
Sou
rce

A

B

C

D

E

F

G

H

I

J

K

L

M

N

Sink

a

c

b

d

Acceleration of Material Flow Simulations

Using Model Coarsening by Token Sampling and
Online Error Estimation and Accumulation Controlling

Dissertation submitted in partial fulfillment
of the requirements for the degree
Doctor of Philosophy
in the subject of
Economics and Business Sciences
(Dr. rer. pol.)
at the University of Paderborn

By
Dipl.-Inform. Hendrik Renken
born on 19.04.1981 in Braunschweig, Germany

DEAN Prof. Dr. Martin Schneider
REFEREE Prof. Dr.-Ing. habil. Wilhelm Dangelmaier
CO-REFEREE Prof. Dr. Friedhelm Meyer auf der Heide

November 6, 2013

ii

Created at
University of Paderborn
Heinz Nixdorf Institute
Businesscomputing, esp. CIM
Prof. Dr.-Ing. habil. Wilhelm Dangelmaier
Fürstenallee 11
33102 Paderborn

iii

I would especially like to thank
my wife, Irina,

Sascha Brandt and
Maureen Winter

for their continuing support
while creating this document.

iv

v

“And, bonus, it’s a university press book, which means
it contains things like facts and information.” - Zach Weiner

vi

Contents

1 Introduction 1

2 Terminology 3
2.1 Systems and Models . 3

2.1.1 Systems . 3
2.1.2 Models . 5

2.2 The Simulation of Models . 6
2.2.1 System and Model Composition 7
2.2.2 Simulation Types . 7

2.3 Complexity Measurement . 8
2.4 Controlling a System . 10

3 Problem Statement 13

4 State of the Technology 15
4.1 Model and System Specifications 15

4.1.1 Systems Theory . 15
4.1.2 System Theory of Technology 20
4.1.3 Discrete Event System Specification 21
4.1.4 Petri nets . 23
4.1.5 Current Simulation Software 24
4.1.6 Representations for Analytical Processing 25

4.2 Model Simplification and Coarsening 26
4.2.1 Validity of Models . 27
4.2.2 Complexity Measurement 30
4.2.3 Simplification and Coarsening Methods 30
4.2.4 About the Managing of Model States 33

viii CONTENTS

4.2.5 Dynamic Model Simplification 34
4.3 Bottleneck Detection Methods 35

4.3.1 What is a Bottleneck? 35
4.3.2 Detection Methods . 36

4.4 Model Partitioning . 39
4.4.1 Partitioning of Graphs 39
4.4.2 Identifying Sequential Regions 40
4.4.3 Single-Entry-Single-Exit Regions 40
4.4.4 Partitioning of Material Flow Models 42

4.5 The Simulation Software d3fact 43
4.5.1 The Server . 43
4.5.2 The Simulation Platform 44
4.5.3 d3fact Model Architecture 45
4.5.4 Material Flow Specification 49
4.5.5 Experiment Design in d3fact 49
4.5.6 The Visualization Client 50

5 Required Actions 51

6 Conceptual Design 57
6.1 Token Sampling . 57
6.2 Material Flow System Specification 60

6.2.1 Formalizing Token Processing Networks 60
6.2.2 Material Flow System States 62
6.2.3 Material Flow Dynamics 65
6.2.4 Implementation as a Discrete Event System 68
6.2.5 Concluding Remarks 69

6.3 Performance of a Token Processing System 69
6.3.1 Adding an External Clock 72
6.3.2 Sampling a TPS . 73

6.4 Identifying Groups of Systems for Coarsening 74
6.4.1 Modified Program Structure Tree 75
6.4.2 Dynamics . 75
6.4.3 Example . 76

6.5 Coarsening Sequentially Connected Systems 77
6.5.1 Sampling r . 78
6.5.2 Switching to the Coarsened Version (r → r) 78
6.5.3 Switch Back to the Original Version (r→ r) 79
6.5.4 Handling Altering, Assembly, Disassembly of Tokens . 80

6.6 Coarsening Arbitrarily Connected Systems 82
6.6.1 Sampling Groups of Arbitrarily Connected Systems . 83
6.6.2 Switch to the Coarsened Version (r → r) 84
6.6.3 Switch Back to the Original Version (r→ r) 84
6.6.4 Summing Up . 84

CONTENTS ix

6.7 Controlling the Coarsening Process 85
6.7.1 Reference Output and Feedback 85
6.7.2 Where? . 86
6.7.3 How Long? . 89
6.7.4 When? . 92
6.7.5 Measuring Speed Gain and Output Error 94

6.8 Conclusion . 95

7 Implementation 97
7.1 Material Flow System Implementation 97

7.1.1 Token Processing System Implementation 97
7.1.2 Channel Implementation 98
7.1.3 Implementation Details 98

7.2 Integrating the Token Sampling 101
7.2.1 Token State Sampling 101
7.2.2 Identifying Groups of Systems 102
7.2.3 Coarsening of Sequentially Connected Regions 102
7.2.4 Coarsening of Arbitrarily Connected Regions 103
7.2.5 Controlling the Coarsening Process 104

8 Validation 105
8.1 Purpose-Build Models . 105

8.1.1 Model Q . 105
8.1.2 Model F . 106

8.2 Measurement and Evaluation Methods 106
8.3 Do not Coarsen the Bottleneck 108
8.4 Error Size Dependency . 110
8.5 Complete versus Separate . 112
8.6 The Effect of the Resampling 113
8.7 Subsystem Runtime Consumption 114

8.7.1 Preprocessing and Program Structure Tree Runtime . 114
8.8 Determining the Break-even Point ω 116
8.9 Evaluation of the Controlling Function 118

8.9.1 Model C . 118
8.9.2 Results . 119

8.10 Conclusion . 120

9 Conclusion 121

Bibliography 123

A Glossary 131

B Listings 135

x CONTENTS

C Large PST Example 141

C h a p t e r 1

Introduction

Today’s production planning faces major challenges: The life cycle
of new products gets noticeably shortened while development and
production costs rise. This is caused by the ever increasing complexity

of the products and their production. While they are getting a smaller and
lighter design, new features have to be integrated. This requires new and hard
to handle materials and increasingly complex production systems. To be most
competitive on the world market, these systems must be well understood
and controlled. Only then production overhead and waste and therefore
production costs can be minimized.

Simulation offers an extensive degree of understanding, verification and
controlling of production systems. It is used to study the behavior of a
system in certain situations. From the observed behavior, knowledge about
the system’s inner workings can be gained. This knowledge can then be used
to make decisions on how to handle and control the system under study.
Typically, the simulation process begins with the creation of a system model
that can be studied instead of an actual system. This approach is necessary
when a system is unavailable, the system is too expensive, or the overall
situation could prove dangerous.

Especially the simulation of material flow models supports decision mak-
ing regarding the production planning. Simulation can help to understand
a systems behavior in critical situations in depth. This knowledge helps
safeguard the production. Furthermore, material flow simulation is used to
optimize production processes, layout- and workload planning. However,
such a utilization of simulation requires detailed production system models.
While current models are already very detailed (often covering the whole
company), the desire for even more detailed simulation models continues.
Even with the ever increasing computing power and easier-to-use simulation

2 CHAPTER 1. INTRODUCTION

software, this hunger for more detailed and widespread simulation models
cannot be satisfied [CBP00].

To solve this problem, the amount of computational resources can be
increased, e.g. by parallelizing the simulation. Another option is the reduction
of the complexity of the simulation model. This reduction process, often
called abstraction is normally done by the modeling engineer who must have
a certain degree of experience to create valid reduced models [BT00]. A
model is said to be valid when the decisions derived from the observation of
the simulated model match the decisions derived from the original system’s
behavior. Because the work of such an engineer is very expensive in terms of
time and monetary costs several automated approaches have been proposed.
These approaches take a simulation model and analyze its behavior under
specific conditions. Based on this analysis certain parts of the model, or even
the whole model, are replaced with new components. These components
usually have a similar behavior as the original model part but need less time
to compute.

Current coarsening and simplification approaches suffer from several draw-
backs: For large or complex models, analytical methods are not applicable.
In some related approaches, the coarsening/simplification step still has to
be done by an experienced modeler. Most of the automated approaches rely
on observed data from several simulation runs. However, these simulation
runs are cost-intensive in time and money. The gathered data is only valid
for observed conditions. Using this data to predict the system’s behavior
under unknown conditions can be erroneous. Furthermore, most automated
approaches are restricted to very specific simulation models.

Goals

The concept of this thesis, named Token Sampling is an automated approach
that overcomes several of the mentioned drawbacks. It is based on the
idea to utilize similarities in the processing of tokens in order to reduce the
computation time of a simulation run. Instead of processing every token
individually, several tokens are handled in the same manner as one reference
token. The presented method doesn’t need a cost-intensive preprocessing
step to gather data. It is an online approach, that analyzes the system
behavior at runtime.

At runtime it analyzes the behavior of the simulated system and uses
that information to determine system parts which can be replaced. The
replacement of these parts is done at runtime. The analysis of the system’s
behavior is constantly redone to adapt the behavior of the replacement to
new conditions. Due to this highly dynamic approach the strength of the
effect can be controlled at runtime. Furthermore, the presented concept is
capable of adapting to structural changes that may happen at runtime.

C h a p t e r 2

Terminology

This chapter introduces the key terms and their definition. Some of
them are well-established and do have different meanings, depending
on the context they are used in. Therefore the terms will be defined

in the context of this work to provide a base for the discourse following later
on.

2.1 Systems and Models

The two terms system and model are very common, used in almost every
scientific domain, and therefore almost everyone intuitively associates a
meaning with them [Rop09]. To define the term model we first need to
discuss the term system. After that we will introduce the term simulation
and some other terms related to this work.

2.1.1 Systems

The foundation for the general system theory was laid by Aristoteles. He
already differentiates between the two versions of a multeity [Rop09]: Is the
order of the components of the multeity irrelevant then it is a set, otherwise
an entireness, a system. This simple distinction could be found in almost
all scientific domains, until in the nineteen-thirties Ludwig von Bertalanffy
recognized that these domain specific system descriptions already were very
universal descriptions. He then proposed a general system theory which was
the foundation of the modern, mathematical oriented system theory broadly
used today [MT75, Pic75, Rop09].

In this theory a system S is defined as a double (S,V) [MT75]: Mathematical System
Definition

4 CHAPTER 2. TERMINOLOGY

S ⊂
∏
i∈I

Vi (2.1)

Where

•
∏

denotes the Cartesian product.

• V := {Vi | i ∈ I} is a non-empty set of sets, with I as the (infinite)
index set.

• S is a non empty subset of the (infinite) Cartesian product of all sets
Vi ∈ V.

Vi is often called system object. It stands for an attribute or characteristic
of a system and contains all alternatives in which this attribute can be
observed. Therefore, a system S is defined as the set of all observable (and
therefore proper) combinations of occurrences of system objects. Because
Vi can be a system itself, complex systems can be created in a bottom-up-
approach by using simpler systems as system objects.

The literature contains besides the mathematical definition also a lot of
colloquial definitions. Those definitions have in common that they defineColloquial System

Definition a system S as an arrangement (or combination) of a set of components Vi
where the ordering of Vi is characteristic for S [Deu94, VDI96, Rop09, CL06].
Particularly von Bertalanffy noticed that only an intrinsic order of the
components of his examined biological systems allowed them to conduct
complex processes which exceeded the functionality of the single components.

Additionally to the definition given above, the DIN- and VDI-guidelines
require for a system, that it is differentiated from its environment through a
set of well-defined criteria. This set is called system border. Systems that
exchange information across their border with their environment are called
Input-Output-Systems.

Mathematically, an Input-Output-System is defined by a triple [MT75]Input-Output-Systems

(XV , YV , S) (2.2)

where

• Ix and Iy are subsets of the index set I, i.e. Ix ⊂ I; Iy ⊂ I; Ix ∩ Iy = ∅.

• XV is defined as XV :=
∏
i∈Ix

Vi and is termed input object.

• YV is defined as YV :=
∏
i∈Iy

Vi and is termed output object.

• S is a non-empty relation S ⊂ XV × YV

2.1. SYSTEMS AND MODELS 5

In the following the notation introduced by Pichler will be used. He uses
X for XV and Y for YV accordingly [Pic75].

The VDI-guideline 2689 [VDI08] uses the definition of Input-Output-
Systems to define material flow systems (often also called production systems). Material Flow Systems
An Input-Output-System, where at least one of its system objects Vi ∈ X∪Y
is some kind of a workpiece (e.g. substances, pieces, data carriers), is called
a material flow system. The definition, which system object Vi happens to
be a “workpiece”, is purely semantic.

2.1.2 Models

Basically, a model is a mapping or description of a system, while being
a system itself [VDI96, Nie77]. Therefore in system theory a model can
be described by Equation 2.1. This recursive definition often results in
the synonymous usage of the two terms system and model [CL06]. On Difference between System

and Modelthe following pages we will try to define the term model more clearly and
distinguish it from the term system. However, throughout the remaining
chapters we will use the two terms interchangeably.

In the literature the mapping of a system onto a model is often understood
as a simplification of the original system, i.e. that means, the model has only
a subset of the aspects of the mapped system [BH97, VDI96, Deu94, LK00].
This understanding is caused, among other things by the fact that real systems
often are far too complex to understand, to describe or to be modelled (e.g.
we are not able to remodel every aspect of a galaxy cluster system).

Typically a model describes properties and internal processes of the
mapped system. The purpose of a model is to be able to study the mapped
system under certain circumstances, when applying these to the original
system is not possible or feasible. A model is valid when the gathered Model Validity
propositions through studying the model can be mapped onto the original
system [VDI96, Deu94, LK00]. This aspect will be discussed in detail in the
next section.

Material flow models are models of material flow systems. As defined be- Material Flow Models
fore, a material flow system may consist of a set of input-output-systems that
are coupled together and process other system objects, called “workpieces”.
Therefore also a material flow model can be put together in a bottom-up
approach by combining simpler models.

Normally, a processable “workpiece” in a material flow model is called Tokens
token. Mathematically, a token is a system (2.1), where its system objects
Vi are interpreted as attributes. Attributes can be related to physics, like
the size or weight, but can also be abstract, like an order number or a
processing sequence. Let (S,V) be a system according to equation (2.1) and
let {Vi | i ∈ IA ⊂ I} be the set of system objects that are interpreted as
token attributes. Then we can define the set K which contains all proper
combinations of attribute appearances and therefore the totality of observable

6 CHAPTER 2. TERMINOLOGY

tokens:

K ⊂
∏
i∈IA

Vi (2.3)

Put differently, every element k ∈ K represents a valid (and thus observ-
able) state of a token. Given a production system that creates bicycles in
two colors: red and blue. Red bicycles always have odd order numbers while
blue ones have even numbers. K is then constructed from two system objects
Vc and Vn. Vc := {red, blue} encodes the color of the bicycle and Vn := N the
order number. Given the information above K for this specific production
system contains the following elements:

K := {(red, 1), (red, 3), (red, 5), . . . , (blue, 2), (blue, 4), (blue, 6), . . .}

(red, 2) for example is an invalid token representation since red bicycles
always have odd order numbers. Therefore, this representation is not con-
tained in the above specification of K. Furthermore, if a bicycles during
production reaches different states of assembly, all these states would be
contained in K.

It is easy to see that, in order to distinguish tokens, an identification
attribute (an order number as in the above example) must be included as
a system object. Given such an attribute, K can be queried for all states a
specific token can take. In this thesis, such an identification number is taken
for granted. That means, the tokens are objects and while they might have
the same attribute values they can be distinguished from each other. For
example, due to the order number it is possible to distinguish bicycle one
from three - despite both being red.

As stated before, a material flow model performs operations on tokens.
Standard operations involve the alternation of attributes, the creation or
destruction of tokens and the storage of tokens. Normally these operations
need a defined amount of time and are often called processes (on tokens).

2.2 The Simulation of Models

To analyse a system, it is exposed to certain input values representing a
situation for which we want to know the systems behaviour. This process
is called experiment or simulation [BH97, VDI96]. As already stated aboveExperiments and

Simulations the analysis of a system is not always feasible (too complex, time consuming
or destructive) or not even possible (e.g. the system can be imaginary). In
these situations, we design a model by mapping some or all aspects of a
system onto it and analyse the model instead of the system.

2.2. THE SIMULATION OF MODELS 7

2.2.1 System and Model Composition

More formal, we do have a system S which we want to analyse for a certain
set of questions X(S) (also called system input). Often the input comprise System Input and Output
questions for the behaviour of the model under certain conditions. Applying
X(S) to S will then generate a system output Y (S) [LK00].

Now there can be three different situations [Pic75] (Dotted lines in the
figures refer to things we want to know.):

1.

M

SX(S)

X(M)

Y(S)

Y(M)

The first one is, that the original system S
cannot be used to obtain the output. Then
we need to create a model M from the system,
transform X(S) onto the model (this is called
the model input X(M)), simulate the model, Model Input and Output
obtain the output Y (M) and transform it back onto the system, leading
to an assumption on the system output Y (S).

2.

M

SX(S)

X(M)

Y(S)

Y(M)

In the second situation we do have a desired
system output Y (S) and we want to know,
which input X(S) is needed to obtain the out-
put. This is the search for the cause for the
behaviour of the system.

3.

M

SX(S)

X(M)

Y(S)

Y(M)

In the third situation we do have a model M ,
an input X(M) and (through a simulation) the
output Y (M). We want to create the system
S that fulfils the requirements. This is called
the system synthesis.

Due to the variety of factors (e.g. complexity, system function, questions
we want to solve, etc.) there is normally a huge set of models that can
be designed as a representation of a system. However, this set of models
will be referred to as model space M for a system S. For a more detailed Model Space
description of the model design process see Law and Kelton [LK00] and
Wymore [Wym93].

2.2.2 Simulation Types

A simulation can be related to one of three groups, according to the utilised
time set by the simulated model. A time set (also called clock or clock Time Sets
structure) is specified through a triple (T,5, t0) [MT75], where

• T is a set, representing points in time.

• 5 is a partial order on T .

• t0 is the minimal element in (T,5).

8 CHAPTER 2. TERMINOLOGY

In the following, we will use the symbol T for the triple (T,5, t0).
A time set can be either discrete or continuous, depending on the definitionDiscrete and Continuous

Time Sets of T . Usually a discrete time set is defined by (N0,5, 0) specifying a countable,
infinite set of points in time. In a continuous time set, T is specified as
Q1, now making an innumerable, infinite set of points in time available. At
those points in time the model can change its state, which is triggered by aEvents, Event Routines

and Sequencing Structures simulation event executing an event routine that is part of the sequencing
structure of the model [VDI96].

Based on the time set used by the simulated model, the simulation isDiscrete, Continuous and
Hybrid Simulations called either discrete or continuous. If the model uses both types of time set,

the simulation is called hybrid.
The model state of a model M during a simulation is defined as the stateModel State and State

Spaces of all system objects Vi ∈M at a certain point in time [VDI96, LK00]. The
state space of a model is defined as the set of all possible states of the model.

A normal discrete, event based simulation consists of four elements:

• The scheduling algorithm. It manages the event queue and executes
the events in the correct order.

• The model structure. The structure defines the set of system objects
and the connections between them.

• The model parametrisation. It is the initial state of the model.

• A termination condition. If this condition is evaluated as being true,
the execution of events is is stopped and therefore the simulation itself.

Material Flow Simulations are simulations of material flow models. Nor-Material Flow Simulations
mally material flow models are based on a discrete time set.

2.3 Complexity Measurement
As stated above a model is often defined as the simplification of a system.
That means a system S consists of a defined set of aspects AS and the
model M features a subset AM of AS [BH97, BT00]. In this thesis, however,
the model should be coarsened. To discuss the difference between model
coarsening and model simplification, we first need to define the complexity
of systems and models respectively.

The term complexity can have very different meanings, depending on theSystem and Model
Complexity considered context. The IEEE2 [BH97] and Wallace [Wal87] define it in an

intuitive way as the degree of difficulty to understand or verify a system.
Zeigler [Zei76] specifies the complexity of a system as a value, indicating
the amount of resources used to get Y (S). This involves the creation, the

1And not R, since it is complicated to represent irrational values in a computer.
2The Institute of Electrical and Electronics Engineers

2.3. COMPLEXITY MEASUREMENT 9

simulation and the analysis of the output. However, we want to accelerate the
simulation and therefore we need a complexity measurement in the context of
the simulation runtime. Schruben and Yücesan [SY93] argue that the event Runtime Complexity
list management in discrete event based simulations takes up to 40% of the
simulation time, leading them to a measurement of runtime complexity based
on the minimum and maximum size of the event list. This is a practical
definition which may not apply in general or in context of todays modern
hard- and software. Zeigler [ZP00] proposes a runtime complexity definition
for discrete event models that is based on the quantification of the state
space and the activity of the measured model. Unfortunate he does not
define the term model activity.

Because a simple event based simulation algorithm just triggers events, Event based Complexity
executing event routines, the activity of an event based model can be defined
as the number of occurring events. When assuming that the execution time
of an event routine is asymptotically constant in terms of overall triggered
events, an event based runtime complexity for event based models can be
defined. While it is possible to over estimate the number of occurring events
with the state space of the simulated model, this theoretical estimation is
not of interest since most simulation runs are not reflect by it. Complexity
measurements for simulations are discussed in Chapter 4.2.2 in detail.

Complexity Reduction

Brooks and Tobias [BT00] define the simplification of a model as the identi- Simplification of Models
fication and omission of aspects that are irrelevant for the meaning of the
model output Y (M). This means, from an original model M a new model
M ′ without some of the original aspects is constructed, leading to a simpler
model. M ′ is less complex, has a shorter runtime but the simulation results
Y (M ′) do have the same quality as the original results Y (M). Brooks and
Tobias and the VDI-guideline note that irrelevant aspects make a model
more complex, hard to maintain and hard to analyse.

The quality of the model output Y (M) can be colloquially described as Quality of the Model
Outputthe difference in the meaning between Y (S) and Y (M). In other words: The

output quality is the difference between the decisions that are made because
of the model output Y (M) and because of the system output Y (S) [LK00].
We will refer to the output quality as the error ε, introduced by the model
relative to the system:

ε = ‖Y (S)− Y (M)‖ (2.4)

The coarsening of a model also removes some aspects of the original model Coarsening of Models
M but this process already starts with a simplified model only containing
relevant aspects. Thus the resulting model M ′′ is a coarsened version of
the original with fewer aspects. This leads to errors (a quality loss) in

10 CHAPTER 2. TERMINOLOGY

M

M''

M'

coarsening

simplification

Figure 2.1: The cotyledon proposed by Wymore [Wym93]. It shows the
space of all possible modelsM representing a defined system S. A contour in
the cotyledon represents models with the same quality of model output for a
particular input.

the simulation results Y (M ′′) of M ′′ when compared to the output of the
simulation of M .

The differences between the two methods can be visualised on the Cotyle-
dons proposed by Wymore [Wym93]. The following cotyledon (in Figure 2.1)
represents the space of all possible models3 M for a specific system S and
a set of model questions X(M). The space is topologically sorted by the
quality of the model results Y (M). A contour represents different models
with the same quality of model results.

The simplification process generates a new model M ′ from an original
model M . Because the quality of the results does not change, M ′ is located
on the same contour as M . However, the coarsening of M leads to a new
model M ′′ which is located on a “lower” contour because of the lesser quality
of the simulation results Y (M ′′). The error ε in the simulation results (see
equation 2.4) can be visualized as the number of contours between the two
models M and M ′′ within the shown space.

The Error Metric or Error Estimation is the process of predicting theError Metric
error ε for models M ∈M without simulating these particular models. For
this purpose the data of the current model M is analysed and quantitative
measured [BH97]. A controlling mechanism then chooses, based on the
metric, a certain model M ′ from the model spaceM and transforms M to
M ′ by applying a reduction algorithm.

2.4 Controlling a System

Controlling means to specify a certain (reference) output for a system andControlling a System

3Please note that Wymore uses the term system design instead of model.

2.4. CONTROLLING A SYSTEM 11

to transform the reference into an appropriate system input X(S) so that
the system generates the desired output Y (S).

This leads to the control law [CL06]:

X(S) = γ(R(t), t) (2.5)

Where

• S is the controlled system.

• t ∈ TS a point in time.

• γ(.) denotes the controlling function.

• R(t) is a reference output.

In literature [CL06, Deu94] two different controlling mechanisms are
distinguished: Whether they are open- or closed-looped. Open-looped means,
that the controlling element only receives a reference, leading to the above
law 2.5. A closed-looped controlling receives besides the reference output
also a feedback. Feedback can be understood as a function depending on the
system state. This leads to the closed-looped control law:

X(S) = γ(R(t), uS , t) (2.6)

Where uS is the current state of the controlled system S.

12 CHAPTER 2. TERMINOLOGY

C h a p t e r 3

Problem Statement

In this thesis a method is presented that accelerates material flow simu-
lations by reducing the model complexity through coarsening. It utilizes
similarities in the processing of tokens to reduce the computation time

of a simulation run. Instead of processing every token individually, several
tokens are handled in the same manner as one reference token. This results in
a different simulation output (an error), but reduces the number of triggered
event routines and therefore the overall runtime of a simulation run. An
online controlling mechanism is used to keep the output difference small.

The goal is to implement a practical coarsening method. Which means,
that first and foremost, it should save resources when applied. Furthermore,
it should be compatible with (almost) arbitrary material flow models. There
should be no restrictions regarding the design of the model. When applied,
the method has to control and adapt itself in such a way that the simulation
of the coarsened model still produces valid results in respect to the original
model. Here, the original model is defined as the fixed reference to which the
coarsened model is compared. Nothing is said about the correct or optimal
implementation of the original model regarding the modeled system.

Model Coarsening

Model Coarsening is the omission of aspects from a given model M (cp.
Equation 2.1). This creates a new model M ′ that is said to be less complex
and needs less resources for simulation, but also has a different output Y (M ′)
than M when simulated.

The aspects which are to be removed must be well chosen. Otherwise,
relevant aspects might be removed, rendering Y (M ′) invalid. This requires
detailed knowledge about the model and its dynamics (behavior). To be
practical, the method should gather this information in a cost effective

14 CHAPTER 3. PROBLEM STATEMENT

preprocessing step. In particular the time needed for the step execution counts
as computational costs for the whole method. Therefore the preprocessing
should be as short as possible, so that the whole method pays off early.

Model Specification

The coarsening method should work with arbitrary material flow models.
This includes arbitrary processes within the material flow graph as well as an
arbitrary structure of the graph. These requirements have to be considered
in the model specifications. Especially the processes should be restricted as
little as possible.

Another, more generic requirement is, that the model specification can
be implemented into a standard simulator. The colloquial definition of the
term Material Flow Model given in Chapter 2.1.2 for example is not suitable
to be automatically analyzed or executed by a computer algorithm. A good
formalized and structured specification must be found.

Controlling the Coarsening Process

The controlling is used to adapt the coarsening method to the model dynamics.
This ensures a valid output Y (M ′). This implies that the coarsening method
has to be reconfigured at runtime.

Also the controlling has to have a measurable effect on the quality of the
simulation results. The result quality should be higher with controlling than
without or when the coarsening is applied randomly.

Validation

A valid coarsened model M ′ is a model where the simulation output Y (M ′)
results in the same decisions as the output Y (M) of the of the simulated
original model M (Chapter 2.3). However, decisions cannot be measured.
Furthermore, the difference between decisions cannot be computed. It is very
difficult to define what a valid, coarsened model is. For the evaluation of the
coarsening method, this term must be defined or at least a measurement for
the output quality has to be found.

Evaluation

The method presented in this thesis has to be evaluated for its performance.
It has to be implemented in a simulation software utilizing available material
flow specifications if possible. For evaluation performance, the software should
allow the analysis of different aspects of the method as well as standard
ratios like the lead time of the material flow system.

In the next chapter the state of technology is reviewed under the require-
ments stated above.

C h a p t e r 4

State of the Technology

Research conducted so far [BT00, HL99, Hub09, JFM05, VG03,
CPB06, VB05, Bar98, Sev90] aims to reduce the structural complex-
ity of a simulation model. The structural complexity typically is

a static value directly depending on the model design. However, due to
variances in the model parametrization, different simulation runs can utilize
elements in different ways, thus changing their importance for the simulation
result. Therefore it is essential for these methods to identify elements to
process and to correctly estimate their complexity and importance.

In this chapter we will therefore discuss available generic model specifica-
tions as well as specifications on which complexity reduction is performed.
Having a specification for our simulation model we can start to search for
model elements on which we want to perform the reduction. Then we will
discuss current solutions to rate the elements regarding their complexity and
importance.

4.1 Model and System Specifications

A main aspect of a system description is its specification formalism [ZP00].
While it is possible to describe a system in a natural way as plain text,
specifications are much more formalized, like Systems Theory [Pic75, MT75]
and Discrete Event System Specification [Zei76] and Petri nets [PR08] (Sinha
et.al. [SSL+01] give a compact overview).

4.1.1 Systems Theory

One of the most important developments regarding the description and
definition of systems is Systems Theory. System Theory is an abstract,

16 CHAPTER 4. STATE OF THE TECHNOLOGY

mathematical approach to define and describe systems and their aspects. The
system is broken down into mathematical structures like sets and equations.
In Chapter 2.1.1 it was already used to introduce the two concepts system
and model. A system is defined as a double (S,V) where S is a subset of
the cartesian product of sets Vi ∈ V (see Equation 2.1). Vi is called system
object and can be a system itself. Complex systems can then be created in a
bottom-up-approach by using simpler systems as system objects.

To specify the milling machine from earlier, at first V must be defined.
V could contain properties like size, material type, revolutions per minute
(rpm). Then, a specific milling machine is defined by the combination of the
parameter values for each property Vi ∈ V. For example,

m := {175, steel, 3000}

specifies a milling machine m of size 175 cm with a steel head, rotating
with 3000 rpm. System theory uses a top-down approach to define objects
and their properties. From a very abstract level the definitions get more
and more refined and diversified to complex system descriptions like discrete
event systems or linear automata.

Input-Output-Systems

Equation 2.2 introduced input-output-systems. An input-output-system
can be visualized as a black box that receives some input and produces
some output which can be observed. Mathematical functions are simple and
abstract input-output-systems. The function y = f(x) = x+ x with x ∈ N
can be specified as an input-output-system ({N}, {N}, F) where F is defined
as

F ⊂ N× N := {(x, y) | y = x+ x}

The conclusion that a function is an input-output-system may be trivial.
However, understanding how fundamental and wide-ranged this concept is
(nearly everything is such a system), is crucial.

Time Based Systems

Let’s use our milling machine example from earlier. Describing the machine
m as an input-output system, it may get some plastics p from which it
mills a top cover c. This leads to the following equation describing the
transformation process:

c = m(p)

The description is pretty simple and specifies which output is produced
for which input.

4.1. MODEL AND SYSTEM SPECIFICATIONS 17

A more complex description includes time as a factor. With the introduc-
tion of time it is possible to describe how long it takes for a milling machine
to produce a specific output c. During this time the machine is occupied
and cannot process another piece, thus introducing a restriction. Given a
production system where several of such machines are coupled together it
may influence other machines as they have to wait for the milling machine
to finish the work piece. Such an effect is usually termed as bottleneck and is
of major interest when studying production systems.

