
Dissertation

Advanced acceleration techniques for
Nested Benders decomposition in

Stochastic Programming

Christian Wolf, M.Sc.

Schriftliche Arbeit zur Erlangung des akademischen Grades
doctor rerum politicarum (dr. rer. pol.)

im Fach Wirtschaftsinformatik

eingereicht an der
Fakultät für Wirtschaftswissenschaften der

Universität Paderborn

Gutachter:
1. Prof. Dr. Leena Suhl
2. Prof. Dr. Csaba I. Fábián

Paderborn, im Oktober 2013

Acknowledgements

This thesis is the result of working for nearly four years at the Decision Support & Opera-
tions Research (DS&OR) Lab at the University of Paderborn. I would like to thank those
people whose support helped me in writing my dissertation.
First of all, I thank my supervisor Leena Suhl for giving me the possibility to pursue a

thesis by offering me a job at her research group in the first place. Her support and guidance
over the years helped me tremendously in finishing the dissertation. I also thank Achim
Koberstein for introducing me to the field of Operations Research through the lecture
“Operations Research A” and the opportunity to do research as a student in the field of
stochastic programming. It is due to his insistence that I decided to write my computer
science master’s thesis at the DS&OR Lab. I am very grateful to have Csaba Fábián as
my second advisor. He not only gave valuable advice but also pointed me towards the
on-demand accuracy concept. Collaborating with him has been both straightforward and
effective.
My present and past colleagues at the DS&OR Lab deserve a deep thank you for the

enjoyable time I had at the research group in the last years. Discussions on scientific topics
were as insightful as our non-work related discussions were humorous. I would like to
thank Corinna Hallmann, Stefan Kramkowski, Daniel Rudolph, and Franz Wesselmann
for their time and patience in discussing implementation details and other problems that
have appeared out of nowhere during the implementation of solver software. I thank my
office colleague Boris Amberg for funny and interesting conversations across two monitors
and for leaving the office to me until lunch.
Last but not least, I thank my family and friends, especially my parents, who believed

in me and supported me. Special thanks go to my wife Pia. Finishing the thesis without
her would have been much more difficult.

Paderborn, October 2013 Christian Wolf

iii

Contents

1. Introduction 1

I. Fundamentals 5

2. Stochastic Programming Preliminaries 7
2.1. Mathematical Programs . 7
2.2. Stochastic Programs . 12

2.2.1. Basic Probability Theory . 13
2.2.2. Two-Stage Stochastic Programs . 14
2.2.3. Multi-Stage Stochastic Programs . 15
2.2.4. Basic Properties . 17

3. Solution Methods 21
3.1. Scenario Tree . 21
3.2. Deterministic Equivalent . 23
3.3. Benders Decomposition . 25
3.4. Lagrangean Relaxation . 29
3.5. Approximative Solution Methods . 31

3.5.1. Exterior Sampling . 32
3.5.2. Interior Sampling . 32
3.5.3. Scenario Tree Generation . 33

II. State-of-the-Art 35

4. Benders Decomposition 37
4.1. Notational Reconcilation . 37
4.2. Aggregates . 38
4.3. Stabilizing the master problem . 41

4.3.1. Regularized Decomposition . 42
4.3.2. Level Decomposition . 43
4.3.3. Trust-Region Method . 44

4.4. Cut Generation . 44
4.5. Solving Similar Subproblems . 45

5. Nested Benders Decomposition 47
5.1. Nested L-shaped method . 47

v

Contents

5.2. Sequencing Protocols . 49
5.3. Parallelization . 54
5.4. Advanced Start . 58
5.5. Stage Aggregation . 58

6. Modeling Languages 61
6.1. Theoretical Concepts . 61
6.2. Practical Examples . 63

7. Required Work 67
7.1. Solver Development . 67
7.2. Modeling Languages . 68

III. Advanced Techniques and Computational Results 71

8. Accelerating the Nested Benders Decomposition 73
8.1. Cut Consolidation . 73
8.2. Dynamic Sequencing . 76
8.3. Parallelization . 77
8.4. Aggregation . 79
8.5. On-Demand Accuracy . 80
8.6. Level decomposition . 83
8.7. Extending techniques to the multi-stage case 86

9. A Modeling Environment for Stochastic Programs 91

10.Computational Results 97
10.1. Test Instances . 97
10.2. Evaluation Techniques . 98
10.3. Implementation Aspects . 100

10.3.1. Implementation . 100
10.3.2. Solving a subproblem . 101
10.3.3. Warm Start . 102
10.3.4. Tolerances . 102

10.4. Computing environment . 102
10.5. Evaluation of Two-Stage Acceleration Techniques 103

10.5.1. Cut Aggregation . 103
10.5.2. Cut consolidation . 105
10.5.3. Level decomposition . 106
10.5.4. On-demand accuracy . 119
10.5.5. Advanced start solution . 132

10.6. Effect of Parallelization . 133
10.7. Evaluation of Multi-Stage Acceleration Techniques 136

10.7.1. Sequencing protocols . 136
10.8. SAA and Parallel Benders . 140

vi

Contents

10.9. Conclusion . 140

11.Summary and Conclusion 145

Bibliography 147

A. Test problems 161

B. Test Results 171

List of Figures 183

List of Tables 185

List of Algorithms 187

vii

1

1. Introduction
“Our new Constitution is now established, and has an appearance that
promises permanency; but in this world nothing can be said to be certain,
except death and taxes.”

— Benjamin Franklin, Letter to Jean-Baptiste Leroy

Real-world optimization problems are often modeled with traditional mathematical pro-
gramming techniques. The implicit assumption, when using these tools, is that the un-
derlying real-world problem is deterministic. Many real-world problems usually include
uncertainty, such as uncertainty about future events, lack of reliable data, etc. The model
could therefore be subject to uncertainty in its parameters or in itself, because the model
is an approximation of the real-world problem and thus the optimal solution of the model
may not be the optimal solution of the modeled problem.

Attempts to investigate the effects of uncertainty with traditional methods like sensitivity
analysis of optimal solutions or scenario analysis, e.g., solving a deterministic model with
different parameters, do not suffice to take the effect of uncertainty into account (e.g.,
(Wallace, 2000) and (King & Wallace, 2012, p. 2ff)). Thus to determine if uncertainty is
of importance for a particular model, it has to be checked by incorporating uncertainty
into the optimization problem.
Stochastic programming is a mathematical programming field that provides techniques

to handle optimization under uncertainty. It is due to the early work of Dantzig (1955),
Beale (1955) and Charnes & Cooper (1959). A common concept is that a decision has to
be made here and now, and the uncertain future will reveal itself after that. A recourse
decision can then be taken to react upon the new information.
The key questions are (King & Wallace, 2012, p. 1)

• What are the important uncertainties?

• How can we handle them?

• Can we deliver valuable solutions and insights?

It is one of the main difficulties for many practical problems to deliver a solution at all,
because incorporating uncertainty makes a model usually larger and harder to solve. The
usage of specialized solution techniques, e.g., Benders decomposition, Progressive Hedging,
Stochastic decomposition, Sample Average Approximation, etc., make practical decision
problems tractable. The resulting solutions can then be examined for valuable insights. The
theoretical development and practical implementation of solution techniques is therefore
important to get people to use stochastic programming in the first place and thus improve
their decision making capabilities. In addition, modeling tools that aid operation research

2 1. Introduction

practitioners in modeling and analyzing stochastic programs are necessary to make the
transition from modeling linear programs to stochastic programs possible.

The importance and widespread applicability of stochastic programming is demonstrated
by its variety of application areas, including electricity, finance, supply-chain, production,
telecommunications and others (see the collection edited by Wallace & Ziemba (2005)).
Two recent examples demonstrate that the usage of stochastic programming leads to better
decisions.
A strategic gas portfolio planning problem (Koberstein et al., 2011) determines the

parameters of baseload and open contracts for gas delivery for the next gas year, where
recourse actions are necessary to cover the demand during a year by using storages, open
contracts and the spot market. The uncertainty of the problem is the demand, which
correlates with the weather conditions. As gas is widely used for heating, colder winters
generate more demand than warmer winters. Incorporating this uncertainty into the model
results in an expected advantage of 5.9 million euro of the stochastic solution compared with
the solution from the deterministic model. The expected solution value of the stochastic
program is 182.2 million euro.
A company that owns wind power plants and hydro power plants has to schedule the

plants operationally. The goal is to optimize the profit of the company, while satisfying
customer demand (Vespucci et al., 2012). Excess energy generated from wind power plants
can be used to pump water into higher reservoirs that can later be used by the hydro
power plants. The wind depends on uncertain weather conditions and thus the power
generated from wind power plants is subject to uncertainty. Vespucci et al. (2012) analyze
a stochastic programming model that takes weather forecast uncertainty into account and
contrast this with a deterministic model where the forecast is taken at face value. The
stochastic programming model results in significant savings compared to the deterministic
model.

Implementing these and other problems is easier with algebraic modeling languages that
are capable of modeling stochastic programs directly. Using specialized solution methods
directly after specifying the model results in either computing time savings or opens up
the possibility to solve the resulting problems in the first place. Supporting and easing
this process is the topic of this thesis.
The thesis is structured in three parts. The first part deals with the fundamentals. It

gives an understanding of stochastic programming in Chapter 2, along with mathematical
properties of these problems from which solution methods can be derived. We introduce
different basic solution methods for stochastic programs with recourse in Chapter 3. In
particular, we introduce the deterministic equivalent, Benders decomposition, Lagrangean
relaxation, and approximative solution methods.
The second part of the thesis reviews the current state-of-the-art with respect to Ben-

ders decomposition and modeling languages for stochastic programs. Chapter 4 details
acceleration techniques for Benders decomposition, in particular for two-stage problems.
Acceleration techniques for multi-stage problems, where Benders decomposition is applied
in a nested fashion, are described in Chapter 5. An overview about challenges and devel-
opments in the area of algebraic modeling languages for stochastic programs is given in
Chapter 6. Given the state-of-the-art, we derive the goals of our research in Chapter 7.

3

Part III describes advanced acceleration techniques for the nested Benders decomposition
algorithm and gives computational results to evaluate their effectiveness. Techniques
like cut consolidation, dynamic sequencing, parallelization, different level decomposition
projection problems, and on-demand accuracy are detailed in Chapter 8. Our extension of
the algebraic modeling language FlopC++ to stochastic programs is described in Chapter
9. Chapter 10 contains a description of the algorithm implementation and gives extensive
evaluations of the developed and implemented acceleration techniques. We conclude the
contributions of this thesis in Chapter 11 and give directions for future research.

5

Part I.

Fundamentals

7

2. Stochastic Programming Preliminaries
Stochastic programs and the needed preliminaries are introduced in this chapter. We start
with mathematical programs, in particular linear and mixed-integer programs in Section
2.1. We then give some basic results in polyhedral theory that are necessary for the
explanation of Benders decomposition. After that we introduce stochastic programming
in Section 2.2, together with basic probability theory. Introductory texts especially for
linear programming are, among others, (Vanderbei, 1997; Chvátal, 1983; Nering & Tucker,
1993). A more theoretically oriented textbook is written by Schrijver (1998). A detailed
introduction to the implementation of the simplex algorithm, the main solution algorithm
of linear programs used in Benders decomposition, can be found in (Maros, 2003).

2.1. Mathematical Programs
A mathematical program is an optimization problem of the following form,

min f(x)
g(x) ≥ 0
x ∈ X ,

where 0 (written in boldfont) denotes a column vector of zeroes with appropriate dimension.
The function f maps from Rn to R and g maps from Rn to Rm. The set X ⊆ Rn together
with the constraint g(x) ≥ 0 defines the feasibility set F of the mathematical program. The
function f is the objective function of the mathematical program. We assume throughout
this thesis that the default optimization direction is minimization if not stated otherwise.

A point x ∈ Rn is called a solution. A solution x is feasible if x ∈ X and the constraints
g(x) ≥ 0 hold, i.e., x ∈ F . Otherwise the solution is called infeasible. A solution x∗ ∈ F is
optimal if f(x∗) ≤ f(x), ∀x ∈ F . Note that an optimal solution does not have to be unique.
A mathematical program is infeasible if the feasibility set F is empty. A mathematical
program is unbounded if for every number M ∈ R there is a solution x ∈ F , such that
f(x) < M .
Mathematical programming problems are classified according to properties of the func-

tions f and g and the set X . Two important categories are linear programming and
mixed-integer linear programming. A linear program (LP) is a mathematical program
with linear functions f and g, where X is continuous. A mixed-integer program (MIP)
is a mathematical program with linear functions f and g, where X is partly continuous
and partly discrete. A pure integer program (IP) is a mathematical program with linear
functions f and g, where X is discrete. A convex non-linear program has non-linear func-
tions f and g, where X is convex. Quadratic programs (QPs) are an example for convex
non-linear programs with a quadratic objective function f , but linear function g, where

8 2. Stochastic Programming Preliminaries

X is continuous. The hardness of the problems differs depending on the functions and
X . LP problems are in P, together with QP problems that have a positive semidefinite
quadratic coefficient matrix in the objective function. General IP, MIP and QP problems
are NP−hard.
We write the linear program P1 in the following matrix notation standard form

min cTx

(P1) s.t. Ax ≥ b
x ≥ 0,

(2.1)

with right hand side vector b ∈ Rm, objective function coefficients vector c ∈ Rn, decision
variables vector x ∈ Rn and the constraint matrix A ∈ Rm×n. To alleviate notation, in the
remainder of this thesis we will not specify which vectors we transpose, but we assume that
the vectors have appropriate dimensions and are used in the transposed form if necessary.
It helps in keeping the presentation clear, but concise.
A LP can also be written in the summation notation given by equation (2.2), where

every decision variable xi, i = 1, . . . , n is stated explicitly.

min
n∑
i=1

cixi

s.t.
n∑
i=1

aijxi ≥ bj j = 1, . . . ,m

xi ≥ 0 i = 1, . . . , n.

(2.2)

The matrix entry aij is the coefficient of the constraint matrix A in column i and row j.
As both of the forms (2.1) and (2.2) are equivalent and differ only in notation, we use the
form which is best suited to explain different concepts later in this thesis.
A more general, but equivalent form of LP (2.2) is formulation (2.3)

min
n∑
i=1

cixi

s.t.
n∑
i=1

aijxi + xn+j = bj j = 1, . . . ,m

li ≤ xi ≤ ui i = 1, . . . , n+m.

(2.3)

In formulation (2.3) every decision variable has a lower bound li and an upper bound ui.
The variables xn+j , j = 1, . . . ,m are called slack variables, because they take up the slack
between

∑n
i=1 aijxi and bj , as we have only equalities as constraints. The three different

constraint types ≥,≤ and = are modeled via the bounds on the slack variables. When
the slack variable xn+j has the bounds lj = 0 and uj = ∞, it is a ≥ constraint. With
the bounds lj = −∞ and uj = 0 it is a ≤ constraint. An equality is achieved with the
bounds lj = 0 and uj = 0, i.e., the slack variable is fixed to zero. The coefficient matrix A
is necessarily of full rank, due to the slack variables. It is possible to create an equivalent
LP in standard form with additional variables and/or constraints (Chvátal, 1983).

2.1. Mathematical Programs 9

An important concept that can be applied to linear programs is duality theory. Every
linear program has a corresponding dual linear program; both together form a primal/dual
pair. The original LP is also called the primal problem. The dual LP of the dual problem
to a primal problem is again the primal problem. The dual LP D1 of the primal LP P1
(2.1) is

max by

(D1) s.t. AT y ≤ c
y ≥ 0.

(2.4)

A dual problem can be used to give a lower bound to the primal problem as well as the
primal problem can be used to give an upper bound to the dual problem (Vanderbei, 1997,
p. 51ff). We note that every feasible solution for a primal LP is at the same time an upper
bound for this problem.

The following basic, but important, theorems and their proofs can be found in every LP
textbook, e.g. (Vanderbei, 1997, p. 53-64). The Weak Duality Theorem (2.1) states that
every feasible solution for the dual is a lower bound for the primal problem.

Theorem 2.1. Let x be a feasible solution for a primal LP P1 and y be a feasible solution
for the corresponding dual LP D1. Then it holds that cTx ≥ by.

The Strong Duality Theorem 2.2 states that if a primal problem has an optimal solution,
the corresponding dual problem also has an optimal solution, such that the objective values
coincide.

Theorem 2.2. Let x∗ be an optimal solution for a primal LP P1. Then the corresponding
dual LP D1 has an optimal solution y∗ such that cTx∗ = bT y∗.

Together with the Complementary Slackness Theorem (2.3), it is possible to construct
these solutions from one another (Vanderbei, 1997, p. 63f).

Theorem 2.3. Let (x1, . . . , xn) be a primal feasible solution for a primal LP P. Let
(y1, . . . , ym) be a dual feasible solution for the corresponding dual LP D. Let (w1, . . . , wm)
denote the primal slack variables and (z1, . . . , zn) the dual slack variables. Then x and y
are optimal for their respective problem if and only if

xizi = 0, i = 1, . . . , n
yjwj = 0, j = 1, . . . ,m.

Every LP in standard form (2.1) has an associated polyhedron P := {x ∈ Rn | Ax ≥
b, x ≥ 0}. For the following definitions and theorems the constraint matrix is assumed to
be of full rank and P 6= ∅ (see (Nemhauser & Wolsey, 1999, p. 92-98) for the definitions
and proofs of the theorems, (Schrijver, 1998, p. 85-107) is an alternative source). The
feasible region F of an LP can be described by a finite number of extreme points and
extreme rays that we define next.

Definition 2.4. A point x ∈ P is called an extreme point of P , if there do not exist points
x1, x2 ∈ P, x1 6= x2, such that x = λx1 + (1− λ)x2, 0 < λ < 1.

Definition 2.5. Let P 0 := {r ∈ Rn | Ar ≤ 0}. Any r ∈ P 0 \ {0} is called a ray of P .

10 2. Stochastic Programming Preliminaries

r2

r1

p1

p2

p3

x1

x2

−c
α

Figure 2.1. A polyhedron with extreme points and extreme rays.

Definition 2.6. A ray r ∈ P is an extreme ray if there do not exists rays r1, r2 ∈ P 0, r1 6=
λr2 for any λ > 0, such that r = µr1 + (1− µ)r2, 0 < µ < 1.

A polyhedron with extreme points p1, p2 and p3 and extreme rays r1 and r2 is shown in
Figure 2.1. The optimization problem associated with the polyhedron is a minimization
problem, thus the objective function vector is followed in its opposed direction, namely
−c. The optimization direction is depicted in Figure 2.1 by the vector −c. The angle α
between r1 and −c is acute, therefore −c · r1 is greater than zero and c · r1 is less than zero,
due to the equation cos(α) = a·b

|a|·|b| , with a, b ∈ R
n \ {0} and α being the angle between

them.
Theorem (2.7) (Nemhauser & Wolsey, 1999, p. 95), which we will use in the explanation

of Benders decomposition, states that an unbounded maximization problem has an extreme
ray that makes an acute angle with the objective function vector.

Theorem 2.7. If max{cx | x ∈ P} is unbounded P has an extreme ray r∗ with cr∗ > 0.

The decomposition theorem for polyhedra (also called Minkowski-Weyl’s theorem) states
that polyhedra can be represented by convex combinations of their extreme points and
extreme rays (Nemhauser & Wolsey, 1999, p.96).

Theorem 2.8 (Decomposition theorem for polyhedra). The polyhedron P can be repre-
sented as

P =

x ∈ Rn | x =
∑
i∈I

λixi +
∑
j∈J

µjrj with
∑
i∈I

λi = 1

, λi ≥ 0 ∀i ∈ I, µj ≥ 0 ∀j ∈ J} . (2.5)

where {xi}i∈I is the set of extreme points and {rj}j∈J is the set of extreme rays of P .

The Decomposition Theorem will be used in the explanation of Benders decomposition
method together with the fact that every full-dimensional polyhedron has a finite number
of extreme points and extreme rays.
The Minkowski-Weyl decomposition theorem can also be stated for general polyhedra,

i.e., P = {Ax ≤ b} and rank(A) ≤ n, but for that we need some more definitions (Schrijver,
1998, p. 87f).

2.1. Mathematical Programs 11

Definition 2.9. A nonempty set of points C in Euclidean space is called a cone if λx+µy ∈
C,∀x, y ∈ C and λ, µ ≥ 0.

Definition 2.10. A cone C is polyhedral, if C = {x | Ax ≤ 0}.

The cone generated by the vectors x1, . . . , xm ∈ Rn is the set

cone{x1, . . . , xm} := {λ1x1 + . . .+ λmxm, λ1, . . . , λm ≥ 0}, (2.6)

and is called finitely generated (Schrijver, 1998, p. 87).

Theorem 2.11 (Farkas-Minkowski-Weyl theorem). A convex cone is polyhedral if and
only if it is finitely generated.

If the polyhedron has at least one extreme point, it is called pointed. A polyhedron is
bounded if and only if the characteristic cone has dimension zero, i.e., char.cone = {0}
(Schrijver, 1998, p. 100f). The characteristic cone is defined as char.cone(P) = {r|Ar ≤ 0}.

Definition 2.12. F is a face of P if and only if there is a vector c for which F is the set
of vectors attaining min{cx|x ∈ P}, provided that this minimum is finite

Finally, the Minkowski-Weyl decomposition theorem for general polyhedra is stated as
follows (Schrijver, 1998, p. 88)

Theorem 2.13 (Decomposition theorem for general polyhedra). A set P of vectors in
Euclidean space is a polyhedron if and only if P = Q+ C for some polytope Q and some
polyhedral cone C.

In particular, the polyhedral cone C in Theorem (2.13) is the characteristic cone
char.cone(P) = {r|Ar ≤ 0} (Schrijver, 1998, p. 100). Regarding the polytope Q, it
can be described with the help of the minimal faces of P , as follows.

Let F1, . . . , Fr be the minimal faces of the polyhedron P , and choose an element xi from
Fi, for i = 1, . . . , r. Then (Schrijver, 1998, p. 106)

P = conv.hull{x1, . . . , xr}+ char.cone(P). (2.7)

Thus the polyhedron P can be described by a finite set of vectors {x1, . . . , xr} and its
characteristic cone, which is also finitely generated.

The simplex method The well-known simplex algorithm invented by Dantzig in 1947
is one of the main solution techniques for linear programming problems. The simplex
algorithm can work on the primal problem as the primal simplex or the dual problem as
the dual simplex. The simplex method is an iterative method that improves a starting
solution until it reaches optimality or finds that the problem is unbounded. If no starting
solution can be found, the problem is infeasible. A detailed introduction to the simplex
method can be found in several textbooks, e.g., (Schrijver, 1998; Vanderbei, 1997; Chvátal,
1983; Maros, 2003). Another successful approach to solve LPs is the use of interior-point
methods (see the textbooks (Ye, 1997),(Vanderbei, 1997),(Schrijver, 1998), among others).

12 2. Stochastic Programming Preliminaries

2.2. Stochastic Programs
Mathematical programs that contain uncertainties can be modeled with the use of stochastic
programming techniques. Several textbooks give a good introduction into stochastic
programming, both theoretical and practical (Birge & Louveaux, 2011; Kall & Wallace,
1994; Ruszczyński & Shapiro, 2003; Kall & Mayer, 2010; Shapiro et al., 2009). An overview
about the application of stochastic programming is given in the volume edited by Wallace
& Ziemba (2005). A book about modeling stochastic programs was recently published
(King & Wallace, 2012).

In this thesis we restrict ourselves to recourse problems whereas stochastic programming
in general also handles problems with chance-constraints as well as distribution problems
and combinations of these. A survey by Gassmann (2007) shows that the majority of
stochastic problems are recourse problems. We present the taxonomy given by Gassmann
& Ireland (1996) in Figure 2.2.

Figure 2.2. A taxonomy of stochastic LPs (Figure 3 in (Gassmann & Ireland, 1996))

A recourse problem is divided in several stages, where every stage except the first marks
the realization of some uncertain parameters, but where the decision maker knows the
distribution of the uncertain parameters. The first-stage marks decisions that have to be
taken before any parameters become known to the decision maker. At the beginning of
the second stage, some uncertain parameters are revealed and the decision maker is faced
with this outcome and his former first-stage decision. The decision maker reacts with a
second-stage or recourse decision to the revealed outcome. If the problem is a multi-stage

2.2. Stochastic Programs 13

problem, this process is repeated until the last stage. The goal of the decision maker is to
minimize the objective function value of the first-stage decision and the expected value of
the objective function value of the second-stage decision. We stress that the decision maker
has knowledge about the distribution of the uncertain parameters but does not know the
concrete realization when he has to make his decision. We assume that the distribution of
the uncertain parameters is independent of the decisions we take.
In Section 2.2.1 we describe the necessary preliminaries of probability theory to un-

derstand the two-stage stochastic problems explained in Section 2.2.2 and multi-stage
stochastic problems described in Section 2.2.3. We end this section with basic properties
of stochastic problems in Section 2.2.4.

2.2.1. Basic Probability Theory

Stochastic programs deal with uncertainty. Probability theory is an area of mathematics
that formalizes uncertainty. As stochastic programming uses concepts defined in probability
theory, we shortly describe the necessary ones. For a further introduction into probability
theory the reader is referred to the literature (Bauer, 1991; Ross, 2004).

To formalize uncertainty, we use the mathematical concept of a probability space, which
is a triplet (Ω,A, P) (Birge & Louveaux, 2011, p. 56). Ω is the set of all possible outcomes
ω of some random experiments, A is the set of all events over Ω and P is the associated
set of probabilities. The probability of an event P (A), A ∈ A is always between zero and
one. It holds that 0 ≤ P (A) ≤ 1, P (∅) = 0 and P (Ω) = 1. The set of all events A is a
σ-algebra.

The mathematical concept filtration defined on a measurable space (Ω,A) is an increasing
family At ⊆ A, t ≥ 0 of sub-σ-algebras of A, i.e., At ⊂ At+1 (Revuz & Yor, 2004). Defined
in this way, At is the collection of events that can occur before or at stage t.
The function X : Ω→ R is called a random variable if

{ω | X(ω) ≤ r} ∈ A, ∀r ∈ R.

The cumulative distribution function F (x) is defined as

F (x) = P{X ≤ x}, ∀x ∈ R.

The probability mass function p(x) is used to describe the probability of X taking the
value x, so p(x) = P{X = x}. A random variable X is discrete if it can only take
a countable number of values. A random variable X is continuous if it can take an
uncountable number of values. We say that a random variable X is distributed according
to a random distribution, specified by F (x). Examples for random distributions are the
Binomial distribution, Poisson distribution, Exponential distribution, Normal distribution,
etc.
The expectation of a random variable X is denoted as E[X]. For a discrete random

variable it can be written as E[X] =
∑
ω∈Ω ωP{X = ω}. For a continuous random variable,

it is defined as the integral E[X] =
∫∞
−∞ xf(x)dx, with f(·) = d

dxF (x) being the probability
density function (Ross, 2004).

14 2. Stochastic Programming Preliminaries

2.2.2. Two-Stage Stochastic Programs
The general two-stage stochastic program with recourse minimizes the cost of the first-stage
decision and the expected cost of the second-stage decision. It is stated as follows

z = min cx+ Eξ [min q(ω)y(ω)] (2.8)
s.t. Ax = b (2.9)

T (ω)x+W (ω)y(ω) = h(ω) (2.10)
x, y(ω) ≥ 0 (2.11)

The first-stage objective function coefficients c ∈ Rn1 , constraint matrix A ∈ Rm1×n1 and
right hand side b ∈ Rm1 are deterministic and not subject to uncertainty. Every different
outcome ω ∈ Ω is called a scenario or realization. For any scenario ω some values in the
technology matrix T ∈ Rm2×n1 , the recourse matrix W ∈ Rm2×n2 , the right hand side
h ∈ Rm2 or the objective function q ∈ Rn2 may change. We can see every component of
T (ω),W (ω), h(ω), q(ω) as random variables that are influenced by the scenario ω. We can
write ξ(ω) as a set of random vectors

ξ(ω) = (T1(ω), . . . , Tn1(ω),W1(ω), . . . ,Wn2(ω), h(ω), q(ω)) ,

where Ai denotes the i−th column of matrix A. The constraints (2.10) and (2.11) hold
almost surely with respect to the scenario probabilities, i.e., for all ω with a probability
greater than zero. It is possible to extend this formulation, e.g., by introducing integer
requirements on the first- and/or second-stage. This can be done by replacing the non-
negativity constraint (2.11) with the general form x ∈ X, y(ω) ∈ Y withX = Zn1

+ , Y = Zn2
+ .

Once we chose a realization ω and a first-stage solution x, we know the second-stage data
via ξ(ω). Then, the second-stage variables or recourse variables y(ω) have to be chosen,
according to objective function and constraints. The name recourse variables derives from
the observation that the y(ω) variables react to the chosen first-stage variables x and the
scenario dependent second-stage data T (ω),W (ω), h(ω) and q(ω). It is usually the case
that most parts of T,W, h and q are deterministic or scenario independent and only some
data is scenario dependent.
A reformulation of problem (2.8) is the deterministic equivalent model (DEM)

z = min cx+Q(x)
s.t. Ax = b

x ≥ 0,
(2.12)

with expected second stage value function Q(x) = Eξ [Q(x, ω)] and Q(x, ω)

Q(x, ω) = min q(ω)y(ω)
s.t. T (ω)x+W (ω)y(ω) = h(ω)

y(ω) ≥ 0.
(2.13)

As long as the random variables are discrete and finite, it is possible to formulate the
two-stage stochastic problem with recourse (2.8) as the DEM, because the expected second

2.2. Stochastic Programs 15

stage value function can be replaced by a summation, as further described in section
3.2. The second stage value function Q(x, ω) is also called recourse function and Q(x) is
consequently called expected recourse function. The recourse function is defined to be −∞
if the problem (2.13) is unbounded, and ∞ if it is infeasible, as usual. For the expected
recourse function, we adhere to the convention that ∞+ (−∞) =∞. In words it means
that if any subproblem is infeasible, the expected recourse function takes the value ∞.
This can be interpreted as a conservative approach by regarding the “bad” outcomes, i.e.,
Q(x, ω) =∞ that result from choosing x as more important (Walkup & Wets, 1967) than
the “good” outcomes, i.e., Q(x, ω) = −∞.

For the rest of this thesis we assume that we have discrete and finite random variables, as
otherwise the solution methods for which we propose enhancements can not work, as multi-
dimensional integration would be required. We emphasize that problems with continuous
or discrete random variables can be approximated by problems with discrete and finite
random variables and thus be solved approximately with approximation methods described
in this thesis in Section 3.5.

2.2.3. Multi-Stage Stochastic Programs

A two-stage stochastic program is a special case of the more general multi-stage stochastic
program (see (Dupačová, 1995) for an introduction). A multi-stage stochastic program has
a fixed number of stages in which uncertainty can be revealed, denoted by T . Therefore a
first-stage decision x1 is taken before uncertainty via a random vector ξ2 is revealed. The
next step is to react upon this with a recourse decision x2. Then the uncertainty ξ3 is
revealed, where upon a recourse decision x3 can be taken. This is repeated until the last
stage T is reached, uncertainty ξT is revealed, and a final recourse decision xT is taken.
The notion of stage and decision is well-defined as we talk only about stochastic programs
with recourse (see (Gassmann & Prékopa, 2005) for a discussion).

The general multi-stage stochastic linear program for a canonical probability space
(Ω,A, P) can be formulated as

min
x1

[
c1x1 + Eξ2

[
min
x2

c2(ω2)x2(ω2) + . . .+ EξT

[
min
xT

cT (ωT)xT (ωT)
]
. . .

]]
s.t. T1x1 = h1

T2(ω2)x1 + W2(ω2)x2(ω2) = h2(ω2)
.
TT (ωT)xT−1(ωT−1) + WT (ωT)xT (ωT) = hT (ωT)

lt(ωt) ≤ xt(ωt) ≤ ut(ωt) t = 1, . . . , T.

(2.14)

The ξt are random vectors consisting of

(T1,t(ω), . . . , Tnt,t(ω),W1,t(ω), . . . ,Wnt,t(ω), ht(ω), qt(ω))

for t = 1, . . . , T defined on a probability space (Ω,At, P) such that At ⊂ A, t = 1, . . . , T
and At ⊂ At+1, t = 1, . . . , T − 1. The underlying stochastic process on (Ω,A) is adapted
to the filtration F = {A1, . . . ,AT } with A1 = {Ω, ∅}, because the first stage contains no

16 2. Stochastic Programming Preliminaries

c2c1 cTcT−1c3

.

.

.

. . .

WTTT−1

.

.

.

T1

T2 W2

T3 W3

hT

h1

h2

h3

Figure 2.3. Staircase structure of program (2.14).

uncertainty. The decisions taken at stage t thus depend only on outcomes known before or
at stage t, they are non-anticipative with respect to the outcomes at stages greater than t.
Program (2.14) is already in staircase format, because only adjacent stages are linked

via the constraints. The term staircase format follows from the graphical representation
of the problem, see Figure 2.3. It may be desirable to form constraints like

Tt−1(ωt)xt−2 + Tt(ωt)xt−1 +Wt(ωt)xt(ωt) = ht(ωt), (2.15)

to rely not just on decisions taken at stage t− 1 but also on those taken at earlier stages.
This can be done by transforming the non-staircase constraint (2.15) into a staircase
constraint with additional columns and rows as follows

xt−2 = x̂t−1 (2.16)
Tt−1(ωt)x̂t−1 + Tt(ωt)xt−1 +Wt(ωt)xt(ωt) = ht(ωt). (2.17)

In a first step, new stage t − 1 variables are created, x̂t−1. These are linked via the
constraint (2.16) to take the values of xt−2. The original constraint (2.15) is changed to
not include the original variables xt−2 but the new variables x̂t−1 instead.

It is possible to transform every problem in staircase format with this procedure. Every
variable of a stage less than t−1 that is present in a non-staircase constraint at stage t needs
a stage t − 1 representation to replace it, see equation (2.17). Every new representation
needs a constraint of type (2.16), so that the copy takes the value of the original variable.
The number of variables and constraints of the transformed staircase-problem compared
to the non-staircase problem is thus increased by at most

∑T−2
t=1 nt · (T − 1− t).

We stress here that time periods and stages can, but do not have to coincide. It is
possible and due to computational considerations probably advisable that a problem with
for example 24 time periods is split into six stages with four time periods belonging to
each stage.

2.2. Stochastic Programs 17

2.2.4. Basic Properties

In this section we list some basic properties of stochastic programs, in particular properties
that are important for developing solution methods.
Stochastic programs can be classified according to which elements of T,W, h and q are

fixed, i.e., are the same for every scenario ω. It is possible to exploit the specialized
structure in a solution algorithm (Birge & Louveaux, 2011, p. 181ff). The feasibility set
of the first stage K1 is defined as {x | Ax = b, x ≥ 0}. The feasibility set of the second
stage K2 is defined as {x | Q(x) < ∞}. Thus it is possible to reformulate the two-stage
stochastic problem given by equations (2.8)-(2.11) in terms of its feasibility sets as

z = min cx+Q(x)
s.t. x ∈ K1 ∩K2.

(2.18)

The recourse function Q(·, ξ) is convex. It is also polyhedral if there exists a x̄ ∈ K1 ∩K2,
i.e., Q(x̄, ξ) is finite (Shapiro et al., 2009). This is true for both continuous and discrete
distributions. The expected recourse function Q(x) is polyhedral if there exists a x̄ ∈
K1 ∩ K2, i.e., it has a finite value for at least one x ∈ K1. This result holds under the
assumption of finite and discrete distributions. Therefore the DEM (2.12) is a convex
problem (see (Walkup & Wets, 1967) for an original proof). These results extend into the
multi-stage case (Dupačová, 1995).
A program is said to have complete recourse when there exists y(ω) ≥ 0, such that

W (ω)y(ω) = t, for every vector t, t ∈ Rm2 . Thus it is guaranteed that a solution can be
found for the second stage problem regardless of the actual value of x. A program has
relatively complete recourse if there is a y(ω) ≥ 0, such that W (ω)y(ω) = h(ω) − T (ω)x
for all x ∈ K1. A program has fixed recourse, when W = W (ω),∀ω, is deterministic.
The recourse function Q(x, ω) is piecewise-linear and convex for fixed recourse problems,
regardless of the distributions (Birge & Louveaux, 2011, p. 109ff).

A question that arises for every decision problem, where the introduction of uncertainty
is considered, is the influence and importance of uncertainty for the problem. It has to be
kept in mind that “it is extremely difficult to know if randomness is important before we
have solved the problem and checked the results” (Kall & Wallace, 1994).

The measures expected value of perfect information (EVPI) and value of the stochastic
solution (VSS) give some guidance towards answering the question (cf. (Birge & Louveaux,
2011, p. 163-177)). These measures are based on the solution of several different problems
that we introduce first. Let

z(x, ω) = min cx+ min q(ω)y(ω)
s.t. Ax = b

T (ω)x+W (ω)y(ω) = h(ω)
x, y(ω) ≥ 0

(2.19)

be the optimization problem associated with one particular outcome ω (Birge & Louveaux,
2011, p. 163f). Let x̄(ω) denote the optimal solution of problem (2.19), for outcome ω.

18 2. Stochastic Programming Preliminaries

The Here-and-Now (HN) problem is another name for the two-stage stochastic program
with recourse (2.8) that we can also state as

HN = min
x
Eξ [z(x, ω)] . (2.20)

The name derives from the observation that the decision maker, tasked with making a
first-stage decision here and now, has to make this decision without knowing how the future
will unfold, i.e., which scenario will actually take place. In contrast, the Wait-and-See (WS)
problem is the hypothetical problem that the decision maker can make a first-stage decision
with perfect foresight. Thus the decision maker can wait and see what happens and make
the perfect decision for the revealed uncertainty. The WS problem is defined as

WS = Eξ
[
min
x
z(x, ω)

]
= Eξ [z(x(ω), ω)] . (2.21)

Definition 2.14. The expected value of perfect information is the difference between the
objective value of the Wait-and-See and the Here-and-Now problem.

The EVPI states the maximal amount you should pay a good forecaster on average so
that you can adapt your first stage decision to the specific forecast. It measures how much
you could gain by possessing perfect information about the future, compared with the
solution of the stochastic problem. As it is usually not possible to make good forecasts all
the time, the WS solution approach is not implementable in practice.

Solving the corresponding mean value problem instead of the possibly complex stochastic
program is an option that could be considered by a decision maker, but that can also
come with a cost. The scenario where all random parameters ξ(ω) are replaced by their
expectation is called the expected value scenario and is denoted with ω

EV = min
x
z(x, ω), (2.22)

where x̄(ω) denotes the optimal solution. The solution to this problem is called expected
value problem solution (EV solution). This is an implementable solution because it satisfies
the first-stage constraints, and it is possible to evaluate it with respect to its second stage
cost by optimizing the corresponding second stage problems (2.13). This is called expected
result of using the EV solution and is defined as

EEV = Eξ [z(x̄(ω), ω)] . (2.23)

Definition 2.15. The value of the stochastic solution is the difference between the objective
value of the Here-and-Now problem and the expected result of using the EV solution.

The VSS measures the cost of sticking to a deterministic model if stochastic data is
available. Of course, to compute the value of the stochastic solution the stochastic problem
has to be built and solved first. The relation between WS, HN and EEV is as follows
(Birge & Louveaux, 2011, p. 166)

WS ≤ HN ≤ EEV. (2.24)

2.2. Stochastic Programs 19

This is intuitively clear, as in the WS problem the optimal first stage decision was taken for
every outcome ω. This must be at least as good as the optimal first-stage decision of the
stochastic program, i.e., finding a solution where all scenarios are considered together. The
HN solution is at least as good as any other feasible first-stage solution for the stochastic
program, in particular the EV solution, because it is optimal. The EVPI and the VSS
are either equal or greater than zero. This follows from their respective definitions and
relation (2.24) (Birge & Louveaux, 2011, p. 167f).

21

3. Solution Methods

In this chapter we present basic solution methods for stochastic programming problems as
defined in the last chapter. To be able to do this, we introduce the notion of scenario trees
in Section 3.1. The deterministic equivalent model, which can be solved by traditional
LP and MIP optimization software, is then introduced in Section 3.2. We explain the
main solution algorithm used in this thesis, Benders decomposition, in depth in Section
3.3. Solution methods based on an alternative decomposition approach, Lagrangean
relaxation, are presented in Section 3.4. We finish this chapter with an overview about
approximative solution methods and some remarks about scenario generation in Section 3.5.
An introduction as well as an in-depth treatment about the different types of decomposition
and direct solution methods can be found in the literature, e.g., (Birge & Louveaux, 2011;
Kall & Mayer, 2010).

3.1. Scenario Tree
A stochastic program is specified by the deterministic structure like the number of columns
and constraints, the objective function coefficients, the matrix coefficients, the right hand
side and the variable bounds as well as the stochastic data. The deterministic model is
also called the core model. For every scenario the stochastic data consists of coefficients
that replace the respective coefficients stored in the core model. A tree structure is well
suited to store the stochastic data that is different for every scenario. The scenario tree
has a depth equal to the number of stages minus one. The number of leaf nodes is equal
to the number of scenarios. The root node of the tree contains no stochastic data, because
it represents the first stage. The probability that a certain scenario is realized is stored
within the leaf node that corresponds to the scenario.

Every tree node is labeled with its stage t ∈ 1, . . . , T , with T being the number of stages,
and a number from one to Kt, with Kt being the number of nodes in that stage. T also
denotes the stage set {1, . . . , T}. Every node except the root node has a parent node,
denoted by a(t, i), t ∈ 1, . . . , T, i ∈ 1, . . . ,Kt. Every node except the leaf nodes has a set of
child nodes, denoted by d(t, i) ⊆ Vt+1, t = 1, . . . , T − 1, with V being the set of all nodes
of the tree and Vt the set of nodes at stage t. The path probability pit of a node is the
sum of the probabilities of its child nodes. For a valid scenario tree the sum of all node
probabilities at the same stage must be one. A node has also a conditional probability
cpit. It is defined as cpit = pi

t

p
a(t,i)
t−1

, i.e., the probability of node (t,i) given its parent node

(t − 1, a(t, i) was chosen. For convenience, we denote by s(t, i) ⊆ S the set of scenarios
whose path of nodes from the root node to their respective leaf node contains the node
(t, i). An example for a scenario tree for a problem with three stages and six scenarios is
depicted in Figure 3.1.

22 3. Solution Methods

1

3

1

2

6

5

4

3

2

1

Stage 1 Stage 3Stage 2
t = 1 t = 2 t = 3

11

1 p

6/11

2 p

6/22

2 p

6/33

2 p

12/11

3 p

12/12

3 p

6/23

3 p

6/14

3 p

6/15

3 p

6/16

3 p

32 K

11 K

63 K

Figure 3.1. Scenario tree with six scenarios and three stages.

3.2. Deterministic Equivalent 23

3.2. Deterministic Equivalent

The two-stage stochastic problem with recourse (2.8) can be written as a normal determin-
istic LP called the deterministic equivalent model (DEM) (2.12) or extensive form (EF).
The expectation in (2.12) can be replaced by a probability-weighted sum when the random
variables have discrete and finite distributions, what we assume throughout this thesis.
The set of scenarios is denoted with S which is also the number of scenarios. We can then
formulate the DEM as the following large-scale LP

z = min
x,y1,...,yS

cx+ p1q1y1 + . . . + pSqSyS

s.t. Ax = b

T 1x+ W 1y1 = h1

...
TSx + WSyS = hS

x, y1, . . . , yS ≥ 0.

(3.1)

The LP (3.1) can be solved with state-of-the-art LP solvers, like CPLEX, Gurobi, and
others. The widespread availability of modern LP solvers makes this solution approach
available without resorting to special purpose software designed especially for stochastic
programs. The drawback of this approach is that the special structure of stochastic
programs is not used during the solution process. There are existing simplex and interior-
point method (IPM) based direct solution methods that work directly with the DEM (see
the introduction of Birge & Louveaux (2011, p. 222-236)). These are, to our knowledge,
not implemented in commercial LP solvers.

For multi-stage stochastic programs with recourse the deterministic LP formulation is
the following

min c1x1 +
K2∑
i=1

pi2c
i
2x
i
2 + . . .+

KT∑
i=1

piT c
i
Tx

i
T

s.t. T1x1 = h1

T k2
2 x1 + W k2

2 xk2
2 = hk2

2 k2 = 1, . . . ,K2
.
T kT
T x

a(kT ,T)
T−1 + W kT

T xkT
T = hkT

T kT = 1, . . . ,Kt

lkt
t ≤ x

kt
t ≤ u

kt
t kt = 1, . . . ,Kt, t = 1, . . . , T.

(3.2)

As can be seen from formulation (3.2) the corresponding columns and constraints from
every scenario tree node are added to the deterministic LP. The resulting LP (3.2) is
therefore a rather large scale LP which may not even be constructable due to main memory
constraints.

24 3. Solution Methods

The number of variables is equal to

T∑
t=1

Kt · nt,

whereas the number of constraints is equal to

T∑
t=1

Kt ·mt.

For a two-stage problem with 1, 000 columns (200 first-stage and 800 second stage) and
500 constraints (100 first-stage and 400 second-stage) and 1000 scenarios, the DEM has
800, 200 columns and 400, 100 constraints.

The DEM can be formulated recursively as

zit

(
x
a(t,i)
t−1

)
= min citx

i
t +Qit(xit)

s.t. T itx
a(t,i)
t−1 +W i

tx
i
t = hit

lit ≤ xit ≤ uit,

(3.3)

with expected recourse function Qit(x) =
∑
j∈d(t,i) cp

j
t+1Q

j
t+1(xit) and

Qjt+1(xit) = min cjt+1x
j
t+1 +Qjt+1(xjt+1)

s.t. T jt+1x
i
t +W j

t+1x
j
t+1 = hjt+1

ljt+1 ≤ x
j
t+t ≤ u

j
t+1,

(3.4)

and the terminal condition QjT (·) = 0,∀j ∈ 1, . . . ,KT . Problem z1
1(·) is equivalent to

problem (3.2), i.e., starting from the root node.

The formulations (3.1) and (3.2) are also called implicit DEM. The non-anticipativity
condition is implicitly satisfied by the variables and constraints of the problem.

Another way to model the DEM is the explicit or split-variable approach. In the explicit
DEM a copy of the whole deterministic model is created for every scenario, with the
objective function coefficients multiplied by the respective scenario probability. This alone
does not suffice, as the different copies have no link to each other, so that all the first-stage
variables anticipate their respective scenario and thus yield an optimal decision for this
scenario. The solution of this model yields the Wait-and-See solution. To ensure that the
scenario copies of the first-stage variables do not anticipate their respective scenario, the
non-anticipativity constraints

x1
t = xit, ∀i ∈ S (3.5)

must be added to the formulation.

When the recourse program is a multi-stage problem, the non-anticipativity constraints
must be inserted at every stage, according to the scenario tree structure. For notational
convenience, we denote the set of adjacent pairs of child nodes of a node (t, i) with N(t, i) =

3.3. Benders Decomposition 25

{(s1, s2)|s1, s2 ∈ s(t, i) ∧ s1 + 1 = s2}. For every node of the tree, except the leaf nodes,
the following constraints are added to the explicit DEM formulation

xs1
t = xs2

t , ∀t ∈ {1, . . . , T − 1}, ∀i ∈ {1, . . . ,Kt}, ∀(s1, s2) ∈ N(t, i). (3.6)

They ensure that all decisions belonging to nodes with the same parent node take the same
value. Of course it is also possible to model these constraints differently, e.g., by using one
scenario as the reference scenario (Fourer & Lopes, 2006), as we did for the two-stage case.

