Here the double lines are used to mark the blocks belonging to subsets of
{1, 2, 3, 4} with four, three, two, one and zero elements, respectively.) It is
worthwhile to point out that this description is misleading in the way that in this
matrix the same space is allocated for each block, while the actual dimensions
(in the �nite-dimensional case) will di�er over a wide range, from 1 = dimU∅ to
O(n4) = dimUC, the dimensions of the individual measure spaces M(Xc) being
assumed to be proportional to n. (Cf. also Examples 2.26 and 3.14.)
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We have now reached a position where it seems appropriate to recapitulate what
we have achieved in this chapter up to this point. We started with a very
simple observation about the images of certain subspaces under the transfer
operator of a coupled cell system, and used this observation to obtain a �rst,
very rough block decomposition of the transfer operator. Having to construct
this decomposition separately for each cell c, we immediately asked ourselves
whether one could not combine all of these decompositions into a unique, �ner
decomposition. To do this, we would have had to construct a joint re�nement
of all decompositions of the form M(X) = kerπc ⊕ im π−1

c and of the form
M(X) = kerπI(c) ⊕ im π−1

I(c), with c ∈ C. During the preparation of this thesis,
it turned out that instead of doing this, one could equally well construct a joint
re�nement of all decompositions of the form M(X) = kerπD ⊕ im π−1

D , with
D ⊂ C. Consequently, we have done this, and furthermore we have found an
e�cient way of writing down the joint decomposition in form of the subspaces
UD. The �rst reward we received for our e�orts is Theorem 3.15, which can be
seen as the ful�llment of the programme we formulated after Proposition 3.4.
It seems to the author that with this theorem we have completed the analysis
of the consequences of the independence relations determined by the coupled
cell system. In the next section, we will see how far we can get by exploiting
the symmetry relations, that is, the equivariance of the dynamical system with
respect to the groupoid associated with a coupled cell network.

3.2 Consequences of Groupoid Equivariance for

the Transfer Operator

In Chapter 2 we saw that a coupled cell network is given by a set C of cells
together with an equivalence relation, and by a set of couplings E together with
their equivalence relation. Both pieces of information about the network are
used to form its symmetry groupoid. In the previous sections, we mostly used
information about the cells in the network, and almost completely disregarded
its coupling structure. This was naturally the case as our interest was focussed
on a particular structuring of the measure space M(X), which only depends on
the state spaces Xc and thus only on the cells. In the following we will turn our
attention more towards the coupling structure, and in particular to the symmetry
groupoid BG which was used to describe the structure in an algebraic way. We
saw in Section 2.1.2 that admissibility of a map f on a coupled cell network is
tantamount to f being equivariant with respect to this groupoid. We are now
going to study the consequences of this equivariance for the transfer operator.
An important tool for our study will be the decomposition M(X) = ⊕D⊂CUD
which was constructed in the previous section.
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3.2.1 Symmetry in coupled cell networks

As we already mentioned in the Introduction, the concept of coupled cell systems
spans an arc from highly structured systems that are symmetric in the classical
sense (i. e. invariant with respect to a global permutation symmetry group) to
practically unstructured general �coupled systems�. Quite generally the question
comes up how to systematically describe the position of a given coupled cell
system in this wide �eld, that is, how to describe which �symmetric structure� it
actually has. In the following we propose to describe the system by associating
to it a collection of groups, which will be used to obtain structural results for the
transfer operator. More speci�c, we propose to analyse the �symmetry structure�
by looking at each subset of the set of cells and determining an appropriate
symmetry group for this subset.

De�nition 3.17
Let a coupled cell network (C, E) be given. For any non-empty D ⊂ C, we call a
bijective mapping ϕ : I(D) → I(D) a D-relative symmetry of the cell network,
if ϕ(D) = D and ϕ|I(c) is an input isomorphism for every c ∈ D. Further we
de�ne ΓD to be the set of all D-relative symmetries, and call it the D-relative
symmetry group of the coupled cell network.

To justify this name, we show that ΓD forms indeed a group.

Lemma 3.18
For each D, ΓD is a group.

Proof: We have to show that ΓD is closed under composition of maps. If
ϕ1 ∈ ΓD and ϕ2 ∈ ΓD, their composition is also a bijection, and ϕ1 ◦ ϕ2(D) = D
is inherited from the corresponding properties of ϕ1 and ϕ2. Now let c ∈ D. Then
(ϕ1 ◦ ϕ2)|I(c) = ϕ1|I(ϕ2(c)) ◦ ϕ2|I(c) is the composition of two input isomorphisms,
hence it is one itself. This concludes the proof.

Remark 3.19
Golubitsky, Stewart et al. consider a very similar notion which they call interior
symmetry of a network. (Cf. e. g. [24] or [25].) For a subset D ⊂ C they de�ne
an interior symmetry on D to be an �input equivalence preserving permutation�
σ : C → C �that is the identity on the complement of D� (quotations from [24,
De�nition 7]1), and use the concept of the interior symmetry group on D to ob-
tain coupled cell network analogues of classical results in equivariant bifurcation

1As in [24] the �multi-arrow formalism� is used, the actual de�nition given there is a little
bit more complicated. In particular, the notation I(D) there refers to a collection of input
edges which we do not need to consider at all. Quoting selectively, we here rephrase the
de�nition to �t into the �classical� coupled cell network formalism we are working with.
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theory2.
Requiring the permutation to be de�ned on the whole set C and to be the identity
on the complement of D, this notion is considerably more restrictive than the
concept of D-relative symmetries we propose here.

Example 3.20
To illustrate our de�nition, we consider some special cases. Our intention is in
particular to persuade the reader that non-trivial D-relative symmetry groups
are nothing exceptional in networks possessing some �visual symmetry�.

1. Let D = {c} for some c ∈ C. Then ΓD = B(c, c). This follows directly from
the de�nition.

2. If the group ΓC is non-trivial, the full network has ΓC as (classical) sym-
metry group, and any admissible map f is (classically) equivariant with
respect to the action of this group on X. (Cf. Lemma 3.23 below.) Again,
this can be seen directly from the de�nition.

3. If D = {c, d} for two cells c 6= d and the set B(c, d) of input isomorphisms
between I(c) and I(d) is non-empty, then we call a pair (ϕ1, ϕ2) with either
ϕ1 ∈ B(c, d) and ϕ2 ∈ B(d, c) or ϕ1 ∈ B(c, c) and ϕ2 ∈ B(d, d) a non-
con�icting pair if ϕ1|I(c)∩I(d) = ϕ2|I(c)∩I(d). For such a pair, we write

(
ϕ1

ϕ2

)
for the map I(c) ∪ I(d) → I(c) ∪ I(d) that coincides with ϕ1 and with ϕ2

on their respective domains. Using this notation, we have

ΓD =

{(
ϕ1

ϕ2

)∣∣∣∣ (ϕ1, ϕ2) is non-con�icting

}
,

i. e. ΓD consists of �pairings� of input isomorphisms which either permute
I(c) and I(d) separately or which �swap� these two input sets and permute
them.

4. The construction used in the previous example can be generalized to subsets
D with more than two elements. The key requirement always is that the
tuples of input isomorphisms that are to be used to form an element of ΓD
have to be pairwise non-con�icting.

