
Three-Valued Abstraction
and Heuristic-Guided Refinement
for Verifying Concurrent Systems

Dissertation
in Computer Science

submitted to the
Faculty of Electrical Engineering,

Computer Science and Mathematics
University of Paderborn

in partial fulfillment of the requirements for the degree of
doctor rerum naturalium

Nils Timm

Paderborn, May 2013

Abstract

Software systems are playing an increasing role in our everyday life, and as
the amount of software applications grows, so does their complexity and the
relevance of their computations. Software components can be found in many
systems that are charged with safety-critical tasks, such as control systems
for aviation or power plants. Hence, software verification techniques that are
capable of proving the absence of critical errors are becoming more and more
important in the field software engineering.

A well-established approach to software verification is model checking.
Applying this technique involves an exhaustive exploration of a state space
model corresponding to the system under consideration. The major challenge
in model checking is the so-called state explosion problem: The state space of a
software system grows exponentially with its size. Thus, the straightforward
modelling of real-life systems practically impossible. A common approach to
this problem is the application of abstraction techniques, which reduce the
original state space by mapping it on a significantly smaller abstract one.
Abstraction inherently involves a loss of information, and thus, the resulting
abstract model may be too imprecise for a definite result in verification.
Therefore, abstraction is typically combined with abstraction refinement: An
initially very coarse abstract model is iteratively refined, i.e. enriched with
new details about the original system, until a level of abstraction is reached
that is precise enough for a definite outcome. Abstraction refinement-based
model checking is fully automatable and it is considered as one of the most
promising approaches to the state explosion problem in verification. However,
it is still faced with a number of challenges. There exist several types of
abstraction techniques and not every type is equally well-suited for all kinds of
systems and verification tasks. Moreover, the selection of adequate refinement
steps is nontrivial and typically the most crucial part of the overall approach:
Unfavourable refinement decisions can compromise the state space-reducing
effect of abstraction, and as a consequence, can easily lead to the failure
of verification. It is, however, hard to predict which refinement steps will
eventually be expedient for verification – and which not.

iii

iv Abstract

In this thesis, we approach the previously addressed challenges of ab-
straction refinement-based model checking by focusing on one specific type
of software system: Concurrent systems are compositions of interleaved exe-
cuted software processes that communicate via shared variables or message
passing, which makes their verification particularly difficult. However, these
systems also reveal a high amount of structural information – in particular, the
communication dependencies between processes – that we exploit for improv-
ing abstraction and refinement. To this end, we introduce a comprehensive
verification framework for concurrent systems.

Our approach to abstraction is based on a combination of predicate abstrac-
tion – a data abstraction technique that replaces concrete system variables by
predicates – and spotlight abstraction – a technique that abstracts away entire
processes of a concurrent system. We thus tackle the two major causes of state
explosion for concurrent systems. Another key feature of our approach is the
use of a three-valued abstract domain. Properties in our models can take the
values true, false and unknown, which enables us to explicitly model the loss
of information due to abstraction: All true and false results obtained via model
checking can be transferred to the original system, only an unknown outcome
necessitates abstraction refinement.

For automatically refining the abstract models we follow the concept of
counterexample-guided abstraction refinement (CEGAR). Counterexamples are
’unknown’ error paths in the abstract model that typically hint at several pos-
sible ways to resolve the uncertainty via refinement. In our scenario, these
refinement steps can involve the addition of new predicates or new processes.
However, not every potential refinement step is expedient, which makes the
selection of an appropriate step an exceedingly difficult task. Therefore, we
introduce a variant of CEGAR enhanced by heuristic guidance: Based on an
iterative abstraction dependence analysis the possible refinement steps are
heuristically evaluated with regard to their benefit for the current verifica-
tion task, and the best evaluated step is chosen for refinement. In two case
studies, we demonstrate that our heuristic approach can significantly improve
the performance of abstraction-refinement-based verification of concurrent
systems.

Our developed verification framework primarily allows for reasoning about
safety and liveness properties of concurrent systems that are composed of a
fixed number of processes. However, we also introduce an extension that facili-
tates the verification of parameterised systems – compositions of an unbounded
number of homogeneous processes. Our extension is based on a combination
spotlight abstraction with symmetry reduction, a reduction technique that
exploits the homogeneity in parameterised systems.

Zusammenfassung

Softwaresysteme nehmen eine immer bedeutendere Rolle in unserem Alltag
ein. Mit der steigenden Zahl von Anwendungsbereichen von Software steigt
auch ihre Komplexität und die Relevanz ihrer Berechnungen. Softwarekom-
ponenten finden sich in unzähligen Systemen die mit sicherheitskritischen
Aufgaben betraut sind, beispielsweise Systeme zur Regelung des Flugverkehrs
oder zur Kontrolle von Kraftwerken. Im Bereich des Software Engineering
werden daher formale Verifikationstechniken, Methoden zum Nachweis der
Korrektheit von Software, immer wichtiger.

Ein etabliertes Verifikationsverfahren ist das Model Checking. Die An-
wendung dieser Technik geht einher mit einer vollständigen Exploration
eines Zustandsraummodells korrespondierend zum untersuchten System. Die
wesentliche Herausforderung ist hierbei das sogenannte State Explosion Prob-
lem: Der Zustandsraum eines Softwaresystems wächst exponentiell mit der
Systemgröße. Für große Systeme ist eine direkte Modellierung praktisch nicht
durchführbar. Ein verbreiteter Ansatz ist daher die Anwendung von Abstrak-
tionstechniken, welche den tatsächlichen Zustandsraum auf einen signifikant
kleineren abstrakten Zustandsraum reduzieren. Abstraktion geht grundsät-
zlich einher mit dem Verlust von Information. Deshalb ist es möglich, dass die
erzeugten abstrakten Modelle zu ungenau für ein definitives Ergebnis bei der
Verifikation sind. Abstraktion wird daher typischerweise mit Abstraktionsver-
feinerung kombiniert: Ein initial sehr grobes Modell wird so lange verfeinert,
d.h. um neue Details über das Originalsystem erweitert, bis ein Abstraktion-
slevel erreicht wurde, das ein definites Verifikationsergebnis zulässt. Abstrak-
tionsverfeinerungsbasiertes Model Checking ist vollständig automatisierbar
und gilt als einer der vielversprechendsten Ansätze zur Bewältigung des State
Explosion Problems. Jedoch ist der Einsatz dieses Verfahrens nach wie vor mit
großen Herausforderungen verbunden. Es existieren verschiedene Formen
der Abstraktion und nicht jede Form ist für alle Arten von Systemen und Veri-
fikationsaufgaben gleich gut geeignet. Zudem stellt die Auswahl geeigneter
Verfeinerungsschritte einen nicht trivialen und typischerweise entscheidenden
Teil des gesamten Verfahrens dar: Ungünstige Verfeinerungsentscheidungen

v

vi Zusammenfassung

können dem zustandsraumreduzierenden Effekt der Abstraktion entgegen-
wirken und somit zu einem Fehlschlagen der Verifikation führen. Es ist jedoch
schwer vorhersagbar, welche Verfeinerungsschritte sich letztendlich als günstig
für die Verifikation erweisen – und welche nicht.

Diese Arbeit behandelt die Entwicklung eines Verifikationsverfahrens,
welches die zuvor erläuterten Herausforderungen in den Bereichen Abstrak-
tion und Verfeinerung angeht. Hierbei wird der Fokus auf eine spezifische
Art von Softwaresystemen gelegt: Nebenläufige Systeme sind Kompositionen
verzahnt ausgeführter Softwareprozesse, welche über globale Variablen oder
Nachrichtenaustausch kommunizieren. Die verzahnte Ausführung führt zu
einer hohen Komplexität der Verifikation solcher Systeme. Jedoch geben
nebenläufige Systeme leicht erfassbare Strukturinformationen preis – insbeson-
dere bezüglich der Kommunikationsabhängigkeiten zwischen den Prozessen.
Diese Informationen werden in dem hier entwickelten Verifikationsverfahren
zur Verbesserung von Abstraktion und Verfeinerung genutzt.

Der hierbei eingesetzte Abstraktionsansatz basiert auf einer Kombination
von Prädikatabstraktion – einer Datenabstraktionstechnik, welche konkrete
Systemvariablen durch Prädikate ersetzt – und Spotlightabstraktion – einer
Technik, welche ganze Prozesse eines nebenläufigen Systems wegabstrahiert.
Damit werden zwei der Hauptursachen der Zustandskomplexität von neben-
läufigen Systemen angegangen. Eine weitere Besonderheit des entwickel-
ten Verfahrens ist die Verwendung einer dreiwertigen abstrakten Domäne.
Eigenschaften in den Zustandsmodellen können die Werte wahr, falsch und
unbekannt annehmen, wodurch sich der abstraktionsbedingte Informationsver-
lust explizit modellieren lässt: Alle wahr- und falsch-Resultate die sich via
Model Checking ergeben, lassen sich auf das Originalsystem übertragen.
Lediglich ein unbekannt-Resultat erfordert die Verfeinerung der Abstraktion.

Zur automatischen Verfeinerung abstrakter Modelle wird in dem entwickel-
ten Ansatz auf das Konzept der gegenbeispielgeleiteten Abstraktionsverfeinerung
(englisch counterexample-guided abstraction refinement (CEGAR)) zurückge-
griffen. Gegenbeispiele entsprechen ’unbekannten’ Fehlerpfaden innerhalb des
abstrakten Modells. Diese verweisen auf eine Reihe möglicher Verfeinerungss-
chritte zur Auflösung der Ungewissheit. Dies können in dem hier entwickelten
Verfahren sowohl neue Prädikate als auch neue Prozesse sein. Typischer-
weise erweist sich jedoch nicht jeder potentielle Verfeinerungsschritt letz-
tendlich als zielführend, was die Auswahl geeigneter Schritte zu einer generell
schwierigen Aufgabe macht. In dieser Arbeit wird eine Erweiterung des ur-
sprünglichen CEGAR Konzepts eingeführt, basierend auf heuristischer Leitung:
Auf Grundlage einer iterativen Abstraktionsabhängigkeitsanalyse werden die
potentiellen Verfeinerungsschritte bezüglich ihres Nutzens für die aktuelle
Verifikationsaufgabe heuristisch bewertet, und der bestbewertete Schritt wird
zur Verfeinerung ausgewählt. Anhand von zwei Fallstudien wird gezeigt, dass
dieser heuristische Ansatz zu einer signifikanten Leistungssteigerung von ab-
straktionsverfeinerungsbasierter Verifikation nebenläufiger Systeme beitragen
kann.

Zusammenfassung vii

Das im Rahmen dieser Arbeit entwickelte Verfahren erlaubt primär die
Verifikation von Sicherheits- und Lebendigkeitseigenschaften von nebenläufi-
gen Systemen, die aus einer festen Anzahl von Prozessen zusammengesetzt
sind. Überdies wird jedoch auch eine Erweiterung vorgestellt, welche die
Verifikation parametrisierter Systeme, Kompositionen einer unbeschränkten
Anzahl von homogenen Prozessen, erlaubt. Diese Erweiterung basiert auf
einer Kombination von Spotlightabstraktion und Symmetriereduktion, einer
Reduktionstechnik zur Ausnutzung der Homogenität in parametrisierten Sys-
temen.

Acknowledgements

Many thanks to all who supported and encouraged me during my PhD studies.
My special gratitude goes to Professor Dr. Heike Wehrheim for her constant
support and for many valuable discussions and suggestions. I would also
like to thank Professor Dr. Hans Kleine Büning who agreed to review my
thesis. Moreover, I am grateful to Elisabeth Schlatt and to my Phd colleagues
Galina Besova, Tobias Isenberg, Marie-Christine Jakobs, Alexander Schremmer,
Dominik Steenken, Oleg Travkin, Sven Walther and Steffen Ziegert for the
pleasant atmosphere in our research group. Of course, my thanks also goes
to my former colleagues Björn Metzler and Thomas Ruhroth, who supported
me a lot in the beginning of my PhD – and I am especially thankful to Daniel
Wonisch for his helpful suggestions on my research. Another big thanks goes to
Mike Czech for his valuable help with implementing the heuristic framework.
Moreover, I would like to thank all my friends, especially my roommates, who
encouraged me in so many ways. Last but not least, I want to express my
gratitude to my family, in particular to my parents, my grandparents, and my
sister. Thank you for your enduring support.

ix

Contents

1 Introduction . 1
1.1 Software Verification . 2
1.2 Modelling, Abstraction and Refinement . 3
1.3 Contributions of this Work . 8
1.4 Outline . 10

2 Formal Verification via Model Checking . 13
2.1 Classical Temporal Logic Model Checking 14
2.2 Three-Valued Temporal Logic Model Checking 21
2.3 Model Checking Algorithms . 26

3 Concurrent Systems . 31
3.1 Syntax and Semantics of Concurrent Systems 31

3.1.1 Semaphores . 34
3.1.2 Communication Channels . 35

3.2 Parameterised Systems . 37
3.3 Modelling Concurrent Systems . 40
3.4 Correctness Requirements of Concurrent Systems 45

4 Abstraction for Concurrent Systems . 49
4.1 Predicate Abstraction . 49

4.1.1 Boolean Predicate Abstraction . 50
4.1.2 Three-Valued Predicate Abstraction 58

4.2 Spotlight Abstraction . 61
4.2.1 Spotlight and Shade . 61
4.2.2 Shade Clustering . 65
4.2.3 Region Summarisation . 71

4.3 Related Work . 79

xi

xii Contents

5 Heuristic-Guided Abstraction Refinement . 83
5.1 Counterexample-Guided Abstraction Refinement 84
5.2 Multiple Counterexample-Generation . 91
5.3 Heuristic Framework for Abstraction Refinement 97

5.3.1 Abstraction Dependence Analysis 98
5.3.2 Heuristic Evaluation of Refinement Candidates 104

5.4 Related Work . 109

6 Spotlight Abstraction for Parameterised Verification 113
6.1 Parameterised Verification . 114
6.2 Symmetry Reduction . 116
6.3 Symmetry and Spotlight . 124
6.4 Relaxed Symmetry . 127
6.5 Abstraction Refinement . 133
6.6 Related Work . 139

7 Implementation and Experimental Results 143
7.1 3Spot Verification Framework . 143
7.2 Case Studies and Experimental Results . 146

7.2.1 Case Study I: Naive vs. Enhanced Refinement 148
7.2.2 Case Study II: Weight Configurations 151

7.3 Discussion . 156

8 Conclusion . 159
8.1 Summary . 159
8.2 Discussion . 162
8.3 Future Work . 164

References . 169

Chapter 1
Introduction

Software is playing an ever-increasing role in our lives. Everyday we are faced
with several devices that rely to a great extent on software technology. Cell
phones, electronic payment terminals and automotive trip computers are only
some examples of software-based systems that are actively used by billions of
people worldwide. Nevertheless, the major part of software is running beyond
our immediate awareness. Software is integrated in systems for logistics,
medical therapy, aviation control and plenty more. Thus, it can essentially
contribute to our daily convenience, health and safety. Moreover, software
systems are of great economic importance. A vast number of manufacturing
and business processes are in fact controlled by software, and in the future, it
is expected that software technology will find its way into many more areas
of economy and personal life.

As the amount of software applications grows, so does their complexity and
the relevance of their computations. Software is usually part of larger systems
composed of several interacting components. Concurrency and distribution
are typical characteristics of these integrated systems that are often charged
with safety-critical tasks, such as the control of power plants. Moreover, the
software development process is commonly subject to very sharp time and
cost constraints. Thus, today’s software developers are faced with enormous
challenges. Highly complex and reliable software has to be developed and
integrated into large-scale systems in time. – However, the increasing complex-
ity also involves an increasing number of potential defects. Since it is virtually
impossible to avoid all kinds of errors in software development, the applica-
tion of additional methods for establishing software reliability is indispensable.
Cases of bad or insufficient quality management occur frequently. – Two re-
cent examples: The almost crash of an Airbus A330 in 2008, which seriously
injured several passengers, was caused by incorrect software. Another sort
of fatal crash hit the Wall Street company Knight Capital in 2012. Erroneous
trading software caused a loss of hundreds of millions of U.S. dollars to the
company, and thus, led to its near bankruptcy.

1

2 1 Introduction

Software verification is a discipline of engineering that encompasses all
methods for detecting defects in software. This discipline is also a field of
very active research, since the ever-increasing complexity of today’s software
demands ever more efficient methods for establishing reliability. – It is a fact
that several dramatic software failures, including the two aforementioned
ones, could have been prevented by the application of existing verification
techniques, and thereby, a lot of harm and costs could have been avoided.
In the subsequent section we will provide a brief overview of established
methods from the field of software verification.

1.1 Software Verification

Software verification is a collective term for methodical approaches to prove
or refute properties of a software system. A fundamental prerequisite for
any form of verification is the specification of correctness requirements. Cor-
rectness of software is not an absolute property – it is relative to certain
previously defined requirements. These requirements are typically qualitative
or quantitative assertions over the software, such as the exclusion of specific
undesirable behaviour. Verifying a software system generally means to check
if a violation of the correctness requirements is detectable.

In the field of software verification we can distinguish two major ap-
proaches: testing and applying formal methods. Software testing [17] is an
integral part of nearly every software development project. It involves the
actual execution of the considered software system. The behaviour of the sys-
tem is examined under different inputs – the so-called test cases. Defects are
revealed by comparing the observed behaviour with the previously specified
correctness requirements. Testing is generally very efficient and it facilitates
the detection of the majority of errors introduced during development. Thus, it
can be regarded as an absolute necessity for the success of a software project.
However, testing is inherently not exhaustive and not complete. For large-scale
software systems it is practically not feasible to consider all possible inputs as
test cases. In accordance with this fact, Dijkstra [51] stated that

“program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.”

The incompleteness of software testing is a serious drawback when the absence
of certain errors like deadlocks or race conditions is indispensable. – For safety-
critical software systems testing alone is certainly not sufficient to ensure the
urgently required reliability: Systems for aviation control, driving assistance
or medical therapy that are not guaranteed to be free of certain bad behaviour
are of course not acceptable for practical use. Hence, for such systems testing
is usually complemented by the application of formal methods.

1.2 Modelling, Abstraction and Refinement 3

Formal methods [40] are specification and verification techniques that rely
on mathematical rigour. In contrast to classical software testing, these meth-
ods are commonly not based on a direct inspection of a software system. The
transformation of the system under consideration into a simpler model is an
integral part of the application of formal methods. The constructed models are
typically abstract in the sense that they are restricted to exactly the details that
are relevant for the verification of a certain requirement. Another key feature
of formal methods is the mathematical accuracy of both the modelling of
the system and the specification of the correctness requirements. Established
concepts that are employed here are formal languages, automata theory and
mathematical logic. Moreover, formal methods provide algorithmic procedures
for the systematic exploration of the constructed system models. A prominent
example is model checking [41, 8] – a fully-automatic and exhaustive procedure
for model exploration that facilitates the detection of requirement violations
as well as the proof of their absence. Formal methods thus can overcome the
infeasibility of a complete analysis of software systems by the construction of
simpler abstract models that allow for an exhaustive exploration. Hence, the
application of formal methods for software verification is the ideal comple-
ment to testing: Specific safety-critical errors can be excluded based on the
employment of model checking, whereas testing provides for the detection of
the major part of less serious defects.

The aforementioned restriction to the relevant details in modelling is one of
the most crucial issues in research on formal methods. Abstracting the system
model is absolutely essential for the feasibility of an exhaustive analysis.
However, too many or inadequate restrictions may result in a model that
does not permit to draw any conclusions about the requirement of interest.
The choice of an appropriate level of abstraction is highly nontrivial and may
require a lot of manual effort and later corrections. In addition, the increasing
complexity of today’s software systems makes it even more challenging to
construct small but precise system models. Current research in this field
thus particularly focuses on the development of techniques for the automatic
construction of reduced, or rather abstract, models for formal verification.

1.2 Modelling, Abstraction and Refinement

Applying the formal method model checking involves an exhaustive exploration
of a software system’s state space. – In a nutshell, the system under consid-
eration is modelled as a state transition graph such that the unreachability
of certain error states (or in other cases: the recurrent reachability of certain
’good’ states) implies the correctness of the system. Figure 1.1 illustrates the
modelling of a single software component as a transition graph. As we can
see, the black error state is not reachable from the initial state. Thus, applying
model checking would return that the system is correct.

4 1 Introduction

Modelling

0110101100
1001010011
0110101100
1001010011
0110101100

Fig. 1.1 Modelling a software component as a state transition graph. The black state in the
transition graph denotes an error state.

The number of states in the transition graph, however, grows exponentially
with the size of the modelled system, i.e. the number of its variables and com-
ponents. Thus, large data domains and concurrency – typical characteristics of
modern software systems – are among the main causes of the so-called state
explosion problem in verification that makes a straightforward modelling of
real-life systems practically impossible. Many systems even have infinite state
spaces, which makes their verification undecidable in general.

A number of approaches have been proposed that address the state ex-
plosion problem by constructing reduced state space models for verification:
Reduction techniques like partial order reduction [64] or symmetry reduction
[58] exploit specific structural properties of the considered system in order to
obtain a smaller state space. Compositional verification [122] is an approach
that is based on the decomposition of the original verification problem into
several less complex subproblems. The field of abstraction (e.g. [34, 11, 112])
comprises a wide range of techniques that reduce the state space by hiding
certain details, such as concrete data values or entire components of a con-
current system. Abstraction is among the most promising approaches to the
state explosion problem. Its application can lead to a substantial decrease of
complexity, and besides, it can be combined with other reduction techniques,
which facilitates even more efficiency in verification. However, finding the
right level of abstraction is exceedingly difficult – abstract models may be
either too imprecise for verification, or too complex for an exhaustive ex-
ploration. It is thus a common approach to initially construct a very coarse
abstract model of the original system, which is then iteratively refined, i.e.
more details are added, until a level of abstraction is reached that is precise
enough for verification. The new details are typically derived from so-called
abstract counterexamples – error paths in the abstract model that do not
necessarily represent feasible behaviour of the original system.

Figuratively speaking, applying abstraction to a system can be regarded
as putting a ’grid’ on the concrete state space such that the original states
are grouped into a small number of abstract states. Refining the abstraction
then means to select a finer grid, i.e. to split certain abstract states into more

1.2 Modelling, Abstraction and Refinement 5

concrete ones. The schema in Figure 1.2 illustrates the basic principle of
abstraction refinement-based verification.

AbstractiongModelling &

≡
0110101100
1001010011
0110101100
1001010011
0110101100

?

?

≡

RefinementAbstraction

?

?

unknown
if error

reachable

≡
?

??

?

error
definitely

not reachable

Fig. 1.2 Schematic view of abstraction refinement in formal verification.

Hence, in abstraction refinement-based verification the concrete state space
is never explicitly constructed. Instead, the initial abstraction directly groups

6 1 Introduction

the concrete states into a small number of abstract states. In our exemplary
schema we have two groups: The upper part of the dashed grid which includes
the initial state, and the lower part of the grid which comprises the error
state. The resulting abstract transition system (on the right of the schema) is,
however, too coarse for a definite result in verification. The ?-tagged transition
starting in the initial state is an abstract counterexample that tells us that an
error state is maybe reachable. In the refinement step, we rule out the abstract
counterexample by splitting the two abstract states into four. As we can see,
the refined transition system still exhibits uncertainty, but it is actually precise
enough to prove that the error state is definitely not reachable.

Existing frameworks for abstraction refinement-based verification usually
rely on predicate abstraction [11]: The concrete variables of the considered
system are replaced by a number of boolean predicates over these variables,
which commonly yields an over-approximation of the original system. Thus,
refinement means to iteratively add new predicates to the abstract model until
a definite result in verification can be obtained. Achieving a definite result
typically requires a larger number of refinement iterations – and not just a
single step like in our illustrating schema. Moreover, there usually exist several
possible directions for refinement, but it is not straightforward to predict
which direction will be expedient and which not. Unfavourable refinement
steps can easily lead to an unnecessary explosion of the abstract state space.
The development of automatic decision procedures for refinement in order to
facilitate efficient verification is thus a challenging field of research.

What makes things even more difficult is that today’s software systems
typically do not consist of only a single component. Concurrent systems are
composed of a number of software components, also referred to as software
processes, that are concurrently executed and that communicate with each
other via shared variables or message passing. An illustration of a concurrent
software system is depicted in the figure below.

0110101100
1001010011
0110101100
1001010011
0110101100

0110101100
1001010011
0110101100
1001010011
0110101100

0110101100
1001010011
0110101100
1001010011
0110101100

0110101100
1001010011
0110101100
1001010011
0110101100

0110101100
1001010011
0110101100
1001010011
0110101100

0110101100
1001010011
0110101100
1001010011
0110101100

Fig. 1.3 Concurrent system composed of six software processes. The arrows represent
potential communication between the processes.

1.2 Modelling, Abstraction and Refinement 7

As we have mentioned before, the state space of a system also grows expo-
nentially with the number of its components. Of course, predicate abstraction
could be applied to each software process of a concurrent system. However,
for several verification tasks this would still involve a large and unnecessary
overhead. Errors are typically the result of an awkward interplay between a
small number of processes – and not between all the components of the system.
Moreover, local correctness requirements of a concurrent system can often be
validated based on a small selection of the overall systems components. For
the verification of concurrent systems predicate abstraction can be combined
with spotlight abstraction [123, 112] – a reduction technique that is capable of
abstracting away entire processes. The basic principle of spotlight abstraction
is illustrated in the figure below.

Shade

0110101100
1001010011
0110101100
1001010011
0110101100

0110101100
1001010011
0110101100
1001010011
0110101100

Spotlight

?

??

Fig. 1.4 Pictorial representation of spotlight abstraction for concurrent systems.

Hence, applying spotlight abstraction partitions a concurrent system into two
parts – a spotlight and a shade. The processes in the spotlight are typically
those that are supposed to be particularly relevant for the verification task, for
instance, processes where an error is expected. – The processes of presumably
minor importance are initially put into the shade. Now, predicate abstraction
is applied to all spotlight processes, whereas the shade processes are collapsed
into a single component that coarsely approximates the behaviour of the
entire shade. Note that the spotlight and the shade are not independent
parts: Due to shared variables or message passing, processes in the shade
may affect processes in the spotlight and vice versa. Thus, the inherent loss of
information about the shade caused by the summarisation of its processes into
a single component may also involve a loss of information about the spotlight
processes. In spotlight abstraction this loss of information is characterised

8 1 Introduction

by the introduction of a third truth value unknown. Hence, predicates are
no longer boolean but three-valued and the abstract shade component may
set predicates over the variables shared with spotlight processes to unknown.
This entails that the outcome of spotlight abstraction-based verification can be
unknown as well, which necessitates refinement. The spotlight principle adds
another facet to abstraction refinement. In every refinement iteration either
a new predicate can be added to the abstraction or a process can be shifted
from the shade to the spotlight. This additional dimension for refinement
comes along with enhanced possibilities for constructing the most appropriate,
i.e. small and precise, models for verification. However, the new scope for
refinement decisions also makes it considerably more difficult and challenging
to avoid refinement steps that later turn out to be unrewarding. A number of
unfavourable refinements can easily result in an abstract model whose size
widely exceeds the capabilities of state-of-the-art verification tools.

A common approach to automatically guide the refinement procedure in
abstraction-based verification is counterexample-guided abstraction refinement
(CEGAR) [34]. The basic principle of CEGAR is to first search for an abstract
counterexample that does not correspond to feasible behaviour of the concrete
system, and then select a refinement step that rules out this counterexample.
This is repeated until a definite result in verification can be achieved. Thus,
counterexample-guided abstraction refinement can facilitate the detection
of reasonable refinements. However, only little research has been spent on
advancements of the basic principle of CEGAR. Most existing techniques are
based on pure boolean predicate abstraction – neither on a three-valued
domain nor on spotlight abstraction – and they are typically restricted to the
verification of simple reachability (alias safety) properties. Moreover, CEGAR
is a very generic approach to abstraction refinement. Its guidance solely relies
on the generated counterexamples. In particular, CEGAR does not exploit any
further structural information about the system under consideration for its
refinement decisions. In many cases, this can even lead to misguidance such
that verification fails due to one-sided refinement decisions.

1.3 Contributions of this Work

In this thesis, we approach the previously addressed challenges of abstraction
refinement-based verification by focusing on one specific type of software sys-
tem: Concurrent systems are in widespread practical use, but the concept of
concurrency makes their verification particularly difficult. Nevertheless, these
systems also reveal a high amount of easily accessible and useful information
– in particular, their communication structure and the resulting dependencies
between processes – that we want to maximally exploit for enhancing abstrac-
tion and refinement. To this end, we develop a comprehensive framework for

1.3 Contributions of this Work 9

the automatic verification of safety and liveness requirements of concurrent
systems. Our specific contributions are as follows.

We base our overall approach on a combination of three-valued predicate
abstraction and spotlight abstraction, and thus, tackle both major causes
of state explosion, large-domain variables and concurrency. While former
approaches to spotlight abstraction [123, 112] abstract away (i.e. lose) the
entire behaviour of the shade processes, we introduce two extensions of the
original spotlight principle that allow us to preserve more concrete behaviour
without a significant increase of complexity: Shade clustering is a technique for
partitioning the shade into clusters of behaviourally similar processes. In region
summarisation we exploit that summarising certain parts of a process into
regions can even remove some uncertainty from the corresponding abstract
model. For both extensions we utilise structural information that can be
straightforwardly derived from the underlying concurrent system. We prove
the soundness of our extensions of spotlight abstraction. That is, we show that
all definite behaviour in a resulting abstract model corresponds to feasible
behaviour of the original system. – In short, with our contributions in the field
of abstraction we want to demonstrate that exploiting additional information
about the system under consideration can help to preserve more definite
behaviour under abstraction, and thus, to make abstraction-based verification
of concurrent systems more efficient.

Our approach to refining imprecise abstractions is an extension of the classical
counterexample-guided abstraction refinement. A counterexample typically
hints at several potential refinement steps – so-called refinement candidates.
Due to the state explosion problem it is generally not advisable to select all
candidates for refinement. Most existing CEGAR techniques are based on the
detection of minimal refinements that eliminate an abstract counterexample.
However, in comparison to these classic techniques, we do not employ pure
boolean predicate abstraction, but three-valued predicate abstraction together
with spotlight abstraction. In our three-valued scenario abstract counterexam-
ples can not only be possibly eliminated, but also confirmed via refinement.
Moreover, our refinement candidates can be new predicates as well as pro-
cesses from the shade. These differences generally demand a new approach to
refinement. Besides, we again want to exploit structural information about the
considered system in order to enhance the refinement procedure. Therefore,
we introduce a heuristic framework for refinement. We generate multiple
counterexamples in each iteration, which on the one hand gives us a larger
set of refinement candidates, and on the other hand enables us to concretise
more than one abstract counterexample in each refinement step. Our heuristic
framework relies on an iterative abstraction dependence analysis: Based on an
analysis of the dependence structure of the underlying concurrent system, the
derived refinement candidates are heuristically evaluated with regard to their
benefit for the current verification task. In each refinement iteration, the best
evaluated candidate – a predicate or a process – is added to the abstraction.

10 1 Introduction

This enables to guide the refinement procedure in expedient directions and
to avoid unnecessary steps. Hence, with our heuristic approach we want to
show that refinement decisions in CEGAR – and thus also the performance
of the overall verification procedure – can be significantly improved by the
untilisation of easily accessible information about the verified system.

Furthermore, we demonstrate that our abstraction refinement-based verifi-
cation technique can be combined with symmetry reduction [58] – which
permits us to apply our approach in an even broader context. Verification via
the original spotlight principle [112] is limited to reasoning about concurrent
systems composed of a fixed number of processes. However, for many real-life
systems such as network protocols the number of processes is not bounded.
Such parameterised systems typically consist of an arbitrary number of pro-
cesses that can be divided into a finite number of classes of homogeneous
processes. Verifying parameterised systems is undecidable in general, but
symmetry reduction techniques can be used to exploit the homogeneity in
these systems. In certain cases, this allows to map the infinite state spaces of
these unbounded systems to finite abstractions that can be verified. We show
that, based on symmetry arguments, our abstraction refinement framework
can be extended to the verification of parameterised systems and we prove
the soundness of this combined approach. Moreover, we demonstrate that
parameterised verification can actually profit from the state space-reducing
character of spotlight abstraction.

Finally, we present the implementation of our developed verification frame-
work: We introduce our fully automatic verification tool 3Spot, which takes
concurrent systems in a C-like syntax as input. In an experimental evalua-
tion, we investigate how our heuristic approach to abstraction refinement can
contribute to more efficiency in the verification of concurrent systems.

1.4 Outline

This thesis is structured as follows.
Chapter 2 provides a fundamental introduction to model checking – the

formal method that serves as the basis of our approach. We start with introduc-
ing classical (boolean) temporal logic model checking, along with all related
definitions and terms. In particular, we present Kripke structures as formal
models for software systems and we introduce the temporal logic CTL that
we employ for the formalisation of correctness requirements. Furthermore,
we present the three-valued generalisation of classical model checking. This
also involves the introduction of the third truth value unknown, which is a key
element in our approach. The chapter concludes with an overview of model
checking algorithms.

1.4 Outline 11

In Chapter 3, we give an introduction to the field of concurrent systems,
which includes a definition of the syntax and semantics of such systems as well
as a description of the different concepts of communication. We describe the
different kinds of concurrent systems that are in the focus of our approach to
verification by means of several examples. Moreover, we show how concurrent
systems can be represented in a formal way and finally be transferred into a
state space model for verification. We conclude this chapter with an overview
of typical correctness requirements of concurrent systems that we want to
verify with our developed framework.

The Chapters 4, 5 and 6 are the main chapters of this work. In Chapter
4, we present our approach to abstraction. We start with a comprehensive
description of the state space reduction techniques predicate abstraction and
spotlight abstraction. We show how these two techniques can be effectively
combined for the verification of concurrent systems. Furthermore, we intro-
duce two extensions of spotlight abstraction that we have developed within
this work: shade clustering and region summarisation. We prove the sound-
ness of our extensions and we demonstrate how spotlight abstraction-based
verification can profit from our enhancements. This chapter concludes with a
discussion of related work on abstraction in formal verification.

Chapter 5 presents our approach to refinement. starts with an introduction
counterexample-guided abstraction refinement (CEGAR). Based on a running
example, we illustrate that the efficiency of CEGAR-based verification crucially
depends on the choice of adequate refinement steps, which motivates our
heuristic approach to refinement. Furthermore, we show that for our three-
valued abstractions multiple counterexamples can be efficiently generated,
which gives us a broader basis for refinement decisions. Finally, we introduce
our heuristic framework for abstraction refinement. Based on a structural
analysis of the underlying concurrent system we heuristically evaluate the
benefit of potential refinement steps, which enables us to guide the refinement
in expedient directions, and thus to obtain definite verification results on very
small abstractions. A discussion of related work on abstraction refinement
concludes this chapter.

In Chapter 6, we show that our approach can be extended to the verification
of parameterised systems. We first provide an introduction to parameterised
verification and symmetry reduction. Subsequently, we show that symmetry
reduction can be effectively integrated into our framework for abstraction
refinement. This also encompasses a comprehensive correctness proof of the
integration. We furthermore demonstrate that the combination of spotlight
abstraction with symmetry arguments enables us to extend our heuristic
approach towards the efficient verification of parameterised systems. The
chapter is completed with a discussion of related work on parameterised
verification.

Chapter 7 describes the implementation of our verification framework. We
provide an overview of the essential components of our developed verification
tool 3Spot. Moreover, we present two case studies that demonstrate the

12 1 Introduction

applicability of our heuristic approach for larger-scale concurrent systems and
we discuss the achieved results.

In the final chapter we conclude this thesis with a summary and we propose
promising directions for future research.

Chapter 2
Formal Verification via Model Checking

Formal verification is based on an exhaustive analysis of the system under
consideration. It not only facilitates the detection of errors, but also the
proof of their absence. However, a number of challenges are associated with
the formal verification of software systems. Research in this field aims to
reduce the effort for verification, and thus, to increase its efficiency. We can
distinguish different kinds of verification efforts. Naturally, there is a demand
for computational resources. The construction and exploration of the state
space of a software system generally requires a high amount of computation
time and memory space. Furthermore, human resources may be involved in a
verification procedure. Not every approach to formal verification can be fully
automated, and thus, intervention and guidance by human experts may be
necessary. Finally, financial resources are an issue in verification. Of course,
this aspect can be regarded just as the subsumption of computational and
human resources. However, there are evidently more financial issues if we
consider verification as an integral part of the software development process.
The costs for repairing errors detected by verification increase with every
further stage of system development by orders of magnitude. Thus, verification
techniques that can already be applied in early phases of software design, can
also significantly reduce financial efforts.

In this work we develop a verification framework for concurrent systems
based on model checking [41, 8], a formal method technique that approaches
the aforementioned efforts. As the name implies, model checking is based on
the exploration of a formal model that characterises the possible behaviour
of the considered system. The final software code of the system is not a
prerequisite for model checking. Instead, models may be based on partial
specifications or on system prototypes. Hence, model checking can be used
to discover errors in early design stages of the software development process
where corrections are relatively cheap. Moreover, model checking is a fully
automatic verification technique. The exploration of the model requires no
intervention by a user, and usually, even the model generation is automated.
Thus, model checking can considerably reduce the verification effort with

13

14 2 Formal Verification via Model Checking

regard to financial and human resources. – Coping with the computational
demands remains as the main challenge in model checking. There exist a
number of effective approaches for reducing the complexity of verification.
These techniques are commonly based on abstraction. Abstraction in the
context of verification means to construct a small (i.e. abstract) model of
the considered system that preserves the validity (and invalidity) of certain
properties of interest. Our approach to abstraction-based verification will be
extensively discussed in Chapter 4 of this thesis.

Beforehand, we want to take a look at the fundamental characteristics
of model checking. Given a mathematical state space model of a software
system and a formal description of its correctness requirements, model check-
ing automatically verifies whether the model satisfies the requirements, or
whether a violation can be detected. In the following, we give an elemen-
tary introduction to the formal models and specification formalisms used in
model checking, and thus, provide the necessary background for our verifi-
cation framework. We start with the classical temporal logic model checking.
Subsequently, we will consider the three-valued generalisation of classical
model checking, which serves as the basis of our later introduced approach to
three-valued abstraction.

2.1 Classical Temporal Logic Model Checking

Temporal logic model checking is a fully automatic verification technique.
It refers to the question of whether a model of a software system satisfies
certain temporal logic correctness requirements. In common approaches, a
Kripke structure [90] is used to model the state space of the system under
consideration.

Definition 2.1 (Kripke Structure).
A Kripke structure over a set of atomic predicates AP is a tuple K = (S,R,L,F)
where

• S is a finite set of states,

• R : S× S→ {true, f alse} is a total transition function, i.e. ∀s ∈ S : ∃s′ ∈ S :
R(s,s′) = true,

• L : S×AP→{true, f alse} is a labelling function that associates a truth value
with each predicate in each state,

• F ⊆ P(R−1({true})) is a set of fairness constraints where each constraint
F ∈ F is a set of true transitions.

A path π of a Kripke structure K is an infinite sequence of states s0s1s2 . . . with
R(si,si+1) = true. πi denotes the i-th state of π and Πs denotes the set of all

2.1 Classical Temporal Logic Model Checking 15

paths starting in s ∈ S. A path π is fair if it takes infinitely often a transition
from every F ∈ F. By Π

f air
s we denote the set of all fair paths starting in

s ∈ S. Fairness constraints in Kripke structures are used to rule out unrealistic
(i.e. unfair) behaviour of the modelled system. In Chapter 3 we will provide
more details on unrealistic system behavior, and moreover, show how fairness
constraints can be derived from a given system. Henceforth, we solely focus
on fair paths. For illustration of the aforementioned definitions, we consider
the Kripke structure K1 in Figure 2.1.

s0K1 ::

s1

s3

s4

s2

s5

p = f
q = f

p = t
q = f

p = t
q = f

p = t
q = f

p = t
q = t

p = t
q = t

Fig. 2.1 Kripke structure K1 over AP = {p,q} with fairness constraint F = {F} where
F = {(s2,s2),(s3,s3),(s5,s5)}. In the labelling, t abbreviates true, and f abbreviates f alse.

As we can see, the infinite sequence π = s0s1s1s1 . . . is a path of K1. However,
since π does not take any transition from the set F infinitely often, this path
is not fair. A fair path of K1 is e.g. π ′ = s0s1s2s2

Requirements, i.e. desirable properties of systems represented as Kripke struc-
tures can be formalised in temporal logic, an extension of the classical propo-
sitional logic. The computation tree logic (CTL) [37] is a branching-time logic
for specifying such properties. The syntax of CTL can be defined in two steps.
We can distinguish CTL state and path formulae:

Definition 2.2 (Syntax of CTL).
Let AP be a set of atomic predicates. The syntax of CTL state formulae is given
by the following grammar:

ψ ::= p | ¬ψ | ψ ∧ψ | ψ ∨ψ | Eφ | Aφ

where p ∈ AP and φ is a CTL path formula. Thus, state formulae permit
the logical connectives ¬,∧,∨ as well as the existential (E) or universal (A)
quantification over path formulae. The syntax of CTL path formulae is given
by the following grammar:

16 2 Formal Verification via Model Checking

φ ::= Xψ | Fψ | Gψ | ψUψ

where ψ is a CTL state formula. State formulae refer to properties of states
and their branching structure, whereas path formulae characterise temporal
properties of paths. As temporal operators, we have next (X), eventually (F),
globally (G) and until (U). The formal semantics of these operators follows
from Definition 2.3. In the evaluation of CTL formulae on Kripke structures
only state formulae are considered – which, however, may be composed
of path formulae. Henceforth, we refer to CTL state formulae just as CTL
formulae.

Definition 2.3 (Fair Evaluation of CTL).
Let K = (S,R,L,F) be a Kripke structure over a set of atomic predicates AP.
Then the fair evaluation of a CTL formula ψ in a state s of K, written [K,s |= ψ],
is inductively defined as follows

[K,s |= p] :=
∨

π∈Π f air
s

L(π0, p)

[K,s |= ¬ψ] :=
∨

π∈Π f air
s
¬ [K,π0 |= ψ]

[K,s |= ψ ∧ψ ′] :=
∨

π∈Π f air
s

[K,π0 |= ψ] ∧ [K,π0 |= ψ ′]

[K,s |= ψ ∨ψ ′] :=
∨

π∈Π f air
s

[K,π0 |= ψ] ∨ [K,π0 |= ψ ′]

[K,s |= EXψ] :=
∨

π∈Π f air
s

[K,π1 |= ψ]

[K,s |= EGψ] :=
∨

π∈Π f air
s

∧
i∈N [K,πi |= ψ]

[K,s |= E(ψUψ ′)] :=
∨

π∈Π f air
s

∨
i∈N
(
[K,πi |= ψ ′]∧

∧
0≤ j<i[K,π j |= ψ]

)
If [K,s |= ψ] evaluates to true then the system modelled by K satisfies the
property formalised by ψ. In case the evaluation yields false, the modelled
system violates the property. The evaluation of the remaining CTL operators
can be derived by the following equivalences

EFψ ≡ E(trueUψ), AFψ ≡ A(trueUψ),

EGψ ≡ ¬AF¬ψ, AGψ ≡ ¬EF¬ψ,

AXψ ≡ ¬EX¬ψ

where two CTL formulae ψ1,ψ2 are equivalent, written ψ1 ≡ ψ2, iff for all
Kripke structures K and for all states s of K: [K,s |= ψ1] = [K,s |= ψ2].

For our example Kripke structure K1 we e.g. have that [K1,s0 |= AFp] yields
true, i.e. for all fair paths starting in s0 eventually p holds. It is sufficient to
consider the substructure πK1 of K1 depicted in Figure 2.2 in order to validate
[K1,s0 |= AFp]. Such a substructure that proves the validity of a temporal logic
formula ψ is called a witness for ψ.

2.1 Classical Temporal Logic Model Checking 17

s0πK1 ::

s1

s3

s4

p = f
q = f

p = t
q = f

p = t
q = f

p = t
q = f

Fig. 2.2 Witness πK1 for [K1,s0 |= AFp] in the Kripke structure K1.

As another example, [K1,s0 |= AG(AF(EXq))] evaluates to false. This can be
disproved by the fair path π ′K1

= s0s3s3 . . . in K1, a path where at some time
p never holds next. We call such a path that refutes a CTL formula ψ a
counterexample for ψ. Counterexamples for temporal logic properties are
not necessarily paths, i.e. linear traces. Since CTL is a branching-time logic,
counterexamples may also have a tree-like structure. Moreover, there is a
duality between witnesses and counterexamples. A substructure π of a Kripke
structure is a counterexample for a temporal logic formula ψ if and only if
π is a witness for the formula ¬ψ. Thus, the tree-like witness πK1 for AFp
is also a counterexample for the negated property EG¬p, and the linear
counterexample π ′K1

for AG(AF(EXq)) is a witness for EF(EG(AX¬q)).
Conversely to the equivalence between CTL formulae, we have that two

states of Kripke structures are equivalent with respect to the branching-time
logic iff they satisfy the same set of CTL formulae. Such an equivalence relation
on states of Kripke structures is denoted as a bisimulation.

Definition 2.4 (Bisimulation).
Let K1 = (S1,R1,L1,F1) and K2 = (S2,R2,L2,F2) be two Kripke structures, both
defined over the same set of atomic predicates AP. Then a bisimulation be-
tween K1 and K2 is the greatest relation ∼b⊆ S1×S2 such that s1 ∼b s2 implies

• ∀p ∈ AP : L1(s1, p) = L2(s2, p),

• ∀s′1 ∈ S1 such that R1(s1,s′1) there is a state s′2 ∈ S2 with R2(s2,s′2) and s′1∼b s′2,

• ∀s′2 ∈ S2 such that R2(s2,s′2) there is a state s′1 ∈ S1 with R1(s1,s′1) and
s′1 ∼b s′2.

We say, the Kripke structures K1 and K2 are bisimilar, denoted by K1 ∼b K2,
if there exists such a bisimulation between them. Moreover, two paths π1

in K1 and π2 in K2 are bisimilar iff ∀k ∈ N : π1
k ∼b π2

k . Then we also say, the
path π1 simulates the path π2 and vice versa. Since bisimulation is reflexive,

18 2 Formal Verification via Model Checking

transitive and symmetric, it is an equivalence relation. So far, there is no
notion of fairness in this basic definition of a bisimulation relation. However,
a bisimulation can be easily extended with fairness constraints [41]:

Definition 2.5 (Fair Bisimulation).
Let K1 = (S1,R1,L1,F1) and K2 = (S2,R2,L2,F2) be two Kripke structures, both
defined over the same set of atomic predicates AP. Then a fair bisimulation
between K1 and K2 is the greatest relation ∼b⊆ S1× S2 such that s1 ∼b s2
implies

• ∀p ∈ AP : L1(s1, p) = L2(s2, p).

• For every fair path π1 ∈Π
f air
s1 in K1 exists a fair path π2 ∈Π

f air
s2 in K2 such

that ∀k ∈ N : π1
k ∼b π2

k .

• For every fair path π2 ∈Π
f air
s2 in K2 exists a fair path π1 ∈Π

f air
s1 in K1 such

that ∀k ∈ N : π1
k ∼b π2

k .

Two Kripke structures are fair bisimilar if there exists such a fair bisimulation
between them. Henceforth, we just write bisimulation when we refer to the
fair bisimulation. In Figure 2.3 we see a Kripke structure K2 that is bisimilar
to the structure K1 in Figure 2.1.

s′0K2 ::

s′1

s′3

s′2
p = f
q = f

p = t
q = f

p = t
q = f

p = t
q = t

Fig. 2.3 Kripke structure K2 over AP = {p,q} with fairness constraint F = {F} where
F = {(s′2,s′2),(s′3,s′3)}.

The bisimulation between K1 and K2 is defined by ∼b= {(s0,s′0),(s1,s′1),(s2,s′2),
(s3,s′3),(s4,s′1),(s5,s′2)}. We have that the path π2 = s′0s′1s′2 . . . in K2 simulates
the paths π1 = s0s1s2 . . . and π ′1 = s0s4s5 . . . in K1 and vice versa. Moreover,
we can observe that K2 is significantly smaller, with respect to the number of
states and transitions, than the bisimilar K1. From [41] we get the following
result for bisimilar Kripke structures:

Theorem 2.1.
Let K1 = (S1,R1,L1,F1) and K2 = (S2,R2,L2,F2) be two bisimilar Kripke struc-
tures and let ∼b⊆ S1×S2 be the respective bisimulation. Moreover, let s1 ∈ S1,

2.1 Classical Temporal Logic Model Checking 19

s2 ∈ S2. Then

s1 ∼b s2 iff (∀ CTL formulae ψ : [K1,s1 |= ψ] = [K2,s2 |= ψ]) .

This theorem can be exploited to reduce the complexity of temporal logic
model checking. Assume there is a verification task given by [K1,s1 |= ψ]. Then
the general approach is to find a smaller Kripke structure K2 with K1 ∼b K2,
a state s2 in K2 with s1 ∼b s2, and then evaluate [K2,s2 |= ψ]. By Theorem 2.1
the obtained result can be transferred to the original verification task. Due to
the smaller K2 this approach is usually more efficient than directly evaluating
[K1,s1 |= ψ]. For our running example with the Kripke structure K2 in Figure
2.3 we have that [K2,s′0 |= AFp] = true and [K2,s′0 |= AG(AF(EXq))] = f alse,
which is compliant with the results obtained for the larger bisimilar Kripke
structure K1 in Figure 2.1.

However, given a Kripke structure K1, then the smallest bisimilar K2 might
be still too large for an efficient verification. A less restrictive relation on
Kripke structures is the simulation.

Definition 2.6 (Simulation).
Let K1 = (S1,R1,L1,F1) and K2 = (S2,R2,L2,F2) be two Kripke structures, both
defined over the same set of atomic predicates AP. Then a simulation between
K1 and K2 is the greatest relation �s⊆ S1×S2 such that s1 �s s2 implies

• ∀p ∈ AP : L1(s1, p) = L2(s2, p),

• ∀s′1 ∈ S1 such that R1(s1,s′1) there is a state s′2 ∈ S2 with R2(s2,s′2) and
s′1 �s s′2,

As we can see, a bisimulation corresponds to a simulation which additionally
relates transitions of K2 to transitions of K1. Hence, every bisimulation is also
a simulation. The basic definition of simulation can be extended with fairness
constraints [41]:

Definition 2.7 (Fair Simulation).
Let K1 = (S1,R1,L1,F1) and K2 = (S2,R2,L2,F2) be two Kripke structures, both
defined over the same set of atomic predicates AP. Then a fair simulation
between K1 and K2 is the greatest relation �s⊆ S1× S2 such that s1 �s s2
implies

• ∀p ∈ AP : L1(s1, p) = L2(s2, p).

