
N E T I N F – N E T W O R K O F I N F O R M AT I O N

An Information-Centric Networking Architecture for the Future Internet

Dissertation

christian dannewitz

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

im Fach Informatik

Fakultät für Elektrotechnik, Informatik und Mathematik

Universität Paderborn

May 2013

Christian Dannewitz: NetInf – Network of Information, An Information-
Centric Networking Architecture for the Future Internet, © May 2013

gutachter:
Prof. Dr. Holger Karl (Universität Paderborn, Germany)
Prof. Dr. Jörg Ott (Helsinki University of Technology, Finland)

A B S T R A C T

The usage of the Internet has changed significantly in recent years.
The original Internet architecture has been designed to facilitate the
communication between a defined set of network nodes, i.e., the de-
sign is host-centric. Today’s dominating use case has become infor-
mation retrieval, i.e., an information-centric use case. In this use case,
the user is only interested in the information itself; it is irrelevant
which node delivers the information as the information itself is node-
independent in this scenario. At the same time, this shift has re-
sulted in a tremendous traffic increase. The Internet protocol suite
handles this traffic inefficiently due to its host-centric design which
dictates the data source in advance instead of allowing the network
to choose the most suitable data source; i.e., the host-centric design
does not fit the information-centric use case. This results in several
problems. Especially, the original Internet architecture incorporates
neither caching nor the ability to intelligently select the most suitable
data source(s), which results in inefficient, redundant transmission of
identical content and unnecessarily high network traffic and latency.
Other problems include high load at the origin server, limited robust-
ness due to single points of failure, vulnerability to distributed denial
of service (DDoS) attacks, the flash-crowd effect1, and hard-to-handle
connection interruptions and mobility (e.g., of clients, servers, and
entire networks).

These problems are mainly addressed via application-specific peer-
to-peer (P2P) overlays, proprietary, provider-specific content distribu-
tion networks (CDNs), and specific application layer solutions such
as Hypertext Transfer Protocol (HTTP) load balancing today. How-
ever, these solutions cannot leverage the full potential of content dis-
tribution as each solution independently addresses only a subset of
symptoms instead of addressing the main cause of all these prob-
lems. Moreover, today’s solutions often reside in application-specific
P2P overlays and provider-specific CDN overlays. This leads to prob-
lems such as inefficient data forwarding, a limited number of sup-
ported applications, and missing support for small content provid-
ers, which suffer most from problems such as the flash-crowd effect
and DDoS. Other solutions such as proxy caches require additional
client-side or server-side configuration. Moreover, all mentioned solu-
tions only focus on content distribution but do not address the other
problems of the original Internet architecture such as mobility and in-
termittent connectivity. Currently, these problems again require sepa-

1 The effect that certain content, e.g., a web page, is suddenly “overwhelmed” by an
unusually large number of concurrent users, typically rendering this content inac-
cessible for all users.

iii

rate solutions such as mobile IP. This leads to an unnecessarily com-
plex Internet architecture and in some cases (such as transparent web
caching) also violate the rules of the Internet protocol as data packets
are transparently redirected to a destination other than defined in the
packet header.

The information-centric networking (ICN) paradigm aims to ad-
dress these problems by shifting the focus from a host-centric archi-
tecture towards an information-centric architecture that puts infor-
mation retrieval at the center of the architecture, thereby better fitting
today’s dominating Internet use case.

This thesis describes a new, information-centric Internet architec-
ture called Network of Information (NetInf) that addresses the afore
mentioned problems in an architecturally sound way. It aims to offer
efficient information dissemination in a very general form including
many different related use cases for a wide variety of applications,
for all content providers, and in a variety of different scenarios.

In this thesis, I first evaluate the ICN paradigm and existing ap-
proaches in general before describing the design of the NetInf archi-
tecture in general. The NetInf architecture combines a unique set of
characteristics. This includes its secure naming scheme, flexible object
retrieval based on name resolution and name-based routing, its object
model, and the ability to adapt to a wide variety of different network
scenarios. This also includes a flexible caching model that supports
on-path (i.e., data and resolution path) as well as off-path caching, in-
cluding in-network caches and caching on user nodes. I focus specifi-
cally on two aspects: (1) The design and evaluation of the secure nam-
ing scheme, which builds the foundation of the secure, information-
centric architecture. (2) The name resolution service (NRS), which is
essential for efficient information retrieval but challenging due to the
flat namespace and huge number of expected data objects (≈ 1015). In
addition, I describe and evaluate our prototype of the overall NetInf
architecture called OpenNetInf.

The results from the theoretical analysis, simulations, and proto-
typing indicate that a scalable, world-wide Network of Information
with 1015 data objects is feasible with an NRS latency of (well) below
100ms. The flexible NetInf architecture proved to have several ben-
efits and is adaptable to various network and application scenarios.
Based on these results, it seems reasonable that NetInf can offer a
serious complement to the current Internet architecture.

iv

Z U S A M M E N FA S S U N G

Die Nutzung des Internets hat sich innerhalb der letzten Jahre si-
gnifikant verändert. Während die ursprüngliche Internet Architektur
knotenzentrisch ist (d.h. Aufbau einer Kommunikation zwischen fest-
gelegten Netzknoten), hat sich die Informationsbeschaffung, also ein
informationszentrischer Anwendungsfall, in den letzten Jahren zum do-
minierenden Anwendungsszenario entwickelt. In diesem Szenario ist
der Nutzer nur an der Information an sich interessiert und nicht dar-
an, welcher Knoten im Netz die Information liefert, da die Informa-
tion in diesem Szenario knotenunabhängig ist. Gleichzeitig hat die-
se Veränderung zu stark gestiegenem Datenverkehr im Internet ge-
führt. Dieser Verkehr kann von den Internetprotokollen jedoch nicht
effizient gehandhabt werden, da ihr knotenzentrischer Entwurf im
Vorhinein schon die zu verwendende Datenquelle vorschreibt anstatt
dem Netz die Freiheit zu lassen, selber die geeignetste Datenquel-
le auszuwählen. D.h., der knotenzentrische Entwurf passt nicht mit
dem dominierenden informationszentrischen Anwendungsszenario
zusammen. Insbesondere ist in der ursprünglichen Internetarchitek-
tur das Zwischenspeichern von Daten („Caching“) nicht vorgesehen
und das Netz kann nicht selbstständig die geeignetste Datenquelle
auswählen, was zu ineffizienten, redundanten Mehrfachübertragun-
gen identischer Daten und hohem Datenverkehr führt. Zusätzlich
führt die knotenzentrische Architektur teilweise zu unnötig hoher La-
tenz, hoher Last am Ursprungsserver, und Schwierigkeiten mit Mobi-
lität und Verbindungsabbrüchen. Weitere Probleme sind Anfälligkeit
für distributed denial of service (DDoS) Angriffe, der Flash-Crowd Ef-
fekt2 und begrenzte Robustheit, da der Ursprungsserver zum „Single
Point of Failure“ werden kann.

Heutzutage wird diesen Problemen hauptsächlich mittels Applika-
tions-spezifischer peer-to-peer (P2P) Overlay Netze, proprietärer, Anbie-
ter-spezifischer content distribution networks (CDNs) und speziellen
Lösungen auf der Anwendungsschicht wie z.B. Lastbalancierung via
Hypertext Transfer Protocol (HTTP) begegnet. Diese Lösungen kön-
nen jedoch nicht das volle Potenzial einer gesamtheitlichen Archi-
tektur zur Informationsverteilung ausschöpfen, da die Lösungen je-
weils nur einzelne Symptome adressieren anstatt den Kern der ge-
nannten Probleme zu lösen. Darüber hinaus sind die Lösungen größ-
tenteils auf einzelne Applikationen, P2P Overlay Netze und Inhal-
teanbieter beschränkt. Hieraus resultiert u.a. eine ineffiziente Daten-
Weiterleitung, eine nur begrenzte Anzahl unterstützter Applikatio-

2 Flash-Crowd bezeichnet den Effekt, dass Inhalte wie z.B. eine Webseite durch eine
ungewöhnlich hohe Anzahl an gleichzeitigen Nutzeranfragen überlastet wird und
daher für alle Nutzer nicht mehr verfügbar ist.

v

nen und mangelnde Unterstützung für kleine Inhalteanbieter, die be-
sonders von Problemen wie dem Flash-Crowd Effekt und DDoS be-
troffen sind. Andere Lösungen wie Proxy Caches erfordern zusätz-
liche Konfiguration der Clients oder Server. Darüber hinaus fokus-
sieren die genannten Lösungen nur auf die effiziente Informations-
verteilung. Die anderen Internet-Probleme wie z.B. Handhabung von
Mobilität und Verbindungsabbrüchen erfordern wiederum separate
Lösungen. All dies führt zu einer unnötig komplexen Internetarchi-
tektur und in einigen Fällen wie z.B. transparentem Web Caching zu
einer Verletzung der Internetprotokoll-Regeln.

Das information-centric networking (ICN) Paradigma versucht die-
se Probleme zu lösen, indem sie den Fokus von einer knotenzentri-
schen Architektur auf eine informationszentrische Architektur ver-
schiebt. Der informationszentrische Architekturansatz stellt die Infor-
mationsbeschaffung in den Mittelpunkt der Architektur. Daher passt
er besser zum dominierenden informationszentrischen Anwendungs-
szenario im heutigen Internet.

In dieser Arbeit beschreibe ich die Network of Information (NetInf)
Architektur, eine neue, informationszentrische Internet Architektur,
die die zuvor genannten Probleme auf eine architektonisch einheitli-
che und saubere Art löst. Die Architektur zielt darauf ab, eine große
Anzahl von Applikationen und alle Inhalteanbieter zu unterstützen,
und dabei in vielen verschiedenen Anwendungsszenarien nutzbar zu
sein.

Zuerst diskutiere und analysiere ich das ICN-Paradigma im all-
gemeinen. Danach beschreibe ich die NetInf-Architektur im Ganzen.
Die NetInf Architektur zeichnet sich durch eine besondere Kombina-
tion von Eigenschaften aus, wie unter anderem sein Namensschema,
das die Überprüfung der Datenintegrität ermöglicht, ein flexibles Ver-
fahren zur Informationsbeschaffung, dass Namensauflösung mit na-
mensbasiertem Routing verbindet, sein Objektmodell, die Fähigkeit,
sich an eine große Anzahl verschiedener Netzszenarien anzupassen,
und ein flexibles Modell zur Datenzwischenspeicherung, das sowohl
Zwischenspeicherung auf dem Daten- und Namensauflösungspfad
unterstützt als auch Zwischenspeicherung außerhalb dieser Pfade.
Zwischenspeicher können dabei sowohl in der Anbieter-Infrastruktur
als auch auf Nutzerseite sein. Mein besonderer Fokus in dieser Arbeit
liegt einerseits auf dem sicheren Namensschema, das die Grundlage
für eine sichere, informationszentrische Architektur bildet, und an-
dererseits auf dem Namensauflösungssystem, welches eine zentrale
Rolle bei der Informationsbeschaffung spielt aber durch den flachen
Namensraum und die hohe Anzahl von erwarteten Objekten nicht tri-
vial ist. Zusätzlich beschreibe und evaluiere ich unseren OpenNetInf
Prototypen, der die NetInf-Gesamtarchitektur implementiert.

Die Ergebnisse der theoretischen Analyse, der Simulationen und
der Prototypimplementierung implizieren, dass ein skalierbares, welt-

vi

weites „Network of Information“ mit 1015 Datenobjekten machbar ist,
wobei eine Namensauflöselatenz von (deutlich) unter 100ms erreich-
bar ist. Die flexible NetInf Architektur hat sich als sehr vorteilhaft her-
ausgestellt, da sie an viele verschiedenen Netz- und Anwendungssze-
narien anpassbar ist. Basierend auf diesen Ergebnissen scheint es rea-
listisch zu sein, dass NetInf eine ernsthafte Ergänzung für die heutige
Internetarchitektur anbieten kann.

vii

The best way to predict the future is to invent it.

— Alan Curtis Kay

A C K N O W L E D G M E N T S

I thank my thesis supervisor Prof. Dr. Holger Karl for his constant
support and many helpful discussions and Prof. Dr. Jörg Ott for
serving as second advisor. Likewise, I thank all my coauthors as
well as my colleagues from the Architecture and Design for the Fu-
ture Internet (4WARD) project and Scalable and Adaptive Internet
SoLutions (SAIL) project for the fruitful and constructive collabora-
tion. Doing research without all of you would have been a lonely
and definitely less joyful experience. Thanks also to my colleagues
Matthias Herlich and Thorsten Biermann for the good collaboration
in supervising our students project groups, which has let to a success-
ful OpenNetInf prototype implementation. The successful prototype
implementation would have obviously also not been possible with-
out the many dedicated students of the AugNet I, AugNet II, and
NetInf project group. Thanks for your dedication and great imple-
mentation work. Finally, I thank my colleagues from the computer
networks group at the University of Paderborn for many good dis-
cussions, proofreading of this thesis, and their mental support.

ix

C O N T E N T S

1 introduction 1

1.1 Shortcomings and Pitfalls of Today’s Internet 1

1.2 The Information-Centric Networking Paradigm 3

1.3 Main Components of ICN Designs 5

1.4 Problem Statement and Requirements 8

1.5 Overview of Information-Centric Network Designs . . 11

1.5.1 Data-Oriented Network Architecture 12

1.5.2 Content-Centric Networking 12

1.5.3 Publish–Subscribe Internet Routing Paradigm . 14

1.5.4 Network of Information 14

1.6 Thesis Contributions . 15

2 network of information architecture 23

2.1 Overview . 23

2.1.1 Design Principles 23

2.1.2 Architecture Overview and Sample Setup . . . 28

2.2 Elements of the Network of Information 30

2.2.1 Named Data Objects 30

2.2.2 Basic Naming and Security 32

2.2.3 Advanced Naming and Security 33

2.2.4 NetInf Communication 34

2.2.5 Caching . 37

2.2.6 Name Resolution 39

2.2.7 Inter-Domain Communication 40

2.2.8 Search . 41

2.3 Related Work . 42

2.3.1 General Overview of ICN-Related Work 43

2.3.2 ICN Architectures: Design Choices and Trade-
Offs . 47

2.4 Summary . 53

3 secure naming 55

3.1 Introduction . 55

3.2 Requirements . 56

3.3 Naming Scheme . 57

3.3.1 Basic Concepts 57

3.3.2 ID Structure . 58

3.3.3 Security Metadata Structure 59

3.4 Analysis of Security Properties 60

3.4.1 Name–Data Integrity 60

3.4.2 Name Persistence 61

3.4.3 Owner Pseudonymity and Identification 63

3.5 Evaluation . 65

3.6 ni URI Scheme . 65

xi

xii contents

3.7 Related Work . 66

3.8 Summary . 68

4 neighborhood effect – locality in dns requests 71

4.1 Introduction . 71

4.2 Measurement Setup . 73

4.3 Data Evaluation . 74

4.3.1 Data Preprocessing 74

4.3.2 University DNS Zone 75

4.3.3 Computer Science Department DNS Zone . . . 82

4.4 Related Work . 87

4.5 Summary . 89

5 hierarchical name resolution 93

5.1 Introduction . 93

5.2 Requirements . 94

5.3 Hierarchical NRS Architecture 96

5.3.1 General NRS Framework 97

5.3.2 MDHT . 103

5.3.3 HSkip . 104

5.3.4 System Comparison: MDHT vs. HSkip 109

5.4 Global Name Resolution 110

5.5 Load Balancing . 111

5.6 Scalability and Node Performance Analysis 112

5.7 System Analysis . 114

5.7.1 General Analysis Approach 114

5.7.2 Independent MDHT 117

5.7.3 HSkip and Entangled MDHT 117

5.7.4 Analysis Results 118

5.8 Simulation . 122

5.8.1 Simulation Setup and Assumptions 123

5.8.2 Results: Latency 124

5.8.3 Results: Work Load Distribution 127

5.9 Related Work . 127

5.10 Summary . 130

6 prototyping 133

6.1 Introduction . 133

6.2 OpenNetInf Prototype 134

6.2.1 Overview . 134

6.2.2 Interfaces . 134

6.2.3 Named Data Objects and Security 136

6.2.4 Name Resolution and Metadata Storage 137

6.2.5 Caching . 138

6.2.6 Data Transfer . 138

6.2.7 Additional Services 139

6.3 Application Development 140

6.3.1 Media Distribution 140

6.3.2 InFox . 141

contents xiii

6.3.3 InBird . 143

6.3.4 Context-Aware Applications 144

6.4 Evaluation . 148

6.4.1 Measurement Setup 149

6.4.2 Results . 150

6.5 Related Work . 154

6.6 Summary . 155

7 conclusion and future work 157

7.1 Deployment . 157

7.2 Summary and Implications 159

7.3 Future Work . 160

bibliography 163

L I S T O F F I G U R E S

Figure 1 ICN communication model – client side . . . 4

Figure 2 DONA overview when caching on all resolution
handlers (RHs) 12

Figure 3 CCN overview 13

Figure 4 PSIRP overview 14

Figure 5 NetInf overview 15

Figure 6 NetInf protocol stack, assuming a node with
two convergence layers over two different un-
derlays . 26

Figure 7 NetInf example message flow 29

Figure 8 NetInf sample network setup 31

Figure 9 Conceptual Object Model 32

Figure 10 Example NetInf convergence layers 35

Figure 11 NetInf inter-domain scenario (triangles = client
nodes; hexagons = NetInf routers; green rect-
angle = destination node; gray ovals = net-
works; yellow notes = requests; gray note =
NRS bindings) 41

Figure 12 Basic ID structure 58

Figure 13 Certificate chain with two certificates, contain-
ing three owners in total 63

Figure 14 DNS log example: computer science DNS zone
(full hash values elided in figure for space rea-
sons) . 74

Figure 15 Uni: All requests, filtered 76

Figure 16 Uni: DNS requests by user devices and servers 76

Figure 17 Uni: DNS requests by servers for external host
names . 77

Figure 18 Uni: DNS requests by servers for internal host
names . 78

Figure 19 Uni: DNS requests by user devices 79

Figure 20 Uni: All requests, unfiltered 80

Figure 21 Uni: Only reverse lookup requests 81

Figure 22 Uni: Reverse lookups by requester type 81

Figure 23 Uni: DNS requests by university-external re-
questers . 82

Figure 24 IRB: All DNS requests, filtered 83

Figure 25 IRB: All DNS requests, unfiltered 84

Figure 26 IRB: Reverse lookups 84

Figure 27 IRB: DNS requests by user devices 85

Figure 28 IRB: DNS requests by IRB servers 86

xiv

Figure 29 IRB: DNS requests by IRB LDAP servers 86

Figure 30 Binding entries and resolution of object X . . . 99

Figure 31 HSkip hierarchy with GET request for object A 107

Figure 32 Analysis: Latency of MDHT (O(logn) DHTs)
and HSkip; 1–9 levels (L); LP=0; dashed line =
MDHT, solid = HSkip 119

Figure 33 Analysis: Latency of MDHT (O(logn) DHTs)
and HSkip; 3–9 levels (L); LP=0.3; dashed =
MDHT, solid = HSkip 120

Figure 34 Analysis: Latency of MDHT (O(logn) DHTs)
and HSkip; 1–9 levels (L); 12 million nodes;
dashed = MDHT, solid = HSkip 122

Figure 35 Analysis: Latency of REX+MDHT-O (O(1)) and
HSkip; 1–9 levels (L); 12 million nodes; dashed
= MDHT, solid = HSkip 123

Figure 36 Simulation: Latency of MDHT (O(logn) DHTs)
and HSkip; 3–9 levels (L); LP=0.3; dashed =
MDHT, solid = HSkip 125

Figure 37 Simulation: Latency MDHT (O(logn)), HSkip:
1500 nodes; 3–9 levels (L); dashed = MDHT,
solid = HSkip 126

Figure 38 Simulation: Relative number of used levels;
1500 nodes; 3–9 levels (L); dashed = MDHT,
solid = HSkip 126

Figure 39 No. of requests per node: MDHT, LP=0 127

Figure 40 No. of requests per node: MDHT, LP=0.3 . . . 128

Figure 41 No. of requests per node: HSkip, LP=0 128

Figure 42 No. of requests per node: HSkip, LP=0.3 . . . 129

Figure 43 OpenNetInf node with NetInf Core and AddOn
components, connected to other NetInf nodes
via the N2N interface 135

Figure 44 Video streaming in Firefox via OpenNetInf . . 142

Figure 45 Shopping application use case scenario 145

Figure 46 Mockup of AugNet application showing an in-
formation overlay for the Eiffel Tower 147

Figure 47 AugNet browser application showing the users
current position (red dot) and two retrieved
virtual entities (blue dots) in the user’s search
area (orange circle area) 148

Figure 48 Measurement scenario and hierarchical Multi-
Level Distributed Hash Table (MDHT) setup
(Cl = client) . 150

Figure 49 Cumulative inter-domain traffic between levels
1 & 2 and levels 2 & 3 151

Figure 50 Inter-domain traffic between levels 1 & 2 . . . 153

Figure 51 Inter-domain traffic between levels 2 & 3 . . . 153

xv

Figure 52 Evaluation overview. The numbers indicate
the sections of this thesis where details can be
found. Light boxes (number 2.2.8 and 5.5) in-
dicate evaluations that are only summarized in
this thesis. 160

L I S T O F TA B L E S

Table 1 Summary of characteristics of ICN approaches. 54

Table 2 Content matrix for top 2000 most popular host
names. Each line provides the percentage of
all requests that originate from a given con-
tinent. Columns indicate the continent from
where content is served (see Table 1 in refer-
ence [1]). 89

L I S T I N G S

Listing 1 Creating name–data integrity for dynamic con-
tent . 60

Listing 2 Verifying name–data integrity of dynamic con-
tent . 61

Listing 3 Compatible NetInf link (NetInf ID is curtailed) 142

A C R O N Y M S

4WARD Architecture and Design for the Future Internet 11

ADSL Asymmetric Digital Subscriber Line . 152

ALTO Application-Layer Traffic Optimization . 38

AS autonomous system . 98

AN access node . 98

API application programming interface . 4

AugNet Augmented Internet . 32

xvi

acronyms xvii

BBT balanced binary tree . 113

BGP Border Gateway Protocol . 36

CBN Content-Based Networking . 45

CCN Content-Centric Networking . 11

CDN content distribution network . 2

CL convergence layer .25

CLB constrained load balancing . 105

CMS Cryptographic Message Syntax . 31

CNF Cache-and-Forward . 45

CONNECT Content-Oriented Networking: a New Experience for
Content Transfer .44

CoAP Constrained Application Protocol . 19

COAST Content Aware Searching retrieval and sTreaming.44

COMET COntent Mediator architecture for content-aware
nETworks . 44

CoRE Constrained RESTful Environments . 19

CRC cyclic redundancy check . 26

DAG directed acyclic graph . 98

DDoS distributed denial of service .3

DECADE Decoupled Application Data Enroute 19

DFZ default-free zone . 40

DHCP Dynamic Host Configuration Protocol . 30

DHT distributed hash table . 45

DNS Domain Name System . 9

DOI digital object identifier . 56

DONA Data-Oriented Network Architecture . 11

DoS denial of service . 6

DPSP DTN Pub/Sub Protocol . 46

DSL Digital Subscriber Line . 38

DTN delay-tolerant networking . 10

EU European Union . 17

FIT Future Internet Toolbox . 21

FTP File Transfer Protocol . 139

GIN Global Information Network. .53

GPS Global Positioning System . 147

HDHT hierarchical DHT . 130

xviii acronyms

HIP Host Identity Protocol . 67

HSkip Hierarchical SkipNet . 20

HTTP Hypertext Transfer Protocol .10

I3 Internet Indirection Infrastructure . 67

ICN information-centric networking . 1

ID identifier . 20

IP Internet protocol . 1

ISP Internet service provider . 89

LDAP Lightweight Directory Access Protocol .77

LLC Late Locator Construction . 28

LP level probability . 116

M2M machine-to-machine . 2

MAAN Multi-Attribute Addressable Network . 42

MDHT Multi-Level Distributed Hash Table . 20

MIME Multipurpose Internet Mail Extensions . 31

N2N node-to-node . 134

NBR name-based routing . 14

NDN Named-Data Networking. .11

NDO named data object . 5

NetInf Network of Information . 1

ni named information . 18

NNRP NEC NetInf Router Platform . 154

NNTP Network News Transfer Protocol . 87

NPO named person object . 143

NRS name resolution service . 1

OSPF Open Shortest Path First . 36

OWL Web Ontology Language . 31

P2P peer-to-peer . 1

PIT Pending Interest Table . 13

PPSP Peer-to-Peer Streaming Protocol . 19

P4P provider portal for P2P . 38

PDU protocol data unit . 25

PK public key . 48

PKI public key infrastructure . 6

PoP point of presence . 45

PSIRP Publish-Subscribe Internet Routing Paradigm 11

acronyms xix

PURSUIT Publish-Subscribe Internet Technology 11

QoS quality of service . 44

RDF Resource Description Framework . 31

REST Representational State Transfer . 136

REX Resolution Exchange . 93

RFID radio-frequency identification . 147

RH resolution handler . 12

RIPE NCC Réseaux IP Européens Network Coordination Centre . 87

SAIL Scalable and Adaptive Internet SoLutions 11

SDSI Simple Distributed Security Infrastructure 66

SHA Secure Hash Algorithm . 10

SMTP Simple Mail Transfer Protocol .78

SPKI Simple Public Key Infrastructure . 67

SIENA Scalable Internet Event Notification Architecture 46

SIONA Service and Information Oriented Network Architecture . 44

SK secret key. .58

SPARQL SPARQL Protocol and RDF Query Language.139

SSD solid state disk . 113

TCP Transmission Control Protocol . 27

TRIAD Translating Relaying Internet Architecture integrating
Active Directories .43

TLS transport layer security . 10

URL uniform resource locator . 6

URI uniform resource identifier . 9

VoD video on demand . 1

VoIP voice over IP. .161

XIA eXpressive Internet Architecture . 44

XML Extensible Markup Language . 31

1
I N T R O D U C T I O N

This chapter is based on work published in references [2, 3, 4].

This thesis describes the Network of Information (NetInf) architec-
ture, an information-centric networking (ICN) architecture for the fu-
ture Internet. Chapter 1 gives an introduction to information-centric
networking in general and describes the contribution and content of
this thesis in more detail in Section 1.6. Chapter 2 describes the over-
all NetInf architecture. Secure naming and a scalable name resolution
service (NRS) are critical components of this architecture. Hence, I
subsequently focus on these two aspects. In Chapter 3, I describe our
secure naming scheme that is based on a flat namespace. Chapter 4

evaluates request patterns for data objects that are important input
to the design of the NRS framework and two specific incarnations of
this framework in Chapter 5. To evaluate the overall NetInf architec-
ture, we have developed a prototype of the NetInf architecture (called
OpenNetInf) and several ICN applications, described in Chapter 6.

This chapter gives an overview of the background and motivation
for this thesis and the ICN paradigm in general. In the following
sections, I give a brief introduction to the main problems and short-
comings of today’s Internet (Section 1.1), followed by an overview
of the ICN paradigm (Section 1.2) and the main components of ICN
designs (Section 1.3). Based on this overview, I discuss the problem
statement and requirements for information-centric network architec-
tures in general (Section 1.4), followed by an overview of the main
recent ICN designs (Section 1.5). In Section 1.6, I state the contribu-
tions of this thesis and list the publications where this work has first
been published.

This thesis mostly uses the first-person plural (i.e. “we”) instead
of the first-person singular as parts of the work have been performed
together with the co-authors stated in Section 1.6.

1.1 shortcomings and pitfalls of today’s internet

According to recent predictions [5], global Internet protocol (IP) traf-
fic will approach 966 exabytes per year in 2015. Much of this traf-
fic stems from various forms of video, including TV, video on de-
mand (VoD), Internet video, and distribution via peer-to-peer (P2P),
that will continue to account for approximately 90% of global con-

1

2 introduction

sumer traffic by 2015. Global mobile data traffic [6] is expected to
increase by a factor of 26 from 2010 to 2015. Likewise, machine-
to-machine (M2M) traffic is expected to grow 22-fold from 2011 to
2016, with a compound annual growth rate of 86%, and the num-
ber of mobile-connected M2M modules is expected to grow 5.8-fold
between 2011 and 2016, reaching 1,9 billion.

The best current practice to manage this growth in terms of data
volume and devices is to employ overlays (i.e., networks built on
top of IP) such as content distribution networks (CDNs), P2P net-
works, and M2M application platforms, which cache content, pro-
vide location-independent access to data, and optimize its delivery.
In principle, such platforms provide a service model of accessing data
objects (e.g., videos, web pages, documents, M2M data) instead of a
host-to-host packet delivery service model.

However, P2P networks (e.g. BitTorrent) and M2M application plat-
forms are typically limited to specific applications and each appli-
cation has its own underlying P2P/M2M solution. Likewise, CDN
deployment is provider-specific and multiple proprietary CDN solu-
tions exist with currently no or only limited cooperation between the
different CDNs.

Therefore, since this functionality resides in application-specific or
provider-specific overlays only, the full potential of content distribu-
tion and M2M application platforms cannot be leveraged:

• The network is not aware of the semantics of data requests/
transmissions and which data is requested/transmitted. Even
deep packet inspection would not provide all required informa-
tion as a consistent, persistent, and location-independent nam-
ing of data objects is missing. Hence, the network is unable
to efficiently manage data access and transmission and such at-
tempts typically lead to layer violations.

• Data has to travel suboptimal routes imposed by the overlay
topology rather than by the IP-layer topology.

• Multicast and broadcast features of wireless networks cannot
be leveraged, i.e., request and delivery for the same object have
to be made multiple times.

• The overlay functionality is only available for selected providers
and selected applications.

• Overlays typically require a significant amount of infrastructure
support, e.g., authentication portals, content storage, and appli-
cations servers, making it often impossible to establish local,
direct communication.

• Many applications provide their own approach to caching, repli-
cation, transport, authenticity validation (if at all), although

1.2 the information-centric networking paradigm 3

they all share the same model of accessing data objects in the
network.

1.2 the information-centric networking paradigm

The ICN paradigm builds on the following two basic changes in re-
cent years:

change of hardware assumptions In any modern commu-
nication network, there are three main aspects: processing power in
network nodes, storage capacity of network nodes, and capacity of
transmission links. It is well known that the capacity of processing
power (including the number of transistors and their speed) evolves
according to Moore’s law, doubling every 18 months1. Optical trans-
mission evolves twice as fast and the capacity of hard disk storage at
an even faster rate. At the time the Internet was designed, memory
and storage was expensive and the use of it had to be minimized in
network nodes. This is no longer true. It is reasonable to assume that
this should be reflected in future network architectures.

change of usage model Today, users’ prime interest is to re-
trieve a specific data object such as a song, a movie, or a web page.
The users do not really care which network node is delivering the
requested object. However, the Internet was initially designed for
interconnecting terminals and servers, not to be used for mass distri-
bution of information.

The ICN paradigm is about shifting the focus from interconnecting
nodes to node-independent information retrieval. The ICN paradigm
puts information at the center of the architecture and provides ac-
cess to data objects as a first-class networking primitive, i.e., it is
information-centric. In contrast, current networks are host-centric where
communication is based on addressing and connecting to specific,
named hosts, for example web servers, PCs, and mobile handsets.

The aim of ICN approaches is to develop a network architecture
that is better suited for efficiently accessing and distributing content
and that better copes with disconnections, disruptions, mobility, flash-
crowd effects, distributed denial of service (DDoS) attacks, and inad-
equate security in the communication service.

This is achieved by embedding many of the required functions
deeper into the network fabric, including secure object naming, in-
network caching, multi-party communication, and interaction models
that decouple senders and receivers. The ICN approach makes these

1 To be more precise, the 18 months period is based on Intel executive David House,
who has included both the number of transistors and their speed in his prediction,
while Moore only referred to the number of transistors, hence, predicting 24 months.

4 introduction

Figure 1: ICN communication model – client side

functions accessible for developers via an application-agnostic appli-
cation programming interface (API) that inherently includes function-
ality such as caching, best-copy selection, and information-centric se-
curity. This is complemented by functions and interfaces for network
operators to reduce network (in particular, inter-domain) traffic and
to potentially simplify traffic engineering. Communication is driven
by receivers requesting data objects. Senders make data objects avail-
able to receivers by publishing the objects.

As illustrated in Figure 1, the network can satisfy client requests
with data from any source holding a copy of the object, enabling effi-
cient and application-independent caching as part of the network ser-
vice. The integrity of the delivered data is established independently
of the delivering host. Hence, the delivering host can be untrusted
without jeopardizing security.

Media/information distribution has become the dominating use
case in today’s Internet. However, efficient information distribution
services are today only available in overlay systems such as applica-
tion-specific P2P overlays and proprietary CDNs. ICN can be seen
as a generalization of P2P and CDN technologies that integrates func-
tionality for efficient and reliable media/information distribution into
the network architecture, thereby solving the problem of proprietary
CDN solutions and application-specific P2P solutions in an architec-
turally sound way.

ICN is not limited to large-scale media distribution scenarios but
is useful in a wide variety of scenarios. Such scenarios include, e.g.,
any kind of ad hoc setup that can benefit from efficient direct data
communication without requiring extra infrastructure nodes or com-
plicated network setup. This also includes large-crowd scenarios like

1.3 main components of icn designs 5

a soccer game where the infrastructure is challenged by the temporar-
ily large number of users.

Also, scenarios where accessing and modifying local caches gives
advantages (e.g., reduced latency and traffic) over remote server ac-
cesses can benefit from the ICN approach. In scenarios with intermit-
tent Internet connectivity, remote server access might not be feasible
at all, hence, an ICN-based solution has strong advantages over a
remote-server-based solution. To illustrate, consider a group of col-
located users (with good local connectivity (e.g. WiFi) and weak In-
ternet connectivity) collaboratively editing documents stored in a ver-
sion control repository (e.g., Subversion2) or a Wiki. Traditionally, all
updates would go via the slow Internet link only to be redistributed
locally again. With an ICN infrastructure, the relevant objects are
cached and modified locally, with local copies being created oppor-
tunistically at nearby places, without the application having to worry.
Obviously, such an ICN-based solution has to handle related aspects
like dealing with consistency of the different copies at some point.

1.3 main components of icn designs

Most ICN architectures, albeit different in details, share general de-
sign ideas and main components. We describe these ideas and com-
ponents in this section, introduce the relevant ICN terminology, and
bring up some of the major design choices.

named data objects The main abstraction of ICN is the named
data object (NDO). Examples are web pages, documents, movies, pho-
tos, songs, as well as streaming and interactive media, in other words,
all type of objects that are stored and accessed via computers. In ad-
dition to their main content, there can be metadata associated with
NDOs, i.e., data describing/complementing the main content, e.g.,
author, creation date, or other data about the represented content.

The NDO is independent from location, application program, and
transportation method. This means that an NDO keeps its name re-
gardless of its location and regardless of how it is copied, stored, and
communicated. It also means that any two copies of an NDO are
for all purposes equivalent; for instance, any node holding a copy
can supply it to a requester. The NDO granularity varies between
approaches from packet size to full files.

From a networking perspective, these objects can be viewed as
named data chunks without semantics, but some ICN designs have
an object model that allows to represent abstract information. For ex-
ample, such an object model allows to create an NDO that represents
a video independent of its specific encoding (i.e., unique bit pattern),
or different recordings of a piece of music.

2 http://subversion.apache.org/

6 introduction

naming and security Naming data objects is as important for
ICN as naming hosts is for today’s Internet. Fundamentally, ICN
requires unique names for individual NDOs, since names are used for
identifying objects independently of its location or container. It is
important to establish a verifiable binding between the object and its
name (name–data integrity), so that a receiver can be sure that received
bits actually represent the named object (object authenticity). In this
case, trust is directly based on the data and its name and not on the
network nodes/connections that deliver the data; hence, we call this
information-centric security here.

Information about an object’s owner, i.e., who generated or pub-
lished it, is also useful to associate to the name. If the owner is iden-
tified via the owner’s real-world identify (i.e., the real, uniquely iden-
tified name) in a trustworthy manner (e.g., via trusted certificates), it
is called owner identification here. If the owner is only identified via a
pseudonym, it is called owner pseudonymity. Note that there are other
roles besides the owner, such as the producer (creating/generating the
object) or the publisher (publishing the object in the network) that can
but do not have to be identical with the owner role.

Name–data integrity is fundamentally required for an information-
centric network to work reliably – otherwise neither network ele-
ments nor receivers can trust objects’ authenticity, which would en-
able several attacks including denial of service (DoS) attacks, e.g., by
injecting a large number of spoofed objects into the network. There
are different ways to use names and cryptography to achieve the de-
sired functions [7], and there are different ways to manage name-
spaces correspondingly.

Two naming concepts have largely been proposed: one with a hier-
archical and one with a flat namespace. The hierarchical scheme has a
structure similar to current uniform resource locators (URLs), where
the hierarchy is rooted in a publisher prefix, i.e., each name has a
publisher prefix which is unique for each publisher. The hierarchy
enables aggregation of routing information, hence, improving scalabil-
ity of the routing system by reducing the size and update rate of the
routing tables. In some cases, the names are human-friendly, which
makes it possible for users to manually type in names, and, to some
extent, assess the relation between a name and what the user wants.

The flat naming scheme is self-certifying, meaning that the object’s
name–data integrity can be verified without needing a public key in-
frastructure (PKI) or other third party to first establish trust in the
key. Self-certification is achieved by binding a hash of the content
to the object’s name. This can be done by directly embedding the
hash of the content in the name. Another option is an indirect bind-
ing, which embeds the public key of the publisher in the name and
signs the content with the corresponding secret key. The resulting

1.3 main components of icn designs 7

names are typically non-hierarchical, or flat, although the publisher
field provides structure that can be used for routing aggregation.

There are delicate design trade-offs for ICN naming, affecting rout-
ing and security. Self-certifying names are typically neither human-
friendly nor hierarchical. They can, however, provide some structure
for aggregation, for instance, a name part corresponding to a pub-
lisher as mentioned above. Without self-certification, as already men-
tioned above, the infrastructure depends on a PKI for its operation,
which many consider to be a major disadvantage.

application programming interface The ICN API is de-
fined in terms of requesting and delivering NDOs. The publisher
makes an NDO available to others by publishing it to the network
(called PUBLISH or REGISTER in different approaches). A client/con-
sumer asks for an NDO by name (called GET, INTEREST, REQUEST, FIND,
or SUBSCRIBE)3. Asking for an NDO is in most ICN designs a syn-
chronous, one-time operation. However, some approaches build on a
more publish/subscribe-like approach, where the client registers a sub-
scription and gets notified when something is available.

Both types of operations (subsequently referred to as PUBLISH and
GET, unless a specific approach is indicated) use the object’s name as
main parameter. In addition, some approaches support supplemental
parameters. For example, the CURLING [8] approach supports loca-
tion preferences for scoping and filtering publications and requests.

routing , forwarding , and name resolution Routing/for-
warding can be divided into two phases: (1) routing/forwarding of
NDO requests and (2) routing/forwarding of NDOs back to the requester.
There are two general approaches in ICN to handle routing/forward-
ing during those phases; both strongly depend on the properties of
the object namespace, in particular if the names are aggregatable or
not.

The first approach is commonly called name resolution and creates
bindings of a name from one namespace into another namespace.
More specifically, it uses an NRS that stores bindings from object
names to (typically) topology-based locators pointing to correspond-
ing storage locations in the network. Other types of bindings are also
possible as will be discussed later.

The name resolution approach has three conceptual phases: (1a)
forwarding the request message to the responsible NRS node where
the object name is translated into one or several object copy loca-
tors (typically locators of lower network layers), (1b) forwarding the
request message to the object copy(s), and (2) forwarding the data
from the source(s) to the requester. All phases can be based on differ-

3 Obviously, this characterization ignored some differences in details of the ap-
proaches’ different API primitives for simplification purposes.

8 introduction

ent routing algorithms. There are multiple alternatives to loosely or
tightly integrate these phases in an ICN architecture.

The second general approach forwards the request from the re-
quester directly to one or multiple object copy(s) in the network based
on the requested object name during phase 1a, without first resolv-
ing the object name into some lower-layer locators (i.e., skipping the
name resolution step 1b). The request is forwarded based on rout-
ing tables in the network that contain bindings between names of the
same namespace (i.e., the object namespace). This approach is often
referred to as name-based routing. The routing algorithm used for this
approach heavily depends on the properties of the namespace. After
the source has received the request message, the data is routed back
to the requester, equaling phase (2) in the NRS-based approach.

caching Caching named data objects is an integral part of the
ICN service. All nodes can have caches (depending on the specific
ICN approach), including nodes in operator-run infrastructure net-
works (in-network cache) as well as user-run home networks and mo-
bile terminals (peer-side cache). Requests for NDOs can be satisfied by
any node holding a copy in its cache. ICN thus combines caching
at the network edge, like in P2P and other overlay networks, with
in-network caching, for instance transparent web caches. Caching is
generic; i.e., it is application-independent and applies to all providers
of content, including user-generated content.

additional services Depending on the actual ICN approach,
additional components that are external to today’s Internet architec-
ture might become part of an ICN network architecture. For example,
persistent data storage might be closer integrated with the network ser-
vice, including a closer integration with caching and name resolution.
Likewise, Google-like information search might be closer integrated,
especially when metadata about NDOs is stored in the ICN network.

1.4 problem statement and requirements

This section discusses the major problems of today’s Internet archi-
tecture. Some of these problems have been mentioned earlier for mo-
tivation purposes but are summarized and discussed in more detail
here again to include a consistent overview. The section focuses on
problems that can be addressed by an information-centric network ar-
chitecture. In conjunction, we explain the main requirements that an
information-centric network architecture has to fulfill and how the
ICN paradigm addresses these problems and requirements in gen-
eral.

1.4 problem statement and requirements 9

scalable and efficient content distribution The origi-
nal Internet architecture does not incorporate caching nor the ability
to automatically select the most appropriate data copy. This leads
to unnecessarily high traffic and latency, and inefficient, redundant
transmission of identical content. The tremendous traffic increase
described in Section 1.1 necessitates more efficient content dissemina-
tion mechanisms that scale in traffic, latency, cost, and energy usage.
There are two main developments: CDNs and P2P networking, both
related to an information-centric model. Yet there are a number of
issues. P2P networks suffer from suboptimal peer selection that leads
to expensive inter-provider traffic and heavy loads on weak access
links (e.g., mobile and cable networks), currently do not effectively
support in-network caching, and suffer from incompatibility of the
many existing systems as P2P networks are generally an application-
specific solution. CDNs extend the underlying network infrastruc-
ture by interpreting uniform resource identifiers (URIs) and Domain
Name System (DNS) names to access cached copies of content. How-
ever, CDNs are limited to a set of explicitly created copies and cannot
benefit from all available copies, e.g., on user devices or other servers.
Moreover, CDNs are only an add-on to today’s Internet; they solve a
limited subset of the general problem and only for a restricted group
of customers: Since a CDN requires dedicated setup, configuration,
and customer relationships, typically only large players (e.g., large
content providers) use it. Small players most in need of support (e.g.,
to protect their small infrastructure against the flash crowd effect and
DDoS) are least likely to benefit from this approach. Hence, a solu-
tion that supports all kinds of players and, e.g., eases experiments
with new services for new players would be much more favorable.

Looking at the need for scalable and efficient content distribution,
the question is: if users are more interested in accessing named con-
tent, regardless of endpoint locators, is there a more architecturally
sound way of addressing these requirements that does not require
individual amendments for specific domains and architectures? ICN
is the attempt to answer this question with “yes”.

persistent, location-independent naming Today’s Inter-
net architecture lacks a persistent, location-independent scheme to
name content. Most content URIs in today’s network directly point to
a specific location; they are locators. As a result, the name–object bind-
ing can easily break, for example, when an object is moved, the site
changes domain, or the original site is unreachable for some reason.
Moreover, independent replicas of an object at different web servers
might be accessible only under different URIs. This essentially makes
them appear as different objects. This complicates efficient network
utilization and caching.

10 introduction

The ICN approach overcomes these problems with persistently and
uniquely named data objects and with its service model that decou-
ples producers from consumers.

data availability In today’s Internet, data access in challeng-
ing network conditions with spotty connectivity, network disruptions,
or large network delays is difficult or impossible. This is often caused
by inaccessibility of global infrastructure like DNS, inability to use lo-
cally available copies, and a required persistent connection between
hosts.

However, not all applications actually do require seamless end-to-
end communication. If the primary objective is access to data ob-
jects, ICN with its in-network caching can offer store-and-forward
approaches similar to the delay-tolerant networking (DTN) architec-
ture [9] with its convergence layer concept for hop-by-hop transport.
This can provide better reliability and better performance by lever-
aging optimized hop-by-hop transport and in-network caching. In
addition, caching can also reduce the load at the origin server and
the problem of the origin server being a single point of failure, hence,
increasing overall robustness and data availability. This is (to a lesser
extent) still true when mechanisms like Hypertext Transfer Proto-
col (HTTP)-based load balancing are used.

security Today’s security is host-centric, i.e., based on securing
channels between hosts via encryption like transport layer security
(TLS) and trusting servers via authentication. As a consequence, a
client cannot trust a copy that is received from an untrusted loca-
tion although the copy might be authentic. To address this problem,
workarounds like separately published fingerprints of the data (e.g.,
Secure Hash Algorithm (SHA)-2) are sometimes used.

A future security model should provide an architecturally sound
approach that works for any data copy independent of its location.
The model should enable ubiquitous caching while retaining data
integrity and authenticity, something that the current model does not
provide. In addition, it should not have to rely on trusted third parties
for data integrity checking. In contrast, in today’s security model,
trust is practically transfered to the software vendor that compiles
the set of trusted authorities.

As a result of the inherent split between object location and object
naming, the ICN paradigm is well suited to offer an architecturally
sound solution addressing these requirements.

mobility and multihoming Due to the host-based nature of
today’s Internet, mobility and multihoming of nodes and networks
is a challenging problem that requires managing end-to-end data
flows (e.g., with handovers) and choosing which path/interface to

1.5 overview of information-centric network designs 11

use. Several solutions like mobile IP [10] have been proposed and
implemented; however, they suffer from disadvantages like increased
routing stretch and complexity due to the inherent problems of the
host-centric approach.

The ICN approach does not enforce end-to-end connections that
require this kind of connection management. The problem can, thus,
become much simpler. A moving client just continues to issue re-
quests for named data objects on a new access. Requests on the new
access is potentially served from a different source, instead of need-
ing to maintain a connection to the previous source. A multi-homed
client can similarly choose to send a request on any one, several, or
all accesses.

1.5 overview of information-centric network designs

To provide a general understanding of existing ICN approaches, this
section gives a high level overview of the main existing ICN ap-
proaches. This also includes a first glimpse at the NetInf architec-
ture to provide a first understanding and context in relation to the
other approaches. NetInf is subsequently described in detail in Chap-
ter 2. A more specific, topic-related discussion of related work can be
found in each individual chapter, including a broader discussion of
work related to the overall NetInf architecture in Section 2.3.

Although it can be argued that the ICN approach was pioneered
in TRIAD [11], this overview is based on the following, more recent
projects representing four approaches being actively developed:

• Data-Oriented Network Architecture (DONA) [12], currently
continued in related research [7, 13],

• Content-Centric Networking (CCN) [14], currently developed
in the Named-Data Networking (NDN) project [15],

• Publish-Subscribe Internet Routing Paradigm (PSIRP) [16], con-
tinued in the Publish-Subscribe Internet Technology (PURSUIT)
project [17], and

• Network of Information (NetInf) [3], started in the Architec-
ture and Design for the Future Internet (4WARD) project [18]
and continued in the Scalable and Adaptive Internet SoLutions
(SAIL) project [19].

