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Abstract
Many 3D scenes (e.g., generated from CAD data) are composed of a multitude of objects that are
nested in each other. An industrial plant, for instance, may contain multiple machines and the
machines may have an electric motor with many smaller parts like rotor and stator located inside.
Since the objects occlude each other, only few are visible from outside. This work presents a new
technique, Spherical Visibility Sampling (SVS), for real-time 3D rendering of such – often highly
complex – scenes. SVS exploits the occlusion and annotates hierarchically structured objects
with direction-dependent visibility information in a preprocessing step. For different directions,
the direction-dependent visibility encodes which objects of a scene’s region are visible from that
direction from the outside of the regions’ enclosing bounding sphere. Since there is no need to
store a separate view space subdivision as in most techniques based on preprocessed visibility, a
small memory footprint is achieved. Using the direction-dependent visibility information for an
interactive walkthrough, the potentially visible objects can be retrieved very efficiently without
the need for further visibility tests. The evaluation shows that using SVS allows to preprocess
complex 3D scenes fast and to visualize them in real time (e.g., a Power Plant model and five
animated Boeing 777 models with billions of triangles). The comparison with two state-of-the-art
occlusion culling algorithms demonstrates the advantages and disadvantages of SVS. Because
SVS does not require hardware support for occlusion culling during rendering, it is even applicable
for rendering complex scenes on mobile devices.

Zusammenfassung
Viele 3-D-Szenen (z. B. aus CAD-Daten generierte) sind aus einer Vielzahl von ineinander ver-
schachtelten Objekten aufgebaut. Eine Fabrik kann beispielsweise einige Maschinen beinhalten,
wobei die Maschinen einen Elektromotor besitzen können, der wiederum kleinere Teile, wie
Rotor und Stator, einschließt. Da sich die Objekte gegenseitig verdecken, sind nur wenige von
außen sichtbar. Diese Arbeit präsentiert ein neues Verfahren, Spherical Visibility Sampling (SVS),
für die Echtzeitdarstellung von solchen, häufig hochkomplexen, 3-D-Szenen. SVS nutzt die Ver-
deckung aus und reichert in einem Vorverarbeitungsschritt die hierarchische Objektstruktur um
richtungsabhängige Sichtbarkeitsinformationen an. Diese Sichtbarkeitsinformationen beinhalten
für verschiedene Richtungen, welche Objekte eines Szenenteils von außerhalb der umschließenden
Kugel dieses Teils aus dieser Richtung sichtbar sind. Im Gegensatz zu den meisten auf vorausbe-
rechneter Sichtbarkeit basierenden Verfahren wird auf eine Unterteilung des Betrachterraums
verzichtet, wodurch ein geringer Speicherplatzbedarf erreicht wird. Zur 3-D-Darstellung können
die potenziell sichtbaren Objekte sehr effizient aus den richtungsabhängigen Sichtbarkeitsinfor-
mationen ohne zusätzliche Sichtbarkeitstests abgerufen werden. Die Evaluierung zeigt, dass SVS
die effiziente Vorverarbeitung und Echtzeitdarstellung von komplexen 3-D-Szenen erlaubt (z. B.
eines Kohlekraftwerks und fünf animierter Boeing 777-Modelle mit Milliarden von Dreiecken).
Der Vergleich mit zwei aktuellen Verfahren zur Verdeckungsberechnung demonstriert die Vor-
und Nachteile von SVS. Da SVS für die Verdeckungsberechnung zur Laufzeit keine Hardware-
unterstützung benötigt, kann es auch zur Darstellung von komplexen Szenen auf Mobilgeräten
benutzt werden.
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1 Introduction

Computer graphics are used in many areas of today’s life. For example, the entertainment
industry uses 3D rendering in video games and to produce computer-animated films. Commercial
advertising uses computer graphics in television spots and illustrations in magazines. In video
games, the 3D content is specifically designed to enable real-time rendering on different target
platforms that are known in advance. No real-time rendering is required to produce the images
for films or advertisements. Computer-aided design (CAD) software is used by the industry to
design new products. For instance, a car is virtually designed before it is constructed. Another
example is the architectural visualization that is used to present a virtual building before the real
building is built. To present those products to people that are not accustomed to interpret CAD
drawings, virtual design reviews are performed. In a virtual design review, an interactive 3D
visualization of the product is created by using the CAD data. Often, virtual reality techniques
like motion tracking and powerwalls are used to increase the immersion of the viewer. This is
useful, because the real-time visualization of a complex CAD model can help a user to better
understand the huge amount of information contained in that model [KBF05]. A walkthrough
allows a user to move freely in the scene in real time by interactively changing the position and
orientation of the camera that represents the view shown on the screen. This allows the user
to spontaneously decide which parts of the scene are most interesting and shall be shown. In
this setting, real-time 3D rendering is required to allow the interactive navigation. In contrast to
other fields of computer graphics, like the ones mentioned before, the 3D data is not specifically
created for the 3D visualization, which presents a challenge for the real-time rendering. Instead
of graphics artists designing 3D content merely for the rendering, engineers create the CAD data
to design a new product.

For real-time rendering, several frames per second have to be displayed [AHH08, Chapter 1].
The temporal sequence of images on the screen generates a fluent impression of the animations
and allows the user to react timely while navigating. When the frame rate is very low, e.g., below 5
frames per second, an interactive navigation is hardly possible, because the latency from an user’s
input to the visual feedback is too high. With a rate of 5–10 frames per second, the navigation is
possible, even though a stuttering in the animation can be noticed. The images are created by
the graphics hardware that renders the data of a scene. The capabilities of graphics hardware
have increased in the past years and new technical features like programmable shaders have
opened up new fields of application (refer to Blythe [Bly08] for an overview of the development
of graphics hardware over time). Still, the graphics hardware imposes an upper limit on the
amount of data that can be processed in a fixed period of time: There is a linear relation between
the scene size and the rendering time [HG94]. On the one hand, with the increasingly powerful
graphics hardware, the complexity of scenes that can be rendered in real time becomes higher
and higher. On the other hand, the data of complex scenes is larger than the amount that can
be processed by modern graphics hardware in real time. Scenes with such a high geometric
complexity often originate from CAD data or laser scans of real-world objects. The complexity
results in a large amount of data that requires billions of bytes of memory. Therefore, the data
handling and rendering of highly complex scenes in real time remains a fundamental problem in
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1 Introduction

computer graphics.
In order to render multiple frames per second, the data of a complex scene cannot be sent

completely to the graphics hardware. The visibility in a scene is exploited to reduce the amount
of data that will be sent to the graphics hardware at runtime. Culling algorithms detect scene
parts that are occluded and cull them from the data that will be rendered. Online occlusion culling
algorithms perform this procedure during the walkthrough. They are suited for densely occluded
scenes, but suffer from additional overhead entailed by the visibility tests at runtime when too
many objects are actually visible. Often, these algorithms rely on hardware-assisted occlusion
queries (see Section 2.1.1) that are not available on all devices (like mobile phones or tablet PCs).
Preprocessed visibility techniques analyze the scene data in a preprocessing step to determine and
store the visibility information. Common techniques based on cell-based preprocessed visibility
involve almost no runtime overhead leading to very efficient rendering. But, if the scene’s space
cannot be clearly split into a relatively low number of discrete view cells, those techniques suffer
from high memory consumption and long preprocessing times, which effectively restricts the
possible scene size.

The goal of this work is the development of a real-time rendering algorithm for complex 3D
scenes that performs occlusion culling. Spherical Visibility Sampling (SVS), a novel rendering
approach introduced in this work, is based on preprocessed visibility that overcomes several
of the aforementioned limitations. In contrast to cell-based approaches, it does not require an
explicit view space subdivision and allows the processing of large and spacious scenes. Contrary
to online occlusion culling algorithms, SVS does not require occlusion queries during runtime.
Nevertheless, it can be used to render highly complex 3D scenes.

The SVS algorithm achieves its acceleration mainly from the following observation. Objects
in CAD data scenes are often nested: highly complex objects contain groups of smaller nested
objects, which in turn contain even smaller nested objects. For example, the buildings of an
industrial plant model enclose many chambers, which in turn enclose objects like tubings. Another
example of a nested object is an aircraft model consisting of wings, turbines, and a passenger
cabin, which in turn contains smaller nested objects like seats. Furthermore, the set of visible
objects depends on the viewing direction (e.g., the left wing is not visible from most positions on
the right). Hence, for outside positions of these object groups, usually only a fraction of nested
objects is visible.

To take advantage of this observation, SVS identifies the nested objects that are visible from
outside a group of objects in a preprocessing step. For the walkthrough, only these objects have to
be displayed for outside positions. For each group of objects, a set of visible objects is computed
for multiple viewing directions by a sampling method, and is hierarchically stored.

1.1 Outline of the Work

In the following, an overview of the structure of this work is given. Following this chapter, some
fundamental definitions and an overview of related work is given (Chapter 2). Because SVS
consists of two parts, subsequent, these parts are described in their own chapters:

SVS’s preprocessing step (described in Chapter 3) requires a hierarchical data structure that
stores the scene’s objects. An inner node of the data structure is the root node of a subtree that
represents a part of the scene. An illustration of the preprocessing for a scene part with eight
objects belonging to the subtree of an inner node is shown in Figure 1.1. The direction-dependent
visibility is computed for each inner node of the data structure. This visibility information will be
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Figure 1.1: Illustration of visibility sampling for a single direction.

valid when the camera position is located outside of the node’s bounding sphere. Therefore, at
first, the node’s bounding sphere has to be computed by taking the objects in the node’s subtree
into account. Depending on the viewing direction onto a node, the set of visible objects might
change significantly. A viewing direction onto the objects corresponds to a point on the surface
of the bounding sphere around these objects. To approximate the complete visibility information,
SVS uses multiple sample points on the sphere surface for visibility testing. For each sample
point, the set of visible objects is computed. For this visibility testing, a camera is positioned
at the sample point on the bounding sphere’s surface looking towards the center of the sphere.
Then, the objects are rendered with an orthographic projection and the visibility is determined
based on the pixels in the resulting image. Using this result, a visibility vector containing the
information on how many pixels every object contributes to the image is created. The bounding
sphere and, for all viewing directions, the corresponding visibility vectors are stored at the node
in the hierarchical data structure. The preprocessing step finishes when all inner nodes have been
processed.

During runtime, the hierarchical data structure is traversed beginning at the root node with
SVS’s rendering algorithm (Chapter 4). When the traversal reaches a node whose bounding
sphere is currently seen from the outside, the node’s stored visibility information can be used.
The vector from the current camera position to the center of the bounding sphere defines the
current viewing direction. As the stored data contains only visibility information for a fixed set
of viewing directions, the neighboring directions of the current viewing direction are taken into
account to create a set of potentially visible objects. This set of objects is rendered to create an
image of the current subtree’s objects for the current viewing direction.

The algorithms presented in the aforementioned two chapters are experimentally evaluated
to analyze their function and performance (Chapter 5). As one result, a set of values for the
parameters of SVS are provided. With these values, SVS can be used in practice with very
little visibility errors and a high performance concerning running time and storage space. The
evaluation shows that SVS is able to preprocess and render complex scenes with billions of
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triangles. Another result is the analysis of areas in which SVS provides the best results. It gives
an idea on where SVS is superior to other rendering algorithms and where it should thereby be
applied for practical scenarios.

Finally, the work is concluded and an outlook on future work is given (Chapter 6).

1.2 Main Contribution
The main advantages of this work are summarized in the following:

Fast and memory-efficient preprocessing. Despite the fact that SVS is a preprocessed
visibility algorithm, no subdivision of the view space is performed. Instead, the scene’s
objects are annotated with direction-dependent visibility information (further details in
Chapter 3). Therefore, no view cells have to be constructed and stored. Even highly
complex scenes can be processed in a short time and stored with a small memory overhead.

Real-time rendering on a variety of devices. During runtime, SVS does not need hard-
ware support for occlusion culling and has hardly any overhead (Chapter 4). In addition,
rendering fulfilling a budget constraint (see Section 4.3) is possible. Thereby, besides the
rendering on powerful workstation PCs, SVS supports rendering with occlusion culling on
mobile devices.

Rendering of complex moving objects. Another challenge for region-based methods are
dynamic scenes with moving parts (if those are not treated separately). Every change
requires rebuilding the data structure or at least a special updating process (e.g., [Bit+09]).
SVS also does not allow fully dynamic scenes, but the movement of independent subtrees
of arbitrary complexity is easily possible at runtime (see Section 4.4). The evaluation
demonstrates that SVS is able to render highly complex plane models while they are flying
through a scene.

Usability in practice. The algorithms that constitute SVS were implemented in PADrend1

and are ready to use (see Section 5.1). A user can load and preprocess a scene with only
little effort. After the preprocessing, SVS’s renderer can easily be added to the rendering
pipeline to enable an interactive walkthrough.

Spherical Visibility Sampling has been published in Computer Graphics Forum [Eik+13] and
presented at the 24th Eurographics Symposium on Rendering. The published article contains the
description of SVS together with an evaluation. Compared to the article, the description in this
work is much more detailed. The evaluation was greatly enlarged and much more aspects are
covered by the evaluation in this work. Additionally, SVS’s budget rendering feature has been
improved since the publication of the article. The version contained in this work is superior to
the one used for the article.

1http://www.padrend.de/
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This chapter gives an overview of other works that are similar to this work and describe the state
of the art. An introduction into rendering, as used in this work, and visibility culling is given in
Section 2.1. Online occlusion culling algorithms, which perform the visibility tests at runtime, are
discussed in Section 2.1.1. Techniques that use preprocessed visibility, sometimes called offline
occlusion culling algorithms, are covered in Section 2.1.2. Rendering techniques that make use
of samples on a sphere surface are mentioned in Section 2.2. Section 2.3 covers different ways of
allowing a user to control the image quality by limiting the rendering time. Different rendering
systems for mobile devices are shortly described in Section 2.4. At last, in Section 2.5, some
characteristics of SVS are listed and SVS is classified based on the taxonomy of two surveys.

2.1 Visibility Culling
In this work, the term primitive denotes geometric primitives like points, lines, and polygons.
The most important primitive for this work is the polygon with three corners: the triangle. The
primitives are defined by vertices that are element of the three-dimensional Euclidean space ℝ3.
Rendering is performed by rasterization [Wat00, Chapter 6] using today’s graphics hardware.
Visibility is finally determined by the graphics hardware using the z-buffer algorithm. The z-buffer
algorithm [Str74; Cat74; Mac01] decides by depth comparison which primitive will be used to
fill a pixel on the screen. There is an upper bound for the number of primitives that the graphics
hardware is capable of rendering in real time. If the number of primitives defined by a complex
scene exceeds this bound, and all primitives are sent to the graphics hardware in a brute-force
manner, the frame rate will be too low for an interactive walkthrough. Therefore, different kinds
of visibility culling algorithms have been developed to reduce the amount of primitives that is sent
to the graphics pipeline. The illustration in Figure 2.1 shows an example of these visibility culling
algorithms that are described in the following. The survey of Cohen-Or et al. [Coh+03] gives an
overview over visibility culling algorithms, and especially over occlusion culling algorithms.

Back-face culling Back-face culling detects the primitives that face away from the camera and
are seen from behind (see the survey by Sutherland et al. [SSS74]). This is reasonable only
for scenes with single-sided primitives. Back-face culling can be executed efficiently by
examining the angle between the primitive’s normal and the viewing direction. Therefore,
it is a standard operation in the graphics pipeline and can be executed by the graphics
hardware. The scenes used in this work use triangles to model single-sided surfaces. Hence,
back-face culling is always applied in the scope of this work.

View-frustum culling View-frustum culling [Cla76] is executed to skip the primitives that are
outside of the view frustum for rendering. When using a camera with perspective projection,
the view frustum is a frustum of a rectangular pyramid. For an orthographic projection,
the view frustum is a box. View-frustum culling can be performed by intersection tests
between the primitives and the six planes of the view frustum. If a primitive is not fully
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View
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Back-Face
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Figure 2.1: Different kinds of culling algorithms shown in a cut through an example scene: view
frustum (thick black line), primitives that are visible (solid green lines), primitives
that are removed by back-face culling (dashed-dotted red lines), by view-frustum
culling (dashed gray lines), and by occlusion culling (dotted blue lines) [inspired by
Coh+03].

contained in the frustum and does not intersect any plane, it can be skipped. Nowadays,
view-frustum culling is usually not executed for single primitives, but for bounding volumes.
The bounding volumes are stored for the scene’s objects in the nodes of a scene graph to
avoid costly computations over and over again. Furthermore, there are more efficient ways
to execute the frustum test than the one that was just described. For this work, the basic
intersection test by Assarsson and Möller [AM00] is used that tests only two corners of an
axis-aligned bounding box against the frustum.

Occlusion culling Primitives that are inside the view frustum, but are occluded by other
primitives, do not need to be sent to the graphics pipeline. The task of occlusion culling
algorithms is to detect those primitives. As for the view-frustum culling, nowadays, the
occlusion is not determined for single primitives, but for objects that consist of multiple
primitives. This is done for efficiency reasons, because testing billions of primitives for
occlusion or storing preprocessed visibility information for them is too costly. On the
one hand, occlusion queries can be executed at runtime (see Section 2.1.1). On the other
hand, occlusion culling can be performed by analyzing the scene in a preprocessing step to
produce preprocessed visibility information (see Section 2.1.2).

The usage of occlusion culling is worthwhile only for scenes with high depth complexity. The
term depth complexity is used in this work as defined by Sutherland et al. [SSS74]:

“The depth complexity is a measure of how many front faces are pierced, on the
average, by an arbitrary ray from the viewpoint. If the environment is composed
of a large cube standing in front of a back-drop face, the depth complexity would
be nearly 2. If the depth complexity of a scene is 1 throughout, the hidden-line or
hidden-surface problem is trivial; all relevant faces and edges are visible. As the
depth complexity increases, so does the difficulty of rendering the environment.”
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If occlusion culling is applied to render a 3D scan of a statue, the rendering performance will
likely be decreased, because the depth complexity is very low and there are very few occluded
parts. For rendering architectural models with high depth complexity, like a house or a production
plant, occlusion culling will lead to a performance gain. Almost always, the decision about the
depth complexity of a scene – and as a consequence about the usage of occlusion culling – is
taken by an expert that manually analyzes the scene. However, there are methods [Jäh+13] to
automatize this process, or at least give guidance to shorten the manual process.

Each of the following two sections characterizes a large class of culling algorithms, respectively:
Online (Section 2.1.1) and offline (Section 2.1.2) occlusion culling algorithms.

2.1.1 Online Occlusion Culling

Online occlusion culling algorithms perform visibility tests during the walkthrough of the scene.
Because they do not require the analysis of the visibility of the scene beforehand and do not have to
store this data, they overcome the restrictions of limited dynamics, preprocessing time and memory
overhead that are shared by many preprocessed visibility techniques. Many current techniques
(e.g., CHC [Bit+04], NOHC [GBK06], CHC++ [MBW08]) mostly rely on hardware-assisted
occlusion queries, and may thereby entail an additional runtime overhead for performing the
queries. The overhead is negligible and high performance can be achieved when only few queries
have to be performed and much geometry can be culled. But, the additional overhead will
decrease the performance, if many objects are actually visible and still many queries have to
be performed. Another problem is that currently, hardware-assisted occlusion queries are not
available on mobile devices; making the corresponding techniques not applicable there (see
Section 5.16 for further information). In contrast to this, older techniques create a hierarchy of
images, for example the hierarchical z-buffer [GKM93] or hierarchical occlusion maps [Zha+97],
that allow to perform occlusion queries on the CPU. Because these are occlusion queries like
in the hardware-accelerated techniques, there is also an runtime overhead. Furthermore, an
image hierarchy has to be built as a helper structure to allow the execution of occlusion queries.
Therefore, the techniques using hardware-assisted occlusion queries are usually faster than the
older techniques. Additionally, the implementation of the new techniques is often simpler, because
the implementation of the occlusion queries is hidden in the graphics library. Since there are
situations in which online occlusion culling algorithms suffer from a high runtime overhead, they
cannot always be applied. Visibility techniques that have access to preprocessed visibility data
can deliver superior performance in these cases.

