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Zusammenfassung

FPGAs, System on Chips und eingebettete Systeme sind heutzutage kaum mehr wegzu-
denken. Sie kombinieren die Rechenleistung von spezialisierter Hardware mit einer Software-
ähnlichen Flexibilität. Zur Laufzeit können sie ihre Funktionalität anpassen, indem sie
online neue Hardware Module beziehen und deren Funktionalität integrieren. Mit der Leis-
tung wachsen auch die Anforderungen an rekonfigurierbare Hardware. Ihr Einsatz in im-
mer sicherheitskritischeren Szenarien erfordert neue Wege um Sicherheit zu gewährleisten,
da ein Versagen der Sicherheit gravierende Folgen mit sich bringt. Neben finanziellen Ver-
lusten sind auch der Verlust von Menschenleben oder Einbußen in der nationalen Sicherheit
denkbar.

In dieser Arbeit stelle ich das neue und wegweisende Konzept der beweistragenden Hard-
ware vor. Es ist eine Methode zur Verifizierung von Eigenschaften von Hardware Modulen
um die Sicherheit der Zielplatformen zur Laufzeit zu garantieren. Der Produzent eines
Hardware Moduls liefert, basierend auf den Sicherheitsbestimmungen des Konsumenten,
einen Beweis der Sicherheit mit dem Rekonfigurierungsbitstrom. Die aufwendige Berech-
nung des Beweises steht im Kontrast zu der vergleichsweise unaufwendigen Überprüfung
durch den Konsumenten. Ich präsentiere einen Prototypen basierend auf Open Source
Werkzeugen und einer eigenen abstrakten FPGA Architektur samt Bitstromformat. Den
Nachweis über die Nutzbarkeit von beweistragender Hardware erbringt die Evaluierung
des Prototypen zur beispielhaften Anwendung der Sicherung von kombinatorischer und
begrenzt sequenzieller Äquivalenz von Referenzmonitor-Modulen zur Speichersicherheit.
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Abstract

FPGAs, systems on chip and embedded systems are nowadays irreplaceable. They combine
the computational power of application specific hardware with software-like flexibility. At
runtime, they can adjust their functionality by downloading new hardware modules and
integrating their functionality. Due to their growing capabilities, the demands made to
reconfigurable hardware grow. Their deployment in increasingly security critical scenarios
requires new ways of enforcing security since a failure in security has severe consequences.
Aside from financial losses, a loss of human life and risks to national security are possible.

With this work I present the novel and groundbreaking concept of proof-carrying hard-
ware. It is a method for the verification of properties of hardware modules to guarantee
security for a target platform at runtime. The producer of a hardware module delivers
based on the consumer’s safety policy a safety proof in combination with the reconfigura-
tion bitstream. The extensive computation of a proof is a contrast to the comparatively
undemanding checking of the proof. I present a prototype based on open-source tools
and an abstract FPGA architecture and bitstream format. The proof of the usability
of proof-carrying hardware provides the evaluation of the prototype with the exemplary
application of securing combinational and bounded sequential equivalence of reference
monitor modules for memory safety.
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CHAPTER 1

Introduction

1.1 Thesis Context

Our everyday lives are dominated by desktop computers, smartphones, navigation devices
for cars and other appliances. They adjust to our every need by downloading more in-
formation and more tools, i.e. apps and programs, from the internet and even update
themselves, for instance with new maps. Gone are the times of updates delivered on CDs,
updates now occur whenever needed. But not only private computer systems have under-
gone this change, as a matter of fact most computer systems are networked nowadays and
benefit from the flexibility to update. Every alteration of a computer system’s function-
ality is a potential security threat. Since the software-ecosystem that exists around the
instruction set architecture is well-known and the domain of software security has been
researched quite extensively, the risks of software updates can be contained.

Reconfigurable devices and in particular dynamically reconfigurable devices have in re-
cent years gained importance. They offer the performance of dedicated hardware and
combine it with a level of flexibility that is usually only offered by software. With growing
capacities, reconfigurable devices such as Field-Programmable Gate Arrays (FPGAs), are
increasingly deployed in varying scenarios. The variety of scenarios grows and becomes
more challenging up to the point where embedded systems are deployed in unknown en-
vironments with unknown security risks. The failure to provide security and safety in
those scenarios would have severe consequences; such as financial losses, a loss of human
life, and threats to national security. Security for reconfigurable hardware and dynam-
ically reconfigurable hardware is a novel research area that has only been emerging for
the last few years but as reconfigurable devices such as FPGAs gain importance, security
for reconfigurable devices gains importance as well. Especially in the very recent years,
research for reconfigurable hardware security has taken a step forward. Hardware attacks,
such as physical attacks but also side channel attacks and Trojan horses, countermeasures,
and FPGA and embedded system security have been investigated, see [37, 8] but also a
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Chapter 1.2. Thesis Contribution

taxonomy to classify the countless threats to reconfigurable hardware security, see [63].

One important aspect of security for reconfigurable devices is the reconfiguration pro-
cess. Reconfigurable devices offer points of attack through the reconfiguration itself. Sev-
eral approaches at security aim at securing the transmission of the reconfiguration bit-
stream, often with the aide of encryption, as will be elaborated in Chapter 2, to deliver
a confidential and authentic bitstream. A secure transmission can only be a first step
to secure reconfiguration as the new component’s impact on the system’s integrity is of
major importance. Other approaches give assurances of single aspects of system security
after reconfiguration but still do not concern themselves with the actual functionality of
the newly installed hardware module.

Another important vulnerability of the reconfiguration process is the source of the re-
configuration bitstream, i.e. the producer. The production of a reconfiguration bitstream
(as well as a reconfigurable device) typically involves multiple parties and stages. Usually,
a consumer established trust in the final supplier who then trusts his suppliers. Even if
trust can be established in all parties involved, the final reconfigurable device in combina-
tion with the new bitstream is more than the sum of its parts. Trust in the final product
poses a new security challenge. Despite his best intentions, a trusted supplier may deliver
a bitstream that corrupts its host platform with unintended side-effects.

Considering that security critical scenarios can demand an absolute guarantee of certain
properties of the delivered hardware module, it is not enough to establish trust in a
bitstream producer. Security for reconfigurable devices means a secure reconfiguration
bitstream whose specific properties and features are known before execution. Considering
that producers deliver hardware modules in form of reconfiguration bitstreams on demand,
it seems only logical that they should deliver the required security assurances as well.
A new approach to bring runtime verification of bitstreams from untrusted sources to
dynamically reconfigurable devices will be introduced in this work.

1.2 Thesis Contribution

In this thesis, I introduce the novel concept of proof-carrying hardware. It is an approach
to runtime verification of hardware modules from untrusted sources based on the security
guarantees regarding the new module’s functional properties to establish on-the-fly trust
and on-the-fly reconfiguration of reconfigurable devices.

Three key aspects distinguish this approach from other approaches in the broader field
of hardware security:

• Firstly, it enables reconfigurable devices such as FPGAs to benefit from formal
verification without high computational effort. The producer of the hardware module
includes a safety proof in the bitstream which the consumer then only has to check.

• Secondly, this approach is flexible. Proof-carrying hardware can adjust to the verifi-
cation of more than one security property of a hardware module and can be employed
for multiple use cases.
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• Thirdly, proof-carrying hardware is robust as the safety proof is based on and later
matched against the safety policy determined by the consumer of the bitstream.
This guarantees that tampering with the bitstream by either the producer or a third
party would result in a failure to conform to said safety policy.

In this thesis, I also present a prototype proof-carrying hardware tool flow. The tool
flow demonstrates the application of proof-carrying hardware to the runtime verification
of combinational equivalence and bounded sequential equivalence. These are used on
reference monitor hardware modules, compiled from memory access polices to manage
memory access by multiple other IP cores on the fabric. This groundwork is meant as a
basis for later extension.

I also deliver a feasibility study based on the prototype tool flow. The study clearly
demonstrates the successful shift of workload from the consumer to the producer, meaning
that I successfully demonstrated the benefit of this novel technique for reconfigurable
platforms.

1.3 Thesis Structure

This thesis is structured as follows:

Chapter 2 elaborates the background of this work and related work in the area of security
for reconfigurable devices. An introduction to Field-Programmable Gate Arrays (FPGAs)
includes an introduction to the physical aspects of the device as well as the reconfiguration
process which equips the FPGA with a new functionality. To give more context in which
to place this thesis, I give an overview of other approaches to remedy some of the risks
that are inherent to dynamic reconfiguration of FPGAs. For a better understanding of
proof-carrying hardware, I elaborate on proof-carrying code, a concept for guaranteeing
security properties of software modules introduced in 1996 by Necula and Lee [57] which
is crucial for the understanding of this work.

Chapter 3 compares software security with security for reconfigurable hardware and the
difficulties inherent to any approach to secure reconfigurable hardware. The proof-carrying
hardware approach is introduced and its key concepts are emphasized. I then compare my
novel approach to already existing works in the field of reconfigurable hardware security.
The chapter concludes with the thesis claim.

Chapter 4 details the proof-carrying hardware approach to runtime verification. It
explains the different types of security challenges to which I later apply proof-carrying
hardware: combinational equivalence checks of design and design specification, bounded
sequential equivalence checks of design and design specification, and temporal isolation
of memory ranges accessed by hardware modules on an FPGA chip. In this context,
Chapter 4 discusses miter functions and resolution proofs used for the verification process
as well as temporal isolation of memory achieved through reference monitor hardware
modules based on dynamic and static types of memory access policies.

Chapter 5 details the evaluation methodology of this thesis which is a proof-carrying
hardware open-source prototype tool flow. The tool flow is based on a novel abstract
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Chapter 1.3. Thesis Structure

FPGA architecture and an according bitstream format, both are elaborated. The open-
source tools and formats are depicted. To implement the proof-carrying hardware principle
of shifting the majority of the verification workload to the untrusted source producer of
a hardware module, the tool flow realizes a split between producer and consumer. This
separation and the resulting separation of tasks is demonstrated.

Chapter 6 gives an evaluation of the proof-carrying hardware approach based on the
tool flow presented in the previous chapter. Firstly, the robustness and limitations of the
implementation and proof-carrying hardware are discussed. To demonstrate the usability
of the concept, measurements regarding runtime and memory usage document the desired
shift of workload. Those results are discussed in detail.

Chapter 7 summarizes the contributions of this work as well as the results and conclu-
sions drawn from them. This thesis finishes with an outlook on future work regarding
proof-carrying hardware.

4



CHAPTER 2

Background and Related Work

This chapter gives an introduction into reconfigurable hardware and reviews existing work
in the field of hardware security and also the concept of proof-carrying code from the
software domain. This information serves a better understanding of this thesis and its
contextual placement.

In Section 2.1, I give fundamental information on the make-up on reconfigurable devices
and elaborate on the reconfiguration process. In Section 2.2, I discuss the matter of
hardware security. The focus is on possible attacks on embedded systems such as FPGAs
and their available and theoretical possible countermeasures. Section 2.3 gives an overview
of Proof-Carrying Code, a security concept from the software domain which is fundamental
for this thesis.

2.1 Reconfigurable Hardware

2.1.1 Field-Programmable Gate Arrays

Field-programmable gate arrays (FPGAs) are programmable logic devices, i.e. integrated
circuits whose functionality is defined by the end user through the FPGA’s programming.
FPGAs consist of three basic components: I/O blocks for information flow between the
FPGA and its environment, programmable logic blocks, and programmable interconnect.
The logic blocks are arranged in arrays and programmed with the logic that makes up
the FPGA’s functionality. The interconnect uses routing resources of varying length to
combine the logic blocks to greater functionality and connect them to I/O blocks, as shown
in Figure 2.1.

Logic blocks are comprised of three key components: multiplexers, look-up tables
(LUTs), and registers or flip-flops (FFs). The amount of the different components and
their arrangement allows for the design of minimalistic models of FPGAs, see Figure 2.2,
as well as complex commercial FPGAs, see Figure 2.3. Each logic block has input and
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Chapter 2.1. Reconfigurable Hardware

Logic Block 

Interconnect 

I/O Block 

Figure 2.1: Generic FPGA.

 

4. Operation of T-VPack 

As stated earlier, T-VPack takes as input a technology-mapped netlist of lookup tables 
(LUTs) and flip flops in .blif format, and outputs a .net format netlist composed of more complex 
logic blocks.  The logic block to be targeted is selected via command-line options.  The simplest 
logic block T-VPack can target consists of a LUT and a FF, in the configuration shown in Figure 
2.  We call this logic block a basic logic element. 

 

To have T-VPack target a logic block of this form, use the command: 
> t-vpack <input.blif> <output.net> -lut_size <K> -no_clustering 

In the command above, the italicized values in angled brackets, <>, should be replaced by 
the file names or numbers you are using, while unitalicized words are keywords and must be 
typed exactly as shown. 

The -lut_size <K> option specifies the number of inputs to a LUT (i.e. K in Figure ).  If -
lut_size is not specified, a default LUT size of 4 is assumed by T-VPack.  The -no_clustering 
option indicates that the logic block is a single basic logic element with no local routing to route 
the logic block output back to the logic block inputs.  By default, T-VPack marks all clock nets in 
the input netlist as global nets which VPR should not route.  Since clocks are typically routed via 
a dedicated network in FPGAs, this is usually the most realistic thing to do.  If, however, you 
want clocks to be routed as using normal routing resources, you should specify -global_clocks 
off on the T-VPack command line. 

T-VPack is capable of targeting a more complex form of logic block, which we call a 
cluster-based logic block [5].  Figure 3 depicts an example.  A cluster-based logic block 
consists of N basic logic elements (i.e. N LUTs and N FFs), along with local interconnect that 
allows the N cluster outputs to be routed back to LUT inputs.  Since the number of logic block 
inputs, I, can be less than the total number of LUT inputs (KN, where K is the number of inputs 
per LUT), the local interconnect also allows each of the I inputs to be routed to any of the KN 
LUT inputs.  Cluster-based logic blocks are very similar to the logic blocks used in the Altera 8K 
and 10K FPGAs, and are reasonably similar to those used in the Xilinx 5200 and Virtex FPGAs. 

Figure 2.2: Logic block used in open-source FPGA Architecture by Betz et al., see [13].
The logic block contains each one FF, LUT, and MUX.

output capabilities that can connect to the routing resources surrounding the block via
programmable connections. The routing itself consists of routing segments of varying
length and switch boxes connecting the segments, see Figure 2.4. Shorter segments are
intended for a direct connection between neighboring logic blocks while longer segments
link components further apart on the device.

As stated above, the functionality of an FPGA is determined by its programming,
i.e. configuration. A configuration bitstream contains the necessary values for the pro-
grammable parts that, after their respective programming, together add up to the desired
functionality. The fabrication of any bitstream begins with the design of the hardware
circuit in a hardware description language (HDL), e.g. Verilog and VHDL (Very High
Speed Integrated Circuit Hardware Description Language). A work flow takes place be-
tween this description of the hardware functionality and the actual bitstream. Examples
for such work flows or tool chains are the ones offered by Xilinx, Inc. and Altera Coop-
eration: the XST (Xilinx Synthesis Technology), see [42], and the Quartus II software,
see [23], respectively. There are several main steps common to all work flows, as depicted
in Figure 2.5:
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CLB / Slice Timing Models
R

General Slice Timing Model and Parameters 
A simplified Virtex-4 FPGA slice is shown in Figure 5-20. Some elements of the Virtex-4 
FPGA slice are omitted for clarity. Only the elements relevant to the timing paths described 
in this section are shown.

Timing Parameters

Table 5-5 shows the general slice timing parameters for a majority of the paths in 
Figure 5-20.
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LUT

FX

G
inputs

FXINA MUXFX

FXINB

D
FF/LAT

Q

REV

D

CE

CLK

SR

BY

BX

CE

CLK

SR

Y

YQ

F5
MUXF5

X
LUT

F
inputs

D

FF/LAT

Q

REV

D

CE

CLK

SR

XQ

UG070_5_20_071504

Table 5-5: General Slice Timing Parameters

Parameter Function Description

Combinatorial Delays

TILO F/G inputs to X/Y outputs Propagation delay from the F/G inputs of the slice, through the look-
up tables (LUTs), to the X/Y outputs of the slice.

TIF5 F/G inputs to F5 output Propagation delay from the F/G inputs of the slice, through the LUTs 
and MUXF5 to the F5 output of the slice.

TIF5X F/G inputs to XMUX output Propagation delay from the F/G inputs of the slice, through the LUTs 
and MUXF5 to the XMUX output of the slice.

Figure 2.3: Simplified Virtex-4 FPGA logic block by Xilinx, Inc., see [41]. The logic block
contains multiple FFs and LUTs connected by MUXs.

Programmable 

Routing 

Programmable 

Connection 

Long Routing 

Wire 

Short Routing 

Wire 

Figure 2.4: Example routing resources. Switch boxes connect incident wire segments.

• Synthesis and optimization of the design:
The design is translated from HDL specification into a netlist format while optimizing
the circuit under various aspects such as a minimum usage of logic blocks or reduction
of redundant parts of the circuit.

• Technology Mapping:
The netlist is mapped onto the actual hardware by representing the circuit with
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Figure 2.5: Steps of a generalized design tool flow.

the available gates and resources. This technology dependent netlist may be further
optimized for delay and area minimization.

• Placement and routing of the design:
The design undergoes a mapping to the physical device. The components of the
hardware device, e.g. logic blocks, are allocated to the parts of the circuit and
routing connections are defined.

• Analysis of placed and routed design:
Various features of the implementation are analyzed according to demand. Common
analysis foci are the number of routing resources of different length, the timing delay,
the number of used logic blocks, etc.

• Creation of bitstream:
The hardware functionality is translated into a format that the specific hardware
device uses for reconfiguration. The bitstream also contains the information needed
to map the new functionality to its physical components, e.g. information regarding
placement and routing.

The first step of the above list is a translation or series of translations where the end
result is a circuit in a netlist format. The circuit is now in a form that is compatible
for placement and routing according to the physical layout of the reconfigurable device.
The placement of the circuit assigns each logic block and possible other components of
the device its functionality, the routing then programs the routing resources to connect
all components on the FPGA. The placement and routing takes into account the physical
properties of the reconfigurable fabric as well as user constraint, such as special timing
requirements or area use.

Note that some work flows do not keep these steps completely separated and indepen-
dent from another but have earlier steps in the work consider assignments of other tools
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that are evoked at a later time in the work flow. That way, information which would
otherwise be lost can be sensibly saved to benefit later tools or even enable operations
that would not be possible or feasible without these information. One instance of this is
the “Recording Synthesis History for Sequential Verification” introduced by Mishchenko
and Brayton in [53] which promotes a synergy between synthesis and verification. The
synthesis uses And-Invertor Graphs (AIG) which are circuits composed exclusively of two-
input AND gates and invertor to negate signals. The synthesis process operates with two
AIG managers where a Working AIG (WAIG) reflects the current state of the synthesis
and a History AIG (HAIG) records every AIG nodes that were present in the circuit at
any time. The result of this form of synthesis is a simpler and faster verification process.

The work flow then composes the bitstream from the data created so far and the in-
formation about the actual FPGA. The bitstream can be transferred to the FPGA over
any interface the FPGA provides. Hence, remote updates via internet or network are as
possible as direct uploads of the bitstream via cable interface. Once the reconfiguration
cycle is completed, the FPGA functions as the designed hardware circuit. The basic recon-
figuration of an FPGA assigns new content to all programmable parts of the entire device,
such as logic blocks and interconnect. Some FPGAs offer a reconfiguration technique that
allows to reconfigure only a selected section of the device. This partial reconfiguration
is done at runtime as all unaffected sections keep operating while a separated part of
the fabric is given a new functionality. The device is divided into static sections for this
purpose, each of the sections can be individually configured. For further information on
FPGA design flows see [15].

The reconfiguration of FPGAs is especially interesting when dealing with reconfigurable
system on chips. A system on chip denotes an integrated circuit that combines many or all
functions of an entire computer system on a single chip. In this context, FPGAs are con-
sidered reconfigurable systems on chip. Systems on chips have a special function, examples
are the chips in smartphones, navigation devices for cars, and missile guidance systems.
The reconfiguration of such an embedded system, a system on chip in combination with
another technical device, is particularly appealing as it offers the chance to update devices
after their deployment.

2.1.2 FPGA Architecture and Design Tool Research

FPGA architecture research is concerned with studying and determining the hardware
components of FPGAs, i.e. the blocks for computation and routing, and their intercon-
nects. Research on FPGA design tools involves the analysis and development of algorith-
mic methods for technology mapping, placement, routing and timing analysis. Architec-
ture and design tools are interdependent: An architecture is needed as the basis for tool
development, and design tools are needed to drive the development of architectures. For
example, the evaluation of a specific architecture requires the placement and routing of
benchmark circuits on that architecture. I shall elaborate the analysis of a placed and
routed circuit with the example of the VPR (Versatile Place and Route) tool by Betz [13]:
VPR is an open-source tool that takes a netlist and an FPGA architecture file as input
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Figure 2.6: VPR generated circuit on FPGA chip with a 3 × 3 grid of configurable logic
blocks and global I/O. The circuit uses the input variables a, b, c and a clock
clk and returns the output variable x. It consists of three registers and four
LUTs. Highlighted are all global I/O pads, the I/O pins of the clbs, and the
routing resources such as switch boxes and connection boxes to connect all
components.

and returns the placement and routing for the netlist according to the described FPGA
architecture. VPR is an excellent open-source tool for FPGA architectural research as
it offers an array of placement and routing options and returns analyses regarding the
implementation.

The FPGA architecture file used for VPR lets the user specify many aspects of the
physical layout of the FPGA fabric. The layout of the device and its general properties
are designed by specifying, for example, how many rows and columns of logic blocks there
should be, what the channel width is supposed to be, and what types of switch blocks
and connection boxes are to be used for routing. The timing of the device is detailed
with specific parameters as well, governing the transmission of the timing signal. VPR is
capable to process heterogeneous designs, which means the designer of the architecture may
specify more than one type of logic block. Parameters for the logic blocks are for example

10



the number and position of their inputs and outputs and also the timing parameters for
their sequential and combinational input and output. All these components determine the
placement and routing process.

The objective of the placement is to assign the functionality of the circuit to the logic
blocks available in the FPGA architecture. The algorithm utilized for this task places
connected logic blocks as closely together as possible to allow for the routing to be optimal
under certain criteria. Such criteria can be a minimal use of routing resources, overall
circuit speed or the length of the critical path. A common type of placement strategy that
minimizes such criteria uses simulated annealing which minimizes the physical temperature
of the routing. VPR realizes simulated annealing with different placement algorithms and
different cost functions used for the placement process. The placement algorithm can either
minimize the wire length of the circuit or be timing driven and minimize the critical path
delay. The different cost functions consider wire length, congestion, and channel width of
the FPGA architecture as they try to estimate a future routing. The optimization goals
of the placement process can be adapted to the respective FPGA architecture.

The routing process determines how the connections between the now placed logic blocks
are realized. Figure 2.6 displays the routing resources available for a circuit placed upon
an FPGA architecture. The highlighted routing resources such as wires, switch boxes and
connection boxes show the large number of possible routings. The objective of the routing
is to find a path through the routing resources that connects the logic blocks in a way that
uses minimal resources, is as fast as possible and minimizes congestion. The Pathfinder,
see [66], offers a trade-off between delay and congestion. Timing-critical connections, i.e.
nets, use a routing that minimizes their delay, non-timing-critical nets use a routing that
minimizes the congestion of the resources. VPR uses a Pathfinder-based algorithm that
offers different heuristics to achieve a successful routing with a varying degree of focus on
minimizing the circuit speed. For this purpose, several cost functions define the cost for
the routing by summarizing the amount of used components and delays. The functions
let the user define the foci of cost minimization or a trade-off of the different factors. See
Figure 2.8 for an overview of a placed and routed design and Figure 2.7 for an extract of
the same design displaying configurable logic blocks (clb) and routing resources.

2.2 Security Concepts for Reconfigurable Hardware

2.2.1 Threats and Security Risks

This section reviews approaches to security for reconfigurable hardware. This research
area is fast growing and has gained interest only recently, one of the first notions of trust
and trustworthiness for reconfigurable hardware have been presented in 2007 by Irvine
and Levitt, see [43].

Kastner and Huffmire present an overview of security risks present in the life cycle of
reconfigurable hardware in [45] which they divide into three stages: manufacturing, ap-
plication development, and deployment. During the manufacturing stage, FPGA vendors
design and manufacture the hardware. A main challenge is the involvement of different
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Figure 2.7: Routing detail from from a placed and routed circuit. The global ’topâddress4̃’
(green) is routed to three logic blocks (red) using horizontal and vertical rout-
ing tracks.

parties and companies and the keeping of trade secrets and design specification. During
the application development stage, the future tasks are considered as its programming is
done. This stage is determined by design tool subversion, as design and synthesis tools as
well as IP cores (hardware modules) of varying sources with different levels of trust are
incorporated in the application development. Unwillingly or with full intention, a single
tool or IP core used for development might compromise the security of the embedded sys-
tem. The final stage is the deployment. Depending on the task, devices could be deployed
in the most hazardous environment. The vulnerability of such a device depends therefore
on its application and the resulting physical environment and as well as the importance
of the functionality it performs. The general security risks manifest themselves in specific
attacks on reconfigurable hardware possible under the given circumstances.