• For every fair path π1 ∈Π
f air
s1 in K1 there exists a fair path π2 ∈Π

f air
s2 in K2

such that ∀k ∈ N : π1
k �s π2

k .

Henceforth, we just write simulation when we refer to the fair simulation. If
there exists such a relation �s between K1 and K2 then we say, K1 is simulated
by K2 or, conversely, K2 simulates K1. Simulation is not an equivalence relation

20 2 Formal Verification via Model Checking

but a preorder. Thus, it is reflexive, transitive but not symmetric. For two
states s1 in K1 and s2 in K2 with s1 �s s2 every path starting in s1 can be
simulated by a path starting in s2, but not vice versa. Hence, CTL properties
are generally not preserved under simulation. Nevertheless, we will see that
simulation preserves properties from the universal fragment of CTL (ACTL).
ACTL is restricted to universal quantification, and moreover, negation is solely
permitted for atomic predicates.

Definition 2.8 (Syntax of ACTL).
Let AP be a set of atomic predicates. The syntax of ACTL state formulae is
given by the following grammar:

ψ ::= p | ¬p | ψ ∧ψ | ψ ∨ψ | Aφ

where p ∈ AP and φ is a CTL path formula.

The semantics of ACTL is the same as for CTL. Note that we have the same
equivalences as before, and thus, an ACTL formula can be transferred into an
equivalent CTL formula which may contain existential quantification as well.
From [41] we get the following result:

Theorem 2.2.
Let K1 = (S1,R1,L1,F1) and K2 = (S2,R2,L2,F2) be two Kripke structures with
K1 �s K2 and let �s⊆ S1×S2 be the respective simulation. Moreover, let s1 ∈ S1,
s2 ∈ S2. Then

s1 �s s2 iff (∀ ACTL formulae ψ : [K2,s2 |= ψ]⇒ [K1,s1 |= ψ]) .

Thus, given a verification task [K1,s1 |= ψ], a common approach is to find a
smaller Kripke structure K2 that simulates K1, a state s2 in K2 with s1 �s s2, and
then evaluate [K2,s2 |= ψ]. In case [K2,s2 |= ψ] yields true, this result can be
transferred to the original verification task, whereas a false result for K2 tells
us nothing about K1. However, since the simulation relation is less restrictive
than the bisimulation, finding a small Kripke structure that simulates the
original one is usually easier than finding a bisimilar Kripke structure. And
moreover, many verification tasks can already be successfully accomplished
under simulation.

We want to consider an example for such a simulation. In Figure 2.4 we
have a Kripke stucture K3 that simulates the structure K2 from Figure 2.3
– and due to transitivity also K1 from Figure 2.1. The simulation between
K2 and K3 is defined by �s= {(s′0,s′′0),(s′1,s′′1),(s′2,s′′2), (s′3,s′′1)}. Again we get
[K3,s′′0 |= AFp] = true, which conforms to the results obtained for the simulated
Kripke structures K1 and K2. However, for the non-ACTL formula AG(AF(EXq))
we have [K3,s′′0 |= AG(AF(EXq))] = true, which is not compliant with our for-
mer results for K1 and K2. This illustrates that under a simulation K2 �s K3
there might be feasible paths in K3 that are not feasible in the simulated K2.
In our example, π = s′′0s′′1s′′1s′′1 . . . in K3 is such a spurious path.

2.2 Three-Valued Temporal Logic Model Checking 21

s′′0K3 :: s′′1 s′′2

p = f
q = f

p = t
q = f

p = t
q = t

Fig. 2.4 Kripke structure K3 over AP = {p,q} with fairness constraint F = {F} where
F = {(s′′1 ,s′′1),(s′′2 ,s′′2)}.

2.2 Three-Valued Temporal Logic Model Checking

Classical temporal logic model checking assumes that the considered system
is completely known, and thus, can be properly modeled as a Kripke structure.
This assumption, however, fails in several cases. System models might be
incomplete at an early stage of design. Furthermore, the full (or even a
similar) model of a complete system might be too large for verification so that
only parts can be considered – which is in fact the case for the systems that are
in the focus of this thesis. Partially known systems can be verified via three-
valued model checking [22, 23]. This approach is based on an extended domain
for truth values. In three-valued models, state properties and transitions can
be true, false or unknown. For convenience, the additional truth value unknown
is sometimes abbreviated by ⊥. Partially known systems are modelled as three-
valued Kripke structures, which generalise the classical Kripke structures.

Definition 2.9 (Three-Valued Kripke Structure).
A three-valued Kripke structure over a set of atomic predicates AP is a tuple
K = (S,R,L,F) where

• S is a finite set of states,

• R : S×S→{true,⊥, f alse} is a total transition function, i.e. ∀s ∈ S : ∃s′ ∈ S :
R(s,s′) ∈ {true,⊥},

• L : S×AP→ {true,⊥, f alse} is a labelling function that associates a truth
value with each predicate in each state,

• F⊆ P(R−1({true,⊥})) is a set of fairness constraints where each constraint
F ∈ F is a set of non-false transitions.

Hence, a classical Kripke structure corresponds to a three-valued Kripke
structure with R−1(⊥) = /0 and L−1(⊥) = /0. A path π of a three-valued Kripke
structure K is an infinite sequence of states s0s1s2 . . . with R(si,si+1)∈ {true,⊥}.
Thus, transitions now might take the additional truth value ⊥. Apart from
that, we use the same terminology as for paths of classical Kripke structures.
An example for a three-valued Kripke structure is depicted in Figure 2.5.

22 2 Formal Verification via Model Checking

s0K4 ::

s1

s2

p = f
q = f

p = f
q = t

p = t
q =⊥

⊥

Fig. 2.5 Three-valued Kripke structure K4 over AP = {p,q} with fairness constraint F= {F}
where F = {(s1,s1),(s2,s2)}.

As we can see, the transition (s0,s1), as well as the predicate q in the state
s2 have the indefinite truth value ⊥. The sequence π = s0s1s1 . . . is a path of
the three-valued Kripke structure K4. Since π contains the unknown transition
(s0,s1), we say π is an unconfirmed path. A definite path of K4 is the trace
π ′ = s0s2s2 . . . where all transitions along π ′ are definitely true.

Due to the extended domain for truth values, the evaluation of temporal
logic formulae can no longer be based on classical propositional logic. Thus,
three-valued model checking operates under the Kleene logic K3 [62] which
generalises the propositional logic. The semantics of K3 is given by the truth
tables in Figure 2.6.

∧ true ⊥ f alse
true true ⊥ f alse
⊥ ⊥ ⊥ f alse
f alse f alse f alse f alse

∨ true ⊥ f alse
true true true true
⊥ true ⊥ ⊥
f alse true ⊥ f alse

¬
true f alse
⊥ ⊥
f alse true

Fig. 2.6 Truth tables for K3.

In three-valued model checking, CTL formulae have the same syntax as in the
classical approach. The evaluation of formulae on Kripke structures now relies
on the Kleene logic. The three-valued CTL semantics generalises the classical
CTL semantics.

Definition 2.10 (Three-Valued Fair Evaluation of CTL).
Let K = (S,R,L,F) be a three-valued Kripke structure over a set of atomic
predicates AP. Then the fair evaluation of a CTL formula ψ in a state s of K,
written [K,s |= ψ], is inductively defined as follows

2.2 Three-Valued Temporal Logic Model Checking 23

[K,s |= p] :=
∨

π∈Π f air
s

L(π0, p)

[K,s |= ¬ψ] :=
∨

π∈Π f air
s
¬ [K,π0 |= ψ]

[K,s |= ψ ∧ψ ′] :=
∨

π∈Π f air
s

[K,π0 |= ψ] ∧ [K,π0 |= ψ ′]

[K,s |= ψ ∨ψ ′] :=
∨

π∈Π f air
s

[K,π0 |= ψ] ∨ [K,π0 |= ψ ′]

[K,s |= EXψ] :=
∨

π∈Π f air
s

R(π0,π1)∧ [K,π1 |= ψ]

[K,s |= EGψ] :=
∨

π∈Π f air
s

∧
i∈N (R(πi,πi+1)∧ [K,πi |= ψ])

[K,s |= E(ψUψ ′)] :=
∨

π∈Π f air
s∨

i∈N
(
[K,πi |= ψ ′]∧

∧
0≤ j<i

(
R(π j,π j+1)∧ [K,π j |= ψ]

))
As can be seen, the three-valued transition function R is included in the
evaluation of some formulae. Furthermore, the three-valued labelling func-
tion L may introduce the additional truth value unknown. The evaluation of
the remaining CTL operators can be again derived by the aforementioned
equivalences. Checking a temporal logic formula on a three-valued Kripke
structure now might yield true, false or unknown. For the Kripke structure K4
in Figure 2.5 we e.g. have that [K4,s0 |= EXp] yields true, for [K4,s0 |= AGq] we
obtain false, and [K4,s0 |= AFq] evaluates to unknown. For every true or false
result obtained for a thee-valued Kripke structure K there exists at least one
associated witness resp. counterexample. However, if model checking yields
unknown then there is no substructure in K that definitely proves or refutes
the temporal logic formula under consideration.

In the following we will see that an unknown result in verification reveals
that the partially known system, or more specifically, the three-valued Kripke
structure is too incomplete for a definite answer; but there exists at least
one corresponding unconfirmed counterexample – a substructure with some
unknown transitions or labellings that justifies the indefinite result. Moreover,
we will see that if three-valued model checking returns true or false, then
this result holds for the considered partially known system, or rather, for all
possible completions, as well.

In a first step, we give a formal characterisation of the relation between
incomplete and more complete systems, i.e. between abstract and more concrete
Kripke structures. Therefore, we take a look at the Kleene logic K3 again. For
K3 we have a truth ordering vK3 with f alse vK3 ⊥ vK3 true, and moreover
an information ordering ≤K3 (in words: ’less definite than’) with ⊥≤K3 true,
⊥≤K3 f alse, and true, f alse incomparable. Both orderings are reflexive. The
information ordering can be used to define a preorder relation on three-valued
Kripke structures [23]:

Definition 2.11 (Concreteness Preorder).
Let Ka = (Sa,Ra,La,Fa) and Kc = (Sc, Rc,Lc,Fc) be two three-valued Kripke
structures, both defined over the same set of atomic predicates AP. Then a

24 2 Formal Verification via Model Checking

concreteness preorder between Ka and Kc is the greatest preorder �c⊆ Sa×Sc
such that sa �c sc implies

• ∀p ∈ AP : La(sa, p)≤K3 Lc(sc, p),

• ∀s′a ∈ Sa such that Ra(sa,s′a)= true there is a state s′c ∈ Sc with Rc(sc,s′c)= true
and s′a �c s′c,

• ∀s′c ∈ Sc such that Rc(sc,s′c) =⊥ there is a state s′a ∈ Sa with Ra(sa,s′a) =⊥
and s′a �c s′c.

This basic definition of a concreteness preorder can be extended with fairness
constraints [112]:

Definition 2.12 (Fair Concreteness Preorder).
Let Ka = (Sa,Ra,La,Fa) and Kc = (Sc, Rc,Lc,Fc) be two three-valued Kripke
structures, both defined over the same set of atomic predicates AP. Then a fair
concreteness preorder between Ka and Kc is the greatest preorder �c⊆ Sa×Sc
such that sa �c sc implies

• ∀p ∈ AP : La(sa, p)≤K3 Lc(sc, p),

• For every fair path πa ∈Π
f air
sa in Ka exists a fair path πc ∈Π

f air
sc in Kc with

∀k ∈ N>0:

Ra(π
a
k−1,π

a
k) = true ⇒ Rc(π

c
k−1,π

c
k) = true ∧ π

a
k �c π

c
k

• For every fair path πc ∈Π
f air
sc in Kc exists a fair path πa ∈Π

f air
sa in Ka with

∀k ∈ N>0:

Rc(π
c
k−1,π

c
k) , f alse ⇒ Ra(π

a
k−1,π

a
k) , f alse ∧ π

a
k �c π

c
k

Henceforth, we just write concreteness preorder when we refer the fair con-
creteness preorder. If there exists such a concreteness preorder �c between
two Kripke structures Ka and Kc then we say, Kc is more concrete (or less ab-
stract) than Ka, denoted by Ka �c Kc. We now consider again the three-valued
Kripke structure K4 in Figure 2.5. Remember that [K4,s0 |= AFq] evaluates
to unknown. The path πK4 = s0s2s2 . . . justifies this result. As we can see, the
predicate p is unknown in the state s2. Hence, in a more concrete Kripke
structure the predicate p is potentially false in s2, and thus, πK4 might be a
real counterexample here. We call πK4 an unconfirmed counterexample.

Definition 2.13 (Unconfirmed Counterexample).
Let K = (S,R,L,F) be a three-valued Kripke structure over a set of atomic
predicates AP. Moreover, let s∈ S be a state of K, and ψ be a CTL formula over
AP with [K,s |= ψ] =⊥. Then an unconfirmed counterexample is a substructure
π of K with some unknown transitions or labellings that justifies the indefinite

2.2 Three-Valued Temporal Logic Model Checking 25

result; i.e. there exists a substitution of the ⊥’s with definite truth values that
extends π to a real counterexample for ψ.

Analogously, we can define unconfirmed witnesses as substructures that can be
extended to real witnesses. However, for convenience we henceforth subsume
both, unconfirmed counterexamples and witnesses under the term “uncon-
firmed counterexamples”. Hence, in the remainder of this work we write
unconfirmed counterexample when we refer to a substructure that can be
extended to either a real counterexample or a real witness. (Unconfirmed)
counterexamples provide explanations for the indefiniteness in three-valued
model checking (or for requirement violations in classical model checking). In
general, such counterexamples may not only comprise linear traces but also
tree-like structures or even the entire Kripke structure. Thus, the generation an
analysis of complete counterexamples is usually not feasible. Therefore, com-
mon approaches are either restricted to the verification very simple properties
that can be refuted by inherently linear traces, or they return linear fragments
of counterexamples that serve as partial explanations. We henceforth assume
that an unconfirmed counterexample corresponds to a path, i.e. a structure
that is linear by nature, or a linear fragment of a tree-like structure. Later we
will see that in case of an unknown result in three-valued model checking,
such unconfirmed counterexamples are particularly helpful for determining
expedient concretisations of the underlying Kripke structure.

In Figure 2.7 we have two Kripke structures that are concretisations of
the three-valued Kripke structure from Figure 2.5. As we can see, a con-

s0K5 ::

s1

s2

p = f
q = f

p = f
q = t

p = t
q = f

s0K6 ::

s1

s′′2

s′2

p = f
q = f

p = f
q = t

p = t
q = t

p = t
q = f

Fig. 2.7 Kripke structures K5 and K6 over AP = {p,q} with fairness constraint F = {F}
where F = {(s1,s1),(s2,s2)} for K5, and F = {(s1,s1),(s′2,s

′′
2),(s

′′
2 ,s
′
2)} for K6. Both, K5 and

K6 are concretisations of the three-valued Kripke structure K4 from Figure 2.5.

cretisation of a three-valued Kripke structure can be obtained by replacing
unknown transitions and labellings by definite ones. We e.g. obtain K5 from
K4 by substituting the unknown transition (s0,s1) with a corresponding true
transition, and by labelling the state s2 with q = f instead of q =⊥. However,
concretisation does not necessarily mean that the abstract and the concrete

26 2 Formal Verification via Model Checking

model have to be structurally equal. The (larger) Kripke structure K6 is also a
feasible concretisation of the (smaller) K4 in Figure 2.4. Thus, three-valued
abstractions can also give us smaller representations of the modelled systems.
We get the following theorem from [112]:

Theorem 2.3.
Let Ka = (Sa,Ra,La,Fa) and Kc = (Sc,Rc,Lc,Fc) be two three-valued Kripke struc-
tures with Ka more abstract than Kc and let �c⊆ Sa × Sc be the respective
concreteness preorder. Moreover, let sa ∈ Sa, sc ∈ Sc. Then

sa �c sc iff
(
∀ CTL formulae ψ : [Ka,sa |= ψ]≤K3 [Kc,sc |= ψ]

)
.

Hence, given two Kripke structures Ka and Kc with Ka�c Kc, then Kc represents
more definite properties than Ka. However, any CTL formulae that evaluates
to a definite value on Ka, evaluates to the same truth value on Kc. This
result is exploited in several abstraction-based model checking techniques (e.g.
[54, 67, 115]). Assume a verification task [Kc,sc |= ψ] where Kc is too large
for directly applying model checking. Now, applying three-valued abstraction
means to construct a more abstract (and thus, smaller) model Ka with Ka�c Kc
that is still concrete enough to obtain a definite result for [Ka,sa |=ψ] with sa�c
sc. Unlike simulation-based model checking, the abstraction-based approach
is not restricted to a fragment of CTL. Thus, both results [K4,s0 |= EXp] = true
and [K4,s0 |= AGq] = f alse obtained for our running example, the abstract K4,
can be transferred to every possible concretisation, e.g. K5 and K6.

Abstraction in temporal logic model checking is a fundamental issue in this
thesis, which will be addressed in Chapter 4. However, the capabilities of
successfully applying abstraction highly depend on the characteristics of the
considered system. Thus, in the next chapter we will give an introduction to
concurrent systems – the kind of systems that are in the focus of the abstraction-
based verification approach developed in this work. Furthermore, we will see
how concurrent systems can be modelled as Kripke structures, and how typical
correctness requirements of these systems can be specified in CTL. Beforehand,
we provide a short overview of typical model checking techniques.

2.3 Model Checking Algorithms

So far, we have seen that Kripke structures can be used as state space rep-
resentations of software systems. Moreover, correctness requirements of a
system can be formalised as temporal logic formulae. – A model checker is a
tool that takes a Kripke structure and a temporal logic formula as input, and
then automatically verifies whether the formula holds for the structure or not.
In this section, we want to take a closer look at the algorithmic aspects of
model checking.

2.3 Model Checking Algorithms 27

The basic algorithm for two-valued CTL model checking was originally
introduced by Clarke and Emerson [36]. In the first step, this procedure
constructs a parse tree representation of the input formulae ψ where each
node of the tree represents a subformula of ψ. Then, starting at the level of
atomic formulae (i.e. leaf nodes), for each subformula ψ ′ the set of states
of the Kripke structure where ψ ′ holds is computed. The algorithm proceeds
in a bottom-up manner until the root node, which represents the overall
input formula ψ, is reached. CTL model checking under fairness additionally
requires to compute the set of states where fair paths start. The algorithm has
a time complexity of O(|ψ|× (|S|+ |R|)×|F|). A detailed description of CTL
model checking can e.g. be found in [41] and [8].

The previously outlined model checking algorithm relies on an explicit
representation of the state space. Every single state of the underlying Kripke
structure is explicitly enumerated during a model checking run. However, for
larger state spaces such an explicit approach is hardly practicable. A usual way
to overcome this issue is to work with a symbolic representation of the Kripke
structure. Symbolic CTL model checking techniques are based on state space
encodings that are substantially more compact than explicit Kripke structures.
The most common approach to symbolic model checking relies on binary
decision diagrams (BDDs) [25]. Binary decision diagrams are a data structures
that are used to represent boolean functions. Since classical Kripke structures
are based on a two-valued domain, they can be straightforwardly encoded as
boolean functions. BDD representations of state spaces can be directly built
from a system description. Thus, the expensive construction of an explicit
Kripke structure is not required for applying symbolic model checking. The
basic algorithm for BDD-based model checking was established by Burch et
al. [26]. This algorithm proceeds in a similar manner as the explicit variant.
However, the necessary computations can be performed much more efficiently
based on binary decision diagrams than on explicit Kripke structures. Hence,
BDD-based model checking allows for the verification of systems with far
more than 1020 states. A prominent BDD-based model checker is part of the
NuSMV framework for software verification, developed by Cimatti et al. [32].
More details on symbolic model checking with BDDs can be found in [41] and
[8].

The two outlined algorithms for explicit and symbolic CTL model checking
are tailored to a boolean setting. Nevertheless, model checking based on deci-
sion diagrams has also been applied in a multi-valued context. Multi-valued
symbolic model checking, introduced by Chechik et al. [28], is a generalisation
of the classical two-valued approach. It allows for the verification of models
that are based on arbitrary multi-valued logics whose values form a finite
quasi-boolean lattice. The algorithm for multi-valued model checking em-
ploys multi-valued decision diagrams (MDDs) [116] for state spaces encodings.
These generalised decision diagrams also allow for compact representations
of state spaces, and furthermore, for efficient model checking runs based on
fast MDD operations. The time complexity of multi-valued model checking is

28 2 Formal Verification via Model Checking

O(|L|× |ψ|× (|S|+ |R|)×|F|) where |L| is the size of the underlying lattice. An
existing symbolic model checker for multi-valued reasoning is χChek devel-
oped by Chechik et al. [30, 54]. The fundamentals of multi-valued symbolic
model checking are extensively described in [28].

In this thesis, we pursue an approach to verification that is based on three-
valued model checking – which is evidently a special case of multi-valued
model checking. As we have already discussed in Section 2.2, thee-valued
model checking is based on the Kleene logic K3 which forms the following
quasi-boolean lattice:

true

unknown

f alse

Fig. 2.8 Graphical representation of the finite quasi-boolean lattice LK3 corresponding to
the Kleene logic K3.

This lattice has a size of 3 and thus in our approach model checking has a time
complexity of O(3×|ψ|× (|S|+ |R|)×|F|). The verification tool that we have
implemented within this work is in fact build on top of the aforementioned
multi-valued model checker χChek.

This nearly completes our background discussion. We have considered the
logical and algorithmic aspects of model checking that are essential for our
approach to verification. Finally, we want to provide a brief overview of
alternative concepts from the field of model checking. CTL is not the only
temporal logic that is employed for formalising correctness requirements in
model checking. Another logic of relevance in verification is the linear-time
temporal logic (LTL) [108]. LTL and CTL are incomparable with regard to their
expressiveness. However, a large number of properties can be expressed in
both logics. LTL model checking is based on different algorithms than CTL
model checking. Explicit-state model checkers for LTL properties typically rely
on automata-based computations [44]. A prominent example of such a model
checker is SPIN [82]. Symbolic LTL model checking is commonly not based
on BDD computations, but on boolean satisfiability solving: Bounded model
checking (BMC) [21] is a variant of classical model checking that explores
finite path prefixes rather than infinite paths. BMC can be reduced to boolean
satisfiability (SAT) [49], and thus, verification can be efficiently performed
by SAT-solvers. SAT-based bounded model checking for LTL properties is also
supported by the NuSMV framework [33]. Model checking via satisfiability
solving has also been considered in a three-valued context: In [126] the
three-valued bounded model checking problem is reduced to two boolean sat-
isfiability problems. The reduction of a multi-valued model checking problem
to a number of classical two-valued model checking problems, e.g. [71, 24],

2.3 Model Checking Algorithms 29

is a common alternative to direct approaches to multi-valued model checking
like χChek [30, 54].

Chapter 3
Concurrent Systems

The verification framework that we have developed within this thesis focuses
on concurrent systems, which are composed of many software processes run-
ning concurrently and communicating with each other. Such systems are in
widespread practical use. A variety of examples can be found in the fields of
network protocols and distributed computing. Due to the versatile concepts
of concurrency and communication, concurrent systems are an appropriate
and efficient choice for many complex computational tasks. However, it is
exactly these concepts that make verification, i.e. proving the correctness of
such systems, particularly challenging.

In this chapter, we give an introduction to the broad field of concurrent sys-
tems, which includes a definition of the syntax and semantics of such systems
as well as a detailed description of the different concepts of communication.
Moreover, we show how concurrent systems can be formally represented as
control flow graphs and finally be transferred into a state space model for
verification. We conclude this chapter with an overview of typical correctness
requirements for concurrent systems, and we show how these requirements
can be formalised in temporal logic.

3.1 Syntax and Semantics of Concurrent Systems

We start with a formal characterisation of concurrent software systems. A
concurrent system Sys consists of n ∈ N processes Proc1 to Procn composed
in parallel: Sys = ‖n

i=1 Proci. It is defined over a set of system variables
Var =Vars∪

⋃n
i=1 Vari where Vars is a set of shared variables and Var1, . . . ,Varn

are sets of local variables associated with the processes Proc1, . . . ,Procn, re-
spectively. Variables either have a basic type (e.g. boolean, integer) or an array
type (integer→ boolean, integer→ integer). A process Proci corresponds to a
finite sequence of control locations 1i, . . . ,ki where each location is associated
with an operation on the variable set Vars∪Vari.

31

32 3 Concurrent Systems

Definition 3.1 (Basic Operations).
Let {x1, . . . ,xm} be a set of variables. The set of basic operations BOp on these
variables consists of all statements of the form assume(e) : x1 :=e1, . . . , xm :=em
where e,e1, . . . ,em are expressions over {x1, . . . ,xm}.

Hence, every basic operation consists of an assume part, also called guard,
and a list of assignments. Executing the guard assume(e) blocks the execution
of the assignment part until the boolean expression e evaluates to true. For
convenience, we sometimes just write e instead of assume(e). Moreover, we
omit the assume part completely if e is constantly true.

A basic operation at some control location l is always followed by a ref-
erence to the subsequent location l′. Unless otherwise specified, we assume
that l′ = l +1. The current control location of a process Proci can be regarded
as the value of an additional local variable pci over the process’ locations
Loci = {1i, . . . ,ki}. Note that this program counter pci is not contained in the
set of system variables Var. If we refer to all variables, then we explicitly write
Var∪

⋃n
i=1{pci}.

Beside basic operations, control locations may also be associated with
compound operations. A compound operation consists of one or more sub-
operations nested inside a control structure. An example is the if-then-else
operation

l :
(
if e then (l′ : op1) else (l′′ : op2)

)
l′′′ :

where l, l′, l′′, l′′′ are control locations, e is a boolean expression and op1 and
op2 are basic operations or itself compound operations. If e evaluates to true,
then op1 at location l′ is selected for execution, else (if e evaluates to f alse)
op2 at l′′ is selected. After the if-then-else operation has been executed, the
process continues at location l′′′. Further compound operations in our systems
are, amongst others, await, goto, for-to-do, while-do, do-while and loop-forever-
do with the usual semantics (which can be found e.g. in [94]). We denote the
set of all (basic and compound) operations on the variables of a system by
Op.

Initially, all processes of a concurrent system Sys = ‖n
i=1 Proci are at their

first control location 1i. Moreover, we assume that a deterministic initiali-
sation of the system variables is given by an assertion ϕInit over Var. Now,
a computation of a system (i.e. its behaviour over time) corresponds to a
sequence where in each step one process is non-deterministically selected and
the operation op at its current control location is attempted to be executed.
In case the execution is not blocked by a guard, the system variables are
updated according to the assignment part of op and the process advances to
the consequent control location. The exact definition of a computation can
be found in Section 3.3 where we introduce a formal model for concurrent
systems. In our systems, computations are always infinite, and thus, every
operation refers to a successor location. However, we are also able to simulate
termination of a process by the terminal operation end which has the following
semantics:

3.1 Syntax and Semantics of Concurrent Systems 33

l : goto l :

i.e. end at some control location l corresponds to an unconditional self-loop
without an assignment. Hence, once a process has reached end in a computa-
tion, then every further selection of this (now terminated) process just triggers
the self-loop.

In practice, the computation of a concurrent system is controlled by a
scheduler which selects the next process, or rather operation, for execution.
Schedulers commonly operate under fairness, i.e. they ensure that each process
will eventually proceed. In this work, we therefore consider only fair, and thus,
realistic computations. In our notion, a computation of a concurrent system
is fair if and only if each process is infinitely often selected for executing an
operation. Fairness plays a vital role in the verification of certain correctness
requirements of concurrent systems. We discuss this aspect separately in
Section 3.4.

To illustrate the definitions and terms with regard to concurrent systems,
we consider the system Sys1 in Figure 3.1 (written in a language similar to
SPL [94]).

x : integer where x = 1

Proc1 ::
[

1 : loop forever do[
2 : x :=−x

]]
‖ Proc2 ::

 1 : while x > 0 do[
2 : skip

]
3 : end

Fig. 3.1 Concurrent system Sys1 = Proc1 ‖ Proc2 over Var =Vars = {x}.

Here we have two processes composed in parallel and operating on the shared
integer variable x. Process Proc1 consists of a negation operation on x, nested
inside an infinite loop. Proc2 has a conditional while-loop (loop condition: x
greater than 0); the skip inside the loop body denotes the empty operation, i.e.
an operation with no guard and no assignment; the while-loop is followed by
the terminal operation end.

A possible computation of Sys1 is the sequence that steadily runs through
the infinite loop of Proc1, without being interrupted by an operation of Proc2.
However, this computation does not fulfil our notion of fairness. In a fair
computation the execution of Proc1 has to be infinitely often interrupted by
Proc2. Now, let us consider the following sequence of operations:

• Proc1 executes the loop body twice in succession, i.e. it sets the value of x
to −1 and then to 1 again

• Proc2 evaluates the loop condition – which is currently true – and executes
the loop body

The infinite repetition of these two steps corresponds to a fair computation of
Sys1 in which Proc2 will never terminate. However, termination is generally

34 3 Concurrent Systems

possible here, e.g. when Proc1 executes the loop body only once before being
interrupted by Proc2. We see that the behaviour of concurrent systems (e.g.
with regard to termination) crucially depends on the order of selected pro-
cesses in a computation. Verifying a system, e.g. proving correct termination, is
equivalent to considering all feasible computations. Our small example already
gives us an idea about the potentially large number of different computations
in concurrent systems, and thus, the complexity of its verification.

Another issue that is illustrated by Figure 3.1 is the fact that processes
in a concurrent system may affect each other due to shared variables: The
behaviour of Proc2 depends on the value of the variable x which is modified
by Proc1. Because of concurrency Proc2 may read x before or after the variable
has been modified by Proc1. Shared variables are the main reason for the
large amount of possible computations in concurrent systems.

Now, we have a fundamental idea about the systems that are in the focus
of our approach to verification. We have seen that shared variables enable
a form of communication between processes. In the following, we introduce
two advanced concepts of communication in concurrent systems. The first one
is the variable type semaphore which can be used to control synchronisation
between processes, i.e. to prevent undesired computations. And second, we
introduce communication channels as an alternative to shared variables. Both
of these concepts play a central role in many real-life concurrent systems.

3.1.1 Semaphores

In concurrent systems processes operate on shared resources. These resources
can be simple variables but also complex data structures or hardware devices.
For instance, consider a shared printer and a number of processes that attempt
to perform a printing task. The printer has to be accessed exclusively, i.e.
by only one process at a time. In general, this issue is known as the mutual
exclusion problem which was first introduced by Dijkstra [50]:

“A number of [...] processes [...] can be made in such a way that at any moment one
and only one of them is engaged in the critical section of its cycle.”

Here the critical section refers to a sequence of operations in which a pro-
cess accesses an exclusive resource (e.g. the printer). In our systems we do
not specify the access to exclusive resources explicitly. Instead, we use the
operation critical to denote critical sections. According to the semantics of
our systems, critical is just equivalent to the empty operation. However, it
enables us to simply mark critical sections in processes without considering
the internal details. Similarly, we mark unspecified non-critical sections by the
(likewise empty) operation non-critical.

There are several approaches to solve the mutual exclusion problem in
concurrent systems. One of the most prominent ones is based on semaphores.

3.1 Syntax and Semantics of Concurrent Systems 35

A semaphore can be regarded as an integer variable with a limited set of
operations on it. Commonly, for each exclusive resource one semaphore is
introduced. The initial value of the semaphore, also called its capacity, denotes
the number of processes that are allowed to access the associated resource at
the same time. Now, for accessing the exclusive resource, i.e. for entering the
corresponding critical section a process has to acquire a certain amount of the
semaphores capacity. After finishing the operations on the exclusive resource
the process can leave the critical section by releasing the acquired amount of
capacity. For illustration, consider Sys2 in Figure 3.2.

y : semaphore where y = 1

Proc1 ::

1 : loop forever do

2 : non-critical
3 : acquire(y,1)
4 : critical
5 : release(y,1)

 ‖ Proc2 ::

1 : loop forever do

2 : non-critical
3 : acquire(y,1)
4 : critical
5 : release(y,1)

Fig. 3.2 Concurrent system Sys2 = Proc1 ‖ Proc2 over Var =Vars = {y}.

Here we have two processes competing for access to a critical section – possibly
associated with a printing task. The access is controlled by a shared semaphore
variable. The semaphore operations acquire and release have the following
semantics:

l : acquire(y,n) ≡ l : 〈await y≥ n; y := y−n〉

and respectively,
l : release(y,n) ≡ l : y := y+n

where y is a semaphore, n is a natural number, and the pointy brackets 〈. . .〉
denote that the sequence of operations inside has to be executed in one atomic
step. In our example, the capacity of the semaphore y is 1, and each process
has to acquire the complete capacity before entering the critical section. Hence,
at most one process can access the exclusive resource at the same time, which
means mutual exclusion holds for the system Sys2.

Semaphores are basic variables, and thus, they straightforwardly fit into
our notion of concurrent systems with shared variables. Moreover, with
semaphores we have a fundamental concept for establishing mutual exclusion,
which is crucial in many verification problems.

3.1.2 Communication Channels

A more general form of synchronsation between processes can be achieved by
introducing communication channels. The basic idea of communication chan-

36 3 Concurrent Systems

nels is to shift the inter-process communication away from shared variables
towards message passing. That is, processes solely communicate (i.e. synchro-
nise) by sending and receiving messages via channels. Message passing has
the advantage that it is independent from shared memory. Therefore, it is the
preferred form of communication in distributed systems. However, we will see
that communication channels can be simulated by a set of shared variables,
and thus, message passing can be straightforwardly incorporated into our
general notion of concurrent systems.

Definition 3.2 (Communication Channels).
A communication channel of length n ∈ N+ and type t ∈ {boolean, integer} is
given by a tuple c = (bufferc,rearc, frontc, fullc,emptyc) where

• bufferc : array [n] of t
an array representing the channels content,

• rearc, frontc : integer
pointer variables for the rear and front elements,

• fullc, emptyc : boolean
boolean variables indicating whether the channel is full or empty.

We assume that communication channels in concurrent systems are initially
empty, i.e. the initial configuration of a channel c is denoted by the expression

rearc = 0 ∧ frontc = 0 ∧ ¬fullc ∧ emptyc.

A concurrent system is called a message passing system if and only if shared
variables are solely channel-related and all other variables are local. Hence, in
message passing systems inter-process communication can only be established
by sending and receiving messages through channels. Our channels pass
messages in first-in, first-out manner. Moreover, sending to full channels and
receiving on empty channels will cause busy waiting. As an example, we
consider the system in Figure 3.3.

c : channel [1] of integer

Proc1 ::
[

1 : send(c,1)
2 : end

]
‖ Proc2 ::

 local x : integer where x = 0
1 : receive(c,x)
2 : end

Fig. 3.3 Message passing system Sys3 = Proc1 ‖ Proc2 over Var =Vars∪Var2 = {c,x}.

Here we have two processes communicating via the channel c of type integer
and length 1, i.e. c can buffer one integer value. Process Proc1 attempts to send
the value 1 to the channel c, whereas Proc2 attempts to receive a value from c

3.2 Parameterised Systems 37

and to store the received value in the local variable x. Since we have exactly
one sender and one receiver in this system, both processes will eventually
terminate. Note that for executing receive, Proc2 has to wait until Proc1 has
send a value to the initially empty channel c. The exact semantics of the
communication operations send and receive are given by:

l : send(c,e) ≡ l : 〈await ¬fullc;
bufferc[rearc] := e;
emptyc := false;
rearc := rearc +1 mod n;
fullc := (rearc +1 mod n = frontc)〉

and respectively,

l : receive(c,x) ≡ l : 〈await ¬emptyc;
x := bufferc[frontc];
fullc := false;
frontc := frontc +1 mod n;
emptyc := (rearc = frontc +1 mod n)〉

where c is a communication channel of length n, e is an expression of the
same type as c and x is a variable, again of the same type as c. Hence, values
transferred via channels have to be compatible with the channels type.

With message passing we have another form of inter-process communica-
tion that we want to consider in our approach to the verification of concurrent
systems. Indeed, message passing is a concept of high practical relevance,
especially in the field of distributed computing where no shared memory
exists. Moreover, the introduction of communication channels involves several
new issues with regard to the correctness of concurrent systems. For exam-
ple, a processes might “starve” in front of a receive operation, because no
communication partner is available. This and similar process synchronisation
problems are in the focus of our verification technique.

3.2 Parameterised Systems

In the previous sections of this chapter we have introduced our notion of
concurrent systems Sys = ‖n

i=1 Proci. In our examples we solely considered sys-
tems with a fixed number n of processes. However, in practice, many systems
are paramterised with regard to the number of processes: Network protocols
for mutual exclusion, cache coherence or leader election are commonly de-
fined for an arbitrary number of processes running in parallel. Verifying such

38 3 Concurrent Systems

parameterised systems is particularly hard and even undecidable in the gen-
eral case [7]. Nevertheless, these systems are in the focus of our verification
technique, too. In this section we give a fundamental introduction to the field
of parameterised systems. We start with a simple example:

y : semaphore where y = 1

‖i∈PIDN Proci ::

1 : loop forever do

2 : non-critical
3 : acquire(y,1)
4 : critical
5 : release(y,1)

Fig. 3.4 Parameterised system Sys4 = ‖i∈PIDN Proci over Var =Vars = {y} where PIDN is a
set of process indices with a parameterised size N ∈ N, e.g. PIDN = {1, . . .N}.

The system Sys4 in Figure 3.4 consists of N processes competing for access to a
critical section. In the parametrised setting we assume that the capital N does
not represent a fixed integer but a parameter, and thus, an unbounded number
of processes might run in parallel. As we can see, Sys4 is iteratively defined
over the process index i, and each process Proci executes the same sequence of
operations. The processes only differ in their unique index value. Therefore
we say that Sys4 is fully symmetric with respect to process indices. Symmetry
in paramterised systems is a characteristic that can be efficiently exploited
for verification. Moreover, several real-life examples of parameterised systems
are inherently symmetric, since their processes are commonly instances of
one and the same process template. Hence, we also want to look at such fully
symmetric systems in our approach to verification. In general, a fully symmetric
system is defined as follows:

Definition 3.3 (Fully Symmetric System).
Let Proc be a process defined over Vars ∪Varl where Vars is a set of shared
variables and Varl is a set of local variables. Then the corresponding fully
symmetric system is defined as

Sys = ‖i∈PIDN Proci over Var =Vars∪ (Varl×PIDN)

where N ∈ N is a parameter of Sys and PIDN is a set of process indices of
size N. Moreover, each Proci is a replication of Proc defined over Vari =
Vars ∪ (Varl × i), i.e. Proci is obtained from Proc by preserving the control
structure of Proc, and by replacing each basic operation bop in Proc by bopi =
bop[x/(x, i) | x ∈Varl].

Hence, all processes in Sys execute the same code and there exists a replication
of the set of local variables Varl for each process, i.e. the process indices are
lifted to Varl . Again, this fits into our general notion of concurrent systems,
since we can rewrite Varl×PIDN as

⋃
i∈PIDN

Vari. Moreover, our understanding

3.2 Parameterised Systems 39

of symmetry demands that each process has the same initial condition, i.e.
that all replications of a variable from Varl have the same initial value.

In the example system Sys4 we have one shared semaphore variable y and
no (explicit) local variables. However, each process in Sys4 has a program
counter ranging over identical locations, and thus, in a broader notion we
can regard the program counter pc as a local variable with N replications:
pc×PIDN .

Full symmetry is a strong restriction on a parameterised system, because it
demands that that all processes are identical. In fact, only few real-life systems
fulfill this requirement. Nevertheless, in much more cases the processes of a
parameterised system can at least be divided into classes of fully symmetric
processes. We call such a system class-wise symmetric. A simple example is
given below in Figure 3.5.

y : semaphore where y = NRd

‖i∈PIDRd
NRd

Rdi ::

1 : loop forever do

2 : non-critical
3 : acquire(y,1)
4 : critical
5 : release(y,1)

 ‖ j∈PIDWrt

NWrt
Wrt j ::

1 : loop forever do

2 : non-critical
3 : acquire(y,NRd)
4 : critical
5 : release(y,NRd)

Fig. 3.5 Class-wise symmetric system Sys5 = ‖i∈PIDRd
NRd

Rdi ‖ j∈PIDWrt
NWrt

Wrt j consisting of a

reader class Rd and a writer class Wrt. PIDRd
NRd

and PIDWrt
NWrt

are sets of process indices with
parameterised sizes NRd ∈ N resp. NWrt ∈ N.

The system Sys5 implements an algorithm for the readers-writers problem
[45]. We have two classes of processes: readers Rdi and writers Wrt j. Multiple
readers may enter the critical section at the same time, whereas if one writer is
modifying data, no other process is allowed to access the critical section. The
problem is solved via a semaphore with a capacity of NRd , which is actually
the (parameterised) number of reader processes in the system. As we have
two classes, the overall set of process indices PIDN is partitioned into PIDRd

NRd

(readers) and PIDWrt
NWrt

(writers). More generally, a class-wise symmetric system
consisting of k classes is defined as follows:

Definition 3.4 (Class-Wise Symmetric System).
Let {Proc1, . . . ,Prock} be a set of processes where each Procm (1 ≤ m ≤ k) is
defined over a set of variables Varm =Varm

s ∪Varm
l with Var1

l , . . . ,Vark
l pairwise

disjoint. We call the index m the class of a process Procm. Then, according to
Definition 3.3, we obtain a corresponding fully symmetric system Sysm for
each class m:

Sysm = ‖i∈PIDm
Nm

Procm
i over Varm =Varm

s ∪ (Varm
l ×PIDm

Nm)

40 3 Concurrent Systems

We assume that the sets PID1
N1
, . . . ,PIDk

Nk
are pairwise disjoint, and thus, every

process Procm
i has a unique index. In addition, we assume that each class m

has a dedicated program counter pcm with a replication for each process in
the class: pcm×PIDm

Nm
. Now, the corresponding class-wise symmetric system is

defined as

Sys = ‖k
m=1 Sysm over Var =

k⋃
m=1

(
Varm

s ∪ (Varm
l ×PIDm

Nm)
)
.

We explicitly allow that the variable sets Var1
s , . . . ,Vark

s have common elements,
i.e. communication between processes of different classes is permitted.

So far, we have seen that there exists a wide range of different kinds of
concurrent systems in practical use. The systems can be distinguished by
the underlying concept of communication, by symmetry characteristics, and
whether they are finite or not. Nevertheless, we have introduced a general
notion of concurrent systems, under which all these different kinds are com-
prised. In the next section we will show how our systems can be transferred
into a computational model for verification.

3.3 Modelling Concurrent Systems

Verifying concurrent systems involves the exploration of the systems state
space. Thus, we need to transfer our systems into a model that represents the
set of reachable states under all computations. In Chapter 2 we have already
introduced Kripke structures as the most common computational model in
automatic verification. Here, we will see how states and the state space are
formally defined for concurrent systems, and how a system can be transformed
into a Kripke structure. In order to explore the state space of a concurrent
system, we first of all require a formal characterisation of its control flow.
In the previous section we have already described the control structure of
single processes, but in an intuitive and rather informal way. Now, we show
that concurrent systems can be straighforwardly transferred into control flow
graphs [5].

Definition 3.5 (Processes as Control Flow Graphs).
Let Proci be a process with operations from a set Op. Moreover, let BOp be the
corresponding set of basic operations, i.e. for each basic operation bop ∈ Op:
bop is also contained in Bop, and for each compound operation op ∈Op: BOp
contains all basic operations nested inside op. Then Proci can be represented
as a control flow graph (CFG) Gi = (Loci,δi), where Loci is the set of control
locations of Proci and δi ⊆ Loci×BOp×Loci is a labelled transition relation,
i.e. transitions are labelled with basic operations.

3.3 Modelling Concurrent Systems 41

Hence, basic operations of the form l : bop l′ : can be directly mapped to
the control flow graph: we get the corresponding transition δi(l,bop, l′). For
compound operations this mapping is a bit more complicated. Remember that
every compound operation can be decomposed into a set of basic operations
that are nested inside a control structure. This control structure corresponds to
a subgraph of the CFG where the edges are labelled with the basic operations
from the decomposition. As an example, we consider again the compound
if-then-else operation:

1 : (if e then (2 : bop1) else (3 : bop2)) 4 :

Assuming that bop1 and bop2 are basic operations, the corresponding control
flow representation now looks as follows:

1

2 3

4

assume(e) assume(¬e)

bop1 bop2

Fig. 3.6 Control flow representation of the if-then-else operation.

In a similar way we can transform all other compound operations into (sub-
graphs of) CFGs, which enables us to formally represent the control flow of
individual processes. However, concurrent systems are composed of many
processes running in parallel. Therefore, we need to define a notion of parallel
compositions of control flow graphs.

Definition 3.6 (Concurrent Systems as Control Flow Graphs).
Let Sys = ‖n

i=1 Proci be a concurrent system, where each process Proci is given
as a control flow graph Gi. Then Sys can be represented as a composite control
flow graph G = (Loc,δ). Loc =×n

i=1Loci is the set of combined locations and
δ ⊆ Loc×BOp× [1..n]×Loc is a labelled transition relation with δ (l,bop, i, l′)=
δi(li,bop, l′i), where li denotes the individual location of Proci in the combined
location l = (l1, . . . , ln).

Hence, each transition of a composite control flow graph is additionally
labelled with the index i ∈ [1..n] of the associated process. A fair computation
of a concurrent system Sys corresponds to an infinite path in the composite
control flow graph representing Sys, where for each i ∈ [1..n] a transition
δ (l,bop, i, l′) occurs infinitely often.

For illustration, we consider the concurrent system Sys6 in Figure 3.7 and
show, how it can be transferred into a composite control flow graph. Sys6

42 3 Concurrent Systems

consists of two processes Proc1 and Proc2. Both attempt to execute one basic
operation on a shared variable x and then terminate with the end operation.

x : integer where x = 1

Proc1 ::
[

1 : x := x+1
2 : end

]
‖ Proc2 ::

[
1 : x := x+ x
2 : end

]
Fig. 3.7 Concurrent system Sys6 = Proc1 ‖ Proc1 over Var =Vars = {x}.

In a first step, we transform the processes Proc1 and Proc2 of our concurrent
system into single control flow graphs G1 and G2 (see Figure 3.8).

1

G1 ::

2

x := x+1

1

G2 ::

2

x := x+ x

Fig. 3.8 Control flow graphs G1 and G2 of the processes Proc1 and Proc2.

In the second step, we build the composite control flow graph G for G1 and
G2 (see Figure 3.9). We can see, that in each combined location there are two
transitions enabled, i.e. each process can always be selected for executing
its next operation. Every infinite path in G that eventually reaches location
(2,2) and then alternately takes the self-loops associated with Proc1 and Proc2,
corresponds to a fair computation of Sys6.

(1,1)

G ::

(2,1) (1,2)

(2,2)

x := x+1
1

x := x+ x

2

x := x+ x
2

x := x+1
1

1 2

1 2

Fig. 3.9 Composite control flow graph G of the system Sys6 = Proc1 ‖ Proc2.

3.3 Modelling Concurrent Systems 43

Control flow graphs allow us to formally represent all sequences of operations
that might occur during the execution of a concurrent system. For verifying
a system, we moreover need to model the systems state space. A state of
a concurrent system corresponds to a feasible valuation of all its variables,
including the program counters. For instance, the initial state of the concurrent
system in Figure 3.7 can be characterised by the tuple sInit = (pc1 = 1, pc2 =
1,x = 1). We denote the valuation of an expression e in a state s by s(e), e.g.
for sInit we have sInit(x) = 1, and sInit(x > 0) = true. Now, the overall state space
of a system corresponds to the set of all states over its variables. We write
SVar to denote the set of states over the system variables Var, and respectively,
SVar∪

⋃n
i=1{pci} to denote the set of states over the system variables and program

counters.
In order to obtain a formal model of the state space, we transform our

concurrent systems into Kripke structures (compare Chapter 2).

Definition 3.7 (Concurrent Systems as Kripke Structures).
Let Sys = ‖n

i=1 Proci be a concurrent system given by a composite control
flow graph G = (Loc,δ). Moreover, let Pred be a set of predicates (i.e. boolean
expressions) over the system variables Var. The corresponding Kripke structure
is a tuple K = (S,R,L,F) over a set of atomic predicates AP = Pred ∪{pci =
j | i ∈ [1..n], j ∈ Loci} with

• S := Loc×SVar,

• R(〈l,s〉,〈l′,s′〉) :=
∨n

i=1 Ri (〈l,s〉,〈l′,s′〉) :=∨n
i=1 (δ (l,bop, i, l′)∧ s(e)∧ s′(x1) = s(e1)∧ . . .∧ s′(xm) = s(em))

where bop = assume(e) : x1 :=e1, . . . , xm :=em,

• L(〈l,s〉, p) := s(p) for any p ∈ Pred,

• L(〈l,s〉, pci = j) :=

{
true if li = j

f alse else
where li is the location of Proci in the combined location l,

• F :=
{
{(s,s′) | Ri(s,s′) , f alse}i∈[1..n]

}
for each process Proci a fairness set Fi with all associated transitions.

Hence, given a concurrent system Sys and a set of predicates Pred, we can
construct the corresponding Kripke structure K. Now, a fair computation
of Sys corresponds to a fair path π in K, i.e. an infinite sequence of states
π = s0s1s2 . . . with s0 |= ϕInit , for all i ∈ N: R(si,si+1), and π satisfying the
fairness requirements given by F (compare Chapter 2). As an example, the
Kripke structure for the system Sys6 in Figure 3.7. and the set of predicates
Pred = {(x < 4)} is shown in Figure 3.10.

44 3 Concurrent Systems

〈(1,1),(x < 4)〉s0 :
K ::

〈(2,1),(x < 4)〉s1 : 〈(1,2),(x < 4)〉s2 :

〈(2,2),¬(x < 4)〉s3 : 〈(2,2),(x < 4)〉s4 :

Fig. 3.10 Kripke structure K for the concurrent system Sys6 and the set of predi-
cates Pred = {(x < 4)}. The set of fairness constraints is F = {F1,F2} where F1 =
{(s0,s1),(s1,s1),(s2,s4),(s3,s3),(s4,s4)} and F2 = {(s0,s2),(s1,s3),(s2,s2),(s3,s3),(s4,s4)}.
Only reachable states are depicted.