2.1.2 Preprocessed Visibility

Using precomputed visibility information for rendering scenes with high depth complexity is a
well known practice. The theoretical bounds for the size needed to store the complete visibility
information have been given by the aspect graph [PD90]: the maximum size of the aspect graph
for a nonconvex polyhedral scene with 𝑛 faces under perspective projection is 𝒪(𝑛9) and its
construction time is 𝒪(𝑛9 ⋅ log 𝑛). Clearly, this complexity is much too high for real-world scenes.
Nevertheless, there are many techniques that make use of preprocessed visibility to accelerate
the rendering process at runtime. The visibility information acquired by the techniques is an
approximation of the exact visibility information. Most techniques use a subdivision of the view
space into discrete regions. Such a region is often called view cell. Each view cell is associated
with the parts of the scene which are potentially visible from within its region. This information
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Figure 2.2: Arrangement of ten line segments (yellow) with 618 faces induced by visibility
events (indicated by the black lines). The faces are colored depending on the number
of visible segments: red means few visible segments, green means many visible
segments. For the selected face (yellow), the blue lines point to the seven visible line
segments for this face. The image has been created with a tool by Matthias Hilbig.

is stored as a potentially visible set (PVS). A 2D example with a scene consisting of line segments
is shown in Figure 2.2.

The visibility calculation can be performed analytically and the visibility information can be
stored in a special data structure (e.g., viewpoint space partition (VSP) [PD90], view cells and
their cell-to-cell visibility [TS91], visibility skeleton [DDP97]). Other techniques acquire their
visibility information by sampling [Hua+02; SHT03; LSC03; NB04; Lai05; MBW06; Won+06;
Mat+07; Bit+09]. Usually, the sampling-based techniques are faster and can be used for larger
scenes than the analytical ones.

Most of the visibility techniques differ in the way the view space is subdivided into view
cells. The sampling techniques use different methods for testing the visibility of the scene parts
(geometric visibility using ray casting, or image-based visibility using the z-buffer algorithm of the
graphics hardware). One important aspect, especially for the running time of the preprocessing, is
the distribution and number of samples. Again, refer to the aforementioned survey [Coh+03] for
an overview of different preprocessed visibility techniques (also see Section 2.5 for a classification
of SVS).

Using preprocessed visibility in practice tries to approximate the visibility information that
is stored by the aspect graph. As most preprocessed visibility techniques use view cells, the
subdivision of the view cells inherently depends on the visibility that is dictated by the scene’s
geometry. This can be problematic, especially for spacious outdoor scenes. Imagine, for instance,
a scene that consists of two houses that stand far away from each other. For this example, the
view cells for the inside of the houses are ignored. Between the two houses, there is a large empty
space. When a viewer moves through this space in between, the visibility of the scene parts
might change significantly. For example, when the viewer’s height above ground is increased,
she can look through the windows of the top floor instead of the windows of the first floor. Now,
there are two possibilities: Either, the space is subdivided into few large cells that store rather
inaccurate visibility information. This would need only little memory, but would not accelerate
the rendering much. Or, the space could be subdivided into many small cells, as dictated by the
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visibility changes. The small cells would contain exact visibility information, but also need a lot
of memory. This illustrates that there is always a trade-off between storage space and accuracy
of the visibility information. As a preprocessed visibility technique, SVS is also subject to this
trade-off. But, it has advantages for spacious scenes. When looking again at the example with the
two houses, one would store each house in a separate subtree of the scene graph. By using each
house’s bounding sphere, SVS would compute and store the visibility information. With the help
of the information stored in the two spheres, the rendering can access the visibility information
for all positions outside of the houses. The two houses could even be moved away from each
other, without the need to perform any updates to the stored visibility information.

Common to all region-based techniques is that the complexity of the calculated data structure
as well as the needed preprocessing time does not only depend on the complexity of the scene’s
geometry, but also on the chosen or resulting number of regions. The need for regions thereby
limits the complexity of scenes that can be practically preprocessed, and hinders the usage for
spacious scenes. In contrast, SVS exploits the hierarchy of an existing spatial data structure that
stores the scene (e.g., an octree [Hun78], a 𝑘d-tree [Ben75], or an R-tree [Gut84]). It does not
calculate from-region visibility [Coh+03] for a cell, but direction-dependent visibility for the
outside of a bounding sphere that encloses a node of the existing scene data structure. Therefore,
it does not have to create view cells for empty regions of space and works well for spacious
scenes.

An option to overcome the large storage space required by preprocessed visibility techniques
are compression algorithms for visibility data. Lossy and lossless compression techniques for
visibility data are presented by van de Panne and Stewart [vS99]. Applying them to a set of view
cells results in much smaller storage space at the cost of additional operations needed to access
the data. SVS does not use view cells, but also stores visibility information. Because the memory
needed by SVS’s visibility data is not that large (see Section 5.9), a compression of the data
is not essential. If SVS’s memory consumption should be reduced, an adjusted version of the
compression technique could be applied to the visibility data as well.

2.2 Spherical Sampling in Computer Graphics

In the field of computer graphics, the distribution of random or structured samples on a sphere
surface is used in different areas. Among other things, spherical sampling is applied for texture
mapping and remeshing [PH03], shadowing for ray tracing [BRA06] and rasterization [LYX08],
and for lighting calculations for ray tracing [Gai+10].

The idea of using sphere surfaces for visibility sampling has been used to determine the visibility
of a single mesh’s geometric patches [MS01; Mer02]. This technique groups the mesh’s polygons
into patches to increase the reliability of the image-based sampling and to decrease the required
running time and storage space compared to direct usage of the polygons. The visibility of these
patches is determined for different positions on a sphere around the object. The camera positions
are vertices of an edge-subdivided sphere beginning with an octahedron. The camera looks in
the direction of the object’s center and is placed such that all parts of the object are visible. A
unique identifier is assigned to each patch and a color value is used to encode this identifier. The
colors are used for rendering the patches, and the resulting image is scanned for the colors to
determine the identifiers of the patches that are visible. The visible patches are associated with
the direction from which the object is seen. By using this directional visibility information at
runtime, back-face culling and self-occlusion of a single object can be determined efficiently. The
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visibility information relevant for the current camera position is found by traversing a hierarchy
that is built over the faces of the sphere subdivision. The corners of the face that intersects the
viewing ray are determined and their visibility information is fused.

SVS is based on the same general idea of exploiting the visibility of parts of a scene as seen
from the outside. In contrast, it is not focused on the visualization of a single complex object, but
on the visualization of complex scenes composed of many objects. It does not build new patches
or objects from the polygons of the scene, but makes use of the objects that are usually already
defined by the scene description. The approach to search for the neighboring viewing directions
at runtime and unite their visibility data, is also applied by SVS.

2.3 Budget Rendering

In the following, several works are presented that allow the user to constrain the rendering
algorithm by setting a time or resource budget. This feature is used to allow the user to trade
running time off image quality. Sometimes, this adjustment is done automatically: While the
user moves through the scene, the image quality is decreased to allow an interactive navigation
with fast reaction to the user input. When the user stops, no fast reaction to the user input is
required anymore, and the image quality is increased at the cost of a longer rendering time. Using
a time budget to limit the time that a rendering algorithm is allowed to use is sometimes called
time-critical computation [BJ96].

In the work of Funkhouser and Séquin [FS93], a target frame time can be specified by the
user. The target frame time is used to bound the overall time that is available for rendering. They
propose a cost heuristic to estimate the time needed to display level-of-detail representations of
an object using different rendering algorithms. Together with a benefits heuristic, an optimization
problem is formulated that is to be solved to select the representations and algorithms.

For a parallel rendering system that uses ray tracing, Reisman et al. [RGS97] use a user-defined
frame rate together with a variable image quality. A load balancing algorithm is presented that
manages the work of the parallel processors and computes the times that they are allowed to use.
To be able to stop the rendering at a time computed by the load balancing, they use a progressive
ray tracing scheme.

Klosowski and Silva [KS99] present a rendering system that allows the user to define a polygon
budget to indirectly constrain the frame rate. The rendering system estimates if polygons are
visible and tries to render the visible ones before rendering the occluded ones. It stops when the
polygon budget is reached.

To render a scene using the HDoV tree [SHT03], a polygon budget is distributed inside the tree.
Beginning with the full budget at the root node, the budget is distributed to the child nodes based
on the estimated degree of visibility (DoV) computed beforehand and the number of polygons
in the child’s subtree. The budget is used to select a fitting level-of-detail representation for the
objects during the tree traversal for rendering.

Refinement techniques (e.g., [Ber+86; LH91]) are also some kind of budget rendering tech-
niques, because they trade running time for image quality. At first, a very coarse image is created
and shown to the user as fast as possible. Then, while the user does not change the view, the image
quality is progressively improved. The refinement can be achieved by using a cheaper algorithm
first, e.g., flat shading, and using higher quality algorithms step by step, e.g., a complex material
shader for the final image. Another way is to vary the sampling density, e.g., for progressive ray
tracing: For the coarse image, a single sample per pixel is used, and the number of samples is
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successively increased.

2.4 Rendering on Mobile Devices
In literature, several rendering systems for mobile devices have been presented. Some mobile
rendering systems, especially those that want to display complex scenes or highly detailed 3D
games on mobile devices, render remotely on a server and stream the images to the mobile device.
Some of them use image-based rendering on the mobile device to display the remotely rendered
images [YN00; CG02; BG04; BG06; BFA06; Jia+06]. Others create a video on the server from
the rendered images, stream it to the client over the network, and use a simple video player to
display it [NC03].

In contrast to the requirement of a server for rendering, there are mobile rendering systems that
render the geometry directly on the mobile device, whereas the scenes are specifically designed
and prepared for mobile rendering (e.g., preprocessing takes place on a workstation and rendering
on the mobile device [SR09]). Tack et al. [Tac+04] use MPEG-4 compression to encode geometry
information into a stream that can be decoded and displayed on a mobile device. Nurminen
[Nur06] precomputes PVS-based visibility to allow interactive 3D rendering on a mobile device.
Additionally to the limited hardware resources of the mobile device itself, the small bandwidth of
mobile networks can be a problem. Special systems that improve the data transmission over the
network have been developed (e.g., [Nur07]).

SVS provides rendering of complex scenes (compared to the capabilities of the mobile graphics
hardware) with the support for occlusion culling on mobile devices. The preprocessing is
performed on a workstation beforehand. The resulting data structure containing the visibility
information can either be obtained via network, or it can be copied to a mobile device’s internal
storage together with the scene. In the second case, network transmissions become no longer
necessary.

2.5 Classification of SVS
In the following, SVS is classified on the basis of the taxonomy created by two surveys. This is
done by looking at different characteristics of SVS. The classification makes it possible to show
similarities of SVS with other algorithms of the same class and to highlight differences.

A good summary of different visibility algorithms together with a classification into different
categories and a brief description of the historical development is given by Cohen-Or et al.
[Coh+03]. According to their taxonomy, SVS can be classified as an occlusion culling algo-
rithm that is from-region, uses image precision, supports generic scenes, computes approximate
visibility, uses structured sampling, uses all occluders, supports generic occluders, supports
occluder-fusion, works in 3D, and requires preprocessing. The term “from-region” does not de-
scribe SVS precisely, because SVS does not compute visibility for regions the camera is currently
contained in, but it computes direction-dependent visibility for regions that do not contain the
camera position. SVS’s visibility information computed for the geometry inside a sphere is valid
for all viewpoints outside of the sphere. Therefore, according to the survey, it performs bulk
computations that are valid anywhere outside the sphere volume, which makes it a from-region
technique, but the term “to-region“ is more suitable. In the current implementation, occlusion
queries are required for the visibility tests during the preprocessing, but there are no special
requirements at runtime. Occlusion queries do not require special hardware and are supported on
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nearly all workstations with standard graphics hardware, but they are not supported on common
mobile devices. Dynamic scenes are partly supported by SVS (see Section 4.4 for a description
how animated objects are handled).

When looking at the different visualization techniques for massive models [GKY08], SVS can
be classified as a data reduction technique that applies visibility culling. SVS uses rasterization
with z-buffering and is a from-region algorithm that precomputes potentially visible sets. Gobbetti
et al. [GKY08] state that preprocessing and rendering of scenes consisting of massive models is
hard for preprocessed visibility techniques. They also mention the problem of deciding about the
granularity of the view cell subdivision to trade the running time and storage space off the quality
of the visibility information. Unlike other precomputed visibility algorithms, SVS does not use
view cells and is able to process and render massive scenes consisting of billions of triangles and
millions of objects.
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SVS performs a preprocessing step to determine and store the visibility inside a scene. For
this purpose, a scene graph that describes the scene is required. If the input scene does not
define such a scene graph, it is created from the input data (Section 3.1). Then, for each inner
node, a tight bounding sphere is computed (Section 3.3). On the surface of the bounding sphere,
multiple sample points are distributed (Section 3.4). A sample point corresponds to a viewing
direction onto all the objects in the node’s subtree, for which the visibility is determined. The
direction-dependent visibility information for that node’s subtree is stored in the scene graph as
annotation of the node (Section 3.5).

3.1 Preparation of the Hierarchical Data Structure
The smallest entity that is considered by SVS is an object. An object consists of a triangle mesh
and optional additional properties like textures, material definitions, shader programs, etc. SVS
does not make further demands on the properties of a mesh. Even the restriction on triangle
meshes is not directly demanded by SVS, but due to the requirements by the rendering pipeline
(see Section 3.2).

SVS takes a 3D scene consisting of multiple objects arranged in a spatial hierarchical data
structure as input. For SVS, this data structure is always a tree. The spatial hierarchical data
structure will be called scene graph in the following.

If the input scene does not already consist of objects, but contains only a triangle soup, a spatial
data structure is used to partition the scene’s triangles. For this, the triangles are inserted into this
spatial data structure. Depending on the input data, an expert has to decide which data structure
should be used in particular (octree, 𝑘d-tree, R-tree, etc.) to create spatially compact objects with
little overlap. When such a tree structure has been built and holds all triangles, a mesh can be
built for each tree node by collecting the triangles stored in the node. For each mesh, an object
will be created.

If the scene defines objects, but does not provide a spatial hierarchical tree structure, all objects
are inserted into a loose octree [Ulr00]. In the resulting tree, the objects are contained in the leaf
nodes. The inner nodes of the tree group multiple nodes together. The objects as well as the inner
nodes store an axis-aligned bounding box. For an object, the bounding box is computed from
the object’s vertices. For an inner node, the bounding box is the union of the bounding boxes of
the child nodes. These bounding boxes are used for frustum culling at runtime (see Section 4.1).
The scene graph forms a bounding volume hierarchy (BVH), where a node’s bounding volume
contains all bounding volumes of the node’s children.

3.2 Efficiency Considerations for Rendering
Owing to the peculiarities of modern graphics libraries, a mesh should have a reasonable size
to be appropriate for a rendering system. In former times, it was a frequent practice to send
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Figure 3.1: Resulting sphere with center 𝑐𝑟 (shown in green) containing the spheres with centers
𝑐1 and 𝑐2 (shown in blue).

single vertices of a mesh to the graphics pipeline. The immediate mode, which allowed the
direct processing of single vertices by multiple function calls per vertex, has been deprecated
with OpenGL 3.0 [SA08] and removed from the OpenGL 3.2 core profile [SA09]. Since then,
arrays containing multiple vertices have to be used to send geometry data to the graphics pipeline.
Because there is an overhead in creating and switching these arrays, they should not be too
small in order to saturate the graphics hardware while rendering. Concerning the efficiency, a
reasonable size of a mesh depends on the graphics hardware. For modern workstation graphics
cards, experience shows that the meshes should consist of a few thousand triangles.

The possibility to use quadrilateral and polygon primitives was also dropped in the course of
renewing OpenGL with version 3. Therefore, when sending a mesh describing a surface to the
graphics pipeline, it has to be composed of triangles. Meshes with polygons with more than three
vertices have to be triangulated in advance. For that reason, SVS requires triangles meshes as
input.

As for other culling techniques, a mesh should preferably be spatially compact. If a mesh
contains triangles that spread over the whole scene, it will be visible from many locations and the
probability that it can be culled is low.

3.3 Bounding Sphere Computation
The following computations require a scene graph that has been built before and that hierarchically
organizes the scene’s objects. For the inner nodes of the scene graph, a bounding sphere has
to be computed. The tree traversal for this computation is performed bottom-up. A node’s
direction-dependent visibility basically corresponds to a mapping from the points of that sphere’s
surface to the set of objects visible from these points in orthographic projection. The visibility
information is only valid for positions outside the sphere, so that a tighter bounding sphere results
in more situations where the sphere can be used for rendering (compare Section 4.1), and thereby
leads to a higher rendering performance. For the inner nodes, the bounding sphere encloses all
the objects in the node’s subtree. Two variants to compute the bounding sphere are implemented.

The first variant computes an inner node’s sphere from the combination of the bounding spheres
of its child nodes. This is done by iterating over the child nodes and successively combining two
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spheres. The spheres that are involved in the calculation are shown in Figure 3.1. To combine two
spheres with centers 𝑐1 and 𝑐2, a straight line through those centers is created. The intersection of
the straight line with the two spheres is calculated. Only the two intersection points 𝑖1 and 𝑖2 that
do not lie on the line segment from 𝑐1 to 𝑐2 are of interest. The center 𝑐𝑟 of the resulting sphere
lies on the midpoint of 𝑖1 and 𝑖2. The new radius is chosen to include both input spheres and is
equal the distance from 𝑐𝑟 to 𝑖1. The children of the current node that are inner nodes already
have a bounding sphere, because the tree traversal is performed bottom-up. For the leaf nodes, to
compute the bounding sphere that encloses the node’s object, the vertex positions of the object’s
mesh are used. These vertex positions are given to the Extremal Points Optimal Sphere (EPOS)
algorithm [Lar08] to efficiently compute the sphere that tightly encloses the objects’ geometry.
The EPOS algorithm identifies a set containing 98 extremal points, which is a subset of the input
points, along 49 predefined directions. Then, it uses an exact solver, Miniball [Gär99], to compute
the bounding sphere for the extremal points. At last, it iterates over the input points and enlarges
the computed sphere to contain all points. If the supporting points of the optimal bounding sphere
are elements of the set of extremal points, the EPOS algorithm has computed the minimum
sphere. The authors report that EPOS-98 – the version that is used here – had a worst case radius
increase of 0.05 % compared to the exact solver in their experimental evaluation. Additionally
to the sphere that has been created by the by the repeated combination, SVS considers a second
sphere: It creates a sphere with the corners of the inner node’s bounding box as supporting points.
If objects are tightly enclosed by their bounding box, e.g., a cube-shaped building, the bounding
sphere created from the bounding box can be very small and sometimes even optimal. In such
cases, this bounding sphere can be smaller than the non-optimal bounding sphere created by
the repeated combination of spheres. SVS takes the smaller of the two spheres and stores it as
bounding sphere for the inner node.

The second variant collects all objects from the subtree below the inner node. Then, it takes
the union of the objects’ vertex positions as input for the EPOS algorithm. The computed sphere
is used as bounding sphere for the node in the end.

The first variant results in slightly oversized sphere volumes for inner nodes, but it greatly
speeds up the overall bounding sphere computation step compared to computing the nearly exact
bounding spheres, as in the second variant. The evaluation in Section 5.5 shows that the quality
of the simple algorithm is not too bad, while requiring less time and memory. But, if enough
preprocessing resources are available, the EPOS algorithm should be applied to deliver close to
optimal bounding spheres.

