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Abstract

Object tracking is an important task in many computer vision applications
including surveillance, gesture recognition, vehicle tracking, augmented re-
ality, video compression, and medical imaging. The tracking becomes more
complex when it involves human beings especially in the sports domain where
there is a lot of interaction between players, which results in occlusion, clut-
ter and dynamic changes in the scene. Moreover, tracking players in official
games should be markerless due to the game rules which add more complexity
to the problem.

In this thesis work a tracking system has been designed and implemented
to track players in indoor sports such as basketball and handball. The sys-
tem is able to record games and trainings using two high quality digital
cameras to track the players offline, analyze the tracking results and produce
visualizations for analysis results.

The use of template matching and particle filter techniques in tracking
sport players has been investigated. A system for recording, tracking and
visualization has been developed. Before the system is used in practice many
tests have been performed to assure the validity and accuracy of the tracking.

In cooperation with the colleagues in the System and Circuit Technology
group, the acquisition subsystem, in addition to the video capturing of the
game, was able to record some physiological data such as heart beat rate,
which is acquired by a special sensor designed in our group and transferred
wirelessly to a computer for recording. The tracking of both position and
physiological data has provided new possibilities for analysis of indoor sport
games. This data has been used for analysis by Applied Mathematics and
Sport Medicine research groups in addition to Paderborn basketball team.



Zusammenfassung

Objekterkennung und -verfolgung sind wichtige Aufgaben in vielen Anwen-
dungen der Bildverarbeitung einschließlich der (Verkehrs-) Überwachung,
Gestenerkennung, erweiterten Realität, Videokompression und medizinischen
Bildgebung. Die Objektverfolgung wird komplizierter in Verbindung mit Men-
schen, vor allem im Bereich Sport, wo es viele Kontakte zwischen den Spielern
gibt. Die Ergebnisse sind Vermengung, Unordnung und dynamische Verände-
rungen in dem Vorgang. Aufgrund der Spielregeln sollte die Objektverfolgung
ohne Markierung erfolgen.

In dieser Dissertation wurde ein Objektverfolgungssystem konzipiert und
umgesetzt, um Spieler von Hallensportarten, wie z.B. Basketball oder Hand-
ball, zu verfolgen. Das System ist in der Lage, Spiele und Trainingseinheiten
mit zwei hochauflösenden digitalen Kameras zu erfassen, Spieler offline zu
verfolgen, die Ergebnisse zu analysieren und Visualisierungen für die Analy-
seergebnisse zu produzieren.

Der Einsatz von Mustererkennung und Partikelfilter -Techniken zur Ob-
jektverfolgung von Sportlern wurde untersucht. Ein System zur Erfassung,
Verfolgung und Visualisierung wurde entwickelt. Vor dem praktischen Ein-
satz des Systems wurden viele Tests durchgeführt, um die Gültigkeit und
Genauigkeit des Systems zu zeigen.

In Zusammenarbeit mit Kollegen der Fachgruppe Schaltungstechnik wur-
de zusätzlich zum Video-System eine Komponente zur Aufnahme physiologi-
scher Daten, wie der Herzfrequenz, entwickelt. Die Objektverfolgung bietet
zusammen mit den physiologischen Daten neue Möglichkeiten für die Analyse
von Mannschaftssportarten.
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p̀ = (x̀, ỳ) pixel position in a distorted image . . . . . . . . 81
p = (x, y) pixel position in an undistorted image . . . . . . 81
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Chapter 1

Introduction

The aim of CV (Computer Vision) is to enable machines to understand the
contents of digital images. What by understanding meant is to extract in-
formation from image data which can be used for further analysis or as an
input for other processes. There are many applications for CV, for example
in industry it can be used to inspect defect objects. In the medical domain
the CV techniques can be used to identify important phenomena or events
in a medical image. Structure from motion is an application which concerns
finding the three-dimensional structure by analyzing the motion of an object
over time. Tracking of moving objects is of great importance in security ap-
plications. The focus of this thesis will be on using CV techniques to track
players in team sports.

Tracking of moving objects in video sequences is an important task of
many CV applications. Tracking is the problem of generating an inference
about the motion of an object given a sequence of images [1]. In simple words
it is the process of locating the object in each frame of the image sequence.
Some typical applications of video-based tracking are:

• Visual surveillance: where people or traffic are tracked to detect
unusual situations.

• Tracking of small laboratory animals: such as insects and ro-
dents (i.e. mice and rats) in order to study interactions of natural
multi-agent systems.

2



1.1 Goals and Motivations 3

• Automatic video annotation: the aim is to add graphical contents
to a video which contains moving objects or persons.

• Ambient intelligence: where tracking together with other technolo-
gies such as telecommunications helps to assist people in their everyday
life.

• Cognitive systems: where tracking is used to learn more about dy-
namic properties of different objects in the environment.

• Tracking of robots: where the tracking is used to find the path of
the minirobots in order to analyze and debug experiments.

• Analysis of sport events: to extract positional data of athletes
during match or training which is used by sport experts to analyze the
performance of the players.

Looking at the literature, it can be seen that many algorithms have been
proposed to solve the tracking problem. They can be classified into two main
categories: deterministic methods and stochastic methods.

Deterministic methods use an exhaustive search for local maxima of a
similarity cost function between the template image and the searched image.
On the other hand, stochastic methods use the state space to model the
underlaying dynamics of the tracking system.

1.1 Goals and Motivations

Sport is attracting the minds of millions of people around the world. To CV
researchers it is a rich and diverse domain which provides a huge source of
footage from which to work. This thesis has two goals. First, to propose
solutions for sport player tracking in indoor sport games based on CV tech-
niques in order to acquire the position data in sufficient accuracy, in real time
and automatically without user intervention. The position data should be
accurate enough to be used for further analysis. Second, to provide a reliable
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software system that can be used by sport scientists and trainers to acquire
tracking information.

Three primary motivations are powering the work of this thesis.
Firstly, sport scientists are very interested in being able to know how

much distance the players have run and how fast they have moved during
the game or the training session. This information would allow more specific
training to be designed to suit individual players. Regarding CV, the tracking
of sport players from video is a challenging domain in which players interact,
occlude, make unpredictable quick body movements and move in non-linear
fashion covering large distances.

Secondly, there is a lack of tracking systems that fulfill the requirements
of sport scientists and trainers in terms of easily recording the games, track-
ing the players and providing visualization, summaries and statistics for the
tracking data.

Thirdly, acquisition of positional data is basic for higher level analysis
of team game interactions, stability of the team as a system and modeling
cooperative, collaborative and adversarial actions of individual players and
the whole team.

1.2 Problem Statement

This thesis work is a part of a larger project called Intelligent Sports Wear
and Automatic Analysis of Team Sports which is under development at the
System and Circuit Technology research group at the Heinz Nixdorf Institute,
University of Paderborn. Figure 1.1 shows a block diagram of the project.
The darker block Tracking of Players in Video Data is the focus of this thesis
work. The whole project concerns the tracking of both internal and external
conditions of the player during the game or training. Some work has been
also done in other blocks such as online visualization of sensor data and
offline visualization of the position data. The output of the player position
tracking is coordinates of the players in meters. The two research groups
Sport Medicine and Applied Mathematics at the University of Paderborn use
position data to perform further analysis.
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Figure 1.1: Block diagram of the project Intelligent Software and Automatic
Analysis of Team Sports.

The analysis system shown in Figure 1.1 , consisting of a high resolution
video system together with a wireless sensor network, is used for collecting
position and physiological data of sport players during training or compe-
titions. The combination of the two data streams provides a new type of
performance analysis and visualization solution for indoor team sports.

A training session or game is captured by a video system consisting of
two cameras which are placed at the hall ceiling. The video data is post-
processed offline in order to identify positions of the players and to track
all players on the field by means of CV techniques. A GUI (Graphical User
Interface) has been developed in order to enable the user to interact with the
tracking algorithm for error correction. From the tracking data the path of
each player as well as the corresponding calculated information such as speed
and distance can be obtained. Trainers need to instantly (during the game)
know the speed and the distance covered by the players during the game.
So, players are equipped with an additional off-the-shelf acceleration sensor
which is able to transmit the data via the wireless network after which it can
be visualized.

For the recording of physiological data of the athletes during training
or a game, a compact wearable module has been developed [83]. It can
be easily mounted onto the sport shirt. The heart activity is measured by
electrodes that are integrated in the shirt. The signal generated by these
electrodes is processed in real-time. The calculated heart rate is transmitted
via a new wireless technology called ANT to a central computer. Additional
physiological data, which can be optionally recorded, are skin temperature
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and skin conductance.
The difficulty of tracking moving objects in video comes from the fact that

tracked objects are usually interacting, occluding and have a non-rigid shape.
This is more clear when the task involves tracking humans where interactions
and occlusions usually occur. The problem becomes more complex when it
involves tracking players in sport activities, especially in team sports where
multiple players interact, occlude, make sudden movements and try to move
in an unpredicted manner in order to confuse the opponents. In the sports
domain, especially in team sports, the tracking of players is a complex task
due to different reasons related to problems in acquisition of the images such
as:

• Using special camera lenses such as fisheye in order to capture the whole
playing field will cause distorted images. This makes it more complex
to calculate the positions.

• Errors in camera installation require calibration and correction because
they will affect the calculations of player position in meter.

• The use of multiple cameras requires a fusion between different camera
views.

There are also problems due to the interaction between players during
the game, this includes:

• Unpredictable, nonlinear and fast-changing player movement in order
to deceive players in the opponent team.

• Collision and blocking in order to prevent the opponent to pass or shoot
the ball.

• The players in one team look the same, especially when using the over-
head camera.

In addition there are traditional problems in CV such as changing lighting
illumination and noise in images.
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1.3 Contributions

The contributions of the thesis work include the following:

• Methods of tracking that are based on deterministic and stochastic
techniques have been analyzed.

• New techniques for optimization of image pre-processing have been
implemented.

• The implementation of the tracking algorithms has been done on differ-
ent hardware platforms such as multiprocessors and graphic processors.

• Design of new test patterns and development of benchmark data that
enable to prove the validity, accuracy and efficiency of tracking.

• A software system with a user friendly interface that enables normal
user to record games, track the players, visualize and analyze the track-
ing data has been developed.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 presents an overview of CV based tracking with a focus on
sport player tracking.

• Chapter 3 presents the deterministic-based tracking methods that are
used in tracking and basically the template matching techniques.

• Chapter 4 presents the probabilistic-based tracking methods with focus
on Particle Filter based tracking.

• Chapter 5 presents the techniques used for handling several tracking
targets.

• Chapter 6 shows the development of a software system that enables
normal users to use the tracking algorithms developed during the course
of this thesis.
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• Chapter 7 presents an experimental study to show various testing re-
sults of the tracking algorithms as well as the proof of the validity,
reliability and objectivity of the developed tracking methods.

• Chapter 8 gives the summary, conclusion and suggested future work.



Chapter 2

Sport Player Tracking
Overview

This chapter presents an overview of the CV based tracking methods with a
focus on sport player tracking. The chapter is organized as follows: Sec-
tion 2.1 presents the tracking as a computer vision problem and with a
brief overview of the stages of processing and basic definitions. Section 2.2
gives an overview on the state of the art in player tracking including back-
ground/foreground segmentation, encoding visual features and dealing with
multiple players. Section 2.3 shows some commercial systems in the sports
domain.

2.1 Tracking as a Computer Vision Problem

The CV system can be seen as a system consisting of several stages or steps
which include image acquisition, image processing, scene analysis and result
visualization. Figure 2.1 shows the steps of CV system.

The acquisition step means to obtain the images from cameras. In digital
cameras various sensor types may be used such as CCD (Charge Coupled
Device) and CMOS (Complementary Metal Oxide Semiconductor) sensors
[65, 1] and different optical components including fisheye 1 and normal lenses.

1A wide-angle lens that takes in an extremely wide, spherical image.

9
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Figure 2.1: Stages of the computer vision system

In case of analog cameras the obtained analog signal should be digitized so
that it can be processed by a computer.

The image processing step (also called pre-processing) is the step where
the image is enhanced, for example, by filtering of noise or color transforma-
tion. Image processing also tries to find important features or parts of the
scene where the scene analysis should be applied. The scene analysis step
uses various methods and algorithms including machine learning techniques
to recognize, track or reconstruct a 3D model of objects in the scene. A final
stage could be the visualization and presentation of the results of the whole
CV process. The feedback from the scene analysis step to the image pro-
cessing step provide some information that could help to optimize the image
processing step.

Tracking is a typical CV problem, where all the stages of CV are involved.
Figure 2.2 is an adaptation of Figure 2.1 to show the steps of tracking players
using CV. In the acquisition step shown in Figure 2.2 the cameras used to
capture the images are digital CCD cameras with fisheye lenses. The details
of the camera setup are described in Section 7.1.

In the image processing block there are several sub-steps which consider
the color transformation from Bayer pattern to RGB (Red, Green, Blue)
color space which is called Debayering (see Section 7.1.1). Another sub-step
is white balancing, which enhances the colors by filtering the color channels.
The background detection and subtraction step concerns, as described in
Section 7.1.1, finding the foreground regions of the image by segmenting the
image to motion and non-motion parts.
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Figure 2.2: Stages of computer vision system for tracking players in team
sports.

In the scene analysis step the tracking takes place where multiple players
are tracked using the tracking algorithms described in Chapters 3 and 4. In
order to acquire the positions of the players in meters on the playing field,
the necessary coordinate transformation from image domain to real world
domain is performed as shown in Section 7.1.2.

The visualization done in the last step concerns performing different
statistics on the tracking data, for example distance and speed profile. An-
other important visualization is done by generating video with annotations
of tracking data which can be static or interactive. Static means the video
can be played by a normal video player, but the displayed annotations can-
not be changed. Interactive means a special video player is used to play the
video and the user can select the kind of visualization he needs. Three pre-
processing steps are done before the video is ready for visualization, namely,
Debayering (described above), Defishing and Warping the frames. Defish-
ing is to correct the fisheye camera distortion caused by the fisheye lenses.
Warping means to correct the errors caused by inaccurate camera installation
which require a perspective transformation.

2.2 State of the Art

2.2.1 Background/Foreground Segmentation

Background/Foreground segmentation means to determine and separate the
objects of interest from the image. In the application of sport player tracking,
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the objects of interest are the players, the referees and the ball. Everything
else is considered as background. This separation will reduce the amount of
processing needed for tracking by focusing the processing on small areas of the
image. The simplest and fastest method to find foreground objects in video
sequences, is to subtract each two subsequent frames. Although it is fast, it
suffers from the extraction of unwanted regions from the background due to
the change in illumination and the moving of non-interesting objects in the
background such as trees, clouds and so on [92]. If an empty background can
be obtained, it can be subtracted from each frame to get foreground objects
but changes in lighting or small camera jitter can cause false background
objects to be detected. The simplest approach of differencing two consecutive
frames is used in [40] where it is assumed that when no motion is present the
last found information about the position of the foreground object is used
for tracking.

Seo et al. [97] has used a histogram-based model for the background
color and used it to perform the background/foreground segmentation. The
disadvantage of this method is that it assumes that the background color
is homogeneous which is true in some cases like in tracking soccer players
but in indoor sport games like basketball the playing field may contain ad-
vertisement. Histogram-based methods have been used by other researchers
[36, 53, 49, 4, 55, 60] who track players in soccer matches except [60] who
used histograms to detect background in handball and basketball, however
only when the background had a similar color to the players shirts. Stauffer
and Grimson [95] have developed a method for estimating the background
which is based on modeling each pixel as a mixture of Gaussians. It is usually
called background Gaussian mixture model. The disadvantage of the method
comes from the huge amount of memory and time needed for modeling of all
pixels. Therefore this method is usually used to get an initial estimate of the
background model before the start of the tracking, then during the tracking
the segmentation is done based on this initial estimate and with help from
other features like, for example, color histogram. This technique has been
used in soccer sport by Xu [74] and Figueroa [34]. Other statistical based
methods have been used by [76, 96].
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2.2.2 Encoding Visual Features

The selection of suitable features to track is very important for successful
tracking. The features used for tracking could be either the shape of the
target or its color information. The widely used shape-based features are the
active contours (snakes) which are introduced by Kass et al. [69]. Active
contours are defined as energy-minimizing splines controlled (guided) by ex-
ternal constraint forces and influenced by image forces that attract it to lines
and edges features. The main disadvantage of these techniques when used
to track people is that the resulting contour may not represent the tracked
target sufficiently enough because of missed features or noisy images. Fur-
ther more it is poor for the handling of occlusions. Due to the drawbacks of
this technique it has been improved by using color information of the target
objects as in [103]. The technique is also costly in terms of computations.
To speed up the computation Olszewska et. al.[46] has used a parametric
active contour method based on B-spline and gradient vector flow formalisms
[116]. More review on using contour-based methods can be found in [76]. In
his work Needham [76] encoded the shapes of the indoor soccer players us-
ing a set of five pre-learned multiresolution kernels. A similar approach was
adopted by Lu and Little [66], who used a pre-learned set of dense grids of
histograms of oriented gradients [27] to track hockey players and recognize
their actions. The early approaches to use color features was done by [40, 97].
Color templates that have been extracted from the estimated position of the
player has been used to find the player in the next frame. Perš and Kovačič
[84] tried to use both color and shape features in order to make the represen-
tation more robust. They encoded the player’s shape by utilizing 14 binary
Walsh-function-like kernels, while the player’s color was encoded using his
average color. Okuma et al. [51] has tried to develop a generic color-based
detector for hockey players. A large number of manually extracted raw color
areas containing the players has has been used to train a cascade of weak
classifiers. Ok et al. [36] described the player by dividing the area where the
player exists into two regions. One region conatins the shirt and the other
contains the short. The mean values of the colors in the two regions have
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been used to represent the player. The class of visual representations that
can be viewed as a generalization of this approach are the color histograms
[98]. They have been successfully applied in many tracking applications in
sports domain [51, 49, 85] as well as in the more general applications of visual
tracking [80, 77, 105, 25]. Birchfield and Rangarajan [10] proposed a class
of color histograms that also integrates the spatial information of the tar-
get’s color. Measurements based on visual data are known to be inherently
ambiguous. Therefore, some researchers [44, 53, 74, 97] enforce a spatial con-
tinuity of the players’ positions on the court by using the Kalman filter [52].
However, the assumptions that the Kalman filter imposes on the measure-
ment process and the target’s dynamics are usually too unrealistic for visual
tracking and so result in a degraded performance. For this reason, many
authors [117, 51, 36, 49, 76] employ particle filters [73] instead. While these
methods result in a more robust tracking than Kalman filter, they usually
increase the computational complexity [53].

2.2.3 Multi Target Tracking

To correctly track more than one target the identities of the tracked objects
should be maintained during the whole tracking process. The techniques to
manage multiple targets can be classified, based on the excellent review in
[58] into the following:

1. The detect-then-associate technique which, as the name suggests, per-
form first a detection step followed by an target-to-measurement as-
sociation step. The problem with this class of technique is that the
association step may require complex computation.