According to Definition 3.7, we can, in theory, transform any concurrent sys-
tem into a computational model for temporal logic model checking. However,
the number of states in a Kripke structure grows exponentially with the size of
the modelled system. Thus, for real-life systems a straightforward modelling
is practically not feasible. The additional application of abstraction techniques
is typically necessary, which we will discuss in Chapter 4. – Furthermore,
verifying a parameterised concurrent system means to check all (i.e. an infinite
number of) instantiations of the system. Hence, parameterised verification is
undecidable in general. Later we will show, that in many cases verification
results obtained on single instantiations can be transferred to the overall
parameterised system, i.e. to each possible instantiation.

Nevertheless, modelling the state space of parameterised – and in particular
symmetric – systems deserves some additional remarks. Remember that in
symmetric systems all processes execute the same code and there exists a
replication of the set of local variables Varl for each process. Hence, a local
variable x ∈Varl that is associated with some process Proci can be represented
as a tuple (x, i). Now, the valuation of (x, i) in a state s is denoted by s(x, i).
This lets us define local views on states of symmetric systems. For a state s of
a symmetric system Sys = ‖i∈PIDN Proci we write s[i] to describe the local view
of process Proci on s, where s[i](x) = s(x) for a shared variable x ∈Vars, and
s[i](x) = s(x, i) for a local variable x ∈Varl . These local views will later be very
helpful when we exploit symmetry to verify parameterised systems (compare
Chapter 6).

3.4 Correctness Requirements of Concurrent Systems 45

3.4 Correctness Requirements of Concurrent Systems

We conclude this chapter with a look at correctness requirements that we
want to verify with our developed framework. Verifying a concurrent system
is synonymous with showing its correctness in terms of certain specified re-
quirements. A system is regarded as correct whenever it satisfies all of its
requirements. Hence, proved correctness does not necessarily involve the
absence of any kind of unfavourable behaviour. Verification rather facilitates
the exclusion of specific serious errors that have been previously specified. In
Chapter 2 we already introduced the temporal logic CTL as a logic for formal-
ising requirements that can be verified via model checking. Subsequently, we
will discuss typical correctness requirements of concurrent systems. Moreover,
we will show how these requirements can be specified in CTL.

Correctness is indispensable for safety-critical systems. Failures of software
used in aircrafts, power plants or medical systems may cause exceedingly high
costs or may even threaten human lives. One major category of requirements
for software systems is thus safety. A safety property can be informally char-
acterised as “nothing bad will ever happen”. Concurrent systems are, due to
the large number of possible interleavings, particularly prone to safety errors.
A deadlock, i.e. a situation where multiple processes wait for each other, is a
typical example for the violation of a safety property. Another common safety
property is mutual exclusion: Never more than one process shall enter a critical
section at the same time. We have already seen in Section 3.1.1 that mutual
exclusion can be established by means of a semaphore. The shared semaphore
of the concurrent system Sys2 in Figure 3.2 ensures that at any moment at
most one process can enter the critical section. Now we want to see, how this
property can be specified in temporal logic. The CTL formula corresponding
to the mutual exclusion requirement for the two processes of Sys2 is

AG¬((pc1 = 4)∧ (pc2 = 4)) .

This formula claims that always globally Proc1 and Proc2 are not simultane-
ously in their critical section, i.e. at location 4. A counterexample to this
property thus would be a finite computation that starts in the initial state of
the system and ends in a state where (pc1 = 4)∧(pc2 = 4) holds. However, this
safety property yields true for Sys2 and thus there does not exist such a coun-
terexample in Sys2. Mutual exclusion is one of the most prominent examples
for safety requirements of concurrent systems. Of course there exist a large
number of other safety properties that can be expressed in CTL. Nevertheless,
in this thesis we will mainly focus on mutual exclusion when we consider
safety issues. The key characteristic that distinguishes safety properties from
non-safety ones is that fact that a counterexample to a safety requirement can
be always given by a finite computation, i.e. a finite path prefix. Hence, the
possibility of refuting a property by a finite prefix can be regarded as a formal
characterisation of safety.

46 3 Concurrent Systems

Evidently, not every requirement that is expressible in CTL can be refuted by
a finite computation. A notable category of such kind of properties is liveness.
Informally, a liveness property is a requirement claiming that “something
good will happen eventually”. Liveness is particularly vital for concurrent
systems with competing processes. Such a scenario may involve computations
where some processes continuously proceed, whereas other processes are
ignored all the time by the scheduler. Such a stagnation of certain processes
in concurrent systems is a typical example for a violation of liveness. One can
imagine that in safety-critical systems liveness errors can be as harmful as
safety errors. For instance, a scheduler that permanently ignores a process
for automotive braking control may cause great danger to the car driver. In
Section 3.1 we already mentioned that for this reason concurrent systems are
typically executed under reasonable fairness conditions that ensure progress
for each process. However, fairness does not guarantee the absence of all
liveness defects. For illustration, we again consider the concurrent system
Sys2 in Figure 3.2. A typical liveness requirement for concurrent systems with
exclusive resources is that certain process, e.g. Proc1, will always repeatedly
access the critical resource, which can be formalised in CTL as follows:

AG(AF(pc1 = 4)) .

This property is not satisfied for Sys2 under our notion of fairness. A fair
computation demands that each process will always eventually proceed in
terms of executing its next operation. However, the unsuccessful attempt to
access the critical section by executing the operation acquire(y,1) (when the
semaphore is already acquired by another process) is also a form of progress.
Hence, a fair infinite run where Proc2 repeatedly accesses the critical section,
whereas Proc1 always attempts to acquire the semaphore “at the wrong
moment”, is thus a counterexample for AG(AF(pc1 = 4)). It is obviously not
possible to refute such a liveness property by a finite computation. In this thesis,
we will mainly consider liveness requirements of the form AG(AF(pc1 = 4))
(repetitive progress), or of the simpler form AF(pc1 = 4) (eventual progress).

In literature there exist a number of different formal notions of liveness.
Here we follow the notion of Alpern and Schneider [6] who characterise
liveness requirements as properties that do not restrict finite behaviour, but
require a condition on infinite behaviour. A survey of different characteri-
sations of safety and liveness properties can be found in [89]. In fact, not
every requirement that can be specified in temporal logic is either a safety
or a liveness property. There exist properties that belong to neither of these
categories. However, safety and liveness requirements are of prime importance
in verification of safety-critical concurrent systems. Thus, in this work we will
solely focus on these two kinds of properties. Moreover, we want to mention
that there also exist different notions of fairness. Our fairness assumption is
also known as justice or weak fairness. It can be formalised as follows: Every
basic operation (of a process) that is continuously enabled (i.e. its guard yields

3.4 Correctness Requirements of Concurrent Systems 47

true) is eventually executed. Another notion of fairness is compassion alias
strong fairness: Every basic operation that is infinitely often enabled (but not
necessarily continuously) is eventually executed. Model checking under strong
fairness involves a significantly higher complexity than model checking under
weak fairness. A detailed survey of fairness notions can be found in [92].

So far, we have seen how concurrent systems can be transferred into a formal
state space model – which generally enables verification. Moreover, we have
discussed a number of correctness requirements that are of particular interest
in the verification of concurrent systems. Such requirements can be formalised
in temporal logic and automatically verified via model checking. However,
the full state space of real-life systems often widely exceeds the capacity of
todays verification tools. In the next chapter, we will see how the state space
of a concurrent system can be reduced, and thus, verification can be made
feasible, by the application of abstraction techniques.

Chapter 4
Abstraction for Concurrent Systems

The verification of software systems via model checking is generally performed
in two stages. In a first step, the system is transferred into a state space model
and the system requirements are specified in a formal language. Next, the
obtained model is exhaustively explored in order to prove correctness or to
find a violation of the requirements. In the previous chapter we introduced
instructions for straightforwardly constructing the concrete state space model
of a concurrent system. However, for most real-life systems the concrete
state space is exorbitantly large, and thus, its construction would require
an unfeasibly large amount of computational resources. Hence, a common
approach in verification is to build an abstract model of the system without
ever considering the corresponding concrete state space. Although abstraction
inherently involves a loss of information about the original system, an abstract
model can be still precise enough to successfully perform verification – without
suffering from the state space complexity.

In this chapter, we present the abstraction part of our developed verification
framework for concurrent systems. We start with the introduction of the
two core concepts of our approach: predicate abstraction, a well-established
technique for reducing the complexity of formal verification, and moreover,
spotlight abstraction, an extension of predicate abstraction that is particularly
tailored to concurrent systems. Finally, we introduce a number of enhancements
of spotlight abstraction developed in this work. We will see that our enhanced
approach to the abstraction generally enables us to efficiently verify concurrent
systems on very small abstract models.

4.1 Predicate Abstraction

As we have discussed in the previous chapter, a state of a concurrent system
corresponds to a valuation of all its variables. Hence, the state space of a
system (i.e. the set of all states) is exponential in the number of system

49

50 4 Abstraction for Concurrent Systems

variables. For real-life systems with large-domain variables we commonly
obtain state spaces whose size widely exceeds the capabilities of state-of-
the-art model checkers. This issue is generally known as the state explosion
problem in verification. A well-established technique for reducing the state
space complexity is predicate abstraction [66, 11]. In this approach a concrete
system Sys over a set of variables Var is approximated by an abstract system
Sysa over a set of atomic predicates Pred (which are defined over Var). The
benefit of predicate abstraction in verification is twofold. First, predicates
can be restricted to the variables of particular interest in the verification
task, and thus, Pred is usually significantly smaller than Var. And second,
predicates commonly have a very limited domain: classical approaches are
based on boolean abstractions, i.e. abstractions with a two-valued domain for
predicates.

Applying predicate abstraction enables us to obtain abstract state spaces
that are orders of magnitude smaller than the corresponding concrete ones.
Therefore, we use this reduction technique as the basis of our approach to
verification. Nevertheless, abstraction inherently involves a loss of information
about the concrete system, and consequently, not every verification task can
be successfully accomplished on a given abstraction. Abstractions that are too
coarse for verification have to be refined, i.e the set of predicates has to be
enlarged. Abstraction refinement will be the topic of Chapter 5.

In this section, we take a closer look at predicate abstraction. In particular,
we show how the state space of our concurrent systems can be reduced, and
how system properties can be preserved under this form of abstraction. We
start with the classical boolean predicate abstraction.

4.1.1 Boolean Predicate Abstraction

Our work is based on the concept of boolean predicate abstraction [66, 11]
(which we will extend to a three-valued domain in Section 4.1.2). Classical
predicate abstraction-based verification tools (e.g. the model checkers Bebop
[14] and BLAST [18]) transfer the concrete system under consideration into
an abstract system where operations do not refer to concrete variables but
to boolean predicates over these variables. In this section, we fundamentally
introduce boolean predicate abstraction, following the approach of [11].

As a motivating example, we consider the concurrent system in Figure 4.1.
Here we might be interested in verifying whether Proc2 always terminates, or
more formally, whether the CTL property AF(pc2 = 3) holds. It is easy to see
that in a fair computation the integer x will be eventually greater or equal to
one, and thus, Proc2 will finally execute the terminal operation end. However,
following our formal approach to verification we first have to transfer the
system into a state space model. Assuming that the domain of x and y is Z,
the set of reachable states is SVar = {(x = 0,y = 0),(x = 1,y = 0),(x = 1,y =

4.1 Predicate Abstraction 51

−1),(x= 2,y=−1), . . .}, which means we obtain an infinite state space. Hence,
a straightforward verification by exploring the concrete state space may fail
due to the state explosion problem.

x,y : integer where x = 0,y = 0

Proc1 ::

 1 : loop forever do[
2 : x := x+1
3 : y := y−1

] ‖ Proc2 ::

 1 : while x < 1 do[
2 : skip

]
3 : end

Fig. 4.1 Concurrent system Sys7 = Proc1 ‖ Proc2 over Var = {x,y}.

Now, the idea of predicate abstraction is to define a set of boolean predicates
Pred over the system variables Var in order to obtain a much smaller (finite)
state space. Thus, in abstract systems operations do not refer to concrete vari-
ables but to predicates, i.e. each concrete basic operation bop is approximated
by an abstract operation bopa with

bopa ≡ assume(pe) : p1 := pe1, . . . , pk := pek

where {p1, . . . pk} = Pred and pe, pe1, . . . , pek are boolean expressions over
Pred. We generally assume that abstract operations assign to all predicates
in Pred. Thus, an abstract operation bopa that does not affect a predicate
pi contains the assignment pi := pi. In our examples we usually omit such
self-assignments. Predicate expressions in abstract operations often take the
form choice(a,b) for boolean expressions a, b with the following semantics:

s(choice(a,b)) =

true if s(a) is true

f alse if s(b) is true

∗ else

Here ∗ denotes a non-deterministic choice between true and false. Hence, ap-
plying boolean predicate abstraction may introduce non-deterministic guards
and assignments.

For a concrete operation bop ≡ assume(e) : x1 := e1, . . . , xm := em and a set
of predicates Pred = {p1, . . . , pk} we can derive the corresponding abstract
operation bopa that approximates bop as follows. We start with the abstract
assume condition pe:

pe ≡ choice(EPred(e),EPred(¬e))

where EPred(e) denotes the weakest boolean expression over Pred such that
EPred(e) semantically implies e, written EPred(e) |= e. Here ’weakest’ means that
all other boolean expressions pe over Pred with pe |= e, also imply EPred(e).

52 4 Abstraction for Concurrent Systems

Definition 4.1 (Weaker Boolean Expressions).
Let pe and pe′ be boolean expressions with pe |= pe′ and pe′ 6|= pe. Then pe′ is
weaker than pe.

As an example, for the set of predicates Pred = {(x < 0),(x < 1),(y < 0)} and
the expression (x = 0) we get EPred(x = 0) = ¬(x < 0)∧ (x < 1). The expression
pe = ¬(x < 0)∧ (x < 1)∧ (y < 0) also semantically implies (x = 0). However,
we have that pe |= EPred(x = 0) and EPred(x = 0) 6|= pe. Thus, EPred(x = 0) is
weaker than pe.

Furthermore, an abstract basic operation bopa consists of an assignment
pi := pei for each predicate pi ∈ Pred with:

pei ≡ choice(EPred(wpbop(pi)),EPred(wpbop(¬pi)))

Here wpbop(pi) is the weakest precondition of the concrete basic operation bop
with regard to the predicate pi.

Definition 4.2 (Weakest Precondition).
Let bop≡ assume(e) : x1 :=e1, . . . , xm :=em be a basic operation and p a predicate
over the set of variables Var = {x1, . . . ,xm}. Then the weakest precondition of
bop with respect to p is

wpbop(p) = e∧ p[x1/e1, . . . ,xm/em]

where p[x1/e1, . . . ,xm/em] denotes the substitution of all occurrences of
x1, . . . ,xm in p by e1, . . . ,em, respectively.

The notion of weakest preconditions was originally introduced by Dijkstra
in the context of reasoning about imperative programs [52]. In terms of our
systems, wpbop(p) corresponds to a predicate expression denoting the set of
all states s over Pred such that bop executed in s results in a state where p
holds. E.g., the weakest precondition of x := x+ 1 with regard to (x < 1) is
wpx:=x+1(x < 1) = (x < 0).

Now, we want to see how our example system Sys7 can be abstracted over
a set of predicates. First of all, we take a look at the concrete control flow
graphs corresponding to the processes of Sys7 (Figure 4.2).

1

G1 ::

2 3

skip y := y−1

x := x+1

1

G2 ::

2 3

x := x+1

(x < 1)

skip

¬(x < 1)

skip

Fig. 4.2 Concrete control flow graphs G1 and G2 of the processes Proc1 and Proc2.

4.1 Predicate Abstraction 53

Here transitions are labelled with concrete basic operations over the variable
set Var = {x,y}. For our abstraction we choose the predicate set Pred = {(x <
0), (x < 1)}. The corresponding abstract control flow graphs are depicted in
Figure 4.3.

1

Ga
1 ::

2 3

(x < 1) := choice((x < 0),¬(x < 0))
(x < 0) := choice(f alse,¬(x < 0))

skip skip 1

Ga
2 ::

2 3

(x < 1) := choice((x < 0),¬(x < 0))
(x < 0) := choice(f alse,¬(x < 0))

x := x+1

(x < 1)

skip

¬(x < 1)

skip

Fig. 4.3 Abstract control flow graphs Ga
1 and Ga

2 over Pred = {(x < 0),(x < 1)}.

These control flow graphs represent an abstraction Sysa
7 of the concrete system

Sys7 over the set of predicates Pred = {(x < 0),(x < 1)}. As we can see, the
variable y is completely omitted in our abstraction; the concrete operation y :=
y−1 is abstracted to skip. Furthermore, the operation x := x+1 is abstracted
to list of assignments with regard to the predicates (x < 0) and (x < 1). As the
corresponding abstract state space we get

SPred = {
(
(x < 0) ,(x < 1)

)
,
(
¬(x < 0) ,(x < 1)

)
,
(
¬(x < 0) ,¬(x < 1)

)
}.

Alike concrete concurrent systems, abstract systems can be straightforwardly
transferred into Kripke structures. We only have to take into account that
such an abstract Kripke structure is now defined over SPred rather than over
SVar, and moreover, the transition relation R is defined with regard to abstract
operations (see Definition 3.7). Model checking the CTL formula AF(pc2 =
3) on a Kripke structure corresponding to Sysa

7 yields true. Hence, boolean
predicate abstraction enables us to check temporal logic properties on very
small abstractions.

However, so far we have no relation between model checking results ob-
tained on concrete and abstract systems. We therefore define an approximation
relation � for concrete systems Sys over Var and their abstractions Sysa over
Pred. We start on the level of boolean expressions:

Definition 4.3 (Approximation of Boolean Expressions).
Let Var be a set of variables and let e and e′ be any two boolean expressions
over Var. Then e approximates e′, written e� e′, iff

e |= e′ ∧ ¬e |= ¬e′.

54 4 Abstraction for Concurrent Systems

In our notion of abstract systems we have that Pred is a subset of the set of all
boolean expressions over Var. Hence, we straightforwardly get that a predicate
expression pe over Pred approximates a boolean expression e over Var, pe� e,
iff pe |= e and ¬pe |= ¬e. In the particular case of choice expressions we have
that choice(a,b) approximates an expression e iff a semantically implies e and
b semantically implies ¬e:

choice(a,b)� e ≡ a |= e ∧ b |= ¬e

Next, we extend the approximation relation to basic operations:

Definition 4.4 (Approximation of Basic Operations).
Let Var be a set of variables and Pred = {p1, . . . , pk} a set of predicates over
Var. Moreover, let bop≡ assume(e) : x1 :=e1, . . . , xm :=em be a concrete basic
operation over Var and bopa ≡ assume(pe) : p1 := pe1, . . . , pk := pek an abstract
basic operation over Pred. Then bopa approximates bop, written bopa � bop,
iff

pe� e ∧
k∧

i=1

pei � wpbop(pi).

Remember that an abstract basic operation generally assigns to all predicates.
Hence, the approximation relation for basic operations is always defined with
regard to a given set of predicates Pred. If Pred is clear from the context, we
will not explicitly mention it.

For illustration, we again consider our running example and show that
(x < 0) := choice(f alse,¬(x < 0)) approximates x := x+1, which is equivalent
to

choice(f alse,¬(x < 0)) � wpx:=x+1(x < 0)
≡ choice(f alse,¬(x < 0)) � (x <−1)
≡ f alse |= (x <−1) ∧ ¬(x < 0) |= ¬(x <−1)
≡ true.

Predicate abstraction solely affects basic operations – and not the control
structure of processes. Hence, a process Proca

i approximates a process Proci
iff they have isomorphic control flow graphs and the basic operations in Proca

i
approximate the corresponding ones in Proci.1 Finally, a concurrent system
Sysa = ‖n

i=1 Proca
i approximates a system Sys = ‖n

i=1 Proci iff each process Proca
i

in Sysa approximates the corresponding process Proci in Sys. The subsequent
definition gives us a formal notion of the approximation relation for concurrent
systems:

1 Remember that abstract operations bopa may introduce non-determinism, and thus, an
abstract control flow transition δ a

i (li,bopa, l′i) may be equivalent to two transitions between
the same locations but labelled with different operations. This, however, does not affect
isomorphism in our notion.

4.1 Predicate Abstraction 55

Definition 4.5 (Approximation of Concurrent Systems).
Let Sys = ‖n

i=1 Proci be a concrete concurrent system over Var and let
Sysa = ‖n

i=1 Proca
i be an abstract concurrent system over Pred. Moreover, let

G1, . . . ,Gn, respectively Ga
1, . . . ,G

a
n be the control flow graphs of the processes

Proc1, . . . ,Procn, resp. Proca
1, . . . ,Proca

n. Then Sysa approximates Sys, written
Sysa � Sys, iff for all i = 1, . . . ,n: Gi and Ga

i are isomorphic, i.e. there exists a
bijective function h : Loci→ Loca

i , also called isomorphism, with

• ∀l ∈ Loci : h(l) = l,
(which actually implies that Loci = Loca

i)

• δi (l,bop, l′) if there exists a bopa with bopa � bop and δ a
i (h(l),bopa,h(l′)),

• δ a
i (h(l),bopa,h(l′)) if there exists a bop with bopa � bop and δi (l,bop, l′).

As we can see, the requirement that each basic operation in the concrete
system is approximated by the corresponding one in the abstract system is
already included in our notion of isomorphism.

Coming back to our running example, we get by Definition 4.5 that our ab-
stract system Sysa

7 properly approximates the concrete system Sys7. In general,
applying boolean predicate abstraction to a concurrent system Sys gives us a
conservative over-approximation of Sys. This means an abstraction Sysa may
permit more possible behaviour than the original Sys, i.e. all computations
that are feasible in Sys are also feasible in Sysa – but a feasible computation
of Sysa is not necessarily feasible in Sys. Transferred to the field of temporal
logic model checking, we get that if a property from the universal fragment
of CTL holds for the abstract system then we can deduce that it holds for the
corresponding concrete system as well. From [11] we can derive Theorem
4.1 which relates model checking results of concrete and abstract systems for
corresponding states.

Definition 4.6 (Corresponding States in Boolean Abstractions).
Let Sys = ‖n

i=1 Proci be a concurrent system over Var, and Sysa = ‖n
i=1 Proca

i
an abstract system over Pred, with Sysa � Sys. Moreover, let K = (S,R,L,F)
be the Kripke structure representing Sys, and Ka = (Sa,Ra,La,Fa) the Kripke
structure representing Sysa where K and Ka are both defined over the same
set of atomic predicates AP. Then a concrete state s ∈ S corresponds to an
abstract state sa ∈ Sa iff

∀p ∈ AP : L(s, p) = La(sa, p).

Thus, corresponding states in boolean abstractions have the same labelling
with regard to AP, which we sometimes abbreviate by L(s) = La(sa).

Theorem 4.1.
Let Sys = ‖n

i=1 Proci be a concurrent system over Var, and Sysa = ‖n
i=1 Proca

i an
abstract system over Pred, with Sysa � Sys. Moreover, let K = (S,R,L,F) be the

56 4 Abstraction for Concurrent Systems

Kripke structure representing Sys, and Ka = (Sa,Ra,La,Fa) the Kripke structure
representing Sysa where K and Ka are both defined over the same set of atomic
predicates AP. Then for any two corresponding states s ∈ S and sa ∈ Sa and
for any ACTL formula ψ over control locations or the predicates in Pred the
following holds:

[Ka,sa |= ψ] ⇒ [K,s |= ψ]

Proof (Theorem 4.1).
We prove this theorem by showing that the notion of corresponding states in
boolean abstractions (Definition 4.6) conforms to a fair simulation (Definition
2.7). This can be established based on the following corollary which we get
from [11]:

Corollary 4.1.
Let Sys = ‖n

i=1 Proci be a concurrent system over Var, and Sysa = ‖n
i=1 Proca

i an
abstract system over Pred, with Sysa � Sys. Moreover, let K = (S,R,L,F) be the
Kripke structure representing Sys, and Ka = (Sa,Ra,La,Fa) the Kripke structure
representing Sysa where K and Ka are both defined over the same set of atomic
predicates AP. Let s ∈ S and sa ∈ Sa be any two corresponding states. Then
for every path π ∈ Πs in K there is a path πa ∈ Πsa in Ka such that for all
k ∈ N : L(πk) = La(πa

k), i.e πk and πa
k are corresponding states.

Hence, for every path in K there is a corresponding path in Ka or, rather, for
any two states s ∈ S and sa ∈ Sa with L(s) = La(sa) we have that:

R(s,s′) ⇒ ∃s′a ∈ Sa : Ra(sa,s′a) ∧ L(s′) = La(s′a)

We have to strengthen this result with regard to fairness, i.e. we require that
for every fair path in K there is a corresponding fair path in Ka. This follows
by induction from Lemma 4.1.

Lemma 4.1.
Let Sys = ‖n

i=1 Proci be a concurrent system over Var, and Sysa = ‖n
i=1 Proca

i
an abstract system over Pred, with Sysa � Sys. Moreover, let K = (S,R,L,F)
be the Kripke structure representing Sys, and Ka = (Sa,Ra,La,Fa) the Kripke
structure representing Sysa where K and Ka are both defined over the same set of
atomic predicates AP. Let s ∈ S and sa ∈ Sa be any two states with L(s) = La(sa).
Furthermore, let s′ be any state in S and i ∈ [1..n] a process index then

Ri(s,s′) ⇒ ∃s′a ∈ Sa : Ra
i (s

a,s′a) ∧ L(s′) = La(s′a)

(Remember that, according to Definition 3.7, the transition function R can be
reformulated as

∨n
i=1 Ri.)

Proof (Lemma 4.1).
Ri(s,s′) can be rewritten into Ri(〈l,sVar〉 ,〈l′,s′Var〉) where l denotes the location
part and sVar the variable part of the state s. Ri(〈l,sVar〉 ,〈l′,s′Var〉) refers to a

4.1 Predicate Abstraction 57

control flow transition δi(l,bop, l′) in Gi = (Loci,δi). According to Definition
4.5 there exists a corresponding transition δ a

i (l,bopa, l′) in Ga
i with bopa � bop.

By assumption, we have that bop can be executed in s and L(s) = La(sa).
Hence, bopa can be executed in sa, i.e. for some state s′a ∈ Sa there exists
a transition Ri(sa,s′a) associated with bopa. Since bopa � bop we have that
L(s′) = La(s′a). ut

From Lemma 4.1 we can deduce that our notion of corresponding states
in boolean abstractions (Definition 4.6) conforms to a fair simulation (see
Definition 2.7).

Corollary 4.2.
Let Sys = ‖n

i=1 Proci be a concurrent system over Var, and Sysa = ‖n
i=1 Proca

i an
abstract system over Pred, with Sysa � Sys. Moreover, let K = (S,R,L,F) be the
Kripke structure representing Sys, and Ka = (Sa,Ra,La,Fa) the Kripke structure
representing Sysa where K and Ka are both defined over the same set of atomic
predicates AP. Then the set of all pairs of corresponding states s ∈ S and sa ∈ Sa

characterises a fair simulation �s S×Sa between K and Ka.

The correctness of Theorem 4.1 now immediately follows from Theorem 2.2,
which states that fair simulation preserves ACTL properties. ut

Hence, our result that the property AF(pc2 = 3) holds for the small abstraction
Sysa

7 can be directly transferred to the concrete system Sys7. In general, boolean
predicate abstraction enables us to verify concurrent systems on very small
abstract models, and thus, helps us to reduce the complexity of temporal logic
model checking.

However, if checking a universally quantified property yields false for an
abstraction, we can not conclude that the original system violates this property
as well. In this case, the model checking procedure additionally returns an
abstract counterexample – a path in the abstract model that refutes the property.
In order to gain certainty about whether this counterexample is spurious (i.e.
it exists in the abstraction only) or corresponds to a real path, it has to be
retraced on the original system. The retracement of counterexamples involves
a partial exploration of the concrete state space, and thus, suffers from the
state explosion problem as well. In the next section we introduce three-valued
predicate abstraction. This generalisation of boolean predicate abstraction
is capable of preserving both true and false results in verification – which
saves us the expensive retracement step. Moreover, three-valued predicate
abstraction is straightforwardly compatible with spotlight abstraction – the
second abstraction technique that we employ in our framework (compare
Section 4.2).

58 4 Abstraction for Concurrent Systems

4.1.2 Three-Valued Predicate Abstraction

Applying abstraction to software systems always means, that some details
about the original system get lost, or rather, become unknown. Thus, an
intuitive way of characterising this loss of information in an abstract model is
to introduce a third truth value unknown for predicates and transitions. Such
a three-valued sematics for state space models was first proposed in [22], and
since then has been used in many abstraction frameworks (e.g. [115, 4, 87]).
Three-valued abstractions moreover have the advantage that true as well as
false results in verification can be preserved.

In our approach to the verification of concurrent systems, we also employ
a three-valued abstraction. Similar to the boolean abstraction, we have predi-
cates instead of concrete variables, and thus, abstract basic operations again
take the form

bopa ≡ assume(pe) : p1 := pe1, . . . , pk := pek.

But now, our predicates have a three-valued domain: the valuation of a
predicate in an abstract state can be true, false or unknown. Unknown is in fact
a valid truth value as we operate with the Kleene logic K3 [62] (see Section
2.2). Three-valued expressions in abstract operations may again take the form
choice(a,b), but now with the following semantics:

s(choice(a,b)) =

true if s(a) is true

f alse if s(b) is true

⊥ else

Hence, non-deterministic choices are resolved in three-valued abstractions.
Instead, the third truth value unknown may be assigned to predicates, or may
occur as a guard.

The derivation of a three-valued abstract system Sysa for a given concrete
system Sys and a set of predicates Pred can be directly adopted from the
boolean predicate abstraction (see Section 4.1.1). We only have to consider
that predicate expressions are now evaluated under the Kleene logic, and
that we have a new semantics for choice. Furthermore, the approximation
relation � for boolean abstractions can be straightforwardly extended to the
three-valued setting. Three-valued abstractions naturally require three-valued
state space models. As shown in Section 2.2, classical Kripke structures can
be generalised to three-valued Kripke structures, which are tailored to model
partially unknown systems. Using three-valued Kripke structures moreover
gives rise to a new notion of correspondence between concrete and abstract
states.

Definition 4.7 (Corresponding States in Three-Valued Abstractions).
Let Sys = ‖n

i=1 Proci be a concurrent system over Var, and Sysa = ‖n
i=1 Proca

i

4.1 Predicate Abstraction 59

a three-valued abstraction over Pred, with Sysa � Sys. Moreover, let K =
(S,R,L,F) be the Kripke structure representing Sys, and Ka = (Sa,Ra,La,Fa)
the three-valued Kripke structure representing Sysa where K and Ka are both
defined over the same set of atomic predicates AP. Then a concrete state s ∈ S
corresponds to an abstract state sa ∈ Sa iff

∀p ∈ AP : La(sa, p)≤K3 L(s, p)

Thus, if a predicate p ∈ AP has a definite value (true, false) in an abstract state
sa, then p has the same value in a corresponding concrete state s. However,
predicates that are valuated with unknown in sa may be true or false in s. We
also say, the labelling of the concrete state s is more definite than the labelling
of a corresponding abstract state sa, abbreviated by La(sa)≤K3 L(s).

Applying three-valued predicate abstraction gives us a conservative ap-
proximation in the sense that all definite behaviour in the abstract system is
also feasible in the concrete one. Hence, all definite verification results, i.e.
true and false, obtained on the abstraction can be directly transferred to the
original system. Only an unknown result tells us nothing about the concrete
system. From [112] we get the following theorem:

Theorem 4.2.
Let Sys = ‖n

i=1 Proci be a concurrent system over Var, and Sysa = ‖n
i=1 Proca

i a
three-valued abstraction over Pred, with Sysa � Sys. Moreover, let K = (S,R,L,F)
be the Kripke structure representing Sys, and Ka = (Sa,Ra,La,Fa) the three-
valued Kripke structure representing Sysa where K and Ka are both defined over
the same set of atomic predicates AP. Then for any two corresponding states s ∈ S
and sa ∈ Sa and for any CTL formula ψ over control locations or the predicates
in Pred the following holds:

[Ka,sa |= ψ] ≤K3 [K,s |= ψ]

To illustrate the consequence of this theorem for our approach to verification,
we take a look at the concurrent system Sys8 in Figure 4.4.

x,y : integer where x = 1,y = 1

Proc1 ::
[

1 : loop forever do[
2 : x :=−x

]]
‖ Proc2 ::

 1 : while x > 0 do[
2 : y := y−1

]
3 : end

Fig. 4.4 Concurrent system Sys8 = Proc1 ‖ Proc2 over Var = {x,y}.

We want to verify whether Proc2 always eventually terminates, i.e. whether
the CTL formula AF(pc2 = 3) holds for the concurrent system. It is easy
to see that this property is violated for Sys8; e.g. consider a computation
where Proc1 executes the loop body always twice in succession before Proc2

60 4 Abstraction for Concurrent Systems

evaluates its while condition. However, for the purpose of formal verification
we first construct a three-valued abstraction of our system over the set of
predicates Pred = {(x > 0),(x >−1),(y > 0)}. Now, model checking the CTL
formula on our abstract system Sysa

8 yields false, and additionally returns a
counterexample. According to Theorem 4.2 we can straightforwardly deduce
that the original system violates AF(pc2 = 3) as well. Moreover, we have the
guarantee that the revealed counterexample corresponds to a real path in
Sys8, and thus, no additional retracement step is required. – In contrast, for
an analogous boolean abstraction (over the same set of predicates) model
checking also returns false together with a counterexample; but this result has
to validated by retracing the counterexample on the original system.

Naturally, for a fixed set of predicates a three-valued abstraction is always
slightly larger than a boolean abstraction because now we have a three-valued
(instead of a two-valued) domain for predicates. Nevertheless, for many real-
life verification tasks it is more advantageous to have a slightly larger abstract
model than to be forced to perform an additional retracement step. Remember
that retracing counterexamples involves a partial exploration of the concrete
state space, and thus, might suffer from the state explosion problem.

Three-valued abstractions give us more precision in temporal logic model
checking because both true and false results are preserved. However, verifying
a three-valued abstraction might also yield unknown, which tells us nothing
about the concrete system. We e.g. get such a result when checking the
CTL formula AG(y > 0) on our aforementioned abstraction (over Pred =
{(x > 0),(x >−1),(y > 0)}). An unknown result always comes along with an
unconfirmed counterexample – a potential error path in the abstract system
with some unknown transitions and predicates. Now, we can directly conclude
that our abstraction is too coarse for a definite result in verification. The
abstraction can then be refined based on an analysis of the unconfirmed
counterexample (see Chapter 5). – Contrary, verifying the formula AG(y > 0)
on an analogous boolean abstraction returns false together with an abstract
counterexample. An additional retracement step is required, which reveals
that the counterexample is spurious and that the abstraction is too coarse.

So far, we have seen that (boolean and three-valued) predicate abstraction
is a powerful technique in cutting down the state space of software systems.
In particular, predicate abstraction enables us to restrict the large (or even
infinite) domains of system variables to very small fragments, and thus, can
improve the efficiency of formal verification by orders of magnitude. However,
in concurrent systems the space complexity furthermore exponentially grows
with the number of processes composed in parallel. In the next section, we
introduce spotlight abstraction – a specific abstraction technique for concurrent
systems that can be combined with predicate abstraction.

4.2 Spotlight Abstraction 61

4.2 Spotlight Abstraction

The state space complexity of concurrent systems does not only depend
on the quantity of system variables but also on the processes composed in
parallel. Remember that a computation of a concurrent system corresponds
to a sequence of non-deterministic selections of processes that are permitted
to execute their next operation. Hence, each additional process increases the
number of possible computations – and so the number of reachable states –
exponentially.

Predicate abstraction allows us to cope with state explosion caused by
large-domain variables. But we still suffer from the state space complexity
induced by concurrency. However, we will see that predicate abstraction
can be combined with spotlight abstraction – a reduction technique tailored
to concurrent systems. The spotlight principle was initially introduced by
Wachter and Westphal [123] in the context of parameterised verification.
Later it was enriched with three-valued CTL semantics and integrated into a
framework for abstraction refinement [112]. The underlying idea of spotlight
abstraction is to set a spotlight on certain processes of particular interest
while the remaining ones are kept in the shade. Now, the spotlight processes
are thoroughly considered when constructing the abstract system, whereas
processes in the shade are nearly completely abstracted away.

Applying predicate abstraction combined with spotlight abstraction for
concurrent systems enables us to tackle both, large-domain variables and
large numbers of processes. Again, an abstract system might be too coarse
for a definite result in verification, and thus, has to be refined. The spotlight
principle also adds a new facet to abstraction refinement because now we
can choose between adding a new predicate or a process from the shade (see
Chapter 5).

In this section, we give a detailed introduction to the spotlight principle.
In particular, we show how spotlight abstraction can be integrated into our
approach to the verification of concurrent systems. Moreover, we introduce
certain extensions of the spotlight principle that allow us to preserve more
concrete behaviour in the abstraction, without an additional growth of the
state space.

4.2.1 Spotlight and Shade

The spotlight principle is based on the idea to divide a concurrent system into
a spotlight and a shade, or rather, into processes of particular interest and
processes that are presumably not relevant for the underlying verification task.
In order to gain a better understanding of what ’interesting’ and ’presumably
not relevant’ may mean in the context of concurrent system verification, we
consider the message passing system in Figure 4.5.

62 4 Abstraction for Concurrent Systems

c : channel [1] of integer

Proc1 ::

local x : integer where x = 0
1 : loop forever do[

2 : receive(c,x)
3 : progress

]
 ‖ Proc2 ::

 1 : loop forever do[
2 : send(c,1)
3 : progress

]

‖n
i=3 Proci ::

local yi : integer where yi = 0
1 : loop forever do[

2 : receive(c,yi)
3 : progress

]

Fig. 4.5 Message passing system Sys9 = ‖n
i=1 Proci over Var = {c,x,y3, . . . ,yn}.

Here we have n processes communicating via the channel c. Proc1 continuously
attempts to receive a value from c, whereas Proc2 continuously attempts to
send a value to the channel. All other processes also attempt to receive on
c. The progress in the loop bodies is synonymous for the empty operation.
Now, we are interested in verifying whether there is continuous progress for
Proc1, or more formally, whether the liveness property AG(AF(pc1 = 3)) holds
for Sys9. It is evident that Proc1 is of interest in this verification task because
exactly this process is referenced in our temporal logic formula. However, the
progress of Proc1 depends on the availability of communication partners, or
respectively, on the presence of competitors. In fact, it is sufficient to take a
detailed look at the process of interest Proc1, the potential communication
partner Proc2 and one competitor e.g. Proc3 in order to refute the formula.
The argument here is that there exists a fair computation where Proc2 and
Proc3 successfully execute their communication operations in turns, whereas
Proc1 solely attempts to receive when the channel is empty. Hence, we have a
computation where Proc1 starves at location 2. In particular, we see that the
processes Proc4 to Procn are not relevant here.

Spotlight abstraction allows us to exploit the fact that usually only some
processes of a concurrent systems are relevant for a given verification task.
The general approach is to apply classical three-valued predicate abstraction
to the processes in the spotlight whereas shade processes are summarised into
one approximative component ProcShade. This process entirely neglects the
original control flow of the processes in the shade. – Instead it approximates
operations on shared variables occurring in shade processes by continuously
modifying predicates over those variables. Due to the approximative character
of ProcShade and the inherent loss of information about the shade processes,
predicates might be set to unknown.

To illustrate the spotlight principle, we look again at the message passing
system Sys9. We take the processes Proc1 to Proc3 into the spotlight and
construct their three-valued abstractions Proca

1, Proca
2 and Proca

3 over the
predicates emptyc and f ullc. Thus, the processes Proc4 to Procn are in the
shade and we summarise them into the approximative component ProcShade,
which is depicted in Figure 4.6.

4.2 Spotlight Abstraction 63

ProcShade ::

emptyc := choice(emptyc, f alse), f ullc := choice(f alse,emptyc∨¬ f ullc)

Fig. 4.6 Control flow representation of ProcShade.

As we can see, ProcShade solely consists of a single control flow location with a
self-loop. The associated abstract operation approximates all concrete basic
operations with regard to emptyc and f ullc that occur in the shade processes.
Remember that in our notion of message passing systems all shared variables
are channel-related; which means, a bop occurring in a shade process Proci
is either a channel operation or an operation that solely modifies variables
local to Proci. The latter case implies that bop is not affecting any processes
in the spotlight. Thus, in our current example ProcShade only refers to the
channel-related predicates emptyc and f ullc. For general concurrent systems
ProcShade might also refer to predicates over ordinary shared variables.

Now, our overall abstract system Sysa
9 corresponds to the parallel composi-

tion of Proca
1, Proca

2, Proca
3 and ProcShade. Hence, Sysa

9 is significantly smaller
than an analogous pure predicate abstraction where Proc4 to Procn are con-
sidered in detail. Model checking the CTL formula AG(AF(pc1 = 3)) on our
small spotlight abstraction Sysa

9 yields false. In the following, we show that
also spotlight abstraction preserves true and false properties, and hence, that
we can transfer our verification result to the concrete system.

First of all, we provide some fundamental definitions with regard to the
spotlight principle. Let Sys = ‖n

i=1 Proci be a concurrent system over a set
of variables Var. Then we denote the set of all processes of Sys by Proc =
{Proc1, . . . ,Procn}. Moreover, we denote the set of all predicates over Var by
Pred. Note that, unlike before, Pred now refers to all possible predicates over
the system variables, and thus, this set is generally infinitely large. Now, a
spotlight abstraction of a concurrent system Sys is defined by a set of spotlight
processes Spot(Proc)⊆ Proc, and a set of spotlight predicates Spot(Pred)⊆ Pred.
Consequently, approximations are henceforth defined with regard to the
finite set of predicates Spot(Pred). We refer to the overall spotlight as Spot =
Spot(Proc)∪ Spot(Pred). The corresponding shade is characterised by the
complementary sets Shade(Proc) =Proc\Spot(Proc) and Shade(Pred) =Pred\
Spot(Pred). For the overall shade we get Shade = Shade(Proc)∪Shade(Pred).
Hence, a spotlight abstraction of a concurrent system can also be regarded
as a partition of the system’s processes and predicates into the sets Spot and
Shade. Figure 4.7 illustrates the aforementioned set relations based on our
running example. Three-valued spotlight abstraction now can be applied to
concurrent systems according to the following definition:

Definition 4.8 (Spotlight Abstraction of Concurrent Systems).
Let Sys = ‖n

i=1 Proci be a concurrent system and Pred the set of all predicates
over the system variables. Moreover, let Spot = Spot(Proc)∪Spot(Pred) be a

64 4 Abstraction for Concurrent Systems

Proc1 Proc2 Proc3 Proc4 . . . Procn

emptyc f ullc . . .

Spot Shade

Pred

Proc

Fig. 4.7 Spotlight abstraction of Sys9 given by a partition of the system’s processes and
predicates into Spot and Shade.

given set of spotlight processes and predicates, and let Shade = Shade(Proc)∪
Shade(Pred) be the corresponding shade. Then the abstract system Sysa =
‖Proci∈Spot(Proc) Proca

i ‖ ProcShade approximates Sys iff

• for every Proci ∈ Spot(Proc): Proca
i approximates Proci.

• ProcShade is a control flow graph with one location and a single loop labelled
with an abstract basic operation bopShade over Spot(Pred) such that all con-
crete basic operations bop that occur in shade processes are approximated
by bopShade.

This is the basic definition of three-valued spotlight abstraction, taken with
slight changes from [112]. In the original approach every spotlight predi-
cate that is modified in the shade is just set to unknown in bopShade – which
is the most generalised, and thus, coarsest form of an abstract operation
that approximates all concrete operations occurring in the shade. – Our
weaker requirements to ProcShade still guarantee correctness (see Corollary
4.3) and additionally permit us to preserve more definite behaviour in the
abstraction. For illustration, we consider again our running example Sys9
with Spot(Proc) = {Proc1,Proc2}, Spot(Pred) = {emptyc, f ullc} and the tempo-
ral logic formula AG(AF(pc1 = 3)). Now, according to the original approach
[112] the shade component ProcShade would set emptyc and f ullc continuously
to unknown. This native abstraction is not precise enough to give us a definite
answer in our verification task. – In comparison, our shade component in
Figure 4.6 still conforms to Definition 4.8 and moreover gives us the for-
merly missing precision. Within this work, we have developed a number of
further optimisations of the shade component that enable us to preserve more
concrete behaviour (at the same abstraction size), and thus, to obtain more
definite results in verification. We discuss these enhancements separately in
the subsequent sections (Section 4.2.2 and 4.2.3).

From a theorem of [112] we obtain the following corollary, which relates
the verification results of concrete and abstract systems:

Corollary 4.3.
Let Sys = ‖n

i=1 Proci be a concurrent system and Pred the set of all predicates

4.2 Spotlight Abstraction 65

over the system variables. Moreover, let Spot = Spot(Proc) ∪ Spot(Pred) be
a given set of spotlight processes and predicates, and Sysa = ‖Proci∈Spot(Proc)
Proca

i ‖ ProcShade the corresponding abstract system with Sysa � Sys. Fur-
thermore, let K = (S,R,L,F) be the Kripke structure representing Sys, and
Ka = (Sa,Ra,La,Fa) the three-valued Kripke structure representing Sysa, both
defined over AP = Spot(Pred)∪{pci = j|Proci ∈ Spot(Proc), j ∈ Loci}. Then for
any two corresponding states s ∈ S and sa ∈ Sa and for any CTL formula ψ over
AP the following holds:

[Ka,sa |= ψ] ≤K3 [K,s |= ψ]

The original proof in [112] relies on the following argument: bopShade sets
all spotlight predicates to unknown, and thus, approximates all operations
occurring in the shade. In our slightly modified approach, bopShade, by def-
inition, approximates all operations in the shade, but is not necessarily as
abstract as the native bopShade. This relaxation, however, does not affect the
argumentation of the proof in [112].

Applying spotlight abstraction enables us to check temporal logic proper-
ties of concurrent systems on usually very small abstract models. Similar to
pure three-valued predicate abstraction, definite results can be transferred to
the original systems. But now, we can additionally abstract away complete
processes that are presumably not relevant for the underlying verification
task. Even if a process is summarised in the shade, the information about its
behaviour is not entirely lost. For illustration, we look again at our running
example. Here we have a number of receiver processes in the shade. Thus, the
predicates emptyc and f ullc might be modified by ProcShade in an unknown
manner. However, according to the semantics of communication channels, a
receive applied to an empty channel has no effect, i.e. the channel will defi-
nitely remain empty. Exactly this fact is incorporated in our shade component
(Figure 4.6) by the assignment emptyc := choice(emptyc, f alse). We see, that
specific knowledge about the system (in our example, the semantics of receive)
may let us preserve more concrete behaviour in the shade, and thus, may
give us more definite results in verification. In the following two sections,
we introduce further enhancements of the shade that are also based on the
exploitation of easily accessible information about the considered system.

4.2.2 Shade Clustering

The spotlight principle lets us abstract away entire processes of concurrent
systems, and thus, gives us very small models for verification. It is based on the
simple but usually very effective idea of setting predicates that are modified
by processes in the shade to unknown. However, this kind of abstraction may

66 4 Abstraction for Concurrent Systems

remove more information about the considered system than actually necessary.
For illustration, we look at the message passing system in Figure 4.8.

c : channel [1] of integer

Proc1 ::

 1 : loop forever do[
2 : send(c,1)
3 : progress

] ‖ Proc2 ::

 local x : integer where x = 0
1 : loop forever do[

2 : receive(c,x)
]

‖n

i=3 Proci ::

 local yi : integer where yi = 0
1 : loop forever do[

2 : receive(c,yi)
]

Fig. 4.8 Message passing system Sys10 = ‖n

i=1 Proci over Var = {c,x,y3, . . . ,yn}.

Here we have one sender process Proc1 and a number of receiver processes
Proc2 and Proc3 to Procn. All these processes communicate via the channel c.
We want to validate that Proc1 continuously reaches its progress location, i.e.
AG(AF(pc1 = 3)). Intuitively, it is sufficient to look at the sender Proc1 and
at one receiver e.g. Proc2; and moreover, to regard the fact that there is no
other sender in the system. For every send by Proc1 there will be a receive by
Proc2 (or by other receiver processes). Hence, the channel c will be empty
infinitely often and we can conclude that Proc1 always eventually proceeds.
However, setting the spotlight on Proc1 and Proc2, and accordingly, keeping
Proc3 to Procn in the shade, would not give us this definite answer in our
approach to verification. The problem here is that there will be always an
execution where the shade component sets the predicate f ullc to unknown.
But this predicate is crucial for the progress of Proc1; and hence, we will get
no definite result unless the shade is completely empty. In general, validating
universally quantified properties which are dependent on the result or success
of a communication operation requires every potential communication partner
and competitor to be in the spotlight. Due to transitive dependencies caused
by message passing this often leads to an entirely empty shade, and thus,
compromises the positive effect of abstraction.

In this section, we introduce an extended approach to spotlight abstraction
for message passing systems which bypasses the aforementioned problem.
Instead of summarising the shade processes into a single component we now
use a set of shade components, each abstracting the communication between
the spotlight and the shade on a distinct channel. Such a shade clustering can
be applied to message passing systems according to the following definition.

Definition 4.9 (Shade Clustering for Message Passing Systems).
Let Sys = ‖n

i=1 Proci be a message passing system and Pred the set of all predi-
cates over the system variables. Moreover, let Spot = Spot(Proc)∪Spot(Pred)
be a given set of spotlight processes and predicates, and let Shade =
Shade(Proc)∪ Shade(Pred) be the corresponding shade. Then the abstract
system Sysa = ‖Proci∈Spot(Proc) Proca

i ‖ ProcShade approximates Sys iff

4.2 Spotlight Abstraction 67

• for every Proci ∈ Spot(Proc): Proca
i approximates Proci with respect to

Spot(Pred).

• ProcShade = ‖m
j=0 Proc j

Shade is a parallel composition such that

1. Proc0
Shade is a control flow graph with one location and a single loop

labelled with bopa ≡ assume(⊥), i.e. an unknown transition guard and
an empty assignment part.

2. if there exists a channel c that is referenced in Spot(Pred) and there oc-
curs a send operation on this channel c in some process in Shade(Proc),
then we have a Proc j

Shade which is a CFG with one location and a single
loop labelled with bopa ≡ assume(⊥) : bop′a such that the assignment part
bop′a approximates all assignment parts of successful2 send operations
on c that occur in Shade(Proc).