Remark 3.21
Considering there is always the whole collection {ΓD | D ⊂ C} of relative sym-
metry groups associated with a coupled cell network, one is lead to ask whether
there might be reasonably simple, general relationships between these groups,
e. g. between ΓD1 and ΓD2 for the case D1 ⊂ D2, or more speci�c for the case
D2 = D1 ∪ {c}. However, at second sight one recognizes that there might be

2More precisely, they formulate analogues to the Equivariant Branching Lemma and the
Equivariant Hopf Theorem, see e. g. [26, Ch. XIII and Ch. XVI].
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3.2 Consequences of Groupoid Equivariance for the Transfer Operator

no such simple relationships, and if there are, that they might not be easy to
discover. In fact, the simple operation of adding one cell to the subset (that is,
of passing from D1 to D2 in the latter example) can dramatically change the
nature of the associated relative symmetry group, both enlarging or reducing it.
As an example, consider a subset Γ1 of N identical cells with identical coupling
between any two of them. Then the relative symmetry group will be isomorphic
to the full symmetric group SN . If one now considers one more cell which is
coupled in a di�erent way to each of the others, the relative symmetry group will
be trivial. An opposite e�ect can be observed if D1 is taken to be a chain of N
identical cells, each of which receives input only from its immediate predecessor,
except the �rst one. In this situation, ΓD1 is trivial. If only one cell is introduced
with edges that �close the loop� to make D2 a �ring�, then ΓD2 is the group ZN+1.
These examples illustrate that little, if anything, can be said for the general sit-
uation. Therefore one will have to consider each particular network separately,
determine its collection of relative symmetry groups and apply the theorems we
are going to present in the next section to the individual network in order to
gain insight into its transfer operator.

3.2.2 Equivariance

How can we use the D-relative symmetry groups at all? To answer this question,
we begin with two lemmas that prepare the stage for our later developments.
We �rst look at the interaction of one of the groups ΓD with an admissible map.
For this we �rst note that ΓD acts on the spaces XD and XI(D).

De�nition 3.22
We call the action of ΓD on XD given by the lift of the elements of ΓD to XD (see
De�nition 2.38) the output action of ΓD, and we call the corresponding action
on XI(D) the input action of ΓD.

Lemma 3.23
If f : X → X is an admissible map, then the partial map f̂D : XI(D) → XD
commutes with the input and output action of ΓD:

ϕ̂ ◦ f̂D = f̂D ◦ ϕ̂ ∀ϕ ∈ ΓD.

Proof: We have to show that for every c ∈ D and every x ∈ XI(D) the ϕ(c)-
components of (ϕ̂ ◦ f̂D)(x) and of (f̂D ◦ ϕ̂)(x) are the same. But on the one
hand,

[(ϕ̂ ◦ f̂D)(x)]ϕ(c) = [f̂D(x)]c = f̂c(πI(c)(x)),

by de�nition, and on the other hand

[f̂D(ϕ̂(x))]ϕ(c) = f̂ϕ(c)(πI(ϕ(c))(x)) = f̂ϕ(c)(πϕ(I(c))(x)) = f̂c(πI(c)(x)),
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3 Transfer Operators for Coupled Cell Systems

as ϕ|I(c) is an input isomorphism and f is admissible.

Now we analyse the action of elements of ΓD on the decomposition of M(X).
Here we can slightly relax the restrictions on the mappings ϕ and consider a
more general situation.

Lemma 3.24
Let D ⊂ C, and let ϕ : D → C be an injective map such that c ∼C ϕ(c) for all
c ∈ D. Let ϕ̃ : imπ−1

D → im π−1
ϕ(D) be its lift toM(X) (see De�nition2.38). Then

for every D′ ⊂ D, ϕ̃(UD′) = Uϕ(D′).

Proof: First of all notice that if one denotes the restriction ϕ|D′ by ψ, then
its lift ψ̃ to M(X) is just the restriction of ϕ̃ to im π−1

D′ . Thus we see that for
every D′ ⊂ D, ϕ̃(imπ−1

D′ ) = im π−1
ϕ(D′). Bearing this in mind, one sees that the

statement follows directly from the de�nition of UD′ and Uϕ(D′).

Now we are ready to present the main result about the structure of the transfer
operator of a coupled cell system. The overall line of argument is simple. From
Lemma3.24 we can see that for every D ⊂ C, the lift of each element of ΓD leaves
the subspaces UD and im π−1

I(D) invariant. This means that the lift de�nes two
representations of the group ΓD on these spaces. It is not di�cult to see that
the composition of Pf with the projection to UD (which can be visualized as the
�row� of Pf belonging to the subspace UD) is equivariant (in the classical sense!)
with respect to these representations. This puts us in a position to use Theorem
2.14 to derive statements about a block diagonal structure of the UD-row of
Pf . In particular, one obtains statements about zero blocks in a �block matrix
representation� of Pf that go beyond those obtained from the �independence�
relation that were exploited in Proposition 3.4.
We �rst take a close look at the two (or rather three) linear representations
that are involved in this analysis. The �rst representation is easily described.
Following De�nition 2.38, we see that every element ϕ ∈ ΓD can be lifted to an
invertible map ϕ̃ de�ned on the subspace im π−1

I(D) of M(X). This is the �rst of
the representations we are interested in. As we require that D is invariant under
the elements of ΓD, we can restrict them to this set before lifting them toM(X).
This leads us to a group of invertible linear mappings ϕ̃|D : im π−1

D → im π−1
D

which de�nes the second representation. Finally, Lemma 3.24 tells us that these
mappings leave the subspace UD of im π−1

D invariant, which allows us to restrict
them to it. This gives the third representation.

De�nition 3.25
The representation of ΓD de�ned by

ϕ 7→ (ϕ̃ : imπ−1
I(D) → im π−1

I(D))
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3.2 Consequences of Groupoid Equivariance for the Transfer Operator

is called the input representation. The representation de�ned by

ϕ 7→ (ϕ̃|D : imπ−1
D → im π−1

D )

is called the output representation of ΓD, and its restriction to UD is called the
restricted output representation.

Theorem 3.26
For D ⊂ C let pϑD be the projection to UD as in Proposition 3.12. The operator
π−1
D ◦πD ◦Pf : imπ−1

I(D) → UD is equivariant with respect to the input representa-

tion and the output representation of ΓD. The operator pϑD ◦Pf : imπ−1
I(D) → UD

is equivariant with respect to the input representation and the restricted output
representation of ΓD.

Proof: We �rst show that the transfer operator for the map f̂D is equivariant
with respect to the lifts of ΓD toM(XD) and toM(XI(D)). After that, we show
how this result can be �embedded� intoM(X) to obtain an analogous statement
for the input representation and the output representation. This proves the
statement for the output representation. Finally, invariance of UD will allow us
to prove the statement of the theorem for the restricted output representation.
To see that the transfer operator for the map f̂D is equivariant with respect
to the lifts of ΓD to M(XD) and to M(XI(D)), we can simply go back to the
de�nitions of the di�erent terms. Let ϕ ∈ ΓD, let µ̄ ∈M(XI(D)), let A ∈ XD be
measurable. Then

(Pf̂D
◦ ϕ̄)µ(A) = µ(ϕ̂−1(f̂−1

D (A))) = µ(f̂−1
D (ϕ̂−1(A))) = (ϕ|D ◦ Pf̂D

)µ(A),

where the innermost equation is due to Lemma 3.23.
The next step consists of a sequence of transformations, most of which do not
involve much more than plugging in de�nitions. We show that on the subspace
im π−1

I(D) the map (π−1
D ◦ πD) ◦ Pf , i. e. the transfer operator followed by the

projection onto im π−1
D , commutes with the representations of ΓD.