Given a time set TimeSet the milling machine can be described as

c(t) = m(p(t), t) (4.1)

where t denotes a point in time. In equation (4.1) not only the transfor-
mation function m has been made dependent from time but also the input
p and the output c. p and c can be understand as functions for which we
observe the values over time, while m defines the relation between them.
Pichler [Pic75] refers to p and c as input-, output-processes.

To tell, whether the machine is occupied or not, we need to know if in the
past there was some plastic inserted into the machine but not yet removed.
This is difficult because we are not able to remember anything from the past.
This changes with the concept of states.

The State Space of a System

We introduced the system concept through a cartesian product on a set of
system objects (see Equation 2.1). Some of these objects can be used to
remember things like the amount of material we already processed or the
point in time we started to work on a new piece of material. Therefore we
can define the set of all possible system states US for a system (S,V) as

U ⊂
∏
i∈Iu

Vi (4.2)

with ∧
u∈U

∨
s∈S

u ⊆ s (4.3)

where Vi ∈ V. Let S be an input-output-system then the state is a part
of the input Iu ⊆ Ix since U affects the output Y . The constraint introduced
with Equation 4.3 guarantees that U only contains elements that appear in
elements of S. U is called the state space of system S.

Usually the system state affects the output of a system. This is imple-
mented by requiring Iu ⊆ Ix. The classic definition of the term input can be
thought of as an impulse from an external source. However, this definition
covers everything that is needed to compute the output - even the internal

18 CHAPTER 4. STATE OF THE TECHNOLOGY

x s ∪ g y
u̇u

Figure 4.1: Schematic diagram of a general system.

state of the system. Now it is possible to differentiate between the external
ū ∈ X\{U} and internal input u ∈ U . As for the diversification of the input
(external and internal) the same concept can be applied to the output. Let
u̇(t) be the internal output then ˙̄u(t) ∈ Y \{U} is the external output. To
ease the syntax we will use x instead of ū and y instead of ˙̄u. The general
system is depicted in Figure 4.1.

Adding the concept of time, we get a system that is in a particular state
u(t) at a certain point of time t. Using equation (4.1) as a basis we get the
following equation for a general system:

y(t) = s(x(t), u(t), t) (4.4)

where

• x(t) and y(t) denote to the input- and output-objects,

• u(t) represents the state of the system and

• s(.) the system itself.

The state of the system may change over time and the changes are
normally triggered through the input. This leads to the state equations

u̇(t) = g(x(t), u(t), t), u(t0) = u0 (4.5)

where g(.) is a function that can compute the new state u̇(t) for the
system.

With the concept of states it is possible to specify the occupy state uo
for the milling machine:

uo =


occupied if x(t) 6= ∅ ∧ u(t) = free ∨

u(t) = occupied ∧ y(t) = ∅
free otherwise

(4.6)

Interconnections, Subsystems and Components

Until now only whole systems were considered. As stated before, complex
systems can be put together from simpler ones. Consider two simple functions
f(x) and g(x) then they can be coupled together by

y = f(g(x))

4.1. MODEL AND SYSTEM SPECIFICATIONS 19

Source Conveyor Storage

Figure 4.2: A simple material flow model. Tokens flow from the Source to
the Storage.

This is one of the simplest connections where the output of g is the input
to f . More complex systems often differentiate between input (and output)
that are available for the connection to other systems and those that are not.
In the following some important interconnections between systems will be
presented [MT75, Pic75].

Given Equation 2.2, for the input X of a system S the input family can
be defined as X̂ := {Vi | i ∈ Ix}. Both, the output Ŷ := {Vi | i ∈ Iy} and
state families Û := {Vi | i ∈ Iu} follow the same scheme. Given a system
(S,U,X, Y), then in general the components of X̂ and Ŷ are available for
connection. However, usually most components in Û are not available for
connection. This assumption leads to the class ¯̂

Y ⊆ Û that contains all
components not available for connection. Using this set definitions XV and
YV of a general input-output-system S (2.2) can be specified as

XV := X × U, YV := Y × Ȳ, where Ȳ =
∏
Vi∈ ¯̂

Y

Vi.

As Mesarovic points out, this allows the definition of a class of connectable
systems:

SXY = {Si |Si ⊂ (Xi × Ui)× (Yi × Ȳi)} (4.7)

Ultimately it is possible to define connection operations within this class
of systems. One of the most important connection is the serial or cascade
connection ◦ : SXY × SXY → SXY . Let S1 ◦ S2 = S3 where

• S1 ⊂ XV1 × (Y1 × Ȳ1),

• S2 ⊂ (X2 × U2)× YV2,

• S3 ⊂ (XV1 × U2)× (Ȳ1 × YV2),

• Y1 = X2 and

• ((x1, u2), (ȳ1, y2) ∈ S3 ⇐⇒
∨
z(x1, (z, ȳ1)) ∈ S1 ∧ ((z, u2), y2) ∈ S2

Lets explore the class SXY and the ◦ connection with a small example
of a system (Figure 4.2). This example can be described using the cascade
connection:

((Source, Conveyor, ◦), Storage, ◦)

20 CHAPTER 4. STATE OF THE TECHNOLOGY

4.1.2 System Theory of Technology

System Theory is an abstract and formal concept. Ropohl [Rop79] concretizes
certain aspects of it and interprets them and relates them to our reality.
For example, he categorizes the input and output of a system into three
categories: energy, material and information.

Ropohl introduces the term item system, which is a loose translation of
the german word Sachsystem, for systems that can be seen as items produced
or intended by humans. Because of this interpretation an item system is
embedded into time and space - in the broadest sense. While we introduced
time based systems in Chapter 4.1.1 as systems that can be observed over
time, Ropohl extends the classic input-output-system definition. Let (X,Y, S)
and ({VR, VT }, {V ′R, V ′T }, SRT) be input-output-systems where

• VR and V ′R are system objects that can be interpreted as sets of space
coordinates and

• VT and V ′T are time sets and

• X and Y contain only system objects that are of the classes energy,
material or information.

Then, the item system (XIS , YIS , IS) is defined by the cartesian product
of two input-output-systems (2.2):

XIS := X × {VR, VT }, YIS := Y × {V ′R, V ′T }
IS := {((x, r, t), (y, r′, t′)) | (x, y) ∈ S ∧ ((r, t), (r′, t′)) ∈ SRT }

(4.8)

with r ∈ VR, r′ ∈ V ′R, t ∈ VT and t′ ∈ V ′T .
Based on certain constraints Ropohl identifies several classes of item

systems. Three of them are of special interest for describing production
systems and will therefore be discussed in the following.

Warehousing Systems

Warehousing is characterized by the non-altering of system attributes over
time. Let (XIS , YIS , IS) be an item system (4.8) then it is a warehousing
system if and only if ∧

s∈IS
x = y ∧ r = r′ ∧ t 6= t′ (4.9)

We require, that every input x and the space coordinate r are the exact
same as the output y and r′ respectively. With t 6= t′ we require, that
between input and the corresponding output time goes by (though we don’t
require t < t′).

4.1. MODEL AND SYSTEM SPECIFICATIONS 21

Production Systems

These systems change attributes (or system objects) over time. The milling
machine specified earlier may change the material from raw to processed
(Again: These terms are interpretations of some mathematical representa-
tions). Therefore, production systems require that∧

s∈IS
x 6= y ∧ t 6= t′ (4.10)

One remark: The definition doesn’t say anything about the space co-
ordinates r, r′. This means, a production system may change the position
between input and output.

Transport Systems

Unlike warehousing systems, transport systems change the space coordinate of
a material (or/and of them selfs) while leaving all other attributes untouched.
Conveyor and forklifts belong to this class of systems. The constraint is
slightly different to equation (4.9):∧

s∈IS
x = y ∧ r 6= r′ ∧ t 6= t′ (4.11)

Conclusion

While Ropohl extends the abstract formalism System Theory with close to
reality concepts, he does not define a new formalism. Instead he provides
definitions of system classes. To define a complete formalism structures (and
definitions) are needed that enable the user to describe internal processes in
a system. How does the system generate the output? How does the system
itself change or change its environment? Such a formalism for discrete event
systems will be discussed in the next chapter.

4.1.3 Discrete Event System Specification

The Discrete Event System Specification (DEVS) is a specification that was
developed by Zeigler [Zei76, ZP00]. The DEVS is a modeling formalism
based on System Theory. Unlike Ropohls definitions it provides structures
and definitions to specify a whole discrete event system. In DEVS a discrete
event system is defined as a set

(X,U, Y, δint, δext, λ, τ) (4.12)

where

• X is the set of input values,

22 CHAPTER 4. STATE OF THE TECHNOLOGY

• U is a set of states,

• Y is the set of output values,

• δint : U → U is the internal transition function,

• δext : Q×X → U is the external transition function, where

– Q = {(u, e) |u ∈ U, 0 ≤ e ≤ ta(s)} is the total state set,
– e is the time elapsed since the last transition,

• λ : U → Y is the output function and

• τ : U → R+
0,∞ is the set of positive real numbers with 0 and ∞.

A DEVS can be in three abstract states and works as follows:

• If an input x ∈ X arrives at the DEVS, the state u ∈ U of the DEVS
is changed according to δext(.).

• If the time spend in a state e reaches the value of τ(u) and there is no
input then the internal state transition function δint(.) is triggered and
defines a new state u′ ∈ U .

• If neither of the above situations applies the DEVS stays in state u.

With a given input trajectory for a time interval t0..t# the state trajectory
u(t) is described as follows:

u̇(t) =


u(t) if x(t) = ∅ ∧ e(t) < τ(u(t))
δint(u(t)) if x(t) = ∅ ∧ e(t) = τ(u(t))
δext(u(t), e(t), x(t)) otherwise

(4.13)

where e(t) describes the elapsed time since the last state transition. For
the above equation this means the elapsed time since case two or three
applied.

The output function y(t) then can be constructed through

y(t) =
{
λ(u(t)) if e(t) = τ(u(t))
∅ otherwise (4.14)

Basically Equation 4.12 refers to a System Theory input-output-system
(X,Y, S) (2.2) with states. Its easy to see that the input X and output Y
can be adopted. The relation S is then specifyied as

S := {(x, y) |x ∈ X ∧ y ∈ Y ∧
∨
u

∧
i=1,...,n ui ∈ uδint(ui−1) = ui∧

δext(., ., x) = un ∧ λ(u0) = y}
(4.15)

4.1. MODEL AND SYSTEM SPECIFICATIONS 23

2

1

4

1

(a) Initial State.

2

1

4

1

(b) State after firing.

Figure 4.3: Example of a simple petri net with four places and one transi-
tion.

4.1.4 Petri nets

The Petri net is a graphical language to describe parallel processes in systems
with many (connected) components. It was invented by Carl Adam Petri
to describe chemical processes [PR08]. Basically, a petri net is a directed
graph and can be described by a quintuple (P, T, F,W,m0). The nodes are
either from type place (P) or type transitions (T). The edges of the graph
can go either from a place to a transition or from a transition to a place
(F ⊆ (P × T)

⋃
(T × P)). A place can contain an infinity number of tokens.

Transitions (as the name says) move tokens from one place to another. The
number of tokens taken from a place or added to a place are specified at the
edges through a weighting function W : F → N. m0 : P → N defines the
initial number of tokens in each place and is called the initial configuration.

Dynamics

The transitions in a petri net are responsible for changing the state. A
transition is said to be enabled when each predecessor contains at least as
many tokens as the connecting edge specifies. Therefore, the transition in the
example in Figure 4.3a is enabled. When a transition is enabled, it can fire.
In this definition transitions fire immediately. Later on we will get to know
more complex firing mechanisms. The firing-process cannot be interrupted.
The transition consumes the number of tokens indicated by each edge from
the predecessors and adds tokens to the successive places in the number that
is specified by the connecting edge. Therefore, in the example, three tokens
are consumed, and five tokens are added to the successive places. In the
resulting state (cp. Figure 4.3b) it can no longer fire, as in the place in the
upper left two tokens are missing.

Timed Petri nets

So far, the petri net definition does not include any clock or time structure.
Instead, we said that transitions fire immediately when they are enabled.
In timed petri nets each transition vi ∈ T is associated with a sequence of
positive (real) values ti = {ti,0, ti,1, . . .} with ti,k ∈ R+

0 . These values are

24 CHAPTER 4. STATE OF THE TECHNOLOGY

interpreted as delays for the firing of the transitions. The ti,k value defines
the delay for k-th firing of transition vi. After being enabled, the transition
has to wait the amount of time specified by the delay before it may fire.
A transitions vj reproduces the immediately-firing-behavior by setting all
delays to zero: tj,k = 0 for k ∈ {0, 1, . . .}.

Conclusion

Petri nets are used in a wide range of problem domains. Based on the
initial (most simple) definition of petri nets, formalisms, models and methods
have been developed. For example, formal languages, analytical methods
(e.g. reachability of states, blocking, etc.), colored and timed petri nets, just
to name a few. Furthermore, they can represent a DES if the transitions
are seen as events that are triggered during simulation [CL06]. Therefore,
they can serve as a meta-model for any kind of DES model. However, the
complexity of petri-net representations tend to explode with the complexity
of the models.

4.1.5 Current Simulation Software

Today’s simulation software packages offer very powerful solutions for the
modeling, simulation and analysis of a wide variety of systems. The software
differs in the supported simulation methodology, the modeling paradigms and
the usage. At one end, there are highly specialized and optimized software
tools, typically used in “Computer Aided Design” or on super computers
[Fri03]. On the other end, there exists enterprise simulation software which
follows a very general approach. Often the software is split into different
products, each covering a specific modeling area, like “logistics”, “warehouse”
or “airport” [Inc12b] Often coupled with a graphical user interface and
a dynamic process animation, the user is allowed to build and analyze
simulation models via drag & drop, e.g. [Inc12a, Roc11, XJ 12b]. We
will discuss the general approach of most commercial enterprise simulation
packages using the examples of Enterprise Dynamics build by INCONTROL
[Inc12a] and Anylogic which is build by XJ-Technologies [XJ 12a]. Modeling
a specific system can be done in many different ways. The set of reasonable
approaches often depends on the system that will be modeled and the
used simulation software. For enterprise related systems, like material flow
systems, the flow-based modeling has been proven to be easy to use. Flow-
based modeling means to connect building blocks through defined inputsFlow-based Modeling
and outputs to exchange entities. Each block represents a function that
is applied to the entities or stands for a behavior that is triggered by the
entities flowing through it. The connected building blocks form a network of
functions and behaviors. A simple example of such a network is depicted
in Figure 4.4. Here a Source creates Tokens that flow through the different

4.1. MODEL AND SYSTEM SPECIFICATIONS 25

Source Truck Warehouse Production Sink

Figure 4.4: A simple material flow model. Tokens flow from the Source
through the different blocks to the Warehouse.

m1 m2

Figure 4.5: The schematic view of a queueing model, representing a manu-
facturing system with two buffers and two machines m1,m2.

blocks, each representing some sort of process, until they reach the Sink.
The software product normally consist of a simulation engine which

provides abstract implementations of the different simulation formalisms
like Discrete Event Systems, Agents or Dynamic Systems [Sof11, XJ 12b].
Because the referenced products all use their own, proprietary simulation
engine and modeling mechanisms we cannot state much about them. However,
almost all use an object oriented approach.

4.1.6 Representations for Analytical Processing

Until now we got to know model representations that are designed to be
simulated, like DEVS. Often it is possible to describe the behavior of an
input-output-system through mathematical structures, like differential equa-
tions. Then it is possible to derive characteristics of the system solely by
mathematical study of the system structures.

Queueing Theory

Queueing Theory is one of the more popular areas. It is a subarea of
Probability Theory and Operations Research and covers the mathematical
analysis of queues (or waiting lines). Usually a queueing system is represented
by a stochastic arrival process and one or more stochastic servicing processes.
Other parameters are the maximum capacity of the queue (normally set to
infinity), the number of incoming jobs (also normally set to infinity) and the
processing order (normally first come, first served). These queueing systems
are used to model customer lines, traffic systems, telecommunication systems
or production systems [Flo95]. Such queueing systems can be combined
to form queueing networks. These networks can be used to model whole
production systems with several subsystems.

In Figure 4.5 a manufacturing system with two machines m1 and m2
is depicted (This example is drawn from [CL06]). Material flows into the
system from the left and exits to the right. Between m1 and m2 there is a

26 CHAPTER 4. STATE OF THE TECHNOLOGY

buffer with a limited capacity of three items. The buffer in front of m1 is not
limited. m1 with the buffer in front forms a classical queueing system with a
virtual arrival process (depicted as the dotted input to the queue), a limitless
queue and m1 as a single server. Two interesting performance parameters
are the waiting time wi and the system time gi for the i-th customer (here
token), especially their stochastic behavior. wi is defined from arrival at
the buffer until the beginning of the service through m1. gi describes the
overall time the i-th token stays in the system, i.e. the time from arrival to
departure (here to the second buffer). Let {wi} := (w0, w1, . . .) identify theSteady States
sequence of waiting times and {gi} the sequence of service times respectively.
Then the probability distribution of {wi} is defined as P [wi ≤ t]. As we can
see here, the distribution depends on i. However, usually, for i→∞ we find,
that there exists a stationary distribution, independent from i, i.e.

lim
i→∞

P [wi ≤ t] = P [w ≤ t]

This means, that, if enough token have been processed by the system,
every following token has a stochastically identical waiting time. This state
of the queueing system is often called steady state. The same concept applies
to {gi}.

However, m1, m2 and the buffer in between also form a queueing system,
with the output of m1 being the arrival process, the buffer being the queue
and m2 being the single server. Due to the dependency of m1 of the state
of the buffer in front and the virtual arrival process, the analysis of this
system gets quite complex. Another aspect that makes the analysis complex
is the limited buffer between m1 and m2. If m1 finishes the processing of a
piece of material but the buffer is already filled, the machine goes into the
blocking state. This blocking can in certain situations influence to a large
part of the material flow. Therefore, even simple systems can be too hard to
be analyzable mathematically. Also, analytical methods (like the Queueing
Theory) make extensive use of restrictive assumptions on the model. This
usually makes the method unusable on more complex models [Hel04, Flo95],
like the ones from this thesis.

4.2 Model Simplification and Coarsening
In Chapter 2.3 the terms model simplification and coarsening were already
briefly discussed. In this chapter the discussion will be extended. Afterwards
an overview on available simplification methods will be given.

Simplification is an intuitive concept and can be defined as the process
of creating a simpler version of a system from a more complex one. In fact,
a model M of a given system S is a simplified version of S (otherwise M
would just be a copy). Unfortunately there is no single accepted definition
[CBP00, BT96] or naming scheme. E.g. some [Sev91, Fra95, SF98, VDI96]

4.2. MODEL SIMPLIFICATION AND COARSENING 27

use the term Abstraction, while others [SF98, BT00] call it Level of Detail
and Davis and Hillestad [DH93] use the term Resolution. The IEEE [BH97]
defines simplicity as a “degree to which a system or component [. . .] is easy
to understand”. Sevnic [Sev90] differentiates simplification methods into the
categories abstraction and lumping. Abstraction is used to better understand
a system or model. It does not necessarily result in a model with a lowered
computational complexity, obtaining simulation results faster. In contrast,
lumping is used to obtain simulation results faster. Lumped models may be
harder to understand than the original model.

Simplification establishes a relation between models [Sev91]. In order to
compare two given models M,M ′ regarding their simplicity two things must
be available. At first there must be some sort of validation to determine if
M and M ′ are models for the same system (if they are not, they are not
comparable). Second, a metric for the complexity of M and M ′ is needed to
be able to compare them with each other.

4.2.1 Validity of Models

On one hand Chwif et. al. [CBP00] note, that the validation of models
receives little attention in the literature and often validation is based on
experience and good sense. As noted in Chapter 2.3 there is a consensus
among researchers, that the decisions that are based on the outcome of the
simulation of two valid models should be the same [Fra95].

Wymore [Wym93] and Zeigler [Zei76] propose homomorphism as a the-
oretical basis for the validation of models. Let M := {m1, . . . ,mn},M ′ :=
{m′1, . . . ,m′k} be two models, each containing some elements. If a homomor-
phism h can be found, such that

h(m1, . . . ,mn) = h(m′1), . . . , h(m′k)

then M and M ′ are models of the same system. The definition requires,
that every state, input and output of a system likeM , must have a counterpart
in the other system, here M ′. Unfortunately, this prevents the merging of
several states which would require the summation of the time stayed in
each state. Sevnic [Sev90] proposes a relaxed definition of validity, the W -
validity, based on a homomorphism combined with probabilities. However,
the probabilities must be obtained through simulation runs, which make
the method computational intensive. Also validity cannot be guaranteed for
situations that were not observed during the simulation runs.

Davis and Hillestad [DH93] use the term Consistency of models. Two
models M,M ′ are consistent if a set of aggregated states of M can be
unambiguously mapped to states in M ′ (this follows the definition of homo-
morphism). Complete Consistency is achieved when also a disaggregation of
the states of M ′ exists.

28 CHAPTER 4. STATE OF THE TECHNOLOGY

Sisti and Farr [SF98] use the term Accuracy. They propose two assertions
from which they think, they describe how the the terms Model Complexity,
Validity are related:

1. Increased model complexity does not necessarily imply increased valid-
ity.

2. Increased computational complexity does not necessarily imply in-
creased validity.

So far concepts were discussed that use the structure of a model to
determine the validity of the models. If the validity of two models can be
determined this way, the models are valid for all possible inputs, states and
outputs. However, homomorphism often is too strict to be of practical use
(e.g. it does not allow the aggregation of state) and the user has to create
the homomorphic map himself.

Therefore, more practical validation methods compare data, like the
model state, retrieved from simulation runs. Because of the state space U
of a system S growing exponentially and, like the possible input X(S) of a
system being infinitely large, normally only portions of the systems state
and the possible input are validated. This is usually done by comparing
specific performance indicators during several simulation runs. Do these
indicators only differ within a certain threshold the simulation outputs Y (M)
and Y (M ′) are considered to lead to the same conclusions - the models M
and M ′ are both valid and comparable representations.

Sevnic [Sev90] uses the number of packets transported through a network
without collision as an indicator for the validity of two models of the same
computer network. To analyze material flow systems it is possible to use
performance indicators from the field of production controlling. Huber and
Dangelmaier [HD09], e.g. use the indicators Work in Process, Lead Time
and Throughput to validate three different production models. Johnson et.
al. [JFM05] simplify semiconductor manufacturing facilities. To validate the
created versions they compare average lead times of products by simulating
the original model M and the simplified version M ′. If the correlation
coefficient for the samples of M and M ′ is greater than 0.6, they assume
that M ′ is a valid model regarding M . Rose [Ros99] validates the simplified
models by comparing the mean, variance and distribution of the lead time of
each produced product.

Often the validation of simplified versions of a model is not in the focus
of research. Instead, percentages or absolute values are provided to compare
simplification methods, by comparing some error metric. The validity of
the results of the simple model are not explicitly discussed. Völker and
Gmilkowsky [VG03] validate production models by simulating the processing
of orders by comparing the mean difference in the start and end times
of all orders executed. They use the absolute values to compare different

4.2. MODEL SIMPLIFICATION AND COARSENING 29

simplification methods. Hung and Leachman [HL99] present simulation
results for simplified models of a wafer fabrication facility. They use the error
introduced in the mean lead time of the lots moving through the facility and
the standard deviation of the error as indicators to imply validity. Brooks
and Tobias [BT00] argue that their created simplifications are valid because
they remove or replace components from the model that have no impact
on the lead time. They think that, as long as the bottleneck of a material
flow model is preserved the results of the models are comparable. Jain et.
al. [JLGL99] compare the lead time of high volume products to determine
whether the simplified model produces valid results.

Friedman et. al. [FF85] validate the predictive capability of their meta-
model (a form of a simplified model) by using coefficient determination and
double cross-validation. They split the data they use to train the metamodel
randomly into two groups: a training set and a “holdout” sample. Two
setups were used: two-thirds and one third and, half and half. The training
set is then used to create a metamodel and with the holdup set the predictive
capability computed using the coefficient of determination. If this coefficient
is high enough, the model is considered to be valid (as long as the assumption
holds, that the training set correctly represents the data set the metamodel
will be used with).

Fishwick [Fis89] uses different statistical metrics like mean square error
or residual sums of error to compare different metamodels regarding their
validity. However, he only provides a ranking of the compared methods based
on the values of the metrics without interpreting the values regarding the
validity of the different methods.

Conclusion

Validation is needed to ensure that the results of a simplified model are
meaningful. Usually, if a model is valid, it means, that the results of the
simplified model lead to the same decisions as the results of the original
model do. Unfortunately, this process is not measurable.

The validation of a specific, simplified version M ′ of an individual model
M is simple. Let Y (M) and Y (M ′) be the results of simulation runs for the
original model, respective a simplified version. If the error ‖Y (M)− Y (M ′)‖
is small enough, Y (M ′) is considered to be valid. Here the validation is
limited to measurable values like simulation results and states. The definition
of the error metric is undefined and changes from model domain to model
domain.

However, there are efforts to mathematically proof that specific simplifi-
cation methods always retain valid models. That means, that the error ε for
simplified models never gets greater than a specific value.

30 CHAPTER 4. STATE OF THE TECHNOLOGY

4.2.2 Complexity Measurement

Throughout the literature there exists two main definitions of complexity:
Psychological Complexity and Computational Complexity. Psychological
complexity can be defined as the degree of difficulty to understand or verify
a system [BH97, Wal87, CBP00]. The computational complexity however,
usually is defined as the amount of resources needed to get Y (S) from a
system. E.g. for simulation model this would be the computational time and
memory consumption.

Sisti and Farr [SF98] state that psychological complexity (they use the
term model complexity) usually is directly related to computational complex-
ity, which again is directly related to computer runtime.

Zeigler [Zei76] specifies the complexity of a model or system as a com-
bination of both psychological and computational complexity. He defines
complexity as the resources needed to create, simulate and analyze a model.

Wallace [Wal87] and Huber [HD09] offset write and/or read access on vari-
ables against each other to compute a complexity. Brooks and Tobias [BT96]
argue that programming code based metrics are not system independent
and that the best approach seems to be to identify specific model attributes,
like model size, connectedness or computational complexity. Unfortunately,
these model attributes are also measured in arbitrary ways. Schruben and
Yücesan, for example, use a graph representation of the model to calculate
different complexity metrics based on graph theory.

Most literature [Sev90, Ros99, HL99, BT00, VG03] intuitively consider
the complexity as the quantity of elements in the model, sometimes combined
with the connectedness, represented as the total number of connections
between those elements.

Johnson et. al. [JFM05] simply argue that replacing distribution driven
machine components by constant delays, reduces the model in its complexity.
Chwif et. al. [CPB06] use an absolute value obtained through their model
representation and simplification technique to conclude reduced complexity.

Complexity metrics are usually based on the system structure. However,
most metrics are not comparable and just offset some properties of the
specific model representation utilized.

4.2.3 Simplification and Coarsening Methods

One of the most extensive and most cited taxonomies for simplification
methods is provided by Frantz [Fra95] (see Figure 4.6).

He essentially divides simplification techniques into three main categories
with each having several sub-categories: Boundary Modification, Behavior
Modification and Form Modification. Frantz defines Boundary Modification
as the modification of the input space X(S) of a system. This includes the
explicit removal of certain input objects from XV whether this is based on

4.2. MODEL SIMPLIFICATION AND COARSENING 31

Model Abstraction
Techniques

Model Boundary
Modification

Model Behavior
Modification

Model Form
Modification

State Temporal Function Entity

Unit
Advance

Event
Advance

By
Function

By
Structure

Behavior
Aggregation

Causal
Decomposition

Repeating
Cycles

Numeric
Representation

Meta-ModellingLinear Function
Interpolation

Random
Number

Generation
Look-up Tables

Hierarchy of
Models

Delimit Input
Space Approximation

Bondary
Selection by
Influence

Explicit
Assumption Derived

Causal
Approximation

Model
Sensitivity
Analysis

Figure 4.6: Taxonomy of model abstraction techniques [Fra95].

32 CHAPTER 4. STATE OF THE TECHNOLOGY

“good sense” or analysis of the model under certain conditions. The second
category, model behavior modification, involves the aggregation, omission or
replacement of states, time, entities or functions. Most simplification and
coarsening methods can be located in this category. Entity aggregation is a
common method to reduce runtime and/or complexity in material flow models
[HD09, Ros07, Ros99, VG03, JFM05, HL99, JLGL99]. Often machines and
parts of less interest are replaced by time delaying components. To use entity
aggregation, one must know how to setup the replacement. In some works,
this is done by an experienced modeler. However, especially Sevnic [Sev90]
and Huber and Dangelmaier [HD09] each present an automated approach.
While Sevnic presents a generic approach based on the DEV specification,
Huber and Dangelmaier restrict their approach to material flow models.
Usually, information for the replacement setup is gathered in a preprocessing
step. During this step the original model is simulated and its behavior
can be analyzed and used for the replacement setup. Unfortunately, the
results from the simulation only cover the component behavior in observed
situations. While this can become a huge problem in unknown situations, it
also is a problem when the model itself is changed. Also, this preprocessing
step is a normal simulation experiment and needs time and (usually) will
produce simulation results we are interested in. Thus, the preprocessing
step potentially answers the question we had in the first place, making the
simplified model obsolete altogether.

A mathematical simplification technique is the convolution of proba-
bility distributions. In material flow systems, process are often modeled
using probability distributions as parameters. Several such systems can be
combined (or merged) by convoluting the distributions. The convolution is
only possible for independent random numbers. Unfortunately, the waiting
time of tokens in a material flow system depends on the state of other, con-
nected systems. This dependency leads for example to bottleneck situations.
Therefore distribution convolution cannot be used.

The third category is Form Modification. This includes e.g. the replace-
ment of the original model or parts of the original model by approximations
such as Meta-Models or Look-Up Tables. Meta-models are mathematical
approximations that take a set of input/output-pairs and try to find a good
polynomial fit for them. Then they use the polynomial to compute the output
for given input values. The speciality is, that they treat the original model
as a black box, completely omitting the internal structure. A good overview
over using meta-modeling in production and logistics is given by [Mer05].
Instead of fitting a polynomial to the observed data, Fishwick [Fis89] uses
the data to train a neural network.

The method presented in this thesis utilizes Look-Up Tables. Basically a
look-up table contains a set of specific values. A given input is mapped to an
index of the table and the value at that index is used to compute the output.
The table may contain output values where the output equals the table

4.2. MODEL SIMPLIFICATION AND COARSENING 33

value. Also, the table can contain some intermediate value that is used in a
transformation function to compute the output. In the latter case, complex
transformations of the input into the output can be omitted. Usually the
number of different outputs of the model is far greater than the size of the
look-up table. Now the challenge is to fill the table with values that cover
the output of the original model as good as possible. Consider the function
f(x) = x% 10 that takes numbers of x ∈ N as input and outputs values in
the interval [0, 10[. It would be a bad decision to replace the function by a
table that contains the values of the interval [20, 25[.

Examples of models where look-up tables are used are simplified com-
putations of the inverse square-root function x−1/2 [Ebe01] or the usage
of look-up tables in the color model of the Graphics Interchange Format
[Com90]. To date, to the author no simplification methods for material flow
models utilizing look-up tables are known.