3.4 Sample Point Distribution on the Sphere

The arrangement of the triangles stored in a node’s subtree defines which of these triangles can be
seen from outside of the node’s bounding sphere. The sphere surface can be divided into areas, in
which the set of visible triangles stays the same. For a sphere with 𝑛 triangles inside, there can be
𝒪(𝑛6) many areas on the sphere surface [PD90, nonconvex case under orthographic projection].
Even if the visibility is determined for objects instead of triangles, the complexity is too high for
large scenes. In order to approximate the exact visibility, SVS distributes sample points on the
sphere surface that correspond to viewing directions. The goal of the distribution is to minimize
the maximum distance of any point on the sphere surface to its closest sample point. Thereby,
the sphere surface is covered uniformly with sample points, and an arbitrary point is as close as
possible to a sample point. This heuristic tries to keep the average sampling error resulting in
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(a) 4 points (tetrahedron) (b) 6 points (octahedron) (c) 12 points (icosahedron)

(d) 10 points (tetrahedron
sphere, 1 subdivision)

(e) 18 points (octahedron
sphere, 1 subdivision)

(f) 42 points (icosahedron
sphere, 1 subdivision)

(g) 34 points (tetrahedron
sphere, 2 subdivisions)

(h) 66 points (octahedron
sphere, 2 subdivisions)

(i) 162 points (icosahedron
sphere, 2 subdivisions)

(j) 130 points (tetrahedron
sphere, 3 subdivisions)

(k) 8 points (cube) (l) 20 points (dodecahedron)

Figure 3.2: Spheres (green) with different distributions of sample points (red) and their triangula-
tions (blue).
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subdivide project

Figure 3.3: Edge-subdivision of a tetrahedron: First, a new vertex is created at the midpoint
of each edge. The new vertices are connected to faces. Each face of the original
polyhedron is replaced by four smaller faces. The new vertices are then projected and
moved to the sphere surface.

inaccurate visible sets small. By using the vertices of a platonic solid as sample points, such a
uniform distribution can be created. Unfortunately, the platonic solid with the maximum number
of vertices is the dodecahedron with 20 vertices.

In general, there are many different possibilities to distribute many points on a sphere sur-
face [SK97]. In this work, distributions that correspond to platonic solids and that are created
by edge-subdivision of platonic solids are used. A subset of these sample point distributions
can be seen in Figure 3.2. An illustration of the edge-subdivision of a tetrahedron is depicted
in Figure 3.3. To subdivide the edges, new vertices are created on their midpoints. By this
step, each original face is divided into four smaller faces. Then, the new vertices are projected
from the center of the sphere to the considered sphere surface, and moved to this location on
the surface. The subdivision scheme works evenly only for platonic solids with triangular faces,
namely tetrahedron, octahedron, and icosahedron, because the resulting faces are triangles again.
Instead of subdividing the edges, the faces could be subdivided by placing a new vertex at a face’s
center. For example, such constructions are used by Dutton [Dut84] for a data structure for global
terrain data.

These subdivision schemes go back to the design of geodesic domes. According to Rothman
[Rot89] and Hildebrandt and Richert [HR12], the first geodesic dome of this kind was designed
by Bauersfeld [Bau25] for a planetarium1 and patented in 1925. Fuller [Ful54] made the name
geodesic dome popular and patented the design in 1954. Their construction also starts by
subdividing a platonic solid: an icosahedron.

Although SVS works with arbitrary distributions, experimental evaluations (see Section 5.3)
show that the vertices of a regular dodecahedron (corresponding to 20 viewing directions) provide
a good balance between memory consumption and preprocessing time, on the one hand, and
sampling accuracy, on the other hand. This sample point distribution (see Figure 3.2(l)) is used
in the following.

An alternative to the static distribution of sample points on the sphere surface could be an
adaptive scheme. An adaptive scheme can start with a fixed set of sample points in the beginning.
To adapt to the visibility, it has to decide based on existing sample points, if a new sample point
should be added. For this decision, it can check if visibility results in two sample points differ by
a certain amount. If the difference is large enough, it can create a new sample point between the
existing points. A subdivision scheme, similar to the edge-subdivision of a platonic solid, can be
used for this. But, an adaptive scheme does not necessarily improve the distribution’s quality.
For instance, when the visibility results for two sample points are similar, an adaptive scheme

1http://www.planetarium-jena.de/Geschichte.43.0.html
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would decide to stop the subdivision. But, there could be a discontinuity in between that has not
been detected. Therefore, a fixed distribution as well as an adaptive distribution would not detect
the visibility change when the sampling density is too low.

Another adaptive approach could start with a high density sampling. After the visibility has
been determined for a large number of sample points, neighboring sample points could be merged,
if their visibility was similar. Unfortunately, this would lead to long preprocessing times, which
makes such an approach impractical.

Using randomized sampling does not yield an improvement as well. The random distribution
has to be chosen very carefully to reach the aforementioned goals. By choosing such a random
distribution, one has to make sure that the sphere surface is covered uniformly. Of course, such
a random distribution can be found (e.g., [SB96]). A worst case scenario can be created more
easily for a fixed distribution than for a random distribution of sample points. But, with the same
number of samples, the randomized distribution is not guaranteed to deliver better results than
the fixed one. Furthermore, if a random experiment would create a new distribution for each
sphere, intermediate results from child nodes could not be reused in a parent node, because the
positions would differ (see Section 3.5 for a utilization of existing results).

To conclude this step, a 3D Delaunay triangulation [Del34] of the sample points is computed
and stored. Figure 3.2 shows the triangulations for the sample point distributions depicted there.
The triangulation is used later on to determine the three next sample points of the viewing direction.
To compute the Delaunay triangulation, the Detri library [Müc98] is used. The sample points
together with the center of the bounding sphere are given as input to the Delaunay triangulation
algorithm implemented there. The resulting triangulation contains a set of tetrahedrons, where
every tetrahedron has the center of the sphere as one corner and one face of the tetrahedron
recreates a part of the flattened sphere surface formed by three sample points.

3.5 Computation of the Visibility Spheres

For each inner node, a set of visible objects is determined for every sample point on the bounding
sphere of the node. At first, all objects in the node’s subtree are projected onto the sample
point’s tangential plane using orthographic projection (compare Figure 1.1). This is performed
by using the standard z-buffer algorithm to fill the depth buffer. In a second step, a separate test
for each object counts how many pixels contribute to the depth buffer and are thereby visible
(using a hardware-accelerated occlusion query [CG07]). An object is visible, if at least one
pixel has been visible during the test for that object. The number of pixels that have been visible
for an object are the size of the visible area covered by the object. The set of visible objects,
including those values for the visible area, is stored for that sample point as a visibility vector
𝑉𝑉 = {(𝑜, 𝑣) | object 𝑜 is visible and has 𝑣 visible pixels}. The size of the covered visible area
represents an object’s importance value that is used to sort objects during rendering (for the
optional budget rendering feature described in Section 4.3). The data of all sample points of one
node’s sphere is called the visibility sphere of that node.

For the construction of the visibility spheres as just described, the nodes of the tree are traversed
bottom-up. When rendering a node’s subtree to determine the visible objects, there are two
approaches. The first approach collects all objects in the subtree and performs a visibility test
for each object. Because the preprocessing for the child nodes has already been completed,
the second approach can render only the potentially visible objects by using the information
stored in the child nodes’ visibility spheres. This is in most cases much faster than rendering all

18



3.6 Types of Sampling Errors

EVS
PVS

Underestimation

Overestimation

Figure 3.4: Set diagram of the exact visible set (EVS) and the potentially visible set (PVS).

objects in the subtree. For example, evaluating one sample for the Boeing 777 model by testing
all objects can be much slower than by re-using the inner visibility spheres (see measurement
results in Section 5.6). Re-using the already determined data is possible, because only samples
taken from the exact same direction (under orthographic projection) are considered for the new
sample. Therefore, no perspective error is introduced in this step. As a possible error, objects that
were missing due to undersampling in the child nodes are now surely left out when re-using the
previous results, although they might otherwise be included. This access pattern also supports
data management routines, like out-of-core algorithms, which can swap out the data that is not
needed anymore during the preprocessing.

3.6 Types of Sampling Errors
Due to the usage of a fixed set of viewing directions with orthographic projection in the prepro-
cessing, for a viewing direction under perspective projection the visibility information contained
in a visibility sphere might not be exact. The potentially visible set (PVS) that can be generated
from the data in the visibility sphere may differ from the exact visible set (EVS) for the new
viewing direction. The relationship between the two sets is shown exemplary in Figure 3.4.

The set of objects that are elements of the exact visible set, but are missing in the potentially
visible set, is called underestimation 𝑈 = 𝐸𝑉𝑆 ∖ 𝑃𝑉𝑆. Sometimes, the term “false negatives”
is used, because the objects are mistakenly classified as invisible. The missing objects will not
be known to the rendering algorithm, therefore will not be rendered, as a consequence will be
missing in the final image and lead to display errors.

The set of objects that are contained in the potentially visible set, but are missing in the exact
visible set, is called overestimation 𝑂 = 𝑃𝑉𝑆 ∖ 𝐸𝑉𝑆. It is called “false positives” in some cases,
since the objects are erroneously declared to be visible. The additional objects will not be visible
in the resulting image, e.g., because they are occluded, and will lead to decreased rendering
performance, because the renderer will send them to the graphics pipeline.

The goal of the sampling process is to approximate the EVS as good as possible. Because of
the high complexity of the visibility information (refer to Section 3.4), an exact culling algorithm,
where 𝑈 = ∅ and 𝑂 = ∅, cannot be used for complex scenes in practice. Since the underestimation
leads to image errors, it is worse than the overestimation. Hence, a conservative culling algorithm
with no underestimation, 𝑈 = ∅, but little overestimation, meaning |𝑂| is small, is desirable.
Because SVS’s implementation uses the rasterization of the graphics hardware and only a small
set of sample points for performance reasons, sampling errors are inevitable. For these reasons,
SVS is an approximate culling algorithm, with |𝑈| ≥ 0 and |𝑂| ≥ 0.
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During runtime, the data acquired in the preprocessing step is utilized to display the scene for the
current camera position. For an inner node of the tree that is traversed by the rendering algorithm
(Section 4.1), the associated visibility sphere is retrieved. If the current camera position is outside
of the sphere, the viewing direction onto that sphere is used to compute the potentially visible set
of the node’s subtree (Section 4.2). In order to achieve higher frame rates at the expense of image
quality, one can optionally add a budget constraint to the rendering as described in Section 4.3.
Although SVS does not allow fully dynamic scenes, animations are still possible more easily than
in region-based methods (see Section 4.4).

4.1 Tree Traversal

Algorithm 1 RT: Recursive rendering algorithm executed during runtime.
procedure RT(𝑛𝑜𝑑𝑒, 𝑐𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

if 𝑛𝑜𝑑𝑒 is a leaf then
R(𝑛𝑜𝑑𝑒)
return

end if
𝑠𝑝ℎ𝑒𝑟𝑒 ← GVS(𝑛𝑜𝑑𝑒)
if 𝑐𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is inside 𝑠𝑝ℎ𝑒𝑟𝑒 then

for all children 𝑐ℎ𝑖𝑙𝑑 of 𝑛𝑜𝑑𝑒 do
RT(𝑐ℎ𝑖𝑙𝑑, 𝑐𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

end for
else

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ← N(center of 𝑠𝑝ℎ𝑒𝑟𝑒 − 𝑐𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)
𝑣𝑖𝑠𝑉𝑒𝑐 ← QS(𝑠𝑝ℎ𝑒𝑟𝑒, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
for all potentially visible nodes 𝑝𝑣𝑁𝑜𝑑𝑒 in 𝑣𝑖𝑠𝑉𝑒𝑐 do

R(𝑝𝑣𝑁𝑜𝑑𝑒)
end for

end if
end procedure

SVS’s rendering algorithm uses the scene graph that contains the preprocessed visibility
information. The scene graph is traversed beginning at the root node. The pseudo code for the
rendering traversal is shown in Algorithm 1. Figure 4.1 shows the different types and states of
nodes during the traversal. In all cases, frustum culling [AM00] is performed before rendering an
object or traversing a node. The frustum culling is not shown in the pseudo code.

At first, the algorithm checks the kind of node it got as parameter. If the current node is a leaf
node of the tree (a single object), the algorithm simply renders it. The rendering first configures
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Rendering Front Leaf Node
with Geometry

Inner Node with
Visibility Sphere

Traversed Node

Camera outside of
Visibility Sphere

Camera inside of
Visibility Sphere

Figure 4.1: Illustration of an exemplary tree with nodes highlighted depending on their status
during the tree traversal of the rendering algorithm.

the graphics pipeline depending on the properties of the node (setting textures, material definitions,
shader programs, etc.). Then, the triangle mesh is sent to the graphics pipeline.

If the current node is an inner node, the position of the camera in relation to the node’s bounding
sphere is determined. If the camera is inside the bounding sphere, the node’s visibility information
is not valid for the camera position and the traversal continues with the child nodes. In the other
case, where the camera is outside of the bounding sphere, the potentially visible objects are
extracted from the node’s visibility sphere for the current direction in which the sphere is seen.
N computes a unit vector by dividing the vector that it gets as parameter by this vector’s
length. By calling QS, an interpolated visibility vector for the queried direction (see
Section 4.2) is received. The objects stored there are rendered, and the traversal of this subtree is
finished.

The rendering front in Figure 4.1 illustrates why SVS performs very well for scenes with nested
objects. The tree traversal stops early for inner nodes, if the camera is outside of their bounding
sphere. These nodes are shown in blue. Their visibility data is used to render the objects contained
in their subtrees. If such a subtree represents a hierarchy of nested objects with many of them not
visible from outside, all of these occluded objects will not have to be touched by SVS’s rendering
algorithm.

4.2 Determining the Potentially Visible Objects

A visibility sphere stores a separate visibility vector for each of the sampled directions. These
vectors alone are only valid as seen from those directions under orthographic projection. In order
to acquire proper visibility information for an arbitrary direction, there are different possibilities.

The simplest technique, called N in the following, determines the sample point that
is most similar to the query direction. In practice, SVS creates 20 sample points per visibility
sphere, and a linear scan can be used to find the nearest sample point. If there was a large number
of sample points, they could be maintained in a spatial data structure to speed up the search. The
N interpolation returns the visibility vector of the nearest sample point as result.

The M3 interpolation utilizes the Delaunay triangulation of the sample points (see Sec-
tion 3.4) to determine the tetrahedron that intersects the query direction near the sphere surface.
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𝑞

(𝑏1, 𝑏2, 𝑏3)

𝑝1

𝑑1

𝑝2

𝑑2

𝑝3

𝑑3

Figure 4.2: Interpolation for a query point 𝑞 with barycentric coordinates 𝑏1, 𝑏2, 𝑏3 inside the
triangle of the sample points 𝑝1, 𝑝2, 𝑝3 with distances 𝑑1, 𝑑2, 𝑑3 to 𝑞.

Because the number of tetrahedrons is constant, this is also done in a linear scan. If the perfor-
mance was too low here, a spatial data structure could be put to use. The tetrahedron intersecting
the query direction has four corners: three sample points 𝑝1, 𝑝2, 𝑝3 and the center of the sphere.
As defined in Section 3.5, a visibility vector contains pairs (𝑜, 𝑣) of objects 𝑜 that are visible and
that have an visible area of 𝑣 pixels. The visibility vectors 𝑉𝑉1, 𝑉𝑉2, 𝑉𝑉3 are extracted from the
three sample points. As result, a new visibility vector 𝑉𝑉𝑟 is created as the union of the three
visible sets. By storing the visibility vectors as sorted arrays, the union can be computed in linear
time. The visible area value of an object is the maximum of the visible area values of the sample
points that contain the object:

𝑉𝑉𝑟 = 󰝂(𝑜, 𝑣) ∈ 𝑉𝑉1 ∪ 𝑉𝑉2 ∪ 𝑉𝑉3 󰟏 𝑣 = max
(𝑜,𝑤)∈𝑉𝑉1∪𝑉𝑉2∪𝑉𝑉3

{𝑤}󰝃 .

The third technique, the W3 interpolation, uses the distance of the query direction
to the sample points to interpolate the visibility information (see Figure 4.2). To perform the
interpolation on the sphere surface, one possibility would be to use spherical barycentric coordi-
nates [LBS06]. Since the deviation in results is negligible in practice [Car07], linear interpolation
on planar coordinates can be used. W3 works similar to M3 in that it first identifies
the tetrahedron that intersects with the query direction. For the triangle near the sphere sur-
face that is formed by the three sample points 𝑝1, 𝑝2, 𝑝3, the barycentric coordinates [Möb27]
𝑏1, 𝑏2, 𝑏3 ∈ [0, 1] with 𝑏1 + 𝑏2 + 𝑏3 = 1 of the query direction 𝑞 are calculated. An object’s
resulting visible size is calculated as weighted average of the stored visible sizes. As weights, the
barycentric coordinate values corresponding to the sample points are used, respectively. Formally,
in W3 the resulting visibility vector 𝑉𝑉𝑟 is computed as follows:

𝑉𝑉𝑟 =
⎧󰝠
⎨󰝠⎩
(𝑜, 𝑣)

󰟚
󰟙󰟙
󰟘
∃𝑖 ∈ {1, 2, 3} ∶ (𝑜, 𝑣𝑖) ∈ 𝑉𝑉𝑖 ∧ 𝑣 = 󰡗

(𝑜,𝑣𝑗)∈𝑉𝑉1∪𝑉𝑉2∪𝑉𝑉3

𝑏𝑗 ⋅ 𝑣𝑗

⎫󰝡
⎬󰝡⎭

.

The evaluation of the interpolation schemes (see Section 5.4) proved N and W3
to be unsuitable (e.g., taking only the nearest stored sample results in much underestimation
and thus many missing objects in the final image; weighting the visibility data with the distance
of its sample point to the query position has no considerable benefit). Therefore, the M3
interpolation scheme should be used. The underestimation introduced by using a perspective
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camera during rendering (while the PVSs are based on orthographic projection), is also greatly
reduced by M3 (see Section 5.8).

4.3 Optional Budget Rendering

For many scenes and viewing positions, the amount of visible geometry can easily exceed the
amount that can be rendered in real time by the graphics hardware. This is especially true on
mobile devices with weak graphics hardware. Even without using rendering techniques such
as level-of-detail meshes or impostors, one can still limit the amount of rendered geometry
by introducing a rendering budget and just skipping some objects if the budget is exceeded.
SVS introduces an additional importance value to each object entry in a visibility vector (see
Section 3.5) that allows an estimation on the visible influence of the object on the final image.
Thereby, a budget can be distributed among the estimated most important objects; yielding a high
image quality even when some parts of the scene are not rendered at all. Although the image
quality can severely suffer in extreme situations, where no more insignificant objects can be left
out to fulfill the budget constraint, this extension allows rendering of almost arbitrarily large
scenes with a constant frame rate with a high image quality in most cases (see Section 5.15).

The next section discusses the problem that has to be solved when selecting the objects that
shall be displayed when using budget rendering. It shows that solving the problem is equivalent
to solving the NP-hard 0-1 knapsack problem. Therefore, the computation of an exact solution is
not practical. The subsequent section explains the algorithm that is used in practice for SVS’s
budget rendering.

4.3.1 Computation of an Exact Solution

Assume a rendering algorithm knows the exact visible set 𝐸𝑉𝑆 for an arbitrary view. Let 𝐸𝑉𝑆
contain 𝑛 objects 𝑜1, … , 𝑜𝑛. Additionally, let the algorithm know the number of visible pixels
𝑣𝑖 that 𝑜𝑖 will contribute to the final image when displayed. Obviously, it knows the number of
triangles 𝑡𝑖 of an object 𝑜𝑖. Technically, it would be possible to display only a subset of an object’s
triangles, but it cannot be determined in advance, how many pixels will be filled by that subset.
Therefore, the rendering algorithm has to decide for every object if it shall be displayed fully, or
not at all. Additionally, the user specifies a triangle budget 𝑇 that indirectly limits the rendering
time.