In CCN, the term content-centric is used instead of information-centric,
and DONA uses the term data-oriented. Henceforth, this thesis uses
information, content, and data interchangeably.

The following sections are only intended to provide a rough over-
view comparing the basics of the different approaches to get a general
overview. It contains simplifications and may in some cases not take
the latest developments of respective approaches into account as the
approaches are still under development.

12 introduction

1.5.1 Data-Oriented Network Architecture

In DONA, NDOs are published into the network by the sources.
Nodes that are authorized to serve data register with the resolution in-
frastructure, consisting of multiple resolution nodes called resolution
handlers (RHs). Requests (called FIND packets) are routed by name
towards the appropriate RH, as illustrated in Figure 2, steps 1–4. Data
is sent back in response, either through the reverse RH path (steps 5–
8) enabling caching, or over a more direct route (step 9).

DONA

cache

routing

RH

DONA

cache

routing

Application

API

Source

Transport

DONA

cache

routing

Application

API

Requester

DATA

DONA

cache

routing

RH

DONA

cache

routing

RH

1

2
3

4

5

6 7

8

9

Figure 2: DONA overview when caching on all resolution handlers (RHs)

Objects from the same content provider have a common prefix.
Hence, content providers can perform a wildcard registration of their
name prefix in the RH, so that queries can be directed to them with-
out needing to register specific objects. It is also possible to register
NDO names before the NDO content is created and made available.

Register commands have expiry times. When the expiry time is
reached, the registration needs to be renewed. The RH resolution in-
frastructure routes requests by name in a hierarchical fashion and
tries to find a copy of the content closest to the client. DONA’s
anycast name resolution process allows clean support for network-
imposed middleboxes (e.g., firewalls, proxies).

1.5.2 Content-Centric Networking

In CCN, NDOs are published at nodes and routing protocols are em-
ployed to distribute information about NDO locations. Routing in

1.5 overview of information-centric network designs 13

CCN

cache

FIB

Application

API

Requester

PIT

CCN

cache

FIB

Application

API

Requester

PIT

CCN

cache

FIB

Application

API

Source

PIT

CCN

cache

FIB

Router

PIT

CCN

cache

FIB

Router

PIT

1

2

3

4

5

6

7

8

Figure 3: CCN overview

CCN can leverage aggregation through a hierarchical naming scheme.
NDO authenticity is achieved through public key cryptography. Trust
in keys can be established via different means which provide a dif-
ferent level of trust, e.g., via a PKI-like certificate chain based on
the naming hierarchy or via a trusted friend that trusts these keys.
Requests (INTEREST packets) for an NDO are forwarded towards a
publisher location, as illustrated in Figure 3, steps 1–3.

A CCN router maintains a Pending Interest Table (PIT) for outstand-
ing forwarded requests, which enables request aggregation, i.e., a
CCN router would normally not forward a second request for a spe-
cific NDO when it has recently sent a request for that particular
NDO. The PIT maintains state for all interests and maps them to a
network interface where corresponding requests have been received
from. Data is then routed back on the reverse request path using this
state (steps 4–6). CCN can cache NDOs that a CCN router receives
(in response to requests). Hence, subsequent received requests for the
same object can be answered from that cache (as depicted in steps 7–
8 in Figure 3). From a CCN node’s perspective, there is balance of
requests and responses, i.e., every single sent request is typically an-
swered by one response. This enables flow control. CCN nodes can
employ different strategies for request (re-)transmission pacing and in-
terface selection, depending on local configuration, observed network
performance and other factors. The NDN project advances the CCN
approach. It provides a topology-independent naming scheme and is
exploring greedy routing for better routing scalability.

14 introduction

Transport

Scope

Rendezvous Rendezvous

Resolve/match

FI DATA

PSIRP

cache

routing

Application

API

Source

PSIRP

forwarding

PSIRP

Router

PSIRP

forwarding

PSIRP

Router PSIRP

cache

routing

Application

API

Requester

1
2

3

4

5 6 7

Figure 4: PSIRP overview

1.5.3 Publish–Subscribe Internet Routing Paradigm

In PSIRP, NDOs are also published into the network by the NDO
sources. The publication belongs to a particular named scope. Re-
ceivers can subscribe to NDOs, as illustrated in Figure 4. The publi-
cations and subscriptions are matched by a rendezvous system. The
subscription request specifies the Scope Identifier (SI) and the Ren-
dezvous Identifier (RI) that together name the desired NDO. The
identifiers are input to a matching procedure resulting in a Forward-
ing Identifier (FI) that is sent to the NDO source (publisher) so that
it can start forwarding data. The FI consists of a Bloom filter which
routers use for selecting the interfaces to forward an NDO on. This
means that routers do not need to keep forwarding state. The use
of Bloom filters results in a certain number of false positives, in this
case this means forwarding on some interfaces where there are no
receivers.

1.5.4 Network of Information

NetInf offers two models for retrieving NDOs: via name resolution and
via name-based routing (NBR), thereby allowing adaptation to differ-
ent network environments. In NetInf, depending on the model used
in the local network, sources publish NDOs by registering a name/
locator binding with an NRS, or by announcing routing information
in a routing protocol. A NetInf node holding a copy of an NDO (in-

1.6 thesis contributions 15

NetInf

NRS

NetInf

NRS

Application
API

Requester

RouterApplication
API

Source A1
A2

B1B2
NetInfNetInf

NBR

NetInf GETGET

DATA DATA A3

B1B2

CacheCacheCache

Application
API

Source
DATA DATA

B4
A3

A4
B3

NetInf
API

Transport

Cache

Figure 5: NetInf overview

cluding in-network caches and user terminals) can optionally register
its copy with an NRS, thereby adding a new name/locator binding.
If an NRS is available, a requester can first resolve an NDO name into
a set of available locators and can subsequently retrieve a copy of the
data from the “best” available source(s), as illustrated in steps A1–
A4 of Figure 5. Alternatively, the requester can directly send out a
GET request with the NDO name that will be forwarded towards an
available NDO copy using name-based routing (steps B1–B4 of the
figure). As soon as a copy is reached, the data will be returned to the
requester. NetInf can also merge the two models in a hybrid resolu-
tion/routing approach where a resolution system provides mappings
from NetInf object names to hints that support a name-based routing
process in forwarding the request to available object copies.

1.6 thesis contributions

This thesis presents the Network of Information (NetInf) architecture,
an ICN-based architecture for the future Internet. NetInf has been
developed as part of the European project 4WARD4 and the develop-
ment is continued in the European project SAIL5. I have been part
of and have contributed to the overall NetInf development in both
European projects. In the following, I briefly highlight the overall
key NetInf features that I have contributed to and discuss the specific
contributions of this thesis in more detail subsequently.

4 http://www.4ward-project.eu
5 http://www.sail-project.eu

16 introduction

Compared to other ICN proposals, NetInf offers the following com-
bination of key features:

naming and security model The basic NetInf naming and se-
curity model offers a combination of name–data integrity, name persis-
tence, and owner pseudonymity, all without requiring naming author-
ities or a PKI. Optionally, NetInf can also offer owner identification,
which requires some kind of trusted third party.

object model NetInf has a flexible, concrete object model which
enables applications to construct powerful information models at the
application level. This allows applications to offer efficient informa-
tion retrieval also at higher semantic levels, e.g., by offering informa-
tion retrieval while abstracting from specific information encodings.
NetInf also offers a search primitive that provides a link from search
terms to object names6.

flexible object retrieval NetInf offers a flexible object re-
trieval approach combining name resolution and name-based routing.
NetInf can use either one separately in different parts of the network;
it can even mix them into a hybrid scheme by switching between
them on a hop-by-hop basis. By adjusting the object retrieval method,
NetInf can adapt to environments with very different requirements
like global connectivity, network mobility [20], and DTN. This cre-
ates interesting scaling properties – NetInf can be adapted to an ad
hoc network of two directly connected user nodes as well as to large
infrastructure networks with dedicated infrastructure nodes, e.g., for
global name resolution.

caching The name resolution approach allows NetInf to not only
rely on caching on the data path but also enables off-path caching
and allows NetInf to benefit from any available data copy, including
copies at user nodes.

deployment and migration NetInf simplifies deployment and
migration as it can run as an overlay on top of the existing network
infrastructure during the migration phase. First, the most beneficial
applications like media distribution could be migrated to NetInf, with
other applications following later.

I now summarize the contributions of this thesis in more detail and
list the publications in which these contributions were first published:

survey of information-centric networking

Chapter 1 – Chapter 1 motivates ICN research in general, gives

6 The term name and identifier are used interchangeable in the rest of this document.

1.6 thesis contributions 17

an overview of the main problems of the current Internet, introduces
the ICN paradigm, and gives an overview of the main recent ICN
approaches. Major parts of this content have first been published as
surveys of information-centric networking [2, 4]. I am a main author
of these surveys.

[2] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B.
Ohlman, “A survey of information-centric networking,” IEEE
Communications Magazine – Special Issue on Information-Centric
Networking, July 2012.

[4] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B.
Ohlman, “A survey of information-centric networking (draft),”
in Information-Centric Networking, ser. Dagstuhl Seminar Pro-
ceedings, B. Ahlgren, H. Karl, D. Kutscher, B. Ohlman, S. Oues-
lati, and I. Solis, Eds., no. 10492. Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, Germany, 2011.

network of information architecture

Chapter 2 – In this chapter, I present the overall NetInf architecture.
I have been a member of the NetInf architecture design team in the
4WARD and SAIL European Union (EU) projects and have especially
been involved in the development of the naming scheme, the name
resolution mechanisms, the object model, caching mechanisms, and
the overall NetInf architecture.

The chapter starts with an overview of the main requirements that
have motivated the NetInf design. I present an architecture overview
and discuss the different architecture elements, including the object
model, naming, message forwarding, caching, name resolution, and
inter-domain communication. This chapter is mainly based on work
published in reference [3], of which I am the first author. Related
aspects have been published in references [21, 22, 23].

In related research, I have co-designed and led the development of
an efficient search mechanism to support NetInf’s search capabilities
for complex queries (e.g., range queries and multi-attribute queries)
in local, P2P-based scenarios. To keep this thesis focused on the main
NetInf aspects, only a brief summary of these results is included here.
Details about this work can be found in references [24, 25, 26].

[3] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren,
and H. Karl, “Network of information (NetInf) – An information-
centric networking architecture,” Computer Communications, vol.
36, no. 7, pp. 721–735, April 2013.

[21] C. Dannewitz, “NetInf: An information-centric design for the
future Internet,” in Proc. 3rd GI/ITG KuVS Workshop on The Fu-
ture Internet, Munich, Germany, May 2009.

18 introduction

[22] B. Ahlgren, M. D’Ambrosio, C. Dannewitz, M. Marchisio, I.
Marsh, B. Ohlman, K. Pentikousis, R. Rembarz, O. Strandberg,
and V. Vercellone, “Design considerations for a network of infor-
mation,” in Proc. Workshop on Re-Architecting the Internet (ReArch),
Spain, December 2008.

[23] C. Dannewitz, K. Pentikousis, R. Rembarz, E. Renault, O. Strand-
berg, and J. Ubillos, “Scenarios and research issues for a net-
work of information,” in Proc. 4th Int. Mobile Multimedia Com-
munications Conference, Oulu, Finland, July 2008.

[24] C. Dannewitz, T. Biermann, M. Dräxler, and H. Karl, “Complex
queries in P2P networks with resource-constrained devices,” Jour-
nal of Advances in Information Technology (JAIT) – Special Issue on
Advances in P2P Technology, vol. 02, no. 01, pp. 02–14, January
2011.

[25] T. Biermann, C. Dannewitz, and H. Karl, “An adaptive resource/
performance trade-off for resolving complex queries in P2P net-
works,” in Proc. IEEE International Conference on Communications
(ICC), Dresden, Germany, June 2009.

[26] T. Biermann, C. Dannewitz, and H. Karl, “Extended results on
an adaptive resource/performance trade-off for resolving com-
plex queries in P2P networks,” University of Paderborn, Pader-
born, Germany, Tech. Rep. TR-RI-08-294, October 2008.

secure naming

Chapter 3 – The ICN paradigm makes use of any available copy, in-
cluding copies from untrusted hosts. Hence, today’s security model
based on host authentication and secured channels is not applica-
ble. Therefore, we have developed the NetInf naming scheme, which
attaches the basic security functionality directly to the data and its
naming scheme. I have acted as main designer and developer of the
NetInf naming scheme.

In this chapter, I discuss the NetInf naming scheme and its security
properties in more detail. The naming scheme enables name–data in-
tegrity verification, owner pseudonymity, owner identification, name
persistence, and extensibility. The naming scheme builds the founda-
tion for a secure NetInf architecture. This chapter is based on content
first published by Dannewitz et al. [27].

Building on this general naming scheme, we have developed and
published an RFC [28] that standardizes the details of the NetInf
naming scheme, called the named information (ni) URI scheme. The
ni URI scheme allows various forms of hash-based bindings between
the name and the named object. It also supports a human-friendly
format and a binary format.

1.6 thesis contributions 19

Our naming scheme has generated significant interest and is cur-
rently under evaluation or in use by other IETF/IRTF research groups,
e.g., the Decoupled Application Data Enroute (DECADE) group [29,
30], the Peer-to-Peer Streaming Protocol (PPSP) group [31, 32], and
for the Constrained Application Protocol (CoAP) protocol [33] of the
Constrained RESTful Environments (CoRE) group.

[27] C. Dannewitz, J. Golic, B. Ohlman, and B. Ahlgren, “Secure
naming for a network of information,” in Proc. 13th IEEE Global
Internet Symposium 2010 (in conjunction with IEEE INFOCOM),
San Diego, USA, March 2010.

[28] S. Farrell, D. Kutscher, C. Dannewitz, B. Ohlman, A. Keranen,
and P. Hallam-Baker, “Naming Things with Hashes,” RFC 6920

(Proposed Standard), Internet Engineering Task Force, Apr. 2013.

[32] C. Dannewitz, T. Rautio, O. Strandberg, and B. Ohlman, “Se-
cure naming structure and p2p application interaction,” IETF
Internet-Draft draft-dannewitz-ppsp-secure-naming-02, March
2011.

[30] B. Ohlman, O. Strandberg, C. Dannewitz, A. Lindgren, R. Maglio-
ne, and B. Ahlgren, “Requirements for accessing data in net-
work storage,” IETF Internet Draft draft-ohlman-decade-add-
use-cases-reqs-02, October 2010.

evaluation of locality in dns requests

Chapter 4 – This chapter presents an evaluation of request pat-
terns for data objects as a prerequisite for designing and evaluating
the name resolution services presented in Chapter 5. I have led and
performed this DNS evaluation and I am the main author of the asso-
ciated publication [34] on which this chapter is based.

The evaluation focuses on the locality of requests for data objects,
i.e., on the portion of requests that are posed for local content (net-
work-wise), which we call neighborhood effect. To evaluate this effect,
we have performed DNS measurements in two different DNS zones at
the University of Paderborn for almost four months in total, compris-
ing over 2.5 billion DNS requests. In this chapter, I evaluate the mag-
nitude and characteristics of the neighborhood effect, the influence
of requests originating from user devices and servers, and the sub-
zone relationship between the two observed DNS zones. The results
show a strong neighborhood effect with 71% (university-wide) and
40% (computer science department) requests for local hosts, respec-
tively. As a consequence, I argue that this effect can have a significant
impact on future Internet architectures in general and on information-
centric networking in particular, especially for name-based routing,
caching, and name resolution. The impact on NetInf’s NRS frame-
work is discussed in the subsequent Chapter 5.

20 introduction

[34] C. Dannewitz, H. Karl, and A. Yadav, “Report on locality in
DNS requests – Evaluation and impact on future Internet archi-
tectures,” University of Paderborn, Paderborn, Germany, Tech.
Rep. TR-RI-12-323, July 2012.

hierarchical name resolution framework

Chapter 5 – Name resolution is very important for NetInf’s object
retrieval. It can be used in combination with name-based routing or
on its own. Name resolution has the advantage that it can easily sup-
port on-path and off-path caching, can simplify mobility support, and
does not require changes to the underlying routing and forwarding
system. The last aspect is especially important to facilitate migration.
During the migration phase, NetInf can run on top of today’s IP net-
work, which provides a fully connected underlying network graph; in
this scenario, name resolution is sufficient to find and retrieve named
data objects. Hence, only an NRS has to be deployed without requir-
ing modifications to the underlying routing system, which simplifies
deployment.

Building a world-wide NRS for NetInf’s flat namespace with 1015

expected identifiers (IDs) is challenging because of requirements such
as scalability, low latency, efficient network utilization, and anycast
routing that selects the most suitable copies. In this chapter, I present
a general hierarchical NRS framework for flat ID namespaces that
meets these requirements.

The general NRS framework is flexible and supports different in-
stantiations. These instantiations offer an important trade-off between
subsystem autonomy (which simplifies deployment) and reduced la-
tency, maintenance overhead, and memory requirements. To evaluate
this trade-off and explore the design space, we have designed two
specific instantiations of the general NRS framework: Multi-Level
Distributed Hash Table (MDHT) and Hierarchical SkipNet (HSkip).
I have been the main designer of the general naming framework and
a co-designer of the MDHT and HSkip architecture. I have led and
performed the theoretical analysis and the simulation-based evalua-
tion of both systems. I am the main author of the associated publica-
tion that this chapter is based on [35] and a co-author of our related
conference publication [36]. In addition, I have led the development
of our MDHT prototype implementation that we have published as
open source; this prototype is evaluated in Chapter 6. Results indicate
that an average request latency of (well) below 100ms is achievable
in both systems for a global system with 12 million NRS nodes while
meeting the other specified requirements. These results imply that a
flat namespace can be adopted on a global scale, opening up several
design alternatives for information-centric network architectures.

Load balancing between NRS nodes is another relevant aspect to
address. Both MDHT and HSkip are based on structured P2P sys-

1.6 thesis contributions 21

tems. As a result, their load balancing properties depend on the load
balancing properties of the underlying P2P system. Today, most load
balancing algorithms for structured P2P networks focus on range
skew and data skew as sources of imbalances. However, the main
potential load imbalance of a NetInf NRS system is execution skew,
which refers to non-uniform data access across the peers’ partitions.
Therefore, as part of related research, I have co-developed a load bal-
ancing mechanism that addresses execution skew. To keep this thesis
focused, Chapter 5 only contains a brief summary of these research
results. Details can be found in references [37, 38].

[35] C. Dannewitz, M. D’Ambrosio, and V. Vercellone, “Hierarchical
DHT-based name resolution for information-centric networks,”
Computer Communications, vol. 36, no. 7, pp. 736–749, April
2013.

[36] M. D’Ambrosio, C. Dannewitz, H. Karl, and V. Vercellone,
“MDHT: A hierarchical name resolution service for information-
centric networks,” in Proc. ACM SIGCOMM Workshop on Informa-
tion-centric Networking. New York, NY, USA: ACM, August
2011, pp. 7–12.

[37] D. Warneke and C. Dannewitz, “Load balancing in P2P net-
works: Using statistics to fight data and execution skew,” Jour-
nal of Advances in Information Technology (JAIT) – Special Issue on
Advances in P2P Technology, vol. 02, no. 01, pp. 40–49, 2011.

[38] D. Warneke and C. Dannewitz, “Statistics-based ID manage-
ment for load balancing in structured P2P networks,” in Proc.
34th IEEE Conference on Local Computer Networks (LCN). Zürich,
Switzerland: IEEE, October 2009.

prototyping – opennetinf

Chapter 6 – Prototyping the NetInf architecture is important to
gain valuable insights about its feasibility. Based on a prototyping
toolbox called Future Internet Toolbox (FIT), which I have co-develop-
ed earlier [39, 40, 41], we have developed a prototype of the NetInf
architecture called OpenNetInf and have tested the architecture with a
wide variety of ICN applications [42, 43]. I have been the main archi-
tect and team leader of the prototype development and am the main
author of the publications that this chapter is mainly based on [44, 45].
As part of this work, we have also performed traffic measurements
to evaluate the influence of caching and the MDHT NRS on inter-
domain traffic. The measurements show a decrease in inter-domain
traffic by a factor of up to 4 in the test scenario. The prototyping expe-
rience has validated the general feasibility of the NetInf architecture.
The gained insights have had significant impact on future NetInf ar-

22 introduction

chitecture iterations. OpenNetInf is also published as open source;
details are available at http://www.netinf.org.

[39] C. Dannewitz, T. Biermann, M. Dräxler, F. Beister, and H. Karl,
“Prototyping with the Future Internet Toolbox,” in Proc. 6th
Testbeds and Research Infrastructures for the Development of Net-
works & Communities (TridentCom), May 2010.

[40] T. Biermann, C. Dannewitz, and H. Karl, “FIT: Future Internet
Toolbox,” in Proc. 6th Testbeds and Research Infrastructures for the
Development of Networks & Communities (TridentCom), May 2010.

[41] T. Biermann, C. Dannewitz, and H. Karl, “FIT: Future Internet
Toolbox — extended report,” University of Paderborn, Pader-
born, Germany, Tech. Rep. TR-RI-10-311, Feb. 2010.

[42] C. Dannewitz, “Augmented Internet: An information-centric
approach for real-world/Internet integration,” in Proc. Int. Work-
shop on the Network of the Future (in conjunction with IEEE ICC),
June 2009.

[43] C. Dannewitz, H. Karl, and D. Warneke, “Service platform for
real-world/Internet integration in mobile applications,” in Proc.
13. Mobilfunktagung, Osnabrück, Germany, May 2008.

[44] C. Dannewitz, M. Herlich, and H. Karl, “OpenNetInf – Pro-
totyping an information-centric network architecture,” in Proc.
IEEE LCN – Workshop on Architectures, Services and Applications
for the Next Generation Internet (WASA-NGI), October 2012.

[45] C. Dannewitz and T. Biermann, “Prototyping a network of in-
formation,” in Demonstrations – IEEE Local Computer Networks
(LCN), Zurich, Switzerland, 2009.

[143] M. Soellner, P. Schefczik, P. Bertin, G. Wei, X. Zhang, T.-M.-T.
Nguyen, J. Mäkelä, T. Rautio, O. Mämmelä, S. Pérez, A. Eriks-
son, A.-M. Biraghi, C. Foley, M. P. de Leon, C. Dannewitz, T. Bier-
mann, and M. Marchisio, “Mobility in the future Internet: the
4WARD innovations,” 2nd Future Internet Cluster Workshop,
June 2010.

conclusion and future work Chapter 7 – In this chapter, I
discuss some conclusions of my work. Specifically, I discuss deploy-
ment considerations for ICN architectures in general. What has to
happen to make ICN in general a success? Subsequently, I give a
brief summary and consider implications of the NetInf architecture.
This thesis concludes by discussing some future work items and in-
teresting open questions. This chapter partly contains a combination
of text previously published in references [2, 3, 4] listed above.

http://www.netinf.org

2
N E T W O R K O F I N F O R M AT I O N A R C H I T E C T U R E

This chapter is based on work published in references [3, 21, 22, 23, 24, 25,
26].

This chapter gives an overview of the overall Network of Informa-
tion (NetInf) architecture. To keep this thesis focused, not all aspects
can be discussed in detail. Rather, the aim of this chapter is to get a
detailed understanding of the overall architecture and the interaction
of the different elements. Details of selected aspects (secure naming
and name resolution) will be discussed in more detail in the following
chapters.

Section 2.1 provides an overview of NetInf’s design principles and
the NetInf architecture. The design principles are chosen based on
the requirements discussed in Section 1.4. Section 2.2 discusses de-
tails about the architecture elements, protocol stack, node architec-
tures, and the network architecture. Section 2.3 compares the NetInf
architecture to related work and Section 2.4 summarizes this chapter.

2.1 overview

NetInf is a networking approach that provides access to NDOs as a first-
order networking primitive, i.e., the primary service of nodes in the
Network of Information is the forwarding of NDO requests and the
transfer of the corresponding objects (or object location information).
In the following, we first describe the main NetInf design principles
and then provide an architecture overview.

2.1.1 Design Principles

accessing named data objects Accessing named data as a
first-order principle implies that the nodes in a NetInf network do
generally not communicate on the basis of network or host addresses,
but instead use NDO names to identify objects independently of net-
work location. Unique, location-independent naming enables ubiq-
uitous replication and caching of NDOs in the network. An NDO
consists of its name in a common format and the actual object in a
common data structure (see below). NetInf’s main service is to for-
ward NDO requests to appropriate copies and transfer objects back.

23

24 network of information architecture

minimal common node requirements To broadly apply to
different types of networks and deployments, NetInf only makes min-
imal node requirements:

• Naming format: There is one common NDO naming format that
all nodes must understand.

• Object model: There is one format for representing NDOs and op-
tional metadata. All nodes can process this format. The format
allows, e.g., application-specific extensions; not all nodes need
to understand all extensions or metadata formats.

• NetInf protocol: There is one simple protocol (called the Net-
Inf protocol) that all nodes implement. The NetInf protocol is
message-based; it provides requests and responses for PUBLISH-
ing, GETting, and SEARCHing for NDOs. These requests employ
the common naming format and the common object model.

generic netinf nodes We call the nodes actively participating
in a Network of Information NetInf nodes. NetInf nodes can pro-
vide different functions such as forwarding requests and responses,
caching, and name resolution. Conceptually, all NetInf nodes are
equivalent and can offer all these functions. In practice, NetInf con-
sists of specialized infrastructure nodes and user nodes. Infrastructure
nodes typically offer only a small subset of the NetInf services, yet
on a large/global scale, e.g., services like caching inside the network
infrastructure (NetInf cache), large-scale name resolution (NetInf NRS),
or inter-domain request and data forwarding (NetInf router). User
nodes, in contrast, typically offer some of the corresponding services
with a local focus, e.g., local caching, name resolution for locally
known objects, and local request forwarding. The generic NetInf
node approach makes the NetInf benefits available in many different
network contexts such as an infrastructure-less ad hoc network and an
infrastructure-based global Internet.

flat namespace NetInf uses a flat namespace for NDO names,
i.e., there is neither topology- nor organization-related hierarchy in
names. On the one hand, this limits the ability to aggregate names
based on such a hierarchy. Aggregation is a means to reduce the size
of routing tables and name resolution tables, which can be important
to improve the scalability of the architecture. However, methods like
explicit aggregation [7] can be used instead of a hierarchical namespace
to enable aggregation. In explicit aggregation, aggregation occurs on
the naming side (and not on the router side) by concatenating flat
names, e.g., A.B.C.D, where each part is a flat name. Forwarding
works by looking for an exact match of each name part in the routing
table (going from more specific name parts to less specific name parts)
until a match is found. Among others, explicit aggregation is more

2.1 overview 25

flexible than strict hierarchical aggregation and promises to be easier
to implement. Details can be found in reference [7].

On the other hand, for many hierarchical namespaces, the hierar-
chy is based on aspects like organizational structures, folder struc-
tures, etc. Compared to such hierarchical namespaces, a flat name-
space provides better name persistence as it eliminates such interde-
pendencies. Otherwise, e.g., organizational changes would result in
name changes. In addition, a flat namespace also has the advantage
of separating tussle over trademarks from unique data naming [46].

With properly designed distributed algorithms for name construc-
tion, name management is significantly simplified even without a
naming authority to assign names. Naming can rely on statistical
uniqueness; rare name collisions can be handled as error that will be
handled by an error handling mechanism. For example, name colli-
sions can be detected by the NRS during object registration. Details
are out of scope here.

name–data integrity Name–data integrity validation is Net-
Inf’s fundamental object security service for NDOs. This includes
both static and dynamic objects, i.e., objects with changing content.
The common naming format and object model enable data-integrity
validation by requesters (or any other node). Name–data integrity
validation can be performed without infrastructure support like a
PKI (employing message digests and/or public key digests as part
of NDO names). Not all nodes are required to perform the valida-
tion.

NetInf provides additional object security services such as owner
pseudonymity and owner identification, employing public-key cryptog-
raphy.

lower-layer independence The NetInf protocol specifies mes-
sages for node-to-node communication, their semantics, and corre-
sponding node requirements. Different deployments will use dif-
ferent link layers and underlays – with a variation of services and
properties. NetInf accommodates this by convergence layers (CLs) (us-
ing the almost identical term from the DTN architecture [47]; see
reference [19] for differences between DTN and NetInf convergence
layers) that map the conceptual protocol to specific messages, trans-
actions, or packet exchanges in an existing, concrete protocol. A CL
provides framing and message integrity for NetInf requests and re-
sponses for communication between two nodes as its main service,
but specific CLs can provide additional services. In general, CLs can
be connection-oriented or not, uni- or multicast, may encapsulate,
fragment and reassemble, or even reformat higher-layer protocol data
units (PDUs), etc.

26 network of information architecture

NetInf

Transport

Under-
lay 1

Physical

Applications

CL 1

a) Schema b) Example

CL 2

Under-
lay 2

NetInf

Request Scheduling

Ethernet

Physical

InFox

CL 1 CL 2

HTTP
TCP/IP
WLAN

InBird InTube

Figure 6: NetInf protocol stack, assuming a node with two convergence lay-
ers over two different underlays

Figure 6 depicts a CL example. NetInf-over-IP would require a CL
that encapsulates, and potentially fragments and reassembles, NetInf
messages for transfer in IP packets and validates message integrity,
e.g., via cyclic redundancy check (CRC). NetInf-over-Ethernet, on the
other hand, could be done with a slim CL, but that restricts choices
within NetInf (see below). Figure 6 depicts a schematic and sample
NetInf stack for different CLs/underlays; it also shows that between
applications and NetInf, additional functions like request scheduling
(for implementing flow control, congestion control and other trans-
port layer functions) can be inserted. With CLs, NetInf runs over
quite different types of network links, including uni-directional or
heavily delay-challenged links.

While specific CLs can provide transport protocol functions (reli-
ability, flow control, congestion control) on a hop-by-hop basis be-
tween NetInf nodes, there is also a need for transport layer functions
across CL links. In NetInf, such functions are implemented on-top of
the NetInf layer, e.g., by request scheduling/retransmission decisions.

routing , forwarding , and name resolution The NetInf
protocol’s request and response forwarding service requires routing
information to decide to which next hop, over which interface a re-
quest should be forwarded. For GET requests, these decisions are
generally based on the name of the requested NDO.

NetInf supports both name-based routing and name resolution.
Name resolution plays a major role in NetInf, e.g., for NetInf’s scal-

2.1 overview 27

ability and deployability. In responding to a NetInf GET request, any
node may either return the requested object or hints that can help the
requester to access the object. We call these hints routing hints.

Different types of routing hints are supported. Routing hints can
be:

1. another NetInf name that enables indirection,

2. lower-layer host locators that can be directly used to retrieve the
object via the underlying network protocol (e.g., Transmission
Control Protocol (TCP)/IP),

3. protocol-specific routing hints that can subsequently be used
to support name-based routing (e.g., by pointing to the next
network that can provide the object).

Alternative (3) supports NetInf’s hybrid combination of name reso-
lution and name-based routing.

Not all combinations of underlays, convergence layers, and for-
warding mechanisms make sense, however. In particular, an underlay
that does not provide a (virtually) fully connected graph combined
with a functionally slim CL cannot rely solely on name resolution, i.e.,
alternative (2). Alternative (2) does not work here as the end-point lo-
cator that the NRS would return might have no meaning in the local
network. Hence, some form of name-based routing or hybrid mode
is required here.

on-path and off-path caching NetInf supports both on-path
caching as well as off-path caching. On-path caching refers to caching
data directly on the network path that the data request and/or the
data itself take between the requester and a data source, e.g., caching
directly in the involved network routers. In contrast, off-path caching
refers to caching data off the path, i.e., aloof the path that the data
request and the data take.

NetInf can make use of any available copy when retrieving data:
the original server, copies from redundant servers, as well as replicas
stored on user devices (if so permitted). Thereby, NetInf can access
the best available copy.

heterogeneous networks NetInf’s flexibility in convergence
layers and routing/forwarding schemes allows custom-tailored con-
figurations for different technologies and different administrative do-
mains. As long as NetInf’s minimal node requirements are main-
tained, the NetInf protocol can be mapped to quite different types of
network links – from bi-directional message/packet-based point-to-
point links to unidirectional broadcast links and intermittently con-
nected links. NetInf also does not assume anything about specific
network system architectures – e.g., terminals, access networks, core

28 network of information architecture

networks are flexible notions and there is no assumption on where a
network ends: NetInf user devices can appear as terminals, but they
can also provide caching and can forward requests and data, thus,
extending the network or connecting NetInf networks.

inherent mobility and multi-homing support NetInf in-
herently makes mobility and multi-homing simpler. Regarding multi-
homing, the NetInf architecture puts no limits on the number of inter-
faces used in parallel to send requests and to receive responses. As all
object copies are equal, the order of requests and responses is not crit-
ical. To use network resources in an optimized way, several request
strategies can be used in NetInf. In some network scenarios, e.g., in a
local setup, broadcasting requests on all interfaces might be optimal.
In some other network scenarios, an NRS-based solution using only
a single interface might be preferred. A strategy component inside a
NetInf node can collect network information and related information,
e.g., about previous requests, to choose the best strategy.

There are different types of mobility. For client mobility (i.e., mov-
ing requester), there is no need to continue using a specific object
copy. Instead, alternative copies close to the client’s new location
can be used. For server mobility (i.e., moving content), updates of
the routing information and/or name resolution information in the
network are required to ensure that the server’s copy stays accessible.

For traditional point-to-point services (e.g., a voice call) the need
for mobility support will be very different in different parts of the
network. As NetInf can support different name resolution mecha-
nisms in different parts of the network, these can be selected taking
the dynamics of respective network parts into account. While tradi-
tional mobility anchor point mechanisms (like in mobile IP [10]) can
be used for some parts, very dynamic environments where whole
networks are moving (e.g. trains) can rely on mechanisms like Late
Locator Construction (LLC) [20] that constructs global locators on de-
mand to support highly dynamic network topologies.

2.1.2 Architecture Overview and Sample Setup

sample message flow Figure 7 shows an example of name res-
olution, name-based routing, and the hybrid approach in NetInf. The
name-based routing (steps A1–A4) forwards a GET request hop-by-
hop between NetInf nodes until a cached copy of the NDO is found
or the original server is reached. If the router does not have enough
routing information to perform name-based routing (NBR) in step
A2, it can perform a name resolution step (steps A1.1–A1.2) before
forwarding the request (step A2) based on the retrieved routing hints,

2.1 overview 29

NRS

NetInf

NRS NetInf

NRS

B1
GETRouting hints

A1 1A1 2

NRS

Application
API

Requester

RouterApplication
API

Source

A2 A1

B1

B2
A1.1A1.2

NetInfNetInf
NBR

NetInf GETGET

A2 A1

CacheCacheCache

Application

Source
DATA DATA

A4A3
B4

B3

NetInf

Application
API

Transport

B4

Cache

Transport

Figure 7: NetInf example message flow

which illustrates the hybrid mode. On the return path, the object can
be cached in intermediate nodes for subsequent requests.

Alternatively to the name-based routing approach, the initial re-
quester can first perform name resolution by querying an NRS (steps
B1–B2) via a GET message to resolve the object name into a set of
routing hints, in the example simply lower-layer host locators. Sub-
sequently, the routing hints are used to retrieve the object via the
underlying transport network (steps B3–B4), e.g., a legacy IPv4 net-
work.

sample network setup Figure 8 shows an example of a larger
Network of Information, which typically consists of multiple intercon-
nected domains called NetInf domains. A NetInf domain is an adminis-
trative domain like in today’s Internet that is running its own internal
Network of Information. Due to NetInf’s flexible architecture, a do-
main has some freedom how to configure the internal NetInf setup,
e.g., choosing an appropriate NRS or name-based routing approach,
on-path or off-path caching, etc.

As a simple case, NetInf nodes can be interconnected in an infra-
structure-less ad hoc way, i.e., NetInf services like name resolution
and request/data forwarding are provided by the user nodes (Fig-
ure 8, left side). Likewise, NetInf nodes can be interconnected in a
(local) infrastructure-based network (Figure 8, right side) with dedi-
cated NetInf infrastructure nodes such as a dedicated NRS and NetInf
routers, possibly specialized for the idiosyncrasies of the local net-
work (e.g., DTN, network mobility). Such local networks can easily
be connected to the global Network of Information (Figure 8, middle).

30 network of information architecture

This requires updating the local NetInf router with routing informa-
tion or connecting the local NRS node to a global NRS (publishing
any locally registered information at the global NRS if desired).

Such setups are based on interconnecting multiple coexisting NRS-
es. We expect that network providers typically run their own NRS
as this allows them to better control the network-internal traffic flow
and reduce inter-domain traffic. Each provider can set up a local hier-
archy of NRS nodes that matches its network topology. Providers will
typically also add NetInf-enabled (on-path and off-path) in-network
caches to their networks. Off-path caches are typically connected to
NRS nodes to retrieve information about local object popularity and
to register cached objects. In addition to in-network caches, NetInf
can continue to access today’s content servers (e.g., web servers) as
shown in Figure 8.

Figure 8 shows a global, hierarchical, topologically-embedded NRS
which interconnects smaller, local NRSes. This global NRS consists
of all/most other NRS nodes. We estimate (Section 5.6) that such
a global NRS would require about 106 NRS nodes to handle 1015

objects globally.
In an infrastructure-based Network of Information, user nodes that

request objects have two alternative options. They can either send
the object GET request to a known NRS or use name-based routing
to find the next hop NetInf router. Both the NRS and the adjacent
routers are typically preconfigured at the user node like in today’s
networks, e.g., via the Dynamic Host Configuration Protocol (DHCP)
or manually. NetInf routers are placed inside provider networks to
forward requests and data internally as well as between domains to
perform inter-domain routing/forwarding. As a result of NetInf’s
hybrid object retrieval approach, NetInf routers can also contact NRS
nodes to resolve NetInf names into a set of routing hints.

2.2 elements of the network of information

The following sections provide a more in-depth discussion of the
main elements of the NetInf architecture, including NDOs, naming,
security, NetInf communication including convergence layers, the Net-
Inf protocol, routing and forwarding, caching, name resolution, name-
based routing, and inter-domain communication.

2.2.1 Named Data Objects

Applying NetInf on a large scale will require agreement on how
to structure NDOs. For example, some name–data integrity vali-
dation approaches require additional cryptographic material (signa-
tures, keys, certificates) to be attached to the actual object that is dis-

2.2 elements of the network of information 31

NRS

NRS

NRS

NRS
NRS

NRS

NRS

NRS

NRS

NRS NRS

NRS

Router

Router
Cache

API

User
Application

Cache
Router

Cache

Router
Cache Router

Router

NRS

NRS

API

User
Application

Cache

NRS

NRS
Cache

API

User
Search

Cache
Content
Server

Network
Storage

Cache Router

API

User
Application

Cache
API

User
Application

Cache

API

User
Application

NRS
Cache

API

User
Application

NRS
Cache

API

User
Application

NRS
Cache

Figure 8: NetInf sample network setup

tributed and stored in a network. Moreover, objects may have some
sub-structure, including object fragments, application-specific meta-
data, etc.

A well defined object structure as depicted in Figure 9 and a com-
mon naming format (see below) are cornerstones of NetInf – inde-
pendent of how NDOs are transmitted and received, the NDO (i.e.,
its name and data structure) are sufficient for NetInf nodes to forward
or otherwise process the NDO. The existence of application-specific
extensions (specific data types, metadata, etc.) is explicitly signaled,
and the common structure enables access to such extensions.

As a concrete object model format, we currently favor Multipurpose
Internet Mail Extensions (MIME), leveraging multi-part messages,
message (content) type identification, and security services, i.e., Cryp-
tographic Message Syntax (CMS). Based on our previous experience,
we favor MIME mainly due to its wide-spread use and acceptance.
Alternatives that we have experimented with include the more pow-
erful but also more complex Resource Description Framework (RDF)
and Web Ontology Language (OWL) (which is used in the OpenNet-
Inf prototype described in Chapter 6), or some self-defined Extensible
Markup Language (XML)-based scheme, which would, however, re-
quire additional standardization.

Based on the simple and flexible model shown in Figure 9, appli-
cations can construct complex information models, for example, rep-
resenting relations between NDOs. NDOs can link to each other by
including references to other NDOs in the application-specific metadata,

32 network of information architecture

ni:///sha-256;B_K97zTtFuOhug27fke4_Z…

application/json

Object management data

multipart/mixed

multipart/mixed Named data object
application/netinf-meta+xml

application/binary

Application-specific metadata

Actual object bits

Object Name

Object
in Message

SHA-256
hash

coverage

SHA-256 Hash (Base64)

Figure 9: Conceptual Object Model

thereby creating NDOs that, e.g., represent some content indepen-
dent of its specific encoding. A generic NDO representing a specific
movie (independent of its encoding) could link to other, more spe-
cific NDOs that each represent a video file that contains the repre-
sented movie in different encodings. Based on such an information
model, users could request an encoding-independent video NDO by
name, and the application would retrieve required metadata from
this encoding-independent NDO and could subsequently retrieve the
best available copy of the movie among the different encodings based
on supported encodings, available bandwidth, etc. A concrete demo
implementation of this example is shown in Section 6.3.1. Likewise,
an application could create NDOs that represent real-world objects
(e.g., a person or a building). We describe this in our Augmented In-
ternet (AugNet) use case in Section 6.3.4.2. Note that these complex
information models are application-specific for now, i.e., the NetInf
infrastructure does not understand these semantic concepts. How-
ever, in the future, more intelligent decisions could also be made
within NetInf based on this semantic information, e.g., by an NRS.

2.2.2 Basic Naming and Security

The following two sections give a brief overview of NetInf’s basic
and advanced security mechanisms. All mechanisms are described
in detail in Chapter 3.

NetInf names serve three different purposes. First, names uniquely
identify NDOs. Second, NetInf names contain security-related infor-

2.2 elements of the network of information 33

mation to enable name–data integrity and other advanced security
features. Third, names act as keys (in the database sense) for name
resolution and routing mechanisms. This section gives an overview
of the basic NetInf naming and security concept, while the following
section gives an overview of additional advanced security features
of this naming approach. The following overview is based on the
general URI scheme for named information (the ni URI scheme [28]),
which we have developed based on the security features as described
in more detail by the general NetInf naming scheme in Chapter 3.

In the ni scheme, a basic NetInf name defines the utilized hash
algorithm and contains the corresponding hash value in the form
ni:///digest-algorithm/digest-value1. A concrete example would
be: ni:///sha-256;f4Ox...JtkGk. The ni URI format enables NetInf
nodes to optionally verify name–data integrity, which is based on the
idea of verifying that the received data corresponds to the requested
name. In its simplest form, this is achieved if the hash value in an ni
URI is calculated over the NDO (i.e., the NDO data and any specified
metadata) that will be delivered by the NetInf protocol. This scheme
can be applied to any static data, i.e., data that does not change dur-
ing its life time. Dynamic data that might change during its life time
would destroy name persistence. Changing the data would result in a
changed hash value and, hence, the name itself would change. There-
fore, we use a separate mechanism for dynamic data as explained in
Section 2.2.3.

The major benefit of this simple scheme for static data is that it
requires no key management since there are no cryptographic public/
private key pairs needed! Hence, no PKI is required for name–data
integrity of static data, eliminating requiring trust in a third party, a
potential extra round-trip time to contact the PKI, any hassle with
revocation lists, etc. Yet, basic name–data integrity provides enough
security to enable the main ICN benefits (location independence).

2.2.3 Advanced Naming and Security

As described so far, the ni URI scheme only provides name–data in-
tegrity for static data. To do so for dynamically changing data, we in-
clude a hash of a public key in the ni URI rather than a hash of the
NDO. Thus, anything signed by the holder of the corresponding pri-
vate key can be verified by NetInf nodes. In addition, this use of
signatures provides a concept of “ownership” and a means to man-
age owner pseudonyms.

Owner pseudonymity can express that multiple NDOs belong to the
same owner/creator. An owner can build up trust in this pseudonym,

1 The three slashes are due to the fact that this simplified example skips the optional
authority element, which is out of scope here. Details can be found in our ni naming
RFC [28].

34 network of information architecture

allowing users to trust in subsequent content published under it.
At the same time, owner pseudonymity allows NDO owners to re-
main completely anonymous by supporting an unlimited number of
pseudonyms per user.2

Owner identification can bind the pseudonym to the owner’s real-
world identity. This optional feature can be done via the use of stan-
dard PKI mechanisms, e.g., a Trusted Third Party or a Web of Trust.
They are both, however, external systems and not part of the core
NetInf architecture.

2.2.4 NetInf Communication

NetInf nodes use the NetInf protocol, forwarding messages over some
lower-layer technology. This may be TCP/IP-based. In the future, it
may also be based on non-IP networking technologies, e.g., being
realized directly on top of point-to-point links without end-to-end
networking capabilities. Semantic gaps to lower layers are bridged
by convergence layers.

2.2.4.1 Convergence Layer Approach

NetInf nodes communicate using convergence layers (CLs) (Figure 10).
By abstracting the NetInf protocol from lower layers, CLs ensure that
NetInf implementations can be deployed across technologies.

A convergence layer communication is always hop-by-hop between
NetInf nodes, i.e., there is no communication over multiple NetInf
hops inside any convergence layer. A convergence layer does not make
use of any NetInf layer node identifiers.

Depending on deployment details, one or more CLs may be used
in the overall network. There may be one common CL (that most
nodes are expected to support) and a set of less common ones – for
instance, for specific access network types.

A NetInf CL does not treat a message PDU as opaque data. It
understands structure and nature of the message fields to improve
efficiency but it never alters the content. The CL architecture provides
marshalling higher “layer” PDUs, exactly reproducing that PDU on
the other side of the CL hop; it does so efficiently given the used
CL protocol, maintaining message integrity, name–data binding, and
other security properties.

2 In a deployed system, incentives (e.g., associated costs) might be required to pre-
vent users from massively “waisting” pseudonyms to remain a high likelihood of
statistical name uniqueness.

2.2 elements of the network of information 35

IP

TCP

Message
Forwarding

Node A

HTTP

Convergence
Layer

MPLS

Message
Forwarding

Node C

Convergence
Layer

IP

TCP

Message
Forwarding

Node B

HTTP

Convergence
Layer

MPLS

Convergence
Layer

Object
Cache

Name
Resolution /

Routing App App App App

Figure 10: Example NetInf convergence layers

2.2.4.2 Conceptual Protocol

A specific CL implements the conceptual NetInf protocol that pro-
vides the following fundamental messages and responses:

get/get-resp The GET message requests an NDO from the NetInf
network. Each GET message has a unique message ID for iden-
tification purposes. A node responds to the GET message if it
has a copy of the requested NDO; it sends a GET-RESP that uses
the GET message’s ID as its own identifier to link those two mes-
sages with each other.

publish/publish-resp The PUBLISH message makes a new name
known (e.g., to an NRS or NetInf router) and, optionally, it al-
lows to push a copy of the object data and/or object metadata
(e.g., to a cache). The PUBLISH-RESP message is used to acknowl-
edge the PUBLISH message and inform the sender about the sta-
tus of the request, e.g., successful or declined (including some
additional error information).

search/search-resp The SEARCH message contains search key-
words. The response is either a status code or a multipart MIME
object containing a set of metadata body parts, each of which
must include a name for an NDO that is considered to match
the query keywords.

The details of the conceptual protocol are out of scope here. They
are described in reference [19].