4.2.4 About the Managing of Model States

Until now, most of the referenced methods change the complexity or the
level of detail of a given model before it is simulated and not during the
simulation. In a pre-processing phase possible changes for a model M are
computed which afterwards are applied to create a new, simplified model
M ′.

Changing the level of detail of a model or a part of a model during
the simulation is a much bigger challenge. This is called multi-resolution
modeling. Usually [HD09, Mue05] several simplified versions of a model or a
model part exist. During a simulation run, based on current requirements,
the different versions are exchanged. Consider that for the material flow
model from Figure 4.4 on page 25 the production building block is available
in two different resolutions: c, c′. The original building block c uses physics
attributes like friction, weight and size to compute positions of tokens, while
the simplified variant c′ works like a first-in-first-out buffer with a specific
timed delay. Now the model is simulated using c and at a specific point
in time t′ c is replaced by c′. As c has been part of the simulation so far,
c probably changed its state u, i.g. the conveyor current transports some
tokens. Since c′ has not been simulated, it is still in its initial state, i.e.
this component is empty. Simply exchanging c by c′ therefore equals a
complete reset of the state of this part of the model. The introduced error
can be described as the difference between the two states: ‖uc(t′)− uc′(t0)‖.
Furthermore, when switching back to c at another point in time t′′ the
component starts where it was replaced at time t′. The introduced error
is even bigger. It is not only the difference between the state uc(t′′) and
the state uc(t′) where c was left. But its the difference between uc(t′′) and
uc′(t′′ − t′). Because c′ cannot fully imitate the behavior of c, c′ starts at t′
in the wrong state and is only simulated for the time interval t′′ − t′, the

34 CHAPTER 4. STATE OF THE TECHNOLOGY

error accumulates. Therefore it is essential to preserve the consistency of the
states of c, c′, e.g. by porting the state of c to c′ and back when switching.

State Reconstruction

In parallelized simulation, state reconstruction is essential. Parallel simulation
means to split the elements of a model into groups, which are then simulated
in parallel on different processors (or even computers) [Fuj98]. Because
elements of different groups have to communicate and react to each others
state change, elements from one group need the correct state of elements of
another group. Conservative simulation methods have groups waiting for each
other computing the needed state to prevent inconsistencies. Their speed
up depends on the connectedness of the groups but usually it is relatively
small. Optimistic methods on the other side allow inconsistencies. However,
they provide mechanisms to detect them and to reconstruct the correct state
from a saved state and event history (often called Time Warp). Because a
state inconsistency can render other (depending) states inconsistent, in the
worst case the whole model state has to be reconstructed. A lot of research
was concluded to find a efficient state and event history method. Huber
[Hub09] notes, that these methods often rely on assumption not applicable
for larger simulation models, like small state spaces. Instead, Huber proposes
a reconstruction method for material flow models that heavily relies on
domain and implementation specific knowledge. He uses knowledge about
the structure of the involved components and the scheduled events to compute
a state for the component that is switched to. The available information is
categories into being related to seizure, failures or statistics. Then for each
of the categories and the component types between to switch rules exist how
to compute a valid state.

4.2.5 Dynamic Model Simplification

Most of the aforementioned simplification methods have in common, that
they create a simplified version of a model that is then being simulated.
Because of the domain and result specific nature of the model simplification
and validation, simplified models are only valid within bounds. Changing
the simulation target or the structure of the original model usually results in
a different simplified version of the model. Another problem for the validity
of a simplified model can be the model dynamics. Rose [Ros00] notes that
the bottlenecks in a material flow model are very important for a valid result.
During runtime certain events, e.g. machine failures, can move a bottleneck
from one component to another, create new bottlenecks or disperse existing
ones. Therefore, it is preferable to adapt the extent of the simplification to
the current model state at runtime. In the next chapter methods to detect
bottlenecks in material flow systems are discussed.

4.3. BOTTLENECK DETECTION METHODS 35

To the best knowledge of the author only one attempt has been made
towards simplification control at runtime. Mueck [Mue05] uses the current
position and field-of-view of a virtual avatar to determine which parts of
a model should be simplified and to which extent. The simulation models
he uses are defined in the three-dimensional space with positions and three-
dimensional visualizations for the model components. The user is represented
as an avatar in the virtual space. During simulation, model components are
simplified based on their distance to the avatar, his field-of-view and whether
the objects are visible or occluded by other objects (e.g. a factory wall).

4.3 Bottleneck Detection Methods
As already mentioned the detection of bottlenecks often is crucial to get valid
results when using coarsening methods [JFM05]. Results gathered when
using the method presented in this thesis also clearly show that coarsening
the bottleneck greatly affects the simulation output quality in a negative way
(Chapter 8.3). Furthermore, several aggregation methods [BT00, JFM05,
Ros00, Ros07, HL99, HD09] use almost the same approach: 1) Identify all
bottlenecks in a production system. 2) Aggregate everything else but leave
the bottlenecks unchanged. Because of these findings it is necessary to study
bottlenecks and the detection of them. A good overview over the field is
given by Wang et al. [WZZ05].

4.3.1 What is a Bottleneck?

The literature is quite indifferent about its definition. Lawrence and Buss
[LB95] identify three principal definitions found in literature and add their
own. The definitions from literature are based on production ratios such as
the work-in-process inventory:

• Bottlenecks occur when the demand exceeds capacity in the short run.
The detection of these short-term bottlenecks is primarily used for
process control [LCN09].

• The process with the longest work queue or WIP is the bottleneck.

• Processes with the highest utilization are bottlenecks and are hindering
an increased output and throughput in the long run. The identification
of these long-term bottlenecks is especially used in production planning
[LCN09].

Later on, Lawrence and Buss [LB95] state that they define the production
bottleneck to be the process with the highest utilization. However, their
own definition which they call the economic bottleneck, takes economic
ratios into account. In this definition processes are characterized from an

36 CHAPTER 4. STATE OF THE TECHNOLOGY

economics point of view (which must not necessarily be the same as from a
productions point of view). Kuo et al. [KLM96] provide a fifth definition:
They define a bottleneck as a process which’s throughput affects the overall
system throughput. The largest bottleneck then is the process which has the
greatest impact on the system throughput.

4.3.2 Detection Methods

Corresponding to the different bottleneck definitions several detection meth-
ods are described. While most methods rely on production values like the
machine utilization which are obtained through real world observations or
model simulation there are also analytical approaches. Kuo et al. [KLM96]
present a method that uses performance assumptions based on probabilities
to compare two adjacent machines with each other. Given are two machines
in a serial production line. Then, by comparing the possibility of block-
age and starvation for each machine, it is possible to specify the direction
(up-stream or down-stream) of the bottleneck, in relation to the compared
machines. While the probabilities in the studied model can be of theoretical
nature, they can also be derived from statistically analyzed (real world or
simulation) data. A drawback of this method is the restriction to serial
production lines.

Another approach using basically the same information as Kuo et al.
is described by Li et al. [LCN09]. However, they focus on short-term
bottlenecks on real world data. By comparing the percentage of time a
machine is blocked with the time it starves (idle state), it is possible to
identify the turning point (the bottleneck) in a serial production line. The
turning point is a machine where the relation between the two ratios (one
ratio is larger than the other) turns to the opposite. This approach shares
the restriction to serial production lines with the approach by Kuo et al.

Based on personal experience, Sengupta et al. [SDV08] present a method
that, according to the authors is less error prone due to its simplicity. The
authors write that often performance analysis of real world production
systems is difficult because of data errors. These errors can occur because
of 1) malfunctioning sensors, 2) incorrect detection of machine states and
3) software problems. Their method analyses the inter-departure times
(excluding failure cycles) for a given time period for each machine. Then the
blocked and idle state times are compared between each machine to identify
the bottlenecks. However, while their method utilizes a single signal from
the machines which is very simple to gather, the method is only applicable
on machines with a fixed cycle time.

Brooks and Tobias [BT00] propose an analytical metric to find the
bottleneck. Each machine in the simulation model is assigned its effective
capacity. The machine with the lowest capacity is said to be the bottleneck.
The effective capacity is calculated from values like the batch size and the

4.3. BOTTLENECK DETECTION METHODS 37

cycle time and the average breakdown time and the percentage of good parts
output by the machine and the repair and setup time. Basically, this single
value describes the average rate at which (usable) parts are processed by a
machine. Unfortunately, Brooks and Tobias do not examine the bottleneck
detection any further, e.g. by comparing the metric to the actual simulation
values. Furthermore, the effective capacity does not take model dynamics
into account and only works for models that go into a steady state in the
long run.

Huber and Dangelmaier [HD09] extend the metric to include a cyclic
quotient which puts more weight on component that are included into cycles
in the production network. When tested against three different models the
metric showed mixed results: For one model the identification was very good
while for another one the identification method had the same hit rate as a
random process. For the third simulated system the method showed mixed
results.

Law and Kelton [LK00] define that the machine with the highest utiliza-
tion is the bottleneck of a simulated system. While not directly searching
for a bottleneck in the simulation model, both Johnson et al. [JFM05] and
Hung and Leachman [HL99] also utilize this identification method. Machines
with a low utilization are considered to not be a bottleneck and therefore can
be simplified without the fear of a large deviation from the original model
(following the initial findings). However, Wang et al. [WZZ05] note that
differences in the utilization of the machines can be very small and that this
method is not very accurate.

All the various methods presented so far have some disadvantages in
terms of application restrictions, resolution and accuracy [WZZ05, RNT02].
The accuracy was tested by Wang et al. and Roser et al. [WZZ05, RNT03].
For the tested systems the results were identical: A method developed by
Roser et al. [RNT02] called Shifting Bottleneck Detection was the most
accurate one. Furthermore, it overcomes several shortcomings of the other
methods.

Shifting Bottleneck Detection

The shifting bottleneck method is able to detect average and momentary
bottlenecks. It does not require any knowledge about the network structure
and is applicable on more complex production systems [RNT02]. Further-
more, it has been shown to work well with more complex components like
automated guided vehicles (AGV) [RNT03].

The idea behind the method is, that at any given point in time the
machine with the longest uninterrupted active period is the most likely the
bottleneck. A machine that is active is not blocked (waiting for subsequent
machines to finish work) nor does it starve (waiting for precedent machines
to finish work). Therefore, the longer a machine is active the more likely

38 CHAPTER 4. STATE OF THE TECHNOLOGY

M1

M2

Tt

Figure 4.7: Illustration of shifting bottlenecks. Active periods for two
machines M1,M2 are shown. Parts of the periods are categorized where a
machine was a sole or a shifting bottleneck.

it is blocking preceding or starving subsequent machines. However, there
are times where a bottleneck shifts (hence the name) to another machine.
This is indicated by the overlapping of several time intervals were different
machines are stated to be the bottleneck. In such overlapping time periods
no machine is the sole bottleneck in the system. Figure 4.7 illustrates the
method for two different machines M1 and M2.

The accuracy of the method was tested by Wang et al. and Roser et al.
They used different detection methods to identify the main bottleneck within
different systems with varying complexity: Two different production systems
with AGVs and a job shop system. Then they tested the sensitivity of the
system throughput to changes to the different processes (this follows the
bottleneck definition by Kuo et al.). The process with the highest sensitivity
was identified as the main bottleneck. It was found that for the tested
systems the shifting bottleneck method always found the most sensitive
bottleneck. Furthermore, the queue length fluctuates much more than the
shifting bottleneck, identifying bottlenecks that last a very short amount of
time. On the other hand, the utilization method was handling components
with shared resources like AGVs (sharing the track in the tested system)
not very well. The method was not able to identify a specific AGV as the
bottleneck [RNT03].

While the shifting bottleneck method is the most accurate in terms of
the bottleneck definition given by Kuo et al. it also has a drawback: The
authors state that for any given point in time t the method is able to identify
the sole bottleneck or all shifting bottlenecks. This is true as long as no real
time determination is required. For example, in Figure 4.7 at t (without
knowing the future) it is not possible to determine whether M1 or M2 will
be a bottleneck. This depends on the length of the active period of the
machines in the future. Therefore, this statement is only true if the whole
data is known. Otherwise, the classification of the bottleneck component
may be changed retroactively.

4.4. MODEL PARTITIONING 39

4.4 Model Partitioning

As we have seen, the usual approach to coarsen a simulation model is through
component aggregation. For this approach to work, a valid replacement for a
part of a simulation model has to be found (and parameterized). Large parts
of a simulation model tend to show a more complex behavior than smaller
parts. Due to the connections between the components one component can
affect with its behavior the behavior of others (e.g. by being a bottleneck and
blocking other machines). Also, large parts may contain active and passive
forks that show situation dependent behavior. Formally, the more complex
and sophisticated behavior results from a much larger state space. Therefore,
it is usually a better approach to aggregate a smaller group of systems than
a larger one to minimize the introduced error. Furthermore, sometimes
a coarsening approach can only be applied to certain structures within a
model. The model must be examined for these structures, e.g. parallel
manufacturing lines, and is partitioned into parts that can be coarsened and
parts that cannot (those that do not match the set of processable structures).
Besides a simpler behavior that has to be examined and reproduced, with
several smaller model parts at hand one can locally control the coarsening
which may result in a smaller error. Of course, at times rather large models
can be reduced to very few components without altering the behavior of
the simulation model [BT00]. However, this simplification is done manually
by reducing the system state space to represent through extensive domain
specific knowledge and analysis of the given system.

Several of the presented coarsening methods partition a given simulation
model into several smaller parts. In this chapter different algorithms are
examined to partition material flow models and - more generic - graphs.

4.4.1 Partitioning of Graphs

The classic graph partitioning problem is defined as the identification of graph
parts that have certain properties. Let there be a graph G := (V,E) with
a set of nodes V and a set of edges E and a set of constraints (properties).
Then a valid partition is a set of non-overlapping node sets that meet the
given constraints. Examples for constraints are: 1) The graph must be
partitioned into a specific number of regions and 2) the sets should have
about the same size (balanced graph problem). Such partitioning problems
(and the problem solving algorithms) are found in very different application
areas, such as parallel computing and the detection of cliques in social or
biological networks [PN03].

Usually, graph partitioning problems are NP-hard. Therefore, reasonable
solutions are based on heuristics and approximation. Even for very special
graphs like trees no partially usable approximations exist [Fel13].

As we have seen in the previous chapter some of the bottleneck detection

40 CHAPTER 4. STATE OF THE TECHNOLOGY

algorithms focus on serial production lines. Furthermore, as we will show in
Chapter 8.5 simplifying serial connected components is less error prone than
arbitrary connected components. Therefore, it is crucial to identify such
regions in a given graph.

4.4.2 Identifying Sequential Regions

The most simple structures in a material flow graph are groups of sequentially
connected material flow components. Probably, these are the easiest ones
to simplify. A group of sequentially connected material flow components
(L,A,B) (or simply: serial region) is specified as

• ∀S ∈ L \ {A,B} :→S ∪S →⊂ L ∧ | →S | = |S → | = 1

• A →⊂ L ∧ |A → | = 1

• →B⊂ L ∧ | →B | = 1

In most applications, serial regions of maximum size have to be found.
Such a maximum sized serial region R′ := (L,A,B) can be characterized as

∧ serial regions R′ := (L′, A′, B′) : L′ ∩ L 6= ∅ ⇒ L′ ⊂ L

An algorithm to find maximum sized serial regions is pretty straight
forward. Start with a pair of directly connected components A,B ∈ G in a
material flow graph G and a list L := (A,B). Now simply add all neighbors
of A and B to L as long as above conditions are met.

4.4.3 Single-Entry-Single-Exit Regions

Besides sequential connected production lines most material flow graphs
also contain other, arbitrary structures. Furthermore, some material flow
graph may not contain any sequential connected components. Therefore,
focusing solely on these structures for simplification restricts the concept to
very specific material flow systems.

The concept presented in this thesis can coarsen so called single-entry-
single-exit (SESE) regions. Intuitively, a SESE region is a group of compo-
nents that has a single entry edge and a single exit edge (or node). More
formally, a SESE region in a material flow graph G can be characterized
by an ordered edge pair (a, b) of distinct edges a and b with the following
properties:

1. a dominates b,

2. b postdominates a, and

3. a and b are edge cycle equivalent.

4.4. MODEL PARTITIONING 41

H I J K

L

M

N

h i j

l

m

o pq

Figure 4.8: Depicted is the part of a graph for which SESE regions have
been identified (dashed). The edges that are intersected by the dashed lines
are the entry and exit points for the different regions.

In a directed material flow graph, an edge a is said to dominate an edge
b if every path from a source over b includes a. Similarly, an edge a is said to
postdominate an edge b if every path from b to a sink includes a. This notion
can be easily extended to nodes of the material flow graph in the obvious
way.

The first two conditions are necessary but not sufficient to characterize
SESE regions. The third condition is required to properly handle loops in
the graph, where cycle equivalency is defined as followed: Edges a and b are
said to be edge cycle equivalent iff every cycle containing a contains b, and
vice versa. Similarly, two nodes are said to be node cycle equivalent iff every
cycle containing one of the nodes also contains the other.

Identifying Single-Entry-Single-Exit Regions

As for serial regions we only want to consider certain regions, i.e. for each
edge e in the graph G, the smallest SESE regions for which edge e is an
entry or exit edge. In fact, each pair of edges in a serial region encloses a
SESE region and a general graph can have O(E2) SESE regions. Therefore,
we define a canonical SESE region (a, b) as

• b dominates b′ for any SESE region (a, b′), and

• a postdominates a′ for any SESE region (a′, b).

With this definition, we can now partition an arbitrary control flow graph
G hierarchically into canonical SESE regions since it can be shown that two
SESE regions are either node disjoint or nested (see [JPP94]). Figure 4.8
shows an example graph with its canonical SESE regions.

To find all canonical SESE regions of a control flow graph, Johnson et al.
[JPP94] showed that the three conditions for SESE regions can be reduced
to the single property of cycle equivalence in a slightly modified graph. They
showed that in a control flow graph G, edges a and b enclose a SESE region

42 CHAPTER 4. STATE OF THE TECHNOLOGY

iff a and b are cycle equivalent in the graph formed from G by adding an
edge from end to start, where a control flow graph is a directed graph with
distinguished nodes start and end such that every node occurs on some path
from start to end and start has no predecessors and end has no successors.
Johnson et al. [JPP94] also showed the very convenient result that cycle
equivalence in a strongly connected graph remains the same when removing
edge directions.

With this it is possible to find all cycle equivalence classes in a strongly
connected graph S by a simple depth-first traversal on the undirected version
U of the graph. A depth-first traversal of an undirected graph U will yield a
depth-first spanning tree, and the edges of U can be divided into a set of
tree edges and a set of backedges. Notice that every circle in U must contain
at least one backedge. We call a backedge that connects a descendant of a
tree edge t (of a depth-first spanning tree of U) to an ancestor of t a bracket.
Now, it can be shown that two edges s and t are cycle equivalent in U if and
only if they have the same set of brackets in any depth-first spanning tree
of U . The set of brackets of each tree edge can be easily computed during
an undirected depth-first traversal. When retreating out of a node, we form
the union of the bracket sets of the node’s children, together with the set of
backedges from the node to an ancestor, minus the set of backedges from
a descendant to the node. To avoid slow building and comparing of entire
sets, Johnson et al. [JPP94] proposed a compact naming scheme for sets of
brackets. They basically showed that, when visiting the nodes in a reverse
depth-first order and maintaining a stack of brackets, we can characterize
the set of brackets of a tree edge by the topmost bracket in the stack and
the size of the stack < topmost bracket, set size > (see [JPP94] for detailed
information). Listing B.1 shows the algorithm for finding cycle equivalence
classes in a strongly connected graph G.

After the computation of the cycle equivalence classes we can identify
entry and exit edges of canonical SESE regions during any depth-first traversal
of the original graph. The nesting relation between SESE regions can be
organized in a tree and we discover them during the same depth-first traversal
that determines canonical SESE regions. The depth-first search keeps track
of the most recently entered region. When a region is first entered, we set
its parent to the current region and then update the current region to the
region just entered. When a region is exited, the current region is set to be
the exited region’s parent, thus forming the tree.

4.4.4 Partitioning of Material Flow Models

Methods that solve the partition problem explicitly for material flow models
are very scarce. While not being an explicit partition method Völker and
Gmilkowsky [VG03] and Hung and Leachman [HL99] and Johnson et al.
[JFM05] use different metrics to separate model components that should

4.5. THE SIMULATION SOFTWARE D3FACT 43

be coarsened and those that should not. Components to be coarsened are
identified by a) a low standard deviation of their waiting times or b) they
have the shortest processing times or c) they have a low utilitization.

Huber and Dangelmaier [HD09] use a multi-level method with material
flow specific conditions to partition the material flow graph. They are able
a) to partition the graph into a specific number of groups and b) to keep
the complexity of the coarsened material flow within specified bounds and
c) to keep the deviation from the original model within specific bounds. For
the latter two cases they use a modified version of a complexity metric from
Brooks and Tobias [BT00] and a new deviation metric based on the three
standard ratios lead time and throughput and work in process.

4.5 The Simulation Software d3fact
The software used to implement and evaluate the concepts presented in
this thesis is d3fact [Ren11, REK12, RD13, FRL+10]. d3fact is a discrete
event simulation software and collaboration between the research groups
Business Computing, especially CIM and Algorithms and Complexity. It is
designed from the ground up to be extendable and its architecture supports
user-collaboration. The former is achieved through the usage of a service-
oriented architecture, the latter through a client-server approach. d3fact
consists of three major programs connected via network (cp. Figure 4.9).
The simulation platform contains the simulation kernel and actually runs
simulations of models and whole simulation experiments. The visualization
client is a program that can visualize data from the simulation platform
forming an interface between the software and a human user. The server is
a central program connecting the different clients and platforms with each
other and also provides access to different resources like 3D data, simulation
models and server-side files. This program architecture especially allows the
execution of the simulations in a different location than the visualization
client. For example, the models might be simulated on high-end server
hardware located at the business headquarters while field workers can use
the visualization client to show simulation results to customers.

4.5.1 The Server

The server is the central hub. Clients and platforms use it to find each other
and to access resources. It is build on top of the OSGi platform [MVA10]
in a service oriented approach. The OSGI platform is most notably known
as the basis for the Eclipse Integrated Development Environment and as a
framework for automobile systems. This makes the server extremely stable
and extendable with new program features. For example, it is very easy to
implement support for custom databases or enterprise resource management
systems as a source for additional resources. The server integrates itself as a

44 CHAPTER 4. STATE OF THE TECHNOLOGY

Simulation
Platform

Visualization
Client

Simulation
Platform Server Visualization

Client

... Resources ...

Figure 4.9: The architecture of the d3fact platform.

simple service accepting incoming connections. Connections are represented
as services throughout the platform which has the advantage that broken or
stale connections do not affect the overall stability of the server.

As depicted in Figure 4.9 is the server capable of handling several simu-
lation platforms and visualization clients at once. This architecture allows
the server to run several simulations in different simulation platforms at
once. This is especially useful when executing a simulation experiment with
a large number of individual simulation runs. The server can distribute the
runs over a set of computers (e.g. a high performance computer cluster),
speeding up the overall experiment execution. Also, several visualization
clients may connect to the same simulation platform to collaboratively edit
the simulation model currently loaded.

4.5.2 The Simulation Platform

The simulation platform contains the simulation kernel and executes the
simulation models. As the server, it is based on a flexible and extendable
application platform. Libraries with additional simulation components can
be loaded at start up as needed. Some of the major libraries are:

• Motionplanning

• Physics Engine

• Railcab [HRS+07] Support

• Experiment Design

• Statistical Analysis

• Network Support

4.5. THE SIMULATION SOFTWARE D3FACT 45

Simulation
Model

Analysis Model
*

1

Visualization
Model

User Inter-
face Model

*
1

*
1

Figure 4.10: The relationship of the implementable models currently
supported by d3fact.

First the model architecture is presented as its structure is heavily utilized
when implementing the concepts of this thesis (cp. Chapter 7). After that,
both the experiment and the statistical analysis will be discussed in detail.
These libraries are used to obtain the simulation results presented in the
validation chapter (Chapter 8).

4.5.3 d3fact Model Architecture

One major feature of the simulation framework is the separation of the
simulation model and its analysis and visualization (cp. Figure 4.10) [REK12].
This two-staged architecture allows the usage of several visualizations with
one simulation model making it easy to customize the view for specific parts
of the simulation model. Also this enables the execution of the simulation
without any visualization and to provide additional model extensions like
the statistical analysis without visual clutter.

As shown in Figure 4.10 a simulation model can have several analysis
and visualization models. The analysis model describes which values of the
simulation model are of interest and provides a standardized way to access
them. This allows the analysis of arbitrary simulation models and even the
transformation of values into different units when needed. The analysis model
is presented in detail in the following. The visualization model describes how
the objects of the simulation model should be presented to the user. Since
the simulation model can be arbitrarily complex, a formalized approach is
needed to transform complex operations and calculations of the simulation
model into user-friendly visualization objects (and updates) such as geometric
shapes and transformations. Figure 4.11 shows two different visualization
models for the same simulation model. While one represents simulation
objects as complex CAD models, the other one uses simple geometric shapes
to highlight the material flow graph.

46 CHAPTER 4. STATE OF THE TECHNOLOGY

(a) Visualization Model representing
simulation objects with CAD models.

(b) An abstract view on the material
flow with the machine load encoded in
the component coloring.

Figure 4.11: Two different views of the same simulation model.

Based on this model a user interface can be specified that describes how
the user can interact with the visualization objects. The user interface may,
for example describe an editor that is specifically designed for the simulation
model domain to be very user-friendly. Furthermore, for different users
different interfaces (and visualization models) can be loaded to implement
usage and access restrictions. Both, the visualization and user interface
model can access an analytics model to provide advanced visualizations of
refined statistical data.

The Simulation Model

The simulation model specification in d3fact is based around properties and
a concept called composition and aggregation. This removes the need for
a static type hierarchy in the component definitions. Static inheritance
type hierarchies are simple to understand as it is natural for us humans
to arrange objects in a taxonomy [Som04, SG96]. Unfortunately, they can
become hard to maintain because of the limited possibilities for enhancement.
Assume we want to categorize animals to describe their feeding habits briefly.
The two obvious categories are herbivore and carnivore. Additionally, there
are animals that are omnivores which derive their habits from both, the
herbivores and carnivores. Implementing this hierarchy is tricky in most
modern programming languages as most type hierarchies are required to
be clean trees. The alternative would be to create a new type omnivores
which is not derived from the other two categories. This, however, is a simple
workaround because obviously omnivores are also herbivores and carnivores
(or at least derive their habits from them).

4.5. THE SIMULATION SOFTWARE D3FACT 47

<Machine>

Variables
+ Input
+ Output
+ Processing Time
+ Mean Down Time
+ Mean Time to Repair

Methods

Logic

(a) Standard Object Type.

<Machine> < . . . >

Input Processing
Time

Output Mean Down
Time

Methods, Logic Mean Time
to Repair

. . .

Container

(b) Container Concept.

Figure 4.12: This Figure shows the differences between a normal, static
type (left) and our container concept (right). Object types are indicated by
rectangles and the properties by rounded boxes.

A solution to this problem is to abandon static type hierarchies altogether.
This can be achieved with the composition and aggregation concept [Gre09,
Dea05]. This concept is based around objects that simply have properties.
Therefore, it is possible to assign to an object very different properties and
several types, which solves the problem for the omnivore type. Instead of
derivation, an animal of type omnivore is packed with properties from both,
the herbivore and the carnivore category and is additionally assigned with
these two types. Figure 4.12 shows the standard static type implementation
of a machine material flow component and the same component composed
with the container and properties approach. The static typed object is
of the type Machine, has several variables and some publicly available
methods. The logic of the object processes events and updates the state
of the machine accordingly. The container based object however also has
all these properties, methods and logic but, as indicated by the dashed
shapes can be updated dynamically with additional properties and types.
That makes this approach much more flexible and allows the combination of
different types (and properties) which can be near impossible with the static
type approach.

In d3fact an object is represented by a container assigned with a dynamic
set of properties. The container type provides methods to manage its proper-

48 CHAPTER 4. STATE OF THE TECHNOLOGY

ties (add, delete, get by key, etc.). Simple properties like numerical values
or strings are passive, meaning they do not react to state changes and also
do not cause them. These properties are aggregated (weak ownership): The
container object owns them but they are not bound to the life cycle of the
container object.

The object-specific logic on the other side is an active property, because it
does react to state changes. For example, when an event is caught, the logic
processes the event causing state changes within the object. Such properties
are composited. Composition strongly binds a property to a container, which
means the property is bound to the container’s life cycle. That means, the
property is created together with the container and is also destroyed The
property can access it’s parent (the container) and the whole simulation
model, as well as process simulation events.

Simulation objects may have other simulation objects as children. This
makes it easy to construct hierarchies within the simulation model.

The Analysis Model

An arbitrary simulation can be very complex in its structure and data
representation. An analysis model is the approach to organize and access
such data in a standardized way. This allows the automated processing
and (foremost) statistical analysis of such data. Processing can be the
visualization with graphs or diagrams or the storage in an organized way for
further processing by external programs.

A date (or value) that changes over the simulated time is called a series.
Examples for series are the current warehouse stock or the velocity of a
simulated car. The model also supports the implementation of complex value
calculations, e.g. the average throughput over a fixed period of time. The
idea is of implementing such calculations into the analysis model is that,
when the analysis is not loaded the calculations are not needed and are
therefore not loaded and executed. Series can be organized in simple nodes.
Such a node can be thought of as a data sheet where each column represents
a series and on each value change a new row is added to the sheet.

The nodes containing series can be further grouped together and be
organized in a tree hierarchy. Now a node represents a set of series that
belong together, e.g. because the series belong to the same simulation object.
This information can be used to group the sets of series by colors.

The current implementation provides support for two-dimensional charts
(several types of charts are available) which provide live data updates from a
simulation. Writing the data into files is also supported. The actual write
process uses application platform mechanisms so that a remotely started
simulation platform transfers the data to the server where it is written into
files. This especially comes in handy when utilizing computer clusters to
execute experiments.

4.5. THE SIMULATION SOFTWARE D3FACT 49

4.5.4 Material Flow Specification

d3fact comes with a component library with which material flow systems can
constructed. The current specification follows the same black box approach
as other simulation software (cp. Chapter 4.1.5). Components do not follow
any specification, instead connections between such components are specified.

A connection consists of two parts: The output and the input port. Any
two such ports can be connected and a material flow component may have
an arbitrary number of them. While an input port is connected to one
output port at most, an output port may be connected to an arbitrary
number of input ports. To follow token movement the ports broadcast an
event when a token moves through them. However, due to the black box
approach, component state changes and token movement (or reordering)
within components cannot be tracked in general.

4.5.5 Experiment Design in d3fact

d3fact simulation experiments are specifications of simulation models and
their initialization parameters (configurations) and how to evaluate them. For
statistically valid and meaningful simulation results it supports the iterative
execution of a specific model configuration with different initial random
number generator seeds. The framework supports adaptive optimization
techniques to speed up the examination of a large set of different model
configurations (configuration space). To support the early pruning of the
configuration space, the simulation of a specific configuration can be analyzed
at runtime. If the results turn out to match a specific termination criteria
the simulation can be stopped early. This allows for example the termination
of simulations which have arrived in a steady state. The framework supports
the generation of new configurations based on previous simulation results.
This allows the implementation of adaptive optimization algorithms. Of
course, the d3fact experiment specification does not only support dynamic
optimization (online analysis, early termination, etc.), but also allows the
(automated) execution of completely predefined experiments.