For the exemplary scenario tree in Figure 3.1, the following non-anticipativity constraints
given by equation (3.6) would be present in the explicit DEM

x1
1 = x2

1, x
2
1 = x3

1, x
3
1 = x4

1, x
4
1 = x5

1, x
5
1 = x6

1

x1
2 = x2

2, x
4
2 = x5

2, x
5
2 = x6

2.

The explicit DEM formulation

min
T∑
t=1

S∑
s=1

psc
s
tx
s
t

s.t. T s1x
s
1 = hs1 s = 1, . . . , S

T s2x
s
1 + W s

2x
s
2 = hs2 s = 1, . . . , S

.
T sTx

s
T−1 + W s

Tx
s
T = hsT s = 1, . . . , S

xs1
t = xs2

t , t = 1, . . . , T − 1, i = 1, . . . ,Kt,∀(s1, s2) ∈ N(t, i)
lst ≤ xst ≤ ust s = 1, . . . , S, t = 1, . . . , T,

(3.7)

has even more constraints and variables than the implicit DEM. The number of variables
is equal to

S
T∑
t=1

nt,

whereas the number of constraints is equal to

T∑
t=1

Kt∑
i=1

(|s(t, i)| − 1) + S
T∑
t=1

mt.

3.3. Benders Decomposition

A well known solution method for two-stage stochastic linear programs with recourse is
the L-shaped method by (Van Slyke & Wets, 1969), an adaption of Benders decomposition
(Benders, 1962) to stochastic problems. The main idea is to approximate the recourse
function by an iteratively refined outer linearization via cutting planes. It is also possible
to perform an inner linearization via Dantzig-Wolfe decomposition (Dantzig & Wolfe, 1961)
that works on the dual problem (see e.g., (Birge & Louveaux, 2011, p. 237-242) for an
introduction).

26 3. Solution Methods

The problem is decomposed by stage into a first-stage master problem and several
second-stage subproblems. The first-stage master problem approximates the recourse
function with a linear term and delivers an optimal solution for the current approximation.
The second-stage subproblems evaluate the chosen first-stage solution for every scenario.
With the dual information, the linear approximation is refined and the master problem
is resolved. This process repeats until the original problem is solved to optimality. The
following detailed description of the Bender’s decomposition method applied to stochastic
program is based on the work of Freund (2004). It explains the multi-cut form (Birge &
Louveaux, 1988) of the algorithm.

The algorithm is used to solve the two-stage stochastic problems with recourse (2.8). The
deterministic equivalent formulation (3.1) of the problem can also be written as problem
(2.12) with the second-stage problems (2.13) Q(x, s), with s ∈ S. We denote the dual of
problem Q(x, s) as D(x, s)

D(x, s) := z(x, s) = max πs (hs − T sx)
s.t. (W s)T πs ≤ qs.

(3.8)

The feasible region of D(·, s) is the set

Ds :=
{
πs | (W s)Tπs ≤ qs

}
,

which is independent of x. If the polyhedron is full-dimensional, the extreme points and
extreme rays of the feasible region Ds can be enumerated with πs,1, . . . , πs,Is as extreme
points and rs,1, . . . , rs,Js as extreme rays (Freund, 2004). If the polyhedron is not full
dimensional, it does not have extreme points, but rather “extreme hyperplanes”. The
polyhedron can still be finitely generated by a set of vectors, where each vector belongs
to a different minimal face of Ds, and a set of its extreme rays, as described by Equation
(2.7) in Section 2.1.

By the addition of a slack vector to the constraint (W s)T pts ≤ qs, two finite sets of
vectors can be defined that fulfill the same goal as the sets of extreme points and extreme
rays, namely that they are finite and that the polyhedron can be decomposed into these
two sets according to the Minkowski-Weyl decomposition theorem (2.13). The two sets
are the set of basic feasible solution of D(·, s) and the set of feasible rays composed of
minimal dependent sets of the matrix columns of W T I, see (Zverovich et al., 2012) for
details. As the LP solver converts the problem internally into a full-dimensional problem
by the addition of slack variables (e.g., (Maros, 2003, p. 4-18)), we continue with the
assumption of the full-dimensional case.

If problem D(x, s) is solved, it can either be unbounded or optimal. If the problem is
optimal, we get an extreme point of the feasible region as a solution π̄s = πs,i, i ∈ {1, . . . , Is}.
As this solution is optimal it holds that

z(x, s) = π̄s (hs − T sx) = max
k=1,...,Is

πs,k (hs − T sx) ,

3.3. Benders Decomposition 27

and the solution value z(x, s) is thus greater equal than

πs,i (hs − T sx) , i ∈ {1, . . . , Is}.

If the problem is unbounded, the solver returns an extreme ray r̄s = rs,j , j ∈ {1, . . . , Js}.
The solution value zs is therefore∞ and thus r̄s (hs − T sx) > 0. As long as it holds for any
extreme ray rs,j that rs,j (hs − T sx) > 0, the second-stage problem D(x, s) is unbounded.
Therefore the solution x must be chosen differently to be feasible, as h and T are fixed
and determined by the scenario s.

With these two observations we can rewrite D(x, s) in terms of the extreme points and
extreme rays of its feasible region Ds as

D2(x, s) := z(x, s) = min zs

s.t. πs,i (hs − T sx) ≤ zs i = 1, . . . , Is
rs,j (hs − T sx) ≤ 0 j = 1, . . . , Js.

(3.9)

A solution x̄ that would lead to problem D(x, s) being unbounded is not feasible for problem
D2(x, s). Thus D(x̄, s) =∞ = D2(x̄, s) as D(·, s) is a maximization problem. Therefore
we can replace Q(x, s) in problem (2.12) by D2(x, s). If we also replace the expectation
by the probability weighted sum, we can write this problem, also known as the full master
problem (FMP) (Freund, 2004), as

z = min
x,z1,...,zS

cTx+
S∑
s=1

psz
s

s.t. Ax = b

x ≥ 0 (3.10)
πs,i (hs − T sx) ≤ zs i = 1, . . . , Is, s = 1, . . . , S
rs,j (hs − T sx) ≤ 0 j = 1, . . . , Js, s = 1, . . . , S.

If we compare this reformulation with problem (3.1), we see that we removed the second
stage variables ys and the corresponding constraints from the problem, we added S many
scalar variables, and a really huge number of constraints. This approach is generally not
computationally feasible due to the large number of extreme points and extreme rays of
the feasible regions of every second-stage dual subproblem and the resulting number of
constraints. The idea is to start with a restricted master problem without any additional
constraints and generate the missing constraints when we notice that a not yet added

28 3. Solution Methods

constraint was violated. The restricted master problem at a given iteration it is formulated
like this

zit = min
x,z1,...,zS

cTx+
S∑
s=1

psz
s

s.t. Ax = b

x ≥ 0 (3.11)
πs,i (hs − T sx) ≤ zs for some i and s
rs,j (hs − T sx) ≤ 0 for some i and s.

A solution to problem (3.11) gives us an optimal first-stage solution x̄, z̄1, . . . , z̄S . The
solution value zit is a lower bound to the optimal solution value z of the FMP, as the
RMP it misses some constraints that the FMP already has. We now need to check if the
given solution is optimal for the FMP. We do this by solving problem (3.8) for x̄ and every
s. As already described above, if D(x̄, s) has an optimal solution we get an extreme point
πs,i. If D(x̄, s) is unbounded, we get an extreme ray rs,j . If it holds that the objective
function value of Q(x̄, s) = D(x̄, s), namely z(x̄, s) is greater than the approximating
variable z̄s

z(x̄, s) = πs,i (hs − T sx̄) > z̄s,

than the solution x̄, z̄s violated the constraint πs,i (hs − T sx) ≤ zs, and this constraint is
then added to RMP it. This constraint is called optimality cut and is usually rearranged
to take the form

πs,iT sx+ zs ≥ πs,ihs.

If D(x̄, s) is unbounded, we have an extreme ray rs,j . The inequality rs,j (hs − T sx) > 0
holds for this extreme ray. The constraint rs,j (hs − T sx) ≤ 0 is therefore violated and is
added to RMP it. This constraint is called feasibility cut.
If all the problems D(x̄, s) have a finite optimal solution, it is possible to compute an

upper bound for the original problem (2.12) because every feasible solution x̄, ȳ1, . . . , ȳS

is always greater or equal than the optimal solution. The objective function value of the
solution x can be computed as cx +

∑S
s=1 p

sqsys. If this value is lower than the current
upper bound, the upper bound can be updated and the solution x̄, ȳ1, . . . , ȳS can be stored
as the incumbent solution. This is repeated until the stopping condition is met. There are
three stopping conditions that can be checked. We can stop the algorithm, if no violated
constraint could be found, i.e., no cut was added to the RMP it. This means that the
found solution is optimal for the FMP and therefore for the original problem. In theory
this stopping condition would suffice, but because of numerical inaccuracies in real world
computations, it might not be possible to achieve this condition. The algorithm can also
be stopped if the gap between the upper and lower bound, ∆ = UB − LB, is smaller
than a small tolerance εoptimality.1 The third stopping criterion is not an absolute but a
relative stopping criterion. When the fraction |UB−LB|

|LB|+10−10 is smaller than an εoptimality, the

1Typical values for εoptimality lie between 10−8 and 10−5.

3.4. Lagrangean Relaxation 29

algorithm can also be stopped.2 This is a common stopping criterion for solvers that work
with convergence between upper and lower bounds, e.g., MIP solver.

The algorithm can also be applied in a nested fashion to multi-stage stochastic problems
in staircase format (2.14) (Birge, 1985). Every problem associated to an inner node of the
scenario tree is then viewed as a subproblem to its ancestor and as a master problem to its
descendants. We present a formal description of the nested L-shaped method in Chapter
5.

3.4. Lagrangean Relaxation

A well-known metaheuristic to achieve valid lower bounds for minimization problems with
hard and easy constraints is Lagrangean relaxation (see, e.g., (Beasley, 1993; Fisher, 1985)
for an introduction). The description of this metaheuristic is relatively simple:

1. Attach Lagrange multipliers to the hard constraints

2. Put these constraints into the objective function

3. Solve the resulting problem

4. Find a feasible solution to the original problem

To apply this metaheuristic to real problems the hard constraints must be identified as
well as the values of the Lagrange multipliers. If the obtained solution is not feasible for
the original problem, there should be a way to deduce a feasible solution from the solution
to the Lagrangean problem (Fisher, 1985). A general method exists to choose values for
the Lagrange multipliers, the subgradient method (Held et al., 1974; Fisher, 1981), but
choosing better values than those from the subgradient method is possible but problem
dependent (Beasley, 1993, p. 280).
The Lagrangean relaxation problem provides a lower bound on the original problem.

In case of MIPs, the Lagrangean relaxation lower bound is greater or equal to the lower
bound that can be obtained by solving the LP relaxation (Beasley, 1993, p. 253ff). The
method can be applied repeatedly with updated Lagrangean multipliers to find the largest
bound for the original problem. The problem of finding a set of multipliers that maximize
the lower bound obtained by the Lagrangean relaxation problem is called the Lagrangean
dual problem (Beasley, 1993, p. 249).

2See also the instructions for the POSTS test set (Holmes, 1995).

30 3. Solution Methods

When we look at the extensive form of the DEM (3.7) we see that it would be possible
to decompose this problem into independent scenario subproblems Ps, ∀s ∈ S, if the
non-anticipativity constraints (3.6) were not present.

Ps := min
T∑
t=1

cstx
s
t

s.t. T s1x
s
1 = hs1

T s2x
s
1 + W s

2x
s
2 = hs2

.
T sTx

s
T−1 + W s

Tx
s
T = hsT

lst ≤ xst ≤ ust t = 1, . . . , T.

(3.12)

A solution to a particular scenario subproblem Ps (3.12) is relatively easy to find, as this
problem is a single scenario problem and as hard to solve as the deterministic version
of the problem, thus the hard constraints of problem (3.7) are the non-anticipativity
constraints. By putting the non-anticipativity constraints into the objective function with
some Lagrange multipliers λ, we get the Lagrangean relaxation of the extensive DEM

min
T∑
t=1

S∑
s=1

psc
s
tx
s
t +

T−1∑
t=1

Kt∑
i=1

∑
(s1,s2)∈N(t,i)

λt,s1,s2 (xs1
t − x

s2
t)

s.t. T s1x
s
1 = hs1 s = 1, . . . , S

T s2x
s
1 + W s

2x
s
2 = hs2 s = 1, . . . , S

.
T sTx

s
T−1 + W s

Tx
s
T = hsT s = 1, . . . , S

xs1
t = xs2

t , t = 1, . . . , T − 1, i = 1, . . . ,Kt,∀(s1, s2) ∈ N(t, i)
lst ≤ xst ≤ ust s = 1, . . . , S, t = 1, . . . , T.

(3.13)

The Lagrangean relaxation (3.13) of the extensive DEM can be split up into independent
subproblems and solved separately. We denote these separate Lagrangean relaxation
subproblems as LRPs

LRPs := min
T∑
t=1

cstx
s
t + λt,s,s′x

s
t − λt,s′,sxst

s.t. T s1x
s
1 = hs1

T s2x
s
1 + W s

2x
s
2 = hs2

.
T sTx

s
T−1 + W s

Tx
s
T = hsT

lst ≤ xst ≤ ust t = 1, . . . , T,

(3.14)

where we set λt,s1,s2 to zero, if (s1, s2) /∈ N(t, i(t, s)), with i(t, s) denoting the node index
at stage t for scenario s. A naive solution algorithm for the extensive DEM utilizing the

3.5. Approximative Solution Methods 31

Lagrangean relaxation consists in finding, in an iterative process, Lagrangean multipliers,
such that the non-anticipativity constraints holds, i.e., solving the Lagrangean dual.
Due to limited numerical usefulness, the sole use of Lagrangean relaxation does not

suffice (Rockafellar & Wets, 1991). The augmented Lagrangean approach (see (Bertsekas,
1982; Rockafellar, 1976a) or (Luenberger & Ye, 2008, Ch. 14)) combines multiplier and
penalty methods, where the penalty function is usually a quadratic penalty function, such
that the resulting objective function for the Lagrangean relaxed problem of the extensive
DEM is

T∑
t=1

S∑
s=1

psc
s
tx
s
t +

T−1∑
t=1

Kt∑
i=1

∑
(s1,s2)∈N(t,i)

λt,s1,s2 (xs1
t − x

s2
t)

+ 1
2ρ

∣∣∣∣∣∣
T−1∑
t=1

Kt∑
i=1

∑
(s1,s2)∈N(t,i)

(xs1
t − x

s2
t)

∣∣∣∣∣∣
2

, (3.15)

where the penalty parameter ρ is usually updated during the course of the algorithm. The
augmented Lagrangean has the difficulty that the problem formulation cannot be readily
decomposed into individual scenario problems, due to the quadratic penalty term in the
objective (3.15). This difficulty is addressed in different methods that are based on the
augmented Lagrangean, for example Progressive Hedging (PH) (Rockafellar & Wets, 1991),
or diagonal quadratic approximation (Mulvey & Ruszczyński, 1992).
A dual decomposition method for stochastic integer problems (Carøe & Schultz, 1999)

is based on solving the Lagrangean dual. An introduction to these scenario-based de-
composition approaches can be found in the literature, e.g., (Birge & Louveaux, 2011,
p. 253ff), (Ruszczyński, 2003, p. 187ff). For the description of a recent implementation
of PH see (Watson et al., 2012). For a comparison of different scenario-based decompo-
sition approaches see (Escudero et al., 2012). A recent comparison of self-implemented
versions of stage-based and scenario-based decomposition algorithms favors the stage-based
decomposition approaches (Parpas & Rustem, 2007).

3.5. Approximative Solution Methods

Continuous distributions for random variables pose a problem for solving stochastic pro-
grams, as for an exact solution, integration over multiple dimensions would be required.
Discrete distributions for random variables that lead to a large number of realizations can
also pose problems, as the number of scenarios can get too large to be handled with the
already mentioned solution techniques. In these cases, it is preferable to solve an approx-
imated problem with discrete and finite distributions instead of not solving the problem
at all. Usually Monte Carlo sampling techniques are employed in the approximation tech-
niques. For an introduction see (Birge & Louveaux, 2011, p. 389ff) and the references
therein.

Approximate solution techniques can be broadly divided into two parts: techniques that
employ sampling outside an optimization algorithm and techniques that employ sampling
within an optimization algorithm. We look first at the “exterior” methods (Shapiro, 2003).

32 3. Solution Methods

3.5.1. Exterior Sampling

Sample average approximation (SAA) is one technique to solve stochastic programs with
continuous or discrete distributions approximately. The implementation of the method
can differ in details regarding the sampling strategy or statistical bound computation,
but the overall idea is the following. A set of N realizations for the random vector ξ is
sampled, from which we can then deduce a scenario tree. The resulting SAA-problem is an
estimator of the expected recourse function of the original problem. Its solution converges
to the solution of the true problem, as N →∞, under mild conditions (cf. Shapiro (2003)).
Although the theoretical bound on the sample size is typically too conservative to be of use
in practical applications, the sample size required to solve the true problem within a given
tolerance probability α depends only logarithmically both on the size of the feasible set
and α, for the case of finite feasible sets (Shapiro, 2003, p. 374ff), i.e., when the problem
is bounded. When this is not the case, the bound depends linearly on the dimension n of
the decision vector x.

The SAA-problem is solved and its solution and objective function value is stored. This
process is repeated M times, or until some statistical check is satisfied. After this, the
“best” solution is taken and evaluated with a bigger number of scenarios N̄ . Finally, a
confidence interval is computed to specify how “good” the solution is in a statistical sense.
Several authors propose improvements to this basic scheme, mostly by altering the way
in which the random variates are sampled. Mak et al. (1999) employ common random
numbers to achieve variance reduction. Linderoth et al. (2006) use the SAA approach on
a set of test problems in a parallel environment and find that latin hypercube sampling
is superior to crude monte carlo sampling in terms of solution quality. A good overview
about available techniques and an extended introduction is given by Shapiro (2003).

3.5.2. Interior Sampling

“Interior” methods stand in contrast to “exterior” methods in that they do not sample a
scenario tree which can then be used by an existing stochastic programming solver. Instead
they sample random variates according to the given distribution inside the optimization
algorithm. Methods that are based on the L-shaped method are Stochastic Decomposition,
proposed by Higle & Sen (1991) and Importance Sampling, proposed by Dantzig & Glynn
(1990). For an overview about other procedures, e.g., stochastic quasi-gradient methods,
see the literature and the references therein (Birge & Louveaux, 2011, p. 399ff).

Stochastic Decomposition In Stochastic Decomposition Higle & Sen (1991) a new sce-
nario is sampled in every iteration, thus the number of subproblems grows by one with
every iteration. All generated scenario subproblems are then solved to optimality. As
in the regular L-shaped method it is possible to compute an optimality cut. In addition
the cut coefficients of the already present optimality cuts are updated to ensure that no
valid optimal point is accidentally cut off. After generating the cut, the master problem is
resolved to get a new iterate x. The procedure stops when a statistical stopping condition
is satisfied, either by error bounds or optimality conditions. A complete explanation of the

3.5. Approximative Solution Methods 33

method with implementation considerations and stopping conditions is given by the same
authors (Higle & Sen, 1996).

Importance Sampling Importance Sampling is used to reduce the variance of the ap-
proximate recourse function value for stochastic programs with random variables with
discrete and finite distributions. In contrast to stochastic decomposition, where only one
new scenario is sampled at every iteration, here a new scenario tree is sampled at every
iteration to get an estimate for the expected recourse function Q(·) at the current first-
stage solution x̂. The difference to the crude Monte-Carlo approach is that the scenario
tree is not sampled according to the original distribution, but to an altered distribution
based on previous results of the recourse function approximation. For h different random
variables with respective support Ωi, i = 1, . . . , h,Ω = Ω1 × . . .× Ωh a total sampling size
N is determined, such that

∑h
i=1Ni = N , where Ni is the sampling size for the i−th ran-

dom variable. For every random variable i, Ni scenarios are created, such that a random
variate is sampled for every random variable j 6= i, j = 1, . . . , h according to its original
marginal distribution, and the i−th component is sampled according to its importance
distribution. After the creation of the scenarios all subproblems are solved to generate
a new optimality cut. The master problem is resolved to get a new lower bound. If the
bounds are not indistinguishable by a statistical test, the next set of scenarios is generated.
A detailed explanation and analysis of the methods as well as computational results are
given by Dantzig & Infanger (1991) and Infanger (1992). An extension of the method
was investigated by Dempster & Thompson (1999) by the use of EVPI-based importance
sampling.

3.5.3. Scenario Tree Generation

Instead of sampling a scenario tree by variations of Monte Carlo sampling, a scenario
tree can also be constructed with other methods. Scenario tree generation is a research
area that is important for both theoretical and practical considerations, but peripheral
to this thesis. We refer the reader to several surveys (Dupačová et al., 2000; Römisch,
2011) and the good overview of Kaut & Wallace (2003)3 about techniques that are used
to generate scenario trees from either empirical data or distribution information and to
the more recent introduction given in Chapter 4 in the book by King & Wallace (2012),
in collaboration with Michal Kaut. In (King & Wallace, 2012, p. 83ff) it is also shown
how to use out-of-sample and in-sample tests to measure the quality of scenario trees. It is
important to distinguish between approximating the distributions of the scenario tree and
the decisions that result from such a tree, because a good approximation may not lead to
good results. “We are not concerned about how well the distribution is approximated, as
long as the scenario tree leads to a ‘good’ decision”(emphasis in original) (Kaut & Wallace,
2003).

Techniques that reduce a given scenario tree in size while staying close to the original
distribution of the tree are called tree reduction techniques. They where originally proposed

3The overview is missing in the published paper (Kaut & Wallace, 2007).

34 3. Solution Methods

by Dupačová et al. (2003) and developed further by Heitsch & Römisch (2003), see (Heitsch
& Römisch, 2011) for an overview and introduction.

A different approach is proposed by Mirkov & Pflug (2007), where the original distribu-
tions are approximated by simpler, discrete distributions but the resulting problem and its
result is compared with the original formulation. The distance between the original proba-
bility model and its discrete approximation is measured by a conditional transportation
distance (Mirkov & Pflug, 2007).

35

Part II.

State-of-the-Art

37

4. Benders Decomposition

In this chapter we give an introduction into additions and enhancements to Benders
decomposition as it is used in stochastic programming, termed L-shaped method. We
explain these concepts for the two-stage case, before we extend the L-shaped method to
the multi-stage case in Chapter 5. First, we reformulate the problem introduced in Section
3.3 to a common notation, thereby allowing general LP formulations. In Section 4.2 the
concept of cut aggregation is introduced. We present techniques to hinder the typical
zig-zagging behavior of cutting plane methods in Section 4.3. Regularized decomposition,
level decomposition and trust-region methods are three different methods to achieve that
goal. There are different ways to generate the cuts, which we present in Section 4.4. We
end this chapter with ways to solve similar subproblems efficiently in Section 4.5.

4.1. Notational Reconcilation

We introduced the L-shaped method in Section 3.3 in the multi-cut variant (Birge &
Louveaux, 1988). To be consistent with the literature we replace the aggregate variables
zs we used previously with the commonly used θs. In addition we move the probabilities
from the objective function to the constraint level, by multiplying all the cut coefficients
and the right-hand-side with the scenario probability ps. We extend the description by
allowing general LP formulations (2.3) instead of the standard form (2.1). Due to these
changes, we reformulate the master and subproblem formulation given in Section 3.3.

zk = min
x,θ1,...,θS

cTx+
S∑
s=1

θs

s.t. Ax = b

Es,ix+ θs ≥ es,i ∀i ∈ Ik
Ds,jx ≥ ds,j ∀j ∈ Jk,∀s ∈ S(j)
l ≤ x ≤ u.

(4.1)

We denote the current solution of zk as x̄, θ̄1, . . . , θ̄S . At iteration k, the set Ik consists
of all iterations where all subproblems were feasible, whereas the set Jk consists of all
iterations where at least one subproblem was infeasible. Thus the union of Ik∪Jk contains
the iteration numbers 1, . . . , k − 1 and Ik ∩ Jk = ∅. When the set Ik is empty, i.e., no
optimality cuts are present in the master problem, the variables θ1, . . . , θS are ignored in
the computation. S(j) denotes the set of scenarios for which feasibility cuts were generated
at iteration j.

38 4. Benders Decomposition

The subproblem at iteration k for scenario s is formulated as

Q(x̄, s) = min
ys,k

qsys,k

s.t. W sys,k = hs − T sx̄
ls ≤ ys,k ≤ us,

(4.2)

whose dual D(x̄, s) is

D(x̄, s) = min
πs,k

πs,k(hs − T sx̄) + λs,kls + µs,kus

s.t. (W s)Tπs,k + λs,k + µs,k = qs

λs,k ≥ 0, µs,k ≤ 0.

(4.3)

The optimality cut coefficients are computed as

Es,k = psπs,kT s, es,k = psπs,khs + psλs,kls + psµs,kus, (4.4)

where πs,k, λs,k and µs,k denote an optimal solution of problem (4.3) at iteration k. If the
current recourse function approximation θ̄s was insufficient

θ̄s < es,k − Es,kx̄,

add the optimality cut Es,kx+ θs ≥ es,k to the problem, for all s ∈ S (Birge & Louveaux,
1988).

The feasibility cut coefficients are computed as

Ds,k = πs,kT s, ds,k = πs,khs + λs,kls + µs,kus, (4.5)

where πs,k, λs,k and µs,k denote an extreme ray of problem (4.3). The feasibility cut is then
generated as Ds,kx ≥ ds,k (Birge & Louveaux, 2011, p. 191f). The formalized algorithm
can be seen in Algorithm 1.

4.2. Aggregates

The L-shaped method was originally introduced by Van Slyke & Wets (1969) in the single-
cut variant. In this variant, when all subproblems are feasible, only one optimality cut is
added to the master problem. This cut is computed by summing up all the cut coefficients
generated for every scenario at the current iteration i

Ei =
S∑
s=1

Es,i, ei =
S∑
s=1

es,i.

The cut is then generated as
Eix+ θ ≥ ei.

4.2. Aggregates 39

Initialization;
while UB − LB > εoptimality do

Solve Master problem (4.1) and store solution xk, θ1,k, . . . , θS,k;
Set LB ← cxk +

∑S
s=1 θ

s,k;
if Master problem infeasible then

return Problem infeasible;
for every scenario s ∈ S do

Solve second-stage problem Q(xk, s) (4.2) for scenario s;
if Subproblem feasible then

Let ys,k be the primal solution and πs,k, λs,k, µs,k be the dual solution of
Q(xk, s);
Generate optimality cut coefficients and right-hand side;
Es,k = psπs,kT s;
es,k = ps

[
πs,khs + λs,kls + µs,kus

]
;

Form optimality cut Es,kx+ θs ≥ es,k;
if Subproblem infeasible then

Let πs,k, λs,k, µs,k be the dual extreme ray;
Generate feasibility cut and add it to Master problem;
πs,kT sx ≥ πs,khs + λs,kls + µs,kus;

if No subproblem was infeasible then
for every scenario s ∈ S do

if θs,k < es − Esxk then
Add generated optimality cut to Master problem;

Compute current solution value zk = cxk +
∑S
s=1 p

sqsys,k;
if UB > zk then

Set UB ← zk and store incumbent solution xk, y1,k, . . . , yS,k;
Set k ← k + 1;

Return incumbent solution;
Algorithm 1: Multi-cut L-shaped method

40 4. Benders Decomposition

Birge & Louveaux (1988) come to the conclusion that the multi-cut method typically leads
to a considerable reduction in major iterations compared with the single-cut method. They
observe that the multi-cut method is more effective than the single-cut method when the
number of scenarios is not considerably larger than the number of first-stage constraints.
This simple heuristic does not hold for all problems though (Dohle, 2010). Birge &
Louveaux (1988) suggest to explore the computational experience with an aggregation level
between single- and multi-cut, termed hybrid approach. Vladimirou (1998) implements the
hybrid approach to decrease communication overhead in a parallel implementation of the
algorithm. Linderoth & Wright (2003) also implement the hybrid approach for the same
reasons in their asynchronous version of the L-shaped method. Both implementations
were not analyzed with respect to the number of aggregates. Recently, Trukhanov et al.
(2010) implemented and tested this idea and find that it is indeed superior to single- and
multi-cut, at least on their test problems. The set of scenarios S is partitioned into a total
of A partitions, also termed aggregates, Sa ⊆ S, a = 1, . . . , A such that Si ∩ Sj = ∅, ∀i 6= j
and S1 ∪ . . . ∪ SA = S. Every aggregate a is associated with a corresponding free variable
θa that approximates the expected recourse function for the scenarios in Sa. Thus the
optimality cut coefficients are computed as

Ea,i =
∑
s∈Sa

Es,i, ea,i =
∑
s∈Sa

es,i. (4.6)

A cut is then generated as
Ea,ix+ θa ≥ ea,i,

for every aggregate a = 1, . . . , A, if the current recourse function approximation is insuffi-
cient, i.e., θ̄a < ea,i−Ea,ix̄. It is easy to see that the single-cut method is an extreme case
with only one aggregate S1 = S, and the multi-cut method is the other extreme with S
aggregates, where every aggregate Sa consists of exactly one scenario. For completeness
we state the master problem for an arbitrary level of cut aggregation A

zk = min
x,θ1,...,θA

cTx+
A∑
a=1

θa

s.t. Ax = b

Ea,ix+ θa ≥ ea,i a = 1, . . . , A, ∀i ∈ Ik
Ds,jx ≥ ds,j ∀j ∈ Jk,∀s ∈ S(j)
l ≤ x ≤ u.

(4.7)

The hybrid-cut method partitions the scenario set, so a partitioning method must be
chosen. Trukhanov et al. (2010) propose two different methods to partition the scenario
set. The first is the static method, where a fixed number of aggregates A is determined a
priori. The second is an adaptive approach that we discuss in Section 8.4.

In the static method, the scenarios are distributed evenly on all aggregates (Trukhanov
et al., 2010), in the following way

Sa =
{
a,A+ a, 2 ·A+ a, . . . ,

⌊
S

A

⌋
+ a

}
, ∀a = {1, . . . , A}. (4.8)

4.3. Stabilizing the master problem 41

It is also possible to partition the scenarios by dividing the scenario set by the number of
aggregates, such that

Sa =
{

(a− 1) ·
⌊
S

A

⌋
+ 1, · · · , a ·

⌊
S

A

⌋}
, ∀a = {1, . . . , A}. (4.9)

Should S
A be non-integer, in the first case the remaining S − b SAc ·A scenarios are added

to the first S − b SAc ·A aggregates, whereas in the second case, the last aggregate gets all
of the remaining scenarios.

A random partitioning of the scenarios is also possible. This can be done in two different
ways. Either a random aggregate can be chosen for every scenario. Or for every aggregate,
the belonging scenarios can be chosen at random. The first case can lead to aggregates
that are not evenly distributed, although this does not mean that it is in general a bad
idea to have uneven partitions.

Brandes (2011) compares the second method with the static approaches above on a small
set of test problems and shows that a static selection is in most cases superior to a random
partitioning. He also uses clustering methods, in particular k-means and hierarchical
clustering, and shows that the number of major iterations can be reduced compared with
the random approaches, although the overall running time increases due to the time spend
to cluster the scenario set. These results show that the partitioning of the scenarios is a
pivotal element in the hybrid-method and should be subject to further research.

4.3. Stabilizing the master problem
Cutting plane methods (Kelley, 1960), like Benders decomposition, have some widely
recognized disadvantages (see, e.g., (Vanderbeck & Wolsey, 2010, p. 454f)):

• ineffective initial iterations,

• slow convergence in the end of the algorithm,

• primal solutions can behave erratically, i.e., zigzagging (Zverovich et al., 2012),

• upper bounds can remain stuck for successive iterations, due to multiple solutions.

Some remedies have been proposed to overcome these disadvantages. Techniques to combat
zigzagging are described in this section. Ineffective initial iterations are dealt with in Section
5.4, because those techniques are also applied to multi-stage problems.
The series of iterates generated by Benders decomposition can zigzag, which is typical

for methods based on single-point linearizations (Birge & Louveaux, 2011, p. 255). This
can lead to slow convergence of the algorithm. One aim is therefore to prevent the typi-
cal zigzagging generated by Benders decomposition. This can be achieved by additional
constraints or an altered objective for the master problem. We will look at three different
methods that combat the zigzagging by stabilizing the sequence of iterates, namely regu-
larized decomposition, level decomposition, and the trust region method. These methods
belong to the broader class of proximal point (Rockafellar, 1976b) or bundle-type methods
(Lemaréchal, 1978; Kiwiel, 1985).

42 4. Benders Decomposition

4.3.1. Regularized Decomposition

The regularized decomposition (RD) method was developed by Ruszczyński (1986) and
further extended by Ruszczyński & Świętanowski (1997). It uses a quadratic objective
function with a penalty term to keep solutions close to the current reference solution x̂. In
addition, the method keeps only a limited number of cuts in the problem (see (Ruszczyński,
2003) for a detailed description and proof of convergence). Regularized decomposition uses
the multi-cut method by default, but it can be adapted to an arbitrary number of aggregates.
The master problem has the following form

min
x,θ1,...,θS

cTx+
S∑
s=1

θs + 1
2σ ‖ x̂

k − x ‖2

s.t. Ax = b

Es,ix+ θs ≥ es,i ∀i ∈ Ik
Ds,jx ≥ ds,j ∀j ∈ Jk, ∀s ∈ S(j)
l ≤ x ≤ u.

(4.10)

To describe the update of σ and x̂k we let F k = cTx+
∑S
s=1 θ

s be the objective function
value of the approximating master problem at iteration k and F (x) = cTx+

∑S
s=1 psQ(x, s)

be the objective function value of the stochastic program at point x. The reference solution
for the next iteration x̂k+1 is updated during the algorithm with the current solution xk, if

F (xk) = F k or F (xk) < F (x̂k),

otherwise it stays the same, i.e., x̂k+1 = x̂k. In addition to the second condition, exactly
n+ S cuts must be active (Ruszczyński & Świętanowski, 1997). The penalty parameter σ
is initialized with one and adjusted during the course of the algorithm. It is doubled, when

F (xk) < (1− γ)F (x̂k) + γF k

and halved, if
F (xk) > γF (x̂k) + (1− γ)F k,

with γ ∈ (0, 1) being a fixed parameter, usually set to 0.9. When σ is doubled, the quadratic
penalty term becomes less important, because the coefficient is 1

2σ , thus the algorithm is
allowed to find solutions that are further away from the current reference point x̂k.
The algorithm needs a different stopping criterion than the original L-shaped method,

because the algorithm does not provide a global lower bound, thus the convergence of
the bounds does not work. Instead the algorithm stops, when F k = F (x̂k), i.e., the
approximation is equal to the solution value at point x̂k and thus x̂k is an optimal solution.
This might be challenging for problems with numerical difficulties, see (Zverovich et al.,
2012) for a remark. The equality test can be implemented as |F (xk)−Fk|

|F (xk)|+ε for a small ε, e.g.,
ε = 10−10, see (Ellison et al., 2012, p. 34).

Computational results can be found in (Ruszczyński & Świętanowski, 1997), a compari-
son with other methods was done by (Zverovich et al., 2012). The method can be extended

4.3. Stabilizing the master problem 43

to the multi-stage case (Ruszczyński, 1993a). Regularized decomposition was also imple-
mented by Vladimirou (1998), who experimented with different values for the parameter
γ. He finds other values for the update of the penalty parameter σ more appropriate than
doubling or halving.

4.3.2. Level Decomposition

Level decomposition is another method to stabilize the sequence of iterates, first proposed
as the Level method by Lemaréchal et al. (1995) in the general context of nonsmooth convex
optimization and adapted to stochastic programming as Level decomposition by Fábián
& Szőke (2007). A favorable computational assessment of the method in comparison to
Benders decomposition, regularized decomposition and the trust-region method was done
recently (Zverovich et al., 2012). The method uses the single-cut variant in its default
description, but an arbitrary number of aggregates is possible. Oliveira & Sagastizábal
(2012) classify different versions of the bundle, level, and proximal point methods in a
unifying framework, and propose the on-demand accuracy approach. This approach allows
to skip solving the second stage problem by adding on-demand accuracy cuts out of stored
dual information. Fábián (2013) presents the on-demand accuracy approach in a form
which shows that this approach, if applied to two-stage stochastic programming problems,
combines the advantages of the disaggregate and the aggregate models.
The purpose of the level method is to dampen the zigzagging effect of the L-shaped

method with respect to first-stage solutions. This is achieved by projecting the current
iterate, denoted by xk, to a certain level set of the model function and by solving the
subproblems with the projected solution instead of the current solution. This requires a
starting solution x0 in the first iteration, e.g, the EV solution. The current incumbent
solution is denoted with x∗, i.e., the solution that achieved the current upper bound. The
projection problem is formed as follows

min
x

‖ x− xk ‖2

s.t. Ax = b

Eix+ θ ≥ ei ∀i ∈ Ik
Ds,jx ≥ ds,j ∀j ∈ Jk,∀s ∈ S(j)

cTx+ θ ≤ (1− λ)F k + λF (x∗)
l ≤ x ≤ u.

(4.11)

It minimizes the euclidean distance of its solution x to the current iterate xk, while ensuring
that the approximated solution value cTx + θ is not greater than a convex combination
of the current lower and upper bound, i.e., a certain level set of the model function. This
condition is ensured via the constraint cTx + θ ≤ (1 − λ)F k + λF (x∗). The parameter
λ ∈ (0, 1) is fixed a priori and kept constant throughout the algorithm. Note that for λ = 0
the Level method behaves like the original L-shaped method. The solution x is used as
the next iterate, xk+1. The subproblems (4.2) are then solved and a new cut is added to
the master problem. The algorithm stops, when the global lower and upper bound have
converged.

44 4. Benders Decomposition

4.3.3. Trust-Region Method

The trust-region method of Linderoth & Wright (2003), build upon bundle-trust-region
approaches (see the references in (Linderoth & Wright, 2003)), uses the l∞ norm to bound
available solutions. Thus it can be thought of as a hypercube around a reference solution
xk in which the next iterate is to be found, respecting the usual L-shaped constraints. The
method divides the iterations into major and minor iterations, where the reference solution
xk stays the same for all minor iterations that follow a major iteration. It is defined for
the multi-cut variant, but it can be adapted to an arbitrary number of aggregates.
The problem solved at minor iteration l and major iteration k is

min
xk,l

cTxk,l +
S∑
s=1

θs,k,l

s.t. Axk,l = b

Es,ixk,l + θs ≥ es,i ∀i ∈ Ik
Ds,jxk,l ≥ ds,j ∀j ∈ Jk,∀s ∈ S(j)

−∆k,l1 ≤ xk,i − xk ≤ ∆k,l1
l ≤ x ≤ u,

(4.12)

where ∆k,l is the current trust-region bound and 1 is a vector of appropriately many ones.
The constraint −∆k,l1 ≤ xk,l − xk ≤ ∆k,l1 is the LP formulation of ‖ xk,l − xk ‖∞ ≤ ∆k,l.
A minor iteration leads to a new major iteration, when the solution value F (xk,l) was
reduced enough, i.e., F (xk,l) ≤ F (xk) − ε(F (xk) − F k,l), for ε ∈ (0, 1

2). The solution xk,l
is then used as the next reference solution xk+1. The trust-region bound ∆k,l is also
updated during the algorithm. The goal is to allow wide steps, when it helps in finding
good solutions in a wider vicinity of the current reference point, and to restrict the set of
available solutions with a tighter bound, when no good solutions can be found within the
current bound.
The trust-region method increases the bound, when the solution value F (xk,l) was

reduced sufficiently, e.g., F (xk,l) ≤ F (xk) − 0.5(F (xk) − F k,l) in a minor iteration. It is
gradually reduced, when the solution value F (xk,l) is not reduced for some consecutive
minor iterations. For implementation details, computational results and a convergence
proof see (Linderoth & Wright, 2003). The authors also propose a cut deletion scheme
and an asynchronous version for more effective parallelization.

4.4. Cut Generation
The textbook approach to the L-shaped method cut generation is to generate only one
feasibility cut, whenever a subproblem is infeasible, and then resolve the master problem
(Birge & Louveaux, 2011, p. 191). This can be altered by generating more than one
feasibility cut in the same iteration, i.e., by solving all subproblems. It is also possible to
generate both optimality and feasibility cuts at the same time, when some subproblems
are infeasible and some can be solved to optimality, but the effects have not been evaluated
for stochastic programming problems.

4.5. Solving Similar Subproblems 45

In the context of integer programming, Fischetti et al. (2008), propose new cut selection
rules for feasibility cuts by finding a minimal infeasible subsystem. It is refined and
compared favorably with the classical cut selection by Benders decomposition, with a
unified framework for feasibility and optimality cuts (Fischetti et al., 2010).

The use of inexact optimality cuts, generated from a feasible but not yet optimal solution
to the dual subproblem (4.3), was also proposed for Benders decomposition (Zakeri et al.,
2000). Fábián (2000) suggested a similar idea related to the level method. A dual feasible
solution to the primal subproblem results in a valid but possibly not very strong cut for
the master problem. For the correct computation of the upper bound, all problems must
be solved to optimality, e.g., to test if the bounds have converged.

To solve a problem within a given accuracy of the optimal solution, some kind of primal-
dual optimization algorithm is necessary, as the simplex method does not provide a way
of estimating the gap between the current solution and the optimum. As of today, no
commercial interior-point solver has the possibility of an efficient warm start procedure
(see (Gondzio, 1998) for warmstarting IPM), thus the usage of an IPM method to solve
subproblems repeatedly seems unwarranted. Therefore the usage of inexact cuts, as pro-
posed by Zakeri et al. (2000), is not applicable for simplex-based implementations of the
L-shaped method. The inexact level decomposition algorithm developed by Fábián &
Szőke (2007) refines the distribution approximation1 during the course of the algorithm. If
the distribution is refined, more scenario subproblems are present. Even if all subproblems
are solved exactly, Fábián & Szőke observe that the generated cuts from previous iterations
are inexact with respect to the new information. Fábián & Szőke (2007) also allow for the
subproblem solution runs to be inexact.
Closely connected with the process of cut generation is the removal of inactive cuts.

Inactive cuts make the master problem larger than it has to be, which has implications for
solution time and needed memory. It is noticed that there is no reliable way to delete cuts
from the master problem (Ruszczyński, 2003), which is common for cutting-plane methods.
Cut deletion techniques are nevertheless important to prevent proliferation of unnecessary
cuts, especially in the multi-cut case. Regularized decomposition allows to delete cuts and
keep the overall number of cuts bounded, the trust-region method also allows to delete
cuts from the master problem, but in a rather heuristic approach. Level decomposition
also allows to remove cuts after certain iterations (see (Fábián & Szőke, 2007)).

4.5. Solving Similar Subproblems

In the L-shaped method a lot of subproblems have to be solved in every iteration. Depending
upon which components of (T,W, q, h) are stochastic, the problems are very similar to
one another. This can be exploited by the used solution algorithm, usually the simplex
method. The most important technique is the simplex warm start capability. When we
recall the dual subproblem formulation (4.3), we see that the feasibility set depends on
W and q. If these two are deterministic, every basic solution of (4.3) is feasible for every
other dual subproblem. The simplex method can warm start from another basic solution

1Fábián & Szőke (2007) observe that this strategy is possible when the number of random parameters is
not large.

46 4. Benders Decomposition

and find the optimum in just a few iterations. Thus when the dual simplex is used to
solve problem (4.2), a dual feasible basic solution can be used to warm start the dual
simplex method on that problem. Reasonable candidates are the basic solution of the last
iteration of that subproblem, or another basic solution of some other subproblem solved
at the same iteration. Which method works best seems to be problem dependent (Dohle,
2010), although Vladimirou (1998) argues on empirical grounds that the use of the optimal
basis of the last iteration seems to be the better choice.
Bunching methods are used (see (Ermoliev, 1988, p. 83ff) for a detailed introduction)

to find bases that are optimal for several subproblems. It is implemented in a variant
that can also handle random W and q in the multi-stage solver MSLiP (Gassmann, 1990).
The sifting procedure (Garstka & Rutenberg, 1973) is used in another multi-stage code
(Birge, 1985), but it can only handle random right-hand-side h. These techniques require
more involved implementation than just passing a stored basis into an LP solver (see
(Birge & Louveaux, 2011, p. 217ff)). Morton (1996) finds that a heuristic selection of
bases, depending on knowledge of the underlying problem, can be advantageous compared
with simple basis reuse. The parallelization of the second stage computations is done
with a good speedup factor, as all subproblems are independent of one another. This is
demonstrated by empirical evaluations (Ariyawansa & Hudson, 1991; Wolf & Koberstein,
2013).

47

5. Nested Benders Decomposition

The Benders decomposition method, developed for two-stage problems, can be extended
to handle multi-stage problems (Birge, 1985). A nested application of the method, where
two adjacent stages are seen as the first and second stage respectively, is possible. Every
problem associated to an inner node in the scenario tree is at the same time a master
problem towards its child nodes and a subproblem towards its parent node. All the
master/subproblems can therefore contain feasibility and optimality cuts, and these must
be considered in the cut generation process.
In contrast to the two-stage case, the algorithm has to decide upon a direction. After

all problems at stage t, 1 < t < T , have been solved, which stage should be solved next? Is
it better to go forward towards the leaf nodes, i.e., push primal information in the form of
solutions down the tree, or go backward towards the root node, i.e., push dual information
in the form of cuts up the tree? Sequencing protocols, which decide this question, are
described in Section 5.2. We give an overview about parallelization approaches for the
nested application of Benders decomposition in Section 5.3, as these vary considerably
more than those for the two-stage case.

Advanced start procedures try to take advantage of existing solutions. They are described
in Section 5.4. In Section 5.5 we introduce stage aggregation techniques. They are used
to transform an existing problem into a problem with less stages, by combining adjacent
stages. The goal is to reduce the computing time. But first, we describe the nested
L-shaped method and the differences to the two-stage case in the following section (see
(Birge & Louveaux, 2011, p. 266-276) for a detailed explanation).

5.1. Nested L-shaped method

The problem P vt (xa(t,v)
t−1) that has to be solved at iteration k for a given node v at stage t

is formulated as

zv,kt = min
xv

t ,θ
v,1
t ,...,θ

v,Av
t

t

cvtx
v
t +

Av
t∑

a=1
θv,at

s.t. T vt x
a(t,v)
t−1 +W v

t x
v
t = hvt

Ev,a,it xvt + θv,at ≥ ev,a,it ∀i ∈ Ivt,k,∀a ∈ Avt
Dv,s,j
t xvt ≥ d

v,s,j
t ∀j ∈ J vt,k, ∀s ∈ Svt (j),

lvt ≤ xvt ≤ uvt .