(π−1
D ◦ πD) ◦ Pf ◦ ϕ̃(π−1

I(D)µ) = π−1
D ◦ πD ◦ Pf ◦ π−1

I(D) ◦ ϕ̄ ◦ πI(D)(π
−1
I(D)µ)

= π−1
D ◦ πD ◦ Pf ◦ π−1

I(D) ◦ ϕ̄(µ)

= π−1
D ◦ Pf̂D

◦ πI(D) ◦ π−1
I(D) ◦ ϕ̄(µ)

= π−1
D ◦ Pf̂D

◦ ϕ̄(µ)

= π−1
D ◦ ϕ|D ◦ Pf̂D

(µ)

= π−1
D ◦ ϕ|D ◦ Pf̂D

◦ πI(D) ◦ π−1
I(D)(µ)

= π−1
D ◦ ϕ|D ◦ πD ◦ Pf ◦ π−1

I(D)(µ)

= (π−1
D ◦ ϕ|D ◦ πD) ◦ (π−1

D ◦ πD) ◦ Pf ◦ π−1
I(D)(µ)

= ϕ̃|D ◦ (π−1
D ◦ πD) ◦ Pf (π

−1
I(D)µ)
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This proves the statement for the output representation. To �nish the proof for
the restricted output representation, we �rst note that invariance of UD with
respect to the output action (Lemma 3.24) implies that the projection pϑD onto
UD commutes with the action. As furthermore UD ⊂ im π−1

D , we have pϑD ◦(π−1
D ◦

πD) = pϑD , and we can obtain the desired result as follows:

(pϑD ◦ Pf ) ◦ ϕ̃(π−1
I(D)µ) = pϑD ◦ (π−1

D ◦ πD) ◦ Pf ◦ ϕ̃(π−1
I(D)µ)

= pϑD ◦ ϕ̃|D ◦ (π−1
D ◦ πD) ◦ Pf (π

−1
I(D)µ)

= ϕ̃|D ◦ (pϑD ◦ Pf )(π
−1
I(D)µ)

Corollary 3.27
If ΓD has k irreducible representations, let UD = U1

D⊕U2
D⊕· · ·⊕Uk

D be the isotypic
decomposition of UD with respect to the restricted output representation of ΓD,
let im π−1

D = V 1 ⊕ V 2 ⊕ · · · ⊕ V k be the isotypic decomposition with respect to
the output representation, and let im π−1

I(D) = W 1⊕W 2⊕· · ·⊕W k be the isotypic

decomposition of im π−1
I(D) with respect to the input representation of ΓD. Then

pϑD ◦Pf and π
−1
D ◦πD ◦Pf respectively have block diagonal structure with respect

to these decompositions.

Proof: These statements follow directly from the linear representation theory
for groups (see Theorem 2.14).

To assess the meaning of these statements, one should �rst note that in practice,
the block diagonal structure means that the o�-diagonal blocks are zero blocks,
which means that one does not need to take them into account for computations.
Secondly, it is important to realise that the operators pϑD ◦Pf : M(X) → UD and
π−1
D ◦πD◦Pf : M(X) → im π−1

D correspond to �rows� (or �multirows�, respectively)
of the block matrix representation of Pf with respect to the joint decomposition.
That means that this theorem allows to decompose Pf �block-row-wise�, where
�block rows� can either correspond to a single UD or a whole subspace im π−1

D .
This distinction is of importance e. g. in the case where for two subsets D1 ⊂ D2

the relative symmetry group ΓD1 is larger than the symmetry group ΓD2 , so that
the block diagonalization with respect to the representations of ΓD2 brings less
information (�fewer zeroes�) than with respect to those of ΓD1 . In this case it is
advantageous to decompose the row corresponding to im πD1 with respect to ΓD1 ,
and only the row corresponding to UD2 with respect to ΓD2 . On the other hand,
when ΓD2 has more irreducible representations than ΓD1 for all subsets D1 ⊂ D2,
it is of course better to decompose the whole row corresponding to im π−1

D2
than

only the one corresponding to UD2 .
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c

Figure 3.2: Network considered in Ex-
ample 3.28, number 1.

c cc 2 31

Figure 3.3: Network considered in Ex-
ample 3.28, number 2

Example 3.28
In the following we consider two examples by which we want to illustrate the con-
siderations just stated. Although the networks we present in the �gures appear
to be closed networks, standing for themselves, they can always be considered as
forming parts of larger networks, so that the �gures depict only that part of the
network given by the sets D and I(D).

1. As a �rst example, we consider the case D = {c}. In this case the output-
representation is trivial, and thus im π−1

c has only one isotypic component.
But we know from Proposition 2.4 that Γ{c} = B(c, c) is of the form Sd1 ×
. . .×Sdk

, and in Section 2.2.2 and Section 2.2.3 we saw how the irreducible
representations of groups of this kind can be determined. To be more
concrete, we consider the case where a cell c receives input from three
cells of one kind and two cells of another kind, in each case via identical
couplings. (See Figure 3.2.) Then by Theorem 2.18 the relative symmetry
group Γ{c} = S3 × S2 has six irreducible representations, two of which are
two-dimensional (the tensor products of the standard representation of S3

with the trivial and the alternating representation of S2) and four of which
are one-dimensional. If we write U, V,W for the measure spaces over the
state spaces for the �circle�, �triangle� and �square� cell type, respectively,
we can represent im π−1

I(c) as U ⊗ V ⊗2 ⊗W⊗3. Here Corollary 3.27 implies
that the �row� of Pf corresponding to im π−1

c can be divided into six blocks,
of which only one (for the trivial representation on im π−1

I(c)) is a non-zero
block. In the �nite-dimensional setting, we can use equations (2.1) and
(2.2) to determine the dimensions of the blocks. As an example, we can
read o� Table 2.1 that in the case dimV = dimW = 10, the trivial isotypic
component of U ⊗ V ⊗2⊗W⊗3 has the dimension dimU · 55 · 220 = 12100 ·
dimU . In contrast, the whole space has dimension dimU · 100000, so that
exploitation of the symmetry would reduce the size of the block that is to
be computed to roughly one eighth.

2. As a second example, we extend the situation we just considered in such a
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way that not one, but three cells of type �circle� receive inputs in identical
manners from the same �ve cells as before. (See Figure 3.3.) If we now take
D = {c1, c2, c3}, we get ΓD = S3 × S3 × S2, which has eighteen irreducible
representations, namely the tensor products of the three representations
of S3 with themselves and the trivial and the alternating representation
of S2. In contrast to the previous situation, now the output action is not
trivial, but instead given by the lifts of the action of S3 on {c1, c2, c3}. This
means that the output representation will contain only the three irreducible
representations of S3, and only 3 of the 3 · 18 blocks of the representation
of π−1

D πD ◦ Pf with respect to the isotypic decompositions are non-zero.
Again, the dimensions of the isotypic decomposition can be determined
using equations (2.1) and (2.2).