A d3fact experiment contains several experiment units which then contain
several simulation scenarios. A scenario consists of a simulation model and
an initial configuration. Each scenario is executed a specific amount of
times. This is done to retrieve statistically valid simulation results. An
experiment unit is used to group different scenarios together and compare
them online. To support early pruning, scenarios as well as whole experiment
units can be terminated at any time. Furthermore, to support the generation
of configuration from previously optioned simulation results, new experiment
units can be added for execution at any time.

Because of the extensibility of d3fact, it was easy to integrate the ex-
periment design framework as an additional plugin. The implementation

50 CHAPTER 4. STATE OF THE TECHNOLOGY

supports two different operating modes:

Local All experiments are started within one simulation platform process.
Usually in several parallel running threads. Results are analyzed locally
but stored at the server.

Global The experiments are distributed across several simulation platforms.
Each simulation platform can again execute several experiments in
parallel using threads. Results are streamed to a global controller
(residing in the server), which analyses and manages the experiments.
While this implementation is more complex it has the power to utilize
large computer clusters.

4.5.6 The Visualization Client

Currently one client is available: A powerful C++ Client which can handle
huge CAD model based 3D scenes [EJP11]. It recently gained low end
hardware (netbooks and smartphones) support [EJF10] which is support
through the implementation of low-end visualization models. It is developed
at the research group Algorithms and Complexity. The client is able to
display simulation objects as 3D meshes and furthermore can also provide
the user with a graphical interface. The two screenshots from Figure 4.11
show the client in action.

A second, web-based client is currently under development. It will also
show 3D data and provide a user interface and is based entirely on the
web standard HTML5. This client allows the display and manipulation of
simulations directly within a web browser.

C h a p t e r 5

Required Actions

The goal is to develop and implement a practical coarsening method.
Which means, that first and foremost, it should save resources when
applied. Furthermore, it should be compatible with (almost) arbitrary

material flow models. There should be no restrictions regarding the design
of the model. When applied, the method has to control and adapt itself in
such a way that the simulation of the coarsened model still produces valid
results.

In Chapter 3 requirements to meet and problems to solve were discussed.
Chapter 4 presented solutions that are already available. Now these solutions
will be discussed regarding their applicability.

Model Coarsening

Model Coarsening is the omission of aspects from a given model M . This
creates a new model M ′ that is less complex and needs less resources for
simulation. The aspects that should be removed must be well chosen. Other-
wise, relevant aspects might be removed, rendering Y (M ′) invalid. Here, the
original model (in lack of other references) is taken as a fixed reference to
which the coarsened model version is compared. There are no statements
made regarding the validity of the original model in reference to the modeled
system.

Most of the model coarsening solutions presented in Chapter 4.2.3 either
use a manually created simpler version of a model, or need some initial knowl-
edge about the model provided by an engineer. There are only a few works
on automated simplification. All require that the original model and often
also the coarsened model variants are fully simulated in a preprocessing step.
Other applicable modeling approaches like neuronal network metamodels
also need this preprocessing step for training. During this preprocessing step,

52 CHAPTER 5. REQUIRED ACTIONS

data on the system’s behavior is gathered, which is then used to parameterize
the coarsening method. Since this step involves the simulation of the original
model, it takes a considerable amount of time. Therefore, these methods are
only practical when using the same simulation model for a long time or for a
lot of experiments. Furthermore, when in use, the methods are bound to the
data from the preprocessing step. Data updates are not possible.

A new method must be developed which does not rely on data gathered
from the simulation of the original model. Instead, this method should
analyze the model during runtime and instantly utilize that data. This
implies, that the method cannot rely on large amounts of data. Furthermore,
a lengthly preprocessing step must be avoided.

Model Specification

The coarsening method should work with arbitrary material flow models.
This includes arbitrary processes within the material flow graph as well as
an arbitrary structure of the graph.

Material flow specifications found in current simulation software typically
uses a black box approach. This ensures that arbitrary material flow pro-
cesses can be implemented. A drawback of this specification is the missing
formalization of the processes. Without a formalization it is difficult to
process (and analyze) such specifications automatically. This also explains
why most material flow coarsening methods are restricted to very specific
material flow processes.

Another solution would be to rely on discrete event system formaliza-
tions like DEVS or (in a more general view) timed petri nets. Since these
formalizations describe processes on an event-based level, arbitrary DES
processes can be fully specified. However, these specifications are far too
general. Material flow specific assumptions or information is not available
on this modeling level.

Instead, in this thesis a formalized specification for arbitrary material
flow processes will be developed. This specification allows an efficient and au-
tomated processing of the whole material flow model (through the utilization
of certain material flow specific properties). Besides, this specification can
be transformed into the much more general DEVS and petri net formalism.
However, this is not necessary for the coarsened method to work and is
therefore omitted.

Controlling the Coarsening Process

The controlling is used to adapt the coarsening method to the model dynam-
ics. This ensures a valid simulation output Y (M ′). This implies that the
coarsening method is reconfigurable at runtime.

Most methods try to control the creation of the coarsened model during

53

the aforementioned preprocessing step. Coarsened model versions simulated
to check whether the results are valid within predefined bounds. If this is
not the case, the coarsened version is discarded [HD09, CPB06]. Since the
coarsening method presented in this thesis does not create coarsened versions
of a model in a preprocessing step, controlling must be done at runtime. To
the best knowledge of the author, only one attempt has been made towards
coarsening control at runtime. Mueck [Mue05] uses the current position and
field-of-view of a virtual avatar within a three-dimensional representation
of the simulation model to determine which parts of the model should be
coarsened. Mueck’s method heavily relies on three-dimensional data which
is not always available.

As stated before, the coarsening method presented in this thesis has to
work with very sparse data. Furthermore, the controlling is responsible to
adapt the method to the current conditions (within the model). In models
with fast or often changing conditions, the coarsening model must be adapted
on a fine granular level, this is especially due to the sparse data. Using the
typical approach by simply using the average over a long period of time to
approximate a certain condition is not possible. To ensure a fine granular
controllable method, two essential parameters will be available: A parameter
to control the length of time the coarsening method is applied and a parameter
that specifies where the coarsening should be applied. The first parameter
essential is a value of the underlying time set T . This guarantees a very fine
granular control. However, simply controlling the length of the application
of the method is often not sufficient. Consider a simulated material flow
system where different parts show very different behavior. Obviously, the
controlling process should also take this into account when adapting the
coarsening method to the current conditions within the model.

Model Partitioning

This can be done by partitioning the material flow graph into different regions.
Huber uses a multilevel approach that solves the general graph partitioning
problem on a model complexity approach. This approach partitions the graph
into several regions of similar complexity [HD09]. Others [JFM05, VG03] use
performance ratios like the machine utilization during analyzed simulation
runs for partition.

The method presented in this thesis is restricted to single entry single exit
(SESE) regions. Therefore, the program structure tree algorithm from Johnson
et al. [JPP94] is used to find all SESE regions within the material flow graph.
The algorithm is fast, considering that the general graph partitioning problem
is NP-hard. The algorithm is capable of finding all regions within linear time.
Furthermore, it creates a hierarchy of regions. This is especially interesting
as it allows the controlling process to choose between different combinations
of coarsened regions.

54 CHAPTER 5. REQUIRED ACTIONS

Validation

In this thesis, the given original model M is taken as the fixed reference
against which the coarsened variant M ′ is measured. Again: No statement is
made about the correctness or validity of the original model in reference to
the system it models. Therefore, a valid model variant M ′ is one for which
the simulation results lead to the same decisions as for the simulation of the
given original model M . Unfortunately, decisions are hardly measurable or
comparable. For the concept evaluation, a different measurement must be
found. Throughout literature (cp. Chapter 4.2.1) differences in standard
ratios like the lead time or throughput of tokens or the overall work in process
are used for validation. These ratios are gathered throughout a simulation
run for both, the coarsened and the original model. The comparison is
usually done in percentages. Like Huber [HD09] all three mentioned ratios
are used for evaluation. However, instead of mixing the ratios into one single
value, the three ratios will be compared independently. This will show if the
presented method affects the ratios in different ways.

Evaluation

For implementation and performance evaluation, the simulation software
d3fact will be used. Because the software is developed at the research group
Business Computing, especially CIM the software and its inner workings
are well known. Furthermore, the software can easily be extended and
modified where needed, due to its flexible service oriented architecture. Also,
the software has an integrated experiment and analysis framework that
can be used for automated performance evaluation. However, the material
flow system specification currently used in d3fact is not usable, as it lacks
process formalization. Therefore, a new specification is designed in this
thesis. The new specification will be designed as a replacement for the
current specification. That ensures, that it will not be solely designed for
the needs of the presented coarsening method, rendering the specification
useless for other projects.

Conclusion

Current coarsening methods lack the ability to react to model dynamics as
they are designed to use static, precomputed coarsened model versions (or
model parts). Furthermore, model specifications currently in use are missing
a formalization of material flow processes which makes it hard (to impossible)
to support arbitrary material flow processes. A controlling based on the
model behavior is unknown.

The method presented in the next chapter overcomes several of the men-
tioned drawbacks. First of all, it doesn’t need a cost-intensive preprocessing

55

step to gather data. It is an online approach and analyzes the system be-
havior at runtime. The coarsening is applied to regions of the material flow
graph at runtime. The analysis of the system’s behavior is constantly redone
to adapt the coarsening to the current conditions.

56 CHAPTER 5. REQUIRED ACTIONS

C h a p t e r 6

Conceptual Design

In this chapter a concept is presented that accelerates material flow
simulations by reducing the model complexity through a coarsening
process. The concept is based on the idea to utilize similarities in the

processing of tokens to reduce the computation time of a simulation run.
Instead of processing every token individually, they are processed in the
same way as some reference tokens. This introduces an error in the material
flow of the model but reduces the number of triggered event routines and
therefore the overall runtime of the simulation. Different to current automated
techniques, this method does not need a time intensive preprocessing step.
Furthermore, the method can adapt itself to state changes and structural
changes made to the simulated system at runtime. An online controlling
mechanism is used to keep the error at a minimum while maintaining a valid
model output in reference to the original simulation model.

6.1 Token Sampling

As described in Chapter 4.2.3, a discrete event simulation can be speedup by
omitting the creation (and processing) of events. With this in mind, the state
definition (6.8) and the event set from Equation 6.14 imply three possible
areas where runtime can be spared:

1. Computations that are triggered by events can be reduced. For example,
a probability distribution can be replaced by a fixed value like its
expected value. Unfortunately, for such common calculations like
distributions the savings effect is negligible as most of the runtime is
consumed by other state changes. Only in very specific situations it is
possible to save runtime using this approach. This approach collides

58 CHAPTER 6. CONCEPTUAL DESIGN

with the requirement of generality of the whole concept and will not
be explored any further.

2. State changes that have no impact on the simulation output may be
reduced to a minimum. For example, a warehouse may occasionally
trigger internal housekeeping processes. Unfortunately, the simulated
system ignores the position of the stored goods when accessing them.
Then the original warehouse may be replaced by a simple buffer that
reduces or omits these computations. Again, these are very specific
situations where such an approach pays off. Furthermore, these situa-
tions are hard to detect with algorithms, as this requires very specific
knowledge about the simulation model.

3. The movement of tokens between components can be reduced. For
example, we may replace a group of token processing systems with a
well parametrized single system. This allows us to omit any movement
within the components and also between components. Brooks and To-
bias [BT00] reduce a model of fourteen components to a bare minimum
of three, while preserving the original simulation output.

The approach presented in bullet point three is the most commonly used
one for model coarsening (see Chapter 4.2.3). It reduces the number of
components for which state changes need to be computed (Bullet Point 1),
the number of connections, reducing internal state changes (Bullet Point 2)
and the movement of tokens (Bullet Point 3). Token Sampling picks up the
idea of replacing a part of the material flow by a single component. But
instead of costly computing the parametrization for the replacement prior to
the actual simulation, this approach will take samples from the material flow
at runtime and use these samples as a parametrization hint. This approach
has several advantages:

1. This approach can be used while running the original simulation model.

2. It even can be added during a simulation run.

3. Since the sampling does not rely on a static material flow, it can adapt
itself to changes made during the simulation run.

4. It does not need a time-consuming preprocessing step.

The following problems need to be solved:

1. Every now and then the components have to be re-sampled. That
means a fast approach for switching between the original and the
coarsened components must be implemented.

6.1. TOKEN SAMPLING 59

Model Start
Simulation

Apply Token
Sampling

Region
Hierarchy

Identify
Regions

Start Model
Sampling

Start Behavior
Analysis

Terminate
Simulation

Behavior or
Structure
Changed ?

Update
Coarsening

Update Region
Hierarchy

yes

yesno

Figure 6.1: Workflow of the Token Sampling Concept. Dashed nodes depict
data, rectangles illustrate processes and rounded rectangles define the start
or stop of systems.

2. Due to the dynamics of the model, changes that render the current
samples invalid, have to be identified during simulation. Then the
model must be re-sampled under the changed conditions.

3. From the samples, a good replacement for the original part of the model
must be computed. This is needed to gain good quality simulation
results.

4. The overall control of the coarsening process should take the dynamics
of the model into account. This is also needed to obtain good quality
results by maximized speed gain (efficiency).

Concept Integration

In the general, the concept works as follows (also see Figure 6.1): Given is
a simulation model of a material flow system. The coarsening concept is
designed to work with arbitrary material flows as well as arbitrary material
flow components. Especially to achieve the latter, a simple, yet powerful
material flow model specification has to be used. Such a specification will be
presented in the next chapter (6.2).

The simulation of the system may be started in advance, since this
concept can be applied at runtime. Once applicated it performs a simple

60 CHAPTER 6. CONCEPTUAL DESIGN

setup routine. Next a process is started which takes (and stores) samples
from each material flow component during runtime (see Chapter 6.3). These
samples are needed for a proper state reconstruction when switching between
the original and the coarsened model part.

When the component sampling has been setup, the current structure of
the model is analyzed for single-entry-single-exit (SESE) regions (Identify
Regions). The concept is then able to coarsen arbitrary SESE regions.
For identification, a modified version of the Program Structure Tree (PST)
algorithm by Johnson et al. [JPP94] is used. The result is a tree that
contains all of the found regions and furthermore, exposes their hierarchical
order (Region Hierarchy). In general, two types of regions are differentiated:
The ones where material flow components are connected in a sequence and
every other region. The modified PST algorithm is presented in Chapter 6.4.

For each of the regions a Behavior Analysis is set up. This analysis
provides metric values that are used to control the coarsening process. For
example, the analysis contains a bottleneck detection to prevent the coarsen-
ing of regions with bottlenecks, as this usually introduces large deviations
in the model behavior. With the analysis in place a controlling algorithm
(see Chapter 6.7) can decide which of the different regions it should coarsen.
Chapter 6.5 and 6.6 describe for the two region types how the coarsening is
applied. Switching between the original and coarsened model components
allows the concept to react to the dynamics of the model which includes the
handling of unknown situations.

6.2 Material Flow System Specification
Typically, a material flow model consists of token processing systems that
are arranged in a graph (cp. Chapter 2.1.2). Simple objects, usually called
tokens, move through this network from one component to another. While a
token stays at a component, the component can perform different tasks on it,
e.g. alter its properties. This colloquial description needs to be formalized
as only this will provide a strict, complete and verifiable description of such
a model and its dynamics [BH97]. To be able to completely and accurately
describe the concepts and algorithms in the next chapters, a formal definition
of the model is needed. Until now we discussed the concepts of this thesis
colloquially on simple examples and without great detail. Furthermore, the
formalization enables automated processing and analysis of the model by
algorithms.

6.2.1 Formalizing Token Processing Networks

From the colloquial description given, the three terms token, processing
systems and graph can be derived. With Equation (2.3) a formal construct
for the term token was introduced. With this definition at hand we can

6.2. MATERIAL FLOW SYSTEM SPECIFICATION 61

identify a set of systems SK that are available for coupling with other systems
and furthermore exchange tokens:

SK := {S | S ∈ SXY ∧ K ∈ X̂ ∪ Ŷ } (6.1)

The coupling of the systems is described as:

CK := {(Si, Sj ,Kij) | Si, Sj ∈ SK ∧Kij ⊂ K ∧Kij = Yi = Xj} . (6.2)

where Kij denotes the subset of the output of Si and the input of Sj ,
respectively. Kij depicts the part that is used to couple the systems together
(as described in Chapter 4.1.1). Elements of CK are commonly called channels
(e.g. in [Inc09]). For convenience, the predecessors →S and successors S →
of a system S ∈ SK are specified as

→S := {S′ | S′ ∈ SK ∧ (S′, S, .) ∈ CK}
S → := {S′ | S′ ∈ SK ∧ (S, S′, .) ∈ CK}

In conclusion, a material flow model is defined by a triple material flow model
specification

(K,SK, CK). (6.3)

The material flow graph G of a given material flow model is defined as
G := (SK, CK).

Example

The material flow graph (S, C) from Figure 4.4 is defined by the following
two sets

S := {Source,Truck,Warehouse,Production,Sink} and
C := {(Source,Truck,K), (Truck,Warehouse,K),

(Warehouse,Production,K), (Production,Sink,K)}.

This is a description technique found in almost every current enterprise
simulation software. The current description does not provide any informa-
tion about the behavior of the components SK used. The dynamic of the
components will be formalized as little as possible, while the token states
will be fully exposed for analysis and manipulation. This is done in the next
chapter.

Token Processing Systems

In the colloquial definition of material flow systems given in Chapter 2.1.2 it
was defined that a system works with tokens it owns. This means, it only
has access to such tokens which it has created itself or were a part of its

62 CHAPTER 6. CONCEPTUAL DESIGN

input in the past but were not part of its output yet. Let S ∈ SK be an
arbitrary token processing system and t ∈ T a point in time and k ∈ K an
arbitrary token. Processing in this context means all sorts of actions that
may be applied to tokens. This especially includes the delay and altering
and storage of tokens. S has to store its tokens in some (physical) space.
Let I be an index set, then PS ⊂ S defined as

PS := {pi | i ∈ I} (6.4)

is a set of places where S can store tokens. Per definition, each place
pi can only store one token. Let qS : PS → {K ∪ ∅} be a function thatqS(.)
returns for a given place pi ∈ S the stored token k ∈ K. If no token is stored
at pi, qS returns the empty set ∅. Then the set of occupied places OS :=
{pi | qS(pi) ∈ K} and the set of unoccupied places OS := {pi | pi /∈ OS}
can be specified. From the definition of OS follows that KS =

⋃
pi∈OS

qS(pi).
Now that we are able to express the local storage of tokens for processing
within a system, we also have to describe whether a place (generally) can be
accessed from external.

Consider a simple shelf that stores some boxes with unknown content.
Some of the places in the shelf are occupied by boxes (OS) and some are free
(OS). Because the shelf is tightly packed, places in the back of the shelf can be
rendered inaccessible (blocked), due to boxes in the front. Another example
are machines in general. Workpieces are stored in a work area for processing.
This area is modeled as a storage place pi. During the processing the area
and the workpiece are usually not accessible from external, or at least the
workpiece processing should not be interfered. Let aS : PS → {true, false}
be a function, that describes whether a place pi ∈ PS is accessible fromaS(.)
external (true) or not (false). Then it is possible to specify the set of
accessible places AS := {pi | a(pi) = true} and the set of inaccessible
places AS := {pi | a(pi) = false}. The combination of these two attributes
(occupation and accessibility) defines four sets of places as depicted in Figure
6.2.

6.2.2 Material Flow System States

With the functions qS and aS in place, we are now able to describe the state
US of a token processing system S as a sequence of the states u(pi) over all
its places pi ∈ PS :

US := (u(p0), u(p1), . . .) with p0, p1, . . . ∈ PS

and

u(p) =
{

(qS(p), aS(p)) if qS(p) ∈ K,
(∅, aS(p)) otherwise

where p ∈ S. (6.5)

6.2. MATERIAL FLOW SYSTEM SPECIFICATION 63

PS

Inaccessible tokens

Accessible tokensAccessible empty places

Inaccessible empty places

Figure 6.2: The structure of the local storage.

Let J be an index set with which we can specify an arbitrary but fixed
sequence of the systems in SK. J should not be mistaken for a definition on
how the systems are connected, instead its just a fixed enumeration of the
them. For convenience we will write Sj for the j-th system according to the
sequence specified by J . Then the state U of the whole material flow model,
is defined as the combination of the state of all systems:

U := (US0 , US1 , . . .) (6.6)

Additionally, with J we can define the following mapping

pij : I × J →
⋃

S∈SK

PS (6.7)

where pij specifies the i-th place (according to Equation (6.4)) of the j-th
system. pij can be used to identify each place in the material flow uniquely.
Now with Equation (6.5) and (6.7) the state U can also be written as

U := ((u(p00), u(p10), . . .) ,
(u(p01), u(p11), . . .) ,

...
(u(p0n), u(p1n), . . .))

(6.8)

where n = |SK| denotes the overall number of systems in the model. The
state space U of a material flow model is then defined as

U := (I × J)× ({K ∪ ∅} × {true, false}) (6.9)

Channel States

The channel definition from (6.2) does not specify any token transformation
mechanism or state space. Both, the transformation and the states can be

64 CHAPTER 6. CONCEPTUAL DESIGN

S1 S2c

(a) Channel c specifying a bijective map-
ping between the places of S1, S2.

S1 S2

c

w = 2
(b) Channel c has a weight w of two.
There is no specific mapping of places
(inner circles).

Figure 6.3: Two different types of channels.

constructed from the state definition of the token places (6.5).
Let c ∈ CK be a channel in a material flow model according to Equation

6.2. By definition the tokens in Kij ⊂ K will move from Si to Sj through c
at some point in time, but it is never explained why or when. To describe
this mechanism, the notion of enabled channels is introduced. A channel isEnabled Channels
said to be enabled, when all its requirements are satisfied. For an enabled
channel always a bijective mapping m : PS1 → PS2 between PS1 and PS2 is
defined. Such a mapping can be completely random and may change without
further notice. In the following two different types of channels, each having
their own requirements are introduced. Let S1, S2 be two token processing
systems, each with a set of places PS1 and PS2 , and let c := (S1, S2,K) be a
channel between those two systems:

1. The first type of channels is associated with a fixed bijective mapping
m : PS1 → PS2 . c is said to be enabled iff∧

(p,p′)∈m
p ∈ OS1 ∩AS1 ∧ p′ ∈ OS2 ∩AS2 . (6.10)

This type of channels explicitly links pairs of places from S1 and S2. If
in each of these places from S1 resides an accessible token, and each
place from S2 is empty and associable, the channel is enabled. An
example of such a channel with a mapping of size three is depicted in
Figure 6.3a.

2. The second type of channels does not specify a fixed mapping, instead
it has a weight w. Then c is said to be enabled iff

|OS1 ∩AS1 | ≥ w ∧ |OS2 ∩AS2 | ≥ w (6.11)

In words, it is enabled, if S1 provides access to at least w tokens, while
S2 at the same time provides enough accessible places to receive w
tokens. The mapping m for this type is built ad hock and is unspecified
and completely random. In Figure 6.3b such a channel with weight
w = 2 is depicted as an example. Here, the channel is enabled as there
are two tokens available () in S1 while there are also two empty
places () in S2. Due to (6.11) this channel appears to be enabled.

6.2. MATERIAL FLOW SYSTEM SPECIFICATION 65

For convenience, we will identify the places in S1, currently associated
with a channel c as →c, and the places from S2 with c →, respectively. If a
place p is contained in either →c or c → then we may depict this simply with
p ∈ c. Now we have everything together to describe the dynamical evolution
of material flow models.

6.2.3 Material Flow Dynamics

Let S ∈ SK be a token processing system with a set of places PS . Since S
has access to its local token storage, it can make changes to the four sets
{AS , AS} × {OS , OS}. The possible actions are:

• Setting a place p ∈ PS accessible or inaccessible (Changing the value
of aS(p)).

• Putting a token k ∈ K into a specific place p, either by creating the
token or by moving k to p from another place p′ ∈ PS .

• Remove a token from a place p, emptying the place (Setting qS(p) = ∅).

• A combination of the above actions. For example, for the movement of
a token from a place p to another one p′, the token must be removed
from p′ and put into p.

However, one generic restriction does apply at any given point in time:
For a token k ∈ K it is not allowed to be in two places at any given point in
time, i.e.: ∧

k∈K

∨
i∈I

∨
j∈J

q(pij) = k =⇒
∧

i′∈I\{i}

∧
j′∈J\{j}

q(pi′j′) 6= k

Channel Dynamics

Let (S, C,K) be a material flow model. Furthermore, let C̊ ⊆ C be the set of
enabled channels. The state transition function fC : U × C̊ → U for material
flow models is only defined for enabled channels. Different types of channels
may have different requirements which must be satisfied for the channel to
be enabled. However, one explicit condition, resulting from the semantic
definition of aS is the following, that all channels have to meet to be identified
as enabled.

c ∈ C̊ =⇒
∧
p∈c

a(p) = true ∧
∧

p∈→c

q(p) ∈ K ∧
∧

p∈c→
q(p) = ∅ (6.12)

We refer to the carrying out of a state transition based on an enabled Triggering a Channel

66 CHAPTER 6. CONCEPTUAL DESIGN

channel, as triggering this channel.

u̇(pij) =
{

(q(p′), true)
∨
c∈ C̊(p

′, pij) ∈ c
(∅, true)

∨
c∈ C̊ pij ∈→c

(6.13)

With Equation (6.12) it is ensured that only those channels are enabled,
where the involved places are accessible from external. This requirement
is needed, as channels are systems for themselves, that do access (and
manipulate) the places of a system from external. Furthermore, we require,
that all involved places in system S1 contain a token, while all places in
system S2 have to be empty. This is required, so that the state transition
according to Equation (6.13) does not overwrite tokens in S2. If a channel
is triggered, according to Equation (6.13), the tokens, residing in the places
from S1 are transferred to S2. This transfer is coordinated by the channels
mapping mc. The accessibility state of all involved places remains unaffected.
With the Equations (6.10) and (6.11) two types of channels were introduced.
Each defining the mapping mc differently. Other types of channels with
arbitrary requirements are imaginable.

Furthermore, because of Equation (6.12) a system S can control the
movement of tokens by controlling the accessibility of its places PS , especially
those, referenced by a channel. By blocking all places it is not possible for
new tokens to arrive. By setting places with tokens accessible, these tokens
may move on to the next system at any time.

Example The Facility

In the following the facility system from earlier (see Figure 4.4) is reviewed,
utilizing the structures introduced in the previous chapter. The different
blocks behave as one would expect, e.g. the Source occasionally generates
new tokens, while the Truck moves from a (virtual) start location to a
(virtual) destination delivering tokens. The warehouse stores tokens for the
production, which can process two tokens in parallel. The model starts
with the configuration shown in Figure 6.4a. The circles show the states of
their distinct places. All channels are of type two (cp. Equation 6.11). The
numbers at the channels depict their weight.

The Source contains a token that is available () while the Truck has an
empty place (). Therefore, the channel between the Source and the Truck is
enabled. However, the Truck is currently located at the Source. Therefore the
token contained in the Truck is blocked (). Furthermore, because Equation
6.11 is not fulfilled, the channel between the Truck and the Warehouse is
disabled. The token contained in the Production is currently processed by a
machine. Therefore it is also blocked.

Consider we moved forward in time, reaching the state depicted in Figure
6.4b. Here the token from the Source was loaded onto the Truck. Because

6.2. MATERIAL FLOW SYSTEM SPECIFICATION 67

Source Truck

Warehouse

ProductionSink

1
2

1
1

(a)

Source Truck

Warehouse

ProductionSink

1
2

1
1

(b)
Source Truck

Warehouse

ProductionSink

1
2

1
1

(c)

Source Truck

Warehouse

ProductionSink

1
2

1
1

(d)

Figure 6.4: State of the facility example at different points in time. The
tokens are represented by the different circles. ∈ AS ∩ OS (Accessible
Token); ∈ AS ∩ OS (Blocked Token); ∈ AS ∩ OS (Empty, Accessible
Space); ∈ AS ∩ OS (Empty, Blocked Space). Solid lines depict enabled
channels, while dotted lines are used for disabled channels.

68 CHAPTER 6. CONCEPTUAL DESIGN

it is fully loaded, the Truck is on its way to the Warehouse. It has not
reached the Warehouse yet, therefore both tokens are blocked. The last
token was moved from the Warehouse into Production, leaving the Warehouse
completely empty (). Still, the first token in Production has not reached
the end.

At the next point in time shown in Figure 6.4c the Truck has reached
its destination. The tokens are now accessible and can be moved into the
Warehouse. Equation 6.11 is fulfilled and the tokens are moved from the
Truck into the Warehouse (cp. Figure 6.4d). However, the first token from
Production is finished and is now ready to move into the Sink.

In Figure 6.4d the Truck has been unloaded. Now the Truck has to drive
back to the Source so that he can be loaded again. During this process,
tokens from the Source may not be loaded onto the Truck. Therefore, its
places are blocked ().

6.2.4 Implementation as a Discrete Event System

In the example The Facility we implicitly used specific points in time where
the state of the model changed. The state change mechanism was never
explicitly defined, which is what will be done in this section. The discrete
nature of the state space U (cp. Equation (6.9)) is well suited for the
implementation as a Discrete Event System (DES). As specified in Chapter
2.2.2 a DES changes its state through executed events. In the following a set
of observable events will be defined, that describe state changes of a material
flow model.

Equation (6.8) clearly describes U as a combination of all states of all
places. Therefore, the state change of a sole place changes the state of the
whole model. That means, the following set of four events describes every
possible state change.

E := {ǎp, ǎp, q̌p, q̌p} (6.14)

where

ǎp is the change of place p from blocking to accessible

p ∈ A ǎp−→ p ∈ A,

ǎp is the change of place p from accessible to blocking

p ∈ A ǎp−→ p ∈ A,

q̌p adds a token k ∈ K to the empty place p

q(p) = ∅ q̌p−→ q(p) = k,

6.3. PERFORMANCE OF A TOKEN PROCESSING SYSTEM 69

q̌p removes a token k ∈ K from place p

q(p) = k
q̌p−→ q(p) = ∅.

Please note, that this set is not the only possible description. For example,
q̌p and q̌p miss the fact that they can be triggered by a channel transition
(6.13) or by an internal mechanisms of S (where p ∈ S). Other sets describing
different aspects of the state change could also be specified. We will do
this later on, when we want to analyze the performance of token processing
system.

6.2.5 Concluding Remarks

To allow the performance analysis of a token processing system, specific
structures where introduced, such as places and channels. Places allow the
observation and analysis of the processing of tokens that take place within
a system. channels allow the observation of the token movement between
systems. Because of this approach, the token processing systems and their
behavior do not have to be specified in any way. Therefore, the specification
offers a deep view into the internals of a material flow system, without
restricting the model to certain well-known components.

Please note, that the material flow system in a model usually is only a
part of a larger model. The model may contain additional systems from other
domains. These subsystems may even be connected somehow to components
in the material flow system and influence or control their behavior.