This problem can be transformed to a 0-1 knapsack problem. The 0-1 knapsack decision
problem is known to be NP-complete [Kar72], therefore the combinatorial optimization problem
is NP-hard. The 𝑛 objects correspond to the items that are to be placed in the knapsack. The value
of an object 𝑜𝑖 is the number of visible pixels 𝑣𝑖 ∈ ℕ. The weight of an object 𝑜𝑖 is the number
of its triangles 𝑡𝑖 ∈ ℕ. The knapsack has an overall capacity of 𝑇 . The goal is to maximize
the overall gain ∑𝑛

𝑖=1 𝑣𝑖 ⋅ 𝑥𝑖 such that ∑𝑛
𝑖=1 𝑡𝑖 ⋅ 𝑥𝑖 ≤ 𝑇 , 𝑥𝑖 ∈ {0, 1}. As result, a binary decision

variable 𝑥𝑖 denotes whether an object 𝑜𝑖 shall be displayed.
Because of the hardness of the problem, it is impractical to compute an exact solution. There

is a dynamic programming approach to compute an exact solution to the problem using the
functional equation approach [Bel54]. The running time of this approach is 𝒪(𝑛 ⋅ 𝑇). The factor
𝑇 in the running time makes the approach ineligibly for the problem stated here, because 𝑇 is
rather large when used as rendering budget (e.g., millions of triangles).
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Figure 4.3: Illustration of the interaction of the two renderers used for budget rendering.

In general, a greedy algorithm [Dan57] can be used to solve the 0-1 knapsack problem. Unfortu-
nately, the solution computed by such an algorithm might be far from optimal. For 3D rendering,
Funkhouser and Séquin [FS93] use a greedy approximation algorithm to solve their special kind
of knapsack problem. They compute a benefit-cost ratio for their items and iteratively select the
item with highest ratio while the items fit into the knapsack. Pham Ngoc et al. [Pha+02] present
a specialized approximation algorithm to solve a 0-1 knapsack problem inside their network
rendering system. SVS also uses a greedy solution, because it provides good results in practice
(see Section 5.15) and leads to a very simple implementation.

4.3.2 Practical Computation of a Solution

The budget rendering used together with SVS consists of two parts: the SVS renderer that was
described before (see Section 4.1), and a new budget renderer that is described in the following.
An illustration of the interaction of those two renderers is shown in Figure 4.3. In a first step,
the SVS renderer traverses the tree the same way it is done when no budget rendering is used. It
annotates every object that it wants to be displayed with the estimated visible size that is extracted
from the visibility vector. But, instead of sending the objects that shall be displayed to the graphics
pipeline, they are intercepted by the budget renderer. When the SVS renderer finishes, the budget
renderer receives a collection of all nodes that shall be displayed for the current frame together
with the annotated visible size.

For every object, the budget renderer determines the area of the object’s bounding box when
projected onto the screen using the current camera configuration. This projected size is additionally
computed, because the estimated visible size, which is extracted and interpolated from the
preprocessed visibility information, might be wrong for the current camera view. On the one hand,
the object cannot be larger on the screen than the projected size of the bounding box. Therefore,
the projected size is an upper bound for the object’s screen area. On the other hand, using only
the projected size is insufficient. The projected bounding box can be very large on the screen, but
only little parts of the object might be visible on the screen due to occlusion. This is why the
minimum of the estimated visible size and the bounding box’s projected size is used.

As mentioned before, a greedy algorithm is used here to solve the 0-1 knapsack problem. Its
description in pseudo code can be seen in Algorithm 2. As the value of an object, the minimum of
its estimated visible size and the projected size of the object’s bounding box is used. The weight
is the number of triangles of the object. The collected objects are sorted by their value-weight
ratio. After that, they are displayed one after another with decreasing ratio beginning with the
highest. For every object that is displayed, the weight is accumulated. This is done as long as the
accumulated weights do not exceed the budget.
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Algorithm 2 Budget rendering with a triangle budget 𝑇 using 𝑛 collected objects 𝑜1, … , 𝑜𝑛, their
estimated visible sizes 𝑣1, … , 𝑣𝑛, and their triangle counts 𝑡1, … , 𝑡𝑛.

procedure BR(𝑇 , 𝑜1, … , 𝑜𝑛, 𝑣1, … , 𝑣𝑛, 𝑡1, … , 𝑡𝑛)
for 𝑖 ←1 to 𝑛 do

𝑝𝑖 ← CPS(𝑜𝑖)
𝑟𝑖 ← min{𝑣𝑖,𝑝𝑖}

𝑡𝑖 ▷ Benefit-cost ratio for object 𝑜𝑖
end for
𝐴 ← [1, … , 𝑛] ▷ Initialize array containing indices
S(𝐴 such that ∀𝑗 ∈ 1, … , 𝑛 − 1 ∶ 𝑟𝐴[𝑗] ≥ 𝑟𝐴[𝑗+1]) ▷ Sort indices by descending ratio
𝑊 ← 0 ▷ Initialize weights accumulator
for 𝑗 ←1 to 𝑛 do

𝑖 ← 𝐴[𝑗]
if 𝑊 + 𝑡𝑖 > 𝑇 then

break ▷ Stop if the next object exceeds the budget
end if
R(𝑜𝑖)
𝑊 ← 𝑊 + 𝑡𝑖

end for
end procedure

4.4 Rendering Animated Objects

All methods based on precomputed visibility share their inability to support fully dynamic
scenes (where each object can be moved freely) without the need of costly recomputations. For
region-based techniques, the region that is subdivided into cells corresponds most of the times to
the bounding box of the scene. Sometimes, this bounding box is enlarged to be able to look at
the scene from outside (e.g., the bounding box is scaled by a constant factor). When an object
should be moved inside the scene, nearly all cells have to be updated: Cells that contain visibility
information about this object have to check if the object is hidden now. Cells that do not see
objects, because the moved object occluded them before, have to check if new objects are visible
now. Other cells have to check if they see the object now, because of its new position. If the
object moves outside of the scene region, new cells have to be added, or – if this is not possible –
the whole cell hierarchy has to be rebuilt.

Of course, one possibility is to leave out the moving objects for the visibility computations
in the preprocessing phase. Then, there are no visibility information at all for the animated
objects. Another possibility is to generate separate region subdivisions with view cells for each
animated object. Then, at runtime, multiple view cells have to be determined to gather the
visibility information. This corresponds to treating the animated objects like multiple scenes
during the preprocessing, but rendering all of these scenes at once during runtime.

One benefit of SVS over region-based techniques is the possibility to arbitrarily animate
independent subtrees during runtime. Subtrees are independent, if there is no visibility sphere
in the scene graph above their root node. Hence, they do not share a common visibility sphere.
The subtrees can be preprocessed by SVS separately and can be combined by a common root
node without visibility sphere. Each animated subtree can be of arbitrary size and the rendering
algorithm does not have to treat it specially. However, any animation inside such a subtree still
requires an update of all visibility spheres from the animated node up to the root node, or until
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no change in the visibility sphere is detected.
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5 Evaluation
Different aspects of SVS will be evaluated in this chapter. On the one hand, this evaluation serves
the purpose of experimentally proving SVS’s described functionality. On the other hand, the
influence of parameter choices on different performance factors is assessed. To obtain the data
required for an evaluation, different measurements are performed.

Firstly, the software implementation and the test machine used for the measurements are pre-
sented (Section 5.1). Following, the test scenes used for the evaluation are described (Section 5.2).
The evaluation answers the question on how the values for SVS’s different parameters should
be chosen. The quality of the visibility information, the running time, and the storage space
are examined in relation to different choices of parameter values for these different parameters
(Section 5.3 to Section 5.7). Additionally, the errors introduced by the usage of different pro-
jections are examined (Section 5.8). Subsequent, the space required to store the visibility data
(Section 5.9) and the total running time of the preprocessing (Section 5.10) are considered. As
SVS is designed as rendering algorithm for complex scenes, the evaluation ought to show how
SVS performs in practice. For such an evaluation at runtime, a camera path (Section 5.11) is
used for each test scene to simulate a walkthrough. In addition, two occlusion culling algorithms
are presented that will be compared to SVS (Section 5.12). At first, the image quality during
a walkthrough is tested (Section 5.13). Then, the 3D rendering on a workstation is examined
(Section 5.14). After that, the budget rendering feature is evaluated (Section 5.15). Last but not
least, the results for the 3D rendering on mobile devices are presented (Section 5.16).

As already stated, there are multiple parameters that influence SVS’s behavior. A single
evaluation with changes to all of these parameters would be difficult to analyze. Therefore, for
every parameter, there is a separate evaluation, in which the values for that parameter are changed
and all other parameters have fixed values. The evaluation of the parameters is ordered such that
the values can be determined step by step. Where possible, the order is chosen so that an earlier
evaluation does not depend on the value of a later evaluation. After an evaluation, a parameter
value is chosen based on the acquired results. When such a reasonable parameter value has been

Table 5.1: Overview of the parameters that are part of the evaluation in this chapter. The last
column shortly mentions the value that arises as result out of the evaluation of the
respective parameter.

Parameter Description Evaluation Parameter Value

Sample point distribution Section 3.4 Section 5.3 20 sample points,
dodecahedron

Interpolation technique Section 4.2 Section 5.4 M3
Compute tight bounding spheres Section 3.3 Section 5.5 yes, use EPOS
Use existing visibility results Section 3.5 Section 5.6 no
Resolution in pixels Section 3.5 Section 5.7 10242 pixels,

screen resolution
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found, it is used as a fixed value for the following evaluations.
Table 5.1 contains an overview of the parameters that are evaluated in this chapter. For each

parameter, the section that describes the influence of the parameter and the section that contains
its evaluation are referenced. Additionally, the parameter value that is chosen as result of the
evaluation is very briefly summarized in the table.

The evaluation sections in this chapter are structured as follows: At first, the goal of the
evaluation in the respective section is described. Then, the measurements that are executed to
generate the required data are explained. Afterwards, the data is presented and analyzed. Finally,
the results are summarized and the question posed by the section is answered.

5.1 Software Implementation and Hardware
In order to perform the experimental evaluation, the proposed methods were implemented in
software. The implementation was done inside the Platform for Algorithm Development and
Rendering (PADrend) [EJP11].

PADrend is a software framework for the visualization of complex three-dimensional scenes.
Its main goal is to provide a common basis for the development of rendering algorithms. Because
of its special functionality for evaluation (e.g., image quality measurements) and several standard
rendering algorithms that are ready for use, it can be used to assess rendering algorithms in the
scope of research and teaching. In effect, PADrend is used for the development and evaluation of
new rendering algorithms, for support of students in writing their Bachelor’s and Master’s theses,
and to perform design reviews of complex industrial plants on a cave-like HD visualizaton center.
PADrend is developed since 2007 in the research group Algorithms and Complexity at the Heinz
Nixdorf Institute, University of Paderborn. It is mainly developed by Benjamin Eikel, Claudius
Jähn, and Ralf Petring. The basis of PADrend is a set of C++ libraries that were developed from
scratch especially for their use in PADrend. Among others, there is a library for three-dimensional
objects (e.g., boxes) and geometric computations, a library for abstracting the graphics pipeline,
a library for the user interface, and a scene graph library. All performance-critical algorithms
are implemented in C++. On top of these libraries, the EScript scripting language1 is used for
high-level implementation. In the EScript scripts, the whole functionality of the base libraries
can be used. PADrend is fully modularized and on the top level, it consists of a plug-in system
written in EScript.

In the scope of this work, PADrend was used during the development of SVS. SVS’s prepro-
cessing as well as the rendering algorithm were implemented in the scene graph library in C++.
Some parts, e.g., the graphical user interface for controlling SVS’s parameters, are written in
EScript. After loading a scene, the user can select the parameters for the preprocessing and start it
with a single click. When the preprocessing finishes, the user can add the SVS renderer, which is
immediately used to render the scene. Also, SVS’s budget renderer can be added by a single click
and the user can select a triangle budget. When the triangle budget is changed, it is directly used
by the rendering algorithm and can be observed by the user. Additionally, the preprocessed scene
can be saved to disk and loaded again, in order to avoid the need to perform the preprocessing
again.

The workstation PC that has been used to perform the measurements has an Intel Core i7-3770
CPU (4 cores, 8 threads, 3.4 GHz clock speed), 32 GiB DDR3 RAM (1600 MHz clock speed),
and a NVIDIA GeForce GTX 660 GPU (2 GiB dedicated graphics memory). PADrend was

1http://escript.berlios.de/
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5.2 Test Scenes

Table 5.2: Number of triangles, number of objects, and number of inner nodes of the test scenes.

Scene Number of triangles Number of objects Number of inner nodes
(in millions)

PP 12.749 1,185 316
PP4 50.994 4,740 1,383
PP256 3,263.619 303,360 72,279
P 62.964 153,848 40,142
B 337.143 228,756 65,535
PPB5 1,698.464 1,144,965 327,959
SOC 0.012 1,000 1

compiled with the GNU Compiler Collection2 in version 4.8.1 on Debian GNU/Linux sid3. There
is one exception regarding the measurements in this chapter: Obviously, the measurements on
the mobile devices were not executed on this workstation PC, but on a tablet and smartphone
(see Section 5.16).

5.2 Test Scenes

In the following, the test scenes – namely Scene PP, Scene PP4, Scene PP256, Scene P,
Scene B, Scene PPB5, and Scene SOC – are described shortly. The test
scenes were prepared to be used by SVS (see Section 3.1): All test scenes already define objects
and, thus, no triangle data structure had to be used. Since there was no hierarchy definition for
the objects, a loose octree was used to create a hierarchical scene graph structure. For all test
scenes, Table 5.2 contains an overview of the number of triangles, the number of objects, and the
number of inner nodes.

SVS’s preprocessing algorithm as well as the rendering algorithm have to traverse the scene
graph, which is why the depth of the tree is of interest. The chart in Figure 5.1 gives an overview
of the nodes’ distribution in the scene graph. The chart shows of how many levels the scene
graph structure consists for the different scenes. Furthermore, one can see how many nodes are
stored in the different levels. For example, for all scenes, there is only a single node on the zeroth
level – the root node of the scene graph.

Additionally to the description of the scenes in the following sections, Figure 5.2 shows the
depth complexity of different viewpoints of the scenes. As defined in Section 2.1, the depth
complexity is the number of triangles pierced by an arbitrary ray from the camera position, on
the average. Instead of using rays, the depth complexity has been determined for the pixels in an
image by rasterization. It has been counted, for each pixel, how many triangles filled that pixel
with disabled depth test. If the pixel was not filled, it belongs to the background and is shown
in white in the images. The minimum depth complexity of a filled pixel is therefore 1, which
is shown in blue. The median and maximum depth complexity specified for an image are the
median and maximum depth complexity of all filled pixels in this image. The images give an
impression on where the geometric complexity is located inside the scenes.

2http://gcc.gnu.org/
3http://www.debian.org/
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Figure 5.1: Number of nodes in the scene graph’s levels for different scenes.

5.2.1 Scene PP

The Scene PP contains a single Power Plant model4. The Power Plant model is a standard
model that is used as a benchmark in several computer graphics publications. The model has
12,748,510 triangles that are stored in 1,185 objects. The vertices of the model have colors
and normals, but there are no textures. As stated above, the objects of the Power Plant model
have been inserted into a loose octree to create a scene graph that consists of 316 inner nodes.
Screen shots of the scene can be seen in Figure 5.3. The tubings inside the building constitute the
majority of the model’s triangles. A small part of these tubings can be seen in Figure 5.3(d).

5.2.2 Scene PP4

In the Scene PP4, four Power Plant models haven been placed aside in a 2 × 2 grid. This layout
can be seen in the screen shots in Figure 5.4. As expected for a combination of four Power
Plant models, there are 50,994,040 triangles in 4,740 leaf nodes. The scene graph that has been
constructed to store those nodes has 1,383 inner nodes.

5.2.3 Scene PP256

The Scene PP256 consists of 256 Power Plant models that are arranged in a 16 × 16 grid. The
303,360 leaf nodes are stored in an octree-like scene graph with 72,279 inner nodes. The scene
consists of 3.264 billion triangles. The Scene PP256 is the most complex test scene concerning
the number of triangles. Figure 5.5 contains screen shots showing the arrangement of the 256
Power Plant models.

4http://gamma.cs.unc.edu/POWERPLANT/
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5.2 Test Scenes

minimum maximum
(a) Color gradient to map depth complexity values to colors.

(b) Scene PP: median 4, maximum 67. (c) Scene B: median 15, maximum 127.

(d) Scene P: median 11, maximum 227. (e) Scene B: median 12, maximum 120.

Figure 5.2: Visualization of the depth complexity for different views in different scenes.
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(a) Top view. (b) Oblique view.

(c) Detailed view of a part of the building. (d) Tubings inside the building.

Figure 5.3: Screen shots of the Scene PP.

(a) Top view. (b) Oblique view.

Figure 5.4: Screen shots of the Scene PP4.
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(a) Top view. (b) Oblique view.

Figure 5.5: Screen shots of the Scene PP256.

(a) Top view. (b) Detailed view of a part of the city.

Figure 5.6: Screen shots of the Scene P.

5.2.4 Scene P
The Scene P is a model of ancient Pompeii exported by the CityEngine5. The city consists
of a street network with houses densely standing next to each other at the roadside. The inside of
the houses is empty (e.g., there are no objects like furniture). The scene is also organized in an
octree-like scene graph and has 153,848 leaf nodes and 40,142 inner nodes. In contrast to the
other test scenes, this scene’s objects have materials and textures. The Scene P consists of
62.964 million triangles. Screen shots of the scene are shown in Figure 5.6.

5.2.5 Scene B
An aircraft model of a Boeing 7776 constitutes the Scene B. The model was released by
The Boeing Company as benchmark for computer graphics, especially to test the visualization
of CAD data. To protect their intellectual property, geometric errors were intentionally put into
the model before the data was made public. The vertices of the model have colors and normals,
but there are neither materials nor textures. The model consists of 228,756 leaf nodes that have
337.143 million triangles. A scene graph with an octree-like structure has been built over the
nodes and has 65,535 inner nodes. Two overviews together with four detailed views of the scene

5The highest available level of detail of the scene, “LoD 3 – High Detail”, was used. http://www.esri.com/soft-
ware/cityengine/resources/casestudies/procedural-pompeii

6Source 3D data provided by and used with permission of The Boeing Company.
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(a) Top view. (b) Engine.

(c) Oblique view. (d) Landing gear.

(e) Passenger cabin. (f) Cockpit.

Figure 5.7: Screen shots of the Scene B.
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(a) Top view. (b) Oblique view.

Figure 5.8: Screen shots of the Scene PPB5.

are depicted in Figure 5.7. The geometric detail of the model is very high. For instance, valves of
the wheels (Figure 5.7(d)) and knobs in the cockpit (Figure 5.7(f)) are geometrically modeled.

5.2.6 Scene PPB5
The Scene PPB5 (see Figure 5.8) is built of one Power Plant model and five Boeing 777
models. The Boeing 777 models are placed on a helix around the chimney of the Power Plant.
Because it is used to test SVS’s handling of animated objects, the root node has no visibility sphere.
To create this scene, the Scene PP and the Scene B have been preprocessed separately by
SVS. Then, the preprocessed version of the Scene PP and five times the preprocessed version of the
Scene B have been added to a common root node to create the scene. The Scene PPB5
is the most complex test scene concerning the number of nodes. It has 1.145 million leaf nodes,
327,959 inner nodes, and 1.698 billion triangles overall.

5.2.7 Scene SOC
The Scene SOC is a special test scene for SVS’s preprocessing part. It consists of
1,000 cubes with edge length 1. Every cube consists of twelve triangles; the whole scene has
12,000 triangles. To create the scene, the three coordinate values of each cube’s center have been
normally distributed with mean 0 and standard deviation 5, respectively. Figure 5.9 shows two
views of the scene.

Because the boxes have only axis-aligned faces, the visibility is special in this scene: When
standing on one of the main axes, the viewer sees only one side of every cube under orthographic
projection (see Figure 5.9(a) that shows a perspective view). This leads to many visible cubes,
because the projected size of every cube is minimal. The projected size of every cube becomes
maximal, when the viewer looks directly into the direction of one corner of all cubes (see
Figure 5.9(b) that shows a perspective view). For these positions, three sides of every cube are
visible, but, the number of cubes that are visible is smaller. Because of this specialty, the scene is
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(a) Top view. (b) Oblique view.

