
Classification and
Approximation of Geometric

Location Problems

Sascha Brauer, M. Sc.

June 4, 2019

A dissertation submitted to the
Department of Computer Science

Paderborn University

for the degree of
Doktor der Naturwissenschaften

(doctor rerum naturalium)

accepted on the recommendation of

Prof. Dr. Johannes Blömer
Paderborn University

Prof. Dr. Heiko Röglin
University of Bonn

defended on
September 25, 2019

Acknowledgements

I would like to start by thanking my advisor Prof. Dr. Johannes Blömer.
He gave me the opportunity to work in his group and provided a
collaborative research environment, as well as the freedom to pursue
my own research interests.

I conducted the research on this thesis while employed at Paderborn
University. This was partly supported by the German Research Foun-
dation (DFG) under grant BL 314/8-1. I am grateful for the funding I
received.

Over the years, there were many colleagues that contributed to
my research in one way or the other. My co-author Dr. Kathrin
Bujna, the political action committee Jan Bobolz and Nils Löken, the
gaming collective Fabian Eidens and Dr. Jakob Juhnke, and the old
men Dr. Peter Günther and Dr. Gennadij Liske. I want to thank all
of you for the countless fruitful discussions. I also want to thank
Prof. Dr. Alexander Skopalik for providing motivation for some of my
work and Pascal Bemmann and Dr. Gareth Davies for proofreading
parts of my thesis. Furthermore, I am thankful to Claudia Jahn for her
invaluable administrative work and the professional social counselling.

There are a lot of people outside of my working environment which
helped me by providing getaways. There is Dominik Buder as one of
the constants throughout my life. Also, Robert Kreutzer and Patrick
Schönlau from Team Lauch, who kept challenging me to always im-
prove myself. To all the other guys and gals I cannot name here: Thank
you for being there.

Last but not least I want to thank my family. This includes my
parents, my brother Marc, and my in-laws for allowing me to grow up
to be the person I am today. In particular however, my wife Anna for
always being by my side and enduring all our decisions with me.

iii

Abstract

In this thesis we explore aspects of computational complexity and
algorithms with a guaranteed approximation ratio for several geometric
location problems. The main focus is on the FUZZY k-MEANS problem,
a problem that has so far not been subject of a substantial theoretical
analysis.

The first part of the thesis focuses on hardness and impossibility
results. We show that a variant of DISCRETE FUZZY k-MEANS on metric
spaces, as well as a newly defined radius variant of that problem, are
NP-hard. A popular algorithmic approach to these problems is the
single-swap heuristic. This local search algorithm iteratively swaps
a single representative for another candidate until it finds a stable
solution. We prove that this algorithm is tightly PLS-complete for
METRIC UNCAPACITATED FACILITY LOCATION, DISCRETE k-MEANS, and
DISCRETE FUZZY k-MEANS. This means that, in the worst case, it
takes an exponential number of iterations until a single-swap local
search terminates. We conclude the first part by showing that optimal
solutions of the general FUZZY k-MEANS problem are not solvable by
radicals over the rational numbers. Thus, there are instances where
optimal solutions cannot be represented by a finite concatenation of
rational numbers using elementary arithmetic and extracting roots. In
consequence, any algorithm trying to solve the problem can at most
find an approximately optimal solution.

The second part of the thesis discusses algorithmic techniques.
We present an algorithm approximating the FUZZY k-MEANS problem
with a factor of (1 + ε). Our algorithm improves previously presented
algorithms as its runtime is independent of any weight of the input
points and the exponential dependence on the number of clusters is
linear. Furthermore, we show that our radius variant of that problem
can be solved in polynomial time for instances on the real line and with
two clusters. We complement our algorithmic results by presenting a
construction of small coresets for FUZZY k-MEANS.

v

Zusammenfassung

In dieser Arbeit untersuchen wir komplexitätstheoretische Aspekte
und Algorithmen mit garantierter Approximationsgüte für verschiedene
Probleme der geometrischen Platzierung. Der Fokus liegt dabei auf
dem FUZZY k-MEANS Problem, welches bisher nicht substantiell theo-
retisch untersucht wurde.

Der erste Teil der Arbeit beschäftigt sich mit Härte- und Unmöglich-
keitsresultaten. Wir zeigen, dass eine Variante von DISCRETE FUZZY k-
MEANS auf metrischen Räumen, sowie eine hier neu definierte Radius-
variante dieses Problems, NP-schwer sind. Eine beliebte algorithmi-
sche Herangehensweise an diese Probleme ist die single-swap Heuris-
tik. Dieser lokale Suchalgorithmus tauscht iterativ einen Repräsen-
tanten der aktuellen Lösung gegen einen anderen Kandidatenpunkt,
bis eine stabile Lösung gefunden wird. Wir beweisen, dass dieser
Algorithmus für die Probleme METRIC UNCAPACITATED FACILITY LO-
CATION, DISCRETE k-MEANS und DISCRETE FUZZY k-MEANS streng
PLS-vollständig ist. Das heißt, dass im worst-case exponentiell viele
Iterationen benötigt werden, bis eine single-swap Suche terminiert.
Zum Abschluss des ersten Teils zeigen wir, dass optimale Lösungen
des allgemeinen FUZZY k-MEANS Problems nicht durch Radikale über
den rationalen Zahlen lösbar sind. Es gibt also Instanzen, deren
optimale Lösungen nicht durch eine endliche Verkettung rationaler
Zahlen durch die Grundrechenarten und das Ziehen von Wurzeln
dargestellt werden können. Folglich kann jeder Algorithmus, der ver-
sucht, das Problem zu lösen, höchstens eine approximativ optimale
Lösung finden.

Der zweite Teil der Arbeit diskutiert algorithmische Techniken. Wir
präsentieren einen Algorithmus, der das FUZZY k-MEANS Problem mit
Faktor (1+ε) approximiert. Dieser Algorithmus stellt eine Verbesserung
bisher bekannter Algorithmen dar, da seine Laufzeit unabhängig von
der Gewichtung der Eingabepunkte ist und die exponentielle Ab-
hängigkeit von der Anzahl an Clustern linear ist. Des Weiteren zeigen
wir, dass unsere Radiusvariante dieses Problems für eindimension-
ale Instanzen mit zwei Clustern in polynomieller Zeit gelöst werden
kann. Wir ergänzen unsere algorithmischen Ergebnisse durch eine
Konstruktion kleiner Kernmengen für FUZZY k-MEANS.

vii

Contents

1 Introduction 1
1.1 Outline . 2
1.2 Publication Notes . 3

I Fundamentals 5

2 Remarks on Notation 7

3 Problem Statements 11
3.1 Facility Location . 11
3.2 Clustering . 14

3.2.1 Hard Clustering 18
3.2.2 Soft Clustering . 20
3.2.3 Discussion . 24
3.2.4 Further Analysis 25

3.3 Related Work . 27

II Classification and Impossibility 29

4 Classical Hardness 31
4.1 Basics of Computational Complexity 32
4.2 Discrete Clustering Problems 34
4.3 Related Work . 36
4.4 Towards a Classification of DFKM 36

4.4.1 Construction . 38
4.4.2 Correctness . 39

4.5 Parameterized Hardness of DFRKM 44
4.6 DKM is Hard in Fixed Dimensions 47

5 Complexity of Single-Swap Local Search 51
5.1 Polynomial Local Search 53
5.2 Related Work . 58
5.3 Completeness of MUFL/SingleSwap 59

5.3.1 Construction . 60

ix

Contents

5.3.2 Correctness . 60
5.3.3 Tightness . 64

5.4 Completeness of DKM/SingleSwap 65
5.4.1 Construction . 66
5.4.2 Correctness and Tightness 67
5.4.3 Embedding . 72

5.5 Completeness of DFKM/SingleSwap 75
5.5.1 Construction . 76
5.5.2 Correctness, Tightness, and Embedding 77

6 Non-Representability of Solutions 87
6.1 Algebraic Basics . 88
6.2 Related Work . 90
6.3 Unsolvability of Optimal FKM Solutions 90
6.4 Implementation of the Finite Taylor Grid 97

III Approaching Hard Problems 101

7 Approximation Algorithms 103
7.1 Related Work . 104
7.2 A PTAS for FKM With Fixed Number of Clusters 105

7.2.1 From Soft to Hard Clusters 106
7.2.2 A Sampling Based Approach 111

7.3 Solving Small FRKM Instances 114

8 Coresets 119
8.1 Related Work . 120
8.2 Small Coresets for FKM 120

8.2.1 From Weak to Strong via Non-Negligibility 122
8.2.2 Weak Coresets for Non-Negligible Solutions . . . 125

8.3 Applying FKM Coresets 132
8.4 Correctness of our Weak Coreset Algorithm 133

9 Future Research 143

Bibliography 145

x

List of Abbreviations

UFL UNCAPACITATED FACILITY LOCATION

MUFL METRIC UNCAPACITATED FACILITY LOCATION

KM k-MEANS

RKM RADIUS k-MEANS

FKM FUZZY k-MEANS

FRKM FUZZY RADIUS k-MEANS

DKM DISCRETE k-MEANS

DRKM DISCRETE RADIUS k-MEANS

DFKM DISCRETE FUZZY k-MEANS

DFRKM DISCRETE FUZZY RADIUS k-MEANS

X3C EXACT COVER BY 3-SETS

TSP TRAVELLING SALESMAN PROBLEM

DS DOMINATING SET

P3NAESAT POSITIVE 3-NOTALLEQUAL-SAT

M2SAT MAX 2-SAT

PM2NAESAT POSITIVE MAX 2-NOTALLEQUAL-SAT

MC MAX CUT

PTAS Polynomial Time Approximation Scheme

xi

Introduction 1
In the digital age, data is abundant, and new data is generated at
an unprecedented rate. Already in 2016, the search engine Google
reported that they processed more than two trillion searches in the
previous twelve months1. Assuming the average search query consists
of only four letters (which is probably a conservative estimate), this
yields roughly 22 gigabytes of data every day – just for the queries.
The popular multimedia messaging app Snapchat currently claims
that their users create three billion snaps per day2. In its simplest
form, a snap is a 1920× 1080 pixel image with an accompanying short
text. Provided they use some standard image compression, this is
more than 1 petabyte of daily image data. Storing and distributing
such amounts of data is already difficult. But what if these companies
are interested in analyzing their data? Designing sophisticated and
efficient algorithms for huge data sets is a daunting task. A popu-
lar technique for unsupervised analysis or pre-processing of data is
clustering.