3. if there exists a channel c that is referenced in Spot(Pred) and there oc-
curs a receive operation on this channel c in some process in Shade(Proc),
then we have a Proc j

Shade which is a CFG with one location and a single
loop labelled with bopa ≡ assume(⊥) : bop′a such that the assignment part
bop′a approximates all assignment parts of successful receive operations
on c that occur in Shade(Proc).

4. ProcShade = ‖m
j=0 Proc j

Shade is solely composed of CFGs according to 1, 2
and 3. In case that there are no CFGs according to 2 and 3, then there
exists no ProcShade in the abstract system.

This extended approach to spotlight abstraction is based on the following ob-
servation: if there exists a communication operation e.g. receive(c,yi) in some
process Proci in the shade, then it is either currently enabled (with regard to
Proci’s local control flow) and can be executed or not. In spotlight abstraction
with shade clustering we again omit the original control flow of shade pro-
cesses. Instead, for each channel c and each type of operation send/receive that
is relevant for the communication between the spotlight and the shade, we
model the possible branches (e.g. either successful receive or nothing happens)
as loop transitions – each with the assume condition unknown – of single-node
CFGs. The cases where nothing happens are clustered in the shade component
Proc0

Shade, whereas for the successful execution of a communication opera-
tion on a particular channel we have a distinct shade component Proc j

Shade.
Now, for our example system Sys10 with Shade(Proc) = {Proc3, . . . ,Procn},
Shade(Pred) = {emptyc, f ullc} the shade components look as depicted in Fig-
ure 4.9.

2 Remember that send is a compound operation consisting of two basic operations: A
successful send in the case that the channel is not full, and an unsuccessful send which causes
busy waiting.

68 4 Abstraction for Concurrent Systems

Proc0
Shade ::

assume(⊥)

Proc1
Shade ::

assume(⊥) : emptyc := true, f ullc := f alse

Fig. 4.9 Control flow representation of the shade components Proc0
Shade and Proc1

Shade.

As we can see, Proc0
Shade clusters all cases where some shade process executes

an operation that has no impact on the spotlight (e.g. an attempt to receive on
an empty channel). – Conversely, Proc1

Shade clusters all successful executions of
receive operations by shade processes. With our shade clustering, we moreover
get an extended notion of fairness. In a fair computation of an abstract system
Sysa some shade component (but not necessarily all shade components) has
to proceed infinitely often. For temporal logic model checking we now can
exploit the fact that several CTL properties with regard to spotlight processes
are preserved under all possible branches provided by the shade components.
In our example, we e.g. do not know whether the next execution step of
the shade will be a successful receive or an operation that does not affect
the spotlight. However, under both of these branches Proc1 will continuously
be able to execute send. Thus, checking AG(AF(pc1 = 3)) on our spotlight
abstraction with shade clustering yields true; and according to Theorem 4.3
we can transfer this result to the original system.

Theorem 4.3.
Let Sys= ‖n

i=1 Proci be a message passing system and Pred the set of all predicates
over the system variables. Moreover, let Spot = Spot(Proc)∪ Spot(Pred) be a
given set of spotlight processes and predicates, and Sysa = ‖Proci∈Spot(Proc) Proca

i ‖
ProcShade the corresponding abstract system with shade clustering and Sysa � Sys.
Furthermore, let K = (S,R,L,F) be the Kripke structure representing Sys, and
Ka = (Sa,Ra,La,Fa) the three-valued Kripke structure representing Sysa, both
defined over AP = Spot(Pred)∪{pci = j|Proci ∈ Spot(Proc), j ∈ Loci}. Then for
any two corresponding states s ∈ S and sa ∈ Sa and for any CTL formula ψ over
AP the following holds:

[Ka,sa |= ψ] ≤K3 [K,s |= ψ]

Proof (Theorem 4.3).
We prove this theorem by showing that the notion of corresponding states in
three-valued abstractions (Definition 4.7) with shade clustering (Definition
4.9) conforms to a fair concreteness preorder (Definition 2.12). This can be
established based on the following lemma:

Lemma 4.2.
Let Sys= ‖n

i=1 Proci be a message passing system and Pred the set of all predicates
over the system variables. Moreover, let Spot = Spot(Proc)∪ Spot(Pred) be a
given set of spotlight processes and predicates, and Sysa = ‖Proci∈Spot(Proc) Proca

i ‖

4.2 Spotlight Abstraction 69

ProcShade the corresponding abstract system with shade clustering and Sysa � Sys.
Furthermore, let K = (S,R,L,F) be the Kripke structure representing Sys, and
Ka = (Sa,Ra,La,Fa) the three-valued Kripke structure representing Sysa, both
defined over AP = Spot(Pred)∪{pci = j|Proci ∈ Spot(Proc), j ∈ Loci}. Let s ∈ S
and sa ∈ Sa be any two corresponding states, i.e. La(sa)≤K3 L(s). Then we have
that:

1. For every Proci ∈ Spot(Proc):

a. If s′a ∈ Sa is any abstract state such that Ra
i (s

a,s′a) = true, then there is a
concrete state s′ ∈ S such that Ri(s,s′) = true and La(s′a)≤K3 L(s′).

b. If s′ ∈ S is any concrete state such that Ri(s,s′) , f alse, then there is an
abstract state s′a ∈ Sa such that Ra

i (s
a,s′a) , f alse and La(s′a)≤K3 L(s′).

2. For every Proci ∈ Shade(Proc):

a. If s′a ∈ Sa is any abstract state such that Ra
Shade(s

a,s′a) = true, then there is
a concrete state s′ ∈ S such that Ri(s,s′) = true and La(s′a)≤K3 L(s′).

b. If s′ ∈ S is any concrete state such that Ri(s,s′) , f alse, then there is an
abstract state s′a ∈ Sa such that Ra

Shade(s
a,s′a) , f alse and La(s′a)≤K3 L(s′).

Where Ri refers to a transition associated with Proci, and Ra
Shade refers to a

transition associated with some shade component.

Proof (Lemma 4.2).
Case 1 was proven by Schrieb et al. in [112]. Our shade clustering solely
concerns the second case. 2 (a) is trivially fulfilled because for all abstract
transitions associated with the shade we have that Ra

Shade(s
a,s′a) = ⊥, and

thus, the premise of 2 (a) never holds. The proof of 2 (b) goes as follows:
Let bop be the concrete basic operation associated with Ri(s,s′). We now can
distinguish three cases:

1. bop does not affect any predicates in Spot(Pred) (i.e. bop does not modify
any variables that are referenced in some p ∈ Spot(Pred)). Then we select
bopa ≡ assume(⊥) as the corresponding abstract operation (See Definition
4.9 (1)). Note that the assignment part of bopa is empty – this, however,
approximates the assignment part of op with respect to Spot(Pred).

2. bop affects some predicates in Spot(Pred) and bop corresponds to the suc-
cessful execution of a send operation on some channel c. Then we select
bopa ≡ assume(⊥) : bop′a as the corresponding abstract operation where
bop′a is defined according to Definition 4.9 (2).

70 4 Abstraction for Concurrent Systems

3. bop affects some predicates in Spot(Pred) and bop corresponds to the
successful execution of a receive operation on some channel c. Then we
select bopa ≡ assume(⊥) : bop′a as the corresponding abstract operation
where bop′a is defined according to Definition 4.9 (3).

According to the definition of shade clustering, we have that for each type of
concrete basic operation bop occurring in Proc(Shade), there exists a shade
component Proc j

Shade with a self-loop labelled with the corresponding abstract
operation bopa. Hence, this abstract operation bopa can be executed in ev-
ery abstract state. Moreover, bopa always approximates bop with respect to
Spot(Pred): By Definition 4.9 the abstract assignment part bop′a approximates
the concrete assignment part bop′; the abstract guard is always assume(⊥),
which approximates all possible concrete guards. Now, let s′a be the abstract
state resulting from the execution of bopa in sa. We already have the premise
that La(sa)≤K3 L(s), thus, we can conclude that La(sa)≤K3 L(s) holds as well.
Furthermore, by definition of the shade we have Ra

Shade(s
a,s′a) =⊥ (due to the

guards assume(⊥)), and thus, Ra
Shade(s

a,s′a) , f alse. ut

From this lemma we get the following corollary by induction:

Corollary 4.4.
Let Sys= ‖n

i=1 Proci be a message passing system and Pred the set of all predicates
over the system variables. Moreover, let Spot = Spot(Proc)∪ Spot(Pred) be a
given set of spotlight processes and predicates, and Sysa = ‖Proci∈Spot(Proc) Proca

i ‖
ProcShade the corresponding abstract system with an shade clustering and Sysa �
Sys. Furthermore, let K = (S,R,L,F) be the Kripke structure representing Sys,
and Ka = (Sa,Ra,La,Fa) the three-valued Kripke structure representing Sysa,
both defined over AP = Spot(Pred)∪{pci = j|Proci ∈ Spot(Proc), j ∈ Loci}. Let
s ∈ S and sa ∈ Sa be any two corresponding states, i.e. La(sa)≤K3 L(s). Then we
have that:

1. For every fair path πa ∈Π
f air
sa in Ka exists a fair path π ∈Π

f air
s in K with

∀k ∈ N>0:

Ra(πa
k−1,π

a
k) = true ⇒ R(πk−1,πk) = true ∧ La(πa

k)≤ L(πk)

2. For every fair path π ∈Π
f air
s in K exists a fair path πa ∈Π

f air
sa in Ka with

∀k ∈ N>0:

R(πk−1,πk) , f alse ⇒ Ra(πa
k−1,π

a
k) , f alse ∧ La(πa

k)≤ L(πk)

This result together with Definition 2.12 gives us another corollary:

Corollary 4.5.
Let Sys= ‖n

i=1 Proci be a message passing system and Pred the set of all predicates
over the system variables. Moreover, let Spot = Spot(Proc)∪ Spot(Pred) be a
given set of spotlight processes and predicates, and Sysa = ‖Proci∈Spot(Proc) Proca

i ‖

4.2 Spotlight Abstraction 71

ProcShade the corresponding abstract system with shade clustering and Sysa � Sys.
Furthermore, let K = (S,R,L,F) be the Kripke structure representing Sys, and
Ka = (Sa,Ra,La,Fa) the three-valued Kripke structure representing Sysa, both
defined over AP = Spot(Pred)∪{pci = j|Proci ∈ Spot(Proc), j ∈ Loci}. Then the
set of all pairs of corresponding states s ∈ S and sa ∈ Sa characterises a fair
concreteness preorder �c Sa×S between Ka and K.

The correctness of Theorem 4.3 now immediately follows from Theorem 2.3,
which states that a fair concreteness preorder preserves all CTL properties.
ut

Spotlight abstraction with shade clustering for message passing systems en-
ables us to preserve some concrete behaviour of shade processes that gets lost
in classical spotlight abstraction. More precisely, we can exploit the fact that
in message passing systems processes only communicate in a restricted way
(i.e either by send or by receive). The general idea of shade clustering is to
model all the possible behaviour of the shade processes as distinct ’unknown’
branches. Then, temporal logic properties that are preserved under all of these
branches also hold for the concrete system. The clustering of the shade may
lead to a slightly larger abstraction, since we now have a shade component for
each possible branch. However, this extended abstraction can give us definite
verification results in cases where the classical approach requires all processes
to be in the spotlight. In the next section we will see, that the preservation of
more concrete behaviour is not only possible by modifying the shade, but also
by modifying the spotlight.

4.2.3 Region Summarisation

Spotlight abstraction is based on a three-valued domain for predicates. The
third truth value unknown is then propagated to the level of Krikpe structures
and temporal logic formulae. A three-valued Kripke structure is used to model
the abstract, and thus, partially unknown system. Based on the three-valued
CTL semantics (Definition 2.10) it can be deduced whether such a model is
still concrete enough to obtain a definite result in verification. This approach is
known as three-valued model checking [22, 23] – a verification technique that
can be generally applied to any partially unknown system that is representable
as a three-valued Kripke structure. However, the universality of three-valued
model checking also entails that certain details about the system that exceed
the modelling capabilities of Kripke structures, can not be regarded in the
verification task. This may lead to cases where, according to the three-valued
CTL semantics, model checking yields unknown – whereas an additional look
at the semantics of the system would clearly reveal a definite result. In this
section, we show that additional knowledge about the considered system can

72 4 Abstraction for Concurrent Systems

sometimes be exploited in constructing the abstraction, which finally gives us
more definite results in verification.

At first, we take a look at a typical verification task where we obtain
unknown under the three-valued CTL semantics, but a short glance at the
system already reveals a definite answer. In Figure 4.10 we have a message
passing system where several processes communicate via channel c, but only
Proc1 attempts to communicate via d.

c,d : channel [1] of integer

Proc1 ::

 1 : receive(c,x)
2 : receive(d,y)
3 : end

 ‖n
i=2 Proci ::

 . . .
send(c,1)
. . .

 ‖m
j=n+1 Proc j ::

 . . .
receive(c,z j)
. . .

Fig. 4.10 Message passing system Sys11 = ‖n

i=1 Proci over Var = {c,d,x,y,zn+1, . . . ,zm}.

Obviously, Proc1 will never terminate because no communication partner for
channel d is available. Following our formal approach to verification, we
check the temporal logic property AF(pc1 = 3). The model checker internally
negates this universally quantified formula, i.e. it verifies whether the negation
EG¬(pc1 = 3) does not hold for the system. Now, we construct a spotlight
abstraction of the system, given by Spot(Proc) = {Proc1} and Spot(Pred) =
{emptyd}. Note that we require no shade component here, because the shade
processes Proc2 to Procm do not affect the spotlight predicate emptyd . The
resulting abstract control flow graph of Proc1 and the corresponding three-
valued Kripke structure are depicted in Figure 4.11.

1

Ga
1 ::

2

3

⊥

¬emptyd : emptyd := true

⊥

emptyd

〈1,emptyd〉
Ka ::

〈2,emptyd〉

〈3,emptyd〉

⊥

⊥

Fig. 4.11 Abstract control flow graph Ga
1 of Proc1 over Spot(Pred) = {emptyd} and corre-

sponding three-valued Kripke structure Ka.

When we look at the Kripke structure, it is still obvious that there exists no
path starting in the state 〈1,emptyd〉 that reaches the end location. However,
all paths have at least one transition with the truth value ⊥. Hence, checking
EG¬(pc1 = 3) yields unknown according to ther three-valued CTL semantics.

4.2 Spotlight Abstraction 73

And consequently, neither for EG¬(pc1 = 3) nor for AF(pc1 = 3) we obtain a
definite verification result on the current abstraction.

Now, we will see how this abstraction can be enriched by additional knowl-
edge about the concurrent system Sys11. Considering Proc1 in Figure 4.10,
we observe that the control flow from location 1 to 2 depends on the suc-
cess of the operation receive(c,x). More precisely, an empty channel c will
cause busy waiting at location 1, whereas a non-empty channel permits the
process to proceed to location 2. The corresponding control flow transitions
1→ 1 and 1→ 2 have complementary guards. Hence, in every state where
Proc1 is at location 1, either a transition associated with 1→ 1 is enabled
and a transition associated with 1→ 2 is disabled, or vice versa. We want to
exploit this fact for our abstraction, without adding the predicate emptyc to
the spotlight. Therefore, we look again at the three-valued Kripke structure
Ka in Figure 4.11. According to the concreteness preorder (see Definition
2.11), we have that each CTL formulae that evaluates to a definite value on
Ka, evaluates to the same truth value on every concretisation of Ka. Such a
concretisation can be obtained by replacing the ’unknowns’ in the three-valued
Kripke structure by true or false. Considering the fact that we have identified
a pair of complementary transitions in the abstraction, we get exactly the
following two-valued concretisations of Ka:

〈1,emptyd〉

Kc
1 ::

〈2,emptyd〉

〈3,emptyd〉

〈1,emptyd〉

Kc
2 ::

〈2,emptyd〉

〈3,emptyd〉

Fig. 4.12 Two-valued concretisations Kc
1 and Kc

2 of the three-valued Kripke structure Ka.

As we can see, the temporal logic formula AF(pc1 = 3) holds for none of the
concretisations of Ka. The fact that Kc

1 and Kc
2 are the only possible two-valued

concretisations allows us to transfer this refutation result to the three-valued
Kripke structure Ka, and finally, also to the concrete system Sys11. However,
incorporating this exemplified approach into a model checking procedure is
not straightforward. The construction of all two-valued concretisations of a
three-valued Kripke structure generally involves an exponential overhead –
which is usually unacceptable for the verification of real-life systems.

Nevertheless, we will see that we can exploit the basic idea of constructing
concretisations in our approach to abstraction – which eventually gives us
more precision without increasing the complexity. Looking again at Figure

74 4 Abstraction for Concurrent Systems

4.12, we can make the observation that in any case (or rather, under each
concretisation) the system will remain in the states 〈1,emptyd〉 and 〈2,emptyd〉
forever – but it is still unpredictable, in which exact state the system will
be at a certain point of time. This missing detail is however not relevant in
the current verification task. In our extended approach to abstraction, we
introduce regions of states: subsets of the overall state space where we are
solely interested in whether the system will remain inside or outside the set.
Our running example thus hints at the states 〈1,emptyd〉 and 〈2,emptyd〉 as a
region. We will see that by defining a region, we can subsume a set of possible
concretisations in one region state. In our technique we detect the regions
on the level of control flow graphs and subsequently propagate them to the
states of the corresponding Kripke structure. Hence, we choose the locations
1 and 2 of the process Proc1 as our region. In the next step, we perform region
summarisation – a local modification of the abstraction.

Definition 4.10 (Region Summarisation).
Let Sys = ‖n

i=1 Proci be a concurrent system and Pred the set of all predicates
over the system variables. Let Spot = Spot(Proc)∪Spot(Pred) be a given set
of spotlight processes and predicates. Moreover, let Prock ∈ Spot(Proc) be
a spotlight process with the corresponding control flow graph G = (Loc,δ),
and let Reg ⊆ Loc be a subset of G’s locations, called a region. Then GReg =
(LocReg,δReg) approximates G iff

• LocReg := (Loc\Reg)∪{r}.
(The locations in the region Reg are replaced by the new location r.)

• δReg :

1. Let δ (l,bop, l′) with l ∈ Loc\Reg and l′ ∈ Loc\Reg. Then δReg(l,bopa, l′)
with bopa � bop.
(Transitions outside the region are not affected by the summarisation.)

2. Let δ (l,bop, l′) with l ∈ Loc\Reg and l′ ∈ Reg. Then δReg(l,bopa,r) with
bopa � bop.
(Transitions entering the region are redirected to the new location r.)

3. Let δ (l,bop, l′) with l ∈ Reg, l′ ∈ Loc\Reg and bop = grd : ass where grd
denotes the guard of bop and ass is the assignment part of bop. Then
δReg(r,grda∧⊥ : assa, l′) with grda � grd and assa � ass.
(Transitions leaving the region now start at the new location r and their
guards are conjuncted with ⊥.)

4. Let Grd be the set of guards on transitions from Reg to Loc\Reg in G
and let Ass be the set of assignments on transitions within Reg. Then
δReg(r,grda : assa,r) with grda ≡⊥∨

∧
g∈Grd¬ga where ga � g, and ∀ass ∈

Ass : assa � ass.

4.2 Spotlight Abstraction 75

(Transitions within the region are summarised into one self-loop of r, the
new guard is ⊥, disjuncted with a conjunction over all negated guards
of transitions leaving the region. The new assignment approximates all
assignments on transitions within Reg.)

Each transition in GReg conforms to either 1,2,3 or 4.

According to this definition, we can summarise the region (i.e. the subset of
locations) Reg = {1,2} of the spotlight process Proc1 into a new location r.
This modification requires an update of the transition relation of the corre-
sponding control flow graph. For the region location r we introduce a self-loop
labelled with an abstract basic operation grda : assa (4). Since we want to
map all original transitions within the region Reg onto this new self-loop, the
assignment part assa has to approximate all assignments of basic operations
associated with these original transitions. In our example, the transitions
within Reg have no assignments, and thus, there is no assignment part in our
grda : assa. The only way to leave a region is to take a transition starting in
Reg that leads to a location outside the region. Moreover, the guard of this
transition has to be true. Hence, as long as all guards associated with such
outgoing transitions are false, the process will definitely remain in the region.
As a consequence, the guard of the new self-loop is a conjunction over all
negated guards of the transitions leaving the region – which is just emptyd in
our example. Even if one of the guards of transitions leaving the region is true,
there is no guarantee that the process will leave the region – the process will
maybe still remain inside. Therefore, we disjunct the guard of the self-loop
with ⊥. Next, we look at transitions that in fact leave the region (3). After
applying region summarisation, these transitions start in the new location
r whereas their destination location lies outside the region. Since we have
lost the information about the exact location within the region, it is uncertain
whether these transitions can be actually taken, and thus, we conjunct their
guards with ⊥. Figure 4.13 illustrates the application of region summarisation
for our running example, and moreover, shows the corresponding Kripke
structure.

As we can see, in the finally obtained Kripke structure the former states
〈1,emptyd〉 and 〈2,emptyd〉 are summarised into the region state 〈r,emptyd〉.
These state unites all possible concretisations (compare Figure 4.12) of our
original Kripke structure (compare Figure 4.11). The price that we pay is the
loss of information about the exact control flow location of Proc1 within the
region Reg = {1,2}. This is however not relevant for verifying AF(pc1 = 3).
Model checking this temporal logic property yields false for our new Kripke
structure, and again we can transfer this result to the concrete system:

Theorem 4.4.
Let Sys = ‖n

i=1 Proci be a concurrent system and Spot = Spot(Proc)∪Spot(Pred)
be a given set of spotlight processes and predicates. Moreover, let Prock ∈
Spot(Proc) be a spotlight process and let Reg be a region of its control loca-
tions. Let Sysa = ‖Proci∈Spot(Proc) Proca

i ‖ ProcShade be the corresponding abstract

76 4 Abstraction for Concurrent Systems

1

G ::

2

3

⊥

¬emptyd : emptyd := true

⊥

emptyd

Reg : r

GReg ::

3

¬emptyd ∧⊥ : emptyd := true

⊥∨ emptyd 〈r,emptyd〉
K ::

〈3,emptyd〉

Fig. 4.13 Abstract control flow graph G of Proc1 over Spot(Pred) = {emptyd} with selected
region Reg = {1,2}. Control flow graph GReg after applying region summarisation. Corre-
sponding Kripke structure K.

system where region summarisation is applied to Prock with regard to Reg.
Furthermore, let K = (S,R,L,F) be the three-valued Kripke structure represent-
ing Sys, and Ka = (Sa,Ra,La,Fa) the three-valued Kripke structure representing
Sysa, both defined over AP= Spot(Pred)∪{pci = j|Proci ∈ Spot(Proc)\Prock, j ∈
Loci}∪{pck = j| j ∈ Lock\Reg∨ j = r}. Then for any two corresponding states
s ∈ S and sa ∈ Sa, i.e. La(sa)≤K3 L(s), and for any CTL formula ψ over AP the
following holds:

[Ka,sa |= ψ] ≤K3 [K,s |= ψ]

Note that the Kripke structures are no longer defined over control locations inside
the region.

Proof (Theorem 4.4).
We prove this theorem by showing that the notion of corresponding states in
three-valued abstractions (Definition 4.7) with region summarisation (Defi-
nition 4.10) conforms to a fair concreteness preorder (Definition 2.12). This
can be established based on the following lemma:

Lemma 4.3.
Let K and Ka be defined as in Theorem 4.4. Moreover, let s ∈ S and sa ∈ Sa be
any two corresponding states, i.e. La(sa)≤K3 L(s). Then for the spotlight process
Prock with the summarised region Reg we have that:

1. If s′a ∈ Sa is any abstract state such that Ra
k(s

a,s′a) = true, then there is a
concrete state s′ ∈ S such that Rk(s,s′) = true and La(s′a)≤K3 L(s′).

2. If s′ ∈ S is any concrete state such that Rk(s,s′) , f alse, then there is an
abstract state s′a ∈ Sa such that Ra

k(s
a,s′a) , f alse and La(s′a)≤K3 L(s′).

Proof (Lemma 4.3).
We start with (1). Let G = (Loc,δ) be the CFG of Prock before applying region
summarisation, and let GReg = (LocReg,δReg) be the abstract CFG of Prock after

4.2 Spotlight Abstraction 77

applying region summarisation. Moreover, let l be the location of GReg in sa

and l′ be the location of GReg in s′a. We can distinguish the following cases:

• The transition Ra
k(s

a,s′a) is independent from the region Reg. Then l , r
and l′ , r, and there is an abstract basic operation bopa with δReg(l,bopa, l′).
According to Definition 4.10 (1) there exists a transition δ (l,bop, l′) in G
with bopa � bop. Thus, taking the transition corresponding to δ (l,bop, l′)
in the concrete state s of K leads us to a state s′ with La(s′a)≤K3 L(s′).

• Ra
k(s

a,s′a) is a transition that enters the region Reg. Then l , r and l′ = r, and
there is an abstract basic operation bopa with δReg(l,bopa, l′). According to
Definition 4.10 (2) there exists a location l̃ ∈ Reg with δ (l,bop, l̃) in G and
bopa � bop. Thus, taking the transition corresponding to δ (l,bop, l̃) in the
concrete state s of K leads us to a state s′ with La(s′a)≤K3 L(s′).

• Ra
k(s

a,s′a) is a transition that leaves the region Reg. Then l = r and l′ , r, and
there is an abstract basic operation bopa with δReg(l,bopa, l′). According
to Definition 4.10 (3) the guard of bopa contains a conjunction with ⊥.
We can conclude that Ra

k(s
a,s′a)<K3 true, i.e. it is not a definite transition.

Hence, the premise of 1 does not hold.

• Ra
k(s

a,s′a) corresponds to the self-loop associated with region Reg. Then
l = r and l′ = r, and there is an abstract basic operation bopa = grda : assa
with δReg(l,bopa, l′). The premise of 1 is that Ra

k(s
a,s′a) = true. According to

Definition 4.10 (4), this is only the case if sa is a state where all guards
of transitions in G that leave the region evaluate to false. According to
the semantics of our systems, in each state there is at least one enabled
transition for each process. Hence, there must be two locations l̂, ľ in
Reg with δ (l̂,grd : ass, ľ) in G and the guard grd is true in s. According
to Definition 4.10 (4), the assignment part assa of the operation bopa in
δReg(l,bopa, l′) approximates all assignments of operations on transitions
within Reg, and thus, we have that assa � ass. Hence, taking the transition
corresponding to δ (l̂,grd : ass, ľ) in the concrete state s of K leads us to a
state s′ with La(s′a)≤K3 L(s′).

Next, we prove (2). Let G= (Loc,δ) be the CFG of Prock before applying region
summarisation, and let GReg = (LocReg,δReg) be the abstract CFG of Prock after
applying region summarisation. Moreover, let l be the location of G in s and l′

be the location of G in s′. We again can distinguish the following cases:

• Rk(s,s′) is a transition independent from the region Reg. Then l < Reg and
l′ < Reg, and there is a basic operation bop with δ (l,bop, l′). According to
Definition 4.10 (1), there exists a transition δReg(l,bopa, l′) in GReg with
bopa � bop. Thus, taking the transition corresponding to δReg(l,bopa, l′) in
the abstract state sa of Ka leads us to a state s′a with La(s′a)≤K3 L(s′).

78 4 Abstraction for Concurrent Systems

• Rk(s,s′) is a transition that enters the region Reg. Then l < Reg and l′ ∈ Reg,
and there is a basic operation bop with δ (l,bop, l′). According to Definition
4.10 (2), there exists a transition δReg(l,bopa,r) in GReg with bopa � bop.
Thus, taking the transition corresponding to δReg(l,bopa,r) in the abstract
state sa leads us to a state s′a with La(s′a)≤K3 L(s′).

• Rk(s,s′) is a transition that leaves the region Reg. Then l ∈ Reg and l′ < Reg,
and there is a basic operation bop = grd : ass with δ (l,bop, l′). According
to Definition 4.10 (3), there exists a transition δReg(r,bopa, l) in GReg with
bopa = grda ∧⊥ : assa where grda � grd and assa � ass; i.e. bopa approxi-
mates bop. Since l ∈ Reg, we have that La(sa, pc j = r) = true. Thus, taking
the transition corresponding to δReg(r,bopa, l) in the abstract state sa leads
us to a state s′a with La(s′a)≤K3 L(s′).

• Rk(s,s′) is a transition within the region Reg. Then l ∈ Reg and l′ ∈ Reg,
and there is a basic operation bop = grd : ass with δ (l,bop, l′). According
to Definition 4.10 (4), there is a transition δReg(r,grda : assa,r) in GReg with
grda ≡⊥∨

∧
g∈Grd¬ga where ga � g and ∀ass ∈ Ass : assa � ass. Hence, assa

approximates the assignment part ass of bop. Moreover, we have that
Ra

k(s
a,s′a) , f alse because the guard grda contains a disjunction with ⊥.

Thus, taking the transition corresponding to δReg(r,grda : assa,r) in sa leads
us to a state s′a with La(s′a)≤K3 L(s′).
ut

In Theorem 4.4 we assume that region summarisation is applied to a single
process Prock only. Transitions associated with processes different to Prock are
not affected by our modification of the abstraction. Hence, from Lemma 4.3
together with our prior results on spotlight abstraction we get the following
corollary:

Corollary 4.6.
Let Sys = ‖n

i=1 Proci be a concurrent system and Spot = Spot(Proc)∪Spot(Pred)
be a given set of spotlight processes and predicates. Moreover, let Prock ∈
Spot(Proc) be a spotlight process and let Reg be a region of its control loca-
tions. Let Sysa = ‖Proci∈Spot(Proc) Proca

i ‖ ProcShade be the corresponding abstract
system where region summarisation is applied to Prock with regard to Reg.
Furthermore, let K = (S,R,L,F) be the three-valued Kripke structure represent-
ing Sys, and Ka = (Sa,Ra,La,Fa) the three-valued Kripke structure representing
Sysa, both defined over AP= Spot(Pred)∪{pci = j|Proci ∈ Spot(Proc)\Prock, j ∈
Loci}∪{pck = j| j ∈ Lock\Reg∨ j = r}. Then the set of all pairs of correspond-
ing states s ∈ S and sa ∈ Sa characterises a fair concreteness preorder �c Sa×S
between Ka and K.

The correctness of Theorem 4.4 now immediately follows from Theorem 2.3,
which states that a fair concreteness preorder preserves all CTL properties.
ut

4.3 Related Work 79

Region summarisation is a technique that allows us to modify three-valued
abstractions based on additional knowledge about the considered system. In
certain cases this gives us more definite results in verification – specifically,
in cases where we want to validate that in all computations sets of particular
control locations are never left. Since applying region summarisation princi-
pally means to sum up parts of a process’ control flow in one location, this
technique does not entail any further growth of the state space. It rather coun-
teracts state explosion in terms of reducing the number of control locations,
but still can give us more definite verification results. Region summarisation
corresponds to a local modification of the abstraction, i.e. building a region
affects the control flow of a single process. Although we have only considered
the single application of region summarisation, this technique can be applied
several times in one abstraction, i.e. multiple regions can be constructed
for different processes. It remains the question of how to select expedient
regions in a fully-automatic approach to verification, or more precisely, how
to integrate region summarisation into our overall framework. We already
have seen that the set possible concretisations of a three-valued model hints
at a region, but the construction of all these concretisations usually causes an
unacceptable computational overhead. In the next chapter, we will see how
imprecise abstractions of concurrent systems can be iteratively refined under
heuristic guidance, which also includes an approach to automatic region se-
lection. In particular, we will see that knowledge about the underlying system
can be efficiently exploited for finding good regions.

Concluding this chapter, we have seen the two core concepts of the abstrac-
tion part of our verification framework: predicate abstraction and spotlight
abstraction, plus a number of valuable extensions. Our approach facilitates
the construction of small abstract models that preserve several properties of
the original system. The next question is – how to automatically arrive at
the right level of abstraction for a certain verification task? – which we will
approach in the subsequent chapter. Beforehand, we take a look at related
work on abstraction in formal verification.

4.3 Related Work

Our research on abstraction for concurrent systems is connected to other
approaches in a number of ways. In this section we summarise and extend
our previous references to related works.

Abstraction is a key technique for reducing the complexity of formal verifi-
cation which has received considerable attention in research. In early work
[38], Clarke et al. transferred the concept of abstract interpretation [46, 47]
to the field of temporal logic model checking. Their approach is based on
the definition of an abstraction function mapping concrete data domains to
abstract ones. This allows to construct a small abstract state model of a given

80 4 Abstraction for Concurrent Systems

finite-state program. The obtained model conservatively approximates the
set of reachable states, and thus, enables the verification of either existential
or universal properties. A similar approach is Kurshans localisation reduction
[91], also known as variable hiding. This reduction technique abstracts away
entire variables with non-deterministic assignments. While the practical ap-
plicability of the abovementioned approaches is limited to the verification of
smaller hardware programs, subsequent works focused on improvements of
abstraction techniques towards software model checking.

Boolean predicate abstraction (compare Section 4.1.1) introduced by Graf
and Saidi [66] and Ball et al. [11] is a method for automatically transforming
guarded command systems [66] resp. C programs [11] into boolean programs.
These boolean programs are defined over a finite set of predicates rather than
over concrete variables, which leads to a significantly smaller state space. The
transformation can either preserve existential or universal properties. Three-
valued predicate abstraction (compare Section 4.1.2) proposed by Godefroid
and Jagadeesan [65] is capable of preserving both existential and universal
properties. This extension of classical boolean abstraction employs a third
truth value unknown that facilitates to explicitly reveal the loss of information
due to abstraction, and thus, to combine over- and underapproximation in
one abstract model. Three-valued abstraction is used in many frameworks
for formal verification, e.g. [115, 67, 4, 87], and in particular, it is one of the
core concepts of the verification technique developed in this thesis. Besides,
there exist more generalised approaches to predicate abstraction, based on
four-valued [73] or generally multi-valued [99] domains for truth values.
These extensions enable a more nuanced modelling of the loss of information,
however, at the price of an increasing complexity of verification.

All previously considered approaches can be regarded as data abstraction
techniques that cut down the state space induced by large variable domains.
Concurrency is another major challenge in formal verification. Therefore,
specific reduction techniques for concurrent systems have been investigated in
a number of works. Spotlight abstraction was initially introduced by Wachter
and Westphal [123] as an approach to the verification of parameterised sys-
tems. A spotlight is set on a small set of processes, while the remaining ones
are summarised into one shade component, i.e. they are nearly completely
abstracted away by the truth value unknown. This form of abstraction yields
an overapproximation of the original system, and thus, does not preserve
existential properties. Schrieb et al. [112] combined spotlight abstraction
with three-valued predicate abstraction for verifying non-uniform concurrent
systems (compare Section 4.2). Their approach guarantees the preservation
of full CTL properties. Our framework for abstraction is based on the method
from [112], however, we have enhanced the original approach in several
ways. The new concepts shade clustering (compare Section 4.2.2) and region
summarisation (compare Section 4.2.3) enable us preserve additional def-
inite behaviour in the abstraction. Shade clustering can be regarded as a
generalisation of the original spotlight principle. Instead of summarising the

4.3 Related Work 81

shade processes into one component, we build multiple clusters of similar
shade processes. Our region summarisation technique is related to the lazy
abstraction approach by Henzinger et al. [79]. Like region summarisation,
lazy abstraction involves different degrees of precision in different parts of the
abstract model. However, we achieve this effect by summarising control flow
locations, whereas lazy abstraction associates a different number of predicates
with each control flow location.

There exist a number of reduction techniques for concurrent systems that
follow a similar approach as spotlight abstraction. Counter abstraction by
Pnueli et al. [110] considers one process in detail, whereas for the remaining
system it is just counted whether no, exactly one or more than one process is at
a particular control flow location. Environment abstraction proposed by Clarke
et al. in [35] combines this approach with boolean predicate abstraction. How-
ever, these two techniques are restricted to parameterised systems consisting
of identical processes. We address parameterised verification separately in
Chapter 6.

A different approach to the abstraction of concurrent systems is composi-
tional reasoning. In [78] Henzinger et al. present a verification framework
based on thread-modular abstraction. Instead of constructing one abstract
model for the entire concurrent system, each thread (i.e. process) is separately
abstracted and verified under an overapproximating environment assumption.
The single verification results are then used to infer a global property of the
system. This technique is limited to the verification of safety properties.

So far, we have discussed abstraction techniques that are based on some
form of approximation, i.e. not every result obtained for the abstract model
can be transferred to the original system. Nevertheless, there also exist “pre-
cise” abstraction techniques for concurrent systems. Partial order reduction
by Godefroid [64] is technique that exploits independence of concurrently
executed operations. If the execution of a number of operations has the same
result under each possible ordering then the corresponding state transition
model is restricted to one representative ordering. This form of reduction
preserves safety as well as liveness properties, while the number of possible
interleavings is cut down. The effectiveness of partial order reduction cor-
relates with the degree of independence in the concurrent system. In our
abstraction framework, we also reduce the number of interleavings, however,
not by exploiting independence but by summarising processes in approxi-
mative shade components. Hence, our approach to state space reduction is
more rigorous but it involves a loss of precision. Another “precise” abstraction
technique for concurrent systems is symmetry reduction [101] which is based
on the exploitation of the inherent symmetries of parameterised systems. The
combination of spotlight abstraction and symmetry reduction is the topic of
Chapter 6.

Many of the abstraction techniques that we have discussed in this section
are integrated into frameworks for abstraction refinement. Thus, we will
consider some of them again in the next chapter, where we introduce our

82 4 Abstraction for Concurrent Systems

approach to the refinement of imprecise abstractions. Moreover, we will
discuss prospects of combining these related techniques with our approach in
the section about future work (Section 8.3).

Chapter 5
Heuristic-Guided Abstraction Refinement

Abstraction is essential in handling the complexity of real-life concurrent
software systems in temporal logic verification. In the previous chapter we
have considered predicate abstraction and spotlight abstraction, and moreover,
introduced a number of enhancements that enable us to build small abstract
models which still preserve certain system properties we are interested in.
However, in the case that abstraction-based model checking yields unknown,
we cannot draw any conclusions about the concrete system. We solely know
that the current abstraction is too coarse for a definite result in verification.
Therefore, common approaches usually combine abstraction with iterative
abstraction refinement. – Starting with a very coarse abstract model, new
predicates (or processes) are gradually added until a level of abstraction is
reached where the property of interest can be proven or refuted. Abstraction
refinement can be performed manually which, however, contradicts the idea
of a fully automatic approach to software verification. Automated refinement
techniques are usually based on the elimination of spurious or unconfirmed
counterexamples by adding further details to the abstraction. Typically, a
counterexample hints at several ways of abstraction refinement, but not
every possible refinement step is expedient. Unfavourable decisions may
unnecessarily enlarge the abstract model, without leading to definite result in
verification. Thus, automatic abstraction refinement is generally the crucial
and most challenging part of abstraction-based verification.

In this chapter, we present the refinement procedure of our verification
approach. We start with the introduction of counterexample-guided abstraction
refinement (CEGAR), a well-established technique for the iterative refine-
ment of abstract system models. Common CEGAR approaches are defined for
boolean abstractions and base their refinement decisions on the analysis of
one counterexample in each iteration. We show that for our three-valued ab-
stractions multiple counterexamples can be efficiently generated, which gives
us a broader basis for refinement decisions. Finally, we present our heuristic
framework for abstraction refinement. Based on a structural analysis of the
underlying system we heuristically evaluate the benefit of potential refinement

83

84 5 Heuristic-Guided Abstraction Refinement

steps, which enables us to guide the refinement in expedient directions, and
thus to obtain definite verification results on very small abstractions.

5.1 Counterexample-Guided Abstraction Refinement

Software verification based on boolean predicate abstraction commonly in-
corporates counterexample-guided abstraction refinement (CEGAR) [34]. New
predicates are incrementally added to an initially very coarse abstract model
until a level of abstraction is reached where the property of interest can be
either proven or refuted. This fully automatic approach to iterative abstraction
refinement is guided by spurious counterexamples – error paths that are only
feasible in the abstract model, but not in the original system. In order to deter-
mine whether a counterexample that has been discovered in the abstraction
is real or spurious, it has to be retraced on the concrete system. A spurious
counterexample eventually reaches an abstract state that is not reachable in
the original system. Now, classical counterexample-guided abstraction refine-
ment automatically adds new predicates that separate this abstract state into
more concrete states, and thus, eliminate the spurious counterexample. The
new predicates are commonly derived from weakest preconditions [9, 13]
or from Craig interpolants [95, 77, 96] computed for locations along the
counterexample.

CEGAR frameworks are widespread in verification techniques based on
boolean abstractions [34, 10, 18, 27]. The counterexample-guided abstraction
refinement approach has also been transferred to the field of three-valued
abstractions [112, 114, 67]. Here, the uncertainty in unconfirmed counterex-
amples is eliminated by adding new predicates [112, 114, 67] or also pro-
cesses [112]. Three-valued abstraction refinement generalises the classical
CEGAR. In this section, we therefore introduce the three-valued variant of
counterexample-guided abstraction refinement. All the definitions and the
general procedure presented here can be straightforwardly transferred to the
boolean scenario. We start with a motivating example. In Figure 5.1 we have
a message passing system where several processes communicate via channel
c, but only Proc1 attempts to communicate via channel d.

Here we might be interested in verifying whether Proc1 never reaches the
error location, i.e. whether the CTL formula AG¬(pc1 = 4) yields true. The
error will be only reached if the communication operations receive(c,x) and re-
ceive(d,y) can be successfully executed, and if afterwards x < y holds. However,
there is no process that ever sends a message to channel d. Thus, receive(d,y)
will be never successful and we can conclude that AG¬(pc1 = 4) holds. In the
following, we show how this verification result can be systematically obtained
by three-valued spotlight abstraction with counterexample-guided abstraction
refinement. The first step is to select an initial abstraction, or rather, an initial
spotlight (see Definition 5.1).

5.1 Counterexample-Guided Abstraction Refinement 85

c,d : channel [1] of integer

Proc1 ::

local x : integer where x = 0
local y : integer where y = 0
1 : receive(c,x)
2 : receive(d,y)
3 : if x < y then[

4 : error
]

else[
5 : end

]

‖n

i=2 Proci ::

 . . .
send(c,1)
. . .

 ‖m
j=n+1 Proc j ::

 . . .
receive(c,z j)
. . .

Fig. 5.1 Message passing system Sys12 = ‖n

i=1 Proci over Var = {c,d,x,y,zn+1, . . . ,zm}.

Definition 5.1 (Initial Spotlight).
Let Sys = ‖n

i=1 Proci be a concurrent system over a set of variables Var. More-
over, let ψ over Sys be the CTL formula to be verified. Then the initial spotlight
Spot = Spot(Proc)∪Spot(Pred) is defined by the processes that are referenced
in ψ, and the atomic predicates over Var that are subformulae of ψ.

Hence, for the message passing system Sys12 in Figure 5.1 and the CTL formula
AG¬(pc1 = 4) we get Spot(Proc) = {Proc1} and Spot(Pred) = /0 as the initial
spotlight. Model checking the formula AG¬(pc1 = 4) on an abstract Kripke
structure Ka corresponding to the initial spotlight yields unknown. Hence, it is
uncertain whether this assertion about the branching structure of Ka holds
or not. There exists no substructure or path π of Ka that definitely proves
or refutes the formula. However, there must be a substructure with some
unknown transitions or labellings that may correspond to a real counterexam-
ple or witness if we resolve some uncertainty by refinement. We call such a
substructure an unconfirmed counterexample1. For convenience, we sometimes
just write counterexample if it is clear from the context that we refer to an
unconfirmed one. The unconfirmed counterexample π that we obtain for
checking AG¬(pc1 = 4) on our current abstraction is depicted in Figure 5.2.

pc1 = 1π :: pc1 = 2 pc1 = 3 pc1 = 4⊥ ⊥⊥

Fig. 5.2 Unconfirmed counterexample π for AG¬(pc1 = 4) on the abstraction of Sys12, given
by Spot(Proc) = {Proc1} and Spot(Pred) = /0.

1 Remember that by the term “unconfirmed counterexample”, we refer to a substructure of
a Kripke structure that can be extended to either a real counterexample or a real witness
for a temporal logic formula. Moreover, remember that unconfirmed counterexamples can
be always reduced to linear fragments, i.e. paths. (Compare Section 2.2)

86 5 Heuristic-Guided Abstraction Refinement

As we can see, the abstract state space is solely defined over the program
counter of the spotlight process Proc1. The abstract computation represented
by the counterexample starts at Proc1’s initial location. It is unknown whether
receive on channel c can be successfully accomplished, because the guard of
this operation, ¬emptyc, is not part of the abstraction. The same holds for
the subsequent receive on channel d. Finally, it is uncertain which branch of
the if-then-else operation at location 3 can be taken, since the predicate x < y
is missing in the current abstraction. Thus, the error location will maybe be
reached according to this counterexample.

Our informal analysis of the counterexample already gives us a rough
idea about counterexample-guided abstraction refinement. The unknown
transitions along the trace correspond to guarded operations in a computation,
where the guards are currently not part of the abstraction. Adding one or
more of these guards to the abstraction would remove some uncertainty and
might even bring us a definite result in verification. Hence, ¬emptyc, ¬emptyd
and x < y are the refinement candidates that we can derive here. For the sake
of illustration, we henceforth will directly annotate our counterexamples with
the candidates, i.e. for π we get:

pc1 = 1π ::

¬emptyc

pc1 = 2

¬emptyd

pc1 = 3

x < y

pc1 = 4⊥ ⊥⊥

Fig. 5.3 Unconfirmed counterexample π for AG¬(pc1 = 4) on the abstraction of Sys12, given
by Spot(Proc) = {Proc1} and Spot(Pred) = /0, annotated with refinement candidates.

Such annotated counterexamples can be automatically generated by our
verification framework. In spotlight abstraction, candidates can not only be
predicates but also processes. E.g., a predicate may be unknown in a state
along a counterexample due to a transition associated with the shade com-
ponent. Then each shade process modifying this predicate is a refinement
candidate. From [112] we get the following procedure for determining refine-
ment candidates:

Let Sys = ‖n
i=1 Proci be a concurrent system and Spot = Spot(Proc)∪Spot(Pred)

a given spotlight. Let Ka = (Sa,Ra,La,Fa) be the corresponding three-valued
Kripke structure over AP = Spot(Pred)∪{pci = j | Proci ∈ Spot(Proc), j ∈ Loci},
and let sa ∈ Sa be a state of Ka. Moreover, let ψ be a CTL formula over AP with
[Ka,sa |= ψ] = unknown and let π be a corresponding unconfirmed counterex-
ample. Then the uncertainty in π may be caused by:

1. An unknown transition (s,s′) along π. Let bop be the concrete basic opera-
tion associated with (s,s′). Then we can distinguish the following cases:

5.1 Counterexample-Guided Abstraction Refinement 87

a. The guard e of bop is not contained in the set of predicates Spot(Pred).
Then e is a refinement candidate.

b. The guard e of bop is already contained in the set of predicates
Spot(Pred), but e is unknown in the state s. Then continue with step 2.

c. The transition (s,s′) is associated with some shade component Proc j
Shade.

Then all processes summarised in Proc j
Shade are refinement candidates.

(Only with shade clustering. Compare Section 4.2.2.)

2. A predicate p∈ Spot(Pred) that is unknown in some state s in π. Let s̄ be the
last predecessor of s in π, where p evaluates to a definite value. Moreover,
let s̄′ be the direct successor of s̄ in π. Then we can distinguish the following
cases:

a. The transition (s̄, s̄′) is associated with a spotlight process. Let bop be the
basic operation corresponding to (s̄, s̄′), let wpbop(p) be the weakest pre-
condition of bop with regard to p, and wpbop(p) is not contained in the
set of predicates Spot(Pred). Then wpbop(p) is a refinement candidate.

b. The transition (s̄, s̄′) is associated with a spotlight process. Let bop be
the basic operation corresponding to (s̄, s̄′), let wpbop(p) be the weakest
precondition of bop with regard to p, and wpbop(p) is already contained
in the set of predicates Spot(Pred), but wpbop(p) is unknown in the state
s̄. Then backtrack to step 2.

c. The transition (s̄, s̄′) is associated with some shade component Proc j
Shade.

Then all processes summarised in Proc j
Shade are refinement candidates.

(Note that in spotlight abstraction without shade clustering there is only
one shade component.)

Hence, refinement candidates are derived by computing weakest precondi-
tions and by determining shade processes that are associated with certain
transitions. Alternatively, candidates can be derived via Craig interpolation
[95, 77, 96] which generates predicates that are relevant to eliminate the
current counterexample. However, the latter approach is restricted to boolean
abstractions where retracing a spurious error trace yields an unsatisfiable
formula which is the basis for computing interpolants. In the following we
thus assume that the refinement candidates are generated according to the
procedure above.

It remains the question of how to automatically refine the abstraction,
i.e. how to decide which candidate(s) should be drawn into the spotlight. A
common way is to add all discovered candidates to the abstraction in each
step, e.g. applied in [96]. Other CEGAR approaches, e.g. [34, 112, 114, 67],
just determine the first refinement candidate along the counterexample and
add this candidate to the abstract model. In both cases the steps abstraction,

88 5 Heuristic-Guided Abstraction Refinement

model checking, and refinement are then iteratively repeated until a definite
result in verification is obtained. We will discuss the advantages and disadvan-
tages of the all-candidates and the first-candidate strategy in counterexample-
guided abstraction later in detail. Beforehand, we continue with our running
example Sys12 and refine the current abstraction Spot(Proc) = {Proc1} and
Spot(Pred) = /0 according to the first-candidate strategy.

The first candidate along the counterexample in Figure 5.3 is the guard
¬emptyc. Hence, we add the atomic predicate emptyc to the abstraction. The
resulting spotlight is Spot(Proc) = {Proc1} and Spot(Pred) = {emptyc}. Again,
model checking yields an indefinite result and we obtain another annotated
counterexample:

pc1 = 1
emptyc = tπ :: pc1 = 1

emptyc =⊥

Proc2, . . . ,Procm

pc1 = 2
emptyc =⊥

¬emptyd

pc1 = 3
emptyc =⊥

x < y

pc1 = 4
emptyc =⊥

⊥ ⊥ ⊥

Fig. 5.4 Unconfirmed counterexample π for AG¬(pc1 = 4) on the abstraction of Sys12, given
by Spot(Proc) = {Proc1} and Spot(Pred) = {emptyc}, annotated with refinement candidates.

The first transition of this trace is associated with the shade component. It
sets the initially true predicate emptyc to ⊥, which characterises that there
are processes in the shade that potentially communicate via the channel
c, and hence, may affect emptyc in an unknown manner. In the consequent
state it is thus uncertain whether receive on channel c can be successfully
accomplished by Proc1. Our counterexample reveals that every shade process
communicating on c is a corresponding refinement candidate. The remaining
candidates ¬emptyd and x < y are the same as in our previous counterexample.