36 network of information architecture

2.2.4.3 Routing, Forwarding, Transport

NetInf forwards and resolves requests for objects as well as forwards
the response messages. Different parts of the network can have dif-
ferent routing requirements and, thus, will need different routing
protocols, just as we have multiple routing protocols for IP today.
Hence, NetInf supports different request/response routing/forward-
ing mechanisms, such as Open Shortest Path First (OSPF) for local
domains.

request forwarding NetInf uses a hybrid request routing/for-
warding scheme, integrating pure name-based routing (in the sense
of “routing on flat names”) with name-resolution-based aspects. The
name-based routing could, e.g., simply match names with default
routes via prefix or pattern matching. For example, intra-domain re-
quest forwarding can rely on name-based routing mechanisms. At
the inter-domain edges, name resolution can be used to support the
request forwarding process, i.e., the inter-domain forwarding can be
supported by or can rely solely on name resolution. The integration
of name resolution and name-based routing also supports late bind-
ing: In heterogeneous domains or in a NetInf DTN island, it is often
not possible to resolve the object name at the requester side into a lo-
cator that has meaning at the requester side. Instead, the name might
be resolved into some routing hint that leads only towards the final
destination. In this case, the resolution into the final destination loca-
tor can be performed by an intermediate NetInf node along the path
to the destination. This combination with name resolution enhances
scalability and performance of name-based routing.

Routers performing name-based routing (or default route forward-
ing) can be configured to do request aggregation (similar to CCN’s
pending interest management).

For global connectivity, we suggest a routing infrastructure simi-
lar to Border Gateway Protocol (BGP), combined with a global NRS
infrastructure, i.e., a hybrid approach as described above. Such a
scheme adapted to the convergence layer protocol approach is de-
scribed in Section 2.2.7.

response forwarding Responses need to get back to requesters.
As with request routing, NetInf requires flexible response routing and
forwarding and an implementation should make this pluggable like
the request routing.

For response forwarding, the main issue is how to handle the rout-
ing state required to make sure the response gets back to the right
place when the request has spanned more than one CL “hop.” The
maintenance of in-network state for a single CL “hop” is something
that is handled by the specific CL, e.g., if a TCP CL is used, the re-
sponse must be generally returned on the same socket from which the

2.2 elements of the network of information 37

request was received. In the general case where a request has passed
over many CL “hops,” the issue boils down to how to associate a re-
sponse coming from “downstream” (towards the requester/“source”)
with a request previously received from “upstream” (from the re-
quester).

The NetInf protocol allows different approaches depending on the
deployment scenario and scalability constraints. Options are to main-
tain state in the routers or to annotate the request with some form of
token or label. Labels can be locally significant identifiers and label
stacks can be used to record a request route for returning responses
along a path of NetInf nodes. Note that name-based routing is not
the focus of this thesis. Hence, details are out of scope here and are
in many aspects still subject to further studies. However, Section 2.2.7
provides an example of a system using a label stack approach.

transport services Since not all underlays have their own flow
control/congestion control or reliability, there are two options: (1)
A NetInf CL implements this functionality. (2) If the CL only pro-
vides a basic, integrity-protected message delivery service, transport
functions are needed above the CL. For case (2), NetInf employs a
receiver-driven transport above the NetInf protocol layer as outlined
in reference [19].

2.2.5 Caching

Caching is critical for NetInf as it lays the basis for efficient content
dissemination, load balancing, and operation in challenging network
conditions. NetInf supports three different kinds of caching that ad-
dress different scenarios. First, a NetInf router with built-in caching
functionality can provide on-path caching. While forwarding GET re-
sponses, the router can cache the contained objects. Subsequently, it
can answer requests for the same object directly from its cache. Sec-
ond, NetInf also supports off-path caching, i.e., a cache that is not di-
rectly on the request/data path. An off-path cache can be a dedicated
cache that is typically placed in the network by the provider to reduce
traffic (especially costly inter-domain traffic) and to reduce latency.
Off-path caching can also be performed by a router. As the off-path
cache is not directly on the request/data forwarding path, additional
steps have to be taken to know which objects to cache and to advertise
cached copies. Typically, an off-path cache is closely connected to one
or more NetInf NRS nodes. The NRS tells the off-path cache which
objects to cache based on object popularity and the cache advertises
cached copies in the NRS in return. When the NRS receives a GET re-
quest for an object cached at a connected off-path cache, the NRS can
return the cache’s locator as routing hint to the requester, which can
subsequently retrieve the object from the cache. In addition, the NRS

38 network of information architecture

can optimize locator selection by either filtering or sorting available
locators based on additional network knowledge and server/cache
load information. Thereby, NetInf can offer functionality similar to
approaches that utilize network knowledge to improve peer selection
in P2P networks (e.g., ALTO [48], P4P [49]). However, this functional-
ity is tightly integrated in the NetInf architecture and does not require
supplemental infrastructure or protocols like other approaches such
as Application-Layer Traffic Optimization (ALTO) and provider por-
tal for P2P (P4P) do. Similarly, multiple NetInf routers can be closely
connected to an off-path cache. Thereby, multiple routers can share
a joined cache and only have to store an index of the cached objects’
names instead of the objects themselves.

Finally, NetInf also supports peer-side caching in NetInf nodes on
user devices, which is architecturally very similar to off-path/on-path
caching (as NetInf user nodes can also serve as routers) but has some
additional practical implications. Peer-side caches serve two pur-
poses: First, it serves as application-independent cache for all local
NetInf applications. Unlike today’s commonly application-specific
caches, the application-independent NetInf peer-side cache can serve
all NetInf applications, thereby increasing efficiency. This effect be-
comes even more useful when multiple terminals share a common
initial NetInf node, i.e., the first node running a NetInf process that
an application connects to. While each user node typically runs a
local NetInf node, some efficiency considerations or performance re-
strictions might result in multiple user nodes sharing a single initial
NetInf node, which might be installed, e.g., on the local Digital Sub-
scriber Line (DSL) modem or a dedicated NetInf server. In this case,
all user nodes and their applications share the peer-side cache of the
initial NetInf node.

Second, the peer-side cache can serve as cache for other NetInf
nodes. Each user NetInf node can choose if it wants to make its
copies available to other NetInf nodes based on considerations such
as shared resources (e.g., bandwidth and memory). NetInf can pro-
vide users with incentives (e.g., download limits depending on shared
resources) to share their resources as done in P2P networks today.

Peer caches can function as on- or off-path caches or a combination,
i.e., a peer cache can advertise its cached copies in a local NRS and
can also respond to GET requests by peer NetInf nodes (received, e.g.,
via local broadcast) with a cached copy. When registering a cached
copy with an NRS, the NetInf node can choose up to which network
level the cached copy should be available/visible. For example, a
NetInf node could decide to make its copies available to all other
NetInf nodes in the same local network, but not beyond.

Peer caching is especially beneficial in challenging network con-
ditions where outside connectivity is limited. In addition, it can
help to reduce the inter-domain traffic and overall network traffic

2.2 elements of the network of information 39

as also demonstrated in Section 6.4. It reduces traffic for the original
source as requests can potentially already be answered locally, sup-
ports rapid load distribution for popular content, reduces the flash-
crowd effect, and can reduce the latency as content can be served
from close-by caches.

2.2.6 Name Resolution

Name resolution and name-based routing are essential complements
and alternatives in NetInf. Especially during migration, name resolu-
tion has several advantages. It does not require global adoption right
from the start but can grow from the edges by first providing NRS
capabilities in some edge networks that can make objects available
inside the edge networks. NetInf name resolution supports today’s
URLs, hence, any already existing object can be used in NetInf right
away. URLs pointing to already existing copies can be registered as
object locators in edge NRSes and objects can be retrieved via exist-
ing protocols like TCP/IP. NetInf routers are not required for a pure
name resolution approach.

NDOs are advertized to an NRS using the PUBLISH message that
mainly contains a unique message ID, the object name, a set of rout-
ing hints (e.g., the locator of the NDO copy), and optionally some
metadata. By supporting different kinds of routing hints like lower-
layer locators (e.g., IP, URLs), indirections to other NetInf names, and
other protocol-specific routing hints, this approach offers a flexible
mechanism to adapt the data retrieval to heterogeneous underlying
networks. To retrieve the advertized information from an NRS, the
GET message is used.

NetInf does not dictate a single global NRS but can support mul-
tiple NRSes that all support the same NetInf interface. Different
types of NRSes are possible, e.g., a local broadcast NRS for local
ad hoc networks, a global NRS, an NRS that focuses on handling
highly dynamic network topologies such as the Late Locator Con-
struction (LLC) [50] approach, and local network NRSes.

Operating an NRS in their local network allows network provid-
ers to improve traffic engineering. Network providers can select ap-
propriate object copies during the resolution process to reduce and
control network traffic and, potentially, load at the caches and data
servers. This gives network operators a strong incentive to invest in
NetInf NRSes, thereby supporting the NetInf migration process.

In general, there are three operational modes for routing hint selec-
tion. First, the NRS can return all its known routing hints and the
requester selects one or more routing hints to retrieve the data. Sec-
ond, the NRS can return a preselected set of routing hints based on its
network knowledge, resulting inter-domain traffic, server load, inter-
nal policies, etc., giving the NRS full control of the selection process.

40 network of information architecture

In a hybrid approach, the NRS can return a prioritized list of routing
hints. This leaves the final selection to the user while still making use
of the internal knowledge of the NRS. Choosing between these three
operational modes is up to the NetInf network provider and depends
on operational considerations.

For a fully functional, world-wide Network of Information, at least
one global NRS is required. We have developed a generic, hierarchical
name resolution framework that interconnects separate local NRSes
into a global NRS infrastructure. Two implementations of the frame-
work have been developed: the MDHT system (Section 5.3.2) and the
HSkip system (Section 5.3.3). Both systems form a global, hierarchi-
cal NRS that is topologically embedded in the underlying network
to improve scalability, latency, and locator selection for efficient in-
formation dissemination. The hierarchical, topological embedding of
both systems combined with their registration and retrieval scheme
ensures that close-by locators are automatically preferred over farther
away locators during name resolution. To reduce load at the global
level, caching of NRS entries can be used at lower-level NRS nodes.
Details about the generic name resolution framework and both imple-
mentations are described in Chapter 5.

The NRS can also collect statistics about object popularity. The
NRS is well suited for that as it aggregates resolution requests by
many users. In a topologically embedded NRS, dedicated NRS sub-
systems are responsible for separate subnetworks. Thereby, the statis-
tics collected by a local NRS automatically represent local popularity,
making caching even more efficient when combined with local caches.

2.2.7 Inter-Domain Communication

Figure 11 shows an interconnection of different NetInf domains, con-
nected via a central default-free zone (DFZ). Like in today’s Internet,
edge domains can decide internally on NetInf routing/forwarding,
adapted to a domain’s needs. In the DFZ, the NetInf BGP routing
system is used, a variant of today’s BGP combined with a global res-
olution system for aggregation. Routing in the DFZ is not the focus
of this thesis, hence, only a small example is given below. The DFZ is
described in some more detail in reference [19].

The example in Figure 11 shows NetInf’s inter-domain routing that
relies on NetInf’s hybrid object retrieval using name resolution and
name-based routing. The hexagons are NetInf routers. The messages
exhibit type and additional parameters (e.g., requested NDO name,
label stack, routing hints). The example assumes that no cached copy
is available at first. In step 1, a client in J1’s access network sends a
GET request for the NDO with the name ni://example.com/foo;YY.
Note that this name contains an (optional) authority (example.com) as

2.2 elements of the network of information 41

NetInf Inter-Domain Example

Name Resolution Service

ni://example.com/foo;YY
D
D2
D2x

p

GET
ni://example.com/foo;YY
Hint: (D|D2|D2x)

D1D1
D2

D2x
Named object

ni://example.com/foo;YY
Resolving
ni://example.com/foo;YY
to
(D|D2|D2x)

Hint: (D|D2|D2x)
Label stack: [D2;D;J;J1]

A
B C D

E

GET ni://example.com/foo;YY
Hint: (D|D2|D2x)
Label stack: [D;J;J1]

ICN-DFZ

A E

F
G

K GET ni://example.com/foo;YY
Hint: (D|D2|D2x)G

HI
J

J1

J2

GET
ni://example.com/foo;YY
Label stack: []

GET

(| |)
Label stack: [J;J1]

J2GET
ni://example.com/foo;YY
Label stack: [J1]

Figure 11: NetInf inter-domain scenario (triangles = client nodes; hexagons
= NetInf routers; green rectangle = destination node; gray ovals
= networks; yellow notes = requests; gray note = NRS bindings)

defined in our RFC “Naming Things with Hashes” [28]. The authority
field can be used to assist the object retrieval process but is not used
in this example. The name also defines the utilized digest algorithm
(foo) and digest value of the data object (YY).

In step 2, the request is forwarded to router J via a default route
(step 2). While forwarding the request, the names of involved Net-
Inf routers are added to the label stack in the request (here router
J1) to construct a source route. Router J lacks routing information.
Therefore, it consults an NRS, which resolves the NDO name into
a set of routing hints (D|D2|D2x) (step 3), which are added to the
request. The routing hints typically do not name the end-point desti-
nation node of the request but are rather used to forward to the next
hop; node D in our example (step 4). Node D belongs to a different
provider with its own routing/forwarding scheme, e.g., based on the
provided routing hints (step 5). Finally, the request reaches node D2x
that holds a copy of the requested NDO (step 6). Then, the informa-
tion collected in the label stack is used to forward the NDO back to
the requester (not shown in Figure 11).

2.2.8 Search

The NetInf architecture supports both global search services similar to a
Google search today as well as local search services. Both are addressed
using the SEARCH request as described in Section 2.2.4.2.

42 network of information architecture

Local search services are of special interest for NetInf to support
local, infrastructure-less network setups like ad hoc scenarios. Such
a service can be offered by a single NetInf node as well as jointly by
multiple nodes in a distributed fashion. For such distributed, scalable
search services, structured P2P systems have gained increased impor-
tance as enabling technology. At the same time, the importance of mo-
bile, resource-constrained devices like smartphones and netbooks for
accessing and storing data as well as searching and offering data in
such local scenarios has rapidly increased during recent years. There-
fore, we have investigated methods how to build distributed, P2P-
based search services using resource-constrained NetInf devices that
can offer advanced search services like geographic search. To keep
this thesis focused on the main NetInf aspects, only a brief summary
of these results is following in this section. More details, including
the full system architecture description and simulation results, can be
found in our related publications [24, 25, 26].

To support geographic search and similar search services, complex
queries such as multi-attribute and range queries have to be sup-
ported by the search infrastructure. Current distributed approaches
for resolving complex search queries typically require multiple mes-
sages to resolve a single search request. This generates significant
messaging overhead and increases the response latency. To reduce
the messaging overhead and the search latency, some approaches
like the Multi-Attribute Addressable Network (MAAN) [51] use static
replication. However, this results in high main memory requirements
and large data transfers each time a device joins the P2P network.
Those drawbacks can be tolerated for P2P networks that mainly con-
sist of fixed, powerful nodes like PCs but are intolerable for resource-
constrained nodes with high churn, like mobile devices. To enable
distributed resolution of complex queries on resource-constrained de-
vices, e.g., in local NetInf scenarios, we have developed an improved
search mechanism.

Compared to MAAN, our approach significantly reduces the mem-
ory footprint and bandwidth requirements (up to a factor of 3 – 5,
depending on the load model and the type of query in our sample
scenario). At the same time, the good latency properties and the
low messaging overhead of MAAN are retained on average. This
is achieved via a dynamic replication scheme, which introduces an
adjustable trade-off between memory footprint and search latency.
Thereby, our approach makes efficient, distributed resolution of com-
plex queries on resource-constrained devices feasible.

2.3 related work

Section 2.3.1 first gives a general overview of the work related to the
ICN approach in general and to NetInf specifically. Based on this

2.3 related work 43

overview, Section 2.3.2 provides an in-depth comparison of NetInf
with the main recent ICN projects which have been introduced in
Chapter 1.5.

2.3.1 General Overview of ICN-Related Work

The following related work is subdivided into several sections, start-
ing with architectures that implement the ICN paradigm in general
(Section 2.3.1.1), event notification architectures (Section 2.3.1.2), P2P
technologies (Section 2.3.1.3), DTN architectures (Section 2.3.1.4), and
publications focusing on selected aspects of the ICN paradigm (Sec-
tion 2.3.1.5).

2.3.1.1 ICN Architectures

Several projects have developed an ICN architecture in recent years.
The architectures all center around the content itself and around effi-
cient content distribution. However, the projects differ in their focus,
design choices, and resulting solutions.

The Translating Relaying Internet Architecture integrating Active
Directories (TRIAD) project [11] has created one of the first next-
generation architectures based on the information-centric paradigm.
TRIAD defines an explicit content layer that provides content routing,
caching, connection setup, load balancing, and object naming. In con-
trast to NetInf, TRIAD uses a hierarchical namespace and performs
aggregation based on the hierarchical names for name-based routing.
The object namespace does not provide name–data integrity like in
NetInf. In addition to content distribution, TRIAD also incorporates
content transformation (e.g., adapting web pages for small screen res-
olutions), which sets it apart from other ICN projects.

The DONA project [12] is described in Section 1.5.1. Like NetInf,
it uses a flat namespace that allows for name–data integrity checking.
Objects can be replicated to several servers but servers have to be
authenticated in order to be allowed to distribute content, which is
not the case in NetInf. In contrast to NetInf, DONA only relies on
name-based anycast routing to retrieve objects.

The CCN project [52] (followed by the NDN [15] project) is de-
scribed in Section 1.5.2. It also uses a name-based routing approach
to retrieve objects. In contrast to NetInf, CCN’s name-based rout-
ing approach purely relies on routing state in the network routers
during data transport. Name-based routing is based on CCN’s hier-
archical namespace. Names can be human-friendly but require a PKI
for name–data integrity checking or some other external trust source,
which is not the case for NetInf. CCN performs caching of small data
chunks in each network router with a focus on on-path caching. In
addition to on-path caching, NetInf also supports off-path caching
and peer-side caching based on its complementary name resolution.

44 network of information architecture

The PSIRP architecture [16] (continued in the PURSUIT project [53])
is described in Section 1.5.3. In contrast to NetInf, PSIRP fundamen-
tally builds on the publish/subscribe paradigm to find and retrieve
data in the future Internet. A rendezvous mechanism matches pub-
lishers and subscribers. A name-based routing approach is used to
forward data based on routing information stored in the packet, i.e.,
routers do not need to keep forwarding state. A name-resolution-
based object retrieval approach like in NetInf is not supported.

Several other projects relate to the ICN ideas or build on ideas
from the above projects. The Content-Oriented Networking: a New
Experience for Content Transfer (CONNECT) project [54] builds on
CCN and aims to complement CCN with proposals in the area of
traffic control, naming, routing/forwarding, replication and caching,
and deployment strategies.

The CONVERGENCE project [55] focuses on enhancing the Inter-
net with a content-centric, publish/subscribe-based service model. A
strong focus lies on the information model using containers for all
kinds of digital content like audio data, video data. These containers
are accessed via a publish/subscribe mechanism. The underlying in-
formation access is performed via a name-based routing mechanism.
Unlike CCN and similar to NetInf, CONVERGENCE uses a stateless
routing mechanism and source routing by storing information for the
return path in the request packet.

The Content Aware Searching retrieval and sTreaming (COAST)
project [56] focuses on a content-aware delivery architecture with “on
the fly” identification and distributed “on-line” discovery. It makes
heavy use of deep packet inspection in the network. In addition, it
supports content adaptation and enrichment similar to TRIAD.

The architecture by Xu et al. Service and Information Oriented
Network Architecture (SIONA) [57] builds on IP to construct an in-
formation-centric network architecture. IP addresses are explicitly
made part of the object and service naming structure. Based on these
names, SIONA performs name-based routing. The request packets
leave “bread crumbs” in network routers, which are used to route
responses back along the request path, closely related to CCN’s ap-
proach.

The COntent Mediator architecture for content-aware nETworks
(COMET) [58, 8] builds an overlay network that aims to become a
global quality of service (QoS)-aware content access mechanism for
all kinds of content. It can be deployed on top of today’s Internet ar-
chitecture as well as on top of future Internet architectures. COMET
supports content distribution in a content- and network-aware way
based on a name resolution approach.

The eXpressive Internet Architecture (XIA) [59] aims to not limit
the architecture to a single communication scheme (e.g., content-,
host-, or service-centric) but supports multiple schemes in parallel.

2.3 related work 45

It also supports yet unforeseen communication schemes. This is
achieved via flexible addressing and forwarding semantics. The com-
munication scheme defines the desired intent, e.g., to retrieve a certain
piece of content, and additionally several alternative means how to
achieve this intent. For example, the means could be host-centric, i.e.,
via a specific web server running on a host in a defined network, or
the means could be information-centric, i.e., via directly addressing
the content in some information-centric underlying network mecha-
nism. Hence, XIA can build on and integrate ICN mechanisms as
developed, e.g., by NetInf.

The MultiCache architecture [60] proposes a pure overlay solution.
It has a strong focus on caching and multicast for an information-
centric extension of today’s Internet. The architecture is based on the
Pastry [61] distributed hash table (DHT) overlay and on the Scribe [62]
multicast overlay. In addition, providers deploy proxy overlay ac-
cess routers and in-network caches at their point of presences (PoPs).
Based on this setup, data is delivered in a hybrid approach either
based on multicast (e.g., in case of flash crowds) or via unicast, mak-
ing use of Pastry’s inherent locality awareness to locate nearby caches.

The Cache-and-Forward (CNF) architecture [63, 64] uses a name
resolution mechanism to resolve content identifiers into IP addresses,
which is related to NetInf’s NRS-based approach. CNF introduces
dedicated routers in the network that can cache content and forward
content hop-by-hop, quite similar to the CCN approach. However,
forwarding is performed based on the previously resolved IP ad-
dresses. The project takes special measures for mobile nodes by intro-
ducing so-called post offices at the network edges where participants
with intermittent connectivity can deliver and fetch their content.

2.3.1.2 Event Notification

Event notification and some approaches based on the event notifica-
tion principle (e.g., Content-Based Networking (CBN) [65]) have certain
similarities with ICN. Specifically, both are based on the idea of nam-
ing and addressing content. However, ICN typically uses a receiver-
initiated communication paradigm whereas event notification typi-
cally uses a sender-oriented communication paradigm. Furthermore,
event notification focuses on distributing typically small, short-lived
information (e.g., a local storm warning) whereas ICN focuses on
disseminating typically large, long-lived content (e.g., a video file), al-
though ICN is not restricted to large, long-lived content. As a result of
these differences, both types of communication require significantly
different network operations. Despite these differences, the existing
similarities encourage attempts like CBN to integrate both event no-
tification and ICN [66]. In CBN, object naming and subscription is
based on a set of predicates that are used to identify matches be-
tween subscriptions and publications. CBN builds on ideas from the

46 network of information architecture

Scalable Internet Event Notification Architecture (SIENA) [67] event
notification architecture.

2.3.1.3 P2P Technologies

ICN also has similarities with P2P technologies. Both focus on effi-
cient content dissemination and both try to increase content availabil-
ity. However, P2P is currently only used as an application-specific
technology, i.e., most applications currently run their own dedicated
P2P overlay. Therefore, synergies between applications running on
top of different P2P overlays are limited. Moreover, P2P is an over-
lay technology working purely on top of the current Internet infras-
tructure whereas ICN focuses on a strong integration with the net-
work technology and partly supersedes today’s network technology.
Among others, a strong integration with the network makes ICN ap-
proaches network-topology-aware. In contrast, a lack of topological
embedding produces significant problems for P2P technologies. Re-
cent projects like P4P [49] and IEEE ALTO [48] try to address these
problems.

2.3.1.4 Delay-Tolerant Networking

DTN [47] is a research area that is related to ICN in that it provides
a hop-by-hop store-and-forward approach for data transfer. NetInf
utilizes a Convergence Layer approach related to the one proposed
in the DTN context. While DTN is generally building on a tradi-
tional host-centric addressing paradigm using end-point identifiers,
projects like DTN Pub/Sub Protocol (DPSP) [68] and Haggle [69]
bridge the DTN and ICN paradigm by providing a kind of pub-
lish/subscribe system for DTN that uses a data-centric addressing
approach. The addressing scheme is based on metadata in the form
of key-value pairs. This approach is, however, closer related to pub-
lish/subscribe architectures like SIENA and CBN than to NetInf.

2.3.1.5 Selected Aspects of ICN

In addition to the afore described projects that aim at a full ICN
architecture, there are several publications focusing on various spe-
cific ICN aspects, including the overall ICN paradigm [13, 70, 71],
caching [72, 73, 74, 75, 76], routing and transport [77, 78, 79, 80], and
naming and security [81, 7, 82]. Finally, some recent ICN surveys
have been published [83, 84, 85] that complement our ICN survey as
published in reference [19].

In general, NetInf shares many goals and assumptions with other
ICN approaches but differentiates itself from the other projects by
its broad architecture that covers a wide range of ICN aspects from
upper-layer aspects like data search and object model to lower-layer

2.3 related work 47

aspects like data retrieval. Unlike most other approaches, NetInf com-
bines name resolution and name-based routing into a flexible and
synergistic data discovery and retrieval approach. Moreover, design
choices of a single aspect, e.g., the namespace, have a strong influ-
ence on the resulting architecture. For example, NetInf’s flat, self-
certifying namespace results in many differences compared to the
presented projects in the areas of trust and security, object retrieval
via name-based routing and name resolution, scalability, and aggre-
gation.

2.3.2 ICN Architectures: Design Choices and Trade-Offs

Based on the NetInf architecture description given in this chapter,
we can now provide a more detailed discussion of the main recent
ICN architectures, DONA, CCN/NDN, and PSIRP/PURSUIT, and
compare them with NetInf. This section complements the brief initial
overview given in Section 1.5 and discusses the design choices and
trade-offs of different ICN architectures. The discussion focuses on
the following architectural aspects: naming and security, API, name
resolution and routing/forwarding, caching, transport, and mobility.

2.3.2.1 Naming and Security for Data Objects

DONA names NDOs with a flat namespace in the form P:L. NetInf
has adopted this basic structure for its flat name structure. In the
DONA architecture, P is the globally unique principal field which con-
tains the cryptographic hash of the publisher’s public key, and L is
the unique object label. As P identifies the publisher (i.e., the entity
publishing an object in the network) and not the owner (i.e., the entity
creating the secure name of the object) as in NetInf, republishing the
same content by a different publisher (e.g., by an in-network cache)
generally results in a different name for the same content. While this
can be circumvented with specific means in DONA (e.g., via wildcard
queries or principal delegation), it might complicate benefiting from
all available content copies.

The CCN namespace is hierarchical for better routing scalability
through name-prefix aggregation. The names are rooted in a pre-
fix, unique for each publisher. The publisher prefix makes it pos-
sible for clients to construct valid names for data that does not yet
exist, and publishers can respond with dynamically generated data.
CCN names are used both for naming information and for routing
purposes. The granularity of the names is very fine: single chunks
(packets) are named.

PSIRP makes use of two type of names to name NDOs: rendezvous
identifiers and scope identifiers; they both belong to a flat namespace.
The NDOs are mapped to rendezvous points, which are used to es-
tablish contact between publishers and subscribers. PSIRP also uses

48 network of information architecture

forwarding identifiers, which are used by the forwarding fabric to trans-
port data after contact is established at a rendezvous point. The for-
warding identifiers (Bloom filters in LIPSIN [86]) are not names for
NDOs; they are transient and identify a path from the publisher to
the subscriber.

DONA, NetInf, and PSIRP use flat namespaces. All three can check
the name–data integrity solely based on the data’s name, i.e., without
requiring external means like a PKI. To achieve this for static data,
the cryptographic hash of the content can be included as object label.
For dynamic data, name-data integrity is achieved by providing a sig-
nature of the content’s hash as metadata with the NDO, signed by the
public key corresponding to the hash in the ID’s authenticator field.
In this way, the object identifier is securely bound to the data and also
allows to handle data that does not yet exist. Using self-certifying
identifiers is a deliberate trade-off between desirable name–data in-
tegrity properties and human readability as the identifiers contain a
cryptographic hash3. As a result, additional means are potentially re-
quired to securely bind more human-friendly application-level names
to these identifiers. On the other hand, self-certifying identifiers al-
low to check whether the received data matches the identifier used in
the data request without requiring a PKI, which simplifies the security
model and makes it more reliable. For example, no trust in the PKI
is required and data integrity can be verified off-line.

CCN names typically do not contain the publisher’s public key
(PK) (nor its cryptographic hash). The hash of static content is typi-
cally also not explicitly part of the name used by requesters. While
this improves human readability, it complicates self-certification. Data
integrity is also achieved by signing the content with the publisher’s
secret key, but trust in the signing key always needs to be established
using external means since there is no direct binding between the key
and the NDO name. CCN supports multiple different means to ver-
ify trust in the key, e.g., direct experience, information provided by
friends, a trusted directory of keys, or a global PKI.

2.3.2.2 Application Programming Interface

The main API calls of most presented ICN approaches have many
similarities to the PUBLISH and GET primitive as outlined in Section 1.3.
However, the primitives address different underlying network enti-
ties in different approaches. In PSIRP and NetInf, publications are
addressed to the rendezvous system and NRS respectively to regis-
ter new names, resulting in corresponding binding entries. In CCN
and DONA, publish is used to fill the routing tables of the content
routers/resolution handlers. Likewise, in NetInf and PSIRP, the GET

primitives are addressed to the resolution/rendezvous system respec-

3 One could argue that many URLs in today’s Internet are already human-unfriendly,
hence, self-certifying identifiers are not introducing a new problem here.

2.3 related work 49

tively, followed by a second step to retrieve the data from the NDO
source. This second step is, however, typically hidden from the API
as locators and routing hints are typically not exposed to ICN appli-
cations. In CCN and DONA, the GET primitive is handled directly
by the routers/resolution handlers. NetInf is a hybrid approach as
it can send a PUBLISH/GET to the NRS for name resolution as well as
directly to a router for name-based routing. This will be discussed in
more detail in the next section.

2.3.2.3 Name Resolution and Routing

DONA uses name-based routing to route the query via the resolu-
tion handlers (RHs) to a copy of the requested NDO. Nodes that are
authorized to serve data use the REGISTER(P:L) primitive to register
a datum with an RH. Each domain has an RH. To resolve a name,
the FIND(P:L) primitive is used. Both primitives allow wildcards to
be used in the place of P or L. RHs are organized in a hierarchical
structure. Every request that an RH cannot handle is forwarded to its
parent RH. The RH tries to find a copy of the content closest to the
client. Once a copy is found, the data is returned to the client, poten-
tially via the RH request path as shown in Figure 2 (page 12) when
the RHs perform caching. Otherwise, the data can also be returned
directly to the client. Originally, DONA used longest-prefix match-
ing for name matching; currently, the more scalable deepest-match
approach is being proposed [7].

CCN also uses name-based routing. Clients ask for a data object by
sending INTEREST packets, which are routed towards the publisher of
the name prefix using longest-prefix matching in the Forwarding In-
formation Base (FIB) of each node. The FIB can be built using routing
protocols similar to those used in today’s Internet. The CCN nodes
keep state for each outstanding request in the Pending Interest Table
(PIT – see Figure 3 page 13). This makes request aggregation possi-
ble, i.e., when the same node receives multiple requests for the same
NDO, only the first is forwarded towards the source. When a copy of
the data object is encountered on the path, a data packet containing
the requested object is sent on the reverse path back to the client (all
nodes along the path cache a copy of the object). The reverse path is
found using the state that the INTEREST packet has left in the nodes.

PSIRP uses a resolution model where the resolver is called ren-
dezvous point. The data returned to the client can, potentially, take
a different path than the name resolution/rendezvous path. The ren-
dezvous point does neither have to be on the path to the publisher
nor does it have to hold a copy of the data. Data is forwarded using
a source routing approach called zFilters: a Bloom filter describing
the route is built by the rendezvous point and used to forward pack-
ets from the selected source to the destination. The Bloom filter is
attached to the packet itself, and it contains all names of the links

50 network of information architecture

that have to be followed. The Bloom filter approach allows to trade
off packet length against wasting network resources. A large Bloom
filter gives fewer false positives, thus resulting in less packets being
forwarded on links without any receiver.

Comparing the alternatives, one can note that an NRS-based ap-
proach can simplify migration as the routing and forwarding under-
lay does not have to be modified. On the other hand, name-based
routing eliminates the name resolution step completely, thereby po-
tentially reducing the overall latency and simplifying the overall pro-
cess. It is also not clear how INTEREST aggregation can be done in an
efficient way in an NRS-based approach.

2.3.2.4 Caching

In DONA, caching is inherent in the architecture. Any RH can also
serve as a cache. To populate its cache, the RH modifies the FIND
request so that the NDO is returned to the RH before it is returned
to the original requester. Any cache can respond to a FIND request
by returning a cached copy of the NDO.

CCN can cache both requests (through its request aggregation) and
objects. CCN routes a request for data towards the publisher and
makes use of any cached data copies along that path. A CCN node
can keep received interest packets in a pending interest table and, thus,
suppress forwarding of subsequently received requests for the same
object, if it has already sent a request. Object copies can also be found
by local search. As single packets are the atomic objects in CCN, it is
possible that only a part of a bigger object is cached.

In PSIRP, caching is limited to the scope of the rendezvous point
for the identifier associated with an object. Within that scope, an
object can be cached in multiple nodes.

NetInf can cache requests, name-resolution results (i.e., routing
hints), and objects. Generally, name-based routing and name reso-
lution is employed to find next-hop options. When a node receives
a GET request, it can decide to employ a pending interest table-like
structure for request aggregation. It can also decide to perform a
dedicated NRS lookup for each received INTEREST, so that perform-
ing request aggregation becomes a policy decision. There are two
ways to make use of a cached object copy: first, any copy can be
found directly by querying the NRS, provided that the copy is explic-
itly registered there or discovered by the NRS via other means (e.g.,
broadcast). Second, the copy can be found by a cache-aware NetInf
transport protocol on the path to a location known to hold a copy, for
example, a location retrieved from the name resolution system.

2.3 related work 51

2.3.2.5 Transport

By transport we refer to two concepts: 1) the fundamental request and
response transport mechanisms and 2) transport protocol functions
such as resource sharing, flow control, and reliability.

The DONA architecture does not put much emphasis on transport
and relies on existing transport protocols such as TCP.

CCN defines different packet types – INTEREST packets and data pack-
ets, representing basic elements of a protocol. A node sending an in-
terest packet via one of its interfaces (called faces in CCN) to a (set of)
neighbor nodes has some expectation to receive a corresponding data
packet shortly, i.e., CCN nodes operate on the principle that there is a
balance of INTEREST and data packets. Interest and data packets work
on the packet level – the assumption is that larger objects would be
represented by individual chunks, and each chunk can be accessed
by a unique name.

This fundamental mechanism is CCN’s basis for realizing different
services that are conventionally considered as “transport layer func-
tions”, e.g., reliable transmission, flow control, and multi-path com-
munication. It is essentially up to a node’s specific strategy to which
face INTEREST packets should be sent and how to behave as a reaction
to the received data packets.

PSIRP’s basic forwarding mechanism is based on Bloom filters as
described in Section 4.2. PSIRP proposes to use different names for
each object to handle flow control. These names are derived algorith-
mically from the original name, encoding the desired receiving speed.
Another option is for the receivers to publish flow-control feedback
under some algorithmically derived name for the sender to possibly
subscribe to.

NetInf defines a set of messages to request resources and to reply
to these requests – for example by returning the requested object or
by returning a locator or redirection hint. There could be multiple
hops involved in forwarding such request and response messages,
and each hop can potentially use a different convergence layer.

The convergence layer used in this hop-by-hop approach imple-
ments (or employs) a specific transport protocol that provides the
appropriate resource sharing and reliability mechanisms for the cor-
responding network path (segment). This approach allows for local-
ized transport mechanisms, i.e., for challenged wireless link, without
degrading performance on other hops.

2.3.2.6 Mobility

In this section, we discuss three types of mobility and how they re-
late to information-centric networks. The first type is client mobility:
a client moves during or in between requesting data objects. The
second type is content mobility: an object or set of objects changes lo-

52 network of information architecture

cation. The third type is network mobility: when an entire network
moves, e.g., a body area network or a train network.

A key feature with information-centric networks is that all copies
are equal. For client mobility this means that when a client moves
there is no need to keep an association to a specific copy alive. Instead,
new associations can be established to alternative copies close to the
new location. All discussed ICN approaches can easily find a new,
appropriately located copy when a client moves.

When the content (i.e., the server storing the content) moves, the
routing information in the network needs to be updated. For NRS-
based approaches like NetInf, this means that a new locator is regis-
tered when an NDO is published with a new location in the network.
For approaches like CCN that use name-based routing and hierarchi-
cal naming to aggregate route announcements, the situation is more
problematic. If the full aggregate of objects is moving, the new route
announcement needs to be propagated and old routing entries need
to be replaced before routing converges, causing similar issues that
we see in today’s IP networks. In the case that only parts of the
objects belonging to an aggregate moves to a new location, e.g., a
company employee takes a laptop on a trip, there will also be a need
to fragment the routing tables. In agile network scenarios, this could
defeat the benefits of having a hierarchical namespace. In PSIRP and
DONA, content mobility involves updating the routing state in the
rendezvous nodes and RHs, respectively. However, neither suffers
from the aggregation problem due to their flat namespaces. The same
applies to updates of NetInf’s routing state for the name-based rout-
ing approach.

Moving an entire network (including all content hosted by this net-
work) can cause a storm of routing/resolution updates, especially if
the moving network consists of a heterogeneous set of publishers,
like in a train. This can be problematic for both name-based routing
schemes as well as NRS-based approaches if they do not allow for
relative route announcement or relative locators. I.e., if the publish-
ers can express their location as relative to the location of the moving
network, only the location of the network needs to be updated when
it moves, not all the locations of objects currently attached to the
moving network. An example of such a routing/forwarding system
supporting relative locators is the NetInf LLC resolution system [50].

NetInf can support all three types of mobility. Content/content-
provider mobility is supported via the NRS. When a data copy moves,
this movement results in an update in the NRS to account for the new
network location. However, creating new object–locator bindings is
the rule in NetInf. Hence, these updates are a standard operation
in NetInf, which can be performed fast as the NRS is especially op-
timized for this kind of operation. In addition, these update opera-
tions do not result in inflated lookup tables as each old binding is

2.4 summary 53

exchanged against a corresponding new binding. The handling of
client mobility heavily depends on the data transport and forward-
ing technology used in NetInf. In general, NetInf can support dif-
ferent data transport and forwarding technologies. For example, the
integrated NRS and routing/forwarding system Global Information
Network (GIN) [87], which has been developed as part of the NetInf
project, natively supports client mobility without inflating the rout-
ing tables. LLC, on the other hand, provides very good support for
network mobility.

In PSIRP, clients can just unsubscribe, switch networks, and resub-
scribe again. A new path/subtree will be computed by the routing
layer. Buffering and sequence numbering allow seamless handovers.
Content provider mobility is more complex and involves updating
the routing state in the rendezvous nodes.

Client mobility in CCN is inherent. A client can switch to another
network and continue to issue INTEREST packets. The strategy layer
could notice the switch and re-issue all the pending INTERESTS, with-
out waiting for them to time-out. Content-provider mobility is more
complex: a content provider would have to update the routing tables
of all relevant neighboring nodes. Furthermore, moving content pro-
viders would pollute the routing tables with specific prefixes, coun-
tering the advantage of prefix aggregation.

Client mobility in DONA is achieved in a way similar to PSIRP:
clients can de-register from their previous location and re-register at
the new location. De-registration is not mandatory, as Resolution
Handlers can expunge outdated content entries.

2.3.2.7 Comparison Table

Table 1 summarizes the different properties and design choices of
the analyzed approaches according to the main ICN characteristics
discussed in Section 1.3.

2.4 summary

The NetInf architecture is targeted at global-scale communication
with support for many different types of networks and deployments,
including traditional Internet access and core network configurations,
data centers, as well as challenged (e.g., DTN) and infrastructure-less
networks. NetInf’s approach to connecting different technology and
administrative domains into a single information-centric network is
based on a hybrid name-based routing and name resolution scheme.

The design is based on the idea of not limiting it too much by
implicit assumptions how networks are built and what underlying
communication services are available, thereby allowing future adapt-
ability and compatibility. A minimal set of node requirements for

54 network of information architecture

DONA CCN PSIRP NetInf

Namespace
flat with
structure

hierarchical
flat with
structure

flat with
structure

Name–data
integrity

signature,
PKI

independent

signature,
external trust

source

signature,
PKI

independent

signature or
content hash,

PKI indep.
Human-
friendly
names

no possible no no

Information
abstraction/
object model

no no no yes

NDO
granularity

objects packets objects objects

Routing
aggregation

publisher/
explicit

publisher
scope/
explicit

publisher

Routing of
NDO request

name-based
(via RHs)

name-based
NRS

(rendezvous)

hybrid, NRS
&

name-based

Routing of
NDO

reverse
request path
or direct IP
connection

reverse
request path
using router

state

source
routing using
Bloom filter

reverse
request path
or direct IP
connection

API
synchronous

GET
synchronous

GET
PUBLISH/

SUBSCRIBE
synchronous

GET

Underlay IP many, incl. IP IP/PSIRP many, incl. IP

Table 1: Summary of characteristics of ICN approaches.

supporting the NetInf object model, naming format, and protocol
messages provides the necessary common denominator. The conver-
gence layer approach enables extensibility with respect to new under-
lying network technologies. Finally, the hybrid name-based routing
and name resolution approach allows us to inter-connect such differ-
ent domains and flexibly adapt to the specific network context.

This chapter concludes the description and discussion of the gen-
eral NetInf architecture. The following chapters present more in-
depth discussions of two critical components of the NetInf architec-
ture, secure naming and name resolution, and discuss NetInf proto-
typing.

3
S E C U R E N A M I N G

This chapter is based on work published in references [27, 28, 30, 32].

As described in Section 2.2.2, we have developed a general URI
scheme for named information called the ni URI scheme [28]. In this
chapter, we describe details about the general NetInf naming scheme
that builds the conceptual foundation for the more implementation-
oriented ni URI scheme. Note that the ni URI scheme currently only
contains a subset of the features defined by the general NetInf naming
scheme in this chapter.

As the focus of this thesis is not on network security, this section
cannot and does not intend to provide a thorough security analysis of
NetInf. Instead, we focus on the details of the NetInf naming scheme.
As the naming scheme is closely related to security aspects such as
self-certification, we also provide a more detailed discussion of this
and related security features with a focus on trust in the retrieved
data and the publisher. This discussion can serve as a starting point
for a more thorough security analysis in the future.

3.1 introduction

Security in an information-centric network needs to be implemented
differently than in current, host-centric networks. In the latter, most
security mechanisms are based on host authentication and then trust-
ing the data that the host delivers. In an information-centric network,
host authentication cannot and should not be relied upon. Other-
wise, one of the main advantages of an information-centric network,
i.e., benefiting from any available copy, is defeated. Authenticating a
random, untrusted host that happens to have a copy does not estab-
lish the needed trust. Instead, the security has to be directly attached
to the NDOs, which can be done via the object naming scheme.

The NetInf naming scheme builds the foundation for NetInf’s infor-
mation-centric security model that integrates security deeply into the
network architecture. In this model, trust is based on the information
itself. Each NDO is given a unique ID (i.e. name) with cryptographic
properties. Together with additional metadata, the ID can be used
to verify data integrity and several other security properties. In com-
parison with the security model in today’s host-centric networks, this

55

56 secure naming

approach significantly reduces the need for trust in the infrastructure,
including the hosts providing the data, the channel, and the NRS.

In Section 3.2, the requirements for the naming scheme are dis-
cussed. Section 3.3 describes its core functionality and Section 3.4
describes and analyzes its main security properties. The results of
prototype evaluation are presented in Section 3.5 and the relation
to other work is addressed in Section 3.7. Section 3.8 summarizes
this chapter and discusses details on how the features of the general
NetInf naming scheme are implemented in the concrete ni URI nam-
ing scheme Internet draft.

3.2 requirements

First of all, the naming scheme has to be generic so that it can name
many different kinds of entity, including static and dynamic NDOs,
services, network nodes, people, and real world entities like places
and objects. This requirement results from the flexible NetInf object
model that is able to represent many different entity types. For the
same reason and to adapt to future needs, the naming scheme should
be extensible, i.e., it should be possible to add new information (e.g.,
a chunk number for BitTorrent-like protocols) to the naming scheme.
The need for such extensions is stressed by today’s variety of naming
schemes (e.g., digital object identifier (DOI) [88] or PermaLink) added
on top of the original Internet architecture. These naming schemes
fulfill specialized needs which cannot be met by the common Internet
naming schemes, i.e., IP addresses and URLs.

To enable efficient, large-scale data dissemination that can make
use of any available data copy, IDs have to be location-independent
(often referred to as identifier/locator split). Thereby, identical data can
be identified by the same ID independently of its storage location
and improved data dissemination can then benefit from all available
copies. This should be possible without compromising trust in data
regardless of its network source. Therefore, name–data integrity is the
main requirement for an information-centric naming scheme. Name–
data integrity ensures that any unauthorized change of data with a
given ID is detectable. Beforehand, secure retrieval of IDs (e.g., via
search, embedded in a web page as link, etc.) is required to ensure
that the user has obtained the correct ID in the first place. Secure ID
retrieval can be achieved by using recommendations, past experience,
and specialized ID authentication services and mechanisms.

Another important requirement of the NetInf naming scheme is
name persistence with respect to storage location changes as discussed
above and also with respect to changes of owner and/or owner’s or-
ganizational structure. In addition, it would be desirable to achieve
name persistence for dynamic data, i.e., persistent IDs in spite of con-
tent changes producing a new version of the information. However,

3.3 naming scheme 57

name persistence and self-certification are partly contradictory and
achieving both simultaneously for dynamic content is not trivial.

From a user’s perspective (at the application level), persistent IDs
ensure that links and bookmarks can remain valid as long as the
respective information exists somewhere in the network, reducing to-
day’s problem of “404 - file not found” errors triggered by renamed
or moved content. From a content provider’s perspective, name per-
sistence simplifies data management, as content can, e.g., be moved
between folders and different servers as desired without resulting in
name changes. Name persistence with respect to content changes
makes it possible to identify different versions of the same informa-
tion by the same consistent ID. If it is important to differentiate be-
tween multiple versions, e.g., of Wiki pages, a dedicated versioning
mechanism is required, and version numbers may or may not be in-
cluded as a special part of the ID. Versioning in a distributed, collabo-
rative fashion poses additional requirements, which are out of scope
here.

As outlined in Section 2.2.3, we differentiate between two mecha-
nisms to achieve trust and accountability in NetInf. The first is owner
pseudonymity, where the owner is only identified via a pseudonym
and not his/her real-world identity. The second is owner identifica-
tion, where the owner is also identified via his/her real-world iden-
tity, such as a personal name. This separation is important to allow
anonymous publication of content, e.g., to support free speech, while
at the same time building up trust in an unknown owner.

3.3 naming scheme

Section 3.3.1 introduces the basic NetInf naming scheme concepts,
with details about the ID structure and corresponding security-rele-
vant metadata given in Sections 3.3.2 and 3.3.3, respectively.

3.3.1 Basic Concepts

In the NetInf naming scheme, any entity/NDO is represented by a
globally unique ID. Together with the NDO’s data and metadata, an
NDO is defined as NDO = (ID, Data, Metadata). Data contains the
main information content of the NDO. Metadata contains information
needed for the security functions of the NetInf naming scheme, e.g.,
public keys, content hashes, certificates, and a data signature authen-
ticating the content. It can also include application-specific metadata,
i.e., any attributes associated with the NDO, e.g., the location where
a picture was taken.

In an information-centric network, multiple copies of the same
NDO typically exist at different locations. In contrast to today’s In-
ternet architecture, due to the ID/locator split, those identical NDOs

58 secure naming

have the same ID in NetInf. All NDOs under the same ID constitute
an equivalence class, represented by the common ID.