Clustering constitutes a wide field of tasks, which occur in different
types of applications of data analysis. The core goal of a clustering
is to identify groups of similar elements in the data set, and find a
somehow suitable representative for each group. One popular class of
clustering tasks are the geometric location problems. In these types of
problems, elements of the data set are assumed to be points in some
geometric sense, for example, elements of some general metric space
or d-dimensional Euclidean space. These problems are divided into
two different categories: the hard clustering and the soft clustering
problems. In a hard clustering problem, the data points are partitioned
into subgroups, the so-called clusters. Each point of the data set
belongs to exactly one cluster. In a soft clustering problem, points

1https://www.blog.google/products/ads/ads-and-analytics-innovations
-for-a-mobile-first-world/, last access: 22.05.2019

2https://forbusiness.snapchat.com/home, last access: 22.05.2019

1

https://www.blog.google/products/ads/ads-and-analytics-innovations-for-a-mobile-first-world/
https://www.blog.google/products/ads/ads-and-analytics-innovations-for-a-mobile-first-world/
https://forbusiness.snapchat.com/home

INTRODUCTION

can be divided among clusters. That is, some fraction of a data
point might belong to one cluster, while another fraction of the same
point belongs to some other cluster. One popular soft clustering
problem is FUZZY k-MEANS, which regularly finds applications in, for
example, image segmentation and analysis of medical data. Despite
its popularity in practice, the theory of the FUZZY k-MEANS problem
is poorly understood. A simple heuristic called the FUZZY k-MEANS

algorithm, which is usually applied to solve the problem, provides no
guarantees in terms of runtime or quality of the produced solutions.
The goal of this thesis is to obtain a foundation of the theory of FUZZY

k-MEANS in terms of computational complexity and algorithms with
provable approximation ratio. We further show that some of the
techniques we develop can also be applied to other clustering problems,
such as METRIC UNCAPACITATED FACILITY LOCATION and k-MEANS,
and yield new insights into these problems, as well.

1.1 Outline

This thesis is organized in three parts. In Part I, we present the
notational and formal basis of our work. We introduce different prob-
lems which we analyze in the subsequent parts. Furthermore, we
discuss how these problems are related to one another and provide
some elementary analysis. In Part II, we present negative results of
our analysis. For some of our problems, we discuss hardness in the
classical sense (Chapter 4) and hardness of a popular local search
algorithm called the single-swap heuristic (Chapter 5). Afterwards,
we prove that optimal solutions of the FUZZY k-MEANS problem can
not be represented finitely (Chapter 6). In Part III, we present positive
algorithmic techniques. More specifically, we present two different
types of results: algorithms with performance guarantees (Chapter 7)
and the construction of small coresets (Chapter 8).

2

1.2 Publication Notes

1.2 Publication Notes

Several of the results presented in this thesis were developed in coop-
eration with coauthors and have already been published:

[Blömer et al., 2016a]

Johannes Blömer, Sascha Brauer, and Kathrin Bujna
A Theoretical Analysis of the Fuzzy K-Means Problem
presented at the 16th International Conference on Data Mining,
ICDM 2016

[Brauer, 2017]

Sascha Brauer
Complexity of Single-Swap Heuristics for Metric Facility Location
and Related Problems
presented at the 10th International Conference on Algorithms and
Complexity, CIAC 2017

[Blömer et al., 2018]

Johannes Blömer, Sascha Brauer, and Kathrin Bujna
Coresets for Fuzzy K-Means with Applications
presented at the 29th International Symposium on Algorithms
and Computation, ISAAC 2018

[Brauer, 2019]

Sascha Brauer
Complexity of Single-Swap Heuristics for Metric Facility Location
and Related Problems
Theoretical Computer Science, Volume 754

3

Part I

Fundamentals

Remarks on Notation 2
A core concept used throughout this thesis is that of a data set – an
unordered collection of elements. For most of the following, it is not
important whether the elements in a data set are pairwise distinct.
Collections allowing multiple instances of the same element are mostly
known as multisets or bags. There is no generally-agreed-upon no-
tation differentiating multisets from the well-established notion of a
set, which of course contains no duplicate elements. In a disquisition
about notations he adopted over the years, Edsger W. Dijkstra wrote,

“Not making superfluous distinctions should always be encouraged;
it is bad enough that we don’t have a canonical representation for

the unordered pair.”
[Dijkstra, 2000]

In this spirit, we abuse standard notation by not explicitly discrimi-
nating between the notation of sets and multisets. Consequently, all
operations on sets have to be generalized accordingly. Let X,Y be two
multisets and let u be an element from the underlying universe.

• The relation u ∈ X is true if and only if element u occurs in X at
least once.

• All operations iterating over a multiset (for example, ∀x ∈ X,∑
x∈X , or Πx∈X) consider each element individually, respecting

multiple occurrences of the same element.

• The size of a multiset is |X| =
∑

x∈X 1.

• The multiplicity of each element in X is mX(u) = |{x ∈ X | x = u}|.

• In the union X ∪ Y , the number of times each element occurs is
equal to the maximum of the number of times it occurs in X and
Y , that is mX∪Y (u) = max{mX(u),mY (u)}.

7

REMARKS ON NOTATION

• In the intersection X ∩ Y , the number of times each element
occurs is equal to the minimum of the number of times it occurs
in X and Y , that is mX∩Y (u) = min{mX(u),mY (u)}.

• In the sum X +Y of two multisets (a generalization of the disjoint
union), the number of times each element occurs is equal to
the sum of the number of times it occurs in X and Y , that is
mX+Y (u) = mX(u) + mY (u).

• In the difference X\Y , the number of times each element occurs is
the maximum of 0 and the difference between the number of times
it occurs in X and in Y , that is mX\Y (u) = max{0,mX(u)−mY (u)}.

• The relation X ⊆ Y (X ⊂ Y) is true if each elements occurs in
Y at least as often as (more often than) it occurs in X, that is if
mX(u) ≤ mY (u) (mX(u) < mY (u)).

• Further multiset operation can de derived from the above, as
usual.

The advantage of this is that we can use sets and multisets without
having to jump back and forth between notations. Notice that for
multisets where the multiplicity of each element is 1, this notation is
consistent with classical set operations. To adhere to formal rigor, we
need a specialized notation when dealing with multisets in combination
with sets.

Definition 2.1 Let X be a multiset, and Y be a set. We define the
relation subset with replacements as

X b Y ⇔ ∀x ∈ X : x ∈ Y .

The difference to the standard subset relation is that subsets with
replacements ignore multiplicity. This provides a compact notation
when forming multisets with elements from a universe which is not a
multiset, like N or R. Additionally, we introduce a variant of the differ-
ence operator, which removes all elements occurring in the subtrahend
from the minuend.

Definition 2.2 Let X,Y be multisets. We define the full difference as

X \\ Y ··= {x ∈ X | x 6∈ Y } .

Another important notion is that of weighted data sets. A weighted
data set is a data set X together with a weight function w : X → N

assigning some positive integral weight to each element. There is a
canonical equivalence of multisets and weighted sets.

8

Definition 2.3 For any multiset X, let Y be the set we obtain by re-
moving all but one occurrence of each element from X. We call Y the
underlying set of X and let

w : Y → N

y 7→ mX(y) .

We say that (Y,w) is X as a weighted set.
For any weighted set (Y,w) let

X ··=
∑
y∈Y

w(y)∑
i=1

{y} .

We say that X is (Y,w) as a multiset.

This bijection shows that, conceptually, multisets are close to weight-
ed sets. One can directly formulate a formal definition of multisets
using weighted sets. In this case, one would call some set X the
underlying set, and the weight function w : X → N the multiplicity of
each element. We do not use such a definition here because algorith-
mically speaking we differentiate the semantics of a multiset from that
of a weighted set. An algorithm obtaining a multiset as an input is
oblivious to the copies of an element. It processes each element in
the same way, regardless of any potential duplicates. By giving an
algorithm a weighted set, we make it aware of the presence of multiple
copies. In essence, we allow the algorithm’s treatment of an element
to depend on its weight. An algorithm could transform a multiset to
a weighted set, or vice versa, via the canonical mapping described
in Definition 2.3. We ignore this and expect algorithms to work with
their input in the form provided to them. Reasons for this are, among
others, that it declutters analysis by allowing a more concise notation
and that, for some problems, algorithms are not able to profit from the
knowledge of multiplicity in a meaningful way.

Notice that we can also associate some weight function w : X → N

with a multiset X. This is the most general form of data set we consider
here. The mapping from Definition 2.3 can canonically be generalized
to transform a weighted multiset to a multiset or to a weighted set.

For the sake of brevity, we introduce the following succinct notations.

Definition 2.4 For all i, n ∈ Z with i < n, we denote

[n]i ··= {i, . . . , n} ⊂ Z .

For i = 1, we usually omit the subscript [n] ··= [n]1.

9

REMARKS ON NOTATION

Definition 2.5 Let X be a multiset and f be a function on X. For each
Y ⊆ X, we denote

f [Y] ··= {f(y) | y ∈ Y }

and

f (Y) ··=
∑
y∈Y

f(y) .

10

Problem Statements 3
Contribution Summary We present a formal introduction of the
problems that are the subject of this thesis. Aside from popular facility
location and clustering problems, we introduce a soft variant of radius
clustering. To the best of our knowledge, this formulation has not been
considered in the literature, so far. Furthermore, we provide some
basic analysis and discuss the relation of the presented problems to
each other.

3.1 Facility Location . 11
3.2 Clustering . 14

3.2.1 Hard Clustering 18
3.2.2 Soft Clustering . 20
3.2.3 Discussion . 24
3.2.4 Further Analysis 25

3.3 Related Work . 27

The central topic of this thesis are some of the so-called geometric
location problems. More specifically, we study facility location and
clustering problems. In this chapter, we formally introduce the relevant
computational problems and present some elementary analysis.