Figure 5.9: Screen shots of the Scene SOC.

used for testing different sample point distributions. There, the described effect largely influences
the set of visible objects, when sample points are or are not available for the described viewing
directions.

5.3 Sample Point Distribution

In principle, SVS works with an arbitrary distribution of sample points on the sphere surface, as
described in Section 3.4. In practice, it is apparent that too few sample points yield very inaccurate
visibility information whereas too many sample points need much memory. To see what it means
to use different distributions of sample points, the influence on the visibility information’s quality
and storage space is examined in detail in this section. As a result, a sample point distribution
will be identified that provides a good trade-off for the practical usage of SVS.

Twenty different distributions were used for the evaluation. The distributions are listed in
Table 5.3. A visualization of twelve distributions – with four up to 162 samples – is shown in
Figure 3.2, together with a visualization of the corresponding triangulation of the sample points.

The minimum pairwise angle for the different sample point distributions is given in the table.
It is a measure for how dense the sphere surface is covered with sample points. The smaller the
minimum pairwise angle, the denser are the sample points located together. The angle between
two sample points on the sphere surface is the central angle between those points. The minimum
pairwise angle of a sample point is the minimum of all angles between the sample point and
all other sample points. For a distribution corresponding to a platonic solid, the value of the
minimum pairwise angle is the same for all sample points. Since the other distributions do not
place the sample points evenly on the sphere surface, the range over all sample points of the
minimum pairwise angle is given in the table.
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5.3 Sample Point Distribution

Table 5.3: List of sample distributions used for the evaluation. Angles are rounded to two decimal
places. For the distributions not corresponding to a platonic solid, the range of angles
is given.

Name Number of samples Minimum pairwise angle
(in °)

Tetrahedron 4 109.47
Octahedron 6 90.00
Cube 8 70.53
Tetrahedron sphere, 1 subdivision 10 54.74–54.74
Icosahedron 12 63.43
Octahedron sphere, 1 subdivision 18 45.00–45.00
Dodecahedron 20 41.81
Tetrahedron sphere, 2 subdivisions 34 27.37–30.93
Icosahedron sphere, 1 subdivision 42 31.72–31.72
Octahedron sphere, 2 subdivisions 66 22.50–24.42
Tetrahedron sphere, 3 subdivisions 130 13.68–24.42
Icosahedron sphere, 2 subdivisions 162 15.86–16.41
Octahedron sphere, 3 subdivisions 258 11.25–15.46
Tetrahedron sphere, 4 subdivisions 514 6.84–15.46
Icosahedron sphere, 3 subdivisions 642 7.93–9.09
Octahedron sphere, 4 subdivisions 1,026 5.62–8.46
Tetrahedron sphere, 5 subdivisions 2,050 3.42–8.46
Icosahedron sphere, 4 subdivisions 2,562 3.96–4.69
Octahedron sphere, 5 subdivisions 4,098 2.81–4.35
Icosahedron sphere, 5 subdivisions 10,242 1.98–2.36
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Figure 5.10: Distribution of the cardinality of the overestimation over the whole sphere surface
when using different sample point distributions.

5.3.1 Quality of the Visibility Information

To assess the quality of a sample point distribution, the quality of the stored visibility information
for different viewing directions is examined. Over the whole sphere surface, the visibility
information stored in the sampling sphere is compared to the exact visibility. To determine the
visibility information for an area such as the sphere surface, infinitely many measurements for
points in this area would be needed in this setting. Obviously, infinitely many measurements
cannot be performed in practice. Therefore, to approximate the visibility information of the
sphere surface, 40,962 positions on the surface are chosen to represent the surface area. These
positions are the vertices created by six edge-subdivision steps of an icosahedron. In the following,
they will be called reference positions. The visibility is determined for the viewing directions
represented by all reference positions. For each of these viewing directions, the resulting visibility
information is the exact visible set (EVS).

To make sure that the regular structure of the subdivided icosahedron does not distort the
results, 40,962 random positions were tested, too. The positions were chosen uniformly at
random as spherical coordinates with inclination 𝜑 ∼ arccos (𝑈(−1, 1)) and azimuth 𝜃 ∼
𝑈(0, 2𝜋). 𝑈(𝑎, 𝑏) denotes the continuous uniform distribution giving values from the interval
[𝑎, 𝑏] with probability 1/(𝑏−𝑎) and other values with probability zero. No significant difference to
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Figure 5.11: Distribution of the cardinality of the underestimation over the whole sphere surface
when using different sample point distributions.

the subdivided icosahedron could be detected in the results when using the random positions as
reference positions.

To assess the quality of the visibility information of a specific sample point distribution, the
visibility sphere created by SVS using this sample point distribution is queried at the reference
positions. For each reference position, the result is a potentially visible set (PVS) for the corre-
sponding viewing direction that has been interpolated from the stored visibility information. The
overestimation and underestimation are computed by using the EVS of the reference position
(refer to Section 3.6). The cardinalities of these two sets are used to measure the difference
between PVS and EVS. The term missing objects is used in the following to denote the objects in
the underestimation set 𝑈 = 𝐸𝑉𝑆 ∖ 𝑃𝑉𝑆.

In anticipation of the results in the next section, the M3 interpolation is used here. The two
other interpolation techniques have been tested, too, and have led to the same results concerning
the quality of the different sample point distributions.

Since the quality for the whole sphere is evaluated, the results for a specific viewing direction
are not particularly interesting here. Therefore, a box plot summarizing the distribution of the
overestimation’s and underestimation’s cardinality over the whole sphere is created for every
sample point distribution.
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To keep the influence of the rasterization for visibility testing very small, a resolution of
4096×4096 pixels was used during the measurements. This means that for each viewing direction,
each test can result in at most 40962 = 224 = 16,777,216 visible objects, which is far more than
the number of objects present in the test scenes.

The overestimation and underestimation results are shown in the box plot charts in Figure 5.10
and in Figure 5.11, respectively. Each figure contains three charts, from top to bottom, for the
Scene SOC, for the Scene PP, and for the Scene B. The results are analyzed in
this order in the following.

A striking feature for the Scene SOC is the very small underestimation for the
six sample points (octahedron, compare Figure 3.2(b)). For this distribution of sample points,
during the visibility testing the camera looks from positions on the main axes onto the scene
containing axis-aligned cubes. As only one side of a cube will be projected orthogonally to
the image plane, the projected size of the cubes is minimal over all viewing directions. This
leads to very little occlusion and many cubes will be visible on a single image. Therefore, the
PVSs stored for the sample points contain these many cubes. When querying the sphere, the data
from the nearest three sample points will be returned, leading to a PVS containing a large subset
of all the cubes. A large overestimation can be observed when looking at the overestimation
results. The overestimation is maximal for the sample point distribution with six sample points.
One may wonder why the results look differently for the subdivided octahedron distribution (18
sample points), because it contains the same six sample points, plus additional points created by
the subdivision step. From these additional points, the camera does not look onto the cubes in
the way as described above for the vertices of the octahedron. Hence, their PVSs contain less
cubes. When interpolating the visibility data, these smaller PVSs lead to a resulting PVS with
more missing objects. Therefore, there are more missing objects for the subdivided octahedron
distribution (18 sample points) than for the octahedron distribution (six sample points).

For a sample point distribution, the maximum cardinality of the underestimation indicates how
many objects are missing in the worst case. A small maximum cardinality of the underestimation
is desirable, because missing objects lead to errors in the rendered image. When looking at the
maximum cardinality of the underestimation for the Scene SOC, the results for the
distributions with 18 and with 20 sample points are a local minimum. The overall result, e.g.,
the median, of these two distributions is better than the result of the three distributions with a
smaller number of sample points (8, 10, and 12) and of the six distributions with a larger number
of sample points (from 34 to 258). The overestimation is quite high with all distributions up to
and including the one with 20 sample points.

The two charts in the middle of the aforementioned figures show the results for the Scene PP. The
dodecahedron distribution (20 sample points) has a low maximum underestimation compared to
distributions with a similar number of sample points. The maximum underestimation is lower than
the one of all distributions with a smaller number of sample points. The maximum underestimation
is even lower than those of the distributions with 34, 42, 130, and 162 sample points. Additionally,
the median overestimation and the median underestimation of the dodecahedron distribution,
indicated by the black bars, are lower than the respective median values of the distributions with
less sample points. Overall, the median underestimation for the distributions with more than 20
sample points decreases with increasing number of sample points. But, even when using 10,242
sample points, there are still missing objects, yet, they are present in the reference distribution
with 40,962 sample points. Similar, the overestimation decreases with increasing number of
samples.

The two charts at the bottom of each figure summarize the results for Scene B. For
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Figure 5.12: Storage space required for the sphere’s visibility information when using different
sample point distributions. The axes have a logarithmic scaling.

this scene, the sample point distribution corresponding to the dodecahedron is not very striking.
Overall, the overestimation and the underestimation more or less decrease with increasing number
of sample points beginning with 20 sample points.

5.3.2 Storage Space
To hold the visibility information of a potentially visible set in memory, a reference to every
object that is element of this set has to be stored. Every sample point stores a potentially visible
set, wherefore the storage space increases when increasing the number of sample points. To
measure the storage space that is needed when using different distributions of sample points, the
number of objects in the potentially visible sets are counted after SVS’s preprocessing using the
respective distribution. For each distribution, the sum over the number of visible objects of all
sample points is calculated.

The results are depicted in the charts in Figure 5.12. The number of sample points as well as
the number of object references are shown with a logarithmic scaling. The charts for all three
scenes show a linear dependency between the number of sample points and the number of object
references. Therefore, even with different visibility inside the different scenes, the storage space
increases linearly when increasing the number of sample points. By keeping the number of
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sample points small, the resulting memory that will be required will be small, too.

5.3.3 Conclusion

For the first two considered scenes, Scene SOC and Scene PP, the quality of the
sample points corresponding to the vertices of a dodecahedron is very good compared to the
distributions with a similar number of sample points. To get a much better quality, the number of
sample points has to be largely increased. The increase in the number of sample points would
lead to a similar increase in storage space. For the Scene B, taking more samples leads
to a better quality. As the evaluation shows, using 20 sample positions yields a good trade-off
between costs and benefits. Hence, this distribution is used for all the following measurements.
As a side note, using the dodecahedron’s 20 vertices corresponds to the maximum number of
positions that can be distributed uniformly on the sphere (compare Table 5.3).

5.4 Interpolation Technique

Section 4.2 explains different ways to interpolate the visibility information stored in a visibility
sphere for a queried viewing direction. The evaluation in this section shows that there is only one
reasonable way to perform the interpolation in practice: Use the M3 interpolation to take the
union of the three PVSs stored in the sample points at the corners of a triangle containing the
queried viewing direction. Although, this introduces an overestimation of the visible geometry,
this technique effectively reduces errors due to missing objects induced by the approximation of
the directional visibility with only few sample points.

To evaluate the quality of different interpolation techniques, a similar measurement as in
Section 5.3 has been performed. Here, the 20 vertices of the dodecahedron have been used as
sample point distribution. The visibility sphere containing the whole scene has been queried
with different interpolation techniques. The queries have been performed at the 40,962 reference
positions – vertices created by six edge-subdivision steps of an icosahedron – like in the previous
section. At these positions, the EVS is known. The interpolation technique computes the PVS
based on the data stored in the visibility sphere. Again, the cardinality of the underestimation
and the overestimation are considered here to measure the quality. Mainly the underestimation is
taken into account here, because it leads to missing object and therefore to image errors.

The chart in Figure 5.13 shows the underestimation results for three different test scenes. It
shows that the M3 technique always leads to the highest quality, meaning that the underestima-
tion is smaller than it is when using other interpolation techniques. N has the worst quality
here. Where N can only use the visibility data of a single sample point, M3 always
uses data of three sample points. Thus, for a query that lies in between the sample points, the
N technique produces inaccurate results. M3 uses the data of the neighboring sample
points and therefore produces a much larger PVS. The results of W3 lie between those
of M3 and of N. For Scene SOC, it is nearly as good as M3. But for
Scene B, it is nearly as bad as N.

Using M3 results in the best quality concerning the underestimation, but it cannot be ignored
that it creates much overestimation most of the time. The overestimation results can be seen
in Figure 5.14. The overestimation leads to decreased performance during rendering, because
objects, which are invisible in the end, are sent to the graphics pipeline. For the sake of higher
image quality, this performance decrease is accepted and M3 is used in the following.
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Figure 5.13: Distribution of the cardinality of the underestimation over the whole sphere surface
when using 20 sample positions with different interpolation techniques.
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Figure 5.14: Distribution of the cardinality of the overestimation over the whole sphere surface
when using 20 sample positions with different interpolation techniques.
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Figure 5.15: Running time distribution for the two different bounding sphere computation algo-
rithms used in preprocessing different scenes. The vertical axis has a logarithmic
scaling.

5.5 Computation of Bounding Spheres

Bounding spheres are computed for inner nodes using two different techniques, as described in
Section 3.3: The first one, called simple in the following, takes the spheres of the child nodes and
combines them to a sphere containing them. The second techniques, using the EPOS algorithm,
collects all objects of the subtree below the inner node and computes a bounding sphere for the
union of vertices of all meshes.

The following evaluation examines the costs and benefits of both techniques. The costs are the
running time and memory consumption during the preprocessing. The benefits are the size of the
spheres, because smaller spheres are beneficial for the rendering during runtime (see Section 4.1).
In the end, advice is given on which technique should be used for SVS’s preprocessing in practice.

5.5.1 Preprocessing Time and Memory Consumption

At first, the costs – namely running time and memory consumption – for the two different methods
are examined.

The distribution of the running times of the preprocessing parts that compute the bounding
spheres for inner nodes are depicted in Figure 5.15. Upon first look, the charts suggest that using
the EPOS algorithm is faster than the simple combination of spheres, except for Scene B.
But, when summing up the running times of the individual steps to a total running time, the steps
with a long duration gain a higher impact. These steps are the ones executed for the inner nodes
in the upper levels of the scene graph. For preprocessing these nodes, a huge amount of vertices
has to be collected as input for and has to be processed by the EPOS algorithm. When comparing
the usage of EPOS to the simple combination of spheres, the total running time is 1.339 times
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Figure 5.16: Radii of the inner nodes’ visibility spheres for the two different bounding sphere
computation algorithms. The vertical axis has a logarithmic scaling.

higher for Scene PP, 1.076 times higher for Scene PP4, 1.304 times higher for Scene P,
and 3.003 higher for Scene B. The results show that the simple combination of bounding
spheres is much faster for complex scenes.

When using EPOS, preprocessing the Scene PP256 is not possible. When the preprocessing
is nearly finished and the uppermost nodes in the scene graph are reached, the program crashes
reproducibly. EPOS requires a set of points as input, which is the set of all of the scene’s vertices
for the root node of the scene graph. The program crashes when preprocessing the root node,
because the amount of memory that is to be allocated is too large for the machine. For the
Scene PP256, storing all vertex positions as three float values requires about 31.7 GiB of memory.
The large memory consumption of the preprocessing while using EPOS is a large disadvantage.
The simple combination of spheres needs much less memory, which makes it a valuable alternative
for very complex scenes.

When using the simple combination, additional memory is only needed to store the vertices of
a single object in a leaf node. Therefore, the memory requirements are bounded by the largest
object inside the scene. In contrast, the EPOS algorithm needs memory for storing all the vertices
in the scene when computing the bounding sphere for the root node. Hence, using the simple
combination imposes much lower memory requirements for the preprocessing of a scene than
using the EPOS algorithm.

5.5.2 Sphere Radii

Computing tight bounding spheres for inner nodes takes longer and needs more memory than
just combining multiple spheres. The hypothesis is that investing these costs is worth it, because
the resulting bounding spheres will be smaller. As stated above, smaller spheres can be used for
more camera positions during rendering, resulting in higher performance.
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The measured sphere radii for different scenes are depicted in Figure 5.16 as violin plots [HN98]
together with box plots. A violin plot visualizes the density estimation of the measured data,
similar to a density plot mirrored at the horizontal axis and then tilted by 90°. Such a visualization
is useful to identify changes in the shape of the density estimation, which cannot be seen in the
box plots. The sphere radius has been normalized, for better comparability between the different
scenes, by dividing it by the maximum sphere radius inside a scene.

When using the simple combination of spheres instaed of the EPOS algorithm, the distribution
of the radii moves slightly to larger values. Expressed in numbers, the sum of all radii increases
by a factor of 1.115 for Scene PP, 1.125 for Scene PP4, 1.181 for Scene P, and 1.068 for
Scene B.

5.5.3 Conclusion
Since the increase in sphere radii is not very large when using the simple combination of spheres
compared to the usage of the EPOS algorithm, it is advisable to use the simple variant. The
simple variant is much faster for complex scenes. Its memory consumption is much lower and
it allows the preprocessing of very large scenes, that do not fit into memory when using EPOS.
Only when running time and memory consumption in the preprocessing phase is negligible and
the best possible quality is to be achieved, the EPOS algorithm should be used.

To achieve the highest quality for the following measurements, the EPOS algorithm is used for
all scenes except for Scene PP256. It cannot be used for Scene PP256 for the reasons already
explained, which is why the simple combination is used for that scene.

5.6 Visibility Testing in Inner Nodes
When performing visibility tests to determine the visibility from the outside of each inner nodes,
the existing visibility information from child nodes can be used. The first hypothesis is that using
the existing visibility information speeds up the preprocessing process, because less tests have to
be performed. The second hypothesis is that small objects will be missed when existing visibility
information is used, because objects that were missed once due to rasterization errors cannot be
hit in later tests. Both hypotheses are checked in the following. A preprocessing resolution of
40962 pixels has been used for the visibility tests.

5.6.1 Preprocessing Time
The running times that were measured for the visibility tests are shown in Figure 5.17 for
preprocessing different scenes. Each preprocessing has been executed twice: On the one hand,
the available visibility information has been used (“Yes”). On the other hand, this information
has not been used and all objects in the subtree of the inner node have been tested (“No”).

The boxes in the charts show nearly no influence of the setting on the running time. For the
smaller scenes – Scene PP and Scene PP4 in this case – even the outliers do not differ much
(except the maximum value of Scene PP4). For the larger three scenes, the maximum values
decrease significantly when using the existing visibility results. To compare the influence on the
total running time, the running times for the individual visibility testing steps were summed up to
a total number. When making use of the available visibility information, the total running time
decreases to 95.5 % for Scene PP, to 93.5 % for Scene PP4, to 85.9 % for Scene PP256, to 90.7 %
for Scene P, and to 88.1 % for Scene B.
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Figure 5.17: Distribution of running times of the visibility test steps during the preprocessing.
The vertical axis has a logarithmic scaling.

Most probably, the difference between using and not using the existing visibility information is
not larger, because the additional occlusion queries that are executed when not using the existing
visibility information are not very costly. When testing the visibility of an object, the occlusion
query is not immediately started for this object, which might have a high geometric complexity,
but for its bounding box first. If the bounding box is invisible, no occlusion query for the object
has to be started anymore. When not using the existing visibility information, the objects that
have to be tested additionally are likely to be invisible, which is why their bounding boxes are
likely to be invisible, too. Therefore, not many complex objects have to be tested, which explains
the rather small running time differences between the two variants.

5.6.2 Quality of Visibility Information

The following measurements have been carried out with a resolution of 8192 × 8192 pixels =
226 pixels, which is intentionally higher than the resolution used for visibility testing. For each
of the twenty sample positions, a measurement has been performed. For a single measurement,
the camera has been positioned at the same position as it was positioned for the preprocessing
(viewing direction defined by the sample position together with orthographic projection). The
visibility data stored in the current sample provides the potentially visible set (PVS) for this
position. The exact visible set (EVS) is determined by rendering the scene once and testing
all scene objects with an occlusion query afterwards. The missing objects are determined by
computing the underestimation 𝑈 = 𝐸𝑉𝑆 ∖ 𝑃𝑉𝑆. For all objects in 𝑈, the visible pixels provided
by the occlusion query are added up. The sum represents the number of pixels of missing objects.
To take the measurement resolution into account, the image part of missing objects is computed
by dividing the sum by 226. The image part is expressed in parts per million (ppm). 1 ppm
corresponds to a single pixel in an image with 1000 × 1000 pixels. The measurements that were
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Figure 5.18: Quality of the visibility information for two different preprocessing settings. The
vertical axis has a logarithmic scaling.

just described are carried out for different scenes and preprocessing settings (either using available
visibility information, or not).