The involvement of multiple suppliers in the manufacturing stage can lead to the ques-
tion whether the final product is trusted when design specifications were made accessible
to other suppliers. With design specifications known to third parties, a party involved
in the production could use that knowledge to integrate additional functionality into the
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Figure 2.8: Circuit from Figure 2.6 placed and routed by VPR.

hardware. Such a malicious additional functionality hidden in the hardware, called a Tro-
jan horse, could perform potentially damaging action. The activation can occur through
any action or system state without the user’s knowledge. Variations of the Trojan horse
are kill switches and backdoors, rendering the chip inoperable or granting the attacker
access to the system, respectively. Karri and Rajendran give a taxonomy and elaboration
of hardware Trojans in [44].

Either party that has physical access to the device with or without permission could
perform physical attacks. Those attacks are common to obtain sensitive data. The bit-
stream itself might be a possible target for design theft. Cloning of the bitstream, reverse
engineering of the bitstream, and read-back attacks aim to provide an unauthorized party
with design information to build a similar device. A device already in use could be exposed
to a side channel attack. These attacks make use of the physical behavior of the FPGA
and gain information regarding power consumption and thereby gaining information about
secret data.

A possible attack on a deployed system is a denial-of-service attack. Such an attack
prevents the system from delivering its intended service by destroying the FPGA, changing
its programming or shutting it down. An attacker could send too many service requests
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or those that the system is not equipped to process. Another possibility to corrupt a
deployed system is to intercept the reconfiguration bitstream transmission. This gives an
attacker the chance to manipulate the bitstream by changing its functionality or to pass
off older bitstreams with known security gaps instead and later exploit the security gaps.

The reconfiguration of programmable hardware allows for design updates and adaption
to the environment. Partial reconfiguration gives even greater flexibility to adjust the
FPGA’s functionality at runtime. Yet, reconfiguration of deployed hardware is a security
risk in itself, as it offers many ways of malicious tampering in form of the attacks mentioned
as either state in the life cycle of reconfigurable hardware is prone to security risks. At each
level in the development, the HDL level, synthesis level, and bitstream level, Mehrhad et
al. list possible security threats in [63]. A successful approach to reconfigurable hardware
security must therefore validate each step of the life cycle of an reconfigurable device.

2.2.2 Approaches to Hardware Security
A Protocol for Secure Remote Updates of FPGA Configurations 51

Fig. 1. An update server (US) installs a new bitstream in a system’s NVM over an
insecure channel by passing it through update logic in the FPGA’s user logic (UL).
After reset, the hard-wired configuration logic (CL) loads the new bitstream.

The key observation we make is that the FPGA’s user logic can be used
to perform security operations on the bitstream before it is stored in external
non-volatile memory (NVM) and loaded into the FPGA’s configuration cells.
We then rely on system-level properties, such as tamper proofing and remote
attestation, to compensate for the lack of cryptographic capabilities and non-
volatile memory in the FPGA’s configuration logic. Our solution does not require
that FPGA vendors add any hard-wired circuits to their devices’ configuration
logic, and therefore can be implemented with existing products.

We first list our assumptions (Section 2.1) and then present our secure remote
update protocol (Section 2.2), which meets the following goals as far as possible:
no additions to the configuration logic; use of the user logic; bitstream confi-
dentiality and authenticity (Section 2.3); prevention of denial-of-service attacks;
no reliance on bitstream-encoding obscurity; and, finally, prevention of replay of
older, revoked bitstream versions. We then outline a more robust variant of the
protocol for systems where the NVM can hold multiple bitstreams (Section 2.4).
Finally, we discuss the security properties of our protocol (Section 3) and place
it into the context of related work (Section 4).

2 Secure Remote Update Protocol

Our secure update protocol defines an interactive exchange between an update
server (US), the entity in charge of distributing new bitstreams to FPGA systems
in the field, and an update logic, the receiving end, implemented in the user logic
(UL) of each FPGA (Figure 1). Bitstreams are loaded into configuration memory
cells by the configuration logic (CL), which is hard-wired into the device by the
FPGA vendor.

2.1 Assumptions

We require a unique, non-secret, FPGA identifier F , which the authentication
process will use to ensure that messages cannot be forwarded to other FPGAs.

Figure 2.9: Remote Update Scenario by Drimer et al. [26]: An update server (US) installs
a new bitstream in a system’s non-volatile memory (NVM) over an insecure
channel by passing it through update logic in the FPGA’s user logic (UL).
After reset, the hard-wired configuration logic (CL) loads the new bitstream.
For this, the non-secret FPGA identifier F, the version ID V of the operating
bitstream, and the secret keys KUL, KCL, and the nonce variable are used.

A first step towards security of dynamically reconfigurable hardware is to establish
trust in the bitstream transmission. Typically, FPGA bitstreams are minimally secured
by check sums and some FPGA vendors even offer built-in hardware support for bitstream
decryption and embedded keys. Chaves et al. [21] propose a more flexible approach based
on hashing the bitstream to secure a correct bitstream delivery. Since the bitstream format
for the Xilinx Virtex II is packet based, the hash value allows for an attestation of the
hardware structure and can be compared to the expected value. This approach makes
use of the time necessary for reconfiguration and computes the digest message of the
reconfiguration bitstream while loading the bitstream, thus enabling on-the-fly attestation
of the bitstream. Since the complete hash value can only be calculated after the delivery
of the complete bitstream, region delimitation is enforced in addition to the hardware
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attestation. For this, the bitstream is interpreted to determine which physical regions
of the device are being rewritten at some specific point in time to avoid memory access
outside the intended area.

Drimer and Kuhn [26, 25] distinguish between authentication and confidentiality. They
discuss an encryption based security protocol that combines both aspects, authentication
and confidentiality, to prevent system downgrades and thereby guarantee the freshness of
the reconfiguration bitstream. They suggest the use of either an embedded device ID that
is fixed or a device parameter embedded in the bitstream and unique to every bitstream.
This approach is aimed at preventing replay attacks where an older version of a circuit is
maliciously transmitted to the FPGA to exploit older security vulnerabilities. Figure 2.9
depicts the scenario.

Similar to this, Badrignans et al. propose a combination of special architecture and
protocol to avoid the usage of old configurations due to a man-in-the-middle attack in [9]
and [24]. They assume that the FPGA to be reconfigured includes non-volatile memory
which stores the key used for encryption. It also stores the value TAGF which specifies the
current version of the reconfiguration where only the operator of the FPGA can update
it. The remote update process requires two steps, one for initiating the update and one
for sending the new bitstream. Each step is initiated by the system designer with a valid
new TAGUL which the FPGA compares to its own TAGF . If the version tags match, the
FPGA sends back an acknowledgment key based on the new tag. By mutual updating of
the respective tags and their comparison, the protocol avoids a replay attack or an update
failure.

The same authors also present a set of countermeasures against physical attacks dedi-
cated to FPGAs in [8], such as masking and hiding to countermeasure side channel attacks
in form of power analysis. Masking is based on concealing certain data with the help of a
scheme of applying random numbers. A specific value only exists in the form of a masked
variable and a function to restore it. Masking results in an averaging of the power con-
sumption since a constant power consumption is the goal of the hiding technique. Each
variable consists of two signals that are complementary to each other. Within such a pair,
only one signal can switch. This balances the power consumption and hides the variables.

In [36], Huffmire et al. propose to secure IP cores on FPGAs with physical isolation
primitives called moats and drawbridges. While moats are unconfigured logic blocks that
prevent unwanted and unanticipated communication between cores, drawbridges are se-
lected channels that allow for controlled and secure communication between the cores,
see Figure 2.10. The concept of moats and drawbridges is especially useful when com-
bined with a reference monitor, see [40, 39]. For a multi-core reconfigurable system, a
reference monitor is installed as an additional core. All remaining IP cores direct their
memory access requests to the reference monitor, as it is the only module with direct
memory access, see Figure 4.9 in Section 4.3. The monitor grants or denies memory ac-
cess to other modules, according to an access policy. The access policies are written in
a formal language, resulting in either a state-free (not counting the error state or initial
state) or a stateful automaton in Verilog HDL. The various policies implement different
memory protection schemes. Policy examples are the simple isolation, coordination of
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Figure 2.10: Left: FPGA chip with multiple modules placed and routed in the regular,
interleaved way. Right: modules are placed in separate areas of the re-
configurable device to enforce physical isolation with only approved routing
between the modules.

conflict-of-interest classes, data confidentiality, and data integrity. For further details as
well as the combination of physical isolation primitives and reference monitors, see [37]
and also [34, 35, 38].

These techniques, however, assume that the module producer can be trusted to imple-
ment the correct functionality and do not inspect functional properties of the reconfig-
urable modules at runtime. Sing and Lilleroth present a core verification flow in [62]. The
scenario entails an untrusted hardware core delivered to the consumer who then performs
a security check. The core is formally verified by comparing it to its documented or rewrit-
ten behavioral HDL code or register transfer-level code. With a bottom up approach, the
tool flow decomposes the hardware core into its sub-components and generates according
specification netlists and implementation netlists. A formal prover is utilized to analyze
whether or not the two circuits deliver identical output under all possible inputs.

Todman and Luk [64] focus in particular on reconfigurable hardware and present a tech-
nique to verify the reconfigurable hardware after its compilation, i.e. optimization. The
MaxCompiler transforms Java software code into reconfigurable hardware, i.e. reconfig-
urable streaming design. For this streaming design, a symbolic simulator performs word-
level simulation whose output are symbolic expressions. Those expressions are checked
for semantic equivalence to ensure that the source and target of the streaming design are
semantically equivalent. If the equivalence check succeeds, the software and hardware are
trusted to implement the same functionality. This technique could be applied to either
hardware or software and has the potential to bring design validation to computer systems
that can run a certain functionality in either hardware or software and switch between
those two options at runtime. It does not, however, account for other types of verification
or validation of software or reconfigurable hardware properties.

It is noticeable how even current approaches to reconfigurable hardware security tend
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Figure 2.11: Abstract work flow for proof-carrying code.

to focus on one aspect of safe hardware reconfiguration, such as secure transmission or
memory protection. With the exception of the approach by Singh and Lilleroth and
Anonymous, there is no attempt to understand the behavior of the hardware module.
The verification of the behavior of hardware modules is a desirable feature though, as it
can attest to more than one aspect of hardware security at the same time and combine
otherwise disjoint security properties.

2.3 Proof-Carrying Code

Since it is essential for the understanding of this thesis, I will discuss the proof-carrying
code approach to secure software. Necula and Lee introduced Proof-Carrying Code as a
mechanism to determine the safety of software from untrusted sources, see [57]. The work
flow of the process involves two parties: The first unit, the code consumer, is the target
computer system but also its administrator and designer. I refer to the consumer in both
functions, a human being with analytical and decision-making skills and a computer system
with certain computational capabilities. The second party and counterpart to the code
consumer is the code producer. With the term code producer I denote an external software
development facility which includes the human code designer as well as the computer
equipment used. The code producer functions as an untrusted agent: Upon request, he
delivers software code according to predefined security standards set up by the consumer.
A formal proof, which is also computed by the code producer, is added to extend the code
to proof-carrying code. The code consumer checks the proof of the code against its own
safety policy which contains the predefined safety standards. He relies thereby only on the
correctness of the proof checker to fully trust the code. Knowing that the code abides the
safety policy, the code can be safely executed. The work flow is pictured in Figure 2.11.

2.3.1 Safety Policy

The safety policy is an integral part of proof-carrying code. The consumer defines the
desired code behavior within the safety policy and validates the safety proof against it.
The safety policy contains a multitude of information which serve as safety rules and
calling convention. Authorized operations and their associated safety preconditions make
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INSTR ::= ADD rs,op,rd
| SUB rs,op,rd
| LD rd,n(rs)
| ST rs,n(rd)
| BEQ rs,n
| BNQ rs,n
| RET
| INV p

Op ::= n | ri

Figure 2.12: Subset of the DEC Alpha assembly language with invariant instruction.

up the safety rules, invariants holding when the code to be verified or code native to
the host system is evoked define the calling convention. This is sufficient to define safe
behavior as low-level or abstract as required by the host system designer (consumer).

Necula and Lee give a practical example of a safety policy for code written in a subset
of the DEC Alpha processor language, see Figure 2.12. In this context, rs and rd denote
the source and destination register, respectively.

The safety policy is defined through three items:

• The safety predicate defines the actual safe behavior and is proven to hold true
against a set of axioms. In the example given, a language of expressions and memory
expression is the basis for specifying expressions that mark addresses which can be
safely read or written in context of the state of the program.

• Precondition and postcondition functions as calling convention between the target
host system and the proof-carrying code binaries. Through a language of predicates,
they indicate the state of the system when the consumer invokes the proof-carrying
code as well as when the code calls functions provided by the host system.

• A Floyd-style verification-condition generator (VC generator) which takes the code
to be verified and computes a safety predicate in first-order logic.

An abstract machine for memory-safe DEC Alpha Machine Code is created with these
components. The abstract machine is a state-transition function that maps a machine
state (p, pc) into a new state (p′, pc′), where p is the register state and pc is the program
counter. The DEC Alpha program is a vector of instructions

∏
where the transition from

one state to the next is done by executing the current instruction
∏

i. The behavior of the
abstract machine is described for operations like add, load, store, and branches. As an
example, when performing a load instruction, the abstract machine will first check that is
is safe to read from the specified address, which has to be aligned by 8.
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%Address of tag in r0
0 INV Prer %Precondition
1 ADD r0, 8, r1 %Address of data in r1
2 LD r0, 8(r0) %Data in r0
3 LD r2, −8(r1) %Tag in r2
4 ADD r0, 1, r0 %Increment Data in r0
5 BEQ r2, L1 %Skip if tag == 0
6 INV r1:addr %r1 must be readable address
7 ST r0, 0(r1) %Write back data
L1 RET %DONE

Figure 2.13: DEC Alpha assembly code for resource access. The address of the tag is
stored in register r0, the data is stored with an offset of 8 from register r0.
Code lines 0 and 6 contain the annotations with invariants.

2.3.2 Verification Process

I shall now outline how code written in the DEC Alpha processor language can be verified.
The code has to be designed to fulfill the security requirements. The code is then annotated
with invariants as shown in Figure 2.13. The according postcondition is the Boolean value
true and is therefore omitted. The function of the code example is to increment the
data word if and only if it is writeable. The unnecessary complications within the code
are included on purpose to demonstrate that generating and validating safety proofs is
still feasible with low-level code transformations. The code therefore contains scheduled
instructions and register allocations.

The annotated code and the VC generator let the producer compute the safety predicate.
That safety predicate is the actual safety proof which the consumer will check. It is a
function of the code annotated with invariants and the precondition and postconditions:
For any initial state that satisfies the precondition Inv0, the code

∏
starts executing with

the first instruction without blocking; once terminated the final state has to satisfy the
postcondition:

SP (
∏
, Inv, Post) = ∀rk ·

∧
i∈Inv

Invi ⊃ V Ci+1.

The safety predicate for the code example above is the following:

SPr = ∀r0.∀r1.∀rm. (Prer ⊃ ((r0 ⊕ 8)	 8 : ro addr ∧ r0 ⊕ 8 : ro addr) ∧
(sel(rm, (r0 ⊕ 8)	 8) = 0 ⊃ true) ∧
(sel(rm, (r0 ⊕ 8)	 8) 6= 0 ⊃ r0 ⊕ 8 : addr))

 precondition

∧ (r1 : addr ⊃ r1 : addr)
}
invariant

There are two conjuncts which correspond to the precondition and the invariant from
line 6 of the example code, see Figure 2.13. The meaning of the first conjunct is that
for all values of the registers r0 and r1 and every state of the memory rm that satisfy
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INSTR ::= ... Previously defined instructions
| SHL rs,op,rd Shift left rs by op bits
| SHR rs,op,rd Shift right rs by op bits
| EXTW rs,op,rd Extract word (2 bytes) from position op in register rs
| EXTB rs,op,rd Extract byte from position op in register rs
| LDAH rd,n[rs] Add n ∗ 216 to rs

Figure 2.14: Additional instructions to extend the subset given in Figure 2.12.

the precondition Prer, the memory locations specified must be readable and in case the
tag is non zero, the data address must be writeable. The second conjunct is without any
additional information, as is line 6 of the code.

In a final step, the producer proves the safety predicate using the rules of the safety
policy. The format of the proof has been determined by the consumer and possibly the
producer at an earlier stage. The code consumer validates the safety proof and is then
in a position to trust the code. A trusted proof checker as the only requirement enables
the code consumer to execute code delivered by an untrusted agent at a cost lower than
computing the formal proof.

2.3.3 Potential of Proof-Carrying Code

To explore the potential of proof-carrying code, Necula and Lee present in [57] several
case studies that give an indication of how versatile proof-carrying code can be because
of its custom made safety policies. One of these case studies is the implementation of
a safe packet filter, a proof-carrying code binary whose safety policy includes the four
following rules: The memory reads take place only in the area assigned to the package
and scratch memory, memory writes take place only in the scratch memory, all branches
are forward, reserved and callee-saves registers remain untouched. For a valid package
and a valid scratch memory address, this guarantees memory safety and termination. The
language of predicates, mentioned as one item that makes up the safety policy, contains
a system of types. In the above example, the two only types are addresses that allow
for reading and writing and those that allow for reading only. For the safe packet filter,
the types now include arrays, a sequence of memory allocations. An array is defined
by its starting address, its length, and the type of its elements. Similar to the regular
addresses, arrays are designed for memory safety as their memory range always begins on
an aligned address and the end of an array keeps a distance to the end of virtual memory to
avoid overflow of address arithmetic. Also, two arrays shall never overlap. It is necessary
to extend the DEC Alpha Assembly language presented in Figure 2.12 to include shift
operations, the extraction of bytes and words (two bytes), and the loading of an effective
address of a specified data item (load address high). The abstract machine is redefined,
see Figure 2.14, to include these operations in a way that guarantees memory safety. With
these few extensions, various types of packet filters can be implemented and verified, hence
benefit from formal verification.
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Since its introduction in 1996, proof-carrying code has remained an active field of re-
search. In the following works, the potential of the proof-carrying code concept is further
elaborated. In 2000, Colby et al. show a proof-carrying code architecture for Java, see [22]:
A software-development tool produces annotated x86 binaries from Java code, i.e. .class
files. A PCC layer, i.e. tool written in C, checks the proof-carrying code binaries against a
safety policy specified in a variant of the Edinburgh Logical Framework (LF) [32]. Necula
also presents adjustments to proof-carrying code to increase the scalability of PCC with
regard to proof sizes in [56]. The author presents a new hint-based proof representation
along with changes to the PCC checker that improve the scalability of PCC. In a next
step, Schneck and Necula turn to the matter of removing the trusted code base of the
PCC system, see [60]. To make PCC more flexible and to increase security, the code
producer provides the safety policies instead of the code consumer. Instead of proving a
safety predicate, the code consumer establishes a soundness theorem which the producer
must prove. Although that specific framework proves only a part of the safety policy, the
soundness of the proof, it clearly demonstrates the flexibility of the proof-carrying concept
as it is not bound to a single method of proving. Necula et al. combine the security of
PCC and the trust of digital signatures, i.e. a logical framework and an authorization
framework, in [65]. This particular combination demonstrates another aspect of the flexi-
bility inherent in PCC: not only can PCC be employed for different verification problems
but also different verification scenarios. Some security properties can be proven formally
with PCC while others are trusted due to a digital signature. By providing supplemental
security guarantees with different ways of authorization, the proof-carrying code principle
can be utilized to cover an even wider ranges of security and safety.

The concept of proof-carrying code has been transitioned in other contexts as well.
In [48, 47, 46], Klohs and Kastens apply the concept to the validation of program analysis
results of software. There are various usages for program analysis results. Such results are
for example used for program optimization or the validation of certain software properties,
security-relevant or of other type. One application example is the memory safety of Java
Bytecode. In accordance to the original proof-carrying code approach, an untrusted pro-
ducer delivers software code and a proof of certain software properties which is validated
against previously defined standards by the consumer of the new software. The objective
in this context is to transmit valuable program analysis results which a consumer prefers
not to compute himself but still finds necessary to obtain. As with Necula’s approach, the
original source code is annotated with additional information, in this case interprocedural
and intraprocedural summary functions that hold the analysis results. The validation of
these results by the code consumer can be achieved with less resources than the program
analysis itself. Hence, this approach is applicable to scenarios where the consumer re-
ceives software from an untrusted producer and the parties have different computational
resources. In some cases, the computational resources of the consumer, i.e. the target
platform, can even be considerably smaller than the producer’s: Klohs and Kastens apply
in [48] the proof-carrying code technique to the verification of Java Bytecode on limited
devices, e.g. smart cards. The verification of Bytecode guarantees that every operation
always operates on objects of the correct type. The objective of this scenario is to provide

21



Chapter 2.4. Chapter Conclusion

the smart card with information to perform the Bytecode verification in a memory-optimal
manner, i.e. to optimize the performance of the verification. With the program analy-
sis information available, the memory footprint for the verification could be dramatically
reduced.

The proof-carrying hardware intellectual property (PCHIP) by Love et al., see [51, 50],
is an approach similar in name to the approach featured in this work but published after
my initial publications. PCHIP is an approach for formal validation of security-related
properties of hardware modules. It is focused on the functional validation of an IP core’s
behavior: An IP vendor sells hardware modules at register-transfer level (RTL). The
specific safe behavior of the IP core at RTL level is agreed upon between the vendor and
the consumer and modeled in a subset of Verilog [51] with a novel set of definitions in the
Coq formal language [5]. With the Coq framework, the consumer validates the proof of
correct behavior of the IP core. This approach differs from my work as it is concerned
with the security-relevant behavior of hardware at the RTL level and only security-relevant
hardware properties, described in the Coq framework. The approach by Love et al. is
one possible instance of the general proof-carrying hardware concept. To the best of my
knowledge, the concept of proof-carrying hardware as described in this thesis is a novel
concept that has never before been developed.

2.4 Chapter Conclusion

This chapter gave the background information and the context for this thesis. I discussed
FPGAs as programmable hardware, related work in the area of hardware security and
elaborated on proof-carrying code as a basis for a new approach to hardware security.

The review of related work in Section 2.2 gave an overview of the current works in the
research field of reconfigurable hardware security. Existing security concepts generally
deal with one aspect of safety, such as memory safety or secure transmission, but are
not extendable to other aspects of security. An approach to security that is adaptable
to various safety features of reconfigurable hardware while allowing for fast validation of
safety proofs and therefore quick reconfiguration with a minimum workload for the FPGA
is missing.

The following chapter discusses key concepts and ideas of proof-carrying hardware, a
safety concept for reconfigurable hardware based on the principles of proof-carrying code
as elaborated in Section 2.3.
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CHAPTER 3

Key Concepts and Ideas

This chapter describes the context as well as key concepts and ideas of the novel proof-
carrying hardware approach to security for reconfigurable hardware devices. In Section 3.1,
I give an overview of work in the fields of software and hardware security related to this
thesis. In Section 3.3, I elaborate on the origin of the proof-carrying hardware principle and
the key challenges for a novel security concept for reconfigurable hardware that is distinctly
different to other concepts of that domain, as discussed in Section 3.4. Section 3.5 states
the methodology for this project and claim of this thesis.

3.1 Software Security and Hardware Security

In this section, I outline the main challenges for developing a novel security concept for
reconfigurable hardware. I assume a scenario as depicted in Figure 3.1 where new hard-
ware modules are delivered by an untrusted source through an unsecured channel to the
reconfigurable platform. Chapter 2 gave an introduction to proof-carrying code. Since
proof-carrying code is a security concept for the software domain, it needs to be trans-
ferred to the domain of hardware security, in particular the domain of reconfigurable
hardware security. Hence, the differences between software security and hardware security
need to be considered. Secondly, the scenario in which FPGAs as embedded systems are
to be secured needs to be taken into account when creating a novel security concept for
reconfigurable hardware.

There are several characteristics of the software security domain that do not apply to
the domain of reconfigurable hardware security:

• Software is compiled for an instruction set architecture (ISA) and deployed into
an established software-ecosystem. As a result, it is known which instructions are
performed, how they work, and what reactions may result within the environment.
Reconfigurable hardware consists of a large number of spatially arranged (placed
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and routed) components which can form a new and non-standardized execution
environment. This bears the question what system reaction an instruction might
trigger.

• The research for safety and security is rather advanced for the software domain as
challenges and concepts are well-known. For the reconfigurable hardware domain,
that particular field of research has only been emerging for a few years. As a result,
concepts are new and often focused on one aspect, see Section 2.2. What is missing is
a concept for hardware security that is flexible enough to accommodate any hardware
configuration and also changes of the configuration.

• Security for reconfigurable hardware poses a particular challenge due to its specific
scenario. Formal or other elaborate verification of incoming bitstreams on the spot
is usually not feasible for reconfigurable platforms as they have limited available
resources. The reason for those limitations vary, some platforms may not have the
necessary computational power to do the elaborate computation of a formal proof
while other platforms occupy their resources otherwise. Even if the reconfigurable
system could provide the necessary resources, such as data compute centers with
large capacities, it may not always be economical to employ those resources. In cer-
tain reconfiguration scenarios though, a minimized reconfiguration time is necessary.
This requires to assess as quickly as possible whether a new module can be trusted.
A successful approach to reconfigurable hardware security should allow for an on-
the-fly or otherwise fast enough validation of security features that can actually be
performed by reconfigurable systems with the above limitations.