3.1 Facility Location

At the core of the problems considered here lies the UNCAPACITATED

FACILITY LOCATION (UFL) problem. UFL provides a general framework,
which comprises a plethora of different optimization problems and has
spawned a significant amount of research.

11

PROBLEM STATEMENTS

Problem 3.1.1 (UNCAPACITATED FACILITY LOCATION) Let C be a finite
multiset, F be a set, and w : C → N, d : C × F → R≥0, f : F → R≥0 be
functions. The goal is to find O b F and κ : C ×O → [0, 1] minimizing

φufl(C,w, f, d,O, κ) ··=
∑
c∈C

∑
o∈O

κ(c, o) · w(c) · d(c, o) + f (O)

subject to ∀c ∈ C :
∑
o∈O

κ(c, o) = 1 .

The elements in C are called clients, the ones in F are called facilities.
The clients are weighted by the function w, which can, for example, be
used to model importance of certain clients. In a solution, consisting
of O and κ, we call O the opened facilities. The assignment κ models
which opened facilities serve which fraction of each client’s demand.
The distance function d models the cost of each facility serving a
specific client. Hence, the first sum of the objective function is usually
called the service cost of the solution. One trivial solution, obviously
minimizing the service cost, would be to simply open all available
facilities. To counteract the opening of too many facilities, the problem
associates an opening cost f with each facility. Consequently, the
second part of the objective function is usually called the opening
cost of the solution. Generally speaking, opening a lot of facilities
incurs high opening cost, but small service cost, while opening few
facilities incurs small opening cost at the expense of high service cost.
The problem is called uncapacitated since each facility can serve any
amount of demand for any number of clients. All problems discussed
in this thesis are some special case or variant of UFL. In the following,
we denote n ··= |C| for all facility location problems.

We could restrict O to be a set. It is easy to see that there is always
an optimal solution which does not open multiple of the same facility.
One can also easily see that there is always an optimal solution where
κ is a binary function assigning each client to exactly one facility. That
is why we sometimes exclude κ from the optimization by choosing the
optimal assignment implicitly

φufl(C,w, f, d,O) ··=
∑
c∈C

w(c) ·min
o∈O
{d(c, o)}+ f (O) .

We still explicitly formalize O as a multiset and incorporate the
assignment as a variable of the general problem. This is used later on
when we derive our soft clustering problems as variants of UFL.

12

3.1 Facility Location

When the input is unweighted, we simply omit the weight function
w. For notational consistency we introduce the following auxiliary
function.

Definition 3.1.2 Let 1 denote the function mapping every input to 1.

Using this, we write

φufl(C, f, d,O, κ) ··= φufl(C,1, f, d,O, κ) .

Example We discuss a small toy example motivating the definition
of UFL. Assume the town council of Paderborn decided to build new
hospitals to increase health care coverage in the city. They need to
figure out where and how many hospitals should be build. The clients
C are given by street addresses in the city, the weight w by the number
of people living at a particular address. The facilities F are addresses of
possible locations for new hospitals, the opening cost f is the monetary
cost of building a hospital at each specific location. The distance d is
given by the number of minutes an ambulance needs to get from one
street address to another.

Similar to our toy example, a lot of motivation for UFL comes from
real-world problems asking for some sort of geographic placement of
facilities. This leads us to METRIC UNCAPACITATED FACILITY LOCATION

(MUFL), an important special case of UFL.

Definition 3.1.3 (Metric Space) Let U be a set. A function d : U × U →
R≥0 is called metric if, for all u, v, w ∈ U ,

1. d(u, v) = d(v, u) (symmetry)

2. d(u, v) = 0⇔ u = v (identity of indiscernibles)

3. d(u, v) ≤ d(u,w) + d(w, v) (triangle inequality).

For a multiset X, we call (X, d) a metric space if d is a metric on the
underlying set of X.

Problem 3.1.4 (METRIC UNCAPACITATED FACILITY LOCATION) Let C be
a finite multiset, F be a set, w : C → N, f : F → R≥0 be functions, and
(C ∪ F, d) be a metric space. The goal is to find O ⊆ F minimizing

mfl(C,w, f, d,O) ··=
∑
c∈C

w(c) ·min
o∈O
{d(c, o)}+ f (O) .

13

PROBLEM STATEMENTS

There are three restrictions forming MUFL from UFL. The most im-
portant one is that we only allow instances where d forms a metric on
C ∪ F . The other two are the replacement of the assignment function
κ by its optimal choice and the restriction of O to sets. We already
discussed that the latter two restrictions have no influence on the
optima of the objective function, and that their general form was only
kept for syntactical reasons.

3.2 Clustering

In the following, we introduce clustering problems. These are variants
of UFL where we impose no opening cost. Instead we fix an upper
bound on the number of facilities which can be opened. In the context
of clustering, we usually refer to the clients as data points and call an
opened facility a representative.

Problem 3.2.1 (k-CLUSTERING) Let k ∈ N, X be a finite multiset, R be
a set, and w : C → N, d : X × R → R≥0 be functions. The goal is to find
M b R and κ : X ×M → [0, 1] minimizing

φclus(X,w, d,M, κ) ··=
∑
x∈X

∑
µ∈M

κ(x, µ) · w(x) · d(x, µ)

subject to |M | ≤ k

∀x ∈ X :
∑
µ∈M

κ(x, µ) = 1 .

We only consider reasonable instances for clustering problems, that
is, |R| > k. Otherwise, an optimal solution is trivially given by choosing
M = R. Similar to UFL, we observe that there is always an optimal
solution consisting of exactly k distinct representatives and a binary
assignment function κ. Moreover, for every fixed set of representatives,
there is an optimal κ which simply assigns each point to its closest
representative. The difficulty of finding optimal representatives given
some fixed assignment heavily depends on the distance function. As
we discuss later, for example, it is easy if d is the squared Euclidean
distance, but optimal representatives are not finitely representable if d
is the standard Euclidean distance.

We further introduce what we call radius covering problems. In this
flavor of clustering problem, we replace the sums over all points and
representatives by taking the maximum. This leads to a problem where
we want to minimize the largest radius when covering the input by k
balls.

14

3.2 Clustering

Problem 3.2.2 (RADIUS k-COVER) Let k ∈ N, X be a finite set, R be a
set, and w : C → N, d : X × R → R≥0 be functions. The goal is to find
M b R and κ : X ×M → [0, 1] minimizing

φrad(X,w, d,M, κ) ··= max
x∈X

{
max
µ∈M

{κ(x, µ) · w(x) · d(x, µ)}
}

subject to |M | ≤ k

∀x ∈ X :
∑
µ∈M

κ(x, µ) = 1 .

There are two apparent differences between facility location/clus-
tering and radius covering problems. First, in facility location and
clustering, which are sum-type problems, we can replace a weighted
input set by its respective multiset, and vice versa. The objective
functions on the weighted set and the multiset are the same. Any
algorithm for either of these problems could simply pick the repre-
sentation of the input set which is more convenient. This is not the
case for radius covering problems. Since this is a max-type problem,
there is a significant difference between considering a weighted set and
considering its respective multiset. We can remove all but one copy of
each point in the input set of a radius covering problem and obtain the
same optimal solutions. In contrast, replacing w by 1 potentially has
a large influence on optimal solutions. Second, radius covering does
not necessarily have an optimal solution with a binary assignment
function κ. However, it is still easy to compute an optimal assignment
κ, with respect to a given set of representatives.

Lemma 3.2.3 Let (k,X,R,w, d) be an instance of RADIUS k-COVER

and fix some M b R with |M | ≤ k. φrad(X,w, d,M, κ) is minimized if, for
all x ∈ X and µ ∈M , it holds that

κ(x, µ) =


0 if x 6= µ and x ∈M
mM (x)−1 if x = µ

d(x,µ)−1∑
µ′∈M d(x,µ′)−1 else.

Proof. The first two cases of the claim are easy to see. If a point x ∈ X
coincides with any number of representatives, then we distribute the
assignment uniformly over all these representatives to obtain a cost of
0 for this point. This is a valid assignment since∑

µ∈M
κ(x, µ) =

∑
µ∈{µ′∈M | x=µ′}

κ(x, µ) =
mM (x)

mM (x)
= 1 .

15

PROBLEM STATEMENTS

Distributing the assignment uniformly is completely arbitrary and
can be replaced by any other valid assignment of the point to the
representatives it coincides with. It is however important that the
assignment to the representatives not coinciding with the point is 0.

For the third case of the claim, fix any x ∈ X which is distinct from
all representatives. We argue that if φrad({x}, w, d,M, κ) is minimized,
then there exists some α ∈ R such that

∀µ ∈M : κ(x, µ) · w(x) · d(x, µ) = α .

Assume to the contrary that there exist µ, µ′ ∈M such that

κ(x, µ) · d(x, µ) > κ(x, µ′) · d(x, µ′) .

We set

ε ··=
κ(x, µ) · d(x, µ)− κ(x, µ′) · d(x, µ′)

d(x, µ) + d(x, µ′)
,

and observe that 0 < ε < κ(x, µ). Consider the modified assignment
κ′, with κ′(x, µ) ··= κ(x, µ) − ε, κ′(x, µ′) ··= κ(x, µ′) + ε, and equal to κ for
all other representatives. Notice that κ′ is also a valid assignment.
Furthermore, we obtain

κ′(x, µ) · d(x, µ)

= (κ(x, µ)− ε) · d(x, µ)

= κ(x, µ) · d(x, µ)− κ(x, µ) · d(x, µ)2 − κ(x, µ′) · d(x, µ′) · d(x, µ)

d(x, µ) + d(x, µ′)

=
κ(x, µ) · d(x, µ) · d(x, µ′) + κ(x, µ′) · d(x, µ′) · d(x, µ)

d(x, µ) + d(x, µ′)

= κ(x, µ′) · d(x, µ′) +
κ(x, µ) · d(x, µ) · d(x, µ′)− κ(x, µ′) · d(x, µ′)2

d(x, µ) + d(x, µ′)

= (κ(x, µ′) + ε) · d(x, µ′) = κ′(x, µ′) · d(x, µ′) ,

which is strictly less than κ(x, µ) · d(x, µ). We can repeatedly apply this
process until x has the same cost with respect to every representative.
This never increases the overall cost of the assignment. In particular,
it reduces the overall cost each time we apply this to a uniquely-most-
expensive representative µ. Let κ be the assignment where the cost of
x with respect to every representative is α. We have that

1 =
∑
µ∈M

κ(x, µ) =
∑
µ∈M

α · w(x)−1 · d(x, µ)−1 ,

16

3.2 Clustering

hence

α =
w(x)∑

µ∈M d(x, µ)−1
,

and thus

∀µ ∈M : κ(x, µ) =
d(x, µ)−1∑

µ′∈M d(x, µ′)−1
.