2. Concatenate all the states into a single joint state. This will enable the
use of particle filtering techniques developed for single-target tracking
[76, 80]. The disadvantage of this approach as stated in [58] is that the
poor estimation of a single target may degrade the entire estimation
and if the number of particles is increased to overcome this problem
the computational cost will increase as well [54].
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3. Track each target using separate trackers when the number of targets
is already known. This will reduce the computational complexity with
respect to the previous techniques but a confusion between near by tar-
gets may cause errors in tracking which require additional effort to over-
come this difficulty. Some solutions such as histogram back-projection
[97] and occlusion alarm probability [36] have been presented. However
when the targets have similar visual features these techniques still fail
when the targets are very near to each other.

2.2.4 Evaluation of Tracking Systems

In order to use the results from a tracking system to make further analysis
or research it is important to evaluate the system to prove the correctness of
the obtained tracking. Perš in his study to error and mistakes in automated
player tracking [48] tried to investigate different error sources in the tracking
process. Some patterns of players’ movement have been designed and tracked
using APAS manual tracking software [30] and used to find the best tracking
algorithm parameters. In [60] Kristan et. al. used 273 manually tracked
frames with frame rate 25 pfs for handball players moving in a specific pattern
in order to evaluate his tracking technique. The tests done by these authors
were not enough in terms of the length of the test video sequences and that
they do not represent most of the playing situations.

2.3 Commercial Sport Video Analysis Sys-
tems

Because it is the most popular sport most of the commercial systems are ded-
icated for the analysis of soccer. Needham [76] has reviewed some commercial
software systems in his PhD thesis which include the following:

• SoftSport inc. concentrates on passes of the ball in soccer sport.
Two products are offered. The first is “Second Look 3P’s (Player,
Performance, Profile)” which provides a detailed player performance
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report during the whole game, including the completed and lost passes.
The second is “Second Look” which analyzes the full ninety minutes of
soccer match and provides many detailed reports on team performance
and all individual player performances. It provides an overview of the
game tactics and strategy. This system requires entering all the data
to the software [39].

• Match Analysis allows a coach to send off a video of the game, and
their specialists will methodically enter many events into the computer
as they happen. Within a couple of days a glossy set of “Player Re-
ports”, “Team Reports” and a “Coaches Summary” are sent out fea-
turing events like, shots on-goal, losses on Pass vs Dribble and more
[3].

• ProZone is a professional company which fits several cameras in the
soccer ground and overnight manually marks the positions of each
player on video footage. This provides information of the ground plane
position of each player throughout the game [87].

• TrackSYS offers a software package “’The Observer Video-Pro’ (de-
veloped by Noldus Information Technology) used for video annotation
and presentation. A set of events and players are defined before the
games, and the game is annotated as it occurs, or afterwards from
video. This data can be analysed to show the basic statistics of the
game, as a time-event plot, or a series of video clips can be produced
to display the results[102].

2.4 Discussion

In this chapter an overview on the sport player tracking using computer vision
has been presented. The first part of this review is dedicated to presenting the
player tracking in sports domain as a computer vision problem. The second
part concerns the state of the art in player tracking based on computer vision.
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The presented review is based on the excellent review of Kristan in his
PhD [58]. The methods used in background detection and feature encoding
subsections depends mainly on the quality of the images acquired from the
camera. Although the work of Kristan [60, 58] and Perš [84, 47] tried to
find a solution for tracking of indoor sports players, the acquisition of the
video data is based on low resolution analog cameras of resolution 384× 288
where the player is represented by 10 × 10 pixels. The low quality of the
resolution of the video is one source of errors in the tracking process as
explained in [48]. The noise that comes from digitalization of analog images
and the artifacts resulted from video compression [48] require sophisticated
techniques for background detection and cause poor features for the tracked
target. The tests done to prove the quality of the systems were not enough
because the test sequences used were not long enough and do not contain all
the player interactions in real games. It has been noted from the literature
review that there is no benchmark dataset from real game situations that
could be used to evaluate and compare the different tracking systems.





Chapter 3

Deterministic Tracking

Deterministic tracking depends on a brute-force search mechanism where all
possible positions of the target are tested. An iterative search is run in order
to find the local maxima of a similarity cost function between a template
image and a certain (searched) image [118]. Model based tracking algorithms
incorporate a priori information about the objects to develop representations
such as skin complexion, body blobs, kinematic skeleton, silhouettes or layer
information [119, 17, 14, 100, 94, 22]. Appearance-based approaches apply
recognition algorithms to learn the objects either in some basis such as the
eigenspaces formed from observations or in kernel space [12, 7, 78].

In this chapter the deterministic methods for tracking will be discussed.
It will be shown which methods are the most suitable for the tracking of sport
players. The chapter is organized as follows. In Section 3.1 a simple deter-
ministic tracking based on blob-detection is presented. Section 3.2 shows the
proposed deterministic tracking method based on template matching track-
ing of player head.

3.1 Blob-based Tracking

Blob tracking in simple words is the tracking of the foreground objects (mov-
ing objects) in the scene based on geometric features. In the case of human
tracking the simplest feature is the contour which contains the human. The

19
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Algorithm 3.1 Blob-based tracking.
1. specify the range of width {wmin, wmax} and the range of height
{hmin, hmax} for the tracked object

2. for each frame Ii do

(a) find the foreground mask Mi using Algorithm 7.1

(b) find the edges in Mi using Canny Edge detection and the result
is an edge image Ci

(c) find the set of contours (blobs) bi in Ci that match the ranges
{wmin, wmax} and {hmin, hmax}

(d) perform tracking by associating each contour in bi with the
nearest path using algorithm 3.2

detection of the contours is done based on the Background/Foreground seg-
mentation result. The output of the detection step is a mask (called fore-
ground mask) which marks the positions of the moving objects in the scene.
After some filtering operations the mask is used as an input to an edge de-
tection algorithm which in turn is used as input to the contour detection
algorithm. Based on the size of the contours the blobs are classified to deter-
mine if they contain a player or not. After the contour detection, each new
position should be associated with one of the paths found so far. The details
of the algorithm can be seen in Algorithm 3.1.

The simplest method to associate each found contour in the current frame
to another one in the previous frame is the nearest neighbor search which
is explained in Algorithm 3.2. The algorithm is based on computing the
distance matrix between the positions of the detected blobs and the last
positions added to the paths. The smallest element in the matrix is found and
its pair (blob and path position) are associated. The process is repeated after
deleting the row and column of the minimum distance from the matrix until
all blobs are associated. Figure 3.2 shows an example to the association of the
current found blobs to the previous paths. The distance matrix is computed
based on euclidean distance metric. Because the number of moving objects
in the scene is limited the algorithm runs in linear time.

The Background/Foreground estimation is based on finding a model for
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Figure 3.1: Blobs of the players in handball field.

the background and then using it to detect the moving objects by subtracting
from each frame. This is explained in Algorithm 7.1. The drawback of this
simple technique is that there is no strategy for handling collisions which
occur when two or more players come very near to each other. Figure 3.1
shows the detected blobs from a handball training session. It can be seen
that some blobs contain one player but others contain two or more players.

3.2 Template Matching-based Tracking

Templates are formed using simple geometric shapes or silhouettes [120].
It can also be sub-images which contain the objects of interest. Template
Matching is one of the techniques used in the pattern recognition domain
which is used to find parts of an image that match a template (reference)
image. The template image is compared to all parts of the searched image
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Figure 3.2: Association of blobs with paths.

Algorithm 3.2 Blob association algorithm.
1. do until all blobs b are associated

(a) compute the distance matrix D for the distances between all
blobs b and the paths p

(b) find the smallest element dij in the distance matrix M

(c) associate blob bi with path pj

(d) delete raw i and column j from D (by replacing with a large
value)
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and a measure of similarity is computed in each comparison step. The result
of the template matching procedure is a matrix in which the intensity of each
pixel indicates the degree of similarity with the template. In order to find
the position of the best match a maximum value search is applied on the
result image.

An advantage of a template is that it carries both spatial and appearance
information. Templates, however, only encode the object appearance gener-
ated from a single view. Thus, they are only suitable for tracking objects
whose poses do not vary considerably during the course of tracking.

The basic algorithm of template matching uses a convolution mask (tem-
plate), taken from a specific feature of the searched image. This technique
can be easily performed on gray images or edge images. It is intuitively
likely that the convolution output will be highest at places where the image
structure (feature) matches the mask structure, where large image values
get multiplied by large mask values. This method is normally implemented
by firstly picking out a part of the search image to use as a template: The
searched image is represented as I(x, y), where (x, y) are the coordinates
of each pixel in the search image. The template is represented as T (x, y),
where (x, y) is the coordinate of each pixel in the template. The template is
centered over each (x, y) point in the searched image. A matching function
between I and T is calculated over the whole area spanned by the template.
As all possible positions of the template with respect to the search image are
considered, the position with the highest matching value will most probably
contain the searched feature.

Figure 3.3 shows an example of template matching. The left image is
the searched image. The template is taken to be the red-bounded sub image
from the searched image (shown in the middle in bigger size). The result
of the template matching procedure on the searched image is shown on the
right image where the high intensity pixels shows better matching than the
less intensity ones.
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Figure 3.3: Example of template matching.

3.2.1 Matching Functions

The matching function (also called cost function) usually used is the Sum of
Squared Differences (SDD) between the template and the current image as
in [67, 37, 9]. More robust similarity measures have been applied and the
mean-shift algorithm or other optimization techniques have been utilized to
find the optimal solution [11, 25, 31, 24].

Other matching functions that are mainly based on statistical correlation
try to find how much a dataset is similar to another one. If the size of the
searched image I is W ×H and the size of the template image T is w×h the
result of the matching is a matrix R(x, y) of size (W −w+ 1)× (H − h+ 1).
The following is a list of matching functions that may be used with template
matching:

1. Sum of Squared Differences: This is the simplest and fastest method
where only the sum of the square differences (squared eculidean dis-
tances) between each pixel in the template and the corresponding pixel
in the searched image is calculated as in equation (3.1) [15].

R(x, y) =
∑
x′,y′

[T (x′, y′)− I(x+ x′, y + y′)]2 (3.1)

The result in equation (3.1) can be normalized with a normalization
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factor Nm.

R(x, y) =
∑
x′,y′ T (x′, y′)− I(x+ x′, y + y′)]2

Nm
(3.2)

where Nm is defined as follows:

Nm =
√∑
x′,y′

T (x′, y′)2.
∑
x′,y′

I(x+ x′, y + y′)2 (3.3)

2. Cross Correlation: By expanding equation (3.1) it results in

R(x, y) =
∑
x′,y′

[T (x′, y′)2 + I(x+ x′, y + y′)2 − 2T (x′, y′)I(x+ x′, y + y′)]

the term T (x′, y′)2 is constant. If the term I(x + x′, y + y′)2 is ap-
proximately constant then the remaining term is the cross correlation
term.

R(x, y) =
∑
x,y

[T (x′, y′)I(x+ x′, y + y′)] (3.4)

and the normalized form is

R(x, y) =
∑
x,y[T (x′, y′)I(x+ x′, y + y′)]

Nm
(3.5)

3. Correlation Coefficient: The correlation coefficient between the tem-
plate and the searched image is calculated as known from statistics as
following

R(x, y) =
∑
x,y

[T ′(x′, y′)I ′(x+ x′, y + y′)] (3.6)

Where T ′(x′, y′) and I ′(x + x′, y + y′) are the means of the template
and searched image respectively and can be computed as following

T ′(x′, y′) = T (x′, y′)− 1
wh

∑
x′′,y′′

T (x′′, y′′) (3.7)

I ′(x+ x′, y + y′) = I(x+ x′, y + y′)− 1
wh

∑
x′′,y′′

I(x+ x′′, y + y′′) (3.8)
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where w and h are the width and height of the template image respec-
tively. The correlation coefficient can also be normalized as described
in equation 3.9

R(x, y) =
∑
x′,y′ T

′(x′, y′).I ′(x+ x′, y + y′)√∑
x′,y′ T ′(x′, y′)2.

∑
x′,y′ I ′(x+ x′, y + y′)2

(3.9)

Using Equation 3.4 to compute the cross correlation has several disad-
vantages as described in [63]:

• if the image energy I(x + x′, y + y′)2 varies with position, matching
using equation 3.4 can fail. For example, the correlation between the
template and an exactly matching region in the image may be less than
the correlation between template and a bright spot.

• the range of the cross correlation R(x, y) depends on the size of the
template.

• equation 3.4 is not invariant to changes in image amplitudes such as
those caused by changing lighting conditions across a sequence of im-
ages.

These difficulties are overcome by normalizing the image and template
vectors to unit length. The template matching algorithm is usually applied
to gray scale images. For color images the same procedure can be applied
for each color channel and the result of matching each channel should be
combined into one result. The flow chart in Figure 3.4 shows the use of
template matching in tracking. Before the start of the tracking loop the
background model is calculated using Algorithm 7.1. The initial position of
the tracker is determined before the start of the tracking process. For each
frame the mask of the foreground is calculated using subtraction from the
background. The current frame is multiplied by the background mask to
find the regions of interests in the image (ROIs). In the sport domain the
background is constant (static) so it can be calculated easily and subtracting
it from each frame helps the matching step to focus more on the foreground
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objects being tracked. The matching is done using equation 3.9 and the best
matching position is found. Finally, the template is updated and then the
whole process is repeated for the next frame.

There are still some pitfalls in the tracking algorithm presented in the flow
chart which concerns the template update, size and the number of templates.
In the following subsections these issues will be discussed.

3.2.2 Selection of Template

In order to use template matching for tracking some points should be taken
into consideration.

• Looking at all possible orientations of the sport player during the game
and setting template for all possible situations will require a large num-
ber of templates which is not practical.

• Due to the highly dynamic and changing nature of sport players’ move-
ments, the use of a static template is not optimal. So the template
should be updated or there should be a number of templates used for
tracking.

• The size of the template it is difficult to set a fixed size of the player
template because according to the camera setup described in Chapter
7 the player shape will be changed according to his distance from the
camera because of fisheye objectives. This can be seen in Figure 3.5
which shows a number of players in different situations and positions
as seen by the camera. In this figure, where there is no scaling of the
player shapes, it is clear that the player body size and orientation is
changing. Figure 3.6 shows a screen shot from one a basketball game
taken from one fisheye camera used in the experiments of this thesis
work.

The proposed solution to handle the problem of different sizes and ori-
entations of the players is to track the upper part of the player which is the
head and part of the shoulders. As can be seen in Figures 3.5 and 3.6 the
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Figure 3.4: Flowchart of template matching tracking.
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Figure 3.5: Player shapes in different positions on the playing field taken by
overhead fisheye-lens camera.

Figure 3.6: A screen shot of basketball game taken by fisheye lens camera.
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Figure 3.7: Example of player’s head template.

heads of the players are visible in all orientations and its circular shape is
not changing much as the whole body shape. So template matching tracking
of the head plus a small part of the shoulder can be easier than tracking
the whole body. Tracking the player head makes it easier to calculate the
feet position as described in Section 7.1.2. The size of the template depends
on the image resolution and should be determined before the start of the
tracking process.

Figure 3.7 shows how a head template of size 20 × 20 of a basketball
player’s head looks like. The use of fixed size templates of the head may
solve the problem of template size but the update of the template and the
handling of multiple players is still unsolved. In Chapter 5 the whole issue of
tracking multiple players is discussed in detail, the rest of this chapter will
be dedicated to the updating of the template and the possible enhancements
to the tracking algorithm.

Figure 3.8 shows the result of the template matching process. Images on
the left are the searched images which are marked with red arrows to show
the player under consideration. The images in the second column are the
used templates. The third column is the result of the template matching
where the best matching position is highlighted. The fourth column shows
the amount of best matches.
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Figure 3.8: Example of the result of template matching with different players.
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3.2.3 Head Template Update

There are two proposed methods in order to deal with the update of the
head template problem. The first option is to use one template and update
it according to the rule in Equation 3.10

Tt(x, y) = (1− α)Ît−1(x, y) + αTt−1(x, y) (3.10)

Tt(x, y) is the template at time step (frame) t and it is updated by taking a
part from the old template Tt−1(x, y) and a part from the sub-image which
resulted in the best match Ît−1(x, y). The second option is to save a set of
templates that will represent all the possible templates for the head. In this
case the current template to be used for matching is computed as described
in Equation 3.11

Tt(x, y) =
∑
i

[witT it (x, y)] + (1− α)Ît−1(x, y) (3.11)

The current template is computed as a weighted sum of all templates plus a
part of the best matched sub-image and α = ∑iwi.
3.2.4 Enhanced Template Matching Algorithm

As shown above, template matching is used to find a template image in
another image based on similarity function. In the tracking of human beings
and more specifically in the sport domain, some logical rules which comes
from physics or logic can be used to enhance the tracking to make it more
efficient. These rules are described in details in Chapter 5 under the name
Closed World Assumptions. One rule to be considered is the assumption
that the first template is selected manually before the start of the tracking
process and that the player cannot suddenly disappear from the view of the
camera or change its position completely arbitrarily. Using these rules makes
it easier to focus the search in some ROIs (Region Of Interests) which reduces
the processing time.

According to physics laws, players cannot change their speed arbitrarily
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due to the inertia 1. So if the speed of the player is taken into consideration
when the player template is searched in the next frame the matching could
be led to an area where the player is more likely to appear.

In order to use the speed of the player to predict the possible position
in the next frame a model of the motion of the players should be used. In
[59] It has been shown, based on [89], that two models of motion can be
used to model players’ movement, namely the RW (Random Walk) and the
NCV (Nearly Constant Velocity) dynamic models. The two models describe
the player’s movements in different situations. The RW model will best
describe the movement if it has more abrupt radical accelerations in different
directions while the NCV model describes better the kind of motion when
the player moves constantly in different directions. Taking into consideration
also the player’s inertia which will prohibit sharp changes in his velocity and
direction a simple prediction scheme can be used.

The method used in [59] is based on a probabilistic tracking scheme for
the sport players. It can be adapted for the deterministic tracking as follows:
Assuming the current position of the player is pt and the position in the next
frame pt+1 is

pt+1 = pt + δt (3.12)

where δt is the prediction of the change of distance. According to [59]
who refers to [16, 33], δt can be calculated as a weighted sum of successive
past differences between the last Nc positions.

δt+1 = 1
C

t∑
j=t−Nc+1

(pt − pt−1)Wk(t), (3.13)

where the weights are defined as:

Wk(t) = wkwk−1e
− 1

2
(k−t)2

σ2
0 (3.14)

and C = ∑t
k=t−Nc+1 Wk(t) is a normalization constant. The first two

terms in Equation 3.14 are the weights of the two positions under consid-
1The resistance of any physical object to a change in its state of motion or rest
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eration. In the case of [59] the weight of the object state taken from the
likelihood function of the state. In the case of the template matching this
weight could be either set to 1 or to the amount of matching resulting from
the matching function can be used.

The last term in Equation 3.14 is a Gaussian that assigns higher weights
to more recent positions. The number of past positions Np in [59] is chosen
based on the assumption that the player is not able to change his speed
sharply within half a second. This means to talk the past f/2 positions,
where f is the frame rate. The parameter σ is set to Nc/3 based also on [59].

3.3 Tracking Algorithm

Algorithm 3.3 summarizes the single player template matching-based track-
ing technique described in this chapter. The algorithm does not take the
tracking of multiple players into account. The details of the tracking mul-
tiple players will be presented in Chapter 5 and the experimental results of
the template matching tracking will be presented in Chapter 7.