With the transition of proof-carrying code to proof-carrying hardware, an approach to
hardware security is delivered, that takes on these challenges:

• In Section 2.3, I elaborate the annotation of assembler code performed by proof-
carrying code. In a language of predicates, preconditions and postconditions describe
the state in which the system should be at the given point in the program. A
verification-condition generator takes the annotated code and computes a safety
predicate that proves the safe behavior according to previously established standards,
i.e. languages of expressions and memory expressions.
There are two aspects to this concept: The annotation of the source code and the
computation of a proof to demonstrate the adherence to certain criteria. Both
aspects could, in some form, be applied to reconfigurable hardware. As mentioned
before, reconfigurable hardware is realized by a circuit which is placed and routed
on the reconfigurable (programmable) fabric. The process, detailed in Section 2.1,
begins with a circuit design in a hardware description language and undergoes several
transformations until it becomes a placed and routed netlist. Depending on the
desired form in which the hardware module is transmitted from a producer to a
consumer, different types of annotations could be considered. A netlist may be
annotated to indicate the presence of certain elements that are wanted. If the circuit
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is represented as a graph, specific structures within the graph may be highlighted
as they result in desirable features of the placed and routed circuit resulting from
that graph. Note that a desirable feature could range from security assurances, on
which this work focuses, but could also regard other non-security critical features.
With or without annotation of the hardware module, proof-carrying hardware can
be used to convey a proof whose type and degree of formality suits the aim of the
verification.

• I elaborated that proof-carrying hardware is an approach to verify properties of
reconfigurable hardware and is not limited to properties that are relevant to security
and safety questions. As I shall explain in Section 3.3, proof-carrying hardware is
a flexible concept. It can therefore be applied to already existing approaches to
hardware security and makes use of the already existing research in the field of
security for reconfigurable hardware.

• Proof-carrying hardware is particularly suitable for an application in scenarios that
feature a reconfigurable target system with limited resources for verification. As in
the case of proof-carrying code, the producer of the hardware module invests the
resources to compute the proof that the module adheres to specified standards. The
reconfigurable system is merely burdened with the validation of the proof. Proof-
carrying hardware also meets this challenge by its flexibility to adapt the type and
format of the proof to suit each individual scenario and reconfigurable system.

The methodical approach of this work is the transition of proof-carrying code to the
domain of reconfigurable hardware. By meeting the above challenges, proof-carrying hard-
ware is a usable, flexible, and robust approach to verify, formally or otherwise, properties
of the hardware modules for reconfigurable computer systems. Those properties may be
functional or non-functional, i.e. deal with the functionality of the hardware module or
the physical aspects, and could cover a wide range of aspects of reconfigurable hardware,
e.g. security, performance, or other attributes of the module’s composition.

3.2 Methodology: Application of the Proof-Carrying Code
Principle

I introduced in Section 2.3 the concept of proof-carrying code: The consumer of software
requires that a certain property holds at certain or all points of program execution. The
producer constructs a proof of that property for the program, e.g. in Hoare Logic. The
proof is computed from the source code which the producer annotated with pre- and post-
conditions (assertions) based on a language that formulates certain (safe) behavior. The
annotated code and the proof are sent to the consumer. The consumer checks the proof
for correctness and whether it guarantees to desired properties. The consumer also utilizes
the code annotations to reconstruct the proof, check the proof, and match the proof to
the software code. Klohs and Kastens applied the concept of proof-carrying code to a
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different verification problem and scenario: The consumer, a Java Virtual Machine on a
smartcard, needs to apply program analysis on received Java Bytecode for two reasons; to
check for type safety and to perform program optimization. The producer annotates the
the Java Bytecode with interprocedural and intraprocedural summary functions that hold
the analysis results. The validation of these results by the code consumer can be achieved
with less resources than the program analysis itself.

The proof-carrying code concept can be regarded in a much broader sense: any software
or hardware can be complemented by additional information that are more expensive to
compute than to validate. The type of those information is not limited to those attesting
to security or safety aspects of the delivered code. The methodical approach of this work
is the adoption of the concept inherent in proof-carrying code and its application to the
domain of hardware (and hardware security in particular) in the form of proof-carrying
hardware.

In the proof-carrying hardware scenario implemented for this thesis, a consumer requires
equivalence between his design specification and the implemented hardware module. A
producer creates a hardware module according to the specification file which outlines the
entire circuit. The implementation and specification of the circuit are combined in a miter
function in cnf form which is unsatisfiable if and only if the two circuits are equivalent.
The producer computes an elaborate resolution proof of the miter’s unsatisfiability. The
consumer receives the complete hardware module in bitstream format and the proof. He
validates this proof and the logic extracted from the bitstream against the complete design
specifications. While this work focuses on the particular security aspects of design and
specification equivalence of reconfigurable hardware, the concept of proof-carrying hard-
ware is not limited to that domain. Proof-carrying hardware has the potential to become
a container for information regarding various aspects of reconfigurable hardware. I shall
list four possible further applications of proof-carrying hardware:

A consumer orders a hardware functionality represented as a graph. To ensure the
existence of certain properties, the graph has to include specific patterns. The producer
who composes the graph utilizes computationally elaborate pattern matching to highlight
patterns within the graph, such as a full n-bit adder or simply a part of the circuit which
has n inputs and m outputs. The entire hardware graph with its annotations that mark the
desired patterns is sent to the consumer who quickly validates the existence (and possibly
the correctness) of the components.

A consumer requires physical isolation for multiple hardware modules placed and routed
on a single FPGA fabric. A producer delivers a bitstream that contains multiple circuits,
i.e. hardware modules, for which the placement and routing is performed according to the
physical isolation principle called moats and drawbridges introduced by Kastner et al.,
see [36]. The producer annotates the placement information to indicate which areas are
assigned to which circuit and which areas are designated moats, i.e. remain unconfigured.
In addition, the moats are proven to be sufficiently large considering the longest routing
resources reaching into the moat from the two adjacent hardware modules. The proof
is a simple comparison of the moat and the length of the combined routing wires, hence
easy to validate by the consumer. The similarity to the approach featuring the pattern
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matching for the graph lies in the simple annotation of the respective hardware. A pointer
to the according part of the hardware is used for both; the proof of sufficient moat width
could be omitted by the producer as the consumer could simply add the numbers himself.

A consumer demands hardware at register-transfer level (RTL) for which certain proper-
ties are always guaranteed. A producer designs the RTL hardware module and annotates
the sequences of linear code (i.e. code without jumps and loops) between register ac-
cesses with preconditions and postconditions in a language similar in principle to those
constructed for proof-carrying code. The annotated code is compiled into a formal proof
which the consumer checks and matches it based on the annotations against the code.
The hardware is proven to hold the desired properties. This approach would be a more
direct transition of the original proof-carrying code into the domain of RTL hardware.

A consumer wishes to employ program analysis to obtain hardware that is governed
only by specified dependencies. Similar to the approach by Klohs and Kastens, program
analysis is performed for security (unwanted dependencies due to faulty construction) and
optimization purposes. The producer of the hardware annotates the code with interme-
diate analysis results. A proof of the existence of only approved dependencies along with
the annotated code is sent to the consumer. The consumer is able to quickly validate the
proof and match it, with the aid of the annotations, to the code. He receives a diagram
of dependencies that has to match the specifications. The difference to the approach by
Klohs and Kastens, besides differences in the implementation and formats, lies in the focus
on dependencies. For this approach, it is of interest which procedures and variables influ-
ence other variable or procedure, but the actual variable value may be only of secondary
concern.

There are existing approaches to bring verification to Verilog hardware modules. As
mentioned in Section 2.3.3, Love et al. have introduced the concept of proof-carrying
hardware intellectual property. A consumer requires hardware that fulfills its functionality
in a specific manner, i.e. with secure behavior. A producer composes a hardware module
and translates the code into a theorem proving language. Then, the producer computes
a formal proof of the desired safe behavior. The consumer is given the annotated code
and proof and with the help of the annotations quickly validates the proof against the
previously determined security standards and the code. This approach can be viewed as an
instance of the general proof-carrying hardware concept. To the best of my knowledge, the
concept of proof-carrying hardware is a novel concept that has never before been developed
and predates the concept of proof-carrying hardware intellectual property. Proof-carrying
hardware is the first approach to bring the concept and full potential of proof-carrying
code to the hardware domain. As stated above, proof-carrying hardware is not limited to
the verification of security properties of reconfigurable hardware but is instead a method
of delivering and validating computationally expensive information to aid the consumer
and which can regard a multitude of properties relevant to reconfigurable hardware.

The possibilities proof-carrying hardware as presented with this work are numerous and
can potentially cover different forms of hardware as well as different verification challenges.
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Figure 3.1: Producer-consumer scenario depicting the unsecured and untrusted delivery
of hardware modules for a reconfigurable embedded device.

3.3 The Proof-Carrying Hardware Approach

In this section, the integral aspects of the proof-carrying code concept that are fundamental
for the development of proof-carrying hardware are identified. These aspects are also
integral aspects of proof-carrying hardware, as it is modeled along those. All these aspects
center around the split of the work flow between the producer party and consumer party
and their respective role and tasks.

In Section 2.3 I explained how proof-carrying code utilizes a safety predicate to prove
the code’s compliance to previously established standards. Those standards are defined in
a set of axioms which define the safe code behavior. The axioms are formulated based on a
language for memory expression and a language of expressions, see [57] for details. Necula
and Lee present those languages but do not specifically request either the consumer or
producer to be responsible for the development of those. For the purpose of this work
and proof-carrying hardware, I assume that it is the consumer who defines the safety
policy according to the system he is operating and according to his understanding of
security. To define the safety policy gives the consumer the freedom to determine what
constitutes secure behavior of the hardware module as well as the type of proof and proof
validation process. Of course, it is possible for the consumer to include the producer in
those decisions or the development of languages to formalize safety rules, if desired. In real
life environments, a cooperation between consumer and producer may be very sensible and
of great benefit to both parties. In any case, the consumer is knowledgeable about what
he expects from the new hardware module with regard to security before the production
begins. The safety policy for the proof-carrying hardware prototype presented in this work
will be elaborated in Chapter 4.

For both, proof-carrying code and proof-carrying hardware, the following holds true:
The hardware module producer caters to that demand for security (and the demand for
new hardware functionality, of course). It is the task of the producer to create hardware
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that is secure to the previously established standards inherent in the safety policy. It is
also the task of the producer to compute the safety proof for verifying the new module’s
adherence to the safety policy. Hence, the producer is burdened with two major tasks that
require computational resources and time.

As a result, the consumer of the new hardware module is left with the task of validating
the proof. This is a lightweight task in comparison to the computation of a formal or
otherwise extensive proof, especially when considering the tremendous security gain. The
validation includes checking the proof’s correctness and matching it to the safety policy
as well as the bitstream, i.e. hardware module. As the proof is unique to the hardware
module and safety policy, it cannot be exchanged for a different (correct) proof that proves
a different safety policy. For an overview of the work flow see Figure 3.2. In the case of
proof-carrying code, this means for the producer to annotate the assembler code and to
compute a safety predicate and for the consumer to validate that safety predicate with a
formal proof checker against the safety policy. As stated above, proof-carrying hardware
can make use of both aspects, the attachment of a proof or other additional information
the the hardware module as well as the annotation of the hardware module. For this work,
I shall focus on the extension of a bitstream to a proof-carrying bitstream by adding a
proof, see Chapter 4.

In the context of this work, verification and validation denote the above meanings:
Verification refers to the process of producing a proof or otherwise providing evidence.
Validation is the task of checking a proof in order to assert its correctness. Therefore,
the verification is always performed by the producer of a hardware, the validation by the
consumer.

Considering the scenario of hardware security for embedded devices, the separation
between consumer and producer is vital for the concept proof-carrying hardware. As
an approach to hardware security based on the separation of a knowledgeable consumer
with requirements and an untrusted but resourceful producer, proof-carrying hardware
can meet the demands made for a new concept for reconfigurable hardware security in
Section 3.1.

3.3.1 Pillars of Proof-Carrying Hardware

I now outline the key characteristics of the proof-carrying hardware concept:

• Usability of proof-carrying hardware: By shifting the workload to an external source
that produces the hardware module and its formal safety proof, proof-carrying hard-
ware offers the safety of formal verification for reconfigurable platforms which can
come with the limitations mentioned before. As the mere validation of a formal
proof is less costly than the elaborate computation of such, the target platform only
has to use little computational resources and time compared to the producer. By
providing the smallest workload possible for the consumer, proof-carrying hardware
provides the means for instant security combined with on-the-fly reconfiguration,
that is a reconfiguration without delay but after a successful validation of the proof
of security.
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Figure 3.2: The general proof-carrying hardware scenario: The consumer makes demands
regarding functionality and safety,the producer performs the majority of the
workload by creating the hardware module and proving its safety. The con-
sumer is left only with the lightweight task of checking the safety proof at
runtime before reconfiguration.

• Flexibility of proof-carrying hardware: My novel approach offers a more complete
understanding of security than techniques that focus on one aspect of reconfigurable
systems. Unlike other approaches, proof-carrying hardware performs the verification
based on a safety policy. That safety policy is established by the consumer, i.e.
the reconfigurable platform host, and can potentially incorporate a multitude of
hardware module features that can be formally described and in some way verified.
Those features can be extended to vary from software-like input / output range
checks regarding the actual functionality of the module to physical characteristics of
the hardware realizing the module. In short, the consumer decides on functionality,
security features and aspects to be proven, and formats. It is this flexibility that
makes proof-carrying hardware capable of handling the versatility of the hardware
platforms, as it can be applied to basically any kind of formal proof or verifiable
data.

• Robustness of proof-carrying hardware: Proof-carrying hardware guarantees trust
in the hardware module without any previous trust in the production or delivery
process of the hardware module or any party involved. Any discrepancy between
design and design specifications, accident or attack up until the delivery of the final
proof-carrying hardware must result in a failure to establish trust in the new hard-
ware module. The flexible safety policy incorporates the consumer’s reconfigurable
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platform characteristics and its inherent security aspects as well as the desired func-
tionality of the new module. I assume this safety policy to fully reflect all security
restrictions and needs of the consumer’s platform in the sense that it is complete. If
the proof is correct and matches the safety policy as well as the hardware module,
it is guaranteed that the hardware module has the specified properties. If either the
part of the proof-carrying bitstream, proof or bitstream, was accidentally damaged
or maliciously altered, a security check would fail. The proof would either be ren-
dered incorrect or it would not match the hardware and safety policy any longer.
This is also an insurance against a situation where producer and consumer operate
with different safety policies. The only requirement for the host system is to use
a trusted proof checker. This is an acceptable request since the type of proof and
proof checker itself will likely not alter as often as new hardware functionalities are
needed and it can therefore be regarded as a one-time investment.

3.4 Comparing Proof-Carrying Hardware to Existing Approaches

In Section 2.2, I gave an overview of existing approaches to security for reconfigurable
hardware. This section will classify the approaches and compare them to the novel proof-
carrying hardware concept.

These first three approaches introduced in Section 2.2, Chaves et al. [21], Badrignans
et al. [24], and Drimer and Kuhn [26, 25], aim at detecting and refusing unauthorized
bitstreams and to protect the bitstream’s confidentiality as well by applying cryptography.
Proof-carrying hardware does not rely on a secured transmission to implement the concept
of authorized and up-to date bitstreams. The user updates the safety policy for his host
system that is to receive the new bitstream. If the new hardware module together with
the new proof of security does not adhere to the updated safety policy, the security check
will fail. If an adversary successfully passes off an older bitstream that does not fail the
security check, which is unlikely but not impossible, it only means that the older version of
the bitstream already incorporated the new safety policy. The attacker can therefore not
exploit any security weaknesses as they never existed. As for the matter of confidentiality,
proof-carrying hardware can be applied to an encrypted and then decrypted bitstream as
well. The confidentiality and authenticity of the bitstream are therefore guaranteed with
proof-carrying hardware.

Badrignans et al. also emphasize on the importance of preventing side channel attacks
and deliver an approach to masking the power consumption. Proof-carrying hardware is
designed to ensure a secure reconfiguration of an FPGA. Physical attacks, e.g. read-back
attacks, are outside the scope of proof-carrying hardware. Nevertheless, my approach
does not interfere with the one presented by Badrignans et al. as they can be applied in
combination. In that regard, the approach to masking the power consumption in order to
prevent a side channel attack is exemplary for other approaches to aspects of reconfigurable
hardware security, or general hardware security, that are positioned outside the scope of
proof-carrying hardware.

The moats and drawbridges approach as well as the reference monitor by Huffmire et
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al. are examples of security concepts that could and will, as I shall demonstrate for the
reference monitors in a later chapter, benefit from proof-carrying hardware. When the
placing and routing is performed including moats and drawbridges in the floor planning,
the physical isolation and therefore integrity of the memory is achieved. Yet, what is
missing is a way for the consumer of a placed and routed hardware module to validate
the isolation. The principle of proof-carrying hardware could be applied to the concept of
moats and drawbridges to deliver a process of verification and validation of the physical
isolation of IP cores on an FPGA. The same holds true for the reference monitor. When
a reference monitor that functions according to specification is integrated into the FPGA,
the memory access is regulated and can be regarded as secure. But without a feasible
validation of some proof of correctness, the user of the reference monitor can never establish
trust in the functionality of the reference monitor. In Chapter 4, I will demonstrate
how proof-carrying hardware can be utilized to formally verify the equivalence of the
specification and implementation of a reference monitor.

The last approach presented in Section 2.2 is the one by Singh and Lilleroth [62] which is
concerned with the actual functionality of a hardware module. The consumer decomposes
the delivered module and analyzes how it compares to its design specifications, i.e. whether
design and specification are equivalent. First of all one notices that it is the consumer
and his computer system performing the work of decomposing, analyzing and proving. In
following chapters I shall demonstrate the prototype of proof-carrying hardware that gives
a formal resolution proof stating the combinational and bounded sequential equivalence
of a hardware core to its design specification. And while giving a very similar type and
quantity of security, proof-carrying hardware also relieves the consumer of the burden of
producing a formal proof by shifting this task to the producer.

This comparison shows that proof-carrying hardware can establish the security given by
other approaches or even increases it by adding a proof of security to otherwise unattested
security measures. It is also a unique trait of proof-carrying hardware to burden the
hardware producer and not the consumer with the task of providing security. For security
concepts that target aspects outside of the scope of proof-carrying hardware like physical
attacks, my novel concept can still be used in addition to a different approach without
having one interfere with the other.

3.5 Thesis Claim

The objective of my project is the development of proof-carrying hardware as a novel
security concept for the verification of reconfigurable hardware. The thesis claim is that
the following statements are true:

• The transfer of the proof-carrying code concept to the domain of dynamically recon-
figurable hardware is feasible.

• The method of Proof-carrying hardware is usable.

• The method of Proof-carrying hardware is robust.
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• The method of proof-carrying hardware is flexible.

The development of the proof-carrying hardware concept will be accompanied with
a prototype implementation to evaluate the usability, robustness, and flexibility. The
usability of proof-carrying hardware will be documented in the shift of workload from
consumer to the producer, measured in runtime and memory usage for the producer and
consumer. The robustness of proof-carrying hardware will be tested with the prototype
implementation that has to detect any tampering with the proof-carrying bitstream. The
flexibility of the concept will be established with the application of proof-carrying hardware
to selected example scenarios.

3.6 Chapter Conclusion

Proof-carrying hardware is a novel concept for the security of reconfigurable hardware
that provides the usability, flexibility, and robustness to achieve runtime verification of
reconfiguration bitstream for embedded systems deployed in security critical environments.
The key concept is a separation of the work flow between the producer of the hardware
module, an untrusted source, and the consumer. The consumer of proof-carrying code
specifies his security demands, leaves the production and computation of a safety proof to
the producer, and upon delivery performs an on-the-fly validation of the proof to establish
trust in the new hardware module. This security concept can be applied to existing
security challenges and extended as needed. The task of this project is to design the
novel proof-carrying hardware concept, to develop a prototype and to demonstrate how it
realizes runtime verification for reconfigurable platforms such as FPGAs.
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CHAPTER 4

Proof-Carrying Hardware Approach to Runtime Verification

The verification of a reconfiguration bitstream can investigate a multitude of properties of
the delivered circuit. Those properties can either regard the functionality of the circuit or
the physical design of the circuit. Both, functional and non-functional properties can be of
interest for security verification. Non-functional properties that could be potentially secu-
rity critical are for example the adherence to a fixed clock frequency, routing constraints,
or the physical isolation of multiple IP cores on a single fabric as mentioned in [36]. This
work focuses on the equivalence of design specification and circuit implementation, a func-
tional property. The combinational or sequential equivalence eliminates a large variety of
security threats, such as hidden functionality as described in Section 2.2.1. It is therefore
reasonable to choose these properties for a first application of proof-carrying hardware.

This chapter describes three security challenges for reconfigurable hardware to which
I later apply proof-carrying hardware. The three security challenges are the combina-
tional equivalence of design specification and implementation of a combinational circuit,
elaborated in Section 4.1, the bounded sequential equivalence of design specification and
implementation of a sequential circuit, discussed in Section 4.2, and the verification of
combinational and sequential reference monitor hardware modules, see Section 4.3, which
regulate the access to external memory attached to an FPGA chip.

4.1 Combinational Equivalence Checks

This section details the verification and validation of combinational equivalence of two
circuits, i.e. the specification and implementation of a design, as security feature of recon-
figurable hardware to be guaranteed with proof-carrying hardware. The security gain of
combinational equivalence checks is substantial as it prevents any alteration of the orig-
inal functionality description done by the consumer who hosts the reconfigurable target
platform. To prevent any alterations of the original design specifications means to prevent
numerous security risks, e.g. faulty functionality, but also malicious design additions, such
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Figure 4.1: The first three gate types are from left to right the NOT gate, OR gate and
AND gate. The second row of gates displays the XOR gate, NOR gate, and
NAND gate, displayed in the IEC (International Electrotechnical Commission)
representation.

X Y Y X & Y X OR Y X XOR Y X NOR Y X NAND Y

0 0 1 0 0 0 1 1
0 1 0 0 1 1 0 1
1 0 0 1 1 0 1
1 1 1 1 0 0 0

Table 4.1: Truth table for the three basic NOT, AND, and OR gates as well as the XOR,
NOR, and NAND gate.

as hardware Trojans as described in Section 2.2.1.

4.1.1 Combinational Circuits

For the sake of completeness, the following section reviews the fundamental concepts of
gates and combinational circuits as it is fundamental in understanding the concept of
combinational equivalence.

A combinational circuit is composed of gates that compute the circuit’s output as a
function of its current Boolean input. The history of the input is irrelevant, the circuit
operates without a clock. Each gate has one or more input values and exactly one output
value. The three most basic gates are the unary NOT gate, the binary AND gate, and
the binary OR gate, see Table 4.1. These three types of gates are sufficient to realize any
Boolean function, but can also be implemented using different types of gates such as the
XOR gate, the NOR gate, and the NAND gates. Figure 4.1 displays the symbols for the
gate types, Table 4.1 the according functionality. The binary gates can be extended to
have more than two inputs by concatenating the inputs with the according operation.

The following example outlines the concept of combinational equivalence of two circuits:
A half adder is a combinational circuit which calculates the sum S=(X & Y) and carry bit
C= (X & Y) OR (X & Y ) for the addition of two bits. The first half adder in Figure 4.2
is composed of one OR gate and three AND gates, two of them using negated inputs.
The second circuit uses a single XOR gate instead of two AND gates and one NOT gate
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Figure 4.2: Both circuits implement a half adder, i.e. the same function.

X Y S=(X & Y) OR ( X & Y ) S = X XOR Y C = X & Y

0 0 (1 & 0) OR ( 0 & 1) = 0 0 0
0 1 (1 & 1) OR ( 0 & 0) = 1 1 0
1 0 (0 & 0) OR ( 1 & 1) = 1 1 0
1 1 (0 & 1) OR ( 1 & 0) = 0 0 1

Table 4.2: Truth table for the two half adder circuits of Figure 4.2. As can be seen
in column two and three, the two different realizations of S deliver the same
output.

to compute the sum. Both circuits implement the same functionality, as demonstrated
by their respective truth tables, see Table 4.2. Other realizations are also possible, for
instance an implementation using only NAND gates as any Boolean function can be real-
ized using only NAND gates. Hence, for a combinational circuit, there may be multiple
implementations.

4.1.2 Combinational Miter

As elaborated above, there can be more than one circuit for a single Boolean function if
the choice of gates and number of gates used for the circuit is not restricted. There can
even be multiple circuits where each circuit uses the same number and type of gates that
implement the same functionality, i.e. that are combinational equivalent.

Combinational equivalence checking (CEC) is the most fundamental verification problem
for hardware. The typical use of CEC is to verify whether a specification of a combinational
function S(x) is equivalent to an implementation in a specific technology. To that end, the
implemented circuit is analyzed and modeled by a logic function I(x). Using S(x) and I(x),
the miter is formed. The miter is a single-output function that provides both specification
and implementation with the same inputs and compares their outputs pairwise with XOR
gates. All XOR outputs are then combined in a single OR gate to form M(S(x), I(x)).
Figure 4.3 shows the construction of the miter. Apparently, the respective number of
inputs and outputs of the specification and the implementation must match.
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Figure 4.3: Construction of the miter function M(S(x), I(x)) for two representations of a
combinational circuit.