It is not inherently clear that optimal solutions of radius covering
problems consist of k distinct representatives. In the facility loca-
tion and clustering case, the argument is that a solution where a
representative occurs multiple times has the same cost as the same
solution where all but one of the identical representatives are removed.
Lemma 3.2.3 shows us that this is not the case for radius covering
problems. A second of the same representative might actually reduce
the overall cost. Additionally, just as with Problem 3.2.1 we do not
know of a universal way of finding an optimal set of representatives
given some fixed assignment function.

Problem 3.2.1 and Problem 3.2.2 are still formulated broadly, en-
compassing many different practical problems. In the following, we
introduce the special cases and variants of these problems that we
focus on in this thesis. We distinguish two different classes of prob-
lems: hard and soft clustering problems. We denote n ··= |X| for all
clustering problems.

One thing all problems in both classes have in common is that the
domain of the input points is a vector space over the reals. As it turns
out, the mean or center of gravity of a weighted multiset of vectors
is important for these types of problems. Hence, we introduce the
following notation.

Definition 3.2.4 (Mean) Let d ∈ N, X b Rd, and f : X → R be some
function. If f (X) > 0, then we denote by

µf(X) ··=
∑

x∈X f(x) · x
f (X)

the mean of X weighted by f . As a shorthand notation for non-empty
X, we denote

µ(X) ··= µ1(X) =
1

n
·
∑
x∈X

x .

17

PROBLEM STATEMENTS

3.2.1 Hard Clustering

The first class of clustering problems are hard clustering problems. The
name stems from the hard, sometimes also called crisp, assignment
of data points to clusters. In this context, a cluster is the subset of
data points assigned to the same representative. That is, each point
is assigned to exactly one of the representatives, similar to MUFL. We
formalize the notion of a cluster as follows.

Definition 3.2.5 (Cluster) Let X be a finite multiset, M be a set, and
d : X ×M → R≥0 be a function. For each µ ∈M we call

C(X,M)
µ (d) ··=

{
x ∈ X

∣∣∣∣∣ µ = arg min
µ′∈M

{
d(x, µ′)

}}

the cluster of µ in X. We often omit the argument d if the distance
function is clear from context.

The k-MEANS (KM) problem, one of the most popular clustering
problems to date, arises naturally as a special case of Problem 3.2.1.
We fix some dimension d ∈ N, restrict the input to multisets of points
in Rd, set R = Rd, and let the distance be the squared Euclidean
distance.

Problem 3.2.6 (k-MEANS) Let k, d ∈ N, X b Rd be finite, and w : X →
N be a function. The goal is to find M ⊂ Rd minimizing

km(X,w,M) ··=
∑
x∈X

w(x) · min
µ∈M

{
‖x− µ‖22

}
subject to |M | ≤ k .

For reasons already discussed, and as we have done with MUFL, we
omit the assignment function in the problem definition and restrict M
to sets. A core observation on the KM problem is that the representative
of each cluster of an optimal solution is the cluster’s mean – hence,
the name k-MEANS. Moreover, using a representative different from
the mean, increases the cost by the distance of that representative to
the mean multiplied by the overall weight of the cluster.

Lemma 3.2.7 Let d ∈ N, X b RD be finite, f : X → R≥0 be a function,
and µ ∈ Rd. If f (X) > 0, then we have∑

x∈X
f(x) · ‖x− µ‖22 =

∑
x∈X

f(x) · ‖x− µf(X)‖22 + ‖µ− µf(X)‖22 · f (X) .

18

3.2 Clustering

Proof. Let 〈·, ·〉 denote the dot product and observe∑
x∈X

f(x) · ‖x− µ‖22

=
∑
x∈X

f(x) · ‖x− µf(X) + µf(X)− µ‖22

=
∑
x∈X

f(x) · ‖x− µf(X)‖22 + ‖µf(X)− µ‖22 · f (X)

+ 2 ·
∑
x∈X

f(x) · 〈x− µf(X) , µf(X)− µ〉

where ∑
x∈X

f(x) · 〈x− µf(X) , µf(X)− µ〉

=

〈∑
x∈X

f(x) · (x− µf(X))︸ ︷︷ ︸
=~0d

, µf(X)− µ

〉
= 0 .

Lemma 3.2.7 implies that the optimal representative for each cluster
is its mean. Furthermore, for each optimal solution M we have

∀µ ∈M : µ = µw

(
C(X,M)
µ

)
=

∑
x∈C(X,M)

µ
w(x) · x

w
(
C(X,M)
µ

) .

As a shorthand notation, we denote the smallest single-mean KM cost
of some multiset X with weight function w as

km(X,w) ··= km(X,w, {µw(X)}) .

A radius hard clustering does not arise as naturally from Prob-
lem 3.2.2. As we showed in Lemma 3.2.3, an optimal assignment
is not necessarily assigning each point to exactly one representative.
Hence, to formalize the RADIUS k-MEANS (RKM) problem we have to re-
strict κ to a function to {0, 1} instead of [0, 1]. This leads to the desired
effect that an optimal κ assigns each point to its closest representative.

Problem 3.2.8 (RADIUS k-MEANS) Let k, d ∈ N, X ⊂ Rd be finite, and
w : X → N be a function. The goal is to find M ⊂ Rd minimizing

rkm(X,w,M) ··= max
x∈X

{
w(x) · min

µ∈M

{
‖x− µ‖22

}}
subject to |M | ≤ k .

19

PROBLEM STATEMENTS

Finding an optimal set of representatives given some fixed clusters is
not as easy as it was for KM. In computational geometry, this problem
is known as the smallest enclosing sphere problem (in the unweighted
case), or the 1-center problem (in the general weighted case).

There is an interesting connection between KM and RKM. Similar to
our first, general definition of these types of problems, the objective of
RKM is the same as that of KM, only with the sum replaced by taking
the maximum over all points. However, to obtain the RKM objective
function from Problem 3.2.2, we had to make the constraints that
derived KM from Problem 3.2.1 and additionally, explicitly restrict κ to
binary assignments. In the next section we introduce a soft clustering
and a soft radius problem in Euclidean space. There however, the
radius problem arises naturally and we have to put in additional effort
to arrive at a clustering problem which has the radius problem as a
max-cost-per-point variant.

Choosing the Number of Clusters Finding an appropriate choice for
the parameter k constitutes a whole research area of its own. If k is
chosen too large or too small, then there is no real value in interpreting
solutions of clustering problems. Additionally, choosing the correct k
is highly dependent on the concrete application, and even the specific
data set. In this thesis, we concern ourselves with the theoretical
analysis of problems and algorithms, not with their actual application.
For this reason, we simply assume k to be some value chosen in
advance.

3.2.2 Soft Clustering

In a hard clustering, each point either belongs to some cluster, or it
does not. In practice however, entities are not so black and white, but
rather are a mixture of different influencing factors. To model this
effect we consider soft clustering problems as an alternative to classical
hard clusterings. In the following, we define FUZZY k-MEANS (FKM),
a popular soft clustering problem in Euclidean space. Just as with
KM we fix some d ∈ N, restrict the input to multisets from Rd, set
R = Rd, and choose the squared Euclidean distance. To distinguish
this problem from KM we furthermore choose an m ∈ R>1 (called the
fuzzifier) and raise the assignment κ to the mth power. Thereby, we
obtain that optimal solutions do not have a binary assignment of
points to representatives (except for some trivial border cases).

20

3.2 Clustering

Problem 3.2.9 (FUZZY k-MEANS) Let k, d ∈ N, m ∈ R>1 X b Rd be
finite, and w : X → N be a function. The goal is to find M b Rd and
κ : X ×M → [0, 1] minimizing

fkm(X,w,M, κ) ··=
∑
x∈X

∑
µ∈M

κ(x, µ)m · w(x) · ‖x− µ‖22

subject to |M | ≤ k

∀x ∈ X :
∑
µ∈M

κ(x, µ) = 1 .

Notice that we deliberately omitted the fuzzifier from the arguments
of the objective function. It is not sensible to optimize for m since
every non-trivial solution can always be improved by increasing m.
Hence, unless we state some fixed value for m, we always consider
m to be some (small) constant chosen in advance. Further observe
that optimal solutions for FKM with m = 1 would coincide with optimal
solutions for KM on the same instance (k,X,w).

Applying Lemma 3.2.7, we see that for any optimal solution (M,κ)
we have

∀µ ∈M : µ = µκ(·,µ)m·w(·)(X) =

∑
x∈X κ(x, µ)m · w(x) · ‖x− µ‖22∑

x∈X κ(x, µ)m · w(x)
.

In the case of KM it was easy to find an optimal assignment given
some set M – simply assign each point to its nearest representative. For
FKM this turns out to be a little more complicated, but still efficiently
computable.

Lemma 3.2.10 Let k, d ∈ N, X b Rd be finite, w : X → N be a function,
and M b Rd with |M | = k. fkm(X,w,M, κ) is minimized if, for all x ∈ X
and µ ∈M , it holds that

κ(x, µ) =


0 if x 6= µ and x ∈M
mM (x)−1 if x = µ

‖x−µ‖
− 2
m−1

2∑
µ′∈M‖x−µ′‖

− 2
m−1

2

else.

Proof. As in the proof of Lemma 3.2.3, the first two cases are easy to
see, and uniformly distributing the assignment is arbitrary.