The output of the tracking should be coordinates of the foot in meters
which are also referred to as real world coordinate transformation. When the
player crosses one half of the playing field to the other half, the processing
should correspondingly be transfered to the other half of the image. This
require a kind of fusion between the two camera views. Both the real coor-
dinate transformation and the fusion between camera views are described in
Chapter 7.

3.4 Discussion

In this chapter it has been shown how deterministic tracking can be used to
track players using overhead cameras. As a start the simple blob tracking
has been used. Tracking single player gives excellent results when the player
is not interacting with others. When collision between players occurs two or
more players come to one blob and after separation it is difficult to associate
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Algorithm 3.3 template matching tracking algorithm
compute the background using Algorithm 7.1
get first frame and initialize the template manually
For each input frame

1. Pre-process the frame as described in 7.1.1

2. Subtract the frame from background model to find the foreground mask

3. Compute ROI for template matching using speed computed from Equation
3.13

4. Perform template matching

5. Transform the output coordinates of template matching to real
coordinates using Equation 7.10

6. If player is on middle line transfer the processing to other half of
the frame as described in 7.1.2

the paths again. The time complexity of the blob detection depends on
the implementation of the edge detection. Canny edge detection [19] has
been used in the implementation. After the edge detection the connected
components in the “edges image” are inspected to find contours which is the
classified based on the player size on the image. Speaking about the space
complexity or the amount of memory required for blob detection, several
temporary images and data structures are needed to store the result of the
edge detection and contour detection.

The second part of the this chapter shows how template matching can be
used for tracking sport players. Investing the high quality of the images it
is possible to track the head of the player with small part of the shoulders.
In order to determine the best size of the template, experiments have been
done in Chapter 7. Tracking the head has the advantage that no rotation
or scaling of the head is required. Although the overhead cameras reduces
the chance that the head of the player is totally invisible due to occlusion, in
some situations when the player falls down or other taller player comes into
a strong contact with him the head disappears from the scene. The multiple
player tracking framework described in Chapter 5 reduces the number of
errors that occurs due to occlusion. In some cases the tracker still needs to
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be manually corrected. The rate of error occurrence is inspected in Chapter
7.



Chapter 4

Probabilistic Tracking

As shown in the previous chapter, deterministic tracking depends on a brute-
force search mechanism. Although some information about the movement
and the nature of the target can be used to guide the search there are still
uncertainties which need to be dealt with. In the sports domain, the players
try to move in a fast and unpredictable way in order to confuse or escape from
the opponent. In order to deal with such uncertainties, a probabilistic frame
work has been used by Russel [91] to perform tracking. Early approaches to
deal with uncertainties are based on Kalman Filtering [52] which relies on
the assumption that the involved distribution is Gaussian.

In order to deal with non-linearity and non-Gaussianity, approaches that
make use of Bayesian filters and Monte Carlo Simulation methods have been
developed by Mackay [71]. Gordon [35] introduced a re-sampling phase in
the sequential Bayesian filter algorithms. These techniques are used in the
Artificial Intelligence domain under the name “survival of the fittest” and in
the control field as particle filtering. In the CV domain these methods were
first used by Isard and Blake [43, 41] under the name CONDENSATION.

Reviews that show how widely these techniques have been used in recent
years have been done by Doucet [29] and Arulampalam et al. Other work can
be found in [17, 28, 42, 45, 68, 75, 104, 70, 88, 80, 50]. Further, comprehensive
treatments are given in [2, 8]. However, several drawbacks remain as stated
by King and Forsyth [56]. Despite the great number of improvements that

37
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have already been introduced, many open issues prevent stating that particle
filters are able to solve unconstrained tracking problems.

This chapter shows the use of a probabilistic framework based on particle
filters for tracking sport players. The methods presented in this chapter are
based on the work of Isard and Blake [43, 41] concerning the use of particle
filter in CV and the work of Kristan [60, 58], Perš [84, 47] and Rowe [90]
who applied particle filters in the tracking of humans. Section 4.1 gives
an introduction to particle filter in general. Section 4.2 shows how can the
particle filter be used for the tracking sport players in terms of modeling
both the player appearance and his motion and the likelihood function based
on color feature. Section 4.3 presents the single player particle filter-based
tracking algorithm. Finally, a discussion of the chapter contents is presented
in Section 4.4.

4.1 Particle Filter

From a probabilistic point of view, the tracking problem involves dealing with
stochastic processes. These are series of time-slices describing the state of all
the entities within the scene [90]. Each time-slice consists of a set of random
variables. Two kinds of variables can be distinguished, namely unobservable
state variables at time t, denoted as St, and observable (measurable) evidence
variables, denoted as Zt. The interval between time-slices depends on the
frame rate. Given a state model st−1 at time (t−1) and all the measurements
up to (t − 1) z0:t−1, the posterior p(st−1|z0:t−1) can be estimated by the
recursion of Equations 4.1 and 4.2 using new measurement zt

prediction : p(st|z0:t−1) =
∫
p(st|st−1)p(st−1|z0:t−1)dst−1 (4.1)

update : p(st|z0:t) = p(zt|st)p(st|z0:t−1)∫
p(zt|st)p(st|z0:t−1)dst

(4.2)

The recursion for the posterior thus requires a specification of a dynamical
model describing the state evolution p(st|st−1), and a model that evaluates
the likelihood of any state given the observation p(zt|st).
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The Conditional Density Propagation (CONDENSATION) algorithm is
used in the implementation [41]. CONDENSATION intended to track a
human contour which moves in cluttered background, given a video signal
as data. CONDENSATION has been simply described by Kristan [57] as
follows: The posterior at time-step (t− 1) is represented by a finite particle
set of Np particles with normalized weights w(i)

t−1

p(st−1|z0:t−1) ≈ {s(i)
t−1, w

(i)
t−1}

Np
i=1 (4.3)

so that the sum of all weights is one. At time-step t, the particles are
re-sampled according to their weights in order to obtain an unweighted rep-
resentation of the posterior

p(st−1|z0:t−1) ≈ {s̃(i)
t−1,

1
Np
}Npi=1 (4.4)

and are then simulated according to the dynamical model p(s(i)
t |s̃

(i)
t−1) to

obtain a representation of the prediction p(st|z0:t−1) ≈ {s(i)
t ,

1
Np
}Npi=1. Finally,

a weight is assigned to each particle according to the likelihood function
w(i) = p(zt|s(i)

t ), all weights are normalized, and the posterior at time-step t
is approximated by a new particle set p(st|z0:t) ≈ {x(i)

t , w
(i)
t }
Np
i=1.

In order to use CONDENSATION for the tracking of sport players the
following should be specified:

• model for the player (state model)

• model for the motion of the player

• model for the state transition (evolution)

• likelihood function

In the next Section 4.2 it will be shown how the three models and the likeli-
hood function are specified and implemented.
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Figure 4.1: The player model.

4.2 Particle Filter-based Player Tracking

4.2.1 Modeling the Player

The target (player) motion is characterized by its position at time t, xt =
(xt, yt)T which is here the center of the ellipse as shown in Figure 4.1. The
aspect model is given by the bounding ellipse and an appearance matrix.
The bounding ellipse is denoted by et = (at, bt)T . The appearance matrix
denoted by At, stores the pixel intensity values within the bounding ellipse.
A label l associates a specific appearance model to the corresponding state,
allowing multiple-target tracking. Therefore, the l-target’s state is defined as
slt = (xlt, elt,Alt)T . In the case of player tracking the label l can be the player
t-shirt number or the player name.
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4.2.2 Modeling Player Motion Dynamics

Modeling the dynamics of the tracked target is an important part of the prob-
abilistic tracking. Well-modeled target motion dynamics can cause many im-
provements to the performance of the tracker. One important improvement
could be the accurate estimation of the target’s position which will result
in a smaller number of tracking errors. Using a large number of particles
will result in better estimation of the target state. On the other hand large
number of particles may cause more cost on computing the likelihood proba-
bility. So another improvement that comes from a good dynamic model is to
efficiently use a smaller number of particles by leading them to the regions
where it is more likely to contain the current state of the target.

Several independence relationships are assumed in order to determine the
transition model. It is considered that both aspect and dynamic models are
independent and that the position only depends on the previous position
and the speed on the previous one, and so does the bounding box and the
appearance. Therefore, the transition model can be split [90]:

P (St|St−1) = P (Xt,Et,At|Xt−1,Et−1,Et−1) (4.5)

= P (Xt|Xt−1)P (Et|Et−1)P (At|At−1)

Players usually aim to act in an unpredictable fashion to confuse the oppo-
nent, which implies that the dynamics should be modeled by a Brownian
motion [111]. The player’s motion, however, is restricted by his task and
laws of physics; i.e. a player’s task is to travel from region A to region B,
and during that traversal the position cannot be changed instantly and arbi-
trarily due to the effects of the inertia. Therefore, the transition (evolution)
model of the position p(xt|xt−1) can be defined as

p(xt|xt−1) = N(xt; xt−1 + dt,Λt) (4.6)

Where N(.;µ,Σ) is a normal distribution with mean µ and covariance matrix∑ and dt is a drift constant at time t for all particles. By the same way the
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translation model of the bounding ellipse can be written as:

p(et|et−1) = N(et; et−1 + dt,Λt) (4.7)

The drift constant dt is calculated the same way as δt (see Section 3.2.4) from
the past f/2 states.

4.2.3 Color-Based Likelihood Function

The likelihood function or model p(zt|st) gives the probability density func-
tion of the measured feature zt given the current state of the target st. This
function is used to evaluate the particles to give them weights that are needed
for the re-sampling step in the CONDENSATION algorithm. The color fea-
tures in the appearance model At are used as the measurable features. Hence,
the appearance At is given by a matrix whose elements are the pixels’ inten-
sity values. The target appearance is represented by color histograms.

Histograms are broadly used to represent human appearance, since they
are claimed to be less sensitive than other representations, such as color
templates, to rotations, camera point of view, non-rigid targets and partial
occlusions [90].

A histogram is a statistical description of a random variable space that
captures the occurrence frequencies of a variable in different event classes.
For color, the event classes are regions in color space [106]. Color histograms
represent the color distribution of images by counting the number of pixels
in the range of color class pixels according to their color range class in color
space.

A standard color histogram is derived by approximating the intensity
distribution independently for each red (R), greed (G) and blue (B) color
band through an N-bin histogram.

Standard color histograms project the color distribution of an image to
three color bands. This projection removes the spatial 3D information of the
RGB tuples in color space. The spatial relation of the color information is
retained if the color values of the image pixels are not considered as indepen-
dent but as tuples in color space. A histogram then discretizes the tuples in
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Figure 4.2: Three-dimensional color histogram for an image of a player.

Nk equally sized bins, where k denotes the dimension of the color space.

In RGB color space a 3D color histogram which consists of N3 equally
sized bins preserves the spatial information of the color pixels. 3D color
histograms define an equivalence function on the set of all possible colors,
that means two colors are the same if they fall into the same bin. Figure
4.2 shows a 3D color Histogram for a player image 1. The player image is
masked by the background mask, so the bin which contains the black color
is big and should be ignored in the calculation of the histogram.

The histogram of the l-model is given by:

h̄l = {hlk; k = 1 : K}, (4.8)

where K is the number of bins, and the probability of each feature is
given by:

1Generated by ImageJ 1.43u software, written by Wayne Rasband, National Institute
of Health, USA, http://rsb.info.nih.gov/ij
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hlk = C l
M∑
a=1

M(xb)Π(b(xa))δ(b(xa)− k), (4.9)

where C l is a normalization constant required to ensure that∑Kk=1 h
l
k = 1,

Π(.) is a weighting function that gives higher weights to the pixels closer to
the center [26, 60], δ the Kronecker delta, {xa; a = 1 : M} the pixel locations
and b(xa) a function that associates the given pixel to its corresponding his-
togram bin. M(.) is a mask function that gives a zero weight to background
pixels, it is computed as described in section 7.1.1. The l-labeled target’s
state is then defined as slt = (xlt, elt, h̄

l)T .
The presence of a player in a given state is evaluated by comparing some

candidate histograms to a reference histogram of the tracked player. The sim-
ilarity between two histograms can be computed using the following metric
[90, 50]:

dB =
√

1− ρ(h1,h2), (4.10)

where

ρ(h1,h2) =
K∑
k=1

√
h1h2 (4.11)

is known as the Bhattacharyya coefficient. Therefore, similar histograms have
a high Bhattacharyya coefficient, which should correspond to high sample
weights.

Due to nonuniform lighting and change in players pose while moving
across the field, the texture of the players may change. Kristan [58] suggests
that the appearance model for tracking people should be updated. Thus the
player reference model should be adapted. This adaption will be applied on
the appearance model of the player which is the histogram. The reference
histogram at time-step t is adapted based on [58] as follows:

hlt = αhlst + (1− α)hlst−1 (4.12)

where α ∈ [0, 1] is the adaptation rate.
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4.3 Tracking Algorithm

After determining the required models for CONDENSATION, as shown
above, it can now be used for tracking sports player. For completeness,
a listing of CONDENSATION is shown in Algorithm 4.1. The details of
the algorithm regarding for example the re-sampling requires explaining the
whole statistical background which is out of scope of this thesis. More details
about CONDENSATION and the statistical background behind it can be
found in [41]. The whole process of tracking requires image pre-processing
and post-processing of the output in addition to the tracking engine. So
CONDENSATION is shown in Algorithm 4.2 as a step of the tracking algo-
rithm.

The complexity of the CONDENSATION algorithm depends on two main
parameters, namely the number of particles and the computation of the likeli-
hood function for evaluating each particle by giving a weight. The likelihood
function depends on computing a three-dimensional histogram for each parti-
cle and measuring the distance between it and the reference histogram. The
complexity of computing the histogram for an image (or sub-image) depends
on the image size and the number of channels as well as the number of his-
togram bins. The more bins each histogram for each channel has, the better
the representation of the color distribution and the longer the time needed for
computations is. In Chapter 7 experiments have been done in order to find
the best number of bins for computing the histogram and the best number
of particle for the CONDENSATION.

Algorithm 4.2 shows the processing steps of tracking one player based
on CONDENSATION as the tracking kernel. The total time needed for the
tracking of one player includes the pre-processing described in Section 7.1.1,
the tracking kernel and the post-processing of the tracking data. In order to
track multiple players using CONDENSATION the multiple player tracking
framework described in Chapter 5 should be used.
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Algorithm 4.1 CONDENSATION algorithm adapted from [41].

1. From the “old“ sample-set {s(i)
t−1, w

(i)
t−1}Ni=1 at time step t − 1,

construct a “new“ sample-set {s(i)
t , w

(i)
t }Ni=1

2. construct the nth of N new samples as follows:

(a) Select a sample s′t as follows:
i. generate a random number r ∈ [0, 1], uniformly

distributed.
ii. find, by binary subdivision, the smallest j for

which c
(j)
t−1 ≥ r

iii. set s′(n)
t = s(j)

t−1

(b) Predict by sampling from p(s|st−1 = s′nt ) to choose each
s(n)
t

(c) Measure and weight the new position in terms of the
measures feature zt: wit = p(zt|st = s) then normalize
so that

∑
w

(n)
t n = 1 and store together with cumulative

probability as s(n)
t , w

(n)
t , c

(n)
t where

c
(0)
t = 0,
c

(n)
t = c

(n−1)
t + win(n = 1, ..., N).

3. once the N samples have been constructed: estimate,
the moments of the tracked position at time step t as
a weighted mean st obtaining the mean position using∑N
n=1 w

(i)
t s(i)
t

4.4 Discussion

This chapter concerns the tracking of a single sports player using probabilis-
tic model in order to deal with the non-linearity and the uncertainty in the
sports domain. CONDENSATION algorithm which is based on particle fil-
ter techniques has been used in the CV domain for tracking. In order to use
CONDENSATION for tracking in sports domain a model of a player (state),
his motion, state transition and likelihood function should be found. The
state of the player has been modeled as an ellipse and the visual features
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Algorithm 4.2 Single player tracking algorithm using CONDENSATION.
compute the background using Algorithm 7.1
get first frame and initialize the state of the tracker manually
For each input frame

1. Pre-process the frame as described in 7.1.1

2. Subtract the frame from background model to find foreground mask

3. Compute ROI for the tracker from previous frame

4. Run the CONDENSATION described in Algorithm 4.1 on the sub image
determined by the ROI

5. Transform the output coordinates of template matching to real
coordinates using Equation 7.10

6. If player is on middle line transfer the processing to other half of
the frame as described in 7.1.2

inside the ellipse are modeled as a three-dimensional color histogram. Three
dimensional histograms have been chosen to preserve the spatial information
of the RGB color tuples in the color space. The transition model of the player
motion and the ellipse size is modeled as a normal distribution. The likeli-
hood is modeled as the Bhattacharyya distance between the state histogram
and the reference histogram.

In order for the tracking algorithm presented in this chapter to be used in
practice some parameters including the number of particles and the number
of histogram bins need to be determined. Chapter 7 shows the experiments
done to find the best parameters as well as the experiments done to evaluate
the tracking itself in terms of accuracy and running time.





Chapter 5

Managing Multiple Players

In Chapters 3 and 4 the tracking of single players using deterministic template
matching technique and probabilistic based technique has been introduced.
In the previous work review in Chapter 2 the multiple target tracking problem
can be tackled using several strategies in which each strategy has drawbacks
with respect to the computational efficiency or accuracy of tracking. Using
information about the environment of the tracking (who will be tracked,
where the tracking takes place and so on) can be very helpful for the tracking
algorithms and for managing multiple players. The idea of using meta-data
to help accomplish a CV task has been introduced to the CV literature by
Intille and Bobick [40] in 1994 under the name closed-world tracking. Perš in
[84] and Kristan in [60] have used the same concept to track sports squash
and handball players using low resolution analog cameras.

In this chapter a general framework for using closed-worlds for tracking of
multiple sports players is presented. This framework gives enhancements to
the way the closed worlds are used in sports tracking domain. The enhance-
ments include not only the tracking itself but also optimization of the image
pre-processing. The rest of this chapter is organized as follows: Section 5.1
gives the definition of the closed worlds concept and its application in track-
ing of multiple targets. Section 5.2 presents new closed world assumptions
that can be used for enhancing the multi-target tracking shown in Section
5.1. Section 5.3 shows how closed world assumptions can be used for opti-
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mization of the image pre-processing. Section 5.4 gives a discussion and a
summary of the chapter.

5.1 The Concept of Closed Worlds and Its
Use in Tracking

The closed worlds is a concept that has been introduced to the CV community
by Intille and Bobick [40] in 1994. The main idea of this concept is that for a
given region in space and time, a specific context is adequate to explain that
region (i.e. determine all objects within the region). This region is called the
closed world and the context is a boundary in space of knowledge, outside of
which knowledge is not helpful in solving the tracking problem. The closed
world assumptions in [60] and [57] which have been used for tracking in sports
domain are defined as follows (CWA stands for Closed World Assumption):

• (CWA1) The camera overlooking the playground is static, and posi-
tioned so that its optical axis is approximately perpendicular to the
floor.

• (CWA2) The court (playing field) is bounded, and its model can be
calculated.

• (CWA3) The players’ textures can vary during the game; however, they
are known at the beginning.

• (CWA4) A player cannot change his position completely arbitrarily due
to the effects of inertia.