The distribution of the image part of missing objects is depicted in Figure 5.18. The errors that
occur even when not using the existing visibility information are due to the higher resolution in
the measurements. In the following, the two settings are compared to each other. For Scene PP4,
there is only a very little improvement in quality when processing without using the existing
visibility information. For Scene PP and Scene P, the median of the measured values drops
clearly. For the very complex Scene PP256 and Scene B, the whole distribution moves to
smaller values. Especially for these two scenes, the running time decreased most when using the
existing visibility information. Unfortunately, the quality also decreases most in these two cases.
To sum up, using the existing visibility information for visibility testing leads to a lower quality
of the resutling visibility information.

5.6.3 Conclusion

Using the available visibility information during preprocessing to reduce the number of visibility
tests reduces the running time, which is especially beneficial for very complex scenes. For the
complex scenes, the preprocessing time can be reduced by approximately 10 % to 15 %. But,
due to the errors introduced by the rasterization, objects might be missed and the quality of the
visibility information suffers. Therefore, it is advisable to test all objects of the subtrees without
using the available visibility information. This leads to a longer duration for the preprocessing,
but improves the quality of the information that is used for rendering at runtime.

In the following, the existing visibility results have not been used during the preprocessing and
the tests have been executed for the whole subtree.
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Figure 5.19: Running time of the visibility testing for different resolutions and scenes. The
vertical axis has a logarithmic scaling.

5.7 Image Resolution

For the visibility tests during the preprocessing, the rasterization pipeline of the graphics hardware
is used. Because the graphics hardware determines the visibility based on pixels in an image, the
visibility signal that is present in the scene is discretized by this process. For every pixel, only a
single object can be detected. If more than one object covers the same pixel at the same depth,
it can be assumed that an arbitrary one of these object is detected. Furthermore, the graphics
pipeline rasterizes a pixel only if the corresponding triangle of the object intersects the center of
the pixel. During this discretization, the image resolution – measured in the the number of pixels
that form the image – quantifies the sampling rate of the signal. Objects in the scene might be
projected arbitrarily small on the image plane. If the resolution is too low, meaning the pixels are
large, objects that are small will not be detected. The effects of the choice of the resolution on the
running time and the quality of the resulting visibility information are examined in the following.

5.7.1 Preprocessing Time

The charts for different scenes in Figure 5.19 show a summary of the running time distribution
for visibility testing when using different resolutions. Note the logarithmic scale on both axes.
An enlargement step for the resolution quadruplicates the number of pixels.

The maximum running time for visibility testing is required for the inner nodes in upper
levels of the tree and the root node. To determine the directional visibility for these nodes,
(nearly) all of the scene’s objects have to be tested. In the charts, the outliers for the maximum
running time show that for a small scene, like Scene PP, the resolution has a high influence on
the running time. The maximum increases significantly when increasing the resolution from
20482 pixels to 40962 pixels and then to 81922 pixels. When looking at the other scenes, the
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increase of the maximum value is visible, but not as large as for the smaller scene. This leads
to the conclusion that the bottleneck with very high resolutions for visibility testing in smaller
scenes is the rasterization stage of the graphics pipeline. For larger scenes, however, the geometry
stage of the pipeline dominates the time needed for the computations.

With increasing resolution, a clear increase of running times can be observed, when looking at
the interquartile range of running times, represented by the boxes in the charts. The visibility
testing steps, for which running times from this medium range have been measured, cannot have
tested large subsets of the whole scene. Otherwise, the measured running times would have been
larger. Therefore, the amount of geometry tested by them was only a small to medium subset of
the whole scene. Thus, for these steps, the running time is not dominated by the geometry stage,
and the resolution plays an important role, as can be seen from the increase in running times.
When looking at the boxes, it follows that the running time for these visibility testing steps grows
super-linear in the resolution.

To compare some numbers, the running times of all visibility testing steps have been summed
up to generate an total running time for one specific preprocessing setting. For both Scene PP256
and Scene B, increasing the resolution from 5122 pixels to 10242 pixels increases the total
running time for visibility testing only by a factor of approximately 1.1. But, when reaching the
highest tested resolution of 81922 pixels, the increase of the running time is very high. Between
the resolutions with 40962 pixels and 81922 pixels for the Scene PP256, the total running time
increases by a factor of 11.5. For the Scene B, the same increase of the resolution makes
the visibility testing 15.0 times slower.

Additionally to the greater number of pixels that has to be filled during the rendering, the
amount of memory that has to be handled by the graphics card increases. Images with an edge
length of 4096 pixels, or especially 8192 pixels, are larger than usual values used for real-time
rendering applications (e.g., 1080p with 1920×1080 pixels = 2,073,600 pixels is less than half of
4,194,304 pixels = 2048 × 2048 pixels). An uncompressed framebuffer with 32 bits color values,
24 bits depth values, 8 bits stencil values or padding, and a resolution of 81922 pixels is 512 MiB
in size. Storing such a framebuffer in graphics memory reduces the amount of other data (meshes,
textures, etc.) that fits into graphics memory. Accessing the other data from main memory during
rendering is much slower, which explains the high running times for the preprocessing with high
resolutions.

5.7.2 Quality of Visibility Information

The quality of the visibility information was measured as it was done before in Section 5.6 and
the image part of missing objects was calculated in the same way. Since the measurements
were performed with a resolution of 8192 × 8192 pixels, the measured results for the matching
preprocessing resolution of 8192 × 8192 pixels might be distorted. The quality results can be
seen in the charts in Figure 5.20. As in the previous figure, both axes have a logarithmic scaling.
For the simpler Scene PP and Scene PP4, the quality increases linearly in the resolution. For the
three complex ones – namely Scene PP256, Scene P, and Scene B – the decrease of
image error is even super-linear.

5.7.3 Conclusion

The quality of the visibility information increases super-linearly with the resolution. But, the costs,
in this case the running time, also increase super-linearly. In practice, a resolution should be used
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Figure 5.20: Quality of the visibility information for different scenes with changing preprocessing
resolutions. The vertical axis has a logarithmic scaling. A resolution of 81922 pixels
has been used for the measurements.

that is at least as high as the resolution that is used for rendering at runtime later on. If a smaller
resolution would be used, many objects that should have been shown in the rendered image are not
detected during the preprocessing, because of the undersampling by the rasterization. Because
a resolution of 1280 × 720 pixels is going to be used for the runtime tests, the preprocessing
resolution was set to 10242 pixels.

5.8 Errors introduced by Different Projections

During the preprocessing, an orthographic projection is used during the visibility tests (see the
description of the process in Section 3.5). For the walkthrough at runtime, a perspective projection
is applied. By using the perspective projection, objects might become visible that were hidden
in the orthographic projection. In this section, the errors that are introduced by using the two
different projections are evaluated.

To examine the errors, a visibility sphere is again queried for different viewing directions.
Here, 10,000 random viewing directions were used for every measurement. As in Section 5.3.1,
the random viewing directions were chosen uniformly at random as spherical coordinates with
inclination 𝜑 ∼ arccos (𝑈(−1, 1)) and azimuth 𝜃 ∼ 𝑈(0, 2𝜋). For each of these viewing
directions, at first the underestimation with orthographic projection is determined. This is done
by querying the sphere for the PVS and by computing the EVS with visibility testing under
orthographic projection. The underestimation is then the EVS without the elements in the PVS,
as defined before. This special underestimation set contains the objects that are missing due to
non-projection errors (e.g., other sampling errors as discussed in this chapter). It is stored to be
used in the following computations. For the following measurements, a perspective projection
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with different aperture angles is used. Beginning with 15°, the angle is increased until 90° is
reached. Since a quadratic viewport is used, the angle corresponds to the horizontal as well as
to the vertical frustum angle. The camera is always placed such that the frustum fully contains
the sphere. For the different frustum angles, the underestimation is determined. To get rid of
errors from other sources, the special underestimation set that was stored for the orthographic
projection is subtracted from the perspective underestimation set. The resulting set only contains
the errors that were introduced by the different projections.

The results of these measurements can be seen in the charts in Figure 5.21 for two different
scenes. Additionally to the description above, the measurements have been performed with
different interpolation techniques, namely with N and M3.

When considering the Scene PP, for a majority of viewing directions, the errors introduced by
using a perspective projection are very small. But, there are several outliers corresponding to
viewing directions with a large image part of missing objects. For the N interpolation,
the median is below 6 ppm. The amount of errors is further reduced when using the M3
interpolation: For this, the upper quartile is lower than 4 ppm for all frustum angles.

For the Scene B, the errors introduced by the perspective are rather large. For N
interpolation, the median is 123.2 ppm for 15° and 250.8 ppm for 90°. Again, the errors –
especially the outliers – are significantly lower when using the M3 interpolation. The median
for 15° is 112.5 ppm and 179.1 ppm for 90°. The differences between the interpolation techniques
could be expected, when looking at the results in Section 5.4.

For both scenes and N interpolation, it can be seen that the size of the image part that
is covered by the missing objects increases with increasing frustum angle. In the Scene PP
when using M3, the same behavior can be seen when looking at the maximum value for every
frustum angle. But, in the Scene B when using M3, there is a decline in error values
between frustum angles 60° and 75°, and between 75° and 90°. This is due to the fact that the
cardinality of the EVS decreases with increasing frustum angle. Some objects disappear due to
the high distortion introduced by such high aperture angles.

To sum up, using different projections results in errors. Using a perspective projection during
the preprocessing would not solve the problem: If a different frustum angle was used in the
preprocessing than during runtime, similar problems would arise. Furthermore, re-using visibility
results from smaller spheres in the preprocessing step for a larger sphere would no longer be
possible. It could be observed that the amount of errors is reduced when using the M3
interpolation instead of the N interpolation.

5.9 Storage Space

The storage space that is required by different parts of the scene description and by SVS’s visibility
data is examined in this section. This helps to get an impression about SVS’s storage requirements
in practice. In order to describe the scene, the nodes of the scene graph, the meshes, and the
textures need to be stored. SVS stores the visibility spheres that contain a bounding sphere, a
triangulation of the sample points, and the visibility data of the sample points. The storage space
has been determined by counting the number of bytes that are allocated by different objects during
runtime of the program. Table 5.4 summarizes the measured values. The last column shows the
percentage of SVS’s storage space in relation to the scene’s storage space, which consists of the
space needed for the scene graph, the meshes, and the textures.

For the Scene PP4 and the Scene PP256, the meshes of the Power Plant model are reused.
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Figure 5.21: Perspective errors for two interpolation techniques: Image fraction of missing objects
in parts per million for different frustum angles in different scenes (measured with
10,000 random views tightly enclosing the scene’s outer sphere; 4096 × 4096 pixels
resolution).
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Table 5.4: Space needed to store different kinds of data for the test scenes.

Scene Scene Graph Meshes Textures SVS Ratio SVS/Scene

(MiB) (MiB) (MiB) (MiB) (%)

PP 0.251 357.238 0.000 3.256 0.9
PP4 1.035 357.238 0.000 13.874 3.9
PP256 62.172 357.238 0.000 789.297 188.2
P 56.784 1335.366 319.457 455.554 26.6
B 37.443 8175.625 0.000 987.390 12.0
PPB5 187.468 8532.863 0.000 4940.208 56.7

Therefore, their storage space for the meshes is the same as for the Scene PP. Due to the additional
inner nodes in the scene graph and multiple instances of the Power Plant model with potentially
visible objects, SVS’s data cannot be reused. Hence, it is larger for the combined scenes than it is
for the single Power Plant model. When computing the ratio of SVS’s data to the scene’s data
without mesh instances, the meshes’ size grows by a factor of 4 and 256, respectively, and SVS
needs only 1.0 % storage space of the Scene PP4 and 0.9 % of the Scene PP256, as it does for
Scene PP. The situation is similar for the Scene PPB5. There, the meshes for the Boeing
777 model are reused, but the visibility data for them is duplicated. When this shortcoming in
the implementation would be fixed, the visibility data for the Scene PP and the Scene B
would be required only once (3.256 MiB + 987.390 MiB = 990.646 MiB). Then, the ratio would
decrease to 11.4 %.

Without the usage of mesh instances, the highest ratio was measured for Scene P. There,
SVS needs a little bit more than a quarter of the scene size.

To conclude, the memory required to store SVS’s data is in general small compared to the scene
size. Concerning the storage space, no issues arise when SVS is used in practice. A machine that
is able to load and hold the scene data in memory should have no problems with SVS’s additional
data.

5.10 Total Preprocessing Time

If SVS shall be used in practice, it is important to know how long the preprocessing takes. Imagine
an architect who wants to visualize a newly designed building and who does not want to wait
several days for the first image to show up on the screen. For this reason, short preprocessing
times are important for practical usage.

The total time that was required by SVS’s preprocessing has been measured for the test scenes.
For the preprocessing, the parameter values that were determined in the previous sections of
this chapter were used. The resulting data of this preprocessing is used in the following for the
measurements at runtime.

Table 5.5 contains the measured total times for the preprocessing of different scenes in minutes.
For the smaller scenes, Scene PP and Scene PP4, the preprocessing needs less than a minute.
Actually, it would be practicable to run the preprocessing on the fly every time after loading these
scenes. For the Scene P the preprocessing runs a few minutes, and for Scene B it
needs less than 20 minutes. Only for the most complex Scene PP256, over an hour of preprocessing
time is required.
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Table 5.5: Time needed to preprocess the different test scenes with SVS.

Scene Preprocessing Time
(in minutes)

PP 0.152
PP4 0.702
PP256 74.855
P 6.614
B 18.356

To sum up, the preprocessing of SVS is very fast, especially compared to other preprocessed
visibility techniques (see Section 5.12.3). Even the most complex scene used here can be
preprocessed in less than one and a quarter hours. Such short waiting times plead for SVS’s usage
in practice for rendering complex scenes.

5.11 Camera Paths
For the four scenes Scene PP4, Scene PP256, Scene P, and Scene PPB5, measure-
ments at runtime have been performed along camera paths on a workstation. The smallest scene
Scene PP has been used for measurements on mobile devices. The camera paths for these scenes
are introduced in this section. The positions on a camera path are specified in seconds with a
walk over the path beginning at 0 s. For the runtime measurements, the camera path is sampled at
distances of 0.1 s along the path. There is one exception: For Scene PP256, the distance between
measuring points is reduced to 0.01 s, because the path has a shorter total length of time.

5.11.1 Camera Path in Scene PP
In order to perform the measurements on mobile devices, the Scene PP has been used. Here,
the camera path is the same as the camera path in Scene PPB5 (see Section 5.11.5 for a
description and images of the camera path).

5.11.2 Camera Path in Scene PP4
The camera path in Scene PP4 is shown in Figure 5.22. The capital letters A, B, C, and D will be
used in the description of the path to refer to the four Power Plant models as shown in the images.
At the beginning of the camera path (top left of Figure 5.22(a), top right of Figure 5.22(b)), the
camera looks at Power Plant model A in front with the three other models in the background.
The camera circles around the building, still facing it, until only this building is inside the view
frustum at 6 s. Then, the camera starts to turn right and at 9 s, it faces the two buildings C and D
that were in the background before. Until reaching the waypoint at 16 s, the path leads towards D.
While going to position 20 s, the camera turns right and looks at the two Power Plant buildings A
and B. It keeps turning right, until it faces the buildings C and D again at 24 s. It runs towards the
building C until 33 s. While looking in the direction of D, the camera strides sideways through
building C. After leaving the building on the other side, it still goes sideways, now towards the
building D, and looking at A and B. Beginning at approximately 39 s, the camera is directly
looking at the building D, which occludes the rest of the scene. The path leads around the building
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(a) Top view.

(b) Oblique view.

Figure 5.22: Camera path inside the Scene PP4. The numbers denote the waypoints’ times in
seconds on the path.

58



5.11 Camera Paths

and is behind D’s chimney at 42 s. At position 43 s, the camera looks in the direction of building
C, which is hidden behind parts of building D that are in front. Then, the camera reaches the open
space between the buildings again and starts to turn left. The two buildings A and B are inside
the view frustum at the waypoint at 47 s. Turning left while moving, those two buildings are still
inside the view frustum at 53 s. The camera keeps turning left, D enters the frustum at about 56 s,
and C at about 57 s. The last waypoint of the path is reached at 58.4 s and closes the cycle.

5.11.3 Camera Path in Scene PP256

The camera path for the Scene PP256 is shown in Figure 5.23. It starts outside the scene at a
large height. During the whole traversal of the path, the camera looses height. In the following
description, a row means the arrangement of 16 Power Plant models that can be seen as horizontal
line of Power Plant models in Figure 5.23(a). At the beginning, the camera looks towards the
16 × 16 grid of Power Plant models. The path leads towards the scene and the camera turns slowly
right. At about 3 s, the Power Plant models on the left side of the screen begin to leave the view
frustum. When reaching the waypoint at 10 s, seven rows of Power Plant models are, at least
partly, inside the view frustum. Beginning from that waypoint, the camera turns left and moves
slowly towards the waypoint at 17 s. Then, it moves forward facing the waypoint at 23 s. On the
way to the waypoint at 32 s, it turns slowly right. There, the viewing direction is aligned with the
row of Power Plant models and five models are, at least partly, inside the view frustum. Until the
end of the path, the camera goes towards the last Power Plant model in the row. At the end, only
this single Power Plant model is partly visible on the screen. The path has an overall length of
38 s.

5.11.4 Camera Path in Scene P

The path for Scene P represents a camera flight over the city. It is a large loop and is shown
in Figure 5.24. The height over ground varies slightly over the path, but it is always above the
roofs of the buildings. A walk over the path takes 145.8 s. At the beginning, only a part of the
city is visible. The camera moves forwards and the amount of geometry inside the view frustum
decreases. After 9 s, the camera turns left, and more and more parts of the city enter the view
frustum. Until the waypoint at 81 s, the camera flies to the other side of the city with slight turns
to the right and to the left. There, the amount of geometry reaches a local minimum, as the camera
looks away from the city. It turns left until reaching the waypoint at 93 s, where large parts of the
city are visible and the amount of geometry inside the view frustum reaches the global maximum.
When moving towards the waypoint at 101 s, this amount decreases a little bit, but increases again
on the way to the waypoint at 112 s. Then, the camera turns right and flies back to the part of the
city where it started. During this flight, the visible part of the city gets smaller and smaller.

5.11.5 Camera Path in Scene PPB5

The annotated red path in Figure 5.25 is used for the camera movement for measurements in
the Scene PPB5. The same camera path is also used for the Scene PP. Starting with a
view that fully contains the Power Plant model, the camera moves forwards while turning to the
right. At position 29 s, the camera looks into the direction of the chimney. From there, it moves
behind the Power Plant building and circles it, while looking at it. Between 44 s and 53 s, the
path gains height. It then leads straight towards the chimney until the waypoint at 66 s. Short
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(a) Top view.

(b) Oblique view.

Figure 5.23: Camera path inside the Scene PP256. The numbers denote the waypoints’ times in
seconds on the path.
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(a) Top view.

(b) Oblique view.

Figure 5.24: Camera path inside the Scene P. The numbers denote the waypoints’ times in
seconds on the path.
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(a) Top view.

(b) Oblique view.

Figure 5.25: Camera path (red) and animation path (blue) inside the Scene PPB5. The
numbers denote the waypoints’ times in seconds on the path.
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before reaching it, it begins to turn right and passes the chimney on the left side. Because of the
turning, the Power Plant building enters the view frustum at approximately 76 s again. At 92 s,
the camera looks at the top of the chimney and moves backwards. From 103 s until the end at
117 s, the camera moves to the left, while looking at the Power Plant model.