Continuing the first-candidate strategy for counterexample-guided abstrac-
tion refinement, we iteratively add the processes affecting emptyc to the
spotlight until we have validated or refuted that there exists a transition from
Proc1’s location 1 to 2.2 In case that abstraction refinement reveals such a
computation where send(c,x) is definitely successfully executed by Proc1, we
will obtain a further counterexample, now with ¬emptyd as the first candidate.
– The refinement candidate emptyd is the crucial predicate here: There is no
process in the message passing system that ever sends a message via channel
d. Hence, adding emptyd to the spotlight (together with applying region sum-
marisation3 for the locations 1 and 2) will immediately reveal that the error
location is unreachable, and we can deduce that AG¬(pc1 = 4) holds.

2 Note that, due to simplification, the processes Proc2 to Procm are not entirely specified in
our example system Sys12, and thus, we can not predict how many of these processes have
to be added to the spotlight in order to validate or refute a transition from location 1 to 2
in Proc1.
3 In Section 5.2 we will see how the selection of regions can be efficiently automated.

5.1 Counterexample-Guided Abstraction Refinement 89

We can summarise spotlight abstraction with iterative counterexample-
guided abstraction refinement as follows:

Let Sys = ‖n
i=1 Proci be a concurrent system and ψ the CTL formula to be verified.

Then:

1. Determine the initial spotlight Spot = Spot(Proc)∪Spot(Pred) according to
Definition 5.1.

2. While no definite result in verification is obtained:

a. Build the abstract Kripke structure Ka corresponding to Sys and Spot.

b. Let sa be the state of Ka that corresponds to the initial configuration of
Sys. Check [Ka,sa |= ψ].

c. If model checking yields a definite answer, this result can be transferred
to the original system Sys,

d. else, model checking returns an unconfirmed counterexample π. Select
a refinement candidate along π according to some strategy and add the
candidate to the spotlight.

Hence, with counterexample-guided abstraction refinement we have a sys-
tematic and fully automatable approach for incrementally constructing ab-
stractions in temporal logic model checking. However, our running example
reveals that following the widely spread first-candidate strategy may yield
abstractions that are unnecessarily large: None of the considered processes
Proc2 to Procm are essential for validating AG¬(pc1 = 4), whereas the lastly
added predicate emptyd by itself suffices for a definite result in verification.

Nevertheless, there exist arguments that justify the first-candidate approach
under certain circumstances. Remember that classical boolean abstraction
techniques require a retracement of counterexamples on the original system,
in order to decide whether a counterexample is real or spurios. This additional
computation involves a partial exploration of the concrete state space, and
thus, suffers from state explosion. However, the retracement can be immedi-
ately stopped when the counterexample reaches a state that is not reachable
in the original system. Thus, the first-candidate strategy in boolean CEGAR can
significantly reduce the effort for retracing counterexamples. Moreover, it has
been demonstrated by Clarke et al. [34] that selecting the first candidate is
an appropriate heuristic for obtaining the coarsest refinement that eliminates
a spurious counterexample. These arguments apply to boolean abstractions.
However, in three-valued abstractions we have slightly different circumstances.
First, there is no necessity for retracing counterexamples. – A retracement of
counterexamples in the context of spotlight abstraction rather unreasonable,
since abstract transitions associated with the shade cannot be mapped to a

90 5 Heuristic-Guided Abstraction Refinement

single concrete operation. And second, refinement for three-valued abstrac-
tions is not limited to the elimination of counterexamples – an unconfirmed
counterexample might also be confirmed by refining the abstraction. Thus, a
refinement heuristic which is exclusively geared towards the cheapest way to
eliminate a counterexample appears to be too narrowed for the three-valued
scenario.

CEGAR frameworks based on interpolation, e.g. [77, 96], usually follow a
more elaborate approach to refinement. These techniques generate a so-called
Craig interpolant for each control location along a spurious error trace. Such
an interpolant corresponds to a predicate (expression) that is relevant at
the particular location in terms of proving the infeasibility of the trace. All
interpolants computed for a counterexample are then locally added to the
abstraction, i.e. only at abstract states associated with the control location
where the respective interpolant was generated. This yields an abstraction
with different degrees of precision in different states, which is commonly
known as lazy abstraction [79, 98]. This approach to refinement can be re-
garded as an improved all-candidate strategy that involves a local enlargement
of the abstract state space – just along the spurious error trace. Such local
refinements have been proven to be highly efficient for counterexample elim-
ination. However, in our work we follow a broader approach. As already
mentioned, our unconfirmed counterexamples generally reveal two directions
for abstraction refinement, either towards confirmation or towards refutation.
Moreover, we are focused on finding refinements that eventually lead us to a
definite result in verification – which may not necessarily correlate with the
elimination of a single counterexample. There are also some technical aspects
that prevent the straightforward applicability of interpolation-based refine-
ment to our scenario: Interpolation-based abstraction refinement is limited to
the analysis of finite error traces, i.e. to the verification of safety properties
– whereas we focus on safety and liveness properties. Furthermore, Craig
interpolation requires to retrace a counterexample on the original system in
order to generate an unsatisfiable boolean formula that can be decomposed
into interpolants. However, our approach profits from a retracement-free re-
finement procedure, and our three-valued encoding does not reveal a boolean
(un)satisfiability problem.

Existing approaches to three-valued abstraction refinement, e.g. [112, 114,
67], have generalised the native concept of boolean counterexample-guided
abstraction refinement [34]. These techniques have been proven to be sound,
and their practical applicability has been demonstrated. However, hardly any
research has been spent on optimisations and adaptations. Decision proce-
dures for refinements of three-valued abstractions are directly adopted from
the basic CEGAR approach, and thus, do not exploit any specific characteristics
of the three-valued scenario.

In this work, we have developed a heuristic-guided abstraction refinement
framework that is specifically tailored to three-valued abstractions of concur-
rent systems. Our refinement heuristics also incorporate counterexamples,

5.2 Multiple Counterexample-Generation 91

but additionally the dependency structure of the considered system, and the
uncertainty in the abstraction. Moreover, our heuristics are not geared to-
wards a local goal like eliminating a certain counterexample, but towards
finally obtaining the coarsest abstraction that is precise enough for a definite
result in verification. In the remainder of this chapter, we gradually introduce
our heuristic approach to three-valued abstraction refinement for concurrent
systems. In the first step, we show that it can be beneficial to base refinement
decisions on more than one counterexample.

5.2 Multiple Counterexample-Generation

Our approach to the verification of concurrent system aims at an abstrac-
tion refinement procedure that heuristically selects the presumably ’best’
refinement candidate in each iteration. The selectable candidates are derived
from a generated counterexample. Such a counterexample may hint at a
large number of predicates and processes that are potentially relevant for the
underlying verification task. Nevertheless, it is also possible that a counterex-
ample only reveals a single candidate, and thus, there remains no scope for
heuristic decisions. Common model checking tools, e.g. HSF-SPIN [56], are
tailored to find short counterexamples, which is motivated by the fact that
short traces are easier to interpret by a user, and furthermore, require less
exploration of the state space. However, in our scenario the ’interpretation’,
i.e. counterexample-guided abstraction refinement, is done automatically –
not by a user. Moreover, we aim at finding small and precise abstractions by
selecting good refinement candidates – and not primarily at a small number
of explored abstract states. Short counterexamples in particular carry the
risk of a too narrowed number of associated candidates. Hence, if there exist
more than one (short) counterexample for the checked property in the current
abstraction, then it can be advisable to consider the additional longer traces as
well for deriving refinement candidates. In this section, we introduce multiple
counterexample-generation for heuristic-guided abstraction refinement, which
we have implemented on top of the model checker χChek [30, 54] that was
originally geared towards finding short counterexamples. We start with a
motivating example.

We look again at the message passing system Sys12 in Figure 5.1 and check
whether Proc1 will eventually reach end, i.e. whether AF(pc1 = 5) holds. For
the initial spotlight Spot(Proc) = {Proc1} and Spot(Pred) = /0, model checking
yields unknown, and moreover returns the counterexample π in Figure 5.5.
According to the trace π, Proc1 will maybe remain at location 1 forever. As we
can see, π solely hints at the candidate emptyc. Thus, our next refinement step
is predetermined. We add the predicate emptyc to the spotlight. And again,
we obtain a an indefinite result in verification and another counterexample π ′

in Figure 5.6.

92 5 Heuristic-Guided Abstraction Refinement

pc1 = 1π ::

emptyc

⊥

Fig. 5.5 Unconfirmed counterexample π for AF(pc1 = 5) on the abstraction of Sys12, given
by Spot(Proc) = {Proc1} and Spot(Pred) = /0, annotated with the only refinement candidate.

pc1 = 1
emptyc = tπ ′ ::

pc1 = 1
emptyc =⊥

Proc2, . . . ,Procm

⊥

Fig. 5.6 Unconfirmed counterexample π ′ for AF(pc1 = 5) on the abstraction of Sys12, given
by Spot(Proc) = {Proc1} and Spot(Pred) = {emptyc}, annotated with refinement candidates.

The path π ′ characterises a computation where the shade component sets
emptyc to unknown, and thus, Proc1 will maybe remain at location 1 perma-
nently. Furthermore, π ′ reveals a number of shade processes as refinement
candidates. We can choose between the processes Proc2 to Procm for the next
refinement step. However, we might end up in iteratively adding all these
processes to the spotlight until we discover a counterexample that hints at the
candidate emptyd – which is again the crucial predicate for a definite result in
the current verification task. We see that not only unfavourable refinement
decisions, but also unfavourable counterexamples are an issue in iterative
abstraction refinement. Even the best heuristic would be worth nothing if the
generated counterexample reveals only dispensable refinement candidates. A
prerequisite for the successful application of heuristics in abstraction refine-
ment is thus a wide range of candidates. In our approach, we therefore gener-
ate multiple counterexamples in each iteration, and then use all of them for
deriving refinement candidates. For the initial spotlight Spot(Proc) = {Proc1},
Spot(Pred) = /0 and the temporal logic formula AF(pc1 = 5) we can identify
three distinct counterexamples (see Figure 5.7).

The first, π1, is the same as in Figure 5.5; the second, π2, characterises that
Proc1 maybe successfully receives on channel c, and then maybe remains at
location 2 forever, due to an empty channel d. And the last, π3, corresponds
to a potential computation where Proc1 terminates at the error location. These
counterexamples together give us an enlarged set of refinement candidates,
which in particular contains the crucial candidate emptyd . In the next section,
we will show how we determine the presumably ’best’ refinement candidate
by heuristic evaluation. Beforehand, we take a deeper look at the system-
atic generation of multiple counterexamples in our abstraction refinement
framework.

5.2 Multiple Counterexample-Generation 93

pc1 = 1π1 ::

emptyc

⊥

pc1 = 1π2 ::

¬emptyc

pc1 = 2

emptyd

⊥
⊥

pc1 = 1π3 ::

¬emptyc

pc1 = 2

¬emptyd

pc1 = 3

x < y

pc1 = 4⊥ ⊥ ⊥

Fig. 5.7 Unconfirmed counterexamples π1, π2 and π3 for AF(pc1 = 5) on the abstraction
of Sys12, given by Spot(Proc) = {Proc1} and Spot(Pred) = /0, annotated with refinement
candidates.

In Figure 5.8 we have a tree representation T of the abstract state space corre-
sponding to our running example with Spot(Proc) = {Proc1} and Spot(Pred) =
/0. The root node characterises the initial state of the abstract system. In the
leaf nodes, a cycle in the state space has been reached. As we can see, all
counterexamples that we have considered before are comprised in T .

pc1 = 1T ::

pc1 = 1

pc1 = 2

pc1 = 3

pc1 = 2

pc1 = 5 pc1 = 5

pc1 = 4 pc1 = 4
⊥

¬emptyc

⊥

emptyc

⊥

¬emptyd

⊥

emptyd

⊥

¬(x < y)

⊥

x < y

Fig. 5.8 State space exploration tree T for the abstraction of Sys12, given by Spot(Proc) =
{Proc1} and Spot(Pred) = /0.

In case that model checking yields unknown, such an abstract state space tree
is partially constructed and explored in order to generate an unconfirmed

94 5 Heuristic-Guided Abstraction Refinement

counterexample. Our employed model checker χChek is tailored to find short
counterexamples. Hence, for our running example the path π1 will be detected
first (see Figure 5.9).

pc1 = 1π1 ::

pc1 = 1

pc1 = 2

pc1 = 3

pc1 = 2

pc1 = 5 pc1 = 5

pc1 = 4 pc1 = 4

⊥

emptyc

Fig. 5.9 Counterexample π1 in the state space exploration tree T .

However, we have already discussed that π1 is inexpedient for counterexample-
guided abstraction refinement. In our approach to multiple counterexample-
generation we thus backtrack to so-called open branching states of already
discovered counterexamples in order to start a search for further counterex-
amples in the same abstraction:

Let Sys = ‖n
i=1 Proci be a concurrent system, ψ the CTL formula to be verified,

and Spot = Spot(Proc)∪Spot(Pred) a given spotlight where model checking ψ

yields unknown. Moreover, let T be a tree representation of the corresponding
abstract state space. Then, starting at the root node of T , the abstract state
space is gradually explored until an unconfirmed counterexample π has been
discovered. For each ⊥-transition (πi,πi+1) along π that is associated with a
branch (e.g. an if branch with guard e) of a spotlight process Proc j the corre-
sponding complementary branch (πi,πk) (e.g. an else branch with guard ¬e)
is determined. The state πi is then marked as an open branching state of π

with the alternative branch (πi,πk). For multiple counterexample-generation the
procedure backtracks to such an open branching state πi, marks it as closed, and
attempts to expand the prefix π0 . . .πiπk to another unconfirmed counterexample.
This step is then iteratively repeated until no further unconfirmed counterexample
can be detected or a bound for the number of counterexamples has been reached.

Hence, for our running example we backtrack to the initial state of our first
counterexample π1 and then take the alternative branch to the abstract state
pc1 = 2. Now, χChek returns the trace π2 (see Figure 5.10).

5.2 Multiple Counterexample-Generation 95

pc1 = 1π2 ::

pc1 = 1

pc1 = 2

pc1 = 3

pc1 = 2

pc1 = 5 pc1 = 5

pc1 = 4 pc1 = 4
⊥

¬emptyc

emptyd

⊥

Fig. 5.10 Counterexample π2 in the state space exploration tree T .

The counterexample π2 gives us the additional refinement candidate emptyd .
For the generation of further counterexamples, we backtrack to the state
pc1 = 2 and take the previously undiscovered branch to pc1 = 3. We obtain the
counterexample π3 (see Figure 5.11) which hints at another new candidate
x < y.

pc1 = 1π3 ::

pc1 = 1

pc1 = 2

pc1 = 3

pc1 = 2

pc1 = 5 pc1 = 5

pc1 = 4 pc1 = 4
⊥

¬emptyc

⊥

¬emptyd ⊥

x < y

Fig. 5.11 Counterexample π3 in the state space exploration tree T .

The remaining branch from pc1 = 3 to pc1 = 5 can not be extended to an
error trace. Thus, there exist no further unconfirmed counterexample in the
current abstraction. Nevertheless, with π1, π2 and π3 we have a sufficiently
broad basis for counterexample-guided abstraction refinement. In general,
our approach to multiple counterexample-generation yields error traces that

96 5 Heuristic-Guided Abstraction Refinement

cover different branches of the control flow of the spotlight processes. This
involves a large variety of the corresponding refinement candidates. Moreover,
it enables us to identify candidates that can be used for the concretisation of
more than one unconfirmed counterexample.

Multiple counterexample-generation also facilitates the automatic selection
of expedient regions (compare Section 4.2.3). Obtaining a second counterex-
ample is always the result of backtracking to an open branching state and
taking the alternative branch. In particular, this approach yields complementary
counterexamples.

Definition 5.2 (Complementary Counterexamples and Associated Region).
Let Sys = ‖n

i=1 Proci be a concurrent system, ψ the CTL formula to be verified,
and Spot = Spot(Proc)∪Spot(Pred) a given spotlight where model checking
ψ yields unknown. Moreover, let K be the corresponding three-valued Kripke
structure. Let π = π0π1π2 . . . and π ′ = π ′0π ′1π ′2 . . . be two different unconfirmed
counterexamples in K for ψ. Then π and π ′ are complementary iff

• ∃i ∈ N such that ∀0≤ k ≤ i : πk = π ′k, i.e. both paths have a common prefix,

• R(πi,πi+1) =⊥ and R(πi,πi+1) corresponds to an operation op of a spotlight
process Proc j with a guard e,

• R(π ′i ,π
′
i+1)=⊥ and R(π ′i ,π

′
i+1) corresponds to an operation op′ of a spotlight

process Proc j with a guard ¬e.

The associated region Reg of such a pair of complementary counterexamples
π and π ′ is the set of control locations of Proc j that are reached along the
suffixes πiπi+1πi+2 . . . and π ′i π

′
i+1π ′i+2

Hence, the counterexamples π1 and π2 in our running example are comple-
mentary. Both have the same initial state, one takes the branch to location 1
of Proc1, whereas the other takes the complementary branch to location 2 of
the same process. The predicate emptyc is not part of the current abstraction,
thus, both branching transitions evaluate to unknown. It is not predictable
which of the two transitions can be actually taken. However, since both have
complementary guards, either location 1 or location 2 will be reached. In case
that we discover such a pair of complementary counterexamples, the sum of
locations on both branches hints at an appropriate region. We e.g. have that
π1 and π2 are complementary with regard to a branch of the process Proc1.
Thus, by summing up Proc1’s locations on both branches, we obtain the region
Reg = {1,2}. Applying region summarisation (compare Section 4.2.3) for Reg
gives us a modified abstraction which is now completely independent from the
channel c. This enables us to validate AF(pc1 = 5) by just adding the predicate
emptyd to the spotlight. The general approach to spotlight abstraction with
multiple counterexample-guided abstraction refinement and automatic region
summarisation now works as follows:

5.3 Heuristic Framework for Abstraction Refinement 97

Let Sys = ‖n
i=1 Proci be a concurrent system and ψ the CTL formula to be verified.

Then:

1. Determine the initial spotlight Spot = Spot(Proc)∪Spot(Pred).

2. While no definite result in verification is obtained:

a. Build the abstract Kripke structure Ka corresponding to Sys and Spot.

b. Let sa be the state of Ka that corresponds to the initial configuration of
Sys. Check [Ka,sa |= ψ].

c. If model checking yields a definite answer, this result can be transferred
to the original system Sys,

d. else, model checking returns a set of unconfirmed counterexamples
Π= {π1, . . . ,πk}.

i. Select a pair of complementary counterexamples out of Π, determine
an associated region Reg and apply region summarisation.

ii. If model checking yields a definite answer for the modified abstrac-
tion, this result can be transferred to the original system Sys,

iii. else, remove the region.

e. Select a refinement candidate along a counterexample in Π and add the
candidate to the spotlight.

Thus, the final – and most crucial – step in each iteration of our enhanced
CEGAR approach is the selection of a refinement candidate. In the next,
we introduce our framework for heuristic-guided abstraction refinement. In
particular, we show how the candidates derived by multiple counterexample
generation can be heuristically evaluated in order to determine the presumably
’best’ candidate for refinement.

5.3 Heuristic Framework for Abstraction Refinement

Multiple counterexample generation commonly yields a large set of refine-
ment candidates in each abstraction iteration. Nevertheless, it remains to
decide which particular candidate to select for refinement. We have already
discussed that a naive approach like the first-candidate strategy may guide the
refinement in unfavourable directions, without converging to a definite result
in verification. Likewise, adding all derived candidates in one refinement step

98 5 Heuristic-Guided Abstraction Refinement

may introduce a considerable amount of redundancy in the abstraction or may
even cause the model checker to run out of memory. The unnecessary blow-up
of the state space can be kept within reasonable bounds by applying lazy
abstraction, i.e. by adding the candidates locally along the counterexample
trace to the abstraction. However, such a local refinement is only feasible for
predicates. But counterexamples may also hint at entire processes – which
can only be added globally to the abstraction. Moreover, the idea of lazy
abstraction contradicts our paradigm of an anticipating refinement. While
lazy abstraction refinement focuses on the complete elimination of a single
counterexample by locally adding multiple candidates in each step, we aim
at gradually selecting single candidates that are globally valuable for our
abstraction (e.g. for the concretisation of multiple counterexample traces),
and thus, guide us closer to a definite result in the overall verification task.

In this section we introduce our framework for refining abstractions of
concurrent systems. The capability of an abstraction refinement-based veri-
fication technique crucially depends on the quality of its decision procedure
for selecting refinement candidates. Here we show how the selection of the
’most promising’ candidate can be enhanced by heuristic guidance. Applying
heuristics generally means utilising easily accessible information about the
underlying problem in order to find good solutions. In our scenario the prob-
lem is the considered verification task, whereas a good solution corresponds to
a minimal abstraction that is precise enough for a definite outcome in verifica-
tion. Such an abstraction is, again, the result of a sequence of good refinement
decisions. The accessible information that we exploit for our heuristic decisions
particularly concerns structural aspects of the considered system, or more
precisely, dependencies within the system and its current abstraction.

5.3.1 Abstraction Dependence Analysis

Communication is an inherent aspect of concurrent systems. Processes read
variables modified by other processes, or receive messages sent by communi-
cation partners. Thus, the behaviour of a single process generally depends on
the behaviour of the other processes in the system. Our heuristic framework
for abstraction refinement is based on an iterative analysis of these dependen-
cies within the considered system. The analysis in particular incorporates the
current abstraction (i.e. the current separation of the system’s components
into spotlight and shade) and the generated set of refinement candidates. We
will show that our dependence analysis can be efficiently performed, and the
obtained results can be effectively exploited for the heuristic evaluation of
refinement candidates.

Again, we illustrate our approach with the running example Sys12 (compare
Figure 5.1). For the spotlight abstraction given by Spot(Proc) = {Proc1} and
Spot(Pred) = /0, model checking AF(pc1 = 5) yields unknown. We generate

5.3 Heuristic Framework for Abstraction Refinement 99

Proc1 Proc2 . . . Procm

emptyc emptyd . . .

Spot Shade

Pred

Proc

Candidates

Fig. 5.12 Spotlight abstraction of Sys12 given by a partition of the system’s processes and
predicates into Spot and Shade. The refinement candidates emptyc and emptyd derived from
the counterexamples π1 and π2 (compare Figures 5.9 and 5.10) correspond to a finite
subset of the shade.

two counterexamples π1 and π2 (compare Figures 5.9 and 5.10), which hint
at the set of refinement candidates Candidates = {emptyc,emptyd}. Figure
5.12 visualises our current abstraction, and moreover emphasises that the
candidates are a finite subset of the shade. Such a spotlight abstraction
together with a corresponding set of refinement candidates is the basis of our
dependence analysis. For actually performing the analysis, we first require a
formal notion of dependencies in abstractions of concurrent systems. Such
dependencies arise from the definition and reference of variables.

Definition 5.3 (Definition and Reference of Variables).
Let Sys = ‖n

i=1 Proci be a concurrent system over a set of variables Var, and let
Pred be the set of all predicates over Var. We introduce the following sets for
each process Proci in Sys:

• DEF(Proci) is the set of variables/channels that are defined (modified) by
an operation of Proci,

• REF(Proci) is the set of variables/channels that are referenced by an oper-
ation of Proci.

Furthermore, we introduce the following set for each predicate p ∈ Pred:

• REF(p) is set of variables/channels that are referenced by p.

These sets enable us to formally characterise dependencies in spotlight ab-
stractions of concurrent systems. For this, we use a graph-based representation
– an abstraction dependence graph (ADG).

100 5 Heuristic-Guided Abstraction Refinement

Definition 5.4 (Abstraction Dependence Graph).
An abstraction dependence graph is a tuple ADG = (V,D) where

• V is a finite set of vertices,

• D⊆V ×V is a set of directed edges, called dependence relation.

For a given spotlight abstraction and a set of refinement candidates we can
construct the corresponding abstraction dependence graph according to the
following definition.

Definition 5.5 (Spotlight Abstractions as Abstraction Dependence Graphs).
Let Sys = ‖n

i=1 Proci be a concurrent system with a spotlight abstraction
given by the sets Spot = Spot(Proc)∪ Spot(Pred) and Shade = Shade(Proc)∪
Shade(Pred). Moreover, let ψ be a CTL formula that evaluates to unknown on
this abstraction, let Π be an associated set of unconfirmed counterexamples,
and let Candidates⊆ Shade be a set of refinement candidates derived from Π.
The corresponding abstraction dependence graph is a tuple ADG = (V,D) with

• V := Spot ∪Candidates∪Shade(Proc)︸ ︷︷ ︸
⊆Shade

,

• D :=

{(v,v′) | (v , v′) ∧
((v ∈ Proc ∧ ∃ x(x ∈ DEF (v) ∧ x ∈ REF (v′)))

∨ (v ∈ Pred ∧ v′ ∈ Proc ∧ ∃ x(x ∈ REF (v) ∧ x ∈ REF (v′))))}.

Thus, the vertices of an abstraction dependence graph correspond to the
abstraction’s components (processes as well as predicates) and the edges
represent dependencies between the components. We restrict the set of vertices
to the components that are relevant for our heuristic framework: the entire
spotlight and a finite subset of the shade consisting of the current refinement
candidates and all shade processes. Hence, constructing an ADG always
yields a finite graph. The abstraction dependence graph corresponding to our
running example is depicted in Figure 5.13.

As we can see, the ADG extends our visualisation of the spotlight abstraction
(see Figure 5.12) with a dependence relation. If the relation D(v,v′) holds
for a pair of vertices v,v′ ∈ V then we say: v′ depends on v, or conversely:
v affects v′. In our example, we e.g. have that the process Proc1 depends
on the predicate emptyc, or rather, emptyc affects Proc1. Dependencies of
particular interest are those between individual candidates and the spotlight.
A candidate that affects a large number of spotlight components is likely a
beneficial choice for refinement. Adding it to Spot would enrich the abstraction
with new details that are relevant for many spotlight processes and predicates
– and not only for the concretisation of a single counterexample. Thus, this
choice might guide us closer to a definite result in verification. Contrary, a

5.3 Heuristic Framework for Abstraction Refinement 101

Proc1

emptyc

Proc2

emptyd

Procm

Spot Shade

Candidates

.

.

.

Fig. 5.13 Abstraction dependence graph corresponding to the spotlight abstraction given
by Spot(Proc) = {Proc1} and Spot(Pred) = /0 of the concurrent system Sys12, and the set of
refinement candidates Candidates = {emptyc,emptyd}. The depicted edges are restricted to
the dependencies that are relevant for our heuristic framework: dependencies between the
candidates and the spotlight, and dependencies within the shade.

candidate with lots of dependencies within the shade might be a costly choice.
By selecting such a candidate for refinement we would introduce several new
dependencies between the spotlight and the shade, i.e. several new unknowns
in the abstraction.

In message passing systems we can distinguish different kinds of dependen-
cies: Processes that communicate on the same channel generally depend on
each other. More precisely, pairs of processes such that one process is a sender
and the other is a receiver on a certain channel are potential partners, whereas
two processes that both send (or both receive) on the same channel are com-
petitors. Both, partner as well as competitor relationships between processes
are bidirectional. However, for a pair of partners, one is the sending partner
and the other is the receiving parter. The following definition formalises these
different kinds of dependencies in message passing systems:

Definition 5.6 (Dependencies in Message Passing Systems).
Let ADG = (V,D) be an abstraction dependence graph corresponding to a
message passing system Sys = ‖n

i=1 Proci. Moreover, let Chan be the set of
communication channels of Sys, and let Proc⊆V be the subset of vertices that
represent processes of Sys. We introduce the following relations on Proc:

• Comp :=

{(v,v′) | v,v′ ∈ Proc ∧ D(v,v′)

∧ ∃c ∈Chan : (v and v′ send on c) or (v and v′ receive on c)}

102 5 Heuristic-Guided Abstraction Refinement

• SendingPartner :=

{(v,v′) | v,v′ ∈ Proc ∧ D(v,v′)

∧ ∃c ∈Chan : v sends on c and v′ receives on c}

• ReceivingPartner :=

{(v,v′) | v,v′ ∈ Proc ∧ D(v,v′)

∧ ∃c ∈Chan : v receives on c and v′ sends on c}

• Partner := SendingPartner ∪ ReceivingPartner

For our running example we e.g. have that the sending shade processes Proc2
to Procn are competitors among themselves, the receiving shade processes
Procn+1 to Procm are also competitors among themselves, whereas all depen-
dencies between these two groups correspond to partner relations. Of course,
due to multiple channels and multiple communication statements per process,
partners might be in turn competitors and a sending partner of a certain
process might be in turn its receiving partner. However, we do not have these
cases in our running example. Distinguishing partner and competitor depen-
dencies is particularly useful in the analysis of parameterised message passing
systems, which will be discussed separately in Section 6.5. In the remainder
of this chapter we focus on the standard notion of dependency.

Before we take a detailed look at our refinement heuristics in the subse-
quent section, we want to consider a first simple example for the heuristic
evaluation of candidates. As we just stated, costs and benefits of potential re-
finement steps arise from dependencies, or rather, from incoming and outgoing
edges of each candidate in the abstraction dependence graph:

Definition 5.7 (Incoming and Outgoing Edges).
Let ADG = (V,D) be an abstraction dependence graph, and V ′ be a subset of
V . We introduce the following sets for each vertex v ∈V :

• IN(v,V ′) is the set of incoming edges into v from vertices in V ′,

• OUT (v,V ′) is the set of outgoing edges from v into vertices in V ′.

These sets let us define a very simple evaluation function h : Candidates→ N
where

h(v) := |OUT (v,Spot)|︸ ︷︷ ︸
bene f it(v)

− |IN(v,Shade)|︸ ︷︷ ︸
cost(v)

i.e. for a candidate v we compute the number of outgoing edges into the
spotlight and subtract the number of incoming edges from the shade. The
refinement procedure selects the candidate with the best evaluation value:
arg maxv∈Candidates h(v). Thus, in our example emptyd is chosen due to fewer
(no) dependencies within the shade. The subsequent verification run on the

5.3 Heuristic Framework for Abstraction Refinement 103

refined abstraction already reveals a definite result and refutes the property
AF(pc1 = 5) (compare Section 5.2).

This first example illustrates that even with heuristics based on a very
simple dependence analysis we can guide the refinement in expedient direc-
tions, and thus obtain definite verification results on very small abstractions.
Nevertheless, our overall approach aims at the verification of systems with a
higher complexity than that of our small running example Sys12. Hence, in our
actual refinement framework we follow an enhanced approach to heuristic
guidance. In particular, we construct abstraction dependence graphs extended
with weighted edges and vertices.

Definition 5.8 (Weighted Abstraction Dependence Graph).
A weighted abstraction dependence graph is a tuple WADG = (V,W,D) where

• V is a finite set of vertices,

• W = {W1, . . . ,Wn} is a set of weight functions for vertices with ∀Wi ∈W :
Wi : V → R,

• Dw : V ×V → N is a weighted dependence function.

Edge weights allow us to comprise quantitative aspects in the dependence anal-
ysis. In our framework we hereby quantify the number of variables/channels
that are shared between the abstraction’s components, i.e. our dependence
function Dw is defined as follows:

Dw(v,v′) :=

|DEF(v)∩REF(v′)| if v , v′ and v ∈ Proc

|REF(v)∩REF(v′)| if v , v′ and v ∈ Pred

0 else

By vertex weights we can also express benefits and costs apart from depen-
dence: A beneficial aspect of a refinement candidate is, e.g., the number of
occurrences as a candidate in the generated set of counterexamples, whereas
the size of a candidate (for processes: the number of its control flow locations)
is a cost factor. For a given spotlight abstraction the weight functions of the
corresponding WADG can be implemented in several ways – depending on
which aspects of the system should be particularly accentuated in the heuris-
tic evaluation. In the following section we introduce our framework for the
heuristic evaluation of refinement candidates in detail. In particular, we will
see how heuristic refinement decisions can be improved by the incorporation
of quantitative characteristics of the underlying system.

104 5 Heuristic-Guided Abstraction Refinement

5.3.2 Heuristic Evaluation of Refinement Candidates

In the previous sections we have introduced the prerequisites for establish-
ing a heuristic-guided abstraction refinement framework for the verification
of concurrent systems: The counterexample-guided abstraction refinement ap-
proach provides us with a general frame for iteratively refining three-valued
abstractions. With multiple counterexample-generation we have a technique
for producing large sets of refinement candidates. Moreover, abstraction de-
pendence graphs enable us to analyse and quantify several characteristics of
concurrent systems and their abstractions. Finally, we want to see how these
characteristics can be effectively incorporated into the heuristic evaluation of
refinement candidates.

We start with a brief recap of the first steps of heuristic-guided abstraction
refinement. Given a concurrent system Sys and a temporal logic formula ψ,
we build the initial spotlight Spot. In case that model checking ψ on the
corresponding abstraction yields unknown, we generate a set Π= {π1, . . . ,πk}
of unconfirmed counterexamples where the number of counterexamples k is a
selectable parameter in our heuristic framework. The generated counterexam-
ples hint at a set of refinement candidates Candidates. These candidates are
also a subset of the vertices of the weighted abstraction dependence graph
WADG that we construct for the current abstraction. Based on the WADG, we
want to define our heuristic evaluation function for refinement candidates.

Definition 5.9 (Heuristic Evaluation Function).
Let WADG = (V,W,D) be a weighted abstraction dependence graph represent-
ing an abstracted system. Moreover, let Candidates ⊆ V be the correspond-
ing set of refinement candidates derived from unconfirmed counterexam-
ples. A heuristic evaluation function is a mapping h : Candidates→ R, where
arg maxv∈Candidates h(v) is the heuristically best choice for abstraction refine-
ment.

In our framework, the heuristic evaluation function h is a composition of the
functions associated with the weighted abstraction dependence graph. We
have defined a number of weight functions for WADGs that quantify aspects
which may have a beneficial or an unfavourable impact on potential refinement
steps. Each of these functions is based on a certain heuristic idea. The first
function that we define refers to the number of occurrences as a candidate:

5.3 Heuristic Framework for Abstraction Refinement 105

Heuristic Idea A candidate that occurs in multiple counterexamples, or multiple times
in a single counterexample is likely a beneficial choice for abstraction
refinement.

Explanation Our approach to multiple counterexample-generation yields counterex-
amples that explicitly cover different branches of the spotlight processes’
control flow. Adding a candidate to the spotlight that occurs in several
counterexamples enables us to rule out uncertainty at multiple parts
of the current abstraction, and thus, gives us a large gain of relevant
information.

Function occurrence : Candidates→ N

where occurence(v) returns the number of occurrences of v as a candidate
in the current set of counterexamples Π.

Table 5.1 Weight function occurence.

The function occurrence characterises a beneficial aspect of potential refine-
ment steps that is apart from dependence. As a dependence-related aspect,
we define the linking factor of a candidate with the spotlight:

Heuristic Idea A candidate process that affects a large number of spotlight processes
is a beneficial choice for abstraction refinement. Likewise, a candidate
predicate that is frequently referenced in spotlight processes is a beneficial
choice for refinement.

Explanation Refinement candidates are inherently capable of augmenting the current
spotlight abstraction with new definite information. However, the linking
between a candidate and the spotlight can range from a loose connection,
e.g. a single shared variable, to a tight interweaving with many mutual
dependencies. Adding a candidate that has a higher linking factor with
the spotlight, complements the definiteness in the abstraction to a larger
extent.

Function linkingSpot : Candidates→ N

with linkingSpot(v) := ∑v′∈Spot(Proc) (ω1 ·Dw (v,v′)+ω2 ·Dw (v′,v))
where ω1,ω2 ∈ N are weight parameters in our heuristic framework.

Table 5.2 Weight function linkingSpot.

106 5 Heuristic-Guided Abstraction Refinement

With occurrence and linkingSpot we have two weight functions that charac-
terise beneficial aspects of candidates. Both provide us with a measure for
the gain of definite information by a refinement step. However, abstraction
refinement also involves a gain of complexity. The size of a candidate is one
aspect that contributes to the cost of refinement:

Heuristic Idea The larger a refinement candidate, the more costly it is to add it to the
spotlight.

Explanation Adding a candidate to the spotlight inherently enlarges the abstract
state space. In three-valued abstractions all atomic predicates equally
contribute to the overall state space complexity, whereas the complexity
induced by processes depends on the number of its control flow locations.
In our approach, we internally represent spotlight processes by a set of
three-valued predicates over the processes’ control flow. This enables us
to define a normalised measure for the size of refinement candidates.

Function size : V → N

with size(v) :=

{
1 if v ∈ Pred

min{k ∈ N | 3k ≥ |Loc|} if v ∈ Proc
where Loc refers to the set of control flow locations of the process v.

Table 5.3 Weight function size.

Hence, the size of a predicate is simply one, whereas the size of a process
corresponds to the number of predicates that are required to encode its control
flow. The size function gives us a measure for immediate costs of potential
refinement steps in terms of the growth of the state space. Besides, this
function also helps us to capture mediate costs of candidates, induced by
dependencies within the shade:

5.3 Heuristic Framework for Abstraction Refinement 107

Heuristic Idea A candidate that, directly or transitively, depends on a large number of
shade processes is a costly choice for abstraction refinement.

Explanation By selecting a certain candidate for refinement, all its dependencies
within the shade become new dependencies between the spotlight and
the shade. Such dependencies that cross the border from the shade to
the spotlight are the general sources of uncertainty in the abstraction.
Hence, adding a candidate that is affected by a minimal number of
shade components is likely a beneficial choice for refinement. However,
abstraction refinement is an iterative procedure, and thus, should be
performed with foresight. A candidate with a small number of direct
dependencies may still be involved in a long chain of transitive depen-
dencies, e.g. a set of processes that affect one another. By solely focusing
on direct dependencies in heuristic decisions there is the risk that iter-
ative refinement gets lost in such a chain, e.g. all processes along the
chain are graduallay added to the spotlight, whereas likely beneficial
processes with more direct dependencies are entirely ignored. There-
fore, we define a function for measuring the shade dependencies of
refinement candidates that explicitly considers transitivity. In particular,
our function linkingShade incorporates the number, size and distance
(wrt. transitive dependence) of shade processes that affect a candidate.
The contribution of a shade process to the overall linking factor of a
refinement candidate decreases proportionally to their distance.

Function linkingShade : Candidates→ R

with linkingShade(v) := ∑v′∈Shade(Proc)\{v}
size(v′)

distance(v′,v)
where distance(v′,v) returns the length of the shortest directed path
from v′ to v within the subgraph of the WADG induced by the shade. In
particular, distance(v′,v) yields ∞ if there exists not such path.

Table 5.4 Weight function linkingShade.

With linkingShade we have a function for measuring costs for refinement
candidates, induced by dependencies to processes. However, costs for potential
refinement steps can also be characterised based on a predicate-related aspect:

108 5 Heuristic-Guided Abstraction Refinement

Heuristic Idea The more predicates over a certain variable are in the spotlight, the
more redundant it is to add another predicate over the same variable to
the spotlight.

Explanation By our heuristic idea of avoiding redundancy in the abstraction we
counter a problem that frequently occurs when verifying concurrent
systems with large-domain loop variables: A loop is completely unrolled
by abstraction refinement, i.e. all possible predicates over the loop
variable are added to the spotlight – though adding a certain process
might already suffice to show termination of the loop. We approach this
problem as follows: The more predicates over a distinct variable are in
the spotlight, the higher we set the redundancy, and hence the cost, of
any candidate predicate over the same variable. A process affecting a
loop variable eventually will have a better heuristic evaluation than new
predicates over this variable, and thus, an unnecessary unwinding of
the loop can be avoided.

Function redundancy : Candidates→ N with

redundancy(v) :=

{
|{v′ ∈ Spot(Pred) | Re f (v)∩Re f (v′) , /0}| if v ∈ Pred

0 if v ∈ Proc.

Table 5.5 Weight function redundancy.

Each of the previously introduced functions enables us to measure a spe-
cific characteristic that either has a beneficial, or a costly impact on refine-
ment steps. Our overall heuristic evaluation function h now corresponds to a
weighted composition of these functions:

h(v) :=

(ω1 ·occurrence(v)+ω2 · linkingSpot (v))︸ ︷︷ ︸
bene f it(v)

−

(ω3 · linkingShade(v)+ω4 · size(v)+ω5 · redundancy(v))︸ ︷︷ ︸
cost(v)

Hence, our heuristic refinement decisions follow from a cost-benefit analysis.
The weights ω1, . . . ,ω5 ∈ N are parameters in our framework that allow us to
put emphasis on certain aspects in our decisions. For falsifying a universally
quantified liveness property it is e.g. advisable to put particular weight on
linkingShade. The falsification requires to find one definite path that refutes
the property. Favouring refinement steps that are mainly independent from

5.4 Related Work 109

the rest of the shade facilitates the detection of straightforward error traces,
i.e. traces that avoid an unnecessarily high degree of interleaving. A more
extensive discussion of appropriate parameters for heuristic-guided abstraction
refinement, as well as an experimental evaluation of different heuristics, can
be found in Chapter 7.

The heuristic evaluation function for candidates completes our framework
for abstraction refinement-based verification of concurrent systems. Like other
counterexample-guided abstraction refinement approaches e.g. [34], our fully
automated technique gradually builds an abstraction that is precise enough
for a definite result in verification. However, in contrast to [34] we base
our refinement decisions on multiple counterexamples and additional struc-
tural information about the underlying system. The heuristic exploitation
of dependencies within the system enables us to distinguish beneficial and
costly refinements, and thus, helps us to guide the refinement procedure in
expedient directions. For the verification of concurrent systems this gives
us a clear advantage over naive approaches which easily suffer from state
explosion caused by unfavourable refinement steps (see Chapter 7). Contrary
to CEGAR frameworks based on counterexample elimination via lazy abstrac-
tion [18], we follow an approach that is more oriented towards the final
result in verification. However, up to this point our abstraction refinement
framework is restricted to the verification of local properties, i.e. CTL formulae
that refer to a finite set of processes in concurrent systems of fixed size. In
the next chapter, we will see that our approach can also be exploited for
verifying global properties of parameterised systems which are composed of an
unbounded number of processes. Beforehand, we take a look at related work
on abstraction refinement.

5.4 Related Work

Parts of our work introduced in this chapter have already been published
in [120]. Besides, our research on heuristic-guided abstraction refinement
is connected to other approaches in a number of ways. In this section we
summarise and extend our previous references to related works.

Abstraction refinement for verification has received a lot of attention in
research. Several approaches in this field are based on boolean predicate
abstraction [66, 11] with counterexample-guided abstraction refinement (CE-
GAR) [34]. Prominent model checking tools like SLAM [12, 15], Blast [18] or
CPACHECKER [19, 127] build conservative overapproximations of the consid-
ered systems. In case that model checking yields a spurious counterexample,
the current abstraction is refined by adding new predicates – which are either
derived from pre-/postconditions [12, 15], or from Craig interpolants [18, 19]
computed for the error path. Craig Interpolation is commonly rated as the
more sophisticated approach to refinement. It facilitates to identify particular

110 5 Heuristic-Guided Abstraction Refinement

parts of the system where the derived predicates are relevant, which can
be exploited for applying lazy abstraction [79, 98], i.e. for local refinement.
Lazy abstraction involves an on-the-fly integration of the steps refinement and
state space exploration. New predicates are locally added to the abstraction
along a spurious error trace, and the exploration of the refined abstraction is
continued at previously reached states. However, such an interpolation-based
refinement is subject to a number of limitations. It is narrowed to the analysis
of finite path prefixes, i.e. to the verification of safety properties, and it is
solely compatible with boolean abstractions. – Precondition-based refinement
is not affected by these restrictions. The price to pay is that preconditions
generally do not hint at local refinements. Our abstraction refinement frame-
work is also based on the computation of preconditions. We refrain from lazy
abstraction and take a global view on the verification task. Thus, our refine-
ment procedure is geared towards the final verification result – and not on the
elimination of a single counterexample, which is pursued in [34, 12, 18, 79].
Another difference between these classical CEGAR frameworks and our ap-
proach is that we operate in a three-valued domain, and thus, unify over- and
underapproximation in one abstraction. This cumbers an on-the-fly approach
to refinement and exploration, but enables us to support the verification of
full CTL properties.

A framework for three-valued abstraction refinement in model checking
has first been introduced by Grumberg et al. [68, 69]. Their approach to
abstraction is similar to ours, i.e. their abstract models preserve full branching
time properties. Unlike us, they apply game-based model checking – which
yields game graphs rather than counterexamples. Nevertheless, these graphs
are likewise exploited for (global) abstraction refinement, since they hint
at abstract states that should be splitted in order to eliminate the cause of
an indefinite result. The work of [68, 69] has been further enhanced by
local refinement (i.e. lazy abstraction) and a number of suggested refinement
strategies by Fecher and Shoham in [61]. However, the entire framework
([68, 69, 61]) is of theoretical nature; so far there exists no implementation.
A first approach to spotlight abstraction refinement was proposed by Toben in
[121]. The presented technique is not based on predicate abstraction. Hence,
refinement is limited to adding processes to the spotlight. The three-valued
CEGAR framework of Schrieb et al. [112], in many respects the basis of our
approach, originally introduced the idea of refinement in terms of adding
predicates and processes to the abstraction.

The concept of multiple counterexample-generation for abstraction refine-
ment has also been considered in a number of works. Esparza et al. [60]
present a boolean abstraction refinement technique for verifying safety prop-
erties of sequential programs. In each iteration a directed acyclic graph is
computed that represents all error traces in the current abstraction. If none of
these traces is feasible for the concrete program then all of them are excluded
via interpolation-based refinement. – Our approach is not limited to safety
properties, and furthermore focuses on concurrent systems. These two charac-

5.4 Related Work 111

teristics substantially increase the general complexity of the abstraction and of
corresponding counterexamples. Thus, we refrain from generating an entire
graph of all abstract counterexamples. Instead, we permit the generation of
multiple counterexamples only for particular branches that can be exploited
for region summarisation (compare Section 4.2.3). The number of actually
generated counterexamples is additionally bounded by a parameter of our
heuristic framework. Another approach to iterative abstraction refinement
guided by multiple counterexamples is proposed by Glusman et al. [63]. Their
framework is tailored to the verification of safety properties of hardware
designs, and their abstractions are based on variable hiding, i.e. pruning parts
of the design logic. In each iteration all abstract counterexamples of a given
length are generated via SAT-based bounded model checking. Refinement
is performed by freeing parts of the hidden logic that are relevant for the
elimination of spurious error traces. This step is guided by a heuristic which
categorises the pruned hardware components into strong, conditional and
irrelevant with regard to the refutation of the set of spurious counterexamples.
Similar to our approach, [63] aim at detecting refinements that are multilater-
ally valuable for the abstraction – not just for the elimination of a single error
trace. However, their focus is on the verification of hardware designs and they
are not building on a predicate abstraction framework.

Heuristic-guided abstraction refinement in the context of hardware verifi-
cation is also considered in [75, 76]. Therein, heuristics are used for finding
an approximative solution for the NP-hard minimal state separation problem,
i.e. for detecting a minimal set of currently hidden variables that are capable
of separating abstract states such that a single spurious counterexample is
eliminated. The variable selection is heuristically guided in terms of max-
imising the number of pairs of abstract states that are newly separated. A
similar technique has been presented by Kurshan [91] who uses a heuristic for
freeing hidden variables based on a variable dependence analysis. A hybrid
approach to counterexample-guided abstraction refinement that combines
predicate abstraction and variable hiding is proposed by Wang et al. [125].
Their heuristics for selecting new predicates or hidden variables for refinement
are based on a static analysis of the hardware design under consideration. The
latter two approaches [91, 125] are related to our work in the sense that they
also base their refinement decisions on a structural analysis of the considered
system. However, they focus on variable dependencies within a sequential
hardware circuit rather than on inter-process dependencies in a concurrent
system.

Heuristic guidance in the context of verifying concurrent systems has also
been used by Tan et al. [118]. The authors present an extension of the verifi-
cation tool FLAVERS [104, 42]. Heuristics for selecting constraint automata
that rule out infeasible interleavings in a FLAVERS model of a concurrent
system are proposed. FLAVERS models are not based on predicate abstraction
but on control flow graphs enriched with constraint automata. The applied
heuristics exploit the structure of the considered system, the property to be

112 5 Heuristic-Guided Abstraction Refinement

checked, and additional constraints that have to be selected manually in
advance. Hence, their approach is neither fully automatic nor integrated into
an iterative, counterexample-based refinement framework. Another approach
to abstraction refinement for concurrent systems related to our work is that of
Gupta et al. [70]. The authors propose a compositional verification technique
for safety properties, based on rely-guarantee reasoning [106, 85]. Each pro-
cess of a concurrent system is verified in isolation, whereas the behaviour of
the remaining system is summarised by an overapproximating environment
assumption. In case of a spurious counterexample, the environment assump-
tion is automatically refined. The summarisation of the environment is very
similar to our shade component. However, we refrain from a compositional
approach to verification that requires to consider every single process of the
overall system. Instead, we aim at heuristically discovering a minimal set of
processes that is sufficiently large for a definite answer in verification.

The idea of using heuristics in verification has also been considered in a
different context than abstraction refinement. Directed model checking [56,
55, 81] is a common approach to counterexample generation in temporal
logic verification. Based on heuristic search strategies the state space of the
considered system is explored in order to find counterexamples of minimal
length. The intention behind this approach is to produce small error traces that
are easy to understand and to fix by a user. In contrast, we aim at minimising
the size of the final abstraction on which a definite result in verification
can be obtained. Shortness of counterexamples is not of major importance
in our framework, since error paths are automatically processed. In fact,
minimal counterexamples are even adverse for getting a variety of refinement
candidates.

Finally, our work is related to dependence analysis techniques for concurrent
systems. Methods for constructing dependence graphs of concurrent systems
are presented in [31, 111, 100]. These approaches focus on dependencies
between single operations, whereas we perform an inter-process dependency
analysis. Hence, our analysis does not expose dependencies on the level
of operations but is significantly more cost-efficient – which is in line with
our notion of applying heuristics in the sense of exploiting easily accessible
information.