• (CWA5) At a given time two players cannot occupy the same position.

The closed-world assumption (CWA1) which concerns about the camera po-
sition implies that the players are viewed from above. Using CWA1, it can
be assumed that a complete occlusion of a player is not likely to happen,
because one player cannot be located on top of another during a regular
match. So CWA5 is based on CWA1. A model for the background can be
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Algorithm 5.1 Using space partitioning in tracking [60].
Initialize Tracker Positions
For t = 1, 2, 3, ...

1. Sort the trackers according to their weights

2. Initialize the seeds of partitioning to the current position
estimates

3. For each tracker do

(a) construct a partitioning using the current seeds

(b) construct the a partition mask for the current tracker

(c) run single player tracking algorithm

(d) update the seed of the current tracker

calculated as described in Algorithm 7.1 based on CWA2. CWA5 has been
used by Kristan [60] in order to track multiple handball players. To track N
players using CWA5 as described in [60], the search space is divided into N
disjoint regions. Each region contains only one tracker. Based on this kind
of partitioning the tracking can be done using Algorithm 5.1.

Here it is assumed that the input to the partitioning procedure is a set of
tracker positions. These sets of positions are taken from current estimates of
the tracker positions. The estimates can be computed from the past positions
and based on the player motion model. In the implementation of [60] this
kind of partitioning has been achieved using Voronoi Diagrams [6].

Voronoi diagram is a special kind of decomposition of a metric space
determined by distances to a specified discrete set of objects in the space,
e.g., by a discrete set of points. It is named after Georgy Voronoi, also called
a Voronoi tessellation, a Voronoi decomposition, or a Dirichlet tessellation
(after Lejeune Dirichlet) [114]. Voronoi diagrams are defined in [114] as
follows: Let S be a set of points in Euclidean space with all limit points
contained in S. For almost any point x in the Euclidean space, there is one
point of S closest to x. The word almost is used to indicate exceptions where
a point x may be equally close to two or more points of S. If S contains only
two points, a and b, then the set of all points equidistant from a and b is a
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hyperplane. That hyperplane is the boundary between the set of all points
closer to a than to b, and the set of all points closer to b than to a. It is the
perpendicular bisector of the line segment from a and b. In general, the set of
all points closer to a point c of S than to any other point of S is the interior of
a (in some cases unbounded) convex polytope called the Dirichlet domain or
Voronoi cell for c. The set of such polytopes tessellates the whole space, and
is the Voronoi tessellation corresponding to the set S. If the dimension of the
space is only 2, then it is easy to draw pictures of Voronoi tessellations, and
in that case they are sometimes called Voronoi diagrams. Figure 5.1 shows
how Voronoi Partitioning is used for tracking.

5.2 Enhancement by Local Partitioning Strat-
egy

The experimental study in [60] has been done on sequences of video with low
quality and small image size of 348x288, so the construction of Vornoi masks
may not require a lot of time. Taking into consideration that the higher
resolution digital cameras can be used for tracking the construction of such
partitioning masks could be costly. Also the processing steps in Algorithm
5.1 may run for several times in the same frame and for each update of the
tracker position the Voronoi diagram will be calculated. This means that the
cost for constructing Voronoi masks will increase for higher quality images.

In the following an additional set of closed world assumptions will be
introduced and its use together with the above set of assumptions to optimize
the multi-player tracking will be explained. The additional closed world
assumptions are:

• (CWA6) The distance between players during playing can be more than
the distance that one player can achieve between two frames.

• (CWA7) An estimation of the player’s next position can be computed.

• (CWA8) The initial position of the player is known at the beginning.
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Figure 5.1: Voronoi partitioning for multiple player tracking.
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• (CWA9) The player’s height is known.

• (CWA10) The camera position and parameters are known.

Using the closed world assumption CWA6 and CWA7 it is not necessary to
compute Voronoi masks for the trackers which are far away from others. If
the estimated distance for this tracker is still greater than the distance that
can be achieved in one frame, it will be a waste of time to construct the mask
for this tracker. Also using the closed world assumptions CWA6 and CWA7
the order of tracker update is computed based on the distance between track-
ers which determines which one is in a critical situation (is more likely to
confuse other trackers). Using this information can help to first update the
tracker which may cause confusion. It is better to first update the trackers,
which are nearer to others. The trackers are clustered based on the distance
between them where each group of trackers are treated independently. Each
group of trackers represents a possible conflict in tracking, so the processing
will be concentrated on this group. For each group a separate partition-
ing is performed. Groups that only contain one tracker do not require any
partitioning.

Taking into account the assumptions CWA6 and CWA7, the modified
algorithm for multi-player tracking can be shown in Algorithm 5.2.

The grouping of the trackers is actually a clustering process where the
number of clusters is not known, yet the width of the cluster is. The width
of the cluster can be determined based on the maximum speed of the target
between two frames. The adaptive c-means clustering algorithm [93] is very
relevant for solving this problem. Only two parameters Θnew and Θmerge
should be determined before the clustering begins. Θnew is the threshold used
to determine if a new cluster should be added and Θmerge is the threshold to
determine if two clusters should be merged.

The adaptive c-means clustering algorithm has been used to analyze
tracking data taken from a basketball game in order to acquire an estimation
of the average number of position data clusters in each frame. The data set
consists of position data of 10 players from 2 teams in 16043 frames with a
frame rate of 30 frame/second. Using the values of 150 and 200 for Θnew and
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Algorithm 5.2 Modified voronoi partioning based multi-target tracking.
Initialize Tracker Positions
For each input frame

1. Compute the position estimates of the trackers

2. Based on tracker estimated positions cluster the trackers into
groups

3. For each tracker group

(a) Initialize the seeds of partitioning to the estimated positions

(b) Sort the selected trackers according to distance matrix

(c) For each tracker (starting from min to max) do

i. construct the partitioning using current seeds
ii. construct the partitioning mask for the current tracker
iii. run tracking algorithm
iv. update the seed of current tracker

Θmerge respectively, it is found that the average number of clusters in each
frame is 5.91 and the standard deviation is 1.42. Regarding the number of
samples (player positions) in each cluster it was found that 57.6% of the total
clsuters contain only one sample, 26.2% contain 2 samples, 8.8% contain 3
samples, 4.8% contain 4 samples and less than 3% contain between 5 and
8 samples. It is clear that in more than half of the number of clusters that
partitioning is not required and in more than 25% only a simple paritioning
between two trackers is needed.

To partition a sub-image with 2 trackers the intersection between two
rectangles can be calculated as shown in Figure 5.2.

5.3 Optimizations Based on ClosedWorld As-
sumptions

Using CWA7 and CWA8 more optimization can be done regarding the pre-
processing described in Section 2.1. These optimizations include the pre-
processing of only the sub-image where the tracking should take place. Be-



56 Managing Multiple Players

Algorithm 5.3 The adaptive c-means algorithm
Estimate the thresholds Θnew and Θmerge
set K = 0
choose a data point x
calculate the distance dj = d(x,mj), j = 0, 1, ..., k
find j∗ = arg minj dj
if dj∗ > Θnew or k = 0

1. mk = x

2. k = k + 1

3. set nj∗ = 0

else

1. nj∗ = nj∗ + 1

2. replace mj∗ by mj∗ + ( 1
nj∗

)(x−mj∗)

3. calculate Dl = d(ml,mj∗), l = 0, 1, ..., k

4. find l∗ = arg minl 6=j∗ Dl

5. if Dl∗ < Θmerge

• merge(ml∗ ,mj∗)
• k = k − 1

goto: choose data point
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Figure 5.2: Partitioning a sub-image containing two trackers.

cause an estimation of the player position can be calculated (CWA7), the
size and location of the sub-image which may contain the player in the next
frame can be calculated and used to run the pre-processing only on this ROI.

CWA9 and CWA10 are used to calculate the player’s position in meters
and to perform the tracker transfer from one camera view to the other as
described in detail in Sections 7.1.2 and 7.1.2.

5.4 Discussion

In this chapter the multi-player tracking in the context of closed worlds
has been introduced. Kristan [60] introduced 5 closed world assumptions
and used them in the tracking of multiple sports players by partitioning
the search space into disjoint regions where each region contains only one
tracker. Another 5 closed world assumptions have been introduced in this
chapter and used to enhance the multiple player tracking as well as the image
pre-processing. Clustering of position data from basketball game has been
used to show that only in 16.6% of the frames partioning of space to more
than three partitions is needed and in 25% only a simple partioning for two
trackers is needed. In Chapter 7 experiments will be discussed to show the
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effect of using closed world assumptions in tracking accuracy and effiecieny.



Chapter 6

Sport Performance Analyzer
Software

In this chapter the development of a software system that enables normal
users to use the tracking algorithms described in this thesis will be explained.
SPA (Sport Performance Analyzer) is the name of the software system. SPA
is the output of the project Intelligent Sports Wear and Automatic Analysis
of Team Sports (see Section 1.2). It is a system for acquisition, analysis and
visualization of both physiological and position data of indoor sports players
to provide a tool of players’ performance analysis. The intended users of SPA
are team coaches, sports science researchers, sports medicine researchers and
other researchers who are interested in the human motion analysis or the
analysis of the team interactions as a dynamic system.

The rest of this chapter will be organized as follows: Section 6.1 gives
an idea about the whole system through data flow between the different
modules in the system. Section 6.2 explains the software architecture of
the SPA. Sections 6.3, 6.4 and 6.5 explain in more detail the recording,
tracking and visualization modules respectively. In section 6.6 SPA utilities
for testing of the tracking algorithms are presented. Finally Section 6.7 gives
the conclusion of the chapter.
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Figure 6.1: Data flow diagram for the SPA software system [83].

6.1 Structure of SPA

SPA has three main modules, namely the video-sensor data acquisition mod-
ule (Video-System and Wireless Sensor Network), the vision-based tracking
module and the analysis-visualization module. The best way to describe
SPA is a data flow diagram that shows the flow of the data between the
different modules. This is shown in Figure 6.1. The acquisition module is
responsible for recording bio-signal data and video streams. In Figure 6.1 the
data acquisition module is shown in two components. The first component
is the video system which is composed of two high-quality digital cameras
that produces raw (uncompressed) video. The video stream is used as input
to the tracking and the visualization modules. The second component of the
acquisition module is the wireless sensor network which is used to acquire
the physiological data of the players.

The processing of the bio-signal acquired from the sensor is done on-
board before it is sent to the recording computer via a wireless network.
Bio-signal data, video data and position data are inserted to the analysis and
visualization module which produces different visualizations such as graphs
and interactive video with annotated information. The video tracking module
works offline to provide the position data of the players. It takes as input
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two video data streams and produces the positions of the players in real
world coordinates (meters) which can be further analyzed to acquire more
information about the movement of the players.

The recording of video and physiological data streams is synchronized
so that to make further analysis of the data easier. Because the amount of
physiological data is much less compared to the video data it can be processed
and visualized online. So for example during the sports event the heart rate
can be monitored and the trainer can decide to substitute a player based on
his heart rate profile.

6.2 Software Design

In order to develop software products to be used by a large number of users,
it needs a systematic process of analysis, design, development, test, main-
tenance, and documentation. The targeted users of SPA are researchers in
the sports domain and team trainers. Therefore, a systematic development
of such a system is a must.

Software engineering techniques have been used during the development
of the SPA system. Software engineering can be defined as the systematic
application of scientific and technological knowledge, methods, and experi-
ence to the design, implementation, testing, and documentation of software.
Details of the phases of the SPA Software development can be found in
[101, 32]. In the following sections a brief description of the design and the
user interface and tools used for development will be shown.

Figure 6.2 shows the software architecture of the SPA. The acquisition
module is responsible for the recording of both video and sensor data. The
GUI (Graphical User Interface) will provide the acquisition module with the
necessary information from the Game-Team-Sport module or for short the
database module. This information includes the specification of the sport
hall (such as height of the camera) and the kind of game (for example hand-
ball or basketball). This information is important to specify the video-frame
size. For the sensor data it is important to get the team and player names
from the database in order to assign the current sensors to the players. A



62 Sport Performance Analyzer Software

Figure 6.2: SPA software structure.

user friendly interface will allow the user to easily access this information and
to control the recording process with all possible events like stop, start and
pause functionalities. Both the video and sensor data are stored for further
analysis and visualization. The video data can be read and processed for
tracking by the tracking module which outputs the tracked player positions.
The Analysis and Visualization module is responsible for generating reports
and visualizations which help the users to interpret the tracking output and
physiological data and draw conclusions about the players’ performance dur-
ing the game or the training session. The Game-Team-Sport Management
module provides all other modules with the necessary information about
players, teams, camera setup, games and so on.

6.3 Recording Video and Bio-signals Data Mod-
ule

The recording module is responsible for recording video and/or physiological
data. The video data is recorded from one or two cameras while the recording
of physiological body signals is done by a wireless sensor network. In this
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Figure 6.3: Screen shot of SPA recording module user interface.

section only a brief description of the sensor network with more details on the
software part will be introduced. A screen shot of the recording module in
the SPA software can be seen in Figure 6.3. Because of the small amount of
data (relative to video data) received from the sensors an online visualization
while recording is possible. This includes graphs with a variety of colors for
different players and signals coming from the sensors.

6.4 Tracking Module

The tracking module performs the tracking algorithm on the inserted images
and puts out the tracking data, which is saved in separate files for each
tracker. At the beginning of the tracking process, the user should specify the
initial position of the tracker and which player shall be tracked. The player
information, such as name, shirt number, height and team are read from the
database.

From a software design point of view the tracking module is the most
complex module in the whole SPA. Figure 6.4 shows a simple class diagram
of the tracking module where only the important classes are shown. To give
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Figure 6.4: Class diagram of the SPA tracking module

an idea how the tracking works, in principle, there should be a main class
which runs as a thread. It is inherited from the base class SPATracker where
every new tracker should be inherited from this class.

In Figure 6.4 the class SPATemplateMatchingTracker is an example of
a tracker based on Template Matching and is inherited from SPATracker
class. This main class is responsible for pre-processing (preparing) the image,
managing the user interaction events and showing the images after tracking
with the current positions of the tracker overlayed on the displayed image.

SPATemplateMatchingTracker is also responsible for managing an ob-
ject from MultipleTMTracker class (is inherited from MultipleTracker class)
which in turn takes care of a collection of SingTMTracker. MultipleTracker
will allocate memory space for new trackers and also implements the multiple
tracker handling technique. Every SingleTMTracker object is responsible for
tracking one player using template matching techniques. Every SingleTM-
Tracker has also its own PathBuffer which is a special circular buffer that
keeps a specific number of position data points in memory in case the user
wants to step back in video to see how the tracking was in the last, for ex-
ample, 30 frames. When the position data is old enough it will be written
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Figure 6.5: A screen shot for the tracking mode user interface.

on the hard drive. The CoordinateTransformer object will do the neces-
sary transformation of the position data from image coordinate to real world
coordinates.

Figure 6.5 shows a screen shot from the tracking mode. Various controls
are available for the user in the tracking mode, including start, stop, pause,
step back and step forward. It also allows the possibility to substitute players
and shows a list of substituted and playing players. In case of very accurate
manual tracking the tracking user interface allows to track specific players
manually, which means that to manually correct the tracker in each frame.

The tracking algorithm parameters and all other parameters like video
and output files can be configured from the settings dialog as shown in Figure
6.6. All the settings in the settings dialog can be saved as a project so the
user can stop tracking at any time and continue later.
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Figure 6.6: A screen shot form the SPA settings dialog.
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Figure 6.7: Screen shot for the interactive visualization tool.

6.5 Analysis and Visualization Module

The visualization mode in the SPA allows the user to view and generate
videos with augmented tracking information. The generated videos can be
of different resolution and quality based on the user selection. The visual-
ization module includes some classes which are responsible for correcting the
camera fisheye lens distortion and correcting the small errors of the camera
installation which needs Warping of the whole image. Because the warping
and undistortion are operations which depend solely on the pixel coordinate
and not on the pixel value, lookup tables are used in order to reduce the time
needed for processing.

The visualization done using the SPA visualization module is a static vi-
sualization, i.e. the user cannot select the information that he would like
to see during the video displays. An interactive visualization tool [99] also
developed at the Systems and Circuits research group especially for the vi-
sualization of robot tracking data in the Teleworkbench project [107] has
been used after some adaptations to interactively visualize the player track-
ing data, including the position and sensor data. Figure 6.7 shows a snapshot
from this visualization tool.
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Important data for the trainers and sport scientists include speed profile
of the player(s), field coverage (covered distance), average speed. A special
MatLab tool has been developed to help generate different visualizations and
statistical reports. The details of the tool can be found in [32].

6.6 Utilities for Testing

SPA software includes utilities to track players manually in order to acquire
highly accurate tracking data of the players. Manual tracking can also be
used to generate ground truth test data which is used as benchmark data
for testing tracking algorithms. Benchmark data is used to evaluate the
performance of the tracking in terms of accuracy. In order to test different
parameters of the tracking algorithms a tool which takes the benchmark files
as input is developed. It lets the tracking algorithm run with a different a
set of values for a specific parameter and produces the required statistics to
evaluate the tracking algorithm.

6.7 Discussion

This chapter gives a brief overview of the SPA software which was developed
during the course of this thesis work. SPA is also a part of the sport project
at the System and Circuit Technology research group. An idea about the
design of the software together with screen shots from different modes has
been presented. The details of the software parts that are not directly related
to the domain of this thesis can be found in the appropriate references referred
to in the thesis.

SPA is a tool that enables users to acquire a new combination of data
about the sports players. The combination of physiological and position data
provides new possibilities for analysis of indoor sport games. The acquisition,
tracking, visualization and analysis of these combination of data is done in
one system through a user friendly graphical user interface.

SPA is being used for the analysis of official basketball games played
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Paderborn and the handball games played in Soest. It is also used for the
analysis of training sessions of handball at the University of Paderborn. The
analysis results are used by the department of Sport Medicine and the de-
partment of Applied Mathematics at the University of Paderborn for further
research at the levels of Bachelor, Master and PhD in these departments.





Chapter 7

Experimental Study

In the previous chapters methods for tracking sports players based on tem-
plate matching and particle filters have been presented. The proposed al-
gorithms have parameters, such as template size (in template matching),
number of particles and number of color histogram bins (in particle filters)
that still need to be determined. The tracking algorithms need also to be
evaluated in terms of running time, memory requirements and accuracy. In
order for the SPA software system to be used to support sport scientists and
team trainers to perform experiments and studies or to evaluate the perfor-
mance of the athletes during competitions and training sessions, it should
satisfy some requirements regarding the validity, objectivity and reliability
of the tracking.

This chapter presents a comprehensive experimental study on the track-
ing algorithms and their implementation in the SPA software. The chapter
explains the experimental setup and the various numerical results of the tests
done for the evaluation of the tracking algorithms. The rest of the chapter
is organized as follows: Section 7.1 explains in detail the experimental setup
which includes the video data acquisition, pre-processing of image data, post
processing of position data, implementation and running times of pre- and
post- processing. Section 7.2 gives a description of the datasets used for test-
ing. Section 7.3 presents definitions of the performance measurements and
the quality criteria of the tracking system, it also shows the hypotheses about
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the system that need to be proved. Sections 7.4, 7.5 and 7.6 give the numer-
ical results including tests for the parameters of the template matching and
particle filter tracking algorithms, respectively. Section 7.7 shows the eval-
uation of the numerical results of the tests used to evaluate the hypotheses
presented in Section 7.3. Section 7.8 gives discussion and concluding remarks
on the chapter.