3.2.3 Combining Independence and Equivariance Structure

In Section 3.1 we have analysed which consequences it has for the transfer oper-
ator of a map f admissible to a coupled cell network that each component map
fc is independent from cells not in the input set I(c); with Theorem3.15 we have
obtained a satisfying description of the implications of independence relations
for the structure of the transfer operator. In the current section we have looked
at the symmetry properties of an admissible map, as they are expressed by its
equivariance with respect to the symmetry groupoid of the network. These prop-
erties imply equivariance with respect to certain groups, and we have described
their implications with Theorem 3.26 and Corollary 3.27. However, as it stands,
the two results make quite independent statements. On the one hand, we learn
in Theorem 3.15 about the structure of the block decomposition with respect
to the joint decomposition of M(X). On the other hand, we are told that the
block decomposition of the �non-zero parts� of the transfer operator with respect
to an isotypic decomposition of the involved subspaces has in fact a diagonal
structure. In this situation, it is natural to ask how these two statements can
be combined. More concretely, one would like to know what the block diagonal-
isations due to symmetry imply for the block decomposition with respect to the
joint decomposition. This question is related to the question how, for given D,
the joint decomposition and the isotypic decompositions of im πI(D) and of im πD
are related to each other. To be more speci�c, we quickly recollect the situation
to be regarded. For each subset D ⊂ C of cells, we have the input representation
of the group ΓD on im π−1

I(D). The question is how the isotypic decomposition of
this representation can be expressed in terms of the collection of subspaces UD′
with D′ ⊂ I(D), and vice versa. Furthermore, the corresponding questions for
the output representation has to be answered.
We can see from the projection formula (Lemma 2.11) for the isotypic compo-
nents and from Lemma3.24 that in general isotypic components will not coincide
with subspaces UD′ . One could, in principle, use the projection formula to obtain
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linear dependencies between isotypic components and pieces of the joint decom-
position, and one could also go on and invert these relations in order to obtain
linear equations involving the blocks of Pf with respect to the joint decompo-
sitions which describe which linear combinations of blocks sum up to zero �
because they correspond to non-diagonal blocks of Pf with respect to an isotypic
decomposition � and which ones sum up to diagonal blocks.
However, it seems to the author that in general the results of these calculations
will be of limited use only. We demonstrate the intended procedure on the
simplest example. We assume that the group ΓD which we consider is such
that the output representation is trivial, and we write p(i), i = 1, . . . , k for the
projections onto the isotypic decomposition of im π−1

I(D) with respect to the input

representation, where p(1) is the projection onto the component associated with
the trivial representation. We then have Id =

∑k
i=1 p

(i) on im π−1
I(D) and hence

π−1
D ◦ πD ◦ Pf = π−1

D ◦ πD ◦ Pf ◦
k∑

i=1

p(i)

= π−1
D ◦ πD ◦ Pf ◦ p(1), (3.6)

as we know from Corollary3.27 that the blocks π−1
D ◦πD◦Pf ◦p(i) are zero for i 6= 1.

Combining equation (3.6) with the simple observation that p(1)(µ) = p(1)(ϕ̃(µ))
for any µ ∈ im π−1

I(D) and any ϕ ∈ ΓD, we now see that the equivariance of π−1
D πD◦

Pf implies that π−1
D πD ◦ Pf (µ) = π−1

D πD ◦ Pf (ϕ̃(µ)). This in particular means
that two blocks PD1,D2 and PD1,D′2 of Pf with respect to the joint decomposition
are identical whenever D′

2 = ϕ(D2) for some ϕ ∈ ΓD with D1 ⊂ D and D2 ⊂
I(D),D′

2 ⊂ I(D).
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4 Numerical Approximations of Coupled

Cell Transfer Operators

. . . far more ability and sophistication is required to obtain a numerical

solution than to establish the usual existence and uniqueness theorems. It

is far more di�cult to obtain an e�ective algorithm than one that stops

with a demonstration of validity. A �nal goal of any scienti�c theory must

be the derivation of numbers. Theories stand or fall, ultimately, upon

numbers.

This passage from Richard E. Bellman's autobiography ([3, p.185]) found an un-
expected but nevertheless striking veri�cation in the preparation of this chapter.
Aiming to comply to Bellman's statement about the ��nal goal of theories�, the
author was initially motivated to analyse the structure of the transfer operator
of a coupled cell system in order to reduce the computational e�ort necessary for
an approximation of the transfer operator of a coupled cell system. That is, the
intention of this thesis was to narrow the gap between systems that are small
enough to be accessible to a numerical analysis using transfer operator techniques
on the one hand and systems that are su�ciently large to be interesting from
a theoretical coupled cell systems point of view, or even for applications. As a
proof that a good step has been made in that direction, one has good reason to
expect a numerical example.

Unfortunately, this aim appears to be unreachable for this thesis. It turned
out that there is an obstacle between the structural results that were obtained
in the preceding chapter and their implementation into an algorithm for the
approximation of the transfer operator which the author of this thesis was unable
to circumvent.

In the following we will �rst describe this obstacle, and then, for lack of better
ideas, leave the theory developed so far aside, go back to the beginning and
present an alternative approach for the numerical approximation of the transfer
operator that tries to exploit the structural features of the coupled cell network.

In everything that is presented in this chapter, it is assumed that we are working
in the �nite-dimensional setting (cf. Example 2.26). Furthermore, for simplicity
we assume all vector spaces that we are considering to be real vector spaces.
Most of what is said, however, could equally well be applied to complex vector
spaces.
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4 Numerical Approximations of Coupled Cell Transfer Operators

4.1 What prevents an algorithmic use of the

structure results

Any numerical approximation of the transfer operator will essentially be given in
the form of a matrix. This matrix is the representation of a linear endomorphism
on a �nite-dimensional subspaceM(X) (of some other, in�nite-dimensional mea-
sure space) that approximates Pf . This implies that the concrete form the matrix
will take depends �rstly on the choice of subspace, secondly on the choice of the
approximating endomorphism and �nally also on the choice of a basis for the
�nite-dimensional subspace. With the �rst choice, the designer of an algorithm
can in�uence the precision of the approximation that is achieved. (For example,
she can adjust the granularity of the discretization of X, or construct partitions
specially adapted to the dynamical system to be analysed.) The approximating
endomorphism is usually constructed as it is described in Section 2.4.2. The third
point, �nally, is usually decided upon in view of implementational criteria, i. e.
in such a way that the evaluation of the resulting formulas is easy to implement.
It is this question from which the problem results.

4.1.1 The dependence on the choice of basis

UD-adapted bases The structural description of the transfer operator in the
preceding chapter was given in terms of blocks PD1,D2 of Pf with respect to the
decompositionM(X) = ⊕D⊂CUD. So in order to use it for a numerical algorithm
we need to use a basis of M(X) with the property that the spaces UD are linear
spans of certain subsets of this basis. Furthermore, in our speci�c case, we not
only have the spaceM(X) to consider, but also the spacesM(Xc) for all cells c,
as well as the spacesM(XD) for subsets D ⊂ C. As in all suitable settingsM(X)
is essentially the tensor product of the spacesM(Xc), it seems appropriate to use
a basis for M(X) that consists of tensor products of bases of M(Xc). We have
seen in Example3.14 that such a basis is obtained if one takes tensor products of
bases of the spacesM(Xc) with the property that one (in ordered bases, without
loss of generality the �rst) basis element is λc and that the other basis elements
are measures that assign the value zero to the whole space Xc. Such a basis will
be called a UD-adapted basis in the following.

Matrix dependence on the basis To make a step towards a description of the
�obstacle�, we remind ourselves how a matrix representation of the transfer oper-
ator Pf : M(X) →M(X) with respect to an arbitrary basis is constructed. Let
B = {b1, . . . , bn} be a basis of M(X). B de�nes a canonical linear isomorphism
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B : Rn →M(X) via

B

 x1
...
xn

 =
n∑

i=1

xibi.