For the third case, we introduce n Lagrange multipliers λx and
consider the modified objective function

fkm′(X,w,M, κ) = fkm(X,w,M, κ) +
∑
x∈X

λx ·

∑
µ∈M

κ(x, µ)− 1

 .

21

PROBLEM STATEMENTS

Fix some x ∈ X \\M and µ ∈ M . We find a stationary point of the
modified objective function in the direction of κ(x, µ), by setting the
partial derivative to zero

∂fkm′

∂κ(x, µ)
(X,w,M, κ) = m · κ(x, µ)m−1 · w(x) · ‖x− µ‖22 + λx = 0

⇔ κ(x, µ) =

(
−λx

m · w(x) · ‖x− µ‖22

) 1
m−1

.

Using the constraint
∑

µ′∈M κ(x, µ′) = 1 we obtain

−λx =

∑
µ′∈M

(
1

m · w(x) · ‖x− µ′‖22

) 1
m−1

−m+1

,

and hence

κ(x, µ) =


(∑

µ′∈M

(
1

m·w(x)·‖x−µ′‖22

) 1
m−1

)−m+1

m · w(x) · ‖x− µ‖22


1

m−1

=
‖x− µ‖

− 2
m−1

2∑
µ′∈M ‖x− µ′‖

− 2
m−1

2

.

Observe that the proof of Lemma 3.2.10 does not actually use any
properties of the squared Euclidean distance. Hence, the result trivially
generalizes to any other distance function used in the FKM objective
function.

For every M b Rd we call an assignment function κ chosen according
to Lemma 3.2.10 the assignment induced by M . Consequently, we call

fkm(X,w,M) ··=
∑

x∈X\\M

∑
µ∈M

 ‖x− µ‖
− 2
m−1

2∑
µ′∈M ‖x− µ′‖

− 2
m−1

2

m

· w(x) · ‖x− µ‖22

=
∑

x∈X\\M

w(x)(∑
µ′∈M ‖x− µ′‖

− 2
m−1

2

)m−1

the FKM cost induced by M .

22

3.2 Clustering

For every feasible assignment function κ : X ×M → [0, 1] we call the
set {

µκ(·,µ)m·w(·)(X)
∣∣ µ ∈M}

the set of representatives induced by κ, and denote by

fkm(X,w, κ) ··= fkm(X,w,
{
µκ(·,µ)m·w(·)(X)

∣∣ µ ∈M} , κ)

the FKM cost induced by κ.
A pair (M,κ) is called a stationary pair if M is induced by κ and κ

is induced by M . We already observed that every optimal solution to
FKM is a stationary pair. The converse however is not true. In fact,
a stationary pair can be arbitrarily worse than an optimal solution
[Blömer et al., 2016a].

Choosing the Fuzzifier As already discussed, increasing m always
reduces the cost of every non-trivial solution. By Lemma 3.2.10 we
also know that when m gets larger, an optimal assignment gets closer
to the uniform distribution. The corresponding optimal representatives
all move closer to the mean of the data set µw(X). Hence, if m is chosen
too large, then solutions lack any useful interpretation. We treat m the
same way we treat k and just assume this to be some constant chosen
from the outside.

Nevertheless, one important choice we want to explicitly discuss is
m = 2, as this case has a nice geometric interpretation. The induced
cost of any set of representatives for FKM with m = 2 is

fkm(X,w,M) =
∑

x∈X\\M

w(x)∑
µ∈M ‖x− µ‖

−2
2

,

which is, for each point x, the unnormalized harmonic mean of the k
distances ‖x− µ‖22. Some of the results presented here hold only for
this choice of m. As we see next, m = 2 furthermore has an interesting
parallel to radius clustering.

As our final problem statement we consider FUZZY RADIUS k-MEANS

(FRKM). This is a special case of Problem 3.2.2 with input sets from Rd,
R = Rd, and the squared Euclidean distance.

23

PROBLEM STATEMENTS

Problem 3.2.11 (FUZZY RADIUS k-MEANS) Let k, d ∈ N, X ⊂ Rd be
finite, and w : C → N be a function. The goal is to find M b Rd and
κ : X ×M → [0, 1] minimizing

frkm(X,w,M, κ) ··= max
x∈X

{
max
µ∈M

{
κ(x, µ) · w(x) · ‖x− µ‖22

}}
subject to |M | ≤ k

∀x ∈ X :
∑
µ∈M

κ(x, µ) = 1 .

For any set of representatives M , Lemma 3.2.3 tells us that a corre-
sponding optimal assignment is

∀x ∈ X \\M, ∀µ ∈M : κ(x, µ) =
‖x− µ‖−2

2∑
µ′∈M ‖x− µ′‖

−2
2

,

which is also an optimal assignment for FKM with m = 2, for the same
set of representatives. This implies that by substituting an optimal
assignment into the objective function, we obtain

frkm(X,w,M) ··= max
x∈X\\M

{
w(x)∑

µ∈M ‖x− µ‖
−2
2

}
,

which is the per point maximum of the FKM cost fkm(X,w,M).

3.2.3 Discussion

In the following, we discuss how KM, RKM, FKM (with m = 2), and FRKM

relate to each other. We derived these four problems from the two base
problems Problem 3.2.1 and Problem 3.2.2. The difference between
these two base problems is that we replaced the sum over the data
points and the sum over the representatives by taking the maximum
over each. Similarly, if we plug an optimal assignment function into
the FKM objective function, then the difference between KM/FKM and
RKM/FRKM is that the clustering problems sum over the data points
and the radius problems take the maximum. To arrive at this situation
we had to make different changes to the constraints of the problems.
For the hard clustering variants, we restricted the assignment function
of the radius problem to take values from {0, 1} instead of [0, 1]. For
the soft clustering variants, we raised the assignment function in the
objective function of the clustering problem to the second power. These
are substantially different modifications to arrive at problems which

24

3.2 Clustering

have a similar relation to one another. This is particularly unexpected
for the soft clustering case. The clustering problem takes the sum over
the data points and squares the assignment function, while the radius
problem takes the maximum over points and representatives. Still,
given some set of representatives, the optimal assignment functions
are the same for the two problems. These observations indicate that
all four problems are closely related and that any result for either of
them might lead to non-trivial insight into all of them.

3.2.4 Further Analysis

We supplement our arguments from the previous section by presenting
some well-known formal results regarding the relationship of our
problems to each other. First, we see that there is an upper bound on
the difference of the cost of some set of representatives with respect to
the soft and hard problems.

Lemma 3.2.12 Let k, d ∈ N, m ∈ R>1 X b Rd be finite, and w : X → N

be a function. For each M b Rd with |M | ≤ k we have

fkm(X,w,M) ≤ km(X,w,M) ≤ km−1 · fkm(X,w,M) , and

frkm(X,w,M) ≤ rkm(X,w,M) ≤ k · frkm(X,w,M) .

Proof. The first inequalities are immediate. Setting κ(x, µ) = 1 for
µ = arg minµ′∈M

{
‖x− µ′‖22

}
is a feasible assignment function. The soft

and hard objective functions are the same for this assignment. Hence,
with respect to an optimal assignment function, the cost of the soft
problem can not be larger than the respective cost of the hard problem.

For the clustering case we observe

fkm(X,w,M) =
∑

x∈X\\M

w(x)(∑
µ∈M ‖x− µ‖

− 2
m−1

2

)m−1

≥
∑

x∈X\\M

w(x)(∑
µ∈M (minµ′∈M {‖x− µ′‖2})

− 2
m−1

)m−1

=
∑

x∈X\\M

w(x)

km−1 · (minµ′∈M {‖x− µ′‖2})−2

=
1

km−1
· km(X,w,M) .

25

PROBLEM STATEMENTS

Similarly, the radius case can be bounded as

frkm(X,w,M) = max
x∈X\\M

{
w(x)∑

µ∈M ‖x− µ‖
−2
2

}

≥ max
x∈X\\M

{
w(x)∑

µ∈M (minµ′∈M {‖x− µ′‖2})−2

}
=

1

k
· rkm(X,w,M) .

Second, we show that the representatives of an optimal solution
always lie in the interior of the data set.

Lemma 3.2.13 If M is an optimal set of representatives for KM, FKM,
RKM, or FRKM, then the representatives all lie inside the convex hull of
the input data set X.

Proof. Assume to the contrary that there exists some M ′ ⊆ M such
that all µ ∈ M ′ lie outside of the convex hull of X. If no point is
assigned to any µ ∈ M ′, then we can remove those representatives
from the solution without increasing the cost. Afterwards, we add
|M ′| many points at the location of |M ′| different data points in X
which have cost larger than 0, and assign these points to the newly
added representative at their location. The cost of the other points
still remains unchanged. However, the cost of the reassigned points
decreases, and thus the initial set of representatives was not optimal.

Assume that, for each µ ∈M ′, there is at least one point with non-
trivial assignment to µ. If we move µ to its closest point in the convex
hull of X, then the distance of all points in X to µ decreases. Thus,
the overall cost of the solution decreases. Hence, the initial set of
representatives was not optimal.

If some representatives outside the convex hull have trivial assign-
ment and some not, then we apply these arguments to each represen-
tative individually.

Finally, we present iterative relocation: a simple scheme to find
stationary points of the objective functions of KM and FKM. Itera-
tive relocation, sometimes also called alternating optimization, de-
scribes a general framework to solve clustering problems, similar to
the Expectation-Maximization algorithm for mixture models [Bishop,
2006]. The idea is to start with an arbitrarily chosen set of represen-
tatives M . The we repeat the following two steps until we reach a
stationary pair:

26

3.3 Related Work

1. Compute an optimal assignment of points to M . That is, for KM

compute for each µ ∈M the cluster C(X,M)
µ , and for FKM compute

an optimal assignment function κ according to Lemma 3.2.10.

2. Compute a new set of representatives based on this assignment.
That is, for KM replace µ by µw

(
C(X,M)
µ

)
, and for FKM replace each

µ by µκ(·,µ)m·w(·)(X).