7.1 Experimental Setup

The selection and installation of the image acquisition hardware is of great
importance because all further processing is based on the input image and
its quality. Figure 7.1 shows the different possible camera installations in
the sports halls. Using one camera installed on the side of the sport hall
(Figure 7.1(a)) will cause total or partial occlusions to occur more often.
This requires more than one camera to solve this problem (Figure 7.1(b)).
In this case one player will appear in more than one camera view which
requires data fusion between the different views. The configuration which
uses overhead cameras has been chosen because it reduces the occlusion and
keeps the player in the view of the camera all the time. In this configuration
two cameras are needed (one for each field) in order to cover the full playing
field.

The two cameras are stationary. The selection of the two cameras has
been carefully done after testing different cameras and lenses. Because most
of the sport halls are not high enough, fisheye lenses have been used in order
to catch the required view on the image sensor. Figure 7.2 shows the camera
installation configuration. The acquired image from this configuration is
shown in Figure 7.3.

The use of fisheye lenses causes the problem of distorting the acquired
images, deeming it insufficient for viewing the video with or without visual-
izations. Thus, undistortion is required in order to present a better visualiza-
tion of tracking results. On the other hand, because it requires interpolation,
undistortion will cause losing or distorting of some image features that could
be important for the tracking algorithm. For this reason it is preferred to
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Figure 7.1: Possible camera installations in the sports hall.

Figure 7.2: Camera installation in the sports hall [83].
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Figure 7.3: Images obtained from the two cameras installed in the University
of Paderborn sports hall.

track the players in the fisheye image.
The images acquired from the two cameras are Bayer images which are

produced by applying special color filters over the photo sensors of the cam-
era. Further processing is needed in order to acquire normal color RGB (Red,
Green, Blue) images. More details about processing Bayer images is given
in Section 7.1.1.

The installation of the cameras has been done in three sports halls. The
first is the sports hall of the University of Paderborn, the second is the
Maspernhalle which is the main indoor sports hall of Paderborn and the
third is in the Bördehalle in Soest. The specifications of the cameras are
shown in Table 7.1.

The specifications of the computer system used for the testing are as
follows:

• Processor: Intel Core i7-950 Series.

• Graphic Card: NVIDIA GetForce 480 GTX

• RAM: 8 GB (DDR3-1333)

• Mainboard: ASUS P6T WS PRO

• Operating System: Windows 7 Enterprise 64 Bit
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Uni-Paderborn Maspernhalle Bördehalle
Image Size (pixel) 1392×1040 1392×1040 1392×1040
Sensor bayer pattern bayer pattern bayer pattern

2/3” CCD - 8 bit 1/2” CCD - 8 bit 2/3” CCD - 8 bit
Frame Rate 30 fps 30 fps 30 fps
Connection Gigabit Ethernet Gigabit Ethernet Gigabit Ethernet
Objective Fisheye Fisheye Fisheye

f=2.7mm f=2.7mm f=2.7mm
Pixel Size 6.45 µm 4.65 µm 6.45 µm
Camera Hieght 7.14m 9m 7.25m

Table 7.1: Technical Specifications of the Cameras Installed in the University
of Paderborn Sport Hall, the Maspernhalle Sport Hall and Bördehalle

7.1.1 Pre-processing of Video Data

The image processing step shown in Figure 2.2 concerns the preparation of
the image before it is inserted to the tracking algorithm. The preparation
may include image color space transformation such as conversion from Bayer-
Pattern to RGB or from RGB to gray or HSV color space. Another part
of pre-processing may be the correction of the different camera distortion
including the fisheye effect and errors in camera orientation. An important
pre-processing step is background/foreground segmentation in which parts
of the image where motions occur are extracted or identified. This helps
to reduce the search effort in the tracking algorithm. In the following the
pre-processing implemented for the tracking of the sport player in this thesis
will be presented together with the implementation results.

Color Space Conversion and Enhancement Filtering

The used cameras produce Bayer images which need further processing to
generate images in RGB format. The Bayer images are produced by using
CFA (Color Filter Arrays), which are a set of filters placed over the image
sensors to capture color information.

Color filters are necessary because the typical photo sensors detect light
intensity with little or no wavelength specificity and therefore cannot separate
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Figure 7.4: The arrangement of Bayer color filters on the pixel array of an
image sensor [110].

color information. Most camera sensors use the Bayer filter as CFA. Bayer
filter mosaic was invited by Dr. Bryce E. Bayer of Estman Kodak [109].
Figure 7.4 shows how the Bayer color filters are arranged over the image
sensor.

The filter pattern is also called GRGB or other permutation such as
RGGB because it has 50% green, 25% red and 25% blue. The raw output
of Bayer-filter cameras is referred to as a Bayer pattern image [109]. Since
each pixel is filtered to record only one of three colors, the data from each
pixel cannot fully determine color on its own. To obtain a full-color image,
various demosaicing algorithms can be used to interpolate a set of complete
red, green, and blue values for each pixel. Different algorithms requiring
various amounts of computing power result in varying quality of final images.
This can be done in-camera, producing a JPEG (Joint Photographic Experts
Group) or TIFF (Tagged Image File Format) image, or outside the camera
using the raw data directly from the sensor [109].

The algorithms used to demosaic the Bayer pattern will be referred to as
Debayering algorithms. Debayering algorithms range from simple algorithms
with low quality output to sophisticated ones with high quality output. The
simplest method is nearest-neighbor interpolation which simply copies an
adjacent pixel of the same color channel. It is unsuitable for any application
where quality matters, but can be useful for generating previews given limited
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Figure 7.5: Cross section of image sensor with filter layer and the resulting
pattern[112].

computational resources [113].
Another simple method is bilinear interpolation, whereby the red value

of a non-red pixel is computed as the average of the two or four adjacent red
pixels, and similarly for blue and green. More complex methods that interpo-
late independently within each color plane include bicubic interpolation and
spline interpolation. Bilinear interpolation has been used in this work for
debayering. More complex debayering algorithms exploit the spatial and/or
spectral correlation of pixels within a color image [21]. Spatial correlation is
the tendency of pixels to assume similar color values within a small homo-
geneous region of an image. Spectral correlation is the dependency between
the pixel values of different color planes in a small image region.

White Balance

When capturing a scene by camera the lighting plays an important role in the
quality of the scene image. If the lighting is too strong or too weak the image
should be enhanced by means of white balancing. In principle one wants to
scale the RGB color channels so that the objects that are believed to be
neutral (white) appear so [108]. For example, if a part of the image which is
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believed to be white has the following values for RGB: R′ = 240, G′ = 230,
B′ = 200 and assuming the maximum value of all color components is 255
then the white balance is simply done by multiplying each red component
by 255/R′, each green component by 255/G′ and each blue component by
255/B′.

Correction of Camera Geometric Distortions

During the camera installation in the sports hall small errors in the position
or the orientation of the camera in the range of millimeter may cause bigger
errors during the exact computations of the player positions for the tracking
process. In addition, after the installation the position of the camera may
be changed due to ball hits, for example. In order to correct such errors
a calibration is needed. In the calibration process, four points of known
positions on the image are taken and used to build the transformation matrix
in order to be used for the correction of each pixel of the frame.

As described in 7.1 the lens used for the cameras produces a fisheye
effect on the image. The tracking is done on the fisheye-distorted image
which needs to be corrected when calculating the player position in meters.
The correction is also needed for generating the visualization of the tracking
information (for example, annotated video). The details of the correction of
the fisheye distortion are explained in 7.1.2.

The two operations of correcting camera orientation and fisheye-distortion
are based on the pixel-position, not the pixel value, so LUT’s (Look Up
Tables) can be calculated once and then used for each image saving a lot of
processing time. In the tracking case it is only required to correct one pixel
for each tracker which means 15 look up operations at most when tracking
all the handball players and the referee.

Background Detection and Subtraction

Background subtraction is used to segment the scene into motion and non-
motion parts. The segmentation is performed by comparing the current
frame with an estimated background model. The motion parts occur where
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Algorithm 7.1 Background estimation algorithm.
For each input frame

1. convert image to gray scale

2. smooth the image by Gaussian filter

3. compute difference between current and previous image

4. binarize the image by thresholding

5. perform dilation on the binary image

6. copy the non-motion areas to the background image model

a significant change between the current frame and the background takes
place. In the application of sports player tracking the background model can
be taken as the image of an empty (with no players) field but if the lighting
conditions changed the background model may not be valid for detection of
moving foreground objects and need to be updated. Therefor, in this thesis
work, the background model is built using a number of frames from the
recorded video before the start of the tracking process. Algorithm 7.1 shows
the procedure for the background estimation.

The idea of the algorithm is to compute the difference between each two
successive frames and copying the non-motion (zero-difference) pixels to the
background model. The input to Algorithm 7.1 is a color image which is
converted to a gray scale image. First, a Gaussian filter is applied to smooth
the image. In order to detect the motion parts the difference between two
successive frames is computed. A threshold operation is then applied in order
to mark each pixel as foreground or background which means it converts the
gray scale image to a binary one. In order to fill the holes in the background
or foreground regions a morphological dilation filter is applied.

If the image is of size N × N and assuming that the size of the filter
is constant then the time complexity of the filtering operation is O(N2).
Image subtraction and thresholding are of O(N2) complexity. Dilation is a
basic operation in the area of mathematical morphology. It is usually applied
on binary images, but there are variations that work on gray scale images.
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The basic effect of the operator on a binary image is to gradually enlarge
the boundaries of foreground pixel regions (i.e. white pixels). Thus areas
of foreground pixels grow in size while holes within those regions become
smaller. Being a kind of filtering that operates on each pixel of the image
makes its complexity also O(N2).

For the space complexity the resulting image is of the same size as the
input image. Thresholding the image needs no temporary image to store
the result. Other operations like smoothing require an image to store the
result. Each step in the algorithm, except the thresholding step, requires a
temporary image of the same size as the input image to save the result.

Algorithm 7.1 is used to build a background model offline before the
start of the tracking. It has been shown that between 200 and 300 frames
(i.e between 6 and 10 second when the frame rate is 30 fps) can be used
to build a good background model. In indoor sports the lighting conditions
have no sharp changes during the game because the light is artificial and
non-moving, unlike sun light, so the background model dose not need to be
updated.

7.1.2 Post-processing of Position Data

The output of the tracking algorithms are pixel positions on the image co-
ordinate system. In order to calculate further information such as distance
and speed of the players the pixels positions should be calculated to feet po-
sitions in the real world coordinate in meters. The calculations of the meter
positions of the player are not simple for three reasons. First, due to the
geometric distortions of the image on which the tracking takes place coming
from two sources: the distortion due to the fisheye lenses and the errors in
the camera orientation during its installation. Second, the tracker is actually
tracking a point of the player body which is the head in case of template
matching tracking and the center of the body in particle filter tracking. So
a geometric model should be found to correctly calculate the position of the
feet. Third, the tracker should be transfered from one camera view to the
other one when the player crosses the middle line of the playing field. Figure
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7.6 shows the steps of post-processing needed in order to calculate the posi-
tions of the players in meters. It is not shown how the tracker is transfered
from one camera view to the other. This will be explained in detail in this
section. The tracking takes place on the fisheye image (step 1), the position
is corrected to coordinate on the undistorted (defished) image.

Defishing: Correcting Fisheye Lens Distortion

The correction of fisheye lens distortion is needed for the calculation of the
player feet position in meters and for generating the video used for the visu-
alization. The transformation from distorted to undistorted image is based
on the following equation [115]:

r = f tan( r̀
f

) (7.1)

Where r is the distance to the center of the corrected (Defish) image, r̀ is
the distance to the center of the distorted (Fisheye) image and f is the focal
length (in pixels). This transformation is based on the assumption that the
lens is spherical and the distortion is only radial and not tangential. Based
on radial distortion assumption the following relation holds:

r

r̀
= x− xc
x̀− x̀c

= y − yc
ỳ − ỳc

(7.2)

where p̀ = (x̀, ỳ) is a pixel position at the distorted image and p = (x, y) is
the position of the mapping of p̀ on the undistorted image and p̀c = (x̀c, ỳc)
is the center of the distorted image and pc = (xc, yc) is the center of the
undistorted image.

Solving Equation 7.2 for x and y we get the following:

x = (x̀− x̀c)
r

r̀
+ xc (7.3)

y = (ỳ − ỳc)
r

r̀
+ yc (7.4)
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Figure 7.6: Post-processing of tracker output.
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where
r̀ =
√

(x̀− x̀c)2 + (ỳ − ỳc)2 (7.5)

Warping: Correction of Perspective Camera Distortion

The common types of geometric distortions are caused from changing the
image by shifting, scaling or rotation. Perspective distortion is caused by
false camera positioning which is the case in our camera setup where the
camera is fixed and its optical axis should be perpendicular to the playing
field. The errors in positioning occur by changing the camera orientation
when, for example, it is hit by ball or when it is not correctly installed. The
perspective distortion of the image causes inaccurate calculation of the player
position. Examples of perspective distortions are shown in Figure 7.7 which
shows both distorted and undistorted images of chessboard and Maspernhalle
sports hall.

In order to correct the perspective distortion a mapping from the distorted
image (source) to the undistorted (destination) image should be found. This
mapping is usually called warping which is a combination of a set of two
dimensional transformations (shifting, scaling, etc.). The mapping can be
described as ṕ = M ∗ p where p is the pixel in the source image, ṕ is a pixel
in the destination image and M is a transformation matrix. So the warping
is in principle a matrix multiplication for each pixel coordinate in the image.
In order to find the transformation matrix a set of points from the source
image with known positions in the destination image are used to calculate the
transformation matrix. In our camera setup the set of points in the source
image can be the four points marked with red shown in Figure 7.7c and their
mapping in the destination image are shown in Figure 7.7d. The details for
the computations of the transformation matrix can be found in [5].

Calculating Player’s Feet Position in Meters

After correction of the fisheye and geometric distortions of the image the
position of the feet of the player should be found and transformed to meters.
In template matching tracking the tracked object is head of the player while



84 Experimental Study

(a) Chessboard without distortion [5] (b) Chessboard with distortion [5]

(c) Maspernhalle with distortion (d) Maspernhalle without distortion

Figure 7.7: Example of image warping of chessboard (a and b) and from the
camera installed in Maspernhalle sports hall in Paderborn (b and c).
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in particle filter it is the body of the player. Figure (7.8) shows the position
of the camera and the player. In the figure the position of the mapping of
player’s head on the image is denoted as ph = (xh, yh). In case of particle
filter this point is the center of the player body. In the following equations
ph refers to either the head or the body position. This can be calculated
according to Equation 7.4 as follows:

xh = (x̀h − x̀c)
r

r̀
+ xc

yh = (ỳh − ỳc)
r

r̀
+ yc (7.6)

Looking at the triangle in Figure (7.8) the following equations can be
derived using elementary geometry:

hc
hp

= (xh − xc)
(xh − xc)− (xf − xc)

= (yh − yc)
(yh − yc)− (yf − yc)

(7.7)

where hp is the player height and the point pf = (xf , yf ) is the feet
position. In order to calculate the feet position Equation (7.7) should be
solved for xf which results in:

xf = xh(1−
hp
hc

) + xc
hp
hc

yf = yh(1−
hp
hc

) + yc
hp
hc

(7.8)

and substituting for xh from equation (7.1.2)

xf = (x̀− x̀c)
r

r̀
(1− hp

hc
) + xc,

yf = (ỳ − ỳc)
r

r̀
(1− hp

hc
) + yc (7.9)

Finally, to get the meter coordinates the the point (xf , xf ) should be divided
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Figure 7.8: Calculating real world coordinates of players (own publication
[115]).

by the resolution of the camera as follows:

xr = xf/Rc,

yr = xf/Rc (7.10)

whereRc is the relative resolution of the camera which has a unit of (pixel/meter).
Rc gives how many pixels can represent one meter. It is calculated based on
the camera height, camera sensor size and sensor pixel size.

Fusion Between two Camera Views

When the players move from one half of the playing field to the other, they
are actually moving from one camera view to the other, so the tracker of
each player should be transferred to the other view correctly. This is not a
trivial task taking into consideration that the tracking is done on the fisheye
distorted image. In order to deal with this problem an overlap between the
two camera views is used in which the player in one view near to the middle
line also appears in the other camera view. In the following two methods for
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the tracker transfer between the two camera views will be presented.
The first method for tracker transfer is based on testing the real world

coordinates of the player to check if he is over the middle line of the playing
field. In case the player is on the middle line, the distance between his image
in one view to the axis that separates the two views of the merged frame
(the big image formed from the two cameras) will be equal to the distance
between his image on the other view to the same axis. In Figure 7.9 an
example of a player crossing the middle line is shown, where the middle line
of the field and the axis separating the two views are highlighted by red and
blue color, respectively. The distance between the tracker and the axis is
shown as a white line and the distance between the position where it should
be transfered is shown as dashed white line. When the player is over the
middle line the two distances are equal, so the tracker can be transfered
by performing mirror transformation operation on the axis as shown in the
figure. One pre-assumption to this method is that the camera orientation
errors described in Section 7.1.1 should be corrected for each image. This
will impose additional high computational cost in each tracking iteration
because each pixel in the two camera images should be corrected in each
iteration. In case of high quality cameras as the one used in this work,
this means matrix multiplication and memory copy of about 2 million pixels
(each camera is about 1 MB resolution). If LUT are used, the cost will be
in lookup operation and memory copy which will also be an overhead on the
whole tracking process.

The second method for the fusion between the two camera views also
depends on testing real world coordinates of the players to see if the player
is on the middle line. If the player is over the middle line, the position of the
tracker on the other view is calculated by doing the inverse transformation
from real coordinates in meters to the image coordinates in pixels. Figure
7.10 shows the steps for tracker transfer. In the figure the fisheye undistortion
is referred to as Defishing, the correction of the camera installation errors is
referred to as Warping and the inverse of it is Unwarping. Steps from 1 to
4 are done on the left side to find the position of the foot in meters, steps 5
to 8 are used to find the tracker position by doing the inverse of steps from
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Figure 7.9: Fusion between two camera views.

1 to 4. As long as the foot position is not on the middle line only the steps
from 1 to 4 are used.

Player Height Factor Analysis

The height of the player is an important parameter in the calculation of the
player feet position in meters as seen above. The successful transfer of the
tracker from one view to the other is highly dependent on the accuracy of
the feet position. Template matching tracking uses the head of the player.
Because the camera perspective differs with the player position on the playing
field hp should not be taken as the full height of the player. In particle filter
tracking algorithm, the body of the player is tracked, so the hp should also
not be taken as the full height of the player. It should be taken as some point
on the body. To conclude, the player height hp should be a factor from the
full player height. Therefore, it should be carefully chosen for each tracking
algorithm using the overhead camera setup.
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Figure 7.10: Tracker transfer between two camera views [82].