(5.1)

The first-stage problem is denoted as P 1
1 , but it has no prior solution and thus no T a(1,1)

0
matrix. As in the two-stage case, the θ variables are only considered in computation, when

48 5. Nested Benders Decomposition

a corresponding optimality cut has been added to the problem. The problems associated
with the leaf nodes at stage T have neither optimality nor feasibility cuts. Thus they have
no θ variables. The dual problem Dv

t (xa(t,v)
t−1) to P vt (xa(t,v)

t−1) is

− zv,kt = max πv,kt (hvt − T vt x
a(t,v)
t−1) + λv,kt lvt + µv,kt uvt + σv,kt ev,kt + ρv,kt dv,kt

s.t. (W v
t)Tπv,kt + (Ev,kt)Tσv,kt + (Dv,k

t)Tρv,kt = cvt∑
i∈Iv

t,k

σv,a,it = 1 ∀a ∈ Avt

λv,kt ≥ 0, µv,kt ≤ 0, σv,kt ≥ 0, ρv,kt ≥ 0,

(5.2)

where

Ev,kt =
⊗
i∈Iv

t,k

⊗
a∈Av

t

Ev,a,it , Dv,k
t =

⊗
j∈J v

t,k

⊗
s∈Sv

t (j)
Dv,s,j
t , ev,kt =

⊗
i∈Iv

t,k

⊗
a∈Av

t

ev,a,it ,

dv,kt =
⊗
j∈J v

t,k

⊗
s∈Sv

t (j)
dv,s,it , σv,kt =

⊗
i∈Iv

t,k

⊗
a∈Av

t

σv,a,it , ρv,kt =
⊗
j∈J v

t,k

⊗
s∈Sv

t (j)
ρv,s,jt .

⊗
denotes row-wise concatenation of row vectors, i.e., the result is a matrix.

The cut generation is different to the two-stage case as the present optimality and
feasibility cuts must be considered when optimality and feasibility cuts are generated for
all problems in the middle of the tree, i.e., at stages t with 1 < t < T . The optimality cut
coefficients are computed as (Birge & Louveaux, 2011, p. 268)

E
a(t,v),v,k
t−1 = pvt

p
a(t,v)
t−1

πv,kt T vt . (5.3)

The right hand side of an optimality cut is computed as (Birge & Louveaux, 2011, p. 268)

e
a(t,v),v,k
t−1 = pvt

p
a(t,v)
t−1

[
πv,kt hvt + σv,kt ev,kt + ρv,kt dv,kt + λv,kt lvt + µv,kt uvt

]
. (5.4)

When all nodes of stage t are solved to optimality, optimality cuts can be computed from
the precomputed coefficients (5.3) and right-hand sides (5.4) as usual. To describe such a
cut for the ancestor node a(t, v) at stage t− 1, we switch to this node to describe the cut
in its own terms, i.e., the ancestor node a(t, v) is now denoted as node (t, v). The final cut
for an aggregate a ∈ Avt is then computed as

Ev,a,kt xvt + θv,at =
∑

s∈Sv,a
t

Ev,s,kt xvt + θv,at ≥
∑

s∈Sv,a
t

ev,s,kt = ev,a,kt , (5.5)

where Sv,at ⊆ d(t, v) is the partition of the child nodes d(t, v) for aggregate a. The final
cut coefficients are stored as Ev,a,kt and the right-hand side as ev,a,kt . When all cuts have
been computed, the intermediate results Ev,s,kt , ev,s,kt ,∀s ∈ d(t, v) are deleted, as they
are no longer needed. Note that the intermediate results Ev,s,kt are indexed with a node

5.2. Sequencing Protocols 49

index s ∈ d(t, v) whereas the final coefficients Ev,a,kt are indexed with an aggregate index
a ∈ {1, . . . , Avt }.
Feasibility cuts from a node (t, v) for its ancestor are generated as

D
a(t,v),v,k
t−1 x

a(t,v)
t−1 ≥ da(t,v),v,k

t−1 , (5.6)

where the feasibility cut coefficients are computed as

D
a(t,v),v,k
t−1 = πv,kt T vt x

a(t,v)
t−1 , (5.7)

and the right hand side is computed as (Birge & Louveaux, 2011, p. 267)

d
a(t,v),v,k
t−1 = πv,kt hvt + ρv,kt dv,kt + λv,kt lvt + µv,kt uvt . (5.8)

The pseudocode is shown in Algorithm 2 (see (Birge & Louveaux, 2011, p. 267ff) for
proof of correctness).

5.2. Sequencing Protocols

The textbook algorithm we described in Algorithm 2 calls a sequencing protocol that
decides the direction. At every stage 1 < t < T the choices are forward or backward.
In the first implementation of the algorithm (Birge, 1985) the employed protocol was
FastForward (FF). This means that the algorithm goes forward in stage t, when the
approximation of the recourse function at stage t is not good enough, i.e., when new
optimality cuts have been added to stage t after the problems at stage t + 1 have been
solved. The opposing choice is FastBack (FB), where the algorithm goes backward at stage
t, when the recourse function approximation at stage t − 1 is not good enough. These
are the extreme choices. FF may take a lot of time to build a good recourse function
approximation for an initial solution which was far away from the optimum. The FB
algorithm may take a lot of time to build a good recourse function approximation at the
earlier stages without taking into account the recourse function approximation at later
stages, which may be rather poor due to the missing dual information (see (Morton, 1996)
for a further discussion).

A balanced approach is the FastForwardFastBack (FFFB) or Fastpass protocol, originally
proposed by (Wittrock, 1983) (cf. (Gassmann, 1990)). It makes a whole forward sweep,
followed by a whole backward sweep. This means it pushes the current primal information
as much down the tree as possible, and then pushes the resulting dual information back to
the root node. If a problem at a stage is infeasible, all the protocols do a backward sweep
to get a new primal solution. This scheme is currently believed to be the most efficient
(Birge & Louveaux, 2011, p. 268). With respect to the other protocols, the literature is
undecided. Gassmann (1990) concludes that FF is faster than FB, whereas (Birge et al.,
1996) and (Morton, 1996) come to the conclusion that FB fares better than FF. These
results depend on the investigated problems.

50 5. Nested Benders Decomposition

Initialization;
while UB − LB > εoptimality do

for every node v at stage t do
Solve subproblem P vt (xa(t,v),k

t−1) ;
if Subproblem feasible then

Let xv,kt , θv,1,kt , . . . , θ
v,Av

t ,k
t be the primal solution;

Let πv,kt , σv,kt , ρv,kt , λv,kt , µv,kt be the dual solution;
Generate Optimality-Cut Coefficients;
E
a(t,v),v,k
t−1 = pv

t

p
a(t,v)
t−1

πv,kt T vt ;

e
a(t,v),v,k
t−1 = pv

t

p
a(t,v)
t−1

[
πv,kt hvt + σv,kt evt + ρv,kt dvt + λv,kt lvt + µv,kt uvt

]
;

if Subproblem infeasible then
Let πv,kt , σv,kt , ρv,kt , λv,kt , µv,kt be the dual extreme ray;
Generate feasibility cut and add it to parent problem;
πv,kt T vt x

a(t,v)
t−1 ≥ πv,kt hvt + ρv,kt dvt + λv,kt lvt + µv,kt uvt ;

if t = 1 then
Set LB ← c1

tx
1,k
t ;

else if t = T AND all subproblems are feasible then
Compute current solution value zk =

∑T
t=1

∑Kt
v=1 p

v
t q
v
t x

v,k
t ;

if UB > zk then
Set UB ← zk and store incumbent first stage solution x1,k

1 ;
Call sequencing protocol to set direction;
if t > 1 AND direction = backward AND all subproblem are feasible then

Generate all optimality cuts of the form (5.5) for all nodes at stage t− 1;
Add all generated optimality cuts to their respective problem;

if t = 1 then
Set k ← k + 1;

if direction = forward then
t = t+ 1;

else
t = t− 1;

Return incumbent solution;
Algorithm 2: Hybrid-cut nested L-shaped method

5.2. Sequencing Protocols 51

Morton (1996) introduces two new protocols; ε-variants of FF and FB1. These two
protocols look at the lower and upper bound for every stage, and move in the opposite
direction, if the gap between the bounds is smaller than the ε threshold. The concepts
Absolute Error and Discrepancy (Morton, 1996) need to be described first, as the protocols
use these concepts.

We define Absolute Error (AE) for a whole stage. This implies that the concept can only
be meaningfully defined, if all subproblems for a stage t̂ are feasible. Absolute Error is the
difference between the expected recourse function approximation at stage t̂ compared to
the actual expected recourse function value,

AE(t̂, k) =
T∑

t=t̂+1

Kt∑
v=1

pvt c
v
tx

v,k
t −

Kt∑
v=1

Av
t∑

a=1
pv
t̂
θv,a,k
t̂

. (5.9)

To be able to determine the Absolute Error for a stage t̂, the expected recourse function
must be evaluated for the current primal solutions. This is done by solving all stages t > t̂.
Discrepancy (Disc) is the difference between the expected recourse function approxi-

mation at a stage t̂ compared to the weighted objective function value and the expected
recourse function approximation at stage t̂+ 1,

Disc(t̂, k) =
Kt̂+1∑
v=1

pvt̂+1c
v
t̂+1x

v,k

t̂+1 +
Av

t̂+1∑
a=1

pv
t̂+1θ

v,a,k

t̂+1

− Kt̂∑
v=1

Av
t̂∑

a=1
pv
t̂
θv,a,k
t̂

. (5.10)

In other words, discrepancy measures the “goodness” of the expected recourse function
approximation with respect to the next stage. To compute the discrepancy for stage t̂,
only the next stage t̂+ 1 must be solved.

Numerical difficulties, which arise in practice, require a slight change with respect to the
original description, when implementing these protocols. This holds in particular for FF
and FB (cf. (Morton, 1996) with (Birge et al., 1996)). It is advisable to change the strict
condition that the algorithm has to wait until no more optimality cuts can be generated
before the direction can be changed, towards a condition that uses tolerances and the gaps
between lower and upper bounds instead. Typical values for such tolerances lie between
10−4 and 10−6. Therefore we describe the FF and FB protocols with tolerances, instead of
the original condition that no more cuts could be generated. The absolute gap |UB−LB|
is used as a threshold. For comparison, Morton (1996) uses the minimum of the absolute
values of global upper and lower bounds as a threshold. This can lead to problems for the
FB protocols if the upper bound of a problem becomes zero, and the threshold condition
can not be satisfied anymore due to the requirement that the discrepancy has to be lower
than zero.
To describe all protocols in a unified way, the different sequencing protocols are called

from a general protocol. Algorithm 3 describes the general part that is common for all
sequencing protocols, i.e., a direction change at the first and last stage, and a backward

1Morton (1996) denotes FF as shuffle and FB as cautious.

52 5. Nested Benders Decomposition

sweep if any subproblem was infeasible. If no specific protocol is called, it is identical to
the FFFB protocol.

if t = 0 then
direction = forward;
sweep = false;

else if t = T then
direction = backward;
sweep = false;

if Subproblem infeasible then
direction = backward;
sweep = true;

if sweep = true then
return;

else if 1 < t < T then
Call specific protocol;

Algorithm 3: General sequencing protocol

The FastForward protocol, described in Algorithm 4, is then called from the general
protocol, as well as all other protocols for that matter.

if direction = forward then
sweep = true;

else if AE(t, k) < εoptimality · |UB − LB| then
direction = backward;

else
direction = forward;

Algorithm 4: FastForward sequencing protocol

The opposite protocol, FastBack, is described in Algorithm 5. The FB protocol requires
a valid recourse function approximation for every node. This is checked in the first if clause.

The FastForwardFastBack protocol is described in Algorithm 6. The direction is not
changed in intermediate stages, except for the case of infeasible subproblems. It does
not add anything to the generic protocol given in Algorithm 3. To be consistent in
the description of sequencing protocols, we include it for the sake of completeness and
to emphasize that FFFB does not take any information about the current bounds into
account.

The ε−FF protocol decides to go back, if the Absolute Error is less than ε · |UB−LB|.
The ε−FB protocol goes forward, if the Discrepancy is less than ε · |UB − LB|.
If the protocols FF or ε-FF are used, additional care has to be taken with respect to

iteration counts. The iteration counts used so far, also in the description of the nested L-
shaped method in Algorithm 2, are used to index solutions as well as cut components. With
FF, ε−FF, or any other protocol that can go forward after it went previously backward
during the same iteration, this numbering does not suffice, as the same iteration count is

5.2. Sequencing Protocols 53

if no expected recourse function approximation for any stage t < T then
direction = forward;
sweep = true;
return;

if direction = backward then
sweep = true;

else if Disc(t− 1, k) < εoptimality · |UB − LB| then
direction = forward;

else
direction = backward;

Algorithm 5: FastBack sequencing protocol

return;
Algorithm 6: FastForwardFastBack sequencing protocol

if direction = forward then
sweep = true;

else if AE(t, k) < ε · |UB − LB| then
direction = backward;

else
direction = forward;

Algorithm 7: ε-FastForward sequencing protocol

if no expected recourse function approximation for any stage t < T then
direction = forward;
sweep = true;
return;

if direction = backward then
sweep = true;

else if Disc(t− 1, k) < ε · |UB − LB| then
direction = forward;

else
direction = backward;

Algorithm 8: ε-FastBack sequencing protocol

54 5. Nested Benders Decomposition

used to denote different solutions as well as cut components. In an actual implementation,
it is thus advisable to increase the iteration number for the FF and ε-FF protocol, when
the direction in an intermediate stage was set to forward.
Morton (1996) compares the five protocols, albeit for min{|LB|, |UB|} as threshold,

where the ε values lie in the range of 0.0001 to 0.4096. He comes to the conclusion that
FB,ε-FB and FFFB reach comparable performance, but they outperform FF and ε-FF.
The ε value is relatively unimportant for the performance of ε-FB. For larger ε values,
ε-FF becomes more competitive, but that is due to the fact that for increasing ε, the ε
variants behave more like FFFB. The explanation for the relative performance differences
of the protocols lies in the computationally expensive later stages that do not have to be
solved so often for the FB,ε-FB and FFFB protocols (Morton, 1996).
Altenstedt (2003) proposes another approach. He modifies the FFFB protocol by in-

troducing a bouncing stage. When the algorithm reaches the bouncing stage, a backward
sweep is done. He calls such an iteration a minor iteration. This is in contrast to a full
iteration which he calls a major iteration. The backward sweeps can be repeated for a fixed
number of minor iterations, specified by the parameter BouncingIterations. The extension
to the FFFB protocol is due to the implementation of the algorithm in which all problems
up to the bouncing stage have a separate solver instance. Due to limited main memory, a
common solver instance is shared in stages after the bouncing stage. It is faster to resolve
problems that have a memory representation than to resolve problems which must be build
into a memory representation before they can be solved. The pseudocode is detailed in
Algorithm 9.

if no expected recourse function approximation for any stage t < T then
direction = forward;
sweep = true;
return;

if t = BouncingStage AND direction = forward then
if ItCounter < BouncingIterations then

direction = backward;
ItCounter = ItCounter +1;

else
ItCounter = 0;
direction = forward;

Algorithm 9: Bouncing sequencing protocol

5.3. Parallelization

The two-stage as well as the multi-stage L-shaped method lends itself readily to paral-
lelization. All subproblems that have to be solved at every stage are independent of one
another, so a parallel execution can be expected to have good speedup properties. The
speed up S(N) is defined as the solution time of the sequential algorithm divided by the
wall-clock solution time of the parallel algorithm, for N processors. According to Amdahl’s

5.3. Parallelization 55

law (Amdahl, 1967), the achievable speedup is restricted by the amount of sequential code,
i.e., S(N) = 1

1−P+ P
N

, where P is the amount of code that can be executed in parallel.
The most amount of work in the nested L-shaped method lies in the repeated solution of
subproblems, which can be parallelized. A single solution process of a subproblem can also
be efficiently parallelized, if an interior point method is used. The simplex method is not
so easy to parallelize (Shu & Wu, 1993), but attempts have been made (Bixby & Martin,
2000). We are not interested in the parallelization of the underlying LP solution process,
but in the parallelization of the decomposition method. However, depending upon the
architecture, parallelization can be achieved by different means (see (Culler et al., 1999)
for an introduction into parallel computing).
Parallel computing architectures are best described via several dimensions. These are

instruction- and datastreams, e.g., Flynn’s taxonomy (Flynn, 1972), whether the processes
communicate via memory, which can be shared or distributed, or message passing, and how
the memory is connected. A symmetric multiprocessing system is a Multiple-Instruction
Multiple-Data (MIMD) type architecture with shared memory, which is connected via a
system bus. All the cores of one processor are treated as distinct processors. This is the type
of architecture that is common for modern PCs and laptops. If several of these systems are
connected and can communicate with each other, it is called a cluster. The communication
typically consists of message passing, where each system has its own memory (distributed
memory), but those systems can also be build with distributed shared memory, i.e., with a
global address space. A grid is a cluster that consists of computers that are not necessarily
of the same quality with respect to computing power, main memory and other components.
In particular, computers can join and leave the grid in no guaranteed order.
A crucial issue of algorithms, implemented on architectures using distributed memory

or message passing, is the cost of communication. Compared to shared memory systems,
distributed systems need to communicate to exchange results or to get input data. In our
context, the relevant data are primal solutions used to form the right-hand-side of the
subproblems and as a result the obtained dual solution. This may differ in implementations,
where instead of dual solutions computed cuts can also be send.

The difficulty is to balance the amount of computation done at the distributed nodes with
the amount of necessary communication. The two extreme cases are no communication,
e.g., one computer solves the whole problem, versus most communication, e.g., every node
of the scenario tree is solved by a different computer, so that all the primal and dual
solutions must be communicated between the computers. In the first case, parallelization
with respect to the number of computers in the cluster is non-existent. In the second case,
the algorithm is highly parallelized, but the communication overhead can be so large to
dwarf the gains of parallel execution. The main goal is to devise a strategy to effectively
use the available resources in parallel while minimizing the communication overhead, such
that the wall clock solution time is minimal.

The nested L-shaped method was parallelized by different authors on different architec-
tures. Ariyawansa & Hudson (1991) implemented a two-stage L-shaped method, where
only the subproblems are solved in parallel, on a Sequent/Balance, a symmetric multipro-
cessing system. Dantzig et al. (1991) parallelized Benders decomposition in conjunction
with importance sampling on a hypercube architecture, on which the different processors

56 5. Nested Benders Decomposition

are connected via a hypercube network. Message passing is used to communicate between
the processors. The master processor solves the master problem and coordinates the sub-
processors, which solve the subproblems in parallel. Thus the information which has to
be send is the primal solution of the master problem and the information which scenario
should be solved by which subprocessor. The subproblems send back their objective func-
tion value and a cut. The scheduling is done on a first-come first-serve basis, where the
next idle processor gets the next scenario subproblem until all subproblems are solved and
the master problem can be recomputed with the added cuts. In contrast to the standard
definition of speedup, which is defined as the ratio of parallel computing time and sequential
computing time, Dantzig et al. (1991) define speedup as the sum of individual processor
time divided by the parallel computing time. Efficiency is defined as speedup S divided
by the number of processors p, Sp × 100%. On a system with 64 processors, an efficiency
of near to 60 % can be achieved, where the efficiency is higher for a higher sample-size.
Ruszczyński (1993b) introduces parallelization on a symmetric multiprocessing system

for the nested regularized decomposition method, but the proposed asynchronous protocol
is also valid for the parallelized nested L-shaped method. Each node of the tree is solved by
a thread, where the nodes can be scheduled to the worker threads via a dynamic queue or
on a predetermined basis. The notion of buffer is used, where primal solutions are stored
in “boxes” and cuts are stored in “pipes”. Whenever any of these receives an update, the
corresponding problems can be scheduled for a resolve with the current information. Thus
information is propagated not just in one direction, but in two. His results show that
the asynchronous protocol accomplishes a higher speedup than the synchronous protocol
for the same number of threads. A Java implementation of this method was tested on a
beowulf-cluster (Moritsch et al., 2001) and compared with a synchronous implementation
using the FFFB protocol, but for very small problem sizes with up to 511 scenarios (see
(Moritsch, 2006) for details).

The regularized decomposition approach, although the implementation was not as refined
as Ruszczyński’s, compares favorably with the L-shaped method in a parallel master/worker
message-passing setting for two-stage problems (Vladimirou, 1998). In contrast to the
original description, a scenario partitioning approach is used to decrease the amount of
communication. The worker processors solve their predetermined set of subproblems, and
Vladimirou (1998) finds that it is superior to solve the subproblems sequentially than to
construct a larger problem consisting of the independent scenario subproblems and solve
this instead. Due to the predetermined set of scenarios, load balancing is more important
than in the hypercube approach (Dantzig et al., 1991). Dantzig et al. (1991) identifies the
synchronization step at the master problem as a bottleneck that should be reduced by a
parallel solution process for the master problem and the usage of asynchronous protocols.
Nielsen & Zenios (1997) employ data parallelism for solving the subproblems with

an interior-point method to achieve good performance for the parallelization of Benders
decomposition for two-stage problems. They make use of the structural pattern of the W
matrix which must be identical for all scenarios in their approach. This can be exploited in a
Single-Instruction Multiple-Data (SIMD) type algorithm that can only be run on specialized
hardware. Nielsen & Zenios (1997) do not present speedups for their implementation.
Birge et al. (1996) use a message-passing architecture and a master/worker approach

for the parallelization of the nested L-shaped method. To minimize communication they

5.3. Parallelization 57

split the scenario tree at a split stage. The master process solves the multi-stage program
up to the split stage. Every worker process solves one subtree, for the given primal
solution from the master process. The sequencing protocol for the distributed subtrees
is FastForwardFastBack. This is contrasted with their “hybrid protocol” that uses the
FastForward for the split stage, i.e., subtrees have to be solved to optimality. If an infeasible
subtree is discovered, the master process computes a new primal solution. Their results
show that the FFFB protocol is more effective than the hybrid protocol, because of load-
balancing problems. If communication takes a long time, the hybrid protocol can be more
effective, because it needs less communication effort (Birge et al., 1996).
A parallel implementation of the nested L-shaped computer code MSLiP (Gassmann,

1990) was done by Dempster & Thompson (1998) on a distributed memory architecture.
The difference to the implementation of Birge et al. (1996) is that every subproblem is
solved on its own worker instead of a whole subtree. This mitigates load-balancing problems,
but creates more communication, so it can be seen as an extension of similar ideas for
two-stage problems (Ariyawansa & Hudson, 1991; Dantzig et al., 1991) to multi-stage
problems on a message-passing architecture. It differs from these, because subproblems
send back their primal and dual solutions instead of a cut. The primal solution is needed,
because the nodes at the next stage need it as an input. The amount of serial computation
is thus increased as the master problem has to form the cuts out of the dual solutions.
FFFB is the used sequencing protocol.
The trust region method in the context of Benders decomposition is parallelized in a

synchronous and asynchronous version (Linderoth & Wright, 2003) in a master/worker
approach. The parallel architecture is a computational grid, which is relatively cheap
compared to a specialized cluster. This makes the implementation more susceptible to load
balancing problems, because the computers are heterogeneous and not available all the
time. For the cases where some workers take a long time, the asynchronous approach fares
better; otherwise the synchronous variant has a smaller solution time. Linderoth & Wright
(2003) compare their trust region implementation to an asynchronous implementation of
the L-shaped method, where the master problem does not have to wait until all subproblems
reported their results. Instead it can be resolved when a certain number of subproblems
reported their results in the form of optimality cuts. The implementation extends a previous
approach of Vladimirou (1998) with an asynchronous protocol. In a subsequent study,
Buaklee et al. (2002) create an adaptive version of the asynchronous trust region method
which chooses parameters differently from the “rules of thumb” used before, to improve its
performance. The asynchronous trust region (ATR) implementation (Linderoth & Wright,
2003) is also used to investigate the empirical behavior of SAA with different sampling
methods on a computational grid (Linderoth et al., 2006).

Parting from the previously mentioned parallelization techniques for the nested L-shaped
method, Latorre et al. (2008) proposes a scheme called “complete scenario decomposition”,
where the scenario tree is divided by scenarios, i.e., every chunk consists of a path from
the root to the corresponding scenario leaf node. If such a decomposition approach is
applied, the non-anticipativity constraints that are implicitly fulfilled by the scenario tree
structure do not hold and have to be enforced by another approach. Latorre et al. (2008)
do not describe how their algorithm ensures that non-anticipativity holds. The algorithm
is developed for a computational grid.

58 5. Nested Benders Decomposition

For surveys of parallelization approaches applied to stochastic programming solution
techniques see (Birge, 1997; Vladimirou & Zenios, 1999). They also handle methods that
are not based on Benders decomposition.

5.4. Advanced Start

One weakness of cutting plane techniques is that initial iterations are often ineffective.
Advanced start techniques are used to mitigate this effect. Infanger (1992) proposes to
compute the expected value problem (EV) solution with Benders decomposition itself and
then start Benders decomposition on the original problem instance, but with the cuts
generated during the computation of the EV solution. The goal is that the generated cuts
will guide the algorithm in the early iterations to avoid ineffective initial iterations. This
can be done for problems with a random RHS or technology matrix T and inter-stage
independent random variables (Infanger, 1992).
Morton (1996) describes two advanced start variants with “prespecified decisions”. A

prespecified decision is a set of solution vectors {xi | i = 1, . . . , Nt} for every stage. One
simple idea is to use the EV solution as a prespecified solution, where the EV solution can
be computed with state-of-the-art LP solvers. The first variant is a “naive implementation”,
where the subproblems at stage t are solved with the corresponding prespecified solution
of stage t− 1 to generate valid optimality cuts. The more involved variant uses cut sharing
between different nodes at a stage to reduce the number of subproblems that have to
be solved. A cut generated for one node can be reused for another node via the “dual
sharing formula” by adjusting its coefficients (see (Infanger, 1992) and (Morton, 1996)
for details). Zverovich et al. (2012) use the EV solution as a prespecified solution in
their implementation of Benders decomposition. Other solutions can also be used as a
prespecified solution, for example the worst-case, best-case or even the optimal solution.

5.5. Stage Aggregation

If a multi-stage stochastic program is present, but the available solver can only handle two-
stage stochastic programs, it is possible to aggregate stages of the problem in such a way
that a two-stage problem results, albeit with larger first and/or second-stage problems (see
(Gassmann, 1990; Vladimirou, 1998; Dempster & Thompson, 1998)). It is also possible to
aggregate a multi-stage problem to a multi-stage problem with fewer stages. This might be
computationally worthwhile for problems with a large number of scenarios, but rather small
subproblem size. Computational results on a small set of test problems are available and
show that a suitable aggregation can reduce the solution time of the algorithm (Dempster
& Thompson, 1998). On the other hand, Gassmann (1990) and Vladimirou (1998) find
that an aggregation to a two-stage problem is computationally disadvantageous. The
problem with stage aggregation is similar to that of cut aggregation: how to choose the
“best” aggregation level for a given problem is unclear a priori.

The aggregation idea is further developed by Cerisola & Ramos (2000). They devise
different schemes to find an aggregation that generates subtrees with a certain size. Kuhn

5.5. Stage Aggregation 59

(2006) combines discretization with aggregation to yield a problem that gives bounds on
the original problem.

61

6. Modeling Languages
If a stochastic programming problem is modeled, it has to be brought into a form that
is computer readable to apply a solver in order to get a solution. For deterministic
mathematical programs, the use of algebraic modeling languages is common due to their
advantages over static matrix generators (Fourer, 1983). Maturana (1994) discusses more
features of algebraic modeling languages in the context of existing modeling languages
at the time. Most of the modeling languages he examines are still used today. A recent
collection, edited by Kallrath (2012), introduces algebraic modeling languages (AMLs) and
algebraic modeling systems (ALSs) and how they are used to model and solve real-world
problems, following an earlier collection about AMLs (cf. (Kallrath, 2004)). This shows
that modeling languages are widely used in the area of mathematical programming. They
should also be considered to model stochastic programs to get the benefits of an AML, e.g.,
variability, modifiability, and simplicity (Fourer, 1983). It is of course possible to model
stochastic programs via the deterministic equivalent formulation, but that is cumbersome
and error-prone, especially for the multi-stage case as the non-anticipativity constraints
must be entered manually (Gassmann & Ireland, 1995, 1996). The result is then a large-
scale LP, where no special stochastic programming solution techniques can be applied as
the structure of the stochastic program is not given to the solver.
An in-depth survey that covers existing techniques for modeling, analyzing and solving

stochastic programs is provided by Gassmann (1998). The book edited by Wallace &
Ziemba (2005) contains several chapters about existing software environments that can
be used to model stochastic programs. A more detailed inspection of some environments
is done three years later (Kopa, 2008), with the investment problem (Birge & Louveaux,
2011, p. 20-27) as a common example. The situation between 2005 and today changed
somewhat, as many commercial vendors now supply some modeling support for stochastic
programming. We examine and compare several of the existing environments in Section
6.2. But first we start with some considerations about the features and possible obstacles
that are present in designing modeling languages for stochastic programming.

6.1. Theoretical Concepts
There are several challenges in designing modeling environments for stochastic programs.
At first, the term stochastic program captures a variety of different problem structures, in
contrast to linear programs. In this thesis, we restrict ourselves to recourse problems, but
when an AML should be considered for stochastic programming in general, it may be wise
to also consider other problem types, see the taxonomy given in Figure 2.2 on page 12.
Second, a recourse problem consists of two things, a deterministic problem and infor-

mation about stochastic parameters. The latter is often expressed via a scenario tree. A
deterministic LP can be represented in memory in a fairly standardized way. Five arrays,

62 6. Modeling Languages

for column lower and upper bounds, objective function coefficients and row lower and
upper bounds, together with a sparse matrix representation, suffice. All LP solvers provide
facilities to read a model presented in such a way. An in-memory representation of a
scenario tree is far from standardized. A tree structure is firstly programming language
dependent and secondly not unique, see (Cormen et al., 2001) for several representations.
The problem of a non-standardized in-memory representation of stochastic programs is
acknowledged in the literature (Fragnière & Gondzio, 2005; Condevaux-Lanloy et al., 2002;
Gassmann & Ireland, 1996).

A remedy in the form of the Optimization Services instance Language (OSiL) is presented
for general non-linear problems (Fourer et al., 2010), which is recently extended to stochastic
programs (Fourer et al., 2009), called OSiL-SE. It is a XML-based description of a stochastic
program, from which an in-memory representation can be build using the OSInstance
model. At the time of writing, the OSInstance model for the stochastic extensions is not
implemented and thus not directly usable.
There are several widely used file formats for LP or MIP problems, e.g., MPS (Interna-

tional Business Machines, 1972), lp (CPLEX, 2013), to allow the interchange of problems.
A problem in a standard file format can be read in by most LP solvers. The SMPS format
(Birge et al., 1987; Edwards, 1988) is an extension of the MPS format, and is widely
accepted as the de facto standard interchange format for stochastic programs. The format
itself is extended several times (Gassmann & Schweitzer, 2001; Gassmann & Infanger,
2007), but most software in this area only supports a subset of the specification1.

SMPS consists of three files. The core file is a MPS file of the underlying deterministic
problem, ordered by stages. The time file specifies the number of stages and divides the
column and rows into stages. The scenario tree is stored in the stoch file, which allows a
variety of different directives. Scenarios can for example be stored directly via a SCENARIOS
section or stored as independent variables with given outcomes via an INDEP section.
Some examples that illustrate the versatility of the format are provided by Gassmann &
Kristjansson (2007). Contrasted with this de facto text file standard there is no standard
for the representation of stochastic programs inside an AML (Fragnière & Gondzio, 2005).
Regarding OSil-SE, there are not yet any examples available.

Two important concepts must be considered in AMLs for stochastic programming, namely
stage and uncertainty.
Every variable, parameter and constraint has an associated stage. This can be imple-

mented as an typical index set in most AMLs. However, to export the program written in
an AML to the SMPS format, the columns and rows must be sorted by stage. This can
not be ensured, as AMLs use internal logic to write out the problem in the MPS format
(Condevaux-Lanloy et al., 2002). The multi-case staircase structure depicted in Figure 2.3
is usually lost, when writing a problem with an AML that is stage unaware (Fragnière &
Gondzio, 2005). Gassmann & Ireland (1996) propose the introduction of a stage set to
allow easier modeling and to perform consistency checks inside the AML.

The second concept is uncertainty. Uncertainty is represented in the final deterministic
equivalent formulation by matrix coefficients aij (or right-hand side values, column bounds
and objective function coefficients). But this does not mean that the aij are necessarily

1Available online at http://myweb.dal.ca/gassmann/smps2.htm

http://myweb.dal.ca/gassmann/smps2.htm

6.2. Practical Examples 63

variates of a random variable, at least not directly. As Condevaux-Lanloy et al. (2002)
point out, a matrix coefficient aij is usually the result of some function f(u1, . . . , ul), where
ui are parameters. Some of the parameters may be random variables. Thus one random
variable can influence several coefficients, both in the matrix and in other places of the
model. When using an AML to generate scenarios, it should know which parameters are
random variables, and how they are distributed, as otherwise model generation will result
in a scripting process that changes the value of some parameters to generate a new scenario.
This process is time consuming, as the whole model must be generated every time when a
parameter value changes (see the Simplified Interface for Stochastic Programming (SISP)
by (Condevaux-Lanloy et al., 2002)). Gassmann & Ireland (1996) propose the introduction
of a random keyword together with a descriptive part that allows arbitrary distributions
of random variables.
Additional problems arise depending on the chosen solution technique. Decomposition

methods can be based on the explicit or implicit deterministic equivalent formulation,
therefore the AML must be able to generate both forms, when both solution techniques
should be supported. Exterior sampling techniques can be implemented inside an AML
with scripting support. For interior sampling techniques, the distribution must be given
in a form that is readable by the solver, either the SMPS format or the OSiL-SE format
mentioned above. The AML must then put the algebraic formulation f(u1, . . . , ul) that
is needed to compute the coefficients aij inside the file format, such that the solver can
compute the coefficients with the given formula. A support of this procedure is only
partially available in the SMPS format for linear transformations of random variables.
More complex functions are supported by the OSiL-SE format.

6.2. Practical Examples

The following commercial vendors added stochastic programming support in recent years,
e.g., LINDO (LINDO) (see (Atlihan et al., 2010) for examples), Xpress-Mosel (see (Dormer
et al., 2005) for examples), MPL (MPL), AIMMS (AIMMS), Frontline (Frontline Solvers),
Microsoft Solver Foundation2 (Microsoft), and GAMS (GAMS). The prediction of Frag-
nière & Gondzio in 2005 that AMLs would support stochastic programming in the coming
years thus proved to be correct.

In the following, we list the efforts that are and were previously made by researchers to
add stochastic programming support to AMLs and AMSs. A list of management systems
for stochastic programming can also be found in (Kall & Mayer, 2010, p. 376f).

Algebraic Modeling Languages

Several researchers propose extensions to AMPL, namely SAMPL (Valente et al., 2005),
StAMPL (Fourer et al., 2009), SML (Colombo et al., 2009) and DET2STO (Thénié et al.,
2007) which we will present in turn.

2discontinued, see the statement of Nathan Brixius at http://nathanbrixius.wordpress.com/2012/05/
25/no-more-standalone-releases-of-microsoft-solver-foundation/

http://nathanbrixius.wordpress.com/2012/05/25/no-more-standalone-releases-of-microsoft-solver-foundation/
http://nathanbrixius.wordpress.com/2012/05/25/no-more-standalone-releases-of-microsoft-solver-foundation/

64 6. Modeling Languages

The Stochastic Programming Integrated Environment (SPiNE) (Messina, 1997; Valente
et al., 2005, 2009) allows to model stochastic programs with their AMPL extension SAMPL,
also those with probabilistic constraints. SPiNE is an AMS, as it is integrated with a
stochastic programming solver, FortSP (Ellison et al., 2012), and database access to store
problem data and results. It also provides tools for solution inspection. SPiNE allows only
scenario-based modeling. The new constructs of SAMPL are, among others, a stage and
scenario set as well as commands to specify the scenario tree structure. The constructs
are entered mostly via the suffix feature already available in AMPL (Fourer & Gay, 2000).

StAMPL (Fourer et al., 2009) is a system that is build on top of AMPL. The stochastic
problem is divided by stage, and each stage is modeled separately in AMPL. The StAMPL
preprocessor creates AMPL files for every stage and connects these files to get a determin-
istic core model. Scenario data is initally handled outside of AMPL, such that scenario
generation routines are independent of the model. In the processing step, the scenario tree
is traversed to create AMPL files. Together with the stage files and the tree node files the
final output is generated in SMPS format.
SML (Colombo et al., 2009) is a modeling language that extends AMPL by a pre-

and postprocessing phase to implement the block keyword. Thus, the problem structure
can be conveyed to the solver in an intact manner and is not scrambled by the AML
coefficient generation process. It can be used to specify stochastic programming problems
with recourse, in a node-wise fashion. The stochastic data is specified explicitly for every
tree node, such that a generated scenario tree is necessary to specify a model instance.
The idea to declare separate problems for each stage and the model generation process is
similar to StAMPL.

DET2STO (Thénié et al., 2007) is a script that takes the deterministic core model and a
scenario tree description (explicit or transition-based), both in AMPL syntax, to generate
a deterministic equivalent problem in AMPL syntax. The scenario tree description is
written programmatically by the user, depending on the used scenario tree generation
technique for the stochastic process. The generated deterministic equivalent does not
convey special structure and can only be solved with standard LP or MIP solvers. This
approach was previously tried by SETSTOCH (Condevaux-Lanloy & Fragnière, 1998) and
SISP (Condevaux-Lanloy et al., 2002), except that these tools use GAMS as the modeling
language and the scenario tree definition is specified outside the AML.

SISP, in contrast to SETSTOCH, allows to use computed parameter values by the AML
in scenarios. The result of SISP is a SMPS file, from which an explicit DEM has to be
build before it can be solved by standard LP or MIP solvers. In comparison, SISP specifies
more data outside the modeling language than DET2STO, but on the other hand it can
create a problem description suitable to specialized solvers.

Entriken (2001) suggests to extend AMPL by the use of a random attribute for parame-
ters, but he does not use scenario or stage sets. Thus all constraints containing random
parameters have to be declared explicitly for every random value of the parameter. He
hopes that more compact formulations will arise that allow to model stochastic programs
without this overhead. A partial ordering on variables is introduced with respect to the
number of periods, to allow the modeling of multi-stage problems without an explicit stage
set.

6.2. Practical Examples 65

A recursive formulation of stochastic programs is proposed by Buchanan et al. (2001) in
the AML sMAGIC. The random data is specified for each node, and due to the recursive
formulation only suitable for symmetric trees. Independent random variables are thus
implicitly assumed.
PySP (Watson et al., 2012) is a Python3-based modeling environment for stochastic

programming problems with recourse. It uses the AML Pyomo (Hart et al., 2011, 2012),
which is also Python-based. PySP and Pyomo are both part of the COIN-OR project
(Lougee-Heimer, 2003). Pyomo is similar to FlopC++ (Hultberg, 2007) as both AMLs
are libraries for general purpose programming languages. Users can take advantage of the
strength of programming languages in combination with a modeling language. Watson
et al. (2012) argue that modeling in Python comes easy for programming language novices,
thus it is not restricted to programmers.
PySP uses a deterministic core model and a scenario tree representation, which is also

written in Pyomo, to build the explicit DEM with non-anticipativity constraints. This is
similar to SISP or DET2STO. The scenario tree description can be scenario- or node-based,
depending on the user needs. PySP can solve the DEM with all solvers that can either read
the AMPL solver library NL format (Gay, 2005) or LP format (LP) files. Decomposition-
based algorithms can be implemented in Python and work directly with the model, as the
already implemented Progressive Hedging algorithm demonstrates (Watson et al., 2012).
Due to the lack of SMPS input or output routines, existing problems can not be solved
with PySP solvers, and PySP problems can not be solved with already existing stochastic
solvers.

Another Python-based AML APLEpy (Karabuk, 2005) is extended by (Karabuk, 2008)
to model stochastic programs with recourse. Karabuks main purpose is to reduce the time
to build solution algorithms within a modeling environment. APLEpy allows to implement
stage- and scenario-based decomposition methods while working with the same model, by
abstracting the non-anticipativity constraints and generating the necessary stage-wise or
scenario-wise problems on-demand. It uses scenario indexing, similar to SAMPL. The
scenario tree description is done outside of the AML and is scenario-based.

Model Management Systems

A model management system for stochastic linear programming, SLP-IOR (see (Kall &
Mayer, 2010, p. 377ff) and the references therein), is developed by Kall & Mayer, starting
in 1992. Deterministic LP problems formulated in GAMS can be imported. As the user
works directly with matrix coefficients, SLP-IOR is not an AML. It supports a wide
range of solvers and problem types (Kall & Mayer, 2005). This allows to use a specialized
solver for each problem type, resulting in faster solution times compared to more general
solvers. SLP-IOR uses the basic SMPS format (Birge et al., 1987), without the extensions
developed later, as possible input and output format. Random variables can be specified
with several distributions, also multivariate normal and empirical distributions. Support
of affine transformations allows to combine random variables.

3http://www.python.org/

http://www.python.org/

66 6. Modeling Languages

Strums (Fourer & Lopes, 2006) is a decomposition environment that can read in stochas-
tic programs in the SMPS format and can turn them into an implicit or explicit deterministic
equivalent, just as required by different solution algorithms, i.e., stage-wise or scenario-wise
decomposition, respectively. Stage aggregation and visualization of the scenario tree is
also supported. Thus it is a tool that can be used after the AML finished creating the
model and before the solver is started, to create the input in the required format.

Summary
Comparing todays situation with that of 1998 (Gassmann, 1998) and 2005 (Fragnière &
Gondzio, 2005), quite a few algebraic modeling languages were extended, in particular
AMPL, or even newly developed (e.g., PySP), to support stochastic programming. Model-
ing support for stochastic programming is now also present in several commercial modeling
languages, although the implementations differ in key aspects as described above. What
is still unresolved is the issue of a standard representation of scenario trees, especially an
in-memory representation. This continues to hinder algorithm development. The proposed
solution by OSiL-SE is not yet usable. The only de facto standard for interchanging
stochastic programs is still the SMPS format (Birge et al., 1987).

67

7. Required Work

This chapter details the goals that should be reached with this thesis. These goals are
based on our review of the state-of-the-art, for both solver development and modeling
language development. The state-of-the-art which we presented in the preceding Chapters
4 and 5. We derive the required work for solver development in Section 7.1. We do the
same for modeling languages in Section 7.2.

7.1. Solver Development
Solution technique development for stochastic programming is an ongoing research topic.
The recent results by Trukhanov et al. (2010) and Zverovich et al. (2012) show that the
usage of Benders decomposition based solution algorithms is a sensible approach to solve
two-stage problems. It shows also that specialized solvers are necessary, if the deterministic
equivalent gets too large to be solved by conventional LP solvers. We surveyed different
aspects of Benders decomposition in Chapter 4. These are in particular cut aggregation,
advanced start procedures, and techniques to stabilize the master problem.
Our goal is to build upon these techniques and to combine them to further improve

the solution process. To evaluate the new techniques thoroughly, a diverse test set is a
prerequisite. As of today, several test sets are available in different formats. We aim to
create a new test set out of the existing test sets, so that researchers can evaluate new
techniques on a wide range of instances.
The specific tasks for extending Benders decomposition are divided into tasks for two-

stage and multi-stage problems. The tasks for the two-stage case are the following.

• Consider techniques to remove old redundant cuts from the master problem. Although
it is theoretically hard to say which cuts can be removed without being recomputed
later on this should not refrain us from implementing cut consolidation techniques, as
performance can improve nonetheless. An empirical evaluation can show the benefit
or drawback of such an approach.

• Evaluate different advanced start techniques. To our knowledge, it is not tested
which advanced start technique works best on a wide range of problems.

• Combine cut aggregation with regularization techniques. Regularized decomposition
and level decomposition can be used in conjunction with cut aggregation. This is
already done to decrease memory usage (Linderoth et al., 2006; Vladimirou, 1998),
but it was not evaluated under the aspect of performance.

• Level decomposition is a regularization technique that uses a projection problem to
find the next iterate. This projection problem uses the euclidean distance, but other

68 7. Required Work

distances can also be used. The application of level decomposition to stochastic
programming with other distances in the projection problem is not yet researched.
Possible distances would be for example the manhattan distance and the infinity
distance.

• Level decomposition requires a level parameter λ. It has to be chosen from the
interval (0, 1). We did not find computational evidence for a particular choice of λ.

• We want to apply the recently proposed on-demand accuracy approach to the classical
L-shaped method in combination with cut aggregation. In addition, the on-demand
accuracy approach requires a parameter κ, which has to be set before the algo-
rithm starts. We want to gather computational experience to give guidance towards
choosing a good value for κ.

• On-demand accuracy is shown to be computationally efficient on a small set of test
problems. We want to study the effect of on-demand accuracy in combination with
level decomposition on a more diverse test set. We will also look at the computational
efficiency of the parameters κ and λ.

The tasks for the multi-stage case are the following.

• Reconsider sequencing protocols. Our survey in Section 5.2 shows that different
authors proposed different sequencing protocols. We want to investigate further the
importance of sequencing protocols and how more dynamic rules can be considered
for deciding the direction of the algorithm.

• Parallelize the solution process. Benders decomposition based techniques are already
parallelized in several ways, see Section 5.3 for a comprehensive survey. With the
advent of multiple cores on a single CPU, it is possible to employ parallelization on
normal computers, without communication costs and latency issues. Furthermore, the
inter-dependencies between solution algorithms and parallelization is not sufficiently
researched in our opinion. In addition, the usage of hyper-threading (Marr et al.,
2002) can have an influence on the speedup behavior of algorithms.

• Apply regularization techniques to the multi-stage case. The success of regularization
techniques for the two-stage case implies that the adoption to the multi-stage case
should be considered. We therefore would like to investigate whether this can be
done and what changes are necessary to apply regularization techniques in a nested
fashion.

7.2. Modeling Languages
In recent years, modeling languages for stochastic programming came a long way. Most of
the ideas proposed by Gassmann & Ireland (1996) are implemented in several AMLs and
can be used comfortably. The specification of random variables and its combination via
algebraic functions allows to build the deterministic equivalent formulation automatically
from the data. What is still missing is an agreed upon specification of a standard in-memory

7.2. Modeling Languages 69

representation of stochastic programs, to be able to call a stochastic programming solver
directly. As of now, an intermediate step is required: the creation of SMPS files. One task
is therefore to bridge this gap, by calling a solver without the indirection of an SMPS file.

The modeling language FlopC++ that can be used inside a C++ program, has already
gathered some attention and was thought of to be combined with Smi to build an open-
source modeling language for stochastic programs (Kaut et al., 2008), but this was not yet
done. Our goal is therefore to combine FlopC++ and Smi to build a modeling language
for stochastic programs inside a general purpose programming language that is able to call
specialized stochastic solvers directly from memory, without resorting to SMPS files.

71

Part III.

Advanced Techniques and
Computational Results

73

8. Accelerating the Nested Benders
Decomposition

Based upon the description of the Nested Benders decomposition method given in Section
3.3 and Chapters 4 and 5 we present techniques to accelerate the solution process. Some
techniques are only important for the Nested Benders decomposition algorithm, but others
are also relevant for the two-stage case.

Cut consolidation is described in Section 8.1. It is a technique to combat cut proliferation
in the master problem and is primarily meant for the two-stage case. We describe a new
sequencing protocol for nested Benders decomposition in Section 8.2. Our parallelization
approach is explained in Section 8.3. It applies to both two- and multi-stage problems. We
discuss dynamic cut aggregation in Section 8.4. The on-demand accuracy concept, which
allows to use all computed information in a computationally efficient way, is described in
Section 8.5. It can be combined with level decomposition, which we present in Section 8.6.
We also present two new projection problem variants. Finally, we end this chapter with
a discussion of how on-demand accuracy and level decomposition can be extended to the
multi-stage case in Section 8.7.