The five animated Boeing 777 models are flying on a helix path, shown in blue in Figure 5.25,
around the chimney of the Power Plant. The inner helix with smaller radius leads the planes
upwards. When the topmost point of the path is reached, the planes fly downwards on the outer
helix with larger radius. The path is a cycle, so that the planes start over when they reach the
end of the outer helix at the bottom and fly upwards again. The images in Figure 5.25 show the
starting positions for the five Boeing 777 models.

5.12 Other Occlusion Culling Algorithms for Comparison

To be able to compare SVS’s results to the results of other algorithms, two state-of-the-art
occlusion culling algorithms are used: The first is the Coherent Hierarchical Culling Revisited
(CHC++) online occlusion culling algorithm [MBW08]. The second is the Adaptive Global
Visibility Sampling (AGVS) [Bit+09] that is a preprocessed visibility algorithm. These algorithms
were implemented in PADrend. For both algorithms, the same scene graph as for SVS is used.
This means, all visibility tests, independent of the occlusion culling algorithm, are executed on
the same set of objects.

In the following sections, the measured results of both algorithms are compared to SVS’s
results: For image quality measurements in Section 5.13, only AGVS is used, because CHC++
always renders a correct image. For performance measurements in Section 5.14, CHC++ as well
as AGVS is used.

First, CHC++ (Section 5.12.1) and AGVS (Section 5.12.2) are described. Following, the prepro-
cessing of a scene by AGVS is compared to SVS’s preprocessing of that scene (Section 5.12.3).

5.12.1 Coherent Hierarchical Culling Revisited (CHC++)

The CHC++ algorithm is a conservative culling algorithm that does not suffer from missing
objects in the rendered image like SVS does. It uses hardware-accelerated occlusion queries to
determine the visibility of objects at runtime. These queries are not directly executed for the
objects, but for the bounding boxes of the nodes in the scene graph. If a query result tells that
an inner node is invisible, the subtree below this node does not need to be traversed, because
all objects in this subtree will also be invisible. To achieve a high rendering performance when
using occlusion queries in general, the main challenge is the execution of the occlusion queries
without having to wait for their results. CHC++ applies many sophisticated measures to prevent
idle waiting periods. As one important measure, it takes advantage of temporal coherence and
remembers the previous visibility status of nodes. CHC++ is chosen, because it works well
for many different scene types without the need for manual fine tuning of parameters. SVS is
compared to an online occlusion culling algorithm to reveal the strengths and weaknesses of both
types of algorithms. In the end, this allows the identification of regions in a scene where the
usage of one of those two types of algorithms is advisable (see Section 5.14).
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Figure 5.26: 32 × 32 × 32 grid of view cells that were used for AGVS in the Scene PP4. The
chimneys of the four Power Plant models stick out of the view cells. Each view cell
is colored depending on the number of triangles potentially visible from its region:
green denotes few potentially visible triangles, red denotes many potentially visible
triangles.

5.12.2 Adaptive Global Visibility Sampling (AGVS)

The AGVS algorithm is a preprocessed visibility algorithm that works on a given set of view
cells. In contrast to SVS, the visibility is not determined by using rasterization, but by casting
rays against the geometry of the scene. The rays are created from random samples. During the
preprocessing, AGVS uses five different random sample distributions to generate these samples.
The sample distribution that is used to generate a sample is itself also randomly selected. The
probability to select a sample distribution depends on the amount of new visibility information
that samples from this distribution contributed in the past. Every sample has an origin and
a direction. For each sample, beginning at the sample’s origin, a forward ray is cast into the
sample’s direction and a backward ray is cast into the sample’s reverse direction. For each ray
that hits an object, the given view cells are intersected by that ray. The object that was hit is added
to the PVSs of the intersecting view cells. AGVS estimates the error of its current visibility data
and stops the preprocessing when this error drops below a threshold.

The AGVS algorithm has been selected, because – according to its authors – it is able to process
complex scenes in a short time. It is a preprocessed visibility algorithm as SVS, but uses view
cells, whereas SVS uses direction-dependent visibility. The comparison of SVS and AGVS shall
reveal advantages and disadvantages of this new kind of visibility data storage for complex scenes.

5.12.3 Preprocessing of Scene PP4 by AGVS

Since there is no source code publicly available for AGVS, it has been implemented in PA-
Drend from scratch. This implementation is much slower compared to the numbers given by
AGVS’s authors. Due to long preprocessing times, only the Scene PP4 was preprocessed with
this implementation of the AGVS algorithm. The preprocessing of this scene by AGVS took
1223.555 minutes, which is over 20 hours and 23 minutes. In contrast to the original algorithm,
which uses a special technique [MBW06] to generate the view cells, 32,768 view cells arranged
in a 32 × 32 × 32 grid were used. The region that is subdivided by the view cells was chosen
to contain the camera path of this scene (defined in Section 5.11.2). These view cells can be
seen in Figure 5.26. The preprocessing was stopped when the pixel error that is estimated by
AGVS dropped below 100 pixels in a 1024 × 1024 pixels image. The naive, single-threaded ray
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caster that is implemented in PADrend was able to shoot 3288–3553 rays per second. The authors
of AGVS stated that their ray caster is able to shoot between 100,000 and 1 million rays per
second depending on the scene on a machine with eight CPU cores. When using the average
number of rays per second for both ray tracers, PADrend’s ray caster is 550000/3420.5 ≈ 160.8
times slower. When using this factor to divide the total preprocessing time of AGVS, it is reduced
to 7.6 minutes. In comparison, SVS needed only 0.702 minutes to preprocess this scene. To store
the view cells and the visibility data generated by AGVS, 1652.601 MiB of memory are required.
SVS’s data requires 13.874 MiB for the Scene PP4. Even if the implementation of AGVS is
worthy of improvement, the comparison of both algorithms concerning the preprocessing time
and the amount of memory required for the visibility information shows that SVS is superior in
both aspects. In terms of the preprocessing, SVS’s direction-dependent visibility information
seems to be better suited for handling complex scenes than the traditional view cell approach.

5.13 Image Quality

To evaluate an approximate occlusion culling algorithm for practical usage scenarios, it is not
enough to only measure the quality of the approximation of the exact visible set. It is more
important to determine how severe missing objects appear in the rendered image. For measuring
this severity, the human perception has to be taken into account.

In order to quantify the image quality for many positions on a camera path, an automatic
technique is needed. Here, for the measurements the structural similarity (SSIM) [Wan+04]
is calculated. It compares an image rendered by SVS to a correct image that is displayed by
the z-buffer algorithm with frustum culling. The rendered images have a resolution of 1280 ×
720 pixels. The SSIM technique detects changes in the structure of an image by comparing the
pixel neighborhoods of all pixels in the two images. An SSIM value of one means that the images
are equal. Relative ratings (e.g., image A looks better than image B), as produced by using SSIM,
aligns better with human perception than non-structure-oriented techniques like PSNR [for a
discussion, see WB09].

Sometimes, errors that are small compared to the dimensions of the image, like noise or
aliasing artifacts, are given a rather large weight when using SSIM, because they look like
structural differences in the image. To reduce the weight of such errors, additionally an image
pyramid [Bur81] is used. SSIM is calculated for the full-size images and for multiple versions
with halved resolution. Small artifacts are filtered out by the reduction of the resolution. The
arithmetic mean of the multiple SSIM calculations for the different resolutions is used as final
image quality value.

To relate the image quality that is quantified by SSIM with the quality of the visibility informa-
tion, the underestimation of the exact visible set is measured for the positions on the camera path.
As for the other measurements in this chapter, the visible size of the objects in the underestimation
set is summed and expressed as image part of missing objects in parts per million.

5.13.1 Image Quality Results for Scene PP4

The charts in Figure 5.27 show the measurements for the Scene PP4. When comparing SVS’s
results in both charts, it is noticeable that the lows in the image quality do not always correspond
to highs in the image part of missing objects. For SVS’s low in image quality at approximately
2 s, there is a corresponding high in the image part. But, for the low shortly after 40 s in the

65



5 Evaluation

0.998

0.999

1.000

0 10 20 30 40 50 60
Camera Path (s)

Im
ag

e 
Q

ua
lit

y

Renderer
SVS
AGVS

0

1000

2000

3000

4000

0 10 20 30 40 50 60
Camera Path (s)

Im
ag

e 
pa

rt 
of

 m
is

si
ng

 o
bj

ec
ts

 (p
pm

)

Figure 5.27: Image quality and quality of visibility information measured over the camera path
in Scene PP4.
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Figure 5.28: Image showing the objects in black that were missed by SVS. It has been produced
from two screen shots that were taken at the position with worst image quality
(position 2.1 s) on the camera path in Scene PP4. The rendered image has been
brightened to increase the perceptibility of the black areas.

upper chart, there is no match in the lower chart. This emphasizes the importance of performing
image quality measurements on the rendered images. Except for very few positions, SVS’s image
quality stays above 0.999. The experience shows that values as high as these indicate that there is
nearly no error visible in the image.

AGVS provides an even better image quality than SVS. AGVS’s image quality is always above
0.9995. Also, the image part of missing objects is smaller than the one of SVS for almost all
positions.

Here, the quality of the visibility information, and as a result the image quality, could be
improved by providing more preprocessing resources to the algorithm. If the threshold for
terminating AGVS’s preprocessing was lowered, the preprocessing would run longer, but more
visible objects could be detected. If the number of sample points and the image resolution for
visibility testing for SVS’s preprocessing would be increased, the preprocessing time would
also be increased, but the amount of underestimation would be decreased (see Section 5.3 and
Section 5.7).

For the Scene PP4, a minimum image quality value of 0.997368 for SVS has been measured at
position 2.1 s. For this position, Figure 5.28 shows the rendered image by SVS with the missing
objects highlighted in black. Please note that by highlighting the objects in the images in this way,
the errors appear much more prominent than they are perceived when looking at the rendered
image. There are three larger clusters of black areas that arise from objects that are missing from
the foremost Power Plant model. They can be perceived as distracting changes when comparing
SVS’s rendering to the original image created by the z-buffer algorithm. When looking only at
SVS’s image, they do not stand out and are noticed only when looking at the image very carefully.
Further objects are missing from the two Power Plant models in the back, but their visible size is
so small that they are hardly visible on the image. All in all, the image errors are rather small and
the overall worst image quality that was measured on the camera path is acceptable.
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5.13.2 Image Quality Results for Scene PP256
Figure 5.29 contains the charts depicting the measured results for Scene PP256. Here, a correlation
between the image quality and the image part of missing objects becomes obvious when comparing
both charts. Until approximately 3 s, the camera moves towards the scene and the outermost
visibility sphere is queried for visibility data. The image quality decreases, because the visible
size of missing objects increases with decreasing distance to the camera. Then, the camera enters
the sphere and smaller visibility spheres are used that provide visibility data that is more exact.
Between 12 s and 23 s, the camera pans and several Power Plant models are still far away. This
leads to the lowest image quality, as explained below. During the end of the path, the camera
focuses a single Power Plant building. Relatively small visibility spheres are used and the image
quality is very high: most of the time at least 0.9995.

The minimum image quality with an value of 0.997684 occurred at 20.45 s on the camera path
in Scene PP256. In Figure 5.30, an image at this position with the missing objects highlighted
in black is shown. In the foreground, there are only very small black areas created by objects
that are missing from the Power Plant buildings in the three rightmost rows of models. Since
the camera is standing inside the large sphere that contains these rows, smaller spheres are used
to provide the visibility data. In the upper left part of the image, several black areas are visible
at the Power Plant models that stand in the rows that are further away. For these rows, a large
visibility sphere is used, because the camera is standing outside of this sphere. Due to the large
size of the sphere and the limited image resolution during preprocessing, small objects are missed
during the visibility sampling. Overall, the erroneous areas are small, appear in the far zone of the
scene, and do not hinder the perception of the silhouette of the model. Therefore, the maximum
degradation of the image quality by SVS for this scene is fortunately quite small.

5.13.3 Image Quality Results for Scene P
The values measured for the camera path in Scene P are visualized in the charts in Fig-
ure 5.31. Here again, the two charts show similarities (e.g., at 1.5 s, 21 s, 29 s, 139 s). Over the
camera path, the measured values fluctuate much. During the flight over the city scene, even small
changes in the position of the camera can lead to large changes in the visibility. Furthermore,
discontinuities emerge when the camera enters a visibility sphere. Most of the time, the measured
image quality value is above 0.99.

At position 139.4 s, the minimum image quality value of 0.97963 was measured. This value is
significantly smaller than the value measured for the previous two test scenes. There are three
other positions where the image quality value drops below 0.985. In Figure 5.32, the missing
objects for the worst position can be seen as black areas. There are only very little errors in the
foreground. The largest errors occur in the middle left and top left parts of the image. The missing
objects are parts of the road and lower parts of walls. Most likely, these parts were occluded
by parts at a greater height, e.g., roofs, during the visibility sampling. When a visibility sphere
for multiple houses is created and preprocessed, a situation with such an occlusion cannot be
prevented. Unfortunately, the missing objects are quite distracting for a human viewer. However,
situations with such a low image quality occur only seldom on the camera path.

5.13.4 Image Quality Results for Scene PPB5
Figure 5.33 shows the charts for Scene PPB5. The image quality is very high, with exceptions
between 40 s and 50 s, 69 s, and 77.8 s. In the interval between 40 s and 50 s, the camera is near
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Figure 5.29: Image quality and quality of visibility information measured over the camera path
in Scene PP256.
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Figure 5.30: Image showing the objects in black that were missed by SVS. It has been produced
from two screen shots that were taken at the position with worst image quality
(position 20.45 s) on the camera path in Scene PP256. The rendered image has been
brightened to increase the perceptibility of the black areas.

the building of the Power Plant model and faces it. If an object inside the building is missing,
the image quality will drop, because the object is near the camera and therefore large in visible
size. Beginning at 60 s, the camera is approaching the chimney that is circled by the Boeing 777
models. Sampling errors that are contained in their visibility spheres have a higher influence
when the camera is near them. At position 77.8 s, the camera’s distance to a Boeing 777 is small
and therefore the image quality drops.

The worst image quality on the camera path in Scene PPB5 with a SSIM value of 0.974627
has been measured at position 77.8 s. The view at this position is depicted in Figure 5.34. At this
position, one of the Boeing 777 models is close the camera. A second model is visible, but it is
located further away. Furthermore, parts of the Power Plant model can be seen. For example,
the chimney occupies a large part of the image. The missing objects that are shown in black are
located inside the hull or at the hull of the Boeing 777 models. Overall, many small details might
be missing, but the overall model can be recognized. To sum up, notwithstanding the missing
small objects of the highly detailed Boeing 777 models, the most important objects are rendered
by SVS even in the worst case on the camera path.

5.13.5 Conclusion

By looking at the image quality of the different test scenes, it can be concluded that SVS’s
rendering provides a decent image quality. Even in the worst cases on the camera paths, SVS
does not miss important objects. Sometimes, objects that are small on the screen are missing.
They represent details of the models, or are in areas that are far away from the camera. The scene
can always be recognized and no important structural parts are missing.
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Figure 5.31: Image quality and quality of visibility information measured over the camera path
in Scene P.
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Figure 5.32: Image showing the objects in black that were missed by SVS. It has been produced
from two screen shots that were taken at the position with worst image quality
(position 139.4 s) on the camera path in Scene P. The rendered image has
been brightened to increase the perceptibility of the black areas.

5.14 3D Rendering on Workstations

In this section, SVS is used for the 3D rendering in a walkthrough situation on a workstation. It
is examined if SVS is capable of rendering the test scenes at interactive frame rates. Furthermore,
measurements with other renderers are also executed to compare their performance to the one of
SVS. For the comparison, the rendering times and the number of triangles that they send to the
graphics pipeline are measured. This comparison makes the identification of scene regions possi-
ble, in which SVS is most beneficial concerning the rendering performance. The measurements
are executed with a resolution of 1280 × 720 pixels.

The renderers used in this section are Spherical Visibility Sampling (SVS), Coherent Hierarchi-
cal Culling Revisited (CHC++), Adaptive Global Visibility Sampling (AGVS), and brute-force
rendering with frustum culling (FC). The charts showing the number of rendered triangles addi-
tionally contain the number of triangles of the objects in the exact visible set (EVS). In the charts,
the measured values for SVS are shown in green, for CHC++ in blue, for AGVS in purple, for FC
in brown, and for EVS in gray, as also shown in the legends of the charts.

For the time duration measurements in this section, the traversal of the camera path is repeated
ten times. The charts presented here show a dot for every measuring point. This dot represents
the median of the values measured at the corresponding position on the camera path. A thin
vertical line through every dot ranges from the lower quartile (0.25 quantile) of the measured
values to the upper quartile (0.75 quantile). This line is not visible for most of the dots, because
there is no large fluctuation in the measurements. The dots are connected by a thin line to improve
the readability of the chart.
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Figure 5.33: Image quality and quality of visibility information measured over the camera path
in Scene PPB5.
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Figure 5.34: Image showing the objects in black that were missed by SVS. It has been produced
from two screen shots that were taken at the position with worst image quality
(position 77.8 s) on the camera path in Scene PPB5. The rendered image has
been brightened to increase the perceptibility of the black areas.

5.14.1 Performance Results for Scene PP4

The measurement results for Scene PP4 are depicted in the charts in Figure 5.35. The upper
chart shows the running time of the different rendering algorithms, the lower chart shows the
number of triangles that are sent to the graphics pipeline by the different rendering algorithms.
FC renders all triangles of objects that intersect the view frustum. For that reason, it provides an
upper bound on the number of rendered triangles. The steps in FC’s graph are indicative of the
number of Power Plant models that are in the view frustum for the respective positions. The EVS
contains all objects that are at least partly visible, and therefore provides a lower bound for the
number of rendered triangles for a conservative culling algorithm. Of course, this is true only
when a binary decision to display or not to display an object is to be taken. If the decision was to
be taken for a single triangle, the numbers would look differently.

When looking at the performance, as expected, FC needs the longest time for rendering.
Following, the performance of AGVS is considered and compared to SVS’s performance. Then,
the same is done for CHC++.

The number of triangles that is sent to the graphics pipeline by AGVS is not much lower than
the one of FC for large parts of the camera path. When compared to the values of the EVS, it
becomes obvious that not much geometry is culled by using the data from the PVSs of the view
cells. This means that the overestimation in the view cell’s region is quite high. On the one hand,
this leads to little underestimation and good image quality (see Section 5.13.1). On the other
hand, the rendering performance is not very high. In some parts of the camera paths, AGVS is
faster than CHC++ (e.g., in the beginning, and between 35 s and 40 s). In most other parts, it is
slower than the CHC++. On this camera path, AGVS is never faster than SVS. In 75 % of the
path, SVS is at least three times faster than AGVS.

There are two intervals where CHC++ is faster than SVS. Between 34 s and 35 s, the camera is
inside of one of the Power Plant buildings. Much geometry is near the camera and CHC++ is
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Figure 5.35: Frame duration (upper chart) and number of rendered triangles (lower chart) over
the camera path in Scene PP4.
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able to cull much of the hidden geometry with only few tests. In the interval between 41 s and
43 s, the camera looks towards a part of the Power Plant that hides nearly the whole scene. Here,
again, CHC++ is able to issue only few tests to cull nearly the whole scene. These regions, with
geometry near to the camera, are better suited for CHC++ than for SVS. The other part of the
camera path, where the buildings are seen from the outside, SVS is faster than CHC++. In these
parts, CHC++ renders more triangles and has the additional costs of executing the occlusion
queries. SVS makes use of the precomputed visibility for the buildings and has nearly no runtime
overhead. In more than 50 % of the camera path, SVS is 2.4 to 3.3 faster than CHC++. Due
to of the powerful graphics hardware, an interactive walkthrough is possible with all rendering
algorithms, even without occlusion culling.