Figure 7.11: The difference between the actual height of the player and the
height used for the calculations of feet position. Template matching on the
left and particle Filter on the right.
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Figure 7.11 shows the difference between the actual height of the player
hp and the height that should be used for the calculations of the feet position
ĥp. In the left part of the figure, the red dot on the player’s head shows
the position of the best matching in case of template matching algorithm.
On the right part of the figure the tracked position (also marked as red dot)
using particle filter tracking is shown. The relation between hp and ĥp can
be represented by the following equation:

ĥp = Hhp (7.11)

where H is the factor that determines the amount that should be taken from
the player’s height when calculating the feet position which will be called
Height Factor.

In order to find the best height factor the benchmark dataset described in
Section 7.2.2 has been used. The RMSE (Root Mean Square Error) between
the manually tracked feet positions and the feet position that result from the
tracking have been computed. The RMSE is a measure of the differences
between values predicted by a model or an estimator and the values actually
observed from the object being modeled or estimated. It is calculated as
follows:

RMSE =

√√√√ 1
n

i=1∑
N

|di|2 (7.12)

where d is the distance in meters between the player’s manually tracked feet
position and the player’s feet position produced from the tracking. Figures
7.12 and 7.13 show the RMSE computed using the benchmark dataset for
template matching and particle filter tracking, respectively. In the two figures
the RMSE is computed for 9 players and for 20 different values of the height
factor in the range of .05 to 1.0.

In Figure 7.12 it can be seen that the best value for the height factor
which gives the minimum RMSE for most the players is between 0.75 and
0.85. The value 0.8 of height factor gives the minimum RMSE for 5 players
while each of the values 0.75 and 0.85 gives minimum RMSE for 2 players.

Applying the same analysis on Figure 7.13 the range of effective height
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factor is between 0.55 and 0.7. The value of 0.55 gives the minimum RMSE
for 5 players. Each of the values 0.6 and 0.65 gives one minimum and 0.7
gives the minimum for 2 players.

7.1.3 Implementation and Running Times of Pre- and
Post- Processing

Image pre-processing has been implemented using the open source Computer
Vision Library OpenCV1 from Intel. Figure 7.14 shows the steps of the image
pre-processing.

Making use of the closed world assumptions described in Chapter 5 the
processing is optimized as shown in Figure 7.15 where the processing is done
only on the regions where the trackers are at the current frame and making
use of the possibility to predict the tracker position in the next frame as
described in Section 3.2.4. Figure 7.15 shows how the white balance for
example can be optimized to be done only on the tracker positions. This
kind of optimization can be done on the background subtraction algorithm.

When the trackers are near to each other it may be better to compute one
Region Of Interest (ROI) for all trackers. In each iteration of the tracking
the processing ROI is computed for each tracker or for all trackers based on
the distance matrix between all the trackers. An example of this can be seen
in Figure 7.15 where on the left hand side the trackers are far enough away
from each other so that each has its own ROI. On the right the trackers are
nearer so that it’s optimal to have one ROI for all trackers.

The processing time of one frame without using CWA optimizations is on
average 67ms and with optimizations it goes down to 16ms. So making use
of the CWA assumptions makes the pre-processing 4.18 times faster.

7.2 Description of Test Datasets

In this section the video datasets used for testing of the SPA system and
the its tracking algorithms will be introduced. The datasets include videos

1http://opencv.willowgarage.com
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Figure 7.12: Height factor analysis for the template matching tracking
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Figure 7.13: Height factor analysis for the particle filter tracking.
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Figure 7.14: Steps of image pre-processing.
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Figure 7.15: Image pre-processing optimization.

recorded from own camera installations in different sports halls, a benchmark
dataset taken from own recorded data, video dataset from handball world cup
taken with overhead analog cameras and own recorded video datasets that
have been used for the evaluation of the SPA system quality criteria (see
Section 7.7.1).

7.2.1 Own Recorded Datasets

The camera system shown in Section 7.1 is installed in three sports halls in
the City of Paderborn and near by. The first installation took place in the
University of Paderborn sports hall where recordings of students handball
or basketball trainings can be recorded. The second installation was in the
Maspernhalle sports hall in Paderborn where games from German first league
basketball team Paderborn Baskets can be recorded. The third installation
is in the sports hall Bördehalle in Soest where the games of the handball
team Soester TV can be recorded.

7.2.2 Own Benchmark Datasets

In order to measure the accuracy of the tracking a benchmark dataset has
been produced. The software developed during this work has the feature
of allowing manual tracking. This means correction takes place in almost
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Figure 7.16: Example of manual tracking of head, body and feet positions.

every frame. The produced trajectories from manual tracking are used as
a ground truth for further experiments. Although this takes more time, a
correct tracking will be generated. The generated trajectories should not be
as long as a complete game or even quarter. A few minutes will be enough
under the condition that it will include different situations in the game such
as fast attack, play making, sprints and so on. The benchmark data has been
taken from a game of basketball recorded in Maspernhalle and includes 2444
frames. Head, body and feet positions have been manually tracked in each
frame for each player in the two teams.

7.2.3 Handball World Cup Dataset

This video dataset is a recording of a handball game of the World Cup 2007
between Germany and Slovenia. It has been recorded by two overhead analog
cameras with resolution of 720 × 576 and a frame rate of 25 fps. The video
data is divided into two parts one for each half. The first half has 59997
frames and the second has 62197 frames. The video has been digitalized,
converted to SPA video format and used for tracking [86].
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Figure 7.17: Screen shot from the handball World Cup game between Ger-
many and Slovenia, taken from two overhead cameras and merged to form
one image [86].

7.2.4 Test Quality Criteria Datasets

These are datasets used to test the quality criteria of the tracking system.
The datasets consist of video recordings for subjects (test persons) who are
instructed to move in specific patters and with different speeds. The covered
distance and the speed of the subjects are known so they can be compared
with the output of the SPA tracking. The tests are explained in details in
Section 7.7.1.

7.3 Performance Measurements and Quality
Criteria of The Tracking System

The quality of the algorithms is usually measured based on processing time
complexity and memory requirements. In the evaluation of complex systems
such as the SPA tracking system other quality criteria regarding the verifica-
tion of the validity of the system are required. The tracking algorithm may
fail to find the correct position of the target which is considered as an error
in tracking. So measures such as the number of errors or the rate of error
occurrence should be used to evaluate the tracking algorithms.
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7.3.1 Performance Measurements

Errors from the tracking system occur when players move their extremities or
if they move vertically (for example when jumping). The tracking algorithm
tries to track part of the player’s body or the whole body. For example,
the template matching tracking implemented in this work is a head based
tracking. The tracker may fail to match the head exactly. This happens due
to collisions between players which may lead to partial or complete occlusion
of the tracked part. Another source of error is the inaccurate estimation of
the background mask. This may cause that the tracked part of the player is
considered as background and is masked out from the matching results.

In order to keep error free tracking manual intervention (corrections)
from user is required. The number of manual interventions (corrections) is a
measure of the quality the tracker. The rate of correction is the number of
corrections done in a specific amount of time (for example in one minute).
In the evaluation of tracking algorithms done in this work the number of
corrections done per minutes is used. This error measurement will be called
E. The number of errors during the whole video sequence (basketball game
quarter or handball game half) will be denoted as Ne.

User intervention in tracking process affects the rate of frame processing.
The time of error correction is important for that estimation of the total
time of processing one quarter or one game. It depends on the graphical user
interface of the SPA and how easy it is for the user to correct an error. To
correct an error the user should pause the tracking, may go back in the video
for several frames until the occurrence of the error, correct by dragging the
tracker to the correct position of the tracker and then let the tracking run
normally. So another important measure of tracking is the time needed to
correct one tracking error Te.

To make it possible to evaluate the tracking algorithms a benchmark or
ground truth dataset is needed. Using the manual tracking capability in the
SPA software, the benchmark dataset described in Section 7.2.2 has been
created.
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7.3.2 Definition of Quality Criteria

One main use of the video tracking in the sports domain is to evaluate the
performance of the players by coaches or by scientists in the coaching and
sport science domain. According to Bös [13] the main quality criteria in the
classic test theory are the Objectivity, Reliability and Validity. Objectivity
is the degree in which the test results are independent of the investigator
(examiner). A test is completely objective when it gives the same results by
different investigators with the same subjects (test persons). Bös [13] based
on Calrke [23] has used a correlation coefficient as a measure of objectivity
and called it Objectivity Coefficient.

Reliability is defined by Lienert et. al. [64] as “The degree of reliability
is a reliability coefficient which indicates to what extent under the same
conditions and using the same subjects the obtained results of the test will be
the same. In other words, in what extent the test results can be reproduced”
Lienert define the validity of the test as the degree of accuracy with which the
test has the one feature that it claims to measure, even actually measures. A
test is totally valid if the produced result is exactly what occurred in reality.
If it is applied to the tracking, a tracking system would be valid if the system
produced exactly the paths that the subjects have really ran.

7.3.3 Definition of Evaluation Hypotheses

In order for the tests of validity, reliability and accuracy to be performed,
the following hypotheses have been set:

• Hypothesis to prove the validity of the system:

– H1 The system produces the exact positions of the player on the
playing field.

∗ H1.1 Player positions on the field are correct when the players
are not moving (still-stand)
∗ H1.2 Player positions on the field are correct when the players

move on position.
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– H.2 The system determines the exact running paths and velocity
gradients.

∗ H2.1 There is no distance produced when players still-stand
on position.
∗ H2.2 There is no distance produced when players make sport-

specific actions on position without moving.
∗ H2.3 The exact distances and speeds are computed when play-

ers make shuttle-run longitudinal.
∗ H2.4 The exact distances and speeds are computed when play-

ers make shuttle-run transverse.
∗ H2.5 The exact distances and speeds are computed when play-

ers make quadratic-run.
∗ H2.6 The exact distances and speeds are computed when play-

ers make circular-run.
∗ H2.7 The exact distances are computed when players make

sprint with maximum speed.
∗ H2.8 The exact speeds are computed when players make sprint

with maximum speed.
∗ H2.9 The exact distances and paths are computed when play-

ers make zick-zack run longitudinal.
∗ H2.10 The exact distances and paths are computed when play-

ers make zick-zack run transverse.

• H3 Hypothesis to prove the reliability:

– H3.1 The system produces the same distance when repeating the
same tests of square-run.

– H3.2 The system produces the same distance when repeating the
same tests of circular-run.

• H4 Hypothesis to prove the objectivity: Two independent investigators
will get the same results when evaluating the same data sets.
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Figure 7.18: Template size analysis for the template matching tracking.

7.4 Results of Template Matching-based Track-
ing

The Template Matching-based tracking described in Chapter 3 has been im-
plemented and used as a tracking module in SPA software. In this section
the evaluation of the tracking is presented based on the performance mea-
surements described above.

7.4.1 Parameters of Tracking Algorithms

Template Size

A fixed size template is used to track the head of the player and part of the
shoulders. In order to find the best template size an experiment has been
done to evaluate the tracking performance regarding the error rate E.

Figure 7.18 shows the results of the template matching for the two teams
in the benchmark data using different template sizes. Template size around
20 × 20 (in pixels) gives lower number of errors and when template size is
larger, the number of errors is not better. The reason for that is that the
size of the player head can be sufficiently represented by 20× 20 template.
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Figure 7.19: Analysis of the template update parameter.

Template Update

Figure 7.19 shows the analysis of update parameter α which is used in Equa-
tion 3.10 to determine the amount of update of the template. The figure
shows the error rate for several runs of the template matching using different
values of α. Values of α between 0.1 and 0.2 give the lowest values of error
rate E.

7.4.2 Experimental Results

Template matching has been used to track most of the recorded videos from
basketball games. Table 7.2 shows the results of the tracking of one team in
40 basketball quarters using template matching.

For each tracked player in the quarter each correction event done by the
user is recorded as well as the time needed for correction. Statistics regarding
the correction rate E and the correction time Te have been done. Table 7.2
shows the correction rate E for all players and the average correction time
Te. The average value of E is 32.7 ± 11.6 with a minimum and maximum
of 15.7 and 70.9, respectively. The average value of Te is 2.87± 1.07 with a
minimum and maximum value of 1.3 and 6.013 respectively.
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Quarter E Te Quarter E Te

1 70.86 4.88 21 21.60 2.66
2 23.29 2.80 22 35.03 2.96
3 17.90 3.49 23 27.87 3.57
4 21.16 3.73 24 42.10 1.52
5 16.00 2.93 25 30.89 1.65
6 22.25 3.40 26 21.65 1.55
7 15.73 2.66 27 36.22 5.34
8 24.33 2.89 28 43.35 2.58
9 19.25 3.01 29 43.79 2.70
10 43.83 2.15 30 38.29 1.89
11 48.40 2.47 31 26.62 1.89
12 60.19 1.88 32 34.25 2.16
13 34.76 4.43 33 30.90 2.11
14 42.50 3.88 34 35.81 2.67
15 26.17 3.20 35 32.19 3.18
16 38.29 1.70 36 38.44 4.56
17 27.69 1.32 37 33.58 2.31
18 39.23 1.62 38 19.23 3.08
19 21.26 1.79 39 39.24 6.01
20 40.32 2.61 40 23.87 3.66

Table 7.2: Template matching results for tracking of 40 basketball quarters.
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Player Playing Time(Min) Ne E Te

1 33.33 294 8.32 1.19
2 33.33 239 7.17 1.71
4 32.23 260 8.06 1.22
8 33.33 183 5.49 1.8
11 7.39 57 7.71 1.05
13 33.33 326 9.78 1.31
14 33.33 112 3.36 1.22
15 33.33 299 8.97 1.04
19 33.33 146 4.38 1.23
41 19.33 158 8.17 0.96

Table 7.3: Results of tracking the first half of the handball game between
Germany and Slovinia in the world cup of 2006.

Another video dataset has been used to test the template matching track-
ing. It is the first half of the handball game between Germany and Slovenia.
The result of the tracking is shown in Table 7.3. First column shows the
player number. The second column shows the playing time for each player
in minutes. The third column shows the number of tracker corrections Ne
for each player during his playing time. The fourth column shows the rate
of error correction E per minute for each tracker (player). The last column
gives the average time Te, in seconds, needed to correct the tracker. The er-
ror rate E for all the players in the whole half of the game is 35.48 error/min
and average time for correction is 1.2877 seconds.

7.5 Results of Particle Filter-based Tracking

7.5.1 Parameters of Tracking Algorithms

Number of Particles

In order to find the optimal number of particles, an experiment has been done
to measure the rate of errors against the number of particles. The tracking
has been done for one team of the benchmark data with different number
of particles from 2 particles to 50 particles with increment of 2. Figure 7.20
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Figure 7.20: Analysis of the number of particles used in the particle filter
tracking.

shows the results of the experiment. As the number of particles increases the
rate of error E decreases. Starting from 20 particles the number of errors is
almost constant. The minimum value of of E is 5.6 error/min comes with
46 particles. There are several minimum values of the error rate where the
first minimum is at 30 particles with error rate of 6.33 error/min. So the
suggested number of particles is 30.

Number of Color Bins

Another important parameter of the particle filter is the number of histogram
bins for each color channel. An experiment using the benchmark data has
been done in order to find the suitable number of histogram bins. Figure
7.21 shows the results of the experiment where the tracking is done on the
benchmark data for different values of the number of histogram bins, from 2
to 25 with a step of 1. It should be noted that the number of bins shown in
the figure means the number of color bins for each color channel. 10 bins, for
example, means that for each of the three color components (RGB) there are
10 color bins which gives in total 10× 10× 10 3D histogram bins. It can be
seen that starting from 12 bins the error rate is almost constant which means
that a 3D histogram of 12 × 12 × 12 is sufficiently enough for representing
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Figure 7.21: Analysis of the number of color bins for the 3D color histogram.

Ne E Te

12 0.79 3.09
18 1.19 2.15
27 1.78 2.1
6 0.40 2.04
14 0.92 2.16

Table 7.4: Results of tracking a 15.16 minutes long basketball quarter using
particle filter.

the color features of the player.

7.5.2 Experimental Results

Table 7.4 shows the results of tracking one team of a basketball quarter
which is 15.16 minutes long. The tracking is done using Algorithm 5.2 with
10 × 10 × 10 histogram bins and 30 particles for each tracker. For each of
the 5 players the number of corrections is shown in the first column, the
rate of error occurrence per minute is shown in the second column and the
average time needed to correct one error is shown in the third column. The
total number of corrections needed for the whole quarter is 77 which gives
an error rate of 5.08 Errors/Minute for the whole quarter.
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Full Frame CWA CWA and Multicore
Pre-Processing 67 16 13
TM Tracking 45 38 38
PF Tracking 280 240 90
Total TM 112 54 51
Total PF 347 256 103

Table 7.5: Running times of template matching and particle filter tracking
algorithms in millisecond.

7.6 Implementation and Running Times of
Tracking Algorithms

Table 7.5 shows the running times of both template matching and particle
filter tracking algorithms. The table also includes the running time of the
pre-processing and the total time for the tracking algorithms including pre-
processing. The presented running times are measured for the tracking of
one team of basketball players which has 5 players. The table shows the
differences in running times with and without optimizations. The optimiza-
tions include making use of closed world assumptions and also using the
capabilities of multicore processors.

In Table 7.5 the first column shows the running time for processing of
full frames. The second column shows the processing times based on CWA
assumptions alone and the third shows them based on CWA and multicore
optimizations. Using CWA in tracking is done through optimization of gen-
erating Voronoi masks where the masks are generated for the trackers which
are closer to each other. In addition, the size of the mask is optimized based
on the ROI as described in Section 7.1.3.

Using multicore optimizations has great effect on reducing the running
times of particle filter tracking. The optimizations are used in computing
the color histogram described in 4.2.3.

The frame rate of tracking using Template Matching and all possible
optimizations is 19.6fps and for tracking using Particle Filters 9.7fps.
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Figure 7.22: The patterns of movement and positioning of the quality criteria
tests [81].

7.7 Evaluation of Quality Criteria

In order to prove the hypothesis defined in Section 7.3.3 a set of tests in
which some of them are based on [84] has have been developed and run. The
tests have been designed and implemented by Daniel Paier in his diploma
thesis [81] which is based on the SPA system. Figure 7.22 shows the different
test patterns. The tests have been run on a handball field in the sports hall
of the University of Paderborn.

7.7.1 Description of Tests

Test 1: Determination of Position

This test is used to investigate the validity of the tracking which means
to prove if the system produces the correct positions of the test persons
(Hypotheses H.1 and H.2). It is also used to test if the movement of the
upper part of the body and the extremities will affects the accuracy of the
measured position. The test is divided into several tasks where the test
persons are not moving from their positions so the total distance of the test
persons should be 0m.

As shown in Table 7.6 there are 4 tasks in Test 1. In the first task (Task
1.a) the test persons stand still for a 60sec. In Task 1.b they should do
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hopping in the same position for 60sec. In Task 1.c they should stand still
with movement of the arms to simulate a defensive action of handball player.
In Task 1.d every two person couple is instructed to pass a handball without
moving from position. The covered distance in all the tasks should be 0m.

Test 2: Shuttle Run

This test has been developed in order to report the performance of the player
in the kind of motion where the players have to go and come back at almost
the same line [62]. This movement pattern can also be used to simulate the
performance of the basketball and handball players.

The test should run as follows, “the subjects run back and forth on a
20m course and must touch the 20m line; a sound signal is emitted from a
prerecorded tape” [62].