NDOs are manipulated (e.g., generated, modified, registered, and
retrieved) by physical entities such as nodes (clients or hosts), persons,
and companies. Physical entities that can create or modify NDOs in
combination with a valid NDO name are called owners.

Several security properties of our naming scheme are based on the
fact that the ID contains the hash of a public key that is part of a pub-
lic key (PK)/secret key (SK) pair. This includes owner pseudonym-
ity, owner identification, and name–data integrity of dynamic content.
Name–data integrity of both static and dynamic content is achieved via
self-certification, i.e., no third party is required to first establish trust
in the key pair in order to verify the name–data integrity. The PK/SK
pair used for self-certification is conceptually bound to the NDO it-
self and not directly to the owner as in other systems like DONA. In
NetInf, the PK/SK pair is only indirectly bound to the owner, i.e., via
a certificate chain. This is important to note because it enables owner
change while keeping persistent IDs. The key pair bound to an NDO
is thus denoted as PKNDO/SKNDO.

3.3.2 ID Structure

The NetInf naming scheme uses flat IDs mainly because we want the
IDs to be persistent. In addition, flat IDs are advantageous when it
comes to mobility and they can be allocated without an administra-
tive authority by relying on statistical uniqueness in a large name-
space. Although IDs are not hierarchical, they have a specified basic
ID structure, ID = (Type, A, L), illustrated in Figure 12.

Identifier structure oldIdentifier structure - old

Type A=Hash(PK) L={attributes}Type A=Hash(PKNDO) L={attributes}

Type A=Hash(PKIO) L={attributes}

Figure 12: Basic ID structure

The authenticator field1 A=Hash(PKNDO) binds the ID to a public
key PKNDO. The hash function Hash is a cryptographic hash function,
which is required to be one-way and collision-resistant [89]. The hash
function serves only to reduce the bit length of PKNDO. PKNDO
is generated in accordance with a chosen public-key cryptosystem.
The corresponding secret key SKNDO should only be known to a
legitimate owner. In consequence, an owner of an NDO is defined as
any entity who knows SKNDO or any other secret key authorized by
SKNDO via a public-key certificate chain (see Section 3.4.2).

1 Note that the authenticator field is not to be confused with the authority field of the
ni URI scheme.

3.3 naming scheme 59

In general, the label field L can contain a number of identifier at-
tributes associated with an NDO. These attributes can be related to
the data content and/or the owner or can simply be serial or random
numbers. The pair (A, L) has to be globally unique. In particular, the
identifier attributes:

• must provide global uniqueness if PKNDO is repeatedly used
for different NDOs,

• can authenticate static NDOs or their static parts, by including
their hash values (as done in the ni URI scheme).

To build a flexible and extensible naming scheme with many dif-
ferent supported object types (including all entities listed in the re-
quirements section), e.g., to adapt the naming scheme to the named
entity type, different types of IDs are supported by the NetInf nam-
ing scheme and differentiated via a mandatory type field in each ID.
The type field defines the variable format and structure of the label L
and determines how to interpret this structure. It has to be globally
standardized.

3.3.3 Security Metadata Structure

The security metadata is extensible and contains all the information
required to perform the security functions embedded in the NetInf
naming scheme. In particular, the security metadata includes:

• specification of the hash function h and the algorithm DSAlg
used for the digital signature2,

• complete PKNDO, not only Hash(PKNDO),

• public-key certificate chain authorizing the signing PK/SK pair
(see Section 3.4),

• specification of the parts of the data and attribute metadata (if not
all) that are secured via self-certification, i.e., authenticated via
the signature,

• for dynamic NDOs, hash of the self-certified data, which, in
addition, contains the ID of the NDO, in order to prevent unau-
thorized change of the type and L fields,

• signature of the self-certified data signed by SKNDO or any
other authorized SK from the public-key certificate chain,

• if needed, all data required for owner identification, i.e., mainly
a certificate of a trusted third party certifying the identity of the
owner.

2 Alternatively, this information can be specified in the ID itself, as done in the ni URI
scheme.

60 secure naming

3.4 analysis of security properties

In the following sections, we describe and analyze the main security-
related naming properties: name–data integrity, name persistence,
owner pseudonymity, and owner identification.

3.4.1 Name–Data Integrity

Name–data integrity of static NDOs, whose content does not change
in time, can be achieved by including the hash of the self-certified
data in the ID, more precisely in the L field of the ID. Verification
of the data is then performed by computing the hash value of the
retrieved data and comparing it with the hash contained in the ID.
The advantage of this approach is that there is no need to resort to
the metadata in order to verify the content3. Also, the PK/SK pair is
not required here.

Name–data integrity of dynamic content cannot be achieved this
way as it would obviously result in non-persistent IDs. Hence, for dy-
namic content, we make use of the PK/SK pair. We use the public key
PKNDO contained in the ID to securely bind the hash of the content
to the ID while storing the content hash separately in the metadata,
thereby keeping the ID persistent even if the content changes (List-
ing 1). To do so, we sign the hashed content C with the secret key
SKNDO corresponding to the public key PKNDO contained in the ob-
ject ID (or any other SK authorized by SKNDO). For hashing and
signing, we use the hash function h and the signing algorithm DSAlg
as specified in the security metadata. Replay attacks, i.e., copying
valid metadata from one NDO to another NDO with a different ID,
are prevented by including the ID in the signed content (line 4). This
signed content hash is subsequently stored in the associated security
metadata (line 5). Note that the full PKNDO is also stored in the secu-
rity metadata (line 6) while the ID only contains the hash of PKNDO
to keep the ID shorter.

Listing 1: Creating name–data integrity for dynamic content

1 void createNameDataIntegrity(string content)

2 {

3 id = createID(type, hash(PKNDO), label);

4 signedC = sign(hash(content+id), SKNDO); //Sign with SKNDO
5 storeInSecurityMetadata(signedC);

6 storeInSecurityMetadata(PKNDO);

7 } �
Verification of the content (Listing 2) consists of first verifying if the

PK used for signing is equal to PKNDO by comparing the hash values

3 This presumes that the utilized hash and signature functions are defined directly in
the ID as done in the ni URI scheme.

3.4 analysis of security properties 61

(line 5). Alternatively, the PK used for signing can also be authorized
by a valid public-key certificate chain originating in PKNDO/SKNDO
as described in Section 3.4.2 (this is not shown in the listings for clar-
ity reasons). Second, the signature of the self-certified data has to
be verified (line 8). This ensures a secure binding between the self-
certified data and the ID. Only the legitimate owners can produce the
valid signature and any change to the self-certified data performed
by other entities can be detected, assuming that the functions h and
DSAlg are secure. If an unauthorized PK/SK pair is used for signing
(to produce a new signature for potentially modified data), the ID
will change. Finally, the signed hash stored in the security metadata
is compared with the hash of the retrieved content (line 11).

When the content of a dynamic data object should be changed, the
owner only has to recalculate the new content hash, sign it again
with its secret key SKNDO, and exchange the old signed hash in the
metadata with the new signed hash.

Listing 2: Verifying name–data integrity of dynamic content

1 boolean checkNameDataIntegrity(string content)

2 {

3 PKNDO = getPK(securityMetadata);

4 hashOfPK = getHashPK(id);

5 pk_ok = compare(hash(PKNDO), hashOfPK);

6 if pk_ok {

7 signedC = getSignedContent(securityMetadata);

8 signature_ok = verifySignature(signedC, PKNDO);

9 if signature_ok {

10 hashOfContent = getHashOfContent(signedContent, PKNDO);

11 hash_ok = compare(hashOfContent, hash(content));

12 if hash_ok {

13 return true; //All checks ok!

14 } else return false;

15 } else return false;

16 } else return false;

17 } �
3.4.2 Name Persistence

The NetInf naming scheme can ensure persistent IDs in spite of a
changing storage location, the content itself, the owner of a data item,
as well as owner’s organizational changes.

Independence of organizational changes is an inherent feature of
the NetInf naming scheme as IDs, especially the authenticator field,
are flat and do not reflect organizational structures as in other ap-
proaches, e.g., CCN.

Location independence results from the ID/locator split that the nam-
ing scheme builds upon. The NetInf IDs are dynamically bound to

62 secure naming

one or multiple network locators where copies of the NDO are stored.
Hence, when a locator changes, the ID remains persistent and only
the binding has to be adapted, which is managed outside the naming
scheme by an NRS.

Content independence is achieved via our approach for dynamic data,
i.e., by storing the signed content’s hash in the associated metadata
instead of in the ID.

Owner independence can be achieved in two ways, by the less com-
plex basic approach and the advanced approach, which offers more flexi-
bility, but is also more complex. The owners can choose the approach
more appropriate to their needs.

The basic approach is based on the fact that PKNDO contained in the
ID is bound to the NDO itself, and not to a specific owner. Therefore,
when the owner changes, the corresponding SKNDO can be securely
passed on to the new owner. The new owner will subsequently use
the same PKNDO/SKNDO pair. Thereby, the PKNDO/SKNDO pair
is not changed and the ID remains persistent. This approach is sim-
ple, but requires a secure (confidential and authenticated) channel for
passing on the SKNDO, hence, it is not robust with respect to disclo-
sure of the secret key. Moreover, this basic approach restricts building
up trust in the owner based on PKNDO in the context of owner pseu-
donymity. Owner pseudonymity is restricted to the first owner of the
object, i.e., the creator of the object name. An owner change (which is
typically not transparent to the object receiver) might result in falsely
trusting the new owner based on the good reputation of the previous
owner. This trust might only (partly) be justified if the old owner can
influence which new owner is chosen.

In the advanced approach, each new owner can use a new key pair
PK/SK for name–data integrity and, possibly, also a new hash func-
tion h and signing algorithm DSAlg. This eliminates the need for
securely transferring the secret key and ensures a certain level of
robustness with respect to secret key disclosure. To keep the ID
persistent, the hash of the original PKNDO in the ID remains un-
changed. However, the metadata is signed by the secret key of the
latest new owner, SKlatest, and verified by the corresponding public
key, PKlatest. Hence, owner pseudonymity and trust can be achieved
for each owner individually.

The PKlatest/SKlatest pair used for signing needs to be securely
bound to the ID. This is achieved by using a public-key certificate
chain authorizing the PKlatest/SKlatest pair by the original PKNDO/
SKNDO pair (Figure 13). The public-key certificate chain provides a
secure binding between PKNDO and PKlatest and, hence, also be-
tween PKNDO and SKlatest. Each particular public-key certificate
includes the PK of the former owner and the new PK of the new
owner. It also contains the NDO’s ID to bind the authorizations to
this ID. The specification of a new function h and algorithm DSAlg is

3.4 analysis of security properties 63

also included in the public-key certificate if those have changed. The
certificate is signed by the SK of the former owner.

To ensure validity of the digital signature, the whole certificate
chain, stored in the NDO’s security metadata, needs to be verified.
This is done by verifying each individual certificate along the chain
starting with the first certificate signed by SKNDO. If all individual
certificates are valid, then the whole chain is valid.

Certificate ChainCertificate Chain

PKNDO PKnew1 PK PKID IDO
PKnew1

SKNDO

e
PKlatest

SKnew1

PKNDO
PKnew1

SK

PKnew1
PKlatest

SK

h1
DSAlg1

SKNDO SKnew1

Figure 13: Certificate chain with two certificates, containing three owners in
total

Both the basic and advanced approach technically allow all legiti-
mate previous owners (i.e., all owners in the certificate chain in the
advanced approach) to make valid changes to the NDO. If this be-
havior is undesired and former owners should be prevented from
making changes to the NDO, then the advanced approach facilitates
prohibition based on time stamps. To achieve this, each authoriza-
tion certificate includes the production and expiry times. In addi-
tion, each object change is accompanied by a time stamp, based on
a trusted time certification service (e.g., offered by the NRS during
registration/unregistration). Invalid changes by previous owners can
then be detected and can be prohibited (e.g., on a legal basis). This is
simplified as there already exists a relationship between the different
parties, i.e., the former owner previously authorized the new owner’s
PK/SK pair in the certificate chain.

Alternatively, a key revocation mechanism can be used to allow ob-
ject receivers to validate if a change was performed by a valid owner.
The same mechanism can also be used to handle key renovation and
revocation of compromised secret keys.

3.4.3 Owner Pseudonymity and Identification

A distinctive feature of NetInf’s naming framework is that owner
pseudonymity is separated from data self-certification. This means
that the PK/SK pair (PKowner/SKowner) used for owner pseudo-
nymity is allowed to be different from the one used for data self-
certification of an NDO (PK ′

NDO/SK
′
NDO), which itself is equal to

PKNDO/SKNDO or is authorized by it.

64 secure naming

Owner pseudonymity essentially binds the NDO’s self-certified con-
tent to PKowner. It can be achieved by including the hash(PKowner)
in the self-certified data and by signing this data both by SK ′

NDO and
by SKowner (if SKowner 6= SK ′

NDO). The signatures are included in
the associated security metadata. The validity of the pseudonym can
be verified by verifying the signatures. Only an entity that knows
SK ′
NDO and SKowner can change the pseudonym, which (by defini-

tion) is an owner.
Owner pseudonymity allows an owner to remain anonymous while

allowing to build up trust in the owner as mentioned previously. This
is done by reusing the same PKowner for several NDOs. Thereby, the
owner can build up trust in this PKowner and, hence, in the content
itself on the basis of the quality and trustworthiness of the previously
published content. PKowner becomes a kind of virtual identity of the
owner, comparable to, e.g., an eBay user name that has a certain level
of trust based on its history of transactions.

Owner identification essentially binds the NDO’s self-certified con-
tent not only to PKowner, but also to the corresponding real-world
identity of the owner, e.g., the name of a person or a company. It
can be achieved by including the real-world identity in self-certified
data and by signing this data in the same way as for owner pseudo-
nymity. In addition, the real-world identity needs to be verified, and
this can be achieved by an additional signature binding PKowner to
this identity, i.e., the public-key certificate. This certificate is issued
by a trusted third party upon verifying that the physical entity with
this identity knows SKowner and is included in the security meta-
data. Owner identification is then performed by verifying all these
signatures.

The NetInf naming scheme allows several additional use cases. For
example, the security features inherent to the NetInf naming scheme
enable a secured name registration process of NDOs at the NRS.
This can be very helpful to prevents replay attacks on the underly-
ing registration servers. To perform such a replay attack, an attacker
could record the communication during NDO registration between
legitimate publishers and the NRS. Subsequently, the attacker could
simply replay the transcripts of previous registrations, thereby over-
whelming the NRS with many seemingly legitimate registration re-
quests. To prevent such an attack, the NRS can request any publisher
to include the current registration time in the registration request,
signed by SKNDO. I.e., in order to register/unregister an NDO, an
owner needs to provide a (fresh) signature of the NDO’s ID and the
registration time, where the signature is verified by using PKNDO
from the ID. Signing the registration time prevents the replay DoS
attacks. The attacker would not be able to create a valid signature of
the correct (i.e. updated) registration time as this requires knowledge
of SKNDO.

3.5 evaluation 65

3.5 evaluation

We have built a Java-based NetInf prototype (Chapter 6) to evaluate
and show the feasibility of the NetInf naming scheme. The naming
scheme has proven to be easy to implement as it is based on several
established security mechanisms like encryption and digital signa-
tures that can be integrated via existing, proven libraries. Likewise, it
is also easy to integrate and use the naming scheme in applications.
We have built applications from scratch and have extended existing
applications like the Thunderbird email client and the Firefox web
browser with additional security functionality based on simple plug-
ins. For example, our Firefox plugin enables the browser to interpret
web pages that contain NetInf IDs instead of regular URLs as links.
Thereby, users and content publisher can benefit from all NetInf nam-
ing scheme advantages right away by simply using the plugin on
the client side and using NetInf IDs instead of (or in addition to, for
backward compatibility) URLs as links in web pages. For example,
the plugin gives users an additional icon indicating if the currently
received web page is authentic or has been (maliciously) altered. Pub-
lishers, in addition, benefit from more flexible content management
as a result of persistent IDs. More details about the prototype are
described in Chapter 6. In general, the naming scheme has demon-
strated to be able to add additional security properties – name-data
integrity, owner pseudonymity, and owner identification – to a wide
variety of applications ranging from information dissemination and
information management to advanced, context-aware mobile applica-
tions.

3.6 ni uri scheme

To foster application development and simplify migration, we have
started to standardize the main aspects of the NetInf naming scheme
by developing the ni URI scheme [28] as described in Section 2.2.2.
The ni URI scheme is a practical realization of the general NetInf nam-
ing scheme. It focuses on simplicity and, hence, currently only con-
tains a subset of the features described in this chapter with the main
focus on providing a consistent, generic way to provide name–data
integrity for static data. The handling of dynamic data is described
in a separate Internet draft [90].

In addition to the basic security features described in this chap-
ter, the ni URI scheme offers some other features that focus more on
practical implementation aspects. For example, ni URIs can contain
an authority field to assist in accessing the named object for routing
requests or assisting NRS scalability. Names may additionally con-
tain a query string that can hold routing hints or other values used

66 secure naming

in the NetInf protocol. Moreover, the ni URI scheme defines a binary
form of this name format for use in more constrained environments.

Flat namespaces such as the NetInf namespace are generally con-
sidered human-unfriendly. In many cases, human-unfriendly names
are not problematic as URIs do not have to be manually processed
by humans but are often transferred via emails, hyperlinks, search
results, QR codes, etc., and simply “clicked on” by users. To support
manual processing of NetInf names by humans, the ni URI scheme
also defines a human-friendly form in case it is required to “speak”
a name, e.g., over the phone. To reduce the risk of communication
errors in this error-prone verbal communication, the human-friendly
form adds a checksum to allow for validation of name correctness. It
also supports a hexadecimal representation of the hashes and hashes
can be truncated to reduce the size of the names, which obviously
involves a trade-off between security and name length.

In addition, there is a well-defined way to map these ni URIs to
and from HTTP URLs, via the “well-known” URL scheme [91].

3.7 related work

The basic idea that an ID contains an “object owner”-related part
(hash of public key) that can be used for authentication and a “la-
bel” part that is under the control of “the owner” has been suggested
in previous work, which includes the Simple Distributed Security In-
frastructure (SDSI) [92] and DONA [12]. However, SDSI and DONA
bind the public key directly to an entity called principal. Therefore,
when the principal changes, the ID also changes both in SDSI and
DONA, breaking the name persistence. In our naming scheme, we
can keep the ID persistent even when the owner changes because the
public key is bound to the NDO itself and only indirectly to the owner.
There is another difference in the way that the owner information is
used for serving cached copies in DONA and NetInf. In DONA, “...
only hosts authorized by the principal P can offer to serve (i.e., pro-
vide access to) entities with IDs of the form P:L” [12], which limits
the usability of available copies. In contrast, it is an important feature
in NetInf to make use of any available data copy to improve efficient
data dissemination.

The naming approaches of NetInf and CCN [14] differ essentially
because CCN uses hierarchical names typically corresponding to or-
ganizational structures. This implies that name persistence with re-
spect to owner or organizational changes is not given. The CCN secu-
rity concept requires that the NDO’s ID and the content be signed by
an entity trusted by the users. If this entity is bound to the NDO’s ID
(e.g., the owner or any part of organizational structure), then the trust
changes if the owner or organizational structure change. If not, then
the trust becomes difficult to control. If this signing entity is different

3.7 related work 67

from the owner, then signing of dynamic content may be a problem.
Since the signing public keys are placed outside the ID, CCN IDs do
not inherently support self-authenticated name registration and users
typically cannot specify the trusted public keys beforehand when in-
dicating an interest in data. Hence, users could be overwhelmed by
fake data packets with the “right” ID, which cannot be filtered simply
on the basis of their ID and content. This makes the system vulnera-
ble to DoS attacks.

As mentioned earlier, PSIRP/PURSUIT uses rendezvous IDs to re-
trieve NDOs and scope IDs to restrict the distribution of objects. How-
ever, to our best knowledge, PSIRP/PURSUIT currently only focuses
on name–data integrity via the IDs but not on owner pseudonymity,
owner identification, and other security properties supported by the
NetInf naming scheme.

For the special case of static content, NetInf can include the crypto-
graphic hash of the underlying information in the ID itself. A similar
idea has been proposed, e.g, in SFS [93]. However, SFS focuses on self-
certifying pathnames that are location dependent. Likewise, the idea
of certificate chains (although in a different context) has been used in
other proposals like the Simple Public Key Infrastructure (SPKI) [94]
and KeyNote [95].

The Handle System [96] offers a general mechanism to persistently
identify digital objects and builds the basis for other systems like
DOI [88]. However, the Handle system does not include security
mechanisms like name–data integrity and owner pseudonymity in
the naming scheme itself, which are required for an information-
centric network architecture. In addition, the NetInf naming scheme
differs from many of the above mentioned systems because of its flex-
ibility to support various different ID structures via its ID type tag.

During recent years, it has become apparent that many of the prob-
lems that are haunting the Internet stem from the semantic overload-
ing of the IP address. A lot of effort has been put into investigat-
ing how an ID/locator split can be instrumental in providing better
support for mobility, multihoming, protection against DoS attacks,
etc. Important work in this area includes the Host Identity Proto-
col (HIP) [97], the Internet Indirection Infrastructure (I3) [98], the
NodeID architecture [99], and the Layered Naming Architecture [100].
Our naming scheme is also based on an ID/locator split, but has dif-
ferent properties as our focus is on supporting efficient data dissemi-
nation while at the same time satisfying the requirements of a secure
information-centric network architecture.

In the Layered Naming Architecture, the authors state four princi-
ples which stress that names should not impose unnecessary restric-
tions by how they bind to underlying protocols or provide name per-
sistence. To cater for these requirements and allow maximal flexibility,
we use flat IDs which allow arbitrary recursions and indirections as

68 secure naming

they are allowed to map onto themselves before they finally resolve
to a locator. Flat IDs are instrumental for the NetInf naming scheme
to provide several security properties. However, scalable name reso-
lution for large flat namespaces is a challenge. Chapter 5 describes in
detail how this problem is addressed in NetInf.

There are several systems that build their own mechanisms to check
data integrity based on cryptographic hashes, including open source
software package distribution and the BitTorrent protocol. Such sys-
tems can benefit from the NetInf naming scheme, eliminating the
need to build their own mechanisms while providing additional se-
curity properties.

3.8 summary

Information-centric network architectures have an inherent need for
a secure naming scheme. Because requested data can be delivered
from any available untrusted network location that happens to have
a copy of the data, security has to be based on the data and its ID
itself and cannot be based on network nodes. There are some exist-
ing proposals for information-centric network architectures, includ-
ing corresponding naming schemes. However, it seems that they are
all missing some properties that we think are important.

The NetInf naming scheme simultaneously fulfills all our require-
ments based on the combination of a flexible ID structure and a se-
curely attached set of metadata. In addition to security properties
like name–data integrity and owner pseudonymity also provided by
some other naming schemes, the NetInf naming scheme is character-
ized by its unique, non-trivial combination of security-related prop-
erties. This includes the flexibility to name a wide variety of entities,
extensibility, persistent IDs under various changing conditions (es-
pecially owner change), secured name registration, and support for
anonymous publication of information.

Our prototype evaluation (Chapter 6) shows that the NetInf nam-
ing scheme is feasible and provides a powerful foundation for a se-
cure information-centric network architecture.

The ni URI scheme has generated significant interest and is cur-
rently under evaluation or in use by other IETF/IRTF research groups.
This includes, e.g., the DECADE group [29]. We have published
an Internet draft describing the “Requirements for accessing data in
network storage” [30], aiming at the use of the ni URI scheme in
DECADE. The PPSP group [31] also evaluates the ni URI scheme for
its work and we have published an Internet draft about “Secure nam-
ing structure and p2p application interaction” [32] to describe the
usage of the ni URI scheme for PPSP. The ni URI scheme is currently
also evaluated for use in the CoAP protocol [33] of the CoRE group.

3.8 summary 69

Details about the ni URI scheme features, about its URI syntax,
the encoding, digest algorithm handling, etc. can be found in our
RFC “Naming Things with Hashes” [28] and our Internet draft “The
Named Information (ni) URI Scheme: Parameters” [90].

4
N E I G H B O R H O O D E F F E C T – L O C A L I T Y I N D N S
R E Q U E S T S

This chapter is based on work published in reference [34].

Basing a new architecture on realistic assumptions, including re-
quest patterns that are validated via (recent) measurements, is impor-
tant to ensure an architecture’s feasibility. Hence, in this chapter, we
perform a DNS traffic analysis to evaluate request patterns for data
objects that have influence on the NetInf NRS performance. The re-
sults of this evaluation are a major input to the design of the general
NRS framework described in the following Chapter 5.

4.1 introduction

In this chapter, we evaluate the locality pattern of content requests,
i.e., the correlation between the (network) location of the requester
and the “location” of the requested content. We define “local content”
as content that has a close semantic relationship to the requester’s
network, e.g., a company’s web page or intranet content has a close
semantic relationship to the company’s network. We identify this
relationship via the content’s host name, i.e., a close relationship
exists if the content is named using a domain name that is asso-
ciated to the requester’s network location. For example, www.uni-
paderborn.de/someContent is associated to the campus network of the
University of Paderborn. This definition makes no statement about
where the content is hosted. In today’s Internet architecture, “local
content” is in fact not necessarily hosted locally. In the course of
this chapter, we argue that hosting local content locally has several
benefits. This does not preclude content being hosted in multiple net-
works nor does it imply that this content is then always local in all
networks.

We call the interest of users in local content neighborhood effect, i.e.,
users show strong interest in content from their (semantical) neigh-
borhood. Note that the neighborhood effect differs from request pat-
tern similarity of homogeneous groups, i.e., the effect that homoge-
neous user groups tend to share a common interest in similar con-
tent. Request pattern similarity lacks the locality aspect. We see an
important influence of the neighborhood effect on several aspects of
network architectures, especially on name resolution, name-based rout-

71

72 neighborhood effect – locality in dns requests

ing, and caching. A large neighborhood effect has the potential to
increase an architecture’s scalability and reduce latency, overall net-
work traffic, and costly inter-domain traffic. This positive influence
stems from the potential to keep a significant amount of data traffic
and/or resolution requests within the local network vicinity.

Obviously, our main focus is on future ICN architectures in general
and on NetInf specifically. Here, we expect a strong influence of the
neighborhood effect as all three components – name resolution, name-
based routing, and caching – play a major role in ICN. However, the
results presented in this chapter also have influence in other areas
such as the general design of future Internet architectures.

We evaluate the neighborhood effect based on DNS request pat-
terns. Several DNS evaluations exist already. Most evaluations focus
either on the DNS top level or on the popularity distribution of the re-
quested hosts, e.g., to evaluate cachability. However, we are not aware
of any recent DNS evaluation that focuses on the neighborhood effect.
Hence, in this chapter, we evaluate this effect in detail.

This evaluation might appear trivial at first glance and a strong
neighborhood effect might be expected based on gut feeling. How-
ever, due to the lack of quantitative results, we believe that this kind
of evaluation is essential as a basis for future ICN architectures.

Our DNS evaluation is based on two independent measurements
that we have performed at the internal DNS servers of the Univer-
sity of Paderborn during 2009, 2010, and 2011, covering almost four
months of DNS traffic in sum and containing more than 2.5 billion
DNS requests. Each measurement covers a distinct set of DNS serv-
ers: the DNS servers responsible for the main university domains and
the separate DNS servers of the computer science subdomain.

We focus on the following research questions:

• What are the characteristics and the magnitude of the neighbor-
hood effect?

• What is the influence of requests originating directly from user
devices and originating from servers (e.g., mail and web server)
on the overall request patterns?

• What is the influence of the sub-zone relationship between the
two evaluated DNS zones?

By investigating the influence of the sub-zone relationship, we want
to evaluate if the neighborhood effect is visible at different “levels”,
which can be exploited by our hierarchical NRS framework described
in Chapter 5.

In Section 4.2, we discuss the measurement setup. In Section 4.3,
we evaluate the measurement results for both DNS zones. Section 4.4
discusses related work before we discuss the consequences of our
results for future Internet architectures with a focus on ICN architec-
tures in Section 4.5.

4.2 measurement setup 73

4.2 measurement setup

The first data set, called university (Uni) DNS zone, includes all au-
thoritative DNS servers for our university’s principal DNS zone, in-
cluding the domains uni-paderborn.de, its alias upb.de, as well as some
department-specific second-level domains. The data set contains the
full DNS traffic of an 11 weeks period between December 2009 and
February 2010, including more than 2.5 billion DNS requests.

The second data set, the computer science (called IRB1) DNS zone,
has been captured at the authoritative DNS servers of the computer
science department. This data set mainly contains the subdomain
cs.uni-paderborn.de and its alias cs.upb.de. The data set has been cap-
tured during June/July 2011 for a four weeks period, containing
about 39 million DNS requests.

All data has been collected using a syslog-ng logging server and
some custom python scripts to perform data anonymization prior to
logging to protect the users’ privacy. Figure 14 illustrates the logging
results using an example of the IRB log file. The third and fourth
columns describe the requester. All requests that originate from a
computer science department-internal server are marked irb_int and its
IP address is shown in plain text in the fourth column. All requests
originating from user devices (also simply referred to as users in the
following) within the university network are marked upb_int and re-
quests from outside the university network are marked extern. In both
cases, the requester’s IP address is removed and substituted with a
random number for data privacy. To further protect the users’ pri-
vacy, these client numbers are reset every 24 hours, i.e., a requester
gets a new random number every 24 hours. This allows us to iden-
tify short-term patterns, e.g., redundant/duplicated requests by the
same client, while preventing us from identifying long-term personal
request patterns2.

Columns five and six identify the requested host name. Similar
to above, hosts with an IP address internal to the computer science
department are marked irb_int, requests for university-internal do-
mains upb_int, and all other host names extern. All host names are
hashed and stored in column six. Again, the hashing is performed
for privacy reasons, yet it still allows us to extract valuable informa-
tion concerning request patterns. Finally, columns 7–9 contain more
details about the type of the query, e.g., address record lookup (A),
reverse lookup (PTR), or service lookup (SRV).

1 IRB is the abbreviation for the network’s German name “Informatik Rechner Betreu-
ung”.

2 The measures to protect the users’ privacy have been performed in coordination
with the local data protection officer.

74 neighborhood effect – locality in dns requests

---Date---------Time------Req.Type--Req.no./IP----HostType-Hash---Info--

30-May-2011 18:05:41.023; irb_int 131.234.24.147; irb_int 40... IN PTR +

30-May-2011 18:05:41.149; upb_int 74070213; irb_int de... IN SRV +

30-May-2011 18:05:41.300; upb_int 41683357; upb_int 2b... IN A +

30-May-2011 18:05:51.328; irb_int 131.234.24.148; irb_int 40... IN A +

30-May-2011 18:05:51.872; upb_int 63098679; extern 86... IN A +

30-May-2011 18:05:49.630; extern 96311156; upb_int 40... IN A -

Figure 14: DNS log example: computer science DNS zone (full hash values
elided in figure for space reasons)

4.3 data evaluation

In the following, we discuss the data preprocessing that we have per-
formed for all measurement data, followed by the result evaluation of
the university DNS zone and the computer science department DNS
zone.

4.3.1 Data Preprocessing

To gain a better insight into the request patterns, we have eliminated
side effects in the logging data as much as possible as described sub-
sequently.

Our main interest with this evaluation is to analyze the neighbor-
hood effect of DNS requests. Hence, we are interested in the lo-
cality properties of requests by requesters within the university net-
work. Therefore, we have filtered requests from clients external to
the university network. As we are interested in the general request
patterns during regular operations, we have also filtered requests
that resulted from irregular situations, e.g., generated by a tempo-
rary university-internal Planetlab experiment that generated many
requests. Likewise, we have filtered requests from a few obviously
misconfigured clients posing requests with duplicated domain names
like hostname.upb.de.upb.de. We have also filtered redundant re-
quests resulting, e.g., from clients first requesting the IPv6 address
and subsequently requesting the IPv4 address for the same host name
within 1 s as this represents a temporary special situation due to the
IPv4–IPv6 transition.

Finally, we have eliminated reverse lookups as our focus is on the
lookups of host names to IP addresses. These are the lookups that
correspond to, e.g., object name resolution in an ICN.

We evaluate the filtered DNS requests separately in the following
sections. All other figures exclude the aforementioned DNS requests
unless explicitly stated. As we are not interested in fluctuations over
the course of the day in this evaluation, all values are averaged over
24 hours.

4.3 data evaluation 75

In Section 4.3.2, we first evaluate the data of the university-wide
DNS servers. Subsequently, Section 4.3.3 evaluates the results of the
computer science DNS servers.

4.3.2 University DNS Zone

This section is subdivided into the evaluation of the overall DNS re-
quests (Section 4.3.2.1), the analysis of requests by university-internal
servers (Section 4.3.2.2) such as web servers, mail servers, etc., the
analysis of requests originating from user devices (Section 4.3.2.3), an
analysis of the influence of our data preprocessing on these results
(Section 4.3.2.4), and a summary of the results (Section 4.3.2.5).

4.3.2.1 All Requests (Filtered)

Figure 15 shows all DNS requests (excluding the filtered requests as
previously described) received by the authoritative DNS servers for
the university DNS zone, separated into requests for internal domains
(i.e., university-internal hosts) and external domains (i.e., university-
external hosts). Figure 15 reveals that the university DNS servers
receive significantly more requests for internal host names (10312
req./min) than for external host names (4227 req./min). Hence, ap-
proximately 71% of the overall requests are for internal host names.

The requests in Figure 15 show a weekly pattern for both internal
and external host names. Note that the weekly pattern differs be-
tween December 23rd and January 3rd. This is the Christmas holiday
season where the request pattern roughly equals the pattern during
weekends. This is even more visible in Figure 19, which only shows
requests by user devices, i.e., excluding requests by servers.

The first and last measurement values, which show unusually low
request values, are due to the fact that both the first and last measure-
ment period does not include a full 24 hours period. The unusually
high number of DNS requests between the 25th and 29th of January
is due to an unusually high number of DNS requests by the mail
server for university-internal host names, as can be seen in Figure 18.
The reason for this peak is unknown but is likely due to unusual mail
traffic patterns such as a burst of spam or a configuration issue.

Next, we analyse the ratio between user requests (i.e., requests origi-
nating directly from user devices, including employee’s and students)
and server requests. Figure 16 shows that the overall requests are dom-
inated by server requests for internal hosts (8819 req./min), followed
by user requests for external hosts (2410 req./min), server requests for
external hosts (1817 req./min), and user requests for internal hosts
(1493 req./min). In sum, server requests dominate the overall DNS

76 neighborhood effect – locality in dns requests

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

05.12.09 19.12.09 02.01.10 16.01.10 30.01.10 13.02.10 27.02.10 13.03.10

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

Internal domains
External domains

Figure 15: Uni: All requests, filtered

 0

 5000

 10000

 15000

 20000

05.12.09 19.12.09 02.01.10 16.01.10 30.01.10 13.02.10 27.02.10 13.03.10

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

Users internal domains
Users external domains

Servers internal domains
Servers external domains

Figure 16: Uni: DNS requests by user devices and servers

4.3 data evaluation 77

requests (61%). In the following two sections, we evaluate server re-
quests and user requests separately in more detail.

4.3.2.2 Server Requests

Let us start by evaluating the server requests as servers generate the
majority of requests. Figure 16 already illustrated that there are sig-
nificantly more server requests for internal hosts than for external
hosts. Next, we are interested in the distribution of generated re-
quests among different server types. The next two figures show the
server DNS requests separated by server type for external (Figure 17)
and internal (Figure 18) host names.

 0

 1000

 2000

 3000

 4000

 5000

05.12.09 19.12.09 02.01.10 16.01.10 30.01.10 13.02.10 27.02.10 13.03.10

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

Mail server external domains
Web server external domains
AFS server external domains

DHCP server external domains
DNS server external domains

LDAP server external domains
Other server external domains

Figure 17: Uni: DNS requests by servers for external host names

Both figures reveal that the university mail servers generate the
vast majority of server requests, both for external (1811 req./min)
and internal (8069 req./min) host names with approximately 82% for
internal hosts. No other servers generate any significant amount of
DNS requests.

Our investigation revealed that the major portion of mail server
DNS requests is caused by the specific configuration of the mail serv-
ers. The mail servers are configured to start a new process for each
incoming connection. This process first loads its configuration file
that contains several host names that each have to be resolved, caus-
ing multiple DNS requests for each connection. These requests are
mainly for internal hosts. The configuration file contains information
such as the internal Lightweight Directory Access Protocol (LDAP)
server, etc. This effect illustrates that DNS traffic can highly depend

78 neighborhood effect – locality in dns requests

 0

 5000

 10000

 15000

 20000

05.12.09 19.12.09 02.01.10 16.01.10 30.01.10 13.02.10 27.02.10 13.03.10

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

Mail server internal domains
Web server internal domains
AFS server internal domains

DHCP server internal domains
DNS server internal domains

LDAP server internal domains
Other server internal domains

Figure 18: Uni: DNS requests by servers for internal host names

on specific configuration settings and the choice of additional services.
DNS traffic analysis by Zdrnja et al. [101] has shown related effects.
They analyzed DNS responses with a focus on security aspects like
botnets and spam. As a result, they identified that a large amount of
their DNS responses was caused by the university-internal anti-spam
software. For each received email, the anti-spam software queries
several real-time black lists (using address record DNS requests) to
determine if an email sender is likely a spammer.

Another part of the mail server requests is generated by the mail
transfer agent – more precisely, the client part of the Simple Mail
Transfer Protocol (SMTP) – that checks DNS mail exchanger (MX)
records to figure out the destination mail server. The emails produc-
ing these requests are generated exclusively by university users (as
the SMTP servers require authentication). Note that while the ma-
jority of university mail users resides within the university network,
some users also use the SMTP servers from outside the university
network.

4.3.2.3 User Requests

Next, we have a look at the requests generated by user devices. Fig-
ure 19 shows all user requests, again separated into requests for in-
ternal (1493 req./min) and external (2410 req./min) host names. Ap-
proximately 38% of the requests are for internal host names.

Figure 19 shows an interesting weekly pattern: The overall re-
quests are significantly higher during weekdays, as would be ex-
pected. However, it is interesting to note that the number of requests
for external domains is much higher than for internal domains dur-

4.3 data evaluation 79

ing weekdays, resulting in a ratio of roughly 1:2 between requests for
internal and external host names. During weekends, both types of
requests are roughly equivalent.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

05.12.09 19.12.09 02.01.10 16.01.10 30.01.10 13.02.10 27.02.10 13.03.10

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

Internal domains
External domains

Figure 19: Uni: DNS requests by user devices

4.3.2.4 Influence of Filtering

Next, we analyze if the data preprocessing as described previously
has some major influence on our results. Figure 20 shows the same
graphs as Figure 15; however, Figure 20 includes all requests by uni-
versity-internal requesters without filtering, i.e., duplicated requests,
requests from misconfigured clients, reverse lookups, etc. are in-
cluded (but not requests by requesters outside the university). Ob-
viously, there are more requests for both internal (13546 req./min)
and external (6594 req./min) hosts. However, the overall structure as
well as the ratio between internal and external hosts remains roughly
the same with 67% requests for internal hosts.

Figure 21 shows only reverse lookup requests, illustrating their im-
pact on the overall internal-to-external ratio. As can be seen, requests
for internal hosts (3214 req./min) also dominate the overall requests
(4540 req./min) with 71% for internal hosts. Hence, including reverse
lookups would not change the overall ratio between requests for inter-
nal and external host names. Adding the number of reverse lookups
for internal hosts (3214 req./min) to the number of requests for inter-
nal hosts in the filtered Figure 20 (10312 req./min) adds up to 13526
req./min, which almost equals the number of unfiltered requests for
internal hosts in Figure 20 (13546 req./min). Hence, almost all re-

80 neighborhood effect – locality in dns requests

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

05.12.09 19.12.09 02.01.10 16.01.10 30.01.10 13.02.10 27.02.10 13.03.10

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

Internal domains
External domains

Figure 20: Uni: All requests, unfiltered

quests for internal hosts eliminated by filtering are reverse lookups.
The requests for external hosts eliminated by filtering are also dom-
inated by reverse lookups but include some additional effects as de-
scribed in Section 4.3.1.

Figure 22 shows all reverse lookups separated by requester type.
Most reverse lookups are generated by user devices, followed by
mail server reverse lookups. No other server generates a significant
amount of reverse lookups.

Finally, Figure 23 shows all requests (also excluding reverse lookups,
erroneous requests, etc.) by requesters outside the university network.
They contribute only 11% of the overall requests. Their requests for
university-internal hosts constitute 44% compared to requests for ex-
ternal hosts (56%).

4.3.2.5 Summary of University-wide Results

In summary, we can conclude that about 70% of the overall DNS re-
quests at the university level are for internal host names. The number
of requests by servers outweighs the number of client requests, with
the mail servers generating most of the server requests. For both the
user and server requests, the number of requests for internal host
names is significant with approximately 40% for user devices and
even 80% for servers.

Reverse lookups dominate the overall requests that we filtered out.
We filtered reverse lookups as they are not relevant for the NetInf

4.3 data evaluation 81

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

05.12.09 19.12.09 02.01.10 16.01.10 30.01.10 13.02.10 27.02.10 13.03.10

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

Internal domains
External domains

Figure 21: Uni: Only reverse lookup requests

 0

 1000

 2000

 3000

 4000

 5000

05.12.09 19.12.09 02.01.10 16.01.10 30.01.10 13.02.10 27.02.10 13.03.10

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

Users
Mail server
Web server
AFS server

DHCP server
DNS server

LDAP server
Other server

Figure 22: Uni: Reverse lookups by requester type

82 neighborhood effect – locality in dns requests

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

05.12.09 19.12.09 02.01.10 16.01.10 30.01.10 13.02.10 27.02.10 13.03.10

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

Internal domains
External domains

Figure 23: Uni: DNS requests by university-external requesters

architecture. In any case, the reverse lookups are also dominated by
lookups for internal hosts. Hence, including reverse lookups in our
results would not change the characteristics of the results (Figure 20

and 21).
Client requests show a distinct weekly request pattern with signif-

icantly more overall requests during weekdays. Not surprisingly, a
similar but less pronounced pattern can be observed in the server
requests. More interestingly, the type of the user-requested content
seems to change between weekdays and weekends as observed in the
user’s request patterns.

4.3.3 Computer Science Department DNS Zone

In the following, we evaluate the DNS requests within the computer
science department (IRB). We take the sub-zone relationship between
university-wide DNS servers and IRB department into account by
separating the DNS requests into three subgroups: IRB-internal do-
mains (all requests for hosts of the computer science sub-zone), UPB-
internal domains (all requests for hosts of the university-wide zone, ex-
cluding the IRB sub-zone), and external domains (all requests for hosts
outside the university zone).

4.3.3.1 All Requests (Filtered)

Figure 24 shows all DNS requests received at the authoritative IRB
DNS servers (filtered as described in Section 4.3.1). In total, the IRB
DNS servers get much fewer requests compared to the university-

4.3 data evaluation 83

wide DNS servers. This is not surprising as the computer science
department is just a single sub-zone of the overall university and
many IRB users use the university-wide DNS servers instead of the
department-internal DNS servers. Figure 24 shows that approximately
48% of the requests at the IRB DNS servers are for university-external
hosts (337 req./min), 40% for IRB-internal hosts (280 req./min), and
12% for university-internal hosts (86 req./min).

 0

 100

 200

 300

 400

 500

 600

 700

 800

11.06.11 18.06.11 25.06.11 02.07.11 09.07.11 16.07.11

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

IRB internal domains
UPB internal domains

External domains

Figure 24: IRB: All DNS requests, filtered

4.3.3.2 Influence of Filtering

Figure 25 shows the same graphs as Figure 24. However, it contains
all additional requests that are filtered in Figure 24, but still excludes
requests by university-external requesters. The unfiltered results are
very similar to the filtered results. The main difference is an increase
in the number of university-internal requests by 192 req./min, which
results primarily from reverse lookups (168 req./min) as shown in
Figure 26.

4.3.3.3 Client and Server Requests

Figure 27 shows all requests by user devices. These are dominated
by requests for external hosts (57%). Adding up the IRB-internal
requests (32%) and university-internal requests (11%) results in 43%
requests for hosts within the overall university network.

84 neighborhood effect – locality in dns requests

 0

 100

 200

 300

 400

 500

 600

 700

 800

11.06.11 18.06.11 25.06.11 02.07.11 09.07.11 16.07.11

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

IRB internal domains
UPB internal domains

External domains

Figure 25: IRB: All DNS requests, unfiltered

 0

 100

 200

 300

 400

 500

 600

 700

 800

11.06.11 18.06.11 25.06.11 02.07.11 09.07.11 16.07.11

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

IRB internal domains
UPB internal domains

External domains

Figure 26: IRB: Reverse lookups

4.3 data evaluation 85

 0

 100

 200

 300

 400

 500

 600

 700

 800

11.06.11 18.06.11 25.06.11 02.07.11 09.07.11 16.07.11

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

IRB internal domains
UPB internal domains

External domains

Figure 27: IRB: DNS requests by user devices

Figure 28 shows the same for IRB server requests. The overall num-
ber of server requests is much smaller compared to user requests (18%
of the overall requests) and is strongly dominated by requests for IRB-
internal hosts (75%). The server requests for university-internal and
IRB-internal hosts are mainly generated by the IRB LDAP servers as
can be seen in Figure 29. The file servers are generating all requests
for external hosts (11 req./min).

4.3.3.4 Summary of Computer Science Zone Results

In summary, the computer science DNS servers show similar results
compared to the university-wide results with a large number of DNS
requests for (computer science) internal hosts (40%). However, this
number is smaller than the university-wide 71% for internal hosts.
The total number of requests is dominated by requests from user
devices (82%).

Our evaluation of the sub-zone relationship between the university-
wide zone and the computer science zone revealed that a total of 12%
of the DNS requests at the computer science DNS servers are for hosts
within the higher-level zone (i.e., the university-wide zone). Hence,
a total of 52% (40% for the computer science zone + 12% for the
university-wide zone) of the requests are for hosts within the overall
university zone. This can be relevant from a network perspective as
both zones belong to the same physical campus network.

86 neighborhood effect – locality in dns requests

 0

 50

 100

 150

 200

11.06.11 18.06.11 25.06.11 02.07.11 09.07.11 16.07.11

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

IRB internal domains
UPB internal domains

External domains

Figure 28: IRB: DNS requests by IRB servers

 0

 50

 100

 150

 200

11.06.11 18.06.11 25.06.11 02.07.11 09.07.11 16.07.11

R
eq

ue
st

s
pe

r
m

in
ut

e

Date

IRB internal domains
UPB internal domains

External domains

Figure 29: IRB: DNS requests by IRB LDAP servers

4.4 related work 87

4.4 related work

Multiple research activities have performed DNS traffic measurements
and have focused on different aspects. Several have focused on DNS
measurements at the DNS root servers. For example, the Réseaux
IP Européens Network Coordination Centre (RIPE NCC) DNS Mon-
itoring Services (DNSMON) [102] provides current monitoring data
about several DNS root servers via test requests sent to these servers.
The focus is on responsiveness and request latency. Likewise, Castro
et al. have evaluated several aspects of the DNS root servers, includ-
ing traffic growth and usage patterns [103] and general workload at
the root servers [104], both based on data collected by the Coopera-
tive Association for Internet Data Analysis (CAIDA). However, traffic
analysis at the DNS root servers does not provide us with information
about request locality.