8.1. Cut Consolidation

During a typical run of the algorithm, feasibility and/or optimality cuts are added to
the subproblems at all stages t < T . If new cuts are added to a problem, it gets bigger.
Resolving the problem can then take more time. In addition, memory consumption
increases, as the generated cuts have to be stored. Depending on the level of aggregation,
at most Ait optimality cuts are added to a problem in each iteration. The higher the
number of aggregates, the more cuts get added to the problem, thus the problem of cut
proliferation is more pronounced. The use of warm start techniques, available for modern
simplex solver implementations, mitigates the runtime effects to a certain extend, as the
algorithm can start from a dual feasible solution and does not have to start from scratch.
We are not concerned with the proliferation of feasibility cuts, because these cuts cut off
solutions xt that are not feasible for the whole problem.
Optimality cuts that were generated in earlier iterations are not necessarily needed

anymore for the algorithm to converge. Unfortunately, there is no reliable way to tell
which cuts can be safely removed from the master problem (Ruszczyński, 2003). The
remaining options are then to either not delete any old cuts, because of the fear of deleting
a cut that may still be needed, or to devise heuristics that allow deletions of old cuts but
with the drawback that a deleted cut may be recomputed.

74 8. Accelerating the Nested Benders Decomposition

To apply a heuristic it is necessary to gather some data on which decisions can be based.
We call the set of parameters and their respective values used in a heuristic to remove
optimality cuts from a master problem a cut removal scheme.

We denote an optimality cut as redundant if its corresponding dual variable is zero (see
(Trukhanov et al., 2010)). A cut is specified by its aggregate a ∈ Avt and the iteration
when it was generated, i ∈ Ivt,k, where k is the current iteration. It can be seen from the
dual problem Dv

t (·) (5.2) for node v at stage t that all the dual variables which correspond
to the optimality cuts for a certain aggregate have to sum up to one. This means that at
least one cut is always non-redundant for every aggregate.
After a problem was solved to optimality, we can look at the dual variables, especially

at those that correspond to the optimality cuts. These are σv,a,it , i ∈ Ivt,k, a = 1, . . . , Avt .
We can then see which cut was redundant and which was not. When we do this inspection
after every successful solution process, we can count the number of times an optimality
cut was redundant or inactive in consecutive iterations and store the information for this
cut as icv,a,it . When a cut was active, i.e., with a dual value greater than zero, icv,a,it is set
to zero.

The first proposed heuristic is thus called CutRemovalByRedundancy, see Algorithm 10,
and it takes a parameter α that specifies the threshold that icv,a,it has to reach until the
corresponding cut is deleted from the problem. As the heuristic is called for a certain node,
the stage t and the node number v are known. The effectiveness of the heuristic depends

ListOfCuts = ∅;
for i ∈ Ivt,k do

for a ∈ Avt do
if σv,a,it = 0 then

icv,a,it = icv,a,it + 1;
if icv,a,it > α then

ListOfCuts = ListOfCuts ∪ (a, i);
else

icv,a,it = 0;
Remove all cuts in the set ListOfCuts from P vt (·);

Algorithm 10: CutRemovalByRedundancy heuristic

crucially on a good choice for the parameter α. If it is chosen too low, the removed cuts
might be recomputed at a later iteration, because they were still important. If α is chosen
too high, the proliferation of cuts may not be sufficiently prevented. The choice of the
number of aggregates might also play a role in evaluating the effectiveness of this heuristic.

If cuts are removed from the problem, information about the recourse function which was
gained in previous iterations is removed. If this information would have been still useful, it
must re recomputed. To mitigate the effects of removing cuts that are still important for
the master problem, we propose the concept of cut consolidation (see (Wolf & Koberstein,
2013)). Instead of a simple removal we propose a consolidation of existing cuts to keep

8.1. Cut Consolidation 75

some information. All cuts which were generated at the same iteration i ∈ Ivt,k can be
combined into a single cut in the following form

Av
t∑

a=1
Ev,a,it xvt +

Av
t∑

a=1
θv,at ≥

Av
t∑

a=1
ev,a,it . (8.1)

This cut is identical to a regular single cut with the difference that there is not a single
aggregate variable, but Avt many, because of the chosen aggregation level. We denote∑Av

t
a=1E

v,a,i
t with Ev,−i,kt and

∑Av
t

a=1 e
v,a,i
t with ev,−i,kt . To indicate that the cut is a con-

solidated cut that was generated at iteration i we use the aggregate number −i. The
pseudocode for the cut consolidation heuristic is presented in Algorithm 11. Another
threshold β ∈ [0, 1] determines the number of cuts generated at the same iteration î that
must be marked as removable before all the cuts of that iteration î are consolidated into a
single cut.

NumCutsi = 0;
RemoveCuts = ∅;
AddCuts = ∅;
for i ∈ Ivt,k do

for a ∈ Avt do
if σv,a,it = 0 then

icv,a,it = icv,a,it + 1;
if icv,a,it > α then

NumCutsi = NumCutsi + 1;
else

icv,a,it = 0;
for i ∈ Ivt,k do

if NumCutsi ≥ β ·Avt then
Generate a cut Ev,−i,kt x+

∑
a∈Av

t
θv,at ≥ ev,−i,kt in the form (8.1) for iteration i;

AddCuts = AddCuts ∪{Ev,−i,kt x+
∑
a∈Av

t
θv,at ≥ ev,−i,kt };

RemoveCuts = RemoveCuts ∪ {i};
Remove all cuts for the iterations in RemoveCuts from P vt (·);
Add all cuts in the set AddCuts to P vt (·);

Algorithm 11: CutConsolidation heuristic with thresholds α and β

The scheme can be altered in such a way that only all removable cuts of an iteration î that
exceed the threshold β are consolidated into a cut, and all cuts that are not yet removable
stay in the problem. If in the next iterations other cuts generated in iteration î become
removable, the previously generated consolidated cut is expanded with the newly removable
cuts. The effectiveness of the presented heuristics for particular problems depends upon
the values α and β. Of course, such a scheme can not improve the solution time of methods,
where the master problem is not subject to cut proliferation.

76 8. Accelerating the Nested Benders Decomposition

8.2. Dynamic Sequencing
For multi-stage problems, the direction of the nested L-shaped method has to be chosen
at every stage 1 < t < T . The decision is taken according to a sequencing protocol. The
details of the protocols as well as the definitions of the discrepancy concept are explained
in Section 5.2.
The protocol FastForwardFastBack is static regarding its decision to change the direc-

tion. The protocols FastForward and FastBack incorporate the absolute value and the
discrepancy (see (Morton, 1996), respectively, in deciding when to change the direction,
so the current state of the algorithm is incorporated into the decision. The threshold
min{|LB|, |UB|} is used in the decision in the description by Morton (1996). This is not
true for the original description of these protocols, where the requirement for a direction
change was that no new optimality cuts can be generated (cf. (Birge et al., 1996)). We
suggest to use the absolute gap |UB − LB| as a threshold instead to prevent problems
that can happen if the upper bound becomes zero and thus the FB protocol might cycle
between the first two stages.

The goal of our new sequencing protocol is to combine the advantages of the FF and FB
protocol, namely a good approximation of the recourse function at the last stage with good
first stage solutions (see (Wolf & Koberstein, 2013) for more details). The discrepancy
measure (5.10) is used to determine if the current approximation at stage t is considered
good enough. If this is the case, we proceed to the next stage. If not, we do a backward
sweep to update the current approximation. The threshold depends upon the absolute gap
and therefore adjusts dynamically during the run of the algorithm.
A stage is declared critical to force the protocol to do a complete forward sweep once

this stage is reached. The goal is to reduce the time spent to achieve good solutions for the
current last stage approximation, but update the approximation for the last stage instead.
The dynamic sequencing protocol is described in Algorithm 12. It is called by the basic
protocol (see Algorithm 3).

if t > CriticalStage then
direction = forward;
sweep = true;

else if Disc(t-1) < |UB − LB|/10 AND direction = forward then
direction = forward;
else

direction = backward;
Algorithm 12: Dynamic sequencing protocol

The assignment of the critical stage is pivotal to the success of the strategy. The heuristic
approach that we use to assign the critical stage is based upon the first full sweep. It
results in a state where every node, except those at the last stage, has a valid recourse
function approximation. The time spend in solving each stage is measured. We then assign
the critical stage to the first stage that in addition with the time of the previous stages
takes over 10 % of the total time for the first full sweep. Of course, the threshold values
are subject to experimentation.

8.3. Parallelization 77

The protocol uses a dynamic threshold and the critical stage to trade off the accuracy
of recourse function approximations at later stages and good incumbents at earlier stages.

8.3. Parallelization

Modern processors have multiple cores that allow parallel execution at a single computer.
To take advantage of that we parallelize the algorithm in a fashion similar to (Ariyawansa
& Hudson, 1991) on a symmetric-multiprocessing architecture, see Section 5.3 for details.
Communication is not an issue, as the main memory is shared among the different threads
and synchronization is reduced to a minimum, e.g., if cuts are added to a subproblem. All
nodes (i.e., the corresponding problems) of a stage are solved in parallel. The stages are
solved sequentially, so we do not employ non-deterministic techniques (Ruszczyński, 1993a;
Moritsch et al., 2001), but make use of sequencing protocols.
Parallelization is achieved via the parallel execution of methods that are called tasks.

Solving a node with subsequent cut coefficient generation is encapsulated in the task
HandleSubproblem(v). Combining computed cut coefficients to optimality cuts is encap-
sulated in the task AggregateCuts(v). The tasks are executed by worker threads, which
are stored in a thread pool. There are as many worker threads in the thread pool as there
are cores on the processors to avoid context switching due to the operating system. A task
queue belongs to the thread pool. The tasks in the tasks queue are assigned to idle worker
threads on a first-come first-serve basis. The main thread can be blocked until all tasks
are successfully completed.
When the number of nodes at a stage t is greater than the number of threads n in the

thread pool, the speedup ratio for solving all problems at stage t is between n/2 and n,
under the assumption that the subproblems are solvable in similar time. The first stage
problem can only be solved by one thread, so there is no gain for the solution time on the
first stage. However, the used optimization solver can use internal parallelization for its
solution process. We do not allow this for nodes at stages other than the first to avoid
context switching, and because the dual simplex is not yet parallelized, see the discussion in
Section 5.3. The pseudocode for the parallelized algorithm with the use of a thread pool and
tasks is given in Algorithm 13. The tasks HandleSubproblem(v) and AggregateCuts(v)
are described in Algorithms 14 and 15, respectively (cf. (Wolf & Koberstein, 2013)).

As explained in Section 5.3 the nested L-shaped method was also parallelized on message
passing architectures. It is of course possible to combine the symmetric multiprocessing
parallelization that we employ with another parallelization layer on a computational grid.
This leads to a two-tier parallelized algorithm, but it was not further investigated in this
thesis.

Parallelization can have an effect upon the relative effectiveness of the nested L-shaped
method, depending upon the chosen parameters. Some parameter combinations benefit
more from parallelization than others. In reverse, not all parameter combinations that
are effective for the parallelized version of the algorithm are so in the sequential case.
It follows that the results that we obtain from the parallelized algorithm should also be
analyzed under the aspect of parallelization. See (Wolf & Koberstein, 2013) for an example
regarding the solution time of the algorithm with respect to the number of aggregates.

78 8. Accelerating the Nested Benders Decomposition

Initialization;
while UB − LB > εoptimality do

for every node v at stage t do
Add task HandleSubproblem(v) to task queue;

Block until all tasks are finished;
if t = 1 then

Set LB ← c1
tx

1
t ;

else if t = T AND all subproblems are feasible then
Compute current solution value zk =

∑T
t=1

∑Kt
v=1 p

v
t q
v
t x

v
t ;

if UB > zk then
Set UB ← zk and store incumbent solution x = x1

1;
Call sequencing protocol to set direction;
if t > 1 AND direction = backward AND all subproblem are feasible then

for every node v at stage t− 1 do
Add task AggregateCuts(v) to task queue;

Block until all tasks are finished;
if t = 1 then

Set k ← k + 1;
if direction = forward then

t = t+ 1;
else

t = t− 1;
Return incumbent solution;

Algorithm 13: Parallel nested L-shaped method

Solve subproblem P vt (xa(t,v)
t−1) ;

if Subproblem feasible then
Let xvt , θ

v,1
t , . . . , θ

v,Av
t

t be the primal solution;
Let πv,kt , σv,kt , ρv,kt , λv,kt , µv,kt be the dual solution;
Generate Optimality-Cut Coefficients;
E
a(t,v),v,k
t−1 = pv

t

p
a(t,v)
t−1

πv,kt T vt ;

e
a(t,v),v,k
t−1 = pv

t

p
a(t,v)
t−1

[
πv,kt hvt + σv,kt evt + ρv,kt dvt + λv,kt lvt + µv,kt uvt

]
;

if Subproblem infeasible then
Let πv,kt , σv,kt , ρv,kt , λv,kt , µv,kt be the dual extreme ray;
Generate feasibility cut and add it to parent problem;
πv,kt T vt x

a(t,v)
t−1 ≥ πv,kt hvt + ρv,kt dvt + λv,kt lvt + µv,kt uvt ;

Algorithm 14: HandleSuproblem(v)

8.4. Aggregation 79

if t > 1 AND direction = backward AND all subproblem are feasible then
for every aggregate a = 1, . . . , Avt−1 do

Generate optimality cut
∑
s∈Sv,a

t−1
Ev,s,kt−1 + θv,at−1 ≥

∑
s∈Sv,a

t−1
ev,s,kt−1 ;

Add all generated optimality cuts to the problem P vt−1
Algorithm 15: AggregateCuts(v)

8.4. Aggregation
The number of optimality cuts that are generated for a node v at stage t is less or equal
to the number of aggregates Avt . An optimality cut is usually associated to an aggregate
variable that approximates the recourse function of some child nodes, depending on the
partitioning of child nodes. The partitioning of the child nodes is done during initialization
of the algorithm and not changed afterwards. The important questions with respect to
aggregates are

1. What is a good number of aggregates, with respect to solution time?

2. How should the children of the nodes be partitioned to achieve a good solution time?

Answers to both questions are still to be found. Some concrete ideas for partitioning
schemes were already given in Section 4.2. We chose the static partitioning scheme
presented via equation (4.8).

A note on adaptive aggregation

Trukhanov et al. (2010) analyze a variant of the hybrid-cut method for the two-stage case
that changes the number of aggregates and thus the partitions during the course of the
algorithm. They claim that a “good” a priori choice of the number of aggregates is not
easy and that it would be better for the algorithm to adapt the size during the run. We
repeat and extend the analysis done in (Wolf & Koberstein, 2013) with respect to adaptive
aggregation. The algorithm, as described by Trukhanov et al. (2010), can not work as it
requires that all corresponding optimality cuts for an aggregate are redundant. A cut is
defined to be redundant if its respective dual variable has a value of zero. To see that not
all optimality cuts for an aggregate can be redundant we look at the dual of the master
problem (4.7) with A aggregates at some iteration k

− zk = max
π,λ,µ,σ,ρ

πb+ λl + µu+ σe+ ρd

s.t. ATπ + λl + µu+ ETσ +DTρ = c∑
i∈Ik

σa,i = 1 ∀a ∈ A

λ ≥ 0, µ ≤ 0, σ ≥ 0, ρ ≥ 0,

(8.2)

where E =
⊗

i∈Ik

⊗
a∈AE

a,i, D =
⊗

j∈Jk

⊗
s∈S(j)D

s,j ,e =
⊗

i∈Ik

⊗
a∈A e

a,i,
d =

⊗
j∈Jk

⊗
s∈S(j) d

s,i, σ =
⊗
i∈Ik

⊗
a∈A σ

a,i and ρ =
⊗

j∈Jk

⊗
s∈S(j) ρ

s,j .
⊗

denotes
row-wise concatenation of row vectors, i.e., the result is a matrix. From the last constraint

80 8. Accelerating the Nested Benders Decomposition

of problem (8.2) it follows that at least one dual variable σa,i for some i ∈ Ik must be
greater than zero. Therefore, every aggregate a ∈ A has at least one optimality cut that
is not redundant, if optimality cuts were already added to the problem. A scheme that
requires all cuts for an aggregate to be redundant can thus not work.

Apart from these considerations Trukhanov et al. (2010) suggest a remedy for the a priori
choice of the number of aggregates and thus the partitioning by their adaptive approach.
However, the adaptive approach does not solve the problem of setting a “good” number
of aggregates, it changes the partitioning of the scenarios instead. The adaptive approach
has a parameter, agg−max, that specifies how many scenarios can be partitioned into an
aggregate. This parameter has to be specified a priori and does not change over the course
of the algorithm. If the algorithm runs on a problem with for example 100 scenarios and
is allowed to put at most 10 scenarios into an aggregate, the lower bound for the number
of aggregates is therefore 100

10 = 10. Therefore the burden of choosing a “good” number of
aggregates translates to choosing a good value for agg −max that provides a good lower
bound for the number of aggregates. The partitioning itself is different compared to the
hybrid-method. It is done dynamically during the course of the algorithm. The influence
of this dynamic partitioning seems to be rather small, as Trukhanov et al. (2010) show
comparable results for the adaptive approach and static partitioning, for equal parameter
settings regarding the number of aggregates. This means that an agg −max value of 100
corresponds to 10 aggregates for a problem with 1000 scenarios and to 20 aggregates for a
problem with 2000 scenarios, etc.

8.5. On-Demand Accuracy

The trade-off that is apparent in choosing a good number of aggregates can be shifted
towards a smaller number of aggregates with the on-demand accuracy approach. It is
originally proposed by Oliveira & Sagastizábal (2012) for level bundle methods, which
includes level decomposition in several variants, described in Section 4.3.2. Level bundle
methods and proximal point methods for both exact and inexact calculations are presented
in a unified framework (see (Oliveira & Sagastizábal, 2012) and the references therein).
They propose the concept of on-demand accuracy oracles to improve overall solution time.
They show advantages of their approach with a small computational study for two-stage
stochastic programs.
We describe their technique adapted to the notation used in this thesis, and extend

it, in particular, by considering an arbitrary aggregation level instead of the single-cut
aggregation and by applying it also to the classical L-shaped method. We keep the
notation simple by describing the method for two-stage stochastic programs. We only
consider (exact) level decomposition and the classic L-shaped method. It has to be kept
in mind that in the original assessment of the strength of the on-demand accuracy oracle
approach (Oliveira & Sagastizábal, 2012) the results were compared with the classic L-
shaped method, but the subproblems were solved with a primal-dual code that can not be
warm started. Thus, all subproblems were solved from scratch every time. We employ the

8.5. On-Demand Accuracy 81

simplex method to solve the subproblems, thus it is not possible to use inexact variants1,
therefore the εxk+1 parameter can be set to zero and is not considered in the following
presentation.

After a subproblem is solved to optimality in iteration k, its dual solution can be used to
generate an optimality cut in the multi-cut method. In particular, for every subproblem,
cut coefficients Es,k and right-hand sides es,k are computed according to equation (4.4)
that are used to generate A optimality cuts of the form∑

s∈Sa

Es,kx+ θa ≥
∑
s∈Sa

es,k ,∀a ∈ {1, . . . , A}.

For a given aggregation level, the aggregated components Ea,k and ea,k are computed out
of the the original cut components Es,k and es,k according to equation (4.6). Once this
is done, the original cut components are not used anymore and can be discarded. The
information contained in the original components is therefore usually lost and can not
be used for cut generation in subsequent iterations. With the introduction of on-demand
accuracy this changes, as the original cut components Es,k and es,k are kept to generate
new cuts on-demand.
Note that it is possible to get a valid, although not necessarily tight, approximation

for the recourse function for a first stage solution xk and a subproblem s by computing
es,i − Es,ixk for an iteration i ∈ Ik. This translates to

ps
[
πs,i

(
hs − T sxk

)
+ λs,ils + µs,ius

]
,

which is a feasible solution for problem (4.3), although it may not be the optimal solution.
As the dual feasibility set is not dependent on the current solution xk, every dual solution
πs,i,∀i ∈ Ik is a feasible solution, and thus a lower bound for the corresponding primal
problem (4.2). To get the largest recourse function approximation for a single subproblem
s all stored cut components can be evaluated with the current solution xk. The goal is
therefore to find the index īs that leads to the largest recourse function approximation for
scenario s,

īs = arg max
i∈Ik

es,i − Es,ixk. (8.3)

The complete recourse function approximation given by the stored cut components is

q̃(xk) =
S∑
s=1

es,̄i
s − Es,̄isxk. (8.4)

The current solution value of the master problem (4.7) at iteration k is denoted by

F k = cxk +
A∑
a=1

θa,k = LB.

1We apply the term exact or inexact only to the solution process of a single subproblem, for a further
discussion of inexact solution methods, see Section 4.4

82 8. Accelerating the Nested Benders Decomposition

If all subproblems (4.2) are solved to optimality, the recourse function evaluation can be
obtained by

F k(xk) = cxk +
S∑
s=1

Q(xk, s) = cxk +
S∑
s=1

psqsys,k.

If the current first-stage solution with the on-demand accuracy recourse function approxi-
mation cxk + q̃(xk) is larger than a target value γ, i.e., γ = UB − κ∆k, relation

cxk + q̃(xk) ≥ γ (8.5)

holds, and the on-demand accuracy cuts (8.6) defined by the īs∑
s∈Sa

Es,̄i
s
x+ θa ≥

∑
s∈Sa

es,̄i
s
, a = 1, . . . , A (8.6)

are added to the master problem. The usual step that includes evaluating F k(xk) by
solving all subproblems to generate new optimality cuts is then skipped. Instead the
master problem is resolved to get a new solution. This becomes more important the larger
the set of scenarios, as the time spent to solve all second stage problems is roughly linear to
the number of subproblems. The L-shaped method combined with the on-demand accuracy
oracle is described in Algorithm 16.

If the on-demand accuracy (ODA) method is used, q̃(xk) has to be computed every time
the master problem was solved. In return for that effort the second stage does not need to
be solved at every iteration, only if cxk + q̃(xk) < UB − κ∆k.

If the second stage is solved, such an iteration is called a substantial iteration. Otherwise
it is called an insubstantial iteration. The ODA method allows to use all generated
information, but only a small number of aggregates is necessary to incorporate the useful
information in the solution process, thereby preventing cut proliferation in the master
problem.

If the ODA method is used in conjunction with level decomposition, the solution xk is the
solution from the level projection problem (4.11). Fábián (2013) proposes a non-proximal
level method variant which allows the target value

γ = κ

(
cxk +

A∑
a=1

θa,k
)

+ (1− κ)UB, (8.7)

where the valid range for κ is 0 < κ < 1−λ and f is the current model function or current
approximation of the recourse function, given by the added cuts. We use a specialized
version of the level variant (Fábián, 2013), and set the target value accordingly. The
complete algorithm for level decomposition with on-demand accuracy is formally described
in Algorithm 17 on page 87. On-demand accuracy can be applied to all the variants of
level decomposition, described in the next Section 8.6.

The on-demand accuracy principle can be contrasted with the cut deletion strategies de-
scribed in Section 8.1. In the classical application of Benders decomposition, all generated
cuts are added to the master problem, without any knowledge about their “usefulness”. A
cut consolidation scheme then tries to mitigate the effects of cut proliferation by consoli-

8.6. Level decomposition 83

dating the cuts which were not useful. In contrast, in the ODA method cut proliferation
is reduced by adding only a few cuts to the master problem in the first place. Cuts that
are most likely useful are added on-demand.
The method can be extended by deleting inactive cuts as discussed in Section 8.1.

Oliveira & Sagastizábal (2012) discuss techniques to remove generated cuts from the
problem, so called bundle management techniques. After a sequence of critical iterations,
all inactive cuts can be removed from the problem. All iterations are grouped into sets
K l = {k(l), . . . , k(l + 1)− 1}, l ≥ 1. K l contains all the iterations including and following
iteration k(l), until the next critical iteration k̄ appears. Then l is incremented and k(l)
is set to k̄. An iteration k̄ is called critical, when the gap is closed sufficiently, compared
with the gap at the last critical iteration (Oliveira & Sagastizábal, 2012),

∆k̄ < (1− λ)∆k(l) ⇒ k(l + 1) = k̄, l = l + 1. (8.8)

8.6. Level decomposition

In the level decomposition method, see Section 4.3.2, a projection problem is solved
to determine the next iterate. This projection problem usually minimizes the squared
euclidean distance between its solution x and the current iterate xk, i.e., ‖ x− xk ‖22. It is
not necessary to use the euclidean distance. Other distances can also be used, like the l1
or l∞-norm, see (Ben-Tal & Nemirovski, 2005; Oliveira & Sagastizábal, 2012).
The linear projection problem for the l2-norm (4.11) minimizes the squared euclidean

distance ‖ x− xk ‖22. The euclidean distance of two vectors x, xk ∈ Rn is defined as

‖ x− xk ‖2=

√√√√ n∑
i=1

(xi − xki)2.

The squared distance is
∑n
i=1(xi − xki)2. It can be used in the objective function of a

quadratic programming problem, once it is written via the binomial theorem as
∑n
i=1(xi)2−

2xixki + (xk)2. Another possibility is to introduce new variables w with the constraints
w = x−xk and to minimize ‖ x−xk ‖22=‖ w ‖22=

∑n
i=1w

2
i . The objective function contains

no linear part in this formulation, but n new variables and constraints must be added to
the problem, which we would like to avoid. The projection problem for the first possibility
thus reads

min
x

(x)2 − xTxk

s.t. Ax = b

Eix+ θ ≥ ei ∀i ∈ Ik
Ds,jx ≥ ds,j ∀j ∈ Jk, ∀s ∈ S(j)

cTx+ θ ≤ (1− λ)F k + λF (x∗)
l ≤ x ≤ u.

(8.9)

84 8. Accelerating the Nested Benders Decomposition

Initialization;
while UB − LB > εoptimality do

Solve Master problem (4.1) and store solution xk, θ1,k, . . . , θA,k;
Set LB ← cxk +

∑A
a=1 θ

a,k;
if Master problem infeasible then

return Problem infeasible;
for every scenario s ∈ S do

Find index īs using equation (8.3);
Compute q̃(xk) using equation (8.4);
if cxk + q̃(xk) ≥ UB − κLB then

Compute Ea,k =
∑
s∈Sa Es,̄i

s and ea,k =
∑
s∈Sa es,̄i

s for every aggregate a ∈ A;
Generate optimality cuts Ea,kx+ θa ≥ ea,k,∀a ∈ A and add them to Master
problem ;

else
for every scenario s ∈ S do

Solve second-stage problem Q(xk, s) (4.2) for scenario s;
if Subproblem feasible then

Let ys,k be the primal solution and πs,k, λs,k, µs,k be the dual solution
of Q(xk, s);
Generate optimality cut coefficients and right-hand side (4.4);
Es,k = psπs,kT s;
es,k = ps

[
πs,khs + λs,kls + µs,kus

]
;

if Subproblem infeasible then
Let πs,k, λs,k, µs,k be the dual extreme ray;
Generate feasibility cut and add it to Master problem;
πs,kT sx ≥ πs,khs + λs,kls + µs,kus;

if No subproblem was infeasible then
for every aggregate a ∈ A do

Form optimality cut
∑
s∈Sa Es,kx+ θa ≥

∑
s∈Sa es,k;

if θa,k < ea − Eaxk then
Add generated optimality cut to Master problem;

Compute current solution value zk = cxk +
∑S
s=1 p

sqsys,k;
if UB > zk then

Set UB ← zk and store incumbent solution xk, y1,k, . . . , yS,k;
Set k ← k + 1;

Return incumbent solution;
Algorithm 16: Hybrid-cut L-shaped method with on-demand accuracy

8.6. Level decomposition 85

The l1-norm distance (also called taxicab or manhattan distance) is defined as

‖ x− xk ‖1=
n∑
i=1
|xi − xki |.

To use the absolute value in a linear problem it must be modeled explicitly with the
introduction of new variables and constraints. The new variables w take the absolute value
of |x− xk|. This is ensured via two types of constraints, for all i = 1, . . . , n, in conjunction
with the objective function minw w. The constraints wi + xi ≥ xki ensure that wi takes up
the slack if xi − xki < 0. This can be seen by rearranging the constraint to xi − xki ≥ −wi.
If xi − xki ≥ 0, the slack is taken up by wi via the constraints xi − xki ≤ wi, which is
equivalent to wi − xi ≥ −xki .

The projection problem in the case of the l1-norm reads

min
w

w

s.t. Ax = b

Eix+ θ ≥ ei ∀i ∈ Ik
Ds,jx ≥ ds,j ∀j ∈ Jk,∀s ∈ S(j)

cTx+ θ ≤ (1− λ)F k + λF (x∗)
w + x ≥ xk

w − x ≥ − xk

l ≤ x ≤ u
0 ≤ w ≤∞.

(8.10)

The l∞-norm distance (also called infinity norm or maximum norm distance) is defined as

‖ x− xk ‖∞= max
1,··· ,n

(
|x1 − xk1|, . . . , |xn − xkn|

)
.

The goal is to minimize the distance. Therefore it is possible to derive the LP formulation
of minx ‖ x − xk ‖∞, by using a scalar variable w instead of a vector, with modified
constraints from the l1-norm problem above, namely w+xi ≥ xki and w−xi ≥ −xki . Thus
w is chosen as the maximum over all component-wise absolute values |xi − xki |, while w is
minimized, fulfilling the l∞-norm.

86 8. Accelerating the Nested Benders Decomposition

The projection problem in the case of the l∞-norm reads

min
w

w

s.t. Ax = b

Eix+ θ ≥ ei ∀i ∈ Ik
Ds,jx ≥ ds,j ∀j ∈ Jk,∀s ∈ S(j)

cTx+ θ ≤ (1− λ)F k + λF (x∗)
w + x ≥ xk

w − x ≥ − xk

l ≤ x ≤ u
0 ≤ w ≤ ∞.

(8.11)

From the three projection problems (8.9), (8.10), and (8.11), which stand for the euclidean,
manhattan and infinity distances, respectively, only the euclidean projection problem
requires a quadratic programming solver. The other two are pure linear programming
problems. If no quadratic programming solver is available, level decomposition with the
l1 or l∞ norm can be used. Therefore a comparison of the computational results of the
three different projection problems is interesting and done in Section 10.5.3. The complete
algorithm for level decomposition combined with on-demand accuracy is given in Algorithm
17. CPS denotes the current projection problem solution value cx+

∑A
a=1 θ

a.

8.7. Extending techniques to the multi-stage case

It would be ideal, if extensions and modifications of the two-stage L-shaped method that
prove to be successful can also be applied to the nested L-shaped method. Cut consolidation,
parallelization and cut aggregation can be readily used in the nested L-shaped method.
The techniques for stabilizing the master problem can also be extended to the multi-stage
case, but not unaltered. The same holds for on-demand accuracy cut generation. We
explain why after the nested nature of the algorithm is explored.
The nested L-shaped method is in principle the extension of the two-stage L-shaped

method to the multi-stage case by applying the two-stage L-shaped method in a nested
fashion (Birge, 1985). This is done by viewing two-stage subtrees rooted at a node (t, v) as a
two-stage problem, with the difference that the respective master problem is parameterized
with its current parent solution and that the respective subproblems contain optimality and
feasibility cuts. Figure 8.1 depicts the nested application of the two-stage L-shaped method.
Nodes with solid lines act as master nodes, nodes with dotted lines act as subproblem
nodes, and nodes with dashed lines act as a master problem to their subproblems and act
as a subproblem to their master problem. The boxes around the nodes depict the different
two-stage problems which are nested within each other.

The nested nature leads to two observations, namely the impact on the feasible region of
the primal nested master problem and the existence of cuts in the nested subproblem. The
master problem at node (t, v) is different from a master problem for a normal two-stage
problem. Its feasible region is dependent on its current parent problem solution x

a(t,v)
t−1 .

8.7. Extending techniques to the multi-stage case 87

Initialization;
while UB − LB > εoptimality do

Solve Master problem (4.1) and store solution x̄, θ̄1, . . . , θ̄A;
Set LB ← cx̄+

∑A
a=1 θ̄

a;
if Master problem infeasible then

return Problem infeasible;
Solve Projection problem (8.9), (8.11), or (8.10);
Store solution of projection problem xk, θ1,k, . . . , θA,k;
Set CPS ← cxk +

∑A
a=1 θ

a,k;
for every scenario s ∈ S do

Find index īs using equation (8.3);
Compute q̃(xk) using equation (8.4);
if cxk + q̃(xk) ≥ κCPS + (1− κ)UB then

Compute Ea,k =
∑
s∈Sa Es,̄i

s and ea,k =
∑
s∈Sa es,̄i

s for every aggregate a ∈ A;
Generate optimality cuts Ea,kx+ θa ≥ ea,k,∀a ∈ A and add them to Master
problem;

else
for every scenario s ∈ S do

Solve second-stage problem Q(xk, s) (4.2) for scenario s;
if Subproblem feasible then

Let ys,k be the primal solution and πs,k, λs,k, µs,k be the dual solution;
Generate optimality cut coefficients and right-hand side (4.4);
Es,k = psπs,kT s;
es,k = ps

[
πs,khs + λs,kls + µs,kus

]
;

if Subproblem infeasible then
Let πs,k, λs,k, µs,k be the dual extreme ray;
Generate feasibility cut and add it to Master problem;
πs,kT sx ≥ πs,khs + λs,kls + µs,kus;

if No subproblem was infeasible then
for every aggregate a ∈ A do

Form optimality cut
∑
s∈Sa Es,kx+ θa ≥

∑
s∈Sa es,k;

if θa,k < ea − Eaxk then
Add generated optimality cut to Master problem;

Compute current solution value zk = cx+
∑S
s=1 p

sqsys,k;
if UB > zk then

Set UB ← zk and store incumbent solution xk, y1,k, . . . , yS,k;
Set k ← k + 1;

Return incumbent solution;
Algorithm 17: Hybrid-cut Level decomposition with on-demand accuracy

88 8. Accelerating the Nested Benders Decomposition

1

Stage 1 Stage 3Stage 2
t = 1 t = 2 t = 3

11

1 p

6/11

2 p

6/22

2 p

6/33

2 p

12/11

3 p

12/12

3 p

6/23

3 p

6/14

3 p

6/15

3 p

6/16

3 p

32 K

11 K

63 K

6

5

4

3

2

1

3

1

2

Figure 8.1. Scenario tree with six scenarios and three stages. Grey boxes depict nested
two-stage instances.

8.7. Extending techniques to the multi-stage case 89

This can be seen by considering the problem formulation P vt (xa(t,v)
t−1) (5.1). It is restricted

by the constraints W v
t x

v
t = hvt − T vt x

a(t,v)
t−1 . As xa(t,v)

t−1 changes from iteration to iteration,
the feasible region can also change depending on T vt and xa(t,v)

t−1 . It does never change for
the trivial case of an empty technology matrix, but then P vt is independent of its parent
problem decision and the solution process becomes trivial.
The subproblems can contain optimality and feasibility cuts. Thus, for a given master

solution, the objective function value rises gradually, if the outer linearization of the
respective recourse function is refined by new cuts. In turn, the master problem solution
can only be thought of as optimal, if its subproblem solutions are optimal with respect to
their subproblems, and so on.

These two observations have implications for nested-instance-wise lower and upper bound
computations. For a real two-stage problem, the L-shaped method provides converging and
valid global lower and upper bounds during the course of the algorithm. If the two-stage
L-shaped method is applied in a nested fashion, it is not possible to provide global lower
and upper bounds with respect to each nested instance. Only global lower and upper
bounds for the whole problem can be computed, see the description in Algorithm 2 where
this is done. This is due to the observation that if the solution of the parent of a master
problem changes, the current incumbent solution which was used for the upper bound
computation for that particular two-stage nested instance is likely to be infeasible, thus
the value of the computed bound is meaningless2.
Additionally, a computed upper bound for a nested two-stage instance, e.g., the left

instance in Figure 8.1, is not really an upper bound, as it can increase when the recourse
function approximation at the respective subproblems is refined such that the second-stage
objective function values have increased overall, for the same incumbent master solution.
The nested instance lower bound remains valid in such a case.

To overcome the obstacles of the non global lower and upper bounds, we can use the
discrepancy measure (5.10) that we introduced in Section 5.2, but changed to a node-wise
definition (as in (Morton, 1996)). Let the discrepancy for a node (t, v) be defined as

Disc(t, v) =
∑

s∈d(t,v)

pst+1
pvt
·

cst+1x
s
t+1 +

As
t+1∑
a=1

θs,at+1

− Av
t∑

a=1
θv,at (8.12)

where xvt , θ
v,1
t , . . . , θ

v,Av
t

t is the optimal solution of problem P vt (xa(t,v)
t) and

xst+1, θ
s,1
t+1, · · · , θ

s,As
t+1

t+1 are the optimal solutions of P st+1(xvt) for all s ∈ d(t, v), respectively.
Thus it is possible to provide temporary local lower and upper bounds for a nested

instance rooted at node (t, v) by letting the local lower bound be defined as

LBv
t (xa(t,v)

t−1) = cvtx
v
t +

Av
t∑

a=1
θv,at ,

2We adopted the convention that the objective function value of an infeasible minimization problem is
set to ∞, thus the objective function value of an infeasible solution is also ∞ in this context.

90 8. Accelerating the Nested Benders Decomposition

and the local upper bound UBv
t (xa(t,v)

t−1) as

min

UBv
t (xa(t,v)

t−1), cvtxvt +
∑

u∈d(t,v)

put+1
pvt
·

cut+1x
u
t+1 +

Au
t+1∑
a=1

θu,at+1

 ,
where UBv

t (xa(t,v)
t−1) is reset to∞ and LBv

t (xa(t,v)
t−1) to the new optimal solution of P vt (xa(t,v)

t−1),
if the solution xa(t,v)

t−1 changes. The gap between these local bounds is nothing else than
the discrepancy (8.12), as can be seen by computing UBv

t (xa(t,v)
t−1)− LBv

t (xa(t,v)
t−1).

These considerations imply that the adoption of all methods which rely on global lower
and upper bounds in the two-stage case, can be adopted to the multi-stage case by consid-
ering local lower and upper bounds instead, for all stages 1 < t < T . It also implies that
before a technique can be applied both local bounds must have a finite value, such that
the discrepancy can be computed. To use a technique at stage t all problems at stage t+ 1
must be solved with the current stage t solutions.

This is at odds with some of the sequencing protocols, in particular the FB,ε−FB,FFFB
described in Section 5.2 and the dynamic sequencing protocol described in Section 8.2.
These protocols try to give dual information as fast as possible to its parent. When
this is achieved, the parent problem gets a new optimal solution, which is likely to be
different from the one before, and thus the computed local bounds get invalidated and the
regularization techniques can not be applied. The use of regularization techniques in the
multi-stage case requires new sequencing protocols and is subject to a trade-off between
avoiding zig-zagging behavior and spending more time computing the iterates.

The present sequencing protocols should be extended, so that level or regularized decom-
position can be applied at intermediate stages. After an intermediate stage t is solved and
the algorithm is on its way back from stage t+ 1 the algorithm can decide to resolve the
stages t+1 and t with a regularized iterate, or if the current cuts should be applied directly
to stage t− 1. Asynchronous protocols can help in this case, as suggested by Ruszczyński
(1993a) or Moritsch (2006). If on-demand accuracy cuts should be used at intermediate
stages, the sequencing protocols must also be extended similarly.

91

9. A Modeling Environment for Stochastic
Programs

In this chapter we present our work on integrating FlopC++ with Smi (Wolf et al., 2011)
to get a stochastic programming modeling environment for a general purpose programming
language following the ideas of Kaut (2008); Kaut et al. (2008). The integration allows
to use solely open-source tools to model stochastic programs with recourse and to solve
them, either with a specialized solver or a conventional LP or MIP solver. The extensions
to Smi allow the creation of SMPS files, such that other stochastic programming solvers
can be used, e.g., FortSP.
The C++ library Formulation of Linear Optimization Problems in C++ (FlopC++)

(Hultberg, 2007) allows to model linear and mixed-integer problems similar to other well-
known modeling languages like AMPL or GAMS. The concept behind FlopC++ is to
combine a general purpose programming language, in this case C++, with a modeling
language for linear and mixed-integer problems. This allows for a tighter integration of
the modeling language with a decision support system programmed in the same language.
The stochastic modeling interface (Smi) provides classes and methods to create, store

and access multi-stage stochastic programs. The scenario tree is stored as an in-memory
equivalent of the storage structure used in the SCENARIOS section of a STOCH file (Birge
et al., 1987). It also serves as a SMPS reader, for SMPS files containing INDEP and
SCENARIOS sections only.
The previous attempts to combine Smi and FlopC++ use the existing projects and

build the tree structure directly in C++ code in several variants (Kaut et al., 2008).
This approach works for the given example, but it does not contain any of the constructs
proposed by Gassmann & Ireland (1996) and it is thus not straightforward to use for a
modeler of stochastic programs, as it splits the algebraic notation of the model into several
parts which are connected by newly build C++ classes. To really achieve an AML for
stochastic programs FlopC++ must be extended with new keywords. The integration of
FlopC++ and Smi should be made inside the library and therefore hidden from the user.
On the one hand, the modeler should be able to specify random variables with distri-

butions. On the other hand, the support of scenario data given by external tools should
also be supported. We identified the following modeling constructs, which are necessary
to model stochastic programs with recourse. We coin the extensions StochasticFlopC++
(SFlopC++).

MP_stage A dedicated set which contains all stages of the problems, and is used to index
every constraint and variable at a stage other than the first.

MP_scenario_set A set which contains all scenarios. Useful, if scenario-wise data is
retrieved by external tools, e.g., simulation results or a database.

92 9. A Modeling Environment for Stochastic Programs

RandomVariable Models random variables. Needs distribution information and methods
to discretize continuous distributions. If scenario information is given it contains
a data entry for every scenario. Distribution information can be given in different
ways, e.g., a typical normal distribution with mean µ and standard deviation σ or
an empirical distribution with probability-value pairs.

MP_random_data A random parameter. Can combine normal parameters (MP_data),
random variables and random parameters with the usual FlopC++ algebraic opera-
tions, e.g., floor, +, ·.

Smi can be extended with the following items to enable a better integration with the
modeling language and possible solvers.

SMPS writer Smi should be able to write out SMPS files. This allows interchanging
models and to test different solvers that do not use Smi as input.

BLOCKS support Many existing files use the BLOCKS format to describe uncertainty. Sup-
porting this format would allow to read and solve more problems.

Sampling support With INDEP or BLOCKS sections, it is easily possible to specify stochastic
programs with a huge number of scenarios, e.g. storm with 5118 ((Linderoth et al.,
2006), based on (Mulvey & Ruszczyński, 1995)). Trying to construct such a program
in-memory will result in a segmentation fault for the foreseeable future. Storing the
distribution information and sampling a given number of scenarios on-demand is
possible and necessary to support approximative solution techniques, e.g., SAA.

Wait-and-See Smi should provide results of the wait-and-see model.

We model the well-known dakota problem (see, e.g., (Higle, 2005)) in SFlopC++ to
explain the new constructs in Listing 9.1.

1 MP_model dakota (new Os iC lpSo l v e r In t e r f a c e ()) ;
2 MP_stage T(2) ;
3
4 enum {desk , tab le , cha i r , numProducts } ;
5 MP_set P(numProducts) ;
6
7 enum { lumber , f i n i s h i n g , carpentry , numResources } ;
8 MP_set R(numResources) ;
9

10 enum {low , normal , high , numScenarios } ;
11 MP_scenario_set scen (numScenarios) ;
12
13 MP_data prob (scen) ;
14 prob (low) = 0 . 3 ;
15 prob (normal) = 0 . 4 ;
16 prob (high) = 0 . 3 ;
17 dakota . s e t P r o b a b i l i t i e s (prob) ;
18
19 double scenDemand [1] [numProducts] [numScenarios] =
20 {// Second Stage , F i r s t Stage i s a lways omit ted
21 { // L M H

93

22 {50 , 150 , 250} , // desk
23 {20 , 110 , 250} , // t a b l e
24 {200 , 225 , 500} // cha i r
25 }
26 } ;
27 MP_random_data demand(&scenDemand [0] [0] [0] , T, P) ;
28
29 MP_data resourceCost (R) ;
30 re sourceCost (lumber) = 2 ;
31 re sourceCost (f i n i s h i n g) = 4 ;
32 re sourceCost (carpentry) = 5 . 2 ;
33
34 MP_data resourceReq (P, R) ;
35 resourceReq (desk , lumber) = 8 ;
36 resourceReq (desk , f i n i s h i n g) = 4 ;
37 resourceReq (desk , carpentry) = 2 ;
38 resourceReq (tab le , lumber) = 6 ;
39 resourceReq (tab le , f i n i s h i n g) = 2 ;
40 resourceReq (tab le , carpentry) = 1 . 5 ;
41 resourceReq (cha i r , lumber) = 1 ;
42 resourceReq (cha i r , f i n i s h i n g) = 1 . 5 ;
43 resourceReq (cha i r , carpentry) = 0 . 5 ;
44
45 double p r i c e s [3] = {60 .0 , 40 . 0 , 1 0 . 0 } ;
46 MP_data s e l l i n g P r i c e (&p r i c e s [0] , P) ;
47
48 MP_variable
49 x (R) , // amount o f r e source s
50 y (T,P) ; // produced un i t s
51
52 MP_constraint demandConstraint (T,P)
53 MP_constraint product ionConst ra int (T,R)
54
55 demandConstraint (T+1,P) = y(T,P) <= demand(T,P) ;
56 product ionConst ra int (T+1,R) =
57 sum(P, resourceReq (P, R) ∗ y (T,P)) <= x(R) ;
58
59 dakota . s e tOb j e c t i v e (
60 sum(P, y (T+1,P) ∗ s e l l i n g P r i c e (P))
61 − sum(R, x (R) ∗ r e sourceCost (R))) ;
62 dakota . attach (dakota . So lve r) ;

Listing 9.1 Dakota model in SFlopC++

If we assume that the demand for desk, tables, and chairs is independently distributed,
but with the same values, we can model the problem via the scenario approach above,
but we would have to build all the combinations manually. Instead it is possible to use
random variables with empirical distributions by replacing lines 10-27 in Listing 9.1 with
the following code.

10 std : : vector<double> values_desk = { 50 , 150 , 250 } ;
11 std : : vector<double> values_tab le = { 20 , 110 , 250 } ;
12 std : : vector<double> values_cha i r = { 200 , 225 , 500 } ;
13 std : : vector<double> prob = { 0 . 3 , 0 . 4 , 0 . 3 } ;
14 RandomVariable∗ random_vars [1] [numProducts] =

94 9. A Modeling Environment for Stochastic Programs

15 { // Second Stage
16 { // Products
17 new EmpiricalRandomVariable (values_desk , prob) , // Desks
18 new EmpiricalRandomVariable (values_table , prob) , // Tables
19 new EmpiricalRandomVariable (values_chair , prob) //Chairs
20 }
21 } ;
22 MP_random_data demand(&random_vars [0] ,T, P) ;

Listing 9.2 Extended Dakota model in SFlopC++

This modified problem has three random variables, where each variable has three outcomes.
This will result in nine scenarios via the cartesian product of the three random variables.
This computation is done automatically, during the coefficient generation phase. The
result of the attach call is a deterministic model, where the values of the random elements
are set to the expected value, and a scenario tree. This information can then be used
to solve the deterministic equivalent problem, write the problem into SMPS format, or
call a stochastic solver. The objective function is also build automatically. Whenever a
stage-indexed variable appears in the objective function, it is readily multiplied with the
correct probability.
To compare SFlopC++ with previous integration attempts (Kaut, 2008; Kaut et al.,

2008) we state the problem formulation for the financial portfolio problem (Birge & Lou-
veaux, 2011, p. 20-27) in Listing 9.3, with the values used in (Kopa, 2008, p. 10f). The
scenario tree is constructed automatically.