Chapter 6
Spotlight Abstraction for Parameterised
Verification

So far, our abstraction refinement framework for concurrent systems is tailored
to the verification of local requirements that refer to a small set of processes.
Validating global properties like “each process will continuously proceed” is
generally possible. However, it requires to take the entire system into the
spotlight – which, of course, contradicts the fundamental idea of spotlight
abstraction. Another limitation of our current framework becomes evident
when we consider parameterised systems (compare Section 3.2), i.e. parallel
compositions of unbounded numbers of processes. The verification of local
requirements is basically feasible for such a system, although our refinement
loop might not terminate due to an unbounded number of processes in the
shade. – But verifying global requirements would confront us with a major
problem: The spotlight has to comprise an unlimited number of processes.
However, this issue does not stem from any particular weakness of our ap-
proach. Parameterised verification, i.e. checking global properties of systems
with an arbitrary number of processes, is undecidable in general [7].

Nevertheless, a number of techniques have been developed that successfully
address the parameterised verification problem. Common approaches refrain
from completeness and impose certain restrictions on the system under con-
sideration. These restrictions typically concern symmetry, i.e. the recurrence
of similar structures. Many real-life parameterised systems are inherently sym-
metric. For instance, network protocols are usually designed for an arbitrary
number of clients that are either homogeneous, or that can at least be divided
into a finite number of classes of homogeneous clients. Symmetry reduction
methods [58, 105] exploit such homogeneity in parameterised systems. They
map the unbounded state spaces to finite representations that can be verified.

In this chapter, we show that symmetry reduction can be effectively in-
tegrated into our framework for abstraction refinement. The combination
of spotlight abstraction with symmetry arguments enables us to extend our
approach towards the efficient verification of parameterised systems. We
start this chapter with the introduction of the foundations of parameterised
verification.

113

114 6 Spotlight Abstraction for Parameterised Verification

6.1 Parameterised Verification

As a motivating example for parameterised verifcation, we want to consider
a network protocol for mutual exclusion. The protocol has to guarantee
exclusive access to a shared resource – regardless of the number of clients in
the network. This problem can be straightforwardly transferred to the field of
parameterised systems. In Section 3.2 we proposed the following solution by
means of a semaphore:

y : semaphore where y = 1

‖i∈PIDN Proci ::

1 : loop forever do

2 : non-critical
3 : acquire(y,1)
4 : critical
5 : release(y,1)

Fig. 6.1 Parameterised system Sys = ‖i∈PIDN Proci over Var =Vars = {y} where PIDN is a
set of process indices with a parameterised size N ∈ N.

Note that this fully symmetric system (compare Definition 3.3) is parameterised
with regard to the number of processes. Hence, Sys represents a mutual
exclusion mechanism for an arbitrary number of replicated clients. We use a
capital N to refer to the parameter itself, and a small n to generally refer to
the fixed size of an instantiation. One concrete instantiation Sys4 with four
processes, i.e. PID4 = {1,2,3,4}, is given in the figure below.

y : semaphore where y = 1

‖Proc1 ::

1 : loop forever do

2 : non-critical
3 : acquire(y,1)
4 : critical
5 : release(y,1)

 ‖ Proc2 ::

1 : loop forever do

2 : non-critical
3 : acquire(y,1)
4 : critical
5 : release(y,1)

‖ Proc3 ::

1 : loop forever do

2 : non-critical
3 : acquire(y,1)
4 : critical
5 : release(y,1)

 ‖ Proc4 ::

1 : loop forever do

2 : non-critical
3 : acquire(y,1)
4 : critical
5 : release(y,1)

Fig. 6.2 Instantiation Sys4 of the parameterised system Sys with PID4 = {1,2,3,4}.

We now want to apply our verification framework and check whether the local
mutual exclusion property AG¬(pc1 = 4∧ pc2 = 4) holds for this instantiation.
Remember that in our parameterised systems the local variables of each
process are initialised with the same values, i.e. in our example all processes
start their computation at control location 1. Taking Proc1 and Proc2 into the

6.1 Parameterised Verification 115

spotlight, together with two predicates over the semaphore y, and leaving
Proc3 and Proc4 in the shade is sufficient in order to prove that the first two
processes will be never in the critical section at the same time. However,
this result tells us nothing about global mutual exclusion. We have to check
whether all pairs of processes will never be simultaneously in the critical
section. This can be formalised as follows:

Ψ :=
∧

〈i1,i2〉 ∈ [PID4]
2
,

AG¬(pci1 = 4∧ pci2 = 4)

with
[PID4]

2
, := {〈i1, i2〉 | i1, i2 ∈ PID4, i1 , i2} ,

i.e. [PID4]
2
, denotes the second cartesian power of the set PID4 where all

tuples 〈i1, i2〉 ∈ [PID4]
2
, consist of pairwise different process identifiers from

PID4. The formula Ψ refers to the entire instantiation of the parameterised
system, and thus, its validation requires to draw all processes into the spotlight.
This might be practicable for very small instantiations, but certainly not for
the scales of real-life networks. However, a more crucial issue is the fact that
the correctness of one instantiation does not allow us to draw any conclusions
about the correctness of the entire mutual exclusion mechanism. A prominent
example for a parameterised system whose correctness depends on the size
of its instantiation is Peterson’s algorithm for mutual exclusion [107]. The
mechanism guarantees mutual exclusion for two processes but not for larger
instantiations. Hence, in order to prove a property of a parameterised system
all possible instantiations have to be regarded. For our running example we
have to validate the following verification task

∀n≥ 2 : K(Sysn),s0 |=
∧

〈i1,i2〉 ∈ [PIDn]
2
,

AG¬(pci1 = 4∧ pci2 = 4),

i.e. we check whether for all instantiations of size greater or equal 2 (the num-
ber of different process variables in the requirement) the mutual exclusion
property holds for every pair of processes. Here K(Sysn) denotes the Kripke
structure corresponding to the instantiation Sysn, where n ∈ N is the size of
the instantiation and s0 is the state of K(Sysn) that represents the initial con-
figuration of Sysn. Apparently, a straightforward approach to this verification
task requires an infinite number of model checking runs, and thus, will not
terminate. Even our current framework for abstraction refinement cannot
yield any improvement here. The general formulations of global temporal
logic formulae and the parameterised verification problem for fully symmetric
systems are given in the subsequent definitions.

Definition 6.1 (Global CTL Formulae over Fully Symmetric Systems).
Let Sys = ‖i∈PIDN Proci be a fully symmetric parameterised system. Moreover,
let ψ(i1, . . . , id) be a parameterised CTL formula with reference to variables for
process identifiers from PIDN . Then the corresponding global CTL formula is

116 6 Spotlight Abstraction for Parameterised Verification

Ψ :=
∧

〈i1,...,id〉 ∈ [PIDN]
d
,

ψ(i1, . . . , id)

where

[PIDN]
d
, := {〈i1, . . . , id〉 | i1, . . . , id ∈ PIDN , i j , ik for all 1≤ j,k ≤ d, j ≤ k}.

Thus, [PIDN]
d
, denotes the d-th cartesian power of the set PIDN where all

d-tuples 〈i1, . . . , id〉 ∈ [PIDN]
d
, consist of pairwise different process identifiers

from PIDN . Consequently, the global formula Ψ is a conjunction over all
possible combinations of d pairwise different processes, where each clause of
Ψ corresponds to a local CTL formula that refers to d specific processes.

Definition 6.2 (Parameterised Verification of Fully Symmetric Systems).
Let Sys = ‖i∈PIDN Proci be a fully symmetric parameterised system and let
Ψ =

∧
〈i1,...,id〉 ∈ [PIDN]

d
,

ψ(i1, . . . , id) be a global CTL formula over Sys. Then the
corresponding parameterised verification problem is

∀n≥ d : K(Sysn),s0 |=
∧

〈i1,...,id〉 ∈ [PIDn]
d
,

ψ(i1, . . . , id)

where K(Sysn) is a Kripke structure corresponding to Sysn and s0 is the state
of K(Sysn) that represents the initial configuration of Sysn.

Hence, parameterised verification presents us a generally undecidable prob-
lem. Nevertheless, in the next section we will see that symmetry allows us to
reduce the global property to be checked to a local one. The verification of
local properties however can be efficiently performed based on spotlight ab-
straction. In Section 6.3 we then will show that the combination of symmetry
reduction and spotlight abstraction enables us to transfer definite verification
results obtained on abstract models to the entire parameterised system.

6.2 Symmetry Reduction

In the first step of our approach to parameterised verification we show that,
based on symmetry arguments, checking global system requirements can
be reduced to checking local requirements. We assume that we have given
an arbitrary but fixed instantiation Sysn = ‖i∈PIDn Proci over Var = Vars ∪
(Varl ×PIDn) of a fully symmetric system and a global CTL formula Ψ =∧
〈i1,...,id〉 ∈ [PIDn]

d
,

ψ(i1, . . . , id) over Sysn. Ψ refers to all possible combinations of
d pairwise different processes of Sysn. These combinations can be characterised
by permutations on process identifiers:

Definition 6.3 (Process Permutation).
Let Sysn = ‖i∈PIDn Proci be an instantiation of a fully symmetric parameterised

6.2 Symmetry Reduction 117

system. Then a corresponding process permutation is a bijective function

σ : PIDn→ PIDn.

Hence, a process permutation corresponds to a reordering of the identical
processes in a fully symmetric system. For instance, applying the permutation
σ = {(1,2),(2,1),(3,3),(4,4)} to the instantiation Sys4 in Figure 6.2 inter-
changes the roles of the processes Proc1 and Proc2, while Proc3 and Proc4 are
not affected by this permutation.

Subsequently we will show that the validity of global temporal logic proper-
ties of the form

∧
〈i1,...,id〉 ∈ [PIDn]

d
,

ψ(i1, . . . , id) is preserved under permutation.
Here we follow standard approaches for symmetry reduction [58, 105, 39].
However, our symmetries concern only process identifiers, but not data vari-
ables. – First, we require a computational model corresponding to a given
system instantiation Sysn = ‖i∈PIDn Proci. According to Definition 3.7, Sysn
can be represented as a Kripke structure K = (S,R,L,F) over a set of atomic
predicates AP. Without loss of generality we define AP as

{(x = val) | x ∈Vars ∧ val ∈ dom(x)}
∪ {((x, i) = val) | (x, i) ∈Varl×PIDn ∧ val ∈ dom(x)}
∪ {(pci = j) | i ∈ PIDn ∧ j ∈ Loc}

where dom(x) denotes the domain of a variable x ∈Var and Loc denotes the
set of control locations of processes in Sys.

Next, we lift process permutations to variables of a fully symmetric system
and to states of a corresponding Kripke structure.

Definition 6.4 (Process Permutations for Variables and States).
Let Sysn = ‖i∈PIDn Proci over Var =Vars∪ (Varl×PIDn) be an instantiation of a
fully symmetric parameterised system. Moreover, let K = (S,R,L,F) over AP be
a corresponding Kripke structure. Then a process permutation σ : PIDn→PIDn
can be extended to variables of Sysn and states s ∈ S as follows:

• for shared variables x ∈Vars:
σ(x) = x and σ(s)(x) = s(x),

• for local variables (x, i) ∈Varl× i, i ∈ PIDn:
σ(x, i) = (x,σ(i)) and σ(s)(x, i) = s(x,σ(i)),

• for program counters pci, i ∈ PIDn:
σ(pci) = (pcσ(i)) and σ(s)(pci) = s(pcσ(i)).

Thus, the valuations of shared variables are not affected by permutation,
whereas the values of local variables (x, i) associated with some process Proci
are substituted by the values of the corresponding variables (x,σ(i)) of the
process Procσ(i). By recursion, we can lift permutations to any expression over

118 6 Spotlight Abstraction for Parameterised Verification

the system variables, in particular to atomic predicates in AP. We get σ(x =
val) = (x = val), σ((x, i) = val) = ((x,σ(i)) = val) and σ(pci = j) = (pcσ(i) = j).

In order to exploit process permutations for temporal logic verification, they
have to preserve the semantics of Kripke structures in the sense of symmetry:

Definition 6.5 (Symmetry).
Let Sysn = ‖i∈PIDn Proci be an instantiation of a fully symmetric parameterised
system and let K = (S,R,L,F) over AP be a corresponding Kripke structure.
A process permutation σ : PIDn→ PIDn is a symmetry for K if the following
conditions are met

1. for all process indices i ∈ PIDn and for all pairs of states s,s′ ∈ S:
Ri(s,s′) ⇔ Rσ(i)(σ(s),σ(s′)),

2. for all states s ∈ S and for all atomic predicates p ∈ AP:
L(s, p) ⇔ L(σ(s),σ(p)),

3. for all process indices i ∈ PIDn and for all pairs of states s,s′ ∈ S:
(s,s′) ∈ Fi ⇔ (σ(s),σ(s′)) ∈ Fσ(i).

For fully symmetric systems we thus get the following lemma:

Lemma 6.1.
On Kripke structures corresponding to instantiations of fully symmetric systems,
all process permutations are symmetries.

Proof (Lemma 6.1).
We start with condition 1 of Definition 6.4 and show that permutations
preserve the transition relation. Let Sysn, K and σ be defined as in Definition
6.4. Then for any process identifier i ∈ PIDn and for any two states s,s′ ∈ S we
have that:

Ri(s,s′)
(1)⇒ Ri(〈l,sv〉 ,

〈
l′,s′v

〉
)

where l, l′ denote the location parts and sv,s′v the system variable parts of

s resp. s′

(2)⇒ there is a basic operation bopi = assume(e) : x1 :=e1, . . . , xm :=em

with x1, . . . ,xm ∈Vari =Vars∪ (Varl× i)

and e,e1, . . . ,em expressions over Vari, such that

δ
(
l,bopi, i, l′

)
∧ sv(e)∧ s′v(x1) = sv(e1)∧ . . .∧ s′v(xm) = sv(em)

(3)⇒ δ
(
l,bopi, i, l′

)
∧ s(e)∧ s′(x1) = s(e1)∧ . . .∧ s′(xm) = s(em)

(4)⇒ δi
(
li,bopi, l′i

)
∧ s(e)∧ s′(x1) = s(e1)∧ . . .∧ s′(xm) = s(em)

6.2 Symmetry Reduction 119

(5)⇒ δσ(i)

(
lσ(i),bopσ(i), l

′
σ(i)

)
∧

σ(s)(σ (e))∧σ(s′)(σ(x1)) = σ(s)(σ(e1))∧ . . .∧σ(s′)(σ(xm)) = σ(s)(σ(em))

where bopσ(i) = assume(σ(e)) : σ(x1) :=σ(e1), . . . , σ(xm) :=σ(em)

(6)⇒ Rσ(i)(σ(s),σ(s′))

In step (1) we split up the states of the Kripke structure into location parts and
system variable parts. Step (2) follows from Definition 3.7, the transformation
of a concurrent system into a Kripke structure, which we can also perform
backwards. Definition 3.3 (fully symmetric systems) additionally guarantees
us that the operation bopi associated with Ri(s,s′) is solely defined over vari-
ables from Vars ∪ (Varl × i). Step (3) is based on the fact that x1, . . . ,xm and
e,e1, . . . ,em refer to system variables only, and that sv is included in s, and s′v
is included in s′. Step (4) directly follows from Definition 3.6 (concurrent
systems as control flow graphs). For step (5), we combine Definition 3.3 (fully
symmetric systems), 6.2 (process permutations) and 6.3 (process permuta-
tions for variables and states). The extension of σ to expressions e,e1, . . . ,em
over Vars∪ (Varl× i) is a straightforward generalisation of Definition 6.3. The
final step is again based on Definition 3.7. The reverse direction is proved
analogously.
Second, we prove that process permutations also preserve the labelling func-
tion. The argumentation is based on Definition 3.7 (concurrent systems as
Kripke structures) and 6.3 (process permutations for variables and states),
and the fact that permutations can be recursively applied to any expression
over system variables and program counters. We can distinguish the following
cases:

• Let p ∈ AP be of the form (x = val):

L(s,(x = val))

⇔ s(x = val)

⇔ σ(s)(x = val)

⇔ L(σ(s),(x = val))

⇔ L(σ(s),σ(x = val))

• Let p ∈ AP be of the form ((x, i) = val):

L(s,((x, i) = val))

⇔ s((x, i) = val)

⇔ σ(s)((x,σ(i)) = val)

⇔ L(σ(s),((x,σ(i)) = val))

⇔ L(σ(s),σ((x, i) = val))

120 6 Spotlight Abstraction for Parameterised Verification

• Let p ∈ AP be of the form (pci = j):

L(s,(pci = j))

⇔ s(pci = j)

⇔ σ(s)(pcσ(i) = j)

⇔ L(σ(s),(pcσ(i) = j))

⇔ L(σ(s),σ((pci = j)))

Finally, we show that the set of fairness constraints is preserved under per-
mutation as well. The argumentation is based on Definition 3.7 (concurrent
systems as Kripke structures) and on the already proved validity of condition
1 of Definition 6.4 for fully symmetric systems.

(s,s′) ∈ Fi

⇔ Ri(s,s′) , f alse

⇔ Rσ(i)(σ(s),σ(s′)) , f alse

⇔ (σ(s),σ(s′)) ∈ Fσ(i)

ut

From this lemma we can immediately deduce the following corollary, which
reveals that fair paths are preserved under permutation.

Corollary 6.1.
Let σ be a symmetry for a Kripke structure K = (S,R,L,F) over a set of atomic
predicates AP. Moreover, let π = s0s1s2 . . . be a fair path of K, i.e. π ∈Π f air

s0 . Then
σ(π) = σ(s0)σ(s1)σ(s2) . . . is a fair path of K as well, i.e. σ(π) ∈Π

f air
σ(s0)

, with
L(si, p) = L(σ(si),σ(p)) for all atomic predicates p ∈ AP and i ∈ N. We then say
that π and σ(π) are symmetric paths.

Hence, given a Kripke structure K = (S,R,L,F) corresponding to an instantia-
tion of a fully symmetric system Sysn = ‖i∈PIDn Proci, then for each fair path π

and each permutation σ on PIDn there exists a fair symmetric path σ(π) in
K. Now let us imagine that the path π is a counterexample (or a witness) for
some local temporal logic property ψ(pid1, . . . , pidd) with pid1, . . . , pidd ∈ PIDn,
i.e. a property that refers to d specific processes. According to the following
theorem we can deduce that the symmetric path σ(π) is a counterexample
(witness) for the permuted property ψ(σ(pid1), . . . ,σ(pidd)).

Theorem 6.1.
Let Sysn = ‖i∈PIDn Proci be an instantiation of a fully symmetric system,
K = (S,R,L,F) be the corresponding Kripke structure over a set of atomic predi-
cates AP, and σ be a process permutation, i.e. a symmetry for K. Moreover, let
ψ(pid1, . . . , pidd) be a CTL formula over AP with pid1, . . . , pidd ∈ PIDn, and let
s ∈ S be a state of K. Then

6.2 Symmetry Reduction 121

[K,s |= ψ(pid1, . . . , pidd)] ⇔ [K,σ(s) |= ψ(σ(pid1), . . . ,σ(pidd))].

Proof (Theorem 6.1).
The proof proceeds by induction on the structure of the CTL formula ψ. The
argumentation is based on the fair three-valued CTL semantics (Definition
2.10) and on Corollary 6.1. We consider the following cases:

• Let ψ be of the form p where p ∈ AP:

[K,s |= p]

⇔
∨

π∈Π f air
s

L(π0, p)

⇔
∨

σ(π)∈Π f air
σ(s)

L(σ(π0),σ(p))

⇔ [K,σ(s) |= σ(p)]

• Let ψ be of the form ¬ψ ′ where ψ ′ is a CTL formula:

[K,s |= ¬ψ
′]

⇔
∨

π∈Π f air
s

¬
[
K,π0 |= ψ

′]
⇔

∨
σ(π)∈Π f air

σ(s)

¬
[
K,σ(π0) |= σ(ψ ′)

]
⇔ [K,σ(s) |= σ(¬ψ

′)]

• Let ψ be of the form ψ1∨ψ2 where ψ1,ψ2 are CTL formulae:

[K,s |= ψ1∨ψ2]

⇔
∨

π∈Π f air
s

[K,π0 |= ψ1] ∨ [K,π0 |= ψ2]

⇔
∨

σ(π)∈Π f air
σ(s)

[K,σ(π0) |= σ(ψ1)] ∨ [K,σ(π0) |= σ(ψ2)]

⇔ [K,σ(s) |= σ(ψ1∨ψ2)]

• Let ψ be of the form EXψ ′ where ψ ′ is a CTL formula:

122 6 Spotlight Abstraction for Parameterised Verification

[K,s |= EXψ
′]

⇔
∨

π∈Π f air
s

R(π0,π1)∧
[
K,π1 |= ψ

′]
⇔

∨
σ(π)∈Π f air

σ(s)

R(σ(π0),σ(π1))∧
[
K,σ(π1) |= σ(ψ ′)

]
⇔ [K,σ(s) |= σ(EXψ

′)]

• Let ψ be of the form EGψ ′ where ψ ′ is a CTL formula:

[K,s |= EGψ
′]

⇔
∨

π∈Π f air
s

∧
i∈N

(
R(πi,πi+1)∧

[
K,πi |= ψ

′])
⇔

∨
σ(π)∈Π f air

σ(s)

∧
i∈N

(
R(σ(πi),σ(πi+1))∧

[
K,σ(πi) |= σ(ψ ′)

])
⇔ [K,σ(s) |= σ(EGψ

′)]

• Let ψ be of the form E[ψ1Uψ2] where ψ1,ψ2 are CTL formulae:

[K,s |= E[ψ1Uψ2]]

⇔
∨

π∈Π f air
s

∨
i∈N

(
[K,πi |= ψ2]∧

∧
0≤ j<i

(
R(π j,π j+1)∧ [K,π j |= ψ1]

))

⇔
∨

σ(π)∈Π f air
σ(s)

∨
i∈N(

[K,σ(πi) |= σ(ψ2)]∧
∧

0≤ j<i

(
R(σ(π j),σ(π j+1))∧ [K,σ(π j) |= σ(ψ1)]

))
⇔ [K,σ(s) |= σ(E[ψ1Uψ2])]

In the remaining cases, the correctness results from the equivalences for CTL
formulae (compare Section 2.1).
ut

Now we want to see how we can exploit this theorem for our approach to
parameterised verification. Again, we assume that we have given a fixed
instantiation Sysn = ‖i∈PIDn Proci of a fully symmetric system and a global CTL
formula Ψ =

∧
〈i1,...,id〉 ∈ [PIDn]

d
,

ψ(i1, . . . , id) over Sysn. In fact, Ψ is a conjunction
over all possible combinations of d pairwise different processes of Sysn, where
each clause of Ψ corresponds to a local CTL formula that refers to d specific
processes. Hence, based on Definition 6.2 we can reformulate Ψ as follows:

6.2 Symmetry Reduction 123

Ψ ⇔
∧

σ∈Σ
ψ(σ(pid1), . . . ,σ(pidd))

where Σ is the set of all process permutations over PIDn, and pid1, . . . , pidd ∈
PIDn are arbitrary, pairwise different process identifiers.

In order to check whether this temporal logic property holds for Sysn we
construct a corresponding Kripke structure K = (S,R,L,F) over a set of atomic
predicates AP. Remember that initially all processes of a fully symmetric sys-
tem are in the same local state. Thus, for a state s0 ∈ S that represents the initial
configuration of Sys we have that σ(s0) = s0 for all process permutations σ ∈Σ.
Now we just consider one clause of Ψ and check [K,s0 |= ψ(pid1, . . . , pidd)].
According to Theorem 6.1, the obtained result can be transferred to any
symmetric model checking task [K,s0 |= ψ(σ(pid1), . . . ,σ(pidd))] with σ ∈ Σ.
Consequently, we get the same result for the corresponding global task
[K,s0 |=

∧
σ∈Σ ψ(σ(pid1), . . . ,σ(pidd))]. The subsequent corollary from The-

orem 6.1 summarises the concept of symmetry reduction.

Corollary 6.2.
Let Sysn = ‖i∈PIDn Proci be an instantiation of a fully symmetric system, K =
(S,R,L,F) be the corresponding Kripke structure over a set of atomic predicates
AP, and s0 ∈ S be the state of K that represents the initial configuration of Sysn.
Moreover, let Ψ =

∧
〈i1,...,id〉 ∈ [PIDn]

d
,

ψ(i1, . . . , id) be a global CTL formula over
AP, and pid1, . . . , pidd ∈ PIDn pairwise different process identifiers. Then

[K,s0 |= Ψ] ⇔ [K,s0 |= ψ(pid1, . . . , pidd)].

Hence, symmetry allows us to reduce global verification tasks to local ones.
In order to see how we can profit from this result in our approach to veri-
fication, we consider again our running example. The instantiation Sys4 of
the parameterised system in Figure 6.2 consists of four identical processes.
We want to verify that never more than one process will be in the critical
section at the same time, i.e. whether

∧
〈i1,i2〉 ∈ [PID4]

2
,
AG¬(pci1 = 4∧ pci2 = 4)

holds for Sys4. Directly checking this global formula would require to take the
entire instantiation into the spotlight. Instead, we consider just one clause
of the original formula: The local property AG¬(pc1 = 4∧ pc2 = 4) can be
validated on an abstraction with only Proc1 and Proc2 in the spotlight – and
based on our symmetry arguments we can deduce that mutual exclusion holds
globally. However, up to this point we have still no solution for the general
parameterised verification problem, i.e. whether a global property holds for
all instantiations of a parameterised system. In the next section we will see
that the spotlight principle is inherently capable of comprising all instantia-
tions of a fully symmetric system in one abstract model, and thus, definite
results obtained on such a model can be transferred to the corresponding
parameterised system.

124 6 Spotlight Abstraction for Parameterised Verification

6.3 Symmetry and Spotlight

So far, we have shown that symmetry enables us to reduce checking global
requirements to checking local requirements – which works for fixed instances
of parameterised systems. Thus, we still have to bridge the gap between
verifying single instantiations and complete parameterised verification. With
this in mind, we look again at our running example: the instantiation Sys4
of the fully symmetric system Sys from Figure 6.1 and the local requirement
AG¬(pc1 = 4∧ pc2 = 4). The spotlight abstraction of Sys4 depicted in Figure
6.3 is already precise enough to validate the mutual exclusion property.

Proc1 Proc2 Proc3 Proc4

(y = 0) (y = 1) . . .

Spot Shade

Pred

Proc

Fig. 6.3 Spotlight abstraction of the instantiation Sys4 (compare Figure 6.2) with
Spot(Proc) = {Proc1,Proc2} and Spot(Pred) = {(y = 0),(y = 1)}.

Hence, we only have to consider the processes Proc1 and Proc2 in detail (which
we already mentioned in the section before), and moreover, we require two
atomic predicates over the shared semaphore variable y. Model checking
the formula AG¬(pc1 = 4∧ pc2 = 4) on a Kripke structure corresponding to
this spotlight abstraction yields true, and based on symmetry arguments we
can conclude that the global property

∧
〈i1,i2〉 ∈ [PID4]

2
,
AG¬(pci1 = 4∧ pci2 = 4)

holds as well for the instantiation Sys4.
For the moment, we disregard the verification result, and instead, take

a closer look at the nature of this abstraction. The spotlight principle has
been thoroughly introduced in Chapter 4. One of its key features is the
summarisation of the shade processes into one1 component: an abstract pro-
cess ProcShade that continuously executes one operation that approximates
all concrete operations on shared variables occurring in the shade (com-
pare Definition 4.8). In our running example the shade consists of two
replicated processes that both modify the shared semaphore y by the op-
erations acquire(y,1) and release(y,1). An appropriate shade component for
Shade(Proc) = {Proc3,Proc4} and Spot(Pred) = {(y = 0),(y = 1)} is given in
Figure 6.4.

The abstract operation bopShade approximates acquire(y,1) as well as
release(y,1). Since these two semaphore operations are the only modifica-
tions of shared variables in Proc3 and Proc4, we have that ProcShade is an

1 We assume the basic variant of spotlight abstraction.

6.3 Symmetry and Spotlight 125

ProcShade ::

bopShade ≡ (y = 0) := choice((y = 0),¬(y = 0)),(y = 1) := choice(f alse,¬(y = 1))

Fig. 6.4 Control flow representation of the shade component ProcShade corresponding to
the spotlight abstraction of Sys4.

admissible shade component for our current abstraction. Apparently, mul-
tiple occurrences of the same operation in the shade do not require any
special treatment. If bopShade approximates an operation bop from some shade
process, then any further occurrence of bop in the shade is of course also
approximated by bopShade. Exactly this fact can be exploited for our approach
to parameterised verification: A fully symmetric system consists of replicated
processes that all execute identical operations. Thus, any number of these
replications in the shade will give us the same shade component. This allows
us to transfer verification results obtained on a spotlight abstraction of a single
instance to any larger instantiation:

Theorem 6.2.
Let Sys = ‖i∈PIDN Proci be a fully symmetric parameterised system and let
Sysn = ‖i∈PIDn Proci be a fixed instantiation of Sys. Moreover, let Spot =
Spot(Proc)∪ Spot(Pred), Shade = Shade(Proc)∪ Shade(Pred) be a given spot-
light abstraction for Sysn with Shade(Proc), /0. Let Sysa

n = ‖Proci∈Spot(Proc) Proca
i ‖

ProcShade be the corresponding abstract system with Sysa
n � Sysn, K(Sysa

n) =
(Sa,Ra,La,Fa) the respective abstract Kripke structure over AP = Spot(Pred)∪
{pci = j|Proci ∈ Spot(Proc), j ∈ Loci}, and ψ(pid1, . . . , pidd) a CTL formula
over AP where pid1, . . . , pidd are pairwise different identifiers of processes in
Spot(Proc). Then for any instantiation Sysm = ‖i∈PIDm Proci of Sys with m≥ n,
PIDm = PIDn∪{pidn+1, . . . , pidm} and the respective concrete Kripke structure
K(Sysm) = (S,R,L,F) over AP, and for any pair of corresponding2 states sa ∈ Sa,
s ∈ S:

[K(Sysa
n),s

a |= ψ(pid1, . . . , pidd)] ≤K3 [K(Sysm),s |= ψ(pid1, . . . , pidd)]

Proof (Theorem 6.2).
We have given an instantiation Sysn = ‖i∈PIDn Proci of a fully symmet-
ric system Sys, and a spotlight abstraction Spot = Spot(Proc)∪ Spot(Pred),
Shade = Shade(Proc)∪Shade(Pred) for Sysn with Shade(Proc) , /0. According
to Definition 3.3 all processes in fully symmetric systems are identical, i.e.
they are replications of each other. Hence, we can extend the given instan-
tiation to the next larger one as follows: Sysn+1 := Sysn ‖ Proc j where Proci
is a replication of an arbitrary process of Shade(Proc). Moreover, we extend
the spotlight abstraction for the enlarged instantiation: Spot := Spot and
Shade := Shade∪{Proc j}, i.e. we put the additional process into the shade,

2 Compare Definition 4.7.

126 6 Spotlight Abstraction for Parameterised Verification

whereas the spotlight is not affected. From Definition 4.8 (spotlight abstraction
of concurrent systems) we can deduce that the shade component ProcShade
remains the same when we add a replication of a process Proci ∈ Shade(Proc)
to the shade. Thus, the abstract systems Sysa

n, Sysa
n+1 corresponding to Sysn

resp. Sysn+1 are identical. Corollary 4.3 allows us to transfer all definite ver-
ification results obtained for the abstract system Sysa

n to the corresponding
original system Sysn, and due to identity of Sysa

n and Sysa
n+1 these results can

be further transferred to Sysn+1. By induction we get the same results for all
instantiations Sysm with m > n.
ut

Hence, if we construct a spotlight abstraction of a fixed instantiation of a fully
symmetric system and checking a temporal logic property yields true or false,
then we can conclude that this outcome holds for all larger instantiations
as well. However, there still remain some limitations: First, the shade has
to contain at least one process – otherwise our spotlight abstraction would
not reflect the behaviour of an arbitrary number of processes. And second,
the checked property has to be a local one that solely refers to the finite
set of processes in the spotlight. Nevertheless, the latter limitation can be
straightforwardly resolved based on our symmetry arguments. Corollary 6.2
together with Theorem 6.2 gives us the following result:

Corollary 6.3.
Let Sys, K(Sysa

n), K(Sysm) (for all m≥ n), and ψ(pid1, . . . , pidd) be defined as in
Theorem 6.2. Then for all m≥ n, and for any pair of corresponding states sa ∈ Sa,
s ∈ S:

[K(Sysa
n),s

a |= ψ(pid1, . . . , pidd)]

≤K3

[K(Sysm),s |=
∧
〈i1,...,id〉 ∈ [PIDm]

d
,
ψ(i1, . . . , id)]

According to this corollary, we can perform parameterised verification as
follows: As an input, we have a fully symmetric system Sys = ‖i∈PIDN Proci
and a global CTL formula Ψ =

∧
〈i1,...,id〉 ∈ [PIDm]

d
,

ψ(i1, . . . , id). In the first step,
we create a finite instantiation Sysn = ‖i∈PIDn Proci of Sys with n > d, i.e. we
require at least one more process in our instantiation than the number of dif-
ferent process identifiers in Ψ . Second, we select one clause ψ(pid1, . . . , pidd)
of Ψ with pid1, . . . , pidd ∈ PIDn, which means ψ(pid1, . . . , pidd) is a local prop-
erty with regard to Sysn. Hence, checking whether ψ(pid1, . . . , pidd) holds for
Sysn can be straightforwardly done with our spotlight abstraction refinement
framework. Now symmetry allows us to transfer the obtained result to the
corresponding global verification task, i.e. whether Ψ holds for Sysn. And
finally, based on the nature of spotlight abstraction, this result can be further
transferred to any instantiation larger than Sysn – which implies that we have
successfully verified the parameterised system Sys.

6.4 Relaxed Symmetry 127

However, since parameterised verification is undecidable in general there
is still a catch: Checking temporal logic properties on three-valued spotlight
abstractions may also return unknown, which tells us nothing about the pa-
rameterised system. And moreover, our final conclusion step is only permitted
in the case of a non-empty shade. Thus, any definite result obtained on an
abstraction where all processes are in the spotlight has to treated as unknown
as well. So our approach gives us a sound but incomplete procedure for
parameterised verification.

So far, we have only considered fully symmetric systems where all processes
are homogeneous. Indeed, not many real-life systems fit into this category. In
the next section, we will see that our approach can be extended to class-wise
symmetric systems where we can distinguish individual classes of homoge-
neous processes. This extension enables us to cover more systems of practical
relevance in our approach, and moreover, it forms the basis for integrat-
ing parameterised verification into our heuristic framework for abstraction
refinement.

6.4 Relaxed Symmetry

In Chapter 3 we introduced class-wise symmetric systems. Such parameterised
systems are not fully symmetric, but they consist of a finite number of classes of
fully symmetric processes. Algorithms for the producers-consumers problem, the
sleeping barber problem and the readers-writers problem are classical examples
of systems where we have different classes of homogeneous processes, and
generally an arbitrary number of processes per class. In fact, diverse network
protocols are based on slight extensions of these algorithms. Thus, allowing
for class-wise symmetry is a relaxation on the structure of a parameterised
system that will permit us to consider a much larger variety of concurrent
computation algorithms in our verification framework. Subsequently, we show
how this relaxation can be soundly established for our approach. We first take
a look at a simple example of a class-wise symmetric system. In Section 3.2
we already discussed the following solution for the readers-writers problem:

y : semaphore where y = NRd

‖i∈PIDRd
NRd

Rdi ::

1 : loop forever do

2 : non-critical
3 : acquire(y,1)
4 : critical-read
5 : release(y,1)

 ‖ j∈PIDWrt

NWrt
Wrt j ::

1 : loop forever do

2 : non-critical
3 : acquire(y,NRd)
4 : critical-write
5 : release(y,NRd)

Fig. 6.5 Class-wise symmetric system Sys = ‖i∈PIDRd
NRd

Rdi ‖ j∈PIDWrt
NWrt

Wrt j consisting of a

reader class Rd and a writer class Wrt. PIDRd
NRd

and PIDWrt
NWrt

are sets of process indices with
parameterised sizes NRd ∈ N resp. NWrt ∈ N.

128 6 Spotlight Abstraction for Parameterised Verification

Here we have two classes of processes: the reader class Rd and the writer class
Wrt. Reader processes as well as writer processes continuously attempt to
enter a critical section which is protected by one semaphore y. The semaphore
has a parameterised capacity of NRd , which corresponds to the actual number
of readers in the system. As we can see, readers have to acquire a single unit
of the semaphores capacity, while writers require the full capacity of y. Hence,
an arbitrary number of readers can enter the critical section simultaneously,
whereas writers have mutually exclusive access to the critical section. This
observed fact about Sys corresponds to the general correctness requirement
for readers-writers systems: Never a reader and a writer in the critical section
at the same time, and never two writers in the critical section at the same time.
This can be formalised in temporal logic as follows:

Ψ :=∧
〈iRd

1 ,iWrt
1 ,iWrt

2 〉 ∈ PIDRd
NRd
×
[
PIDWrt

NWrt

]2

,(
AG¬

(
pciRd

1
= 4∧ pciWrt

1
= 4
)
∧ AG¬

(
pciWrt

1
= 4∧ pciWrt

2
= 4
))

with [
PIDWrt

NWrt

]2
,

:=
{
〈i, i′〉 | i, i′ ∈ PIDWrt

NWrt
, i , i′

}
,

i.e. [PIDWrt
NWrt

]2, denotes the second cartesian power of the set PIDWrt
NWrt

where all
tuples 〈i, i′〉 ∈ [PIDWrt

NWrt
]2, consist of pairwise different process identifiers from

PIDWrt
NWrt

.
The abovementioned correctness requirement refers to one arbitrary reader

and to two arbitrary but pairwise different writers. Hence, the corresponding
global temporal logic formula Ψ is a conjunction over all possible 3-tuples
〈iRd

1 , iWrt
1 , iWrt

2 〉 of pairwise different process identifiers with the appropriate
class affiliation. A parameterised system satisfies such a global property if and
only if it holds for any possible instantiation. In contrast to fully symmetric
systems the size of an instantiation of a class-wise symmetric system is not
characterised by a single parameter. For each class a specific number of
processes has to be instantiated. Given a class-wise symmetric system Sys with
k classes, we denote an instantiation by Sysn1,...,nk where n1, . . . ,nk ∈ N are the
respective numbers of processes of each class. An instantiation Sys2,2 of our
readers-writers system is depicted in Figure 6.6.

In fact, the previously specified global CTL formula Ψ holds for this partic-
ular instantiation of Sys. However, we want to verify whether we get the same
result for all instantiations:

∀nRd ≥ 2 ∀nWrt ≥ 2 : K
(
SysnRd ,nWrt

)
,s0 |= Ψ

6.4 Relaxed Symmetry 129

y : semaphore where y = 2

Rd1 ::

1 : loop forever do

2 : non-critical
3 : acquire(y,1)
4 : critical-read
5 : release(y,1)

 ‖ Rd2 ::

1 : loop forever do

2 : non-critical
3 : acquire(y,1)
4 : critical-read
5 : release(y,1)

‖Wrta ::

1 : loop forever do

2 : non-critical
3 : acquire(y,2)
4 : critical-write
5 : release(y,2)

 ‖Wrtb ::

1 : loop forever do

2 : non-critical
3 : acquire(y,2)
4 : critical-write
5 : release(y,2)

Fig. 6.6 Instantiation Sys2,2 of the class-wise symmetric system Sys with PIDRd
2 = {1,2} and

PIDWrt
2 = {a,b}.

where K(SysnRd ,nWrt) is a Kripke structure corresponding to the instantiation
SysnRd ,nWrt and s0 is the state of K(SysnRd ,nWrt) that represents the initial con-
figuration of SysnRd ,nWrt . This model checking task exemplifies parameterised
verification for our simple readers-writers system. The general definitions of
global CTL formulae and parameterised verification of class-wise symmetric
systems are given below.

Definition 6.6 (Global CTL Formulae over Class-Wise Sym. Systems).
Let Sys = ‖k

m=1 (‖i∈PIDm
Nm

Procm
i) be a class-wise symmetric system. Moreover,

let ψ(i11, . . . , i
1
d1
, . . . , ik1, . . . , i

k
dk
) is a parameterised CTL formula with reference

to variables for process identifiers from PID1
N1

to PIDk
Nk

, respectively. Then the
corresponding global CTL formula is

Ψ :=
∧

〈i11,...,i
1
d1
,...,ik1,...,i

k
dk
〉 ∈

�k
m=1([PIDm

Nm]dm
,)

ψ(i11, . . . , i
1
d1
, . . . , ik1, . . . , i

k
dk
).

Thus, for each 1 ≤ m ≤ k: [PIDm
Nm

]dm
, denotes the dm-th cartesian power of

the set PIDm
Nm

where all dm-tuples 〈im1 , . . . , imdm
〉 ∈ [PIDm

nm]
dm
, consist of pairwise

different process identifiers from PIDm
nm . Consequently, the global formula Ψ

is a conjunction over all possible combinations of d1, . . .dk pairwise different
processes from each class 1, . . . ,k, where each clause of Ψ corresponds to a
local CTL formula that refers to d1, . . . ,dk specific processes per class 1, . . . ,k.

Definition 6.7 (Parameterised Verification of Class-Wise Sym. Systems).
Let Sys = ‖k

m=1 (‖i∈PIDm
Nm

Procm
i) be a class-wise symmetric system and let

Ψ =
∧
〈i11,...,i

1
d1
,...,ik1,...,i

k
dk
〉 ∈

�k
m=1([PIDm

Nm]dm
,)

ψ(i11, . . . , i
1
d1
, . . . , ik1, . . . , i

k
dk
) be a global

CTL formula over Sys. Then the corresponding parameterised verification
problem is

∀n1 ≥ d1 . . . ∀nk ≥ dk :

130 6 Spotlight Abstraction for Parameterised Verification

K
(
Sysn1,...,nk

)
,s0

|=∧
〈

i11,...,i
1
d1
,...,ik1,...,i

k
dk

〉
∈

�k
m=1

(
[PIDm

nm]
dm
,

)
ψ

(
i11, . . . , i

1
d1
, . . . , ik1, . . . , i

k
dk

)
where K(Sysn1,...,nk) is a Kripke structure corresponding to an instantiation
Sysn1,...,nk of Sys and s0 is the state of K(Sysn1,...,nk) that represents the initial
configuration of Sysn1,...,nk .

Subsequently, we will show that our approach to parameterised verification
based on symmetry reduction and spotlight abstraction can be easily trans-
ferred to class-wise symmetric systems. Here we have to deal with a relaxed
notion of symmetry, and thus, we also require a new notion of process permu-
tations:

Definition 6.8 (Class-Sensitive Process Permutation).
Let Sysn1,...,nk = ‖k

m=1 (‖i∈PIDm
nm

Procm
i) be an instantiation of a class-wise sym-

metric parameterised system Sys. Then a corresponding class-sensitive process
permutation is a bijective function

σ :
k⋃

m=1

PIDm
nm →

k⋃
m=1

PIDm
nm .

with im ∈ PIDm
nm ⇔ σ(im) ∈ PIDm

nm for all 1≤ m≤ k and all im ∈ PIDm
nm .

As we can see, a class-sensitive permutation σ preserves the class affiliation
of process identifiers. We can even decompose σ into k unrestricted process
permutations σm : PIDm

nm → PIDm
nm with 1 ≤ m ≤ k. On the other hand, a

class-wise symmetric system Sys can be regarded as a composition of k fully
symmetric systems, i.e. Sys = ‖k

m=1 Sysm where Sysm = ‖i∈PIDm
nm

Procm
i . Hence,

each partial permutation σm is a symmetry for the subsystem Sysm, and by
induction we get the following result:

Lemma 6.2.
On Kripke structures corresponding to instantiations of class-wise symmetric
systems, all class-sensitive process permutations are symmetries.

In the next step, we consider the preservation of CTL properties of class-wise
symmetric systems under class-sensitive permutations. We regard properties
of the form Ψ =

∧
〈i11,...,i

1
d1
,...,ik1,...,i

k
dk
〉 ∈

�k
m=1([PIDm

nm]dm
,)

ψ(i11, . . . , i
1
d1
, . . . , ik1, . . . , i

k
dk
).

Definition 6.6 allows us rewrite such global CTL formulae as follows:

Ψ ⇔
∧

σ∈Σ
ψ(σ(pid1

1), . . . ,σ(pid1
d1
), . . . ,σ(pidk

1), . . . ,σ(pidk
dk
))

6.4 Relaxed Symmetry 131

where Σ is the set of all class-sensitive process permutations over
⋃k

m=1 PIDm
nm ,

and for all 1≤ m≤ k: pidm
1 , . . . , pidm

dm
are arbitrary, pairwise different process

identifiers from PIDm
nm . Now analogous to Theorem 6.1 and Corollary 6.2, we

obtain the following result for class-wise symmetric systems:

Corollary 6.4.
Let Sysn1,...,nk = ‖k

m=1 (‖i∈PIDm
nm

Procm
i) be an instantiation of a class-wise sym-

metric system, K = (S,R,L,F) be the corresponding Kripke structure over a set of
atomic predicates AP, and Σ the set of all class-sensitive process permutations for
Sys. Moreover, let ψ(pid1

1 , . . . , pid1
d1
, . . . , pidk

1, . . . , pidk
dk
) be a CTL formula over

AP with 〈pid1
1 , . . . , pid1

d1
, . . . , pidk

1, . . . , pidk
dk
〉 ∈

�k
m=1([PIDm

nm]
dm
,) and let s0 ∈ S

be the state of K that represents the initial configuration of Sysn1,...,nk . Then

[K,s0 |= ψ(pid1
1 , . . . , pid1

d1
, . . . , pidk

1, . . . , pidk
dk
)]

⇔

[K,s0 |=
∧

σ∈Σ
ψ(σ(pid1

1), . . . ,σ(pid1
d1
), . . . ,σ(pidk

1), . . . ,σ(pidk
dk
))].

Thus, applying class-sensitive process permutations preserves the validity of
local CTL properties that refer to particular processes of a class-wise symmetric
system. And again, this allows us to reduce global verification tasks to local
ones.

In the final step, we show how parameterised verification of class-wise
symmetric systems can be combined with spotlight abstraction. The general
approach is the same as for fully symmetric systems. We have only one
additional requirement: The shade has to contain at least one process of each
class. Hence, the shade component summarises the behaviour of an arbitrary
number of processes from all classes. Analogous to Corollary 6.3 we get:

Corollary 6.5.
Let Sys = ‖k

m=1 (‖i∈PIDm
Nm

Procm
i) be a class-wise symmetric parameterised system

and let Sysn1,...,nk = ‖k
m=1 (‖i∈PIDm

nm
Procm

i) be a fixed instantiation of Sys. More-
over, let Spot = Spot(Proc)∪ Spot(Pred), Shade = Shade(Proc)∪ Shade(Pred)
be a given spotlight abstraction for Sysn1,...,nk with ∀1 ≤ m ≤ k ∃i ∈ PIDm

nm :
Procm

i ∈ Shade(Proc). Let Sysa
n1,...,nk

= ‖Procm
i ∈Spot(Proc) Procma

i ‖ ProcShade be
the corresponding abstract system with Sysa

n1,...,nk
� Sysn1,...,nk , K(Sysa

n1,...,nk
) =

(Sa,Ra,La,Fa) the respective abstract Kripke structure over AP = Spot(Pred)∪
{pci = j | Procm

i ∈ Spot(Proc), j∈Loci}, and ψ(pid1
1 , . . . , pid1

d1
, . . . , pidk

1, . . . , pidk
dk
)

a temporal logic formula over AP where 〈pid1
1 , . . . , pid1

d1
, . . . , pidk

1, . . . , pidk
dk
〉 ∈�k

m=1([PIDm
nm]

dm
,) is a tuple of class-affiliated, pairwise different identifiers of

processes in Spot(Proc). Then for any instantiation Sysn′1,...,n
′
k
= ‖k

m=1 (‖i∈PIDm
n′m

Procm
i) of Sys with ∀1 ≤ m ≤ k : n′m ≥ nm, PIDm

n′m
= PIDm

nm ∪{pidm
n+1, . . . , pidm

n′}
and the respective concrete Kripke structure K(Sysn′1,...,n

′
k
) = (S,R,L,F) over AP,

and for any pair of corresponding states sa ∈ Sa, s ∈ S:

132 6 Spotlight Abstraction for Parameterised Verification

K
(
Sysa

n1,...,nk

)
,sa |= ψ

(
pid1

1 , . . . , pid1
d1
, . . . , pidk

1, . . . , pidk
dk

)
≤K3

K
(

Sysn′1,...,n
′
k

)
,s |=

∧
〈

i11,...,i
1
d1
,...,ik1,...,i

k
dk

〉
∈

�k
m=1

(
[PIDm

nm]
dm
,

)ψ

(
i11, . . . , i

1
d1
, . . . , ik1, . . . , i

k
dk

)

In order to illustrate how this result can be utilised for parameterised verifica-
tion we consider again our running example. We want to validate whether
the readers-writers system Sys in Figure 6.5 is correct, i.e. whether there
will never be a reader and a writer in the critical section at the same time,
and never two writers in the critical section at the same time. This global
requirement refers to one arbitrary reader and two arbitrary but distinct
writers. For each distinct process referenced in the requirement we need
one representative process in the spotlight. Moreover, for approximating the
behaviour of an arbitrary number of processes we additionally need one pro-
cess of each class inside the shade. Therefore, we construct an instantiation
Sys2,3 = Rd1 ‖ Rd2 ‖Wrta ‖Wrtb ‖Wrtc of Sys, and we partition the systems pro-
cesses into spotlight and shade as follows: Spot(Proc) = {Rd1,Wrta,Wrtb} and
Shade(Proc) = {Rd2,Wrtc}. In the next step, we narrow down the global re-
quirement to a local CTL property that just refers our representative spotlight
processes: AG¬(pc1 = 4∧ pca = 4) ∧ AG¬(pca = 4∧ pcb = 4). Model checking
this formula on a Kripke structure corresponding to the current spotlight
abstraction yields true. According to Corollary 6.5 we get the same result for
any class-sensitive permutation of the local property, and consequently, also
for our global requirement. Moreover, this result can be further transferred
to any instantiation of Sys that is larger than Sys2,3. Hence, symmetry reduc-
tion combined with the spotlight principle, allows us to successfully verify a
class-wise symmetric parameterised system on a very small abstraction.