The miter is then computed into an Boolean formula to be proven unsatisfiable. A
Boolean formula consists of literals, their atomic units which cannot be further divided
and usually denote variables, and clauses that are disjunctions of literals, i.e. literals
connected with a logical OR. A Boolean formula takes conjunctive normal form (cnf)
when it is a conjunction of clauses. A simple example of a Boolean formula in cnf is
(x1 +x2 +x3) · (x1 +x3) · (x1) · (x2 +x3), where an OR and AND are represented with the
mathematical symbols for addition and multiplication respectively to improve readability.
If under any input x the specification and the implementation of a circuit generate different
outputs, the miter function will evaluate to 1. Consequently, demonstrating equivalence
means to prove the unsatisfiability of the miter, i.e. it can be proven that there exists no
input x for which the miter function would evaluate to Boolean TRUE. If there is any
input under which the miter function is satisfiable, then this input is the proof that there
is an input to the two circuits under which those produce different outputs. Modern CEC
tools like ABC [4] internally represent the miter with And-Invertor Graphs (AIG), rely on
Boolean satisfiability (SAT) solvers and output the result in conjunctive normal form in
DIMACS format [3].

4.1.3 Verification and Validation with Resolution Proofs

During the last years, SAT solvers have progressed into tools that can generate resolution
proofs for unsatisfiability. The improvement of such techniques are still a focus of research
such as [54, 20, 55, 18] and also [31]. A resolution proof is a sequence of resolutions of
the original cnf and intermediate clauses that eventually results in an empty clause which
models a contradiction. Hence, a formula is unsatisfiable if a resolution proof exists.
Otherwise, an example of values for the literals can be found that makes the formula, in
this context the miter function, evaluate to TRUE.

As the size of the generated proof has been a concern, proof traces have been proposed
as a compact representation of a proof. As an example, Table 4.3 gives a possible proof
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trace for the cnf (x1 + x2 + x3) · (x1 + x3) · (x1) · (x2 + x3): The first four lines list the
clauses of the cnf. Lines five to seven present the resolution steps and refer to the clauses
used to resolve the new terms. In each step, the literal that is used in its negated form
and in its non-negated form can be resolved. The first resolution step utilizes lines 2 and 3
and resolves x1 + x3 against x1, leaving only x3 as line 5. Line 4, x2 + x3, is then resolved
against the new line 5, leaving x2 as line 6. As a last step, four lines are resolved at once:
Lines 3, 5, and 6 contain combined the negated literal present in line 1 which is x1+x2+x3
resolved against x1, x2, and x3. The resulting clause is the empty clause.

(1) x1 + x2 + x3
(2) x1 + x3
(3) x1
(4) x2 + x3

(5) x3 using (2), (3)
(6) x2 using (4), (5)
(7) ∅ using (5), (1), (6), (3)

Table 4.3: Example for a resolution proof trace with three literals and four clauses.

A resolution proof is the end product of the CEC process which starts with two circuits,
goes on to compute the miter function and then proves the unsatisfiablity of the according
Boolean function. In specific cases, the process can also involve transformations of the
original problem, i.e. the circuits. Chatterjee et al. demonstrate in [20] how the removal
of redundant logic, i.e. rewriting of the logic, and structural hashing techniques do not
prevent but actually support the calculation of a single resolution proof output.

I make use of resolution proof traces to set up a proof-carrying hardware scenario for
runtime (online) CEC. Figure 4.4 shows the scenario and details the steps that producer
and consumer perform for runtime CEC. The consumer decides to order a new reconfig-
urable hardware module and sends the according specification to a producer. Classically,
to create the hardware module the producer utilizes logic synthesis tools which include
FPGA technology mapping, and FPGA back end synthesis tools which include place and
route and bitstream generation. Additionally, the producer forms a miter from the spec-
ification and the hardware module. A CEC tool generates the resolution proof trace.
Finally, the producer combines the bitstream and the proof trace into the proof-carrying
bitstream and sends it to the consumer. The consumer takes the received proof-carrying
bitstream and separates hardware module and proof again. After forming the miter with
the hardware module and the original specification, the consumer checks the proof using
the proof trace. Only in case the proof holds, the hardware module is loaded into a recon-
figurable area of the target device. The work flow is displayed in Figure 4.4. The safety
policy consists of the requirement for combinational equivalence of design specification
and implementation of the circuit. The validation of the proof is split in two parts as not
only the proof needs to be checked for formal correctness but it also needs to match the
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Figure 4.4: Scenario of proof-carrying hardware principle applied to combinational equiv-
alence checks with resolution proof traces as formal safety proof.

hardware module as well as the design specification. For this purpose, the miter function
is recomputed with the design specifications and the design extracted from the delivered
hardware module and then compared to the miter used for the resolution proof. This step
guarantees tamper-proving of the bitstream, as I shall further elaborate in later chapters.

Combinational equivalence between design specification and delivered circuit, i.e. HDL
description and synthesized hardware module, is a desirable security assurance for recon-
figurable hardware. In this section, I detailed how proof-carrying hardware can utilize
resolution proof traces to deliver this safety feature based upon the miter of the respective
specification and implementation of a circuit. The computationally costly task of calculat-
ing the proof of unsatisfiablity of the miter function, i.e. the resolution proof trace, falls to
the producer of the hardware module whereas the consumer only has to check the proof,
a lightweight task in comparison. The NP-complete class problem, see [49], of proving
unsatisfiability falls to the producer.

4.2 Bounded Sequential Equivalence Checks

The previous section described the merits of proof-carrying hardware applied to combina-
tional equivalence checks to deliver security that lets a consumer establish on-the-fly trust
in a newly delivered hardware module from an untrusted source. This section introduces
sequential circuits and sequential equivalence of two circuits as security parameter to be
verified with the proof-carrying hardware concept. The trust and threat model as well as
the merits for the security of reconfigurable hardware devices are comparable to those of
Section 4.1.
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Clock C Data D Q Q

rising edge 0 0 1
rising edge 1 1 0

Table 4.4: Truth table for D-type flip-flop. Independent from the previous output value
Qold, the new signal D is propagated and stored upon a rising edge of the clock
signal C.
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Figure 4.5: The delay flip-flop is constructed using only NAND gates, the clock signal and
the data signal to implement the functionality of Table 4.4.

4.2.1 Sequential Circuits

Sequential circuits are an extension of combinational circuits as they rely not only on the
current input but also the previous input stored in memory to compute the output. For
the purpose of this thesis, the focus is set on synchronous sequential logic, logic which
uses a clock signal upon which changes in the storage elements are initiated. For this, the
clock rate must be low enough to allows each operation to be completed within one clock
cycle, hence the maximum clock rate is determined by the slowest data path in the logic.

Sequential circuits are capable of using back coupling to create memory storage. A
basic memory storage unit is a flip-flop (FF), a cross-coupled synchronous circuit with
two stables states as memory to store one bit and its negation, the output Q and its
negated value Q. A delay flip-flop, or data flip-flop, has two inputs: the clock signal
and the data signal. The new value of Signal Q, see Table 4.4, is changed upon a rising
edge of the clock signal and is the same as the value of the data signal D. A circuit can
implement the functionality of the truth table by using the previously introduced gates
and cross-coupling the signals, as demonstrated in Figure 4.5.

With the ability to store data, a sequential circuit can implement finite state machines.
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Figure 4.6: A finite state machine as Moore machine, picture from [33].

Finite state machines are a combination of sequential and combinational logic with an
input and output function. Mealy machines use the current state and the input to compute
the output. In case of a Moore machine, only the new state determines the output of the
machine. Moore and Mealy machines are equivalent as one can be transferred into the
other one.

A Moore machine, i.e. automaton, A = {X,Y, S, δ, µ, s1} is defined by a input alphabet
X, an output alphabet Y , a set of states S, a transition function δ : S × X → S that
computes the next state based on the current state and the input, an output function
µ : S → Y , and a starting state s1. In Figure 4.6, a generalized Moore machine is
depicted. The next state function and output function can be realized with combinational
logic, the current state is stored with sequential logic.

Figure 4.7 is an example of a Moore machine. The purpose of the machine is to light
either a red, green, or yellow lamp. The machine operates with three states, the output
of each state is the color code. When the input “1” indicates a color switch, the state
machine transitions to the next state and thereby changes the color output in the order
red - green - yellow -red. Otherwise, with the input signal “0”, the current state remains,
as does the output. Figure 4.7 shows the Moore machine as a graph and as a table.

4.2.2 Bounded Sequential Miter

Similar to combinational circuits, sequential circuits as well can be equivalent in their
design. Two sequential circuits implementing the same state machine offer sequential
equivalence without regard to the use of gates, gate inputs, or gate outputs. It is sufficient
to prove the equivalence of two state machines to prove the sequential equivalence of the
respective circuits. Two state machines A and A′ are equivalent if their output is equal in
all reachable states:

A ≡ A′ if
∀s ∈ S : ∃s′ ∈ S′ : s ≡ s′ and
∀s′ ∈ S′ : ∃s ∈ S : s′ ≡ s.

The computational effort for this kind of proof grows rapidly with the number of states
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Figure 4.7: This example of a Moore machine uses three states to output the code for
either red, green, or yellow light. Blue numbers within the state circle indicate
the state’s binary output, red numbers on the state transition arrows indicate
the state’s input.

of the state machines. It is therefore desirable to reduce the problem to a more manageable
one. Instead of comparing the complete state machines, it is possible to compare their
behavior for a certain limited amount of time frames with bounded sequential equivalence
checks. This is a compromise since bounded sequential equivalence checks do not hold the
same significance as sequential equivalence checks. Bounded sequential equivalence offers
a trade-off between the computational effort and the significance of the proof which can
be accepted if the chosen number of time frames is realistic.

With the ABC tool [4] for instance, the miter function of two state machines is build for
a fixed number of time frames as described in [59]: For a sequential circuit A, A1 denotes
the combinational part. For n time frames, n copies of A1 are connected to the FF inputs
and outputs. The outputs of this combined circuit are n sets of outputs, one for each of
the n time frames. The same is done for circuit B, which has to have the same number
of inputs (PI) and FFs. The respective outputs are the input for a logic OR, these are
then the input for a single XOR. This means that the behavior of the machines for a fixed
number of clock cycles is transformed into a combinational miter as shown in Figure 4.8.
An equivalence check is performed based on the unsatisfiability of the combinational miter
function as done for combinational equivalence checks in Section 4.1.3.
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Figure 4.8: Combinational miter based on sequential functions, see [59]. The first set of
combinational circuit copies receives the FF signals and the first set of input
signals. The content of the FFs is passed along from one combinational copy
to its successor.

Listing 4.1: Excerpt from resolution proof in DIMACS CNF format [3] for bounded se-
quential miter for Verilog source code Listing 4.2.

p cn f 94002 245001 // cn f has 94002 v a r i a b l e s and 245001 c l a u s e s
2 −3 0 // numbers r e f e r to l i t e r a l s
−2 3 0 // negat ive numbers r e f e r to negated l i t e r a l s
3 −4 31 −33 49 0
3 4 −31 33 −49 0
3 4 31 33 49 0
3 −4 −31 −33 −49 0
−3 −4 33 0 // not ( x 3 ) or not ( x 4 ) or x 33
−3 4 −33 0
−3 31 −49 0
−3 −31 49 0 // not ( x 3 ) or not ( x 31 ) or x 49
4 51042 −5 0
4 51042 6 0
−4 −51042 0
[ . . . ]

Section 4.2 introduced bounded sequential equivalence checks for sequential circuits, and
thereby memory elements and state machines, as an extension to combinational equiva-
lence checks as presented in the previous section. The same benefits of Section 4.1 of
shifting the workload to the producer of the module apply as bounded sequential equiva-
lence checks can be performed with resolution proof traces that are quickly to validate by
the hardware module consumer.
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4.3 Temporal Isolation with Reference Monitors

In Section 2.2.2 and Section 3.4, I mentioned the concept of reference monitors by Huffmire
et al. [37] as a novel approach to memory safety through the installation of reference mon-
itor modules on the FPGA chip. This section explains how I employ proof-carrying hard-
ware and combinational as well as bounded sequential equivalence checks as elaborated
in Section 4.1 and Section 4.2 to verify and validate the equivalence of reference monitor
circuits to their design specifications.

4.3.1 Concept of Temporal Isolation

The threat and trust model, on which the approach of reference monitors and temporal
isolation is based, can be summarized in the following scenario, shown in Figure 4.9: On a
single FPGA chip, multiple IP cores are installed, all of which need access to an attached
off-chip memory. Cores have restricted access to different parts of the memory and access
rights that can change dynamically due to memory operations executed by either core.
The IP cores cannot be trusted to only access the admissible memory regions or respect
access collisions with other cores, hence their access attempts need to be controlled as an
unapproved access could impair the memory safety. To govern all access to the external
memory, a reference monitor in form of an additional hardware module is installed on the
chip to enforce temporal isolation. Temporal isolation in the context of memory safety
denotes the isolation of overlapping or unapproved memory accesses due to incorrectly
scheduled memory accesses as well as attempts to access memory regions that are at
that time off limits to the accessing module. This applies proof-carrying hardware to
the use case of runtime monitoring of the target platform. This is an extension of the
proof-carrying hardware concept from an application to mere verification and validation
to scenarios that require partial verification, for example of only one IP core, as well as
monitoring.

4.3.2 Memory Access Policies and Reference Monitors

Reference monitors are compiled from memory access policies defined in a formal language,
see [39]. Any memory access policy builds on the basic elements module and range:
Modules, i.e. the IP cores on the FPGA chip, request access to memory segments called
ranges. Ranges cover the accessible memory and divide it into unique segments of varying
length that do not overlap. Each policy is defined by the accesses it allows, each access
is defined by its module, range and type of access. The example shows a policy with two
different admissible accesses, two different modules accessing each a different range, which
can be executed repeatedly.

Access −→ Module1, rw, Range1 | Module2, rw, Range2;
Policy −→ (Access)*;
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Figure 4.9: Reference monitor module managing memory access requests for external
memory.

Modules and ranges as formal concepts allow to create more complex building blocks
for policies to express security concepts on a higher level, i.e. in a higher level language.
For instance, compartments can contain ranges as well as modules. A module has read
access to all memory ranges within its compartment, hence compartments function as
equivalence classes assigning the same access rights to all modules within a class. Even
more advanced are conflict-of-interest (COI) classes. A COI class contains all ranges that
are in conflict with each other. A module can choose one range out of a COI class for
access. After that first access, all other ranges within that COI class are off limits for
any further access through that module to avoid any conflicts. A module can do this
for every COI class as ranges from different COI classes do not create a conflict. Yet
another concept for memory access policies described by Huffmire at al., see [37], is the
assignment of different security levels to ranges and modules. Four security classifications
describe the range of trust from Unclassified (U) to Classified (C) and Secret (S) up to
Top Secret (TS), a standard classification also used by the government of the United
States of America, see [6, 7]. Memory access requests can be denied or granted on the
base of the security classification of the module and memory range, respectively. The use
of these concepts within a memory access policy described in a higher level language is
demonstrated in Table 4.5.

With those and other concepts, many different memory access policies can be formed to
implement different memory security scenarios. Policies can also be dynamic, which allows
them to change access rights at runtime. I chose six different memory access policies, three
static and three dynamic ones as elaborated in [37], to investigate the possible application
of the proof-carrying hardware concept:

These are the three static types of memory access policies used for this thesis:

• The Isolation (Iso) model assigns every memory range and every module to com-
partments. Within a compartment, modules have read-only access to the ranges in
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the same compartment.

• The Bell and LaPadula (BL) model is a confidentiality model which prevents modules
from reading memory areas with higher security classifications (no read-up) and from
writing into memory ranges with lower classifications (no write-down).

• The Biba (Biba) model is made to protect the integrity of the data. It prevents
modules from writing into memory ranges with a higher security classification (no
write-up) and from reading data from a range with a lower security classification (no
read-down).

These are the three dynamic types of memory access policies used for this thesis:

• The Chinese Wall (Chin) model is build upon conflict-of-interest classes. Each range
is a member of a conflict-of-interest class. A module is granted read access to one
range of its choosing of each class.

• The High Watermark (High) model realizes data confidentiality similar to the Bell
and LaPadula model but also extends that concept by allowing write-downs. After a
write-down, the security classification of the range is changed to the higher security
level of the module that performed the access. This excludes all modules with a
lower security classification from further accessing that memory range.

• The Low Watermark (Low) model realizes data integrity similar to the Biba model
but extends it by permitting read-downs. Upon a read-down, the module is assigned
the lower classification of the range that it just accessed, thus changing the access
rights for that module.

Table 4.5 shows instances of four policies. The first two, a) the Isolation (Iso) and b)
the Bell and LaPadula (BL) model, are both static. The next two, c) the Chinese Wall
(Chin) and b) the High Watermark (High) are dynamic.

The Isolation (Iso) model features two compartments that manage a total of three
ranges and three modules. Module1 has read-only access to Range1,2, Modules2,3 are
granted read-only access to Range2.

The Bell and LaPadula (BL) model is executed with two modules and four ranges where
each range and each module is assigned a security classification. The objective of this
model is to protect the data confidentiality. Module1 is registered as “Unclassified”(U),
the lowest security classification. Hence, it cannot read Ranges2,3,4 but can write into each
range. Module4 is designated as “Top secret”(TS), the highest classification. Therefore,
it cannot write into Ranges1,2,3 as those ranges could be read by modules with a lower
classification. But opposed to Module1, Module4 can read all ranges.

The Chinese Wall (Chin) model is focused on avoiding conflicts between memory ranges
and assigns each range to a COI class. The instance given below has three COI classes
containing two ranges each. The subject, i.e. module, can choose one range from each
class to access. That means a maximum of three ranges to access, but all of them have
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a)
Iso;
Compartment1 −→ Module1;
Compartment1 −→ Range1;
Compartment1 −→ Range2;
Compartment2 −→ Module2;
Compartment2 −→ Module3;
Compartment2 −→ Range3;

b)
BL;
Module1 −→ U;
Module2 −→ TS;
Range1 −→ U;
Range2 −→ C;
Range3 −→ S;
Range4 −→ TS;

c)
Chin;
COI Class1 −→ Range1;
COI Class1 −→ Range2;
COI Class2 −→ Range3;
COI Class2 −→ Range4;
COI Class3 −→ Range5;
COI Class3 −→ Range6;
Subject −→ Module1;

d)
High;
Module1 −→ U;
Module2 −→ TS;
Range1 −→ U;
Range2 −→ C;
Range3 −→ S;
Range4 −→ TS;

Table 4.5: Examples of static memory access policies Isolation (Iso) and Bell and La-
Padula (BL) and dynamic policies Chinese Wall (Chin) and High Watermark
(High).

to be in different classes. Admissible combinations of memory ranges include, but are not
limited to: Range1,3,5, Range2,4,6, Range4,5, Range2.

The High Watermark (High) model is the dynamic version of the Bell and LaPadula
model. Hence, it is described exactly the same way except for the policy title. The re-
sulting policy reacts to dynamically to write-downs, though. Module2 change the security
classifications of Range1,2,3 to TS by writing into them, for example.

The reference monitors compiled from the policies are state machines. The static poli-
cies result in state machines with a single state (not counting an error state), which are
effectively combinational circuits. The dynamic policies result in state machines with mul-
tiple states, i.e. sequential circuits. Those static and dynamic hardware modules are the
test functions for the tool flow, elaborated in Chapter 5.

The actual reference monitor hardware modules are described in the Verilog HDL.
In [37], Huffmire et al. elaborate the process of synthesizing a Verilog hardware mod-
ule from a policy. The hardware synthesis is a process combined of several steps. In
Table 4.6 a), an instance of the Chinese Wall (Chin) policy is depicted. The example uses
one module that can access one of the two memory ranges of the one COI class repeatedly.
Given the policy in Table 4.6 a), the compiler performs the following actions:

• It constructs a syntax tree from the policy, converts it into an expanded interme-
diate form and then translates the policy to a regular expression, see Table 4.6 b).
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a)
Chin;
COI Class1 −→ Range1;
COI Class1 −→ Range2;
Subject −→ Module1;

b)
((Module1ReadsRange1*)|(Module1ReadsRange2*))

c)
Access0 −→ (Module1ReadsRange1)*;
Access1 −→ (Module1ReadsRange2)*;
Policy −→ Access0 | Access1;

Table 4.6: Instance of Chinese Wall policy. Part a) depicts the high level language de-
scription of the policy, b) presents the resulting regular expression. Part c)
gives the translation of the policy in the lower level language used for the last
steps of the policy to Verilog compilation.

The regular expression describes the same scenario as before: Module1 is granted
indefinite read access to either Range1 or Range2.

• It transforms the regular expression to a non-deterministic finite automation (NFA)
and converts the NFA to a minimized deterministic finite automaton (DFA), Fig-
ure 4.10 and Figure 4.11.

• It converts each range into a covering set of aligned power of two ranges.

• It outputs the range detection and translation of the policy into the lower level lan-
guage as shown in Table 4.6 c), then delivers the state machine logic as synthesizable
Verilog, see Listing 4.2.

The Verilog source code for the Chinese Wall reference monitor module is depicted in
Listing 4.2. The source code structure is similar for all policies: The input contains,
besides the clock and a reset signal, information regarding which module requests what
type of access to which memory range. The output is a single bit, indicating whether a
request is approved or denied. The reference monitor’s work is performed by two processes,
one for realizing the output function and one for implementing the state machine. The
state machine process is initiated with a “always @(posedge clock or posedge reset)” and
therefore monitors the clock and reset signal. It reacts when one of them changes from
low to high as indicated by the word “posedge“ which denotes the positive edge of the
signal. As stated earlier, there is a difference between dynamic and static policies. Static
policies are not capable of changing any access rights at runtime. Hence, they only have
one regular state where requests are processed. The process governing the output function
is initiated with a “always @(state)” and reacts upon any state changes. As long as the
state machine’s state is considered valid, the memory access is granted.
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init

     M1 
R1: r_ 
R2: r_ 

     M1 
R1: r_ 

{M1,r,R1}

     M1 
R2: r_ 

{M1,r,R2}

Figure 4.10: State machine-like representation for policy specified in Table 4.6 a). After
initialization, Module1 has read access to both modules but no write access
as indicated by “r ”. After the first read access performed by Module1, all
further accesses are limited to reading either Range1 or Range2.

S3 

S2 

S0 S1 

Access Range1 

Access Range1 Access Range2 

Access Range2 

Illegal 

access 
Illegal 

access 

Illegal 

access 

Illegal 

access 

Figure 4.11: DFA for state machine Listing 4.2, including the error state S3 and omitting
the non-state rhombus indicating the initialization.

As shown in Figure 4.10, the state machine described by Listing 4.2 has three regular
states. State s2 is the first state after the initialization. Module1 has not yet issued any
memory access request and can still choose to read-only from either Range1 or Range0.
The two valid read requests are highlighted with red comments. Any one of those two
possible read accesses will change the state from s2 to either s1 or s0 where the according
read access can be repeated. The state machine will switch to state s3 and remain there
and not process any request anymore if at any point an invalid memory access request is
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being made. This state is not pictured in Figure 4.10 as it is merely a construct of the
Verilog code but not an actual state of the state machine resembling the policy. A regular
depiction of the state machine is Figure 4.11.

Reference monitor hardware modules are an efficient way of enforcing memory access
policies on an FPGA chip where multiple IP cores require access to shared memory. This
approach to memory safety is versatile due to the different access scenarios available as
memory access policies. The formal high level language to specify memory access policy
makes use of the concepts of modules as subjects requesting access to memory ranges and
creates more advanced formal concepts based on modules and ranges to allow easy speci-
fication of memory access policies. In this section, I reviewed various dynamic and static
memory access policies, the according compiler, and explained the different underlying
principles of the according safety scenarios as developed by Huffmire et al. in [40, 37].