1 MP_model investmentModel (new Os iC lpSo l v e r In t e r f a c e ()) ;
2 MP_data in i t i a lWea l th , goa l ;
3 i n i t i a lWea l t h () = 55 ;
4 goa l () = 80 ;
5
6 enum { asset1 , as se t2 , numAssets } ;
7 MP_set a s s e t s (numAssets) ;
8
9 enum {numStage=4};

10 MP_stage T(numStage) ; //Time Stages
11
12 enum {numScen=8};
13 MP_scenario_set scen (numScen) ;
14
15 double s c e n a r i o s [numStage−1] [numAssets] [numScen]=
16 {
17 {// s t a g e 2
18 { 1 . 2 5 , 1 . 2 5 , 1 . 2 5 , 1 . 2 5 , 1 . 0 6 , 1 . 0 6 , 1 . 0 6 , 1 . 0 6 } , // a s s e t 1
19 { 1 . 1 4 , 1 . 1 4 , 1 . 1 4 , 1 . 1 4 , 1 . 1 6 , 1 . 1 6 , 1 . 1 6 , 1 . 1 6 } // a s s e t 2
20 } ,
21 {// s t a g e 3
22 { 1 . 2 1 , 1 . 2 1 , 1 . 0 7 , 1 . 0 7 , 1 . 1 5 , 1 . 1 5 , 1 . 0 6 , 1 . 0 6 } , // a s s e t 1
23 { 1 . 1 7 , 1 . 1 7 , 1 . 1 2 , 1 . 1 2 , 1 . 1 8 , 1 . 1 8 , 1 . 1 2 , 1 . 1 2 } // a s s e t 2
24 } ,
25 {// s t a g e 4
26 { 1 . 2 6 , 1 . 0 7 , 1 . 2 5 , 1 . 0 6 , 1 . 0 5 , 1 . 0 6 , 1 . 0 5 , 1 . 0 6 } , // a s s e t 1
27 { 1 . 1 3 , 1 . 1 4 , 1 . 1 5 , 1 . 1 2 , 1 . 1 7 , 1 . 1 5 , 1 . 1 4 , 1 . 1 2 } // a s s e t 2
28 }

95

29 } ;
30 MP_random_data r e tu rn s (& s c ena r i o s [0] [0] [0] , T, a s s e t s) ;
31
32 MP_variable x (T, a s s e t s) ;
33 MP_variable wealth (T) ;
34 MP_variable shor tage (T) , su rp lu s (T) ;
35
36 MP_constraint
37 in i t i a lWea l thConst r ,
38 returnConstr (T) ,
39 a l l o c a t i onCon s t r (T) ,
40 goalConstr (T) ;
41
42 in i t i a lWea l thCons t r () = sum(as s e t s , x (0 , a s s e t s)) == in i t i a lWea l t h () ;
43 a l l o c a t i onCon s t r (T) = sum(as s e t s , x (T, a s s e t s)) == wealth (T) ;
44 returnConstr (T+1) = sum(as s e t s , r e tu rn s (T, a s s e t s) ∗x (T−1, a s s e t s)) == wealth

(T) ;
45 goalConstr (T. l a s t ()) = wealth (T) == goa l () + surp lu s (T) − shor tage (T) ;
46
47 MP_expression valueFunct ion (1 .3∗ shor tage (T. l a s t ()) − 1 .1∗ su rp lu s (T. l a s t ()

)) ;
48 investmentModel . s e tOb j e c t i v e (valueFunct ion) ;
49 investmentModel . attach (investmentModel . So lve r) ;
50 investmentModel . s o l v e () ;

Listing 9.3 Investment model in SFlopC++

After a stochastic model is created with the attach call, the MP_model contains a scenario
tree in the form of an SmiScnModel object. The SmiScnModel can be retrieved from the
MP_model instance for further usage, e.g., writing a SMPS file, compute the wait-and-
see solution, etc. A call to solve creates the deterministic equivalent problem via the
SmiScnModel instance and solves it. Subsequently, the solution can be accessed via the
MP_variables. Correlation of variables and multivariate distributions are not supported
at the moment.

The integration of a stochastic solver, which uses Smi to process the scenario tree input,
is shown in Listing 9.

1 MP_model someModel (new Os iC lpSo l v e r In t e r f a c e ()) ;
2
3 // Spec i f y the model here
4
5 someModel . attach (someModel . So lve r) ;
6 Os i S t o cha s t i cPa ra l l e lNe s t edBende r sSo l v e r I n t e r f a c e pnb(someModel . So lver ,

someModel . getSmi ()) ;
7 pnb . i n i t i a l S o l v e () ;
8 // Do some s o l u t i o n proce s s ing

Listing 9.4 Call a stochastic solver in SFlopC++

97

10. Computational Results

The acceleration techniques described in Chapter 8 are evaluated in this chapter. The
different techniques were tested on a wide range of test problems, which are described in
Section 10.1. The different averages used to evaluate the results, e.g., arithmetic, geometric
and shifted geometric mean, as well as the use of performance profiles are explained in
Section 10.2. The implementation itself is described in Section 10.3. To give context for
the computing times, the computing environment is described in Section 10.4. Section
10.5 contains the computational results for the techniques that can be applied to two-stage
problems. These techniques are cut aggregation, cut consolidation, level decomposition,
on-demand accuracy and advanced start solutions. As the algorithm is parallelized, Section
10.6 deals with the consequences of parallel execution on the relative order of different
methods and gives speedup factors. The next Section 10.7 contains the results for the
different sequencing protocols applied to the multi-stage test instances. The application of
parallelized level decomposition within the approximative solution method sample average
approximation (SAA) is explored in Section 10.8 with respect to computing times. A
conclusion of all the results and a final comparison of the fastest algorithms is done in
Section 10.9.

10.1. Test Instances

We assembled a wide range of test problems for both the two-stage and the multi-stage
case. Due to the large number of instances only the containing collections are given here.
For more information regarding the specific problems please consult the references (cf.
(Zverovich et al., 2012))1. The instances and dimensions of the two-stage test set are
presented in Table A.1 in the appendix. The instances and dimensions of the multi-stage
test set are presented in Table A.2 in the appendix.
The POSTS test set (Holmes, 1995) contains four different problem families of which

three problems are multistage problems.
The slptestset (Ariyawansa & Felt, 2004) is a collection of mostly two-stage linear

stochastic programming problems, compiled by Andrew Felt. It is available online at
http://www4.uwsp.edu/math/afelt/slptestset.html. It contains nine different prob-
lem families with a total of 40 different instances, mostly due to varying scenario size.
Three problems are multi-stage problems.

A set of five different linear two-stage stochastic programs with a large number of
scenarios is compiled by Linderoth et al. (2006), it can be retrieved at http://pages.cs.
wisc.edu/~swright/stochastic/sampling/. The problems are solved by the authors

1More references and information about particular problems are available online via http://users.iems.
northwestern.edu/~jrbirge/html/dholmes/SPTSlists.html.

http://www4.uwsp.edu/math/afelt/slptestset.html
http://pages.cs.wisc.edu/~swright/stochastic/sampling/
http://pages.cs.wisc.edu/~swright/stochastic/sampling/
http://users.iems.northwestern.edu/~jrbirge/html/dholmes/SPTSlists.html
http://users.iems.northwestern.edu/~jrbirge/html/dholmes/SPTSlists.html

98 10. Computational Results

approximately with SAA, and thus we name the test set sampling. We sampled from the
particular problems 20term, ssn and storm three instances each, with 1000, 2000, and 3000
scenarios. The problems gbd and LandS with 646425 and 1000000 scenarios, respectively,
can be solved directly. Thus we have a total of 11 test instances from this test set.
A set of three problems, rand, with a total of fifteen instances are randomly generated

(Zverovich et al., 2012), using the routine GENSLP (Kall & Mayer, 1998). The problems do
not possess any real-world structure, but they are useful for evaluating scale-up properties
of algorithms.
A two-stage gas portfolio planning problem, saphir, which is numerically challenging,

is available with five instances (Koberstein et al., 2011).
Consigli & Dempster (1998) present a multi-stage financial portfolio problem, watson.

It comes in two flavors, independent and dependent variables, with a total of 24 instances.
We also consider ten two-stage problems by Deák (2011) which have normal distributed

right-hand side, but only use the problems also considered by Oliveira & Sagastizábal
(2012). We named the test set deak, after its contributor. It is available online at
http://web.uni-corvinus.hu/~ideak1/kut_en.htm. We decided to use only the largest
three instances of each problem also used by (Oliveira & Sagastizábal, 2012), resulting in
30 instances.

Several mixed-integer stochastic programs are bundled in the SIPLIB (Ahmed et al.,
2013) test-set, compiled by Shabbir Ahmed. We use the sslp instances without the integer
requirements.
Another multi-stage problem with mixed-binary first-stage variables is a supply chain

planning problem called SCDP (Koberstein et al., 2013).

10.2. Evaluation Techniques

We apply our solution algorithm on a large set of test problems described in the previous
section. To evaluate the effects of parameter combinations on these problems we measure
the computing time and the iteration counts. The computing time is measured as the
wall clock time of the algorithm without input and output routines. To perform more
detailed analysis the computing time is also measured for distinct parts of the algorithm,
like the time spent in each stage, or for different tasks, e.g., creating a subproblem in
memory or solving a subproblem. The iteration counts are also measured, as these are
more comparable to other implementations than the sole computing time, which depends
on the interaction of hard- and software.
To compare one parameter setting with another the measured computing times and/or

iteration counts on the whole test set are compared, as a problem by problem comparison
is impractical due to the large number of instances. It would be hard to derive meaningful
conclusions from single instance data alone. Thus we use averages of the individual results,
namely the arithmetic, geometric and shifted geometric mean.

To prevent problems with the averages due to very small computing times, we set every
computing time to at least 0.05 seconds. Instances which exceed the computing time
threshold of 3, 600 seconds are counted as if they solved the problem in 3, 600 seconds.
This is an advantage for the methods that exceed the time threshold (cf. (Achterberg,

http://web.uni-corvinus.hu/~ideak1/kut_en.htm

10.2. Evaluation Techniques 99

2007)). We denote it in the results if a method fails to solve a problem. Such occurrences
are also counted as if they solved the problem in 3, 6000 seconds. It is also be possible
to exclude these instances when the averages are computed, but this is unfair to those
methods that solve these instances correctly, and especially if this takes a long time. On
the other hand, this distorts the overall running time. Therefore we include both averages
if some method fails to solve a problem to allow a better comparison.
Let ts ≥ 0 denote the time of instance s. Let N denote the number of total instances.

Summing up all the individual computing times for all test instances results in the total
computing time for the whole test set,

∑N
s=1 ts. This method neglects the differences that

may appear between many instances, as the computing time of large instances dominates
the result. The sum divided by the number of instances gives the time which is spend
on each instance on average, i.e., the arithmetic mean (AM)

∑N

s=1 ts
N , but with the same

caveat that large instances dominate the result.
To compute an average of the computing time ratios, we use the geometric mean. The

geometric mean (GM) is defined as
(∏N

s=1 ts
)1/n

. It is sensitive to small changes in
computing times for small instances, see (Achterberg, 2007, p. 321f).
To reduce the influence of the small instances, we use the shifted geometric mean

(SGM). The shifted geometric mean is computed as
(∏N

s=1 ts + s
)1/n

− s. The influence
of small differences in computing time for instances that can be solved faster than s is less
pronounced compared with the geometric mean, in particular for computing times less than
one second (cf. (Achterberg, 2007)). The shifted geometric mean is thus a compromise
between the arithmetic and geometric mean. We use the shifted geometric mean with
s = 10 to compare the relative performance of different methods.
Apart from the averages, Dolan & Moré (2002) propose the use of performance profiles

for the comparison of different algorithms, a widely adapted concept, see, e.g., (Zverovich
et al., 2012), (Wesselmann, 2010) and (Koberstein, 2005). A performance profile is a
graphical comparison of solution methods or algorithms that allows to see the influence
of test instances on the relative performance of the algorithms. It also handles the case
where an algorithm is unable to solve a test instance. To create a performance profile
the computing times for all methods m ∈M on all problem instances p ∈ P are recorded
as tp,m, where M is the set of methods and P is the set of problem instances. To get a
comparison between methods we compute ratios for every method and instance as follows

rp,m = tp,m
min{tp,m′ : m′ ∈M}. (10.1)

If the solution time tp,m exceeds the computing time threshold, it should be set to a high
number, e.g., if the threshold is 3, 600 seconds it can be set to 3, 600 · 1, 000, to ensure that
this instance is counted as unsolvable in the profile. Situations where a method fails to
provide a correct solution or fails due to memory limitations are handled in the same way.
The cumulative distribution functions for every solution method is then defined as

ρm(τ) = |{p ∈ P |rp,m ≤ τ}|
|P |

, (10.2)

100 10. Computational Results

and it gives the probability that a solution method solves a problem within a ratio of τ
of the fastest solution methods. These cumulative distribution functions can be plotted
into a diagram for a graphical comparison. Of course, it is also possible to compute these
profiles for iteration counts. For further details and properties of performance profiles, see
(Dolan & Moré, 2002).

10.3. Implementation Aspects
The algorithmic techniques which we discussed in earlier chapters need an efficient imple-
mentation to be usable on real world problems. The theoretical complexity of the simplex
method for example has not changed over the years, but the performance of the simplex
method has increased by two orders of magnitude (Maros, 2003, p. xviif). This is due to
new algorithmic techniques and refinements in the implementation, as well as new hardware
(cf. (Maros, 2003; Koberstein, 2005)). Thus this section contains several implementation
details which increase performance and are helpful for an efficient implementation.

10.3.1. Implementation
The algorithm is implemented in C++ and compiles with VisualC++ under Windows and
with gcc under Linux2. It is based upon the COmputational INfrastructure for Operations
Research (COIN-OR)3 framework (Lougee-Heimer, 2003), in particular the stochastic
modeling interface (Smi)4 and the open solver interface (Osi)5. These projects build
upon CoinUtils6, which provides classes to store sparse matrix and vector data structures
(Maros, 2003, p. 69ff). Osi provides access to different linear programming and mixed-
integer solvers via a common interface. This allows to change the underlying LP solver
without rewriting the entire program. Smi provides classes to read in SMPS files, store
a scenario tree in memory, store the deterministic core problem, and to build an implicit
deterministic equivalent presentation solvable by any Osi compatible solver. We extended
Smi with a SMPS writer, a reader which can read in scenarios specified via BLOCKS, and
the capabilities of solving the WS and EEV problems directly.

Apart from the COIN-OR libraries, the code uses the boost libraries7, as well as google-
glog8 logging library and the googletest9 testing framework. As the available cores of
modern computers should be utilized, the code is thread-based and uses shared main
memory to store information; see Section 5.3 regarding parallel computing architectures.
One thread with one solver instance is created for every available logical core, and they are
managed via a thread pool10. This entails that the subproblem structure must be build
into memory from the stored data before it can be solved. Those parts of the problem

2Visual C++ 2012 and gcc-4.7
3http://www.coin-or.org/
4https://projects.coin-or.org/Smi
5https://projects.coin-or.org/Osi
6https://projects.coin-or.org/CoinUtils
7http://www.boost.org/
8https://code.google.com/p/google-glog/
9https://code.google.com/p/googletest/

10threadpool http://threadpool.sourceforge.net/

http://www.coin-or.org/
https://projects.coin-or.org/Smi
https://projects.coin-or.org/Osi
https://projects.coin-or.org/CoinUtils
http://www.boost.org/
https://code.google.com/p/google-glog/
https://code.google.com/p/googletest/
http://threadpool.sourceforge.net/

10.3. Implementation Aspects 101

structure that do not change between different subproblems are retained in memory to
reduce problem building time. The master problem is managed by a separate solver
instance to avoid unnecessary overhead.
The work, which is done by the threads, is described by tasks, which are simply C++

methods. The tasks are assigned to the thread pool by the main process at those points in
the algorithm whose parts can be processed in parallel. The thread pool assigns the tasks
to the threads on a first-come first-serve basis, until all tasks are processed. The parallel
implementation is described in pseudocode in Algorithm 13 together with the main tasks
HandleSuproblem and AggregateCuts in Algorithms 14 and 15, respectively. Additional
information that belongs to a specific scenario is stored in the corresponding node in the
scenario tree, e.g., warm start information, optimality cuts, etc.

10.3.2. Solving a subproblem

In the original description of the L-shaped method (Van Slyke & Wets, 1969), feasibility
of the subproblems has to be checked in a separate step (step 2). To accomplish this, an
LP is constructed with additional artificial variables that measure constraint violations.
The objective is to minimize the constraint violation. If the objective function value of the
optimal solution is greater than zero, a feasibility cut is then generated from the associated
simplex multipliers.

In the description of Freund (2004), which we adapted to our notation in Section 3.3, a
feasibility cut is generated from a dual extreme ray if a dual subproblem (4.3) is unbounded.
This ray is returned by the LP solver if it detects that the dual is unbounded. It is thus
not necessary to solve an additional LP problem just to check if a subproblem is feasible.

All variables are non-negative in the original L-shaped description. In practical problems,
this might not be the case for all variables (cf. (Dempster & Thompson, 1998)). The
necessary changes to allow arbitrary variable bounds are already described in Chapters 4
and 5 in the formulas for the optimality and feasibility cuts, (4.4) and (4.5), respectively.
It was not mentioned there how to get the λ and µ values for the lower and upper bounds,
respectively, from a solver that usually solves the primal problem with the dual simplex.

The sum λ+µ of the dual slack variables λ and µ corresponds to the reduced cost vector
rc (Koberstein, 2005, p. 12), which is equal to (h−T x̄)−W Tπ for subproblem (4.2). The
solver returns the reduced cost vector rc. We must then determine if rci corresponds to a
value for λi or µi depending on the actual variable bounds and the current primal solution.
The correspondence is the following (cf. (Koberstein, 2005, p. 14)).

λi = rci, if li > −∞ and ui =∞ (10.3)
µi = rci, if li = −∞ and ui <∞ (10.4)
λi = rci, if li > −∞ and ui <∞ and xj = lj (10.5)
µi = rci, if li > −∞ and ui <∞ and xj = uj (10.6)

If the primal subproblem is infeasible and the dual unbounded, the solver returns an
extreme ray r ∈ Rm. If primal variable bounds are present, the corresponding dual slack
variables can not be determined via the reduced costs, as they are not available. Instead,

102 10. Computational Results

the solver can return a Farkas certificate to prove infeasibility of the primal problem, from
which we can deduce the dual slack variable values (Rubin, 2011).

10.3.3. Warm Start

An important part of the algorithm is the use of simplex warm starts, see Section 4.5. The
performance of the decomposition algorithm would deteriorate without these (cf. (Morton,
1996),(Dohle, 2010),(Rudolph, 2010)). A warm start is nothing else than the information
which variables are basic, and which are nonbasic and at which bound. It is stored after a
problem is solved to optimality. If the problem is encountered again, it can be restarted
with the warm start basis. If the dual simplex is used, the warm start solution stays dual
feasible, even if cuts are added to the problem. Often it takes only a few pivot steps to
get from the warm start solution to the new optimal solution. In our algorithm, we use
node-wise warm starts. A stage-wise warm start is used when a node-wise warm start is
not yet available, e.g., in the first iteration.

10.3.4. Tolerances

Another important part of an algorithm dealing with floating point variables are tolerances,
as floating point arithmetic is inexact by design (Goldberg, 1991). A LP solver has an
internal threshold from which a variable is considered to be equal to zero. CPLEX considers
all values that are smaller than 10−6 as zero. Due to rounding errors the output of the LP
solver can contain very small values which are smaller than the threshold. The programmer
must ensure that these values are set to zero, by checking against a zero tolerance.
When these small values are not zeroed out by applying a zero tolerance, numerical

artifacts can occur while processing the output, for example in cut generation. This is the
case, because, e.g., 106 · 10−10 = 10−4, but 106 · 0 = 0. These errors can accumulate and
thus not adopting the check for zero tolerances can lead to unsolvable problems or wrong
convergence behavior. It is advisable that the zero tolerance used in the algorithm is the
same as the one of the underlying LP solver, as otherwise problems can occur that are
hard to understand and debug.

10.4. Computing environment

All the test instances were solved on a separate computer with the only task of solving
the problems to reduce measurement errors by computer load due to other processes. The
processor is an Intel Core i7-3770 with 3.4 GHz and four physical cores, but it provides
eight logical cores via hyper-threading (Marr et al., 2002). The computer has 16 GiB of
main memory and the operating system is 64-bit Windows 7 Professional. The code was
compiled with VisualC++ 2012 under VisualStudio 2012 in release mode. The external
LP, MIP and QP solver is CPLEX 12.4.

10.5. Evaluation of Two-Stage Acceleration Techniques 103

10.5. Evaluation of Two-Stage Acceleration Techniques
To evaluate the effect of accelerating techniques on the algorithm we define a base case,
from which several parameters can then deviate. The Benders base case (Benders BC) is
the single-cut L-shaped method with the dual simplex method as the LP solver. Node-wise
warm start is enabled. Parallelization is enabled and all available cores are used by creating
a respective number of threads and solver instances. If subproblems become infeasible,
only one feasibility cut is generated. The expected value solution is used as an advanced
start solution. The time to solve the EV problem is counted towards the solution time.
The default settings for all the tolerances is 10−6, λ = 0.5, and κ = 0.5. The DEM is
solved with the CPLEX barrier method without crossover. It utilizes all available cores.
In Section 10.5.1 we present results achieved with cut aggregation. The effect of cut

consolidation, in combination with cut aggregation, is evaluated in Section 10.5.2. Effects
of the choice of λ on the performance of level decomposition are studied in Section 10.5.3
for the three different projection problems. The effect of cut aggregation on level decom-
position is also evaluated. Computational results of using on-demand accuracy in various
combinations are presented in Section 10.5.4. We evaluate the effectiveness of different
advanced start solutions in Section 10.5.5. Part of the results in Sections 10.5.1 and 10.5.2
are already published (Wolf & Koberstein, 2013).

10.5.1. Cut Aggregation
The possibility to choose aggregation levels between single and multi cut is recently eval-
uated (Trukhanov et al., 2010) on instances with 1000, 2000 and 3000 scenarios of the
problems 20term, ssn and storm, which are present in the sampling test set. We evalu-
ated the effect of cut aggregation for our whole test set, including the instances used by
Trukhanov et al. (2010)11. Note that for instances with less scenarios than the aggregation
level, the respective computing time of the multi-cut method is taken.
The computing times are presented in Table 10.1. The comparison shows that an

aggregation level between 20 and 100 results in an improvement about 40% compared
with the single-cut method, as measured by the shifted geometric mean. The multi-cut
approach increases the computing time by 60%. Measuring with the arithmetic mean the
aggregate levels 50 and 100 take more time than the winner with 20 aggregates. This can
be explained by the problem family sslp. For theses problems, cut proliferation becomes
already a problem for a low number of aggregates, like 50 and 100, thus the arithmetic
mean rises. The shifted geometric means of 20, 50, and 100 are close together, so the effect
on the other problems in the test set is not so large.
A performance profile, comparing the effect of the number of aggregates, is shown in

Figure 10.1. It shows that cut aggregation does not always lead to faster solution times,
as single-cut and multi-cut Benders are the fastest solution methods on at least 13% and
25% of all problems, respectively. On the other hand, a cut aggregation level of 20, 50,
and 100 solves more than 90 % of all problems within a τ of 2.

Cut aggregation trades off the number of iterations to solve the problem versus the time to
solve the master problem (cf. (Wolf & Koberstein, 2013)). The single-cut method provides
11We sampled instances with the same number of scenarios and do not use their specific instances.

104 10. Computational Results

Aggregates AM GM SGM BC

Single 53.27 2.73 13.30 0
5 29.51 2.04 10.05 -24
10 24.86 1.80 9.15 -31
20 23.76 1.62 8.51 -36
50 26.24 1.50 7.93 -40

100 41.53 1.49 8.09 -39
Multi 263.60 3.62 21.33 60

Table 10.1. Computing times for different number of aggregates for the L-shaped method.
The times are given as the arithmetic mean (AM), geometric mean (GM), and shifted
geometric mean (SGM) with s = 10. If an instance has less scenarios than the number of
aggregates, the respective multi-cut computing time was used. The last column gives the
percentage change of the shifted geometric mean compared with the Benders base case
(BC).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

ρ
m
(τ

)

τ

Benders-BC

Benders-Agg=5

Benders-Agg=10

Benders-Agg=20

Benders-Agg=50

Benders-Agg=100

Benders-MC

Figure 10.1. Performance profile of the L-shaped method for different cut aggregation
levels.

10.5. Evaluation of Two-Stage Acceleration Techniques 105

only limited recourse function information, because all the information is aggregated in
only one cut, whereas the multi-cut method provides information for every scenario. Thus,
the single-cut method needs more iterations to gather a similar approximation quality than
the multi-cut method. On the other hand, adding all the information to the master problem
in the form of optimality cuts results in a larger master problem with more variables and
constraints which is harder to resolve. This effect is called cut proliferation. The trade-off
can be seen by the iteration counts and the stage-wise computing times, shown in Table
10.2 and 10.3, respectively. For an increasing number of aggregates the iteration counts are
decreasing. The time spend in the master problem increases with the number of aggregates,
but the time spend in the second stage decreases. The overall computing time does not
vary too much for aggregate numbers between 20 and 100, but the amount of time spend
in the first stage increases nonetheless. If the number of aggregates increases further, cut
proliferation in the master problem leads to an increase in its solution time, such that the
decrease in the iteration numbers can not compensate this. Thus, the first stage computing
time dominates, see the last column of Table 10.3.

Aggregates AM GM SGM BC

Single 274.91 82.95 94.28 0
5 121.97 48.82 56.08 -41
10 88.26 39.22 44.99 -52
20 66.30 31.60 36.32 -61
50 46.20 24.66 28.36 -70

100 38.68 21.17 24.42 -74
Multi 19.84 12.69 14.66 -84

Table 10.2. Iteration counts for different number of aggregates for the L-shaped method.
When an instance has less scenarios than the number of aggregates, the respective multi-
cut iteration count was used. The last column gives the percentage change of the shifted
geometric mean compared with the Benders base case (BC).

We can conclude that the use of cut aggregation is an effective tool for considerably
reducing the computing time of the L-shaped method. We thus confirmed the results
of Trukhanov et al. (2010) for a much larger set of test instances. Choosing a “perfect”
number of aggregates is not easy to do a priori, but at least for our test set, a choice
between 10 and 100 reduces the computing time considerably, up to 40%. For problems
with a large number of scenarios, e.g., more than 2000, the multi-cut method is almost
never a competitive choice, with the exception of ssn.

10.5.2. Cut consolidation

It was recently shown that consolidation of optimality cuts decreases computing time of
Benders decomposition (Wolf & Koberstein, 2013). A positive effect of cut consolidation
is expected, if cut proliferation shows adverse effects on the runtime, as it is a procedure
meant to combat the negative effects of cut proliferation. We investigated the effect of

106 10. Computational Results

Stage 1 Stage 2

Aggregates AM SGM AM SGM 1. Stage
2. Stage

1. Stage
Computing Time

Single 2.69 1.70 50.27 12.25 13.89 12.79
5 3.37 1.99 25.88 8.56 23.26 19.82

10 4.40 2.12 20.19 7.43 28.48 23.12
20 7.35 2.43 16.15 6.40 37.91 28.50
50 14.14 2.84 11.84 5.29 53.60 35.75
100 30.68 3.51 10.58 4.76 73.71 43.34

Multi 259.07 18.60 4.60 2.29 813.25 87.21

Table 10.3. Stage-wise computing time for different number of aggregates for the L-shaped
method. When an instance has less scenarios than the number of aggregates, the respective
multi-cut solution times were used. The second last column gives the amount of time the
algorithm spends in the first stage, compared with the second stage. The last column gives
the amount of time the algorithm spends in the first stage, compared with the overall
computing time. Both comparison are done in terms of the shifted geometric mean.

cut consolidation for different levels of the threshold α and different number of aggregates.
The computing times are shown in Table 10.4 and the iteration counts in Table 10.5.

A positive effect of cut consolidation can be shown for 100 aggregates and the multi-cut
method. Cut consolidation increases the computing time by a small amount for a small
number of aggregates. It always increases the number of iterations needed to solve the
problems in the test set. Despite this, it reduces the computing time for a low level of cut
aggregation. This indicates, especially for the multi-cut method, that cut proliferation is
a real problem.

Concluding from the results, the threshold α should be chosen higher for small aggregate
numbers, as otherwise cuts get consolidated too early. The original cuts can still provide
more useful information in later iterations, but as they are already highly aggregated, they
are not active at every iteration and are thus selected for consolidation. α should be chosen
smaller for the multi-cut method and higher aggregate numbers, as otherwise the positive
effect of cut consolidation, i.e., reducing cut proliferation, is diminished because the master
problem has already grown in size before the first cuts get consolidated.

Cut consolidation is more useful, the higher the number of aggregates. This behavior is
expected, as the solution of the master problem becomes a bottleneck with an increasing
number of aggregates, as was shown in Section 10.5.1, in particular in Table 10.3. Cut
consolidation is not useful for situations where the master problem is easy to resolve, due
to a low number of added cuts. But for a fairly modest number of cuts, e.g., more than
10, it has no negative effects on the computing time.

10.5.3. Level decomposition

It was recently shown that the regularization technique level decomposition compares
favorably with Benders decomposition (Zverovich et al., 2012). In contrast to Benders

10.5. Evaluation of Two-Stage Acceleration Techniques 107

Agg. α AM GM SGM w/o CC BC

5 1 35.87 2.15 10.84 8 -19
5 2 32.82 2.09 10.58 5 -20
5 3 33.30 2.07 10.57 5 -21
5 4 33.26 2.07 10.49 4 -21
5 5 30.45 2.07 10.26 2 -23

10 1 25.99 1.81 9.33 2 -30
10 2 25.80 1.83 9.28 1 -30
10 3 25.95 1.81 9.35 2 -30
10 4 25.55 1.79 9.24 1 -31
10 5 25.89 1.82 9.28 1 -30

20 1 24.70 1.65 8.68 2 -35
20 2 24.38 1.65 8.59 1 -35
20 3 23.32 1.61 8.45 -1 -36
20 4 23.60 1.61 8.49 0 -36
20 5 23.93 1.62 8.48 0 -36

50 1 27.39 1.49 8.06 2 -39
50 2 27.31 1.50 8.02 1 -40
50 3 26.48 1.47 7.88 -1 -41
50 4 26.86 1.46 7.88 -1 -41
50 5 26.96 1.47 7.88 -1 -41

100 1 43.55 1.48 8.18 1 -38
100 2 43.25 1.48 8.04 -1 -40
100 3 41.36 1.45 7.93 -2 -40
100 4 41.78 1.45 7.90 -2 -41
100 5 41.43 1.48 7.88 -3 -41

Multi 1 237.05 3.35 19.35 -9 45
Multi 2 238.16 3.32 19.16 -10 44
Multi 3 241.52 3.32 19.38 -9 46
Multi 4 247.02 3.41 19.87 -7 49
Multi 5 251.30 3.48 20.06 -6 51

Table 10.4. Computing times for cut consolidation with different level of cut aggregation.
α is the threshold used to determine if a cut can be consolidated. β is fixed to 0.99. The
second last column compares cut consolidation with the respective computing time of the
L-shaped method without cut consolidation (w/o CC). The last column compares with the
Benders base case (BC). Comparisons are done with the shifted geometric mean. Positive
values indicate a deterioration, while negative values indicate an improvement.

108 10. Computational Results

Agg. α AM GM SGM w/o CC

5

1 186.69 52.98 61.34 9
2 166.99 51.18 59.33 6
3 167.38 51.44 59.49 6
4 172.43 51.29 59.24 6
5 141.36 50.40 58.04 3

10

1 106.26 40.94 47.24 5
2 101.52 40.84 47.07 5
3 101.70 40.26 46.38 3
4 99.91 40.31 46.41 3
5 101.79 40.24 46.39 3

20

1 82.95 33.57 38.67 6
2 79.38 32.77 37.83 4
3 76.44 32.47 37.40 3
4 75.40 32.64 37.57 3
5 75.06 32.24 37.14 2

50

1 59.25 25.88 29.93 6
2 56.81 25.57 29.55 4
3 54.03 25.14 29.05 2
4 53.44 25.12 28.97 2
5 53.51 25.08 28.93 2

100

1 51.04 22.29 25.93 6
2 46.71 21.68 25.20 3
3 44.34 21.63 25.08 3
4 43.65 21.64 25.03 3
5 42.57 21.45 24.82 2

Multi

1 21.15 13.07 15.21 4
2 20.40 12.88 14.91 2
3 20.37 12.86 14.89 2
4 20.37 12.86 14.91 2
5 20.10 12.83 14.82 1

Table 10.5. Iteration counts for cut consolidation with different level of cut aggregation. α
is the threshold used to determine if a cut can be consolidated. β is fixed to 0.99. The last
column compares cut consolidation with the respective iteration counts of the L-shaped
method without cut consolidation (w/o CC) using the shifted geometric mean. Positive
values indicate a deterioration, while negative values indicate an improvement.

10.5. Evaluation of Two-Stage Acceleration Techniques 109

decomposition, level decomposition has a parameter λ that influences the current level
set of the algorithm. It is set a priori and kept constant throughout the algorithm. We
investigated the effect of the choice of λ on the computing time of the algorithm by
comparing the values 0.1, 0.3, 0.5, 0.7, and 0.9, for the three different projection problems
with the l2, l1, and l∞ norm. We call these also the euclidean, manhattan and infinity
distance projection problems, respectively. The resulting methods are thus named euclidean
level decomposition (LevelE), manhattan level decomposition (LevelM), and infinity level
decomposition (LevelI). We also present results on using cut aggregation in combination
with level decomposition for the different projection problems.

Projection problem

The parameter λ influences the available solutions of the projection problem and thus the
next iterate. The number of iterations required to reach an ε-optimal solution is bounded
above by c(λ)

(
DΛ
ε

)2
ln
(
DΛ
ε

)
, where D is the diameter of the feasible polyhedron and Λ

is a Lipschitz constant of the objective function. c(λ) is a constant that only depends on
λ and is minimal for λ = 0.29289 . . . (Lemaréchal et al., 1995). We studied the effect of
the choice of λ on the computing time and on the number of iterations for the different
projection problems. Note that the method is equal to the L-shaped method, if λ is set to
zero.

Euclidean-distance projection problem The computing times given in Table 10.6 show
that the choice of λ is important for the efficiency of the method. A choice between 0.3
and 0.9 is considerably better than choosing 0.1. The best results are obtained for λ = 0.7.
It shows an improvement of 53% against Benders decomposition. Regardless of the choice
of λ, level decomposition is notably faster than Benders decomposition. If we measure the
computing times with the arithmetic mean, the improvement upon Benders decomposition
is even more pronounced, as level decomposition with λ = 0.7 improves upon Benders by
73%. These differences show that level decomposition is particularly good on the large
instances that take long to solve with the L-shaped method, e.g., those with many scenarios.
Despite these differences in quantity, the order stays the same for the arithmetic and shifted
geometric mean. The performance profile is shown in Figure 10.2. It can be seen that the

λ AM GM SGM BC

0.1 20.48 1.93 8.05 -39
0.3 15.93 1.67 6.70 -50
0.5 14.92 1.66 6.42 -52
0.7 14.36 1.68 6.28 -53
0.9 17.82 1.94 6.89 -48

Table 10.6. Computational statistics for euclidean level decomposition with varying λ.
The last column compares the performance with the Benders base case (BC), by giving the
percentage change of the shifted geometric mean. Negative values indicate an improvement.

110 10. Computational Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10

ρ
m
(τ

)

τ

Level-λ=0.1

Level-λ=0.3

Level-λ=0.5

Level-λ=0.7

Level-λ=0.9

Benders-BC

Figure 10.2. Performance profile of the euclidean level decomposition method with varying
λ.

values 0.3, 0.5, and 0.7 are better than 0.1 and 0.9 for most problems. Choosing 0.1 is the
fastest algorithm on about 12 % of all investigated instances. For 0.9, after solving approx.
87 % of all problems within a τ of two, it stalls for the remaining problems. Considering
the detailed results, the assets and environ problems of the slptestset are the ones where
0.9 is a considerably bad choice. On the other hand, the performance profile indicates also
that 0.9 is among the fastest on about 25% of all problems, including the problems storm,
sslp, rand1 and rand2.

Manhattan-distance projection problem We analyzed the effect of the choice of λ for level
decomposition with the manhattan-distance projection problem similar to the euclidean-
distance projection problem. The performance profile is shown in Figure 10.3. It shows
that a choice of λ between 0.3 and 0.7 is again better than choosing the more extreme
values 0.1 or 0.9. The computing times presented in Table 10.7 support this conclusion.
The comparison with Benders decomposition and euclidean level decomposition shows that
manhattan level decomposition is much better than Benders, but is around 10% slower
than the latter. λ = 0.7 is the best choice for manhattan level decomposition, with an
improvement in total computing time of 69% upon Benders decomposition.

In contrast to euclidean level decomposition, choosing λ = 0.9 is slower in total computing
time than λ = 0.1, but faster if measured with the shifted geometric mean. This means
that some of the large instances were solved faster with λ = 0.1 than λ = 0.9. These
include the environ and saphir problems as well as the gbd and LandS instances.

Infinity-distance projection problem The performance profile regarding the choice of λ
for the infinity-distance level decomposition method is shown in Figure 10.4. The pattern

10.5. Evaluation of Two-Stage Acceleration Techniques 111

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10

ρ
m
(τ

)

τ

LevelM-λ=0.1

LevelM-λ=0.3

LevelM-λ=0.5

LevelM-λ=0.7

LevelM-λ=0.9

Benders-BC

Figure 10.3. Performance profile of the manhattan level decomposition method with
varying λ.

λ AM GM SGM LevelE BC

0.1 23.13 1.95 8.63 7 -35
0.3 18.35 1.75 7.44 11 -44
0.5 17.19 1.66 7.01 9 -47
0.7 16.42 1.68 6.85 9 -49
0.9 23.27 1.97 7.66 11 -42

Table 10.7. Computational statistics for manhattan level decomposition with varying λ.
The second last column compares the perfomance with the euclidean level method (LevelE).
The last row compares the performance with the Benders base case (BC). Both performance
comparisons give the percentage change of the shifted geometric mean. Negative values
indicate an improvement, while positive values indicate a deterioration.

112 10. Computational Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10

ρ
m
(τ

)

τ

LevelI-λ=0.1

LevelI-λ=0.3

LevelI-λ=0.5

LevelI-λ=0.7

LevelI-λ=0.9

Benders-BC

Figure 10.4. Performance profile of the infinity level decomposition method with varying
λ.

is similar to the euclidean and manhattan level decomposition method. The computing
times presented in Table 10.8 are compared with those for Benders decomposition and
both euclidean and manhattan level decomposition. Setting λ between 0.3 and 0.7 results
in a good performance with λ = 0.7 taking the lead again. Infinity level decomposition is a
little bit slower than euclidean level decomposition, but a little bit faster than manhattan
level decomposition, for all λ. Infinity level decomposition improves upon Benders by 72%,
and is only 3% slower than euclidean level decomposition if measured with the arithmetic
mean.

λ AM GM SGM LevelE LevelM BC

0.1 22.56 1.91 8.48 5 -2 -36
0.3 17.90 1.68 7.14 7 -4 -46
0.5 15.89 1.60 6.63 3 -5 -50
0.7 14.85 1.60 6.39 2 -7 -52
0.9 21.03 1.98 7.61 10 -1 -43

Table 10.8. Computational statistics for infinity level decomposition with varying λ. The
third and second last column compare the perfomance with the euclidean (LevelE) and
manhattan level method (LevelM), respectively. The last column compares the performance
with the Benders base case (BC). All performance comparisons give the percentage change
of the shifted geometric mean. Negative values indicate an improvement, while positive
values indicate a deterioration.

10.5. Evaluation of Two-Stage Acceleration Techniques 113

Benders-BC LevelE

Dist. λ AM GM SGM AM SGM AM SGM

l2

0.1 92.96 53.06 58.38 -66 -38 0 0
0.3 73.22 47.57 51.36 -73 -46 0 0
0.5 74.82 49.10 52.52 -73 -44 0 0
0.7 77.04 52.01 55.09 -72 -42 0 0
0.9 90.70 64.18 67.51 -67 -28 0 0

l1

0.1 107.63 54.74 60.68 -61 -36 16 4
0.3 89.50 51.03 55.73 -67 -41 22 9
0.5 85.24 50.50 54.51 -69 -42 14 4
0.7 90.40 54.17 57.93 -67 -39 17 5
0.9 107.94 71.10 75.18 -61 -20 19 11

l∞

0.1 105.33 55.60 61.58 -62 -35 13 5
0.3 77.85 49.57 53.81 -72 -43 6 5
0.5 72.80 49.02 52.60 -74 -44 -3 0
0.7 72.91 51.85 55.09 -73 -42 -5 0
0.9 103.46 73.07 77.17 -62 -18 14 14

Table 10.9. Iteration counts for level decomposition methods. They are compared with
the iteration counts of the Benders base case (Benders-BC) and with those of the euclidean
level decomposition method (LevelE), both with the arithmetic and the shifted geometric
mean. Comparisons are given as percentage differences, where positive values indicate a
deterioration and negative values indicates an improvement.

114 10. Computational Results

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100

S
G

M
+

1
0

 C
o

m
p

u
ti

n
g
 T

im
e

SGM+10 Iterations

LevelE

LevelM

LevelI

Figure 10.5. Scatter plot of the computing times and the iteration counts, both given via
the shifted geometric mean for all level decomposition variants.

Comparing the iteration counts of the three projection problems, given in Table 10.9, the
euclidean level decomposition method has the lowest number of iterations, measured with
the shifted geometric mean, followed by the infinity and manhattan level decomposition
method. The lowest number of overall iterations is achieved by infinity level decomposition
with λ = 0.7, although this is not the fastest method in computational terms. Across the
three different projection problems, a pattern emerges: the iteration counts for λ = 0.1 and
λ = 0.9 are the highest, and the lowest for λ = 0.5, measured with the arithmetic mean.
The shifted geometric mean on the other hand shows that λ = 0.1 needs considerably
less iterations than λ = 0.9. This difference can be traced back to the environ and
assets problem families, where λ = 0.9 needs much more iterations than λ = 0.1. All
three projection problems decrease the number of iterations considerably compared with
Benders decomposition. The improvement is between 61% and 74%.
The results also show that using the infinity distance leads to less iterations than the

manhattan distance. In pure iteration counts, infinity level decomposition is comparable
to euclidean level decomposition for λ = 0.3, 0.5, and 0.7, but it takes much more iterations
for λ = 0.1 and λ = 0.9. The results indicate that the l2 and l∞ norm are better suited
than the l1 norm in choosing among the possible candidates. A look at the unit shapes
for the three different norms, given in Figure 10.6 for two dimensions, shows that the l1
norm is the most restricting, meaning that it has the lowest volume for the same distance.
The l∞ norm includes more volume for the same distance than the l2 norm. It follows
that the l1, l2, and l∞ lead to different solutions for a given set of candidate solutions.
The rightmost shape in Figure 10.6 shows how much more volume is covered when moving
from l1 to l2 to l∞ and which solutions would be selected with a different norm.

10.5. Evaluation of Two-Stage Acceleration Techniques 115

x

y

x

y

x

y

x

y

Figure 10.6. Unit shapes for the l1, l2, and l∞ norm in two dimensions.

Trust region also uses the l∞ norm to restrict the set of possible candidates for the next
iterate. As we have not implemented this solution approach, we can not do a direct com-
parison, but the results of Zverovich et al. (2012) show that euclidean level decomposition
compares favorably with their own trust region implementation. As in our implementation
l∞ level decomposition is roughly comparable in performance to l2 level decomposition,
it seems that l∞ level decomposition should be considered as an alternative solution ap-
proach to trust region to solve stochastic programming problems. Zverovich et al. (2012)
find also that regularized decomposition is not as computationally efficient as euclidean
level decomposition on their test problems. These two findings suggest that solving a
separate projection problem instead of a modified master problem results in an efficient
regularization approach.
Comparing the computing times of the different projection problems given in Tables

10.6, 10.7, and 10.8 with the respective iteration counts given in Table 10.9 in a scatter
plot in Figure 10.5, it can be seen that the results for λ = 0.3, 0.5, and 0.7 are relatively
close together, with 0.1 and 0.9 far apart. Interestingly, the number of iterations is not a
good predictor for the overall solution time. This is especially so for λ = 0.9 due to the
observation that iteration count differences are relatively large for many problems with
small solution times (e.g., deak, environ, assets), but relatively small on some problems
with larger computing times (e.g., rand and sampling).

Cut aggregation

Cut aggregation can also be applied to regularization techniques. Especially the regu-
larized decomposition method (Ruszczyński, 1986) is proposed with no aggregation at
all, i.e., multi-cut. As cut aggregation is only recently computationally evaluated on its
own (Trukhanov et al., 2010), no computational experience is available regarding the
combination of level decomposition and cut aggregation.

We present computational results for level decomposition combined with cut aggregation
in Table 10.10 for the three different projection problems. The iteration counts are given in
Table 10.11. Our results show that choosing a cut aggregation level of five to ten leads to
a further reduction in computing time for all three variants compared with the respective
single-cut level decomposition method. It improves upon the single-cut case by 11% to 14%.
A further increase up to 50 aggregates is still computationally advantageous for l1 and l∞
projection problems. The arithmetic mean measures an improvement of 20% to 26% of
level decomposition with five aggregates compared to single-cut level decomposition.

116 10. Computational Results

However, the arithmetic mean increases already for an aggregation level around 20. This
can be explained mostly by problem sslp. Cut proliferation delays master and projection
problem solution times for this problem family, such that the arithmetic mean ratio is
much larger than the shifted geometric mean ratio.
The iteration counts presented in Table 10.11 show again that regularization reduces

the number of iterations, compared with Benders decomposition. The advantage of level
decomposition in terms of iterations is less pronounced, if the number of aggregates in-
creases. This is in line with expectations, as the approximation quality gets better, when
more approximation terms are available. Thus the zig-zagging behavior is already reduced
by moving from a single linear term approximation to more linear terms approximation,
as was already shown in Section 10.5.1. The number of iterations can still be further
reduced by using level decomposition. For the fully disaggregated case, i.e., the multi-cut
method, level decomposition needs in total more iterations than plain Benders decompo-
sition, regardless of the projection problem. This is an interesting behavior as another
regularization technique, regularized decomposition, is effective with the multi-cut method
(Ruszczyński, 1993b).