These iterative relocation schemes are also known as the k-MEANS

algorithm [Lloyd, 1982] and the FUZZY k-MEANS algorithm [Bezdek
et al., 1984], respectively. They have two significant downsides. There
is no known polynomial upper bound on the number of update steps
until convergence is reached. In fact, we show in Chapter 6 that there
are data sets for the FKM case where, assuming a model of computation
with arbitrary precision, iterative relocation never reaches a stationary
pair. Furthermore, the cost of a stationary pair can be arbitrarily
bad relative to the cost of an optimal solution [Kanungo et al., 2004;
Blömer et al., 2016a]. From a theoretician’s point of view, iterative
relocation has no desirable properties: neither polynomial runtime,
nor a guaranteed approximation ratio.

3.3 Related Work

The first mention of a facility location type problem goes back to
Pierre de Fermat, who asked for a point minimizing the sum of the
distances to the vertices of a given triangle [de Fermat, 1891]. Today,
facility location is ubiquitous, especially in operations research, and
comes in many different flavors. Among others, one can consider
capacitated problems where there is a bound on the number of clients
each facility can serve, multi-commodity problems where clients can
demand different types of goods, or any combination of models (see,
for example, [Pirkul & Jayaraman, 1998]). Most of these formulations
come with their own set of issues and essentially constitute a research
area on their own.

A solution to KM solves the problem of least sum of squared errors.
Its iterative relocation scheme is one of the most important clustering
algorithms to date. It was first introduced by Lloyd [1982] and has
since been the topic of vast amounts of research. The runtime of the
algorithm is bounded from above by the number of different Voronoi
partitions with respect to k centers. That is, the k-MEANS algorithm
stops after at most O(nd·(k+1)) iterations [Inaba et al., 1994], which

27

PROBLEM STATEMENTS

is polynomial if d and k are considered to be constants. If however k
is part of the input, then there are data sets in the plane (i.e. d = 2)
where the k-means algorithm requires 2Ω(n) iterations [Vattani, 2011].
Furthermore, there are simple examples of data sets (n = 4, k = 3,
and d = 1) where the algorithm gets stuck at an arbitrarily poor local
minimum of the objective function [Kanungo et al., 2004]. Despite
these pitfalls, the k-MEANS algorithm is still employed extensively in
practice. This is due to its simplicity and empirically fast runtime. The
fast convergence of the algorithm observed in practice finds theoretical
foundation in smoothed analysis. In a nutshell, this means that the
data sets for which the k-MEANS algorithm exhibits an exponentially
large runtime are pathologic instances. If input points are just slightly
perturbed by Gaussian noise, then the algorithm has an expected
polynomial runtime [Arthur & Vassilvitskii, 2006; Arthur et al., 2009;
Manthey & Röglin, 2009]. For a more thorough overview on theoretical
aspects of the k-MEANS algorithm we refer the interested reader to the
survey of Blömer et al. [2016b].

The literature on FKM is not as extensive as it is for KM. The FKM

objective was first formalized by Dunn [1973]. Building on this work,
Bezdek et al. [1984] generalized the objective function and presented
some analysis of the problem as well as the iterative relocation scheme
following the KM example. Continuing their work, Bezdek et al. [1987]
showed that the FUZZY k-MEANS algorithm converges to a stationary
point of the objective function. Examining whether the algorithm
reached a local minimum or a saddle point received some attention
of its own [Kim et al., 1988; Hoppner & Klawonn, 2003]. Just as for
the k-MEANS algorithm, there are simple examples of data sets (n = 4,
k = 2, and d = 2) where the algorithm gets stuck at an arbitrarily poor
local minimum of the objective function [Blömer et al., 2016a].

28

Part II

Classification and Impossibility

Classical Hardness 4
Contribution Summary We present classical computational hard-
ness results for discrete versions of our clustering problems. In Sec-
tion 4.4 we discuss the difficulty with reductions to our soft clustering
problems and a hardness result of a variant of DISCRETE FUZZY k-
MEANS for general metrics. Afterwards, in Section 4.5 we present
the parameterized hardness of the radius problem DISCRETE FUZZY

RADIUS k-MEANS. Finally, the reduction presented for DISCRETE k-
MEANS in Section 4.6 is a technical adaptation of a proof originally pre-
sented by Papadimitriou [1981] for the Euclidean distance to squared
Euclidean distance. These are previously unpublished results.

4.1 Basics of Computational Complexity 32
4.2 Discrete Clustering Problems 34
4.3 Related Work . 36
4.4 Towards a Classification of DFKM 36

4.4.1 Construction . 38
4.4.2 Correctness . 39

4.5 Parameterized Hardness of DFRKM 44
4.6 DKM is Hard in Fixed Dimensions 47

We discuss the placement of a specific decision variant of some of our
location problems into complexity classes. The complexity of hard
clustering problems is, in general, well understood. There is a detailed
classification of KM and RKM. However, to the best of our knowledge,
so far there has been no work on the computational complexity of the
fuzzy problems FKM and FRKM. Classifying these problems turns out
to be quite complicated due to the difficult algebraic structure of their
objective functions. To obtain a combinatorially manageable form of
these problems we discuss their what we call discrete variants.

31

CLASSICAL HARDNESS

4.1 Basics of Computational Complexity

The driving force behind computational complexity theory is the ques-
tion about the tractability of solving problems. This topic is so essential
to computer science that we teach the foundations to undergraduate
students as part of almost every computer science curriculum. The
literature on complexity theory is vast and cannot be summarized in
truly concise form. For this reason, we expect the reader to be familiar
with the core concepts and terminology of the field. A from-scratch
introduction can, for example, be found in the excellent work of Pa-
padimitriou [1993]; Goldreich [2008]; Arora & Barak [2009]; Sipser
[2012].

The most important classes of computational complexity are P, the
languages decidable by a deterministic Turing machine in polynomial
time, and NP, the languages decidable by a non-deterministic Turing
machine in polynomial time. We present an equivalent definition of NP
via polynomially balanced relations.

Definition 4.1.1 (P and NP) The class P consists of all polynomial-time
decidable languages.

We say a relation ∼ is polynomially balanced if there exists k ∈ N
such that, for all x ∼ y, we have |y| ≤ |x|k.

The class NP consists of all languages L for which there exists a
polynomial-time decidable and polynomially balanced relation ∼L such
that L = {x | ∃y : x ∼L y}.

For each L ∈ NP and x ∈ L we call a y with x ∼L y a witness for x′s
membership in L.

The question whether P ⊂ NP or P = NP has been puzzling computer
scientists for decades. Even with occasional claims to the resolution
of the question, we are still lacking a universally accepted proof.

Problems classified in NP are so-called decision problems as the com-
putational goal is to decide whether a given x is a member of language
L or not. There is no obvious analogue of NP for optimization problems
where we want to compute the best (where the quality of a solution
varies, depending on the problem) solution given some instance x.
Without going into detail, usually MaxSNP is considered to comple-
ment NP for the classification of optimization problem [Papadimitriou
& Yannakakis, 1991].

A central tool of computational complexity are reductions. These
allow us to find a hierarchy of problems and identify the most difficult
problems of a complexity class.

32

4.1 Basics of Computational Complexity

Definition 4.1.2 (Polynomial-Time Reduction) We say a language A
is polynomial-time reducible to language B, write A ≤p B, if there exists
a polynomial-time computable function f such that x ∈ A⇔ f(x) ∈ B.

A language L is called NP-hard if all problems in NP are polynomial-
time reducible to it. If additionally L ∈ NP, then L is called NP-complete.

Since the inception of Boolean Satisfiability as the first NP-complete
problem [Cook, 1971; Levin, 1973], there has been a lot of work
on finding more NP-hard problems. Being NP-hard still classifies a
problem as one of the hardest computational problems known. We
introduce three hard problems which we use throughout this chapter.

• Given a set U = {u1, . . . , um} and a collection of subsets S =
{S1, . . . , Sk} such that, for all i ∈ [k], we have Si ⊂ U and |Si| = 3.
The EXACT COVER BY 3-SETS (X3C) problem asks if there is a
collection of pairwise disjoint subsets C ⊂ S such that

⋃
Si∈C Si =

U? X3C is a special case of the well-know NP-complete SET COVER

problem [Karp, 1972].

• Given an undirected graph G = (V,E) and k ∈ N. The DOMINAT -
ING SET (DS) problem asks if there is a set of vertices C ⊆ V with
|C| = k such that, for all v ∈ V \ C, there exists a c ∈ C with
{v, c} ∈ E? Simply speaking, is there a set C of k vertices in the
graph so that every vertex is either in C, or in the neighborhood
of a vertex in C?

• Given a Boolean formula in conjunctive normal form where
each clause consists of 3 non-negated literals. The POSITIVE

3-NOTALLEQUAL-SAT (P3NAESAT) problem asks if there is a truth
assignment of the variables such that, in each clause, at least
one literal evaluates to true and at least one to false?

Lemma 4.1.3 (Garey & Johnson [1979]) X3C, DS, and P3NAESAT are
NP-complete.

In general, the notion of hardness and completeness are the same
for every complexity class. However, the reduction used to classify
problems might vary. For example, defining P-completeness with
respect to polynomial-time reductions is not sensible. The reduction
itself is able to solve the problem, and hence, all non-trivial languages
are reducible to each other. For this reason, we usually use logarithmic-
space reductions to define P-completeness. Throughout this thesis,
we present the placement of some of our problems in certain not so
well-known complexity classes. We introduce these classes together
with their respective reduction types in the corresponding sections.

33

CLASSICAL HARDNESS

4.2 Discrete Clustering Problems

Whenever we discuss classical computational complexity, we need to
consider the decision variant of our optimization problems. That is,
given an instance of one of our location problems and a cost bound
B, is there a solution with cost at most B? To show that one of our
problems lies in NP we need to prove the existence of a witness with
size polynomial in the size of the instance and B.

It is not difficult to see that KM lies in NP. A witness is simply the
mapping of the n input points to the k clusters. By Lemma 3.2.7, we
know that for each cluster an optimal representative is given by the
mean of the cluster, which we can compute in polynomial time. Hence,
we can represent and evaluate the cost of an optimal solution in time
polynomial in the size of the input.