Listing 4.2: Verilog source code for Chinese Wall (Chin) reference monitor specified in Ta-
ble 4.6.

module State Machine ( c lock , r e s e t , module id , op , address , i s l e g a l ) ;
// g l o b a l inputs and output ; l o c a l r e g i s t e r s , parameters , w i r e s

input c lock , r e s e t ;
input [ 4 : 0 ] module id ;
input [ 1 : 0 ] op ;
input [ 3 1 : 0 ] address ;
output i s l e g a l ;
reg i s l e g a l ;
reg [ 1 : 0 ] s t a t e ;
parameter s0 = ’ d0 ;
parameter s1 = ’ d1 ;
parameter s2 = ’ d2 ;
parameter s3 = ’ d3 ;
wire r0 ;
wire r1 ;
assign r0=(address [31:4 ]==28 ’ d1 )?1 ’ b1 : 1 ’ b0 ;
assign r1=(address [31:4 ]==28 ’ d2 )?1 ’ b1 : 1 ’ b0 ;

always @( s t a t e ) // check output s i g n a l a f t e r every a c c e s s
begin

case ( s t a t e )
s0 :

i s l e g a l =1’b1 ; // grant a c c e s s f o r s t a t e s s0 , s1 , and s2
s1 :

i s l e g a l =1’b1 ;
s2 :

i s l e g a l =1’b1 ;
s3 :
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i s l e g a l = 1 ’ b0 ; // deny a c c e s s f o r e r r o r s t a t e
default :

i s l e g a l = 1 ’ b0 ; // deny a c c e s s by d e f a u l t
endcase

end

always @(posedge c l o ck or posedge r e s e t ) // check a c c e s s
// r i g h t s at every c l o ck c y c l e or r e s e t

i f ( r e s e t ) s t a t e = s2 ;
else

case ( s t a t e )
s0 : // Module 1 a c c e s s e s Range 2

case ({module id , op , r0 , r1 }) // module , a c c e s s type , range
9 ’ b000010101 :

s t a t e = s0 ; // a c c e s s Range 2
default :

s t a t e = s3 ; // e r r o r s t a t e
endcase

s1 : // Module 1 a c c e s s e s Range 1
case ({module id , op , r0 , r1 })

9 ’ b000010110 :
s t a t e = s1 ; // a c c e s s Range 1

default :
s t a t e = s3 ; // e r r o r s t a t e

endcase
s2 : // s t a t e a f t e r i n i t i a l i z a t i o n , a c c e s s to e i t h e r r eg i on

case ({module id , op , r0 , r1 })
9 ’ b000010101 :

s t a t e = s0 ; // a c c e s s Range 2
9 ’ b000010110 :

s t a t e = s1 ; // a c c e s s Range 1
default :

s t a t e = s3 ; // e r r o r s t a t e
endcase

s3 : // e r r o r s t a t e − no s t a t e t r a n s i t i o n , only r e s e t
s t a t e = s3 ;

default :
s t a t e = s3 ;

endcase
endmodule
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4.4 Chapter Conclusion

In this chapter, I elaborated three major security concepts for reconfigurable hardware.
Equivalence between design specification and synthesized hardware is an important secu-
rity property for (dynamically) reconfigurable hardware as it attests that the functionality
of the hardware is the same as its design. For combinational circuits, a combinational
equivalence check builds a miter function out of the two circuits in question. The unsatis-
fiability, which guarantees the equivalence, is proven with a resolution proof trace. True to
the concept of proof-carrying hardware, that costs to compute the proof can be high but
comparatively low to validate the proof. This allows the consumer of hardware modules
from untrusted source to establish trust in the newly received IP core.

Sequential circuits are an extension to combinational circuits as they offer to ability to
store data and hence are capable of implementing state machines and memory. The equiv-
alence between two sequential circuits is the equivalence of the output of their respective
state machines. To render the task of proving sequential equivalence more manageable, I
follow the concept of bounded sequential equivalence checks. They compare the behavior
of sequential circuits over fixed and sufficiently large number of clock cycles to construct
a miter function. As done before for combinational equivalence checks, the miter function
is proven unsatisfiable with resolution proof traces.

Reference monitors secure shared memory by managing all access request issued by
multiple IP cores on a single FPGA chip. Memory access policies describe the access
rights of the individual hardware modules on the chip with regard to the individual ranges
of the shared memory. A compiler then produces the Verilog source code for further
synthesis of the hardware. A major benefit of this approach by Huffmire et al [40, 37]
to spatial isolation of hardware modules is the flexibility to simply exchange the single
reference monitor IP core to enforce a novel policy and leaving the remaining IP cores as
they were.

These three approaches to increase security for reconfigurable hardware and the re-
configuration of such are particularly suitable for the proof-carrying hardware concept.
Equivalence checks allow for a validation of the proof by the consumer despite possi-
ble platform restrictions, hence enabling fast or even on-the-fly trust. The application
of proof-carrying hardware to the verification of reference monitors is the application of
proof-carrying hardware to scenarios that require monitoring of security properties of the
target platform during runtime. This demonstrates that proof-carrying hardware is a
flexible concept which can establish security in different security critical scenarios.

The prototype tool flow elaborated in Chapter 5 implements the application of proof-
carrying hardware to these verification challenges.
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CHAPTER 5

Evaluation Methodology

This chapter details the evaluation methodology for my novel proof-carrying hardware
approach. My methodical approach is the use and adaption of open-source tools for the
development of a proof-carrying hardware prototype tool flow. This prototype tool flow
will serve to evaluate the thesis claim made in Section 3.5 as it is the implementation
of proof-carrying hardware applied to equivalence checks of combinational and sequential
reference monitors. The advantage of open-source tools over commercial tools is the
potential of open formats. The full access to input and output formats enables me to define
the format of a proof-carrying bitstream and according FPGA architecture, see [29]. This
advantage outweighs the advantage of using proprietary tools and formats which would
allow for an application of proof-carrying hardware to real-life reconfigurable devices, such
as the Xilinx Virtex-4 [41].

In Section 5.1, I introduce an abstract FPGA architecture and matching bitstream
format. The Bitstream Composer / Decomposer tools form together with open-source
tools a tool flow implementing a proof-carrying hardware prototype. The tool flow given
in Section 5.2 is the prototype implementation of the proof-carrying hardware. It realizes
the proof-carrying hardware principle with a split in the work flow between consumer and
producer of hardware modules.

5.1 Architecture and Bitstream Format for Abstract FPGA

I now present my abstract FPGA architecture and according bitstream format for the tool
flow that will be elaborated in this chapter.

The FPGA is composed of global inputs, global outputs, logic blocks including Look-
Up Tables (LUT) or latches, and connections between those components, displayed in
Figure 5.1. The size and shape of the rectangular array of logic blocks is variable. The
number of logic blocks in y-direction of the array also gives the number of global inputs
and outputs of the FPGA chip, as each block in the first column of the logic block ar-
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Figure 5.1: Abstract FPGA architecture.

ray is connected to a global input and each block in the last column is connected to a
global output. Global inputs and outputs are individually assigned or intentionally left
unassigned.

A logic block consists of either a Look-Up Table (LUT) and pins or a latch and pins that
are connected to incoming or outgoing signals. Any logic block can have either a single
global output, that is a signal routed to a global output pin, or a local output, which is
a signal routed from one logic block to one or more other logic blocks. The name of the
logic block is at the same time its position in the array of logic blocks. The positions are
assigned from left to right and from bottom to top, which is a coordinate system scheme
similar to the one used by VPR, see [11]. All LUTs have the same number of inputs,
which is variable and determined by the largest number found among all logic blocks. For
the listed input signals, a truth table defines the programming of the LUT. A latch has
only one input signal which it stores.

The FPGA architecture is basic as it is meant for later extension as the need arises. One
aspect of later extensions are the logic blocks. A type of logic block which combines the
capabilities of the LUT type logic block and the latch is plausible. Also, functional blocks
such as memory units and dedicated multipliers can be part of an extended architecture
as they are part of modern FPGA chips. Such a design decision will have to depend on
the context of synthesis tools and hardware device for which the architecture is modified.
Another possible focus for an extension of the abstract FPGA architecture is the routing.
The current routing is capable of specifying which component, i.e. global I/O or logic
block, connects to which other component. Other than the designated pin, the routing
does not assign routing resources as those are not specified in the design. A specific
description of the routing resources and their usage could be part of the design.

The abstract FPGA architecture goes together with the according bitstream format.
The bitstream format for my FPGA architecture captures the above specifications implic-
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itly and explicitly, see Listings 5.1 for an exemplary excerpt. The preamble states general
information regarding its design. The dimension of the logic block array and the number
of inputs for each LUT are explicitly stated. A list names and assigns all global inputs
on the chip from bottom to top, a “−” marks the global inputs on the chip that are not
assigned and therefore remain unused. A second list specifies the names and locations
of the global outputs the same way. Hence, the inputs and outputs are named explicitly,
their order is defined implicitly by the order in which they are listed. A description of each
LUT or latch logic block makes up the second part of the bitstream. Each block, LUT
as well as latch, is defined by its input and output. As the LUT may have more inputs
available than what is actually needed, the format marks unused inputs with an “−” and
utilized designated input signals in their specified order. A latch has only the one input
signal by design. The connections for the block’s output are listed separately at the end of
each block. In case of a LUT logic block, the block describes the programming of the LUT
with a truth table. If the LUTs to be programmed are of size n, the table of each logic
block has 2n entries. This second part of the bitstream, the list of all logic blocks, defines
not only each logic block’s functionality. It also reveals the amount of configured LUTs
and latches logic blocks and the number of routing connections between the components.

I designed the abstract FPGA architecture and accompanying bitstream format pre-
sented here to be incorporated in the proof-carrying hardware tool flow presented in the
following section. As pointed out earlier, the architecture and its bitstream format are
custom made for the this purpose but they are flexible enough to accommodate later
extensions and changes to adopt for different tasks of the tool flow.

Listing 5.1: Excerpt from bitstream file
Listing A.5 for Chines Wall
Verilog example Listing 4.2.

. begin

b l o c k a r r a y s i z e : 8x8
l u t s i z e : 2

g in : c l o ck r e s e t module id0 \
module id1 module id2 \
module id3 module id4 op0 op1 \
adr0 adr1 adr2 adr3 adr4 adr5 \
adr6 adr7 adr8 adr9 adr10 \
adr11 adr12 adr13 adr14 adr15 \
adr16 adr17 adr18 adr19 adr20 \
adr21 adr22 adr23 adr24 adr25 \
adr26 adr27 adr28 adr29 adr30 \
adr31
// a l l g l o b a l inputs

gout : i s l e g a l
// a l l g l o b a l outputs

. gout i s l e g a l ( 7 , 0 ) . 6
// g l o b a l output rout ing

. g in c l o ck (3 , 9 )
l ou t ( 8 , 3 ) . d e f a u l t
l ou t ( 8 , 5 ) . d e f a u l t
// s p e c i a l c l o ck rout ing

. g in r e s e t ( 9 , 4 )
l ou t ( 8 , 4 ) . 3
l ou t ( 8 , 5 ) . 3
// r e g u l a r g l o b a l input rout ing

. g in module id0 (0 , 3 )
l ou t ( 1 , 3 ) . 2

. g in module id1 (0 , 3 )
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l ou t ( 1 , 3 ) . 1

. g in module id2 (6 , 0 )
l ou t ( 6 , 1 ) . 3

. g in module id3 (6 , 0 )
l ou t ( 6 , 1 ) . 0

. g in module id4 (5 , 0 )
l ou t ( 5 , 1 ) . 3

. g in op0 (0 , 2 )
l ou t ( 1 , 2 ) . 3

. g in op1 (0 , 2 )
l ou t ( 1 , 2 ) . 2

. g in adr4 (0 , 5 )
l ou t ( 1 , 5 ) . 1
l ou t ( 1 , 4 ) . 0

. g in adr5 (0 , 5 )
l ou t ( 1 , 5 ) . 2
l ou t ( 1 , 4 ) . 2

[ . . . ]

. l a t c h (8 , 5 )
n151 FF NODE33
lou t ( 7 , 3 ) . 0
l ou t ( 6 , 2 ) . 3
l ou t ( 6 , 3 ) . 2
// l a t c h l o g i c b lock
// names o f input and output
// mul t ip l e l o c a l outputs

. l a t c h (8 , 3 )
n191 FF NODE34
lou t ( 7 , 3 ) . 2
l ou t ( 6 , 2 ) . 2

. l u t (7 , 3 )
FF NODE33 FF NODE34 n48

11 1
00 1
l ou t ( 5 , 2 ) . 1
l ou t ( 7 , 1 ) . 3

. l u t (1 , 1 )
adr26 adr27 n49
00 1
l ou t ( 2 , 1 ) . 1
// l u t l o g i c b lock
// names o f inputs and outputs

. l u t (4 , 1 )
adr25 adr31 n50
00 1
l ou t ( 2 , 1 ) . 2

[ . . . ]

. l u t ( 7 , 5 )
n75 n88 n89
11 1
l ou t ( 7 , 4 ) . 2
l ou t ( 8 , 5 ) . 2

. l u t (8 , 5 )
r e s e t n89 n151
00 1

. l u t (6 , 2 )
FF NODE33 FF NODE34 n91
l ou t ( 5 , 2 ) . 0

. l u t (5 , 2 )
n48 n91 n92
00 1
l ou t ( 5 , 3 ) . 3

. l u t (5 , 3 )
n81 n92 n93
11 1
l ou t ( 5 , 4 ) . 3
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. l u t ( 5 , 4 )
n75 n93 n94
01 1
l ou t ( 6 , 4 ) . 2

. l u t (6 , 4 )
n86 n94 n95
11 1
l ou t ( 7 , 4 ) . 1

. l u t (7 , 4 )
n89 n95 n96
00 1
l ou t ( 8 , 4 ) . 2

. l u t (8 , 4 )
r e s e t n96 n97

00 1
l ou t ( 8 , 3 ) . 2

. l u t (7 , 1 )
− n48 i s l e g a l
// f i r s t input i s not used
−0 1
gout ( 7 , 0 ) . 6
// g l o b a l outputs

. l u t (8 , 3 )
− n97 n191
−0 1

. end

5.2 Open-Source Prototype

Firstly, this section elaborates on the work steps of the prototype tool flow and the tools
that perform those work steps. Secondly, I detail the prototype and the role split between
the consumer and the producer of the proof-carrying bitstream as this split is inherent to
the proof-carrying hardware principle.

The proof-carrying hardware prototype implements the scenario pictured in Figure 3.2.
The description of the desired hardware module’s functionality is a design specification
file in the Verilog format; the safety policy consists of a single requirement: equivalence
of the specification file and the circuit included in the final bitstream. Due to a lack of
any verification for the necessary translation from Verilog to the blif format [2, 16], the
blif format serves as design specification. The type of equivalence depends on the type
of circuit to be validated, i.e. combinational equivalence as in Section 4.1 or bounded
sequential equivalence as in Section 4.2. The circuits to be checked for equivalence are
dynamic and static reference monitors as detailed in Section 4.3. In general, any format
that consumer and producer agree upon could be used to convey the design specifications
instead of Verilog / blif. For this thesis, the use of ODIN II suggests the use of Verilog files
and their respective translation into the blif format. The type of proof used to validate
the combinational equivalence is a resolution proof, see [28, 54, 20], which is attached
to the bitstream and makes it a proof-carrying bitstream. An overview of the tool flow,
consisting of a tool flow for the consumer and producer each, is given in Figure 5.2:
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5.2.1 Open-Source Tools

I now present the open-source tools which contribute to the prototype testing environment
for proof-carrying hardware. The prototype proof-carrying hardware tool flow, as detailed
in Figure 5.2 employs open-source tools for the hardware module production as well as
the verification and validation process:

• Odin II [58] by Jamieson et al. (University of Miami) performs file format conversion
and front-end synthesis from circuit specification in Verilog to a logic function in blif
(Berkeley Logic Interchange Format).

• ABC [19] by Mishchenko et al. (Berkeley) is a “A System for Sequential Synthesis
and Verification”.

– It performs logic optimization and technology mapping to Look-Up Tables
(LUTs), generating again a logic function (blif file). The optimization is based
on And-Inverter Graphs (circuits composed exclusively of two-input AND gates
and inverters to negate signals) and includes balancing, refactoring and rewrit-
ing; all applied multiple times to the circuit with the resync2 command. Bal-
ancing performs a minimum delay tree-decomposition of each AND gate to
reduce the delay of the And-Invertor Graph (AIG) measured in logic levels of
two-input AND gates to a minimum. Refactoring collapses and refactors the
logic cones in the AIG and thereby reduces the number of AIG nodes as well as
the number of logic levels, which is also the aim of the DAG-aware Rewriting
as described in [54].

– It also forms the miter cnf, see Section 4.1.2, with the previously extracted logic
function and the design specification by translating the cnf from And-Inverter
Graphs. Depending on the type of circuit, one of two different miter types is
created: In case of a combinational reference monitor, a simple combinational
miter is build as described in Section 4.1.2. If the test function is sequential,
then a sequential miter is build and unrolled for 1000 time-frames, see bounded
sequential equivalence checks as described in Section 4.2, which results in a
combinational miter.

• T-VPack [14, 11] by Betz et al. (University of Toronto) packs the LUTs into logic
blocks, generating a circuit description in form of a FPGA netlist (.net) of logic
blocks. T-VPack converts the LUT netlist into the format required by VPR.

• VPR [14, 11] by Betz et al. (University of Toronto) places and routes the netlist
and produces placement (.p) and routing (.r) information. The target architecture
input file used by VPR has to agree with the specifications used for T-VPack. The
placement and routing is performed as elaborated in Section 2.1.2.

• The Bitstream Composer creates the bitstream in the format according the FPGA
architecture as given in Section 5.1. The three essential types of information that
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make up the bitstream content are the logic function of the circuit, the placement
information, and routing information. I developed this tool as part of this thesis.

• The Bitstream Decomposer extracts the logic function, the placement information,
and the routing information from the bitstream composed by the Bitstream Com-
poser. I developed this tool as the counterpart to the Bitstream Composer.

• The SAT solver PicoSAT [17] by Biere et al. (Johannes Kepler University) proves the
unsatisfiability of the miter which is equivalent with the combinational equivalence
of design specification and delivered hardware module by generating an extended
proof trace.

• TraceCheck [1] by Biere et al. (Johannes Kepler University) validates the correctness
of a proof trace. The output is a compact binary resolution trace that demonstrates
the resolutions steps necessary to derive that the proof is indeed unsatisfiable.

The first four tools of the list, Odin II, ABC, T-VPack, and VPR, are a common open-
source tool chain for hardware synthesis. In combination with the remaining tools to verify
and validate equivalence to design specifications and create a bitstream, all tasks in the
tool flow have been covered.

5.2.2 Consumer and Producer Tool Flow

One principle of proof-carrying hardware is the usability elaborated in Section 3.3. The
usability of proof-carrying hardware means to shift the majority of the workload to the
producer, i.e. the untrusted source of the hardware module. Hence, the prototype as
depicted in Figure 5.2 consists of tasks assigned to the producer and tasks performed by
the consumer. This separation shifts the majority of the workload to the producer by
assigning the smallest amount possible of the workload to the consumer.

The tasks in the tool flow Figure 5.2 can be grouped according to Figure 3.2. It is
assumed that the consumer has already produced the design specification, i.e. logic func-
tion, to describe the safe behavior of the resulting hardware module. The producer has to
perform the following tasks:

• Create Hardware Module:

1. The Verilog hardware description of the circuit is synthesized into a blif logic
function.

2. The blif logic function undergoes logic optimization and technology mapping
to LUTs, resulting in a blif file.

3. The logic function is transformed into a netlist.

4. The netlist is placed and routed according to the FPGA’s architecture.

• Generate Hardware Bitstream:
The bitstream is compiled and includes the logic function, placement and routing
information.
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Figure 5.2: Complete tool flow to perform hardware module creation (from synthesis
to place & route) as well as the combinational equivalence check and proof
validation.

• Proof Safety of Module:
The bitstream is decomposed and the logic function is extracted. A miter and resolu-
tion proof computation for either a combinational or bounded sequential equivalence
check takes place.

The proof-carrying bitstream is then sent to the consumer who performs the following
tasks:

• Extract Proof:
The bitstream is separated into the safety proof, the logic function of the hardware
module, and the placement and the routing information of the hardware module.

• Check Proof:

1. The miter is recomputed using the original design specification and the ex-
tracted logic function.

2. The newly computed miter is compared against the miter contained in the
delivered proof.

3. The proof is checked for formal correctness.

62



These two bullet point lists along with Figure 3.2 clearly state the separation of tasks
that fall to the untrusted source of the hardware module and the host of a reconfigurable
device. The resulting prototype tool flow is shown in Figure 5.2.

This concludes the setup of the prototype tool flow which is used for evaluating the
usability and robustness as principles of proof-carrying hardware, see Section 3.3, which
is depicted in the following Chapter 6.

5.3 Chapter Conclusion

This chapter detailed my methodical approach for evaluating the novel proof-carrying
hardware concept which is implemented using an open-source prototype tool flow to eval-
uate the thesis claim made in Section 3.5. As mentioned at the beginning of this chapter,
the advantage of open-source tools over commercial tools is the potential of open formats
which enabled me to define a bitstream format for the prototype tool flow. Despite these
advantages of open-source tools and formats, it is still desirable to transfer proof-carrying
hardware additionally to proprietary FPGAs and bitstreams. This would demonstrate
how well this novel concept applies to real-life security challenges and scenarios.

The prototype implementation of proof-carrying hardware serves as a proof of concept
as it covers the verification of a range of diverse security issues. It offers the split between
the untrusted producer and consumer of a new hardware module which enforces the the
shift of workload and computational burden to the producer, as I will demonstrate in
Chapter 6 where I will also demonstrate the robustness of the prototype.
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CHAPTER 6

Experimental Results

This chapter discusses the experimental results performed with the proof-carrying hard-
ware prototype tool flow. The experimental validation of the prototype focuses on the
integral aspects of the proof-carrying hardware approach: flexibility, robustness and es-
pecially the usability, as explained in Section 3.3. In Section 6.1, the robustness against
certain attacks is demonstrated as well as limitations to the security that proof-carrying
hardware aims to offer. In Section 6.3.1 and Section 6.3.2, I give conclusive evidence of
how the prototype indicates the general usability of proof-carrying hardware by depicting
the runtime and memory usage comparison for the consumer and producer parts of the
tool flow as introduced in Chapter 5 to demonstrate the desired shift of workload from
consumer to producer.

6.1 Robustness and Limitations

6.1.1 Robustness

In the previous section, I elaborated an experimental setup: a tool flow and FPGA archi-
tecture for a proof-carrying bitstream that contains a hardware module for a reconfigurable
system. I claim that this setup is sufficient to verify the tool flow and transmission. The
process executed by the prototype can be grouped into several steps. For each, I con-
sider how proof-carrying hardware approach would detect a failure to comply to the safety
policy of combinational equivalence:

1. Scenario 1: Manipulation of Hardware Production
Proof-carrying hardware has to ensure that any changes to the circuit through the
tools themselves, marked with a 1 in Figure 6.1, would be detected. ODIN II is not
included, as for the intent and purpose of this work the verification of the Verilog
to blif translation is omitted due to a lack of readily available validation tools. If
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Chapter 6.1. Robustness and Limitations

the logic function is submitted to combinational changes during the first step in
block 1, those changes would be carried through all further steps and be conveyed
into the bitstream. The following tools convert the logic function into a netlist that
is packed, placed, and routed. If there is any other input used or the module altered,
the computation of the bitstream will fail as the logic function would not match the
placement and routing information. If a bitstream composition was still successful,
the extracted logic function would convey the changes and not allow for a successful
miter computation or result in a different miter from what the consumer will later
calculate. This capability to integrate and extract any information as needed is
possible with my own bitstream format for my FPGA architecture introduced in
Chapter 5.

2. Scenario 2: Manipulation of the Proof Computation
The producer uses two tools for the computation of the formal proof. One for creating
the miter and one for computing the resolution proof trace, marked with a 2 in
Figure 6.1. Since the miter is recomputed by the consumer, any kind of error in that
step would be detected by the difference between the miters. The producer is also in
no position to use even the hardware module’s logic function from any intermediate
(correct) step instead of bitstream extraction to achieve deceit. The miter might
be unsatisfiable and result in a correct resolution proof, but it would still differ
from what the consumer expects as his miter is build upon the bitstream extraction.
Therefore, it would also not be possible to take a different design specification in
Verilog translated to blif format as input for this step. The same arguments apply
to the computation of the resolution proof itself. If the proof is not correct or uses a
different miter, the consumer will notice this upon comparing the miter and checking
the proof. This eliminates the possibility to use any other than the appropriate miter
function or to pass on an incorrect resolution proof.

3. Scenario 3: Manipulation of Proof-Carrying Bitstream
A third party might maliciously intercept the proof-carrying bitstream between con-
sumer and producer, marked with a 3 in Figure 6.1. If such a man-in-the-middle
attack corrupts the resolution proof, the proof simply would not check out anymore
and be dismissed by the proof checker in the consumer’s tool flow. If, by any chance,
the proof might still be a correct proof, it would not match the bitstream anymore.
This would also be detected because the consumer recomputes the miter function
and matches it to the miter that is included in the resolution proof. Even if the
hardware module within the bitstream is changed according to the changes in the
resolution proof, the miter would differ or be satisfiable since the original logic func-
tion is used by the consumer to rebuild the miter. Similar, if only the hardware
module section of the proof-carrying bitstream is manipulated, the resolution proof
would not match the miter computed with the extracted logic function.

As with all verification problems, a prerequisite is that the tools to validate the soundness
of the formal proof function correctly. This regards the proof checking, miter computation,
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Figure 6.1: Validation of Tool Flow (sketch of tool flow as in Figure 5.2).

and matching of the miter functions performed by the consumer. Also, the extraction of the
logic function from the bitstream has to be done correctly. The correct functionality of the
tools for these tasks is the trusted base upon which the proof-carrying hardware prototype
operates. This way, as discussed in Chapter 3, proof-carrying hardware neither relies on
secure transmission nor on any previously established trust in a producer. By establishing
trust in the delivered product, security can still be guaranteed without establishing trust
in the producer of a hardware module or employing encryption.

6.1.2 Limitations

A natural limitation of proof-carrying hardware is the completeness of the safety policy
used to set the safety standards against which new hardware modules are measured. The
safety delivered by a proof-carrying bitstream is as strong (or weak) as its specification.
The producer of a hardware module cannot adhere to any standard that is not formally
described in the safety policy. The concept of proof-carrying hardware cannot help a
designer to detect what security constitutes in a particular environment. This problem is
inherent to all security challenges: only known threats can be eliminated.

There are security and safety risks, though, that are not covered by proof-carrying
hardware due to its inherent limitations: Proof-carrying hardware aims at establishing
trust in hardware modules from untrusted sources to guarantee that said hardware modules
do not compromise the integrity of the target platform running the reconfigurable device.
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Chapter 6.2. Usability of Combinational Equivalence Checks

Proof-carrying hardware is not concerned with the prevention of physical attacks, e.g.
cloning or denial-of-service attacks as described in Section 2.2.1.