The single component mappings of the inverse B−1 : M(X) → Rn de�ne ele-
ments b∗i of the dual space M(X)∗, which together form the dual basis B∗. Now
the entry at position (i, j) of the matrix of Pf with respect to a basis B is given
simply through the formula mij = b∗i Pf bj. This means that, having decided
upon a particular basis, to compute matrix entries one needs to solve two com-
putational tasks: Firstly, to compute the image Pfbj for all matrix elements, and
secondly, to evaluate the dual basis on these images.1

The core of the problem is now that it is not clear how either of these tasks can
be performed for UD-adapted bases except by resorting to the �box basis� used by
standard algorithms for an approximation of a transfer operator. To make clear
what this means, we take a look at the standard procedure that is implemented
e. g. in Gaio [6].

4.1.2 The standard procedure and why it cannot be used

e�ciently for coupled cell systems

GAIO The software package Gaio combines e�cient algorithms for the cre-
ation of a box covering of �interesting parts� of the state space of a general
dynamical system (e. g. �xed points, (relative) global attractors, or invariant
manifolds) with an algorithm that approximates the transfer operator of the sys-
tem, based on a previously generated covering. The coverings consist of disjoint
(up to boundaries of Lebesgue zero measure) coordinate boxes2. These boxes
take the place of the atoms of the σ-algebra from Example 2.26. A measure in
M(X) is associated to each box B that assigns to any function in F(X) the
value it takes on B. These measures determine a basis for M(X), which is from
here on called the box basis. Among others, this basis has the particular ad-
vantage that its dual basis can easily be described. More concretely, if µi is an
element of the box basis that is associated with the box Bi, then let χi ∈ F(X)
be the characteristic function on Bi. The dual basis element corresponding to
µi is then �integration of χi�, that means that for µ ∈M(X) the value

∫
X
χi dµ

is the coe�cient of µi in the box basis expansion of µ. It turns out that in the

1An alternative approach would be to compute expressions for the maps bi∗Pf �rst, and
to evaluate these on the basis elements. Such a procedure could be termed �row-wise�
computation, as every expression b∗i Pf corresponds to one row of the matrix. Some more
thoughts in this direction can be found in Section 5.2.3.

2Coordinate boxes are sets of points (x1, . . . , xk)T ∈ Rk satisfying inequalities of the form
|xi− ci| ≤ ri for i ∈ {1, . . . , k}. Here the vector c ∈ Rk is the center and the vector ri ∈ Rk

+

is the radius of the box.
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computation of an approximation of Pf , this term can be evaluated e�ciently,
by simply counting points in boxes.
To see this, we have to consider how the image measures Pfµi are approximated
for the elements µi of the box basis. For this purpose, the measure µi is approx-
imated by a sum of δ-measures in N �evenly distributed3� points:

µi ≈
1

N

N∑
l=1

δxi,l
with {xi,1, . . . , xi,N} ⊂ Bi.

We have seen in Example 2.40 that the images of δ-measures can be determined
simply be determining the images of the corresponding points, so that one has

Pfµi ≈
1

N

N∑
l=1

δf(xi,l).

Thus in order to expand Pfµi with respect to the box basis, one simply has to
count the number of point images f(xi,l) within the box Bj:∫

X

χj dPfµi ≈
1

N

N∑
l=1

χj(f(xi,l)) =
1

N
|{l|f(xi,l) ∈ Bj, 1 ≤ l ≤ N}|,

which is precisely what the algorithm contained in Gaio does.

Computing matrix entries for UD-adapted bases It turns out that it is not
easily possible to perform the two tasks �compute images of basis measures under
Pf � and �evaluate the dual basis on them� for UD-adapted bases. First of all,
assuming that the map f can be evaluated on single points only (which appears
to be a reasonable assumption) it seems clear that all methods to compute images
of measures have to use in some way or another the method that was described
in the preceding paragraph: they will have to approximate basis measures by
linear combinations of δ-measures, as these are the only ones, it appears, whose
image under Pf can be directly computed. But this means that we do not loose
generality when we decide to describe our UD-adapted basis of choice in terms
of a box basis. Doing this not only means that we have in principle a way of
computing images of basis measures (namely, computing the images of box basis
measures and forming the appropriate linear combination), it also brings the
additional bene�t that � again, in principle � we know how to evaluate the dual

3How this idea is realized depends in particular on the numerical e�ort one is willing to pay.
The convenient choice of choosing test points on a �ne rectangular grid within Bi will
become prohibitively expensive in higher dimensions, in which case one may be better o�
with choosing test points at random from a uniform distribution on Bi. Note that in this
account of the procedure we completely leave out questions concerning the approximation
quality.
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basis. The reason for this lies basic linear algebra, more precisely in the fact
that ifM is a change-of-basis matrix between the box and the UD-adapted basis,
i. e. if the j-th column of M describes which linear combination of the elements
of the box basis is equal to the j-th element of the UD-adapted basis, then the
matrix M−1 describes the dual of the UD-adapted basis in terms of the dual of
the box basis.
To be more precise, let {µ1

1, . . . , µ
1
N} be the box basis, and let {µ2

1, . . . , µ
2
N} be the

UD-adapted basis. These bases de�ne linear isomorphisms Bl : RN →M(X) via
Bl(ej) = µl

j (for l = 1, 2), where {e1, . . . , eN} is the standard basis of RN . Then
P1 := B−1

1 ◦Pf ◦B1 is the representation of Pf with respect to the box basis, and
likewise P2 := B−1

2 ◦ Pf ◦ B2 its representation with respect to the UD-adapted
basis. Using this terminology, the change-of-basis matrix described above is given
through M = B−1

1 ◦ B2, as we have Mej = B−1
1 µ2

j and thus B1Mej = µ2
j . With

this matrix, we have P2 = M−1P1M . This means in particular that we obtain a
�formula� for the (i, j)-th entry of P2, namely

(i, j)-th entry of P2 = (i-th row of M−1) · P1 · (j-th column of M). (4.1)

If M and M−1 were known the be sparse matrices, this expression could be re-
duced to a linear combination of �a few� entries of P1. The problem now lies in
the fact that the author of this thesis was unable to �nd a UD-adapted basis for
which both M and M−1 are sparsely populated matrices. This, however, seems
to be a necessary requirement if one aims at �nding an e�cient algorithm for
the computation of P2, for the e�ciency of such an algorithm would primarily
have to be measured by the number of test points that are necessary to compute
the entries of P2. The best the author has to o�er is a UD-adapted basis de-
scribed below in Example 4.1, for which M is relatively sparse, but M−1 is fully
populated.
In the second-last sentence, we purposefully said �compute the entries� and not
�compute one entry�. It is not only possible, but likely that the e�ort necessary
for the computation of the whole matrix is much less than the number of entries
times the e�ort for one entry. It may well be that intermediate results from the
computation of one entry can be reused for other entries. In fact, we encounter
precisely this phenomenon in the �standard algorithm� (which would be used for
the computation of P1) that was described above. There, the computation of the
images of test points from one box su�ces to determine the matrix entries for
one complete column of the matrix.
On the one hand, this is good news: if, as in Example 4.1, M is relatively sparse
andM−1 is not, then the second and third term of the right hand side of Equation
(4.1) can be combined to a linear combination of some (few) columns of P1. Then
fullness ofM−1 means nothing else than that for the evaluation of Equation (4.1)
one indeed needs full columns of P1.
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On the other hand, it seems this is also bad news, as it suggests that the in-
formation about zero blocks that one can obtain from the structural theory is
e�ectively useless. In general, the block decomposition of Pf with respect to the
joint decomposition will not contain full zero columns � observe e. g. that for the
block row corresponding with D = C there is no zero block due to independence.
This means that usually one will have to compute entries from each column of
the UD-adapted matrix representation. But this, in turn, makes it necessary,
unless alternative means are found to obtain matrix entries for the UD-adapted
representation, to compute every full column of the box basis representation �
which means that there are no savings as long as one has to return to the box
basis for actual computations. We saw above that it appears plausible that this
restriction can hardly be relaxed � at least under the paradigm that the dynam-
ical system is numerically accessible only through evaluation of the map f on
single points.