To analyze request locality, measurements at lower DNS levels are
required. Such measurements have been performed, e.g., by Jung et
al. [105] and by Ager et al. [106], however, without analyzing request
locality. Jung et al. have analyzed the performance and prevalence
of failures and the effectiveness of DNS caching. Ager et al. have fo-
cused on data cacheability for the protocols HTTP, BitTorrent, eDon-
key, and Network News Transfer Protocol (NNTP). In both cases,
the similarity and popularity distribution of DNS requests is of main
importance. Similar evaluations have been performed in other areas
like P2P networking with the goal to reduce inter-domain traffic by
exploiting the request popularity distribution for caching [107]. Al-
though the request popularity distribution and the locality of DNS
requests can be related, they are two separate things. For example, al-
though all users of an organization might exclusively query the same
100 hosts, these hosts might all be internal or external hosts or a mix-
ture of both. The latter is the main aspect that we focus on here. Obvi-
ously, the request popularity distribution is also relevant for caching
in ICN. However, evaluating the neighborhood effect separately is
useful as the neighborhood effect can have separate consequences on
the ICN architecture, e.g., on server placement. When the neighbor-
hood effect is high, placing servers that host local content in the local
network is beneficial as it reduces inter-domain traffic without requir-
ing caching.

We are not aware of any DNS analysis that mainly focuses on re-
quest locality as we do. However, a study by McDaniel and Jamin [108]
that aimed at developing a secure public-key distribution system has
generated some interesting results about DNS request locality as a
side effect. To gather test data for their architecture, McDaniel and
Jamin have performed DNS measurements at five different networks,
four of which include information about request locality. Although
their focus is on other aspects and, therefore, their results do not

88 neighborhood effect – locality in dns requests

provide more details about the neighborhood effects, the results do
support our main findings in terms of general request locality. Like
our results, their results indicate that a large percentage of DNS re-
quests is for local hosts. This effect does not seem to be limited to
organizations like universities but is also visible in other networks
like the AT&T network. Specifically, they found the following local-
ity results: Their AT&T trace contains about 50% requests for local
hosts. The University of Michigan (UoM) trace contains about 65%
local requests, the College of Engineering (subdomain of UoM with
separate DNS servers) contains 38% local requests, and the Electrical
Engineering and Computer Science Department (subdomain of UoM
with separate DNS servers) contains 43% local requests.

Likewise, also as a side effect, a study by Ager et al. [1] that fo-
cuses on the identification and classification of content hosting and
delivery infrastructures generated some interesting results concern-
ing the neighborhood effect at the continent level. Specifically, they
performed world-wide DNS measurements for the top 2000 most
popular host names according to Alexa3 and evaluated the percent-
age of requests that could be answered from within the same con-
tinent (including cached content) that the request originated from.
Their results shown in Table 2 reveal that, e.g., 58.2% of all requests
from North America have been served from within North America.
Of course, this high number is partly due to the fact that most of the
popular content is hosted in North America. For a comparison, “only”
10.1% of requests originating from South America have been served
from within South America. However, these numbers are more rel-
evant when compared to the percent of requests served from a cer-
tain continent on average. For example, on average 50% of requests
from each continent have been served from North America. In com-
parison, only about 2.4% of requests from each continent have been
served from South America. When we compare these average num-
bers with the percent of requests that can be served from within the
same continent where the requests are generated, we see higher in-
terest in locally available content than average for all continents (ex-
cept Africa). For example, in North America, the interest for content
served from within the continent is 8.2 percent points higher than
average (58.2% − 50%), for South America, it is 7.7 percent points
higher (10.1% − 2.4%). Please note that these results are not quanti-
tatively comparable to the results of our evaluation in this chapter.
First of all, the study by Ager et al. does not evaluate the semantic
relationship between the requesters’ location and the requested con-
tent as we do in our study (based on the requested URLs). Hence, we
can only take the hosting locality as an indication that there is some
semantic relationship. Moreover, we have to be careful as the study
by Ager et al. includes locally cached content, e.g., via CDNs. Never-

3 http://alexa.com/topsites/

4.5 summary 89

theless, the results indicate that the neighborhood effect also exists at
higher levels like the continental level. More detailed studies would
be required to prove this assumption.

Requested Served from
from Africa Asia Europe N. America Oceania S. America

Africa 0.3 18.6 32.0 46.7 0.3 0.8
Asia 0.3 26.0 20.7 49.8 0.3 0.8
Europe 0.3 18.6 32.2 46.6 0.2 0.8
N. America 0.3 18.6 20.7 58.2 0.2 0.8
Oceania 0.3 20.8 20.5 49.2 5.9 0.8
S. America 0.2 18.7 20.6 49.3 0.2 10.1

Table 1: Content matrix for TOP2000. Each line provides the
percentage of all requests that originate from a given content.
Columns indicate the continent from where content is served.

Requested Served from
from Africa Asia Europe N. America Oceania S. America

Africa 0.3 26.9 35.5 35.8 0.3 0.6
Asia 0.3 37.9 18.3 40.1 1.1 0.6
Europe 0.3 26.8 35.6 35.6 0.4 0.6
N. America 0.3 26.5 18.4 52.9 0.3 0.6
Oceania 0.3 29.2 18.5 38.7 11.3 0.6
S. America 0.3 26.4 18.2 39.3 0.3 14.2

Table 2: Content matrix for EMBEDDED . Each line provides the
percentage of all requests that originate from a given continent.
Columns indicate the continent from where content is served.
The diagonal is more pronounced than forTOP2000 (Table 1).

continents, namely Africa, Oceania, and South America, do not
appear to serve a lot of popular hostnames.

Another observation from Table 1 is a strong diagonal in the ma-
trix, indicating that at least part of the hostnames are fetched from
the same continent. Subtracting the minimum of a column from the
corresponding element in the diagonal reveals that up to 11.6 % of
the hostname requests are served from their own continent. This
locality of hostnames availability provides evidence that a consid-
erable fraction of content is replicated in different regions of the
world. Note, by choosing the granularity of countries, the existing
diversity within continents is hidden. In addition, we observe an
almost identical behavior for hostnames requested from Africa and
Europe. Two factors are likely to cause this behavior:(i) a limited
number of traces from Africa and(ii) the fact that Internet connec-
tivity in Africa is mostly provided via Europe coupled to the lack of
local content replication infrastructure. Oceania and Asia localize
to a lesser degree than either Europe or North America.

4.1.2 Content-dependent Replication
Content varies in both popularity and type. This is the reason

why we distinguish not only popular and less popular hostnames,
but also different types of embedded objects (see Section 2). In this
section, we refine the previous analysis of the relationships between
the locations of content requester and content origin by comparing
with the other two subsets of hostnames:TAIL 2000 andEMBED-
DED.

Surprisingly, the content delivery matrix forTAIL 2000 (not
shown) is almost identical to the one forTOP2000 (Table 1). The
largest difference is a stronger concentration towards North Amer-
ica, with up to 1.4 % points higher entries forTAIL 2000. This in-
dicates that the degree to which replicated hosting infrastructures
are used inTOP2000 andTAIL 2000 is very similar. How does that
relate to the fact that top content has a far better utility in sam-
pling large amounts of the address space thanTAIL 2000, cf. Sec-
tion 3.4.2? The hosting infrastructures of highly popular content

Rank #hostnames#ASes #prefixes owner content mix
1 476 79 294 Akamai
2 161 70 216 Akamai
3 108 1 45 Google
4 70 35 137 Akamai
5 70 1 45 Google
6 57 6 15 Limelight
7 57 1 1 ThePlanet
8 53 1 1 ThePlanet
9 49 34 123 Akamai
10 34 1 2 Skyrock OSN
11 29 6 17 Cotendo
12 28 4 5 Wordpress
13 27 6 21 Footprint
14 26 1 1 Ravand
15 23 1 1 Xanga
16 22 1 4 Edgecast
17 22 1 1 ThePlanet
18 21 1 1 ivwbox.de
19 21 1 5 AOL
20 20 1 1 Leaseweb

Table 3: Top 20 hosting infrastructure clusters by hostname
count. The order of bars in the content mix column is: only
on TOP2000, both on TOP2000 andEMBEDDED , only on
EMBEDDED , and TAIL 2000.

are distributed to a larger degree within each continent, when com-
pared to hosting infrastructures predominantly used for less popular
content.

When comparing the matrix ofEMBEDDED (Table 2) with the
others (TAIL 2000 not shown,TOP2000 in Table 1), we observe
that the diagonal is more pronounced forEMBEDDED. This in-
dicates that embedded objects are, on a continent-level, more lo-
cally available than content from the other sets. We notice that
Asia appears stronger forEMBEDDED compared toTOP2000 and
TAIL 2000, while North America appears weaker.

4.1.3 Summary
In this section, we analyzed the relative weights of Web con-

tent in different continents. We showed the prevalence of North
America, Europe, and Asia in Web content presence, and how each
region relies on each other. We observed a considerable local avail-
ability of content in most continents, implying that a considerable
fraction of content is replicated across multiple continents.

4.2 A Portrait of Hosting Infrastructures
We turn our attention to the independent hosting infrastructures

that are serving the hostnames from our list. In this section we
identify the prominent hosting infrastructures, detect where they
are actually located by AS and country, and classify them accord-
ing to their network location footprint. Moreover, we study the geo-
graphic properties of hosting infrastructures and provide a ranking
of countries according to their capability of serving popular Web
content.

4.2.1 Clustering Validation
As first step, we validate the output of our algorithm of Sec-

tion Section 2.3. Table 3 presents the top 20 clusters by hostname
count. We find out by manually cross-checking that, indeed, all
top 20 clusters correspond to networks that host large amounts of
content.

Moreover, we leverage additional information about the Akamai
and Limelight hosting infrastructures. In the case of Akamai we
know the names present in theA records at the end of the CNAME
chain inside DNS replies, which follow typical patterns. In the

Table 2: Content matrix for top 2000 most popular host names. Each line
provides the percentage of all requests that originate from a given
continent. Columns indicate the continent from where content is
served (see Table 1 in reference [1]).

4.5 summary

Our DNS traffic analysis has shown a significant percentage of re-
quests for internal hosts. At the university-wide DNS servers, 71% of
the requests are for local hosts. At the computer science department,
41% of the requests are for department-internal hosts and 52% for
university-internal hosts. These requests contain requests generated
by user devices and by servers. When removing the server requests,
which are only indirectly generated by users, we still can observe ap-
proximately 42% requests for university-internal hosts directly origi-
nating from user devices.

We assume that similar neighborhood effects can be observed in
other academic, enterprise, and Internet service provider (ISP) net-
works. These assumptions are substantiated by results in related
work (Section 4.4) and by internal evaluations of partner ISPs. We
also assume that similar effects can be observed at higher levels, e.g.,
at a country-wide and continental level due to cultural, linguistic,
and political effects, as outlined in Section 4.4. In general, this effect
varies depending on the specific context. For example, some ISPs in
developing countries might not provide much local content to their
customers, resulting in a low neighborhood effect. In contrast, ISPs
in countries with strong cultural, linguistic, or political boundaries
might observe a much higher neighborhood effect. It is interesting to
note that these locality patterns seem to persist for at least 13 years as
evidenced by McDaniel and Jamin [108], although the Internet usage
patterns have changed dramatically during that time.

90 neighborhood effect – locality in dns requests

In today’s Internet, the neighborhood effect has a positive influence
on DNS. It reduces the average resolution latency as resolution can
often be performed at the local DNS servers. This effect also helps
DNS scalability as most requests do not reach the DNS top level.

In this chapter, we are particularly interested in the consequences of
the neighborhood effect on future Internet architectures, especially on
ICNs. We note that DNS requests are for hosts whereas ICN requests
are for named data objects. However, every request for a data object
in the ICN context would translate into a request for a host in the DNS
context. Hence, the results are also applicable to the ICN context. Our
data filtering is tailored for the ICN context. Specifically, we have
filtered reverse lookups as it is currently unclear if they will have
an equivalent in the ICN context. Also, it remains to be seen how
servers will work in an ICN context. We assume, however, that an
information-centric server will produce equivalent name resolution
requests in an ICN context as in today’s DNS context.

We see three main areas in future Internet architectures and ICN
architectures specifically where the neighborhood effect will likely
have a strong positive influence: Name resolution, name-based routing,
and caching.

name resolution : Some ICN architectures like NetInf rely on
a (globally) scalable NRS. Scalability is extremely important because
the number of data objects that will be registered in an ICN NRS
is expected to be much larger that today’s number of DNS domains.
Below, we propose some design principles that help exploiting the
neighborhood effect to improve the scalability of the NRS and de-
crease the network load and latency.

Hierarchical structure: A hierarchical structure with multiple levels
mapping the underlying local zones helps to exploit the neighbor-
hood effect at multiple levels.

Registration scheme: Local data should be registered in the local
resolution domain (i.e., local NRS) to benefit from the high local pop-
ularity of the local content. To make content available for a wider
audience and exploit locality at higher levels, also register the con-
tent in the higher resolution domains.

Resolution scheme: In accordance with the registration scheme, users
should first query the local resolution domain before iteratively query-
ing higher-level domains. Thereby, they will retrieve the closest avail-
able copy, reducing latency, global network traffic, and inter-domain
traffic. This scheme also prevents resolution requests from propa-
gating farther than necessary. Consequently, most requests will be
answered at lower levels, reducing the load at the critical global level,
hence, improving scalability.

The general NRS framework and its two implementations MDHT
and HSkip presented in Chapter 5 follow these design principles. In

4.5 summary 91

Chapter 5, we also present a quantitative analysis and simulation
results of the neighborhood effect influence on NRS latency and load
distribution among NRS nodes.

name-based routing : Several ICN architectures like CCN and
NetInf (in addition to name resolution) use a name-based routing
scheme. To exploit the neighborhood effect with name-based routing,
the routing scheme has to ensure that traffic for local content stays
within the local network. Given this requirement, a name-based rout-
ing scheme will benefit from the neighborhood effect via reduced
global network traffic and reduced costs for inter-domain traffic.

caching : Due to the high popularity of local content, caching of
local content will be efficient, i.e., high cache hit rates can be expected,
which can be used to improve the information dissemination locally
(as more sources are available) and to reduce the load at the original
server. This effect is also demonstrated in our prototype measure-
ments in Chapter 6. In addition, we expect that the extensive use
of caching in ICN architectures will even further increase the mag-
nitude of the neighborhood effect compared to today’s host-centric
Internet. Due to in-network caches placed in local provider networks,
copies of popular, non-local content will be cached in the local pro-
vider networks. As these locally cached copies will also be registered
at the local NRS in architectures like NetInf, requests for these cached
copies will further increase the share of requests for locally registered
content. To reduce the data traffic in all preceding cases, it is required
to host a copy of the local content in the local network, either the
original source or a cached copy.

This evaluation can just be a first step to evaluate the neighbor-
hood effect. Although related work seems to support our assumption
that the neighborhood effect exists at multiple levels, more evalua-
tion results are needed to validate this assumption. For example, the
neighborhood effect should be evaluated at the regional, country, and
continent level, and in other types of networks, including enterprise
networks and ISP networks. Also, the influence of mobile users on
the neighborhood effect, investigated, e.g., via the neighborhood ef-
fect in mobile carrier networks, seems interesting. Finally, the results
could be validated and detailed via web traffic analysis that takes the
size of requested objects into account. Web traffic analysis would also
take additional client requests into account that might be missing in
the DNS request patterns due to DNS lookup result caching at the
client side.

To conclude, we believe that the neighborhood effect as evaluated
in this chapter can have a significant positive influence on future In-
ternet architectures in general and ICN architectures particularly, in-
creasing scalability of ICN, reducing latency, and reducing overall

92 neighborhood effect – locality in dns requests

network traffic. The positive influence on NetInf’s NRS framework is
illustrated and discussed in detail in the following Chapter 5.

5
H I E R A R C H I C A L N A M E R E S O L U T I O N

This chapter is based on work published in references [35, 36, 37, 38].

In this chapter, we design a general hierarchical name resolution
framework and two specific hierarchical name resolution services for
NetInf that expose a trade-off between different design choices. In ad-
dition, we describe a global Resolution Exchange (REX) system, which
can further improve the global scalability of our NRSes. These NRSes
build the foundation for scalable, name-resolution-based object re-
trieval in NetInf.

5.1 introduction

As mentioned before, current ICN architectures can be divided into
systems with hierarchical object namespace (e.g. CCN) and systems
with a flat object namespace (e.g., NetInf, DONA, PSIRP). For hierar-
chical namespaces, proven resolution systems with acceptable latency
exist (e.g., DNS). Developing an NRS for flat namespaces is more dif-
ficult as hierarchy-based aggregation is not possible. In this chapter,
we focus on building a global NRS for flat namespaces that meets
the specific ICN requirements as discussed in Section 5.2. Note that
the flat IDs are used to identify the named data objects in ICNs. This
flat object namespace is independent from the namespace used for
network nodes, which might be hierarchical.

We have developed a general NRS framework (Section 5.3) for flat
namespaces that can benefit from any network copy while automati-
cally preferring “close” copies, reducing network load, providing low
latency, and being resilient to network partitioning. Our NRS frame-
work is based on the following two observations:

1. Existing networks are a connection of autonomous systems that
are inter-connected in an essentially hierarchical fashion. We
assume that this will also be the case for the foreseeable future.

2. Registration and requests for information follow some locality
pattern due to underlying usage patterns and human interest
as illustrated in Chapter 4.

Consequently, our NRS framework is based on a hierarchy of inde-
pendent resolution domains (i.e. subsystems), each typically relying
on DHT technology internally. The underlying DHT technology can

93

94 hierarchical name resolution

be chosen freely, leading to multiple specific incarnations of our gen-
eral NRS framework that can be divided into two main categories con-
cerning the intra- and inter-domain routing: a heterogeneous approach
with several (potentially) different, interconnected DHTs and a homo-
geneous approach based on a single system-wide DHT. This choice
has strong implications on the overall NRS characteristics. Specifi-
cally, it provides an inherent trade-off between request latency, main-
tenance overhead, and memory requirements on the one hand and
resolution-domain autonomy (with significant influence on deploya-
bility) on the other hand.

We explore the design space between homogeneous and heteroge-
neous routing in more detail in this chapter. Based on our general
NRS framework (Section 5.3.1), we have developed two alternative
NRS systems that explore both sides of this trade-off. The MDHT
system (Section 5.3.2) is a generic framework for interconnecting mul-
tiple heterogeneous resolution systems into a global name resolution
system. Each independent resolution domain can be based on its own
internal DHT technology, hence, offering autonomy of resolution do-
mains. The HSkip architecture (Section 5.3.3) extends the SkipNet
architecture [109] into a hierarchical NRS with homogeneous routing/
forwarding protocol, thereby improving the overall system latency.
To further improve global scalability, we have developed a comple-
mentary REX system (Section 5.4) that benefits from aggregation at
the top level if the namespace contains some basic structure like the
NetInf naming scheme (i.e., (type|authenticator|label) as described
in Chapter 3). We have performed a theoretical analysis (Section 5.7)
and a complementing simulation (Section 5.8) with a focus on latency,
load distribution among the NRS nodes, and the overall system char-
acteristics. We conclude by discussing related work in Section 5.9
and summarizing and discussing the results of this chapter in Sec-
tion 5.10.

Although this chapter focuses on the needs of ICN architectures,
the presented requirements and resulting name resolution solutions
are also applicable in other areas like P2P-supported streaming and
file download.

5.2 requirements

The following requirements should be fulfilled by NetInf’s NRS.

latency : Low latency is important to ensure user acceptance of
the system. Especially applications like web browsing require low
latency. A study [110] conducted by Forrester Consulting on behalf
of Akamai revealed that 47% of the questioned consumers expects
a web page to be loaded within 2 s. 40% of the shoppers will wait
no more than 3 s before abandoning the site. Hence, we belief that

5.2 requirements 95

a name resolution lookup should take well below 1 s. In contrast,
much larger average latencies might be acceptable for the download
of large files where the time to transfer the data is much larger and
interactivity is not required. An exception is audio/video streaming
where a short time until the media starts is desirable although the
overall transfer time is large.

scalability : The current number of world-wide “data pieces”
(documents, web pages, sensor data, etc.) is approximately 1017 and
more than doubling every two years [111], while the number of web
pages indexed by the main search engines is about 1010 in 2012

1.
We expect that a significant fraction hereof might be registered in an
ICN. Hence, the system has to be extremely scalable to support a large
number of data objects as well as up to 1010 users and 109 publishers,
which is based on the assumption that about 10% of the users publish
content (globally).

locality and network efficiency : To support efficient data
dissemination and increase data availability, the NRS should make
use of any available copy and should keep resolution and data retrieval
local to improve network efficiency. Additional metrics like latency
and server load should also be usable for locator selection. If a lo-
cal object copy is available for retrieval, resolution for this object ID
should happen locally (i.e., within the same subnetwork) (called res-
olution locality) and the resolver should return the local object locator
(called content locality). If the two communication endpoints (i.e., re-
quester and NRS) are in the same network domain, the resolution path
should also be contained within that network (called resolution path
locality). The same is obviously also desirable for the data path, which
is, however, potentially not under the control of the NRS.

Supporting content locality has significant potential to reduce costly
inter-domain traffic, overall network traffic, and latency. This is mainly
owing to two effects: (1) request pattern similarity and (2) the neighbor-
hood effect, as described in Section 4.1.

1. Request pattern similarity of homogeneous groups can be ex-
ploited by caching requested content and answering subsequent
resolution requests with the locator of the locally cached copy.

2. Due to the neighborhood effect, users often pose requests for
“local content” as defined in Section 4.1, i.e., content that has
a close semantic relationship to the requester’s network, e.g.,
a company’s web page or intranet content. If a copy of this
local content is stored (and registered at the NRS) within the
local network, significant inter-domain and overall traffic can
be saved and network latency can be reduced.

1 http://www.worldwidewebsize.com

96 hierarchical name resolution

agility : The NRS has to be agile to support frequently created/dis-
appearing copies as well as moving data objects.

control/scoping : The scope of registered copies, i.e., where a
copy is made available, should be controllable. For example, a user
might want to make a data copy known and accessible only within
the local network but not outside this network.

deployability : For a real-world system, deployability is impor-
tant. Deployment is simplified if the system can be deployed “from
the edges”, i.e., parts of the NRS can be deployed and used without
immediately requiring a world-wide deployment. Giving providers
administrative autonomy of their NRS resolution domain further helps
deployment. They should be able to adapt the local NRS to their lo-
cal network topology (e.g., building a local hierarchy) and local needs,
e.g., by adding nodes to the local network independently of the global
NRS. Giving providers the flexibility to choose their internal mech-
anisms (e.g., DHT algorithms) also helps deployment. In addition,
giving ISPs as well as companies and institutions (i.e., network pro-
viders in general) control of the name resolution process within their
own network offers important incentives for them to deploy such an
NRS in their networks: Control of the local resolution process enables
providers to optimize utilization of their local network, reduce inter-
domain traffic, reduce latency, and control registration and access to
documents within their own network.

Based on these requirements, we define the following design objec-
tives for our NRS:

• O1: Low latency

• O2: Scalability

• O3: Locality and efficient network utilization

• O4: Agility

• O5: Scoping

• O6: Deployability

5.3 hierarchical nrs architecture

In this section, we first introduce our general NRS framework (Sec-
tion 5.3.1). The general NRS framework can be used for a “pure”
name-resolution-based object retrieval approach as well as for a hy-
brid object retrieval approach as proposed by NetInf. After intro-
ducing the general NRS framework, we discuss the two specific NRS
incarnations MDHT (Section 5.3.2) and HSkip (Section 5.3.3) in more

5.3 hierarchical nrs architecture 97

detail. Both systems build on the idea of hierarchical DHTs, con-
structing a hierarchy of DHT-based resolvers. Their main difference
is the way the hierarchy of DHTs is constructed and how inter- and
intra-domain routing/forwarding is performed. We compare both
approaches in detail in Section 5.3.4. Section 5.3 does not assume the
REX system; REX is introduced in Section 5.4 as additional option to
further improve global scalability.

5.3.1 General NRS Framework

Our general NRS framework constructs a global, hierarchical, dis-
tributed dictionary that is topologically embedded in the underlying
network, i.e., the structure of our NRS system is adapted to the struc-
ture of the underlying network topology so that neighboring NRS
nodes are also topologically close to each other in the underlying net-
work topology. As described in Chapter 2, it stores bindings between
object IDs and corresponding routing hints pointing to available ob-
ject copies. In addition, entries may also contain metadata related
to the requested object. The objects themselves are stored on some
independent system, e.g., on common web servers. The NRS is in-
dependent of the underlying routing/forwarding and transport layer
and can run on top of any infrastructure, e.g., TCP/IP.

5.3.1.1 Resolution Domains

We divide a larger network (e.g., the Internet) into multiple adminis-
tratively autonomous resolution domains, typically corresponding to a
provider’s or company’s network. This approach simplifies deploy-
ment (objective O6 – Section 5.2). Each resolution domain has its
own resolver consisting of one or more NRS nodes which are all in-
frastructure nodes, i.e., user terminals are not part of the NRS in this
hierarchical NRS framework2.

5.3.1.2 Hierarchy of Resolution Domains

We hierarchically interconnect all resolution domains into a global,
tree-like distributed dictionary. The hierarchy is topologically em-
bedded in the underlying network, i.e., each resolution domain cor-
responds to a part of the underlying network topology and the in-
terconnection of the resolution domains corresponds to the network
topology. The exact embedding can be freely adapted by the NRS pro-
vider (i.e., typically the network provider) to specific requirements.
The topological embedding minimizes the routing stretch inefficien-
cies of common DHTs, i.e., reducing the overall latency (objective O1).

2 This does not preclude user nodes from serving as NRS in general as NetInf supports
multiple different kinds of NRSes in parallel (Section 2.2.6). For example, user nodes
can serve as NRS nodes in a DTN-like scenario.

98 hierarchical name resolution

Lower-level resolution domains are mapped to smaller, lower-level
networks, e.g., a company network or a provider subnetwork (e.g., a
PoP). Higher-level resolution domains are mapped to larger, higher-
level networks, e.g., an autonomous system (AS) consisting of a set of
lower-level networks (Figure 30). Higher-level resolution domains are
built by combining and interconnecting all lower-level NRS nodes of
the higher-level-resolution-domain’s subtree. Each NRS node is part
of multiple (or all) resolution levels, i.e., the same physical node/ma-
chine participates in the higher-level resolution domains as virtual
node. In other words, the higher-level nodes are typically virtual
nodes that are running on the same physical machines as the access
nodes at the lowest level. We call this approach nested.

In general, we only require the NRS to be a directed acyclic graph
(DAG). Hence, it is possible to add additional edges to the tree, e.g.,
to model peering agreements between providers. For simplicity, we
assume a tree structure in the rest of the chapter.

5.3.1.3 Intra- and Inter-Domain Routing/Forwarding

Forwarding of queries in the NRS can be divided into intra- and inter-
domain, i.e., within and between resolution domains. The detailed
mechanisms to perform intra- and inter-domain routing/forwarding
can be freely chosen in the respective system implementation. We
describe details for the two systems: MDHT (with two variants) in
Section 5.3.2 and HSkip in Section 5.3.3. Both are based on a DHT
approach. Hence, they inherit the good scaling properties of DHTs
for flat namespaces (objective O2).

5.3.1.4 Data Registration

The NRS primitive PUT(ID, metadata) is used to register bindings in
the dictionary, i.e., the ID is made public and bound to a set of loca-
tors and/or metadata. Content is first registered by the publisher at
the local, lowest-level nodes (called access node (AN), Figure 30) and
is subsequently registered in resolution domains between this AN
and the root domain (i.e., top-level domain). As a consequence, the
system provides inherent redundancy as binding records pointing to
object copies are stored at multiple levels, thereby increasing system
robustness. Note that due to the fact that content is first registered at
its local resolution node, the resolution information and the content are
both available locally.

The NRS framework supports multiple binding schemes, i.e., differ-
ent ways how object IDs are (directly or indirectly) bound to network
locations object copies. Binding schemes can be designed based on
specific requirements. Any kind of routing hint as defined in Sec-
tion 2.1.1 can be registered at the NRS, including location bindings,
which map IDs to network locations, other types of protocol-specific

5.3 hierarchical nrs architecture 99

NetInf Domain

Version for journal paper

AS DHT

X z

NetInf Domain

POP DHT POP DHT
X z

ANA ANB ANZ ANW

X TK
TK k

Object X can be
object

Host
T0

Host
TK

X
X Local

Object X can be
found at TK
connected to the
remote node ANZ

Resolution Path (Shortest) Data Path

July 2010 3Telecom Italia Confidential and Proprietary

Figure 30: Binding entries and resolution of object X

routing hints, and indirection bindings, which map IDs to other IDs. To
simplify the description, we subsequently use locators and indirec-
tions as binding examples in the remainder of this chapter.

Figure 30 shows the resulting binding entries from an exemplary
registration process which uses two levels of indirection and binds
object X to its access node and in the access node to its host’s ID
(the registration entries at each level are shown in the yellow boxes).
First, the user’s device ID TK is registered in the NRS system. On
the AN, TK is mapped to its local address k, which can be private.
Thereafter, the data object can be registered in the user’s AN to make
it accessible for local users connected to the same AN. Registering
a new object creates a new entry storing an indirection binding that
maps the object ID X to the user device ID TK. Second, the registration
request is propagated up the NRS tree (using the intra- and inter-
domain routing mechanisms) so that a new binding for object X is
recorded in the upper resolution domains along the path from leaf
(AN) to root (AS DHT). At all levels, hash(ID) is used as DHT key.

Note that, in the upper resolution domains, the object ID is mapped
to the address z of access node ANZ, where X can be reached via the
address k of host TK. This binding scheme allows to keep host ad-
dresses private and prevents firewall issues as responses are received
from the initially queried access node. In addition, this indirection
scheme has good mobility support for mobile users/objects as the ac-
cess node can perform a role similar to a mobile IP “home agent”,
redirecting requests to the new location of node TK. It also sup-

100 hierarchical name resolution

ports multihoming and traffic redirection towards application servers.
Note that other binding schemes are possible to achieve other goals.

To provide control of ID registrations, the publisher can specify
the scope of the registration for each ID, i.e., the registration message
contains information up to which level registration should take place.
The scope limits the propagation of entries within the tree. For ex-
ample, a publication can be restricted to the local company network
(objective O5). As the local NRS nodes are controlled by the local
company itself, the publisher can trust these NRS nodes to comply to
the scoping instructions. Contractual relationships with higher-level
providers can ensure compliance at higher levels.

As the number of levels is typically bound by a small constant, only
a small constant number of steps is required to add a new registration
or perform an update, ensuring system agility (objective O4). Note
that binding records for the same object at different levels are not
identical but are localized (which does not restrict the redundancy
property), i.e., they each contain the bindings to local copies in their
respective subtree in the hierarchy of resolution domains.

5.3.1.5 Resolution

The NRS primitive GET(ID) returns a list of routing hints (typically
object locators, i.e., where to retrieve the object) or the object itself. In
addition, related metadata can be obtained. Besides the registration
process as described above, Figure 30 also shows a user (host T0)
requesting a data object by ID X. The request is first processed in
the access node ANA. From the client’s point of view, the AN is
somewhat similar to a local DNS server. Clients can learn about their
local AN in a similar way as today about a DNS server, e.g., via DHCP.
When resolution in the AN fails because the ID is unknown (i.e., no
copy is registered in this area yet), the request is propagated to the
next higher resolution domain until a hit is found or the resolution
fails at the highest level. The actual data transfer is subsequently
performed directly between requester and source.

By starting the resolution process at the AN and propagating the
request higher only if required, the (resolution) routing stretch of the
NRS is reduced (objective O1) because NRS nodes in lower resolution
domains are generally closer to each other than nodes in higher reso-
lution domains (in terms of number of hops and hop latency). The hier-
archical registration/request scheme is also instrumental to achieve
content, resolution, and resolution path locality and to efficiently uti-
lize the network (objective O3). It naturally exploits the neighbor-
hood effect. Locally hosted content (which is typically frequently
requested) is registered locally and these registration bindings point
to all locally available copies. Likewise, it exploits request-pattern
similarity of homogeneous groups as popular content can be cached
locally and these copies are then also registered locally. Both effects

5.3 hierarchical nrs architecture 101

can significantly reduce inter-domain traffic. These advantages pro-
vide important deployment incentives for network providers (objec-
tive O6).

5.3.1.6 Caching and Replication

When a new copy is stored, e.g., at a user’s local machine (peer-side
caching) or in the network (in-network caching), the new copy can
be made available for other users by registering its locator (or some
other routing hint) in the NRS system. The scope of each published
copy, i.e., the level up to which the copy is registered, can be limited
via scoping. For example, limiting the registration to a few lower
levels can limit the load on the user’s node/caching server.

5.3.1.7 Locator Selection

Our NRS framework supports three different ways to select appro-
priate locators. In the requester-controlled mode, the NRS returns the
list of locators to the requester who subsequently selects a suitable
subset and triggers the download of the data. The requester has full
control over the process. It is important to note that, due to the hi-
erarchical registration/request approach, the set of locators returned
by the NRS automatically consists of close-by locators. Additional lo-
cators can be requested explicitly by querying higher-level resolution
domains.

In the NRS-controlled mode, the NRS system performs the locator
selection. Because the NRS is embedded in the underlying network
infrastructure, various algorithms can be developed that make use of
internal knowledge about the network topology and current network
and server statuses to select the best locator(s). In addition, the NRS
system can also trigger the data transfer from the source(s) to the re-
quester in this scenario, i.e., the resolution would become transparent
to the requester. This integration of resolution and data forwarding
phase typically also reduces the overall routing stretch as it eliminates
one extra communication step between NRS node and requester.

In the hybrid mode, the NRS returns a ranked locator list, based on
its network knowledge. The requester can choose the desired locator(s)
based on the ranking and other factors, and downloads the data. This
mode combines best locator selection based on network knowledge
with full requester control.

5.3.1.8 Security and Trust

Our NRS framework gives a network provider full control over the
resolution process within its own network, thereby enabling trusted
scoping within its network (i.e., nodes do not forward registrations
outside the provider network if not desired) and preventing DoS at-

102 hierarchical name resolution

tacks and traffic analysis of NRS requests as long as the network is
not compromised.

When NRS registrations/requests leave the provider’s own net-
work, i.e., at higher levels, other NRS nodes might become respon-
sible for the provider’s own object IDs as well as for answering the
provider’s NRS requests (i.e., its customer’s requests). In general, any
misbehavior of NRS nodes can be penalized. To enforce this, authen-
tication (based on public/private key signatures and a chain of trust)
is required for each NRS node before joining the overall NRS network.
This results in a global network of trusted NRS nodes that can each
be secured with common means. However, like in today’s networks,
security is at risk if an attacker gains control of an NRS node. In
the following, we will discuss security risks and technical barriers of
our NRS framework that make misbehavior/attacks harder even if an
attacker gains control of an NRS node.

Assuming a security breach at an NRS node, four main problems
can occur. First, a resolver could return a wrong locator to foist wrong
information on the requester. This is not an issue in ICNs due to
their information-centric security concepts. An ICN typically sup-
ports name–data integrity, which ensures that the requester can verify
that the received content corresponds to the queried object name.

Second, in a DoS attack, a node responsible for a given ID might
maliciously not return locators for this ID. To address this problem,
user nodes can have direct, redundant connections to higher levels
to circumvent malicious or erroneous nodes. Hence, a requester can
send its request directly to a higher level, which typically also con-
tains the requested information as a result of the inherent redundancy
that guarantees that resolution entries typically exist at all/multiple
levels. Hence, to perform a dedicated DoS attack on a given ID
(range), an attacker would have to control all nodes that are responsi-
ble for this ID at all levels. Such an attack can further be complicated
by preventing NRS nodes from choosing their own numerical node
ID themselves.

Third, an NRS node might not forward NRS requests. This can be
detected by other NRS nodes, e.g., via repeated requests, and misbe-
having NRS nodes can be bypassed due to the fact that both MDHT
and HSkip rely on DHT systems that typically have redundant con-
nections within the DHT network like Chord’s multiple “finger point-
ers” [112].

Forth, the NRS system could be used to run a DoS attack on other
targeted systems. For example, an attacker that gains control of NRS
nodes could redirect a flood of object requests to the targeted system
by returning the locator of the targeted system as the source of pop-
ular data objects. As a consequence, the targeted system would be
overwhelmed by a flow of redirected object requests. As in today’s

5.3 hierarchical nrs architecture 103

Internet, such attacks have to be precluded by preventing access to
the NRS nodes.

5.3.2 MDHT

The Multi-Level Distributed Hash Table (MDHT) system is a heteroge-
neous incarnation of our general hierarchical NRS framework, i.e., it
builds on multiple interconnected DHTs.

hierarchy of resolution domains : The tree structure is hi-
erarchical and can consist of any number of levels and can be un-
balanced and asymmetric as required. Interconnecting the separate
resolution domains into an overall system is done by configuring the
affiliation of NRS nodes to specific resolution domains. Each NRS
node can choose the number of levels that it participates in. However,
in practice, the provider has to ensure that there are still enough NRS
nodes at each level. NRS nodes should typically participate in all
levels to simplify inter-domain forwarding.

intra- & inter-domain routing/forwarding : The MDHT
system uses separate mechanisms for intra- and inter-domain request
routing/forwarding. For intra-domain routing/forwarding, each res-
olution domain (i.e. subsystem) can choose its own distributed dictio-
nary technology depending on the specific needs, which can include
DHT mechanisms as well as other mechanisms. For large resolution
domains that require many NRS nodes, an O(logn) (n = number
of NRS nodes) DHT approach is suitable. However, the number of
nodes in most resolution domains is expected to be rather small (typ-
ically from tens to thousands of nodes) and these nodes are carrier-
grade, stable and reliable with almost no churn. Hence, further per-
formance improvements can be obtained by using O(1) DHT proto-
cols for intra-domain forwarding. This reduces round-trip delays and
keeps the routing stretch in each domain close to 1, that is, it shortens
the whole resolution and routing path.

For inter-domain routing, the MDHT system supports two different
mechanisms, an independent approach and an entangled approach. In
the following, we always refer to both approaches unless explicitly
stated.

Neither approach requires a separate routing table or routing al-
gorithm for inter-domain forwarding as all required information is
included in the configuration of the NRS hierarchy. Inter-domain for-
warding is performed by iterating through the resolution levels start-
ing at the lowest level, the local AN. Levels are numbered top–down.
Assuming that node a would be responsible for the requested ID at
level i and resolution fails at this level, the request is forwarded by
node a to the next higher level i− 1. As a result of the nested design,

104 hierarchical name resolution

node a is most likely also part of level i − 1. Hence, inter-domain
forwarding can be performed internally at node a simply by handing
the request over to the local intra-domain forwarding process of level
i− 1. This allows fast, robust inter-domain forwarding. In the rare
case that a node is not part of the next higher level i− 1, the request
is forwarded to the next node at level i that is also part of level i− 1.
If no node of level i is part of the next higher level, node a uses a set
of (redundant) links to nodes at level i− 1 which has to configured by
the NRS provider. Similarly, each level also contains some redundant
links to all other higher levels to bypass levels in case of problems.

The overall latency of this independent approach can be improved
significantly by the entangled mechanism. The only difference be-
tween both mechanisms is that the entangled mechanism assumes
a certain level of similarity between the different resolution domain
technologies. More precisely, it requires that NRS nodes have the
same node ID at all levels, all resolution domains use the same key
for the same object ID, and they use a similar rule to define the node
responsible for a given object ID. In this case, “similar rule” means
that the rule does not have to be identical but has to express a gen-
erally similar idea which node is responsible for an ID. For example,
let us assume that in resolution domain 1, the node with the next
higher ID is responsible for a given object ID; in resolution domain 2,
the node with the next smaller ID is responsible for the same object
ID. In this case, a request that is forwarded from resolution domain
1 to resolution domain 2 might have to travel completely around the
DHT ring again although the responsible ID was missed only a little
bit (assuming that resolution domain 2 does only allow to travel the
DHT ring in one direction). If these requirements are fulfilled, the for-
warding steps performed at level i also bring the request closer to the
responsible node at level i− 1. Hence, resolution at level i− 1 already
starts close to the NRS node responsible for the requested object ID,
thereby reducing the number of resolution steps.

While the independent MDHT approach has an average overall la-
tency of O(m · logn) (m = number of levels; n = number of NRS
nodes) assuming the worst case that all levels have to be consulted,
the entangled MDHT approach has an average latency of O(logn). De-
tails are discussed in Section 5.7.

5.3.3 HSkip

This section first gives a short overview of the original SkipNet archi-
tecture. Further details can be found in the original publication [109].
Based on this overview, we then describe our Hierarchical SkipNet
(HSkip) architecture.

5.3 hierarchical nrs architecture 105

5.3.3.1 SkipNet Overview

SkipNet is a DHT architecture based on the idea of Skip Lists. In Skip-
Net, each object has a string ID and each node has a similar string
ID and, in addition, a flat numeric ID chosen randomly from a uni-
form distribution. The string IDs can be hierarchical. SkipNet can
do routing/forwarding in both namespaces with an average latency
of O(logn). When forwarding within the string namespace, SkipNet
supports the two properties resolution path locality3 and binding record
locality4. Binding record locality allows to define on which (subset of)
node(s) an object should be stored.

string forwarding : SkipNet constructs a doubly-linked ring
of all nodes, sorted by string ID. Each node has 2 · logn pointers that
leap over an exponentially increasing number of nodes, similar to
Chord’s finger table. When forwarding to a certain node ID, SkipNet
follows these pointers and leaps over as many nodes as possible with-
out surpassing the destination ID until the destination is reached.

numeric forwarding : The SkipNet architecture constructs mul-
tiple doubly-linked rings by dividing the main ring into two rings,
which are each subsequently divided again, and so on. The binary,
numeric node ID determines in which ring a node participates. For-
warding happens by finding the next node in the main ring that
shares the same first numeric digit with the requested numeric ID.
SkipNet then changes into the next ring containing this node and re-
peats the same process with the next digit until no more progress can
be made. Then, the node with the closest numeric ID is chosen.

constrained load balancing : SkipNet uses a combination
of string forwarding and numeric forwarding to achieve a load bal-
ancing mechanism constrained to a subset of nodes, called constrained
load balancing (CLB). To achieve this, SkipNet divides each object ID
into two parts. First, the subgroup part that specifies the subset of
nodes, i.e., all nodes with this common string ID prefix. Second, the
object part that serves as unique object ID within this subgroup. The
hash(object part) is used to determine the specific node within the sub-
group of nodes that is responsible for this object ID. CLB forwarding
is performed in two steps. First, finding any node that is part of the
subgroup via string forwarding as described above. Second, finding
the responsible node within this subgroup by numeric forwarding.
Here, the above described numeric forwarding mechanism is slightly

3 Called path locality in SkipNet, fully corresponding the our definition of resolution
path locality.

4 Called content locality in SkipNet, however, not fully corresponding to our content lo-
cality definition in Section 5.2 as SkipNet generally stores content and not resolution
bindings as we do.

106 hierarchical name resolution

modified to make sure that the subgroup of nodes is not exited dur-
ing forwarding. This is done by reversing the forwarding direction
when the boundary of the subgroup (as specified by the common
string ID prefix) is reached.

One might think that the original SkipNet architecture can directly
be used to provide a hierarchical NRS for flat namespaces. First,
SkipNet provides some kind of hierarchy (hierarchy of rings in the
numeric namespace). However, the numeric IDs cannot be used to con-
struct a topologically-embedded hierarchy as needed by our NRS as
the numeric SkipNet IDs have to be uniformly distributed. Second,
SkipNet provides resolution path and binding record locality only for
the string IDs. However, because of the required topological embed-
ding in the underlying hierarchical network topology, the string IDs
have to be hierarchical, contradicting our requirement of a flat name-
space. Moreover, SkipNet generally does not provide any means
to discover the nearest object copy. Hence, we have to find a way
to provide resolution path locality and binding record locality for a
flat namespace, combined with a topologically-embedded hierarchy
to find the nearest object copy. For this reason, we have developed
HSkip.

5.3.3.2 HSkip Architecture

HSkip is a homogeneous hierarchical DHT based on SkipNet. HSkip
differs in two main aspects from SkipNet. First, we construct a nested
hierarchy of resolution domains, embedded in the underlying net-
work topology. Second, we provide binding record and resolution
path locality while naming objects with the numeric IDs. This is es-
sential to perform our hierarchical registration/request scheme. In
addition, in consequence of naming objects with numeric IDs, trans-
parent remapping of objects to a new resolution domain is possible,
which is not possible in SkipNet as the domain is encoded in the
object’s string ID.

hierarchy of resolution domains : Our hierarchical design
is based on a single SkipNet DHT. SkipNet allows to use a hierar-
chical string namespace for naming SkipNet nodes. We use this to
construct our hierarchy of nested, topologically embedded domains.
Each HSkip node is named using a string ID chosen from a hierar-
chical namespace corresponding to the underlying network topology.
For example, DNS-like names (e.g., country.provider.organization.node)
can be used. All nodes with a common name prefix are grouped to-
gether into one domain. For example, all nodes with the name prefix
countryX are part of the domain countryX. All nodes with the name
prefix countryX.providerJ are part of the domain countryX.providerJ. By
allocating names in this way, the nested hierarchy is constructed au-
tomatically when nodes join the HSkip network, using the standard

5.3 hierarchical nrs architecture 107

SkipNet join process [109]. The numeric node IDs are chosen ran-
domly from a uniform distribution without special constraints, simi-
lar to the original SkipNet design.

Figure 31 shows an example HSkip resolution domain hierarchy.
The leafs of the tree (circles) represent physical nodes. The complete
string ID of a node is given by following the path from the root of the
tree to the node, i.e., the left-most node has the ID x.j.a.1. All other
tree nodes (squares) represent higher-level resolution domains. Each
resolution domain consists of all nodes in their subtree. For example,
the resolution domain x.j contains the nodes x.j.a.1, x.j.b.1, and x.j.b.2.
Note that the HSkip nodes are not explicitly connected in this hierar-
chical way. Rather, the hierarchy is only given implicitly by the nodes’
string IDs which are used by our forwarding protocol to traverse the
HSkip network in this hierarchical way as described subsequently. It
is important to note that this hierarchical structure imposed by the
string IDs has no correspondence to the tree-like SkipNet levels cre-
ated via the numeric IDs.

11 1 2 1 ja

kj

ba a b

x

j

y

k

z

2

GET
x.j.a.1:A

GET
x.j.a:A

GET x.j:A

GET x:A

GET :A

Level 2

Level 3

Level 4

Access
nodes

Level 1

Client

Figure 31: HSkip hierarchy with GET request for object A

locality properties with numeric ids : The original Skip-
Net design supports binding record locality and resolution path lo-
cality. These are important properties for our NRS. Resolution path
locality is a direct requirement defined in Section 5.2 and binding
record locality can be used to achieve resolution locality and scop-
ing (Section 5.3.1) when storing binding records for locally available
content within the local resolution domain.

A major SkipNet drawback for us is that it only supports those lo-
cality properties when objects are named with the string IDs. SkipNet
achieves those properties via CLB. The name of the resolution node/
domain where the entry should be stored is attached to the object

108 hierarchical name resolution

name. In our case, where the underlying network topology is hierar-
chical and, consequently, the resolution domains are constructed and
named in a hierarchical fashion, this approach would result in hierar-
chical object names. However, as described in Section 5.1, we require
an NRS for a flat namespace. Therefore, HSkip names objects with
the flat numeric namespace. To preserve binding record locality and
resolution path locality for the numeric namespace, we introduce our
own intra- and inter-domain forwarding protocol.

intra- & inter-domain routing/forwarding : Our intra-
domain forwarding protocol is based on SkipNet’s CLB mechanism.
The routing tables are constructed like in the original SkipNet design.
Intra-domain forwarding at different hierarchical levels can be done
with the same set of routing tables, i.e., HSkip requires only a single
routing table per node. Therefore, we characterize HSkip as homoge-
neous hierarchical DHT.