Another inherent limitation of the proof-carrying hardware principle lies in its goal to
shift the workload to the producer, particularly regarding the effort for the verification,
i.e. proof computation. For this, a proof-carrying bitstream contains information that
helps the consumer to establish trust in certain security features. The validation of that
proof should be faster than the elaborate formal or otherwise verification of said security
feature. Hence, verification problems that are particularly suitable for the proof-carrying
hardware concept are those that offer a faster validation than verification. An example
of a verification problem that in its current state does not have a fast way of validating a
proof is the detection of short-circuits as suggested by Beckhoff et al. in [10]. A bitstream
scanner, which is equipped with a build-in algorithm, detects long-term short-circuits. The
producer can use that technique to screen the bitstream but has no means to communicate
the absence of short-circuit configurations among the multiplexers to the consumer. The
consumer has to inspect each part of the circuit, bitstream or graph representation of
the circuit again as no proof can be carried to the consumer and no workload can be
shifted towards to producer. The consumer would therefore not benefit from proof-carrying
hardware as no shift of workload can occur.

6.2 Usability of Combinational Equivalence Checks

In Section 3.3, I identified the usability as a vital aspect of the proof-carrying hardware
concept. As defined, the usability of proof-carrying hardware means a quick and un-
consuming validation of the safety proof, especially in comparison to the overall cost of
security verification and validation. Hence, a shift of the workload towards the producer
is of the essence.

All measurements in this chapter were taken on a Linux 2.6 machine with an Intel Xeon
2.40GHz CPU and 4 GB RAM, see [30, 27, 28]. For all measurements pi of the producer’s
tools and measurements cj of the consumer’s tools regarding either runtime or memory
usage, the total workload is workload =

∑
i(pi) +

∑
j(cj).

A first indication for the potential of this novel concept is the runtime comparison of
the verification and validation of cnf functions, i.e. the computation of the proof and the
checking of the proof, respectively. Table 6.1 compares the runtime of the SAT solver
(PicoSAT) and the proof checker (TraceCheck) for cnf problems from the 2008 SAT-
Race TS 1 benchmark. PicoSAT proves the unsatisfiability of the cnf formula, which is
an NP-complete problem. TraceCheck validates the resolution proof by checking every
resolution step, a task whose complexity is linear in the number of resolution steps and
constant in the number of literals of the original cnf. For a successful shift or workload,
the difference in complexity has to determine the runtimes for the test files.

The cnf test functions differ greatly in the number of variables and clauses. The last
column of Table 6.1 shows that the effort for computing the proof with PicoSAT makes up
for 74.33% to 99.70% percent of the total workload, composed of computing the proof trace
with PicoSAT and validating the proof by computing a resolution trace with TraceCheck.
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cnf instance Size of cnf TraceCheck PicoSAT
[Vars Clauses] total [s] [s] workload [%]

een-tipb-sr06-par1.cnf 163647 484827 0.052 6.772 99.24
een-tipb-sr06-tc6b.cnf 40196 115775 0.044 3.34 98.70
goldb-heqc-desmul.cnf 28902 179895 4.357 80.876 94.89
goldb-heqc-rotmul.cnf 5980 35229 7.459 37.368 83.36
hoons-vbmc-s04-05.cnf 8503 25097 5.217 15.312 74.59
hoons-vbmc-s04-07.cnf 25900 77627 33.866 158.698 82.41
manol-pipe-c10b.cnf 43517 129265 19.583 247.741 92.67
manol-pipe-c10ni s.cnf 204664 609478 0.046 6.447 99.29
manol-pipe-c6id.cnf 82022 242044 3.53 91.787 96.30
manol-pipe-c6n.cnf 37147 110077 3.065 53.91 94.62
manol-pipe-c6nid s.cnf 148051 438562 0.062 7.772 99.21
manol-pipe-c7 i.cnf 13023 38509 0.891 22.162 96.13
manol-pipe-c7idw.cnf 112620 333058 4.529 129.983 96.63
manol-pipe-c8b i.cnf 14052 41596 6.977 76.602 91.65
manol-pipe-c8 i.cnf 32057 95005 0.827 16.892 95.33
manol-pipe-c8n.cnf 53697 159595 6.903 108.065 94.00
manol-pipe-f6b.cnf 37002 109570 0.747 7.29 90.71
manol-pipe-f6n.cnf 37452 110920 0.997 8.21 89.17
manol-pipe-g10idw.cnf 174122 516784 8.455 141.273 94.35
manol-pipe-g6bid.cnf 40371 118192 0.474 6.141 92.83
manol-pipe-g7n.cnf 23936 70492 0.968 7.009 87.87
narai-vpn-10s.cnf 2270930 8901946 0.775 255.04 99.70
schup-l2s-s04-abp4.cnf 14809 48429 30.332 106.983 77.91
velev-npe-1.0-02.cnf 3295 35407 13.592 42.004 75.55
velev-sss-1.0-cl.cnf 1453 12526 12.431 35.988 74.33

Table 6.1: Runtime comparison of PicoSAT and TraceCheck for benchmarks of the 2008
SAT-Race TS 1. Given are the complexity and length of the test function, the
runtime for validation (TraceCheck) invested by the consumer, the runtime for
verification (PicoSAT) invested by the consumer, and the percentage of the
workload performed by the producer.

This first evaluation demonstrates the value for the consumer of shifting the workload away
from a reconfigurable system and instead towards the producer of a hardware module. The
gain for the consumer may vary, depending on the size and complexity of the proof, but
is always noticeable for these test cases. Figure 6.2 displays how the total runtime and
runtime for PicoSAT are in most cases indistinguishable.

Table 6.1 also indicates the following conclusions: The complexity and length of a cnf
formula seems to influence the shift of workload, i.e. the percentage of the total runtime
performed by the producer. The function hoons-vbmc-s04-05.cnf contains 8503 variables
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Figure 6.2: Runtime comparison for verification (PicoSAT) and validation (TraceCheck)
of unsatisfiable 2008 SAT-Race TS 1 test cases. (logarithmic scale)

and consists of 25097 clauses, the producer’s runtime is higher by a factor of 2.94 than
the consumer’s and makes up 74.59% of the workload. Functions manol-pipe-c8 i.cnf is
listed with 32057 variables and 95005 clauses, which is 3.7 times more than the previous
functions. This results in a factor 20.43 and a shift of workload of 95.33%. The largest
test function is narai-vpn-10s.cnf with 2270930 variables and 8901946 clauses. The shift
of workload is 99.70%. This is encouraging as it indicates that the principle of a light
workload for the consumer of a newly delivered hardware module, which is essential to
proof-carrying hardware, can be realized.

To further examine the possible shift of workload, I set up a preliminary tool flow shown
in Figure 6.3 to take more steps of the overall work flow of the production process and
the verification process into consideration. This proof of concept tool flow is a simplified
version of the scenario shown in Figure 5.2 as it uses ODIN II’s predecessor ODIN and the
simple ComPose tool which produces a concatenation of the single text files to simulate
a bitstream. The preliminary tool flow serves to demonstrate the feasibility of runtime
combinational equivalence checks as an application of proof-carrying hardware and to
validate whether it is possible to shift the verification workload from the consumer to
the producer. It is neither necessary nor the intention of this preliminary investigation
to verify all steps of the production, e.g., FPGA back-end synthesis tools, to check for
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Figure 6.3: Preliminary tool flow for CEC testing environment.

test function type

converter letter subset of EBCDIC to ASCII
parity function 128-bit
n-bit adder / subtractor n = 8, 16, 32, 64
n-bit unsigned multiplier n = 6, 8, 10, 16, 32, 64

Table 6.2: List of the 12 test functions for runtime and memory measurements of prelim-
inary tool flow.

correct transmission or to completely implement the consumer’s functions.

I report on results using the test functions listed in Table 6.2. I have chosen these
test functions and their according input size variations to contrast functions which are
presumably rather easy to verify with more demanding ones, i.e. the multipliers. As
mentioned before, an important metric for the feasibility of proof-carrying hardware, in
this case CEC, is the required computation time, especially for the consumer. I measure
the runtime of all tools in the preliminary tool flow. On the consumer side, ABC’ only
recomputes the miter without performing logic optimization.

Table 6.3 presents the runtime measurements for the test functions. The first row gives
the computation time for the producer’s side of the tool flow while the second row depicts
the runtimes for the consumer. The table clearly shows that the results differ greatly
for the different types of test functions as the multiplier test functions form a separate
group. First, with growing number of inputs multipliers synthesized from LUTs become
huge functions which is demonstrated by the high runtimes for VPR. Second, SAT solvers

71



Chapter 6.2. Usability of Combinational Equivalence Checks

Producer [s]

Test Function Odin ABC T-VPack VPR PicoSAT ComPose

converter 0.187 0.348 0.005 2.040 0.008 0.080
128-bit parity 0.194 0.350 0.100 10.892 0.036 0.111
8-bit add/sub 0.183 0.273 0.007 2.126 0.015 0.034
16-bit add/sub 0.122 0.279 0.011 5.520 0.048 0.074
32-bit add/sub 0.186 0.330 0.012 14.428 0.099 0.154
64-bit add/sub 0.195 0.432 0.220 40.674 0.244 0.327
6-bit multiplier 0.179 0.332 0.008 5.304 0.540 0.145
8-bit multiplier 0.184 0.450 0.010 13.205 15.337 1.148
10-bit multiplier 0.183 0.645 0.014 26.589 256.119 18.849
16-bit multiplier 0.205 1.473 0.040 133.814 3732.031*
32-bit multiplier 0.229 6.236 0.163 2116.210 3895.797*
64-bit multiplier 0.527 27.424 0.726 36447.768 6387.947*

Consumer [s] Producer

Test Function DeComP. ABC’ TraceCheck total total workload

converter 0.004 0.148 0.013 0.165 2.668 93%
128-bit parity 0.007 0.156 0.027 0.190 11.683 98%
8-bit add/sub 0.004 0.201 0.010 0.215 2.638 92%
16-bit add/sub 0.004 0.206 0.035 0.245 6.054 96%
32-bit add/sub 0.009 0.215 0.059 0.283 15.209 98%
64-bit add/sub 0.015 0.234 0.126 0.375 42.092 99%
6-bit multiplier 0.009 0.234 0.483 0.726 6.508 89%
8-bit multiplier 0.123 0.213 11.179 11.515 30.334 72%
10-bit multiplier 1.807 0.214 190.630 192.651 302.339 61%
16-bit multiplier
32-bit multiplier
64-bit multiplier

Table 6.3: Runtime measurements for producer and consumer in the CEC scenario. Mea-
surements aborted due to a lack of memory are marked with an asterisk.

have difficulties in proving the unsatisfiability of multiplier miters which is reflected by the
PicoSAT runtimes. In fact, in the experiments, PicoSAT aborted the computation due
to a lack of memory for multipliers with n = 16 and higher. Consequently, I could not
conduct measurements for the consumer side of the tool flow for these functions. I mark
these cases with an asterisk in Table 6.3.

The main observation from Table 6.3 is the difference in time effort between producer
and consumer. ABC’ is less costly than ABC with the gap widening for the more complex
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test functions. Most importantly, with one exception, there is a notable difference between
the PicoSAT and TraceCheck runtimes, even if not as pronounced as expected. This might
be due to the fact that on one hand unsatisfiability is easily proven for the miters built
from these simple test functions. Also, the generated netlists are quite large which means
all tools processing netlists spend substantial time in file I/O. For the more complex test
functions the SAT solver dominates the producer’s overall runtime, an effect that can
be seen in going from the 8-bit to the 10-bit multiplier. With Table 6.3, I also give an
overview of the total runtimes for both the consumer and producer side. The table also
reports the producer’s percentage of the total workload consisting of both the consumer’s
and producer’s runtime. The data shows that I succeeded in my attempt to shift the
majority of the workload from the consumer platform to an external resource.

Table 6.4 gives the results for the memory usage for each tool and test function. I
measured the peak memory usage with Valgrind [61], i.e. the massif tool, and included
stacks as well as heaps in the measurements. The first row displays the memory usage
on producer side, the second row show the measurement results on consumer side. As in
Table 6.3, the numbers marked with an asterisk represent a minimum value, measured
before the tool aborted the computation as it ran out of memory.

I note that PicoSAT and TraceCheck, followed by VPR and ABC, are the most memory
consuming tools on the producer’s and consumer’s side, respectively. Formal verification is
therefore among the most memory demanding tasks in the scenario. The larger multiplier
test functions with 16-bit inputs or more caused PicoSAT to run out of memory. Compar-
ing TraceCheck and PicoSAT, the consumer has to invest slightly more in memory than
the producer. As opposed to the runtimes, in which case the producer is able to burden
a major part of the total workload, the memory resource requirement is still considerable
for the consumer in this current prototype tool flow. I attribute this to the file I/O since
TraceCheck not only reads the proof trace but also writes the resolution trace as output.

6.3 Usability of Memory Access Monitor Verification

For a more conclusive answer with regard to the runtime workload shift, I used the pro-
totype tool flow as shown in Figure 5.2 with reference monitor circuits described in Sec-
tion 4.3 as test functions. For this purpose I combined a set of test functions, including
all previously elaborated types of reference monitors, see Table 6.5.

The test functions offer different levels of complexity to give a more meaningful range
of measurements. To gain some perspective on the complexity of the different policy
instances, i.e. test functions, I elaborate and compare two different test functions. The Iso4
function is an instance of the Isolation model, a static memory access policy introduced
in Section 4.3.2. Table 6.6 shows the actual policy instance as it was compiled into a
Verilog file and processed in the tool flow. Figure 6.4 gives an overview of the access
rights according to modules and ranges. As the policy is a static one, the access rights
are static and cannot change at runtime. Therefore, there is only a single state for the
reference monitor plus an additional error state in case of access rights violations. Even
with significantly more ranges, compartment, and modules, this reference monitor barely
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Producer

Test Function Odin ABC T-VPack VPR PicoSAT ComPose

converter 0.997 MiB 13.79 MiB 239.6 KiB 1.207 MiB 69.42 KiB 62.17 KiB
128-bit parity 935.8 KiB 13.60 MiB 310.1 KiB 3.465 MiB 189.2 KiB 61.78 KiB
8-bit add/sub 711.4 KiB 13.90 MiB 243.5 KiB 1.218 MiB 87.71 KiB 61.62 KiB
6-bit add/sub 771.4 KiB 14.05 MiB 267.4 KiB 2.306 MiB 238.8 KiB 61.62 KiB
32-bit add/sub 899.6 KiB 14.27 MiB 315.4 KiB 4.480 MiB 488.5 KiB 61.62 KiB
64-bit add/sub 1.130 MiB 14.58 MiB 533.8 KiB 8.341 MiB 1.010 MiB 61.62 KiB
6-bit multiplier 774.6 KiB 13.93 MiB 263.6 KiB 2.298 MiB 1.380 MiB 62.70 KiB
8-bit multiplier 803.9 KiB 13.95 MiB 301.1 KiB 4.086 MiB 25.74 MiB 64.28 KiB
10-bit multiplier 887.3 KiB 14.10 MiB 391.9 KiB 6.425 MiB 374.8 MiB 71.20 KiB
16-bit multiplier 1.201 MiB 14.42 MiB 937.0 KiB 16.46 MiB 2.477 GiB*
32-bit multiplier 2.750 MiB 19.83 MiB 3.590 MiB 67.33 MiB 2.742 GiB*
64-bit multiplier 8.858 MiB 48.98 MiB 14.41 MiB 271.0 MiB 2.699 GiB*

Consumer

Test Function DeComP. ABC’ TraceCheck

converter 62.12 KiB 10.06 MiB 81.00 KiB
128-bit parity 61.73 KiB 9.937 MiB 181.1 KiB
8-bit add/sub 61.58 KiB 10.54 MiB 101.1 KiB
16-bit add/sub 61.58 KiB 10.70 MiB 268.4 KiB
32-bit add/sub 61.58 KiB 10.98 MiB 485.9 KiB
64-bit add/sub 61.58 KiB 11.69 MiB 1.038 KiB
6-bit multiplier 62.66 KiB 10.38 MiB 2.167 MiB
8-bit multiplier 64.23 KiB 10.57 MiB 43.97 MiB
10-bit multiplier 71.15 KiB 10.87 MiB 652.8 MiB
16-bit multiplier
32-bit multiplier
64-bit multiplier

Table 6.4: Memory usage measurements for producer and consumer in the CEC scenario.
Measurements aborted due to a lack of memory are marked with an asterisk.

increases in complexity.

An instance of the Chinese Wall model is test function Chin1, as shown in Table 6.7. The
instance features two conflict-of-interest (COI) classes, each containing two ranges. The
subject Module1 can choose to access one member of each class. The actual complexity of
the dynamic policy is shown in Figure 6.5: The state machine resulting from this access
scenario operates with 10 states, the 9 squares represent the states for memory access,
the error state is not shown. Each memory access is a state transition and leaves less
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test function ranges modules security levels states

Biba1 / BL1 / High1 / Low1 2 2 2 2 / 2 / 3 / 3
Biba2 / BL2 / High2 / Low2 2 3 3 2 / 2 / 3 / 3
Biba3 / BL3 / High3 / Low3 3 3 3 2 / 2 / 7 / 7
Biba4 / BL4 / High4 / Low4 2 2 4 2 / 2 / 3 / 3
Biba5 / BL5 / High5 / Low5 2 4 4 2 / 2 / 7 / 5
Biba6 / BL6 / High6 / Low6 4 4 4 2 / 2 / 7 / 7

test function ranges modules compartments states

Iso1 2 2 2 2
Iso2 4 2 2 4
Iso3 16 8 4 32
Iso4 16 16 4 64

test function ranges modules COI classes states

Chin1 4 1 2 10
Chin2 6 1 2 17
Chin3 6 1 3 28
Chin4 8 1 4 82

Table 6.5: List of the 32 reference monitor test functions based on the six types of memory
access policies introduced in Section 4.3.

options for further memory accesses. Any further memory range or COI class dramatically
increases the complexity of the resulting reference monitor and its state machine. Test
function Chin4 manages the access to 8 memory ranges in 4 COI classes and requires a
state machine with 82 states to perform this task. For an overview of the required states
in the state machine refer to Table 6.5.

The increase in complexity is different for the varying reference monitors, the set of test
functions offers therefore an adequate variation in complexity.

6.3.1 Computational Effort

As a first step, I consider again only the runtime for PicoSAT and TraceCheck, i.e. verifi-
cation and validation. Figure 6.6 shows that the verification of the miter function is always
less than the validation of the resolution proof trace. In case of the very complex com-
binational miters, i.e. Iso3 and Iso4, I notice that a) verification and validation both are
more costly and b) the difference between verification and validation grows exponentially.
The runtime for both, PicoSAT and TraceCheck, is in these cases almost indistinguishable
from the runtime of PicoSAT itself. This means that the consumer is left with only a
fraction of the overall cost of security.

Table 6.8 lists the runtimes for PicoSAT and TraceCheck as well as the percentage of
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Isolation;
Compartment1 −→ Module1;
Compartment1 −→ Module2;
Compartment1 −→ Module3;
Compartment1 −→ Module4;
Compartment1 −→ Range1;
Compartment1 −→ Range2;
Compartment1 −→ Range3;
Compartment1 −→ Range4;
Compartment2 −→ Module5;
Compartment2 −→ Module6;
Compartment2 −→ Module7;
Compartment2 −→ Module8;
Compartment2 −→ Range5;
Compartment2 −→ Range6;
Compartment2 −→ Range7;
Compartment2 −→ Range8;

Compartment3 −→ Module9;
Compartment3 −→ Module10;
Compartment3 −→ Module11;
Compartment3 −→ Module12;
Compartment3 −→ Range9;
Compartment3 −→ Range10;
Compartment3 −→ Range11;
Compartment3 −→ Range12;
Compartment4 −→ Module13;
Compartment4 −→ Module14;
Compartment4 −→ Module15;
Compartment4 −→ Module16;
Compartment4 −→ Range13;
Compartment4 −→ Range14;
Compartment4 −→ Range15;
Compartment4 −→ Range16;

Table 6.6: Instance of the Isolation Model used as test function Iso4, including 4 com-
partments and 16 memory ranges and modules. Each compartment contains 4
ranges and 4 modules that have access to the according ranges.

Chinese;
Class1 −→ Range1;
Class1 −→ Range2;
Class2 −→ Range3;
Class2 −→ Range4;
Subject −→ Module1;

Table 6.7: Instance of the Chinese Wall Model used as test function Chin1.

the overall workload for the test function that PicoSAT constitutes. The table illustrates
two facts:

First of all, reference monitors based on dynamic memory access policies, i.e. the
bottom three types, offer a greater shift of workload than those based on static ones.
The average shift of workload of all Biba test functions is a mere 61.7%, and for Bell &
LaPadula and Isolation these numbers are 63,04%, and 80.52%, respectively. I attribute
this to the small size and lack of complexity of the miter functions. The absolute runtime
in seconds is low enough to suggest that it consists almost exclusively of the file I/O
overhead, the actual computational effort seems to be insignificant. In contrast, for the
Low Watermark functions, the shift of workload is 98.9%. For High Watermark and
Chinese Wall reference monitors, PicoSAT performs a respective 98.61% and 99.08% of
the verification and validation workload. For these test cases, the computational effort is
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init

     M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 
R1: r_ r_ r_ r_ __ __ __ __ __ __ __ __ __ __ __ __ 
R2: r_ r_ r_ r_ __ __ __ __ __ __ __ __ __ __ __ __ 
R3: r_ r_ r_ r_ __ __ __ __ __ __ __ __ __ __ __ __ 
R4: r_ r_ r_ r_ __ __ __ __ __ __ __ __ __ __ __ __ 
R5: __ __ __ __ r_ r_ r_ r_ __ __ __ __ __ __ __ __ 
R6: __ __ __ __ r_ r_ r_ r_ __ __ __ __ __ __ __ __ 
R7: __ __ __ __ r_ r_ r_ r_ __ __ __ __ __ __ __ __ 
R8: __ __ __ __ r_ r_ r_ r_ __ __ __ __ __ __ __ __ 
R9: __ __ __ __ __ __ __ __ r_ r_ r_ r_ __ __ __ __ 

R10: __ __ __ __ __ __ __ __ r_ r_ r_ r_ __ __ __ __ 
R11: __ __ __ __ __ __ __ __ r_ r_ r_ r_ __ __ __ __ 
R12: __ __ __ __ __ __ __ __ r_ r_ r_ r_ __ __ __ __ 
R13: __ __ __ __ __ __ __ __ __ __ __ __ r_ r_ r_ r_ 
R14: __ __ __ __ __ __ __ __ __ __ __ __ r_ r_ r_ r_ 
R15: __ __ __ __ __ __ __ __ __ __ __ __ r_ r_ r_ r_ 
R16: __ __ __ __ __ __ __ __ __ __ __ __ r_ r_ r_ r_ 

Figure 6.4: Static memory access rights of the Iso4 test function, an instance of the Iso-
lation memory access policy. Each block of rs in the matrix visualizes one
compartment.

by far greater than any overhead due to file handling.

The second noticeable fact is that the overall shift of workload for all 32 test instances
accumulates to 98.86%. That indicates that the gain from larger functions outweighs the
rather low shift of workload occurring for smaller and less complex functions.

The next analysis considers the overall runtime of the tool flow with regard to its
distribution between the consumer and producer. Figure 6.7 and Table 6.9 display the
consumer’s and the producer’s overall runtime for each test function. Refer to Figure 5.2
to see the list of included tools and work steps. I make the following observations:

• Firstly, for the consumer, the differences within the set of combinational test func-
tions is rather negligible. For the producer, the differences in runtime for the first
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init

     M1 
R1: r_ 
R2: r_ 
R3: r_ 
R4: r_ 

     M1 
R1: r_ 
R2: r_ 
R4: r_ 

{M1,r,R4}

     M1 
R1: r_ 
R2: r_ 
R3: r_ 

{M1,r,R3}

     M1 
R2: r_ 
R3: r_ 
R4: r_ 

{M1,r,R2}

     M1 
R1: r_ 
R3: r_ 
R4: r_ 

{M1,r,R1}

     M1 
R1: r_ 
R4: r_ 

{M1,r,R1}

     M1 
R2: r_ 
R4: r_ 

{M1,r,R2}

     M1 
R1: r_ 
R3: r_ 

{M1,r,R1}

     M1 
R2: r_ 
R3: r_ 

{M1,r,R2}{M1,r,R4} {M1,r,R3}{M1,r,R4} {M1,r,R3}

Figure 6.5: Dynamic memory access rights of the Chin1 test function, an instance of the
Chinese Wall memory access policy. Module M1 starts with four choices for
memory access. Each access (denoted by a triple of module id, access type,
and memory range at the arrows) eliminates access to any other memory range
from the same COI class until only two memory ranges from different COI
classes are available for access.

(combinational) half of the test functions are less pronounced than they are within
the second (sequential) half of the test functions. As presented in Table 6.9, only
the test functions Iso3 and Iso4 show a slight rise in runtime cost, particularly for
the producer with respective runtimes of 3.53 s and 5.021 s. For the second half of
the test set, the consumer runtime ranges from 1.213 s to 26.270 s, the producer
runtime ranges from 2.114 s to 130.522 s. Those wider ranges reflect the differences
in complexity of the various test functions.