Our approach to the verification of parameterised systems generally re-
quires the selection of a preferably small instantiation that is already large
enough for a definite result. A basic heuristic is to select one represen-
tative spotlight process for each distinct process referenced in the prop-
erty to be checked, and additionally, one shade process for each class of
the parameterised system. By our running example we have demonstrated
the effectiveness of this heuristic for an individual case, and in fact it
also works well for several other verification tasks. However, many prop-
erties of class-wise symmetric systems arise from a complex interplay be-
tween a cluster of processes, which cannot be captured by an instantia-
tion according to our basic heuristic. For instance, the liveness formula∧
〈iRd〉 ∈ PIDRd

NRd
AG((pciRd = 3) ⇒ AF(pciRd = 4)) refers to a single process of the

readers-writers system Sys. But its verification requires at least one additional
process to be in the spotlight that competes for the same semaphore. An es-
sentially more complex example would be the verification of a parameterised
producer-consumer system with multiple resources. Here the liveness of a con-

6.5 Abstraction Refinement 133

sumer process depends on the behaviour of potential partners (producers) and
competitors (other consumers). Moreover, a producer of a certain resource
might be in turn a consumer of another resource, and so forth. Hence, chains
and cycles of dependencies may necessitate nontrivial clusters of processes
to be inside the spotlight in order to obtain a definite verification result. –
In the next section we show that, again, heuristic guidance can help us to
iteratively construct appropriate instantiations (and abstractions) of class-wise
symmetric systems in parameterised verification.

6.5 Abstraction Refinement

Symmetry in parameterised systems does not necessarily come along with
pure uniformity. The more symmetry classes we have in a system, the more
non-uniform dependencies we get in potential instantiations – which in turn
makes the task of finding the right degree of abstraction more challenging.
In this section we show how our framework for heuristic-guided abstraction
refinement can be adopted for the iterative construction of abstractions of
class-wise symmetric systems. The first issue that we encounter here is that
parameterised verification does not only require the selection of an adequate
abstraction, but also the selection of an adequately sized instantiation. Sub-
sequently, we will see that our framework is capable of accomplishing both
selections in one step. Based on the parameterised message passing system
SysMP depicted in Figure 6.7 we illustrate our approach.

c,d,e, f ,g : channel [1] of integer

‖i∈PID1
N1

Proc1
i ::

1 : loop forever do 2 : receive(c, ·)

3 : receive(d, ·)
4 : progress

 ‖i∈PID2

N2
Proc2

i ::

1 : loop forever do[

2 : send(d, ·)
3 : progress

]
2 : receive(e, ·)

‖i∈PID3
N3

Proc3
i ::

1 : loop forever do 2 : receive(e, ·)

3 : send(c, ·)
4 : progress

 ‖i∈PID4

N4
Proc4

i ::

1 : loop forever do[

2 : receive(d, ·)
3 : progress

]
2 : receive(e, ·)

‖i∈PID5
N5

Proc5
i ::

1 : loop forever do 2 : receive(f , ·)

3 : send(e, ·)
4 : progress

 ‖i∈PID6

N6
Proc6

i ::

1 : loop forever do 2 : receive(g, ·)

3 : send(f , ·)
4 : progress

Fig. 6.7 Class-wise symmetric message passing system SysMP = ‖6
m=1

(
‖i∈PIDm

Nm
Procm

i

)
over

Var = {c,d,e, f ,g}. For simplification, the data values of communication statements are
omitted.

134 6 Spotlight Abstraction for Parameterised Verification

As we can see, the communication structure of this system exhibits a high
degree of non-uniform dependencies, which makes verification generally diffi-
cult. Before we consider a concrete verification task for SysMP we show how an
initial abstraction and a corresponding dependence graph can be constructed
for an arbitrary class-wise symmetric system Sys = ‖k

m=1 (‖i∈PIDm
Nm

Procm
i). The

set of different processes of Sys is {Proc1, . . . ,Prock}, i.e. each of these pro-
cesses represents a distinct class. We now initialise a spotlight abstraction of
Sys as follows: Spot = /0 and Shade(Proc) = {Proc1, . . . ,Prock}. Moreover, we as-
sume that the initial set of refinement candidates is empty, i.e. Candidates = /0.
According to Definition 5.5 we can construct a corresponding abstraction
dependence graph ADG = (V,D). Contrary to ADGs of fixed instantiations, we
now have that each node v ∈V that is associated with Shade(Proc) represents
a class of an arbitrary number of processes. Since distinct processes of the
same class might affect each other, we extend the dependence relation of the
abstraction dependence graph ADG = (V,D) as follows:

D := D ∪ {(v,v) | ((v ∈ Proc(Shade) ∧ ∃ x(x ∈ DEF(v) ∧ x ∈ REF(v)))} ,

i.e. the dependencies can now be reflexive for vertices in Proc(Shade).
Hence, we start with an entirely empty spotlight and for each class of

processes we introduce one vertex inside the shade. Such a vertex now rep-
resents an arbitrary number of processes of the same kind. Thus, we may
not only have dependencies between processes of different classes, but also
between processes within a class. In Figure 6.8 we see the initial abstraction
dependence graph corresponding to the message passing system SysMP.

Proc2Proc1

Proc4Proc3

Proc6Proc5

Spot Shade

Fig. 6.8 Abstraction dependence graph corresponding to the spotlight abstraction Spot =
/0 and Shade(Proc) = {Proc1,Proc2,Proc3,Proc4,Proc5,Proc6} of the class-wise symmetric
message passing system SysMP = ‖6

m=1 (‖i∈PIDm
Nm

Procm
i).

We now want to check whether all processes of class 1 of the parameterised
system will continuously reach their critical section, i.e. whether the liveness

6.5 Abstraction Refinement 135

formula
Ψ :=

∧
〈i〉 ∈ PID1

N1

AG((pci = 3) ⇒ AF(pci = 4))

holds for all possible instantiations of SysMP. The global CTL formula Ψ refers
to one arbitrary process of class 1. Hence, we create a new instantiation
of Proc1 inside the spotlight – without removing Proc1 from the shade. The
instantiation Proc1

1 inherits all but the reflexive dependencies of the shade
vertex Proc1. The corresponding abstraction dependence graph is shown in
Figure 6.9. The inherited dependencies are depicted as dashed edges.

Proc1
1 Proc2Proc1

Proc4Proc3

Proc6Proc5

Spot Shade

Fig. 6.9 Abstraction dependence graph corresponding to the spotlight abstraction Spot =
{Proc1

1} and Shade(Proc) = {Proc1,Proc2,Proc3,Proc4,Proc5,Proc6} of the class-wise sym-
metric message passing system SysMP = ‖6

m=1 (‖i∈PIDm
Nm

Procm
i).

This nearly completes our extended abstraction refinement framework for
class-wise symmetric systems. We have determined the initial spotlight for
our current verification task and we have constructed the corresponding
abstraction dependence graph. Now, the steps model checking, counterexample
generation and heuristic selection of the most promising refinement candidate
can be iteratively performed as introduced in Chapter 5 – with the slight
difference that processes are not shifted from the shade to the spotlight,
but new instantiations of processes are created inside the spotlight. Since
process vertices are never removed from the shade, this procedure might not
terminate, which comes along with the fact that parameterised verification
is undecidable in general. Nevertheless, expedient refinement heuristics are
even more important in parameterised verification than in verifying fixed
concurrent systems. Even if there exists a finite set of spotlight components
that is sufficiently large for a definite result in verification, this set is generally
more hard to detect for a parameterised system – because now the number of
potential process instances of each class is unbounded, and thus, the refinement
procedure might get lost in adding an infinite number of replications of one

136 6 Spotlight Abstraction for Parameterised Verification

process to the spotlight. In fact, using our original heuristic evaluation from
Section 5.3 would suffer from exactly this problem. However, in the following
we will see that heuristics specifically tailored to the verification of certain
properties of class-wise symmetric systems can avoid such pitfalls.

Our running example refers to the verification of a liveness property of
a parameterised message passing system. The heuristic approach that we
present here is thus not only geared to parameterisation, but also to the type of
requirement and to the communication structure of the system. In Figure 6.10
we have again an abstraction dependence graph corresponding to the initial
abstraction of our message passing system. However, this time we distinguish
partner and competitor dependencies (compare Section 5.3, Definition 5.6).
For the sake of simplicity, the inherited dependencies of the spotlight process
are omitted.

Proc1
1 Proc2Proc1

Proc4Proc3

Proc6Proc5

Spot Shade

r-pa

s-pa

co
r-pas-par-pas-pa

s-pa r-pa

r-pa

s-pa

coco

coco

coco

Fig. 6.10 Abstraction dependence graph corresponding to the spotlight abstraction Spot =
{Proc1

1} and Shade(Proc) = {Proc1,Proc2,Proc3,Proc4,Proc5,Proc6} of the class-wise sym-
metric message passing system SysMP = ‖6

m=1 (‖i∈PIDm
Nm

Procm
i). The edge labels denote the

kind of dependency: SendingPartner is abbreviated by s-pa, ReceivingPartner is abbreviated
by r-pa and Competitor is abbreviated by co.

Our current verification task refers to a global liveness property. Liveness of
a certain class of processes in a parametrised message passing system inher-
ently depends on the interplay between partners and between competitors.
Processes from the same class are by nature competitors, which means that
each process has potentially an unbounded number of competitors in a param-
eterised system. Hence, competitor dependencies are generally less distinctive
structural features of parameterised message passing systems. Our first heuris-
tic idea is thus to put particular emphasis on partner relationships when we
analyse the dependencies within the shade. In our heuristic evaluation of
refinement candidates we now use a modification linkingShadeParam of the
original weight function linkingShade (compare Section 5.3.2, Table 5.4):

linkingShadeParam(v) :=

6.5 Abstraction Refinement 137

∑
v′∈Shade(Proc)\{v}

size(v′)
s-paDistance(v′,v) · (instantiations(v′)+1)

Here s-paDistance(v′,v) returns the shortest directed path from v′ to v in
the subgraph of the abstraction dependence graph induced by edges within
the shade that are labelled with s-pa. Moreover, instantiations(v′) returns
the number of instantiations of v′ in the spotlight. Hence, candidates that
rely to a large extent on the assistance of sending partners from the shade
are particularly expensive. The sub-function instantiations(v′) helps us to
decrease the costs for dependencies to process classes of which we have
already instantiations in the spotlight. However, we also use instantiations(v)
itself as a cost factor of process candidates v: The more instantiations of a
certain class we have in the spotlight, the less is the expected gain of new
information by adding another one from the same class.

Finally, we want to consider the benefit part of our heuristic evaluation. Our
running example concerns the verification of a liveness formula. While partners
are generally crucial for the validation of a liveness property, competitors are
essential for its refutation. Naturally, the final outcome of a verification task is
not known in advance. Thus, we assume that both, partners and competitors of
spotlight processes are beneficial refinement candidates. For the evaluation of
process candidates we use the following modification of the weight function
linkingSpot (compare Section 5.3.2, Table 5.2):

linkingSpotParam(v) :=∣∣{v′ | v′ ∈ Spot(Proc) ∧ Partner(v,v′)
}∣∣

+∣∣{(v′,v′′) | v′,v′′ ∈ Spot(Proc) ∧ Partner(v′,v′′) ∧
(
Comp(v,v′) ∨ Comp(v,v′′)

)}∣∣
Hence, we count the number of spotlight processes v′ that are partners of
the candidate v, and moreover, we count the number of partner relations
(v’,v”) inside the spotlight that might be ’disturbed’ by the candidate v as a
competitor. – Our overall heuristic evaluation function for process candidates
now corresponds to the following weighted composition of sub-functions:

h(v) :=

(ω1 ·occurrence(v) + ω2 · linkingSpotParam(v))︸ ︷︷ ︸
bene f it(v)

−

(ω3 · linkingShadeParam(v) + ω4 · size(v) + ω5 · instantiations(v))︸ ︷︷ ︸
cost(v)

138 6 Spotlight Abstraction for Parameterised Verification

For predicate candidates we keep using the evaluation function introduced in
Section 5.3.2. We now apply heuristic-guided abstraction refinement to our
running example – the message passing system SysMP. After four iterations
we get spotlight abstraction depicted in Figure 6.11.

Proc1
1 Proc2

1

Proc4
1

emptyd

Proc2Proc1

Proc4Proc3

Proc6Proc5

Spot Shade

r-pa

s-pa

s-pa r-pa
co

r-pa

s-pa

co
r-pas-par-pas-pa

s-pa r-pa

r-pa

s-pa

coco

coco

coco

Fig. 6.11 Abstraction dependence graph corresponding to the spot-
light abstraction Spot(Proc) = {Proc1

1,Proc2
1,Proc4

1} and Shade(Proc) =
{Proc1,Proc2,Proc3,Proc4,Proc5,Proc6}, Spot(Pred) = {emptyd} of the class-wise symmetric
message passing system SysMP = ‖6

m=1 (‖i∈PIDm
Nm

Procm
i). For the sake of simplicity, the

dependencies between the spotlight and the shade are omitted.

Based on our enhanced heuristic evaluation for process candidates one part-
ner Proc2

1 and one competitor Proc4
1 of the initial process Proc1

1 have been
instantiated in the spotlight. The competitor Proc4

1 is in turn a partner of Proc2
1.

All three processes affect and depend on the predicate emptyd , which has also
been added to the spotlight. This abstraction is already precise enough for
refuting the global CTL property

∧
〈i〉 ∈ PID1

N1
AG((pci = 3) ⇒ AF(pci = 4)) for

the entire parameterised message passing system Sys.
Of course, the extended evaluation function is geared to a concrete veri-

fication problem, and thus, the successful verification in this case does not
automatically prove the general efficiency of our extension. However, it demon-
strates that our heuristic framework from Chapter 5 can be easily adapted for
specific verification tasks, in particular for parameterised verification. Avoiding
too many process instantiations of one class, and distinguishing different kinds
of dependencies can even be considered as basic principles for an heuristic
approach to abstraction refinement for parameterised systems. Concluding
this chapter, we have shown that our heuristic-guided abstraction refinement
framework is generally compatible with parameterised verification, which
in several cases enables us to construct small abstractions that are precise
enough for parameterised verification. In the next chapter, we will more ex-
tensively investigate the applicability of our verification framework, based on

6.6 Related Work 139

an experimental evaluation. Beforehand, we take a look at related work on
parameterised verification.

6.6 Related Work

Parts of our work introduced in this chapter have already been published in
[119]. Moreover, our research on verifying parameterised systems via spotlight
abstraction is connected to other approaches in a number of ways. In this
section we summarise and extend our previous references to related works.

The parameterised verification problem has received considerable attention
in research. Its undecidability was shown by Apt and Kozen in [7]. Never-
theless, several techniques have been proposed to bypass this issue. One
way of approaching parameterised verification is to use semi-automatic proof
methods based on theorem proving. The invisible invariants method proposed
by Pnueli et al. [109] computes invariants on small instantiations of the pa-
rameterised system and proves that these are inductive on the entire system.
McMillan’s compositional reasoning [97] is another technique for parame-
terised verification that relies on inductive proofs. Furthermore, there exist a
number of approaches based on abstraction and model checking. Baukus et al.
[16] presents a technique for constructing abstract models of parameterised
systems in the second order logic WS1S. Their approach requires manual in-
tervention by a user in terms of defining abstraction relations. Regular model
checking [3] and monotonic abstraction [2] are methods for automatically
verifying ω-regular safety properties of parameterised systems. Both meth-
ods are based on automata-theoretic constructions and thus involve a high
computational complexity.

Several other abstraction-based verification techniques for parameterised
systems rely on symmetry arguments. Symmetry reduction [58, 105, 39] is a
well-established method for reducing the state space complexity in temporal
logic model checking. The general concept of symmetry reduction is to build
equivalence classes of states that only differ in permutations of variable values.
This method can be applied to any kind of system that exhibits some form of
replication. Since fully symmetric and class-wise symmetric systems inherently
consist of replicated processes, symmetry reduction can lead to substantial
savings here. Thus, we selected this method as the basis for our approach to
parameterised verification. From Clarke et al. [39] we have taken the idea
of exploiting symmetry under permutations. However, Clarke et al. exploit
symmetry in finite state systems, whereas our approach is tailored to systems
with an unbounded number of processes. Similar to our work, Emerson and
Kahlon [57] use symmetry arguments to reduce the verification of class-
wise symmetric parameterised systems to the verification of small instances.
Their method is complete for systems whose processes exhibit a particular
type of transition guards. Moreover, it is restricted to the verification of safety

140 6 Spotlight Abstraction for Parameterised Verification

properties from a fragment of the temporal logic CT L∗\X . The model checking
procedure of [57] iterates over all instantiations up to a cutoff size – which
is derived based on the structure of the system. Cutoffs for parameterised
verification are also considered by Namjoshi in [103] who shows that that
the cutoff technique is equivalent to determining a parameterised inductive
invariant. Another cutoff-based approach to parameterised verification is
presented by Kaiser et al. in [86] who propose a technique for dynamic
cutoff detection during verification. The techniques counter abstraction by
Pnueli et al. [110] and environment abstraction by Clarke et al. [35] are in a
sense based on cutoffs too. Here the number of symmetric processes being
in particular states is counted, where the counters are cut off at a certain
number. The major difference between our approach and the cutoff-based
methods [57, 103, 86] is that we start with an initial instantiation whose
size is chosen based on the property to be checked. Moreover, we have no
specific constraints concerning the transition guards and our approach is not
limited to safety properties. The price that we pay is that our technique is
incomplete, i.e. our abstraction refinement procedure might not terminate
for all parameterised verification tasks. Symmetry reduction combined with
counterexample-guided abstraction refinement has recently been considered
by Donaldson et al. [53]. The authors introduce a symmetry-aware CEGAR
technique for fully symmetric concurrent systems. Abstraction is based on
a single representative process and a number of mixed predicates: boolean
predicate expressions that refer to both shared and local variables at once.
Refinement is performed like in classical CEGAR [34] based on spurious
counterexamples. Symmetry permits to transfer reachability properties of the
single process to the entire system. The proposed approach is more restrictive
than our method. However, the integration of the concept of mixed predicates
into our framework appears as a promising direction for future research. The
previously mentioned technique monotonic abstraction [2] has also been
integrated into a CEGAR framework [1]. Refinement in [1] is not based
on adding new predicates but on introducing so-called safety zones: sets of
configurations that satisfy certain requirements.

Our approach to parameterised verification works for fully and class-wise
symmetric systems. Nevertheless, there exist a number of other notions of
symmetry in concurrent systems as well as corresponding reduction tech-
niques. In several parameterised systems the processes communicate in a ring.
Classical examples are protocols for the dining philosophers problem. Such
systems exhibit rotational symmetry, i.e. only circular process permutations
are feasible. Parameterised verification of rotational symmetric systems is
supported by the model checker SVISS [124], which however requires the
specification of symmetry sets by a user. Many parameterised systems that con-
sist of homogeneous processes are, strictly speaking, not symmetric because
the processes execute id-sensitive operations. For instance, in Szymanski’s
mutual exclusion algorithm [117] and in Lamport’s bakery algorithm [93]
there exist operations that depend on the identifier of the executing process.

6.6 Related Work 141

Counter abstraction-based approaches to the verification of parameterised
systems with id-sensitive operations have been proposed by Pnueli et al. [110]
and by Emerson and Wahl [59]. Both techniques are limited to id-sensitive
operations of a certain kind. Spotlight abstraction, as we employ it in our
framework, is not compatible with these different notions of symmetry in
concurrent systems. Thus, an extension of our approach towards support
for rotational symmetry and id-sensitive operations remains as future work.
Finally, we want to mention that symmetry reduction is not only used in the
context of concurrency. There also exist verification techniques that exploit
data symmetry [43] or heap symmetry [84] in software systems.

Chapter 7
Implementation and Experimental Results

In the previous chapters, we conceptually introduced our approach to the
verification of concurrent systems. We presented our heuristic framework for
abstraction refinement and illustrated it by a number of simple examples. In
this chapter, we describe the implementation of our framework. Moreover, we
present two case studies that demonstrate the applicability of our approach
for larger-scale systems. Within these case studies we show that our heuristic
approach can significantly outperform naive refinement strategies. Moreover,
we evaluate the suitability of certain weight configurations of our heuristic
function for different verification tasks.

7.1 3Spot Verification Framework

We have implemented our approach to heuristic-guided abstraction refinement
within the 3Spot verification framework. 3Spot, initially introduced in [112], is
a prototype tool for the verification of concurrent software systems. As input
it takes a concurrent system written in a C-like syntax and a CTL formula
over the systems variables and its control flow. For the input system nearly
all control structures of the C language [88] are admissible. Originally, only
the data types boolean, integer and semaphore where supported. Within this
work we extended the input language to counting semaphores, finite arrays
and communication channels (see Chapter 3 for a detailed description of the
feasible input systems). 3Spot fully automatically checks whether the CTL
property holds for the concurrent system and outputs the obtained result. In
the following, we want to take a closer look at the steps between the input
and the final output. In Figure 7.1 we can see the toolchain of the 3Spot
verification framework.

143

144 7 Implementation and Experimental Results

Three-Valued
Spotlight

yAbstractiony

Concrete System
and CTL Formula

3Spot
Abstract

State Space
Encoding

Heuristic-
Guided

yRefinementy

Three-Valued
Model

Checking

Abstraction
Dependence

Analysis

Multiple-
Counterexample
yGenerationy

Abstract System
and CTL Formula

Kripke Structure
and CTL Formula

Unknown
Result

Refinement
Candidates

Evaluated
Candidates

Best
Candidate

Definite
Result

Fig. 7.1 Toolchain of the 3Spot verification framework.

In the first step, three-valued spotlight abstraction is applied to the input system
(compare Sections 4.1 and 4.2): This requires an initial spotlight which is
directly derived from the input CTL formula. The system is transformed into
an equivalent control flow representation (compare Definition 3.5). Then
an abstraction of the control flow representation is built by employing the
theorem prover Z3 [102]. In the second step, a state space encoding of the
abstract system is constructed (compare Definition 3.7). More precisely, a
Kripke structure corresponding to the abstract systems state space is not ex-
plicitly built, but symbolically represented as a multi-valued decision diagram
(MDD) [116]. In the third step, three-valued model checking is applied to the
MDD-represented Kripke structure: The multi-valued decision diagram and
the CTL formula are fed into the multi-valued symbolic model checker χChek
[54]. χChek either returns a definite result that can be directly transferred
to the original system, or it returns unknown. In the latter case, multiple-
counterexample generation is employed (compare Section 5.2). The number of
generated counterexamples can be specified by the user. A set of refinement
candidates is derived from the counterexamples. In the subsequent step, an
abstraction dependence graph is constructed for the current abstraction and
the set of candidates (compare Section 5.3.1). The dependence structure of
the abstraction is analysed and the candidates are evaluated with regard to
their benefits and costs for refinement. Finally, heuristic-guided refinement de-
termines the presumably best candidate and adds it to the spotlight (compare
Section 5.3.2). This heuristic decision also incorporates user-specified weight
parameters that allow to put particular emphasis on certain characteristics of
the candidates. Now, the abstraction refinement loop starts again and iterates
until a definite result in verification is achieved. The overall cycle runs fully
automatic. The only task of the user is to select the inputs, chose a predefined

7.1 3Spot Verification Framework 145

refinement heuristic, adjust the heuristic by setting the weight parameters,
and finally, push the button. In each iteration the generated counterexamples
and the constructed abstraction dependence graph are visualised so that the
user can keep track of the heuristic refinement decisions. The graphical user
interface of 3Spot is depicted in Figure 7.2.

Fig. 7.2 Graphical user interface of the 3Spot verification framework.

Thus, 3Spot’s graphical user interface displays the two inputs: the CTL formula
and the program code of the concurrent system. The user can select the
desired refinement heuristics via check boxes. Moreover, the weights of the
evaluation function can be modified. A click on ’Create statistics’ then starts the
verification run. The running abstraction refinement procedure is visualised by
means of the iteratively generated abstraction dependence graphs. In Figure
7.3 we have an example of such a graph constructed by 3Spot.

We can identify the derived refinement candidates as a subset of the shade.
Moreover, we can see their dependencies to the remaining components of
the abstraction. In general, the visualisation of the constructed dependence
graphs provides the user with a comprehensible view on the current stage of
abstraction and the taken refinement decisions. Furthermore, it invites the
user to experiment with the different heuristic parameters, and to visually
keep track of the effects. In the subsequent section we will take a closer look
at the selectable heuristics and at our experiments with 3Spot that we have
conducted within this work.

146 7 Implementation and Experimental Results

Spotlight

Shade

Candidates

P

0
(= getB_empty false)

(= getA_empty false)

8.0

P

4

6.0

P1

9

1

P1

8

1

P

5

1

11

1
1

1

1

P1

7

P1

4

1

1

1

P

3

P

2

P

1

Fig. 7.3 Abstraction dependence graph constructed by 3Spot

7.2 Case Studies and Experimental Results

In Chapter 5 we extensively discussed the foundations of our heuristic frame-
work for abstraction refinement. We considered several examples that illus-
trated the underlying ideas of our approach and demonstrated its general
effectiveness for the verification of fixed-sized concurrent systems. Moreover,
in Section 6.5 we showed that our heuristic approach can be also successfully
applied to parameterised systems. However, the simple examples that we
considered were geared towards descriptiveness, and thus, did not exhibit the
complexity of real-life applications. Now, we want to show that our approach
also performs well for larger systems.

While uniform concurrent systems can be usually efficiently verified based
on symmetry arguments, the verification of non-uniform concurrent systems
remains particularly challenging. The heterogeneous structure of such systems
prevents the applicability of several well-established state space reduction
techniques like counter abstraction [110] or symmetry reduction [39]. In
contrast, the capability of our approach particularly arises from the effective
exploitation of the – possibly non-uniform – structure of the considered system.
In our case studies we therefore look at concurrent systems with arbitrarily
chosen, and hence non-uniform dependencies. More specifically, we consider
multiple-resource allocation via message passing, where we have two kinds of
processes: allocators and customers. Each allocator manages the allocation of
a single resource, whereas every customer requests several resources before
entering its critical section. Moreover, allocators that provide a resource R1 can
in turn be customers of a resource R2, i.e. they have to acquire R2 first in order
to provide R1. This causes a high degree of transitive dependencies in our

7.2 Case Studies and Experimental Results 147

systems. Allocators and customers communicate via message passing, i.e. each
resource type is associated with a distinct tuple of channels. The customers’
individual resource demands and the orders of requests are arbitrarily chosen.
Hence, our systems exhibit a heterogeneous dependency structure. In Figure
7.4 we see an example of a fixed-sized multiple-resource allocation system.

freeR1,returnR1, . . . , freeRk,returnRk : channel [1] of integer

‖k
i=1 Alloci ::

 1 : loop forever do[
2 : send(freeRi, ·)
3 : receive(returnRi, ·)

]

‖ Cust1 ::

1 : loop forever do

2 : receive(freeR1, ·)
. . .
receive(freeRk, ·)

j : critical
send(returnR1, ·)
. . .

m : send(returnRk, ·)

‖ Cust2 ::

1 : loop forever do

2 : receive(freeRk, ·)
. . .
receive(freeR1, ·)

j : critical
send(returnRk, ·)
. . .

m : send(returnR1, ·)

Fig. 7.4 Message passing system SysMRA = ‖k

i=1 Alloci ‖ Cust1 ‖ Cust2 over Var =
{freeR1,returnR1, . . . , freeRk,returnRk} with multiple-resource allocation.

In the system SysMRA we have k allocators and two customers. Each allocator
Alloci manages a resource Ri. By sending on the channel freeRi the allocator
makes the resource available in the system. As we can see, the customer
Cust1 attempts to acquire the resources in the order R1, . . . ,Rk, whereas Cust2
requests the resources in the reverse order. Once a customer has acquired all
demanded resources it can enter a critical section. Afterwards the customer
releases its acquired resources by sending on the channels returnRi, 1 ≤
i ≤ k. The allocators then receive their managed resources back and make
them again available in the system. SysMRA is a basic example for a message
passing system with multiple resource allocation. As we have mentioned
before, such systems may also consist of several allocators per resource type,
moreover, customers do not necessarily request all resources that are offered
in the system, and allocators may be in turn customers of other resources.
Thus, SysMRA with k = 1, i.e. a single allocator, is the smallest system that
we consider in our first case study. We then proceed to larger-scale systems
by introducing more resources, more allocators and more customers. As a
measure for the degree of dependence in a system we use the number of
edges in the corresponding dependence graph. In Figure 7.5 we have the
dependence graph corresponding to SysMRA with k = 1. As we can see, the
degree of dependence is 6.

148 7 Implementation and Experimental Results

Alloc1

Cust1 Cust2

Fig. 7.5 Dependence graph corresponding to SysMRA = Alloc1 ‖Cust1 ‖Cust2.

7.2.1 Case Study I: Naive vs. Enhanced Refinement

The requirement that we consider in our first case study is the CTL liveness
formula AG(AF(pcCust1 = j)), i.e. we check whether the customer Cust1 will
continuously reach the critical section. Although we perform verification under
the assumption of fairness, such a requirement can be potentially violated in
multiple resource allocation systems. Customers that compete for the same
types of resources may prevent each other from entering the critical section.
Hence, proving or disproving liveness properties may necessitate to draw a
larger set of mutually dependent processes (and corresponding predicates)
into the spotlight. Our abstraction refinement framework aims at heuristically
discovering the minimal set of processes and predicates that is sufficient for
a definite result in verification. In this case study we thus compare naive
refinement approaches with our enhanced approach based on the heuristic
evaluation of refinement candidates. More precisely, we take a look at the
following heuristics for counterexample-guided abstraction refinement:

1CEX-1STCAND generate one unconfirmed counterexample π

(naive) select first candidate v along π for refinement
1CEX-ALLCAND generate one unconfirmed counterexample π

(naive) select all candidates v1, . . . ,vm along π for refinement
1CEX-BESTCAND generate one unconfirmed counterexample π

(enhanced) select best candidate v for refinement wrt. the evaluation function h
NCEX-BESTCAND generate N unconfirmed counterexamples π1, . . . ,πN (if existing)

(enhanced) select best candidate v for refinement wrt. the evaluation function h

Table 7.1 Heuristics for counterexample-guided abstraction refinement.

The first two heuristics correspond to the naive approaches: We generate one
unconfirmed counterexample and then select the first encountered candidate
(1CEX-1STCAND), or alternatively, all candidates (1CEX-ALLCAND) for refine-
ment. In our enhanced heuristics we use the evaluation function h for selecting
the presumably best candidate, either for a single counterexample (1CEX-
BESTCAND) or with multiple counterexample-generation (NCEX-BESTCAND).

7.2 Case Studies and Experimental Results 149

Remember that heuristic evaluation function h : Candidates→ R corresponds
to a weighted composition of sub-functions with

h(v) :=

(ω1 ·occurrence(v) + ω2 · linkingSpot (v))︸ ︷︷ ︸
bene f it(v)

−

(ω3 · linkingShade(v) + ω4 · size(v) + ω5 · redundancy(v))︸ ︷︷ ︸
cost(v)

for v ∈ Candidates. A detailed description of the sub-functions of h can be
found in Section 5.3.2. However, so far, we have not discussed the weight
parameters ω1, . . . ,ω5.

Our choice of the weights for the first case study relies on a number of facts
and observations: The sub-functions of h generally exhibit different ranges of
values. For a candidate v the value of linkingShade(v) is typically considerably
higher than the values of the remaining sub-functions. We further observed
that the likeliness for a (relatively) high value of occurrence(v) increases with
the number of generated counterexamples. The same holds for linkingSpot(v)
and the number of components in the spotlight, for linkingShade(v) and the
degree of dependence within the shade, as well as for size(v) and the number
of channels a process candidate v communicates on. The value of redun-
dancy(v) is generally small in multiple resource allocation systems without
additional local variables. Moreover, the values obtained for linkingSpot(v)
and linkingShade(v) are commonly subject to significantly higher fluctuations
than the values of occurrence(v), size(v) and redundancy(v).

For our first case study we thus selected a weight configuration based on
the following ideas: On the one hand, the different ranges of values should
be equalised, i.e. a balance between the benefit-side and the cost-side should
be achieved. On the other hand, there should be some extra emphasis on the
two potentially most crucial sub-functions linkingSpot(v) and linkingShade(v).
This resulted in the following weighting for h:

h(v) :=

(6 ·occurrence(v) + 6 · linkingSpot (v))︸ ︷︷ ︸
bene f it(v)

−

(3 · linkingShade(v) + 1 · size(v) + 1 · redundancy(v))︸ ︷︷ ︸
cost(v)

150 7 Implementation and Experimental Results

Table 7.2 now shows the experimental results of our case study I:

SYSTEM ABSTRACTION
heuristic resources customers allocators dependencies requirement |Spot(Proc)| |Spot(Pred)| time

1CEX-1STCAND 1 2 1 6 liveness, f alse 3 1 0.74s
(naive) 2 5 3 36 liveness, true 6 1 6.94s

3 6 4 48 liveness, f alse 6 1 8.83s
4 8 8 76 liveness, true − − OOM
8 15 10 126 liveness, f alse − − OOM

1CEX-ALLCAND 1 2 1 6 liveness, f alse 3 1 0.67s
(naive) 2 5 3 36 liveness, true 5 2 7.06s

3 6 4 48 liveness, f alse 5 4 195s
4 8 8 76 liveness, true 5 4 307s
8 15 10 126 liveness, f alse − − OOM

1CEX-BESTCAND 1 2 1 6 liveness, f alse 3 1 1.39s
(enhanced) 2 5 3 36 liveness, true 5 2 16.4s

3 6 4 48 liveness, f alse 6 2 27.3s
4 8 8 76 liveness, true 5 4 83.9s
8 15 10 126 liveness, f alse − − OOM

2CEX-BESTCAND 1 2 1 6 liveness, f alse 3 1 1.67s
(enhanced) 2 5 3 36 liveness, true 3 2 6.47s

3 6 4 48 liveness, f alse 3 2 6.52s
4 8 8 76 liveness, true 3 2 8.55s
8 15 10 126 liveness, f alse 4 3 57.5s

3CEX-BESTCAND 1 2 1 6 liveness, f alse 3 1 1.91s
(enhanced) 2 5 3 36 liveness, true 3 2 6.82s

3 6 4 48 liveness, f alse 3 2 6.90s
4 8 8 76 liveness, true 3 2 8.49s
8 15 10 126 liveness, f alse 4 3 69.9s

Table 7.2 Comparison of the performance in verification under naive and enhanced refine-
ment heuristics.

Hence, we compared five heuristics: the two naive ones, and our weighted
best candidate heuristic with one, two, and three generated counterexamples;
and, we considered five different multiple-resource allocation systems with an
increasing number of resources, processes and dependencies. For two of these
systems the liveness requirement AG(AF(pcCust1 = j)) holds (liveness,true),
whereas for three systems the requirement is not satisfied (liveness,false). For
each heuristic and each system we measured the size of the final abstraction
and the required verification time.

For the two smallest systems the naive heuristics can slightly outperform our
enhanced heuristics with regard to the verification time. However, this does
not hold for the size of the final abstraction. Here our enhanced heuristics
perform minimally better or at least equally good as the naive ones. The
difference in verification time is caused by the additional computations that
come along with our best candidate heuristics: Multiple counterexamples have
to be generated and an abstraction dependence graph has to be built and
analysed in each iteration. The fact that the employment of our enhanced
heuristics does not lead to a significant reduction of the size of the final
abstraction can be explained as follows: The two smallest systems exhibit – in
relation to their size – a comparatively high degree of dependence, and thus,
verification generally requires to draw a large part of the overall system into

7.2 Case Studies and Experimental Results 151

the spotlight. Hence, there is only little scope for optimising the size of the
abstraction.

Nevertheless, for the larger systems (with three resources and more) the
additional computations of the enhanced heuristics pay off: Verification un-
der 1CEX-BESTCAND already entails a slightly better performance than the
naive approaches. The use of the best candidate heuristics with multiple-
counterexample generation leads to significantly smaller abstractions and clear
speed-ups in time. With these enhanced heuristics we are even successful
and fast when verification under the other heuristics runs out of memory
(OOM). We can observe that our advanced approach to abstraction refine-
ment facilitates the detection of small abstractions that are already precise
enough for definite results in verification. The heuristic evaluation of refine-
ment candidates in terms of dependencies to the spotlight and to the shade
allows us to identify valuable refinement steps and to avoid unfavourable
directions. Moreover, we see that our approach can lead to improvements
for both the validation and the refutation of local liveness requirements. With
multiple-counterexample generation we have an additional source of refine-
ment candidates, and thus, a greater scope for heuristic decisions. In our
framework multiple counterexamples also serve as the basis for region sum-
marisation (compare Section 4.2.3). Thus, it is not surprising that the best
candidate heuristics with two and three generated counterexamples entail
the best performance in our case study. However, the generation of a third
counterexample yields no further improvement in comparison to the heuristic
2CEX-BESTCAND. We conjecture that this may hold for the scale of systems
that we considered in our first case study – but the verification of larger sys-
tems with more dependencies may profit from a greater number of generated
counterexamples.

7.2.2 Case Study II: Weight Configurations

In our second case study we investigated the impact of distinct weight param-
eters on certain verification tasks. For this purpose, we looked at a number
of local requirements that could not be checked for larger-scale resource
allocation systems under the naive heuristics. We employed the best candidate
heuristic in these verification tasks and compared the performance of our
framework under different weight configurations. The first configuration that
we considered was the one that we introduced in our first case study, which
we will from now on call the balanced configuration. Second, we regarded
a setting where most of the emphasis was put on the benefit-side, called
the benefit-focused configuration. And analogously, we took a look at a cost-
focused configuration with particular emphasis on the costs for refinement.
The requirements that we checked were defined as CTL formulae of the form
AG(AF(pcCust1 = j)) and AG¬((pcCust1 = j) ∧ (pcCust2 = j)), i.e. we considered

152 7 Implementation and Experimental Results

both liveness and safety properties. We verified a number of larger multiple-
resource allocation systems that satisfied the requirements as well as systems
that violated the requirements. An excerpt of the experimental results of our
second case study is shown in Table 7.3 at the end of this section.

In a series of experiments we observed some interesting correlations be-
tween the chosen configurations and the performance of verification. More-
over, we identified two typical pitfalls in heuristic-guided refinement. The first
pitfall particularly emerges under the benefit-focused configuration. It can be
described by the following phenomenon: Despite the use of heuristics, a num-
ber of already selected refinement candidates may turn out to be unrewarding
for a definite result in verification. However, those inexpedient predicates and
processes that are now part of the spotlight bias the benefit evaluation in
future refinement iterations. Instead of adding truly rewarding components,
more and more candidates are selected that fit to the unrewarding ones in
the spotlight. One can imagine that this benefit pitfall can easily cause an
unnecessary explosion of the state space. – Of course the reverse effect is also
possible: A number of good refinement decisions in the past facilitate expe-
dient decisions in the future. However, heuristics inherently do not involve
optimality, and therefore, a proper approach to heuristic-guided refinement
should also feature the ability to compensate inexpedient decisions in future
iterations.

The second pitfall that we encountered in our experiments is cost-related, it
can be exemplified as follows: In many cases the selection of an expensive can-
didate is an inevitable prerequisite for a definite result in verification. However,
due to its high cost value several cheaper candidates may be preferred in the
refinement decisions. Thus, the abstraction is at first unnecessarily enlarged
by a number of lightweight components until the expensive but required
candidate is finally added to the spotlight. As we can see, the cost-side of our
heuristic evaluation, although generally helpful for avoiding too expensive
directions in refinement, can be itself a cost pitfall.

Our experiments revealed that heuristic-guided abstraction refinement un-
der the benefit-focused configuration is generally more prone to the benefit
pitfall than the balanced configuration. The same holds for the cost-focused
configuration and the cost pitfall. However, we also observed that the weight
configuration by itself is not the only decisive factor for the success or fail in
verification – the type of requirement and the fact whether it actually holds
or not are additional influencing factors. In particular, we experienced that,
contrary to our initial expectations, the balanced configuration is not neces-
sarily the most confident guarantor for compensating inexpedient refinement
decisions and avoiding the aforementioned pitfalls. Subsequently, we want to
discuss our observations in more detail.

Experiments on liveness refutation for multiple-resource allocation systems
showed that heuristic-guided abstraction refinement under the cost-focused
configuration performs best for this type of verification task. Heuristically
detecting liveness counterexamples requires the selection of a number of con-

7.2 Case Studies and Experimental Results 153

tinuously interacting processes that are capable of causing resource starvation
for a certain customer. The cost-focused configuration facilitates to choose
processes that are preferably independent from the remaining shade. This
frequently leads to a comparatively small number of interacting processes
in the spotlight that suffice for a liveness counterexample. On the contrary,
liveness refutation under the benefit-focused configuration (and interestingly,
also under the balanced configuration) commonly suffered from the benefit
pitfall.

Liveness validation generally demands more effort than refutation. A live-
ness property has to hold under all possible computations of the system.
Validating such a property typically involves the addition of a larger cluster of
mutually dependent processes and their associated predicates to the spotlight.
We experienced that the selected weight configuration used for liveness valida-
tion affected the order in which candidates were added to the abstraction. In
some cases this led to more efficiency under the cost-focused configuration. In
other cases the performance under the benefit-focused configuration was better,
and again, the performance results obtained under the balanced configuration
were very similar to the ones under benefit-focused configuration. Thus, our
experiments did not hint at a generally most suitable weight configuration for
liveness validation.

In the verification of safety requirements we made the following observa-
tions: Counterexample detection for safety properties performed best under
the benefit-focused configuration, whereas the cost-focused configuration of-
ten suffered from the cost pitfall. This is in accordance with the fact that
a safety counterexample corresponds to a finite computation that ends in
an error state. Processes involved in such a computation usually contribute
to the counterexample with a small number of executed operations, which
also implies that only a small part of their dependencies are relevant for this
counterexample. Hence, for the refutation of safety properties the costs (or,
more specifically, the shade dependencies) of refinement candidates are rather
negligible. In line with this, the performance results obtained under the bal-
anced configuration were located between the ones under the benefit-focused
and the cost-focused configuration.

Our experiments on safety validation revealed no clearly best weight config-
uration. We experienced that sometimes cost aspects and sometimes benefit
aspects were more crucial for efficiency in such verification tasks. Safety val-
idation under the balanced configuration involved a medium performance.
In most cases the performance results under one of the two unbalanced
configurations were significantly better.

As a first conclusion, we can state that the cost-focused weight configuration
is particularly suited for the detection of liveness counterexamples, whereas
the benefit-focused configuration is particularly suited for detecting safety
errors. However, the final outcome in verification is typically not known in
advance. In case the considered property is not refutable, verification under
one of the unbalanced weight configurations can easily end up in either the

154 7 Implementation and Experimental Results

benefit or the cost pitfall. On the contrary, verification under the balanced
configuration is slightly more capable of avoiding these pitfalls, but we also
experienced that its performance is only in a few cases the best among the
three compared configurations. Our experiments further showed that the
balanced configuration does not necessarily lead to a real balance between
benefit and cost aspects in the heuristic decisions. We observed that verification
under the balanced configuration leads in many cases to similar refinement
decisions as under the benefit-focused configuration – and in just as many
other cases to similar decisions as under the cost-focused configuration.

These rather unsatisfactory results in terms of a best suited weight configu-
ration for heuristic-guided abstraction refinement encouraged us to extend
our second case study by another configuration. As a new approach to more
balance in heuristic selections we decided for a weight configuration that dy-
namically changes during verification. We experimented with the simplest vari-
ant of such a dynamic weighting: an alternation between the benefit-focused
and the cost-focused configuration from iteration to iteration. Verification
under the alternating configuration yielded an exceedingly good performance.
For all types of verification tasks (i.e. liveness/safety refutation/validation)
this dynamic approach to heuristic-guided abstraction refinement involved
an above-average performance in comparison with the other configurations,
which can be also seen in Table 7.3 where an excerpt of our experimental
results is shown.

The alternating configuration facilitates to avoid the pitfalls in heuristic-
guided abstraction refinement more effectively than the (static) balanced
configuration. It ensures that refinement decisions are not narrowed down
to single directions that finally turn out to be inexpedient, and moreover, it
prevents that expedient but costly refinement candidates are permanently
ignored. Our experiments revealed that the alternating configuration does not
necessarily involve the performance optimum among all compared configu-
rations for each individual verification task. In a number of cases the size of
the final abstraction and the required verification time under the alternating
configuration is slightly greater than under the respective best performing
configuration. Nevertheless, we observed that verification under the alternat-
ing configuration performs at least close to the optimum, and moreover, rarely
suffers from any pitfall.

Concluding our second case study, we can state that the efficiency of
heuristic-guided abstraction refinement can be significantly influenced by the
selection of the weight configuration. We observed that the benefit-focused
configuration is particularly suited for the detection of safety counterexam-
ples, whereas the cost-focused configuration facilitates liveness refutation.
In certain cases, e.g. in early stages of the development of a system, the
presence of errors can be presumed, which makes the selection of one of
the aforementioned configurations for safety/liveness refutation advisable.
However, verification is commonly performed under the assumption that it is
uncertain whether the desired requirement holds for the considered system or

7.2 Case Studies and Experimental Results 155

SYSTEM ABSTRACTION
configuration resources customers allocators dependencies requirement |Spot(Proc)| |Spot(Pred)| time

balanced 3 4 4 34 liveness, f alse ≥ 5 ≥ 4 OOM
4 7 11 90 liveness, f alse ≥ 5 ≥ 4 OOM
4 10 9 98 liveness, true 4 4 116s
6 13 8 110 liveness, true 4 3 81.8s
5 8 6 44 sa f ety, f alse 5 2 10.6s
7 9 11 126 sa f ety, f alse 6 3 7.45s
6 12 6 88 sa f ety, true 4 3 32.4s
6 13 10 140 sa f ety, true 7 4 321s

benefit-focused 3 4 4 34 liveness, f alse 5 3 405s
4 7 11 90 liveness, f alse ≥ 5 ≥ 3 OOM
4 10 9 98 liveness, true 4 4 145s
6 13 8 110 liveness, true 4 3 82.5s
5 8 6 44 sa f ety, f alse 5 1 4.88s
7 9 11 126 sa f ety, f alse 6 3 7.42s
6 12 6 88 sa f ety, true 5 3 50.8s
6 13 10 140 sa f ety, true 7 3 133s

cost-focused 3 4 4 34 liveness, f alse 4 2 8.28s
4 7 11 90 liveness, f alse 5 3 324s
4 10 9 98 liveness, true 4 5 1178s
6 13 8 110 liveness, true 4 2 49.0s
5 8 6 44 sa f ety, f alse 5 2 10.7s
7 9 11 126 sa f ety, f alse ≥ 8 ≥ 3 OOM
6 12 6 88 sa f ety, true 4 1 2.86s
6 13 10 140 sa f ety, true ≥ 8 ≥ 5 OOM

alternating 3 4 4 34 liveness, f alse 4 3 23.1s
4 7 11 90 liveness, f alse 5 3 308s
4 10 9 98 liveness, true 4 4 146s
6 13 8 110 liveness, true 4 2 49.1s
5 8 6 44 sa f ety, f alse 5 2 10.2s
7 9 11 126 sa f ety, f alse 7 3 34.7s
6 12 6 88 sa f ety, true 4 2 4.14s
6 13 10 140 sa f ety, true 7 4 267s

Table 7.3 Comparison of the performance in verification under the weight configurations
balanced, benefit-focused, cost-focused and alternating.

not. Our experiments revealed that an alternation between benefit-focused
and cost-focused refinement decisions is a generally well-performing approach
to heuristic-guided abstraction refinement – for refutation as well as for vali-
dation. Thus, the alternating configuration provides a promising starting point
for arbitrary verification tasks. Should verification nevertheless run out of
memory, there still remains the opportunity to repeat verification under a
different configuration.

Our two case studies have demonstrated the applicability of our heuristic-
guided abstraction refinement technique for the verification of larger-scale
concurrent systems (with up to 25 processes and 140 dependencies). In
addition, we have seen that the choice of a reasonable weight configuration
for the heuristic evaluation function can significantly increase the efficiency
of verification. Nevertheless, within this work we could of course not evaluate
every facet of our approach in a comprehensive case study, and besides, our
experimental capabilities were subject to a number of technical limitations. In
the subsequent section we will therefore discuss some noteworthy aspects of
our approach that have not been covered in our case studies.

156 7 Implementation and Experimental Results

7.3 Discussion

The 3Spot verification framework that we used for our experiments is still a
prototype tool. Although it accepts arbitrarily large parallel compositions of
processes as an input, the maximum size of the constructed abstractions is
strongly restricted. As we have seen in our case studies, abstractions with more
than eight processes and more than five predicates are not manageable for
3Spot. The built-in model checker χChek typically runs out of memory when
exploring abstract state spaces of this magnitude. Thus, the main challenge
in our experiments was to heuristically detect abstractions that were on the
one hand small enough to be manageable for 3Spot, and on the other hand
precise enough for a definite result in verification. Of course, one can imagine
that for an unbounded number of verification tasks it is impossible to detect a
small abstraction that suffices for a definite answer in verification. Therefore,
in our experiments a definite result was only achievable for verification tasks
where such small and precise abstractions actually exist.

Nevertheless, we are convinced that, given a more efficient implementation
of a multi-valued model checker, our approach to heuristic-guided abstraction
refinement would also perform very well for more complex verification tasks.
This would also enable us to employ dynamic weight configurations that are
currently not applicable: So far, we deal with verification runs with usually
not more than 15 refinement iterations. The capability to handle more com-
plex abstractions would also involve a generally larger number of refinement
steps. Hence, instead of a simple alternation between benefit-focused and
cost-focused refinement decisions, distinct weighting phases could be intro-
duced and the dynamic evolvement of the weight parameters could be e.g.
controlled by a sine-like function. Such an advanced concept for a dynam-
ically weighted heuristic evaluation could additionally help to prevent the
refinement procedure from running into unfavourable directions.

In our two case studies, we restricted ourselves to the verification of local
properties of multiple-resource allocation systems. However, in single experi-
ments we have also considered other types of systems and parameterised veri-
fication tasks. While communication in multiple-resource allocation systems
solely rely on message passing, we have also experimented with heuristic-
guided abstraction refinement for shared variable concurrent systems. Here
we also achieved significant savings in verification time and size of the final
abstraction when we employed the advanced heuristics instead of a naive
approach refinement. Moreover, we observed that for this type of systems
the efficiency of verification can be further improved by putting additional
emphasis on the redundancy part in the heuristic evaluation of refinement
candidates. In comparison to communication channels, shared variables can
occur in arbitrary operations, e.g. in guards of if -branches and while-loops as
well as in arbitrary assignments. Hence, the number of possible predicates
over shared variables is generally higher than the number of possible pred-
icates over communication channels. This fact also involves an enhanced

7.3 Discussion 157

risk of adding too many dispensable, or rather, redundant predicates over
the same shared variable to the abstraction. Thus, the improved verification
results under a redundancy-emphasised weight configuration comply with
our expectations. We also conducted some experiments on heuristic-guided
abstraction refinement for parameterised verification. As we already men-
tioned in Section 6.5, the heuristic evaluation function that we employed for
abstraction refinement of parameterised systems is slightly different to the one
we used for fixed-sized concurrent systems. In our experiments we frequently
achieved a better performance in parameterised verification when we put
additional emphasis on the benefit-side in our refinement decisions. This is
in line with the fact that in parameterised verification shade dependencies
(i.e. costs) are consistently very high, and thus, less significant for expedient
refinement decisions.