6.3 Performance of a Token Processing System

The model specifications introduced in Chapter 6.2 have been described
from a place centric perspective. Especially, the event set defined in (6.14)
describes the behavior of places. To analyze the behavior of tokens residing
in a token processing system (TPS), a modified event set must be derived
that describes token state changes.

Given is an arbitrary TPS S. During simulation of S a sequence ĚiS of
events can be observed (with {ĚiS} = E, where E is the set from Equation Event Sequence of a TPS
6.14). The sequence ĚiS is place-centric, i.e. with ĚiS it is easily possible
to describe the behavior of a certain place, since each event in ĚiS belongs
to a certain place. However, to examine the behavior of a certain token ĚiS
must be partitioned in token related event sequences Ěik . This is done by
associating the events of ĚiS to the token that is affected. Thus creating for
each token k its own event sequence Ěik : Event Sequence of a Token

in a TPS
Ěik ⊆ ĚiS := {ě | ě ∈ ĚiS ∧ q̌(ě) = k} (6.15)

70 CHAPTER 6. CONCEPTUAL DESIGN

u0start

u1

u2

u3

u4 u5

u6

u7 . . .

ǎp

q̌p

ǎp
ǎp

q̌p

ǎp

m̌1

m̌2

m̌3

m̌4

ǎp′

q̌p′

ǎp′

m̌5

m̌6

m̌7

m̌8

Figure 6.5: State machine describing the state of a specific token during
its stay in a system. Each state has a name (ui) and a token state, indicated
through the circle in the lower part of the state. The depicted events are
either from Equation (6.15) or indicate the movement from one place to
another (m̌ := (q̌p, q̌p) ∧ q̌(q̌p) = q̌(q̌p)). Back movements are not depicted to
keep the overview.

where q̌() is a function that returns the affected token for a specific event
ě. q̌() utilizes the function q() as well as the fact that every event ě ∈ E (6.14)
is associated with a specific place p. In the following, let ěi, ěj , ěh ∈ ĚiS be
three events and p(ě) the by ě affected place, then q̌() is defined as follows:

q̌(ěi) =


q(p(ěi)) if ěi ∈ {ǎp, ǎp, q̌p} ∧ q(p(ěi)) 6= ∅
q̌(ěi−1) if ěi = q̌p

q̌(ěj) with i ≤ h < j ∧ ěh 6= q̌p ∧ ěj = q̌p

if ěi ∈ {ǎp, ǎp} ∧ q(p(ěi)) = ∅

Figure 6.5 depicts a universal state machine for arbitrary TPS, describing
all possibly observable Ěik . The events that lead to a state change are
depicted along the edges, connecting the different states. Let k ∈ K be a
token that arrives at S. Furthermore, let p be the place where k is stored.
Then p must be empty and accessible before k can arrive (u0 in Figure 6.5).
By setting p inaccessible beforehand (u1) and making it accessible again at

6.3. PERFORMANCE OF A TOKEN PROCESSING SYSTEM 71

a certain point in time, S can control the arrival of k. We can think of this
process as preparation, e.g. because of the retooling of a machine or a cleanup
of p. At some point in time, k arrives, indicated by q̌p. In this state (u2) k
can leave S at any moment (u4) since p is accessible. Again, to control the
point in time p can be blocked for access (u3). Since the places contained
in PS are distinguishable from each other, S may use this to structure its
tokens. Therefore, S may move k from one place (here p) to another (here
p′ ∈ S) at any point in time (u5 and u6). This movement is indicated by
the events depicted as m̌i. Basically, they are the combination of two events
indicating the removal (from p) and the deposition of k (into p′). For m̌1
and m̌2 these are q̌p and q̌p′ . Obviously, for m̌3 and m̌4 these are q̌p′ and q̌p′′ .
This scheme continues for all places in S.

For each token k that arrives at S it is now possible to specify a sequence
of states ui. If S has an infinite set of places, this state machine also has
an infinite set of states. Even for a system with limited capacity sequences
from different tokens will not have much in common. Therefore, behavior
observations in the form of these sequences will be hard to compare and
to analyze. For example, from u0 the machine may switch to every other
state except u1 and u4+3i with i = 0, 1, In the following, the number of
different states will be reduced. This is achieved by

1. omitting the token movement, i.e. omitting all m̌i events. That means,
different places and the associated events are no longer distinguishable.
For example, the states u2, u5, . . ., where the token is accessible, can
be merged into a single state .

2. TPS where tokens will be at least once in state are named machines.
It is assumed that tokens become inaccessible as soon as they enter the
machine (→ q̌, ǎ→). Otherwise, the tokens would be accessible
() for a period of time and could be pulled into a subsequent TPS,
skipping the processing altogether. For a full specification an external
clock is needed. This is discussed in the next section.

3. Simple storage systems like buffer can omit the states v and b. Their
state machine is reduced to the remaining three states l and w and f .
Therefore, for these special TPS the following holds:

∧
k

∧
ei∈Ěik

ei /∈
{ǎ, ǎ}.

4. Later on, we will see that the preprocessing step v is insignificant for
the coarsening method. This is due to the fact, that the time tokens
are waiting for the preprocessing to finish is already absorbed in the
waiting state w of a previous system. Therefore, it will be omitted in
later chapters.

Under the described assumptions the universal state machine (partially)
shown in Figure 6.5 collapses into the state machine with five states depicted

72 CHAPTER 6. CONCEPTUAL DESIGN

lstart

v

w

b

f

ǎ

q̌

ǎ

ǎ

ǎ

q̌

Figure 6.6: Finite state machine depicting the reduced state set. Since
places are no longer unique, the parameter p is omitted for the events.

in Figure 6.6. The states are named after their semantical meaning. v
can be used to simulate preparations taking place before a token arrives
(preprocessing state). l is the idle state, as the TPS is waiting for the token
to arrive. With setting the arrived token inaccessible, a system indicates
that the processing of a token is about to start. Therefore, b is the processing
state. If the token resides in w it is waiting for further processing or moving
to the next system. Therefore, this is the waiting state. f identifies the state
where the token has left the system (accepting state).

6.3.1 Adding an External Clock

Until now the concept of time was completely omitted. Sequences of events
were observed without any reference to a clock. Let T be a clock structure
(cp. Chapter 2.2.2). Now each event ěi ∈ Ěik can be assigned a point in time
těi ∈ T where it occurred. That makes it possible to describe, how long a
token stayed in the different states , and .

6.3. PERFORMANCE OF A TOKEN PROCESSING SYSTEM 73

k =
{

0 if ě0 6= ǎ,
těj − tě0 where ěj = ǎ ∧ ěj+1 = q̌ ∧ ěj+2 = ǎ with těj+1 = těj+2

k =

0 if
∧
ěj∈Ěi

ěj = q̌p ⇒ ěj+1 = q̌,

těj − těi where ěi = q̌ ∧ ěi+1 = ǎ ∧ ěj = ǎ ∧ ěj+1 = q̌,

k = tej+1 − tej where ej ∈ {q̌, ǎ} ∧ ej+1 = q̌.
(6.16)

k is obvious defined as the time from the first start of the preprocessing
until the point in time of the arrival of k. k on the other side also
collects time a token states in between two visits to . An example
scenario would be a production line where a metal part must have a specific
minimum temperature when leaving, thus forcing the production line to
reheat (reprocess) the part when a blockage occurs. k is defined as the
time a token stays in the waiting state before it is pulled into a subsequent
system.

6.3.2 Sampling a TPS

Let S be a token processing system. During a simulation run a sequence
of tokens k0, k1, . . . passes through S. For each token k an event sequence
Ěik can be observed from which k, k, k can be computed (6.16). The
coarsening method presented later on uses samples of these values to imitate
the behavior of the TPS. The values are stored in look-up tables of fixed size.
Usually, a new value that is added to a table overwrites the oldest entry. In
the following the look-up tables will be depicted with [.]. For example, []S Look-up Tables
specifies the look-up table for token processing times for system S.

However, the preprocessing time will not be sampled. This is due to
the fact, that the time tokens are waiting for the preprocessing to finish is
already absorbed in the waiting state of a previous system. Imagine two
connected TPS S1 and S2, where S2 does a full cleanup after each processed
token, forcing subsequent token to wait in S1. Now two cases have to be
examined:

• S1 is empty. In this case the preprocessing does not affect any token.
Recording this time and using it for coarsening would impair the result.

• S1 is not empty and a token k is waiting to move on to S2. In this
case the cleanup process does affect the simulation outcome - or at
least the processing of k. However, the time for which k is waiting
for S2 to finish its cleanup is already included in k. Therefore, the
preprocessing time must not be recorded.

74 CHAPTER 6. CONCEPTUAL DESIGN

I1

I2

X Y

O1

O2

Figure 6.7: Imagine this structure as part of a larger material flow graph.

Because in both cases, the preprocessing time is of no use for the coars-
ening process it is omitted in later chapters.

With the state machine from Figure 6.6 and the equations from (6.16) a
system has been defined that samples key data of token processing systems.
The samples are taken at runtime for each token processing system in the
simulation model. They depict the performance of a token processing system
at a specific point in time. Now the samples can be used to parametrize
replacement components that imitate the behavior of the token processing
systems. For the coarsening method to be more efficient, not a single TPS is
replacement but a whole group of TPS. In the following chapter a method is
introduced to identify groups of TPS that can be coarsened by this concept.

6.4 Identifying Groups of Systems for Coarsening

The coarsening concept presented in this thesis can coarsen regions of the
material flow graph that have exactly one entry and one exit component.
That means, there is exactly one component that has incoming edges from
components not in the group and there is analogous one component that has
outgoing edges to external components. Furthermore, for every component
within the group there must exist at least one path from the entry component
and at least one path to the exit component (no dead ends and sinks or sources
are allowed within such a group). Other than that, the connection structure
in-between can be arbitrary. Such groups are called single-entry-single-exit
(SESE) regions (cp. Chapter 4.4.3).

These restrictions help to keep the overall concept simple and robust and
valid for general material flow systems. Let’s briefly explore a counterexample:
Assume that you have a material flow model with the graph depicted in
Figure 6.7 being a part of it. Furthermore, we already have decided that X
and Y should be replaced by a simplified component. Now let’s examine the
number of additional options on simplifying this structure. Since we allow
any arbitrary (but connected) group of components, we can consider the
following groups:

6.4. IDENTIFYING GROUPS OF SYSTEMS FOR COARSENING 75

{X,Y } ∪ P ({I1, I2, O1, O2}) ,

where P refers to the power set. This means, we would have to consider
sixteen different groups. Unfortunately, this problem exponentiates with
the size and connection degree of the graph. Additionally, the replacement
component would have to deal with several incoming and outgoing edges at
various locations and the possible paths between them. Instead the groups
that can be coarsened are restricted to SESE regions. This has the advantage,
that the region can be reduced to a simple input-output-system (S,X, Y)
where the entry node is X and the exit node is Y . Furthermore, every
token that enters the system must also leave the system at some point (not
necessarily in the same order they enter). This makes it much more easier
to implement the replacement components. To find all SESE regions within
the material flow graph a modified version of the Program Structure Tree by
Johnson et al. is used.

6.4.1 Modified Program Structure Tree
The original algorithm can identify edge-based SESE regions in control flow
graphs (e.g. of computer programs), it was altered in such a way that it
can identify SESE nodes instead of SESE edges. For each SESE region of
the PST we simply choose the destination node of the entry edge as the
entry node and the source node of the exit edge as exit node of our new
SESE region. It is easy to see that this does not violate the conditions for
SESE regions. In a post-processing step nodes representing regions with
only a single node are removed. Coarsening such a region does not provide
any speed-up in practice. The only problem that remains is, that the PST
algorithm can only handle graphs with a single entry node and a single
exit node. For general material flow graphs we have to consider cases with
multiple sources and sinks. To solve this problem we can simply add a super
source that is connected to all sources of the MFS graph and a super sink
that is connected to all sinks of the MFS graph. These two artificial nodes
can be removed after the algorithm has been executed.

6.4.2 Dynamics

The tree can be updated upon insertion or deletion of nodes. This allows the
whole concept to adapt itself to changes made on the material flow graph at
runtime. Fortunately, we don’t have to update the SESE regions upon each
node insertion or deletion. When there is no violation of the SESE region
conditions, we don’t have to take any further steps. For example, when we
extend a sequential part of a SESE region, the region stays valid and does
not have to be recomputed. When the SESE region is not valid, we have to
identify the smallest region that contains the changes and does not violate

76 CHAPTER 6. CONCEPTUAL DESIGN

H I J K

L

M

N

r1 r2
r0

Figure 6.8: An abstract material flow example. Three SESE regions a, b, c
have been identified (dashed rectangles).

the SESE region conditions. To recompute the SESE region, we simply need
to modify the required depth-first search steps of the PST algorithm to not
search the whole graph but only the sub-graph defined by the SESE region.

Although this can be easily implemented, our experiments showed that in
most cases it is no problem to rebuild the entire tree of the complete graph.
The algorithm only needs O(E) time, because it is based on a few depth-first
searches. Therefore, for reasonable material flow graphs, there is no high
benefit from running the dynamic PST algorithm.

6.4.3 Example

r0

r1 r2

Figure 6.8 shows a small part of a material flow graph as
an example. The dashed rectangles represent the identified
SESE regions. The PST algorithm constructs a hierarchy
from the identified regions. The hierarchy for the the example
is depicted to the right.

Each of the identified regions r0, r1, r2 can be coarsened with the concept
presented in this thesis. It is possible to coarsen r1 and r2 independently
from each other, as well as both or even to coarsen the whole structure,
identified as r0. An even larger example can be found in Appendix C.

In the following two chapters the construction of replacement components
for the identified regions is discussed. First, the coarsening of sequentially
connected regions like region r1 from the example is presented. Afterwards
in Chapter 6.6 a concept to coarsen arbitrary regions such as r2 and r0 is
introduced.

6.5. COARSENING SEQUENTIALLY CONNECTED SYSTEMS 77

2

Truck

20

Warehouse

2

Production

r

Replacement

Region r

Figure 6.9: The region r will be replaced by r.

6.5 Coarsening Sequentially Connected Systems

Let r := (S0, S1, S2, . . .) be a SESE region of the material flow graph where
the contained systems S ∈ r are connected sequentially, like the one shown in
Figure 6.9. In the following, the necessary steps that are needed to coarsen r
will be discussed. The goal is to replace r by a single system r that imitates
the behavior of r. r needs less time for computation but usually also produces
a different output than the original region r. The difference is a result of
the different computations: While the output of r is computed by the the
original components, r is a single component and must rely on the samples
taken earlier. Therefore, after some time it must be possible to switch back
to r to gain new samples.

The biggest part is the state construction (or state transfer) when switch-
ing from r to r and back. As outlined in Chapter 6.1 switching without a
state transfer restarts the affected model part with an empty state. Much
information gets lost and a huge error is introduced into the simulation
results. Particularly due to their detailed knowledge of the behavior of the
model components, Huber and Dangelmaier [HD09] are able to define a
precise state transfer for each component. Unfortunately, in the presented
model specification the definition of the internal processes were left undefined.
Detailed knowledge about the material flow processes is not available and
cannot be used. Then again: Due to omitting such knowledge arbitrary
material flow processes are supported. The state transfer will be computed
from previously observed event sequences and performance ratios for tokens
passing through r.

In the next section needed information for a state transfer will be gathered.
The switch can occur in both directions: From r to r and the other way
round. Both directions will be discussed in the following sections. In the last
section additional information is used to handle processes like the altering
and assembly and disassembly of tokens.

78 CHAPTER 6. CONCEPTUAL DESIGN

6.5.1 Sampling r

Since all tokens passing through r follow the same path, sampling sequentially
connected TPS is pretty easy compared to the coarsening of arbitrarily
connected TPS. That means, each token is processed by the same systems in
the same order. In the most simple case r just delays incoming token for a
specific time. Usually, the delay comes from TPS’ that actively delay tokens
and also from the interactions between different TPS (bottleneck situations)
which can create waiting times for the tokens. Therefore, the information
that is needed to imitate r is the overall lead time of the tokens passing
through r. Instead of sampling this value, it can be computed when needed
from the look-up tables defined earlier:

[lt]r =
n−1∑
i=1

(
[]Si

+ []Si

)
+ []Sn

(6.17)

where Si specifies the i-th system in r. Note, that the waiting time of
the last system Sn ∈ r is not included. If a token has to wait after Sn has
processed it, there must be a subsequent bottleneck. Sn is not responsible
for this waiting time nor does it have any influence on it. Therefore, []Sn

is
excluded.

6.5.2 Switching to the Coarsened Version (r → r)

A given material flow system has been simulated for some time. Samples
of the different TPS have been taken (as described in Chapter 6.3). Due to
a given metric a specific r has been identified for being a good candidate
for coarsening. At this point in time a controlling process initiates the
switch from the original group of systems in r to a replacement r. r itself is
implemented as a component that delays incoming tokens for a specific time.
It delays incoming tokens independently from each other and can contain |r|
tokens at its maximum, where |r| is defined as

|r| =
∑
Si∈r
|PSi |. (6.18)

Because r delays the tokens for nearly as long as r would, it delays them
in parallel and independently from each other. r is used for a short period
of time only so that the behavior of r in changing situations must not be
predicted but simply can be resampled. To initiate r properly, every token
k ∈ r must be transferred to r. On transfer, for each k a point in time tk
must be predicted when r would have finished the processing of k. This is
done by choosing a sample from [lt]r and adding to it the entry time of k
into r. Given [lt]r and the event sequence Ěik for k, tk is defined as

tk = te0 + [lt]r with e0 ∈ Ěik (6.19)

6.5. COARSENING SEQUENTIALLY CONNECTED SYSTEMS 79

T

[]

Si−2

[]

Si−1

[] [] [] []

Si Si+1

∆tk

Figure 6.10: The systems contained in r can be outlined along a time set
T . Each system occupies space on the timeline based on the samples from
its look-up tables. Each tick represents a point in time where a token can be
put back into the time line or more accurately the structure of r.

where [lt] depicts a random value from the look-up table constructed in
Equation 6.17. tk can be seen as a well informed guess until which point
in time k would have stayed in r. While r is active new tokens may arrive,
these are also delayed for a random value of [lt].

6.5.3 Switch Back to the Original Version (r→ r)

In the previous section a replacement component r for a region r was
constructed and a state transfer was done to properly initialize r. At some
point later in time, a switch back to r is initiated to take new samples of the
original components. As aforementioned, to avoid activating r without any
tokens - which equals a restart - an initial state is computed by transferring
the tokens from r back to r. Given is a token k ∈ r then a system Si ∈ r
must be found to which k should be transferred. Basically, there are two
option where k can be put:

) k can be introduced as a new token that needs to be processed by Si.

) k can be added to Si in such a way that it looks like it was already
processed by Si and now is waiting to move on to a subsequent TPS.

With the given sequence of TPS (S0, S1, S2, . . .) in r for each option a
point in time can be computed from the look-up tables from the different
TPS. For example, the first option S0 is associated with t0. The second
option S0 is associated with t0 + []S0

. The third option S1 then with
t0 + []S0

+ []S0
- and so on. This system is depicted in Figure 6.10. Each

tick on the timeline is an option as specified before. The interval between
two ticks represents the time it takes for a specific system to process a token
([]) or how long a token has to wait at a system ([]) - according to the
samples from the look-up tables for each system. When given a specific token
k that has to be put back into r an appropriate option must be found.

Let ∆tk = t − tě0 with ě0 ∈ Ěik be the time k was delayed until the
switch was triggered (i.e. t is the current point in time). Then the nearest
option relative to ∆tk is chosen for k. In the example from Figure 6.10 the

80 CHAPTER 6. CONCEPTUAL DESIGN

chosen option would be Si . The equations to determine the system Si and
the specific option look as follows:

i−1∑
j=0

(
[]Sj

+ []Sj

)
≤ ∆tk <

i−1∑
j=0

(
[]Sj

+ []Sj

)
+ 1

2 ∗ []Si
⇒ Si

i−1∑
j=0

(
[]Sj

+ []Sj

)
+ 1

2 ∗ []Si
≤ ∆tk <

i∑
j=0

(
[]Sj

+ []Sj

)
⇒ Si

(6.20)

Of course, there are different types of TPS. For example, a simple buffer
does (per definition) no processing of a token. Thus, its look-up table for

times will be empty. In such a case, the specific table in Equation 6.20
is simply replaced by a value of zero. In Figure 6.10 this case is depicted
for system Si−1 which has a waiting time interval only. Si−2 in the same
figure depicts the complementary case where no waiting time is given. Such
a case appears for machines that have no waiting time, for example because
the subsequent system (here Si−1) is an infinite sized buffer that takes all
processed tokens.

6.5.4 Handling Altering, Assembly, Disassembly of Tokens

Especially machines in a production facility often process to tokens passing
through in a destructive way (i.e. during processing the original token is
replaced). The coarsening concept can be adapted to support such processing
options. In this section the options and required changes are discussed.

Altering A TPS S is said to alter a token k ∈ S if it replaces or transforms
it into another token k′ ∈ K. The altering process applied by Si can be
specified as a injective function fSi : K → K. Based on fSi it is possible to
define the subsequence of token altering systems rf ⊆ r. Each system S ∈ rf
uses an individual function fS to alter tokens passing through. To support
such functions in the coarsening method two changes have to be made:

First, when r is active, k must be altered based on the specifications by
r when processing is finished (r → r). There are two different cases:
Either k was transferred during a switch or it arrived as a new token while r
was active. In the first case k was transferred from a specific TPS Si ∈ r.
Then all subsequent altering processes fSj ∈ r with i ≥ j must be applied.
In the second case all altering functions of all TPS in r are applied.

Second, on the switch r→ r k has to be altered before it is transferred.
Let So ∈ r be the system where k will be put according to (6.20). Then all
altering processes prior to So have to been applied. That includes all fSi

with Si ∈ r and a) i < o for the case Sk
or b) i ≤ o for the case Sk

.

6.5. COARSENING SEQUENTIALLY CONNECTED SYSTEMS 81

Assembly and Disassembly A system S is said to assemble tokens, if
it replaces a set of tokens by a single new one. For example, a raft can
be constructed from several tree trunks and a robe. Disassembly specifies
the counterpart: A token is split up into several new ones. Like the alter-
ation, also assembly and disassembly of tokens are special cases of a generic
transformation where a set of n tokens is transformed into a set of m other
tokens. The generic transformation with a fixed ratio n : m is specified by a
quintuple (A,B, n,m, g) where

• A ⊂ P(K) is a set of token sets,

• B ⊂ P(K) is a set of token sets,

• n is a fixed number of tokens that is needed as input, i.e.
∧
A∈A ‖A‖ = n,

• m is a fixed number of tokens that is output, i.e.
∧
B∈B ‖B‖ = m and

• g is a function g : A → B.

Then alteration is a transformation with a fixed ratio of 1 : 1 and
assembly has a ratio of n : 1 and disassembly a ratio of 1 : m Given is
a sequence of connected TPS in a region r that perform specific token
transformations. By chaining the transformations together it is possible
to compute a transformation between two systems that are not directly
connected. This works like the speed transformation of a gear mechanism in
a car. A token that enters the sequence of systems is like the rotation for
one teeth on the drive gear (or input gear). Through transformation along
the different gear ratios the driven gear (or output gear) will also rotate for
a specific amount. This amount then can be seen as a number of tokens
that are output by last TPS in a sequence. Chaining several transformations
gS0 , gS1 , . . . together is pretty simple, given their ratios n : mgi .

m

n r
=
∏
i

m

n gi

(6.21)

The transformations must be done on the switch r → r, during the active
time period of r and on the switch r→ r. Of course it is possible, that the
output is not in whole numbers. Then the fraction is stored as a carry over
and settled into the calculation for the next incoming token.

Restrictions

This system has some restrictions: During transformation information about
which token contributed to which output is lost. That means, this compact
description of the assembly/disassembly behavior of a region r works only with
undistinguishable tokens. Using it together with altering system described
earlier is not possible. To support assembly/disassembly together with

82 CHAPTER 6. CONCEPTUAL DESIGN

A

B

C

D E

r

Replacement

Region r

Figure 6.11: In this figure r represents a rather complex region. However,
because it is still a SESE region it can be coarsened.

altering the different fractions of the different tokens would have to be
buffered for the next round of tokens. Furthermore, The system would have
to run down on every system in r, reproducing the assembly/disassembly.
This would need to much computing power and would be too close to the
computations of the original model part so that the saving of runtime while
maintaining a low deviation is near to impossible. Furthermore, the ratios for
the different systems are fixed. This description is not suitable for sampling
a system with a dynamic transformation ratio. Such a system could change
the ratio frequently for incoming tokens (for example, the ratio could change
based on the overall situation). It is like choosing a specific gear for driving
a car and not be able to change the gear unless the motor is turned off. Of
course, changing the transformation ratio for a system during a simulation
run would be possible. However, this would reset the state of the region (aka
turn off the motor, change the gear, restart the engine).

6.6 Coarsening Arbitrarily Connected Systems
The previous chapter showed how a group of sequentially connected systems
can be coarsened. State transfers and extensions for complex token processing
operations where discussed. Unfortunately, not all production facilities are
implemented as sequentially lined up machines. Therefore, this concept is
designed to also coarsen arbitrarily connected systems. One (rather complex)
example is shown in Figure 6.11. The method has some restrictions compared
to the previous one as it does not support the assembly or disassembly of
tokens. This is due to the arbitrary structure such a region can have and the
endless possibilities to combine assembly/disassembly coming along with it.

6.6. COARSENING ARBITRARILY CONNECTED SYSTEMS 83

However, the altering of tokens as it is defined in Chapter 6.5.4 is supported.

6.6.1 Sampling Groups of Arbitrarily Connected Systems

Given is a region that has an arbitrary internal connection structure. The
structure can especially contain branches (and their counterpart the joins) in
the form of several outgoing channels like the branches from A to B and C
in Figure 6.11. Furthermore, the branching of the token flow can be actively
controlled. A controlling mechanism can adapt the token flow along the
branches based on the current situation.

Not only do we have to sample the lead time for the tokens but also we
need to know which tokens are taking which route. This can be done by
simply forming percentages of the token flow for the different routes. This
information is needed when performing a state transfer during the switch
r→ r. Then the possible paths through the original region are reconstructed
from this information. However, this system has its drawbacks. Let’s assume
that several locations with branches are present in the region. Then each
branch location is examined independently. Conditional token flows aren’t
probably sampled. An example for a conditional token flow could be:

If k moves along production line one, then it is 50% more
likely that k is scrapped at the quality control than when it is
produced on production line two.

Furthermore, supporting the altering of tokens gets tricky as there are
usually also conditions when altering is applied. Instead of sampling all of
these different components independently from each other, samples in the
form of paths through r are taken. That means, for each token the path the
token takes through the region is recorded. A path Wk := (S0, S1, . . .) of a
specific token k is defined as the sequence of TPS the token visited. When k
leaves the region through the exit Wk becomes a sample and is stored in a
look-up table [W]r. With this information the coarsening method previously
used for sequential connected systems can easily be adapted for arbitrary
regions. In a sequentially connected region the sequence of TPS a token
visits is fixed and predetermined. Now, to coarsen an arbitrarily connected
region the predetermined sequence simply can be replaced by the recorded
paths.

The size of [W]r is dynamic and based on the size of the set of known
paths W := {[W]r}. The assumption is, that in a situation where tokens
flow through a small number of different paths only few samples are needed.
However, if the tokens take a lot of different paths much more samples are
needed to probably sample the distribution of the paths. This ensures that
large regions with sparse usage are not oversampled.

84 CHAPTER 6. CONCEPTUAL DESIGN

Implementation of r

As for sequentially connected regions, r is implemented as a delaying com-
ponent with a specific size. But instead of having a fixed size based on
the region to coarsen (cp. Chapter 6.5.2) here the size is derived from the
set of known paths. Given [W]r, the size of r is defined as

∑
S |PS | with

S ∈ {[W]r}. This ensures that r can hold a maximum number of tokens that
approximates the current situation in r.

6.6.2 Switch to the Coarsened Version (r → r)

Let k ∈ r be a token in an arbitrarily connected region r. On transfer to r a
point in time must be chosen when the processing of k is finished. For this
the Equation 6.19 is utilized where a lead time related to a path is used. We
simply randomly chose a path W ∈ [W]r from which the lead time according
to (6.17) is calculated.

6.6.3 Switch Back to the Original Version (r→ r)

We can almost entirely rely on the switching method developed for sequential
systems. For each token in k ∈ r a path W ∈ [W]r is chosen and used to
calculate the system (and option) to which k is transferred. The chosen path
W can be seen as a sequentially connected region of the material flow path.
Therefore, with a given path W simply the equations from (6.20) can be
applied.

6.6.4 Summing Up

Given is a material flow modelM that is based on the specifications that were
developed in Chapter 6.2. During simulation the behavior of the different
material flow components is sampled. The samples are stored in component
specific look-up tables (Chapter 6.3). With the modified PST algorithm
presented in Chapter 6.4 it is possible to partition M into a set of SESE
regions. Chapter 6.5 and 6.6 both presented methods how to coarsen SESE
regions. On coarsening a region r is replaced by a single, well parameterized
material flow component. The parameterization is derived from the behavior
samples taken during simulation.

The set of SESE regions identified with the PST algorithm are not
disjunct from each other. Instead, one region may inherit several others.
Based on this inheritance the regions form a hierarchy. Obviously, it is not
possible to coarsen a child region of an already coarsened parent region.
This circumstance introduces several coarsening options which are mutual
exclusive. In the next chapter a controlling algorithm is presented that uses
the behavior samples as a guidance to choose from the set of coarsening
options.

6.7. CONTROLLING THE COARSENING PROCESS 85

6.7 Controlling the Coarsening Process

Why is a controlling mechanism needed? With the introduction of the region
hierarchy in Chapter 6.4 for a given hierarchy a lot of different coarsening
options exist. As pointed out in Chapter 6.4.3 even for the simple example
from Figure 6.8 five different options exist: 1) Exclusively coarsen region
r1 or 2) region r2 or 3) region r0. 4) Coarsen both r1 and r2 at the same
time or 5) do not coarsen anything. A trivial algorithm would chose chose
an option and stick to it until the end of the simulation. However, in this
chapter a controlling algorithm will be presented that evaluates and chooses
regions to coarsen, based on the current model state and user defined criteria.
This leads to the main question when and where and for how long should
the coarsening method be applied?

Controlling means to specify a reference output and to transform it
into an input so that the controlled system generates the desired output
(cp. Chapter 2.4). In the next section the input parameters for the control
function are specified. After that the controlling mechanism is presented.
The mechanism is separated into the three parts where, how long and when
which are examined independently.

6.7.1 Reference Output and Feedback

There are several parameters that influence the decision of when, where and
how long. As discussed earlier, coarsening regions of a model will usually
cause it to compute a different simulation output - an error in comparison to
the unaltered model. This error should be kept small for result validity. On
the contrary, by coarsening a larger region of the model a larger speed-up is
gained. Usually the assumption that the introduced output error becomes
larger, the larger the coarsened region gets holds (cp. experiment results
in Chapter 8.5). That means, there is a trade-off between the speed gain
and the size of the output error. A user defined parameter specifying the
preferred trade-off is the reference output.