Example 4.1
For each cell c, let {µc

1, . . . , µ
c
nc
} be the box basis of M(Xc). De�ne µ̃c

1 =
1
nc

∑nc

j=1 µ
c
j, and for 1 < i ≤ nc de�ne µ̃c

i = µc
i − µc

i−1. Then {µ̃c
1, . . . , µ̃

c
nc
} is a

basis of M(Xc) as described in Example 3.14, and we thus obtain a UD-adapted
by forming all tensor products of all these basis elements.
We see from the above de�nitions that the change-of-basis matrix M c that de-
scribes the µ̃c

i in terms of the box basis is not only lower triangular, but also
relatively sparse: there are non-zero entries in the �rst column, in the diagonal
and in the �rst lower secondary diagonal, but nowhere else. If we now do not use
the numbers 1 to

∏
c∈C nc as indices for the change-of-basis matrix between the

box basis for M(X) and the UD-adapted bases, but instead tuples (ic1 , . . . , icN
)

with 1 ≤ ic ≤ nc, then it is easy to see that the entries of that change-of-basis
matrix are given by the formula

m(ic1 ,...,icN
),(ic1 ,...,icN

) =
∏
c∈C

mc
ic,jc

,

where the mc
ic,jc

are entries of the individual change-of-basis matrices. We thus
see that indeed this matrix M is a sparse matrix. Direct computations (per-
formed in Matlab) however showed that at least for a number of examples, the
inverse M−1 is a fully populated matrix. The author of this thesis was not able
to �nd a UD-adapted basis which did not share this property.

With the argumentation laid out in this section, we cannot claim to have formally
proved that it is fundamentally impossible to save e�ort due to the structural
information one may have about P2 from the structure of a coupled cell network
to which it belongs. We made assumptions that may seem plausible, but were
not proved, and at several points we glossed over complicated matters saying
�it appears that� or �it seems that�. Nevertheless, the author of this thesis is

76



4.1 What prevents an algorithmic use of the structure results

convinced that the problems described are substantial, and he hopes that the
above argumentation also convinces the reader.

4.1.3 Possible ways out

Although the argument presented in the previous section makes the author of this
thesis generally pessimistic as far as the possibility of generic e�cient numerical
approximation of transfer operators of coupled cell systems is concerned, it shall
not be denied that there might be solutions to the problems we encountered.
Presently, the author sees some approaches which for completeness we shortly
present here.

Orthogonal bases In order to facilitate the problems that stem from a fully
populated change-of-basis matrix, it would be best to construct the UD-adapted
basis in such a way that the resulting change-of-basis matrix is both sparse
and orthogonal. This can be achieved in particular by choosing bases for each
M(Xc) in such a way that the matrices M c are sparse and orthogonal, which in
turn means that the individual basis measures should have �small� (in terms of
the number of boxes) supports (this implies sparsity) and that they should be
pairwise orthogonal with respect to the scalar product on M(Xc) induced from
the standard scalar product on Rnc via the box basis. However, it is not clear to
the author how one could start to construct such a basis.

Row-wise computation But even ifM could be chosen sparse and orthogonal,
one still had the problem that using that standard method, one cannot do any
less than computing whole columns of P1 at a time. This would be di�erent if
one found a di�erent way of evaluating the dynamical system, which allows �row-
wise� computations. Indeed it seems that such an approach is possible after a
certain �paradigm shift�: If one assumes that pre-images of subsets of X under f
can be approximated, then it seems that it is possible to �transpose� the standard
algorithm. This is explained in more detail in Section Section 5.2.3.

Number of test points An aspect that has hitherto not been touched, but
which might lead to some savings, is the number of test points that is necessary
to guarantee a certain quality of the approximation of the image of a box. If one
takes into account the structural information on P2, then after multiplication
with M and M−1 one obtains linear equations as constraints for the entries of
P1. (If one succeeded to construct a basis in such a way that both M and M−1

are sparse (or at least of a simple structure), then these constraints could even
be accessible analytically.) It might be that the number of test points that is
necessary to obtain a certain quality of approximation for the entries of P1 can be
reduced due to these constraints, e. g. through an error-correction scheme based
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on projections onto the constraint manifold. However, it appears that generally
little is known about the relationship between the number of test points and the
quality of approximation, although it seems that it should be possible to derive
statements about this relationship from general statements about the Monte-
Carlo approximation of higher-dimensional integrals.

4.2 E�cient Numerical Approximation

In this section we are going to describe another approach that allows to save
numerical e�ort in the computation of the transfer operator of a coupled cell
systems. This approach is rather unrelated to the developments presented so far.
With the problem of incompatible bases necessary for the numerical computation
on the one hand and the structural theory presented in the earlier chapters on the
other hand, we �nd ourselves in what seems to be a dead end if we try to design
algorithms for the numerical computation of the transfer operator on the basis of
evaluations of the dynamical system. For this reason, we go back to the de�nition
of a coupled cell system, remind ourselves of the standard Ulam approach for the
approximation of the transfer operator described in Section 2.4.2, and see how
this approach can be adapted to the coupled cell setting in such a way that it
becomes unnecessary to sample the complete, high-dimensional state space with
test points which is the prohibitive restriction for a straightforward application
of the standard approach.
The basic idea behind the method is the following. We have seen that the
standard approach to compute an Ulam approximation of the transfer operator
for a map f : X → X estimates the ratios of measures of sets of the form

m(f−1(A) ∩B)

m(B)

for certain sets (boxes) A,B ⊂ X by computing the images of a su�ciently large
number of test points in B, counting the number of images that are contained
in A and taking the ratio of these numbers as an estimate for the ratio of the
two measures. The naive use of this method for the transfer operator of coupled
cell systems becomes prohibitively large for two reasons, both of which can be
reduced to the high dimension of the state space X: On the one hand, the
number of sets A necessarily grows exponentially in the dimension of X; on the
other hand, the number of test points in each of these sets that is necessary to
estimate the measure of f−1(A) ∩B grows exponentially as well. As we will see
in the following example, it is possible to use smaller numbers of test points.
Furthermore, if one considers the task of computing not only one of the sets
f−1(A) ∩ B, but all sets f−1(Bi) ∩ Bj for a box collection {Bi}, further savings
are possible.
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Example 4.2
As an example we consider a map f is admissible on the three cell network
shown in Figure 4.1, de�ned on the cartesian product X×Y ×Z of three spaces.
Then f has the three component maps f1, f2, f3 such that f1(x, y, z) = f̂1(x, y),

1 2 3

Figure 4.1: Three cell example network.

f2(x, y, z) = f̂2(y, z) and f3(x, y, z) = f̂3(z).For simplicity, we assume that the
set B (e. g. a coordinate box in X × Y × Z) is approximated by a �ne mesh
of points, i. e. a collection of test points of the form P = Px × Py × Pz, where
Px ⊂ X, Py ⊂ Y and Pz ⊂ Z are �nite collections of points. Furthermore, we
assume that the set A is of the form A = A1×A2×A3 (an assumption that does
not imply much loss of generality for box discretization schemes). Then one can
rewrite the expression f−1(A) ∩B by noting that

f−1(A) = f̂−1
1 (A1)× Z ∩X × f̂−1

2 (A2) ∩X × Y × f̂−1
3 (A3).