The test has been changed in order to keep a constant speed. The inves-
tigations of Cambel [18] show that in about 80% of the distances covered by
handball players the speed is about 2m/s. Thus the test is repeated in two
differnent speeds, 2m/s and 3m/s. For the 2m/s test the test persons run
back and forth for 10 times which gives a total distance of 400 meters. In
the 3m/s they run 5 times which is equal to 200 meters.

The whole test is run in two different places of the playing field as seen in
Figure 7.22. The first run of the test is called Test 2.a where the test persons
should run in a transverse way (horizontal) and the second run is called Test
2.a where they run in a longitudal (vertical) way.

Test 3: Square and Circular Run

This test is based on the test developed by Perš and Kovačič in [84] in which
the test persons have to run in square and circular paths in different parts
of the field. Two identical positions on the two halves of the field have been
chosen as seen on Figure 7.22. In addition a third position is in the middle
so that it includes the middle line of the field. Being similar to Perš and
Kovačič tests makes it easy to compare the two tracking systems. This test
is aimed to test all the main quality criteria of the tracking, making it the
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most important one.

Test 4: 30 Meter Sprint

This is used to test how good the tracking system is with the maximum speeds
of the players. The test persons are instructed to make a sprint (maximum
speed run) in the path shown in Figure 7.22.

Test 5: Zick Zack Run

Because changing direction in handball and basketball occurs more often [61].
This test was developed to measure the validity of the tracking when there
is a rapid change of direction in the players’ movement.

7.7.2 Results of Quality Criteria Tests

In the following the results of the tests 1 to 5 will be presented. The results
of these tests will be used to prove Hypothesis H1 to H4.

Test 1

In Table 7.7 the measured distances using SPA are shown. Although the
subjects did not move in this test SPA has shown an average distance 0.3±
0.02 in the case of standing still, 7.34± 2.6 in the case of jumping, 5.6± 3.67
by arm movement and 4.8 ± 3.5 by ball pass between each two players. As
described in the 7.1.2 the player height factor is an important parameter
in the calculation of the position so in case of jumping longer distance is
calculated.

Test 2

Test 2 is a Shuttle-Run test where the subjects should run 400m with a speed
of 2m/s and again with a speed 3m/s. Table 7.8 gives a summary of the test
results. The detailed numerical results are shown in Appendix A.1.
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Task Duration Description
Test 1

a 60 sec still standing upright
b 60 sec hopping on the position with one/two legs
c 60 sec defense simulation with hand movement
d 60 sec ball pass between two persons

Test 2
2m/s transverse - 400m 3’30 min Shuttle-Run
3m/s transverse - 200m 1’30 min Shuttle-Run
2m/s longitudal - 400m 3’30 min Shuttle-Run
2m/s longitudal - 400m 1’30 min Shuttle-Run

Test 3
Square
1m/s 60 - 80 sec Line run around the rectangle
1.5m/s 60 - 80 sec Line run around the rectangle
2m/s 60 - 80 sec Line run around the rectangle

Circular
1m/s 60 - 80 sec round run around the circle
1.5m/s 60 - 80 sec round run around the circle
2m/s 60 - 80 sec round run around the circle
Test 4

30m - sprint 8 min line run and record time
Test 5

Zick-Zack transverse 8 min run and record time
Zick-Zack longitudal 8 min run and record time

Table 7.6: Description and durations of the quality criteria tests [81].
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Subject Stand[m] Jump[m] Arm move[m] Pass[m]
1 0.06 5.24 4.79 6.63
2 0.31 8.39 8.65 2
3 0 6.13 13.25 2.6
4 0 13.63 10.45 7.56
5 0.86 7.85 1.5 4.87
6 0.19 8.33 2.06 12.69
7 0.03 3.84 2.86 1.51
8 0.03 9.28 5.44 9.61
9 1.62 8.88 6.27 2.75
10 0.27 7.41 4.66 5.36
11 0.51 5.3 2.52 3.72
12 0 7.08 1.89 0.97
13 0.02 4.02 8.41 2.19

AVG 0.30 7.34 5.60 4.80
STD 0.02 2.60 3.67 3.50
VAR 0.22 6.79 13.45 12.0

Table 7.7: Test1 measured distances in the case of still-stand, jump, arm
move and ball passing.

Distance[m] Speed[m/s]
Test 2 Avg Std Err[%] Avg Std Err[%]

longitudinal 400m; 2m/s 405.09 4.41 1.27 2.02 0.02 0.023
longitudinal 200m; 3m/s 201.09 1.84 1.09 3.00 0.00 0
transverse 400m; 2m/s 391.35 15.51 -2.16 1.95 0.08 -2.39
transverse 200m; 3m/s 191.35 6.66 -4.32 2.88 0.10 -4.14

Table 7.8: Test 2 summary
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Figure 7.23: The trajectories of test 2; longitudinal (upper) and transverse
(lower) [81].
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Test 3

Test 3 is considered the most important one because it is used to prove the
objectivity, reliability and validity of the SPA. For validity Table 7.9 shows
a summary for the square and circular run in various speeds. For a speed
of 1m/s the test persons should run 80m. SPA has produced an average
distance of 78.86 with a standard deviation of 4.12 and average error in
distance of −1.42m. The square run at 1.5m/s results in 3.75 rounds of the
square which means 120m distance. SPA produced an average distance of
118.39m, a standard deviation of 9.83 and average error of −1.34m. With
a speed of 2m/s the test persons could run 136m which results in average
distance of 128.79m, standard deviation of 7.64 and average error of −5.3m.
Figure 7.24 shows an example of the tracking paths acquired from SPA for
both square and circular run with a speed of 2m/s.

In Table 7.9 the summary for the results of the circular run in three
different speeds are shown. For a speed of 1m/s the test persons ran 3
rounds which means 75.6m. The result acquired from SPA shows an average
distance of 74.35m and average error in distance of −1.65m and standard
deviation of 3.87.

With a speed of 1.5m/s the test persons had to run 4 rounds resulting
in a total distance of 100.8m. SPA produced an average distance of 96.96m,
average error of −3.84m and standard deviation of 4.86. For 2m/s speed the
run distance is 138.6m SPA gives an average distance of 129.78, average error
of −3.84m and standard deviation of 7.87.

The detailed numerical results for each test person and for each phase of
the test can be seen in Appendix A.2.

The square and circular run tests have been repeated in order to test the
reliability of the SPA tracking. Table 7.10 shows a summary of the errors for
the two runs with different speeds. The columns show the different speeds of
1m/s, 1.5m/s and 2m/s with sub-separation into two runs. For the second
run SPA has an average error of −0.85± 3.08m for 1m/s speed. For 1.5m/s
speed, the average error is −5.33± 5.79m and for 2m/s it gives average error
of −8.36± 7.24.
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Distance[m]
Test3 Avg Std Err Err[%]

square 80m; 1m/s 78.86 4.12 -1.14 -1.42
square 120m; 1.5m/s 118.39 9.83 -1.61 -1.34
square 136m; 2m/s 128.79 7.64 -7.21 -5.30
circle 75.5m; 1m/s 74.35 3.87 -1.25 -1.65

circle 108.8m; 1.5m/s 96.96 4.86 -3.84 -3.81
circle 138.6m; 2m/s 129.78 7.87 -8.82 -6.46

Table 7.9: Summary of Test 3.

Test3 square err[m]
repeated avg std correlation

Run 1; 1m/s -1.14 4.12 0.94
Run 2; 1m/s -0.85 3.08
Run 1; 1.5m/s -1.61 9.83 0.87
Run 2; 1.5m/s -5.33 5.79
Run 1; 2m/s -7.64 7.64 0.97
Run 2; 2m/s -8.36 7.24

Table 7.10: Test 3 - summary of repetition of square run to test reliability.

Table 7.10 shows the correlation factor between the two runs for different
speeds in the last column. The speed 1m/s run 1 and 2 result in a high
correlation factor of 0.94. For a speed of 1.5m/s, the correlation is 0.87 and
for 2m/s speed the correlation is 0.97 which is the highest. In total the
correlation factor between the results of the two runs for the square run is
0.98.

For the circular run, Table 7.11 shows the results of the repetition of
the test. For the speed 1m/s the average error was −0.85 ± 3.08 and the
correlation between the two runs for the same speed was 0.89. For the speed
1.5m/s the average error was −5.33± 5.79 and the correlation was 0.84. For
a speed of 2m/s the average error was 7.87 ± 7.24 and the correlation was
0.91. The total correlation for the two runs for all speeds was 0.99.

In order to test the objectivity of the SPA tracking, a second person has
performed the tracking for the square run test. Table 7.12 shows the summary
of the results for two different testers for different speeds. For a running speed
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Test3 circle err[m]
repeated avg std correlation

Run 1; 1m/s -1.25 3.87 0.89
Run 2; 1m/s -0.85 3.08
Run 1; 1.5m/s -3.84 4.86 0.84
Run 2; 1.5m/s -5.33 5.79
Run 1; 2m/s -8.82 -8.36 0.91
Run 2; 2m/s 7.87 7.24

Table 7.11: Test 3 summary of repetition of circular run to test reliability.

Test3 square err[m]
repeated avg std correlation

Run 1; 1m/s -1.14 4.12 0.81
Run 2; 1m/s -2.09 4.02
Run 1; 1.5m/s -1.61 9.83 0.81
Run 2; 1.5m/s -5.31 5.22
Run 1; 2m/s -7.64 7.64 0.93
Run 2; 2m/s -13.30 9.86

Table 7.12: Test 3 - summary of results of the square run test results from
two different investigators.

of 1m/s the second examiner has an average error of −2.09±4.02, for a speed
of 1.5m/s the average error was −5.31± 5.22 and for the speed of 2m/s the
average error was −13.30±9.86. The correlation between the two examiners
for the three different speeds was 0.81, 0.81 and 0.93 respectively.

Test 4

Test 4 resulted in a running diagonal distance of 30m. Figure 7.22 shows
the trajectories of the 13 test persons. The black marks on the image are
the position of the light gates that are used to measure the speed of the test
persons. Table 7.13 shows the results from SPA and from the photo sensor.
The SPA gives a distance between 27.18m and 29.11m. The average distance
is 27.99± 0.5m. The average error is −2.01± 0.5m. The percentage of error
is 6.96%. The average speed measured by SPA is 22.22±1.76. The reference
value acquired from the sensor gives an average speed of 23.44± 1.64 so the
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Figure 7.24: Test3 trajectories for square (upper) and circle (lower) run at
speed of 2m/s [81].
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Figure 7.25: Trajectories of test 4, 30m sprint with light gates at distance of
0;10;25;30m. [81]

average error in speed is 1.22± 0.94 and the percentual error is 5.2%.

Test 5

The zick-zack running pattern is located in two different (longitudinal and
transverse) locations of the playing field as shown in Figure 7.26 which shows
also the trajectories of the 13 test persons. The total distance that should
be run is 18m. In Table 7.14 the values for each test person are shown.
The longitudinal trajectories are between 16.1m and 20.4m with an average
distance of 17.98± 1.36m. The corresponding percentage error is −9%. The
transversal zick-zack paths are between 19.1 and 20.8. In average the distance
was 19.99± 0.52m and the percentage of error is 11.07%.

7.7.3 Evaluation of The Hypotheses

After showing the results of the tests, the evaluation of the hypothesis will
be introduced in this section.

Hypothesis H1

Test 1 is designed to test Hypothesis H1. The hypothesis H1.1 is accepted
according the following: By investigation of the x and y coordinates of the
player positions acquired from SPA, a radius which determines the area where
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subject dist[m] err[m] avg speed avg speed err[m]
SPA sensor

1 27.96 -2.04 22.71 24.55 1.84
2 28.19 -1.81 22.55 23.79 1.24
3 28.03 -1.97 22.1 23.48 1.38
4 27.72 -2.28 21.65 20.57 -1.08
5 29.11 -0.89 19.06 21.56 2.5
6 28.27 -1.73 23.67 24.66 0.99
7 27.18 -2.82 23.48 23.74 0.26
8 28.21 -1.79 21.76 23.13 1.37
9 28.22 -1.78 24.78 25.06 0.28
10 27.44 -2.56 20.3 22.13 1.83
11 27.34 -2.66 19.43 21.22 1.79
12 28.23 -1.77 23.63 25.12 1.49
13 27.95 -2.05 23.77 25.74 1.97
avg 27.99 -2.01 22.22 23.44 1.22
std 0.50 0.50 1.76 1.64 0.94

Table 7.13: Test 4 - distance and speed measured by SPA and photo gate
sensor.

Figure 7.26: Trajectories of test 5 [81].
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longitudinal transverse
subject dist[m] err[m] dist[m] err[m]

1 16.1 -1.9 19.1 1.1
2 18.6 0.6 19.9 1.9
3 16.6 -1.4 20.5 2.5
4 16.5 -1.5 20 2
5 19.4 1.4 20.1 2.1
6 16.9 -1.1 20.6 2.6
7 19.6 1.6 20.1 2.1
8 18.1 0.1 20 2
9 17 -1 19.6 1.6
10 19.1 1.1 20.8 2.8
11 20.4 2.4 19.8 1.8
12 17.9 -0.1 19.1 1.1
13 17.6 -0.4 20.3 2.3
avg 17.98 -0.02 19.99 1.99
std 1.36 1.36 0.52 0.52

Table 7.14: Test 5 - longitudinal and transverse distance for zick-zack run.

the players are standing can be calculated. This radius can be calculated
using the RMSE measure between the marked coordinate and the calculated
coordinates from SPA. For the still-stand part of Test 1, the RMSE is 0.115m.
The experiments of Perš and Kovačič [84] show a RMSE of 0.2m near to the
center and 0.5m near to the playing field boundary (according to [84]) for a
similar test. The 0.115m results in a diameter of 0.23m which is shorter than
the shoulder length.

Hypothesis H1.2 is “The Player positions on the field are correct when
the player moves on position”. This hypothesis is accepted according to
the following: As in the previous sub-hypothesis, the RMSE of the error was
calculated and resulted in 0.134m. Accordingly the diameter is 0.268m which
is still smaller than the shoulder length. The tracking of Perš and Kovačič
[84] has a RMSE of 0.3m near to the center and 0.6m near to the playing
field boundary for the moving players.
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Percentual Standard Deviation Evaluation
[≤ −15%] very bad

[−15%;−10%] bad
[−10%;−5%] good

[−5%; 0%] very good
[0%; 5%] very good
[5%; 10%] good
[10%; 15%] bad

[≥ 15%] very bad

Table 7.15: The developed evaluation categories of the percentual measured
standard deviation [20, 81].

Hypothesis H2

This hypothesis concerns the running distances and speeds for different move-
ment patterns. In the previous tests the running distances and speeds of the
players have been measured by SPA and compared to the real values that
have been previously determined or measured by sensors. Carling et al. [20]
uses a similar procedure where they compare the measured data, from the
system under consideration, with the data that is previously measured by
calibrated sensors. Also Perš and Kovačič [84] compare the values that are
measured by their system with those which have been previously determined.

The evaluation of SPA tracking regarding Hypothesis H2 is done by cate-
gorization of the error percentage that has been used by Carling [20]. Calring
has used this method to compare a football player tracking system mea-
surements with the measurements of the GPS (Global Positioning System).
Carling evaluates the results that bear less than a 7% standard deviation as
accepted. According to Carling “these relatively small overestimations com-
bined with an acceptable level of relative technical error of measurement both
within and between trackers should not prevent the use of these technologies
to monitor player movements” [20]. Since, in Carling’s work, it can’t be ex-
actly differentiated between the technical errors and errors resulted from the
experiment, the error categories have been adapted as shown in Table 7.15.

Hypothesis H2.1 is accepted according to the following: Table 7.7 second
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column shows the errors in the distance in case of still-stand. When com-
puting the average error which is 0.22m/min over a complete game duration
the error will be 13.2m for 60min, in case of handball. As stated in [72] the
average distance of a player in a handball game is between 4700 and 5600.
So the distance of 13.2m is marginal comparing to the whole distance in one
game. The tracking in Perš and Kovačič [84] gives an average distance of
0.75m/min in stand-still case which shows that the SPA tracking is better.

Hypothesis H2.2 is accepted. Table 7.7 (third, fourth and fifth columns)
shows the distances computed by SPA in case of 60 seconds jumping, arm
movement and ball-pass, respectively. The average computed distance is
7.34m, 5.6m and 4.8m which is better than the result of Perš and Kovačič
[84] which gives average of 7.5m for sport specific actions.

Hypotheses H2.3 and H2.4 are accepted. The results of test 2 regarding
the shuttle run are shown in Table 7.8. The errors in distances are between
−4.32% and +1.27. The errors in speeds are between −4.14% and 0.023%.
The percentage of error in the distances and speeds are evaluated as very
good accourding to Table 7.15.

Hypotheses H2.5 and H2.6 are accepted. The results of test 3 regarding
the square and circular run with different speeds are shown in Table 7.9 The
average errors are between −6.46% and −1.34% which are according to Table
7.15 are evaluated as very good and good.

Hypotheses H2.7 and H2.8 are accepted. The average errors in distance
and speed are 6.96% and 5.2% respectively which are evaluated as good
according to Table 7.15.

Hypothesis H2.9 is accepted. The percentual error in distance for the
longitudinal zick-zack run is −9% which is evaluated as good according to
Table 7.15.

Hypothesis H2.10 is not accepted. The error in distance for the transversal
zick-zack run is 11.07% which is evaluated as bad according to Table 7.15.



7.8 Discussion 123

Hypothesis H3

Hypothesis H3.1 is accepted. According to [79] “Correlation coefficient is
an estimate of the consistency between two test occasions” and according to
[38] “The closer the correlation to 1, the better the replication” so correlation
coefficient is chosen as indication to the consistency of two tests. Table 7.10
gives the results of the repetition of square run. The correlation between
the two runs of the tests for the different speeds is shown in the column
titled “correlation”. The values of the correlation between the two tests are
0.94,0.87 and 0.97 which are near to 1. This means a strong consistency
between the result of the two tests.

Hypothesis H3.2 is accepted. The correlation coefficient between the two
tests of the circular run are shown in Table 7.11. The values of the correlation
are 0.89, 0.84 and 0.91 which are near to 1 show a strong consistency between
the two tests.

Hypothesis H4

Hypothesis H4 is accepted. The correlation coefficient is used to evaluate the
consistency between the evaluation of the tests by two different investigators.
Table 7.12 shows the the values of the correlation coefficient between the
results of the two tests. The values of the correlation are 0.81,0.81 and 0.93
which are high enough to prove the hypothesis.

7.8 Discussion

In this chapter an experimental study on the whole work of this thesis is
presented. The chapter begins with the experimental setup in Section 7.1
including the installation of cameras, the pre-processing done on the image
before it is delivered to the tracking algorithms and the post-processing of
the position.

The pre-processing includes color space conversion as well as detection
and subtraction of background. In the explanation of the post processing,
the details of correcting the camera fisheye lens distortion, computing player
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feet position in meters and the fusion between two camera views have been
presented. The hight factor parameter that has an effect on computing the
feet positions in meters has been studied and determined through the bench-
mark data for both tracking algorithms. This analysis of hight factor is
important for any tracking algorithm using the overhead camera setup. The
running time of the implementation of the post-processing has been presented
at the end of the experimental setup section. It has been shown that using
CWA has great effect on reducing the running time of post-processing.