As shown in Figure 31, a request for object ID A is started by first
querying the local access node (AN) x.j.a.1. Note that Figure 31 shows
the alphanumerical string ID of the HSkip node x.j.a.1 (which is hierar-
chical as described previously) separated by colon from the flat object
name A. The hierarchical node ID is not part of the flat numerical
object ID and is only used to perform SkipNet’s CLB forwarding as
described below.

If resolution fails at the local AN, resolution continues at the next
level x.j.a. If resolution also fails here, the node responsible for this ID
at level x.j.a forwards the request to the next higher level x.j until reso-
lution succeeds or fails at the top level as described in Section 5.3.1.5.
At each level, resolution is constrained to the specific resolution do-
main via SkipNet’s CLB forwarding. For example, in the resolution
domain x.j.a, resolution is restricted to nodes with the prefix x.j.a.
Levels can be bypassed if required, e.g., due to problems at a certain
level, by continuing directly with a smaller prefix.

As explained in Section 5.3.3.1, the CLB mechanism consists of two
steps in SkipNet: (1) forwarding the request to a node that is part
of the constrained domain (string forwarding), and (2) forwarding to
the responsible node within the CLB domain (numeric forwarding). As
a result of the way that a request is started and forwarded through
the hierarchical resolution domains in HSkip, the request path by
definition starts at a node that is part of the current restricted CLB
domain. Hence, string forwarding of the CLB mechanism can be
omitted. Only the numeric forwarding has to be carried out.

SkipNet’s numeric forwarding requires O(logn) steps at each level.
HSkip’s inter-domain forwarding works similar to the forwarding of
the entangled MDHT, i.e., the forwarding steps performed at level i
bring the request closer to the responsible node at level i− 1. Hence,
even assuming the worst case that all levels have to be consulted,

5.3 hierarchical nrs architecture 109

HSkip only requires O(logn) resolution steps in total. This is shown
in detail in Section 5.7.

5.3.4 System Comparison: MDHT vs. HSkip

Due to its homogeneous design, HSkip requires less memory on the
NRS nodes. Each node only requires a single routing table whereas
MDHT requires a separate routing table for each level, which are
each smaller than the HSkip routing table but still contain some re-
dundancy. In addition, HSkip has a lower setup and maintenance
overhead compared to MDHT. Adding/removing nodes in HSkip is
easier as the hierarchy is built implicitly based on HSkip’s node IDs.
In MDHT, adding/removing nodes requires some separate configu-
ration at each level (e.g., joining/leaving the separate DHTs).

HSkip’s drawback is that it has no strict separation of resolution
domains. As a consequence, nodes always have to be part of all
levels and providers cannot choose their own intra-domain routing/
forwarding technology. In contrast, the independent MDHT offers
providers full intra-domain autonomy. They can freely choose the
best intra-domain routing/forwarding technology for their specific
requirements. Moreover, they can change and extend their hierarchi-
cal intra-domain substructure and can add local nodes independently
of the global system structure.

The main advantage of the entangled MDHT and HSkip (compared
to the independent MDHT) is the better latency due to gradually clos-
ing in on the responsible node ID at each level. In exchange, the
entangled MDHT gives up some of the resolution domains’ indepen-
dence as node IDs have to be identical at each level and the choice of
DHT technologies is somewhat restricted as discussed in Section 5.3.2.
In HSkip, all resolution domains have to use the same SkipNet-based
DHT.

Both MDHT systems offer full control over resolution domain in-
terconnection. As a consequence, MDHT does not necessarily have
to start as a single global resolution system but can gradually grow
from the edges of the Internet. This simplifies deployment and migra-
tion significantly compared to HSkip. In HSkip, partial deployment
is more difficult as all HSkip nodes have to be interconnected into a
single large HSkip right from the beginning, hence, requiring more
coordination between the NRS providers.

In summary, both MDHT and HSkip meet our requirements as de-
fined in Section 5.2. However, there is an inherent trade-off between
autonomy of resolution domains on the one hand and reduced la-
tency, maintenance cost, and memory needs on the other hand. This
trade-off exists between MDHT and HSkip in general as well as (at
a smaller scale) between the independent MDHT approach and the
entangled MDHT approach.

110 hierarchical name resolution

5.4 global name resolution

Global resolution at the highest NRS level must be highly scalable
because of the large number of globally available data objects. If
the namespace is flat without any structure, the top level can use a
global DHT composed of all/most of the NRS nodes from the lower
levels. As a result of the hierarchical NRS structure and the expected
locality of requests, most requests can be answered at lower levels.
Hence, load on the top level will be limited. Our simulation results
(Section 5.8) support this expectation.

If the namespace is structured, e.g., names contain a name prefix
like in NetInf (Chapter 3), global resolution of MDHT and HSkip
can be further improved by combining either with our Resolution Ex-
change (REX) system at the top level. The global REX system can be
managed by an independent, trusted third party, just like the DNS
top-level domains. This third party guarantees its clients the correct
management of their resolution bindings based on a business agree-
ment.

REX is based on the idea that each owner/publisher has a primary
resolution domain where its IDs are stored (typically the resolution
domain of the object owner’s ISP). The REX system performs aggre-
gation based on object name prefixes (i.e., the authenticator field as de-
scribed in Chapter 3) and redirects requests to the owner’s primary
resolution domain. Let us assume an ID structure A:L (equivalent to
the NetInf naming structure as presented in Chapter 3), where A is a
name prefix with some semantic (a hash(PK) in the NetInf case), and
L is a label, which unambiguously identifies the object in the scope
of A. This structure can be used to aggregate data objects with the
same name prefix into a single binding, i.e., the REX system has to
scale only with the number of prefixes and not with the much larger
number of data objects5. The REX system stores only redirects to the
primary resolution system. The A part of each ID can be mapped and
redirected to the primary resolution system, which is responsible for
managing bindings for all IDs with that prefix.

Although the REX system can be designed to handle and redirect
the resolution traffic itself, we think of it more as an administrative
entity. Instead of performing resolution itself, the REX system only
manages registrations, updates, and aggregation of bindings at the
global level. These aggregated bindings are then cached within the
second-level resolution domains. By using these cached bindings,
requests for IDs registered in other resolution domains can be redi-
rected to the appropriate primary resolution system at the level below

5 We assume here that a publisher uses a limited set of name prefixes to name his/her
objects. Although each NetInf object can have a different prefix in theory, we belief
that this will not be the case in reality. In addition, users can be incentivized to
limit their use of prefixes, e.g., by requesting a fee for additional prefixes. This is
obviously a trade-off with owner pseudonymity.

5.5 load balancing 111

REX. Hence, the requests do not have to be forwarded to the REX sys-
tem.

When assuming up to 109 aggregated REX entries (the expected
number of publishers) at an estimated size of 1KB each, the complete
REX database size is 1 TB. Hence, it is feasible for Tier 1 providers
to cache the complete REX database in their second-level resolution
domains (distributed among the many NRS nodes at this level). Re-
gional providers can choose to download only a subset of bindings
associated to close networks, and/or use a default route to upstream
providers with a larger cache.

Resolution domain providers can choose to directly interconnect
their resolution domains below the top level to improve the topo-
logical embedding of the resolution domains, e.g., at a regional or
national level. This is similar to today’s peering between network
providers for directly exchanging traffic. For example, providers can
build a joined DHT at a certain NRS level. If no sufficient trust re-
lationship exists, providers can still interconnect their resolution do-
mains by locally caching the aggregated REX entries of the IDs regis-
tered in the respective other resolution domain. In both cases, short-
cuts for efficient redirects between resolution domains are created, re-
ducing resolution load at the higher levels and improving resolution
latency.

5.5 load balancing

It is desirable to achieve an equal load distribution among resolution
nodes within each resolution domain as well as among all resolu-
tion domains. The load distribution among the nodes depends on
the load balancing properties of the utilized structured P2P technol-
ogy. Fortunately, both our Chord-based MDHT implementation and
SkipNet-based HSkip implementation provide a good load balancing
among the resolution nodes as shown in Section 5.8.3. To further
improve the load distribution, additional load balancing mechanisms
for structured P2P networks can be utilized.

Due to their strict data placement rules, structured P2P networks
are often prone to three main load imbalances: range skew, data skew,
and execution skew:

range skew refers to an uneven partition size among peers, i.e.,
it is the ratio between the size of the smallest and the largest partition
of the ID space that a peer is responsible for [113].

data skew refers to an uneven distribution of data items across
the peers’ partitions [114]. Data skew typically occurs in situations
when uniform hashing of data items cannot be applied. For example,

112 hierarchical name resolution

this may occur when uniform hash functions cannot be used, e.g., as
they destroy the locality of data items for range queries.

execution skew refers to non-uniform data access across the
peers’ partitions [114]. For web traffic [115] and multiple P2P ap-
plications [116], the popularity of data items follows a Zipf-like dis-
tribution; peers in charge of popular data items receive significantly
more requests than others.

Many of today’s load balancing algorithms focus only on range
skew and assume the network data rate to be the bottleneck. How-
ever, in services that focus on distributed request processing such
as complex name resolution mechanisms that involve, e.g., security
checks like in NetInf, these assumptions are not valid.6 In these ser-
vices, messages are typically small but can produce significant load
at the application level. Here, data skew and execution skew are
most important and the NRS performance is limited by the number
of resolution requests a peer can process.

To provide a solution for load balancing in such scenarios, includ-
ing NetInf’s NRS, we have developed a new load balancing algorithm
that is based on ID management. Our algorithm collects statistics of
overlay link usage during normal operation and uses this informa-
tion to provide suitable IDs to joining peers. Without using regular
maintenance messages, it improves the rate of successfully answered
requests by a factor of up to 3 in typical scenarios. We have evaluated
the algorithm via extensive simulation that also includes scenarios
with churn and heterogeneous peers. This work presents the first
load balancing algorithm that can handle all three types of skew in
scenarios that focus on processed application requests as the bottle-
neck. Hence, this load balancing algorithm is a suitable option to
further improve the load balancing properties of MDHT, HSkip, and
other NRS solution. To keep this thesis focused on the main NetInf
aspects, the load balancing work is only summarized in this thesis.
Details can be found in references [37, 38].

5.6 scalability and node performance analysis

In the following, we give a preliminary and simplified assessment
of the system scalability in terms of required number of world-wide
NRS nodes and the nodes’ system requirements. For this assessment,
we assume a world-wide NRS system with 9 levels and all nodes
participating in all levels. Our following estimation is independent
of the usage of the REX system and is valid for both the MDHT and

6 Other services focusing on distributed request processing include search services for
complex queries as discussed in Section 2.2.8.

5.6 scalability and node performance analysis 113

HSkip system as the storage requirements for binding entries is the
same for both systems.

As low latency is important, the binding records cannot be stored
on a conventional hard drive. However, solid state disk (SSD) mem-
ory offers sufficiently fast access (≈ 25µs). Current state-of-the-art
SSD storage servers have up to 24TB of memory (e.g., RamSan [117]).
In the following analysis, we assume 18TB of memory. Since all
nodes equally participate in the top DHT and in the nested levels
of the hierarchy, they all roughly store the same amount of bindings.
Assuming 1015 objects in total (as outlined in Section 5.2) with an es-
timated binding record size of 1KB, each NRS node can store 2 · 109
binding records on each of the 9 NRS levels with 18TB of memory.
Therefore, roughly 106 NRS nodes are required for a world-wide NRS
system with 1015 objects. This estimation assumes on average two
binding records per object at each level. In fact, some popular objects
can have more than two binding records per level (at most one per
resolution domain plus some redundancy against failures), whereas
many other objects may only be locally registered, i.e., they do not
require binding records at higher levels at all.

The estimated number of 106 NRS nodes is only about 1/10th of the
roughly 12 million DNS nodes in today’s Internet [118]. If all binding
records are stored in a balanced binary tree (BBT), up to 30 tree levels
are necessary for a resolution lookup inside a single dictionary node.
Hence, the storage access latency of a single GET operation is about
750µs (25µs access time × 30 tree levels).

To evaluate the number of supported users, we assume that the
number of GET requests significantly dominates the overall number
of requests. With more than 450 000 memory access operations/s
supported by current SSD storage servers, an NRS node is able to
manage more than 15 000 GET requests/s (when assuming 30 levels in
the BBT as calculated above).

DNS measurements [119] have shown that user DNS requests per
second are typically well below 0.1 requests/s and for most users on
average well below 0.01 requests/s. For future information-centric
GET requests, we use estimates based on the number of DNS requests.
However, it can be assumed that there will be more GET requests
in an information-centric network as DNS requests are for complete
domains whereas ICN GET requests are for individual objects. Hence,
we estimate on average 1 ICN GET request/s per user, which is two
orders of magnitude larger to account for this difference. With on
average one GET request/s per user and requests going up on average
half the hierarchy before finding a hit, i.e., 4.5 hierarchy levels, a
single NRS node can still handle more than 3300 users with a single
storage unit. Therefore, 106 NRS nodes can handle more than 3.3 ·
109 users concurrently. Further improvements can be obtained by
replicating access nodes to exploit parallelism.

114 hierarchical name resolution

Another important issue of dynamic NRS systems is the bandwidth
required to perform binding refreshes. We assume a certain level of ag-
gregation of refresh messages (e.g., each packet of 1500 bytes contains
on average 10 binding refreshes). Assuming 0.1% changing entries
per day, 18 million entries would change on a single NRS node, re-
sulting in 1.8 million refresh messages or 2.7GB. Therefore, a node
would require ≈ 0.25Mbit/s of continuous refresh bandwidth to han-
dle 0.1% changing entries per day. Even for 1% changing entries per
day, only 2.5Mbit/s refresh bandwidth would be required.

5.7 system analysis

In this section, we evaluate the expected latency behavior of MDHT
and HSkip for a world-wide system with up to 12 million NRS nodes
based on a theoretical analysis, with a focus on latency and on the
overall system characteristics.

We define resolution latency as the time between sending a resolu-
tion request and retrieving the answer, i.e., a set of locators. Latency
on the last mile between user and first NRS access node is excluded
as it heavily depends on the access technology and would not differ
between MDHT and HSkip anyway. We make the following assump-
tions and definitions:

• We assume a full k-ary tree structure of depth m, i.e., every
node except for leafs has k children.

• Levels are numbered top–down, excluding the lowest level (ac-
cess nodes, Figure 31). Hence, m = 1 equals a flat DHT.

• The total number of physical NRS nodes (i.e., leafs in the tree;
note the nested design) is n = km for k > 2.

• We vary n and m. Consequently, k is given as: k = n
1
m .

• We neglect processing delays at NRS nodes, which are compa-
rably small. They are dominated by dictionary lookups, which
are typically 6 0.75ms as outlined in Section 5.6.

• We consider the total number of objects indirectly via the num-
ber of NRS nodes. The number of nodes increases with the
number of objects to ensure efficient object handling at each
node.

5.7.1 General Analysis Approach

In general, the name resolution delay is a combination of processing
delay and network latency. As outlined above, we neglect the pro-
cessing delay as it is comparably small and only required once per

5.7 system analysis 115

MDHT level. Hence, the resolution latency is dominated by the net-
work latency.

If resolution at level i fails, it is performed at the next higher level
until a hit is found or the top level is reached. No network latency
occurs at the AN level (i = m+ 1) as it only consists of separate ANs.
Hops between levels typically happen on the same physical node be-
cause each node typically participates in all levels. In some rare cases
(but at most once per level), inter-level hops can happen between two
separate nodes. However, these nodes are by definition close to each
other with a latency of 6 0.5ms based on our latency model. Hence,
in both cases, inter-level hops do not add significant latency and can
be neglected for real-world systems with a limited number of levels.

We define:

• L: Random variable, overall resolution latency

• L1: Random variable, latency to find the answer

• L2: Random variable, latency to return the answer

• Yi: Event, object found exactly at level i

• pi = P(Yi)

• hi: Average number of overlay hops at level i

• li: Average overlay hop latency at level i

• xi: Average latency to find the answer (excl. the return path)
when object is found at level i

xi can be calculated by summing up the average latency for all overlay
hops from level m up to level i:

xi = E[L1|Yi] =
m∑
j=i

lj · hj (1)

We can calculate the average overall resolution latency E[L] as the
sum of finding the answer and returning the answer. Finding the
answer potentially requires multiple hops within each DHT ring and
at different levels. Returning the answer can be done in one overlay
hop. The latency of this overlay hop depends on the level where the
answer was found. With the general definition of the expected value,
it follows:

116 hierarchical name resolution

E[L] = E[L1] + E[L2] =
m∑
i=1

(P(Yi) · E[L1|Yi]) +
m∑
i=1

(
P(Yi) · li

)
=

m∑
i=1

(pi · xi) +
m∑
i=1

(
pi · li

)
=

m∑
i=1

pi · m∑
j=i

(
lj · hj

)
+ pi · li

 (2)

The same equation can be applied to MDHT and HSkip by using
different functions for hi, which we will derive in the next sections.
First, we derive pi and li, which apply to both MDHT and HSkip.
pi depends on the neighborhood effect. We call the probability that

an item that is registered at a specific level is requested the level proba-
bility (LP). For simplicity, we assume the same LP value for all levels,
except the top level. At the top level, all remaining requests are re-
solved or fail if the object is globally unknown (compare Eq. 3). LP
describes the probability for requesting “local” content. For example,
LP = 0.3 means that 30% of all requests at the lowest level m+ 1 are
for objects registered at level m+ 1, again 30% of the requests reach-
ing the next higher level m are for objects registered at level m, and
so on. Note that requesting an item registered at level i results in
a hit at level i. Hence, the probability pi can be modeled based on
a truncated geometric probability distribution7. The probability for
a hit at the AN level (i = m+ 1) is LP. The probability for a hit at
the next higher level m is LP · (1− LP), and so on. At the top level
(i = 1), all remaining answers are found as the top level stores all ob-
ject IDs. Assuming a limited number of levels in a real-world system,
it follows:

pi = P(Yi) =

LP · (1− LP)m+1−i for 2 6 i 6 m+ 1

1−
∑m+1
j=2 pj for i = 1

(3)

The average hop latency li at level i is generally influenced by net-
work queueing, transmission, and propagation delay. In consequence
of the over-dimensioning adopted in most backbone networks, the
queueing delay can be neglected. The same applies to the transmis-
sion delay due to high bit rates and the small packet size of reso-
lution messages. The propagation delay in an infrastructure system
mainly depends on the speed of light and cable material and can be
approximated as 200 000km/s. We assume an average hop distance
of 10 000 km at the global level (i.e., lmax = 50ms), 1000 km for na-
tional networks (i.e., 5ms), and 100 km for regional networks (i.e.,

7 For simplicity reasons, we assume independent probability variables representing
the level probability, although some correlation might be possible between the levels.

5.7 system analysis 117

0.5ms). These assumptions are consistent with P2P latency measure-
ments by, e.g., Steiner and Biersack [120], when subtracting the last
mile latency. Based on these assumptions, we model an exponential
relationship of the average hop latency li at level i as:

li =
m

√
lmax

m+1−i (4)

This represents a good approximation for a limited number of lev-
els as expected for an MDHT and HSkip system.

5.7.2 Independent MDHT

The average number of overlay hops hi within an MDHT resolution
domain at level i depends on the underlying DHT technology, which
can be independently chosen by each provider. We first consider
the case that the MDHT system uses O(logn) DHTs at all levels. In
Section 5.7.4, we evaluate optimizations using O(1) DHTs. With k =

n
1
m , it holds:

hiMDHT = O
(
log
(
km+1−i

))
= O

(
log
(
n
m+1−i
m

))
=
m+ 1− i

m
O(logn)

(5)

In the worst case, the object ID is only known at the global level or
completely unknown. In both cases, all levels have to be consulted,
resulting in an average number of overall required hops hWMDHT of
O(m · logn) for the independent MDHT in this worst case:

hWMDHT =

m∑
i=1

O
(

log
(
n
m+1−i
m

))
= O(logn) ·

m∑
i=1

(
m+ 1

m
−
i

m

)
= O(logn) ·

(
m (m+ 1)

m
−
m (m+ 1)

2m

)
=

m+ 1

2
·O(logn) ⊂ O(m · logn) (6)

5.7.3 HSkip and Entangled MDHT

HSkip only has to perform the numeric forwarding of the SkipNet CLB
process because routing at every HSkip level by definition starts at
a node with the correct string ID prefix (Section 5.3.3.2). In numeric
forwarding, SkipNet searches the node with the longest prefix shared
with the requested ID. SkipNet iteratively increases the shared prefix
by one digit in a constant number of hops, which leads to SkipNet’s
O(logn) expected number of hops as node IDs have logn digits.

118 hierarchical name resolution

HSkip iteratively performs the numeric forwarding at each HSkip
level until the requested ID is found. However, in contrast to the
independent MDHT system, the forwarding steps performed at level i
also bring the request closer to the responsible node at level i− 1 (Sec-
tion 5.3.3.2). The same is true for the entangled MDHT (Section 5.3.2).

For HSkip, the expected number of hops per level depends on the
average number of shared prefix bits that can be achieved at each
level. Due to the uniformly distributed numeric node IDs, on average
n/2i of n nodes have a shared prefix of i digits with the searched ID.
Consequently, with ni nodes at level i, HSkip can make a progress of
log2 ni digits on average at level i. When repeating the same process
at the next higher level i−1, HSkip starts this process at a node with a
shared prefix of log2 ni digits and forwards to a node with a shared
prefix of log2 ni−1 digits. Hence, at level i− 1, only the remaining

log2 ni−1 − log2 ni = log2
(
ni−1
ni

)
= log2 k digits of the ID have to be

changed, leading to the following average number of overlay hops at
level i:

hiHSkip = log2 k = log2
(
n
1
m

)
=
1

m
· log2 n (7)

In the worst case, HSkip has to perform the numeric forwarding
at each HSkip level. In this case, the expected number of overall
required hops hWHSkip is given as:

hWHSkip =

m∑
i=1

1

m
· log2 n = log2 n ∈ O (logn) (8)

The entangled-MDHT forwarding works similarly to the HSkip for-
warding as explained in Section 5.3.3.2. The main difference lies in
the intra-domain forwarding, which depends on the underlying DHT
system. Assuming an intra-domain forwarding of O(logn), consider-
ations similar to the HSkip analysis also lead to an expected latency
for the entangled MDHT system of O (logn) in the worst case that
all levels have to be consulted. Hence, HSkip and the entangled
MDHT can be expected to show a better latency than the indepen-
dent MDHT.

5.7.4 Analysis Results

In the following result plots, we set the DHT-specific O constants to
“1” and use the binary logarithm, i.e., O(logn) equals log2 n. Note
that several DHT systems can do better than log2 n, e.g., Chord has
an average path length of 12 log2 n [112], so our analysis results can
be seen as an upper estimate, i.e., better results can be achieved de-
pending on the utilized DHT system.

5.7 system analysis 119

To get a better understanding of the trade-offs between system
efficiency and resolution domain autonomy, we focus on compar-
ing HSkip with the independent-MDHT inter-domain forwarding ap-
proach subsequently. The entangled MDHT approach is not shown
here but behaves similar to HSkip as detailed in Section 5.7.3. Al-
though 106 nodes should be sufficient for a world-wide MDHT/HSkip
system as estimated in Section 5.6, we evaluate a system with up to
12 million nodes, equaling the current number of world-wide DNS
nodes to investigate scalability.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Number of nodes 1e7

0

500

1000

1500

2000

2500

La
te

n
cy

 (
m

s)

Both 1L

SkipNet 3L

MDHT-C 3L

SkipNet 5L

MDHT-C 5L

SkipNet 7L

MDHT-C 7L

SkipNet 9L

MDHT-C 9L

Figure 32: Analysis: Latency of MDHT (O(logn) DHTs) and HSkip; 1–9 lev-
els (L); LP=0; dashed line = MDHT, solid = HSkip

Figure 32 shows the average latency of MDHT (with O(logn) DHTs,
denoted as “MDHT-C”8 in the figure) and HSkip (denoted as “Skip-
Net”) with up to 12 million nodes and a varying number of levels
(3L, 5L, 7L, 9L) based on the preceding analysis. It compares the re-
sults to the latency of a flat O(logn) DHT system which equals an
MDHT or HSkip system with 1 level (denoted as “Both 1L” in the
figure). Figure 32 assumes no neighborhood effect, i.e., LP is zero. In
this case, the MDHT latency is generally higher than the latency of a
flat DHT and of the HSkip system. In contrast, HSkip shows much
better latency than a flat DHT system. It is interesting to note that the
MDHT latency increases with an increasing number of levels whereas
the HSkip latency decreases with an increasing number of levels for

8 The “C” indicates the usage of Chord. This is for consistency reasons as our simula-
tion uses Chord as resolution domain DHT.

120 hierarchical name resolution

LP=0. The next figures show that this behavior is strongly influenced
by the level probability, which will be discussed below.

Figure 33 shows the same analysis results for LP = 0.3. Increasing
LP to 0.3 significantly decreases both the MDHT and the HSkip la-
tency due to the higher probability to find a hit at a lower level. Both
MDHT and HSkip now have lower latencies than a flat DHT system.
The latency of the flat DHT system (not shown here for a better y-axis
scale) is independent of the level probability, hence, is identical to the
graph shown in Figure 32 (≈ 1200ms with 12 million nodes). With 12

million nodes, 9 levels, and LP=0.3, MDHT has an average latency of
≈ 240ms and HSkip has an average latency of ≈ 50ms. Interestingly,
for LP = 0.3, the MDHT latency is now decreasing for an increasing
number of levels. We will evaluate this effect in more detail in the
following.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Number of nodes 1e7

0

100

200

300

400

500

600

700

La
te

n
cy

 (
m

s)

SkipNet 3L

MDHT-C 3L

SkipNet 5L

MDHT-C 5L

SkipNet 7L

MDHT-C 7L

SkipNet 9L

MDHT-C 9L

Figure 33: Analysis: Latency of MDHT (O(logn) DHTs) and HSkip; 3–9 lev-
els (L); LP=0.3; dashed = MDHT, solid = HSkip

The influence of the level probability on latency and system char-
acteristics is illustrated in more detail in Figure 34. It reveals an in-
teresting aspect of the independent MDHT system. The overall system
characteristics change depending on the magnitude of the level prob-
ability. For a small LP value, the average latency is increasing with an
increasing number of levels. But for a larger LP value, the latency is
decreasing with more levels. This effect can be explained as follows.
If LP is small, the likelihood that all levels have to be consulted is
high (Eq. 3). Hence, adding more levels increases the number of over-
lay hops. The latency is increasing with the number of MDHT levels.

5.7 system analysis 121

However, for a larger LP value, the likelihood that all levels have to be
consulted decreases. Here, the slightly increased number of overlay
hops is overcompensated by the fact that more levels result in a more
fine-grained topological embedding with lower per-hop latencies at
the lower levels (Eq. 4), resulting in an overall reduced latency. The
LP intersection point where the system characteristics change mainly
depends on the resolution-domain DHT technology (e.g., O(logn),
O(1)) and any constants and lower-order terms neglected in the Lan-
dau (O) notation.

Note that this effect is unique for the independent MDHT and does
not occur in HSkip and the entangled MDHT. In the independent
MDHT, each level separately requires O(logn) hops. In contrast, the
entangled MDHT and HSkip levels cooperate. A request is getting
closer to the searched ID with each level as analyzed in Section 5.7.3.
Therefore, higher levels do not add as many additional hops and the
more fine-grained topological embedding dominates the behavior for
all LP values.

The fact that the latency decreases with more levels has strong im-
plications on the system design. The hierarchical NRS can be adapted
to the network topology in a fine-grained manner with more levels
while at the same time benefiting from a decreased latency.

Figure 34 also illustrates the strong influence of the level proba-
bility on the overall latency. Both MDHT’s and HSkip’s latency is
significantly reduced with an increasing LP. For comparison, recall
that our DNS analysis (Chapter 4) shows a level probability between
0.41 and 0.71. For a level probability between 0.41 and 0.71, a system
with 9 levels shows the lowest latency for both MDHT and HSkip in
our evaluation.

There are two more options to reduce the average latency for both
HSkip and MDHT. First, the MDHT system can use O(1) DHTs in
the lower-layer resolution domains, which is feasible due to the rel-
atively small and stable number of nodes within each resolution do-
main. HSkip can achieve a similar effect by increasing the number
of references stored in the SkipNet routing table to achieve a con-
stant hop count within each resolution domain. Second, MDHT and
HSkip can use the REX system (Section 5.4) at the top level instead of
an O(logn) DHT (which requires a relatively high number of overlay
hops) as assumed in the preceding MDHT evaluation. The REX sys-
tem aggregates entries based on name prefix information and caches
these entries at level 2 of the NRS system. Hence, a lookup in the REX
system requires O(1) hops to find the cached aggregated entry at level
2, one global hop to get to the resolution domain responsible for this
owner’s objects, and O(1) hops within this domain to find the object.
Therefore, both MDHT and HSkip can achieve a constant lookup la-
tency (i.e., independent of the total number of nodes) when using the

122 hierarchical name resolution

Both 1L
SkipNet 3L
MDHT-C 3L
SkipNet 5L
MDHT-C 5L
SkipNet 7L
MDHT-C 7L
SkipNet 9L
MDHT-C 9L

Figure 34: Analysis: Latency of MDHT (O(logn) DHTs) and HSkip; 1–9 lev-
els (L); 12 million nodes; dashed = MDHT, solid = HSkip

REX system and constant-hop resolution domains, i.e., resulting in a
hierarchical constant-hop NRS system.

For the independent MDHT, the effect of combining REX at the top
level and O(1) DHTs at the lower levels is shown in Figure 35. This
“full-blown” MDHT system achieves a latency comparable to and in
most cases better than HSkip (without REX and constant-hop res-
olution domains) and much better than a flat DHT. The independent
MDHT achieves an average latency of well below 200 ms for any num-
ber of levels and any level probability compared to an average latency
above 1200 ms for a flat DHT. The latency is also smaller than a flat
O(1) DHT (equaling the MDHT-O 1L graph) for LP> 0.1.

5.8 simulation

In the following, we focus again on the independent MDHT system
compared to HSkip. We evaluate the average request latency, the
number of levels a request has to consult before a hit is found, and
the load distribution among the NRS nodes. We consider the fol-
lowing main factors: total number of NRS nodes and client nodes,
total number of levels, and the level probability. We start with a brief
overview of the simulation setup and the assumed load model. Some
results in this section are based on and some of the description is
taken from work presented in reference [121].

5.8 simulation 123

0.0 0.2 0.4 0.6 0.8 1.0
Level probability

0

200

400

600

800

1000

1200

1400

La
te

n
cy

 (
m

s)

SkipNet 1L

MDHT-O 1L

SkipNet 3L

MDHT-O 3L

SkipNet 5L

MDHT-O 5L

SkipNet 7L

MDHT-O 7L

SkipNet 9L

MDHT-O 9L

Figure 35: Analysis: Latency of REX+MDHT-O (O(1)) and HSkip; 1–9 levels
(L); 12 million nodes; dashed = MDHT, solid = HSkip

5.8.1 Simulation Setup and Assumptions

The simulation is based on OMNeT++9, a generic simulation frame-
work. For implementing the P2P aspects of our two NRS systems,
we rely on the OverSim10 framework that runs on top of OMNeT++.
We use the OverSim Chord implementation for the internal DHTs
in MDHT and have built our own SkipNet implementation as basis
for HSkip. Both NRS implementations build on an underlay network
that simulates exponentially decreasing latencies on the different hi-
erarchical levels with a maximum latency of 50ms at the top level
(Eq. 2). We simulate up to 1500 MDHT/HSkip NRS nodes and every
NRS node acts as an access node for 3 clients on average, resulting
in approximately 4500 client nodes. The number of NRS nodes is
constant during the simulation, i.e., we simulate no churn as both
MDHT and HSkip are intended to be infrastructure networks, hence,
churn plays a minor role. Prior to our measurements, each node reg-
isters on average 300 objects in the NRS, resulting in approximately
450 000 overall objects. Objects can change during the simulation sim-
ilar to web pages. The time between changes is exponentially dis-
tributed following the observed distribution of inter-change times of
web pages [122]. Similarly, the lifetime of copies cached on user nodes
also follows an exponential distribution conforming to the lifetime
distribution of P2P nodes and data in P2P networks [123].

9 http://www.omnetpp.org
10 http://www.oversim.org

124 hierarchical name resolution

During our measurements, all clients request objects following a
web browsing model as described by Walters [124] with Weibull-
distributed inter-session times of browsing sessions and user request
inter-arrival times and a lognormal-distributed number of web re-
quests per session and client request inter-arrival time. To simulate
the neighborhood effect, we use a truncated geometric probability dis-
tribution based on the assumptions in Section 5.7.1. Object popularity
follows a Zipf-like probability distribution similar to the popularity
of web pages [125], i.e., the popularity of the i-th object is propor-
tional to 1/iα with α between 0.7 and 1.0. All following figures show
confidence intervals at a 95% confidence level which, however, are in
most cases too small to be visible.

In the simulation, we chose to use a slightly different implementa-
tion of the neighborhood effect. We still calculate the hit probability
pi according to Eq. 3 but subsequently choose an object from all ob-
jects registered in the respective domain at level i, including all sub-
domains. This approach allows us to use information about the level
probability from real-world measurements when the exact distribu-
tion of requests to subdomains is unknown.

5.8.2 Results: Latency

Figure 36 illustrates the influence of the number of nodes and the
number of levels on the average MDHT and HSkip latency with
LP=0.3. Unsurprisingly, the latency increases with an increasing num-
ber of NRS nodes as more NRS nodes result in more required hops in
both MDHT and HSkip. The increase is sub-linear due to the O(logn)
characteristics of both Chord (which is underlying the MDHT sys-
tem) and Skipnet (which is underlying the HSkip system). More im-
portantly, for both the (independent) MDHT and HSkip, the latency
is decreasing with an increasing total number of levels, confirming
the previous analysis results. The HSkip latency is generally lower
than the independent-MDHT latency for the same number of levels
and nodes. With 9 levels, 1500 nodes, and LP= 0.3, the independent
MDHT and HSkip have a latency of approximately 85ms and 38ms,
which is consistent with the analysis results shown in Figure 33.

Figure 37 confirms the strong influence of the level probability on
latency. The latency is significantly decreasing for both MDHT and
HSkip with an increasing LP. For example, when increasing LP from
0 to 0.2, 0.4, and 0.6, the average latency of an MDHT system with
7 levels is decreasing by 48%, 86%, and 97%. The average latency of
a similar HSkip system is decreasing by 46%, 81%, and 95%, respec-
tively. Using the results from our DNS measurements in Chapter 4

(0.41 6 LP 6 0.71) would result in average latencies of, e.g., 10–65ms
for the independent MDHT and 10–30ms for HSkip for a system with

5.8 simulation 125

100 300 500 700 900 1100 1300 1500
Num. Nodes

0

50

100

150

200

250

300

La
te

n
cy

 (
m

s)

SkipNet 3L

SkipNet 5L

SkipNet 7L

SkipNet 9L

MDHT-C 3L

MDHT-C 5L

MDHT-C 7L

MDHT-C 9L

Figure 36: Simulation: Latency of MDHT (O(logn) DHTs) and HSkip; 3–9

levels (L); LP=0.3; dashed = MDHT, solid = HSkip

7 levels and 1500 NRS nodes. Again, the HSkip latency is generally
lower than the independent-MDHT latency. In addition, Figure 37

confirms the LP-dependent change of the MDHT system character-
istics (i.e., increasing/decreasing latency with increasing/decreasing
number of levels) as analyzed in Section 5.7.4.

To get a better understanding of the latency behavior, Figure 38

shows the number of levels Lavg required on average to answer a spe-
cific name resolution request relative to the total no. of levels Ltotal,
i.e., Lavg/Ltotal. Note that zero used levels refers to hits directly at
the access node in this figure, i.e., the access node is excluded in the
level count.

As expected, the number of required levels decreases with an in-
creasing level probability as more hits can be found at lower levels,
hence, reducing the load at the top level. LP= 0.0 represents the
case where we assume no level probability at all. Nevertheless, all
presented cases only have to consult at most 72% of all levels on av-
erage; i.e., even with LP= 0.0, many requests can be answered at
levels below the top level. This is due to the hierarchical structure
of both NRS approaches. In both approaches, the requested informa-
tion is also stored in the lower layers, providing inherent redundancy.
Hence, many requests can already be answered before reaching the
top level, thereby reducing the overall latency and the load at the top
level even without assuming any neighborhood effect.

126 hierarchical name resolution

0.0 0.2 0.4 0.6 0.8 1.0
Level Probability

0

100

200

300

400

500

La
te

n
cy

 (
m

s)

SkipNet 3L

SkipNet 5L

SkipNet 7L

SkipNet 9L

MDHT-C 3L

MDHT-C 5L

MDHT-C 7L

MDHT-C 9L

Figure 37: Simulation: Latency MDHT (O(logn)), HSkip: 1500 nodes; 3–9

levels (L); dashed = MDHT, solid = HSkip

0.0 0.2 0.4 0.6 0.8 1.0
Level Probability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
se

d
 L

e
v
e
ls

 (
re

la
ti

v
e
)

SkipNet 3L

SkipNet 5L

SkipNet 7L

SkipNet 9L

MDHT 3L

MDHT 5L

MDHT 7L

MDHT 9L

Figure 38: Simulation: Relative number of used levels; 1500 nodes; 3–9 levels
(L); dashed = MDHT, solid = HSkip

5.9 related work 127

5.8.3 Results: Work Load Distribution

Figure 39 and 40 show histograms of the load distributed over the
independent-MDHT nodes with LP=0.0 and LP=0.3. Figure 41 and 42

illustrate the same for the HSkip nodes. We have used 7 levels, 1000

NRS nodes (all of which participate in all levels as virtual nodes, re-
sulting in 7000 virtual NRS nodes), and 3000 client nodes. The figures
show the accumulated number of requests processed by each “physi-
cal” NRS node. A request is processed once at each level that it visits.
Forwarding of requests inside the DHT underlay is not counted.

For both MDHT and HSkip, increasing the level probability from
LP= 0.0 to LP= 0.3 decreases the variance σ and shifts the mean µ
from µ ≈ 43 000 to µ ≈ 33 000. This is due to the fact that a higher LP
reduces the number of levels that a request has to visit as discussed
previously and, hence, also reduces the average number of processing
operations for each request. Consequently, an increased level proba-
bility has two positive effects on the system load: It improves the load
distribution and reduces the overall NRS load.

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Requests

0

20

40

60

80

100

120

140

160

N
u
m

.
N

o
d
e
s

Figure 39: No. of requests per node: MDHT, LP=0

5.9 related work

Because of our flat-namespace requirement, we cannot rely on name
resolution approaches that require hierarchical names for aggregation

128 hierarchical name resolution

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Requests

0

20

40

60

80

100

120

140

160

N
u
m

.
N

o
d
e
s

Figure 40: No. of requests per node: MDHT, LP=0.3

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Requests

0

20

40

60

80

100

120

140

160

N
u
m

.
N

o
d
e
s

Figure 41: No. of requests per node: HSkip, LP=0

5.9 related work 129

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Requests

0

20

40

60

80

100

120

140

160

N
u
m

.
N

o
d
e
s

Figure 42: No. of requests per node: HSkip, LP=0.3

to scale, e.g., like today’s DNS. Flat, structured DHT systems such
as Chord [112], Pastry [61], Tapestry [126], CAN [127], and Kadem-
lia [128] are scalable solutions for handling flat namespaces and pro-
vide desirable properties like robustness, self-configuration, and self-
maintenance. NRS approaches such as CoDoNS [129], DDNS [130],
SFR [131], and LISP-DHT [132] use such flat DHTs to build an NRS
that meets some of our requirements. For example, LISP-DHT mod-
ifies Chord to give object owners control over the resolution of their
objects’ names, a property that is also relevant for an ICN NRS. How-
ever, the main problem with NRS approaches based on flat DHT sys-
tems, as also concluded by Cox et al. [130], is that they suffer from
high latencies when distributed globally. Even more important, it
is difficult in a flat DHT to perform efficient information dissemina-
tion by selecting close-by copies (i.e., locality-aware resolution) as the
DHT typically has no topological information and is not topologi-
cally embedded. Hence, additional topological information would be
required, potentially from a separate “oracle” as proposed, e.g., by
ALTO [48] and P4P [49].

Alternatively, the underlying network layer could forward to a
close-by copy, e.g., via IP anycast. If all servers of identical object
copies would have the same IP address, we could use IP anycast to
find the closest copy in a similar way as proposed, e.g., for intercon-
necting CDN caches via IP anycast [133, 134]. However, the object
copies in an ICN are typically distributed on servers with various dif-
ferent IP addresses, hence, IP anycast is not a feasible solution to our
problem.

130 hierarchical name resolution

To solve these problems, our NRS framework is based on a hierarchi-
cal DHT (HDHT) structure that is topologically embedded in the un-
derlying network, thereby enabling locality-aware resolution. Several
HDHT systems [135] have been developed previously. These HDHTs
like Cyclone [136], the Generic Hierarchical DHT Framework [137],
Hierarchical Rings [138], Canon [139], and SkipCluster [140] use the
hierarchy to reduce resolution latency and increase robustness of the
DHT. Our hierarchical DHT systems also benefit from reduced la-
tency and increased robustness. However, our main focus is on ex-
ploiting the hierarchy to build an NRS that increases the network effi-
ciency by returning close-by locators to requesters. More specifically,
we define a common way for MDHT and HSkip how to make use of
the hierarchical structure for registering and requesting name–locator
bindings so that close-by locators are returned automatically.

Using hierarchies for efficient name resolution has a proven history,
including DNS. DONA and PSIRP also use a hierarchical approach,
however, not for name resolution but for name-based routing. Their
setup has some similarities with our system (as well as with DNS)
in the way that they exploit the hierarchy for subsequently searching
from closer to further apart. However, we focus on name resolution.
In addition, both our NRS systems are fully based on a DHT ap-
proach and we provide the Resolution Exchange (REX) system at the
top level to improve scalability and latency.

The MDHT system is a heterogeneous DHT that consists of mul-
tiple separate resolution domains that can each use a different DHT
protocol internally such as Chord or Pastry. These protocols are able
to route messages typically in O(logn) routing steps, with compact
routing tables of O(logn) states, where n is again the number of
nodes. Alternatively, MDHT can also use O(1) DHTs (e.g., Structured
Superpeers [141], Beehive [142]) within resolution domains to further
reduce latency.

HSkip is based on SkipNet [109] and constructs a hierarchical DHT
based on a single SkipNet network. The original SkipNet provides
several locality properties based on SkipNet’s string IDs. However,
these string identifiers are structured and do not match the flat ICN
namespaces. Flat ICN IDs are more similar to SkipNet’s numeric IDs.
Hence, among other changes, HSkip extends SkipNet to provide the
same locality properties for SkipNet’s numeric IDs.

5.10 summary

We have developed and evaluated three different incarnations of our
hierarchical NRS framework: HSkip, the independent MDHT, and
the entangled MDHT. These three systems demonstrate the inherent
trade-off between latency, maintenance overhead, and memory con-

5.10 summary 131

sumption on the one hand and resolution-domain autonomy on the
other hand.

The results presented in this chapter indicate that our hierarchical
NRS framework offers a suitable solution for global name resolution
of flat namespaces. We estimate that we need approximately 106 NRS
nodes for a world-wide system. Our analysis with up to 12 million
NRS nodes as well as our simulations illustrate the systems’ scala-
bility. Even with 12 million nodes, the independent MDHT shows an
average request latency of below 100 ms with 9 levels and a modest
level probability of 0.4. The entangled MDHT and HSkip show an
even better latency of about 25ms. Higher level probabilities and
using constant-hop DHTs in MDHT can further reduce these laten-
cies. In addition, using our REX system at the top level also improves
these latencies and global scalability of all presented NRS systems.
The fine-grained topological embedding of the NRS results in signifi-
cantly reduced load at the global resolution level, even when assum-
ing no neighborhood effect. In addition to the presented analysis and
simulation, we have published an open source implementation of the
MDHT system11. This implementation is evaluated in Chapter 6.

The neighborhood effect has turned out to have a major influence
on the overall system behavior, with higher LP values having sig-
nificant positive influence on the average latency as well as on the
overall load and load distribution. The DNS analysis in Chapter 4

has shown that a level probability between 0.41 and 0.71 can be ob-
served in some domains today. The domains that we investigated
in Chapter 4 correspond to the two lowest levels in our hierarchical
NRS, i.e., these domains would become the two lowest levels in our
hierarchical NRSes.

We believe that resolution-domain autonomy is important to sim-
plify migration and deployment. It not only gives providers auton-
omy to freely choose their intra-domain architecture and technology
but also simplifies gradually growing the system from the edges of
the Internet. From this perspective, the independent MDHT system
might be more favorable for a global NRS system. On the other hand,
HSkip offers some inherent advantages like further reduced latency,
maintenance overhead, and memory requirements. Hence, the en-
tangled MDHT system might present an interesting compromise that
offers decreased latency while providing some degree of resolution
domain autonomy.

11 http://www.netinf.org

6
P R O T O T Y P I N G

This chapter is based on work published in references [44, 45, 39, 40, 41, 42,
43, 143].

This chapter evaluates the overall NetInf architecture and its main
components via prototyping. For this purpose, we have built a pro-
totype of the overall general NetInf architecture, called OpenNetInf.
OpenNetInf is published as open source software1. In this chapter,
we focus on the overall NetInf prototype implementation and on the
development of information-centric applications to test the NetInf ar-
chitecture. We discuss lessons learned, implementation alternatives,
consequences for the NetInf architecture, and present testbed mea-
surements.

6.1 introduction

The prototype work described in this chapter has five goals:

1. Evaluate and validate the NetInf architecture: We evaluate the con-
sistency and feasibility of the overall NetInf architecture, pro-
tocols, interfaces, and of the different NetInf components with
a focus on naming and security, name resolution, caching, and
the object model.

2. Evaluate NetInf advantages: We demonstrate the advantages with
a wide variety of application scenarios and discuss traffic mea-
surements.

3. Migration: We evaluate difficulties to migrate towards a NetInf
architecture and requirements to start benefiting from the intro-
duction of NetInf.

4. Application development: We focus on four main areas: media dis-
tribution, legacy application support, context-awareness, and smart-
phone applications.

5. Feasibility to extend the core NetInf architecture: We evaluate the
integration of search and event notification services with the NetInf
architecture.

1 http://www.netinf.org

133

134 prototyping

Section 6.2 describes the OpenNetInf prototype and its components.
Section 6.3 introduces our ICN applications. In Section 6.4, we present
measurement results demonstrating the influence of our MDHT NRS
and caching implementation on inter-domain traffic. Section 6.5 gives
a brief overview of other existing ICN prototypes before we discuss
our overall prototyping results and the lessons learned in Section 6.6.

6.2 opennetinf prototype

In this section, we first give an overview of the overall OpenNetInf
prototype architecture and subsequently describe the main compo-
nents of OpenNetInf in more detail.

6.2.1 Overview

The OpenNetInf prototype is based on our Future Internet Toolbox
(FIT), which is a framework that we have developed to accelerate
prototyping of future Internet architectures. FIT is described in detail
in reference [40]. The NetInf architecture can run on top of many
underlying network technologies, including IP, which is currently
the case for OpenNetInf. OpenNetInf is implemented in Java to be
portable and is tested on FreeBSD, Linux, and Windows.

The central element of the OpenNetInf prototype is the OpenNetInf
node (Figure 43), subsequently called NetInf node. A NetInf node is a
process that supports the NetInf node-to-node (N2N) interface. It runs
on all machines participating in the Network of Information. Via the
N2N interface, NetInf nodes communicate with each other and offer-
/consume services via their components. Components are parts of a
NetInf node that encapsulate specific functionality like caching and
name resolution. NetInf nodes can be specialized containing different
components described in more detail in the subsequent sections. In
general, components can be divided into the NetInf core and additional
components (AddOns). Applications access the component functional-
ity via the information-centric API.