Realizing that RKM lies in NP is a little more involved. Finding a
solution with cost at most B is equivalent to covering the given data
set by k balls with radius B. To find an optimal solution we can
partition the input data into k clusters and find the smallest enclosing
sphere for each cluster. Such a smallest enclosing sphere is a d′ ≤ d
dimensional ball which is uniquely determined by d′ + 1 points of the
input data set on its boundary [Cheng et al., 2006]. Thus, a witness
for an RKM solution with cost at most B, provided it exists, can be
represented by at most k · (d+ 1) points of the input data set. For each
cluster we obtain the d′ + 1 boundary points of the smallest enclosing
ball. The optimal set of representatives is then given as the midpoints
of these k balls. Again, we can represent and evaluate the cost of an
optimal solution in time polynomial in the size of the input.

It is not readily apparent why FKM should lie in NP. A solution to an
FKM instance consists of a continuous assignment function and a set
of means. As we discuss in Chapter 6, optimal solutions to FKM are
in general not solvable by radicals. This is evidence that the problem
might actually not be a part of NP. Assuming that for a given instance
there exists an optimal solution with cost less than B, we do not know
whether we can approximate this solution using size polynomial in the
instance and B, but still maintain cost of at most B. Although our
unsolvability result does not transfer to FRKM, we neither know if the
radius variant of FKM is part of NP.

To circumvent the difficult structure of FKM solutions, in the fol-
lowing, we consider a combinatorial variant of our location problems.
Similar to UFL type problems, we discretize the solution space by
expanding instances by a set of candidate representatives. More specif-
ically, we only allow representatives to be taken from the input points

34

4.2 Discrete Clustering Problems

X. It is immediately clear that these so-called discrete problems lie
in NP. We denote our discrete problems as DISCRETE k-MEANS (DKM),
DISCRETE RADIUS k-MEANS (DRKM), DISCRETE FUZZY k-MEANS (DFKM),
and DISCRETE FUZZY RADIUS k-MEANS (DFRKM).

There are two main reasons for us to chose the input points as
candidate representatives. First, instances are the same as instances
for the non-discrete variant since we do not actually add a set of
candidates. Second, an optimal solution to the discrete problem is
also always a good solution to the original problem.

Lemma 4.2.1 An optimal solution to DKM, or DFKM, is a 2-approximation
to KM, or FKM respectively, on the same instance.

An optimal solution to DRKM, or DFRKM, is a 4-approximation to RKM,
or FRKM respectively, on the same instance.

Proof. Let (X,w) be an instance, (M∗, κ∗) be an optimal solution to
FKM, and (M∗d , κ

∗
d) an optimal solution to DFKM. Consider the set M

where for each µ ∈ M∗ we add the point x ∈ X closest to µ to M . Let
f : M∗ → M be the function mapping each optimal representative to
its replacement. We bound

fkm(X,w,M∗d , κ
∗
d)

≤ fkm(X,w,M) (M is a discrete solution)

≤
∑
x∈X

∑
µ∈M

κ∗(x, µ)m · w(x) · ‖x− µ‖22 (κ∗ is not optimal for M)

≤ fkm(X,w,M∗, κ∗) +
∑
x∈X

∑
µ∈M∗

κ∗(x, µ)m · w(x) · ‖µ− f(µ)‖22︸ ︷︷ ︸
≤‖x−µ‖22

(Lemma 3.2.7 and choice of M)

≤ 2 · fkm(X,w,M∗, κ∗) .

The same holds for KM and DKM where we replace the fuzzy assignment
functions by the respective binary assignments.

Now, let (M∗, κ∗) be an optimal solution to FRKM, and (M∗d , κ
∗
d) an

optimal solution to DFRKM. Let M again be chosen as above. We obtain

frkm(X,w,M∗d , κ
∗
d)

≤ frkm(X,w,M) (M is a discrete solution)

≤ max
x∈X

{
max
µ∈M

{
κ∗(x, µ) · w(x) · ‖x− µ‖22

}}
(κ∗ is not optimal for M)

≤ max
x∈X

{
max
µ∈M∗

{
κ∗(x, µ) · w(x) ·

(
2 · ‖x− µ‖22 + 2 · ‖µ− f(µ)‖22

)}}
(approximate triangle inequality for each point)

35

CLASSICAL HARDNESS

≤ 4 · frkm(X,w,M∗, κ∗) . (by choice of M)

Again, the same holds for RKM and DRKM where we replace the fuzzy
assignment functions by the respective binary assignments.

Choosing X as the candidate set for representatives is not the best
possible choice. For KM and FKM there are algorithms computing a
candidate set containing a (1+ε)-approximation to the original problem
[Matoušek, 2000; Blömer et al., 2016a]. However, these candidate sets
cannot be constructed in polynomial time.

4.3 Related Work

There are numerous classification results regarding the complexity of
our facility location and hard clustering problems. MUFL is known to
be NP-hard and MaxSNP-hard, and if there exists a polynomial-time
approximation algorithm with an approximation factor better than
1.463, then NP ⊆ DTIME(nlog(log(n))) [Guha & Khuller, 1999]. Since
MUFL is just a special case, this also holds for the general UFL problem.

The radius problems RKM and DRKM are also known as the absolute,
and respectively discrete, k-CENTER problem. The former is NP-hard
even in the plane [Megiddo & Supowit, 1984] and is NP-hard to ap-
proximate with a factor better than 1.82 with respect to the Euclidean
distance [Feder & Greene, 1988]. The latter is NP-hard to approximate
with a factor strictly smaller than 2 for general metrics [Hochbaum &
Shmoys, 1986].

Similar results have been obtained for the clustering problem KM.
It is NP-hard for k = 2 [Dasgupta, 2008] and also for d = 2 [Mahajan
et al., 2012]. That means it is hard to find an optimal solution as
long as either of the two parameters is part of the input. If both k and
d are part of the input, then it is even NP-hard to approximate the
problem with a factor strictly better than 1.0013 [Lee et al., 2017]. The
discrete variant DKM is NP-hard for d = 2 with respect to the Euclidean
distance [Papadimitriou, 1981]. To the best of our knowledge, there
are no classification results regarding the soft clustering variants FKM,
DFKM, FRKM, and DFRKM.

4.4 Towards a Classification of DFKM

Placing DFKM into classical complexity classes seems to be a hard
problem itself. In the following, we discuss some indications as to

36

4.4 Towards a Classification of DFKM

why standard reduction techniques appear not to be applicable for
this problem. Afterwards, we present the NP-hardness of a variant of
DFKM with m = 2 using a general metric instead of squared Euclidean
distance.

Most of the well-known NP-hard problems belong to one of two
classes, let us call them local and global problems. By local problems,
we mean that the task is to find some subset of the input satisfying
some structural or quantitative constraint. Some examples for such
a local problem would be CLIQUE/INDEPENDENTSET, KNAPSACK, or
SUBSETSUM/SUBSETPRODUCT. A witness for these types of problems
can be analyzed isolated from the rest of the instance. Each subset
of vertices either is a clique of a certain size, or it is not. Each set of
items either fulfils the weight bound and the has the required value,
or it does not. As it seems, reducing such a problem to DFKM should
not work. The cost of a set of representatives does not only depend on
some subset of the input points, but on all of them.

By global problems, we mean that a solution to the problem satisfies
some constraint for all elements of the input. Examples for global prob-
lems include BOOLEANSATISFIABILITY, VERTEXCOVER/EDGECOVER,
or INTEGERPROGRAMMING. To analyze a witness for these problems,
we need to consider the whole problem instance and verify that the
posed constraints are fulfilled globally. These type of problems are
naturally more similar to DFKM. Furthermore, reductions for other
types of clustering problems, like the ones we discussed previously for
DKM and DFRKM, come from this category.

The underlying structure of reductions to clustering problems mostly
follows one general approach. Start by finding a set of points with
a certain minimum pairwise distance. This essentially imposes a
minimum cost on each point. Then, make sure that if the instance
for the problem we are reducing from has a solution, then there is a
set of representatives such that each point (at least almost) attains
its minimum cost. If the original instance does not have a solution,
then we want that, for every set of representatives, there is at least one
point which costs significantly more than its minimum cost. Finally,
choose the cost bound to be (maybe slightly more than) the number of
points multiplied by each points minimum cost. The main difficulty
then lies in embedding a set of points with such distances into as few
dimensions as possible, or being able to restrict the number of clusters
k. So far, this has been the recipe for success for almost all clustering
hardness results.

Assume we have a reduction following this approach. Consider
the image of such a reduction given a no-instance of the original

37

CLASSICAL HARDNESS

problem. As we said, for every set of representatives, there is a point
with high cost. Let us call this the uncovered point. Most of the
times this uncovered point corresponds (under the reduction function)
to an uncovered element of the original instance. For example, an
unsatisfied clause, or an edge not adjacent to a vertex in the cover. This
is an inherent property of such a global problem. A single uncovered
element is enough to invalidate a solution. The main problem that
arises is that this is not true for DFKM. We call this overcovering a point.
A central characteristic of reductions to clustering problems which we
described above is that a minimum distance between points dictates
a minimum cost each point has in each solution. A point in a DFKM

solution which has multiple representatives at minimum distance
however has significantly lower cost than this minimum distance. This
is not beneficial for an element corresponding to such a point in the
original instance. For example, we cannot make a clause more true by
having more than one true literal. What this leads to is that, although
there is an uncovered point, solutions to DFKM instances arising from
a reduction fall below the cost threshold by overcovering some other
parts of the input. This cannot be solved by simply lowering the cost
threshold because we still need to recognize yes-instances where a
witness covers each element by exactly one representative.

To find a reduction showing the NP-hardness of DFKM we need to
deal with overcovering. So far, we do not know whether DFKM actually
is NP-hard. However, we are able to show a weaker result by proving
the NP-hardness of unweighted DFKM with m = 2 for general metrics.

Theorem 4.4.1 A variant of DISCRETE FUZZY k-MEANS with m = 2 ,
w = 1, and using a general metric (instead of squared Euclidean dis-
tance) is NP-complete.

Our proof of Theorem 4.4.1 is a reduction from P3NAESAT and is
separated into two parts: the construction and the correctness.