Especially the euclidean level method does not react well to an increasing number of
aggregates. This can be traced back to the underlying QP solver, which is used to solve
the quadratic programming problems. For the multi-cut method it takes more than twice
as long to solve the quadratic projection problems than to solve the linear projection
problems in the l1 and l∞ case. In addition, two problems pose difficulties for euclidean
level decomposition, which explain the larger than expected iteration counts. The ssn
problem family gets numerically challenging for some aggregation levels, which is reflected
in the iteration counts; they do not fall consistently. For another class of problems, environ
from slptestset, a lower bound on θ has to be inserted as the first optimality cuts do not
give a finite recourse function approximation value 12. This lower bound has to be reduced
to a smaller value, e.g. −106, such that the quadratic programming problems can be solved
successfully.
The trade-off of cut aggregation for Benders decomposition, which was analyzed in

Section 10.5.1, is much larger than the one for level decomposition. This can be attributed to
the fact that a projection problem has to be solved in every iteration. This takes more time
when more cuts are added per iteration, although the overall number of iterations is still
lower. We can conclude that cut proliferation is even more damaging to level decomposition
than to Benders decomposition. Cut aggregation has to be applied judiciously and can
slow down the solution process when the number of aggregates is chosen too high.

Overall comparison

The comparison of level decomposition with single-cut Benders and the deterministic equiv-
alent solvers is depicted in Figure 10.7 on page 119. It shows that using level decomposition,
regardless of the choice of the distance in the projection problem, is far better than any
of the alternatives. In particular, the simplex methods show a worse performance. Part
of this can be attributed to the sequential execution of the simplex method, whereas the

12Absolute values that are larger than 1020 are defined as infinity.

10.5. Evaluation of Two-Stage Acceleration Techniques 117

Distance Agg. AM GM SGM Level-SC Benders

l2

1 14.92 1.66 6.42 0 -52
5 11.88 1.47 5.74 -11 -43

10 13.02 1.46 5.78 -10 -37
20 25.18 1.67 7.33 14 -13
50 58.17 2.16 9.23 44 17
100 126.56 2.76 11.09 73 37

Multi 628.14 17.40 56.57 781 165

l1

1 17.19 1.66 7.01 0 -47
5 12.68 1.43 6.04 -14 -40

10 13.90 1.42 6.19 -12 -32
20 17.09 1.41 6.36 -9 -25
50 26.83 1.52 6.85 -2 -13
100 46.28 1.75 7.77 11 -4

Multi 407.75 6.94 30.77 339 44

l∞

1 15.89 1.60 6.63 0 -50
5 12.53 1.38 5.77 -13 -43

10 13.06 1.34 5.78 -13 -37
20 15.71 1.35 5.98 -10 -29
50 23.66 1.48 6.61 0 -16
100 40.67 1.68 7.47 13 -8

Multi 422.13 7.26 32.73 393 53

Table 10.10. Computing times for level decomposition methods with different number
of aggregates. The second last column gives the percentage difference of the correspond-
ing level decomposition run with just one aggregate (Level-SC) while the last column
gives the percentage difference of the corresponding Benders decomposition run with the
same number of aggregates, using the shifted geometric mean. Positive values indicate a
deterioration while negative values indicate an improvement.

118 10. Computational Results

Benders

Proj. Agg. AM GM SGM AM SGM

l2

1 74.82 49.10 52.52 -73 -44
5 52.25 36.05 38.64 -57 -33
10 45.64 32.12 34.50 -49 -26
20 58.50 31.02 33.77 -13 -11
50 64.16 28.92 31.67 35 4

100 72.78 27.36 30.06 80 12
Multi 25.47 19.71 21.33 31 51

l1

1 85.24 50.50 54.51 -69 -42
5 56.16 37.44 40.23 -54 -30
10 51.14 34.26 36.74 -42 -21
20 44.34 30.81 33.00 -34 -13
50 38.07 27.33 29.27 -20 -4

100 35.80 25.95 27.76 -11 3
Multi 24.74 19.47 20.95 28 48

l∞

1 72.80 49.02 52.60 -74 -44
5 51.01 37.07 39.54 -58 -31
10 45.57 33.26 35.42 -49 -24
20 41.28 30.36 32.34 -38 -15
50 36.93 27.26 29.11 -22 -4

100 34.40 25.47 27.23 -15 1
Multi 25.32 20.00 21.51 31 52

Table 10.11. Iteration counts for level decomposition methods with different number
of aggregates. The second and last columns compare the iteration counts to Benders
decomposition with the same number of aggregates using the arithmetic and the shifted
geometric mean, respectively.

10.5. Evaluation of Two-Stage Acceleration Techniques 119

other methods are parallelized. Using the barrier method results in better performance
than the simplex methods, but plain Benders decomposition solves most problems faster.
From the performance profiles and computing times presented in the preceding sections,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

ρ
m
(τ

)

τ

LevelE-λ=0.7

LevelM-λ=0.7

LevelI-λ=0.7

Benders-BC

DEM-DualSimplex

DEM-IPM

DEM-PrimalSimplex

Figure 10.7. Performance profile of the best level decomposition methods, Benders-BC
and deterministic equivalent solvers.

we can conclude that λ = 0.7 results in the lowest computing times for both arithmetic
mean and shifted geometric mean, regardless of the distance used in the projection problem.
More broadly, setting λ between 0.3 and 0.7 results in good performance. The findings for
level decomposition show that it has good scale up properties regardless of the projection
problem (Zverovich et al., 2012). Using a modest level of cut aggregation, e.g., five aggre-
gates, the total computing time can be further reduced by up to 20% for euclidean level
decomposition.

10.5.4. On-demand accuracy

On-demand accuracy requires a parameter κ that regulates the usage of on-demand accuracy
cuts by adjusting the target value. This parameter is set a priori and kept constant
throughout the algorithm. The pivotal question is therefore how κ should be chosen. We
evaluate the on-demand accuracy approach in combination with the single-cut L-shaped
method, with level decomposition variants, and with a varying level of cut aggregation for
Benders and level decomposition. We present the results in this order.

Single-cut L-shaped method

The performance profile for the L-shaped method with on-demand accuracy is shown
in Figure 10.8 on the next page. It can be seen that κ influences the efficiency of the

120 10. Computational Results

algorithm significantly. The trade-off between substantial and insubstantial iterations can

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10

ρ
m
(τ

)

τ

Benders-ODA,κ=0.1

Benders-ODA,κ=0.3

Benders-ODA,κ=0.5

Benders-ODA,κ=0.7

Benders-ODA,κ=0.9

Benders-BC

Figure 10.8. Performance profile of the single-cut L-shaped method with on-demand
accuracy and varying κ.

κ AM GM SGM BC

0.1 31.53 1.99 10.12 -24
0.3 26.64 1.79 9.12 -31
0.5 24.08 1.69 8.74 -34
0.7 24.20 1.65 8.77 -34
0.9 30.33 1.76 9.83 -26

Table 10.12. Computational statistics for the L-shaped method with on-demand accuracy.
The comparison with the Benders base case (BC) is done with the shifted geometric mean.
The values represent percentage changes, where negative values show an improvement.

be evaluated by looking at the computing times shown in Table 10.12 and the iteration
counts given in Table 10.13 .

Every insubstantial iteration involves the computation of some on-demand accuracy cuts
(for the single-cut method only one) and the subsequent resolve of the master problem with
the added cuts, which takes most of the time of an insubstantial iteration (in the single-cut
case). In a substantial iteration all subproblems are solved to optimality, and new cuts
are computed afterwards. The master problem is then resolved with these new cuts. The
relative amount of time the algorithm stays in each stage depends on the number and
difficulty of the subproblems, and the time to resolve the master problem.

With rising κ, the amount of insubstantial iterations increases, as the target value κLB+
(1− κ)UB, given by equation (8.7), is reached more often. The increase of insubstantial

10.5. Evaluation of Two-Stage Acceleration Techniques 121

Subst. Iterations Overall Iterations Subst. It.
Overall It.

Overall It.
BC It.

κ AM SGM AM SGM AM AM

0.1 82.09 41.31 266.50 93.80 0.31 0.97
0.3 63.41 33.75 290.57 98.21 0.22 1.06
0.5 53.25 29.23 328.89 104.56 0.16 1.20
0.7 47.83 25.77 405.98 117.26 0.12 1.48
0.9 40.96 22.83 563.93 139.65 0.07 2.05

Table 10.13. Iteration counts for the L-shaped method with on-demand accuracy. The
last column compares the number of overall iterations with the number of iterations of the
Benders base case (BC).

iterations is accompanied by a decreasing number of substantial iterations, but the overall
number of iterations increases. The balancing needs between insubstantial and substantial
iterations, which is controlled via κ, is apparent from the performance profile shown in
Figure 10.8 and the computational results given in Table 10.12 and the iteration counts
given in Table 10.13.
A too cautious approach, i.e., κ = 0.1, does not decrease the amount of substantial

iterations enough, as the target value is not reached often enough. It still improves upon
plain Benders decomposition, as the added on-demand accuracy cuts are more helpful than
newly generated Benders cuts, because the overall number of iterations is lower.
A too aggressive approach, i.e., κ = 0.9, does decrease the number of substantial

iterations, but for a price in the form of insubstantial iterations, such that the overall
iteration number grows too large, compared with κ = 0.5 or κ = 0.7. Still, on-demand
accuracy is helpful regardless of the choice of κ, but κ is an important parameter which
should be set between 0.3 and 0.7 according to our results.

Note that Benders with on-demand accuracy and κ = 0.5 runs in about 45% of the time
of single-cut Benders, thus on-demand accuracy is particularly helpful for larger problems.
This can be deduced from the difference between the arithmetic and the shifted geometric
mean.
We conclude that applying on-demand accuracy to the plain L-shaped method results

in substantial improvements with respect to the computing time. The downside is an
increase in memory usage, which can be combated by deleting older on-demand accuracy
information.

Level decomposition

If on-demand accuracy is used in conjunction with level decomposition, the parameter
κ must be chosen in addition to the level parameter λ. According to the convergence
proof of the algorithm (Fábián, 2013), κ should be chosen smaller than 1 − λ. However,
in our computational experiments the algorithm converged also for κ > 1 − λ. Thus we
studied the effect of varying κ and λ on the computing time for the different projection
problems with the euclidean, manhattan and infinity distance. Due to the high number of

122 10. Computational Results

combinations we do not present performance profiles as they would be unreadable. Note
that the target value for level decomposition is κ

(
cTxk + f(xk)

)
+ (1− κ)UB.

λ κ AM GM SGM+10 LevelE BC

0.5 0.7 10.68 1.41 5.16 -20 -61
0.3 0.9 10.63 1.39 5.20 -22 -61
0.7 0.7 10.84 1.49 5.23 -17 -61
0.5 0.9 10.97 1.43 5.24 -18 -61
0.3 0.7 11.30 1.38 5.25 -22 -61
0.7 0.9 10.86 1.51 5.26 -16 -60
0.3 0.5 10.82 1.41 5.27 -21 -60
0.5 0.5 11.20 1.41 5.28 -18 -60
0.7 0.5 11.19 1.48 5.29 -16 -60
0.5 0.3 11.04 1.46 5.33 -17 -60
0.7 0.3 11.63 1.50 5.44 -13 -59
0.5 0.1 11.33 1.50 5.51 -14 -59
0.3 0.3 11.61 1.45 5.54 -17 -58
0.7 0.1 11.90 1.57 5.62 -11 -58
0.1 0.9 11.82 1.44 5.72 -29 -57
0.3 0.1 12.08 1.50 5.74 -14 -57
0.1 0.7 11.98 1.44 5.81 -28 -56
0.1 0.5 12.46 1.46 5.94 -26 -55
0.1 0.3 12.92 1.50 6.10 -24 -54
0.9 0.5 14.39 1.85 6.21 -10 -53
0.9 0.7 14.22 1.86 6.22 -10 -53
0.9 0.9 14.23 1.90 6.30 -9 -53
0.9 0.3 14.74 1.87 6.32 -8 -52
0.9 0.1 15.19 1.92 6.48 -6 -51
0.1 0.1 14.10 1.60 6.53 -19 -51

Table 10.14. Computational results for euclidean level decomposition with on-demand
accuracy, for different λ and κ combinations. The second last column gives the percentage
change of the shifted geometric mean for the on-demand accuracy level decomposition
approach compared to the level decomposition method with the same λ (LevelE). The last
column gives the percentage change compared with the Benders base case (BC). Negative
values indicate an improvement.

Euclidean-projection problem The computing times achieved on our test set are given
in Table 10.14. First, we can see that using on-demand accuracy in combination with level
decomposition is always beneficial. Second, higher κ values lead to smaller computing
times than lower κ values, even if the method is not proven to converge for these λ-κ
combinations. Across different λ values, a κ value between 0.5 and 0.9 seems to be a good
choice. The on-demand accuracy results confirm the results for the level decomposition

10.5. Evaluation of Two-Stage Acceleration Techniques 123

method with respect to the choice of λ given in Section 10.5.3 that λ should be set between
0.3 and 0.7. Compared with the L-shaped method with on-demand accuracy κ can be set
to higher values and good results can still be obtained. This is due to the regularization of
level decomposition that hinders zig-zagging, as can be seen by comparing iteration counts
from Table 10.13 and 10.15. Thus the increase of insubstantial iterations is much lower for
κ = 0.9 compared with the L-shaped method with on-demand accuracy.
The ratio of substantial to overall iterations in Table 10.15 show that for an increasing

κ parameter the ratio of substantial iterations to overall iterations decreases. Thus more
insubstantial iterations are performed with respect to overall iterations. On-demand ac-
curacy cuts are only generated in insubstantial iterations thus κ regulates the usage of
on-demand accuracy cuts, similar to the Benders ODA case but less pronounced. This
behavior falls in line with expectations as the target value (8.7) is easier to satisfy if κ is
larger.

Manhattan-distance projection problem The computing times for manhattan level de-
composition with on-demand accuracy are shown in Table 10.16, whereas the iteration
counts are given in Table B.2 in the Appendix. The results show a clear picture but differ-
ent picture than for euclidean level decomposition with on-demand accuracy. κ determines
the performance for λ between 0.3 and 0.7. For all λ values, except 0.9, the computing
times are strictly increasing with decreasing κ. The comparison with manhattan level de-
composition shows a considerable performance improvement for the on-demand accuracy
method that is more pronounced the higher κ is chosen. Compared with euclidean level
decomposition with on-demand accuracy it is around 6-10% slower for reasonable λ and κ
combinations, e.g., λ between 0.3 and 0.7 and κ between 0.3 and 0.9.

Infinity-distance projection problem Computing times for the infinity level decomposi-
tion method with on-demand accuracy are shown in Table 10.17, whereas the iteration
counts are given in Table B.3 in the Appendix. Differing from the results for the manhattan
level decomposition method with on-demand accuracy given above, the choice of λ is more
important than the choice of κ. This can be seen from the results, and in particular that
combinations with λ = 0.7 are among the fastest four out of the fastest five. Choosing
κ = 0.1 is no good choice, as it is consistently the slowest combination for every λ. The
percentage point increase to infinity level decomposition is highest for λ = 0.1 and λ = 0.3,
but it is also well above 10% for other λ values. Compared with euclidean level decompo-
sition with on-demand accuracy, level infinity decomposition with on-demand accuracy is
slightly ahead for λ = 0.7 and a little bit slower for other λ choices.

Cut Aggregation

The on-demand accuracy method is not restricted to the fully aggregated or single-cut
case even though it was initially introduced in this setting. On-demand accuracy does not
make sense for the multi-cut method as no additional information can be gained from the
individual scenarios because they are already considered in the current master problem
in the form of optimality cuts. Therefore we did not evaluate the on-demand accuracy
scheme with the multi-cut method.

124 10. Computational Results

Subst. Iterations Iterations Subst. It.
Overall It.

λ κ AM SGM AM SGM AM

0.1 0.1 45.67 32.15 94.00 59.40 0.49
0.1 0.3 39.56 28.19 93.70 59.74 0.42
0.1 0.5 36.19 25.56 98.77 62.18 0.37
0.1 0.7 34.46 23.92 105.36 66.13 0.33
0.1 0.9 33.02 22.81 111.24 70.89 0.30
0.3 0.1 45.80 33.41 76.67 53.66 0.60
0.3 0.3 41.46 30.15 77.36 54.67 0.54
0.3 0.5 38.49 27.95 78.77 56.26 0.49
0.3 0.7 37.75 26.66 83.01 59.29 0.45
0.3 0.9 36.36 25.67 88.10 62.94 0.41
0.5 0.1 47.74 35.68 75.41 53.75 0.63
0.5 0.3 45.28 33.37 76.98 54.74 0.59
0.5 0.5 43.05 31.04 78.83 55.58 0.55
0.5 0.7 41.52 30.18 81.63 58.47 0.51
0.5 0.9 42.50 29.83 89.25 63.40 0.48
0.7 0.1 52.51 40.87 76.50 56.27 0.69
0.7 0.3 49.28 37.64 76.72 56.03 0.64
0.7 0.5 47.09 36.39 78.53 58.23 0.60
0.7 0.7 46.19 35.31 83.06 61.73 0.56
0.7 0.9 45.73 34.46 88.30 66.08 0.52
0.9 0.1 69.08 55.71 91.49 69.74 0.76
0.9 0.3 66.07 53.41 91.09 69.63 0.73
0.9 0.5 64.22 51.56 93.20 71.13 0.69
0.9 0.7 63.19 50.74 97.84 75.25 0.65
0.9 0.9 63.75 50.90 105.51 82.02 0.60
0.1 - 92.96 58.38 92.96 58.38 1.00
0.3 - 73.22 51.36 73.22 51.36 1.00
0.5 - 74.82 52.52 74.82 52.52 1.00
0.7 - 77.04 55.09 77.04 55.09 1.00
0.9 - 90.70 67.51 90.70 67.51 1.00

Table 10.15. Iteration counts for euclidean level decomposition with and without on-
demand accuracy for different λ and κ combinations. The last column gives the amount of
substantial iterations with respect to all iterations as measured by the arithmetic mean.

10.5. Evaluation of Two-Stage Acceleration Techniques 125

λ κ AM GM SGM LevelM LevelE-ODA BC

0.5 0.9 11.67 1.38 5.54 -21 6 -58
0.3 0.9 11.83 1.35 5.56 -21 7 -58
0.7 0.9 12.06 1.45 5.60 -18 6 -58
0.5 0.7 11.92 1.39 5.62 -20 9 -58
0.7 0.7 12.06 1.46 5.66 -17 8 -57
0.3 0.7 12.20 1.37 5.68 -19 8 -57
0.7 0.5 12.32 1.48 5.72 -17 8 -57
0.5 0.5 12.35 1.39 5.73 -18 8 -57
0.3 0.5 12.33 1.40 5.82 -17 10 -56
0.5 0.3 12.57 1.44 5.86 -16 10 -56
0.7 0.3 12.74 1.51 5.88 -14 8 -56
0.3 0.3 12.90 1.45 6.02 -14 9 -55
0.5 0.1 13.02 1.49 6.10 -13 11 -54
0.1 0.9 12.96 1.42 6.11 -29 7 -54
0.7 0.1 13.35 1.57 6.13 -10 9 -54
0.1 0.7 13.21 1.42 6.19 -28 6 -53
0.3 0.1 14.08 1.52 6.34 -10 11 -52
0.1 0.5 13.88 1.46 6.38 -26 7 -52
0.1 0.3 15.07 1.51 6.70 -22 10 -50
0.9 0.7 19.13 1.89 6.89 -10 11 -48
0.9 0.5 19.57 1.89 7.07 -8 14 -47
0.9 0.9 19.82 1.95 7.13 -7 13 -46
0.1 0.1 16.50 1.61 7.17 -17 10 -46
0.9 0.3 21.36 1.93 7.26 -5 15 -45
0.9 0.1 27.04 1.99 7.53 -2 16 -43

Table 10.16. Computational results for manhattan level decomposition with on-demand
accuracy for different λ and κ combinations. The third last column compares the computing
time with the manhattan level decomposition algorithm without on-demand accuracy
(LevelM) but with the same λ. The second last column compares the computing times with
the euclidean level decomposition with on-demand accuracy (LevelE-ODA) for the same
λ and κ combination. The last column compares with the Benders base case (BC). The
comparisons are given by the respective percentage change of the shifted geometric mean.
Negative values indicate an improvement, while positive values indicate a deterioration.

126 10. Computational Results

λ κ AM GM SGM LevelI LevelE-ODA BC

0.7 0.7 10.09 1.37 5.19 -19 -1 -61
0.7 0.5 10.10 1.38 5.22 -18 -1 -61
0.7 0.9 10.16 1.40 5.25 -18 0 -60
0.3 0.5 10.15 1.31 5.31 -26 1 -60
0.7 0.3 10.36 1.42 5.37 -16 -1 -60
0.3 0.3 10.51 1.33 5.39 -25 -3 -59
0.3 0.9 10.61 1.32 5.42 -24 4 -59
0.7 0.1 10.47 1.46 5.45 -15 -3 -59
0.5 0.7 11.79 1.34 5.47 -18 6 -59
0.3 0.7 11.07 1.32 5.50 -23 5 -59
0.5 0.9 11.88 1.35 5.55 -16 6 -58
0.5 0.3 12.02 1.38 5.58 -16 5 -58
0.5 0.5 11.95 1.37 5.62 -15 6 -58
0.3 0.1 11.47 1.43 5.72 -20 0 -57
0.5 0.1 12.44 1.44 5.80 -13 5 -56
0.1 0.7 11.43 1.36 5.87 -31 1 -56
0.1 0.5 11.56 1.37 5.88 -31 -1 -56
0.1 0.3 12.48 1.41 6.08 -28 0 -54
0.9 0.7 12.60 1.79 6.29 -17 1 -53
0.9 0.9 12.61 1.83 6.34 -17 1 -52
0.1 0.9 14.41 1.42 6.39 -25 12 -52
0.9 0.5 12.87 1.83 6.39 -16 3 -52
0.9 0.3 12.64 1.85 6.56 -14 4 -51
0.1 0.1 13.92 1.54 6.56 -23 0 -51
0.9 0.1 13.71 1.90 6.78 -11 5 -49

Table 10.17. Computational results for infinity level decomposition with on-demand
accuracy for different λ and κ combinations. The third last column gives the percentage
change compared to the infinity level decomposition method without on-demand accuracy
(LevelI) and the same λ and κ values, whereas the second last column gives the percentage
change compared to the euclidean level decomposition method with on-demand accuracy
(LevelE-ODA) but with the same λ. The last column gives the percentage change compared
with the Benders base case (BC). All comparisons are done in terms of the shifted geometric
mean. Negative values indicate an improvement, positive values indicate a deterioration.

10.5. Evaluation of Two-Stage Acceleration Techniques 127

If a cut aggregation level different from single-cut is chosen the scenarios get partitioned.
With on-demand accuracy there are three options of which we evaluated the first two. First,
the on-demand accuracy information can be aggregated into a single cut by summing up
the optimality cuts similar to how it is done in the cut consolidation technique, in particular
equation (8.1). Second, the on-demand accuracy information can be aggregated into the
same structure given by the scenario partitions, i.e., for five aggregates the method would
generate five on-demand accuracy cuts with the same scenario partitioning. Third, the on-
demand accuracy information can be further aggregated, by a partitioning of the existing
aggregates. The first and second option are just special cases of the third option, with full
aggregation and full disaggregation, respectively.
For the second case, where the on-demand accuracy cuts are partitioned like the opti-

mality cuts, the computing times are shown in Table 10.18 and the iteration counts in
Table 10.19. For the L-shaped method with on-demand accuracy aggregation proves to
be successful for all the investigated aggregation levels. It reaches an improvement of up
to 20% compared with the single-cut L-shaped method with on-demand accuracy. Mea-
sured with the arithmetic mean however, the computing times increase above those of the
single-cut case for more than 20 aggregates. This behavior can be explained solely by one
problem family, sslp, which is prone to cut proliferation and drives up the arithmetic mean.
An aggregation level between five and ten is the best choice if measured with the shifted
geometric mean. If the computing times are compared with those of the L-shaped method
without on-demand accuracy, on-demand accuracy pays off in all cases, with diminishing
returns for rising number of aggregates.

For all level decomposition variants an aggregation level of five is a little bit better than
single-cut alone. It results in an improvement of 3% to 7% depending on the projection
problem type. Choosing a higher number of aggregates leads to worse results than single-
cut, if on-demand accuracy is used.
If the computing times are compared against those without on-demand accuracy alone,

on-demand accuracy shows an improvement for euclidean and manhattan level decompo-
sition in the range of 1% to 12% for aggregates higher than 10. Applying on-demand
accuracy with cut aggregation higher than 10 for infinity level decomposition results in a
slightly worse algorithm; a deterioration of around 5% occurs.

We can conclude that on-demand accuracy and modest cut aggregation can be combined
successfully. The relative improvement of applying on-demand accuracy shrinks with a
rising number of aggregates.
For the case where the on-demand accuracy cuts are partitioned into a single cut (SC-

ODA), we give the computing times in Table 10.20. The comparison with the case where
on-demand accuracy cuts are partitioned like normal optimality cuts shows that the total
aggregation of on-demand accuracy cuts is not a good idea for the L-shaped method with
on-demand accuracy. The computing times increase with the number of aggregates by up
to 39%.
If we use the arithmetic mean, the data shows a different picture. For 50 and 100

aggregates, SC-ODA is faster than ODA. This is due to the sslp problem family where cut
proliferation leads to long master problem solution times, as already mentioned above. If
only single on-demand accuracy cuts are added to the master problem, this cut proliferation
is less pronounced and thus the overall solution time for these problems is considerably

128 10. Computational Results

Proj. Agg. AM GM SGM w/o ODA ODA-SC BC

-

1 24.08 1.69 8.74 -34 0 -34
5 17.63 1.41 7.17 -29 -18 -46
10 18.59 1.33 6.96 -24 -20 -48
20 24.47 1.29 6.98 -18 -20 -48
50 43.07 1.32 7.14 -9 -18 -46

100 88.08 1.40 7.56 -7 -14 -43

l2

1 11.20 1.41 5.28 -18 0 -60
5 9.87 1.31 4.89 -15 -7 -63
10 12.57 1.42 5.48 -5 4 -59
20 25.29 1.66 7.04 -4 33 -47
50 77.87 2.23 9.33 1 77 -30

100 120.30 2.80 10.98 -1 108 -17

l1

1 12.35 1.39 5.73 -18 0 -57
5 10.49 1.27 5.22 -14 -9 -61
10 11.92 1.29 5.46 -12 -5 -59
20 15.42 1.33 5.79 -9 1 -56
50 26.57 1.50 6.61 -4 15 -50

100 48.20 1.74 7.53 -3 32 -43

l∞

1 11.95 1.37 5.62 -15 0 -58
5 13.30 1.27 5.44 -6 -3 -59
10 17.32 1.31 5.74 -1 2 -57
20 26.66 1.37 6.26 5 11 -53
50 53.70 1.52 6.90 4 23 -48

100 105.79 1.76 7.81 5 39 -41

Table 10.18. Computing times of Benders and level decomposition methods with on-
demand accuracy for different aggregates, where the on-demand accuracy cuts are parti-
tioned like normal optimality cuts. λ and κ are set to 0.5. The third last column gives the
percentage change compared to the method run without on-demand accuracy (w/o ODA),
but with the same number of aggregates. The second last column gives the percentage
change compared to the original on-demand accuracy method with the fully aggregated
model function (ODA-SC), i.e., single-cut method with on-demand accuracy. The last col-
umn gives the percentage change compared to the Benders base case (BC). Comparisons
are done with the shifted geometric mean. Positive values indicate a deterioration, whereas
negative values indicate an improvement.

10.5. Evaluation of Two-Stage Acceleration Techniques 129

w/o ODA Benders-BC

Proj. Agg. AM GM SGM AM SGM AM SGM

-

1 328.89 92.11 104.56 20 11 20 11
5 138.66 53.10 60.54 13 5 -50 -36

10 94.72 41.99 47.65 7 3 -66 -49
20 68.73 33.97 38.39 3 1 -75 -59
50 48.44 26.93 30.23 2 0 -82 -68
100 39.80 23.91 26.53 -1 -1 -86 -72

l2

1 78.83 51.99 55.58 5 6 -71 -41
5 52.61 38.00 40.50 1 5 -81 -57

10 49.30 34.63 37.10 8 8 -82 -61
20 60.53 32.38 35.18 3 4 -78 -63
50 72.43 29.54 32.33 13 2 -74 -66
100 69.35 27.62 30.36 -5 1 -75 -68

l1

1 89.28 53.76 57.94 5 6 -68 -39
5 61.06 40.15 43.18 9 7 -78 -54

10 53.59 36.49 39.04 5 6 -81 -59
20 46.53 32.46 34.73 5 5 -83 -63
50 40.22 28.43 30.46 6 4 -85 -68
100 36.33 26.45 28.28 1 2 -87 -70

l∞

1 86.48 54.33 58.53 19 11 -69 -38
5 61.43 40.55 43.44 20 10 -78 -54

10 54.18 36.51 39.02 19 10 -80 -59
20 48.76 32.47 34.74 18 7 -82 -63
50 41.52 28.29 30.33 12 4 -85 -68
100 37.66 26.28 28.20 9 4 -86 -70

Table 10.19. Iteration counts of Benders and level decomposition methods with on-demand
accuracy for different aggregates, where the on-demand accuracy cuts are partitioned like
normal optimality cuts. λ and κ are set to 0.5. The fourth and third last columns give the
percentage change compared to the method run without on-demand accuracy (w/o ODA),
but with the same number of aggregates. The second and last columns give the percentage
change compared to the Benders base case (Benders-BC). Comparisons are done with the
shifted geometric mean. Positive values indicate a deterioration, whereas negative values
indicate an improvement.

130 10. Computational Results

less than those achieved with ODA. Without considering sslp, the arithmetic means are
in line with the shifted geometric means. Similar reasoning holds for level decomposition
with l2 and l1. The influence of sslp is stark in the l∞ case, where the data shows a
slight advantage of SC-ODA over ODA for both the arithmetic and the shifted geometric
mean. Without taking sslp into account ODA has a slight advantage over SC-ODA for
both measures.

Proj. Agg. AM GM SGM ODA BC

-

1 24.08 1.69 8.74 0 -34
5 22.00 1.68 8.59 20 -35
10 23.74 1.70 8.81 27 -34
20 27.72 1.75 9.25 32 -30
50 39.65 1.82 9.93 39 -25

100 65.49 1.86 10.49 39 -21

l2

1 11.20 1.41 5.28 0 -60
5 10.30 1.39 5.20 6 -61
10 12.30 1.49 5.57 2 -58
20 24.99 1.74 7.21 2 -46
50 65.54 2.25 9.25 -1 -30

100 117.40 2.79 10.84 -1 -19

l1

1 12.35 1.39 5.73 0 -57
5 11.64 1.39 5.72 9 -57
10 13.07 1.42 5.95 9 -55
20 16.65 1.46 6.28 8 -53
50 27.98 1.64 7.19 9 -46

100 55.55 1.88 8.25 9 -38

l∞

1 11.95 1.37 5.62 0 -58
5 11.03 1.31 5.32 -2 -60
10 12.95 1.34 5.62 -2 -58
20 16.82 1.38 5.93 -5 -55
50 27.86 1.52 6.75 -2 -49

100 51.84 1.75 7.67 -2 -42

Table 10.20. Computing times of Benders and level decomposition methods with on-
demand accuracy for different aggregates with on-demand accuracy single-cuts. λ and
κ are set to 0.5. The second last column gives the percentage change compared to on-
demand accuracy method, where the on-demand accuracy cuts are partitioned like the
normal optimality cuts. The last column gives the percentage change compared to the
Benders base case (BC). Comparisons are done with the shifted geometric mean. Positive
values indicate a deterioration, whereas negative values indicate an improvement.

10.5. Evaluation of Two-Stage Acceleration Techniques 131

Conclusion

The on-demand accuracy concept results in signifcant computational savings compared
with the respective solution methods without on-demand accuracy. Figure 10.9 gives
a graphical comparison of the computing time spend in each stage with and without
on-demand accuracy. The first stage computing time increases slightly for the different
methods, whereas the second stage computing time decreases considerably if on-demand
accuracy is used. This can be attributed to the higher number of overall iterations, but lower
number of substantial iterations. The effect is more pronounced for Benders decomposition,
but also results in significant computational savings for level decomposition.

Benders LevelE LevelM LevelI

0

1000

2000

3000

4000

5000

6000

Method

C
o

m
p

u
ti

n
g
 T

im
e

(s
)

Time Second Stage ODA

Time First Stage ODA

Time Second Stage

Time First Stage

Figure 10.9. The overall computing time that is spent in the first and second stage by
every method with and without on-demand accuracy. λ and κ are set to 0.5.

Regarding the choice of κ we can conclude from our experiments that a higher choice of
κ mostly leads to better results than a smaller choice. Substantial iterations are traded off
against insubstantial iterations. If the latter increase too much, the decrease in substantial
iterations can not offset the computational saving, e.g., κ = 0.9 for Benders decomposition.
By applying a regularization technique the negative effects of a high κ can be mitigated
as the zig-zagging of the first-stage solution is hindered, and thus longer sequences of
insubstantial iterations with very small improvements do not occur.

A modest level of cut aggregation, e.g., five to ten, results in computational savings
compared to the single-cut case. An increased level of cut aggregation is only preferable
for plain Benders decomposition.

132 10. Computational Results

10.5.5. Advanced start solution

Advanced start solution techniques were discussed in Section 5.4. The base case for all tests
is the usage of the expected value solution as the starting solution. The computing times
for the base case include the solver call to compute the expected value solution, whereas
the other solutions are given to the solver at no cost. We tested several advanced starting
solutions: no solution (NS), an optimal solution (OS) to the problem, an optimal solution
for the worst case scenario (WCS) and an optimal solution for the best case scenario
(BCS), where the two last solutions are obtained by solving the Wait-and-See problem.
Preliminary test results with the method proposed by Infanger (1992) showed that it is not
competitive against the usage of no starting solution by a large margin and is therefore
not considered in the following.

L-shaped method The results in Table 10.21 indicate that the effect of an advanced
solution is for practical purposes non-existent, at least for two-stage instances. In particular,
the usage of the optimal solution as a start solution is of no help, but that is the expected
behavior for cutting plane methods.

Advanced Start Solution AM SGM

No Solution (NS) 2 2
Optimal Solution (OS) 0 0

Worst Case Solution (WCS) 2 2
Best Case Solution (BCS) 1 -1

Table 10.21. Percentage changes in the computing time compared to the Benders base
case with the expected value solution as the advanced solution for the arithmetic and
shifted geometric mean. Positive values indicate a deterioration, negative values indicate
an improvement.

Level decomposition A starting solution is needed for the level decomposition method.
Thus it is interesting to investigate if the choice of the starting solution has any impact on
the computing time. Our results indicate that the influence of the starting solution on the
runtime of the algorithm is relatively small, as can be seen in Table 10.22 for the different
projection problems. Even using an optimal solution does not help very much. Especially
for the manhattan distance, the optimal solution increases the computing time by around
6%. The conclusion, which can be drawn from these results, is that it is more important
to dampen the zig-zagging effect of Benders than to have a “good” initial solution.

On-demand accuracy The results in Table 10.23 show that the usage of the expected
value solution as an advanced starting solution is always the best choice compared with
no solution (NS), the optimal solution (OS), the worst-case solution (WCS), and the
best-case solution (BCS). The results are more clear than the one for pure Benders and
level decomposition, but the influence of the starting solution is still relatively small. The

10.6. Effect of Parallelization 133

OS WCS BCS

Distance λ AM SGM AM SGM AM SGM

l2

0.1 -4 -2 1 2 39a 7a

0.3 -3 -2 5 3 0 1
0.5 -1 2 2 -1 -1 -2
0.7 -2 2 -2 -2 -1 -3
0.9 13 6 -2 -2 7 0

l1

0.1 3 5 4 3 1 0
0.3 6 5 2 0 0 -2
0.5 2 6 1 1 -3 -1
0.7 11 8 -2 -2 0 0
0.9 6 11 14 -1 -4 -1

l∞

0.1 4 5 9 6 6 2
0.3 -2 3 1 2 4 2
0.5 2 1 6 3 6 0
0.7 8 9 13 6 11 3
0.9 7 7 -2 1 -3 -2

a Numerical difficulties during the solution run of instance
saphir_50 lead to the values 39 and 7, respectively. If we exclude
this problem, we get the values 1 and 1, respectively.

Table 10.22. Percentage changes in the computing time of using different advanced start
solutions for the level decomposition method with different projection problems compared
to the respective level decomposition solution run with the expected value solution as the
advanced solution for the arithmetic and shifted geometric mean. The advanced start
solutions are the optimal solution (OS), the worst-case solution (WCS), and the best-
case solution (BCS). Positive values indicate a deterioration, negative values show an
improvement.

expected value solution seems to be a better choice than any other tested starting solution.
Due to the mixed results for level decomposition, no experiments were done for level
decomposition method with on-demand accuracy, let alone different λ and κ combinations.

10.6. Effect of Parallelization

Parallelization of the algorithm is done only on the second and later stages by solving
problems at the same stage in parallel. This includes the setup of the problem, the solving
of the problem, the warm-start handling, the storing of primal and dual solutions, and the
cut coefficient generation. Thus algorithmic variants which spend more time in the first
stage can not benefit as much from parallelization as algorithms which spend more time
in the second stage.

134 10. Computational Results

NS OS WCS BCS

κ AM SGM AM SGM AM SGM AM SGM

0.1 7 5 2 4 8 6 6 2
0.3 9 8 4 6 7 7 3 2
0.5 4 7 3 5 6 7 4 3
0.7 11 9 6 8 7 8 9 8
0.9 17 8 13 6 13 5 19 9

Table 10.23. Percentage changes in the computing time of compared to the Benders ODA
base case with the expected value solution as the advanced solution for the arithmetic
and shifted geometric mean. The advanced start solutions are no start solution (NS), the
optimal solution (OS), the worst-case solution (WCS), and the best-case solution (BCS).
Positive values indicate a deterioration.

We are interested in two effects of parallelization, which we investigate in turn. The
first aspect is the effect of parallelization on the computing time. This can be measured
with the speedup, which is defined as the time of the sequential algorithm divided by the
time of the parallel algorithm. The second aspect is the effect of parallelization on the
relative order of the algorithms. In particular, we expect methods like multi-cut Benders,
where most of the computing time is spend in the first stage, to not exhibit a good speedup
behavior because of Amdahl’s law (Amdahl, 1967).

Speedup

The speedup for p threads is defined as Tp/T1, where Tp denotes the wall-clock computing
time of the algorithm run with p threads. Figure 10.10 shows the speedup of the different
methods graphically along with the ideal speedup. The speedups are also given in Table
B.5 in the appendix.
The computer, where the tests were executed, has four physical cores but eight logical

cores due to hyper-threading. The benefit of hyper-threading can be evaluated via the
speedups shown in Figure 10.10. The speedup for the different methods is rather linear
up to four threads, where every thread can use a physical core exclusively. If the number
of threads increases above four the speedup increases less than before for every additional
thread. This can be attributed to hyper-threading, as most of the time is spend in CPU
intensive tasks, e.g., solving linear programming problems, and thus threads have to wait
for a physical core to become available. The speedup of the Benders base case with four
threads is already 3.46, but with eight threads it grows only to 4.55. We expect better
speedups on systems where more physical cores are available. Note that the speedup of
multi-cut Benders is for practical purposes non-existent.
Single-cut Benders reaches the highest speedup of all methods as it spends a particular

large amount of its computing time in the second stage. This is depicted in Figure 10.11.
It gives the amount of time each method spends in the first stage, for a given number
of threads. We did not include multi-cut Benders, to be able to highlight the differences

10.6. Effect of Parallelization 135

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 3 4 5 6 7 8

S
p

ee
d

u
p

Number of threads

Benders-BC

LevelE,λ=0.5

LevelE-ODA,λ=0.5,κ=0.5

Benders-ODA,κ=0.5

LevelM,λ=0.5

LevelM-ODA,λ=0.5,κ=0.5

LevelI,λ=0.5

LevelI-ODA,λ=0.5,κ=0.5

Benders-MC

Ideal

Figure 10.10. Speedup of different algorithms.

among the other methods. We can observe that the amount of time spend in the first stage
corresponds to its speedup behavior. The correlation is negative and thus in concordance
with Amdahl’s law.

Relative order

Performance profiles for the parallel case with eight threads and the sequential case with
only one thread are contrasted via the Figures 10.12 and 10.13. In the sequential case, the
multi-cut method compares favorably with the single-cut method. This is totally different
in the parallel case. Also, the performance differences between the on-demand accuracy
variants and their respective methods without on-demand accuracy are more pronounced in
the sequential case than in the parallel case. This can be explained via the computational
savings due to insubstantial iterations which are higher in the sequential case. The second
stage is skipped in every insubstantial iteration. Parallelization speeds up the solving of
second stage problems. The time saved by skipping those second stage iterations is thus
relatively smaller in the parallel case.

All of our results presented in the previous sections are achieved with parallelization.
This performance comparison shows that the positive effects of on-demand accuracy, cut
aggregation, and level decomposition would be even more distinct in the sequential case.

136 10. Computational Results

0.00

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5 6 7 8

F
ir

st
 S

ta
g

e
T

im
e/

C
o

m
p

u
ti

n
g

 T
im

e

Number of threads

Benders-BC

LevelE,λ=0.5

LevelE-ODA,λ=0.5,κ=0.5

Benders-ODA,κ=0.5

LevelM,λ=0.5

LevelM-ODA,λ=0.5,κ=0.5

LevelI,λ=0.5

LevelI-ODA,λ=0.5,κ=0.5

Figure 10.11. Amount of computing time of the first stage compared to overall computing
time.

10.7. Evaluation of Multi-Stage Acceleration Techniques

Similar for the two-stage case we define a base case for the multi-stage case. The default
sequencing protocol is FastForwardFastBack (FFFB), while the other parameters are the
same as for the two-stage case.

10.7.1. Sequencing protocols

We compared the different sequencing protocols FFFB, FastForward (FF), ε-FF, FastBack
(FB), ε-FB, and the dynamic protocol. ε is set to 0.1, 0.064 and 0.01. The FF and FB
protocols can also be seen as their ε variant with ε set to 10−6 as this is set as the default
threshold. The computing times are shown in Table 10.24.
The dynamic protocol proposed in Section 8.2 reaches the lowest computing times. If

measured with the arithmetic mean, there are two ε-FB variants that are even faster. This
can be explained by the pltexp problems. They take long to solve due to the large number
of scenarios. They are solved faster with the ε-FB approach.
Our results confirm the results of Morton (1996) with respect to the standing of the

FF method. It is the slowest protocol of all. The ε-FF variants are significantly faster.
On our test set it turns out that FFFB is faster in terms of the shifted geometric mean
but slower in terms of the arithmetic mean than the FB protocol. This is also due to the
plextp problems where a lot of scenario subproblems at the last stage impact the arithmetic
solution time.

The performance profile shown in Figure 10.14 gives a broader impression. It shows that
the dynamic protocol compares well with all other sequencing protocols over the whole

10.7. Evaluation of Multi-Stage Acceleration Techniques 137

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

ρ
m
(τ

)

τ

LevelE,λ=0.5

LevelM,λ=0.5

LevelI,λ=0.5

Benders-ODA,κ=0.5

LevelE-ODA,λ=0.5,κ=0.5

LevelM-ODA,λ=0.5,κ=0.5

LevelI-ODA,λ=0.5,κ=0.5

Benders-BC

Benders-MC

Figure 10.12. Performance profile of several methods with parallel execution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

ρ
m
(τ

)

τ

LevelE,λ=0.5

LevelM,λ=0.5

LevelI,λ=0.5

Benders-ODA,κ=0.5

LevelE-ODA,λ=0.5,κ=0.5

LevelM-ODA,λ=0.5,κ=0.5

LevelI-ODA,λ=0.5,κ=0.5

Benders-BC

Benders-MC

Figure 10.13. Performance profile of several methods with sequential execution.

138 10. Computational Results

Sequencing prot. AM GM SGM FFFB

FFFB 8.53 0.58 2.33 0
FF 241.21 1.91 10.50 351
FB 5.42 0.89 2.80 20

ε-FF-0.01 37.54 0.69 3.34 43
ε-FF-0.064 19.44 0.64 2.87 23
ε-FF-0.1 16.30 0.63 2.81 20
ε-FB-0.01 4.73 0.61 1.99 -15
ε-FB-0.064 4.91 0.54 1.89 -19
ε-FB-0.1 5.17 0.53 1.88 -20
Dynamic 5.05 0.53 1.82 -22

Table 10.24. Computing times of the parallel nested L-shaped method for different se-
quencing protocols, namely FastForwardFastBack (FFFB), FastForward (FF), FastBack
(FB), ε variants and the dynamic protocol. The last column compares the shifted geometric
mean to the result of the algorithm run with the FFFB protocol.

test set. The FFFB protocol, which the literature assumes to be the fastest protocol, is
not as good as the dynamic protocol and two ε-FB variants. In contrast to the results of
Morton (1996), ε-FB and the dynamic protocol are both consistently faster than FFFB
both in total computing time and measured with the shifted geometric mean, by up to 45
% and 22 %, respectively.

We decided to count the iterations a little bit different for the FF protocol, as mentioned
in Section 5.2. Every time the FF protocol decides to go forward again, after it went
backward, is counted as a new iteration. Note that the iterations of the FF protocol are
typically computationally expensive iterations, as the later stages with many subproblems
are solved. This contrasts with the FB protocol, whose iterations are usually solved fast.
The iteration counts are given in Table 10.25.

The FFFB protocol has the lowest number of iterations. This is expected as the primal
and dual information traverses the tree as fast as possible in terms of iterations. The
dynamic protocol needs less iterations than all of the ε-FB variants. This can be attributed
to the feature of the dynamic protocol that a full sweep is done once the critical stage is
reached, and some otherwise necessary intermediate iterations are saved.

Regarding the ε-FB protocols, for a higher ε the threshold for the current approximation
quality is reached more easily and the algorithm can proceed to the next stage to generate
new dual information. With this new dual information, another primal decision can then
be found, leading to less cycles in the first few stages. This is reflected in the iteration
counts, where a smaller ε requires more iterations.

We can conclude that the dynamic protocol is effective in reducing the computing time
compared with the default protocol from the literature, FFFB. We showed also that the
ε-FB variants perform significantly better than FFFB, which is not stated in the literature
(Morton, 1996).

10.7. Evaluation of Multi-Stage Acceleration Techniques 139

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10

ρ
m
(τ

)

τ

FFFB

FF

FB

ε-FF-0.01

ε-FF-0.064

ε-FF-0.1

ε-FB-0.01

ε-FB-0.064

ε-FB-0.1

Dynamic

Figure 10.14. Performance profile of different sequencing protocols.

FFFB

Sequencing prot. AM GM SGM AM SGM

FFFB 16.62 9.44 12.15 0 0
FF 216.67 38.16 52.49 1204 332
FB 286.44 73.93 107.01 1623 781

ε-FF-0.01 22.17 11.70 15.66 33 29
ε-FF-0.064 18.84 10.52 13.85 13 14
ε-FF-0.1 18.77 10.56 13.81 13 14
ε-FB-0.01 56.84 28.60 38.47 242 217
ε-FB-0.064 35.25 18.52 24.49 112 102
ε-FB-0.1 30.49 16.37 21.62 83 78
Dynamic 28.64 15.50 20.59 72 69

Table 10.25. Iteration counts of Benders BC on multi-stage test set with different se-
quencing protocols, namely FastForwardFastBack (FFFB), FastForward (FF), FastBack
(FB), ε variants and the dynamic protocol. The last two columns compare the iteration
counts with the default sequencing protocol FFFB, using the arithmetic mean and the
shifted geometric mean, respectively.