6.2.2 Interfaces

As illustrated in Figure 43, a NetInf node has two different interfaces:
the information-centric API that allows applications to retrieve, publish,
modify, or delete NDOs, and the N2N interface, which is used for
communication between NetInf nodes.

We have initially experimented with a single interface serving as
API and N2N interface. However, a common interface either exposes
too much information to applications or restricts the communication
between NetInf nodes too much. Most notably, this involves object

6.2 opennetinf prototype 135

SCALABLE & ADAPTIVE INTERNET SOLUTIONS

N
 e t w

 o r k

AddOns

OpenNetInf Node (12/2011)
(without combined NRS+Routing)
Adapted for PhD thesis (IO->NDO, Information model->object
model

2012-07-13 1

NetInf Core

D
ata retrieval

Event Service

N
D

O
 M

etadata
Database

Name
Resolution

Routing &
Forwarding Caching

Transfer

Strategy Component

Information-centric API

N
2N

 Interface

Security

Naming

Object Model

Search N
2N

 In
te

rf
ac

e
N

2N
 In

te
rf

ac
e

N
2N

 In
te

rf
ac

e

Figure 43: OpenNetInf node with NetInf Core and AddOn components, con-
nected to other NetInf nodes via the N2N interface

locators. On the one hand, NetInf nodes have to exchange object
locators when communicating with each other, e.g., as response to
a name resolution request. On the other hand, applications should
not be aware of object locators. Passing object locators to applica-
tions would allow applications to store such locators for future use,
thereby, e.g., bypassing NetInf’s mechanisms to retrieve the “best”
copy depending on the current (network) context, discarding the ad-
vantages of persistent object names, producing problems with object
mobility, etc.

Support for legacy applications, i.e., enabling legacy applications
to utilize the information-centric network, is very important for our
OpenNetInf prototype and similar network prototypes. Most impor-
tantly, it is critical to simplify migration. In addition, from a pro-
totype point of view, support for legacy applications significantly
simplifies rapid development of test applications. The goal is to pro-
vide legacy applications with a means to easily access the OpenNetInf
information-centric API in a way that is already supported by legacy
applications. Hence, the OpenNetInf prototype offers an HTTP-based
gateway to access the information-centric API, i.e., the HTTP commu-
nication of legacy applications can be redirected to talk to an Open-
NetInf node.

We have found that an HTTP-based approach is a very good choice
as it has two major advantages. First, as the requests are ordinary
HTTP requests from an application point of view, many legacy appli-
cations supporting HTTP requests can natively run on top of Open-
NetInf. Second, this is a common approach that application devel-
opers are already familiar with, significantly reducing the learning
curve to write new applications using OpenNetInf.

136 prototyping

To facilitate this approach, we have integrated a web server into
the NetInf node, which functions as a layer seven gateway between
HTTP and the NetInf protocol (hidden in the information-centric API
in Figure 43). We follow the Representational State Transfer (REST)
model [144] that offers a flexible and well-known approach to access
and modify objects. Our implementation supports the HTTP/1.1
methods GET, HEAD, POST, PUT, and DELETE. Via these methods, we
can address an NDO (e.g., a video), related metadata, and we can
perform a search for object IDs.

To retrieve an object via OpenNetInf, an application sends an HTTP
request “GET /bo?objID HTTP/1.1” to the next known NetInf node,
i.e., the initial NetInf node. The initial NetInf node would typically be
a NetInf node process running on the user’s local machine. However,
a remote initial NetInf node is also possible. This can be very handy
if the local machine cannot/should not run a NetInf node process by
itself, e.g., to preserve resources. The HTTP–NetInf gateway compo-
nent of the initial NetInf node takes the HTTP request and translates
it into a NetInf-internal object request. Subsequently, the request is
handed over to the appropriate component to process the request. Fi-
nally, the HTTP–NetInf gateway returns the answer to the requesting
application. The application has to worry neither that the GET request
contains a NetInf ID nor how NetInf retrieves the object.

Java applications do not have to use the RESTful interface but can
directly use the OpenNetInf Java API. This API basically offers the
same functionality but in addition provides some convenient ways to
access named data objects.

While the information-centric API is responsible for communica-
tion between applications and the initial NetInf node, the N2N inter-
face is responsible for inter-NetInf-node communication, performed
by the node components. Node components communicate with other
NetInf nodes via the N2N interface to fulfill their specific tasks. For
example, the name resolution component communicates with other
NetInf nodes to resolve an NDO ID into a network locator.

OpenNetInf can encode N2N messages in two ways: Google Pro-
tobuf2 and XML. Protobuf provides a simple, high-performance bi-
nary encoding, allowing efficient encoding/decoding. Libraries are
available for many programming languages. XML is an alternative
for unsupported languages, however, XML messages are bloated and
parsing requires more memory and computing power.

6.2.3 Named Data Objects and Security

As intended by the NetInf architecture, the naming scheme plays a
major role in OpenNetInf to achieve the information-centric security
goals. The prototype supports the main information-centric security

2 http://code.google.com/p/protobuf/

6.2 opennetinf prototype 137

functionality described in Chapter 3, including owner pseudonymity,
owner identification, and name–data integrity. Name–data integrity can
be checked by the initial NetInf node so that not all applications have to
implement name–data integrity checking by themselves. In addition,
applications can check name–data integrity themselves if they decide
not to trust the initial NetInf node.

OpenNetInf provides a flexible NDO metadata model. The meta-
data contains mandatory security-related metadata (for the naming
scheme, Section 3.3.3) and optional application metadata. Choosing
the right metadata format has proven non-trivial. Several factors like
developer acceptance, functionality, and complexity have to be taken
into consideration. We have experimented with several formats, in-
cluding RDF3, which supports rich functionality like reasoning to
infer logical consequences, but has disadvantages concerning accep-
tance and complexity. Alternatives include a MIME-based format as
proposed in Section 2.2.1 or an XML-based format. The current im-
plementation supports an RDF-based metadata model. Independent
of the format, our object model has proven to support a wide variety
of use cases defined, e.g., in reference [23]. This includes support for
static and dynamic files, audio/video streams, and real-world enti-
ties, as discussed in Section 6.3.

6.2.4 Name Resolution and Metadata Storage

Our prototype currently implements a two-step name resolution con-
cept where the initial NetInf node first performs a dedicated name-
resolution step to resolve the name into a set of locators, and second
retrieves the object via an underlying transfer protocol like HTTP.4

As described in Section 2.2.6 and Section 5.3.1, the NetInf architec-
ture supports multiple NRSes that are potentially interconnected into
a global NRS. Prototyping has shown that this approach supports a
much wider set of use cases and simplifies migration as each network
provider can host its own local NRS. The following NRS implemen-
tations currently exist: a node-local NRS to resolve names of locally
stored objects into network locators, a local-network NRS based on
local broadcast, an NRS for global resolution that is based on a single
flat P2P network, and a global NRS based on the hierarchical Multi-
Level Distributed Hash Table (MDHT) concept (Chapter 5).

Metadata is stored either in a separate metadata repository or to-
gether with the actual data. Our implementation experience has
shown that closely combining the metadata with the NRS can be
very useful. Hence, each OpenNetInf NRS can also store and deliver
the metadata pertaining to a requested object. Thereby, we can uti-

3 http://www.w3.org/RDF/
4 The prototype is prepared for but currently does not implement a one-step approach

and a name-based routing approach.

138 prototyping

lize metadata for better informed resolution decisions, reduce laten-
cies, and eliminate the need for a separate globally scalable metadata
repository.

6.2.5 Caching

OpenNetInf supports two types of caches: peer-side caches, integrated
in the initial NetInf nodes (i.e., typically user terminals), and ded-
icated in-network caches that are part of the network infrastructure.
Both are conceptually similar and are based on the Ehcache5 open-
source library.

The OpenNetInf peer-side cache serves the two purposes described
in Section 2.2.5: First, it serves as application-independent cache for
all local NetInf applications. Second, the peer-side cache can serve as
cache for other NetInf nodes.

NetInf supports both on-path (on the request/data path) and off-
path caching. OpenNetInf focuses on off-path caching and how to
trigger caching and find cached copies. Our implementation experi-
ence has led to the architectural decision to closely integrate off-path
caches with the resolution system. This provides several advantages:
The integration with MDHT has proven particularly useful because of
its hierarchical structure. As described in Chapter 5, the MDHT reso-
lution nodes in a certain resolution domain receive all requests from
clients in their resolution domain (e.g., in Figure 48, node MDHT 1
receives all requests from client 1–4 at level 3) and can collect statis-
tics about the objects’ popularity in this part of the network. Based
on these statistics, the MDHT nodes can decide which objects should
be cached. Global knowledge is not required for this decision as an
in-network cache typically only serves requests from its local part
of the network (i.e., the specific resolution domain). Subsequently,
an MDHT node would trigger an off-path cache in the same resolu-
tion domain to cache the specified objects. After caching an object,
the OpenNetInf in-network cache registers this copy with the MDHT
node that triggered the caching process to make the copy available
for all NetInf nodes within this resolution domain. As shown in Fig-
ure 48, each separate resolution domain at a level can contain its own
in-network cache(s).

6.2.6 Data Transfer

As previously mentioned, the OpenNetInf prototype focuses on a
name-resolution-based two-step approach for retrieving data. Both
steps are triggered by the initial NetInf node. While the first step, the
name resolution, is performed by the name resolution component,

5 http://www.ehcache.org

6.2 opennetinf prototype 139

the second step, the actual data transfer, is performed by the data
transfer component.

The data transfer component selects one or more locators from the
resolved locator list and initiates the data transfer. Depending on the
locator type and other aspects, it can select between multiple different
transfer protocols like HTTP or the File Transfer Protocol (FTP). This
allows support for many existing data transfer protocols, thereby sim-
plifying migration. Relying on existing transfer protocols is sufficient
for a fully connected network scenario. Extending NetInf towards
challenging network scenarios like DTN could be done by either uti-
lizing existing protocols like the Bundle Protocol [145] or by devel-
oping NetInf-specific transfer mechanisms. Such a NetInf-specific
transfer mechanism, e.g., based on name-based routing, can be in-
tegrated in OpenNetInf as well. This would be done by skipping the
name-resolution step and adding a new transfer service that performs
transfer directly based on the object name.

Besides handling complete objects, the OpenNetInf prototype also
supports chunking of objects, i.e., dividing larger objects into pieces
and handling these pieces separately. This enables a NetInf node to
simultaneously download an object from multiple sources and to per-
form streaming. The integrity of single chunks can also be validated.
Chunking is implemented based on HTTP range requests.

6.2.7 Additional Services

Beyond the NetInf core functionality, we have also evaluated the inte-
gration of additional services into the NetInf architecture (Figure 43).
We focus on search services and event notification services in this
section.

6.2.7.1 Search

The goal of a NetInf search service is to find object names based on
some search criteria. The user/application can send a SEARCH query
to a search service, which returns a list of object names matching
the query. OpenNetInf supports multiple kinds of search services
like keyword-based search, semantic-web-based search (based on the
SPARQL Protocol and RDF Query Language (SPARQL)6), and ge-
ographic search (i.e., searching for objects in a certain region). A
search service can access the NDO’s metadata as well as the NDO’s
main data. The implementation of a search service itself is out of
scope of NetInf.

A search service can be offered by a local NetInf node, e.g., to
search for locally available information, as well as by a global (i.e.,
Google-like) search service. A global search service is conceptually in-

6 Recursive acronym; http://www.w3.org/TR/rdf-sparql-query/

140 prototyping

dependent of the NetInf infrastructure, hence, not adding additional
requirements on the scalability of the NetInf infrastructure. Integra-
tion with the NetInf infrastructure is based on the respective API calls
and N2N messages.

6.2.7.2 Event Service

We have integrated an event service in the OpenNetInf prototype.
The event service allows users/applications to subscribe to changes
of a specified NDO. This is currently implemented for the NDO meta-
data and allows to subscribe to changes of all metadata or selected
attributes. For example, a collaborative editing application could sub-
scribe to changes of the “last modified” attribute of a document to be
informed about document changes.

The OpenNetInf event service is based on a separate notification
infrastructure, hence, the scalability of OpenNetInf is independent of
the scalability of the event service. Our current implementation uses
the SIENA event service [67], however, OpenNetInf is independent
of the specific event service implementation. This is achieved via an
adapter module that we have developed that translates the OpenNet-
Inf commands into the specific commands of the utilized event ser-
vice. Via the adapter module, OpenNetInf can even support multiple
different event services in parallel.

We have also implemented a closer integration of search services
and the event service. For example, an OpenNetInf search service
can subscribe at the event service for changes of objects that it has
indexed. Thereby, it will automatically be informed about changes,
enabling quicker index updates and eliminating the need for frequent
polling to check for changes. This scenario is described in more detail
in Section 6.3.4.1. More details about the event service can be found
in the OpenNetInf documentation [146].

6.3 application development

We have developed and tested three main application scenarios to test
our OpenNetInf prototype implementation, analyze advantages, and
evaluate the application development process for an ICN architecture.
We have focused on media distribution, legacy application support, and
context-aware smartphone applications.

6.3.1 Media Distribution

Videos currently are the main share of Internet traffic [5]. Hence, we
have tested several applications for distributing and streaming video
via the OpenNetInf infrastructure to demonstrate efficient dissemina-
tion of large files.

6.3 application development 141

In consequence of our RESTful HTTP API, many existing streaming
applications run on top of OpenNetInf out of the box, e.g., the VLC
media player7 and Firefox. Hence, no extra development is required,
simplifying NetInf migration. The existing applications can retrieve
the content via the underlying NetInf and directly benefit from Net-
Inf advantages. The initial NetInf node serves as proxy between the
application and NetInf. It uses the HTTP API and a common URL,
which transparently encodes the NetInf object ID as described in Sec-
tion 6.2.2.

Figure 44 shows video streaming in Firefox via OpenNetInf. The
content URL highlighted in the figure encodes the initial NetInf node
in the host part (localhost:8181) and the object ID in the query string
(hash_of_pk=b172494aaaf...)8. Once the NetInf node receives this
request, it extracts the object ID, resolves the ID into a set of locators
using a suitable NRS, retrieves the data from these locations, checks
name–data integrity, and streams the content back to the requesting
application via its integrated web server. The transfer component
responsible for the data transfer can automatically switch to new lo-
cations (which have previously been retrieved by the name resolution
component) when the current locator fails, e.g., because of network
congestion, server overload, or a temporarily interrupted network
link. It also supports multi-source downloads. Hence, using Open-
NetInf allows video applications to benefit from any available source
(incl. peer-side caches and in-network caches) and can in many cases
increase data availability (i.e., continued video streaming) even dur-
ing challenging conditions.

Specifically, we have performed a high-level evaluation of video
streaming in a network scenario with intermittent connectivity [143],
using the VLC media player running on top of NetInf. During the
video streaming process, the connection between the local client net-
work and the Internet can be interrupted, including the connection to
the original video streaming server. Due to the lost connectivity, the
NetInf underlay automatically triggers a new name resolution pro-
cess. As no global (NRS) infrastructure is reachable due to the lost
Internet connection, NetInf can use a local broadcast name resolu-
tion service to find a new video source in the local network and can
seamlessly switch the video connection to the new local source.

6.3.2 InFox

Our Firefox web browser plugin called InFox further demonstrates
OpenNetInf’s legacy support. It allows to embed native NetInf IDs

7 http://www.videolan.org/vlc/
8 OpenNetInf currently uses an early naming format with slightly different syntax

compared to the ni URI format defined in our recent ni URI scheme RFC [28]. How-
ever, the main semantics are the same.

142 prototyping

Figure 44: Video streaming in Firefox via OpenNetInf

in web pages, eliminating the need to encode the NetInf ID in the
URL query string as described in Section 6.2.29. NetInf IDs can be
embedded in an HTML page in a format compatible to today’s web
links (Listing 3). These links contain a common URL as well as a
NetInf ID. The links work with regular web browsers and with InFox.
The InFox plugin ignores the common URL and uses the NetInf ID
to retrieve the object via NetInf. A common web browser lacking
the InFox plugin ignores the NetInf ID and uses the common URL
instead. The compatible NetInf links are demonstrated and can be
tested at http://www.netinf.org.

Listing 3: Compatible NetInf link (NetInf ID is curtailed)

<a hre f=" ht tp ://www. n e t i n f . org/" ni=" ni :HASH_OF_PK=8

c4e559 . . . ">NetInf �
In addition to linking directly to a named data object, InFox can

also link to NDO metadata that shows up as pop-up window when
clicked. This is very helpful, e.g., to manage different encodings of
the same video. Figure 44 shows a small pop-up window that opens
when the underlying link for the movie trailer is clicked. The pop-up
window displays the NDO metadata containing links to NDOs repre-
senting the same video in different video encodings. As mentioned
previously, the NDO metadata is stored in the metadata repository
which is combined with the name resolution service in OpenNetInf.
Hence, the metadata is returned to the requester during the name res-
olution process by the NRS. In this example, this encoding-independent
NDO does not contain locators (as it does not represent any specific

9 Another alternative for legacy support is the “well-known” URI scheme [91] as de-
scribed in our ni URI scheme [28].

http://www.netinf.org

6.3 application development 143

video file) but only contains the metadata which points to several
other video NDOs representing the same video in different encod-
ings.

The user can select the appropriately encoded video in the pop-
up window. This transparently triggers another name resolution step
to resolve the selected NDO ID into a set of locators for this specific
video file, which then downloads via the underlying NetInf and starts
playing. Obviously, the appropriately encoded video version can also
be chosen automatically based on the device’s capabilities.

Besides the users, the main beneficiary of this mechanism is the
web page maintainer. The maintainer has to link only to the encoding-
independent NDO on the web page without having to bother about
available encodings. Whenever someone creates a new encoding of
this video and adds this information to the NDO metadata, the new
video version will automatically be accessible via the encoding-inde-
pendent NDO link. Unauthorized write access to the metadata can
be identified via name–data integrity checking as described in Sec-
tion 3.4.1 to prevent misuse.

The preceding example illustrates the power of NetInf’s object mod-
el. Applications such as the InFox plugin can make use of the flexi-
ble application-specific metadata to improve the user experience and
invent innovative features that can also easily be used by other appli-
cations as the NDOs are jointly used by applications.

6.3.3 InBird

Email addresses have become an important personal identifier for In-
ternet users. However, this identifier is not persistent. Business email
addresses typically change when the user changes the employer and
private email addresses change when changing the email provider.
Changing email addresses produces significant hassle to inform all
contacts of the new email address and might even result in lost con-
tacts.

This problem can be solved by using NetInf NDOs as persistent
representations of people, called named person objects (NPOs), which
are a kind of dynamic digital business card. A user can create a digital
business card stored as NDO with up-to-date contact information and
provide his/her contacts with the persistent name of this business
card NDO.

An NPO can contain a varying amount of information about the
NPO’s owner and access to this information can be restricted as de-
sired. Any amount of data can be represented by the NPO. As with
any NDO, the NPO ID is simply resolved into a set of locators where
the actual data is stored. However, the amount of information to be
stored in the digital business card is typically small. In such cases,
the NPO data can also be stored directly in the NPO’s metadata for

144 prototyping

efficiency reasons. This has the advantage that NPO metadata can
be directly hosted by and retrieved from the OpenNetInf NRS during
name resolution, eliminating an extra step to retrieve the data from a
separate location after performing name resolution.

For our use case of persistent email communication, the NPO has to
contain at least one valid email address of the owner. The important
point is that instead of propagating his/her current email address, the
user gives his/her NPO’s ID to contacts.10 Hence, these contacts store
the NPO’s persistent ID as contact information in their email client’s
address book instead of the user’s email address. Hence, when the
user’s email address changes, the user only has to update the email
address in the NPO instead of propagating the new email address to
all contacts. This is possible because NetInf IDs (including the IDs of
the NPOs) are inherently persistent even in the event of a provider
change.

To send an email to the user, contacts can retrieve the user’s cur-
rent email address from the user’s NPO. This process can be auto-
mated transparently using a small email client plugin. We have de-
veloped such a plugin called InBird for the Thunderbird email client.
InBird integrates with the Thunderbird address book so that Thunder-
bird users can continue to address emails using the recipient’s name.
When sending an email, Thunderbird first automatically translates
the user name into the email address value stored in Thunderbird’s
address book. This is typically the user’s email address. However, in
our case, we store the NPO’s ID here. Subsequently, the InBird plugin
transparently translates the NPO’s ID into the current email address
of the email recipient using the core NetInf functionality. First, the
plugin retrieves the NPO metadata corresponding to the specified ID
using NetInf’s name resolution mechanism. Thereafter, the plugin ex-
tracts the email address from the retrieved NPO metadata, uses this
email address as destination address, and hands the email back to
Thunderbird for transmission. Thereby, the InBird plugin automates
the process of retrieving the current destination email address and
allows Thunderbird users to directly utilize persistent NetInf IDs as
substitute for email addresses. Similar plugins can obviously be pro-
vided for other email clients.

6.3.4 Context-Aware Applications

To test NetInf’s usability not only with common applications but also
with more advanced, innovative applications, we have developed two
context-aware applications. Both applications make use of the addi-

10 When the NPO’s ID should be communicated orally, e.g., via phone, the human-
friendly form of the ni naming scheme as described in Section 3.6 becomes very
useful.

6.3 application development 145

tional NetInf services like the event service, search services, and the
integration of both.

6.3.4.1 Shopping Application

We have developed a context-aware shopping scenario with integrated
collaborative editing functionality that enables users to jointly man-
age shopping lists and informs users about available items in close-by
shops. The scenario is shown in Figure 45. It makes use of Net-
Inf’s NDO object model to represent shopping information, an NDO
storage server to store NDOs, an event service to subscribe to and be in-
formed of NDO changes, and a specialized inventory list search service
that subscribes at the event service for changes of NDOs. Obviously,
the following example scenario just illustrates one possibility how
this NetInf functionality can be used in a context-aware scenario.

Shopping App Scenario

User A NDO Storage

OpenNetInf
Search Services

Mobile user

OpenNetInf
Event Server

Shop 1

Shop 2

Update(list)

Update(list, inventory)

Update(inventory)

Figure 45: Shopping application use case scenario

In our example scenario, user A and a mobile user share a common
shopping list, which is stored in an NDO at an NDO storage server.
While the mobile user is on the go, user A can update the joint shop-
ping list from back home (e.g., adding milk). As soon as the shopping
list is updated, the event server is informed about these changes by the
storage server. The event service informs any participant subscribed
to this specific NDO about the update, which is only the mobile user
in our scenario. Hence, the mobile user is automatically informed
about any changes of the joint shopping list and can download the
latest version. Similarly, the mobile user can also edit the joint shop-
ping list.

146 prototyping

The shops in our example scenario are using a similar mechanism to
frequently update their inventory lists that are also stored in NDOs.
Any inventory updates are again immediately propagated to all sub-
scribers by the event service, in this case to some connected search
services. Thereby, the search services can immediately update their
search indexes of the shops’ inventory via this push mechanism with-
out requiring a cumbersome pull mechanism (e.g., web crawlers) as
commonly used by today’s search engines.

Finally, while passing by a shop, the mobile user can use his/her
shopping application to automatically search the search service(s) for
any item that is on his/her shopping list and contained in the shop’s
(up-to-date) inventory. The search can be triggered either by the user
him-/herself, automatically by the mobile application based on the
user’s position and some knowledge about shop positions, or by the
event service that can optionally be informed about the user’s move-
ments11. To limit results to near-by shops, the search service uses a ge-
ographic search (Section 6.2.7.1) that can use the user’s geographical
location and the shops’ geographical locations to match local shops
with the user’s position.

More details about this scenario and the developed demo applica-
tions are available in reference [146].

6.3.4.2 Augmented Internet Browser

We have developed the AugNet browser, a context-aware browser that
enables real-world/Internet integration based on the Augmented In-
ternet concept [42]. This application is developed for mobile devices
based on the Android operating system to test NetInf’s usability for
smartphone development as well as for context-aware applications.
In the following, we will give a brief overview of the idea behind the
AugNet browser and the Augmented Internet concept. More details
can be found in references [43, 42].

The Internet contains a lot of information that can be useful to sup-
port users in real-world activities and while on the go. Unfortunately,
this information is currently cumbersome to access and retrieving
the information disrupts the users’ workflow. Several Internet appli-
cations have been developed in recent years that provide a better real-
world/Internet integration, e.g., for the iPhone and Android operat-
ing system [147, 148]. We call these applications AugNet applications.
For example, this includes applications that provide users with in-
formation corresponding to their current surroundings and lets them
(virtually) interact with local objects as illustrated in Figure 46. How-
ever, AugNet applications are currently difficult to develop on a large

6.3 application development 147

Figure 46: Mockup of AugNet application showing an information overlay
for the Eiffel Tower

scale because conceptual support for such applications is missing in
today’s network architecture.

In contrast, the NetInf architecture inherently provides conceptual
support for AugNet applications: NDOs can be used to represent
real-world entities like buildings, places, and objects in the Internet,
thereby becoming virtual entities that represent the respective real-
world entities. Based on real-world attributes like Global Position-
ing System (GPS) coordinates or radio-frequency identification (RFID)
tags, users can search for virtual entities via specialized search ser-
vices, e.g., a geographic search service. Such a search service returns
the IDs of virtual entities that match the query. Subsequently, these
IDs can be resolved into the respective virtual entities via NetInf’s
name resolution services.

We have implemented an information-centric, location-aware Aug-
Net application called AugNet browser running on an Android phone.
The AugNet browser is a simple Android application that illustrates
how to implement such applications easily by using NetInf. With
the AugNet browser, a user can create virtual entities and can bind
them to real-world entities via GPS coordinates, RFID, etc. Likewise,
users can search for virtual entities based on real-world attributes and
can present them, e.g., on a map (Figure 47) to easily access context-
sensitive information.

11 The latter option obviously has some privacy concerns as the event service could
constantly track the user’s movements.

148 prototyping

Figure 47: AugNet browser application showing the users current position
(red dot) and two retrieved virtual entities (blue dots) in the
user’s search area (orange circle area)

We have found the AugNet browser implementation to be straight-
forward using the NetInf architecture. The main concepts like virtual
entities are directly supported via NetInf’s object model. The location-
independent storage of virtual entities is helpful to store information
locally close to their physical counterparts, thereby reducing latency,
which is often critical for AugNet applications. The additional Net-
Inf services like search and event notification can further simplify the
development of AugNet applications as these services are in many
cases important for AugNet applications to inform users about real-
world events and to search for relevant information. At the same
time, the NetInf architecture has proven to be compatible with ap-
plication development for a mobile platform like Android. NetInf’s
ability to run the initial NetInf node remotely has been especially
helpful. Thereby, the initial NetInf node does not have to run on the
mobile device itself, which reduces the load on resource-constrained
devices. However, running a dedicated NetInf node on a mobile de-
vice is feasible and provides the device with all NetInf benefits such
as application-independent caching and infrastructure-less, ad hoc
NetInf interaction with other NetInf devices.

6.4 evaluation

We have built a testbed running our OpenNetInf code to evaluate the
NetInf architecture in a real setup. In the following, we evaluate the

6.4 evaluation 149

NetInf advantages for a media distribution scenario in a setup similar
to a small company network. More precisely, we evaluate the influ-
ence of the hierarchical MDHT NRS and our caching implementation
(off-path and peer-side caching) on inter-domain traffic.

To limit the required hardware, we have used virtualization. Each
node in the network (i.e., all MDHT nodes, caches, routers, clients,
and the web server, see Figure 48) is a virtual machine, all running
on a blade with 64GB main memory and 16 CPU cores. This vir-
tual setup simplified management while not influencing our measure-
ment results as we focus on network traffic in bytes as main metric.
For, e.g., network latency measurements, this kind of setup would
not be suitable without additional adjustments that simulate the ap-
propriate latencies.

As usual, quantitative results of testbed prototype evaluations de-
pend heavily on the scenario setup. Nonetheless, they can give some
intuition and can point out strengths and weaknesses of an architec-
ture. In addition, this kind of evaluation proved very helpful to rec-
ognize conceptual problems and to verify that the prototype imple-
ments the architectural concepts correctly, e.g., concerning the cache
behavior.

6.4.1 Measurement Setup

The general testbed setup is shown in Figure 48. The testbed repre-
sents a small company network with a hierarchical setup of 4 levels,
representing 2 separate networks (e.g., in different buildings) inter-
connected via router 1. Each building has two separate internal net-
works, interconnected via router 1.1 and router 1.2 respectively. In
our scenario, a small number of 16 employees collaborate on a joint
project. The 16 employees are divided into 4 groups with 4 employ-
ees in each subnetwork. As we are not interested in the effectiveness
of cache replacement algorithms and the influence of cache size, we
eliminate these factors by focusing on a single file in our measure-
ment setup. A varying number of employees has to access the same
(initially external) 1MB file one after the other. The request order is
random.

In this setup, we focus on network traffic reduction. We have mea-
sured traffic in terms of inter-domain traffic, i.e., between the dif-
ferent levels. We measure the traffic between level 1 and 2, repre-
senting traffic to and from the outside ISP (at router 1). Due to our
caching configuration as described below, there is no inter-building
traffic at router 1. Traffic reduction at router 1 is especially important
for the company as the company has to pay for traffic to and from its
ISP. We also measure traffic between level 2 and 3 (at router 1.1 and
router 1.2). This is intra-building traffic. We measure all traffic pass-
ing the respective router interfaces including any management traffic

150 prototyping

and other overhead. The original file server serving the requested file
resides outside the company network, i.e., it is connected at the top
level. At levels 1–3, there is one in-network cache per network, result-
ing in 7 in-network caches in total. The overall setup consists of 11

distinct networks connected by 7 routers. Figure 48 also shows the
setup of the hierarchical MDHT NRS system with three levels and a
total of 12 MDHT nodes (the MDHT nodes at level 1 and 2 are virtual
nodes that physically reside at level 3).

OpenNetInf Measurement –
Conceptual correct setup

Original MDHT Cache MDHT MDHT MDHT

Net 1

Server

MDHT Router

1*

Cache

1

MDHT

2*

MDHT

3*

Cache MDHT

4*

Le
ve

l 1

Net 1.1

MDHT
1*

Router
1

Cache
1.1

MDHT
2*

Net 1.2

MDHT
3*

Cache
1.2

MDHT
4*

Le
ve

l 2

Cache
1.1.1

Net 1.1.1 Net 1.1.2

Router
1.1

MDHT
2

Cache
1.1.2

MDHT
1

Cache
1.2.1

Net 1.2.1 Net 1.2.2

Router
1.2

MDHT
4

Cache
1.2.2

MDHT
3

Le
ve

l 3

Net 1.1.1.1

Router
1.1.1

Net 1.1.2.1

Router
1.1.2

Net 1.2.1.1

Router
1.2.1

Net 1.2.2.1

Router
1.2.2

Le
ve

l 4

Cl.
1

Cl.
2

Cl.
3

Cl.
4

Cl.
5

Cl.
6

Cl.
7

Cl.
8

Cl.
9

Cl.
10

Cl.
11

Cl.
12

Cl.
13

Cl.
14

Cl.
15

Cl.
16

L

Figure 48: Measurement scenario and hierarchical MDHT setup (Cl = client)

We have used the following measurement settings: Peer-side caches
serve other NetInf peers only in the same local network at level 4

(e.g., in the local wireless LAN in our example scenario). In-network
caches serve all nodes in the respective subtree (e.g., cache 1.1 serves
clients 1–8) and cache an object as soon as it is requested the first
time in its subtree. Sources are used in the following order: Peer-
side caches, in-network caches at lower levels, in-network caches at
higher levels. Multi-source download is turned off and there are no
file updates.

6.4.2 Results

Figure 49 shows the cumulative inter-domain traffic between levels
1/2 and levels 2/3. We have measured the inter-domain traffic of
the OpenNetInf system with all caching turned off, peer-side or in-
network caching turned on, and both peer-side and in-network caching
turned on. For comparison, we have measured the same scenario
with “pure” HTTP, i.e., without any NetInf nodes and NetInf infras-
tructure. At first glance, P2P or CDN technology would be a better
comparison. However, NetInf does not try to be better than P2P net-
works or CDNs but rather, among others, to integrate similar function-
ality into a general, consistent network architecture.

6.4 evaluation 151

All measurements have been performed with a varying number of
up to 16 downloading clients. The subset of clients is chosen ran-
domly from all clients. The first client always downloads from the
original server and all caches are initially empty. In the NetInf case,
subsequent clients can access available (in-network and peer-side)
caches. All figures show confidence intervals at a 95% confidence
level.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Number of clients

T
ra

ff
ic

 [
B

yt
e]

HTTP
NetInf without cache
NetInf with peer−side cache
NetInf with in−network cache
NetInf with both caches

Figure 49: Cumulative inter-domain traffic between levels 1 & 2 and levels
2 & 3

The HTTP graph in Figure 49 shows traffic increasing linearly with
the number of downloading clients, with about 34MB cumulative
traffic at both inter-domain borders for 16 downloading clients. This
is as expected as all clients have to download the 1MB file from the
original server, which is connected to the top level, hence, producing
2 · 16MB plus about 5% overhead from packet headers12. NetInf with-
out caching shows a similar behavior. Comparing both cases shows
that the (unoptimized) OpenNetInf implementation produces traffic
overhead of about 2.5% compared to HTTP for a 1MB file size. This
overhead mainly consists of management packets generated by the
MDHT system and NetInf request/response messages that contain
also metadata.

Figure 49 demonstrates the positive influence of caching in our sce-
nario. Both in-network caching and peer-side caching (combined as
well as separately) result in a significantly reduced inter-domain traf-
fic, keeping traffic as local as possible as a result of caching and the
MDHT resolution approach. The traffic increases with the number of
clients until at least one peer-side cache per subnetwork has cached
the object or until the in-network caches contain the object, respec-

12 This number is consistent with theoretical calculations of packet overhead.

152 prototyping

tively. Thereafter, the inter-domain traffic remains stable as all follow-
ing clients can retrieve the object from the caches without producing
additional inter-domain traffic. This also enables data access even if
the network link to the company-external network at router 1 is inter-
rupted, i.e., supporting connectivity in fragmented networks.

There are conceptually two different ways how to fill caches, both
with specific advantages and disadvantages. First, caches can be
filled from other already existing local in-network caches and peer-
side caches. This has the advantage that no extra inter-domain traffic
is generated. However, the load for the serving local caches is in-
creased. This might be especially critical for peer-side caches that
are connected via an asymmetric connection like Asymmetric Digi-
tal Subscriber Line (ADSL), hence, only having a limited upstream
data rate. Second, caches can be filled from (one of) the original
source(s), thereby not increasing load at local caches but increasing
inter-domain traffic.

In our measurements shown in Figure 49, we have used the second
option. Hence, the NetInf case with only peer-side caching turned on
produces the best results as filling the in-network caches produces ad-
ditional inter-domain traffic in our sample setup. This also results in
higher traffic compared to HTTP when the number of clients is small.
In contrast, the peer caches are filled automatically whenever a peer
requests the object anyways. However, whether peer-side caching or
in-network caching yields better results heavily depends on the sce-
nario, e.g., on the number of clients per subnetwork, on the number
of subnetworks sharing a common in-network cache, local caching
decisions by peers, and the ability of peers to cache at all. It also de-
pends on the observed inter-domain level as shown in the following
figures.

Figure 50 and Figure 51 show the inter-domain traffic for both inter-
domain borders separately. As expected, the HTTP traffic is identi-
cal for both borders as all traffic passes through both borders when
downloaded from the original server. Using peer-side caching results
in significantly reduced inter-domain traffic at both borders. Each
client subnetwork has to download the object once from the original
source and can subsequently share the object within the local net-
work at level 4. Using in-network caching results in significant sav-
ings as well. Interestingly, much more inter-domain traffic is saved
at the higher border. This is due to the fact that most in-network
caches are at the lower levels (level 2/3). Hence, client requests can
be served from these caches without generating inter-domain traffic
at the higher levels. A similar cache placement strategy can be ex-
pected in a real network setup as caches are typically placed at lower
levels, i.e., closer to the network edge.

6.4 evaluation 153

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2
x 10

7

Number of clients

T
ra

ff
ic

 [
B

yt
e]

HTTP
NetInf without cache
NetInf with peer−side cache
NetInf with in−network cache
NetInf with both caches

Figure 50: Inter-domain traffic between levels 1 & 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2
x 10

7

Number of clients

T
ra

ff
ic

 [
B

yt
e]

HTTP
NetInf without cache
NetInf with peer−side cache
NetInf with in−network cache
NetInf with both caches

Figure 51: Inter-domain traffic between levels 2 & 3

154 prototyping

Figure 50 also illustrates the potential load reduction at the original
server. The inter-domain traffic is reduced by a factor of up to 4

with caching turned on, which translates into a similar load reduction
at the original server. In addition, the load at the original server is
reduced even more as the remaining traffic is shared between the
top-level caches and the original server.

6.5 related work

There are several other prototypes from other ICN projects and within
the NetInf project.

The main prototype of the CCN/NDN project is called CCNx13.
CCNx contains open protocol specifications and a reference imple-
mentation. Among others, an interactive voice over CCN application
has been developed using CCNx [149]. The CCNx implementation is
available as open source.

For the PSIRP/PURSUIT architecture, there are two prototypes
available called Blackhawk14 and Blackadder15. Blackhawk is a publish/
subscribe prototype for FreeBSD. Blackadder is PURSUIT’s new pub-
lish/subscribe prototype for FreeBSD and Linux. Both provide sev-
eral features based on the information-centric communication para-
digm, including packet forwarding, which is based on PSIRP’s zFil-
ters approach [86]. Blackhawk and Blackadder are both available as
open source.

A prototype implementation of the DONA architecture has also
been developed. The prototype is a stand-alone user-level Java dae-
mon. It uses a TUN/TAP device to place itself between the transport
and IP layer. Experiments have been performed on Planetlab as de-
tailed in reference [12]. To our knowledge, the DONA prototype is
not publicly available.

Besides OpenNetInf, there is also an open source NetInf software
tool set available16. This open source project contains packages im-
plementing various NetInf features in different languages, including
the ni URI scheme, the convergence layer concept, forwarding, and
caching. Languages include C, Clojure, Java, PHP, Python, and Ruby.
As part of the SAIL project, there are also some additional (yet unpub-
lished) NetInf prototypes, including an implementation of the GIN
approach [87] and a router platform called NEC NetInf Router Plat-
form (NNRP) [150].

The OpenNetInf prototype has also been used as basis for several
information-centric research activities, e.g., for the development of an
information-centric code repository [151], a rendezvous server serv-

13 http://www.ccnx.org
14 http://users.piuha.net/blackhawk/0.3/
15 https://github.com/fp7-pursuit/blackadder/
16 https://sourceforge.net/projects/netinf/

6.6 summary 155

ing as name resolution and caching platform [150], and a mobile An-
droid NetInf node [150].

6.6 summary

The OpenNetInf prototype has been very helpful in supporting the
NetInf architecture design and in achieving the five prototyping goals
stated in Section 6.1:

1. Evaluate and validate the NetInf architecture: We have evaluated
and validated the overall NetInf architecture in multiple differ-
ent scenarios and with several different applications. As a result,
our prototyping experience indicates that the overall NetInf ar-
chitecture is consistent and suitable for achieving significant
advantages over today’s host-centric architecture as described
subsequently.

2. Evaluate NetInf advantages: The OpenNetInf prototype demon-
strates many of these advantages, including efficient data dis-
semination with reduced network and inter-domain traffic, in-
creased data availability (even in fragmented networks), and im-
proved information-centric security functionality, which proved
to be feasible and does not produce much overhead. All these
advantages are also available for legacy applications.

3. Migration: The OpenNetInf prototype runs on top of IP. It
can support different data transfer protocols like HTTP and
FTP (and others like BitTorrent can easily be integrated) as a
result of the flexible data transfer concept. Both aspects are cru-
cial for migration and simplify future extensibility. The name-
resolution-based two step approach offers many of the NetInf
advantages while requiring no changes in today’s underlying
network and transport layers, especially not in the routers. Sim-
ply adding NetInf functionality on the user-terminal side al-
ready provides benefits, e.g., in local and disconnected network
scenarios. Adding a name resolution infrastructure and in-net-
work caches significantly extends these advantages. Both can be
added gradually. Most importantly, the current Internet infras-
tructure can coexist and can be used in an information-centric
way as well as in today’s host-centric way.

4. Application development: Due to the RESTful HTTP API, migra-
tion is also simplified at the application level. The API can be
used by legacy applications out of the box and development
of new applications is fostered as the HTTP-based API is well
understood by today’s application developers. The API also
proved to be generic enough for a wide variety of very different
applications, ranging from video streaming to context-aware

156 prototyping

real-world browser applications. The NetInf concepts are also
appropriate for smartphones, which have different application
development models and lower performance.

5. Feasibility to extend the core NetInf architecture: The additional
services (search and event notification) have demonstrated to
be helpful in several use cases. They have further simplified
and sped up application development. At the same time, we
have found no explicit need to closer integrate these additional
services with the NetInf infrastructure. The integration via the
API and N2N interface seems to be sufficient and is flexible with
respect to future advancements.

The OpenNetInf code is available at http://www.netinf.org, in-
cluding a detailed documentation [146].

http://www.netinf.org

7
C O N C L U S I O N A N D F U T U R E W O R K

This chapter is based on work published in references [2, 3, 4].

This chapter concludes this thesis with a discussion of deployment
considerations, a summary and implications discussion, and future
work items.

7.1 deployment

Independent of the specific architectural approach, it is important to
consider deployment and the migration path from today’s Internet to
an ICN architecture for the ICN idea in general to be successful. We
consider five types of actors that influence deployment:

• end users (private persons or organizations)

• access network operators that provide network access service to
end users

• connectivity network operators that provide connectivity for other
operators

• content or service providers

• application developers

These definitions are deliberately stereotyped and merely serve to
make the following discussion a bit clearer. The main aspects dis-
cussed here remain intact when players take on a mixed role as is
common in reality.

Both end users and application developers have to adopt the ICN
approach to make it successful. Both actors would experience sig-
nificant advantages in a successful information-centric network, like
increased content availability, improved network performance, and
a simplified API that better matches many of today’s information-
centric applications. At the same time, no significant investment is
required by either actor. On the end user side, an ICN architec-
ture might demand some storage and bandwidth resources. How-
ever, these are readily available and users are already accustomed to
sharing these resources, e.g., for today’s P2P applications.

To benefit from the full potential of an ICN architecture, the net-
work operators’ involvement is important. Network operators need

157

158 conclusion and future work

an incentive to start deploying the network functionality of an informa-
tion-centric network. This functionality boils down to two/three
main network components: in-network caching of data objects, name
resolution, and potentially forwarding/routing.

We believe that the access network operators are the critical ac-
tors here. Access network operators get their revenue from their
end users. They have to pay for their own network infrastructure
to handle intra-domain traffic and connectivity network operators for
inbound and outbound traffic that their users generate. The fee de-
pends on the capacity of the link and/or the volume of traffic in both
directions. Consequently, access operators have significant incentives
to deploy ICN technology because its caching functionality will re-
duce the intra-domain and inter-domain traffic volume and, hence,
their cost. However, there is a new cost incurred by this deployment,
since in-network storage for performing ICN caching is typically not
part of operators’ network equipment today. The question is whether
this investment cost is low enough to motivate deployment.

The relationship and the resulting incentive structure between ac-
cess network operators and connectivity network operators as well as
among connectivity operators is more complex. Nowadays, there is
an ongoing struggle between network providers who is paying whom
for inbound and outbound traffic. The payment flow heavily depends
on the power balance between the actors. In any case, the party
that has to pay for the incoming traffic has an incentive to deploy
ICN caching to reduce their traffic costs. However, cache deployment
will consequently change the power balance between the players and
could lead to new power struggles and legal disputes such as legality
of serving copyrighted content from caches. To prevent such strug-
gles from hindering a widespread ICN adoption, it is important that
new business models are negotiated among the different actors that
reflect the new situation.

Likewise, there is currently a struggle between access network pro-
viders and content/service providers where the former group wants
a share of the latter’s revenue in order to finance the investment in
network equipment. ICN might be an opportunity to introduce new
business models resolving this tussle. Today, large content providers
have to pay CDN operators for serving their content. The content-
provider’s in-house equipment simply does not suffice for popular
sites and content. The content providers are, thus, indirectly pay-
ing for the investment in CDN caches within the access operators’
networks. In an information-centric network, separate CDN caches
would become superfluous because caching is performed directly by
the access operators, which would facilitate new business models be-
tween access operators and content/service providers. At the same
time, it is clearly infeasible for a content/service provider to have

7.2 summary and implications 159

agreements with all access operators for using their caches, which
might provide new opportunities for current CDN operators.

7.2 summary and implications

ICN is a promising paradigm that offers significant advantages for a
wide variety of scenarios. It has the potential to resolve many prob-
lems with today’s large-scale information distribution, which is cur-
rently dominated by rapidly increasing video traffic. In addition, ICN
is beneficial to all applications and network interactions that can be
modeled after the paradigm of providing access to NDOs as a first-
class networking service. This includes, e.g., ad hoc communication
in challenged environments with intermittent connectivity.

ICN puts accessing named data objects, name-based routing and
name resolution, in-network storage, and data object security into
the thin waist of the network’ hour glass – removing the need for
application-specific overlays in many scenarios. This enables more
efficient network communication and enables operators to manage
data transport much better, e.g., resulting in significantly reduced
inter-domain traffic.

As described in this thesis, the NetInf architecture combines some
distinctive functionality into a unique information-centric network ar-
chitecture. This mainly includes the naming and security model with
a unique set of features that does not rely on a PKI for the basic se-
curity features, the flexible object model, the hybrid object retrieval
method based on name resolution and name-based routing, flexibil-
ity to scale to very different network environments, and support for
on-path as well as off-path caching, including peer nodes.

In this thesis, I have described the overall NetInf architecture and
selected components with a focus on the secure naming scheme and
the hierarchical name resolution framework (including a DNS traffic
analysis). Secure naming is a key enabler for the overall NetInf ar-
chitecture as it allows to access any available copy without requiring
trust in the data source. The name resolution approach is especially
important in the migration phase (and beyond) as it allows to run
NetInf as an overlay without requiring changes to the underlying net-
work protocols, thereby simplifying deployment.

I have evaluated the NetInf architecture and its components in sev-
eral ways as shown in Figure 52. Especially, I have evaluated the fea-
sibility of critical components, including the naming scheme, caching,
and several NRS systems via prototyping, and have done multiple dif-
ferent performance evaluations of the NRS component. In addition,
I have evaluated the feasibility of the overall NetInf architecture via
prototyping of the overall architecture in combination with several
ICN applications and have evaluated the performance of the overall
architecture in media distribution and video streaming scenarios.

160 conclusion and future work

Evaluation

Performance

Proof of Concept

Components Overall System

5.7 - MDHT & HSkip
scalability analysis

5.8 - MDHT & HSkip
simulation

5.6 - MDHT & HSkip
node perf. analysis

6.4 - OpenNetInf
media distribution

evaluation

6.3.1 - High-level perf.
benefits in video
streaming appl.

6.2 - Overall
NetInf architecture prototype

6.3.2 -
InBird
appl.

6.3.2 -
InFox appl.

6.3.3 -
AugNet appl.

6.3.3 - Context-
aware appl.

3.4 - Naming scheme
prototype

5.3.2 & 6.4 -
MDHT prototype

6.2.5 -
In-network & peer-side

cache prototype

6.2.4 -
Local & P2P

NRS prototype

4 - DNS
analysis

2.2.8 -
P2P

search
simulation

5.5 - P2P
load bal.

simulation

Figure 52: Evaluation overview. The numbers indicate the sections of this
thesis where details can be found. Light boxes (number 2.2.8 and
5.5) indicate evaluations that are only summarized in this thesis.