However, the output error is not only influenced by the size of the
coarsened region. Instead, other parameters must also be taken into account.
It is crucial for a valid simulation output to avoid the coarsening of bottlenecks
within the material flow system (cp. Chapter 4.3). Furthermore, the whole
coarsening method is based on the idea that samples can be used to guess the
behavior of material flow processes (for a short amount of time). Obviously,
this works better for processes that show a steady behavior. Therefore, the
model state in form of the samples taken in Chapter 6.3 and a set of the
current bottlenecks are provided as feedback parameters.

86 CHAPTER 6. CONCEPTUAL DESIGN

r0

r1 r2

Figure 6.12: A part of a fictive R with three regions r0, r1, r2.

6.7.2 Where?

The control mechanism is built around the region hierarchy which was setup
in Chapter 6.4. During simulation runtime it maintains a set of coarsened
regions. The regions are chosen based on their coarsening efficiency rating.Coarsening Efficiency
The coarsening efficiency is defined as the output error ε per speed gain µ
(per token). With the reference output x the user can specify the desired
trade-off between high efficiency and low output error (x is discussed in detail
in the next section). This leads to the following metric for the coarsening
efficiency λ for a specific region r:

λr = εr
1 + µr ∗ (1− x) where x, εr, µr ∈ [0, 1] (6.22)

To measure both, the speed gain and the output error, the original model,
as a reference, must be available. Obviously, a complete simulation run of
the original model for reference is not available. Instead, the speed gain
and the output error are predicted, using two metrics that are discussed in
Chapter 6.7.5 later on.

Each region in the hierarchy from Chapter 6.4 can be evaluated with
(6.22) at any given point in time. A trivial controlling would be to always
coarsen a specific number n of regions that have the best (lowest) coarsening
efficiency. However, this would introduce with n another parameter that
would have to be chosen by the user. Furthermore, n is very model specific.
For one simulation model a specific n may be a good choice, for another
model a bad one. For example, a specific n is a bad choice when the region
hierarchy contains less regions (|R| < n). Therefore, a different mechanism
should be used that does not need additional pre-specified parameters.

The mechanism presented in the following depends on the structure of
the region hierarchy R. It tries to coarsen as much regions as possible while
choosing them in such a way that the sum of their λ is as low as possible.
Let wr := {r, r′, r′′, . . .} with r, r′r,′′ , . . . ∈ R be the path from region r to
the root of R. Then, at any given point in time at most one region of wr can

6.7. CONTROLLING THE COARSENING PROCESS 87

be coarsened. Consider that region r0 in the example tree from Figure 6.12
is already coarsened. That means, all nodes in that region are replaced by a
single one. Obviously, it is not possible to coarsen r1 or r2 since their nodes
are already coarsened. Consider another situation: Now, r1 is coarsened.
Since r1 is a SESE region within r0 it would still be possible to also coarsen
r0, but that would include the replacement component for r1. While this
is possible it introduces some complexity to the controlling mechanism: In
this situation it is no longer possible to remove the coarsening of r1 without
previously removing the coarsening of r0. Furthermore, the coarsening of
r0 is then based on samples from r1 and not on samples of the original
simulation model. This causes a much greater output error than the sole
coarsening of r0. Therefore, this inherited coarsening is avoided.

Given a region r and its children c0, c1, c2, . . ., function Φ specifies if r is
chosen for coarsening:

Φ(r) =


r if r is a leaf,
r if λr ≤

∑
r′∈R λr′ ,

R otherwise,

where R is defined as R := {Φ(ci) | i ∈ 0, 1, . . .}.
Basically Φ tries to find a set of regions in the subtree of r for which

the sum of the coarsening efficiency is lower than for r. If no such set can
be found r is the best choice for the whole subtree in terms of λ. When
evaluating the children with Φ the λ is simply summed up. The sum is used
because the coarsened regions do not overlap and therefore the speed gain
as well as the output error is assumed to accumulate.

Reference Output x in Equation 6.22

In Equation 6.22 the reference output parameter x is used to specify whether a
high efficiency or a low output error is preferred. This is done by manipulating
the weight of the speed gain µ with the parameter x. If x is set to zero µ
is fully weighted. Thus, the higher µ or the lower ε - the better. If x is set
to one, then µ is no longer taken into account. Then only the introduced
output error ε counts and regions with a low output error ε are preferred.

The weighting mechanism is shown in Figure 6.13 for different values of ε
and µ (depicted in the brackets as (ε, µ)). Imagine that λi is associated with
ri from Figure 6.12. It is easy to see, that λ for both r1 and r2 is very low.
When viewed independently, r1 and r2 should be coarsened regardless of the
specification of x. However, when combining the values of λ1 and λ2 it is a
whole different story. When specifying a lower x (x < 0.7) then the efficiency
for r0 is lower (better) thus this region should be coarsened. However, with
an x > 0.7 the output error is weighted in such that the combination of λ1
and λ2 has a better efficiency due to the lower output error.

88 CHAPTER 6. CONCEPTUAL DESIGN

x

λ

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.0 0.2 0.4 0.6 0.8

λ0(0.5, 1)
λ1(0.2, 0.3)
λ2(0.2, 0.1)
λ1 + λ2

Figure 6.13: λ plotted for different values of (ε, µ). With an increasing x
the ordering of the different λ changes due to the shifting in the weighting
of µ.

Bottleneck Detection

Until now, it was assumed that any region r ∈ R can be coarsened as long
as no other region on wr (the path from r to the root of R. See page 86) is
already coarsened. Unfortunately, avoiding the coarsening of bottlenecks in
a material flow system is crucial to maintain a low output error (cp. Chapter
8.3). That means if a bottleneck is present in a region r ∈ R, that region or
parts of that region should not be coarsened.

Most of the available bottleneck detection methods use the average of
a specific ratio over a period of time to determine bottlenecks. Therefore,
their reaction usually is time-delayed depending on the size of the measured
time interval. Especially sudden changes like a machine breakdown can alter
the location of bottlenecks within the material flow - often only for a short
period of time. The more closely it is possible to follow these bottleneck
changes the better the coarsening method can react and the more accurate is
the simulation output. The shifting bottleneck detection method [RNT02] is
able to identify the current main bottlenecks at any given point of time and
can take breakdowns and other sudden changes into account. Furthermore,
the method is capable of detecting secondary and tertiary bottlenecks and
has been shown to work well for both complex material flow models and
components with complex behavior [RNT03, WZZ05].

To constantly track the location of the bottlenecks within the simulation
model a modified version of the shifting bottleneck detection method is used.
At any given point in time, the original method identifies the component
being the longest in state active as the main bottleneck. However, this can

6.7. CONTROLLING THE COARSENING PROCESS 89

lead to false detection for machines that simply have very long processing
times compared to others. To reduce these false detections to a minimum, a
component is considered as a main bottleneck only when it is active and at
least one predecessor has at least one token in state . That implies, that the
component is accumulating work and actually is a bottleneck for preceding
components. Everything else of the shifting bottleneck detection method
is left untouched. However, to quickly react to changes in the bottleneck
location the time interval examined for secondary bottlenecks is chosen to
be short.

Every region within the hierarchy that contains a component identified as
a bottleneck is marked as not coarsenable. Regions containing marked regions
are also marked accordingly. Obviously, this implies that the whole simulation
model (the root of R) can only be coarsened if there is no bottleneck present
anywhere in the whole material flow graph.

6.7.3 How Long?

With a chosen set of regions that will be coarsened the next question is, for
how long should they be coarsened. In this section a function Ψ(r) will be
defined that specifies the maximum amount of tokens that will be processed
by the replacement r.

Predicting for how long the samples in the look-up tables reflect the
current situation in a region is arguably hard. Especially, when there is
only sparse data in the form a few samples available and nothing is known
about the structure or type of the processes that produced these samples
(for generality reasons processes weren’t specified in Chapter 6.2). The goal
is to derive from ε a value for how long the coarsening should be applied.
However, there are some problems that must be overcome:

• Specifying a period of time for the length of the coarsening is not well
suited. It is not possible to control (or predict) how many tokens arrive
during the specified period. Therefore, the ε and µ cannot be controlled
or predicted. Imagine a region where very few tokens arrive. It could
happen that during the specified period of time no tokens arrive. That
would render the coarsening obsolete and simply would cost runtime.
Instead, the period how long the coarsening method is active should
be expressed in numbers of processed tokens.

• ε is positive but can become infinite large. This makes it difficult to
directly derive a value for the length for the activation of the coarsening
from it.

• It should not matter how ε is defined. Especially, the user should not
need to adapt the mapping of ε to number of tokens for a specific
simulation model. This would imply that the user knows how the

90 CHAPTER 6. CONCEPTUAL DESIGN

ε

ψ

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6

β = 0.8
β = 1
β = 6

Figure 6.14: Curve of function ψ for different values of β. β can be used
to adjust the ψ mapping of the ε into the interval [0, 1[.

algorithm and the error measurement works. Instead, if the user has
to provide further information, it should be intuitive.

• The mapping should include the reference output x specified earlier.
For example, on x = 1 the length of the activated coarsening should be
very short to prevent much error. However, it still should save runtime.
On the other had, on x = 0 the method should be very efficient.

• This is another mapping problem: With a (possibly) infinite large
output error, when is the method efficient? How much error can be
tolerated for speed? Since there is no defined boundary for the speed
gain the output error could grow infinite large.

To solve these problems the output error in the domain [0,∞] will be
mapped into the normed co-domain interval [0..1[. This is done through
Equation 6.23:

ψβ(x) = 1
2 ∗ (1− tanh((x− oβ) ∗ β)) (6.23)

with x ∈ [0, 1] and oβ = 1
β
∗ atanh(1− 2 ∗ 0.99).

Equation 6.23 uses a modified Tangens Hyperbolicus to map an arbitrary,
positive value to the interval [0, 0.99] (0.99 is an arbitrarily chosen but fixed
value). β is a parameter that can be used to adapt the mapping to the
definition of ε. It controls how fast ψ drops off to zero. Examples of ψ are

6.7. CONTROLLING THE COARSENING PROCESS 91

shown in Figure 6.14. The parameter β must not be specified by the user
but instead can be adapted once to the ε prediction.

With the mapping ε→ ψ in place a mapping ψ → Ψ can be implemented.
This again is tricky as the length of how long a coarsening can remain active
can be infinite long. Therefore, the user has to specify an additional input
parameter y that represents an upper boundary for the number of tokens.
To simplify things, the user is not required to specify a certain amount of
tokens that should be processed by a coarsened region before switching back
to the original part. Instead, the user specifies the amount in terms of y Parameter y

times the amount of tokens needed for a break-even.
Let’s examine this further: Computing and controlling the coarsening of

the regions takes runtime. Computing how tokens flow through a coarsened
region usually take less runtime than in the original model. Therefore, after
a certain amount of tokens a break-even is reached where the time taken for
computing and controlling the coarsening method are recovered. Each token
processed after that can be counted as a savings in runtime. Letting the
user specify a certain amount of tokens is counter-intuitive. It is not clear
to the user which amount of tokens is much or little. However, the concept
of the break-even is clear and intuitive. Therefore, the user specifies with
y the maximum coarsening length in terms of break-evens. Let ωr be the
break-even for a specific region r, then the amount of tokens processed by
the coarsened region r usually is specified by

Ψ(r) = 2 ∗ ωr︸ ︷︷ ︸
minimum

+ ωr ∗ y ∗ ψ(r) ∗ (1− x))︸ ︷︷ ︸
ε,x,y depending

(6.24)

Equation 6.24 has two parts: The first part is ω ∗ 2. This part ensures,
that the coarsening of a region is at least as long active to reach the break-
even and to save runtime for one times the break-even. In the second part
the maximum y specified by the user is multiplied with ψ (6.23) such that
a low error allows an active time of y while a large error will reduce y to
near zero. Furthermore, also x is taken into account. On one hand, a low
x means that y should be taken into account as much as possible (as much
as it is allowed by the error mapping ψ). On the other hand, a x near one
means, that the focus lies on a low output error and the impact of y and ψ
on Ψ is reduced to almost zero. Therefore, the parameter x has the same
semantic as in the previous section. Furthermore, with a correctly computed
ω, y is independently from the structure and size of the original model and
its region. Therefore, with the parameter y the user can specify a maximum
for the coarsening length in a intuitive way.

Measuring the Break-Even ω

The break-even is the number of tokens that has to be coarsened so that the
runtime costs of the coarsening equal the runtime savings. Runtime costs

92 CHAPTER 6. CONCEPTUAL DESIGN

are generated by
• the control mechanism implemented in this chapter. It needs runtime
for choosing the set of regions to coarsen and to observe the overall
model for changing situations (see next section).

• The state transfer as discussed in the Chapters 6.5 and 6.6 cost runtime.

• The maintenance of the look-up tables constantly costs runtime. Every
event produced by the TPS during runtime has to be processed to
generate samples for the look-up tables.

On the other side, runtime is only saved by omitting events due to the
omitting of model state changes. This includes the processing and movement
of tokens within a TPS as well as between two different TPS. Because of the
diversity of the costs, measuring the break-even is a difficult task.

However, in a single preprocessing step the different costs can be measured
using artificial simulation models like the Q and F models described in
Chapter 8.1. These can be generated in different sizes such that it is possible
to implement a regression model for the costs. This model then can be used
to compute a break-even based on the current situation.

Identification of Situation Changes

Up to now the length of an active coarsening was computed from the output
error ε and two user specified parameters x and y. However, there are
some situations when the validity of the currently used samples can be
doubted. The samples in the look-up tables reflect a certain situation when
they were taken. This includes current processing as well as waiting times.
The former can be controlled by the TPS themselves. The latter reflects a
certain situation defined by the incoming and outgoing stream of tokens. It
specifically reflects a certain ratio between these two streams. If the ratio
changes, because one of the two streams (or both) change then the waiting
times will also change.

Given is an arbitrary SESE region. Suppose, that the input stream of
tokens to that region increases while the outflow of tokens remains constant.
Then the current work in process will increase. Obviously, the work in process
will decrease when the outgoing stream increases under a constant input
stream.

Therefore, a increasing or decreasing work in process can be used as an
indication of situational changes within the model and that a resampling
should be done.

6.7.4 When?

Of course, there are some restrictions that must be respected before coarsening
can be applied. First of all, enough samples must be available. The look-up

6.7. CONTROLLING THE COARSENING PROCESS 93

r0

r1

r2

Tt0

(a) The problem: Because r1 and r2 are
coarsened alternately, there is no
opportunity to coarsen r0 which remains
inactive .

r0

r1

r2

Tt0 t1

(b) The solution is to resample the
whole simulation model at specific times
(t1). Based on this new data re-choose
the regions to coarsen (here r0).

Figure 6.15: Exemplified coarsening , resampling and inactive
times of the three regions from the example in Chapter 6.4.3.

tables must be completely filled to make an informed decision and to do a
high quality state transfer when switching. Also identified bottlenecks within
a region restrict the applicability of the coarsening process. In sequentially
connected regions, the bottlenecks can simply be spared from coarsening.
The bottlenecks cleanly partition a sequentially connected region into smaller
sequentially connected SESE regions. They can be coarsened in the usual
way. However, in arbitrarily connected regions this is not possible since the
bottlenecks do not cleanly separate the region into smaller SESE regions.
Therefore, a bottleneck blocks the coarsening of arbitrarily connected regions.

When coarsening several regions at the same time another problem arises:
Because each region will be coarsened for its own individual amount of tokens
and due to a nonuniform distributed token flow it is save to assume that
each region will be coarsened for a different amount of time. These very
individual coarsening times will usually overlap. There is no point in time
where the whole system can be resampled to re-choose the set of regions to
coarsen.

A small example will explain this problem and its solution in detail. Given
is the simple region hierarchy from Chapter 6.4.3. As depicted in Figure
6.15a at time t0 it was decided to coarsen r1 and r2. As explained earlier
both regions have very different time periods where they are coarsened. Of
course, at some point in time each region is returned to its original component
structure and is being resampled . This individual resampling of r1 and
r2 does not overlap due to the different coarsening times (cp. Figure 6.15a).
Since both, r1 and r2 are a part of r0 (cp. Figure 6.8) there is no point in
time where samples could be taken for r0. Furthermore, r0 is completely
blocked at any point in time where at least one of its children is coarsened.
Thus, there is no possibility to reevaluate the option to coarsen r0 instead
of r1 and r2. To solve this problem, a time period is introduced where the

94 CHAPTER 6. CONCEPTUAL DESIGN

whole original simulation model is executed and resampled (t1 in Figure
6.15b). Based on these new samples all regions are reevaluated and a new
set of regions for coarsening can be chosen. This set is locked until the
next point in time where the whole simulation model is reevaluated. Based
on Equation 6.24 for each region a specific amount of tokens is calculated,
that represents the maximum of tokens that will flow through the coarsened
region. When the last of the regions identified by Φ has finished its assigned
amount of tokens the original simulation model is reevaluated and a new set
of regions for coarsening is chosen. If a region finishes early, it is most likely
a region with a high throughput of tokens. Then this region is resampled
and coarsened again. This ensures that these regions are coarsened over the
whole time. This is shown for r1 in Figure 6.15b.

Restrictions like bottlenecks are still tracked and the coarsening of a
region might be canceled due to a shifting bottleneck or a change in the
overall model state. Such a cancelation counts the same as if the assigned
amount of tokens that should flow through the coarsened region has been
reached.

6.7.5 Measuring Speed Gain and Output Error

In Chapter 2.3 the difference ε between two simulation modelsM andM ′ was
specified as the difference in the decisions being made from the simulation
results from the two models. However, as stated in Chapter 3 decisions (or
the difference between them) cannot be measured. Therefore, ε was redefined
as being the difference in one of three measurable ratios, namely: lead time,
throughput and work in process. Now, Equation 6.22 uses the output error ε
and the speed gain µ. Both ratios are assumed to be measurable and are
measured in relation to the original simulation model. That means, for a
given simulation model M ε specifies the difference in the simulation results
for a variant M ′ where the coarsening is active. The same goes for the
speed gain. The speed gain SpeedGain specifies the amount of time that is
saved when activating the coarsening concept in relation to the simulation
of the original model M . To measure both ε and µ the original model must
be simulated for reference. However, when simulating M anyway then the
coarsening concept is needless. Therefore, the output error (or difference) ε
and the speed gain µ have to be predicted.

Predicting µ

The speed gain can be approximated by the number of omitted events when
processing a token (Runtime Complexity [SY93]). It can safely be assumed
that all token processing systems need a similar, constant number of events
to process a token. Therefore, the speed gain depends on the (average)
length of the distance a token covers while moving through a region r. For a

6.8. CONCLUSION 95

sequentially connected region this is its size ‖r‖. For arbitrarily connected
regions its the average length of the ways contained in [W]. Furthermore, the
speed gain depends on the amount of tokens that runs through a coarsened
region. Each token (in average) contributes the same to the speed gain.
Therefore, also Ψ is taken into account.

µ̂r = Ψ ∗

‖r‖ if r is sequential and
1

‖[W]‖
∑
w∈[W]r ‖w‖ otherwise.

For the predicted speed gain when activating coarsening the symbol µ̂ is
used.

Predicting ε

The output error is hard to measure. Especially, because it depends on the
differences of the decisions being made. Instead, the variance of the values in
the look-up tables is used as an approximation. The variance is an absolute
value, making it hard to interpret without a context. Suppose, you want to
meet a friend at a shop. Obviously, there is a difference between the two
statements “I’ll reach the shop in ten to thirty minutes.” and “I’ll reach the
shop in one day plus or minus 10 minutes.”. Despite the variance being the
same in both examples (20 minutes), in the first example one would say, that
you are very unpredictable while in the second example you would seem very
predictable. That is because of the context (here the overall time frame) is
very different. Therefore, the (standard) deviation related to the mean of
the observed values is used as an approximation ε̂ for the size of the output
error.

ε̂r = σ([lt]r)
∅([lt]r)

where σ depicts the standard deviation and ∅ the arithmetic mean of
the samples.

6.8 Conclusion
In this chapter a coarsening method has been presented that is designed to be
applicable to (almost) arbitrary material flow models. This is accomplished
because of two things: First of all, the material flow system specification only
specifies locations with places for tokens and actions on them. Processes
controlling and executing these actions have been left undefined intentionally.
Therefore, the coarsening method is compatible with almost any material flow
component. Furthermore, this coarsening concept is capable of coarsening
arbitrarily connected single-entry-single-exit structures. It does not rely on
certain graph structures to be present. However, to support the altering

96 CHAPTER 6. CONCEPTUAL DESIGN

and assembly and disassembly of tokens specifications for token processing
systems where introduced. The three aforementioned processes have to be
specified as fixed functions such that the coarsening method can utilize them
when it is active.

Furthermore, the coarsening method does not need a computational and
time intensive preprocessing. Instead its preprocessing takes only milliseconds
for reasonable sized models (see Chapter 8.7.1). Thus it can be applied during
runtime at will and it is fast enough to adapt itself to dynamic changes of
the material flow structure. This allows the usage of the coarsening method
even during model construction.

The controlling of the coarsening method is designed to be understandable
and user-friendly. Model and simulation system dependent parameters have
been avoided and the user does not have to specify parameters that are
only understandable with deep knowledge of the coarsening and simulation
method. The user simply provides two parameters x and y. The former
specifies a trade-off between efficiency and error avoidance. The latter defines
a maximum amount of tokens when coarsening regions - in terms of break-
evens. All other (internal) parameter are determined by the coarsening
method itself.

With the utilization of the shifting bottleneck detection method the
coarsening method is able to adapt itself to model dynamics (model state
changes). Especially sudden break downs of machines can be tracked with
this method. For a quality simulation output the bottlenecks are respected
when choosing the material flow regions to coarsen.

C h a p t e r 7

Implementation

The concept for a coarsening method for material flow models that
was presented in the previous chapter, has been implemented into
the d3fact simulation platform for evaluation. The design and im-

plementation steps that were necessary for the concept implementation are
outlined in this chapter.

The usual approach to create a specific material flow model is to connect
black boxes, representing the processes carried out on the tokens. Unfortu-
nately, this approach allows no state tracking for components. Therefore, in
Chapter 6.2 a more transparent material flow specification has been outlined.
The implementation of this specification is presented in the next section.
On top of this implementation the different subsystems of the coarsening
concept have been realized. Their implementation is discussed afterwards.

7.1 Material Flow System Implementation

The specifications from Chapter 6.2 have been implemented as a new com-
ponent library to replace the previous approach outlined in Chapter 4.5.4.
The specification defines two main components and their dynamics: Token
Processing Systems (TPS) and Channels.

7.1.1 Token Processing System Implementation

A TPS is essentially specified as a local storage for tokens which allows specific
state changes from external. The storage itself is a set of identifiable places,
where each place can be in one of four states: {occupied, not occupied}
×{ accessible, inaccessible }. When occupied, the place stores a specific
token k ∈ K. The implementation of a specific material flow component

98 CHAPTER 7. IMPLEMENTATION

s

p0

p1

pn

. . .

Figure 7.1: A storage location s, associated with a set of processes
p0, p1, . . . , pn and an incoming and an outgoing channel (indicated as dashed
lines).

like a conveyor therefore consists of two parts: The storage location and a
controlling process that imitates a specific behavior, e.g. that of a conveyor.
That means, the process moves the tokens within the location as if they
were lying on a conveyor belt. Processes can also represent moving entities
like fork lifts. Then the process maintains a position within a scene, e.g. a
warehouse. The implementation explicitly separates the token storage from
the processes. This allows some very interesting setups.

The implementation of the specification allows the association of several
processes to one location and also the association of one process with several
locations. This maps to situations, where e.g. several workers work on the
same set of tokens. Another useful application are automated storage and
retrieval systems (AS/RS) where e.g. several of these access the same rack.

7.1.2 Channel Implementation

The channel implementation works very much the same as specified in
Equations 6.10 and 6.11. Each channel is implemented as simulation object.

After all the processes at a TPS have been informed about state changes
in the storage location the channels are informed per simulation event. Based
on the current state of the location they compute their enabled state. If a
channel is enabled it immediately transfers tokens from the source to the
destination. This usually renders all subsequent channel disabled.

7.1.3 Implementation Details

Let a location s have n associated processes p0, . . . , pn as depicted in Figure
7.1. Now an arbitrary process ps ∈ {p0, . . . , pn} makes changes to the
location. This creates an update us containing all information about the
changes, i.e. added and removed entities, now accessible or inaccessible
places. Unfortunately us starts an update cascade. That means, another
process pk responds with its own update uk to the update us. Now uk again
causes another process pr to respond, and so on. A trivial update mechanism
would inform each of the n processes of every update. This can lead to

7.1. MATERIAL FLOW SYSTEM IMPLEMENTATION 99

t f0 fh fi fj fl fn

c

fi

fl

fj

fh

uc uc,i uc,i,l,j,h

ui

ul ul,j,h

uj uj,h

uh

Figure 7.2: Generic example showing how our update method works.
Horizontally all processes are displayed while the time line is plotted vertically.

an efficiency problem. For example one process occasionally creates new
entities while another process destroys them to replace them with completely
new entities. Every associated process now gets both updates, even if the
entities created in the first place do not last long or have been destroyed
already. Carrying out each update can lead to a huge overhead when updates
contain oppositional or obsolete information. Also, processes would have
to be capable of determining the obsolete information in the update or the
differences between the last known and the current state of the location. This
would make the implementation of new processes more difficult, especially
for new users.

Instead of informing all processes about all updates, we accumulate
updates. This reduces the times a process is informed about updates to a
minimum and the updates do not contain stale information. The update
mechanism we came up with can be found in Listing B.2. It resides in the
location implementation. Changes made by a process to the location trigger
the UPDATE() method. Here the parameter p is the process initiating the
changes and u is the update initiated by p.

We inform the processes in the order they were added. If one process
happens to start a new update during a running update we suspend the
current update and start from the beginning (with the new update).

Figure 7.2 shows an exemplified update cascade. Horizontal lines indi-

100 CHAPTER 7. IMPLEMENTATION

1

Source Sink

(a) Minimal Example.

C

Conveyor

W

Worker

(b) The Worker and the Conveyor Ex-
ample.

Figure 7.3: Two examples showing the usage of the described material flow
implementation.

cate which process is informed about which update at which point in time.
Horizontally the processes p0, . . . , pn are shown. The time line is displayed
vertically. A back pointer indicates the accumulation of two updates. Basi-
cally the procedure starts with an update us. Now we consider pk to be the
next process responding to the changes made by us. That means, that us is
applied to all processes before process pk. Upon informing pk about us it
triggers a new update uk. As stated before we now start from the beginning,
informing all processes before pk (cp. Listing B.2, Lines 5-12). After doing
so, all processes p < pk are informed about the updates us and uk. Before
informing the processes p > pk we merge both updates into the new update
us+k eliminating all oppositional information (Line 20, Listing B.2). As
depicted in Figure 7.2 this update algorithm can also handle recursively
triggered updates.

Minimal Example

The most simple non-blocking material flow system one can think of is a
storage object with a source and a sink process (see Figure 7.3a). Where
source and sink work as one would expect.

In this example the source occasionally creates tokens and places them in
s. s does have a capacity of one. After placing a new token in s the source
has to wait until the token is removed from s before it may generate a new
token. Through the update mechanism described earlier the sink is informed
about the state change in s. Now the sink can access s and remove the token.
This clears the place for the source to add a new token. No other systems,
processes or objects are needed. While this example is very minimalistic, it
shows how the separation works and how easy it is to setup a material flow
model.

The Conveyor and Worker Example

A more complex scenario would be one, where a worker walks by a conveyor.
During his walk by, the worker sees a processed part on the conveyor that

7.2. INTEGRATING THE TOKEN SAMPLING 101

is defect. Now the worker can interact with the conveyor by removing that
specific part and disposing it. In this scenario, like the worker the conveyor
is represented by a storage with an associated process (cp. Figure 7.3b).
During his walk by, the worker process is dynamically added to the conveyor
storage. This gives him the access to the parts moving along the conveyor
belt. Now the worker can remove a defective part from the conveyor storage
and place it in its own storage. Then the worker can go to a sink in the
model and let the sink dispose the defective part.

7.2 Integrating the Token Sampling

We will see in this chapter, that, due to the explicit separation of the token
storage from the processes, the integration of the Token Sampling method
can be achieved easily. The method itself is separated into a setup and
an online phase where the simulated system is constantly monitored (cp.
Chapter 6.1). The setup is simply triggered by a simulation event at runtime.
That ensures data consistency as the setup is done as part of the simulation
itself. During the setup the sampling of the TPS is initiated as well as single
entry single exit regions are identified.

The controlling process will be continuously be triggered by events in-
dicating state changes. During the setup callbacks are registered to receive
these events.

7.2.1 Token State Sampling

At first, the sampling of the token states within model components is ini-
tiated. The sampling is implemented as a process that can be added to
a location. This allows the addition of such a process to every material
flow component in the model. Furthermore, due to the container-based
representation of simulation object in d3fact (cp. Chapter 4.5.3) upgrading
the model components is very easy.

Given an arbitrary material flow component with a storage location and a
set of processes as depicted in Figure 7.1 then the sampling process is added
as a new process pn+1. This ensures that the process is informed about every
location update and especially is informed before other simulation objects
like channels. This ensures data consistency. The sampling process fills
the look-up tables [] and [] with data from tokens moving through the
storage location. The look-up tables are simply added as new properties to
the simulation object. Due to the nature of the update method described
in Listing B.2 this implementation of the sampling does not produce any
additional events while running.

102 CHAPTER 7. IMPLEMENTATION

7.2.2 Identifying Groups of Systems

Having setup the sampling of the material flow components now single
entry single exit (SESE) regions within the material flow graph have to
be identified. For this a modified version of the Program Structure Tree
algorithm by Johnson et al. [JPP94] is used (cp. Chapter 6.4). The algorithm
constructs a tree where each node represents a SESE region in the model.

Since the simulation object specification of d3fact supports hierarchies in
general, the nodes of the PST are implemented as simulation objects and are
added to the simulation model. Based on the type of the region (sequentially
or arbitrary connected) specific simulation objects are created and integrated
into the tree. The implementation of these objects is discussed in the next
chapters.

The dynamic update of the tree structure according to changes made to
the material flow is handled through a listener concept. Listener are simple
objects that listen for certain state changes of simulation objects. If such a
state change is triggered the listeners are informed about that. Especially the
simulation model supports the listener concept for the addition and removal
of objects.

7.2.3 Coarsening of Sequentially Connected Regions

Each SESE region in the material flow graph is represented as a node in
a tree. The representation nodes are constructed in such a way that they
serves as the basis for the controlled coarsening. For a sequential connected
region r such a node stores the following properties:

• A reference to the entry object of r.

• A reference to the exit object of r.

• A reference to the replacement r.

• A tracker and a look-up table for the lead time [lt]r of tokens through
r. These values are needed for the state transfer. Especially in the
Equations (6.20) and (6.19).

• A tracker with a database (hash map) for the entry time of a token.
This is also needed during a state transfer. ě0 in Equation 6.20.

• The state transfer logic for both directions r ↔ r.

• A component that calculates λ (Equation 6.22).

• A set of conditions (see Chapter 7.2.5).