5.14.2 Performance Results for Scene PP256

The charts in Figure 5.36 summarize the measured values for Scene PP256. Please note the
logarithmic scaling of the vertical axis of both charts. In this scene, except at the end of the path,
there are no occluders that are near to the camera. Therefore, CHC++ has to perform many tests
(e.g., multiple tests for each of the 256 Power Plant buildings at the beginning of the path). The
lower chart shows that CHC++ is able to cull many objects, but, when looking at the upper chart,
it becomes obvious that the costs of the tests lead to a performance that is only slightly better
than FC’s performance.

Especially the beginning of the path is a prime example for SVS: Multiple complex, nested
objects have to be rendered while standing far away. SVS can use its preprocessed visibility data
and send only the potentially visible objects to the graphics pipeline very fast. When looking at
the first 2 s of the camera path, the median rendering times are 2073.0 ms for FC, 1280.0 ms for
CHC++, and 198.8 ms for SVS. SVS is an order of magnitude faster than FC, and over six times
faster than CHC++. With approximately 5 frames per seconds, SVS is not fully interactive, but
much better than the other two renderers. To reduce the frame duration at the cost of decreased
image quality, SVS’s budget rendering is applied to the Scene PP256 and the results are presented
in Section 5.15.1.

The order of the renderers with respect to the frame duration stays the same over the whole
camera path, but the advantages of SVS decrease to the end of the path. Beginning from 36 s,
where only a single Power Plant building is located in the view frustum, FC’s running time
median is 8.631 ms, CHC++’s is 4.858 ms, and SVS’s is 2.373 ms.

5.14.3 Performance Results for Scene P

For the Scene P, the measured values are shown in the charts in Figure 5.37. The frame
duration chart shows that occlusion culling is reasonable even when flying over the city, because
both occlusion culling algorithms have much lower frame durations compared to rendering with
frustum culling only. One exception is the interval between 77 s and 82 s, were the CHC++
renderer requires more time than frustum culling. In this interval, only a little part of the scene
is in the frustum and the tests executed by the CHC++ renderer at runtime take more time than
the time saved by sending less geometry to the graphics card. When comparing SVS to CHC++,
it can be seen that SVS is always faster than the CHC++, except for a very small part of the
path at 101 s. In 75 % of the camera positions on the path, CHC++ needs at least 1.39 times the
running time of SVS; in 50 % it needs at least 1.63 the time, and in 25 % it even needs at least 1.95
the running time of SVS. This is especially interesting when looking at the number of rendered
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Figure 5.36: Frame duration (upper chart) and number of rendered triangles (lower chart) over
the camera path in Scene PP256. Both vertical axes have logarithmic scaling.
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Figure 5.37: Frame duration (upper chart) and number of rendered triangles (lower chart) over
the camera path in Scene P. Both vertical axes have logarithmic scaling.
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triangles, because in this scene, SVS sends always more triangles to the graphics pipeline than
CHC++. For SVS, the smaller runtime overhead due to the nonexistent need to perform occlusion
queries compensates the larger overestimation of the exact visible set. Unfortunately, even when
using SVS, the frame rate sometimes drops below 5 frames per seconds, which cannot be declared
as interactive anymore. The large amount of visible objects and the extensive usage of textures
brings the graphics hardware to its limits. To circumvent this problem, approximate rendering
could be applied. One possibility is the usage of SVS’s budget rendering feature, which is tested
with the Scene P in Section 5.15.2.

5.14.4 Performance Results for Scene PPB5

In contrast to the previous scenes, for the Scene PPB5 the camera path has been traversed
30 times. This was done, because the fluctuation of the measured values was larger. Probably, this
is because of the size of the scene’s geometry that is much larger (> 8 GiB, see Table 5.4) than
the graphics memory (the graphics card has 2048 MiB memory). Therefore, during a frame, the
graphics library might decide to transfer additional data from the main memory to the graphics
memory, which leads to a prolonged frame duration. When repeating the measurement, this may
happen unpredictable for a frame, and the measured frame duration will sometimes be longer and
sometimes be shorter.

The results of the measurements for Scene PPB5 are depicted in the charts in Figure 5.38.
The first part of the path is again very well suited for SVS: The Power Plant model and the five
Boeing 777 models are visible from outside and are not near to the camera. In the first 30 s of
the path, the median running time of SVS is 169.7 ms, of CHC++ it is 1814.0 ms, and of FC it is
3027.0 ms. The median of triangles displayed per frame by SVS is 159.3 million and by CHC++
102.8 million. FC displays the whole scene with its 1.698 billion triangles. Here again, even
when SVS displays more triangles than CHC++, the frame duration is much lower. SVS is over
ten times faster then CHC++ in the first part of the path.

The situation changes completely when the camera moves behind the Power Plant building,
where CHC++ becomes much faster, e.g., at 40 s. There is still much of the geometry in the
frustum, but the models hide each other. CHC++ displays the building in the foreground and
is able to detect quickly that the Boeing 777 models are hidden behind the building. SVS does
not perform occlusion queries during runtime and has no visibility sphere above the planes or
the building in the scene graph, because of the special scene structure due to the animations.
Therefore, it has no possibility to detect the occlusion of the planes and displays them by using
their visibility spheres.

Between 60 s and 90 s, the camera is near the Boeing 777 models. SVS and CHC++ render
approximately the same amount of triangles. In a few cases, CHC++ is much faster than SVS, the
rest of the time, SVS is faster. The end of the path looks like the beginning did. Looking at all
traversals of the camera path, the frame rate achieved by SVS’s renderer is higher than 5 frames
per second in more than 98 % of the measurements.

5.14.5 Conclusion

The results have shown that SVS is able to efficiently perform occlusion culling in highly complex
scenes. By using its preprocessed visibility information, it is able to significantly speed up the
rendering compared to the CHC++ online occlusion culling algorithm. This works even when
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Figure 5.38: Frame duration (upper chart) and number of rendered triangles (lower chart) over
the camera path in Scene PPB5. Both vertical axes have logarithmic scaling.
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SVS sends more triangles than CHC++ to the rendering pipeline. Due to the large overestimation
of AGVS, SVS is also much faster than AGVS.

Regions that are most suitable for SVS were identified. As SVS exploits the occlusion of nested
objects, it works best with those kinds of objects (e.g., the Power Plant model and the Boeing 777
model). SVS also works for scenes with high depth complexity, but with little or no nesting at all,
like Scene P, but the performance gain is lower. In such a scene, the view onto the scene is
important: For a flight over the scene, were many objects are visible, it works quite well. Inside
the streets, with large occluders near the camera, the CHC++ is faster. A similar situation was
observed in Scene PP4. Consequent, SVS works better if the viewer is viewing the objects from
far away than if the viewer is standing inside or near the objects.

5.15 Budget Rendering

In the following, the budget rendering feature of SVS is evaluated. The evaluation will show that
this feature can be used to trade rendering time off image quality. By limiting the number of
triangles that the rendering algorithm is allowed to send to the graphics pipeline, the running
time is indirectly limited at the cost of missing objects that lead to errors in the rendered image.
In the following, the budget rendering feature is evaluated by using it in the Scene PP256 and in
the Scene P, because interactive frame rates were not achieved over the whole camera path
(see results in Section 5.14.2 and Section 5.14.3).

5.15.1 Performance and Quality Results for Scene PP256

The charts in Figure 5.39 show the running times, the number of rendered triangles, and the
image quality for the Scene PP256. The measured data for the SVS renderer without budget
is the same as in Figure 5.36. For the budget renderer, a budget of 100 million triangles and a
budget of 10 million triangles was used. When looking at the number of triangles that were sent
to the graphics pipeline (middle chart), it can be observed that SVS always adheres to the given
triangle budget. A look at the chart showing the frame duration (top chart) reveals, as expected,
that the reduced number of triangles results in a reduced frame duration. In the intervals of the
camera path, in which a reduced number of triangles is rendered by the budget renderer, the frame
duration is much lower. For the setting of 100 million triangles, the reduction in triangles is
roughly the same as the reduction in frame duration. For the lower setting of 10 million triangles,
the reduction in frame duration is not as large as the reduction in triangles. This is due to the fact
that for such a low number of triangles, the bottleneck is no longer the triangle throughput of the
graphics hardware, but probably the instructions executed by the CPU to prepare the objects to
be sent to the graphics pipeline.

The image quality (bottom chart) is not changed by the budget rendering feature in the parts of
the camera path without reduction of the number of rendered triangles (e.g., between 65 s and
85 s). In the other parts, where the number of rendered triangles is reduced, the image quality
decreases. The minimum value 0.962995 was measured at 17.1 s. At this point, the missing
objects can be seen in the rendered image. Nevertheless, the image quality is still acceptable,
when keeping in mind that the number of rendered triangles is reduced to less than a tenth of
SVS’s standard rendering.
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Figure 5.39: Frame duration, number of rendered triangles, and image quality over the camera
path in Scene PP256. SVS renderer without budget rendering, with a budget of
100 million triangles, and a budget of 10 million triangles. Vertical axes in the first
and second chart have logarithmic scaling.
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Figure 5.40: Frame duration, number of rendered triangles, and image quality over the camera
path in Scene P. SVS renderer without budget rendering, with a budget of
10 million triangles, and a budget of 5 million triangles.
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5.15.2 Performance and Quality Results for Scene P

The results for Scene P are depicted in the three charts in Figure 5.40. The data for the
SVS standard renderer is the same as in Figure 5.37. Here again, it can be observed that the
number of rendered triangles is successfully limited to the budgets of 10 million triangles and
5 million triangles, respectively. On the one hand, as a positive effect, the frame duration is also
decreased. On the other hand, the image quality is decreased as a negative effect. On the camera
path at 29.5 s, the minimum image quality value 0.895748 was observed, which is not very good
anymore. Here, only a reduction with a budget of 10 million triangles should be used.

5.15.3 Conclusion

SVS’s budget rendering feature works as expected: It is able to limit the number of rendered
triangles successfully and, by this means, to decrease the time required for the rendering. Because
potentially visible objects are left out in this process, a noticeable decrease of image quality is
observed. The triangle budget can be interactively changed by the user and the effect is observable
immediately. Therefore, the feature can be used easily to decide between high frame rates and
good image quality at runtime. The user does not have to make a binary decision, but can set the
triangle budget at will.

5.16 3D Rendering on Mobile Devices

For graphics programming on mobile devices, the standard software library is OpenGL ES
(“Open Graphics Library for Embedded Systems”). OpenGL ES 2.0 [Khr07] was released
in 2007 and many devices that run the Android operating system support it nowadays. As a
problem in the scope of 3D rendering with occlusion culling, OpenGL ES 2.0 lacks support
for hardware-accelerated occlusion queries. Due to this missing feature, many modern online
occlusion culling algorithms – like the CHC++ – cannot be used on mobile devices that support
only OpenGL ES 2.0. These occlusion queries were introduced with OpenGL ES 3.0 [Khr12] in
2012. Android 4.3, released in July 20137, provides support for OpenGL ES 3.0. At the time of
this writing, there are only very few devices that support OpenGL ES 3.0.

Because currently online occlusion culling algorithms cannot be used on most mobile devices,
rendering of complex scenes with high depth complexity is difficult on those devices. SVS
provides a way out here, because it does not require hardware-accelerated occlusion queries at
runtime. The preprocessing can be executed on a workstation and the generated data, which is
small in size (see Section 5.9), can be copied to a mobile device. The following evaluation was
performed to demonstrate that SVS provides occlusion culling on mobile devices supporting
OpenGL ES 2.0.

5.16.1 Mobile Devices and Software Implementation

For the measurements in this section, two mobile devices were used. The first one is an ASUS Eee
Pad Transformer Prime TF201 (NVIDIA Tegra 3 with 4 × 1.3 GHz, 1 GB RAM, display resolution
1280 × 800 pixels, Android 4.1.1). This device is called tablet in the following. The second
mobile device, called smartphone from now on, is a Google Galaxy Nexus (GT-I9250, Texas

7http://android-developers.blogspot.de/2013/07/android-43-and-updated-developer-tools.html
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Instruments OMAP 4460 with 2 × 1.2 GHz, 1 GB RAM, display resolution 1280 × 720 pixels,
Android 4.3).

As part of this work, some of the main C++ libraries of PADrend have been ported to the
Android operating system. The main work was adding an abstraction layer for the graphics library
and adding support for OpenGL ES 2.0. A small Android project was created that provides the
graphical user interface and wraps the calls to the C++ libraries.

When using the Android devices, the memory that can be used by an application is much lower
than the overall 1 GB that are provided by the hardware. Much of the memory is reserved for the
Linux kernel or used by the operating system. About at most half of the memory is free to be
used by an application. Furthermore, the devices do not have dedicated graphics memory, which
is available on graphics cards for PCs. Due to the restricted memory on the mobile devices, only
the smallest test scene – Scene PP – can be used.

When loading the Scene PP on the smartphone with the initial implementation, out-of-memory
errors occurred. To circumvent this problem, vertex buffer objects (VBOs) were deactivated
on the smartphone. Since there is no dedicated graphics memory on the mobile devices, one
might think that this does not lead to a big performance decrease. But, measurements on the
tablet comparing activated and deactivated VBOs showed that the performance decreases by
approximately a factor of ten. Therefore, the measurement results for the smartphone can be
used to compare the different algorithms relative to each other, but the absolute running times are
much too high. A side effect that was observed when deactivating the VBOs was the reduction of
the fluctuation of the measured frame times.

5.16.2 Rendering Performance with and without Budget Rendering

Because the measured times fluctuate by a considerable amount on the mobile devices, the
measurements have been repeated for every setup by traversing the camera path 50 times on
the tablet and 30 times on the smartphone. The charts in Figure 5.41 show the running time for
both devices and the amount of geometry that was sent to the graphics pipeline. Since the chart
showing the number of rendered triangles looks the same for the tablet and the smartphone, only
a single chart is shown here.

In the first part of the camera path between 0 s and 55 s, the building of the Power Plant model is
inside the frustum. By using SVS instead of only frustum culling, occlusion culling is additionally
applied and the amount of triangles that is sent to the graphics pipeline drops from over 12 million
to around 3 million. For that reason, the frame duration drops alike from around 600 ms to below
200 ms on the tablet. On the smartphone, they drop from 7000–8000 ms when using frustum
culling to 1400–2000 ms when using SVS. This shows that SVS can successfully be applied on a
mobile device to enable occlusion culling rendering and to greatly improve the performance.

The budget rendering feature can be used to further increase the rendering performance at
the cost of the image quality, as already examined before. The budget was set to 1.5 million
triangles, 1 million triangles, and 500,000 triangles. The chart showing the number of rendered
triangles shows that the given triangle budget is always kept. There is no position were more
than the given number of triangles is rendered. Furthermore, when there is enough geometry
inside the frustum, the number of rendered triangles is more or less the same as the given budget.
In the camera path segments where the number of rendered triangles significantly drops by
using the budget rendering, the frame duration is also decreased. In the segment with only little
geometry inside the frustum, between 55 s and 75 s, the additional overhead introduced by the
budget rendering increases the frame duration compared to SVS without budget rendering. In
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Figure 5.41: Frame duration measured on the tablet (top), number of rendered triangles (middle),
and frame duration measured on the smartphone (bottom) over the camera path in
Scene PP.
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this segment, rendering using the SVS is a little bit slower than using frustum culling only. This
is due to the additional overhead of accessing spheres and interpolation visibility information
when there is only little geometry that is finally rendered. But the performance decrease is only
small, and it is negligible compared to the performance gain in the path segments with much
geometry inside the frustum.

5.16.3 Conclusion
In summary, SVS can be used on mobile devices to perform occlusion culling. When there is
much occlusion for the current view, the performance gains are very high, e.g., more than a factor
of five at the beginning and at the end of the camera path. The budget rendering feature can be
used by the user to trade rendering performance off missing objects in the rendered image.
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6 Conclusion

Spherical Visibility Sampling uses direction-dependent visibility to exploit the occlusion that is
inherent in 3D scenes containing nested objects. SVS does not require view cells and, therefore,
provides a very efficient way to use preprocessed visibility (see Section 5.10).

The rasterization used in SVS’s preprocessing has the effect of filtering out unimportant objects.
These unimportant objects are missing in the rendered image, but many objects can be culled,
and therefore the rendering performance is much higher compared to using geometric visibility
tests based on ray casting (see Section 5.14).

SVS works well for spacious scenes with many visible objects, which are particularly challeng-
ing for existing region-based preprocessed visibility techniques as well as online occlusion culling
algorithms. The existing preprocessed visibility techniques have to decide on the granularity
for their view cells to trade quality of the visibility information off memory consumption. The
online occlusion culling algorithms suffer from a runtime overhead for executing many occlusion
queries for the visible objects.

By using the direction-dependent visibility information, SVS allows real-time rendering of
highly complex 3D scenes that contain billions of triangles and millions of objects. If the number
of visible objects is still too high after applying occlusion culling, SVS’s budget rendering
feature can be used to leave out unimportant objects at the cost of decreased image quality (see
Section 5.15).

SVS’s lightweight runtime requirements enable the application of occlusion culling even on
mobile devices (Section 5.16). A ready-to-use implementation of SVS is available in PADrend,
and can easily be applied in practice.

The following sections describe SVS’s flexibility to tune the accuracy of its visibility information
(Section 6.1) and give an outlook on future work (Section 6.2).

6.1 Accuracy of the Visibility Information

The evaluation in Chapter 5 showed that there are several parameters that can be used to tune the
accuracy of the visibility information generated by SVS. Parameter values have been presented
that are reasonable in practice. Nonetheless, SVS is flexible enough to allow other parameter
values to increase its accuracy for other use cases.

The visibility tests during the preprocessing (see Section 3.5) are based on the rasterization of
pixels and thus small objects might be missed although they are geometrically visible. By using
a higher image resolution, the accuracy can be increased at the expense of a longer preprocessing
time.

In some cases, the union of three sample points used by the M3 interpolation (see Section 4.2)
creates a potentially visible set that strongly overestimates the exact visible set. This happens,
for instance, when the situation between the sample points completely changes from few visible
objects (e.g., viewer inside the streets of a city) to many visible objects (e.g., viewer above a city).
In other cases, the potentially visible set is underestimated, because visible objects are missed
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during preprocessing (e.g., when the viewer cannot look through a window while standing at
each sample point, but can look through it in between; see Section 3.4). The underestimation
and overestimation are large, when there are large discontinuities in visibility between the three
sample points that are used for the interpolation. A higher number of samples on the sphere
surface leads to a higher accuracy, but again to higher storage space and running time (see the
evaluation in Section 5.3). By using a distribution with more sample points, an increased accuracy
is easily achievable.

Finally, the chosen rendering budget (see Section 4.3), which limits the size of the rendered
visible set, directly influences the rendering time and image quality at runtime (Section 5.15).

6.2 Outlook on Future Work
An interesting approach is the combination of SVS with online occlusion culling to improve
SVS’s running time in situations, where occlusion arises from the interaction of objects inside
different visibility spheres: occlusion queries for testing the visibility of these spheres themselves
during runtime could be beneficial. Although, this might improve the rendering time in densely
occluded scenes, it would not work on mobile devices without support for occlusion queries.
Furthermore, it is difficult to keep the additional runtime overhead very small, when adding such
a feature that makes use of occlusion queries.

In order to improve the image quality when using the budget rendering feature, level-of-detail
techniques with multiple resolutions for single objects can be easily integrated into SVS as a
reasonable extension. Instead of completely leaving out less important objects, they could be
replaced by lower resolution versions chosen accordingly to their estimated influence on the final
image.

Although the memory overhead introduced by SVS is already reasonably low in comparison to
other preprocessed visibility approaches (see Section 5.12.3), one could exploit the similarity of
the visible sets of neighboring sample points for compression. Existing compression techniques
for visibility information (e.g., [vS99]) might be expandable to support SVS’s visibility vectors.

Another interesting research direction is the combination of SVS with out-of-core techniques
that store parts of the scene in external memory. SVS’s visibility information could be used for
guiding the loading mechanisms of the out-of-core technique. For example, the objects’ estimated
importance values could be used to prefer the most important objects for loading. Especially for
the rendering on mobile devices, where one major challenge is the memory management, this
could enable the loading of more complex scenes.
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