The interesting property of the right hand side is that its non-trivial parts are
subsets of the `low-dimensional' partial cartesian products X × Y , Y × Z and
Z alone, respectively. To approximate these sets, one needs only the relatively
low-dimensional meshes Px×Py, Py×Pz and Pz, which are together of cardinality
much smaller than P .
A rough description of an algorithm for our example building upon this obser-
vation could be as follows. Given boxes A,B ⊂ X × Y × Z as above, choose
point collections Px, Py, Pz so that P is a su�ciently �ne approximation of
B. Let |Px| = nx, |Py| = ny, and |Pz| = nz. Next compute the image sets
f̂1(Px × Py), f̂2(Py × Pz) and f̂3(Pz), and form P1 = (Px × Py) ∩ f̂−1

1 (A1),
P2 = (Py × Pz) ∩ f̂−1

2 (A2) and P3 = Pz ∩ f̂−1
3 (A3) by checking whether an

image point is in the correspondig set Ai. Finally count the number of points in
P1 × Pz ∩ Px × P2 ∩ Px × Py × P3 simply by matching lists of points. The ratio

of this number to nx · ny · nz is an approximation of the ratio m(f−1(A)∩B)
m(B)

. Its
computation needed nx ·ny +ny ·nz +nz evaluations of `one-dimensional'4maps,
as opposed to the nx · ny · nz evaluations of the multi-dimensional f needed in
the standard approach.
Now imagine that not only the two sets A and B are considered, but instead box
collections {BX

i | i ∈ IX}, {BY
i | i ∈ IY } and {BZ

i | i ∈ IZ} are given that cover
the spaces X, Y and Z, respectively. Then the collection B = {Bi×Bj×Bk |i ∈
4Taking the three spaces X, Y and Z as one-dimensional, which is of course an unnecessary
restriction if taken literally.
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IX , j ∈ IY , k ∈ IZ} coversX×Y×Z. Assume that all sets of the form f−1(Bi)∩Bj

for boxes Bi, Bj ∈ B are to be computed. Then of course one could use the
procedure just described on every pair of boxes individually. However, this would
be rather ine�cient, as the images of the same sets of test points would be
computed several times. To see this, consider test points in the two distinct
boxes B1 = BX

1 × BY
1 × BZ and B2 = BX

2 × BY
2 × BZ . For the computation

of the z-components of their images only the identical test points from the z-
component BZ of these boxes are needed, which would be done twice if one just
went through the procedure described above for B1 and B2 independently.
Instead, one should simply compute all needed test point images in advance,
store them in some form of table and simply look up the speci�c test point
images needed to compute an approximation for a speci�c set f−1(Bi) ∩Bj.

In the following, we generalize and formalize the procedure described in this
example. It should be noted that the algorithm described here can be viewed
as a mere adaptation of the standard algorithm used for the computation of
the transition matrix in Gaio [6], where the computation of test point images
is `outsourced' to table lookups, with the tables being prepared in a kind of
pre-processing step.
The algorithm uses an enumeration of the box collection covering X that we
describe in the following. Let box coverings Bc of Xc be given with |Bc| = nc

and arbitrary but �xed orderings Bc = {Bi
c | 0 ≤ i ≤ nc − 1}, together with

an arbitrary but �xed order C = {c1, . . . , cN} of the set of cells. Then the total
number of boxes in BX = {

∏
c∈C Bc | Bc ∈ Bc} is

∏N
j=1 ncj

, and we order them
such that Bk = Bi1

c1
× . . .×BiN

cN
with

k =
N∑

j=1

ij ·
j−1∏
l=1

ncl
.

(Figuratively speaking, one counts the boxes in BX �rst along the axis associated
with c1, then along the axis associated with c2 and so on.)

Algorithm 4.3 (Computation of a transition matrix)

Input: • Coupled Cell network: Set of cells C, input sets I(c), maps f̂c.

• Box discretizations Bc of the individual state spaces Xc.

• Sets of test points PB
c for each box B ∈ Bc.

Part 1: Prepare test point image tables For each cell c ∈ C perform the
following three steps.

1. Form the box collection BI(c) = {
∏

c′∈I(c)Bc′ | Bc′ ∈ Bc}.
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2. For each box B =
∏

c′∈I(c)Bc′ ∈ BI(c) form the corresponding set
of domain test points:

PB
I(c) =

∏
c′∈I(c)

P
Bc′
c′ .

3. Compute IB = f̂c(P
B
I(c)), and �nd out to which box in Bc each

element of IB belongs.

Part 2: Compute the transition matrix For each 0 ≤ s ≤
∏N

j=1 ncj
com-

pute the intersections of f(Bs) with all boxes Bt ∈ BX in the following
way.

1. Initialise a list T (p) indexed by the test points p ∈ Bs with zero,
and for each j ∈ 1, . . . , N

a) look up in which box Bij(p)
cj ∈ Bcj

the images fcj
(p) of the

test points are contained, and

b) add the number ij(p) ·
∏j−1

l=1 ncl
to T (p).

2. For each 0 ≤ t ≤
∏N

j=1 ncj
determine n(t) = |{p | T (p) = t}|.

Store the quotient n(t)/m(s) as matrix entry pts.

Output: The transition matrix for f : X → X with respect to BX .

Remark 4.4
A computer implementation of this algorithm does not need to handle actual
boxes from BX as full-dimensional object, as the second part of the algorithm
uses B only for indexing purposes. While it is therefore not necessary to have
a representation of BX in memory, it is not in principle avoidable to store the
transition matrix, which may severely limit the practical usability of the algo-
rithm for already moderately sized systems. However, in many situations the
matrix can be expected to be sparse, e. g. for systems that are time-T maps of
di�erential equations with su�ciently small T . In these cases the usability limit
can be reached at substantially larger systems.
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5 Conclusion

This chapter concludes the thesis with a review of what has been reached, de-
scribing in brief what can be concluded from the main material of this thesis;
and with a listing of some possibilities for further research which I recognized
while writing. For di�erent reasons, both parts are kept rather short. While
in the review I try to bring this thesis' endeavours to a point, I feel obliged to
restrict myself to short sketches of the �further possibilities�.

5.1 What can be concluded

Let us brie�y review the contents of this work. Its objective was to analyze
and understand structural features of the transfer operator for a coupled cell
system that originate from the underlying network structure. As the state space
of a coupled cell system has a natural description as the cartesian product of
the individual cell state spaces Xc, the domain of the transfer operator has a
natural description as the tensor productM(X) =

⊗
c∈CM(Xc) of the measure

spaces over the individual state spaces. Having understood (by Theorem 2.42)
that generically it cannot be expected that the tensor product could be replaced
by a direct sum, we looked for alternative ways to decompose M(X), and con-
structed a direct sum decomposition ofM(X) =