In Section 7.2 the different datasets that have been used in the testing
of the tracking algorithms are presented. The datasets include own recorded
data by the camera setup explained at the beginning of the chapter and
other datasets recorded by different types of cameras and different image
resolutions. The benchmark dataset that is used in the analysis of tracking
algorithms’ parameters has been created by SPA software using the manual
tracking capability.

Section 7.3 shows the performance measurements as well as quality cri-
teria of the tracking system. The performance measurements include the
running times and rate of error occurrence in tracking. In order for the SPA
tracking system to be used by sports scientists as well as trainers it should
be tested for the quality criteria in the classical test theory. These criteria
include the objectivity, reliability and validity of the tracking. Definitions of
the quality criteria and the hypothesis about SPA have been presented.

The numerical results for the testing of both tracking algorithms and for
determination of the best parameters are presented in Sections 7.4 and 7.5.

Section 7.6 presents the experimental results regarding the running times.
The template matching algorithm is faster with more error rate in tracking
while the particle filter is slower with less error rate.

Section 7.7 gives a description of the tests used for evaluating the hypothe-
ses defined in Section 7.3.2. It also gives the evaluation of the hypotheses
based on references from sports science and sports medicine domain. Some
tests can be compared with the work of Perš and Kovačič [84].



Chapter 8

Summary, Conclusions and
Future Work

This chapter presents a summary of the thesis in addition to concluding
remarks and some guide lines for future work.

8.1 Summary and Conclusions

Chapter 2 presented an overview on the sport player tracking using computer
vision. This review included presenting the player tracking in sports domain
as a computer vision problem and the state of the art in the player tracking
based on computer vision. The presented review is based on the excellent
review of Kristan in his PhD [58]. The methods used in background detection
and feature encoding subsections depends mainly on the quality of the images
acquired from the camera. Although the work of Kristan [60, 58] and Perš
[84, 47] tried to find a solution for tracking of indoor sports players, the
acquisition of the video data is based on low resolution analog cameras of
resolution 384×288 where the player is represented by 10×10 pixels. The low
quality of the and resolution of the video is one source of errors in the tracking
process as explained in [48]. The noise that comes from digitalization of
analog images and the artifacts resulted from video compression [48] require
sophisticated techniques for background detection and cause poor features
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for the tracked target. The tests done to prove the quality of the systems
were not enough because the test sequences used were not long enough and
do not contain all the player interactions in real games. It has been noted
from the literature review that there is no benchmark dataset from real game
situations that could be used to evaluate and compare the different tracking
systems.

In Chapter 3, it has been shown how deterministic tracking can be used
to track players using overhead cameras. As a start the simple blob tracking
has been used. Tracking single player gives excellent results when the player
is not interacting with others. When collision between players occurs two
or more players come to one blob and after separation it is difficult to asso-
ciate the paths again. The time complexity of the blob detection depends
on the implementation of the edge detection. Canny edge detection [19] has
been used in the implementation. After the edge detection the connected
components in the “edges image” are inspected to find contours which is the
classified based on the player size on the image. Speaking about the space
complexity or the amount of memory required for blob detection, several
temporary images and data structures are needed to store the result of the
edge detection and contour detection. The second part of the Chapter 3
showed how template matching can be used for tracking sport players. In-
vesting the high quality of the images it is possible to track the head of the
player with small part of the shoulders. In order to determine the best size of
the template, experiments have been done in Chapter 7. Tracking the head
has the advantage that no rotation or scaling of the head is required. Al-
though the overhead cameras reduces the chance that the head of the player
is totally invisible due to occlusion, in some situations when the player falls
down or other taller player comes into a strong contact with him the head
disappears from the scene. The multiple player tracking framework described
in Chapter 5 reduces the number of errors that occurs due to occlusion. In
some cases the tracker still needs to be manually corrected. The rate of error
occurrence is inspected in Chapter 7.

In Chapter 4 concerns the tracking of a single sports player using proba-
bilistic model in order to deal with the non-linearity and the uncertainty in
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the sports domain. CONDENSATION algorithm which is based on particle
filter techniques has been used in the CV domain for tracking. In order to use
CONDENSATION for tracking in sports domain models of player (state), his
motion, state transition and likelihood function should be found. The state
of the player has been modeled as an ellipse and the visual features inside
the ellipse are modeled as a three-dimensional color histogram. Three dimen-
sional histograms have been chosen to preserve the spatial information of the
RGB color tuples in the color space. The transition model of the player mo-
tion and the ellipse size is modeled as a normal distribution. The likelihood
is modeled as the Bhattacharyya distance between the state histogram and
the reference histogram.

In order for the tracking algorithm presented in this chapter to be used in
practice some parameters including the number of particles and the number
of histogram bins need to be determined. Chapter 7 shows the experiments
done to find the best parameters as well as the experiments done to evaluate
the tracking itself in terms of accuracy and running time.

In Chapter 5 the multi-player tracking in the context of closed worlds
has been introduced. Kristan [60] introduced 5 closed world assumptions
and used them in the tracking of multiple sports players by partitioning
the search space into disjoint regions where each region contains only one
tracker. Another 5 closed world assumptions have been introduced in this
chapter and used to enhance the multiple player tracking as well as the image
pre-processing. Clustering of position data from basketball game has been
used to show that only in 16.6% of the frames partioning of space to more
than three partitions is needed and in 25% only a simple partioning for two
trackers is needed. In Chapter 7 experiments have been done to show the
effect of using closed world assumptions in tracking accuracy and effiecieny.

In Chapter 6 a brief overview of the SPA softwares which is developed
during the course of this thesis work was introduced. SPA is also a part
of the sport project at the System and Circuit Technology research group.
An idea about the design of the software together with screen shots from
different modes has been presented. The details of the software parts that
are not directly related to the domain of this thesis can be found in the
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appropriate references referred to in the thesis. SPA is a tool that enable
users to acquire a new combination of data about the sports players. The
combination of physiological and position data provides new possibilities for
analysis of indoor sport games. The acquisition, tracking, visualization and
analysis of these combination of data is done in one system through a user
friendly graphical user interface. SPA is being used for the analysis of offi-
cial basketball games played in the Paderborn city and the handball games
played in Soest city. It is also used for the analysis of training sessions of
handball at the University of Paderborn. The analysis results is used by the
department of Sport Medicine and the department of Applied Mathematics
at the University of Paderborn for further research at the levels of Bachelor,
Master and PhD in these departments.

In Chapter 7 an experimental study on the whole work of this thesis is
presented. The chapter begins with the experimental setup including the
installation of cameras and the pre-processing done on the image before it is
delivered to the tracking algorithms and the post-processing of the position
data in order to acquire the final positions on the playing field in meters. The
pre-processing includes color space conversion and detection and subtraction
of background. In the explanation of the post processing the details of cor-
recting the camera fisheye lens distortion, computing player feet position in
meters and the fusion between two camera views have been presented. The
hight factor parameter that has an effect on computing the feet positions
in meters has been studied and determined through the benchmark data for
both tracking algorithm. This analysis of hight factor is important for any
tracking algorithm using the overhead camera setup. The running time of
the implementation of the post-processing has been presented at the end of
the experimental setup section. It has been shown that using CWA has great
effect on reducing the running time of post-processing.

The second part of the chapter presents the different datasets that have
been used in the testing of the tracking algorithms. The datasets include own
recorded data by the camera setup explained at the beginning of the chapter
and other datasets recorded by different types of cameras and different image
resolutions. The benchmark dataset that is used in the analysis of tracking
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algorithms’ parameters has been created by SPA software using the manual
tracking feature.

The third part of this chapter shows the performance measurements as
well as quality criteria of the tracking system. The performance measure-
ments include the running times and rate of error occurrence in tracking. In
order for the SPA tracking system to be used by sports scientists as well as
trainers it should be tested for the quality criteria in the classical test theory.
These criteria include the objectivity, reliability and validity of the tracking.
Definitions of the quality criteria and the hypothesis about SPA have been
presented.

The numerical results for the testing of both tracking algorithms and for
determination of the best parameters are presented in Sections 7.4 and 7.5.
Section 7.6 presents the numerical results regarding the running times. The
template matching algorithm is faster with more error rate in tracking while
the particle filter is slower with less error rate.

Section 7.7 gives a description of the tests used for evaluating the hypothe-
ses defined in Section 7.3.2. It also gives the evaluation of the hypotheses
based on references from sports science and sports medicine domain. Some
tests can be compared with the work of Perš and Kovačič [84].

8.2 Future Work

Future work concerns developing new tracking algorithms as well as enhance-
ment and acceleration of the current ones. the acceleration of the current
tracking algorithms may be done by using parallel hardware platforms such
as GPU’s (Graphic Processing Units) and multi-core processors. The en-
hancements may be done by using more closed world assumptions concerning
for example the playing positions of the players and using information from
speed sensors to enhance the tracking. The future work can be described in
the following items:

• acceleration of tracking algorithms such as particle filter using parallel
hardware platforms.
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• acceleration of image processing using parallel hardware architecture.

• using further closed world assumptions to enhance the tracking.

• using information from speed sensors to enhance the tracking.

• SPA System go from scientific to product.
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Appendix A

Numerical Results

A.1 Test 2

The detailed numerical results of test 2 for each test person.

Subject Dist[m] Err[m] v[m/s] Err[m/s]
1 403.1 3.1 2.02 0.02
2 408.1 8.1 2.04 0.04
3 404.3 4.3 2.02 0.02
4 403.5 3.5 2.02 0.02
5 407.1 7.1 2.04 0.04
6 411.7 11.7 2.01 0.01
7 403.7 3.7 2.02 0.02
8 402.9 2.9 2.02 0.02
9 409.1 9.1 2.05 0.05
10 410.6 10.6 2.06 0.06
11 406.8 6.8 2.04 0.04
12 396.6 -3.4 1.98 -0.02
13 398.7 -1.3 1.99 -0.01
avg 405.09 5.09 2.02 0.02
std 4.41 4.41 0.02 0.02

percent 1.27 1.14

Table A.1: Test 2 longitudinal, v = 2 m/s, measured covered distance and
speed.
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Subject Dist[m] Err[m] v[m/s] Err[m/s]
1 199.7 -0.3 2.98 0.02
2 199.9 -0.1 2.98 0.02
3 201.4 1.4 3.00 0.00
4 201.5 1.5 3.00 0.00
5 203 3 3.02 0.02
6 202 2 3.01 0.01
7 199.4 -0.6 2.97 -0.03
8 201.2 1.2 3.00 0.00
9 205.6 5.6 3.06 0.06
10 201.4 1.4 3.00 0.00
11 199.5 -0.5 2.97 -0.03
12 198.5 -1.5 2.96 -0.04
13 201.1 1.1 3.00 0.00
avg 201.09 1.09 3.00 0.00
std 1.84 1.84 0.03 0.03

percent 0.546 -0.15

Table A.2: Test 2 longitudinal; v = 3m/s measured distance and speed.

Subject Dist[m] Err[m] v[m/s] Err[m/s]
1 374.1 -25.9 1.87 -0.13
2 388.4 -11.6 1.94 -0.06
3 380.6 -19.4 1.90 -0.10
4 362.5 -37.5 1.81 -0.19
5 402.2 2.2 2.01 0.01
6 376.8 -23.2 1.88 -0.12
7 403.4 3.4 2.01 0.01
8 401.5 1.5 2.00 0.00
9 376.3 -23.7 1.88 -0.12
10 405 5 2.02 0.02
11 409.8 9.8 2.04 0.04
12 405.4 5.4 2.02 0.02
13 401.5 1.5 2.00 0.00
avg 391.35 -8.65 1.95 -0.05
std 15.51 15.51 0.08 0.08

percent -2.16 -2.45

Table A.3: Test 2 transverse; v = 2m/s - measured distance and speed.
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Subject Dist[m] Err[m] v[m/s] Err[m/s]
1 182.7 -17.3 2.75 -0.25
2 192.1 -7.9 2.89 -0.11
3 189 -11 2.84 -0.16
4 178.6 -21.4 2.68 -0.32
5 195.8 -4.2 2.94 0.04
6 181.6 -18.4 2.73 -0.27
7 195.4 -4.6 2.94 -0.06
8 199.2 -0.8 2.99 -0.01
9 188.9 -11.1 2.84 -0.16
10 196.3 -3.7 2.95 -0.05
11 196.8 -3.2 2.95 -0.05
12 195.6 -4.4 2.94 -0.06
13 195.6 -4.4 2.94 -0.06
avg 191.35 -8.65 2.88 -0.12
std 6.66 6.66 0.10 0.10

percent -4.32 -4.32

Table A.4: Test 2 transverse ; v=3m/s - measured distance and speed

A.2 Test 3

The detailed numerical results of test 3 for each test person.
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squar 1m/s 1.5m/s 2m/s
Subject dist[m] err[m] dist[m] err[m] dist[m] err[m]

1 71.98 -8.02 105.6 -14.4 118.36 -17.64
2 74.68 -5.32 107.4 -12.6 119.58 -16.42
3 76.12 -3.88 111.1 -8.9 123.37 -12.63
4
5 75.34 -4.66 113.06 -6.94 124.54 -11.46
6 83.66 3.66 130.35 10.35 142.58 6.58
7 84.29 4.29 124.33 4.33 135.38 -0.62
8 81.01 1.01 123.62 3.62 138.37 2.37
9 81.74 1.74 138.01 18.01 134.97 -1.03
10 77.46 -2.54 123.85 3.85 127.28 -8.72
11 78.75 -1.25 114.86 -5.14 129.51 -6.49
12 84.43 4.43 118.14 -1.86 128.67 -7.33
13 76.87 -3.13 110.34 -9.66 122.84 -13.16
avg 78.86 -1.14 118.39 -1.61 128.79 -7.21
std 4.12 4.12 9.83 9.83 7.64 7.64

percent -1.42 -1.34 -5.30

Table A.5: Test 3 squar run - measured distances.
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circle 1m/s 1.5m/s 2m/s
Subject dist[m] err[m] dist[m] err[m] dist[m] err[m]

1 71.71 -3.89 92.35 -8.45 123.43 -15.17
2 73.25 -2.35 95.88 -4.92 128.8 -9.8
3 69.53 -6.07 89.39 -11.41 120.31 -18.29
4
5 72.78 -2.82 94.73 -6.07 127.79 -10.81
6 79.7 4.10 102.89 2.09 140.77 2.17
7 78.53 2.93 102.13 1.33 134.58 -4.02
8 77.65 2.05 102.97 2.17 140.65 2.05
9 79.23 3.63 102.84 2.04 142.40 3.8
10 72.5 -3.1 94.44 -6.36 125.98 -12.62
11 72.63 -2.97 95.51 -5.29 126.46 -12.14
12 76.58 0.98 98.98 -1.82 125.31 -13.29
13 68.16 -7.44 91.46 -9.34 120.90 -17.70
avg 74.35 -1.25 96.96 -3.84 129.78 -8.82
std 3.87 3.87 4.86 4.86 7.87 7.87

percent -1.64 -3.80 -6.46

Table A.6: Test 3 circle run - measured distances.

Square err 1m/s err 1.5m/s err 2m/s
run 1 run 2 run 1 run 2 run 1 run 2

1 -8.02 -6.1 -14.4 -10.94 -17.64 -16.77
2 -5.32 -4.01 -12.6 -12.55 -16.42 -16.81
3 -3.88 -2.23 -8.9 -11.06 -12.63 -14.89
4
5 -4.66 -2.15 -6.94 -7.47 -11.46 -11.58
6 3.66 3.98 10.35 4.47 6.58 3.05
7 4.29 1.33 4.33 1.89 -0.62 0.13
8 1.01 2.16 3.62 -0.96 2.37 -1.26
9 1.74 1.36 18.01 1.47 -1.03 0.79
10 -2.54 -1.43 3.85 -8.18 -8.72 -11.24
11 -1.25 -2.04 -5.14 -6.89 -6.49 -8.17
12 4.43 2.59 -1.86 -3.83 -7.33 -9.26
13 -3.13 -3.64 -9.66 -9.95 -13.16 -14.36
avg -1.14 -0.85 -1.61 -5.33 -7.21 -8.36
std 4.12 3.08 9.83 5.79 7.64 7.24

Table A.7: Test 3 square run - result of repetition of the tests.
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circle err 1m/s err 1.5m/s err 2m/s
run 1 run 2 run 1 run 2 run 1 run 2

1 -3.89 -6.1 -8.45 -10.94 -15.17 -16.77
2 -2.35 -4.01 -4.92 -12.55 -9.8 -16.81
3 -6.07 -2.23 -11.41 -11.06 -18.29 -14.89
4
5 -2.82 -2.15 -6.07 -7.47 -10.81 -11.58
6 4.1 3.98 2.07 4.47 2.17 3.05
7 2.93 1.33 1.33 1.89 -4.02 0.13
8 2.05 2.16 2.17 -0.96 2.05 -1.26
9 3.63 1.36 2.04 1.47 3.8 0.79
10 -3.1 -1.43 -6.36 -8.18 -12.62 -11.24
11 -2.97 -2.04 -5.29 -6.89 -12.14 -8.17
12 0.98 2.59 -1.82 -3.83 -13.29 -9.26
13 -7.44 -3.64 -9.34 -9.95 -17.7 -14.36
avg -1.25 -0.85 -3.84 -5.33 -8.82 -8.36
std 3.87 3.08 4.86 5.79 7.87 7.24

Table A.8: Test 3: Circle Run- Result of repeatition of the tests

Square err 1m/s err 1.5m/s err 2m/s
user 1 user 2 user 1 user 2 user 1 user 2

1 -8.02 -7.45 -14.4 -11.84 -17.64 -0.18
2 -5.32 -5.04 -12.6 -11.03 -16.42 4.46
3 -3.88 -4.29 -8.9 -9.66 -12.63 11.79
4
5 -4.66 -5.26 -6.94 -4.99 -11.46 8.32
6 3.66 4.36 10.35 3.16 6.58 28.38
7 4.29 3.73 4.33 1.92 -0.62 23.79
8 1.01 3.04 3.62 -0.61 2.37 28.27
9 1.74 1.27 18.01 -1.05 -1.03 22.6
10 -2.54 -3.74 3.85 -7.15 -8.72 12.19
11 -1.25 -4.08 -5.14 -4.25 -6.49 7.19
12 4.43 -3.51 -1.86 -7.17 -7.33 7.19
13 -3.13 -4.05 -9.66 -11.04 -13.16 5.64
avg -1.14 -2.09 -1.61 -5.31 -7.21 13.30
std 4.12 4.02 9.83 5.22 7.64 9.86

Table A.9: Test 3: Square - results of the tests from two different investiga-
tors.
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Abbreviations

Abbreviation Meaning
CCD Charge Coupled Device
CMOS Complementary Metal Oxide Semiconductor
RGB Red Green Blue
SPA Sport Performance Analyzer
CONDENSATION CONditional DENSity PropagATION
GPS Global Positioning System
ROI Region of Interest
RW Random Walk
NCV Nearly Constant Velocity
CV Computer Vision
GUI Graphical User Interface
CWA Closed World Assumption
HSV Hue Saturation Value
LUT Look Up Table
GPS Global Positioning System
RMSE Root Mean Square Error
CFA Color Filter Arrays
JPEG Joint Photographic Experts Group
TIFF Tagged Image File Format
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