7.2. INTEGRATING THE TOKEN SAMPLING 103

When a state transfer is triggered (in either direction) then changes to
the model state are applied. For example, tokens are removed from their
current location and put into a new one. This triggers simulation events
indicating these changes. However, if the value tracker such as the one for
the lead time of tokens does process these events the look-up tables may
contain false values. Therefore, these objects must be informed before and
after a switch so that they ignore events occurring in-between. To solve this
problem an interface called SwitchControlled was introduced. Every property
implementing this interface is informed about the state of a switch so that it
can react accordingly.

State Transfer r → r This state transfer simply runs through all TPS
located in r and transfers each token into the replacement. For each token
an individual delay time ∆t is computed, based on Equation 6.19. Listing
B.3 shows the pseudo code for this process.

On each call of PUT() a new event is created broadcasting the state
change of the location of r. However, due to the merging capabilities of
the update method from Listing B.2 it is possible to merge all these single
updates into one so that also only one event is triggered.

State Transfer r→ r The state transfer back to the original components
is much trickier. Equation 6.20 defines the optimum in terms of error
reduction. Unfortunately, the equations miss the fact that in most material
flow systems the capacity of PSi is limited. Therefore, the situation may
arise where a token cannot be put into the optimal place.

The Listing B.4 shows the current implementation for this state transfer.
Instead of blindly computing the optimum for each token the algorithm tries
to put each token as close as possible to its optimum. For this the algorithm
runs backwards through all TPS and fills them with tokens according to
(6.20). Now the situation arises that more tokens should be put into a specific
TPS as it has capacity, then the algorithm wraps the TPS up and adds the
left over tokens to the next TPS. As before, the calls of the PUT() method
can be merged into one update for each TPS and option. Therefore, at
maximum two times the number of TPS in r events are generated.

7.2.4 Coarsening of Arbitrarily Connected Regions

The node representation of an arbitrarily connected region r has the same
properties as a node for sequentially connected regions (cp. previous chapter).
As discussed in Chapter 6.6 the state transfer approach relies on paths that
tokens have taken through the region. Therefore, the node has a path tracker.
The tracker listens on the channels of the region for token movement to
construct for each token its path through the region. The path consists of
an ordered list of TPS.

104 CHAPTER 7. IMPLEMENTATION

The state transfer r → r is done in the same way as for sequentially
connected regions (Listing B.3). The algorithm performing the state trans-
fer r → r is specified in Listing B.6. It fully utilizes the transfer routine
TRANSFER_TO_ORIGINAL() already used in the state transfer for the sequen-
tially connected region. Since the routine needs a tuple of sequentially
connected TPS this algorithm uses the paths tracked during the observation
of r. The paths are each served as much tokens as specified by the number
of their occurrence in the look-up table [W]r. If at the end there are still
tokens left over, random paths (with some free places left over) are chosen
for transfer.

In conclusion the handling of arbitrarily connected regions can be bro-
ken down to observed token paths and then the routines already used for
sequentially connected regions can be utilized.

7.2.5 Controlling the Coarsening Process

In Chapter 6.7 the controlling mechanism is mainly described through equa-
tions. Furthermore, restrictions where described when coarsening cannot
be applied or when it should be deactivated. In this section the overall
integration of the controlling process is presented.

The integration of the controlling is based on simulation events. One such
event indicates a change of the input parameters of the controlling process
or a change of the model state. If an event occurs the current coarsening
setup has to be verified if it still complies to the equations and restrictions
defined earlier. If not, the setup has to be adapted according to the new
situation. Using simulation events to trigger the setup verification routine
has one benefit: The relatively computing intensive routine is only triggered
if needed.

The implementation of the requirements is done through Conditions. AConditions
condition describes whether a region currently meeds a requirement or not.
For each region a set of conditions is maintained. Only when all requirements
are met the coarsening is activated for a specific region. For example, the
requirement that enough samples have been gathered is implemented as
a check if the look-up tables are completely filled. The check is triggered
every time a new entry is added to the look-up table. Because most of
the conditions are simple checks the processing of model state changes is
very fast. The overall, computing intensive setup validation routine is only
triggered if a condition changes its state. The conditions are integrated into
the nodes of the region hierarchy tree. On the contrary, there is a set of
conditions that checks whether all requirements are still met during an active
coarsening. That means, if at least one condition is no longer met, a switch
back to the original model section is triggered. The conditions have the great
benefit, that different requirements can be implemented independently from
each other.

C h a p t e r 8

Validation

In the following the methods that were presented in the chapter Concep-
tual Design will be evaluated and validated. At first each part of the
concept is for itself evaluated using purpose-build models, which are

described in the next chapter. From the gained results usage instructions and
parameterizations for the coarsening concept are derived. This knowledge is
then used to evaluate the concept as a whole. This is done for a material
flow model described by Huber and Dangelmaier [HD09].

8.1 Purpose-Build Models

The presented concept consists of several parts. Namely, the model partition,
the control metric, the bottleneck tracking and the coarsening concept with
the state transfer. Each of these components depends on a set of different
parameters and is affected in its performance in a specific way when these
parameters are changed. To evaluate the impact of the different parameters,
the behavior of each part will be examined solely using purpose-build models.
These models are as simple as possible which makes them predictable in
their behavior. Each of these models can be parametrized to represent very
specific situations.

8.1.1 Model Q

The first model represents a sequentially connected SESE region (cp. Figure
8.1). It has a specific size with n pairs of buffers and delays (depicted
as Bi and Di). The buffers have a fixed size of fifteen places and the
delays a fixed size of one. The rather large size of the buffers allows the
observation and examination of the impact of bottlenecks. But then, buffers

106 CHAPTER 8. VALIDATION

Source

B1 D1 Bn Dn

Sink

. . .

Figure 8.1: Sequentially connected generic material flow model Q.

of this size can be filled easily, such that they block preceding components.
Infinite or near infinite sized buffers are uninteresting for a validation as they
decouple machines which minimizes blocking effects. Furthermore, there
exist analytical methods like Queueing Theory to examine systems with these
kind of buffers (cp. Chapter 4.1.6). Two normal distributions N1,N2 have
to be specified. These distributions are used to parametrize the inter-arrival
times of the source and the processing times of the delays and machines. A
parameter i determines which distribution is applied to which component:

i = 0 In this case the source is parametrized with N2 and all delays with N1.

i > 0 The source is always parameterized with N1, whereas the delays are
parameterized according the following equation:

NDk
=
{
N1 if k mod i 6= 0,
N2 otherwise.

(8.1)

where NDk
represents the parameterization for the k-th delay.

With these parameterization rules different bottleneck situations can
be constructed. For example, given are two distributions N1,N2 where the
mean ∅ of the first one is significant smaller than the one of the second
distribution (∅(N1) << ∅(N2)). If parameter i is set to n, only the last
delay Dn in the sequence is parameterized with N2. That means, the last
delay Dn is the bottleneck. In general a model Q can be specified as a 4-tuple
Q(n, i,N1,N2).

8.1.2 Model F

The second purpose-build model F can be used to study the impact of
branches within the material flow (cp. Figure 8.2). Basically, this model
represents one large switch with n different branches. The same parameteri-
zation rules described for model Q apply for this purpose-build model. Like
model Q model F can be specified as a 4-tuple F (n, i,N1,N2).

8.2 Measurement and Evaluation Methods

All of the following experiments were implemented with the d3factsimulation
software. All experiments (especially the runtime measurements) were exe-

8.2. MEASUREMENT AND EVALUATION METHODS 107

Source Entry B1 D1

Bn Dn

Exit Sink

...

Figure 8.2: Arbitrarily connected generic material flow model F .

cuted on a laptop with a 2.4 GHz Dual Core 2 Processor and 8 GB Ram.
Each experiment was run exactly 50 times and if not stated otherwise the
mean value of these 50 data sets was used for evaluation.

As stated in Chapter 5 one problem that has to be solved is the quantifi-
cation of the difference in the simulation output when utilizing the coarsening
method. In Chapter 2.3 this difference was defined as the difference in the
decisions that are made, based on the simulation results of the original
model M and the coarsened variant M ′. However, decisions are hard (to
impossible) to quantify. Instead, the difference was redefined as being the
difference between Y (M) and Y (M ′) (cp. Equation 2.4). Y (.) is very specific
to the current object of investigation. That means, while the simulation run
is the same Y (.) can change as a different ratio is measured. In practice
usually the lead time of the tokens or the cycle time of the model is used
as Y (.) [BT00, Ros07, Ros99, JLGL99, HL99, Mer05, JFM05]. However,
focusing on a single ratio can lead to the false assumption that the proposed
method still works (well) for other measurements. Huber [Hub09] solves this
problem by creating a single ratio from three standard ratios, namely lead
time, throughput and work in process. However, the aggregation of these
three ratios into a single metric can lead to the same problem as focusing
on a single ratio: Large differences in one ratio can be cleared by small
differences in others. For a more impartial view on the performance of this
coarsening concept the three ratios specified by Huber are measured and
compared independently. Therefore, in the following two to three different
values for the same experiment are shown. The ratio names are shortened as
follows: lead time (LT), throughput (TP) and work in process (WIP).

Ratio Measurement

The ratios are always measured for the whole simulation model. In the
following, let [ta, tb] be a period of simulation time. During this time, c
tokens are created at the source(s) and a set D of tokens is destroyed at
the sink(s). Given a destroyed token k ∈ D, it has a creation time tck and
was destroyed at time tdk. Then the average lead time per token for the time
period [ta, tb] is measured as

108 CHAPTER 8. VALIDATION

lt :=
∑
k∈D t

d
k − tck

‖D‖
. (8.2)

The average throughput per point in time for the period [ta, tb] is specified as

tp := ‖D‖
tb − ta

.

Given Equation 6.1 and 6.4 then the average work in process per point in
time is specified as

wip :=
∫ tb
ta

∑
S∈SK

‖ PS‖tdt
tb − ta

,

where ‖ PS‖t specifies the amount of tokens that is present in the place set
PS of the token processing system S ∈ SK at a specific point in time t. ‖ PS‖
is defined as

‖ PS‖ =
∑
p∈PS

{
1 if q(p) 6= ∅
0 otherwise.

q(p) is a function that describes which place p ∈ PS of a location S
contains which token - if any (also see page 62).

Relative Output Error

In the following charts, usually on one of the axis the relative output error is
plotted. The relative error for a coarsened simulation model is the relative
difference of one of the ratios in relation to the original model. Let’s explore
that in more detail: Given is a simulation model M and a coarsened variant
M ′. During simulation the three ratios LT, TP and WIP are measured in
time intervals of fixed size. Exemplified, let ltM be the average lead time
for M and ltM ′ the one for M ′ for a specific time interval (according to
Equation 8.2). Then the relative output error ε(in %) for the coarsened variant
in reference to the original model M for the lead time is specified as

ε(in %) := ‖ltM
′ − ltM‖
ltM

8.3 Do not Coarsen the Bottleneck

Johnson et. al. [JFM05] point out that the behavior of the coarsened
variants correlate well with the original model when the machine that is
the bottleneck, was preserved and not coarsened. However, in this concept
the replacement component is parameterized with samples from the original
model. If there is a bottleneck located in the coarsened part of the model,

8.3. DO NOT COARSEN THE BOTTLENECK 109

Simulation Time (×103)

ε
(in

%
)

0.
00

0.
05

0.
10

0.
15

0.
20

50 100 150 200

LT

50 100 150 200

0
2

4
6

8
10

TP

20
30

40
50

60
70

50 100 150 200

WIP

Bottleneck included Bottleneck excluded

Figure 8.3: This diagrams shows the relative error ε (lower is better) for
the three ratios when including and excluding the bottleneck.

the samples should appropriately emulate its behavior. Furthermore, due to
the frequent resampling (and the state transfer) taking place, the method
should be able to keep track of the behavior of the original model.

To point out the impact of the bottleneck on the overall model behavior
a rather simple model setup is used: Q(11, 6,N (10, 0.5),N (11, 0.5)). The
bottleneck D6 is located in the very middle of the model. There are five
delays and buffers located in front of it and five delays and buffers behind
it. Intentionally, the difference between the bottleneck and the rest of the
model is very subtle. Due to a variance of σ2 = 0.5 there are almost no
variances in the processing times. Therefore, the behavior of this simple
model should be very predictable, which makes it easy to coarsen it with a
very small error in relation to the original model. Two different coarsening
setups were simulated and were compared to the measured ratios of the
original simulation model. In the first setup the whole region from B1 to
D11 was coarsened. In the second setup D6 was excluded from coarsening.
Instead, the two regions from B1 to B6 and from B7 to D11 where coarsened.
In Figure 8.3 the relative difference ε(in %) between the two coarsening setups
and the original model is plotted against the simulation time. One dot in
the diagram depicts the relative output error for the time interval between
the current point in time and the point in time of the previous dot.

The concept works very well for the lead time, well for the throughput but
shows a rather large difference of 70% for the work in process. The relative
error for the lead time ratio decreases over time and almost reaches zero. This
happens because, over time the bottleneck kicks in and the tokens pile up
before it. Therefore, the lead time for the tokens increases and fluctuations

110 CHAPTER 8. VALIDATION

become marginal. The throughput works very well when the bottleneck is
excluded (ε near zero percent) and still works quite well when including the
bottleneck with an ε below ten percent. However, when measuring the work
in process, the bottleneck should always be excluded, otherwise for this ratio
the error reaches 70% (at least for this configuration). This happens most
likely because the replacement component r processes the tokens in parallel
omitting the bottleneck as the dominating component that processes the
tokens in serial. The difference for the work in process emphasizes even more
when recalling that the model is very easy to predict in its behavior due to
its very low variance.

In conclusion, when the object of investigation is the lead time of the
tokens identifying and omitting the bottleneck from coarsening is of no
interest as the difference to the original model is very low. However, for other
ratios like the throughput and work in process, identifying and omitting
the bottleneck from coarsening leads to significant smaller errors. Most
likely, this is also true for other ratios and measurements not covered in this
experiment.

8.4 Error Size Dependency

To implement an efficient coarsening method it must be understood which
parameters affect the size of the error that is introduced when applying the
coarsening method. The error size is most likely affected by the size of the
coarsened group and the resampling rate. Of course, if the coarsened model
part does show very predictable behavior there will be (almost) no error at
all. Therefore, in this experiment a dynamic version of model Q was tested.

During simulation at a fixed interval rate every machine that was param-
eterized with distribution N2 was switched to N1 for a short period of time,
thus removing the bottleneck. In this dynamic environment the overall model
size as well as the bottleneck location (parameter i) and the resampling rate
(parameter y from Page 91) were increased and the difference between the
original and the coarsened model was recorded. Figure 8.4 shows the results
for the two ratios throughput and work in process for two exemplified cases
(i = 0 and i = 10). Lead time has been omitted as it shows a very low error
of less than four percent in all cases.

The error size is noticeably higher in the i = 0 case for both ratios. In
this case, the source is the bottleneck, as it is the only component that is
parameterized with N2. Then the processing times of the machines (and
their variadic behavior) have a large impact on the overall token processing.
Because of this impact token processing is hard to imitate with samples.
While the error size depends on both, n and ε in the i = 0 case, for small
y the size of n does not matter. That means, high resampling rates of the
components allow the coarsening of large regions.

8.4. ERROR SIZE DEPENDENCY 111

10
20

20
40

20

40

60

ny

ε(%)

i = 0

T
P

10
20

20
40

20

40

60

ny

ε(%)

i = 10

T
P

0

10

20

30

40

50

60

70

80

10
20

20
40

100

200

ny

ε(%)

i = 0

W
IP

10
20

20
40

100

200

ny

ε(%)

i = 10

W
IP

0

50

100

150

200

250

300

Figure 8.4: The error size in relation to the model size N and resampling
rate y and whether a bottleneck was present (i = 10) or not (i = 0). For ε
lower is better applies.

112 CHAPTER 8. VALIDATION

Source Entry B1 D1

Bn Dn

Exit Sink

...

s1

sn

c

Figure 8.5: The two different coarsening configurations used for validation.
The s1, . . . , sn configuration does coarsen all branches separately while the c
configuration does coarsen the complete structure.

Things are different when the source is not the bottleneck. In every tested
case, other than i = 0, the error size was very low compared to the i = 0 case.
Furthermore, there was no clear relation between the size of the error and
the size of n and y. The case i = 10 is depicted in Figure 8.4 as an example
for all of these cases. In this case (i = 10) the source is parameterized with
N1 like most of the machines. Only every tenth machine is parameterized
with N2 which makes it a bottleneck. Due to the high waiting times before
the bottlenecks, fluctuations and model dynamics are smoothed out leading
to a small error. Of course, in models of size n < 10 there are no bottlenecks
at all. However, since the source is parameterized the same as the machines
(other than in the i = 0 case) the probability that a token has to wait in a
buffer is relatively high.

This experiment shows, that the two situations, whether a SESE region
is starving (a preceding region contains a bottleneck) or the region itself
contains a bottleneck and token start to pile up, should be managed differently.
Especially in the first case new samples should be taken rather frequently.

8.5 Complete versus Separate

The whole controlling concept is based on the idea that the error increases
with the coarsening of larger regions but on the other side saves more runtime.
To validate this assumption, a model setup is needed where the material flow
can be coarsened in different ways. Therefore, model F was simulated with
two different coarsening setups as depicted in Figure 8.5. In the first setup,
every branch forms its own region s1, . . . , sn and is separately coarsened.
In the second setup, the complete model from Entry to Exit is coarsened
(region c). For both configurations the relative error for all three ratios and
the runtime savings were recorded.

Figure 8.6 shows the simulation experiment for the model configuration

8.6. THE EFFECT OF THE RESAMPLING 113

Simulation Time (×103)

ε
(in

%
)

50

100

150

200

20 40 60 80 100

WIP

Complete Separate

Simulation Time (×103)
λ

1000

1500

2000

20 40 60 80 100

WIP

Figure 8.6: This figure shows the output error ε and the coarsening efficiency
λ for the two different coarsening configuration from Figure 8.5 over time.
For both values The lower, the better is true.

F (6, 1,N (10, 50),N (100, 50)). While the previous experiment showed that
especially for starving regions (i.e. no bottleneck within the region) the error
depends on the resampling rate, this experiment shows the same behavior
for the case where i > 0. The output difference ε is always lower for the
separate coarsened setup. This corresponds with the results of the previous
experiment where it was shown that the error size decreases with decreasing
region sizes. Viewed solely, these results would indicate that the model
should be partitioned into a lot of small regions that are coarsened. However,
when including the speed-up gained by coarsening the model according to
Equation (6.22), the results look a bit different. Then the efficiency λ (which
roughly translates to error per speed-gain) is better (lower) when coarsening
the whole structure (region c). Therefore, the assumption made earlier holds.

8.6 The Effect of the Resampling

One of the most runtime consuming processes within the presented coarsening
concept is the so called resampling. As described in Chapter 6.1 resampling
is used to react to the model dynamics by refreshing the samples used for
coarsening. To measure the effect of the resampling one can simply compare
the error introduced by the coarsening with resampling enabled and disabled.

Exemplified, the effect of the resampling is shown for a simulation run
for the model setup Q(3, 0,N (10, 50),N (100, 50)) in Figure 8.7. During
simulation a bottleneck is introduced into the material flow at fixed time
intervals. The bottleneck is active for a short period of time, after which it

114 CHAPTER 8. VALIDATION

Simulation Time (×103)

ε
(in

%
)

50
10

0
15

0
20

0
25

0

50 100 150 200

TP

20
40

60
80

10
0

50 100 150 200

WIP

Resampling Enabled Resampling Disabled

Figure 8.7: The relative error ε plotted over time for two different ratios.
Two scenarios are shown: The resampling was enabled (blue) or disabled
(pink).

is cleared. In such a dynamic environment it is difficult the taken samples
become invalid quite fast. Resampling provides a way to gain new samples
that better match the current situation in the simulation model. Therefore,
when resampling is enabled the relative output error is much smaller. As
before, for the lead time the error was negligible and the ratio was therefore
omitted from Figure 8.7. The zig-zag-pattern found in the chart is a result
of the dynamic implementation of the bottleneck into the material flow.

8.7 Subsystem Runtime Consumption

This section explores the runtime consumption of the different subsystems.

8.7.1 Preprocessing and Program Structure Tree Runtime

When applied to a material flow graph in a preprocessing step for each
component look-up tables must be setup and the region hierarchy has to
be computed. As specified in Chapter 5 the runtime of the preprocessing
counts towards the overall runtime of the simulation run. In other words,
the preprocessing must be reasonable fast so that over the course of one
simulation run the coarsening concept is able to make up for the needed
preprocessing runtime. Furthermore, in Chapter 6.4.2 the claim was made
that the PST algorithm is fast enough to handle interactive insertion and
deletion of material flow components. To validate both claims, the runtime
of the PST algorithm to construct the region hierarchy was measured for

8.7. SUBSYSTEM RUNTIME CONSUMPTION 115

Model Size

R
un

tim
e
(m

s)

0

5

10

15

0 20 40 60 80 100

Model
Q
C
F

Figure 8.8: The runtime of the PST algorithm (in milliseconds) for three
different models. The model A is presented in detail later on. Since the
models F,Q are generated, their size was varied. The model size is defined
as the number of nodes in the material flow graph.

differently sized simulation models. The runtime to setup of the look-up
tables is negligible. The result for three different models is shown in Figure
8.8.

Since the models F,Q are generated on purpose, their size has been
varied. One can easily see that the runtime costs linearly increase with the
number of material flow components in the model. However, due to the large
branching structure, the costs for model F increase faster than for model
Q. The model A is taken over from Huber [HD09] and is presented later
on in detail (Chapter 8.9.1). The model is much more complex than F,Q
and its material flow graph is closer to reality. However, its runtime costs
are located between those of the generic models. Thus it can be assumed
that the PST runtime costs for other models are about the same order of
magnitude. The highest runtime costs of fifteen milliseconds were measured
for a model F of size one hundred. In relation to simulation runs that take
several minutes to hours, the preprocessing is negligible.

With such a low runtime for a preprocessing step the coarsening concept
is even suited for frequent changes of the material flow. For example, it
can be used in an interactive material flow editor where the user edits a
running material flow simulation. Furthermore, it can adapt to changes in the
material flow graph that are triggered by the simulation itself. For example,
the material flow graph could change its structure based on optimization
algorithms.

116 CHAPTER 8. VALIDATION

Sampling

During runtime samples are taken and stored in look-up tables for proper
parameterization of the region replacements. The samples are gathered
by observing the simulated material flow system for changes triggered by
events from event set (6.14). That means, almost every time an event
from (6.14) is triggered some additional computation (6.16) has to be
done. To measure the impact on the overall runtime the simulation models
Q(n, 6,N (10, 5),N (15, 5)) with n := {10, 20, 30, 50} were simulated with an
activated event accumulation but without coarsening. The measured runtime
was always around 10% longer than the simulation without the additional
event processing.

Bottleneck Identification

For the bottleneck identification and tracking the shifting bottleneck method
of Roser et al. [RNT02] has been implemented. The whole identification
method is based around periods of time where material flow components
such as conveyors and machines are marked as active. These intervals
have to be managed and overlapping intervals must be found to mark
them as shifting time periods. Each region maintains its own interval and
bottleneck database. Thus, each interval database remains small which
keeps the runtime overhead small. The additional computation costs for the
bottleneck identification were measured using the same simulation models as
for the Sampling measurement, discussed in the previous paragraph. The
measurements showed that simulations with an active bottleneck detection
need around 13% additional runtime.

Conclusion

In conclusion, the token sampling plus the bottleneck detection are responsible
for a 23% longer runtime. The coarsening method has to save more than
this amount of runtime to be faster than the original simulation model.
This raises the question which amount of tokens must be processed by the
coarsened regions to clear the addition costs. In other words: When is the
break-even point reached? This question is answered in the next section.

8.8 Determining the Break-even Point ω

The break-even is the point in time where the additional runtime costs
generated by the coarsening method are compensated by its savings. As
explained in the previous section, additional costs are caused by the to-
ken sampling to fill the look-up tables, the bottleneck detection and the
construction of an appropriate region state when switching between the

8.8. DETERMINING THE BREAK-EVEN POINT ω 117

5
10

15
20

25

200
400

600
800

1000

50

100

150

200

n
#tokens

R
un

tim
e
(in

m
s)

Original
Coarsened

Figure 8.9: In this diagram the absolute runtime for the original simulation
model and a coarsened variant is plotted against varying model sizes (n) and
varying number of tokens (#tokens) being coarsened. The break-even point
is where both planes intersect.

regions and their replacement. The additional costs and the savings correlate
with the number of processed tokens and not with the size or structure of
the model. The costs for the look-up table filling and bottleneck detection
directly depend on the number of events triggered by tokens (6.14) which
have to be processed. Furthermore, the construction of the component states
when switching depends on the number of tokens currently located in that
region or in the replacement component, respectively. Therefore, a simple
model Q(30, 6,N (10, 5),N (15, 5)) has been used to determine the break-even
point.

To compute the break-even point the number of tokens processed with an
active coarsening was increased from one to 500 while measuring the overall
runtime needed to simulate a fixed time interval (here 200.000 time units).
The measured runtime was then compared with the runtime of the original
simulation model with the same parameterization. On the test machine the
break-even point was measured to be around 40 tokens (±10% in additional
runs). This is shown in Figure 8.9 where the runtime for the original and the
coarsened model are plotted against varying model sizes and varying number
of tokens being coarsened. The break-even point is where the two depicted
planes intersect each other.

118 CHAPTER 8. VALIDATION

Figure 8.10: Model C. SESE regions are depicted as grey rectangles .

Furthermore, with the determined break-even point it is possible to
transform the number of tokens into values of y where y(ω) = 1. Then Figure
8.9 shows the relation between parameter y and the speed-up by model size.
It shows, that for small model sizes the relative speed-gain becomes smaller
the larger y (or rather #tokens) gets. On the other side, for large model sizes
the relative speed-gain remains pretty high for larger y parameters. That
means, for the tested simulation model for small model sizes around ten
to twenty components large values for y are relatively inefficient. Also, the
diagram shows, that around y = 25(= 1000 tokens) the coarsened model only
needs ten percent of the runtime of the original simulation model. However,
such a low runtime usually also means a very coarsened model computation
with a large output difference (the output error) to the output of the original
model. In the next section the runtime savings and the output error will be
put into relation.

8.9 Evaluation of the Controlling Function

In the previous sections experiments with the purpose-build models Q and F
were conducted. These models were used to evaluate the different subsystems
of the coarsening method in controlled environments. This was necessary
to lower side effects and by that gaining meaningful results. However, to
evaluate the controlling function a more complex model with a bigger region
hierarchy is needed. Therefore, model C introduced by Huber [Hub09] has
been reproduced. It will be covered in short in the next section. After that,
the results are presented.

8.9.1 Model C

Model C has a rather simple material flow. It contains machines, buffers of
fixed size and conveyors but no assembly or disassembly. The graph and the
partitions found by the PST algorithm are depicted in Figure 8.10.

The found regions match the overall logic very well. Especially the
parallel structures are put together into one SESE region. This is due to
the cleanup step integrated into the modified PST algorithm that combines
regions with a single component to larger SESE regions where applicable.

8.9. EVALUATION OF THE CONTROLLING FUNCTION 119
ε
(in

%
)

0

20

40

60

80

LT TP WIP

x = 1 x = 0.5 x = 0

R
un

tim
e
(in

%
)

10

20

30

40

50

60

Runtime

Figure 8.11: This figure shows the (relative) results when coarsening Model
C. The results for three different configurations of the controlling mechanism
are depicted.

8.9.2 Results

Model C was run with configuration (i = 20,N (100, 100),N (1000, 250)).
This placed one bottleneck in the middle of the second single production line.
Furthermore, the variance of the processing times of the machines was higher
than in the experiments described so far. The model was simulated for a
fixed simulation time of two million time units. At the end, the values of the
three ratios and the needed computation time to complete the simulation run
were recorded. Four different configurations where simulated: the unaltered,
original model and the same model with enabled coarsening in three different
configurations, namely x = 0.5, x = 1 and x = 0. Parameter y was set to
one. The results are shown in Figure 8.11.

The controlling mechanism shows the intended behavior: For each of
the three measured ratios LT and TP and WIP the error increases with a
decreasing x while at the same time the runtime gets shorter. As before,
the relative error for the lead time is the lowest among the measured ratios.
However, when setting x = 0 the error for the throughput and the work in
process becomes very large (both being around 80% aberration). Also for
the two other configurations the relative difference is significant higher than
for the lead time. This shows that the current parameterization of the region
replacements resembles the original lead time very well but has problems
when it comes to the TP and WIP ratios.

With the x = 1 setting the controlling mechanism only activates the
coarsening for serial connected regions and on low variances. Therefore, this
setting shows the lowest relative error for all the ratios but still needs more

120 CHAPTER 8. VALIDATION

than 60% of the runtime of the original simulation model. Setting x = 0.5
shows the intended trade off: It has a significant lower runtime but also a
higher relative error especially for TP and WIP. The x = 0 setting tries to
maximize the efficiency (low error per speed up) (see Equation 6.22). It
mostly uses regions higher in the region hierarchy which unfortunately results
in very high differences for the TP and WIP ratio. Thus, for TP and WIP
this setting is not very efficient. Instead, for the three parameterizations of
x, x = 0.5 is the most efficient one. In this case, the controlling mechanism
doesn’t work as expected.

8.10 Conclusion
If applied to a given material flow simulation model, the proposed coarsening
method is able to save runtime and to control the relative output error,
based on user preferences. purpose-build models were used to shown that the
different subsystems of the coarsening method work reasonable well. These
models were also used to understand which parameters affect the runtime
and overall error.

The coarsening method works great when solely measuring the lead time
of the tokens. In all experiments the relative output error was always below
four percent. In this case, the coarsening could be setup to aggressively
reduce the runtime with a large y parameter value and x = 0 since the
output error will remain very low. However, the method does not work that
good when it comes to other ratios like the token throughput or the work
in process. Especially for the latter relative errors up to 250% have been
measured in certain configurations.

However, in the end the output error depends especially on the model
dynamics. For example, if a simulated production line shows chaotic be-
havior with largely different processing times, then samples can be taken as
frequently as possible, they still do not resemble the processing times of the
original model. On the other side, models that have a poorly constructed
material flow with a lot of redundant computations the coarsening method
would work quite well. Therefore, the user should specify the x, y-parameters
in dependency of the model that will be coarsened. That means, the user
still needs some knowledge about the simulation model (especially about its
dynamics) to use the coarsening method in an optimal and efficient way.

C h a p t e r 9

Conclusion

In this thesis a coarsening method has been presented that is designed to be
applicable to (almost) arbitrary material flow models. The Token Sampling
concept overcomes several drawbacks present in previous coarsening methods:

• The material flow system specifications developed in this thesis leave the
high-level processes intentionally undefined. Therefore, the coarsening
method can be used with arbitrary token processing systems.

• Most notably the coarsening method does not need a computational
and time intensive preprocessing. Instead its preprocessing takes only
milliseconds for reasonable sized models (see Chapter 8.7.1). Thus it
can be applied during runtime at will and it is fast enough to adapt
itself to dynamic changes of the material flow structure. This allows
the usage of the coarsening method even during model construction.

• Since this coarsening method is able to handle arbitrarily connected
SESE regions it does not depend on the presence of certain structures.
Instead, almost any simulation model structure can be coarsened in
some way.