140 10. Computational Results

10.8. SAA and Parallel Benders

The sample average approximation method (SAA) is used in a grid computing environment
to solve the stochastic programming problems in the sampling test set (Linderoth et al.,
2006). An asynchronous trust region method (Linderoth & Wright, 2003) is used instead of
the L-shaped method to solve the SAA problems, see Section 4.3.3 for further explanations.
We use the euclidean level decomposition method with on-demand accuracy with λ = 0.5
and κ = 0.5 to get computational results for the same set of problems. This was suggested
by Fábián & Szőke (2007).

Our SAA implementation uses the upper bounding method described by Linderoth et al.
(2006). We only use latin hypercube sampling instead of also using crude Monte Carlo
sampling as this provides better confidence intervals (Linderoth et al., 2006). The number
of batches for the lower bounding problems, M , is set to ten and the number of batches for
the upper bounding problems, T , is set to 20. After the estimated upper bounds for each of
the M solutions are computed by solving T sampled problems with N̄ scenarios each, the
final upper bound estimate is computed. This is done by computing a new independent
upper bound estimate for the lowest upper bound estimate found so far.

We give lower and upper bound confidence intervals in Table 10.26 for all five problems
with an increasing number of scenarios and computing times. A comparison of the con-
fidence intervals with those given by Linderoth et al. (2006) shows that we reach similar
solution quality, albeit with somewhat wider confidence intervals for the upper bounds.
The difference is due to the fact that their results are computed with T = 50.

The computing times are presented in Table 10.27. These results show that with the
usage of parallelization and regularization techniques, the SAA method reaches good
approximate solutions in under an hour, for N = 20, 000. The results indicate that the
sampling time is linear in the number of sampled instances, and the upper bounding time
is linear in the number of scenarios to solve. The time spend to solve the lower bounding
problems becomes the dominant factor for higher values of N for the problems ssn and
20term. All ten replications together can be solved in about an hour for N = 50, 000.
For comparison, the problems LandS and gbd can be solved directly with the Level-ODA
algorithm in 73.98 and 109.86 seconds, respectively.

10.9. Conclusion

We evaluated various acceleration techniques for the nested L-shaped method in this chapter.
We provided averages and performance profiles to compare the different methods, due to
the large number of instances and parameter combinations. However, detailed results are
available for selected methods for the two-stage case in Table B.1 and for the multi-stage
in Table B.4 in the appendix. The implementation of the methods allows to compare cut
aggregation, cut consolidation, level decomposition, on-demand accuracy and advanced
start solutions for two-stage problems. Cut aggregation is an important technique that
should be applied to almost all problems, when solved with Benders decomposition. The
problem of choosing a cut aggregation level remains, but a number of 20 to 100 aggregates
seems promising for many problems. Cut consolidation is an important technique, when

10.9. Conclusion 141

Problem N N̄ Lower Bound Upper Bound

LandS

500 20000 225.66 ± 0.09 225.64 ± 0.01
1000 20000 225.64 ± 0.04 225.63 ± 0.01
5000 20000 225.65 ± 0.01 225.63 ± 0.00
10000 20000 225.64 ± 0.01 225.63 ± 0.00
20000 50000 225.63 ± 0.01 225.63 ± 0.01
50000 100000 225.63 ± 0.01 225.63 ± 0.00

gbd

500 20000 1655.63 ± 0.00 1655.63 ± 0.00
1000 20000 1655.63 ± 0.00 1655.63 ± 0.00
5000 20000 1655.63 ± 0.00 1655.63 ± 0.00
10000 20000 1655.63 ± 0.00 1655.63 ± 0.00
20000 50000 1655.63 ± 0.00 1655.63 ± 0.00
50000 100000 1655.63 ± 0.00 1655.63 ± 0.00

storm

500 20000 15498703.72 ± 254.16 15498742.68 ± 27.61
1000 20000 15498716.76 ± 243.79 15498747.61 ± 23.36
5000 20000 15498750.32 ± 91.10 15498725.07 ± 21.52
10000 20000 15498671.97 ± 90.30 15498737.68 ± 38.33
20000 50000 15498725.67 ± 37.35 15498740.31 ± 18.67
50000 100000 15498745.14 ± 28.58 15498734.34 ± 12.54

20term

500 20000 254257.55 ± 115.07 254310.66 ± 8.64
1000 20000 254338.29 ± 83.68 254309.09 ± 12.41
5000 20000 254309.32 ± 16.84 254317.79 ± 10.03
10000 20000 254303.49 ± 17.58 254318.08 ± 8.27
20000 50000 254311.57 ± 14.72 254308.66 ± 6.33
50000 100000 254313.26 ± 6.30 254310.57 ± 4.61

ssn

500 20000 9.42 ± 0.47 10.06 ± 0.03
1000 20000 9.77 ± 0.21 10.00 ± 0.05
5000 20000 9.90 ± 0.13 9.96 ± 0.04
10000 20000 9.94 ± 0.08 9.87 ± 0.04
20000 50000 9.87 ± 0.04 9.89 ± 0.03
50000 100000 9.91 ± 0.04 9.89 ± 0.02

Table 10.26. Lower and upper bound 95 % confidence intervals for the SAA problems
with N sampled scenarios for a single SAA problem and N̄ sampled scenarios for a single
upper bounding problem. M = 10 and T = 20, for all solution runs.

142 10. Computational Results

Problem N N̄ LBP UBP Sampling Overall

LandS

500 20000 1.00 47.66 11.59 66.71
1000 20000 1.25 47.55 11.77 67.03
5000 20000 3.45 47.86 11.76 69.47
10000 20000 5.16 47.82 11.89 71.51
20000 50000 10.16 103.61 29.77 157.76
50000 100000 23.42 169.27 59.32 278.10

gbd

500 20000 0.98 43.04 17.10 68.03
1000 20000 1.28 44.37 17.19 69.87
5000 20000 3.17 45.13 17.28 72.70
10000 20000 5.37 44.58 17.47 74.68
20000 50000 11.87 100.58 43.04 171.32
50000 100000 30.17 161.09 84.94 305.20

storm

500 20000 5.58 534.13 148.40 734.92
1000 20000 8.70 519.82 148.15 722.77
5000 20000 31.92 525.97 149.48 754.78
10000 20000 67.53 544.31 152.96 817.11
20000 50000 153.29 1323.17 404.48 2042.79
50000 100000 320.97 2674.22 765.31 4116.86

20term

500 20000 46.46 245.17 65.43 374.39
1000 20000 80.45 243.44 65.50 407.74
5000 20000 401.17 241.45 66.02 733.51
10000 20000 678.85 241.77 66.58 1019.52
20000 50000 1601.66 572.73 166.24 2432.04
50000 100000 3402.94 1142.52 336.88 5131.47

ssn

500 20000 26.16 289.91 110.53 435.09
1000 20000 46.36 288.76 110.70 455.08
5000 20000 337.10 291.54 111.91 754.32
10000 20000 692.95 295.55 113.32 1122.59
20000 50000 1577.89 697.30 287.40 2619.34
50000 100000 3637.86 1388.48 589.72 5787.00

Table 10.27. Computing times in seconds for lower bounding problems (LBP), upper
bounding problems (UBP), sampling and the whole algorithm. M = 10 and T = 20, for
all solution runs.

10.9. Conclusion 143

cut proliferation becomes a problem. This is the case for aggregation levels above 100 and
it should be used when such an aggregation level is chosen.
Level decomposition was initially proposed with an euclidean projection problem using

the l2 norm. We showed that other norms can also be used in the projection problem,
namely the l1 and the l∞ norm. Euclidean level decomposition remains the fastest solution
technique, both in iteration counts and in computing time, but infinity level decompo-
sition is nearly as good and manhattan level decomposition is only about 10% slower
than euclidean level decomposition. This insight may be important when no quadratic
programming solver is available to implement the euclidean level decomposition method.
The choice of λ is an important factor for the computing time of level decomposition,

regardless of the choice of the projection problem. Although our default value was set to
0.5, our experiments showed that 0.7 is slightly better. Cut aggregation can also be used
together with level decomposition, but only in a very modest form, with 5-10 aggregates.
If this is done, the computing times can be further reduced by about 10%.
We evaluated the effectiveness of the on-demand accuracy concept, used together with

Benders decomposition and together with level decomposition. It proves to be more effective
for Benders decomposition, but still reduces the computing time for level decomposition.
The κ parameter which regulates the usage of on-demand accuracy cuts, is set a priori
but has significant influence on the overall performance, so it should be set judiciously.
For Benders decomposition, a value between 0.5 and 0.7 seems appropriate. For level
decomposition, κ and λ must be set, and the effective combinations vary a bit by the
projection problem type. In general, combinations of λ between 0.3 and 0.7 and κ between
0.3 and 0.9 show good performance. The usage of cut aggregation in conjunction with
on-demand accuracy is dependent on the effectiveness of cut aggregation alone. Level
decomposition requires a high aggregation level, whereas Benders decomposition also
shows good performance with a lower aggregation level, i.e., more aggregates.
Advanced start solutions are necessary for level decomposition and can also be used

within the L-shaped framework. We found no convincing evidence for using a particular
start solution, other than the expected value solution. Especially in the on-demand accuracy
case, the expected value solution proved to be better than the alternatives.

Parallelization of the algorithm has several impacts. The first impact is that computing
times decrease with a relatively good speed-up compared with a sequential implementation.
The second impact is that the relative order of the algorithms is changed. This is due to
Amdahl’s law. Therefore, single-cut Benders and multi-cut Benders switch places. Also,
on-demand accuracy is even more effective in the sequential case than in the parallel case.

For multi-stage problems, we proposed a new dynamic sequencing protocol and revisited
other sequencing protocols. We found that the FFFB protocol, which was used as the
default in the literature, is not the fastest protocol. The dynamic protocol and some ε-FB
variants showed better performance.

Sample average approximation was evaluated by Linderoth et al. (2006) on a compu-
tational grid on some test instances. We found that using the acceleration techniques,
i.e., level decomposition with on-demand accuracy, SAA can be used to give meaningful
confidence intervals for several problems in under an hour. This would not be possible
with plain Benders decomposition, as the lower bounding problem solution time would
take too long.

144 10. Computational Results

Our results show that developing special solution methods for multi-stage stochastic
programming is a worthwhile endeavor. The comparison with deterministic equivalent
solvers shows that our implementation is much faster, even for medium-sized problems.
For problems that grow too large, mainly because of the number of scenarios, decomposition
methods are unavoidable in any case if a solution to these problem should be found in a
reasonable time frame or at all.

145

11. Summary and Conclusion

In this thesis we developed an algebraic modeling language for stochastic programs and
computationally efficient solution techniques based on Benders decomposition for multi-
stage stochastic programming problems. In Part I we gave an introduction to stochastic
programming and basic solution methods. Two-stage and multi-stage stochastic programs
were introduced in Chapter 4. We also gave mathematical results, which are required for
decomposition algorithms. Different solution methodologies were explained in Chapter 3.
Apart from Benders decomposition, which is based on the implicit deterministic equivalent
formulation, we described Lagrangean relaxation approaches, which are based on the
explicit deterministic equivalent formulation. Both decomposition approaches can be used
within approximative solution methods.

A detailed literature review of the state-of-the-art was done in Part II. We looked
at acceleration techniques for Benders decomposition for two-stage programs in Chapter
4. Several approaches were later extended in our implementation. Among them are cut
aggregation and level decomposition. Chapter 5 introduced techniques that were primarily
applied to multi-stage problems. Notable refinements are parallelization approaches and
sequencing protocols. Our survey on the development of algebraic modeling languages was
given in Chapter 6. We also looked at the challenges that arise in the design of modeling
languages. After this extensive literature review we identified the research gaps in Chapter
7 that we aimed to close with this thesis.

Part III described our algorithmic ideas and their implementation in a state-of-the-art
solver for stochastic programs. Chapter 8 introduced acceleration techniques to improve
Benders decomposition. We described an approach to reduce the negative effects of cut
proliferation, which we called cut consolidation. We revisited sequencing protocols for
multi-stage stochastic programs and proposed a new dynamic sequencing protocol. The
presented parallelization approach allows to benefit from several cores on modern processors.
We extended the on-demand accuracy concept (Oliveira & Sagastizábal, 2012) to the
classical L-shaped method. The new projection problem norms l1 and l∞ were established
for level decomposition. Chapter 9 described our extensions to the algebraic modeling
language FlopC++ to allow modeling of stochastic programs. It is possible to model
stochastic programs with scenario data or with random variables. Chapter 10 described
the implementation and evaluation of the algorithmic ideas presented in Chapter 8. We
described the diverse set of test instances, which we retrieved from several sources, on which
our implementation was evaluated. One of our contributions was the evaluation of several
techniques on a large and diverse test set. We found that cut consolidation can be used
to combat cut proliferation. Our examination of cut aggregation for the L-shaped method
showed that the technique is well suited to reduce computing times. Another contribution
is the evaluation of new projection problems for the level decomposition method. This
allows to use level decomposition without access to a quadratic programming solver. We

146 11. Summary and Conclusion

showed that on-demand accuracy can be combined successfully with the classical L-shaped
method as well as level decomposition. Our analysis of cut aggregation combined with level
decomposition and on-demand accuracy showed that a modest level of cut aggregation can
further reduce the computing time. Our evaluation of advanced start solutions showed
that using the expected value solution is in most cases a good choice. We found that
parallelization changes the relative order of algorithms and that single-cut Benders has the
highest speedup of all evaluated algorithms.
A sequencing protocol has to be chosen for the nested L-shaped method. We showed

that our proposed dynamic protocol leads to faster solution times than the default protocol
FastForwardFastBack.

We demonstrated that sample average approximation can be successfully combined with
level decomposition with on-demand accuracy to reach good quality solutions in under an
hour.

This thesis showed that research in the field of solution techniques for stochastic programs
is an ongoing effort. The development and usage of more efficient data structures can further
reduce computing times in the future. Documenting these important details (Maros, 2003)
can spark further research that can lead to improved algorithms. One research direction
is the combination of our parallelization approach with another parallelization layer on a
computational grid. This can be extended by the combination of asymmetric sequencing
protocols with on-demand accuracy. Another direction would be to research strategies to
combine cut aggregation with on-demand accuracy, where the aggregation levels can adjust
dynamically. A stochastic programming test set that combines the existing problems in
the literature should be compiled to enable performance comparisons between different
solution techniques. The test sets we gathered to evaluate the goals of this thesis can serve
as a starting point.

147

Bibliography

Achterberg, T. (2007). Constraint Integer Programming. Ph.D. thesis Technische
Universität Berlin.

Ahmed, S., Garcia, R., Kong, N., Ntaimo, L., Parija, G., Qiu, F., & Sen, S. (2013).
SIPLIB: A Stochastic Integer Programming Test Library. http://www2.isye.gatech.
edu/~sahmed/siplib/.

Altenstedt, F. (2003). Aspects on asset liability management via stochastic programming.
Ph.D. thesis Chalmers University of Technology and Göteborg University.

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer
conference (pp. 483–485). ACM volume 126.

Ariyawansa, K. A., & Felt, A. J. (2004). On a new collection of stochastic linear
programming test problems. INFORMS Journal on Computing, 16 , 291–299.

Ariyawansa, K. A., & Hudson, D. D. (1991). Performance of a benchmark parallel
implementation of the Van Slyke and Wets algorithm for two-stage stochastic programs
on the Sequent/Balance. Concurrency: Practice and Experience, 3 , 109–128.

Atlihan, M., Cunningham, K., Laude, G., & Schrage, L. (2010). Challenges in Adding a
Stochastic Programming/Scenario Planning Capability to a General Purpose Optimiza-
tion Modeling System. In M. S. Sodhi, & C. S. Tang (Eds.), A Long View of Research
and Practice in Operations Research and Management Science: The Past and the Future
chapter 8. (pp. 117–135). volume 148 of International Series in Operations Research &
Management Science.

Bauer, H. (1991). Wahrscheinlichkeitstheorie. (4th ed.). de Gruyter.

Beale, E. (1955). On minimizing a convex function subject to linear inequalities. Journal
of the Royal Statistical Society. Series B (Methodological), 17 , 173–184.

Beasley, J. E. (1993). Lagrangean Relaxation. In C. R. Reeves (Ed.), Modern Heuristic
Techniques for Combinatorial Problems. John Wiley & Sons.

Ben-Tal, A., & Nemirovski, A. (2005). Non-euclidean restricted memory level method for
large-scale convex optimization. Mathematical Programming, 102 , 407–456.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4 , 238–252.

http://www2.isye.gatech.edu/~sahmed/siplib/
http://www2.isye.gatech.edu/~sahmed/siplib/

148 Bibliography

Bertsekas, D. (1982). Constrained Optimization and Lagrange Multiplier Methods. Aca-
demic Press.

Birge, J., & Louveaux, F. (2011). Introduction to Stochastic Programming. (2nd ed.).
Springer.

Birge, J. R. (1985). Decomposition and Partitioning Methods for Multistage Stochastic
Linear Programs. Operations Research, 33 , 989–1007.

Birge, J. R. (1997). Stochastic programming computation and applications. INFORMS
Journal on Computing, 9 , 111–133.

Birge, J. R., Dempster, M. A. H., Gassmann, H. I., Gunn, E. A., King, A. J., & Wallace,
S. W. (1987). A standard input format for multiperiod stochastic linear programs.
COAL newsletter , 17 , 1–19.

Birge, J. R., Donohue, C. J., Holmes, D. F., & Svintsitski, O. G. (1996). A parallel
implementation of the nested decomposition algorithm for multistage stochastic linear
programs. Mathematical Programming, 75 , 327–352.

Birge, J. R., & Louveaux, F. V. (1988). A multicut algorithm for two-stage stochastic
linear programs. European Journal of Operational Research, 34 , 384–392.

Bixby, R. E., & Martin, A. (2000). Parallelizing the Dual Simplex Method. INFORMS
Journal on Computing, 12 , 45–56.

Brandes, K. T. (2011). Implementierung und Analyse verschiedener Strategien zur
Aggregation und Disaggregation von Multi-Cuts im Benders Dekompositionsverfahren.
Master’s thesis Universität Paderborn.

Buaklee, D., Tracy, G. F., Vernon, M. K., & Wright, S. J. (2002). Near-optimal adaptive
control of a large grid application. Proceedings of the 16th international conference on
Supercomputing - ICS ’02 , (p. 315).

Buchanan, C. S., McKinnon, K. I. M., & Skondras, G. K. (2001). The Recursive Definition
of Stochastic Linear Programming Problems within an Algebraic Modeling Language.
Annals of Operations Research, 104 , 15–32.

Carøe, C. C., & Schultz, R. (1999). Dual decomposition in stochastic integer programming.
Operations Research Letters, 24 , 37–45.

Cerisola, S., & Ramos, A. (2000). Node Aggregation in Stochastic Nested Benders De-
composition Applied to Hydrothermal Coordination. In PMAPS2000: 6th International
Conference on Probabilistic Methods Applied to Power Systems 1. Madeira.

Charnes, A., & Cooper, W. (1959). Chance-constrained programming. Management
Science, 6 , 73–79.

Chvátal, V. (1983). Linear Programming. W. H. Freeman and Company.

Bibliography 149

Colombo, M., Grothey, A., Hogg, J., Woodsend, K., & Gondzio, J. (2009). A structure-
conveying modelling language for mathematical and stochastic programming. Mathe-
matical Programming Computation, 1 , 223–247.

Condevaux-Lanloy, C., & Fragnière, E. (1998). SETSTOCH: a tool for multistage
stochastic programming with recourse. Technical Report University of Geneva Geneva.

Condevaux-Lanloy, C., Fragnière, E., & King, A. J. (2002). SISP: Simplified Interface for
Stochastic Programming. Optimization Methods and Software, 17 , 423–443.

Consigli, G., & Dempster, M. A. H. (1998). Dynamic stochastic programming for
asset-liability management. Annals of Operations Research, 81 , 131 – 161.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to
Algorithms volume 7. (2nd ed.). The MIT Press.

CPLEX (2013). CPLEX lp files. http://lpsolve.sourceforge.net/5.5/CPLEX-
format.htm. Last accessed 10/25/13.

Culler, D., Singh, J., & Gupta, A. (1999). Parallel computer architecture: a hardware/-
software approach. Morgan Kaufmann.

Dantzig, G. B. (1955). Linear programming under uncertainty. Management Science, 1 ,
197–206.

Dantzig, G. B., & Glynn, P. (1990). Parallel processors for planning under uncertainty.
Annals of Operations Research, 22 , 1–21.

Dantzig, G. B., Ho, J. K., & Infanger, G. (1991). Solving Stochastic Linear Programs
on a Hypercube Multicomputer . Technical Report Department of Operations Research,
Stanford University Stanford.

Dantzig, G. B., & Infanger, G. (1991). Large-Scale Stochastic Linear Programs: Im-
portance Sampling and Benders Decomposition. Technical Report Stanford University
Stanford.

Dantzig, G. B., & Wolfe, P. (1961). The decomposition algorithm for linear programs.
Econometrica: Journal of the Econometric Society, 29 , 767–778.

Deák, I. (2011). Testing successive regression approximations by large-scale two-stage
problems. Annals of Operations Research, 186 , 83–99.

Dempster, M. A. H., & Thompson, R. T. (1998). Parallelization and Aggregation of
Nested Benders Decomposition. Annals of Operations Research, 81 , 163–188.

Dempster, M. A. H., & Thompson, R. T. (1999). EVPI-based importance sampling
solution procedures for multistage stochastic linear programmeson parallel MIMD archi-
tectures. Annals of Operations Research, 90 , 161–184.

http://lpsolve.sourceforge.net/5.5/CPLEX-format.htm
http://lpsolve.sourceforge.net/5.5/CPLEX-format.htm

150 Bibliography

Dohle, C. (2010). Eine Implementierung des Benders-Dekompositionsverfahrens für allge-
meine zweistufig stochastische Programme mit diskreten Stufe-1-Variablen. Diplomarbeit
Universität Paderborn.

Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance
profiles. Mathematical Programming, 91 , 201–213.

Dormer, A., Vazacopoulos, A., Verma, N., & Tipi, H. (2005). Modeling & solving
stochastic programming problems in supply chain management using XPRESS-SP. In
J. Geunes, & P. M. Pardalos (Eds.), Supply Chain Optimization chapter 10. (pp.
307–354). Springer volume 98 of Applied Optimization.

Dupačová, J. (1995). Multistage stochastic programs: The state-of-the-art and selected
bibliography. Kybernetika, 31 , 151–174.

Dupačová, J., Consigli, G., & Wallace, S. W. (2000). Scenarios for multistage stochastic
programs. Annals of Operations Research, 100 , 25–53.

Dupačová, J., Gröwe-Kuska, N., & Römisch, W. (2003). Scenario Reduction in Stochastic
Programming: An Approach Using Probability Metrics. Mathematical Programming,
95 , 493–511.

Edwards, J. (1988). A proposed standard input format for computer codes which solve
stochastic programs with recourse. In Y. Ermoliev, & R. J.-B. Wets (Eds.), Numerical
techniques for stochastic optimization (pp. 215–227). Springer volume 10 of Springer
Series in Computational Mathematics.

Ellison, F., Mitra, G., & Zverovich, V. (2012). FortSP : A Stochastic Programming Solver.
http://www.optirisk-systems.com/manuals/FortspManual.pdf.

Entriken, R. (2001). Language constructs for modeling stochastic linear programs. Annals
of Operations Research, 104 , 49–66.

Ermoliev, Y. (1988). Stochastic quasigradient methods. In Y. Ermoliev, & R. J.-B.
Wets (Eds.), Numerical techniques for stochastic optimization (pp. 141–185). Springer
volume 10 of Springer Series in Computational Mathematics.

Escudero, L. F., Garín, M. A., Pérez, G., & Unzueta, A. (2012). Lagrangian Decomposition
for large-scale two-stage stochastic mixed 0-1 problems. Top, 20 , 347–374.

Fábián, C. I. (2000). Bundle-type methods for inexact data. Central European Journal
of Operations Research, 8 , 35–55.

Fábián, C. I. (2013). Computational aspects of risk-averse optimization in two-stage
stochastic models. Stochastic Programming E-Print Series, 2013 .

Fábián, C. I., & Szőke, Z. (2007). Solving two-stage stochastic programming problems
with level decomposition. Computational Management Science, 4 , 313–353.

Bibliography 151

Fischetti, M., Salvagnin, D., & Zanette, A. (2008). Minimal infeasible subsystems and
Benders cuts. Mathematical Programming, to appear.

Fischetti, M., Salvagnin, D., & Zanette, A. (2010). A note on the selection of Benders’
cuts. Mathematical Programming, 124 , 175–182.

Fisher, M. L. (1981). The Lagrangian Relaxation Method for Solving Integer Programming
Problems. Management Science, 27 , 1–18.

Fisher, M. L. (1985). An applications oriented guide to Lagrangian relaxation. Interfaces,
15 , 10–21.

Flynn, M. (1972). Some computer organizations and their effectiveness. IEEE Transac-
tions on Computers, C-21 , 948–960.

Fourer, R. (1983). Modeling languages versus matrix generators for linear programming.
ACM Transactions on Mathematical Software, 9 , 143–183.

Fourer, R., Gassmann, H. I., Ma, J., & Martin, R. K. (2009). An XML-based schema for
stochastic programs. Annals of Operations Research, 166 , 313–337.

Fourer, R., & Gay, D. M. (2000). Conveying Problem Structure from an Algebraic Mod-
eling Language to Optimization Algorithms. In M. Laguna, & J. L. G. Velarde (Eds.),
Computing Tools for Modeling, Optimization and Simulation (pp. 75–89). Springer
volume 12 of Operations Research/Computer Science Interfaces Series.

Fourer, R., & Lopes, L. (2006). A management system for decompositions in stochastic
programming. Annals of Operations Research, 142 , 99–118.

Fourer, R., Ma, J., & Martin, K. (2010). OSiL: An instance language for optimization.
Computational Optimization and Applications, 45 , 181–203.

Fragnière, E., & Gondzio, J. (2005). Stochastic programming from modeling languages.
In S. W. Wallace, & W. T. Ziemba (Eds.), Applications of Stochastic Programming
chapter 7. (pp. 95–113). Society for Industrial Mathematics.

Freund, R. M. (2004). Benders’ Decomposition Methods for Structured Optimization,
including Stochastic Optimization.

Frontline Solvers (2013). Robust Optimization, Stochastic Programming, and Simula-
tion Optimization. http://www.solver.com/robust-decision-making. Last accessed
10/25/13.

GAMS-EMP (2013). Stochastic Programming (SP) with EMP. http://gams.com/dd/
docs/solvers/empsp.pdf. Last accessed 10/25/13.

Garstka, S. J., & Rutenberg, D. P. (1973). Computation in discrete stochastic programs
with recourse. Operations Research, 21 , 112–122.

Gassmann, H. I. (1990). MSLiP: A computer code for the multistage stochastic linear
programming problem. Mathematical Programming, 47 , 407–423.

http://www.solver.com/robust-decision-making
http://gams.com/dd/docs/solvers/empsp.pdf
http://gams.com/dd/docs/solvers/empsp.pdf

152 Bibliography

Gassmann, H. I. (1998). Modelling support for stochastic programs. Annals of Operations
Research, 82 , 107–138.

Gassmann, H. I. (2007). Applied stochastic programming models and computation.

Gassmann, H. I., & Infanger, G. (2007). Modelling history-dependent parameters in the
SMPS format for stochastic programming. IMA Journal of Management Mathematics,
19 , 87–97.

Gassmann, H. I., & Ireland, A. (1995). Scenario formulation in an algebraic modelling
language. Annals of Operations Research, 59 , 45–75.

Gassmann, H. I., & Ireland, A. (1996). On the formulation of stochastic linear programs
using algebraic modelling languages. Annals of Operations Research, 64 , 83–112.

Gassmann, H. I., & Kristjansson, B. (2007). The SMPS format explained. IMA Journal
of Management Mathematics, (pp. 1–31).

Gassmann, H. I., & Prékopa, A. (2005). On stages and consistency checks in stochastic
programming. Operations Research Letters, 33 , 171–175.

Gassmann, H. I., & Schweitzer, E. (2001). A comprehensive input format for stochastic
linear programs. Annals of Operations Research, 104 , 89–125.

Gay, D. M. (2005). Writing .nl Files. Technical Report SAND2005-7907P, Sandia
National Laboratories.

Goldberg, D. (1991). What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys (CSUR), 23 , 5–48.

Gondzio, J. (1998). Warm start of the primal-dual method applied in the cutting-plane
scheme. Mathematical Programming, 83 , 125–143.

Gurobi Optimization, Inc. (2013). Gurobi optimizer reference manual. http://www.
gurobi.com/documentation/5.5/reference-manual/. Last accessed 10/25/13.

Hart, W. E., Laird, C., Watson, J.-P., & Woodruff, D. L. (2012). Pyomo - Optimization
Modeling in Python. Springer.

Hart, W. E., Watson, J.-P., & Woodruff, D. L. (2011). Pyomo: modeling and solving
mathematical programs in Python. Mathematical Programming Computation, 3 , 219–
260.

Heitsch, H., & Römisch, W. (2003). Scenario reduction algorithms in stochastic program-
ming. Computational optimization and applications, (pp. 187–206).

Heitsch, H., & Römisch, W. (2011). Stability and Scenario Trees for Multistage Stochastic
Programs. In G. Infanger (Ed.), Stochastic Programming - The State of the Art In
Honor of George B. Dantzig (pp. 139–164). Springer.

http://www.gurobi.com/documentation/5.5/reference-manual/
http://www.gurobi.com/documentation/5.5/reference-manual/

Bibliography 153

Held, M., Wolfe, P., & Crowder, H. (1974). Validation of subgradient optimization.
Mathematical programming, 6 , 62–88.

Higle, J. L. (2005). Stochastic Programming: Optimization When Uncertainty Matters.
TutORials in Operations Research, (pp. 30–53).

Higle, J. L., & Sen, S. (1991). Stochastic Decomposition: An Algorithm for Two-Stage
Linear Programs with Recourse. Mathematics of Operations Research, 16 , 650–669.

Higle, J. L., & Sen, S. (1996). Stochastic decomposition: a statistical method for large
scale stochastic linear programming. Kluwer Academic Publishers.

Holmes, D. (1995). A (PO)rtable (S)tochastic programming (T)est (S)et (POSTS).
http://users.iems.northwestern.edu/˜jrbirge/html/dholmes/post.html.

Hultberg, T. H. (2007). FLOPC++ An Algebraic Modeling Language Embedded in C++.
In K.-H. Waldmann, & U. M. Stocker (Eds.), Operations Research Proceedings 2006
(pp. 187–190). Springer Berlin-Heidelberg.

Infanger, G. (1992). Planning under uncertainty - solving large-scale stochastic linear
programs. Technical Report SOL-92-8, Stanford Univ., CA (United States). Systems
Optimization Lab.

International Business Machines (1972). Mathematical Programming Subsystem - Extended
(MPSX) and Generalized Upper Bounding (GUB) Program Description. Technical
Report SH20-0968-1 IBM Research Division, Thomas J. Watson Research Center,
Yorktown Heights, NY.

International Business Machines Corporation (2011). IBM ILOG CPLEX V12.4:
User’s Manual for CPLEX. http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r4/
topic/ilog.odms.cplex.help/CPLEX/maps/ps_usrmancplex_1.html. Last accessed
10/25/13.

Kall, P., & Mayer, J. (1998). On testing SLP codes with SLP-IOR. New Trends in
Mathematical Programming: Homage to Steven Vajda, (pp. 115–135).

Kall, P., & Mayer, J. (2005). Building and Solving Stochastic Linear Programming Models
with SLP-IOR. In S. W. Wallace, & W. T. Ziemba (Eds.), Applications of Stochastic
Programming chapter 6. (pp. 79–93). Society for Industrial Mathematics.

Kall, P., & Mayer, J. (2010). Stochastic Linear Programming: Models, Theory, and
Computation. (2nd ed.). Springer.

Kall, P., & Wallace, S. W. (1994). Stochastic Programming. (2nd ed.). Chichester: John
Wiley & Sons.

Kallrath, J. (Ed.) (2004). Modeling Languages in Mathematical Optimization. Kluwer
Academic Publishers.

http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r4/topic/ilog.odms.cplex.help/CPLEX/maps/ps_usrmancplex_1.html
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r4/topic/ilog.odms.cplex.help/CPLEX/maps/ps_usrmancplex_1.html

154 Bibliography

Kallrath, J. (Ed.) (2012). Algebraic modeling system: Modeling and Solving Real World
Optimization Problems. Springer.

Karabuk, S. (2005). An open source algebraic modeling and programming software.
Technical Report University of Oklahoma, School of Industrial Engineering Norman.

Karabuk, S. (2008). Extending algebraic modelling languages to support algorithm
development for solving stochastic programming models. IMA Journal of Management
Mathematics, 19 , 325–345.

Kaut, M. (2008). COIN-OR Tools for Stochastic Programming. In M. Kopa (Ed.), On
Selected Software for Stochastic Programming (pp. 88–116). Prague: Matfyzpress.

Kaut, M., King, A. J., & Hultberg, T. H. (2008). A C++ Modelling Environment for
Stochastic Programming. Technical Report RC24662 IBM Watson Research Center.

Kaut, M., & Wallace, S. W. (2003). Evaluation of scenario-generation methods for
stochastic programming. Stochastic Programming E-Print Series, 14 , –.

Kaut, M., & Wallace, S. W. (2007). Evaluation of Scenario-Generation Methods for
Stochastic Programming. Pacific Journal of Optimization, 3 , 257–271.

Kelley, J. E. (1960). The cutting-plane method for solving convex programs. Journal of
the Society for Industrial and Applied Mathematics, 8 , 703–712.

King, A. J., & Wallace, S. W. (2012). Modeling with stochastic programming. Springer.

Kiwiel, K. C. (1985). Methods of Descent for Nondifferentiable Optimization. Springer.

Koberstein, A. (2005). The Dual Simplex Method , Techniques for a fast and stable
implementation. Ph.D. thesis Universität Paderborn.

Koberstein, A., Lucas, C., Wolf, C., & König, D. (2011). Modeling and optimizing risk
in the strategic gas-purchase planning problem of local distribution companies. The
Journal of Energy Markets, 4 , 47–68.

Koberstein, A., Lukas, E., & Naumann, M. (2013). Integrated Strategic Planning of Global
Production Networks and Financial Hedging under Uncertain Demand and Exchange
Rates. BuR - Business Research, Forthcoming.

Kopa, M. (Ed.) (2008). On Selected Software for Stochastic Programming. Matfyzpress.

Kuhn, D. (2006). Aggregation and discretization in multistage stochastic programming.
Mathematical Programming, 113 , 61–94.

Latorre, J. M., Cerisola, S., Ramos, A., & Palacios, R. (2008). Analysis of stochastic prob-
lem decomposition algorithms in computational grids. Annals of Operations Research,
166 , 355–373.

Lemaréchal, C. (1978). Nonsmooth optimization and descent methods. Research Report
78-4, IIASA, Laxenburg, Austria.

Bibliography 155

Lemaréchal, C., Nemirovskii, A., & Nesterov, Y. (1995). New variants of bundle methods.
Mathematical Programming, 69 , 111–147.

Linderoth, J., Shapiro, A., & Wright, S. (2006). The empirical behavior of sampling
methods for stochastic programming. Annals of Operations Research, 142 , 215–241.

Linderoth, J., & Wright, S. (2003). Decomposition algorithms for stochastic programming
on a computational grid. Computational Optimization and Applications, 24 , 207–250.

LINDO Systems (2013). Stochastic Programming Features. http://www.lindo.com/
index.php?option=com_content&view=article&id=130&Itemid=54. Last accessed
10/25/13.

Lougee-Heimer, R. (2003). The Common Optimization Interface for Operations Research.
IBM Journal of Research and Development, 47 , 57–66.

Luenberger, D. G., & Ye, Y. (2008). Linear and nonlinear programming. (3rd ed.).
Springer.

Mak, W., Morton, D. P., & Wood, R. K. (1999). Monte Carlo bounding techniques for
determining solution quality in stochastic programs. Operations Research Letters, 24 ,
47–56.

Maros, I. (2003). Computational Techniques of the Simplex Method. Kluwer Academic
Publishers.

Marr, D. T., Binns, F., Hill, D. L., Hinton, G., Miller, J. A., & Upton, M. (2002). Hyper-
Threading Technology Architecture and Microarchitecture. Intel Technology Jounral, 6 ,
1–12.

Maturana, S. V. (1994). Issues in the design of modeling languages for mathematical
programming. European Journal of Operational Research, 72 , 243–261.

Maximal Software (2013). New Stochastic Extensions for MPL. http://www.
maximalsoftware.com/maximal/news/stochastic.html. Last accessed 10/25/13.

Messina, E. (1997). Modelling and analysis of multistage stochastic programming problems:
A software environment. European Journal of Operational Research, 101 , 343–359.

Microsoft (2013). Optimization Modeling Language (OML). http://msdn.microsoft.
com/en-us/library/ff524507(v=vs.93).aspx. Last accessed 10/25/13.

Mirkov, R., & Pflug, G. C. (2007). Tree Approximations of Dynamic Stochastic Programs.
SIAM Journal on Optimization, 18 , 1082–1105.

Moritsch, H. (2006). High Performance Computing in Finance — On the Parallel Imple-
mentation of Pricing and Optimization Models. Ph.D. thesis Technische Universität
Wien.

http://www.lindo.com/index.php?option=com_content&view=article&id=130&Itemid=54
http://www.lindo.com/index.php?option=com_content&view=article&id=130&Itemid=54
http://www.maximalsoftware.com/maximal/news/stochastic.html
http://www.maximalsoftware.com/maximal/news/stochastic.html
http://msdn.microsoft.com/en-us/library/ff524507(v=vs.93).aspx
http://msdn.microsoft.com/en-us/library/ff524507(v=vs.93).aspx

156 Bibliography

Moritsch, H. W., Pflug, G. C., & Siomak, M. (2001). Asynchronous nested optimization
algorithms and their parallel implementation. Wuhan University Journal of Natural
Sciences, 6 , 560–567.

Morton, D. P. (1996). An enhanced decomposition algorithm for multistage stochastic
hydroelectric scheduling. Annals of Operations Research, 64 , 211–235.

Mulvey, J. M., & Ruszczyński, A. (1992). A diagonal quadratic approximation method
for large scale linear programs. Operations Research Letters, 12 , 205–215.

Mulvey, J. M., & Ruszczyński, A. (1995). A New Scenario Decomposition Method for
Large-Scale Stochastic Optimization. Operations Research, 43 , 477–490.

Nemhauser, G. L., & Wolsey, L. A. (1999). Integer and Combinatorial Optimization.
Wiley-Interscience.

Nering, E., & Tucker, A. (1993). Linear Programs and Related Problems. Academic Press,
Inc.

Nielsen, S., & Zenios, S. A. (1997). Scalable parallel Benders decomposition for stochastic
linear programming. Parallel Computing, 23 , 1069–1088.

Oliveira, W., & Sagastizábal, C. (2012). Level bundle methods for oracles with on-demand
accuracy. http://www.optimization-online.org/DB_HTML/2012/03/3390.html.
Preprint. Instituto Nacional de Matemática Pura e Aplicada.

Paragon Decision Technology (2013). http://www.aimms.com/operations-research/
mathematical-programming/stochastic-programming. Last accessed 10/25/13.

Parpas, P., & Rustem, B. (2007). Computational Assessment of Nested Benders and Aug-
mented Lagrangian Decomposition for Mean-Variance Multistage Stochastic Problems.
INFORMS Journal on Computing, 19 , 239–247.

Revuz, D., & Yor, M. (2004). Continuous martingales and Brownian motion. Springer.

Rockafellar, R. T. (1976a). Augmented Lagrangians and Applications of the Proximal
Point Algorithm in Convex Programming. Mathematics of Operations Research, 1 ,
97–116.

Rockafellar, R. T. (1976b). Monotone Operators and the Proximal Point Algorithm.
SIAM Journal on Control and Optimization, 14 , 877–898.

Rockafellar, R. T., & Wets, R. J.-B. (1991). Scenarios and policy aggregation in
optimization under uncertainty. Mathematics of operations research, 16 , 119–147.

Römisch, W. (2011). Scenario Generation. In J. J. Cochran, L. A. Cox, P. Keskinocak,
J. P. Kharoufeh, & J. C. Smith (Eds.), Wiley Encyclopedia of Operations Research and
Management Science. John Wiley & Sons, Inc.

Ross, S. M. (2004). Introduction to probability and statistics for engineers and scientists.
Elsevier.

http://www.aimms.com/operations-research/mathematical-programming/stochastic-programming
http://www.aimms.com/operations-research/mathematical-programming/stochastic-programming

Bibliography 157

Rubin, P. (2011). Farkas Certificates in CPLEX. http://orinanobworld.blogspot.de/
2011/07/farkas-certificates-in-cplex.html. Last accessed 10/25/13.

Rudolph, D. (2010). Eine open-source basierte Implementierung eines Lösers für stochastis-
che zweistufige lineare Programme. Diplomarbeit Universität Paderborn.

Ruszczyński, A. (1986). A regularized decomposition method for minimizing a sum of
polyhedral functions. Mathematical programming, 35 , 309–333.

Ruszczyński, A. (1993a). Parallel decomposition of multistage stochastic programming
problems. Mathematical Programming, 58 , 201–228.

Ruszczyński, A. (1993b). Regularized decomposition of stochastic programs: Algorithmic
techniques and numerical results. Working Paper 93-21, IIASA, Laxenburg, Austria.

Ruszczyński, A. (2003). Decomposition Methods. In A. Ruszczyński, & A. Shapiro (Eds.),
Handbooks in Operations Research and Management Science, Volume 10: Stochastic
Programming chapter 3. (pp. 141–211). volume 10.

Ruszczyński, A., & Shapiro, A. (Eds.) (2003). Handbooks in Operations Research and
Management Science, Volume 10: Stochastic Programming. Elsevier.

Ruszczyński, A., & Świętanowski, A. (1997). Accelerating the regularized decomposition
method for two stage stochastic linear problems. European Journal of Operational
Research, 101 , 328–342.

Schrijver, A. (1998). Theory of Linear and Integer Programming. Wiley Interscience.

Shapiro, A. (2003). Monte Carlo Sampling Methods. In A. Ruszczyński, & A. Shapiro
(Eds.), Handbooks in Operations Research and Management Science, Volume 10: Stochas-
tic Programming chapter 6. (pp. 353–425). volume 10.

Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2009). Lectures on stochastic programming:
Modeling and Theory. Society for Industrial Mathematics.

Shu, W., & Wu, M. (1993). Sparse implementation of revised simplex algorithms on
parallel computers. In The Sixth SIAM Conference on Parallel Processing for Scientific
Computing (pp. 501–509).

Thénié, J., Delft, C., & Vial, J. P. (2007). Automatic Formulation of Stochastic Programs
Via an Algebraic Modeling Language. Computational Management Science, 4 , 17–40.

Trukhanov, S., Ntaimo, L., & Schaefer, A. (2010). Adaptive multicut aggregation for
two-stage stochastic linear programs with recourse. European Journal of Operational
Research, 206 , 395–406.

Valente, C., Mitra, G., Sadki, M., & Fourer, R. (2009). Extending algebraic modelling
languages for Stochastic Programming. INFORMS Journal on Computing, 21 , 107–122.

http://orinanobworld.blogspot.de/2011/07/farkas-certificates-in-cplex.html
http://orinanobworld.blogspot.de/2011/07/farkas-certificates-in-cplex.html

158 Bibliography

Valente, P., Mitra, G., & Poojari, C. A. (2005). A Stochastic Programming Integrated
Environment. In S. W. Wallace, & W. T. Ziemba (Eds.), Applications of Stochastic
Programming chapter 8. (pp. 115–136). Society for Industrial Mathematics.

Van Slyke, R., & Wets, R. J.-B. (1969). L-shaped linear programs with applications to
optimal control and stochastic programming. SIAM Journal on Applied Mathematics,
17 , 638–663.

Vanderbeck, F., & Wolsey, L. (2010). Reformulation and decomposition of integer
programs. In 50 Years of Integer Programming 1958-2008 (pp. 431–502). Springer.

Vanderbei, R. (1997). Linear programming: foundations and extensions. Kluwer Academic
Publishers.

Vespucci, M. T., Maggioni, F., Bertocchi, M. I., & Innorta, M. (2012). A stochastic
model for the daily coordination of pumped storage hydro plants and wind power plants.
Annals of Operations Research, 193 , 91–105.

Vladimirou, H. (1998). Computational assessment of distributed decomposition methods
for stochastic linear programs. European Journal of Operational Research, 108 , 653–670.

Vladimirou, H., & Zenios, S. A. (1999). Scalable parallel computations for large-scale
stochastic programming. Annals of Operations Research, 90 , 87–129.

Walkup, D. W., & Wets, R. J.-B. (1967). Stochastic programs with recourse. SIAM
Journal on Applied Mathematics, 15 , 1299–1314.

Wallace, S. W. (2000). Decision making under uncertainty: Is sensitivity analysis of any
use? Operations Research, 48 , 20–25.

Wallace, S. W., & Ziemba, W. T. (Eds.) (2005). Applications of stochastic programming.
Society for Industrial Mathematics.

Watson, J.-P., Woodruff, D. L., & Hart, W. E. (2012). PySP: modeling and solving
stochastic programs in Python. Mathematical Programming Computation, 4 , 109–149.

Wesselmann, F. (2010). Generating General-Purpose Cutting Planes for Mixed-Integer
Programs. Ph.D. thesis Universität Paderborn.

Wittrock, R. J. (1983). Advances in a nested decomposition algorithm for solving staircase
linear programs. Technical report SOL 83-2 . Technical Report Stanford Univ., CA
(USA). Systems Optimization Lab.

Wolf, C., & Koberstein, A. (2013). Dynamic sequencing and cut consolidation for the
parallel hybrid-cut nested L-shaped method. European Journal of Operational Research,
230 , 143–156.

Wolf, C., Koberstein, A., & Hultberg, T. H. (2011). Stochastic Extensions to FlopC++.
In B. Hu, K. Morasch, S. Pickl, & M. Siegle (Eds.), Operations Research Proceedings
2010 (pp. 333–338). Springer.

Bibliography 159

Ye, Y. (1997). Interior Point Algorithms: Theory and Analysis. Wiley-Interscience.

Zakeri, G., Philpott, A., & Ryan, D. (2000). Inexact cuts in Benders decomposition.
SIAM Journal on Optimization, 10 , 643–657.

Zverovich, V., Fábián, C. I., Ellison, E. F. D., & Mitra, G. (2012). A computational
study of a solver system for processing two-stage stochastic LPs with enhanced Benders
decomposition. Mathematical Programming Computation, 4 , 211–238.