• Secondly, for both, the consumer and the producer, the sequential test functions
are exponentially more costly than the combinational ones. With the exception of
Iso3 and Iso4 on the producer’s toll flow side, all reference monitor test functions
based on static memory access policies have a lower runtime than those based on
dynamic policies. In fact, 96.94% of the consumer’s and 90.83% of the producer’s
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total workload falls towards the second half of the test functions.

• Thirdly, the shift of workload towards the producer is higher for the first half of test
functions, i.e. the less complex ones. Despite the fact that the shift of workload
scaled well for the verification as demonstrated in Table 6.8, it did not correlate
with the complexity of the test function for the complete tool flow including the
verification. For the first three types of test function, the Biba, BL, and Iso, the
producer was burdened with 88.25%, 88.15%, and 94.36%, respective, of the total
runtime. For the Low, High, and Chin test functions, these percentages are 65.22%,
65.34%, and 80.11%. This can be attributed to the recomputation of the miter
function on the consumer’s side of the tool flow, see Figure 5.2. As Figure 6.7 shows,
the computation of the miter makes up almost all of the consumer’s workload. I
elaborated in Section 6.1 that the consumer performs a recomputation of the miter
to assure the match between design specification, hardware module, and safety proof.
This finding encourages the search for an optimized and less costly way of assuring
said match to further realize the shift of workload which is essential to the principle
proof-carrying hardware.

• The last and possibly most important result of the tool flow runtime comparison is
that for every test instance, the producer deals with the majority of the workload.
The consumer is again only left with a fraction of the total runtime. For all 32 test
cases, the producer performs 76.98% of the total workload. This clearly indicates
the great potential of proof-carrying hardware.

Combining all findings of this section, I can conclude the following: The shift of workload
to the producer’s side did succeed. Especially the shift of the security workload, i.e.
verification and validation, is encouraging, as it scaled with the test functions’ complexity:
over 98% of the total workload for all 32 test cases is performed by the producer. This is
due to the fact that the groups of complex test cases such as Chin, with an average shift
of workload of 99.08%, outweighs the less complex groups like Biba which only feature a
group average of 61.7%. For the overall workload, including all synthesis and verification
steps, the producer had exponentially more runtime than the consumer in all cases. For the
first half of test functions, the percentage of the overall workload shifted to the producer
is 85% - 96%. For the second half of the test functions, 62% - 83% of the workload falls
to the producer, see Table 6.9. For all 32 test cases, the producer performs an average
76.98% of the entire workload.

6.3.2 Memory Requirement

Another aspect of the usability which proof-carrying hardware has to provide is a light
memory usage burden for the consumer of hardware modules. The following analysis
provides a comparison of the memory usage for tools used by the consumer and producer,
respectively.

As a first analysis, I consider the memory usage difference between the verification and
validation, i.e. PicoSAT and TraceCheck, see Figure 6.8 and Table 6.10. For the combina-

79



Chapter 6.3. Usability of Memory Access Monitor Verification

Test unction TraceCheck PicoSAT
total [s] total [s] workload [%]

Biba1 0.003 0.004 57.14
Biba2 0.002 0.003 60.00
Biba3 0.004 0.006 60.00
Biba4 0.002 0.003 60.00
Biba5 0.003 0.005 62.50
Biba6 0.004 0.008 66.67
BL1 0.002 0.003 60.00
BL2 0.003 0.003 50.00
BL3 0.003 0.006 66.67
BL4 0.002 0.002 50.00
BL5 0.003 0.005 62.50
BL6 0.004 0.010 71.43
Iso1 0.001 0.002 66.67
Iso2 0.002 0.005 71.43
Iso3 0.016 0.075 82.42
Iso4 0.033 0.133 80.12
Low1 0.016 0.387 96.03
Low2 0.018 0.456 96.20
Low3 0.059 4.371 98.67
Low4 0.017 0.361 95.50
Low5 0.031 7.547 99.59
Low6 0.060 4.996 98.81
High1 0.016 0.365 95.80
High2 0.017 0.460 96.44
High3 0.058 4.176 98.63
High4 0.016 0.369 95.84
High5 0.033 3.680 99.11
High6 0.060 5.102 98.84
Chin1 0.032 2.969 98.93
Chin2 0.060 1.406 95.91
Chin3 0.116 11.177 98.97
Chin4 0.254 34.189 99.26

Table 6.8: Runtime comparison of PicoSAT (SAT) and TraceCheck (Check) for reference
monitor test functions as listed in Table 6.5.
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Test Function Consumer Producer
total [s] total [s] workload [%]

Biba1 0.141 0.903 86.49
Biba2 0.132 0.903 87.25
Biba3 0.141 1.076 88.41
Biba4 0.135 0.818 85.83
Biba5 0.139 1.020 88.01
Biba6 0.136 1.471 91.54
BL1 0.132 0.885 87.02
BL2 0.133 0.839 86.32
BL3 0.131 1.021 88.63
BL4 0.130 0.798 85.99
BL5 0.136 1.015 88.18
BL6 0.134 1.364 91.05
Iso1 0.130 0.846 86.68
Iso2 0.131 0.977 88.18
Iso3 0.164 3.530 95.56
Iso4 0.195 5.021 96.26
Low1 1.270 2.200 63.40
Low2 1.386 2.313 62.53
Low3 3.895 7.710 66.44
Low4 1.243 2.136 63.21
Low5 2.432 4.459 64.71
Low6 4.350 8.519 66.20
High1 1.213 2.138 63.80
High2 1.426 2.502 63.70
High3 3.814 6.983 64.68
High4 1.216 2.114 63.48
High5 3.092 5.950 65.80
High6 4.319 8.744 66.94
Chin1 2.659 4.864 64.66
Chin2 4.203 7.764 64.88
Chin3 8.358 23.962 74.14
Chin4 26.270 130.522 83.25

Table 6.9: Runtime comparison of producer and consumer for reference monitor test func-
tions as listed in Table 6.5.

81



Chapter 6.3. Usability of Memory Access Monitor Verification

 0.001

 0.01

 0.1

 1

 10

 100

Biba1
Biba2

Biba3
Biba4

Biba5
Biba6

BL1
BL2

BL3
BL4

BL5
BL6

Iso1
Iso2

Iso3
Iso4

Low1
Low2

Low3
Low4

Low5
Low6

High1

High2

High3

High4

High5

High6

Chin1

Chin2

Chin3

Chin4

S
ec

on
ds

Runtime Comparison

PicoSAT + TraceCheck
PicoSAT

TraceCheck

Figure 6.6: Runtime Comparison of verification vs. validation of the Table 6.5 reference
monitor test functions. (logarithmic scale)

tional miters, verification and validation memory footprints are rather indistinguishable.
For the bounded sequential equivalence checks, i.e. the second half of the test functions,
PicoSAT exceeds TraceCheck exponentially. Also, the difference between the first half and
second half of the test set, i.e. the reference monitors based on static and those based
on dynamic memory access policies, is exponential for the consumer and producer. This
seems to indicate that the file size of the miter functions is a rather dominant factor for
the combinational verification and validation. For the bounded sequential test cases, the
memory usage is dominated more by the actual computation than the file sizes. Hence,
the verification becomes exponentially more memory-intense than the validation. For the
three dynamic types of test functions, the producer burdens 84.39%, 84.44%, and 86.19%
of the workload for verification and validation. Since the workload for the first three test
types, Biba, BL, and Iso, is very low in comparison with about 49%, 85.37% of the overall
memory usage falls to the producer.

The second measurement considers the cumulative overall memory usage for the con-
sumer and producer when executing all tasks in the tool flow, see Figure 6.9 and Table 6.11.

Firstly, for the consumer and producer, the differences within the set of combinational
test functions is rather negligible. As presented in Table 6.11, only the test functions Iso3
and Iso4 show a very slight rise in memory usage. For the second half of the test set,
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Figure 6.7: Runtime Comparison of producer tool flow vs. consumer tool flow for Table 6.5
reference monitor test functions. (logarithmic scale)

the consumer memory usage ranges from 15474.89 KiB to 1996774.40 KiB, the producer
memory usage ranges from 39481.84 KiB to 1928449.40 KiB. Those wider ranges reflect
again, as happened for the runtime comparison in Table 6.9, the differences in complexity
of the various test functions.

Secondly, for both, the consumer and the producer, the sequential test functions are ex-
ponentially more costly than the combinational ones. All reference monitor test functions
based on static memory access policies have a lower memory footprint than those based
on dynamic policies. Similar to the results received for the runtime analysis, 96.10% of
the consumer’s and 90.63% of the producer’s total workload falls towards the second half
of the test functions.

Thirdly, the shift of workload towards the producer is higher for the first half of test
functions, i.e. the less complex ones. The shift of workload for the first three types of test
functions, the Biba, BL, and Iso accumulates to 71.86%, 71.86%, and 72.35%, respectively.
The lower number for the last three types of functions are 51.08%, 51.04%, and 49.43%,
for Low, High, and Chin. Figure 6.9 shows how the consumer’s memory usage is very close
to the memory usage required for the miter recomputation with the ABC tool. Hence, I
attribute it to the miter recomputation that the overall shift of the workload, i.e. memory
usage, for all 32 test functions is a mere 51.66%. As pointed out during the runtime
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comparison analysis in the previous section, a better way of matching the resolution proof
to the design specification in the tool flow, see Figure 5.2, would enhance the desired shift
of workload.

To summarize the findings in this section, I conclude: The memory usage comparison
is somewhat similar to the runtime comparison. The computation of the resolution proof
is exponentially more costly than validating the proof. Also, the test functions based on
dynamic memory access policies are exponentially more costly than those based on static
policies. A conclusion also drawn in Section 6.3.1.

The results have also shown that the memory usage for the consumer is largely domi-
nated by the miter recomputation. Again, a result known from Section 6.3.1. This further
manifests the need for a less costly way of matching the safety proof to its design spec-
ification and bitstream to allow for a lighter workload for the proof-carrying bitstream
consumer. This would also increase the shift of workload, in this case the memory usage,
which is 51.66% of the total workload for all 32 test cases. It would be desirable to further
the advantages of proof-carrying hardware to achieve an overall shift of workload that is
similar to the 85.37% shift of workload that had been achieved for the mere verification
and validation of the safety, i.e. proof computation and proof validation, which shows the
potential of the usability of proof-carrying hardware with regard to memory footprints.

6.4 Chapter Conclusion

In this chapter, I performed an experimental evaluation of the proof-carrying hardware
prototype. The proof-carrying hardware approach, as elaborated in Chapter 3, needs
to provide robustness and usability. I examined the robustness in Section 6.1. For the
prototype tool flow, I discussed how possible malicious or unintentional manipulation of the
data will eventually lead to validation failure, thus alarming the consumer of the proof-
carrying bitstream. Proof-carrying hardware succeeds in establishing trust in a newly
delivered hardware module from an untrusted source.

The usability of this novel concept is expressed in the shift of workload. The shift of
workload expresses the distribution of the workload between the producer, who should
provide as much as possible, and the consumer, who should be burdened as little as
possible. I investigated the shift of workload from producer to consumer concerning the
runtime and memory usage for the verification and validation process and also the entire
prototype tool flow. The test functions are miter cnfs based on reference monitors for static
and dynamic memory access policies, see Chapter 4. The results can be summarized as
follows and hold true for the runtime as well as memory usage:

• The dynamic memory access policies result in more complex test functions which
are more costly to verify and validate.

• The more costly functions show a greater shift of workload for the verification and
validation process.
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Test Function TraceCheck PicoSAT
max [KiB] max [KiB] workload [%]

Biba1 61.98 58.73 48.65
Biba2 62.65 62.63 49.99
Biba3 93.77 89.32 48.78
Biba4 52.98 51.08 49.09
Biba5 77.00 74.74 49.26
Biba6 113.20 111.4 49.60
BL1 60.78 58.74 49.15
BL2 60.51 60.24 49.89
BL3 91.55 85.62 48.33
BL4 52.98 51.08 49.09
BL5 72.97 68.78 48.52
BL6 109.00 113.20 50.95
Iso1 50.04 48.69 49.32
Iso2 76.55 72.70 48.71
Iso3 335.40 315.40 48.46
Iso4 494.80 485.00 49.50
Low1 7943.20 42670.10 84.31
Low2 8225.80 46991.40 85.10
Low3 26204.20 130252.80 83.25
Low4 7787.50 40478.70 83.87
Low5 14899.20 92938.20 86.18
Low6 27289.60 146022.40 84.25
High1 7693.30 39843.80 83.82
High2 8388.60 48609.30 85.28
High3 25712.60 126464.00 83.10
High4 7755.80 40345.60 83.88
High5 16588.80 105062.40 86.36
High6 27555.80 148070.40 84.31
Chin1 15083.50 86220.80 85.11
Chin2 27258.90 146227.20 84.29
Chin3 51077.10 273510.40 84.26
Chin4 120627.20 829747.20 87.31

Table 6.10: Memory usage comparison of PicoSAT (SAT) and TraceCheck (Check) for
reference monitor test functions as listed in Table 6.5.
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Test Function Consumer Producer
max [KiB] max [KiB] workload [%]

Biba1 15560.21 39771.23 71.88
Biba2 15707.04 40030.94 71.82
Biba3 15758.95 40329.55 71.90
Biba4 15537.60 39563.36 71.80
Biba5 15740.49 40123.68 71.82
Biba6 15934.00 40832.20 71.93
BL1 15558.98 39771.12 71.88
BL2 15701.57 39989.08 71.81
BL3 15755.04 40167.46 71.83
BL4 15537.59 39563.35 71.80
BL5 15737.11 40283.19 71.91
BL6 15927.10 40824.10 71.94
Iso1 15474.89 39481.84 71.84
Iso2 15585.14 39890.70 71.91
Iso3 16507.90 43490.80 72.49
Iso4 16896.20 45798.60 73.05
Low1 143202.50 159867.49 52.75
Low2 152294.37 168785.67 52.57
Low3 352355.20 353556.40 50.09
Low4 137924.27 154555.50 52.84
Low5 234085.80 245134.40 51.15
Low6 400150.20 400749.40 50.04
High1 139778.28 156693.33 52.85
High2 157482.50 173826.66 52.47
High3 348272.70 349953.00 50.12
High4 137894.05 154687.44 52.87
High5 287622.10 297841.50 50.87
High6 402567.30 402932.20 50.02
Chin1 255986.90 267065.60 51.06
Chin2 393976.40 394418.90 50.03
Chin3 698584.00 679526.10 49.31
Chin4 1996774.40 1928449.40 49.13

Table 6.11: Memory usage comparison of Producer and Consumer for reference monitor
test functions as listed in Table 6.5.

86



 10

 100

 1000

 10000

 100000

 1e+06

Biba1
Biba2

Biba3
Biba4

Biba5
Biba6

BL1
BL2

BL3
BL4

BL5
BL6

Iso1
Iso2

Iso3
Iso4

Low1
Low2

Low3
Low4

Low5
Low6

High1

High2

High3

High4

High5

High6

Chin1

Chin2

Chin3

Chin4

K
iB

Memory Usage Comparison

PicoSAT+TraceCheck
PicoSAT

TraceCheck

Figure 6.8: Memory usage comparison for verification versus validation. (logarithmic
scale)

• For the execution of the complete tool flow, the costs for the consumer are signifi-
cantly lower for the first (based on static policies) test cases.

• For the execution of the complete tool flow, the consumer’s cost are mostly de-
termined by the miter recomputation, which is necessary to assure the match be-
tween hardware module, proof, and design specification. A more feasible solution for
guaranteeing that match is required to fully embrace the concept of proof-carrying
hardware into the prototype tool flow.

The producer has provided 98.86% of the runtime workload for the verification and
validation and 76.98% of the runtime for the complete tool flow. I conclude that proof-
carrying hardware has the potential to utilize a split between consumer and producer to
make formal and other verification feasible to a wide range of consumers that depend on
on-the-fly attestation in newly delivered hardware modules. 85.37% of the memory usage
for the verification and validation has been shifted to the producer, which shows that
other aspects of computational cost can be shifted to the producer as well. The mere
54.66% shift of memory usage for the complete tool flow can be assigned to the miter
recomputation task, which already determined the consumer’s runtime for the overall tool
flow. This indicates that the respective tasks for the consumer and producer have to be
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Figure 6.9: Memory usage comparison of producer and consumer workload for test func-
tions listed in Table 6.5. (logarithmic scale)

carefully chosen in order to achieve a scenario where the validation is as light-weight as
possible.

Overall, the results are encouraging and show the robustness and feasibility of my novel
concept. The next chapter summarizes the contributions of this work and concludes the
thesis.
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CHAPTER 7

Conclusion and Outlook

7.1 Contributions

With this work, I present the novel concept of proof-carrying hardware, an approach to
security for dynamically reconfigurable hardware which utilizes dynamic reconfiguration
with hardware modules from untrusted sources. I provide fundamental groundwork to
establish trust in such delivered hardware modules through the validation of a safety proof
which guarantees the hardware module’s absolute adherence to a previously determined
safety policy. The benefit of proof-carrying hardware over other approaches to secure the
reconfiguration of hardware devices is threefold:

• Reconfigurable hardware scenarios benefit from very short reconfiguration times or
even on-the-fly reconfiguration. Yet, they can lack the resources to handle large-
scale testing or verification tasks. Even if resources exist and are also available,
it may not always be economical to perform elaborate proof computations on site.
Those reconfigurable systems benefit from proof-carrying hardware as the producer
of the hardware module provides the computationally costly safety proof which the
reconfigurable platform quickly validates. This shift of workload away from the
consumer to the producer of the hardware module is a principle inherent to the
concept of proof-carrying hardware and allows for proof-carrying hardware’s great
usability.

• Proof-carrying hardware establishes trust in a hardware module delivered by an un-
trusted producer. The only requirement is a trustworthy procedure at the consumer’s
disposal to check the proof. The production and verification process is left up to the
producer based on the safety policy. In the context of this work, the safety policy
is the demand for combinational or sequential equivalence, respectively, and the for-
mat of the bitstream. Neither this process nor the transmission of the proof-carrying
bitstream require any security measures since the validation of the proof-carrying
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bitstream at the consumer side not only checks the safety proof for correctness but
also matches the proof, the hardware module, and the safety policy (established by
the consumer) against each other. Any manipulation or design flaw resulting in a vi-
olation of the safety policy would be noticed by the consumer before he would trust
and run the newly delivered hardware. Hence, proof-carrying hardware is robust
against malicious tampering or accidental misuse.

• Proof-carrying hardware can be applied to a wide range of security challenges and
even combinations of them. The safety policy states formally all the consumer’s
security needs that the hardware module has to fulfill. The policy incorporates
therefore the individual security concerns as well as the individual target platform’s
specifications. In general, security properties of reconfigurable hardware that can
be described and validated, formally or otherwise, are verifiable with proof-carrying
hardware due to its great flexibility.

I have provided a flexible and promising concept. I have also provided a proof-carrying
hardware prototype as the basis for further extensions of the proof-carrying hardware
concept. The prototype also allows for an evaluation of the concept to provide the proof
to the thesis claim made in Section 3.5.

• The transfer of the proof-carrying code concept to the domain of reconfigurable
hardware has been done with the development of proof-carrying hardware.

• Proof-carrying hardware is usable. The successful shift of workload regarding run-
time and memory usage has been demonstrated in Section 6.2 and Section 6.3. Espe-
cially for the tasks involved in establishing trust in the security of the new hardware
module, the shift of workload has been encouraging.

• I also deliberately and under controlled circumstances manipulated the different files
to determine the robustness of the prototype. The results were encouraging as the
proof validation and proof matching process was able to detect any manipulation.
Proof-carrying hardware’s concept shows great robustness against manipulation.

• I have applied proof-carrying hardware to the runtime verification of combinational
and bounded sequential equivalence checks and thereby also employed it in the use
case scenario of monitoring the reconfigurable system at runtime. This demonstrates
to potential flexibility of proof-carrying hardware.

7.2 Conclusions

With the proof-carrying hardware prototype tool flow, I examined the potential of proof-
carrying hardware. The prototype applies proof-carrying hardware to the security chal-
lenge of verifying combinational and bounded sequential equivalence. The verification
of design and implementation equivalence is only a single instance of the proof-carrying
hardware concept. My novel approach is a general concept based on the principle that
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untrusted agents deliver hardware in combination with a safety proof. This idea is not
tied to a certain kind of security challenge or proof. Also, the idea of what constitutes
a proof extends beyond formal proofs. In theory, the proof-carrying hardware concept
applies also to any kind of security assurance that a consumer of hardware can validate.

The above mentioned prototype tool flow is, as detailed in Chapter 5 based on open-
source tools and my abstract FPGA architecture and bitstream format. Proof-carrying
hardware would benefit from an additional implementation in propriety tools and FPGA
boards. The application to more complex security challenges would extend the concept to
adapt to new use cases and demonstrate how well the concept scales to real-life problems.

The aspect of scalability is particularly interesting. Section 6.2 has shown that the
complexity of verification can vary greatly for different test cases. Proving combinational
equivalence for all n-bit multiplier test functions was actually beyond the capability of the
experiment’s setup. This is due to the fact that formal verification is usually a problem
of high complexity, NP-complete for SAT solving, and can become exponentially difficult.
As proof-carrying hardware utilizes existing verification methods and tools, the concept’s
usability improves with tools that scale well for larger problems.

7.3 Lessons Learned

From the proof-carrying hardware prototype implementation I was able to draw conclu-
sions regarding any implementation of the novel method.

1. For verification and validation of the proof the producer is left with 98.86 % of the
runtime workload and 85.37 % of the memory footprint. For the overall workload
including every step in the tool flow, the producer delivers 76.98 % of the total
runtime and 51.66 % of the memory usage. The conclusion to draw from these
results is that

a) a single task assigned to the consumer, in this case the miter recomputation,
can change the shift of workload in favor of the producer, a disadvantage to the
consumer which should be avoided.

b) not all aspects of computational workload shift in the same way: memory
usage never falls below a certain minimum once the tool is run and the test file
is processed. The runtime measurements show greater variations and do not
depend as much on file I/O and are therefore more flexible to shift.

2. Test functions that were more complex involved more runtime and memory usage for
both the consumer and producer. Considering only the verification and validation
of the resolution proof, the shift of workload to the producer was more successful for
the more demanding test cases.

There are two lessons to be learned for the future application of proof-carrying hardware:

1. The actual implementation of proof-carrying hardware influences the usability greatly.
Depending on the tools of the tool flow, a single task can determine how successful
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the shift of workload is and how resources are used. The specific scenario and the
available resources should indicate the choice of tools and methods.

2. The shift of workload varies with the size of the problem. More specifically, the shift
of workload begins after a minimum amount of work is performed by the consumer as
well as the producer. This minimum amount of work consists of file I/O and starting
a program since those tasks have to be executed no matter the size of the actual
computational problem. The type of verification to which proof-carrying hardware
is applied should be chosen under advisement of the actual size of the verification
problem.

7.4 Outlook and Future Work

This thesis has presented proof-carrying hardware as a novel concept for the security of
reconfigurable devices and their reconfiguration with bitstreams from untrusted sources.
As reconfigurable hardware and its ability to update becomes increasingly important, the
security of said updates becomes equally important. Also, the embedded systems and their
deployment environments become increasingly complex which leads to an ever-growing
complexity of security. From my perspective, proof-carrying hardware is a step towards
meeting this new demand for security. This unique and novel approach demonstrates a
new understanding of security and security assurance. Considering the many different
parties involved in the production of reconfigurable fabric and its hardware modules, it
is not manageable to establish trust in a specific producer or supplier. Instead, the goal
should be to establish trust in the products delivered, not the producer himself. I am
also convinced that proof-carrying hardware’s inherent flexibility to extend and its use of
open-source tools and formats will make it highly attractive for the research community.

This thesis presented the groundwork for this concept as a first step. As my research has
shown encouraging results, future work will further proof-carrying hardware in multiple
directions:

• Proof-carrying hardware is particularly suited for the verification of security prop-
erties that result in a proof which can be quickly validated. Future work will apply
proof-carrying hardware to further scenarios where security is costly to verify but
comparably inexpensive to be checked with a safety proof. Security may cover func-
tional properties but particularly non-functional properties of the hardware:

– Physical isolation, for instance in the form of moats and drawbridges [36] could
benefit from proof-carrying hardware. If the consumer of a bitstream contain-
ing physically isolated IP cores was given a means of validating the sufficient
isolation, trust could be established in the implementation. Other placement
and routing constraints could also be verified.

– A vital aspect of hardware is the clock frequency. It is conceivable to apply
proof-carrying hardware to the verification of a minimum, maximum or exact
clock frequency to assure the untroubled integration of a hardware module.
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• ReconOS [52] is an operating system for dynamically reconfigurable hardware. Proof-
carrying hardware has already been applied to the verification of reference monitor
modules that manage the access to shared memory. The integration of those verified
and validated modules into ReconOS in addition to or exchange for the regular
memory management is planned.

• The proof-carrying bitstream itself is an important aspect of this novel concept as
it contains both, hardware module and proof. The bitstream’s make-up enforces
the usability and the robustness of proof-carrying hardware. The bitstream should
no longer be made up of two distinct parts. A more feasible solution would be to
have the hardware module carry the proof implicitly in its make-up, as suggested by
Betz [12].