• Due to the utilization of the shifting bottleneck detection method the
coarsening method is able to adapt itself to changing model states.
Especially sudden break downs of machines are tracked and considered
when choosing which part of a simulation model to coarsen.

The controlling of the coarsening method was designed to be understand-
able and user-friendly. Model and simulation system dependent parameters
have been avoided and the user does not have to specify parameters that are
only understandable with deep knowledge of the coarsening and simulation

122 CHAPTER 9. CONCLUSION

method. The user simply provides two parameters x and y. The former
specifies a trade-off between efficiency and error avoidance. The latter de-
fines a maximum amount of tokens when coarsening regions - in terms of
break-evens. All other (internal) parameter are determined by the coarsening
method itself.

The practical results show that the overall concept works very well for
the lead time ratio (around ±4% difference from the simulation results of
the original model). However, the other two ratios throughput and work in
process usually have a much higher difference. The region replacements used
for the coarsening imitate the lead time behavior very well but need some
work to lower the difference for the other two ratios.

Under-Researched

While the presented concept works reasonable well it also has some room for
improvement. Especially the behavior of the region replacement components
could be updated to reduce the output error for ratios like the throughput
and work in process. For example, instead of simply setting the size of
the replacement to the size of the replaced region (6.18) the size of the
replacement could be set to a mean value of the work in process of that
region. This could improve (lower) the output difference at least for the work
in process ratio.

Furthermore, the concept could be adapted to generic input-output-
system descriptions like DEVS. It would be possible to implement the
look-up tables in such a way that (almost) generic input-output-relations
could be sampled. Using the PST algorithm SESE regions could be identified
in the graph of connected DEVS systems which then could be replaced. This
would allow the coarsening of generic DEVS systems and would improve
an earlier work of Sevinc [Sev90] which also needs a very computational
intensive preprocessing. Adapting this concept would omit the preprocessing
and make the method of generic model abstraction much more practical.

Bibliography

[Bar98] Russell R. Barton. Simulation metamodels. In Proceedings of
the 1998 Winter Simulation Conference, volume 1, pages 167–174,
1998.

[BH97] Kim Breitfelder and Stephen Huffman, editors. The IEEE Stan-
dard Dictionary of Electrical and Electronics Terms. Institute of
Electrical and Electronics Engineers, Inc, sixth edition edition,
1997.

[BT96] Roger J. Brooks and Andrew M. Tobias. Choosing the best model:
Level of detail, complexity, and model performance. In Mathe-
matical and Computer Modelling, volume 24, pages 1–14. Elsevier
Science Ltd, 1996.

[BT00] Roger J. Brooks and Andrew M. Tobias. Simplification in the
simulation of manufacturing systems. International Journal of
Production Research, 38:1009–1027(19), March 2000.

[CBP00] Leonardo Chwif, Marcos Ribeiro Pereira Barretto, and Ray J. Paul.
On simulation model complexity. In Proceedings of the 2000 Winter
Simulation Conference, pages 449 – 455, 2000.

[CL06] Christos G. Cassandras and Stephane Lafortune. Introduction to
Discrete Event Systems. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[Com90] CompuServe Incorporated. Graphics interchange format(sm) ver-
sion 89a. World Wide Web Consortium, July 1990.

124 BIBLIOGRAPHY

[CPB06] Leonardo Chwif, Ray J. Paul, and Marcos Ribeiro Pereira Barretto.
Discrete event simulation model reduction: A causal approach.
Simulation Modelling Practice and Theory, 14(7):930 – 944, 2006.

[Dea05] John Deacon. Object-Oriented Analysis and Design. ADDISON-
WESLEY, 2005.

[Deu94] Deutsche Elektrotechnische Kommission im DIN und VDE (DKE).
Norm 19226-1: Regelungstechnik und steuerungstechnik - allge-
meine grundbegriffe. Technical report, Deutsches Institut für Nor-
mung e.V., Berlin, Februar 1994.

[DH93] Paul K. Davis and Richard Hillestad. Families of models that cross
levels of resolution: Issues for design, callibration and management.
In Proceedings of the 1993 Winter Simulation Conference, pages
1003 – 1012, 1993.

[Ebe01] David H. Eberly. 3D Game Engine Design: A Practical Approach
to Real-Time Computer Graphics. Morgan Kaufmann, 2001.

[EJF10] Benjamin Eikel, Claudius Jähn, and Matthias Fischer. Preprocessed
global visibility for real-time rendering on low-end hardware. In
Advances in Visual Computing, volume 6453 of Lecture Notes in
Computer Science, pages 622–633. Springer, Berlin / Heidelberg,
2010.

[EJP11] Benjamin Eikel, Claudius Jaehn, and Ralf Petring. Padrend: Plat-
form for algorithm development and rendering. In Jürgen Gause-
meier, Michael Grafe, and Friedhelm Meyer auf der Heide, editors,
Augmented & Virtual Reality in der Produktentstehung, volume
295 of HNI-Verlagsschriftenreihe, Paderborn, pages 159–170. Heinz
Nixdorf Institut, Universität Paderborn, May 2011.

[Fel13] Andreas Emil Feldmann. Fast balanced partitioning is hard even
on grids and trees. Theoretical Computer Science, 2013.

[FF85] Linda W. Friedman and Hershey H. Friedman. Validating the
simulation metamodel: Some practical approaches. SIMULATION,
45(3):144–146, September 1985.

[Fis89] Paul A. Fishwick. Neural network models in simulation: a compari-
son with traditional modeling approaches. In WSC ’89: Proceedings
of the 21st conference on Winter simulation, pages 702–709, New
York, NY, USA, 1989. ACM.

[Flo95] John E. Flood. Telecommunications Switching, Traffic and Net-
works. Prentice Hall, 1995.

BIBLIOGRAPHY 125

[Fra95] Frederick K. Frantz. A taxonomy of model abstraction techniques.
In WSC ’95: Proceedings of the 27th conference on Winter sim-
ulation, pages 1413–1420, Washington, DC, USA, 1995. IEEE
Computer Society.

[Fri03] Peter Fritzson. Principles of Object-Oriented Modeling and Simu-
lation with Modelica 2.1. Wiley-IEEE Computer Society Pr, 2003.

[FRL+10] Matthias Fischer, Hendrik Renken, Christoph Laroque, Guido
Schaumann, and Wilhelm Dangelmaier. Automated 3d-motion
planning for ramps and stairs in intra-logistics material flow simu-
lations. In Proceedings of the 2010 Winter Simulation Conference
(WSC 2010), pages 1648 – 1660. IEEE, Omnipress, December 2010.

[Fuj98] Richard M. Fujimoto. Parallel and distributed simulation. In Jerry
Banks, editor, Handbook of Simulation, pages 429 – 464. John
Wiley & Sons, 1998.

[Gre09] Jason Gregory. Game engine architecture. A K Peters, first edition,
April 2009.

[HD09] Daniel Huber and Wilhelm Dangelmaier. Controlled simplification
of material flow simulation models. In M. D. Rossetti, R. R. Hill,
B. Johansson, A. Dunkin, and R. G. Ingalls, editors, Proceedings
of the 2009 Winter Simulation Conference, 2009.

[Hel04] Helsinki University of Technology. Lecture Notes: S-38.145 - Intro-
duction to Teletraffic Theory, 2004.

[HL99] Yi-Feng Hung and Robert C. Leachman. Reduced simulation
models of wafer fabrication facilities. International Journal of
Production Research, 37:2685–2701, August 1999.

[HRS+07] Christian Henke, Carsten Rustemeier, Tobias Schneider, Joachim
Böcker, and Ansgar Trächtler. Railcab - Ein Schienenverkehrssys-
tem mit autonomen, Linearmotor-getriebenen Einzelfahrzeugen.
In ETG-Fachbericht-Internationaler ETG-Kongress 2007. VDE
VERLAG GmbH, 2007.

[Hub09] Daniel Huber. Geregelte Vereinfachung hierarchischer Partitionen
von Modellen in der Materialflusssimulation. PhD thesis, Univer-
sität Paderborn, 2009.

[Inc09] Incontrol Simulation Software. Tutorial ed 8, 2009.

[Inc12a] Incontrol Simulation Software. Enterprise dynamics. Accessed
April, 2012. http://www.incontrolsim.com, April 2012.

http://www.incontrolsim.com

126 BIBLIOGRAPHY

[Inc12b] Incontrol Simulation Software. Enterprise dynamics technical
overview. Accessed April, 2012. http://www.incontrolsim.com/
en/ed-platform/technical-overview.html, April 2012.

[JFM05] Rachel .T. Johnson, John.W. Fowler, and Gerald.T. Mackulak.
A discrete event simulation model simplification technique. In
Simulation Conference, 2005 Proceedings of the Winter, page 5 pp.,
2005.

[JLGL99] Sanjay Jain, Chu-Cheow Lim, Boon-Ping Gan, and Yoke-Hean
Low. Criticality of detailed modeling in semiconductor supply
chain simulation. In WSC ’99: Proceedings of the 31st conference
on Winter simulation, pages 888–896, New York, NY, USA, 1999.
ACM.

[JPP94] Richard Johnson, David Pearson, and Keshav Pingali. The program
structure tree: computing control regions in linear time. In Pro-
ceedings of the ACM SIGPLAN 1994 conference on Programming
language design and implementation, PLDI ’94, pages 171–185,
New York, NY, USA, 1994. ACM.

[KLM96] C-T Kuo, J-T Lim, and SM Meerkov. Bottlenecks in serial produc-
tion lines: A system-theoretic approach. Mathematical Problems
in Engineering, 2(3):233–276, 1996.

[LB95] Stephen R. Lawrence and Arnold H. Buss. Economic analysis of
production bottlenecks. Mathematical Problems in Engineering,
1(4):341–363, 1995.

[LCN09] Lin Li, Qing Chang, and Jun Ni. Data driven bottleneck detection
of manufacturing systems. International Journal of Production
Research, 47(18):5019–5036, 2009.

[LK00] Averill M. Law and David W. Kelton. Simulation Modelling and
Analysis. McGraw-Hill Education, April 2000.

[Mer05] Galina Merkuryeva. Metamodelling for simulation applications in
production and logistics. Technical report, Department of Modelling
and Simulation, Riga Technical University, 2005.

[MT75] M. D. Mesarovic and Y. Takahara. General Systems Theory:
Mathematical Foundations, volume 113 of Mathematics In Science
And Engineering. Academic Press, 1975.

[Mue05] Bengt Mueck. Eine Methode zur benutzerstimulierten detail-
lierungsvarianten Berechnung von diskreten Simulationen von Ma-
terialflüssen. PhD thesis, Universität Paderborn, 2005.

http://www.incontrolsim.com/en/ed-platform/technical-overview.html
http://www.incontrolsim.com/en/ed-platform/technical-overview.html

BIBLIOGRAPHY 127

[MVA10] Jeff McAffer, Paul VanderLei, and Simon Archer. OSGi and
Equinox: Creating Highly Modular Java Systems. Addison-Wesley,
Upper Saddle River, NJ, 2010.

[Nie77] Gerhard Niemeyer. Kybernetische System- und Modelltheorie: sys-
tem dynamics. Verlag Franz Vahlen, 1. aufl. edition, 1977.

[Pic75] Franz Pichler. Mathematische Systemtheorie: Dynamische Kon-
struktionen. de Gruyter, 1975.

[PN03] Sachin B Patkar and H Narayanan. An efficient practical heuristic
for good ratio-cut partitioning. In VLSI Design, 2003. Proceedings.
16th International Conference on, pages 64–69. IEEE, 2003.

[PR08] Carl Adam Petri and Wolfgang Reisig. Petri net.
http://www.scholarpedia.org/article/Petri_net, 2008.

[RD13] Hendrik Renken and Wilhelm Dangelmaier. Improving flow-based
modeling of enterprise systems and modeling of custom warehouse
systems in d3fact. In Proceedings of the 3rd International Confer-
ence on Simulation and Modeling Methodologies, Technologies and
Applications, pages 94–101. INSTICC, INSTICC PRESS, Jul 2013.

[REK12] Hendrik Renken, Felix Alexander Eichert, and Alexander Klaas.
Visualization and collaborative editing of simulation models with
heterogeneous clients - implemented into the simulator d3fact.
In 32nd Computers and Information in Engineering Conference,
volume 2. ASME, 2012.

[Ren11] Hendrik Renken. d3fact projekt wiki. Accessed Feb. 1, 2011.
https://macabeo.cs.upb.de/trac/d3fact/, March 2011.

[RNT02] Christoph Roser, Masaru Nakano, and Minoru Tanaka. Shifting
bottleneck detection. In Simulation Conference, 2002. Proceedings
of the Winter, volume 2, pages 1079–1086. IEEE, 2002.

[RNT03] Christoph Roser, Masaru Nakano, and Minoru Tanaka. Comparison
of bottleneck detection methods for agv systems. In Simulation
Conference, 2003. Proceedings of the 2003 Winter, volume 2, pages
1192–1198. IEEE, 2003.

[Roc11] Rockwell Automation, Inc. Arena simulation software by
rockwell automation. Accessed Feb. 1, 2011. http://www.
arenasimulation.com/, January 2011.

[Rop79] Günter Ropohl. Eine Systemtheorie der Technik - Zur Grundlegung
der Allgemeinen Technologie. Carl Hanser Verlag München Wien,
1979.

https://macabeo.cs.upb.de/trac/d3fact/
http://www.arenasimulation.com/
http://www.arenasimulation.com/

128 BIBLIOGRAPHY

[Rop09] Günter Ropohl. Allgemeine Technologie : eine Systemtheorie der
Technik. Universitätsverlag Karlsruhe, 3. aufl. edition, 2009.

[Ros99] Oliver Rose. Estimation of the cycle time distribution of a wafer
fab by a simple simulation model. In Proceedings of the SMOMS
1999, pages 133–138, 1999.

[Ros00] Oliver Rose. Why do simple wafer fab models fail in certain
scenarios? Winter Simulation Conference, 2:1481–1490, 2000.

[Ros07] Oliver Rose. Improved simple simulation models for semiconductor
wafer factories. In Proceedings of the 2007 Winter Simulation
Conference, pages 1708–1712, 2007.

[SDV08] Sankar Sengupta, Kanchan Das, and Robert P VanTil. A new
method for bottleneck detection. In Proceedings of the 40th Con-
ference on Winter Simulation, pages 1741–1745. Winter Simulation
Conference, 2008.

[Sev90] Suleyman Sevinc. Automation of simplification in discrete event
modelling and simulation. International Journal of General Sys-
tems, 18(2):125–142, 1990.

[Sev91] Suleyman Sevinc. Theories of discrete event model abstraction. In
WSC ’91: Proceedings of the 23rd conference on Winter simulation,
pages 1115–1119, Washington, DC, USA, 1991. IEEE Computer
Society.

[SF98] Alex F. Sisti and Steven D. Farr. Model abstraction techiques: An
intuitive overview. In Aerospace and Electronics Conference, 1998.
NAECON 1998. Proceedings of the IEEE 1998 National, pages 447
– 450. IEEE Computer Society, 1998.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[Sof11] Wolverine Software. Wolverine web. Accessed Feb. 1, 2011. http:
//www.wolverinesoftware.com/, January 2011.

[Som04] Ian Sommerville. Software Engineering. Addison Wesley, seventh
edition, 2004.

[SSL+01] Rajarishi Sinha, Rajarishi Sinha, Vei-Chung Liang, Student Mem-
ber, Christiaan J. J. Paredis, and Pradeep K." Khosla. Modeling
and simulation methods for design of engineering systems. JOUR-
NAL OF COMPUTING AND INFORMATION SCIENCE IN
ENGINEERING, 1:84–91, 2001.

http://www.wolverinesoftware.com/
http://www.wolverinesoftware.com/

BIBLIOGRAPHY 129

[SY93] Lee Schruben and Enver Yücesan. Complexity of simulation models:
a graph theoretic approach. In WSC ’93: Proceedings of the 25th
conference on Winter simulation, pages 641–649, New York, NY,
USA, 1993. ACM.

[VB05] Wim C. M. Van Beers. Kriging metamodeling in discrete-event
simulation: an overview. In WSC ’05: Proceedings of the 37th
conference on Winter simulation, pages 202–208. Winter Simulation
Conference, 2005.

[VDI96] Richtlinie 3633: Simulation von logistik-, materialfluß- und produk-
tionssystemen - begriffsdefinitionen, November 1996.

[VDI08] Richtlinie 2689: Leitfaden für materialflussuntersuchungen, April
2008.

[VG03] Sven Völker and Peter Gmilkowsky. Reduced discrete-event sim-
ulation models for medium-term production scheduling. Systems
Analysis Modelling Simulation, 43(7):867–883, 2003.

[Wal87] Jack C. Wallace. The control and transformation metric: Torward
the measurment of simulation model complexity. Proceedings of
the Winter Simulation Conference, page 597 ff., 1987.

[Wym93] A. Wayne Wymore. Model-based Systems Engineering. CRC Press,
1993.

[WZZ05] Yongcai Wang, Qianchuan Zhao, and Dazhong Zheng. Bottlenecks
in production networks: An overview. Journal of Systems Science
and Systems Engineering, 14(3):347–363, 2005.

[XJ 12a] XJ Technologies Company. Discrete event simulation modeling
tool. Accessed April, 2012. http://www.xjtek.com/anylogic/
approaches/discreteevent/, May 2012.

[XJ 12b] XJ Technologies Company. Why anylogic simulation software?
Accessed April, 2012. http://www.xjtek.com/anylogic/why_
anylogic/, April 2012.

[Zei76] B. P. Zeigler. Theory of Modeling and Simulation. Wiley Inter-
science, 1976.

[ZP00] Bernard P. Zeigler and Herbert Praehofer. Theory of Modeling and
Simulation. Academic Press, January 2000.

http://www.xjtek.com/anylogic/approaches/discreteevent/
http://www.xjtek.com/anylogic/approaches/discreteevent/
http://www.xjtek.com/anylogic/why_anylogic/
http://www.xjtek.com/anylogic/why_anylogic/

130 BIBLIOGRAPHY

A p p e n d i x A

Glossary

I A possibly infinite index set. 6, 66

PS The set of spaces of a system S ∈ SK. 66

P A set of places P := {pi | i ∈ I} that can store tokens k ∈ K. 137

Φ A (recursive) function that specifies which regions are coarsened, based
on the λ measurement. 91, 98

Ψ A function that specifies how long a region will be coarsened, based on
the expected output error ε and the user specified reference output x.
93, 95, 99

ĚiS A sequence of observed events for a specific token processing system S.
73, 74

Ěik A sequence of observed events for a specific token k. 73–77, 82, 83

Ěi A sequence of observed events Ěi := { ě0, ě1, . . .}. 77

ǎp Event indicating the blocking of a space p ∈ P . 72, 74

ǎ Event indicating the blocking of a space. 75–77

q̌p Event indicating that a space p ∈ P now no longer contains a token.
72–75

q̌ Event indicating that a space now no longer contains a token. 76, 77

ǎp Event indicating the accessibility of a space p ∈ P . 72, 74

ǎ Event indicating the accessibility of a space.. 75–77

132 Glossary

q̌p Event indicating that a space p ∈ P now contains a token k ∈ K. 72–75,
77

q̌ Event indicating that a space now contains a token. 75–77

ε This specifies the difference between the simulation output Y (M), Y (M ′)
of two models M,M ′. If one of the models is coarsened ε is termed
output error . 90–96, 98, 99, 114, 116–119

ε̂ This specifies the expected difference between the simulation output Y (M), Y (M ′)
for two models M,M ′. 99

µ̂ This specifies the expected speed gain for a coarsened region r. 99

λ The coarsening efficiency describes the expected output error by the speed
gain for a coarsened region r. 90–92, 106, 117, 118

[W] is the look-up table for recorded paths taken by tokens through a region
in a material flow system. 87, 88, 99, 108, 144

[lt] is the look-up table for the lead time. 82, 83, 99, 106

[] is the look-up table for the waiting time. 82–84, 105, 143

[] is the look-up table for the processing time. 77, 82–84, 105, 143

CK A set of tuples EK ⊆ SK × SK indicating a connection between two
systems. 65, 68, 138

K The set of all possible tokens. 7, 8, 65–69, 72–74, 84, 85, 101, 137, 138

R The hierarchy (tree) of identified single entry single exit regions of a
material flow system. 90, 92, 93

SXY The class of connectable systems. 23, 65

SK The class of connectable systems that process tokens (K) in some way.
65–67, 69, 137, 138

T Identifies a triple (T,≤, t0) that is interpreted as an ordered set of points
in time. 10, 57, 76, 83

U Identifier for the state space of a system. 67, 69, 72

C̊ The subset of enabled channels of CK. 69, 70

r A single component that represents a coarsened version of a region r.. VI,
81–88, 93, 95, 106–108, 142, 144

µ This specifies the real world speed gain for a coarsened region r. 90–93, 98

Glossary 133

ω A value that specifies the break-even in terms of runtime costs for a
coarsened region. 95, 121

ψ A function that maps an arbitrarily large output error ε to the interval
[0..1[. 94, 95

σ The statistical variance of a set of values. 99

∅ The arithmetical mean of a set of values. 99

b Identifies the processing state of a token. 75, 76

f Identifies the finished state of a token. 75, 76

l Identifies the idle state in a token. 75, 76

r A region of the material flow graph with connected token processing
systems. VI, 81–88, 90–93, 95, 98, 99, 106–108, 142–144

v Identifies the preprocessing state of a token. 75, 76

w Identifies the waiting state of a token. 75, 76

134 Glossary

A p p e n d i x B

Listings

This appendix holds all program listings used throughout the thesis. The
listings are ordered according to their first reference.

136 APPENDIX B. LISTINGS

CYLCE_EQUIV(G)
#perform an und i rec ted depth− f i r s t search
f o r each node n in r ev e r s e depth− f i r s t order
{

5 # compute h in

min{ dfsnumt | (n , t) i s a back edge } −> hi0
min{ h i c | c i s a ch i l d o f n } −> hi1
min{ hi0 , h i1 } −> hin

any ch i l d c o f n where h i c = hi1 −> h i c h i l d
10 min{ hi c | c i s a ch i l d o f n other than h i c h i l d } −> hi2

compute b r a c k e t l i s t
f o r each ch i l d c o f n

b r a c k e t l i s t n + b r a c k e t l i s t c −> b r a c k e t l i s t n

15

f o r each capping back edge d from a descendant o f n to n
remove (b) −> b r a c k e t l i s t n

f o r each back edge b from a descendant o f n to n
20 {

remove (b) −> b r a c k e t l i s t n

i f c l a s s b i s undef ined
s t a r t new c l a s s −> c l a s s b

}
25 f o r each back edge e from n to an ance s to r o f n

push (e) −> b r a c k e t l i s t n

i f (h i2 < hi1)
{

30 # crea t e capping back edge
edge (n , node (h i2)) −> d
push (d) −> b r a c k e t l i s t n

}

35 # determine c l a s s f o r edge from parentn to n
i f (n i s not the root o f d f s t r e e)
{

#l e t e be the t r e e edge from parentn to n ;
top (b r a c k e t l i s t n) −> b

40 i f (s i z e b 6= | b r a c k e t l i s t n |)
{

| b r a c k e t l i s t n | −> s i z e b

s t a r t new c l a s s −> tmp−c l a s s b

}
45 tmp−c l a s s b −> c l a s s e

#check f o r e , b equ iva l ence
i f (s i z e b = 1)

c l a s s e −> c l a s s b

50 }
}

Listing B.1: The cycle equivalence algorithm used to construct the program
structure tree in Johnson et al. [JPP94].

137

#p i s the source p roce s s and u the update
UPDATE(p , u)

put (u) −> stack

5 #inform pro c e s s e s in f r on t o f p about u
0 −> i
peek (s tack) −> u
whi le (P[i] 6= p)
{

10 u −> inform (P[i])
i+1 −> i

}

#do not inform p about u
15 i f (| s tack | > 1)

{
#merge u with prev ious update
p o l l (s tack) −> u
po l l (s tack) −> v

20 u + v −> u
put (u) −> stack

}
e l s e
{

25 #there i s only one update l e f t on the s tack
i+1 −> i
peek (s tack) −> u
whi le (i < |P |)
{

30 u −> inform (P[i])
i+1 −> i

}
p o l l (s tack) #c l e a r s tack

}
Listing B.2: The update algorithm for a set of material flow processes at a
location.

138 APPENDIX B. LISTINGS

SWITCH_TO_REPLACEMENT(r)
f o r (i in | r|−1 to 0)
{

#r e t r i e v e tokens from i−th TPS
5 take (PSi

) −> K
fo r (k in K)
{

#put every token in to replacement
#but with unique de lay time

10 put (k , ∆tk) −> Pr
}

}
Listing B.3: The algorithm for the state transfer from the original com-
ponents to the replacement. It is used for both sequentially and arbitrarily
connected regions.

SWITCH_TO_ORIGINAL(r)
#r e t r i e v e tokens from replacement
take (Pr) −> K

5 TRANSFER_TO_ORIGINAL(r ,K)
Listing B.4: The algorithm for the state transfer from the replacement
back to the original components in a sequentially connected region. It utilizes
the TRANSFER_TO_ORIGINAL subroutine from Listing B.5.

139

TRANSFER_TO_ORIGINAL(S0, S1, . . . , K)
|K|−1 −> j
0 −> mt
f o r each (S in r e v e r s e order)

5 {
#do not take l a s t wa i t ing time in to account
i f (i 6= | r |−1)

mt + []S −> mt

10 #do take f a c t o r x i n t o account
mt + []S ∗ (1−x) −> ct
j −> h
#put token in to i−th system
#into post−pro c e s s i ng s t a t e

15 PUT(K, j , h , ct ,) −> S

[]S + mt −> mt
#put token in to i−th system
#into pre−pro c e s s i ng s t a t e

20 PUT(K, j , h ,mt ,) −> S
}

#i f the re are tokens l e f t over
#search f o r empty p l a c e s

25 f o r each (S in r e v e r s e order) and whi l e (j >= 0)
{

whi l e (PS not f u l l) and whi l e (j >= 0)
{

put (K[j]) −> PS

30 j−1 −> j
}

}

35 PUTS (K, j , h , t ,)
#put tokens from K into the s to rage o f system S
#se t the tokens to s t a t e

whi l e (j >= 0 & j−h < |PS | & ∆tK[j] < t)
{

40 put (K[j]) −> PS as
j−1 −> j

}
Listing B.5: The algorithm for the transfer of a set of tokens K back to the
original components S0, S1, . . ., which are specified as a sequence.

140 APPENDIX B. LISTINGS

SWITCH_TO_ORIGINAL(r)
#r e t r i e v e tokens from replacement
take (Pr) −> K

5 f o r each W in {[W]r}
{

count o f W in [W]r / | [W]r | −> f r a c
min { |W| , f rac , |K| } −> s i z e

10 random subset o f s i z e o f K −> k
K − k −> K

TRANSFER_TO_ORIGINAL(W, k)
}

15

a l l paths not f u l l −> W
#i f the re are tokens l e f t over
#put in to random path
whi l e (|K| > 0)

20 {
random path from W −> W

count o f W in [W]r / | [W]r | −> f r a c
min { |W| , f rac , |K| } −> s i z e

25

random subset o f s i z e o f K −> k
K − k −> K

TRANSFER_TO_ORIGINAL(W, k)
30

i f (W i s f u l l)
W − W −> W

}
Listing B.6: The algorithm for the state transfer from the replacement back
to the original components in a n arbitrarily connected region. It utilizes
the TRANSFER_TO_ORIGINAL subroutine from Listing B.5.

A p p e n d i x C

Large PST Example

This appendix contains a (relatively) large example of a material flow graph
on which the modified PST algorithm from Listing B.1 was applied. Due
to space constraints on this page, first the result of the PST algorithm is
presented (Figure C.1) and afterwards on the next page the example material
flow graph (Figure C.2).

a

b

c

dA B

B C D E F

H I N

J K L M

Figure C.1: This is the resulting hierarchy tree. The dashed nodes represent
regions and the circle nodes represent the components in the graph.

142 APPENDIX C. LARGE PST EXAMPLE

So
ur
ce

A
B

C D

E
F

G

H
I

J

K L

M
N

Si
nk

a
b c

d

F
ig
ur
e
C
.2
:
A

(r
el
at
iv
el
y)

la
rg
e
m
at
er
ia
lfl

ow
gr
ap

h
w
ith

ba
ck

ed
ge
s.

T
he

PS
T

al
go

rit
hm

ha
s
fo
un

d
fo
ur

SE
SE

re
gi
on

s
(d
as
he

d
re
ct
an

gl
es
).

	Introduction
	Terminology
	Systems and Models
	Systems
	Models

	The Simulation of Models
	System and Model Composition
	Simulation Types

	Complexity Measurement
	Controlling a System

	Problem Statement
	State of the Technology
	Model and System Specifications
	Systems Theory
	System Theory of Technology
	Discrete Event System Specification
	Petri nets
	Current Simulation Software
	Representations for Analytical Processing

	Model Simplification and Coarsening
	Validity of Models
	Complexity Measurement
	Simplification and Coarsening Methods
	About the Managing of Model States
	Dynamic Model Simplification

	Bottleneck Detection Methods
	What is a Bottleneck?
	Detection Methods

	Model Partitioning
	Partitioning of Graphs
	Identifying Sequential Regions
	Single-Entry-Single-Exit Regions
	Partitioning of Material Flow Models

	The Simulation Software d3fact
	The Server
	The Simulation Platform
	d3fact Model Architecture
	Material Flow Specification
	Experiment Design in d3fact
	The Visualization Client

	Required Actions
	Conceptual Design
	Token Sampling
	Material Flow System Specification
	Formalizing Token Processing Networks
	Material Flow System States
	Material Flow Dynamics
	Implementation as a Discrete Event System
	Concluding Remarks

	Performance of a Token Processing System
	Adding an External Clock
	Sampling a TPS

	Identifying Groups of Systems for Coarsening
	Modified Program Structure Tree
	Dynamics
	Example

	Coarsening Sequentially Connected Systems
	Sampling r
	Switching to the Coarsened Version (r r)
	Switch Back to the Original Version (r r)
	Handling Altering, Assembly, Disassembly of Tokens

	Coarsening Arbitrarily Connected Systems
	Sampling Groups of Arbitrarily Connected Systems
	Switch to the Coarsened Version (r r)
	Switch Back to the Original Version (r r)
	Summing Up

	Controlling the Coarsening Process
	Reference Output and Feedback
	Where?
	How Long?
	When?
	Measuring Speed Gain and Output Error

	Conclusion

	Implementation
	Material Flow System Implementation
	Token Processing System Implementation
	Channel Implementation
	Implementation Details

	Integrating the Token Sampling
	Token State Sampling
	Identifying Groups of Systems
	Coarsening of Sequentially Connected Regions
	Coarsening of Arbitrarily Connected Regions
	Controlling the Coarsening Process

	Validation
	Purpose-Build Models
	Model Q
	Model F

	Measurement and Evaluation Methods
	Do not Coarsen the Bottleneck
	Error Size Dependency
	Complete versus Separate
	The Effect of the Resampling
	Subsystem Runtime Consumption
	Preprocessing and Program Structure Tree Runtime

	Determining the Break-even Point
	Evaluation of the Controlling Function
	Model C
	Results

	Conclusion

	Conclusion
	Bibliography
	Glossary
	Listings
	Large PST Example