161

A. Test problems

This chapter contains the problems used in our test set. We give the instance names,
number of scenarios, the test set the instance belongs to, and the number of columns
and rows of the first stage and second stage. In addition, the number of column and row
numbers as well as the number of nonzeroes of the deterministic equivalent problem are
given. The two-stage test problems are shown in Table A.1.
For multi-stage problems, we give the number of columns and rows at stage 1 < t ≤ T ,

if the problem is symmetric and has the same number of columns and rows at every stage
as well as the number of stages. The multi-stage test problems are given in Table A.2.

162
A
.
Test

problem
s

Table A.1. Problem dimensions of two-stage problems in our test set.
Stage 1 Stage 2 DEQ

Instance Scenarios Testset Cols Rows Cols Rows Cols Rows NZ
20x20-1_400 400 deak 20 10 30 20 12020 8010 72483
20x20-1_450 450 deak 20 10 30 20 13520 9010 81533
20x20-1_500 500 deak 20 10 30 20 15020 10010 90583
20x40-1_400 400 deak 20 10 60 40 24020 16010 184083
20x40-1_450 450 deak 20 10 60 40 27020 18010 207083
20x40-1_500 500 deak 20 10 60 40 30020 20010 230083
20x60-1_400 400 deak 20 10 90 60 36020 24010 344083
20x60-1_450 450 deak 20 10 90 60 40520 27010 387083
20x60-1_500 500 deak 20 10 90 60 45020 30010 430083
40x20-1_400 400 deak 40 20 30 20 12040 8020 122725
40x20-1_450 450 deak 40 20 30 20 13540 9020 138025
40x20-1_500 500 deak 40 20 30 20 15040 10020 153325
40x40-1_400 400 deak 40 20 60 40 24040 16020 288325
40x40-1_450 450 deak 40 20 60 40 27040 18020 324325
40x40-1_500 500 deak 40 20 60 40 30040 20020 360325
40x60-1_400 400 deak 40 20 90 60 36040 24020 400325
40x60-1_450 450 deak 40 20 90 60 40540 27020 450325
40x60-1_500 500 deak 40 20 90 60 45040 30020 500325
60x20-1_400 400 deak 60 30 30 20 12060 8030 173127
60x20-1_450 450 deak 60 30 30 20 13560 9030 194677
60x20-1_500 500 deak 60 30 30 20 15060 10030 216227
60x40-1_400 400 deak 60 30 60 40 24060 16030 386727
60x40-1_450 450 deak 60 30 60 40 27060 18030 434977
60x40-1_500 500 deak 60 30 60 40 30060 20030 483227
60x60-1_400 400 deak 60 30 90 60 36060 24030 648727
60x60-1_450 450 deak 60 30 90 60 40560 27030 729727

163
Table A.1. Problem dimensions (continued)

Stage 1 Stage 2 DEQ

Instance Scenarios Testset Cols Rows Cols Rows Cols Rows NZ
60x60-1_500 500 deak 60 30 90 60 45060 30030 810727

100x20-1_400 400 deak 100 50 30 20 12100 8050 121416
100x20-1_450 450 deak 100 50 30 20 13600 9050 136466
100x20-1_500 500 deak 100 50 30 20 15100 10050 151516

stormG2_8 8 posts 121 185 1259 528 10193 4409 27424
stormG2_27 27 posts 121 185 1259 528 34114 14441 90903

stormG2_125 125 posts 121 185 1259 528 157496 66185 418321
stormG2_1000 1000 posts 121 185 1259 528 1259121 528185 3341696

rand0_2000 2000 rand 100 50 50 25 100100 50050 754501
rand0_4000 4000 rand 100 50 50 25 200100 100050 1508501
rand0_6000 6000 rand 100 50 50 25 300100 150050 2262501
rand0_8000 8000 rand 100 50 50 25 400100 200050 3016501
rand0_10000 10000 rand 100 50 50 25 500100 250050 3770501
rand1_2000 2000 rand 200 100 100 50 200200 100100 3006001
rand1_4000 4000 rand 200 100 100 50 400200 200100 6010001
rand1_6000 6000 rand 200 100 100 50 600200 300100 9014001
rand1_8000 8000 rand 200 100 100 50 800200 400100 12018001
rand1_10000 10000 rand 200 100 100 50 1000200 500100 15022001
rand2_2000 2000 rand 300 150 150 75 300300 150150 6758501
rand2_4000 4000 rand 300 150 150 75 600300 300150 13512501
rand2_6000 6000 rand 300 150 150 75 900300 450150 20266501
rand2_8000 8000 rand 300 150 150 75 1200300 600150 27020501
rand2_10000 10000 rand 300 150 150 75 1500300 750150 33774501

20-1000 1000 sampling 63 3 764 124 764063 124003 4488063
20-2000 2000 sampling 63 3 764 124 1528063 248003 8976063
20-3000 3000 sampling 63 3 764 124 2292063 372003 13464063

164
A
.
Test

problem
s

Table A.1. Problem dimensions (continued)
Stage 1 Stage 2 DEQ

Instance Scenarios Testset Cols Rows Cols Rows Cols Rows NZ
gbd 646425 sampling 4 2 12 7 12000004 7000002 28000008

LandS 1000000 sampling 17 4 10 5 6464267 3232129 17453492
ssn-1000 1000 sampling 89 1 706 175 706089 175001 2373089
ssn-2000 2000 sampling 89 1 706 175 1412089 350001 4746089
ssn-3000 3000 sampling 89 1 706 175 2118089 525001 7119089

storm-1000 1000 sampling 121 185 1259 528 1259121 528185 3341696
storm-2000 2000 sampling 121 185 1259 528 2518121 1056185 6682696
storm-3000 3000 sampling 121 185 1259 528 3777121 1584185 10023696
saphir_50 50 saphir 53 32 3924 8678 196253 433932 1136753

saphir_100 100 saphir 53 32 3924 8678 392453 867832 2273403
saphir_500 500 saphir 53 32 3924 8678 1962053 4339032 11366603
saphir_1000 1000 saphir 53 32 3924 8678 3924053 8678032 22733103

sslp_10_50_50 50 SIPLIB 10 1 510 60 25510 3001 50460
sslp_10_50_100 100 SIPLIB 10 1 510 60 51010 6001 100910
sslp_10_50_500 500 SIPLIB 10 1 510 60 255010 30001 504510
sslp_10_50_1000 1000 SIPLIB 10 1 510 60 510010 60001 1009010
sslp_10_50_2000 2000 SIPLIB 10 1 510 60 1020010 120001 2018010

sslp_15_45_5 5 SIPLIB 15 1 690 60 3465 301 6835
sslp_15_45_10 10 SIPLIB 15 1 690 60 6915 601 13655
sslp_15_45_15 15 SIPLIB 15 1 690 60 10365 901 20475

airl 25 slptestset 4 2 8 6 204 152 604
airl2 25 slptestset 4 2 8 6 204 152 604

assets-small 100 slptestset 13 5 13 5 1313 505 2621
assets-large 37500 slptestset 13 5 13 5 487513 187505 975021

4node-2 2 slptestset 52 14 186 74 424 162 1191
4node-4 4 slptestset 52 14 186 74 796 310 2127

165
Table A.1. Problem dimensions (continued)

Stage 1 Stage 2 DEQ

Instance Scenarios Testset Cols Rows Cols Rows Cols Rows NZ
4node-8 8 slptestset 52 14 186 74 1540 606 3999
4node-16 16 slptestset 52 14 186 74 3028 1198 7743
4node-32 32 slptestset 52 14 186 74 6004 2382 15231
4node-64 64 slptestset 52 14 186 74 11956 4750 30207

4node-128 128 slptestset 52 14 186 74 23860 9486 60159
4node-256 256 slptestset 52 14 186 74 47668 18958 120063
4node-512 512 slptestset 52 14 186 74 95284 37902 239871
4node-1024 1024 slptestset 52 14 186 74 190516 75790 479487
4node-2048 2048 slptestset 52 14 186 74 380980 151566 958719
4node-4096 4096 slptestset 52 14 186 74 761908 303118 1917183
4node-8192 8192 slptestset 52 14 186 74 1523764 606222 3834111

4node-16384 16384 slptestset 52 14 186 74 3047476 1212430 7667967
4node-32768 32768 slptestset 52 14 186 74 6094900 2424846 15335679

chem 2 slptestset 39 38 41 46 121 130 289
LandS 3 slptestset 4 2 12 7 40 23 92

env-aggr 5 slptestset 49 48 49 48 294 288 852
env-first 5 slptestset 49 48 49 48 1613521 1580592 4741764
env-loose 5 slptestset 49 48 49 48 294 288 852
env-imp 15 slptestset 49 48 49 48 784 768 2292
env-1200 1200 slptestset 49 48 49 48 58849 57648 172932
env-1875 1875 slptestset 49 48 49 48 91924 90048 270132
env-3780 3780 slptestset 49 48 49 48 185269 181488 544452
env-5292 5292 slptestset 49 48 49 48 259357 254064 762180
env-lrge 8232 slptestset 49 48 49 48 294 288 852

env-xlrge 32928 slptestset 49 48 49 48 403417 395184 1185540
phone 32768 slptestset 8 1 85 23 2785288 753665 9863176

166
A
.
Test

problem
s

Table A.1. Problem dimensions (continued)
Stage 1 Stage 2 DEQ

Instance Scenarios Testset Cols Rows Cols Rows Cols Rows NZ
stocfor2 64 slptestset 15 15 96 102 6159 6543 26907

167
Table A.2. Problem dimensions of multi-stage problems in our test-set.

Stage 1 Stage t DEQ

Instance Scenarios Stages Testset Cols Rows Cols Rows Cols Rows NZ
fxm3_6 64 3 posts 114 92 99 82 9492 6200 54589

fxm3_16 256 3 posts 114 92 99 82 64162 41340 370839
fxm4_6 216 4 posts 114 92 99 82 30732 22400 248989

fxm4_16 4096 4 posts 114 92 99 82 517282 386940 4518039
pltexpA3_6 64 3 posts 188 62 272 104 11612 4430 23611
pltexpA3_16 256 3 posts 188 62 272 104 74172 28350 150801
pltexpA4_6 216 4 posts 188 62 272 104 70364 26894 143059
pltexpA4_16 4096 4 posts 188 62 272 104 1188284 454334 2415889
pltexpA5_6 1296 5 posts 188 62 272 104 422876 161678 859747
pltexpA5_16 65536 5 posts 188 62 272 104 19014076 7270078 38657297
pltexpA6_6 7776 6 posts 188 62 272 104 2537948 970382 5159875
pltexpA6_16 1048576 6 posts 188 62 272 104 304226748 116321982 618519825
pltexpA7_6 46656 7 posts 188 62 272 104 15228380 5822606 30960643
scdp-64000 64000 4 scdp 83 45 61 37 2448923 1910325 10574919
scdp-1024 1024 6 scdp 95 49 85 45 55939 41397 248801
scdp-4096 4096 7 scdp 95 49 85 45 223811 165621 1000929
scdp-16384 16384 8 scdp 95 49 85 45 895299 662517 4009441
scdp-65536 65536 9 scdp 95 49 85 45 3581251 2650101 16043489

sgpf3y3 25 3 slptestset 87 38 51 39 1617 1208 4090
sgpf5y3 25 3 slptestset 139 62 79 63 2509 1952 6570
sgpf3y4 125 4 slptestset 87 38 51 39 7992 6083 20590
sgpf5y4 125 4 slptestset 139 62 79 63 12384 9827 33070
sgpf3y5 625 5 slptestset 87 38 51 39 39867 30458 103090
sgpf5y5 625 5 slptestset 139 62 79 63 61759 49202 165570
sgpf3y6 3125 6 slptestset 87 38 51 39 199242 152333 515590
sgpf5y6 3125 6 slptestset 139 62 79 63 308634 246077 828070

168
A
.
Test

problem
s

Table A.2. Problem dimensions (continued)
Stage 1 Stage t DEQ

Instance Scenarios Stages Testset Cols Rows Cols Rows Cols Rows NZ
sgpf3y7 15625 7 slptestset 87 38 51 39 996117 761708 2578090
sgpf5y7 15625 7 slptestset 139 62 79 63 1543009 1230452 4140570

stocfor2_7 2 7 slptestset 15 15 16 17 2031 2157 8847
stocfor3 4 7 slptestset 15 15 16 17 15695 16675 68627

WAT_C_10_16 16 10 watson 15 11 0 0 8401 4573 21368
WAT_C_10_32 32 10 watson 15 11 0 0 15553 8413 39848
WAT_C_10_64 64 10 watson 15 11 0 0 28097 15101 72648
WAT_C_10_128 128 10 watson 15 11 0 0 49153 26237 128648
WAT_C_10_256 256 10 watson 15 11 0 0 82177 43517 218888
WAT_C_10_512 512 10 watson 15 11 0 0 128001 67069 350728
WAT_C_10_768 768 10 watson 15 11 0 0 191994 100598 526078

WAT_C_10_1024 1024 10 watson 15 11 0 0 255987 134127 701428
WAT_C_10_1152 1152 10 watson 15 11 0 0 287949 150869 789028
WAT_C_10_1536 1536 10 watson 15 11 0 0 383927 201155 1052028
WAT_C_10_1920 1920 10 watson 15 11 0 0 479905 251441 1315028
WAT_C_10_2304 2304 10 watson 15 11 0 0 575883 301727 1578028
WAT_C_10_2688 2688 10 watson 15 11 0 0 671861 352013 1841028

WAT_I_10_16 16 10 watson 15 11 0 0 8401 4573 21368
WAT_I_10_32 32 10 watson 15 11 0 0 15553 8413 39848
WAT_I_10_64 64 10 watson 15 11 0 0 28097 15101 72648

WAT_I_10_128 128 10 watson 15 11 0 0 49153 26237 128648
WAT_I_10_256 256 10 watson 15 11 0 0 82177 43517 218888
WAT_I_10_512 512 10 watson 15 11 0 0 128001 67069 350728
WAT_I_10_768 768 10 watson 15 11 0 0 191994 100598 526078
WAT_I_10_1024 1024 10 watson 15 11 0 0 255987 134127 701428
WAT_I_10_1152 1152 10 watson 15 11 0 0 287949 150869 789028

169
Table A.2. Problem dimensions (continued)

Stage 1 Stage t DEQ

Instance Scenarios Stages Testset Cols Rows Cols Rows Cols Rows NZ
WAT_I_10_1536 1536 10 watson 15 11 0 0 383927 201155 1052028
WAT_I_10_1920 1920 10 watson 15 11 0 0 479905 251441 1315028

171

B. Test Results

This chapter contains detailed test results of our experiments in the form of tables. We do
not give detailed results for every tested parameter combination due to space considerations,
but give results for selected parameter combinations instead. Table B.1 gives the results
for two-stage problems. Table B.2 contains the iteration counts for manhattan level
decomposition with on-demand accuracy, whereas the iteration counts for infinity level
decomposition are given in Table B.3. Results for multi-stage problems are given in Table
B.4. Finally, detailed speed-up values are shown in Table B.5.

172
B
.
Test

R
esults

Table B.1. Computing times of several selected algorithms on the two-stage test set. The algorithms are Benders base case (BC),
Benders with on-demand accuracy (BC-ODA), Benders multi-cut (MC), euclidean level decomposition (LevelE), euclidean level
decomposition with on-demand accuracy (LevelE-ODA), infinity level decomposition (LevelI), infinity level decomposition with
on-demand accuracy (LevelI-ODA), manhattan level decomposition (LevelM), manhattan level decomposition with on-demand
accuracy (LevelM-ODA), and the deterministic equivalent solved with the barrier method (DEM). λ = 0.7 for level decomposition
without on-demand accuracy and λ = 0.5 for level decomposition with on-demand accuracy. κ = 0.5 for all on-demand accuracy
methods.

Instance BC BC-ODA MC LevelE LevelE LevelI LevelI LevelM LevelM-ODA DEM

20x20-1_400 0.13 0.10 0.10 0.15 0.16 0.15 0.13 0.13 0.11 0.36
20x20-1_450 0.13 0.11 0.10 0.19 0.13 0.17 0.12 0.12 0.12 1.02
20x20-1_500 0.14 0.14 0.11 0.20 0.13 0.15 0.13 0.16 0.13 0.35
20x40-1_400 0.13 0.11 0.12 0.15 0.21 0.13 0.16 0.15 0.14 0.59
20x40-1_450 0.15 0.13 0.14 0.18 0.16 0.16 0.18 0.16 0.14 0.66
20x40-1_500 0.15 0.15 0.13 0.23 0.16 0.15 0.16 0.14 0.15 0.64
20x60-1_400 0.96 0.48 0.39 0.49 0.37 0.55 0.41 0.49 0.39 0.48
20x60-1_450 1.04 0.54 0.51 0.55 0.41 0.58 0.45 0.55 0.41 0.65
20x60-1_500 1.15 0.65 0.52 0.52 0.46 0.73 0.46 0.55 0.48 0.82
40x20-1_400 0.19 0.15 0.13 0.19 0.22 0.16 0.16 0.16 0.20 0.42
40x20-1_450 0.18 0.15 0.12 0.21 0.20 0.16 0.16 0.18 0.18 0.40
40x20-1_500 0.23 0.16 0.14 0.20 0.19 0.19 0.17 0.20 0.20 0.38
40x40-1_400 0.23 0.16 0.19 0.25 0.27 0.20 0.18 0.18 0.20 1.35
40x40-1_450 0.24 0.19 0.18 0.26 0.28 0.25 0.19 0.20 0.19 2.96
40x40-1_500 0.28 0.19 0.19 0.22 0.20 0.23 0.23 0.23 0.20 1.48
40x60-1_400 1.43 0.68 0.50 0.62 0.51 0.72 0.52 0.64 0.41 0.98
40x60-1_450 1.46 0.71 0.66 0.76 0.51 0.75 0.58 0.72 0.51 1.11
40x60-1_500 1.88 0.80 0.56 0.91 0.57 0.80 0.55 0.76 0.58 0.99
60x20-1_400 0.50 0.36 0.23 0.44 0.47 0.37 0.37 0.45 0.37 0.37
60x20-1_450 0.57 0.38 0.23 0.45 0.37 0.40 0.38 0.41 0.37 0.58
60x20-1_500 0.64 0.40 0.27 0.48 0.41 0.43 0.41 0.48 0.41 0.56

173
Table B.1. Computing times (continued)

Instance BC BC-ODA MC LevelE LevelE LevelI LevelI LevelM LevelM-ODA DEM

60x40-1_400 1.42 0.64 0.46 0.68 0.55 0.61 0.54 0.69 0.52 0.94
60x40-1_450 1.71 0.73 0.50 0.69 0.58 0.76 0.60 0.72 0.58 0.98
60x40-1_500 1.74 0.76 0.56 0.72 0.58 0.72 0.59 0.92 0.53 1.01
60x60-1_400 2.08 0.69 0.52 0.69 0.72 0.88 0.62 0.81 0.55 1.40
60x60-1_450 2.38 0.74 0.64 0.85 0.62 0.89 0.60 0.90 0.62 1.53
60x60-1_500 2.62 0.76 0.73 1.09 0.65 0.96 0.73 1.14 0.68 1.60
100x20-1_400 0.86 0.55 0.30 0.74 0.85 0.56 0.57 0.67 0.77 0.62
100x20-1_450 0.87 0.52 0.32 1.05 1.02 0.70 0.66 0.75 0.79 0.58
100x20-1_500 0.84 0.70 0.34 1.05 1.10 0.76 0.65 0.76 0.72 0.69

stormG2_8 0.11 0.09 0.11 0.14 0.13 0.13 0.12 0.13 0.13 0.14
stormG2_27 0.18 0.14 0.11 0.20 0.17 0.17 0.15 0.20 0.17 0.72
stormG2_125 0.42 0.27 0.21 0.34 0.27 0.35 0.25 0.32 0.28 2.40

stormG2_1000 2.64 1.22 1.04 1.64 1.20 1.58 1.22 1.97 1.27 22.65
rand0_2000 1.90 0.97 0.60 1.17 0.93 1.24 0.86 1.24 1.05 4.00
rand0_4000 3.24 1.83 1.12 1.71 1.38 1.65 1.30 1.71 1.31 11.02
rand0_6000 7.26 3.52 1.94 3.38 2.49 3.56 2.66 3.69 2.73 16.30
rand0_8000 9.77 4.23 2.63 3.18 2.65 4.14 2.94 3.78 2.81 31.14

rand0_10000 22.91 8.61 3.85 5.70 4.50 7.58 5.27 6.58 5.19 45.46
rand1_2000 27.13 12.60 4.77 5.57 4.50 6.02 4.65 6.79 5.44 14.05
rand1_4000 59.97 25.54 9.92 8.74 6.51 11.03 9.46 11.19 7.67 33.38
rand1_6000 72.19 28.96 12.84 11.21 8.08 14.10 9.79 13.85 10.42 54.53
rand1_8000 112.81 41.83 18.78 17.15 11.58 18.91 13.23 21.01 12.35 85.96

rand1_10000 149.92 60.54 22.61 24.13 15.12 27.71 18.88 27.38 17.50 117.21
rand2_2000 168.04 73.65 23.46 13.85 10.32 19.25 14.02 22.09 17.39 41.37
rand2_4000 137.82 40.84 21.68 17.44 13.05 23.14 15.51 20.76 15.74 88.85
rand2_6000 280.81 81.04 39.84 28.87 21.97 39.22 25.33 39.03 30.34 152.73
rand2_8000 345.02 85.11 41.57 31.40 23.57 44.72 29.59 38.89 29.31 213.73

174
B
.
Test

R
esults

Table B.1. Computing times (continued)
Instance BC BC-ODA MC LevelE LevelE LevelI LevelI LevelM LevelM-ODA DEM

rand2_10000 607.98 183.96 67.16 47.34 35.88 70.69 46.36 68.05 42.28 269.10
20-1000 116.25 71.57 64.51 18.88 11.77 10.02 10.07 22.51 14.34 6.70
20-2000 204.58 217.00 120.96 34.02 20.19 19.77 28.36 41.07 18.33 13.17
20-3000 291.01 314.25 155.25 46.51 30.47 18.90 28.85 49.67 32.13 3600.00

gbd 120.55 74.94 65.72 143.44 109.86 142.15 106.92 192.26 129.96 245.53
LandS 229.11 83.73 59.41 163.52 73.97 170.65 84.14 186.32 71.12 131.60

ssn-1000 244.08 87.84 13.68 9.49 4.92 11.04 5.75 21.44 12.89 20.45
ssn-2000 437.13 107.34 26.80 26.36 16.18 30.76 16.72 50.08 30.87 58.00
ssn-3000 620.83 129.77 34.59 45.72 26.79 44.04 22.81 69.80 43.80 3600.00

storm-1000 3.20 1.30 1.17 1.86 1.38 1.76 1.34 2.22 1.43 22.92
storm-2000 5.89 2.57 2.24 3.08 2.63 4.03 2.46 3.57 2.28 52.35
storm-3000 8.65 3.49 3.05 4.84 3.57 4.97 3.75 5.90 3.42 83.41
saphir_50 57.25 31.42 12.96 35.80 29.41 36.64 29.64 39.36 36.69 7.54

saphir_100 80.11 50.31 19.80 52.64 45.68 59.64 56.68 60.58 54.24 3600.00
saphir_500 257.13 141.19 61.28 177.68 134.47 174.03 154.21 178.78 151.60 799.34
saphir_1000 393.63 249.46 196.26 256.74 239.32 236.00 190.20 262.20 233.14 3600.00

sslp_10_50_50 15.76 26.31 125.26 15.01 18.53 16.75 29.41 14.93 19.20 5.20
sslp_10_50_100 15.49 22.91 120.57 15.58 17.57 14.57 31.22 14.57 17.35 11.76
sslp_10_50_500 27.01 30.64 142.82 21.57 27.11 30.65 39.44 21.88 25.55 215.04
sslp_10_50_1000 48.03 41.63 144.55 35.05 37.79 49.19 56.01 33.74 34.64 754.38
sslp_10_50_2000 80.52 65.16 220.93 51.43 57.69 81.20 66.13 50.57 57.52 3476.78

sslp_15_45_5 1.90 3.23 1.86 5.00 4.78 2.25 3.17 5.05 3.45 0.13
sslp_15_45_10 5.35 11.59 4.18 6.08 7.29 5.48 7.65 5.87 7.60 0.48
sslp_15_45_15 5.00 11.65 7.50 7.15 7.29 6.41 5.87 6.76 6.68 0.29

airl 0.07 0.06 0.07 0.08 0.09 0.07 0.09 0.07 0.08 0.05
airl2 0.06 0.06 0.06 0.08 0.08 0.07 0.06 0.07 0.07 0.05

assets-small 0.09 0.06 0.07 0.09 0.09 0.09 0.08 0.09 0.08 0.05

175
Table B.1. Computing times (continued)

Instance BC BC-ODA MC LevelE LevelE LevelI LevelI LevelM LevelM-ODA DEM

assets-large 1.06 1.10 1.27 5.04 3.43 4.82 3.60 4.63 3.59 3.53
4node-2 0.09 0.09 0.10 0.16 0.14 0.11 0.11 0.12 0.13 0.05
4node-4 0.10 0.08 0.09 0.13 0.16 0.10 0.12 0.12 0.11 0.05
4node-8 0.11 0.11 0.10 0.16 0.13 0.12 0.11 0.13 0.10 0.05

4node-16 0.13 0.09 0.07 0.16 0.18 0.16 0.11 0.13 0.12 0.13
4node-32 0.18 0.12 0.11 0.17 0.18 0.16 0.12 0.15 0.13 0.16
4node-64 0.18 0.16 0.12 0.21 0.24 0.16 0.19 0.19 0.16 0.18
4node-128 0.29 0.18 0.16 0.27 0.30 0.24 0.23 0.21 0.20 0.13
4node-256 0.73 0.30 0.30 0.35 0.39 0.27 0.37 0.30 0.31 0.31
4node-512 1.35 0.55 0.35 0.62 0.55 0.54 0.52 0.48 0.44 1.50

4node-1024 2.18 0.86 0.46 0.94 0.60 0.83 0.69 0.89 0.64 3.03
4node-2048 6.09 2.07 1.50 1.76 1.37 1.40 1.19 1.54 1.26 2.78
4node-4096 15.99 4.76 3.23 3.59 2.82 2.96 2.59 3.33 2.77 6.91
4node-8192 33.73 9.97 6.37 7.64 4.97 5.37 4.43 6.03 6.17 11.21
4node-16384 69.28 18.95 10.13 14.31 12.21 10.79 9.08 12.00 12.13 22.13
4node-32768 145.33 29.78 25.01 27.32 21.81 22.40 17.71 23.24 23.99 52.66

chem 0.06 0.06 0.08 0.09 0.08 0.08 0.08 0.07 0.07 0.05
LandS 0.07 0.06 0.06 0.08 0.08 0.07 0.06 0.06 0.06 0.05

env-aggr 0.07 0.07 0.09 0.11 0.09 0.09 0.09 0.10 0.08 0.05
env-first 0.08 0.08 0.08 0.08 0.07 0.08 0.08 0.08 0.08 0.49
env-loose 0.07 0.07 0.07 0.08 0.08 0.06 0.06 0.06 0.08 0.05
env-imp 0.07 0.07 0.06 0.10 0.10 0.09 0.09 0.11 0.09 0.05
env-1200 0.21 0.18 0.21 0.74 0.53 0.73 0.45 0.63 0.55 2.36
env-1875 0.38 0.40 0.40 1.07 0.71 1.01 0.72 1.01 0.71 2.22
env-3780 0.76 0.73 0.89 2.04 1.41 1.94 1.37 2.05 1.44 5.77
env-5292 1.01 1.04 1.15 2.77 1.84 2.78 1.85 2.70 1.88 9.10
env-lrge 1.54 1.68 1.69 4.25 2.80 3.96 2.71 4.02 2.87 20.09

176
B
.
Test

R
esults

Table B.1. Computing times (continued)
Instance BC BC-ODA MC LevelE LevelE LevelI LevelI LevelM LevelM-ODA DEM

env-xlrge 5.91 6.15 6.49 16.75 10.95 16.16 10.82 16.18 11.83 3600.00
phone 1.37 1.34 1.36 1.05 1.12 1.08 1.14 1.05 1.15 18.16

stocfor2 0.10 0.09 0.08 0.11 0.10 0.10 0.10 0.12 0.10 0.06

177

Subst. Iterations Iterations Subst. It.
Overall It.

λ κ AM SGM AM SGM AM

0.1 0.1 50.99 33.52 107.16 61.67 0.48
0.1 0.3 44.01 29.29 107.77 63.05 0.41
0.1 0.5 39.45 26.51 112.92 65.73 0.35
0.1 0.7 35.87 24.07 115.53 68.00 0.31
0.1 0.9 34.16 23.06 124.53 74.89 0.27
0.3 0.1 50.61 34.97 86.54 56.18 0.58
0.3 0.3 45.31 31.56 88.20 57.74 0.51
0.3 0.5 43.00 28.64 93.26 60.06 0.46
0.3 0.7 40.59 27.38 97.04 62.94 0.42
0.3 0.9 37.86 25.74 99.84 65.44 0.38
0.5 0.1 53.86 36.83 86.27 56.67 0.62
0.5 0.3 48.79 33.77 86.70 56.69 0.56
0.5 0.5 45.78 31.17 89.28 57.94 0.51
0.5 0.7 43.93 30.09 94.52 61.72 0.46
0.5 0.9 42.05 29.02 98.50 66.11 0.43
0.7 0.1 58.35 41.69 89.35 58.91 0.65
0.7 0.3 53.56 38.58 89.86 59.82 0.60
0.7 0.5 51.42 36.39 93.08 61.84 0.55
0.7 0.7 50.28 35.05 97.48 64.84 0.52
0.7 0.9 48.51 34.06 100.20 68.75 0.48
0.9 0.1 79.65 60.16 108.56 75.71 0.73
0.9 0.3 75.40 57.42 110.10 76.59 0.68
0.9 0.5 72.44 54.67 112.02 77.90 0.65
0.9 0.7 69.10 52.72 114.56 81.91 0.60
0.9 0.9 71.47 53.28 124.80 90.67 0.57
0.1 107.63 60.68 107.63 60.68 1.00
0.3 89.50 55.73 89.50 55.73 1.00
0.5 85.24 54.51 85.24 54.51 1.00
0.7 90.40 57.93 90.40 57.93 1.00
0.9 107.94 75.18 107.94 75.18 1.00

Table B.2. Iteration counts for manhattan level decomposition with and without on-
demand accuracy, for different λ and κ combinations. The last column gives the amount
of substantial iterations with respect to all iterations as measured by the arithmetic mean.

178 B. Test Results

Subst. Iterations Iterations Subst. It.
Overall It.

λ κ AM SGM AM SGM AM

0.1 0.1 48.65 34.45 107.70 63.79 0.45
0.1 0.3 40.50 29.00 107.28 63.50 0.38
0.1 0.5 36.70 26.47 112.75 66.79 0.33
0.1 0.7 33.55 24.54 121.59 70.87 0.28
0.1 0.9 32.30 23.37 141.55 77.68 0.23
0.3 0.1 43.52 33.17 80.81 55.96 0.54
0.3 0.3 37.95 29.20 82.56 56.35 0.46
0.3 0.5 35.34 27.03 88.84 59.12 0.40
0.3 0.7 34.61 25.79 99.64 63.15 0.35
0.3 0.9 33.93 25.44 103.95 67.63 0.33
0.5 0.1 43.98 34.37 76.31 54.10 0.58
0.5 0.3 38.82 30.86 78.28 55.20 0.50
0.5 0.5 38.54 29.74 86.48 58.53 0.45
0.5 0.7 35.77 27.94 88.60 61.03 0.40
0.5 0.9 36.33 27.82 96.68 65.59 0.38
0.7 0.1 48.29 39.10 77.30 57.34 0.62
0.7 0.3 44.69 36.32 81.07 58.93 0.55
0.7 0.5 42.38 33.99 83.63 60.44 0.51
0.7 0.7 41.17 32.94 87.40 62.61 0.47
0.7 0.9 41.96 33.26 94.82 69.07 0.44
0.9 0.1 74.23 58.54 102.43 76.63 0.72
0.9 0.3 71.57 56.31 105.28 77.90 0.68
0.9 0.5 66.49 53.13 107.04 80.23 0.62
0.9 0.7 64.81 51.63 113.40 84.28 0.57
0.9 0.9 62.65 49.94 121.51 90.80 0.52
0.1 105.33 61.58 105.33 61.58 1.00
0.3 77.85 53.81 77.85 53.81 1.00
0.5 72.80 52.60 72.80 52.60 1.00
0.7 72.91 55.09 72.91 55.09 1.00
0.9 103.46 77.17 103.46 77.17 1.00

Table B.3. Iteration counts for infinity level decomposition with and without on- de-
mand accuracy, for different λ and κ combinations. The last column gives the amount of
substantial iterations with respect to all iterations as measured by the arithmetic mean.

179
Table B.4. Computional results for the multi-stage test set for different sequencing protocols: FastForwardFastBack (FFFB),
FastForward (FF), FastBack (FB), ε-variants of the former, and the dynamic protocol.

Instance FFFB FF FB ε-FF-0.01 ε-FF-0.064 ε-FF-0.1 ε-FB-0.01 ε-FB-0.064 ε-FB-0.1 Dynamic

sgpf3y3 0.06 0.06 0.06 0.06 0.06 0.08 0.06 0.06 0.06 0.06
sgpf3y4 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08
sgpf3y5 0.11 0.12 0.09 0.10 0.09 0.10 0.09 0.09 0.09 0.09
sgpf3y6 0.27 0.54 0.24 0.29 0.28 0.27 0.24 0.22 0.24 0.22
sgpf3y7 0.95 3.56 0.81 0.97 0.97 0.96 0.73 0.73 0.74 0.74
sgpf5y3 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06
sgpf5y4 0.08 0.06 0.07 0.07 0.08 0.09 0.08 0.07 0.09 0.08
sgpf5y5 0.09 0.08 0.09 0.09 0.09 0.09 0.08 0.09 0.09 0.09
sgpf5y6 0.19 0.22 0.17 0.21 0.16 0.17 0.19 0.19 0.22 0.20
sgpf5y7 0.58 0.61 0.62 0.62 0.63 0.59 0.59 0.58 0.60 0.63

stocfor2_7 0.12 0.34 0.34 0.14 0.12 0.13 0.18 0.15 0.14 0.13
stocfor3 0.36 1.52 1.11 0.36 0.36 0.36 0.42 0.34 0.36 0.35
fxm3_16 0.34 0.35 0.37 0.30 0.33 0.34 0.36 0.33 0.42 0.32
fxm3_6 0.13 0.15 0.18 0.13 0.13 0.13 0.14 0.16 0.16 0.13
fxm4_16 0.76 0.89 0.58 0.80 0.68 0.71 0.60 0.62 0.64 0.72
fxm4_6 0.17 0.19 0.16 0.17 0.17 0.17 0.16 0.14 0.16 0.16

pltexpA3_16 0.13 0.23 0.11 0.15 0.13 0.13 0.09 0.11 0.10 0.09
pltexpA3_6 0.08 0.11 0.08 0.08 0.08 0.09 0.08 0.08 0.08 0.08
pltexpA4_16 1.08 41.71 0.59 2.78 1.72 1.59 0.64 0.59 0.64 0.66
pltexpA4_6 0.16 1.69 0.15 0.33 0.22 0.19 0.14 0.13 0.12 0.12
pltexpA5_16 16.94 2256.38 9.02 50.20 32.17 32.93 9.09 9.58 10.47 9.94
pltexpA5_6 0.48 36.28 0.55 1.64 1.17 1.19 0.37 0.33 0.34 0.42
pltexpA6_16 343.70 3600.00 144.40 1826.81 895.73 724.72 166.43 182.91 198.80 197.66
pltexpA6_6 2.61 3182.16 3.54 12.32 5.30 4.04 1.51 1.70 1.75 1.73
pltexpA7_6 14.94 3600.00 22.03 51.24 31.04 32.72 8.86 9.57 10.33 9.97
scdp-1024 1.13 1.18 2.48 1.16 1.15 1.15 2.86 2.09 1.88 1.76

scdp-16384 8.23 8.35 7.41 8.29 8.42 8.44 6.08 5.16 4.46 4.41
scdp-4096 2.57 2.60 4.33 2.58 2.59 2.61 3.88 2.01 2.11 2.36

scdp-64000 8.14 8.19 4.56 7.97 8.17 8.10 4.49 4.48 4.50 4.41
scdp-65536 34.45 36.29 20.15 35.00 35.20 35.33 19.21 17.88 17.20 13.72

180
B
.
Test

R
esults

Table B.4. Computational results for the multi-stage test set (continued)
Instance FFFB FF FB ε-FF-0.01 ε-FF-0.064 ε-FF-0.1 ε-FB-0.01 ε-FB-0.064 ε-FB-0.1 Dynamic

WAT_C_10_1024 0.65 2.29 2.21 0.64 0.65 0.64 1.03 0.73 0.66 0.70
WAT_C_10_1152 0.71 2.56 1.55 0.72 0.71 0.71 0.83 0.65 0.72 0.68
WAT_C_10_128 0.22 0.43 0.36 0.24 0.23 0.23 0.25 0.23 0.20 0.20

WAT_C_10_1536 0.94 3.06 3.02 0.97 0.96 0.98 1.22 1.02 0.97 0.99
WAT_C_10_16 0.10 0.16 0.14 0.15 0.10 0.11 0.16 0.10 0.11 0.11

WAT_C_10_1920 1.18 3.45 3.65 1.22 1.19 1.18 1.66 1.29 1.15 1.15
WAT_C_10_2304 1.79 15.87 7.25 1.89 1.89 1.87 2.07 1.44 1.42 1.46
WAT_C_10_256 0.29 0.62 0.76 0.32 0.30 0.29 0.37 0.31 0.28 0.29

WAT_C_10_2688 1.86 6.94 5.46 1.84 1.83 1.83 2.17 1.59 1.51 1.58
WAT_C_10_32 0.12 0.21 0.18 0.13 0.12 0.13 0.14 0.14 0.13 0.12
WAT_C_10_512 0.38 0.79 0.69 0.35 0.36 0.34 0.47 0.36 0.34 0.34
WAT_C_10_64 0.18 0.46 0.60 0.21 0.20 0.19 0.34 0.24 0.21 0.19
WAT_C_10_768 0.55 1.52 1.32 0.56 0.54 0.55 0.70 0.52 0.51 0.55
WAT_I_10_1024 0.85 4.95 3.14 0.86 0.87 0.86 1.08 0.83 0.81 0.93
WAT_I_10_1152 2.56 5.44 6.34 2.96 2.96 2.68 3.25 3.41 3.30 2.75
WAT_I_10_128 0.24 0.66 0.80 0.23 0.25 0.24 0.30 0.27 0.23 0.27
WAT_I_10_1536 3.43 157.33 11.33 3.17 3.38 3.71 4.34 4.07 4.16 3.24

WAT_I_10_16 0.11 0.12 0.13 0.09 0.10 0.09 0.15 0.12 0.11 0.11
WAT_I_10_1920 3.69 27.68 14.24 4.01 4.20 3.92 4.81 5.48 3.81 3.82
WAT_I_10_256 0.39 0.94 0.96 0.40 0.40 0.40 0.51 0.43 0.40 0.40
WAT_I_10_32 0.11 0.18 0.20 0.11 0.12 0.12 0.16 0.13 0.13 0.13

WAT_I_10_512 0.42 1.97 1.23 0.46 0.43 0.45 0.57 0.41 0.40 0.40
WAT_I_10_64 0.18 0.45 0.62 0.19 0.20 0.18 0.34 0.23 0.19 0.22

WAT_I_10_768 0.68 3.31 1.87 0.68 0.68 0.69 0.85 0.63 0.66 0.67

181

1 2 3 4 5 6 7 8

Benders BC 1.00 1.91 2.75 3.46 3.74 4.08 4.29 4.55
LevelE 1.00 1.84 2.62 3.17 3.42 3.57 3.73 3.80

LevelE-ODA 1.00 1.75 2.45 2.88 3.07 3.24 3.31 3.40
Benders-ODA 1.00 1.70 2.27 2.70 2.88 3.00 3.14 3.16

LevelM 1.00 1.89 2.59 3.24 3.47 3.73 3.77 3.84
LevelM-ODA 1.00 1.76 2.54 3.03 3.22 3.34 3.50 3.47

LevelI 1.00 1.85 2.59 3.29 3.49 3.73 3.88 3.94
LevelI-ODA 1.00 1.79 2.42 2.84 2.98 3.07 3.20 3.18
Benders MC 1.00 1.02 1.04 1.04 1.05 1.05 1.05 1.04

Table B.5. Speedup of the algorithms Benders base case (Benders BC), euclidean level
decomposition (LevelE), euclidean level decomposition with on-demand accuracy (LevelE-
ODA), single-cut Benders with on-demand accuracy (Benders-ODA), manhattan level de-
composition (LevelM), manhattan level decomposition with on-demand accuracy (LevelM-
ODA), infinity level decomposition (LevelI), infinity level decomposition with on-demand
accuracy (LevelI-ODA), and multi-cut Benders (Benders MC) for different number of
threads.

183

List of Figures

2.1. A polyhedron with extreme points and extreme rays. 10
2.2. A taxonomy of stochastic LPs . 12
2.3. Staircase structure of program (2.14). 16

3.1. Scenario tree with six scenarios and three stages. 22

8.1. Scenario tree with six scenarios and three stages. 88

10.1. Performance profile of the L-shaped method for different cut aggregation
levels. 104

10.2. Performance profile of the euclidean level decomposition method with
varying λ. 110

10.3. Performance profile of the manhattan level decomposition method with
varying λ. 111

10.4. Performance profile of the infinity level decomposition method with vary-
ing λ. 112

10.5. Scatter plot of the computing times and the iteration counts, both given
via the shifted geometric mean for all level decomposition variants. 114

10.6. Unit shapes for the l1, l2, and l∞ norm in two dimensions. 115
10.7. Performance profile of the best level decomposition methods, Benders-BC

and deterministic equivalent solvers. 119
10.8. Performance profile of the single-cut L-shaped method with on-demand

accuracy and varying κ. 120
10.9. Comparison of computing time spent in each stage for on-demand accuracy

methods . 131
10.10. Speedup of different algorithms. 135
10.11. Amount of computing time of the first stage compared to overall computing

time. 136
10.12. Performance profile of several methods with parallel execution. 137
10.13. Performance profile of several methods with sequential execution. 137
10.14. Performance profile of different sequencing protocols. 139

185

List of Tables

10.1. Computing times for different number of aggregates 104
10.2. Iteration counts for different number of aggregates 105
10.3. Stage-wise computing times for different number of aggregates 106
10.4. Computing times for cut consolidation . 107
10.5. Iteration counts for cut consolidation . 108
10.6. Computing times for euclidean level decomposition 109
10.7. Computing times for manhattan level decomposition 111
10.8. Computing times for infinity level decomposition 112
10.9. Iteration counts for level decomposition methods 113
10.10. Computing times for level decomposition methods with different number

of aggregates . 117
10.11. Iteration counts for level decomposition methods with different number

of aggregates . 118
10.12. Computing times for L-shaped method with on-demand accuracy 120
10.13. Iteration counts for L-shaped method with on-demand accuracy 121
10.14. Computing times for euclidean level decomposition with on-demand accuracy122
10.15. Iteration counts for euclidean level decomposition with on-demand accuracy124
10.16. Computing times for manhattan level decomposition 125
10.17. Computing times for infinity level decomposition 126
10.18. Computing times of Benders and level decomposition methods with on-

demand accuracy for different aggregates. 128
10.19. Iteration counts of Benders and level decomposition methods with on-

demand accuracy for different aggregates. 129
10.20. Computing times of Benders and level decomposition methods with on-

demand accuracy for different aggregates and single ODA cuts. 130
10.21. Performance impact of advanced start solutions for Benders 132
10.22. Performance impact of advanced start solutions for the level decomposition

method . 133
10.23. Performance impact of advanced start solutions for Benders with on-

demand accuracy . 134
10.24. Computing times of the parallel nested L-shaped method for different

sequencing protocols . 138
10.25. Iteration counts of Benders BC on multi-stage test set with different

sequencing protocols. 139
10.26. Confidence intervals for SAA . 141
10.27. Computing times for SAA . 142

186 List of Tables

A.1. Problem dimensions of two-stage problems in our test set. 162
A.2. Problem dimensions of multi-stage problems in our test-set. 167

B.1. Computing times of different algorithms on the two-stage test set 172
B.2. Iteration counts for manhattan level decomposition with on-demand ac-

curacy . 177
B.3. Iteration counts for infinity level decomposition with on-demand accuracy 178
B.4. Computional results for the multi-stage test set for different sequencing

protocols . 179
B.5. Speedup of algorithms for different number of threads 181

187

List of Algorithms

1. Multi-cut L-shaped method . 39

2. Hybrid-cut nested L-shaped method . 50
3. General sequencing protocol . 52
4. FastForward sequencing protocol . 52
5. FastBack sequencing protocol . 53
6. FastForwardFastBack sequencing protocol 53
7. ε-FastForward sequencing protocol . 53
8. ε-FastBack sequencing protocol . 53
9. Bouncing sequencing protocol . 54

10. CutRemovalByRedundancy heuristic . 74
11. CutConsolidation heuristic with thresholds α and β 75
12. Dynamic sequencing protocol . 76
13. Parallel nested L-shaped method . 78
14. HandleSuproblem(v) . 78
15. AggregateCuts(v) . 79
16. Hybrid-cut L-shaped method with on-demand accuracy 84
17. Hybrid-cut Level decomposition with on-demand accuracy 87

	Introduction
	Fundamentals
	Stochastic Programming Preliminaries
	Mathematical Programs
	Stochastic Programs
	Basic Probability Theory
	Two-Stage Stochastic Programs
	Multi-Stage Stochastic Programs
	Basic Properties

	Solution Methods
	Scenario Tree
	Deterministic Equivalent
	Benders Decomposition
	Lagrangean Relaxation
	Approximative Solution Methods
	Exterior Sampling
	Interior Sampling
	Scenario Tree Generation

	State-of-the-Art
	Benders Decomposition
	Notational Reconcilation
	Aggregates
	Stabilizing the master problem
	Regularized Decomposition
	Level Decomposition
	Trust-Region Method

	Cut Generation
	Solving Similar Subproblems

	Nested Benders Decomposition
	Nested L-shaped method
	Sequencing Protocols
	Parallelization
	Advanced Start
	Stage Aggregation

	Modeling Languages
	Theoretical Concepts
	Practical Examples

	Required Work
	Solver Development
	Modeling Languages

	Advanced Techniques and Computational Results
	Accelerating the Nested Benders Decomposition
	Cut Consolidation
	Dynamic Sequencing
	Parallelization
	Aggregation
	On-Demand Accuracy
	Level decomposition
	Extending techniques to the multi-stage case

	A Modeling Environment for Stochastic Programs
	Computational Results
	Test Instances
	Evaluation Techniques
	Implementation Aspects
	Implementation
	Solving a subproblem
	Warm Start
	Tolerances

	Computing environment
	Evaluation of Two-Stage Acceleration Techniques
	Cut Aggregation
	Cut consolidation
	Level decomposition
	On-demand accuracy
	Advanced start solution

	Effect of Parallelization
	Evaluation of Multi-Stage Acceleration Techniques
	Sequencing protocols

	SAA and Parallel Benders
	Conclusion

	Summary and Conclusion
	Bibliography
	Test problems
	Test Results
	List of Figures
	List of Tables
	List of Algorithms