My novel approach delivers proof-carrying hardware as a flexible concept. This concept
is meant for further extension to cover not only a wide range of security challenges but
also to deliver to more specific needs. The long-term goal of the development of proof-
carrying hardware must be to provide for a means to describe any security threat and
physical aspect of reconfigurable hardware security. This shall result in truly customized
safety policies and design-specific proofs of safety to cater to a reconfigurable platform’s
individual security need.
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APPENDIX A

File Formats

A.1 Pre-existing Tool Flow File Formats

Listing A.1: Excerpt from blif file for Chines Wall example Listing 4.2.

. model State Machine

. inputs top ˆ c l o ck top ˆ r e s e t top ˆ module id ˜0 topˆ module id ˜1 \
top ˆ module id ˜2 topˆ module id ˜3 topˆ module id ˜4 top ˆop˜0 \

top ˆop˜1 top ˆ address ˜0 top ˆ address ˜1 top ˆ address ˜2 \
top ˆ address ˜3 top ˆ address ˜4 top ˆ address ˜5 top ˆ address ˜6
top ˆ address ˜7 top ˆ address ˜8 top ˆ address ˜9 top ˆ address ˜10 \
top ˆ address ˜11 top ˆ address ˜12 top ˆ address ˜13 top ˆ address ˜14 \
top ˆ address ˜15 top ˆ address ˜16 top ˆ address ˜17 top ˆ address ˜18 \
top ˆ address ˜19 top ˆ address ˜20 top ˆ address ˜21 top ˆ address ˜22 \
top ˆ address ˜23 top ˆ address ˜24 top ˆ address ˜25 top ˆ address ˜26 \
top ˆ address ˜27 top ˆ address ˜28 top ˆ address ˜29 top ˆ address ˜30 \
top ˆ address ˜31
// g l o b a l inputs

. outputs top ˆ i s l e g a l
// g l o b a l outputs

. l a t c h n151 FF NODE33 re top ˆ c l o ck 0

. l a t c h n191 FF NODE34 re top ˆ c l o ck 0
// l a t c h i n s t a n c e s with one input , one output ,
// s e n s i t i v e to the r i s i n g edge o f the c l o ck
// i n i t i a t e d with the Boolean value 0
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. names FF NODE33 FF NODE34 n48
11 1
. names top ˆ address ˜26 topˆ address ˜27 n49
00 1
. names top ˆ address ˜25 topˆ address ˜31 n50
00 1
. names top ˆ address ˜24 topˆ address ˜30 n51
00 1
. names top ˆ address ˜28 topˆ address ˜29 n52
00 1
. names top ˆ address ˜22 topˆ address ˜23 n53
00 1
. names top ˆ address ˜20 topˆ address ˜21 n54
00 1
. names n53 n54 n55
11 1
. names n51 n52 n56
11 1
. names n49 n50 n57
11 1
. names n56 n57 n58
11 1
. names n55 n58 n59
11 1
. names top ˆ address ˜14 topˆ address ˜15 n60
00 1
. names top ˆ address ˜12 topˆ address ˜13 n61
00 1
[ . . . ]
// excerpt from the l i s t o f l o g i c gate i n s t a n c e s
// i n s t a n c e s have two inputs and one output
// the l o g i c func t i on i s de f i ned by l i n e s from the truth
// t a b l e implementing the funct ion , d e f i n i n g e i t h e r a l l
// p o s i t i v e or negat ive outputs i s s u f f i c i e n t

. names n48 topˆ i s l e g a l
0 1
. names n97 n191
0 1
// the number o f inputs f o r the l o g i c gate i s not f i x e d

. end
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Listing A.2: Excerpt from .net netlist file for Chines Wall Verilog example Listing 4.2.

. g l o b a l topˆ c l o ck
// g l o b l c l o ck

. input top ˆ c l o ck
p i n l i s t : top ˆ c l o ck

. input top ˆ r e s e t
p i n l i s t : top ˆ r e s e t

. input top ˆ module id ˜0 // module ID as g l o b a l inputs
p i n l i s t : top ˆ module id ˜0

. input top ˆ module id ˜1
p i n l i s t : top ˆ module id ˜1

. input top ˆ module id ˜2
p i n l i s t : top ˆ module id ˜2

. input top ˆ module id ˜3
p i n l i s t : top ˆ module id ˜3

. input top ˆ module id ˜4
p i n l i s t : top ˆ module id ˜4

. input top ˆop˜0 // memory a c c e s s type as g l o b a l input
p i n l i s t : top ˆop˜0

. input top ˆop˜1
p i n l i s t : top ˆop˜1

[ . . . ]

. input top ˆ address ˜27 // excerpt o f the memory range address
p i n l i s t : top ˆ address ˜27 // as g l o b a l inputs

. input top ˆ address ˜28
p i n l i s t : top ˆ address ˜28

. input top ˆ address ˜29
p i n l i s t : top ˆ address ˜29
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. input top ˆ address ˜30
p i n l i s t : top ˆ address ˜30

. input top ˆ address ˜31 // address l ength maximum of 32 b i t s
p i n l i s t : top ˆ address ˜31

. output out : top ˆ i s l e g a l
p i n l i s t : top ˆ i s l e g a l
// g l o b a l output

. c lb n66
p i n l i s t : n64 n65 open open n66 open
subblock : n66 0 1 open open 4 open

. c lb n64
p i n l i s t : top ˆ address ˜10 top ˆ address ˜11 open open n64 open
subblock : n64 0 1 open open 4 open

. c lb n65
p i n l i s t : top ˆ address ˜8 top ˆ address ˜9 open open n65 open
subblock : n65 0 1 open open 4 open

. c lb n63
p i n l i s t : n61 n62 open open n63 open
subblock : n63 0 1 open open 4 open

. c lb n62
p i n l i s t : n57 n58 open open n62 open
subblock : n62 0 1 open open 4 open

. c lb n61
p i n l i s t : n59 n60 open open n61 open
subblock : n61 0 1 open open 4 open

. c lb n57
p i n l i s t : top ˆ address ˜14 top ˆ address ˜15 open open n57 open
subblock : n57 0 1 open open 4 open

// each c o n f i g u r a b l e l o g i c b lock ( c lb ) and i t s subblocks
// are determined with inputs , undef ined inputs , and output

[ . . . ]
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Listing A.3: Excerpt from placement file for netlist Listing A.2 resulting from Listing 4.2.

N e t l i s t f i l e : chin1b . net Arch i t e c tu r e f i l e : k4−n1 . xml
Array s i z e : 13 x 13 l o g i c b locks

#block name x y subblk block number
#−−−−−−−−−− −− −− −−−−−− −−−−−−−−−−−−
top ˆ c l o ck 14 13 2 #0
top ˆ r e s e t 0 3 0 #1
top ˆ module id ˜0 0 7 2 #2
top ˆ module id ˜1 0 7 0 #3
top ˆ module id ˜2 0 11 1 #4
top ˆ module id ˜3 0 11 2 #5
top ˆ module id ˜4 0 11 0 #6
top ˆop˜0 0 6 2 #7
top ˆop˜1 0 6 1 #8
top ˆ address ˜4 14 3 0 #9
top ˆ address ˜5 14 2 0 #10
top ˆ address ˜6 14 2 2 #11
top ˆ address ˜7 14 2 1 #12
top ˆ address ˜8 14 5 0 #13
top ˆ address ˜9 14 5 1 #14
top ˆ address ˜10 14 7 2 #15
top ˆ address ˜11 14 7 0 #16
top ˆ address ˜12 7 14 0 #17
top ˆ address ˜13 7 14 1 #18
top ˆ address ˜14 7 14 2 #19
top ˆ address ˜15 5 14 1 #20
top ˆ address ˜16 0 9 1 #21
top ˆ address ˜17 0 9 0 #22
top ˆ address ˜18 0 10 2 #23
top ˆ address ˜19 0 10 1 #24
top ˆ address ˜20 14 8 0 #25
top ˆ address ˜21 14 8 2 #26
top ˆ address ˜22 14 9 1 #27
top ˆ address ˜23 14 9 2 #28
top ˆ address ˜24 14 12 0 #29
top ˆ address ˜25 9 14 1 #30
top ˆ address ˜26 14 11 2 #31
top ˆ address ˜27 14 11 0 #32
top ˆ address ˜28 14 11 1 #33
top ˆ address ˜29 14 10 2 #34
top ˆ address ˜30 14 12 1 #35
top ˆ address ˜31 9 14 2 #36
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out : top ˆ i s l e g a l 11 0 0 #37
n66 13 6 0 #38
n64 13 7 0 #39
n65 13 5 0 #40
n63 11 10 0 #41
n62 7 11 0 #42
n61 2 10 0 #43
n57 6 11 0 #44
n59 1 10 0 #45
n58 8 11 0 #46
n60 1 9 0 #47
n78 10 11 0 #48
n79 10 10 0 #49
n76 11 11 0 #50
n77 9 11 0 #51
n71 13 12 0 #52
n72 12 11 0 #53
n70 9 12 0 #54
n69 13 11 0 #55
top ˆFF NODE˜88 1 1 0 #56
n194 2 3 0 #57
n195 1 3 0 #58
n196 1 2 0 #59
n193 3 3 0 #60
n68 12 4 0 #61
n67 13 3 0 #62
n190 4 3 0 #63
n95 9 10 0 #64
n94 12 10 0 #65
n106 12 8 0 #66
n93 12 6 0 #67
n105 12 7 0 #68
n100 11 6 0 #69
n92 12 1 0 #70
n90 13 2 0 #71
n91 13 1 0 #72
n99 12 5 0 #73
n104 12 3 0 #74
n98 13 4 0 #75
n103 12 2 0 #76
n96 6 10 0 #77
[ . . . ]
top ˆ i s l e g a l 11 1 0 #182
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Listing A.4: Excerpt from routing file for netlist Listing A.2 resulting from Listing 4.2.

Array s i z e : 13 x 13 l o g i c b locks .

Routing :

Net 0 ( top ˆ c l o ck ) : g l o b a l net connect ing :

Block top ˆ c l o ck (#0) at (14 , 13) , Pin c l a s s 7 .
Block top ˆFF NODE˜88 (#56) at (1 , 1 ) , Pin c l a s s 2 .
Block top ˆFF NODE˜85 (#122) at (4 , 2 ) , Pin c l a s s 2 .
Block top ˆFF NODE˜86 (#145) at (1 , 4 ) , Pin c l a s s 2 .
Block top ˆFF NODE˜87 (#152) at (3 , 2 ) , Pin c l a s s 2 .

Net 1 ( top ˆ r e s e t )
SOURCE (0 , 3 ) Pad : 1

OPIN (0 , 3 ) Pad : 1
CHANY (0 ,2 ) to (0 , 3 ) Track : 7

IPIN (1 , 3 ) Pin : 1
SINK (1 , 3 ) Class : 0

CHANY (0 ,2 ) to (0 , 3 ) Track : 7
CHANX (1 ,1 ) to (2 , 1 ) Track : 6

IPIN (1 , 2 ) Pin : 0
SINK (1 , 2 ) Class : 0
OPIN (0 , 3 ) Pad : 1

CHANY (0 ,2 ) to (0 , 3 ) Track : 3
CHANX (1 ,1 ) Track : 0
CHANY (1 ,2 ) to (1 , 3 ) Track : 0
CHANX (2 ,2 ) to (3 , 2 ) Track : 2
CHANY (3 ,1 ) to (3 , 2 ) Track : 7

IPIN (4 , 2 ) Pin : 1
SINK (4 , 2 ) Class : 0

CHANX (1 ,1 ) to (2 , 1 ) Track : 6
CHANY (2 ,2 ) to (2 , 3 ) Track : 6
CHANX (3 ,3 ) to (4 , 3 ) Track : 6
CHANY (4 ,2 ) to (4 , 3 ) Track : 3
CHANX (3 ,2 ) to (4 , 2 ) Track : 1

IPIN (3 , 2 ) Pin : 2
SINK (3 , 2 ) Class : 0
OPIN (0 , 3 ) Pad : 1

CHANY (0 ,3 ) to (0 , 4 ) Track : 4
IPIN (1 , 4 ) Pin : 1
SINK (1 , 4 ) Class : 0
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Net 2 ( top ˆ module id ˜0)
SOURCE (0 , 7 ) Pad : 7

OPIN (0 , 7 ) Pad : 7
CHANY (0 ,6 ) to (0 , 7 ) Track : 7

IPIN (1 , 7 ) Pin : 1
SINK (1 , 7 ) Class : 0

Net 3 ( top ˆ module id ˜1)
SOURCE (0 , 7 ) Pad : 1

OPIN (0 , 7 ) Pad : 1
CHANY (0 ,6 ) to (0 , 7 ) Track : 3
CHANX (1 ,5 ) Track : 0
CHANY (1 ,6 ) to (1 , 7 ) Track : 0

IPIN (1 , 7 ) Pin : 3
SINK (1 , 7 ) Class : 0

[ . . . ]

Net 7 ( top ˆop ˜0)
SOURCE (0 , 6 ) Pad : 7

OPIN (0 , 6 ) Pad : 7
CHANY (0 ,6 ) to (0 , 7 ) Track : 2
CHANX (1 ,6 ) to (2 , 6 ) Track : 0

IPIN (1 , 6 ) Pin : 2
SINK (1 , 6 ) Class : 0

[ . . . ]

Net 36 ( top ˆ address ˜31)
SOURCE (9 ,14 ) Pad : 7

OPIN (9 ,14 ) Pad : 7
CHANX (9 ,13 ) to (10 ,13) Track : 2
CHANY (9 ,13 ) Track : 3
CHANY (9 ,11 ) to (9 , 12 ) Track : 3

IPIN (9 ,12 ) Pin : 3
SINK (9 ,12 ) Class : 0

[ . . . ]

Net 180 ( n158 )
SOURCE (4 , 5 ) Class : 1

OPIN (4 , 5 ) Pin : 4
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CHANX (3 ,4 ) to (4 , 4 ) Track : 5
CHANY (3 ,5 ) to (3 , 6 ) Track : 6
CHANX (4 ,6 ) to (5 , 6 ) Track : 6

IPIN (4 , 7 ) Pin : 0
SINK (4 , 7 ) Class : 0

Net 181 ( top ˆ i s l e g a l )
SOURCE (11 ,1 ) Class : 1

OPIN (11 ,1 ) Pin : 4
CHANX (11 ,0 ) to (12 ,0 ) Track : 0

IPIN (11 ,0 ) Pad : 0
SINK (11 ,0 ) Pad : 0

A.2 Proof-carrying Hardware File Format

Listing A.5: Complete bitstream file for
Chines Wall Verilog example
Listing 4.2.

. begin

b l o c k a r r a y s i z e : 8x8
l u t s i z e : 2

g in : c l o ck r e s e t module id0 \
module id1 module id2 \
module id3 module id4 op0 op1 \
adr0 adr1 adr2 adr3 adr4 adr5 \
adr6 adr7 adr8 adr9 adr10 \
adr11 adr12 adr13 adr14 adr15 \
adr16 adr17 adr18 adr19 adr20 \
adr21 adr22 adr23 adr24 adr25 \
adr26 adr27 adr28 adr29 adr30 \
adr31
// a l l g l o b a l inputs

gout : i s l e g a l
// a l l g l o b a l outputs

. gout i s l e g a l ( 7 , 0 ) . 6
// g l o b a l output rout ing

. g in c l o ck (3 , 9 )
l ou t ( 8 , 3 ) . d e f a u l t
l ou t ( 8 , 5 ) . d e f a u l t
// s p e c i a l c l o ck rout ing

. g in r e s e t ( 9 , 4 )
l ou t ( 8 , 4 ) . 3
l ou t ( 8 , 5 ) . 3
// r e g u l a r g l o b a l input rout ing

. g in module id0 (0 , 3 )
l ou t ( 1 , 3 ) . 2

. g in module id1 (0 , 3 )
l ou t ( 1 , 3 ) . 1

. g in module id2 (6 , 0 )
l ou t ( 6 , 1 ) . 3

. g in module id3 (6 , 0 )
l ou t ( 6 , 1 ) . 0

. g in module id4 (5 , 0 )
l ou t ( 5 , 1 ) . 3

. g in op0 (0 , 2 )
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l ou t ( 1 , 2 ) . 3

. g in op1 (0 , 2 )
l ou t ( 1 , 2 ) . 2

. g in adr4 (0 , 5 )
l ou t ( 1 , 5 ) . 1
l ou t ( 1 , 4 ) . 0

. g in adr5 (0 , 5 )
l ou t ( 1 , 5 ) . 2
l ou t ( 1 , 4 ) . 2

. g in adr6 (0 , 6 )
l ou t ( 1 , 6 ) . 1

. g in adr7 (0 , 6 )
l ou t ( 1 , 6 ) . 2

. g in adr8 (5 , 9 )
l ou t ( 5 , 7 ) . 1

. g in adr9 (5 , 9 )
l ou t ( 5 , 7 ) . 3

. g in adr10 (9 , 6 )
l ou t ( 8 , 6 ) . 3

. g in adr11 (9 , 6 )
l ou t ( 8 , 6 ) . 1

. g in adr12 (9 , 6 )
l ou t ( 7 , 6 ) . 1

. g in adr13 (9 , 7 )
l ou t ( 7 , 6 ) . 0

. g in adr14 (9 , 7 )
l ou t ( 8 , 7 ) . 3

. g in adr15 (9 , 7 )
l ou t ( 8 , 7 ) . 2

. g in adr16 (2 , 9 )
l ou t ( 2 , 7 ) . 1

. g in adr17 (2 , 9 )
l ou t ( 2 , 7 ) . 3

. g in adr18 (0 , 7 )
l ou t ( 1 , 7 ) . 1

. g in adr19 (0 , 7 )
l ou t ( 1 , 7 ) . 2

. g in adr20 (3 , 0 )
l ou t ( 3 , 1 ) . 3

. g in adr21 (3 , 0 )
l ou t ( 3 , 1 ) . 0

. g in adr22 (2 , 0 )
l ou t ( 2 , 2 ) . 3

. g in adr23 (0 , 2 )
l ou t ( 2 , 2 ) . 1

. g in adr24 (8 , 0 )
l ou t ( 8 , 1 ) . 2

. g in adr25 (4 , 0 )
l ou t ( 4 , 1 ) . 0

. g in adr26 (0 , 1 )
l ou t ( 1 , 1 ) . 3

. g in adr27 (0 , 1 )
l ou t ( 1 , 1 ) . 1

. g in adr28 (9 , 2 )
l ou t ( 8 , 2 ) . 1

. g in adr29 (9 , 2 )
l ou t ( 8 , 2 ) . 3

. g in adr30 (8 , 0 )
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l ou t ( 8 , 1 ) . 0

. g in adr31 (4 , 0 )
l ou t ( 4 , 1 ) . 3

. l a t c h (8 , 5 )
n151 FF NODE33
lou t ( 7 , 3 ) . 0
l ou t ( 6 , 2 ) . 3
l ou t ( 6 , 3 ) . 2
// l a t c h l o g i c b lock
// names o f input and output
// mul t ip l e l o c a l outputs

. l a t c h (8 , 3 )
n191 FF NODE34
lou t ( 7 , 3 ) . 2
l ou t ( 6 , 2 ) . 2

. l u t (7 , 3 )
FF NODE33 FF NODE34 n48
11 1
00 1
l ou t ( 5 , 2 ) . 1
l ou t ( 7 , 1 ) . 3

. l u t (1 , 1 )
adr26 adr27 n49
00 1
l ou t ( 2 , 1 ) . 1
// l u t l o g i c b lock
// names o f inputs and outputs

. l u t (4 , 1 )
adr25 adr31 n50
00 1
l ou t ( 2 , 1 ) . 2

. l u t (8 , 1 )
adr24 adr30 n51
00 1
l ou t ( 7 , 2 ) . 1

. l u t (8 , 2 )
adr28 adr29 n52
00 1
l ou t ( 7 , 2 ) . 2

. l u t (2 , 2 )
adr22 adr23 n53
00 1
l ou t ( 3 , 2 ) . 2

. l u t (3 , 1 )
adr20 adr21 n54
00 1
l ou t ( 3 , 2 ) . 0

. l u t (3 , 2 )
n53 n54 n55
11 1
l ou t ( 4 , 3 ) . 3

. l u t (7 , 2 )
n51 n52 n56
11 1
l ou t ( 4 , 2 ) . 0

. l u t (2 , 1 )
n49 n50 n57
11 1
l ou t ( 4 , 2 ) . 1

. l u t (4 , 2 )
n56 n57 n58
11 1
l ou t ( 4 , 3 ) . 1

. l u t (4 , 3 )
n55 n58 n59
11 1
l ou t ( 4 , 4 ) . 3
l ou t ( 5 , 5 ) . 2

. l u t (8 , 7 )
adr14 adr15 n60
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00 1
l ou t ( 6 , 6 ) . 2

. l u t (7 , 6 )
adr12 adr13 n61
00 1
l ou t ( 6 , 6 ) . 0

. l u t (1 , 7 )
adr18 adr19 n62
00 1
l ou t ( 2 , 6 ) . 1

. l u t (2 , 7 )
adr16 adr17 n63
00 1
l ou t ( 2 , 6 ) . 2

. l u t (2 , 6 )
n62 n63 n64
11 1
l ou t ( 3 , 6 ) . 2

. l u t (6 , 6 )
n60 n61 n65
11 1
l ou t ( 3 , 6 ) . 0

. l u t (3 , 6 )
n64 n65 n66
11 1
l ou t ( 4 , 6 ) . 2
l ou t ( 4 , 5 ) . 3

. l u t (8 , 6 )
adr10 adr11 n67
00 1
l ou t ( 5 , 6 ) . 1

. l u t (5 , 7 )
adr8 adr9 n68
00 1
l ou t ( 5 , 6 ) . 2

. l u t (5 , 6 )
n67 n68 n69
11 1
l ou t ( 3 , 4 ) . 0
l ou t ( 3 , 5 ) . 3

. l u t (1 , 6 )
adr6 adr7 n70
00 1
l ou t ( 2 , 4 ) . 0
l ou t ( 2 , 5 ) . 2

. l u t (1 , 4 )
adr4 adr5 n71
01 1
10 1
l ou t ( 2 , 4 ) . 2

. l u t (2 , 4 )
n70 n71 n72
11 1
l ou t ( 3 , 4 ) . 2

. l u t (3 , 4 )
n69 n72 n73
11 1
l ou t ( 4 , 5 ) . 1

. l u t (4 , 5 )
n66 n73 n74
11 1
l ou t ( 4 , 4 ) . 2

. l u t (4 , 4 )
n59 n74 n75
11 1
l ou t ( 5 , 4 ) . 2
l ou t ( 7 , 5 ) . 0

. l u t (1 , 3 )
module id0 module id1 n76
10 1
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l ou t ( 2 , 3 ) . 2

. l u t (1 , 2 )
op0 op1 n77
10 1
l ou t ( 2 , 3 ) . 3

. l u t (6 , 1 )
module id2 module id3 n78
00 1
l ou t ( 5 , 1 ) . 0

. l u t (5 , 1 )
module id4 n78 n79
01 1
l ou t ( 3 , 3 ) . 2

. l u t (2 , 3 )
n76 n77 n80
11 1
l ou t ( 3 , 3 ) . 3

. l u t (3 , 3 )
n79 n80 n81
11 1
l ou t ( 6 , 3 ) . 3
l ou t ( 5 , 3 ) . 0

. l u t (1 , 5 )
adr4 adr5 n82
l ou t ( 2 , 5 ) . 3

. l u t (2 , 5 )
n70 n82 n83
11 1
l ou t ( 3 , 5 ) . 2

. l u t (3 , 5 )
n69 n83 n84
11 1
l ou t ( 4 , 6 ) . 1

. l u t (4 , 6 )

n66 n84 n85
11 1
l ou t ( 5 , 5 ) . 3

. l u t (5 , 5 )
n59 n85 n86
11 1
l ou t ( 6 , 5 ) . 2
l ou t ( 6 , 4 ) . 1

. l u t (6 , 3 )
FF NODE33 n81 n87
01 1
l ou t ( 6 , 5 ) . 0

. l u t (6 , 5 )
n86 n87 n88
01 1
l ou t ( 7 , 5 ) . 1

. l u t (7 , 5 )
n75 n88 n89
11 1
l ou t ( 7 , 4 ) . 2
l ou t ( 8 , 5 ) . 2

. l u t (8 , 5 )
r e s e t n89 n151
00 1

. l u t (6 , 2 )
FF NODE33 FF NODE34 n91
l ou t ( 5 , 2 ) . 0

. l u t (5 , 2 )
n48 n91 n92
00 1
l ou t ( 5 , 3 ) . 3

. l u t (5 , 3 )
n81 n92 n93
11 1
l ou t ( 5 , 4 ) . 3
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. l u t ( 5 , 4 )
n75 n93 n94
01 1
l ou t ( 6 , 4 ) . 2

. l u t (6 , 4 )
n86 n94 n95
11 1
l ou t ( 7 , 4 ) . 1

. l u t (7 , 4 )
n89 n95 n96
00 1
l ou t ( 8 , 4 ) . 2

. l u t (8 , 4 )

r e s e t n96 n97
00 1
l ou t ( 8 , 3 ) . 2

. l u t (7 , 1 )
− n48 i s l e g a l
// f i r s t input i s not used
−0 1
gout ( 7 , 0 ) . 6
// g l o b a l outputs

. l u t (8 , 3 )
− n97 n191
−0 1

. end
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