For a global deployment, scalability of the NRS is especially crit-
ical for NetInf. The analysis and simulation results indicate that
the proposed NetInf NRS solutions, specifically MDHT and HSkip,
provide a scalable solution that can handle more than 1015 NDOs
while keeping resolution latency (well) below 100 ms. These results
are supported by the neighborhood effect as evaluated in this the-
sis. The combination of these results and my other feasibility and
performance evaluations indicate that the Network of Information ar-
chitecture is feasible on a large scale and should yield the promised
advantages.

7.3 future work

Naturally, there are still interesting questions to look into and hard
problems to address for the ICN ideas in general and the NetInf ar-
chitecture specifically to become deployed and used on a wider scale:

ndo aggregation The number of named data objects is vastly
larger than the number of hosts in the current Internet, which means

7.3 future work 161

that any ICN routing and name resolution system has a harder job
compared to today’s global IP routing and DNS name resolution.
Although our NRS analysis and simulation results are promising,
additional improvements of the NRS scalability might be required.
These improvements can be achieved, e.g., via NDO aggregation (e.g.,
based on explicit aggregation [7]) that reduces the number of NDO
entries to be stored in the NRS, improves cachability of NDO en-
tries in the NRS, and reduces the number of resolution requests and
consequently the load at NRS nodes. Besides name resolution, sim-
ilar aggregation possibilities should also be investigated for NetInf’s
name-based routing approach.

routing NetInf can support multiple routing protocols in paral-
lel, e.g., routing protocols for edge domains and a routing protocol
for the default-free zone. NetInf defines the guidelines and general
conditions for these routing protocols, including protocol messages
at the inter-domain level for registering new routing information and
guidelines where to store routing state (i.e., in routers and/or in la-
bel stacks). However, more experiments are needed and more con-
crete (name-based) routing protocols have to be implemented in the
future, with a focus on performance and scalability. Moreover, the
integration of name-based routing and name resolution is interesting
to investigate in more depth.

transport performance NetInf’s convergence layer allows for
inter-connecting different types of networks into a single ICN. With
underlays providing really different communication services (from
uni-directional, opportunistic message forwarding to flow- and con-
gestion-controlled higher-layer communication services; from delay-
challenged to high-speed optical backbone networks), the interaction
of NetInf transport functions with CL transport functions is interest-
ing to investigate.

interactive real-time communication The concepts of ac-
cessing named data objects and in-network caching in NetInf and
ICN in general almost intuitively provide benefits for applications
that are based on delivering requested named data objects. It is an
interesting research question how far ICN can be taken to support
different types of applications, especially those where the notion of
one request – one data object does not hold or is not practical. Some
of those applications such as voice over IP (VoIP) today employ a
session abstraction and explicit session initiation transactions. Limits
and extension possibilities for NetInf have to be investigated in this
regard.

162 conclusion and future work

dynamic data Currently, the focus of NetInf lies on static data
such as large video files as the largest immediate benefits can be ex-
pected here. However, it is interesting to investigate how to apply the
NetInf concepts to dynamic data such as frequently changing web
pages. The NetInf secure naming concept does already work for dy-
namic data. However, consistent concepts for other aspects such as
versioning, potential synchronization of distributed copies, etc. are
needed to fully allow dynamic data to benefit from the NetInf advan-
tages.

access control A global network where anybody has access to
any published data object is not likely to prevail. Hence, the possi-
bilities to apply access control concepts to NetInf and limit the pub-
lication scope of objects have to be investigated in more detail, e.g.,
leveraging NRS extensions. Likewise, encryption of NDO informa-
tion can help to address this problem.

privacy Requests for content are visible to the ICN network, re-
sulting in a possibly worse privacy situation compared to today. On
the other hand, it might not be possible to relate a request to a particu-
lar person. The privacy issues need to be investigated in more detail
in order to understand the full consequences and to find means to
mitigate them.

security An in-depth security analysis of the overall NetInf ar-
chitecture and its components, which is not the focus of this thesis, is
required in order to evaluate the relevant security goals and potential
threads for NetInf. The security considerations discussed in this the-
sis, especially related to object naming, can serve as a starting point
for a more thorough security analysis.

legal issues Ubiquitous caching probably does not sound too
appealing for some content owners, who fear that their content can
be illegally spread. The ongoing public copyright discussion can be
helpful to find suitable solutions. Such solutions can potentially be
based on a combination of new technical mechanisms and evolving
laws and regulation, with the goal to provide a solution that is accept-
able for all involved parties.

deployment The incentives for all involved players have to be
clearly communicated to foster deployment. It can be supported by
standardizing central ICN aspects (as we have already started, e.g.,
for our naming concept [28]). NetInf’s ability to grow from the edges,
i.e., supporting incremental deployment, should also simplify deploy-
ment.

B I B L I O G R A P H Y

[1] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig, “Web
content cartography,” in Internet Measurement Conference (IMC
’11). ACM, November 2011. (Cited on pages xvi, 88, and 89.)

[2] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and
B. Ohlman, “A survey of information-centric networking,”
IEEE Communications Magazine, vol. 50, no. 7, pp. 26–36, July
2012. (Cited on pages 1, 17, 22, and 157.)

[3] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren,
and H. Karl, “Network of information (NetInf) – An
information-centric networking architecture,” Computer Com-
munications, vol. 36, no. 7, pp. 721–735, April 2013. (Cited on
pages 1, 11, 17, 22, 23, and 157.)

[4] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and
B. Ohlman, “A survey of information-centric networking
(draft),” in Information-Centric Networking, ser. Dagstuhl Semi-
nar Proceedings, B. Ahlgren, H. Karl, D. Kutscher, B. Ohlman,
S. Oueslati, and I. Solis, Eds., no. 10492. Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, Germany,
2011. (Cited on pages 1, 17, 22, and 157.)

[5] Cisco Systems, Inc., “Entering the zettabyte era,” white paper,
June 2011. (Cited on pages 1 and 140.)

[6] ——, “Cisco visual networking index: Global mobile data traf-
fic forecast update,” white paper, February 2012. (Cited on
page 2.)

[7] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and
S. Shenker, “Naming in content-oriented architectures,” in Proc.
ACM SIGCOMM Workshop on Information-Centric Networking.
New York, NY, USA: ACM, 2011, pp. 1–6. (Cited on pages 6,
11, 24, 25, 46, 49, and 161.)

[8] W. Chai, N. Wang, I. Psaras, G. Pavlou, C. Wang, G. De Blas,
F. Salguero, L. Liang, S. Spirou, A. Beben, and et al., “CURL-
ING: Content-ubiquitous resolution and delivery infrastructure
for next-generation services,” IEEE Communications Magazine,
vol. 49, no. 3, pp. 112–120, 2011. (Cited on pages 7 and 44.)

[9] K. Fall, “A delay-tolerant network architecture for challenged
internets,” in SIGCOMM ’03: Proc. Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications. New
York, NY, USA: ACM Press, 2003, pp. 27–34. (Cited on page 10.)

163

164 bibliography

[10] C. Perkins, “IP Mobility Support,” RFC 2002 (Proposed
Standard), Internet Engineering Task Force, Oct. 1996,
obsoleted by RFC 3220, updated by RFC 2290. (Cited on
pages 11 and 28.)

[11] D. R. Cheriton and M. Gritter, “TRIAD: A new next-generation
Internet architecture,” project web page: http://www-
dsg.stanford.edu/triad/, July 2000. (Cited on pages 11 and 43.)

[12] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H.
Kim, S. Shenker, and I. Stoica, “A data-oriented (and beyond)
network architecture,” in Proc. Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications (SIGCOMM
’07). New York, NY, USA: ACM Press, 2007, pp. 181–192. (Cited
on pages 11, 43, 66, and 154.)

[13] A. Ghodsi, T. Koponen, B. Raghavan, S. Shenker, A. Singla, and
J. Wilcox, “Information-centric networking: Seeing the forest
for the trees,” in Proc. 10th ACM Workshop on Hot Topics in Net-
works (HotNets-X). ACM Press, Nov. 2011. (Cited on pages 11

and 46.)

[14] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs,
and R. L. Braynard, “Networking named content,” in Proc.
5th ACM Conf. Emerging Networking EXperiments and Technolo-
gies (ACM CoNEXT), Rome, Italy, December 2009. (Cited on
pages 11 and 66.)

[15] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton,
D. K. Smetters, B. Zhang, G. Tsudik, kc claffy, D. Krioukov,
D. Massey, C. Papadopoulos, T. Abdelzaher, L. Wang,
P. Crowley, and E. Yeh, “Named data networking (NDN)
project,” PARC, Tech. Rep. NDN-0001, October 2010. (Cited on
pages 11 and 43.)

[16] M. Ain, D. Trossen, P. Nikander, S. Tarkoma, K. Visala,
K. Rimey, T. Burbridge, J. Rajahalme, J. Tuononen, P. Jokela,
J. Kjällman, J. Ylitalo, J. Riihijärvi, B. Gajic, G. Xylomenos,
P. Savolainen, and D. Lagutin, “D2.3 – Architecture defini-
tion, component descriptions, and requirements,” Deliverable,
PSIRP 7th FP EU-funded project, February 2009. (Cited on
pages 11 and 44.)

[17] D. Trossen, G. Parisis, B. Gajic, J. Riihijärvi, P. Flegkas, P. Saro-
lahti, P. Jokela, X. Vasilakos, C. Tsilopoulos, S. Arianfar, and
M. Reed, “D2.3 – Architecture definition, components descrip-
tions and requirements,” Deliverable, PURSUIT, 7th FP EU-
funded project, October 2011. (Cited on page 11.)

bibliography 165

[18] B. Ahlgren, M. D’Ambrosio, C. Dannewitz, A. Eriksson,
J. Golic, B. Grönvall, D. Horne, A. Lindgren, O. Mämmelä,
M. Marchisio, J. Mäkelä, S. Nechifor, B. Ohlman, K. Pentikousis,
S. Randriamasy, T. Rautio, E. Renault, P. Seittenranta,
O. Strandberg, P. Talaba, V. Vercellone, and D. Zeghlache,
“Second netinf architecture description (D.6.2),” Deliverable,
4WARD 7th FP EU-funded project, January 2010. (Cited on
page 11.)

[19] B. Ahlgren, M. D’Ambrosio, E. Davies, A. E. Eriksson, S. Far-
rell, B. Grönvall, C. Imbrenda, B. Kauffmann, G. Kunzmann,
D. Kutscher, A. Lindgren, I. Marsh, L. Muscariello, B. Ohlman,
K.-A. Persson, P. Pöyhönen, M. Shehada, D. Staehle, O. Strand-
berg, J. Tuononen, and V. Vercellone, “Content delivery and op-
erations (D.B.2),” Deliverable, SAIL 7th FP EU-funded project,
May 2012. (Cited on pages 11, 25, 35, 37, 40, and 46.)

[20] A. Eriksson and B. Ohlman, “Dynamic internetworking based
on late locator construction,” in 10th IEEE Global Internet Sym-
posium, May 2007. (Cited on pages 16 and 28.)

[21] C. Dannewitz, “NetInf: An information-centric design for the
future Internet,” in Proc. 3rd GI/ITG KuVS Workshop on The Fu-
ture Internet, Munich, Germany, May 2009. (Cited on pages 17

and 23.)

[22] B. Ahlgren, M. D’Ambrosio, C. Dannewitz, M. Marchisio,
I. Marsh, B. Ohlman, K. Pentikousis, R. Rembarz, O. Strand-
berg, and V. Vercellone, “Design considerations for a network
of information,” in Proc. Workshop on Re-Architecting the Internet
(ReArch), Spain, December 2008. (Cited on pages 17 and 23.)

[23] C. Dannewitz, K. Pentikousis, R. Rembarz, E. Renault,
O. Strandberg, and J. Ubillos, “Scenarios and research issues
for a network of information,” in Proc. 4th Int. Mobile Multime-
dia Communications Conference, Oulu, Finland, July 2008. (Cited
on pages 17, 23, and 137.)

[24] C. Dannewitz, T. Biermann, M. Dräxler, and H. Karl, “Complex
queries in P2P networks with resource-constrained devices,”
Journal of Advances in Information Technology (JAIT) – Special Is-
sue on Advances in P2P Technology, vol. 02, no. 01, pp. 02–14,
January 2011. (Cited on pages 17, 23, and 42.)

[25] T. Biermann, C. Dannewitz, and H. Karl, “An adaptive re-
source/performance trade-off for resolving complex queries in
P2P networks,” in Proc. IEEE International Conference on Com-
munications (ICC), Dresden, Germany, June 2009. (Cited on
pages 17, 23, and 42.)

166 bibliography

[26] ——, “Extended results on an adaptive resource/performance
trade-off for resolving complex queries in P2P networks,” Uni-
versity of Paderborn, Paderborn, Germany, Tech. Rep. TR-RI-
08-294, October 2008. (Cited on pages 17, 23, and 42.)

[27] C. Dannewitz, J. Golic, B. Ohlman, and B. Ahlgren, “Secure
naming for a network of information,” in Proc. 13th IEEE Global
Internet Symposium 2010 (in conjunction with IEEE INFOCOM),
San Diego, USA, March 2010. (Cited on pages 18 and 55.)

[28] S. Farrell, D. Kutscher, C. Dannewitz, B. Ohlman, A. Keranen,
and P. Hallam-Baker, “Naming Things with Hashes,” RFC 6920

(Proposed Standard), Internet Engineering Task Force, Apr.
2013. (Cited on pages 18, 33, 41, 55, 65, 69, 141, 142, and 162.)

[29] H. Song, N. Zong, Y. Yang, and R. Alimi, “Decoupled
application data enroute (DECADE) problem statement,”
Network Working Group Internet-Draft, October 2009. (Cited
on pages 19 and 68.)

[30] B. Ohlman, O. Strandberg, C. Dannewitz, A. Lindgren,
R. Maglione, and B. Ahlgren, “Requirements for accessing data
in network storage,” IETF Internet Draft draft-ohlman-decade-
add-use-cases-reqs-02, October 2010. (Cited on pages 19, 55,
and 68.)

[31] Y. Zhang, N. Zong, G. Camarillo, R. Yang, and V. Pas-
cual, “Problem statement and requirements of peer-to-peer
streaming,” Internet Draft, February 2012. (Cited on pages 19

and 68.)

[32] C. Dannewitz, T. Rautio, O. Strandberg, and B. Ohlman,
“Secure naming structure and p2p application interaction,”
IETF Internet-Draft draft-dannewitz-ppsp-secure-naming-02,
March 2011. (Cited on pages 19, 55, and 68.)

[33] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Constrained
application protocol (CoAP),” IETF Internet draft draft-ietf-
core-coap-09, March 2012. (Cited on pages 19 and 68.)

[34] C. Dannewitz, H. Karl, and A. Yadav, “Report on locality in
DNS requests – Evaluation and impact on future Internet archi-
tectures,” University of Paderborn, Paderborn, Germany, Tech.
Rep. TR-RI-12-323, July 2012. (Cited on pages 19 and 71.)

[35] C. Dannewitz, M. D’Ambrosio, and V. Vercellone, “Hierarchical
DHT-based name resolution for information-centric networks,”
Computer Communications, vol. 36, no. 7, pp. 736–749, April 2013.
(Cited on pages 20 and 93.)

bibliography 167

[36] M. D’Ambrosio, C. Dannewitz, H. Karl, and V. Vercel-
lone, “MDHT: A hierarchical name resolution service for
information-centric networks,” in Proc. ACM SIGCOMM Work-
shop on Information-centric Networking. New York, NY, USA:
ACM, August 2011, pp. 7–12. (Cited on pages 20 and 93.)

[37] D. Warneke and C. Dannewitz, “Load balancing in P2P net-
works: Using statistics to fight data and execution skew,” Jour-
nal of Advances in Information Technology (JAIT) – Special Issue
on Advances in P2P Technology, vol. 02, no. 01, pp. 40–49, 2011.
(Cited on pages 21, 93, and 112.)

[38] ——, “Statistics-based ID management for load balancing in
structured P2P networks,” in Proc. 34th IEEE Conference on Local
Computer Networks (LCN). Zürich, Switzerland: IEEE, October
2009. (Cited on pages 21, 93, and 112.)

[39] C. Dannewitz, T. Biermann, M. Dräxler, F. Beister, and H. Karl,
“Prototyping with the Future Internet Toolbox,” in Proc. 6th
Testbeds and Research Infrastructures for the Development of Net-
works & Communities (TridentCom), May 2010. (Cited on pages 21

and 133.)

[40] T. Biermann, C. Dannewitz, and H. Karl, “FIT: Future Internet
Toolbox,” in Proc. 6th Testbeds and Research Infrastructures for the
Development of Networks & Communities (TridentCom), May 2010.
(Cited on pages 21, 133, and 134.)

[41] ——, “FIT: Future Internet Toolbox — extended report,” Uni-
versity of Paderborn, Paderborn, Germany, Tech. Rep. TR-RI-
10-311, Feb. 2010. (Cited on pages 21 and 133.)

[42] C. Dannewitz, “Augmented Internet: An information-centric
approach for real-world/Internet integration,” in Proc. Int.
Workshop on the Network of the Future (in conjunction with IEEE
ICC), June 2009. (Cited on pages 21, 133, and 146.)

[43] C. Dannewitz, H. Karl, and D. Warneke, “Service platform for
real-world/Internet integration in mobile applications,” in Proc.
13. Mobilfunktagung, Osnabrück, Germany, May 2008. (Cited on
pages 21, 133, and 146.)

[44] C. Dannewitz, M. Herlich, and H. Karl, “OpenNetInf – Pro-
totyping an information-centric network architecture,” in Proc.
IEEE LCN – Workshop on Architectures, Services and Applica-
tions for the Next Generation Internet (WASA-NGI), October 2012.
(Cited on pages 21 and 133.)

[45] C. Dannewitz and T. Biermann, “Prototyping a network of in-
formation,” in Demonstrations – IEEE Local Computer Networks
(LCN), Zurich, Switzerland, 2009. (Cited on pages 21 and 133.)

168 bibliography

[46] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden, “Tussle
in cyberspace: Defining tomorrow’s Internet,” in Proc. Applica-
tions, Technologies, Architectures, and Protocols for Computer Com-
munications (SIGCOMM). New York, NY, USA: ACM Press,
2002, pp. 347–356. (Cited on page 25.)

[47] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst,
K. Scott, K. Fall, and H. Weiss, “Delay-Tolerant Networking
Architecture,” RFC 4838 (Informational), Internet Engineering
Task Force, Apr. 2007. (Cited on pages 25 and 46.)

[48] J. Seedorf and E. Burger, “Application-layer traffic optimization
(ALTO) problem statement,” RFC 5693, October 2009. (Cited on
pages 38, 46, and 129.)

[49] H. Xie, A. Krishnamurthy, A. Silberschatz, and Y. R. Yang, “P4P:
Explicit communications for cooperative control between P2P
and network providers,” P4PWG whitepaper, May 2007. (Cited
on pages 38, 46, and 129.)

[50] A. Eriksson and B. Ohlman, “Scalable object-to-object commu-
nication over a dynamic global network,” in Proc. Future Net-
work and MobileSummit 2010, June 2010. (Cited on pages 39

and 52.)

[51] M. Cai, M. Frank, J. Chen, and P. Szekely, “MAAN: A multi-
attribute addressable network for grid information services,”
in Proc. Fourth International Workshop on Grid Computing (GRID
’03). Washington, DC, USA: IEEE Computer Society, 2003, p.
184. (Cited on page 42.)

[52] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs,
and R. Braynard, “Networking named content,” Comm. ACM,
vol. 55, pp. 117–124, Jan. 2012. (Cited on page 43.)

[53] “PURSUIT – publish–subscribe Internet technology,”
http://www.fp7-pursuit.eu/. (Cited on page 44.)

[54] “Content-oriented networking: A new experience for content
transfer (connect),” http://www.anr-connect.org/. (Cited on
page 44.)

[55] S. Salsano, A. Detti, G. Tropea, N. B. Melazzi, L. Chiariglione,
H. Castro, A.-C. Anadiotis, A. Mousas, C. Patrikakis, T. Hueb-
ner, M. Tanase, L. Corlan, P. Gkonis, J. Ribas, and D. Sequeira,
“Convergence project – system architecture,” EU project deliv-
erable D3.2, July 2011. (Cited on page 44.)

[56] “Content Aware Searching retrieval and sTreaming (COAST),”
http://www.coast-fp7.eu/. (Cited on page 44.)

bibliography 169

[57] M. Xu, Z. Ming, D. Li, and C. Xia, “SIONA: A service and infor-
mation oriented network architecture,” Proc. AsiaFI Summer
School, August 2011. (Cited on page 44.)

[58] “COntent Mediator architecture for content-aware nETworks
(COMET),” http://www.comet-project.org. (Cited on page 44.)

[59] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado,
A. Mukundan, W. Wu, A. Akella, D. G. Andersen, J. W. Byers,
S. Seshan, and P. Steenkiste, “XIA: Efficient support for evolv-
able internetworking,” in Proc. 9th USENIX NSDI, San Jose, CA,
2012. (Cited on page 44.)

[60] K. Katsaros, G. Xylomenos, and G. C. Polyzos, “MultiCache:
An overlay architecture for information-centric networking,”
Computer Networks, vol. 55, no. 4, pp. 936–947, March 2010.
(Cited on page 45.)

[61] A. Rowstron and P. Druschel, “Pastry: Scalable, decentral-
ized object location and routing for large-scale peer-to-peer sys-
tems,” in Proc. IFIP/ACM Conference on Distributed Systems Plat-
forms, Nov. 2001, pp. 329–350. (Cited on pages 45 and 129.)

[62] M. Castro, P. Druschel, A. M. Kermarrec, and A. I. T. Rowstron,
“Scribe: A large-scale and decentralized application-level mul-
ticast infrastructure,” IEEE Journal on Selected Areas in Communi-
cations, vol. 20, no. 8, pp. 1489–1499, 2002. (Cited on page 45.)

[63] S. Paul, “Postcards from the edge: A cache and forward ar-
chitecture for the future Internet,” in 2nd COST-NSF Workshop
on Future Internet (NeXtWorking), Berlin, April 2007. (Cited on
page 45.)

[64] L. Dong, H. Liu, Y. Zhang, S. Paul, and D. Raychaudhuri, “On
the cache-and-forward network architecture,” in Proc. IEEE Con-
ference on Communications (ICC’09). Piscataway, NJ, USA: IEEE
Press, 2009, pp. 2119–2123. (Cited on page 45.)

[65] A. Carzaniga and A. L. Wolf, “Content-based networking: A
new communication infrastructure,” in NSF Workshop on an In-
frastructure for Mobile and Wireless Systems, ser. Lecture Notes in
Computer Science, no. 2538. Scottsdale, Arizona: Springer-
Verlag, October 2001, pp. 59–68. (Cited on page 45.)

[66] A. Carzaniga, M. Papalini, and A. L. Wolf, “Content-based pub-
lish/subscribe networking and information-centric network-
ing,” in Proc. ACM SIGCOMM Workshop on Information-Centric
Networking (ICN-2011), Toronto, Canada, Aug. 2011, pp. 56–61.
(Cited on page 45.)

170 bibliography

[67] A. Carzaniga, “Architectures for an event notification service
scalable to wide-area networks,” Ph.D. dissertation, Politecnico
di Milano, Milano, Italy, Dec. 1998. (Cited on pages 46 and 140.)

[68] J. Greifenberg and D. Kutscher, “Efficient publish/subscribe-
based multicast for opportunistic networking with self-
organized resource utilization,” in Proc. First IEEE International
Workshop on Opportunistic Networking, 2008. (Cited on page 46.)

[69] J. Su, J. Scott, P. Hui, J. Crowcroft, E. De Lara, C. Diot, A. Goel,
M. H. Lim, and E. Upton, “Haggle: Seamless networking for
mobile applications,” in Proc. Conference on Ubiquitous Comput-
ing (UbiComp ’07). Berlin, Heidelberg: Springer-Verlag, 2007,
pp. 391–408. (Cited on page 46.)

[70] D. Trossen and A. Kostopoulos, “Exploring the tussle space for
information-centric networking,” in Proc.- 39th Research Confer-
ence on Communication, Information and Internet Policy (TPRC),
Arlington, Sep. 2011. (Cited on page 46.)

[71] D. Trossen, M. Särelä, and K. R. Sollins, “Arguments for
an information-centric internetworking architecture,” Computer
Communication Review, vol. 40, no. 2, pp. 26–33, 2010. (Cited on
page 46.)

[72] Y. Wang, K. Lee, B. Venkataraman, R. L. Shamanna, I. Rhee,
and S. Yang, “Advertising cached contents in the control plane:
Necessity and feasibility,” in Proc. Workshop on Emerging Design
Choices in Name-Oriented Networking (in conjunction with IEEE
INFOCOM), Orlando, USA, March 2012. (Cited on page 46.)

[73] I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and G. Pavlou,
“Modelling and evaluation of CCN-caching trees,” in Proc. 10th
Conference on Networking – Volume Part I (NETWORKING’11).
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 78–91. (Cited
on page 46.)

[74] L. Muscariello, G. Carofiglio, and M. Gallo, “Bandwidth and
storage sharing performance in information centric network-
ing,” in Proc. ACM SIGCOMM Workshop on Information-Centric
Networking (ICN ’11). New York, NY, USA: ACM, 2011, pp.
26–31. (Cited on page 46.)

[75] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Mod-
eling data transfer in content-centric networking,” in Proc. Tele-
traffic Congress (ITC ’11). ITCP, 2011, pp. 111–118. (Cited on
page 46.)

[76] J. Rajahalme, M. Särelä, P. Nikander, and S. Tarkoma,
“Incentive-compatible caching and peering in data-oriented net-

bibliography 171

works,” in Proc. ACM CoNEXT Conference – ReArch Workshop,
December 2008. (Cited on page 46.)

[77] G. Carofiglio, M. Gallo, and L. Muscariello, “ICP: Design and
evaluation of an interest control protocol for content-centric net-
working,” in Proc. IEEE INFOCOM Workshop on Emerging De-
sign Choices in Name-Oriented Networking, Orlando, USA, March
2012. (Cited on page 46.)

[78] S. Oueslati, J. Roberts, and N. Sbihi, “Flow-aware traffic control
for a content-centric network,” in Proc. IEEE INFOCOM, 2012.
(Cited on page 46.)

[79] J. Rajahal, M. Särelä, K. Visala, and J. Riihijärvi, “On name-
based inter-domain routing,” Computer Networks, vol. 55, pp.
975–986, March 2011. (Cited on page 46.)

[80] S. DiBenedetto, C. Papadopoulos, and D. Massey, “Routing
policies in named data networking,” in Proc. ACM SIGCOMM
Workshop on Information-Centric Networking (ICN ’11). New
York, NY, USA: ACM, 2011, pp. 38–43. (Cited on page 46.)

[81] M. Baugher, B. Davie, A. Narayanan, and D. Oran, “Self-
verifying names for read-only named data,” in Proc. Workshop
on Emerging Design Choices in Name-Oriented Networking, 2012.
(Cited on page 46.)

[82] Privacy and Security Working Group, “Identity in an
information-centric Internet,” White paper, CFP Privacy and
Security Working Group, MIT, April 2008. (Cited on page 46.)

[83] H. S. Jeon, I. S. Choi, B. J. Lee, and H. Y. Song, “A closer look
at content-centric internet research projects,” in Proc. Advanced
Communication Technology (ICACT), 2012, pp. 698–702. (Cited on
page 46.)

[84] A. Baid, T. Vu, and D. Raychaudhuri, “Comparing alternative
approaches for networking of named objects in the future
Internet,” in Proc. Computer Communications – NOMEN
workshop, March 2012. (Cited on page 46.)

[85] J. Choi, J. Han, E. Cho, T. Kwon, and Y. Choi, “A survey
on content-oriented networking for efficient content delivery,”
IEEE Communications Magazine, vol. 49, pp. 121–127, March
2011. (Cited on page 46.)

[86] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar,
and P. Nikander, “LIPSIN: Line Speed Publish/Subscribe Inter-
Networking,” ACM SIGCOMM Computer Communication Re-
view, vol. 39, no. 4, pp. 195–206, 2009. (Cited on pages 48

and 154.)

172 bibliography

[87] M. D’Ambrosio, P. Fasano, M. Marchisio, V. Vercellone, and
M. Ullio, “Providing data dissemination services in the future
Internet,” in Proc. World Telecommunications Congress (WTC’08)
(in conjunction with IEEE Globecom), New Orleans, LA, USA, De-
cember 2008. (Cited on pages 53 and 154.)

[88] N. Paskin, “Digital object identifier (DOI®) system,” in Ency-
clopedia of Library and Information Sciences, 3rd ed. Taylor &
Francis, 2010. (Cited on pages 56 and 67.)

[89] J. Katz and Y. Lindell, Introduction to Modern Cryptography: Prin-
ciples and Protocols, ser. CRC Cryptography and Network Secu-
rity Series, 1, Ed. Chapman & Hall, 2007. (Cited on page 58.)

[90] P. Hallam-Baker, R. Stradling, S. Farrell, D. Kutscher, and
B. Ohlman, “The named information (ni) URI scheme:
Parameters,” IETF Internet-Draft draft-hallambaker-decade-ni-
params-02, April 2012. (Cited on pages 65 and 69.)

[91] M. Nottingham and E. Hammer-Lahav, “Defining Well-Known
Uniform Resource Identifiers (URIs),” RFC 5785 (Proposed
Standard), Internet Engineering Task Force, Apr. 2010. (Cited
on pages 66 and 142.)

[92] R. L. Rivest and B. Lampson, “SDSI – A simple distributed secu-
rity infrastructure,” MIT, Tech. Rep., 1996. (Cited on page 66.)

[93] D. Mazières and M. F. Kaashoek, “Escaping the evils of central-
ized control with self-certifying pathnames,” in Proc. SIGOPS
European Workshop, 1998. (Cited on page 67.)

[94] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and
T. Ylonen, “SPKI Certificate Theory,” RFC 2693, IETF, Sept.
1999. (Cited on page 67.)

[95] M. Blaze, J. Feigenbaum, and A. D. Keromytis, “Keynote: Trust
management for public-key infrastructures,” in Proc. Security
Protocols International Workshop, vol. 1550. Cambridge, England:
Springer LNCS, 1998, pp. 59–63. (Cited on page 67.)

[96] S. Sun, L. Lannom, and B. Boesch, “IETF RFC 3650, handle
system overview,” November 2003. (Cited on page 67.)

[97] R. Moskowitz and P. Nikander, “Host Identity Protocol (HIP)
Architecture,” RFC 4423 (Informational), Internet Engineering
Task Force, May 2006. (Cited on page 67.)

[98] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “In-
ternet indirection infrastructure,” in Proc. ACM SIGCOMM, US,
August 2002. (Cited on page 67.)

bibliography 173

[99] B. Ahlgren, J. Arkko, L. Eggert, and J. Rajahalme, “A node iden-
tity internetworking architecture,” in Proc. 9th IEEE Global In-
ternet Symposium (in conjunction with IEEE INFOCOM), Spain,
April 2006. (Cited on page 67.)

[100] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy,
S. Shenker, I. Stoica, and M. Walfish, “A layered naming ar-
chitecture for the Internet,” in Proc. SIGCOMM, Oregon, USA,
2004. (Cited on page 67.)

[101] B. Zdrnja, N. Brownlee, and D. Wessels, “Passive monitoring of
DNS anomalies,” in Proc. Detection of Intrusions, Malware, and
Vulnerability Assessment (DIMVA), Lucerne, Switzerland, July
2007, pp. 129–139. (Cited on page 78.)

[102] T. McGregor, S. Alcock, and D. Karrenberg, “The RIPE
NCC internet measurement data repository,” in Proc. 11th
International Conference on Passive and Active Measurement,
ser. PAM’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp.
111–120. (Cited on page 87.)

[103] S. Castro, M. Zhang, W. John, D. Wessels, and k. claffy, “Un-
derstanding and preparing for DNS evolution ,” in Traffic Moni-
toring and Analysis Workshop (TMA), Zurich, Switzerland, April
2010, pp. 1–6. (Cited on page 87.)

[104] S. Castro, D. Wessels, M. Fomenkov, and k. claffy, “A Day at the
Root of the Internet,” ACM SIGCOMM Computer Communication
Review (CCR), no. 5, pp. 41–46, Oct 2008. (Cited on page 87.)

[105] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS perfor-
mance and the effectiveness of caching,” in Proc. 1st ACM SIG-
COMM Workshop on Internet Measurement (IMW). New York,
NY, USA: ACM Press, 2001, pp. 153–167. (Cited on page 87.)

[106] B. Ager, F. Schneider, J. Kim, and A. Feldmann, “Revisiting
cacheability in times of user generated content,” in Proc. INFO-
COM IEEE Conference on Computer Communications Workshops.
New York, NY, USA: IEEE, March 2010, pp. 1–6. (Cited on
page 87.)

[107] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan, “Measurement, modeling, and analysis
of a peer-to-peer file-sharing workload,” ACM SIGOPS Operat-
ing Systems Review, vol. 37, no. 5, pp. 314–329, December 2003.
(Cited on page 87.)

[108] P. McDaniel and S. Jamin, “A scalable key distribution hier-
archy,” University of Michigan. Department of Electrical En-
gineering and Computer Science, Tech. Rep., 1998. (Cited on
pages 87 and 89.)

174 bibliography

[109] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wol-
man, “SkipNet: A scalable overlay network with practical local-
ity properties,” in Proc.USENIX Symposium on Internet Technolo-
gies and Systems (USITS). Berkeley, CA, USA: USENIX Associ-
ation, 2003, p. 9. (Cited on pages 94, 104, 107, and 130.)

[110] F. Consulting, “ecommerce web site performance today – an
updated look at consumer reaction to a poor online shopping
experience,” online, September 2009. (Cited on page 94.)

[111] J. Gantz and D. Reinsel, “Extracting value from chaos,” White
paper, June 2011. (Cited on page 95.)

[112] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer
lookup protocol for Internet applications,” IEEE/ACM Transac-
tions on Networking, vol. 11, no. 1, pp. 17–32, February 2003.
(Cited on pages 102, 118, and 129.)

[113] G. S. Manku, “Balanced binary trees for ID management and
load balance in distributed hash tables,” in Proc. Twenty-Third
Annual ACM Symposium on Principles of Distributed Computing
(PODC ’04). New York, NY, USA: ACM, 2004, pp. 197–205.
(Cited on page 111.)

[114] P. Ganesan, B. Yang, and H. Garcia-Molina, “One torus to rule
them all: Multi-dimensional queries in P2P systems,” in Proc.
7th International Workshop on the Web and Databases (WebDB ’04).
New York, NY, USA: ACM, 2004, pp. 19–24. (Cited on pages 111

and 112.)

[115] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
caching and Zipf-like distributions: Evidence and implica-
tions,” in Proc. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM ’99), March
1999, pp. 126–134. (Cited on page 112.)

[116] S. Zhao, D. Stutzbach, and R. Rejaie, “Characterizing files in
the modern Gnutella network: A measurement study,” in Proc.
SPIE/ACM Multimedia Computing and Networking, San Jose, CA,
January 2006. (Cited on page 112.)

[117] Texas Memory Systems, Web source: http://www.ramsan.com,
last checked: June 2012. (Cited on page 113.)

[118] The Measurement Factory, “DNS sur-
vey,” Web source: http://dns.measurement-
factory.com/surveys/200810.html, October 2008, last checked:
June 2012. (Cited on page 113.)

bibliography 175

[119] H. Iinou, M. Zushi, H. Nishida, and K. Sato, “DNS query traffic
increase on caching DNS resolvers,” DNS-OARC Workshop,
Denver, October 2010. (Cited on page 113.)

[120] M. Steiner and E. W. Biersack, “Where is my peer? Evalua-
tion of the Vivaldi network coordinate system in Azureus,” in
Proc. 8th IFIP-TC 6 Networking Conference. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 145–156. (Cited on page 117.)

[121] S. Dröge, “Design and evaluation of a scalable information dis-
semination layer for information-centric networks,” Master’s
thesis, University of Paderborn, April 2011, supervised by C.
Dannewitz, H. Karl. (Cited on page 122.)

[122] J. Cho and H. Garcia-Molina, “Estimating frequency of change,”
ACM Transactions on Internet Technology (TOIT), vol. 3, no. 3, pp.
256–290, August 2003. (Cited on page 123.)

[123] A. Dandoush, S. Alouf, and P. Nain, “Lifetime and avail-
ability of data stored on a P2P system: Evaluation of recov-
ery schemes,” INRIA, Research Report RR-7170, January 2010.
(Cited on page 123.)

[124] L. O. Walters, “A Web browsing workload model for simula-
tion,” Ph.D. dissertation, University of Cape Town, May 2004.
(Cited on page 124.)

[125] A. Williams, M. Arlitt, C. Williamson, and K. Barker, Web Work-
load Characterization: Ten Years Later. Springer, 2005, ch. 1, pp.
3–22. (Cited on page 124.)

[126] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for
service deployment,” IEEE Journal on Selected Areas in Communi-
cations, vol. 22, no. 1, pp. 41–53, Jan 2004. (Cited on page 129.)

[127] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and
S. Shenker, “A scalable content-addressable network,” in Proc.
Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (SIGCOMM). San Diego, California,
United States: ACM Press, 2001, pp. 161–172. (Cited on
page 129.)

[128] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer
information system based on the XOR metric,” in Proc. Work-
shop on Peer-to-peer Systems, ser. LNCS, MIT. London, UK:
Springer, March 2002, pp. 53–65. (Cited on page 129.)

[129] V. Ramasubramanian and E. G. Sirer, “The design and imple-
mentation of a next generation name service for the Internet,”

176 bibliography

in Proc. Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM). New York, NY, USA:
ACM, 2004, pp. 331–342. (Cited on page 129.)

[130] R. Cox, A. Muthitacharoen, and R. Morris, “Serving DNS using
a peer-to-peer lookup service,” in Proc. Workshop on Peer-to-Peer
Systems, ser. LNCS, MIT. London, UK: Springer Verlag, March
2002, pp. 155–165. (Cited on page 129.)

[131] M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the
Web from DNS,” in Proc. Symposium on Networked Systems De-
sign and Implementation (NSDI). Berkeley, CA, USA: USENIX
Association, 2004. (Cited on page 129.)

[132] L. Mathy and L. Iannone, “LISP-DHT: Towards a DHT to map
identifiers onto locators,” in Proc. Workshop Re-Architecting the
Internet (ReArch) (in conjunction with CoNEXT), December 2008.
(Cited on page 129.)

[133] H. A. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck, and
J. Van der Merwe, “Anycast CDNs revisited,” in Proc. Confer-
ence on World Wide Web, ser. WWW ’08. New York, NY, USA:
ACM, 2008, pp. 277–286. (Cited on page 129.)

[134] Z. Al-Qudah, S. Lee, M. Rabinovich, O. Spatscheck, and
J. Van der Merwe, “Anycast-aware transport for content deliv-
ery networks,” in Proc. Conference on World Wide Web, ser. WWW
’09. New York, NY, USA: ACM, 2009, pp. 301–310. (Cited on
page 129.)

[135] M. Artigas, P. Lopez, and A. Skarmeta, “A comparative study
of hierarchical DHT systems,” in Proc. IEEE Local Computer Net-
works (LCN), October 2007, pp. 325 –333. (Cited on page 130.)

[136] M. S. Artigas, P. G. Lopez, J. P. Ahullo, and A. F. G. Skarmeta,
“Cyclone: A novel design schema for hierarchical DHTs,” in
Proc. Peer-to-Peer Computing. Washington, DC, USA: IEEE Com-
puter Society, 2005, pp. 49–56. (Cited on page 130.)

[137] L. Garces-Erice, E. W. Biersack, P. Felber, K. W. Ross, and
G. Urvoy-Keller, “Hierarchical peer-to-peer systems,” Parallel
Processing Letters (PPL), vol. 13, no. 4, pp. 643–657, December
2003. (Cited on page 130.)

[138] A. Mislove and P. Druschel, “Providing administrative con-
trol and autonomy in peer-to-peer overlays,” in Proc. 3rd Work-
shop on Peer-to-Peer Systems (IPTPS), February 2004. (Cited on
page 130.)

[139] P. Ganesan, K. Gummadi, and H. Garcia-Molina, “Canon in
G major: Designing DHTs with hierarchical structure,” in Proc.

bibliography 177

Distributed Computing Systems (ICDCS). Washington, DC, USA:
IEEE Computer Society, 2004, pp. 263–272. (Cited on page 130.)

[140] M. Xu, S. Zhou, and J. Guan, “A new and effective hierarchi-
cal overlay structure for Peer-to-Peer networks,” Computer Com-
munications, vol. 34, no. 7, pp. 862–874, May 2011. (Cited on
page 130.)

[141] A. T. Mýzrak, Y. Cheng, V. Kumar, and S. Savage, “Structured
superpeers: Leveraging heterogeneity to provide constant-time
lookup,” in Proc. 3rd IEEE Workshop on Internet Applications
(WIAPP). Washington, DC, USA: IEEE Computer Society, 2003,
p. 104. (Cited on page 130.)

[142] V. Ramasubramanian and E. G. Sirer, “Beehive: O(1) lookup
performance for power-law query distributions in peer-to-peer
overlays,” in Proc. Networked System Design and Implementation
(NSDI). San Francisco, CA, USA: USENIX Association, March
2004. (Cited on page 130.)

[143] M. Soellner, P. Schefczik, P. Bertin, G. Wei, X. Zhang,
T.-M.-T. Nguyen, J. Mäkelä, T. Rautio, O. Mämmelä, S. Pérez,
A. Eriksson, A.-M. Biraghi, C. Foley, M. P. de Leon,
C. Dannewitz, T. Biermann, and M. Marchisio, “Mobility in the
future Internet: the 4WARD innovations,” 2nd Future Internet
Cluster Workshop, June 2010. (Cited on pages 133 and 141.)

[144] R. T. Fielding, “Architectural styles and the design of network-
based software architectures,” Ph.D. dissertation, University of
California, Irvine, 2000. (Cited on page 136.)

[145] K. Scott and S. Burleigh, “Bundle Protocol Specification,” RFC
5050 (Experimental), Internet Engineering Task Force, Nov.
2007. (Cited on page 139.)

[146] C. Dannewitz, M. Herlich, E. Bauer, M. Becker, F. Beister,
N. Dertmann, R. Hrestic, M. Kionka, M. Mohr, M. Mühe,
D. Murali, F. Steffen, S. Stey, E. Unruh, Q. Wang, and S. Weber,
“OpenNetInf documentation – Design and implementation,”
University of Paderborn, Tech. Rep. TR-RI-11-314, September
2011. (Cited on pages 140, 146, and 156.)

[147] Wikitude GmbH, “Wikitude AR Guide,” Web source:
http://www.wikitude.com/, 2008, last checked: June 2012.
(Cited on page 146.)

[148] M. Braun and R. Spring, “Enkin,” Web source:
http://enkinblog.blogspot.de/, 2008, last checked: June
2012. (Cited on page 146.)

178 bibliography

[149] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stew-
art, J. D. Thornton, and R. L. Braynard, “VoCCN: Voice-over
content-centric networks,” in Proc. Workshop on Re-Architecting
the Internet (ReArch), Rome, Italy, 2009. (Cited on page 154.)

[150] R. Aguero, B. Ahlgren, P. A. Aranda, T. Begin, A. E. Eriks-
son, S. Farrel, P. Goncalves, C. Imbrenda, M. Keller, D. Kutcher,
A. Lindgren, O. Mehani, B. Melander, B. Ohlman, S. P. Sanchez,
H. Puthalath, P. Pöyhönen, S. S. Lor, P. Schefczik, F. Schnei-
der, A. Sefidcon, A. Sharma, O. Strandberg, L. Suciu, and
A. Udugama, “(D.A.9) Description of overall prototyping use
cases, scenarios and integration points,” Deliverable, SAIL 7th
FP EU-funded project, June 2012. (Cited on pages 154 and 155.)

[151] B. Ahlgren, B. Ohlman, E. Axelsson, and L. Brown, “Ex-
periments with subversion over OpenNetInf and CCNx,” in
Proc. Swedish National Computer Networking Workshop (SNCNW),
Linköping, Sweden, June 2011. (Cited on page 154.)

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Shortcomings and Pitfalls of Today's Internet
	1.2 The Information-Centric Networking Paradigm
	1.3 Main Components of ICN Designs
	1.4 Problem Statement and Requirements
	1.5 Overview of Information-Centric Network Designs
	1.5.1 Data-Oriented Network Architecture
	1.5.2 Content-Centric Networking
	1.5.3 Publish–Subscribe Internet Routing Paradigm
	1.5.4 Network of Information

	1.6 Thesis Contributions

	2 Network of Information Architecture
	2.1 Overview
	2.1.1 Design Principles
	2.1.2 Architecture Overview and Sample Setup

	2.2 Elements of the Network of Information
	2.2.1 Named Data Objects
	2.2.2 Basic Naming and Security
	2.2.3 Advanced Naming and Security
	2.2.4 NetInf Communication
	2.2.5 Caching
	2.2.6 Name Resolution
	2.2.7 Inter-Domain Communication
	2.2.8 Search

	2.3 Related Work
	2.3.1 General Overview of ICN-Related Work
	2.3.2 ICN Architectures: Design Choices and Trade-Offs

	2.4 Summary

	3 Secure Naming
	3.1 Introduction
	3.2 Requirements
	3.3 Naming Scheme
	3.3.1 Basic Concepts
	3.3.2 ID Structure
	3.3.3 Security Metadata Structure

	3.4 Analysis of Security Properties
	3.4.1 Name–Data Integrity
	3.4.2 Name Persistence
	3.4.3 Owner Pseudonymity and Identification

	3.5 Evaluation
	3.6 ni URI Scheme
	3.7 Related Work
	3.8 Summary

	4 Neighborhood Effect – Locality in DNS Requests
	4.1 Introduction
	4.2 Measurement Setup
	4.3 Data Evaluation
	4.3.1 Data Preprocessing
	4.3.2 University DNS Zone
	4.3.3 Computer Science Department DNS Zone

	4.4 Related Work
	4.5 Summary

	5 Hierarchical Name Resolution
	5.1 Introduction
	5.2 Requirements
	5.3 Hierarchical NRS Architecture
	5.3.1 General NRS Framework
	5.3.2 MDHT
	5.3.3 HSkip
	5.3.4 System Comparison: MDHT vs. HSkip

	5.4 Global Name Resolution
	5.5 Load Balancing
	5.6 Scalability and Node Performance Analysis
	5.7 System Analysis
	5.7.1 General Analysis Approach
	5.7.2 Independent MDHT
	5.7.3 HSkip and Entangled MDHT
	5.7.4 Analysis Results

	5.8 Simulation
	5.8.1 Simulation Setup and Assumptions
	5.8.2 Results: Latency
	5.8.3 Results: Work Load Distribution

	5.9 Related Work
	5.10 Summary

	6 Prototyping
	6.1 Introduction
	6.2 OpenNetInf Prototype
	6.2.1 Overview
	6.2.2 Interfaces
	6.2.3 Named Data Objects and Security
	6.2.4 Name Resolution and Metadata Storage
	6.2.5 Caching
	6.2.6 Data Transfer
	6.2.7 Additional Services

	6.3 Application Development
	6.3.1 Media Distribution
	6.3.2 InFox
	6.3.3 InBird
	6.3.4 Context-Aware Applications

	6.4 Evaluation
	6.4.1 Measurement Setup
	6.4.2 Results

	6.5 Related Work
	6.6 Summary

	7 Conclusion and Future Work
	7.1 Deployment
	7.2 Summary and Implications
	7.3 Future Work

	Bibliography