⊕
D⊂C UD as a joint re�nement

of decompositions suggested from Lemma 3.1. Based on this decomposition, we
were able to identify transfer operators for component maps fc or partial maps
fD within Pf as �rows� of the block matrix description of Pf . We de�ned the
D-relative symmetry groups associated with a coupled cell network, and found
that results from classical representation theory can be used to obtain block dia-
gonalisations of these rows with respect to the isotypic decomposition associated
to the actions of the D-relative symmetry groups.
The relative success we could enjoy in describing the implications of the network
structure on the structure of the operator is balanced by the relative failure we
had to accept when we tried to make the structural information useful for a
numerical approximation of the transfer operator. The author was not able to
devise a method for the approximation that allows to use the structural infor-
mation, and had to accept the di�culties that prevented him from �nding such
a method. The core of the problem is that � assuming that the map f is nu-
merically accessible by point evaluations only � it seems one cannot circumvent
using the basic idea employed in the standard algorithm for approximating the
transfer operator; that is, it seems one has to approximate images of boxes. This
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implies that one cannot make use of information about blocks of Pf with respect
to the joint decomposition, as in any case one has to compute full columns of
the operator. We were able to describe an algorithm that is able to exploit the
structure of the coupled cell network for the purpose of reducing the number
of test points (and therefore: of evaluations of f) necessary for a computation
of the transfer operator, but which does not take into account the structural
properties of the transfer operator and which therefore cannot o�er an e�cient
numerical representation of the transfer operator. In the end, it seems we have
to accept that the additional structure that comes from a coupled cell network
does not provide a liberating spell that could be used to counteract the curse of
dimension.
Summing up, the following points can be considered to be the conclusions one
can draw out of this work.

1. The decomposition M(X) =
⊕

D⊂C UD allows to describe implications of
the network structure for the transfer operator in terms of a block matrix
decomposition.

2. Independence of the evolution of one cell from other cells is re�ected by
zero blocks with respect to this decomposition.

3. Also non-classical forms of symmetry in a network can be described using
the notion of relative symmetry groups.

4. Unless alternative ways of evaluating the map f are given, there seem to
be serious problems preventing the usage of the structural information for
an e�cient numerical representation of the transfer operator.

5. It is possible to adapt the standard algorithm for the approximation of the
transfer operator to make use of a coupled cell network structure. This re-
duces the number of evaluations of f , but not the size of the representation
of Pf .

5.2 What else could be done

The aim of this section is to collect some of the questions that arose and remained
open during the preparation of the thesis.

5.2.1 Relative symmetry groups and the groupoid

Having introduced the notion of D-relative symmetry groups, it was the initial
aim of the author to show that knowledge of all the groups ΓD is equivalent
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to knowledge of the symmetry groupoid BG, i. e. that the groupoid can be re-
constructed from the groups. While in view of the structure of BG (see Propo-
sition 2.4) this seemed an easy task at �rst sight, the author did not succeed
in proving this relationship. The main problem is to guarantee that for each
non-empty B(c, d) one can derive an element of B(c, d) from the collection of the
groups ΓD.

5.2.2 Symmetry-adapted bases

Here we describe a possible approach for dealing with the problem of how to
combine the UD-adapted basis, the box basis and the isotypic decompositions of
subspaces of M(X) with respect to actions of the relative symmetry groups ΓD.
In Section 2.2.1 we already brie�y mentioned the notion of a symmetry-adapted
basis. If θ : G → GL(V ) is a representation, this is a basis of V with the
property that every θ-equivariant endomorphism in V is represented by a matrix
with block diagonal structure. This structure encompasses the diagonalisation
with respect to the isotypic decomposition, but in general it can be even �ner.
At least theoretically, such bases can be constructed using projector formulas
similar to the one presented in Lemma 2.11.
In the classical applications of representation theory in dynamical systems theory
(see e. g. [26]) the representation space is typically the state space of the system
to be considered, that is, the state space carries a vector space structure and can
thus be identi�ed with its own tangent spaces (alternatively, the tangent bundle
can be written as V ×V ). This means that given a symmetry-adapted basis, one
only has to �nd an expression for the dynamical system, which, if not analytically,
can at least be dealt with numerically using change-of-basis matrices.
In our case, however, the situation is somewhat more complicated. We need a
symmetry adapted-basis not for the state space of our dynamical system, but
for measure spaces M(XD) over partial state spaces. Ideally, one would like
to construct a basis that combines three properties at once, a basis that is a
symmetry-adapted UD-adapted box basis. Probably, this is too ambitious. To
relax our requirements, we can e. g. drop the UD-adaptedness. Thus, it appears
whorthwhile to investigate the following question: Is it possible to �nd a co-
ordinate system on X =

∏
c∈C Xc such that a box basis with respect to this

coordinate system generates a symmetry-adapted basis onM(X)? It seems it is
di�cult to answer this question.

5.2.3 Row-wise approximation of the transfer operator

In Chapter 4 we discussed the di�culties arising from the fact that conven-
tional numerical schemes for the approximation of the transfer operator operate
�column-wise�. Due to these problems, it appears reasonable to search for other
schemes that do not have this property, and it turns out that in fact this seems
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not impossible to achieve. All possibilities the author of this thesis has found
arise from the thought that one seeks to �transpose� the mode of operation (in
a very vague sense), and that the transposition of the transition matrix of a
Markov chain is related to time-reversal. Computationally, time-reversal is es-
sentially the computation of pre-images instead of images, and thus at the heart
of these methods lies the assumption that one can somehow compute pre-images
of points under f .
We already saw that the key task in computing the transition matrix of a Markov
chain approximating a transfer operator is to determine expressions of the type
m(f−1(Bi)∩Bj), where f is a map, m is some measure on the state space and Bi

are elements of a partition of the state space. When going forward in time, one
chooses test points in Bj and approximates the set f−1(Bi)∩Bj by those points
which have images in Bi. Thus by computing the images of all the test points in
Bj, one obtains approximations of the matrix entries pij =

m(f−1(Bi)∩Bj)

m(Bj)
for all i

at once, that is, one obtains an approximation of the j-th column.
To compute the i-th row, in contrast, one has to �x the box Bi in the expression
for the transition probabilities, and to approximate f−1(Bi) ∩ Bj for all j. As-
suming one is capable of computing pre-images, this means that one chooses N
test points in Bi and computes their pre-images. From this point on, there are
di�erent possibilities:

1. In cases where knowledge of the pre-images of test points in Bi is su�cient
to estimate m(f−1(Bi) ∩ Bj), one can do precisely that. This will usually
imply that the �pre-image point cloud� gives a good geometric description
of f−1(Bi). Depending on the speci�c situation, this can in particular
be the case when further information on f , such as Lipschitz bounds or
convexity, is given.

2. Otherwise, the following strategy could be pursued. For each box Bj, one
counts the number kj of pre-image points contained in Bj. Going back to
equation (2.4), (and using the terminology used there,) one then observes

pij = P (f(x) ∈ Bi | x ∈ Bj)

=
P (x ∈ Bj ∧ f(x) ∈ Bi)

P (x ∈ Bj)

=
P (f(x) ∈ Bi)

P (x ∈ Bj)
· P (x ∈ Bj ∧ f(x) ∈ Bi)

P (f(x) ∈ Bi)

=
P (f(x) ∈ Bi)

P (x ∈ Bj)
· P (x ∈ Bj | f(x) ∈ Bi)

≈ P (f(x) ∈ Bi)

P (x ∈ Bj)
· kj

N
,
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5.2 What else could be done

as the fraction kj

N
can be interpreted as an approximation of the conditional

probability that f−1(x) ∈ Bj given that x ∈ Bi. This shifts the di�culty
from estimating m(f−1(Bi) ∩ Bj) to estimating P (f(x) ∈ Bi). Although
one might object that this in general assumes that the transfer operator is
already known, one can imagine situations in which this problem is easier
to handle. Most notably, when there is an invariant measure that is known
a-priori (e. g. Liouville volume for the case of mechanical systems) the
problem is reduced to evaluating that measure.
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