Anomaly detection as a one-class problem in discrete event systems / Timo Klerx. Paderborn, 2017
Inhalt
- 1 Introduction
- 2 Fundamentals
- 2.1 Probability Density Functions
- 2.2 System classes
- 2.3 Automata classes
- 2.4 Automata Inference Algorithms
- 2.4.1 Common Elements
- 2.4.2 Learning Untimed Automata
- 2.4.3 Learning Timed Automata
- 2.4.4 Algorithm Analysis Frameworks
- 2.5 One-class Classification
- 3 Related Work
- 3.1 Research Area Overview
- 3.2 Process Mining
- 3.3 Grammatical Inference
- 3.4 Sequence-based Anomaly Detection
- 3.5 Other Anomaly Detection Approaches
- 4 Anomaly Detection with PDTTAs
- 4.1 Motivation
- 4.2 Probabilistic Deterministic Timed Transition Automaton (PDTTA)
- 4.3 Learning PDTTAs
- 4.3.1 PDTTA Learning Algorithm ProDTTAL
- 4.3.2 Runtime Complexity
- 4.3.3 Convergence of ProDTTAL
- 4.3.4 Properties of Timed Automata Inference Algorithms
- 4.4 Anomaly Detection
- 4.5 Anomaly Detection in a Two-/Multi-class Setting
- 5 Anomaly Detection Evaluation
- 5.1 Performance Metrics
- 5.2 The Curse of One-class Evaluation
- 5.2.1 Anomalies in Discrete Event Systems
- 5.2.2 Random anomalies
- 5.2.3 Model-based simulated anomalies
- 5.2.4 Anomaly Rate
- 5.3 Experiment Design / Scaling of Experiments
- 6 Experimental Evaluation
- 6.1 Hyperparameter Tuning
- 6.2 Experiment Setup
- 6.3 Preliminary Synthetic Experiments
- 6.4 Synthetic Data Evaluation
- 6.4.1 Direct Anomaly Insertion
- 6.4.2 Additional Results for the Initial PDRTA
- 6.4.3 PDRTA Data Generation
- 6.4.4 PDTTA Data Generation
- 6.4.5 PNTTA Data Generation
- 6.5 Real-world Data Evaluation
- 6.6 Evaluation of Algorithm Scaling
- 7 Conclusion and Future Work
- A Experimental Evaluation
- Acronyms
- Notation
- Bibliography
- PDF
Änderung der Wahlordnung für die Wahl zum Fakultätsrat und für die Wahl des Dekanats bzw. der Dekanin oder des Dekans und der Prodekanin oder des Prodekans der Fakultät für Kulturwissenschaften an der Universität Paderborn