In conclusion, our experiments have revealed a number of interesting and
promising results with regard to the improvement of verification by the use of
heuristics. The presented case studies have demonstrated the practical appli-
cability of our technique. We were even able to successfully verify a number of
larger-scale concurrent systems, provided that there existed abstractions that
were precise enough for a definite result and small enough for the capabilities
of our prototype implementation. Nevertheless, we see a great potential for
future enhancements and extensions of our framework. In the eighth and
final chapter of this thesis we will conclude our work and address possible
directions for future research.

Chapter 8
Conclusion

In this chapter we conclude the thesis with a summary and a critical discussion
of the achieved results. Moreover, we propose promising directions for future
research.

8.1 Summary

Within this thesis, we introduced an abstraction refinement-based verification
framework for concurrent software systems. The major challenge in software
verification is the so-called state explosion problem: Verifying a software system
generally involves an exhaustive exploration of the corresponding state space.
The state space complexity grows exponentially with the size of the system
or, more specifically, with the number of processes in a concurrent system.
Hence, the straightforward verification of real-life software commonly fails
due to unaffordable computational demands. Abstraction is a well-established
approach to the state explosion problem in verification. The basic idea is to
construct an abstract, and thus small system model, that preserves the validity
of certain properties of interest. In case the model turns out to be too coarse
for a definite result in verification, the abstraction is iteratively refined until
an adequate level of precision has been reached. – Abstraction is not a unitary
approach. In fact, there exists a wide range of different abstraction techniques,
each geared towards a specific facet of software systems like data, control or
interleaving. The effectiveness of abstraction-based verification thus essentially
depends on the choice of an adequate way of abstraction. – Refinement is an
equally crucial task. Abstractions are refined by gradually adding more details
to the system model. Hence, a sequence of advantageous refinement decisions
may entail a definite result in verification – whereas unfavourable decisions
may unnecessarily enlarge the model and thus lead to state explosion. Abstract
models commonly reveal several directions for refinement which makes the
selection of the ’right’ details particularly challenging.

159

160 8 Conclusion

In our verification framework we focused on concurrent systems, which are
of increasing importance in the fields of distributed computing and network
technologies. However, verifying concurrent systems is exceedingly difficult.
Concurrency is one of the main contributors to state explosion in software
systems. We approached this problem by spotlight abstraction, a state space
reduction technique that is specifically tailored to concurrent systems. The
basic idea of spotlight abstraction is to set a so-called spotlight on processes of
particular interest while the remaining system is kept in the shade. Now, the
spotlight processes are thoroughly considered when constructing an abstract
system model, whereas processes in the shade are summarised into one ab-
stract component. We enhanced this concept by introducing shade clustering,
a technique that summarises similar shade processes into groups such that
fewer details about them get lost. Spotlight abstraction preserves several local
properties of concurrent systems while the number of possible interleavings
is considerably reduced. – However, concurrency is not the only source of
state explosion. Large variable domains likewise contribute to an exponential
growth of the state space. We therefore combined spotlight abstraction with
predicate abstraction. Here the system under consideration is approximated
by an abstract model in which the original variables are replaced by atomic
predicates over these variables. The predicates can be restricted to certain vari-
ables of interest in the verification task. Moreover, the domain of predicates
can be substantially narrowed down in relation to the domain of the system
variables, which involves a significant reduction of the state space. While most
existing abstraction frameworks are based on a boolean domain for predicates,
we use a three-valued domain with the values true, false and unknown. The
additional truth value unknown enables us to model the inherent loss of infor-
mation due to abstraction in a very natural way. Furthermore, in comparison
to boolean abstractions our approach is capable of preserving both existential
and universal system properties. All definite verification results obtained on a
three-valued model can be directly transferred to the original system. Only
unknown results necessitate abstraction refinement.

The combination of spotlight abstraction and three-valued predicate ab-
straction generally enables us to verify concurrent systems on small abstract
models. However, finding the right degree of abstraction is highly nontrivial –
abstract system models can be too imprecise or, on the other hand, too com-
plex for a definite result in verification. In our framework we approached this
problem by counterexample-guided abstraction refinement (CEGAR). Starting
with a very coarse initial model, CEGAR iteratively refines the abstraction
based on a counterexample analysis. Counterexamples are paths in the ab-
stract model that disprove the property under consideration. These paths may
correspond to a real computation of the system, or they may be unconfirmed.
While the former case involves the definite refutation of the property, the
latter demands abstraction refinement. Unconfirmed counterexamples hint
at a number of possible refinement steps that may help to either confirm or
eliminate the indefinite path in the abstract model. However, relying on the

8.1 Summary 161

guidance of counterexamples can be full of pitfalls. The refinement procedure
can easily get lost in concretising inexpedient paths without converging to
a definite result in verification. Our combined abstraction technique adds
another facet to refinement: Counterexamples may point to predicates as well
as to processes as refinement candidates. This increases the opportunities
for both expedient and unfavourable refinement steps, and thus makes an
elaborate approach to refinement even more important. We therefore intro-
duced heuristic-guided abstraction refinement in our verification framework.
Based on an abstraction dependence analysis the benefits and costs of poten-
tial refinement steps are heuristically evaluated and in each iteration the
most beneficial candidate is added to the abstraction. Benefits arise from the
gain of definite information that can be obtained by adding a candidate to
the abstraction, whereas costs are mainly induced by the dependencies of
a candidate to the shade. The refinement candidates are derived by multi-
ple counterexample-generation. This gives us more candidates per iteration,
and hence, more capabilities for heuristic decisions. Our heuristic approach
enables us to guide the refinement procedure in expedient directions, and
thus to construct small abstract models of concurrent systems that are precise
enough for a definite result in verification.

Spotlight abstraction, one of the main concepts of our framework, is gen-
erally restricted to the verification of local properties of concurrent systems.
Hence, it allows for the validation of properties that refer to a finite subset of
the systems processes – though, due to shared variables or message passing,
such properties may also depend on the behaviour of the remaining system.
Within this thesis, we demonstrated that combining spotlight abstraction with
symmetry reduction permits us to use our framework in the context of pa-
rameterised verification as well. Parameterised systems consist of an arbitrary
number of processes that can be partitioned into a fixed number of classes of
homogeneous or rather symmetric processes. Verifying a parameterised system
is concerned with checking whether a global property, i.e. a property that is
universally quantified over the processes of certain symmetry classes, holds
for all possible instantiations of the system. – Parameterised verification is
undecidable in general. However, spotlight abstraction together with sym-
metry arguments enables us to obtain definite verification results in several
cases. We proved that the inherent symmetry of parameterised systems can
be exploited in order to reduce global verification tasks to local ones. More-
over, we showed that the spotlight principle allows for the summarisation
of arbitrary-sized instantiations of a parameterised system in one abstract
model. Finally, heuristic-guided abstraction refinement can be applied to such
a model, which gives us a verification procedure for parameterised systems.
Due to the undecidability of parameterised verification this procedure does
not terminate in general. Nevertheless, we demonstrated that a number of
parameterised verification tasks can be efficiently accomplished through this
approach.

162 8 Conclusion

We implemented our fully automatic verification framework within the tool
3Spot and evaluated it in two case studies. Here we considered the verification
of safety and liveness requirements of concurrent systems. We showed that
the core of our framework – a modular heuristic evaluation function for
refinement candidates – can be flexibly adjusted to the specific characteristics
of the underlying verification task. The experimental results revealed that
our heuristic approach to the verification of concurrent systems can, in many
cases, significantly outperform classic refinement approaches in both size of
the final abstraction and verification time.

8.2 Discussion

Although our approach to the verification of concurrent systems revealed very
promising results, we assume that there exists a high potential for further
enhancements. In this section we want to discuss and evaluate alternatives to
the techniques and concepts that we have integrated into our framework. One
of the major questions that we addressed in this thesis was how abstraction-
based verification for concurrent systems could be improved by the use of
heuristics. Hence, the first step towards answering this question was to choose
an adequate way of abstraction for concurrent systems. Preliminary work
[112] provided us with a general frame based on spotlight abstraction and
three-valued predicate abstraction. This combination turned out to be highly
effective in reducing the state space complexity induced by concurrency and
data. Nevertheless, the choice of a three-valued domain for predicates requires
some additional comments: Since the truth value unknown is an integral
part of the spotlight principle, we deliberately decided to use an abstrac-
tion that exceeds the boolean domain. However, this limited our options for
abstraction refinement techniques. Interpolation-based refinement [96], a
well-established concept for deriving new predicates and adding them locally
to the abstraction is only compatible with a boolean domain. – Our approach
relies on weakest precondition-based refinement [9], which generally causes
more overhead since new predicates are added globally to the abstraction.
The question whether compatibility between three-valued abstraction and
interpolation-based refinement can be established under certain conditions
thus remains as future work.

A major advantage of our three-valued approach to abstraction is that it
is capable of preserving both existential and universal properties of the con-
sidered system, whereas boolean abstractions are limited to either existential
or universal preservation. The price that we pay is a generally higher com-
plexity of the abstraction due to the enlarged domain for truth values. Thus,
abstraction is always a trade-off between complexity and precision. Even our
three-valued approach is in some cases unnecessarily imprecise: Verification
may return unknown in cases where an additional look at the abstract model

8.2 Discussion 163

would clearly reveal a definite result (compare section 4.2.3). More precision
could be achieved by using the so-called thorough three-valued semantics
for the evaluation of temporal logic properties [72], or by employing a four-
valued abstraction [74]. However, both alternatives are connected with a
significantly higher computational complexity. – In the future work section we
will discuss the prospects of a three-valued abstraction that is complemented
by quantified boolean variables, which allows for more precision without a
significant increase of complexity.

Our heuristic approach to abstraction refinement is based on the evaluation
of refinement candidates with regard to their benefit for the underlying verifi-
cation task. The candidates are derived from unconfirmed counterexamples.
In order to obtain a wider choice of potential refinement steps we use multiple
counterexample-generation, which also enables us to eliminate more than one
counterexample in each step. However, multiple counterexample-generation
involves multiple explorations of the state space and thus additional computa-
tional overhead. Of course, a beneficial refinement candidate can compensate
this overhead, but there is no guarantee that additional counterexamples yield
better candidates. A possible alternative would be to expand the use of heuris-
tics to counterexample-generation. Heuristic-guided counterexample-generation
could be geared towards finding unconfirmed counterexamples that are par-
ticularly beneficial for abstraction refinement. In fact, the concept of using
heuristics for the generation of counterexamples is not new. However, existing
tools – in particular the model checker χChek [30, 54] that we employ in our
framework – are tailored to generate shortest counterexamples, which are not
necessarily useful for refinement. In the future work section we will present
some ideas on how counterexample-generation for abstraction refinement can
be enhanced by heuristics.

Finally, we want to turn our attention to the temporal logic properties
that we considered in our approach. We decided to develop a verification
framework for concurrent systems that supports full CTL model checking. CTL
comprises several safety and liveness properties. – Liveness is of particular
importance in concurrent systems where a number of processes compete
for shared resources. Therefore, we integrated the existing multi-valued CTL
model checker χChek into our framework. χChek can be regarded as a general-
purpose model checker, since it supports full CTL and multi-valued domains
of truth values. But the universality has its price. Specialised model checking
tools that are restricted to safety and to a boolean domain typically exhibit a
better performance. The mentioned restrictions prevent the direct integration
of such tools into our framework. Nevertheless, there exist techniques for
reducing three-valued model checking to boolean model checking [23, 126],
and for reducing liveness checking to safety checking [20, 113]. Both reduc-
tions involve a significant growth of computational complexity. However, an
investigation on whether these additional computational expenses might pay
off in terms of facilitating the use of more efficient model checking tools is
another direction for future research.

164 8 Conclusion

In conclusion, effective verification is always based on an appropriate
compromise between different and potentially conflicting concepts. In our
framework we decided for one possible combination of certain concepts, which
gave us an encouraging approach to the verification of concurrent systems.
A distinctive feature of our framework is the use of heuristics for abstrac-
tion refinement which essentially contributes to the success of our approach.
Nevertheless, our discussion has revealed several opportunities for further
improvements like the extension of the use of heuristics to counterexample-
generation. Furthermore, we have discussed a number of alternatives to the
concepts applied in our framework. These alternatives may outperform our
current concepts in a particular way – however, at the price of additional
expenses or restrictions. In the next section we will take a closer look at the
prospects for enhancing our framework.

8.3 Future Work

The present work offers a number of interesting perspectives and topics for
future research, which we will discuss in this section.

Heuristic-Guided Counterexample-Generation: The success of heuristic-
guided abstraction refinement crucially depends on the choice of refinement
candidates. Even a sophisticated decision procedure is of little value if the
generated counterexample only hints at unfavourable candidates. Our cur-
rent approach to this problem is multiple counterexample-generation, which
we apply under the assumption that multiple counterexamples involve
better choices for refinement. However, in the previous section we already
discussed that this assumption may fail in several cases, and thus, multiple
counterexample-generation may lead to an unnecessary computational
overhead. We proposed heuristic-guided counterexample-generation as a
promising alternative. In fact, research on this topic has already been
started. Czech [48] developed a heuristic framework for the generation of
unconfirmed counterexamples that are particularly beneficial for abstrac-
tion refinement. Criteria for the benefit of a counterexample are, among
others, the probability of being refinable to a real counterexample and
the costs for such a refinement. Both the probability and the costs are
heuristically estimated based on a dependence analysis of the underly-
ing system. Experiments on error detection in message passing systems
revealed that the combination of heuristic-guided abstraction refinement
and heuristic-guided counterexample-generation can lead to significant
savings in the number of refinement steps. So far, the heuristic procedure
for counterexample-generation has been prototypically implemented on
top of model checker χChek. The applied heuristics are solely tailored to
the refutation of temporal logic properties, i.e. only properties that turn
out to be false can be checked more efficiently under these heuristics. Thus,

8.3 Future Work 165

the development of heuristics that are specifically supportive for the valida-
tion of temporal logic properties is an expedient direction for future work.
Moreover, our concept of heuristic-guided counterexample-generation for
abstraction refinement could also initiate the development of an entirely
new heuristic-based model checker.

Three-Valued Abstraction with Quantified Boolean Variables: Three-val-
ued abstraction is one of the core concepts of our approach: Our verifica-
tion framework constructs abstract models, or more precisely, three-valued
Kripke structures of concurrent systems where transitions and labellings
of states may take the additional truth value unknown. Temporal logic
properties are evaluated on these Kripke structures with regard to the
three-valued CTL semantics [29]. The corresponding model checking prob-
lem is PSPACE-complete. However, this approach is not maximally precise –
an example: A property may definitely hold for all possible branches, but if
one branching transition is unknown then the final outcome evaluates to
unknown as well. We have already discussed that the required precision
could be achieved by using the thorough temporal logic semantics [23], but
at the price of EXPTIME-completeness. We believe that, due to the signifi-
cantly higher complexity, the direct application of the thorough semantics
is not an adequate alternative to our current approach. However, a slight
modification of the general concept of the thorough semantics could be ex-
ploited for enhancing our framework. Model checking under the thorough
semantics involves the construction of all completions of a three-valued
Kripke structure. That is, all two-valued Kripke structures that can be ob-
tained by substituting the unknowns with definite truth values are built. –
Instead of such a global substitution, a small selection of unknowns could
be replaced by boolean variables. These variables could then be universally
quantified in a corresponding model checking problem, which would be
equivalent to a partial use of the thorough semantics. Boolean variables in
three-valued Kripke structures could also be exploited for modelling specific
characteristics of the considered system, e.g. complementary branching
transitions could be labelled with complementary variables. Hence, the
combination of three-valued abstraction with quantified boolean variables
could help to raise the precision at the relevant parts of an abstract model
and thus to obtain more definite verification results without a significant
increase of complexity. A similar approach has already been developed for
the verification of hardware circuits [80]. Nevertheless, we expect that
abstraction refinement for concurrent systems provides even more opportu-
nities for effectively employing a mixed three-valued/quantified-boolean
abstraction. Conceptual work on this topic has already begun [83].

166 8 Conclusion

Lighting Up the Shade: The basic idea of spotlight abstraction is to par-
tition the processes of a concurrent system into a spotlight and a shade.
Spotlight processes are thoroughly considered in the abstraction, whereas
shade processes are nearly completely abstracted away by summarising
them in one approximative shade component. This corresponds to a very
rigorous approach to state space reduction with no scope for nuances of
abstraction. Within this thesis, we already presented an extension of the
original spotlight principle: Shade clustering for message passing systems
introduces multiple shade components, or rather, shade clusters – one
for each channel that is used for the communication between the shade
processes and the spotlight. The extension permits us to preserve more
definite behaviour of the shade processes at the price of a slightly larger
abstraction. So far, shade clustering is based on a fixed cluster criterion
(processes with common channels); it is tailored to a one field of application
(message passing); and moreover, each cluster is reduced to a single control
location associated with an approximating operation that is executed in
a loop. – Hence, the concept of shade clustering offers several directions
for future research. In order to preserve more behaviour with regard to a
specific aspect of the system, a number of different clustering criteria are
conceivable, for instance:

• processes that share a certain variable,

• processes that are independent from a certain variable,

• processes with a high degree of similarity,
e.g. in terms of the number of shared variables.

Furthermore, the clustering criterion could be defined as a function of the
current level of abstraction, i.e. depending on the current set of predicates
and spotlight processes. In this way, the criterion could be dynamically
revised during refinement. Another direction for future research concerns
the abstraction of the shade clusters. Instead of reducing each cluster to just
one control location, different degrees of summarisation could be employed
(similar to our concept region summarisation). This would facilitate local
adjustments of the degree of abstraction, e.g. tailored to the specific needs
of the current verification task. Such a more differentiated approach to
spotlight abstraction would also create new prospects for heuristic-guided
refinement.

New Prospects for Heuristic-Guided Refinement: Our current procedure
for heuristic-guided refinement basically consists of the following steps:
We generate one or more unconfirmed counterexamples, derive a set of
refinement candidates, heuristically select the best candidate and add it
to the spotlight. Adding a single candidate in each iteration is a cautious

8.3 Future Work 167

strategy for refinement which helps to avoid an unnecessary blow-up of
the state space. However, this strategy generally leads to a large number
of iterations and thus to a longer runtime. A promising way of improv-
ing refinement would be to introduce a heuristic evaluation function that
determines the best subset of refinement candidates. Candidates that are
tightly interrelated could be added as a set to the spotlight, for instance: a
process together with a number of predicates that are relevant for charac-
terising its behaviour, or a pair of complementary processes e.g. a producer
together with a consumer. Such an approach could reduce the number of
iterations and thus speed up verification. – In the previous two sections
we proposed concepts for an enhanced abstraction of concurrent systems.
These concepts also reveal new directions for heuristic-guided refinement:
Unconfirmed counterexamples generally comprise transitions or predicates
in states with the constant truth value unknown. Our current refinement
procedure would try to resolve such uncertainty by adding a candidate to
the spotlight. However, the concept of three-valued abstraction with quanti-
fied boolean variables would enable us to perform refinement in terms of
replacing unknown constants by universally quantified variables – which
could turn out to be the cheaper way to obtain the necessary precision in
abstraction. Additional heuristic guidance could help to decide which way
of refinement is currently the most expedient one. – Another new direction
for refinement concerns the concept of introducing different degrees of
abstraction for the shade: Instead of simply shifting process candidates
from the abstraction stage shade to the stage spotlight, a number of inter-
mediate stages could be used. This would give us more opportunities for
balancing precision and complexity. Again, heuristics could be employed for
determining the appropriate stage of abstraction for a process candidate.

Merging Counterexample-Generation and Refinement: So far, counter-
example-generation and abstraction refinement are two separated steps
in our framework: Unconfirmed counterexamples are always generated
as complete paths from the initial state to some error state or cycle. In
the next step, a refined abstract state space model is constructed and
then counterexample-generation starts again from scratch. – Our proposed
concept for heuristic-guided counterexample-generation could facilitate an
on-the-fly integration of the steps counterexample-generation and refine-
ment. Instead of always performing state space exploration from scratch, a
confirmed prefix of an unconfirmed counterexample could be reused in the
next iteration. The further expansion of such a prefix could be combined
with abstraction refinement: Selecting a successor state for the prefix thus
might involve the immediate addition of a certain predicate or process.
Hence, refinement candidates would be no longer derived from entire coun-
terexamples, but from the possible branches at the end of the confirmed
prefix. The candidates could be heuristically evaluated as before. Additional

168 8 Conclusion

concepts for backtracking and discarding unfavourable counterexample
prefixes could facilitate a revision of inexpedient exploration steps. Such a
merged approach could significantly reduce the computational effort for
counterexample-generation and abstraction refinement. A similar method
has already been presented by Henzinger et al. in [79]. Their framework is
based on boolean abstractions, verification is restricted to safety properties,
and refinement is not performed under heuristic-guidance.

Combination with Complementary Reduction Techniques: Our approach
to state space reduction is substantially based on the spotlight principle:
Spotlight processes are considered in detail, whereas shade processes are
nearly completely abstracted away. However, the spotlight itself exhibits
the potential for additional reductions. Partial order reduction [64] is a
method for cutting down the number of interleavings by exploiting the
independence of concurrently executed operations. Hence, applying it to
the parallel composition of processes in the spotlight could further reduce
the complexity without causing any additional loss of precision. More-
over, symmetry reduction [58] can not only be used for reducing global
verification tasks to local ones (compare section 6.2). Symmetry within
the spotlight could be additionally exploited for summarising symmetric
states. For parameterised verification tasks this would not involve any loss
of precision.

References

1. Parosh Aziz Abdulla, Yu-Fang Chen, Giorgio Delzanno, Frederic Haziza, Chih-Duo
Hong, and Ahmed Rezine. Constrained monotonic abstraction: A CEGAR for parame-
terized verification. In Paul Gastin and Francois Laroussinie, editors, CONCUR 2010 -
Concurrency Theory, volume 6269 of Lecture Notes in Computer Science, pages 86–101.
Springer-Verlag Berlin Heidelberg, 2010.

2. Parosh Aziz Abdulla, Giorgio Delzanno, Noomene Ben Henda, and Ahmed Rezine.
Monotonic abstraction: On efficient verification of parameterized systems. Interna-
tional Journal of Foundations of Computer Science, 20(05):779–801, 2009.

3. Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Mayank Saksena. A survey of
regular model checking. In Philippa Gardner and Nobuko Yoshida, editors, CONCUR,
volume 3170 of Lecture Notes in Computer Science, pages 35–48. Springer-Verlag,
2004.

4. Luca Alfaro and Pritam Roy. Solving games via three-valued abstraction refinement.
In Luis Caires and Vasco T. Vasconcelos, editors, CONCUR 2007 - Concurrency Theory,
volume 4703 of Lecture Notes in Computer Science, pages 74–89. Springer-Verlag Berlin
Heidelberg, 2007.

5. Frances E. Allen. Control flow analysis. ACM SIGPLAN Notices - Proceedings of a
Symposium on Compiler Optimization, 5(7):1–19, July 1970.

6. Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed
Computing, 2(3):117–126, 1987.

7. Krzysztof R. Apt and Dexter Campbell Kozen. Limits for automatic verification of
finite-state concurrent systems. Inf. Process. Lett., 22(6):307–309, May 1986.

8. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.
9. Thomas Ball. Formalizing counterexample-driven refinement with weakest precondi-

tions. In Manfred Broy, Johannes Grünbauer, David Harel, and Tony Hoare, editors,
Engineering Theories of Software Intensive Systems, volume 195 of NATO Science Series,
pages 121–139. Springer-Verlag Netherlands, 2005.

10. Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. SLAM and
static driver verifier: Technology transfer of formal methods inside Microsoft. In
Eerke A. Boiten, John Derrick, and Graeme Smith, editors, Integrated Formal Methods,
volume 2999 of Lecture Notes in Computer Science, pages 1–20. Springer-Verlag Berlin
Heidelberg, 2004.

11. Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. Automatic
predicate abstraction of C programs. In Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation, PLDI ’01, pages
203–213, New York, NY, USA, 2001. ACM.

12. Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and cartesian
abstraction for model checking C programs. In Tiziana Margaria and Wang Yi, editors,

169

170 References

Tools and Algorithms for the Construction and Analysis of Systems, volume 2031 of
Lecture Notes in Computer Science, pages 268–283. Springer-Verlag Berlin Heidelberg,
2001.

13. Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Relative completeness of
abstraction refinement for software model checking. In Joost-Pieter Katoen and Perdita
Stevens, editors, Tools and Algorithms for the Construction and Analysis of Systems,
volume 2280 of Lecture Notes in Computer Science, pages 158–172. Springer-Verlag
Berlin Heidelberg, 2002.

14. Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for boolean
programs. In Klaus Havelund, John Penix, and Willem Visser, editors, Proceedings of
the 7th International SPIN Workshop on SPIN Model Checking and Software Verification,
volume 1885 of Lecture Notes in Computer Science, pages 113–130. Springer-Verlag
Berlin Heidelberg, 2000.

15. Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging system software
via static analysis. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’02, pages 1–3, New York, NY, USA, 2002.
ACM.

16. Kai Baukus, Yassine Lakhnech, and Karsten Stahl. Parameterized verification of a
cache coherence protocol: Safety and liveness. In Agostino Cortesi, editor, Verification,
Model Checking, and Abstract Interpretation, volume 2294 of Lecture Notes in Computer
Science, pages 317–330. Springer-Verlag Berlin Heidelberg, 2002.

17. Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In
Future of Software Engineering, 2007. FOSE ’07, pages 85–103, 2007.

18. Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software
model checker Blast: Applications to software engineering. Int. J. Softw. Tools Technol.
Transf., 9(5):505–525, October 2007.

19. Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for configurable soft-
ware verification. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer
Aided Verification, volume 6806 of Lecture Notes in Computer Science, pages 184–190.
Springer-Verlag Berlin Heidelberg, 2011.

20. Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as safety checking.
Electronic Notes in Theoretical Computer Science, 66(2):160 – 177, 2002.

21. Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. In W. Rance Cleaveland, editor, Tools and Algorithms for
the Construction and Analysis of Systems, volume 1579 of Lecture Notes in Computer
Science, pages 193–207. Springer-Verlag Berlin Heidelberg, 1999.

22. Glenn Bruns and Patrice Godefroid. Model checking partial state spaces with 3-
valued temporal logics. In Nicolas Halbwachs and Doron Peled, editors, Proceedings
of the 11th International Conference on Computer Aided Verification, Lecture Notes
in Computer Science, pages 274–287, London, UK, 1999. Springer-Verlag Berlin
Heidelberg.

23. Glenn Bruns and Patrice Godefroid. Generalized model checking: Reasoning about
partial state spaces. In Catuscia Palamidessi, editor, CONCUR 2000 - Concurrency
Theory, volume 1877 of Lecture Notes in Computer Science, pages 168–182. Springer-
Verlag Berlin Heidelberg, 2000.

24. Glenn Bruns and Patrice Godefroid. Model checking with multi-valued logics. In
Josep Diaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, Automata,
Languages and Programming, volume 3142 of Lecture Notes in Computer Science, pages
281–293. Springer-Verlag Berlin Heidelberg, 2004.

25. Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, August 1986.

26. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. In Proceedings of the Fifth Annual IEEE Symposium
on Logic in Computer Science, 1990. LICS ’90, pages 428–439, 1990.

References 171

27. Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modular
verification of software components in C. IEEE Transactions on Software Engineering,
30(6):388–402, June 2004.

28. Marsha Chechik, Benet Devereux, Steve M. Easterbrook, and Arie Gurfinkel. Multi-
valued symbolic model-checking. ACM Transactions on Software Engineering and
Methodology, 12(4):371–408, 2003.

29. Marsha Chechik, Steve Easterbrook, and Victor Petrovykh. Model-checking over
multi-valued logics. In Jose Nuno Oliveira and Pamela Zave, editors, FME 2001:
Formal Methods for Increasing Software Productivity, volume 2021 of Lecture Notes in
Computer Science, pages 72–98. Springer-Verlag Berlin Heidelberg, 2001.

30. Marsha Chechik, Arie Gurfinkel, and Benet Devereux. χChek: A multi-valued model-
checker. In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer Aided Verifi-
cation, volume 2404 of Lecture Notes in Computer Science, pages 505–509. Springer-
Verlag Berlin Heidelberg, 2002.

31. Zbenqiang Chen, Baowen Xu, Hongji Yang, Kecheng Liu, and Jianping Zhang. An
approach to analyzing dependency of concurrent programs. In Proceedings of the First
Asia-Pacific Conference on Quality Software, 2000, pages 39–43, 2000.

32. Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri. NuSMV:
a new symbolic model checker. International Journal on Software Tools for Technology
Transfer, 2(4):410–425, 2000.

33. Alessandro Cimatti, Enrico Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebas-
tiani, and Armando Tacchella. Integrating bdd-based and sat-based symbolic model
checking. In Alessandro Armando, editor, Frontiers of Combining Systems, volume 2309
of Lecture Notes in Computer Science, pages 49–56. Springer-Verlag Berlin Heidelberg,
2002.

34. Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In E. Allen Emerson and Ar-
avinda Prasad Sistla, editors, Computer Aided Verification, volume 1855 of Lecture
Notes in Computer Science, pages 154–169. Springer-Verlag Berlin Heidelberg, 2000.

35. Edmund Clarke, Muralidhar Talupur, and Helmut Veith. Environment abstraction
for parameterized verification. In E. Allen Emerson and Kedar S. Namjoshi, editors,
Proceedings of the 7th International Conference on Verification, Model Checking, and
Abstract Interpretation, volume 3855 of Lecture Notes in Computer Science, pages
126–141. Springer-Verlag Berlin Heidelberg, 2006.

36. Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Dexter Kozen, editor, Logics of
Programs, volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer-
Verlag Berlin Heidelberg, 1982.

37. Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst., 8(2):244–263, April 1986.

38. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstrac-
tion. In Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’92, pages 343–354, New York, NY, USA, 1992. ACM.

39. Edmund M. Clarke, Somesh Jha, Reinhard Enders, and Thomas Filkorn. Exploiting
symmetry in temporal logic model checking. Formal Methods in System Design, 9(1-
2):77–104, 1996.

40. Edmund M. Clarke and Jeannette M. Wing. Formal methods: state of the art and
future directions. ACM Computing Surveys (CSUR), 28(4):626–643, December 1996.

41. Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model checking. MIT
Press, Cambridge, MA, USA, 1999.

42. Jamieson M. Cobleigh, Lori A. Clarke, and Leon J. Osterweil. FLAVERS: A finite state
verification technique for software systems. IBM Systems Journal, 41(1):140–165,
2002.

172 References

43. Mika Cohen, Mads Dam, Alessio Lomuscio, and Hongyang Qu. A data symmetry
reduction technique for temporal-epistemic logic. In Zhiming Liu and Anders P. Ravn,
editors, Automated Technology for Verification and Analysis, volume 5799 of Lecture
Notes in Computer Science, pages 69–83. Springer-Verlag Berlin Heidelberg, 2009.

44. C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms
for the verification of temporal properties. In Edmund M. Clarke and Robert P. Kurshan,
editors, Computer-Aided Verification, volume 531 of Lecture Notes in Computer Science,
pages 233–242. Springer-Verlag Berlin Heidelberg, 1991.

45. P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with readers and
writers. Communications of the ACM, 14(10):667–668, October 1971.

46. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM.

47. Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’79, pages 269–282, New York, NY, USA, 1979. ACM.

48. Mike Czech. Dreiwertiges Model Checking paralleler Systeme mit heuristisch geleiteter
Generierung von Gegenbeispielen. Bachelor’s thesis, University of Paderborn, February
2013.

49. Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, July 1960.

50. Edsger W. Dijkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, September 1965.

51. Edsger W. Dijkstra. The humble programmer. Communications of the ACM, 15(10):859–
866, October 1972.

52. Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18(8):453–457, August 1975.

53. Alastair F. Donaldson, Alexander Kaiser, Daniel Kroening, Michael Tautschnig, and
Thomas Wahl. Counterexample-guided abstraction refinement for symmetric concur-
rent programs. Formal Methods in System Design, 41(1):25–44, 2012.

54. Steve M. Easterbrook, Marsha Chechik, Benet Devereux, Arie Gurfinkel, Albert Y. C.
Lai, Victor Petrovykh, Anya Tafliovich, and Christopher Thompson-Walsh. χChek: A
model checker for multi-valued reasoning. In Proceedings of the 25th International
Conference on Software Engineering, 2003, pages 804–805, 2003.

55. Stefan Edelkamp and Shahid Jabbar. Large-scale directed model checking LTL. In Antti
Valmari, editor, Model Checking Software, volume 3925 of Lecture Notes in Computer
Science, pages 1–18. Springer-Verlag Berlin Heidelberg, 2006.

56. Stefan Edelkamp, Alberto Lluch Lafuente, and Stefan Leue. Directed explicit model
checking with HSF-SPIN. In Matthew Dwyer, editor, Model Checking Software, vol-
ume 2057 of Lecture Notes in Computer Science, pages 57–79. Springer-Verlag Berlin
Heidelberg, 2001.

57. E. Allen Emerson and Vineet Kahlon. Reducing model checking of the many to the
few. In David McAllester, editor, Automated Deduction - CADE-17, volume 1831 of
Lecture Notes in Computer Science, pages 236–254. Springer-Verlag Berlin Heidelberg,
2000.

58. E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. In Costas
Courcoubetis, editor, Computer Aided Verification, volume 697 of Lecture Notes in
Computer Science, pages 463–478. Springer-Verlag Berlin Heidelberg, 1993.

59. E. Allen Emerson and Thomas Wahl. On combining symmetry reduction and symbolic
representation for efficient model checking. In Daniel Geist and Enrico Tronci, editors,
Correct Hardware Design and Verification Methods, volume 2860 of Lecture Notes in
Computer Science, pages 216–230. Springer-Verlag Berlin Heidelberg, 2003.

60. Javier Esparza, Stefan Kiefer, and Stefan Schwoon. Abstraction refinement with
craig interpolation and symbolic pushdown systems. In Holger Hermanns and Jens

References 173

Palsberg, editors, Tools and Algorithms for the Construction and Analysis of Systems,
volume 3920 of Lecture Notes in Computer Science, pages 489–503. Springer-Verlag
Berlin Heidelberg, 2006.

61. Harald Fecher and Sharon Shoham. Local abstraction-refinement for the µ-calculus.
In Dragan Bosnacki and Stefan Edelkamp, editors, Proceedings of the 14th International
SPIN Conference on Model checking Software, volume 4595 of Lecture Notes in Computer
Science, pages 4–23. Springer-Verlag Berlin Heidelberg, 2007.

62. Melvin Fitting. Kleene’s three valued logics and their children. Fundamenta Informati-
cae, 20(1-3):113–131, March 1994.

63. Marcelo Glusman, Gila Kamhi, Sela Mador-Haim, Ranan Fraer, and Moshe Y. Vardi.
Multiple-counterexample guided iterative abstraction refinement: An industrial eval-
uation. In Hubert Garavel and John Hatcliff, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 2619 of Lecture Notes in Computer Science,
pages 176–191. Springer-Verlag Berlin Heidelberg, 2003.

64. Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems: An
Approach to the State-Explosion Problem. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1996.

65. Patrice Godefroid and Radha Jagadeesan. Automatic abstraction using generalized
model checking. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proceedings
of the 14th International Conference on Computer Aided Verification, volume 2404 of
Lecture Notes in Computer Science, pages 137–151. Springer-Verlag Berlin Heidelberg,
2002.

66. Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with PVS. In
Orna Grumberg, editor, Proceedings of the 9th International Conference on Computer
Aided Verification, volume 1254 of Lecture Notes in Computer Science, pages 72–83.
Springer-Verlag Berlin Heidelberg, 1997.

67. Orna Grumberg. 2-valued and 3-valued abstraction-refinement in model checking. In
Logics and Languages for Reliability and Security, pages 105–128. IOS Press, Incorpo-
rated, 2010.

68. Orna Grumberg, Martin Lange, Martin Leucker, and Sharon Shoham. Don’t Know in
the µ-calculus. In Radhia Cousot, editor, Proceedings of the 6th international conference
on Verification, Model Checking, and Abstract Interpretation, volume 3385 of Lecture
Notes in Computer Science, pages 233–249. Springer-Verlag Berlin Heidelberg, 2005.

69. Orna Grumberg, Martin Lange, Martin Leucker, and Sharon Shoham. When not losing
is better than winning: Abstraction and refinement for the full µ-calculus. Information
and Computation, 205(8):1130 – 1148, 2007.

70. Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate abstraction
and refinement for verifying multi-threaded programs. In Proceedings of the 38th
annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’11, pages 331–344, New York, NY, USA, 2011. ACM.

71. Arie Gurfinkel and Marsha Chechik. Multi-valued model checking via classical model
checking. In Roberto Amadio and Denis Lugiez, editors, CONCUR 2003 - Concurrency
Theory, volume 2761 of Lecture Notes in Computer Science, pages 266–280. Springer-
Verlag Berlin Heidelberg, 2003.

72. Arie Gurfinkel and Marsha Chechik. How thorough is thorough enough? In Dominique
Borrione and Wolfgang Paul, editors, Correct Hardware Design and Verification Methods,
volume 3725 of Lecture Notes in Computer Science, pages 65–80. Springer-Verlag Berlin
Heidelberg, 2005.

73. Arie Gurfinkel and Marsha Chechik. Why waste a perfectly good abstraction? In
Holger Hermanns and Jens Palsberg, editors, Proceedings of the 12th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, volume
3920 of Lecture Notes in Computer Science, pages 212–226. Springer-Verlag Berlin
Heidelberg, 2006.

174 References

74. Scott Hazelhurst and Carl-Johan H. Seger. Model checking lattices: Using and reason-
ing about information orders for abstraction. Logic Journal of the IGPL, 7(3):375–411,
1999.

75. Fei He, Xiaoyu Song, Ming Gu, and Jiaguang Sun. Effective heuristics for
counterexample-guided abstraction refinement. In Proceedings of the 17th ACM
Great Lakes Symposium on VLSI, GLSVLSI ’07, pages 393–398, New York, NY, USA,
2007. ACM.

76. Fei He, Xiaoyu Song, Ming Gu, and Jiaguang Sun. Heuristic-guided abstraction
refinement. The Computer Journal, 52(3):280–287, May 2009.

77. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan.
Abstractions from proofs. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’04, pages 232–244, New York, NY,
USA, 2004. ACM.

78. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Shaz Qadeer. Thread-
modular abstraction refinement. In Warren A. Hunt Jr. and Fabio Somenzi, editors,
Computer Aided Verification, volume 2725 of Lecture Notes in Computer Science, pages
262–274. Springer-Verlag Berlin Heidelberg, 2003.

79. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy
abstraction. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’02, pages 58–70, New York, NY, USA, 2002. ACM.

80. Marc Herbstritt and Bernd Becker. On combining 01X-logic and QBF. In Roberto
Moreno Diaz, Franz Pichler, and Alexis Quesada Arencibia, editors, Computer Aided
Systems Theory - EUROCAST 2007, volume 4739 of Lecture Notes in Computer Science,
pages 531–538. Springer-Verlag Berlin Heidelberg, 2007.

81. Jörg Hoffmann, Jan-Georg Smaus, Andrey Rybalchenko, Sebastian Kupferschmid,
and Andreas Podelski. Using predicate abstraction to generate heuristic functions
in UPPAAL. In Stefan Edelkamp and Alessio Lomuscio, editors, Model Checking and
Artificial Intelligence, volume 4428 of Lecture Notes in Computer Science, pages 51–66.
Springer-Verlag Berlin Heidelberg, 2007.

82. G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, 1997.

83. Nikolaos Ikonomakis. Combining Three-Valued Logic and Quantified Boolean Formulae
in Bounded Model Checking Encodings. Master’s thesis, University of Paderborn,
February 2013.

84. Radu Iosif. Exploiting heap symmetries in explicit-state model checking of software.
In Proceedings of the 16th IEEE International Conference on Automated Software En-
gineering, ASE ’01, pages 254–261, Washington, DC, USA, 2001. IEEE Computer
Society.

85. Cliff B. Jones. Specification and design of (parallel) programs. In Proceedings of IFIP
Congress, pages 321–332, 1983.

86. Alexander Kaiser, Daniel Kroening, and Thomas Wahl. Dynamic cutoff detection in
parameterized concurrent programs. In Tayssir Touili, Byron Cook, and Paul Jackson,
editors, Computer Aided Verification, volume 6174 of Lecture Notes in Computer Science,
pages 645–659. Springer-Verlag Berlin Heidelberg, 2010.

87. Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf. Three-valued
abstraction for probabilistic systems. The Journal of Logic and Algebraic Programming,
81(4):356 – 389, 2012.

88. Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice
Hall Press, Upper Saddle River, NJ, USA, 1978.

89. Ekkart Kindler. Safety and liveness properties: a survey. Bulletin of the European
Association for Theoretical Computer Science, 53:268–272, 1994.

90. Saul Kripke. Semantical considerations on modal logic. Acta Phil. Fennica, 16:83–94,
1963.

91. Robert P. Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, Princeton, NJ, USA, 1994.

References 175

92. Marta Z. Kwiatkowska. Survey of fairness notions. Inf. Softw. Technol., 31(7):371–386,
September 1989.

93. Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem.
Communications of the ACM, 17(8):453–455, August 1974.

94. Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

95. Kenneth L. McMillan. Interpolation and SAT-based model checking. In Warren A.
Hunt Jr. and Fabio Somenzi, editors, Computer Aided Verification, volume 2725 of
Lecture Notes in Computer Science, pages 1–13. Springer-Verlag Berlin Heidelberg,
2003.

96. Kenneth L. McMillan. Applications of Craig interpolation to model checking. In
Gianfranco Ciardo and Philippe Darondeau, editors, Applications and Theory of Petri
Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages 15–16. Springer-
Verlag Berlin Heidelberg, 2005.

97. Kenneth L. McMillan, Shaz Qadeer, and James B. Saxe. Induction in compositional
model checking. In E. Allen Emerson and Aravinda Prasad Sistla, editors, Computer
Aided Verification, volume 1855 of Lecture Notes in Computer Science, pages 312–327.
Springer-Verlag Berlin Heidelberg, 2000.

98. Kennethn L. McMillan. Lazy abstraction with interpolants. In Thomas Ball and
Robert B. Jones, editors, Computer Aided Verification, volume 4144 of Lecture Notes in
Computer Science, pages 123–136. Springer-Verlag Berlin Heidelberg, 2006.

99. Yael Meller, Orna Grumberg, and Sharon Shoham. A framework for compositional
verification of multi-valued systems via abstraction-refinement. In Zhiming Liu and
Anders P. Ravn, editors, Automated Technology for Verification and Analysis, volume
5799 of Lecture Notes in Computer Science, pages 271–288. Springer-Verlag Berlin
Heidelberg, 2009.

100. Björn Metzler, Heike Wehrheim, and Daniel Wonisch. Decomposition for compositional
verification. In Shaoying Liu, Tom Maibaum, and Keijiro Araki, editors, Formal Methods
and Software Engineering, volume 5256 of Lecture Notes in Computer Science, pages
105–125. Springer-Verlag Berlin Heidelberg, 2008.

101. Alice Miller, Alastair Donaldson, and Muffy Calder. Symmetry in temporal logic model
checking. ACM Comput. Surv., 38(3), September 2006.

102. Leonardo Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In C. R. Ra-
makrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 4963 of Lecture Notes in Computer Science, pages 337–340.
Springer-Verlag Berlin Heidelberg, 2008.

103. Kedar S. Namjoshi. Symmetry and completeness in the analysis of parameterized
systems. In Byron Cook and Andreas Podelski, editors, Verification, Model Checking,
and Abstract Interpretation, volume 4349 of Lecture Notes in Computer Science, pages
299–313. Springer-Verlag Berlin Heidelberg, 2007.

104. Gleb Naumovich, Lori A. Clarke, Leon J. Osterweil, and Matthew B. Dwyer. Verifica-
tion of concurrent software with FLAVERS. In Proceedings of the 19th International
Conference on Software Engineering, ICSE ’97, pages 594–595, New York, NY, USA,
1997. ACM.

105. C. Norris Ip and David L. Dill. Better verification through symmetry. Formal Methods
in System Design, 9(1-2):41–75, 1996.

106. Susan S. Owicki and David Gries. An axiomatic proof technique for parallel programs
I. Acta Informatica, 6(4):319–340, 1976.

107. Gary L. Peterson. Myths about the mutual exclusion problem. Information Processing
Letters, 12(3):115–116, 1981.

108. Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS ’77, pages 46–57, Washington,
DC, USA, 1977. IEEE Computer Society.

109. Amir Pnueli, Sitvanit Ruah, and Lenore Zuck. Automatic deductive verification with
invisible invariants. In Tiziana Margaria and Wang Yi, editors, Tools and Algorithms

176 References

for the Construction and Analysis of Systems, volume 2031 of Lecture Notes in Computer
Science, pages 82–97. Springer-Verlag Berlin Heidelberg, 2001.

110. Amir Pnueli, Jessie Xu, and Lenore Zuck. Liveness with (0,1, ∞)-counter abstraction.
In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer Aided Verification,
volume 2404 of Lecture Notes in Computer Science, pages 107–122. Springer-Verlag
Berlin Heidelberg, 2002.

111. Xiaofang Qi and Baowen Xu. Dependence analysis of concurrent programs based on
reachability graph and its applications. In Marian Bubak, GeertDick Albada, Peter
M. A. Sloot, and Jack Dongarra, editors, Computational Science - ICCS 2004, volume
3036 of Lecture Notes in Computer Science, pages 405–408. Springer-Verlag Berlin
Heidelberg, 2004.

112. Jonas Schrieb, Heike Wehrheim, and Daniel Wonisch. Three-valued spotlight abstrac-
tions. In Ana Cavalcanti and Dennis R. Dams, editors, FM 2009: Formal Methods,
volume 5850 of Lecture Notes in Computer Science, pages 106–122. Springer-Verlag
Berlin Heidelberg, 2009.

113. Viktor Schuppan and Armin Biere. Liveness checking as safety checking for infinite
state spaces. Electronic Notes in Theoretical Computer Science, 149(1):79 – 96, 2006.

114. Sharon Shoham. Abstraction-Refinement and Modularity in µ-Calculus Model Checking.
Phd thesis, Department of Computer Science, Technion - Israel Institute of Technology,
2009.

115. Sharon Shoham and Orna Grumberg. 3-valued abstraction: More precision at less
cost. Information and Computation, 206(11):1313 – 1333, 2008.

116. A. Srinivasan, T. Ham, S. Malik, and R.K. Brayton. Algorithms for discrete function
manipulation. In IEEE International Conference on Computer-Aided Design, 1990.
ICCAD-90. Digest of Technical Papers, pages 92–95, 1990.

117. Boleslaw K. Szymanski. A simple solution to Lamport’s concurrent programming
problem with linear wait. In Proceedings of the 2nd International Conference on
Supercomputing, ICS ’88, pages 621–626, New York, NY, USA, 1988. ACM.

118. Jianbin Tan, George S. Avrunin, and Lori A. Clarke. Heuristic-based model refine-
ment for FLAVERS. In Proceedings of the 26th International Conference on Software
Engineering, ICSE ’04, pages 635–644, 2004.

119. Nils Timm and Heike Wehrheim. On symmetries and spotlights – verifying param-
eterised systems. In JinSong Dong and Huibiao Zhu, editors, Formal Methods and
Software Engineering, volume 6447 of Lecture Notes in Computer Science, pages 534–
548. Springer-Verlag Berlin Heidelberg, 2010.

120. Nils Timm, Heike Wehrheim, and Mike Czech. Heuristic-guided abstraction refinement
for concurrent systems. In Toshiaki Aoki and Kenji Taguchi, editors, Formal Methods
and Software Engineering, volume 7635 of Lecture Notes in Computer Science, pages
348–363. Springer-Verlag Berlin Heidelberg, 2012.

121. Tobe Toben. Counterexample guided spotlight abstraction refinement. In Kenji Suzuki,
Teruo Higashino, Keiichi Yasumoto, and Khaled El-Fakih, editors, Proceedings of the
28th IFIP WG 6.1 International Conference on Formal Techniques for Networked and
Distributed Systems - FORTE 2008, volume 5048 of Lecture Notes in Computer Science,
pages 21–36. Springer-Verlag Berlin Heidelberg, 2008.

122. J. Hooiman Y. Lakhneche M. Poel J. Zwiers F. de Boer. W. de Roever, U. Hanneman.
Concurrency Verification: Introduction to Compositional and Noncompositional Methods.
Cambridge University Press, New York, NY, USA, 2001.

123. Björn Wachter and Bernd Westphal. The spotlight principle: on combining process-
summarizing state abstractions. In Byron Cook and Andreas Podelski, editors, Proceed-
ings of the 8th International Conference on Verification, Model Checking, and Abstract
Interpretation, volume 4349 of Lecture Notes in Computer Science, pages 182–198.
Springer-Verlag Berlin Heidelberg, 2007.

124. Thomas Wahl, Nicolas Blanc, and E. Allen Emerson. SVISS: symbolic verification
of symmetric systems. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and

References 177

Algorithms for the Construction and Analysis of Systems, volume 4963 of Lecture Notes
in Computer Science, pages 459–462. Springer-Verlag Berlin Heidelberg, 2008.

125. Chao Wang, Hyondeuk Kim, and Aarti Gupta. Hybrid CEGAR: combining variable
hiding and predicate abstraction. In Proceedings of the 2007 IEEE/ACM International
Conference on Computer-Aided Design, ICCAD ’07, pages 310–317, Piscataway, NJ,
USA, 2007. IEEE Press.

126. Heike Wehrheim. Bounded model checking for partial Kripke structures. In John S.
Fitzgerald, Anne E. Haxthausen, and Husnu Yenigun, editors, Theoretical Aspects of
Computing - ICTAC 2008, volume 5160 of Lecture Notes in Computer Science, pages
380–394. Springer-Verlag Berlin Heidelberg, 2008.

127. Daniel Wonisch. Block abstraction memoization for CPAchecker. In Cormac Flanagan
and Barbara König, editors, Tools and Algorithms for the Construction and Analysis of
Systems, volume 7214 of Lecture Notes in Computer Science, pages 531–533. Springer-
Verlag Berlin Heidelberg, 2012.