4.4.1 Construction

Let ϕ be a Boolean formula over n variables consisting of m clauses of
size 3. Without loss of generality, we assume that no literal appears
more than once in any given clause. Let X ··= ∅. We set W = 6 · m
and add W copies of each of 2 · n different points to X, two for each
variable in ϕ. For each variable, one of these points corresponds to the
positive literal, the other to the negation. Next, we add m points to X
corresponding to the clauses in ϕ. Finally, we add m additional points
to X. For each clause (x ∨ y ∨ z) in ϕ, we add a point corresponding

38

4.4 Towards a Classification of DFKM

to the (in ϕ non-existent) clause (x̄ ∨ ȳ ∨ z̄). For the sake of brevity we
abuse notation and call these points literals and clauses, omitting that
they only correspond to a literal/clause in ϕ. We define the distance
function d : X ×X → R≥0 for our DFKM instance as

d(p, q) = d(q, p) ··=



0 if p = q

1 if p and q are a literal and its negation
n if p is a literal appearing in clause q
n+ 1 if p̄ is a literal appearing in clause q
n+ 2 else.

The central idea is that literals are close to their negation, clauses are
closer to literals they contain than to the literal’s negation, and all
other points are far away from each other. The DFKM instance is (X,n)
and we ask for the cost bound

L ··=
n ·W

1 + n−1
n+2

+
m

1
n + 2

n+1 + n−3
n+2

+
m

2
n + 1

n+1 + n−3
n+2

.

Lemma 4.4.2 The function d is a metric.

Proof. Non-negativity, symmetry, and identity of indiscernibles are
immediate by definition of d. Establishing that d fulfils the triangle
inequality requires a few observations. We consider which sums of two
non-zero distances might occur on the right hand side of the triangle
inequality.

The smallest of sum is 2. This occurs only as d(x, x̄)+d(x̄, x) for some
variable x. However, in that case the left hand side of the inequality is
d(x, x) or d(x̄, x̄), which are both 0.

The next larger sum is n+ 1. This appears as d(x, b) + d(x, x̄) where x
is a literal appearing in b (x might be a negative literal – the argument
is the same). However, by definition we have d(x̄, b) = n+ 1, and hence
the triangle inequality is fulfilled.

All other sums are at least n+ 2 and thus trivially fulfil the triangle
inequality.

4.4.2 Correctness

To show correctness we have to carefully analyze the structure of
solutions for X. An important notion we use in this analysis is the
classification of a solution as a so-called reasonable solution.

39

CLASSICAL HARDNESS

Definition 4.4.3 (Reasonable Solutions) Let M b X. We call M rea-
sonable if for each variable x in ϕ

x ∈M ∨ x̄ ∈M .

Observe that a reasonable solution contains a representative at
either the positive or the negative literal of each variable x. Since
solutions consist of n representatives and ϕ contains n variables, this
means that a reasonable solution never contains a representative at
a variable and at its negation. By this, we can define a one-to-one
mapping between truth assignments for ϕ and reasonable solutions
for X. A variable x is true if and only if x ∈M and x is false if and only
if x̄ ∈ M . This allows us to express the cost of a reasonable solution
in terms of the number of NAE-satisfied clauses. In the following,
for each reasonable solution M , we denote by S(M) the number of
NAE-satisfied clauses and by U(M) the number of NAE-unsatisfied
clauses of the assignment corresponding to M .

Lemma 4.4.4 If M b X is reasonable, then

fkm(X,M) =
n ·W

1 + n−1
n+2

+ (Γ1 + Γ2) · S(M) + (Γ0 + Γ3) · U(M)

where

Γi =

(
i

n
+

3− i
n+ 1

+
n− 3

n+ 2

)−1

.

Proof. First, consider the cost of the literals. Each of these points is
either in M and has cost 0, or it has a representative at its negated
literal at distance 1 and n − 1 representatives at distance n + 2 and
hence has cost

1

1 + n−1
n+2

.

Recall that there are W copies of each of these points. Second, consider
the cost of the clauses. Since clauses are of length 3, each of these
has n − 3 representatives at distance n + 2. The others are either at
distance n or at distance n+ 1, dependent on whether the literals are
true or false in the clause. Hence, the cost of such a clause is Γi where
i is the number of true literals in that clause. Recall that a clause
is NAE-satisfied if it contains at least one true and one false literal.
Furthermore, recall that by construction, for each clause b of ϕ, we
added a clause where all literals from b are negated and which does

40

4.4 Towards a Classification of DFKM

not occur in ϕ. We consider the cost of the clauses in pairs of points
b, b̄ where one corresponds to a clause in ϕ and the other to the newly
added clause. If b has i true literals, then b̄ has exactly 3−i true literals.
Thus, each of these pairs has either cost Γ1 + Γ2 or Γ0 + Γ3, dependent
on whether b is NAE-satisfied, or not. We obtain the claimed cost.

The first direction of the correctness proof is fairly simple. Assume
there exists an assignment of the variables NAE-satisfying ϕ and let M
be the corresponding reasonable solution. By Lemma 4.4.4 we have

fkm(X,M) =
n ·W

1 + n−1
n+2

+ (Γ1 + Γ2) ·m = L ,

since all clauses are NAE-satisfied.
For the second direction we have spend more effort by further ana-

lyzing solutions for X. The central argument lies in showing that any
solution with cost at most L is reasonable.

Lemma 4.4.5 If M b X, such that fkm(X,M) ≤ L, then M is reason-
able.

Proof. Assume M is not reasonable. By definition, there exist two
points corresponding to literals of the same variable x, x̄ 6∈ M . Since
|M | = n we have one of two cases: Either there exists a point corre-
sponding to a clause b ∈M , or there exist two points corresponding to
literals of the same variable y, ȳ ∈M such that x 6= y. In the following,
we only discuss cases where exactly one of these two applies, and
where there is no location at which there are multiple representatives.
The general claim can easily be derived as a number of combinations
of the presented analyses.

Case 1 Assume there is a representative at a clause b. We obtain that
there are n+ 1 variables with no representative at their location. Since
x, x̄ 6∈M , we observe that all representatives are at distance at least n
to x and x̄. The other n− 1 literals with non-trivial cost have at most 1
representative at distance 1 (their negation) and n − 1 at distance at
least n. Hence, we obtain

fkm(X,M) ≥ 2 ·W
n
n

+
(n− 1) ·W

1 + n−1
n

= 2 ·W +
n · (n− 1) ·W

2 · n− 1
.

41

CLASSICAL HARDNESS

Observe that for all i ∈ [3]0 and n ∈ N we have

Γi =

(
i

n
+

3− i
n+ 1

+
n− 3

n+ 2

)−1

≤
(

i

n+ 2
+

3− i
n+ 2

+
n− 3

n+ 2

)−1

=
n+ 2

n
≤ 3 .

Thus, by choice of W , we have

W > (Γ1 + Γ2) ·m .

Furthermore, we bound

W +
n · (n− 1) ·W

2 · n− 1
=

(2 · n3 + 3 · n2 − n− 1) ·W
(2 · n− 1) · (2 · n+ 1)

≥ (2 · n3 + 3 · n2 − 2n) ·W
(2 · n− 1) · (2 · n+ 1)

(since n ≥ 1)

=
n · (n+ 2) ·W

2 · n+ 1

=
n ·W

1 + n−1
n+2

.

Taking the sum of the two lower bounds we obtain the claim for this
case.

Case 2 Assume there are representatives at literals y, ȳ. There are
still n literals with no representative at their location. Similar to before,
all representatives are at distance at least n+ 2 to x and x̄. The other
n − 2 literals with non-trivial cost have at most 1 representative at
distance 1 (their negation) and n − 1 at distance at least n + 2. We
obtain

fkm(X,M) ≥ 2 ·W
n
n+2

+
(n− 2) ·W

1 + n−1
n+2

=
2 · (n+ 2) ·W

n
+

(n− 2) · (n+ 2) ·W
2 · n+ 1

.

As before, our choice of W yields

(n+ 2) ·W
n

> W > (Γ1 + Γ2) ·m .

42

4.4 Towards a Classification of DFKM

Also similar to the first case we have

(n+ 2) ·W
n

+
(n− 2) · (n+ 2) ·W

2 · n+ 1
=

(n2 + 1) · (n+ 2) ·W
n · (2 · n+ 1)

≥ n2 · (n+ 2) ·W
n · (2 · n+ 1)

=
n · (n+ 2) ·W

2 · n+ 1

=
n ·W

1 + n−1
n+2

.

Once again, taking the sum yields the claim and concludes the proof.

Recall that we can uniquely map each reasonable solution to a truth
assignment of the variables in ϕ. Since

Γ0 + Γ3

= 2·n10+10·n9+45·n8+140·n7+332·n6+667·n5+990·n4+1190·n3+1040·n2+504·n+96
n10+3·n9+21·n8+49·n7+161·n6+283·n5+538·n4+668·n3+696·n2+516·n+144

> 2·n10+10·n9+45·n8+140·n7+328·n6+639·n5+900·n4+990·n3+720·n2+216·n
n10+3·n9+21·n8+49·n7+161·n6+283·n5+538·n4+668·n3+696·n2+516·n+144

= Γ1 + Γ2 ,

we conclude our proof by observing that the cost of a reasonable
solution is at most L if and only if U(M) = 0, i.e. all clauses are
NAE-satisfied.

Our NP-hardness reduction for the general metric variant of DFKM

circumvented the overcovering problem by exploiting the special struc-
ture of P3NAESAT. In this variant of the satisfiability problem clauses
can actually be overcovered because setting all variables to true fal-
sifies a clause. By complementing each clause by a sort-of negated
version of itself we are able to find an exact characterisation of optimal
solutions for our instance. Due to the difficult algebraic structure of
the DFKM objective function we used pretty coarse lower bounds for
the cost of non-reasonable solutions. This is strong evidence that it
might be possible to apply our technique together with a sophisticated
embedding to obtain a hardness result for DFKM.

Conjecture 4.4.6 DISCRETE FUZZY k-MEANS with m = 2 and w = 1 is
NP-complete.

43

CLASSICAL HARDNESS

4.5 Parameterized Hardness of DFRKM

We present results classifying the hardness of the fuzzy variant of
radius covering DFRKM. While we show that the problem is hard for
unweighted instances, we require d and k to be part of the input. In
the following, we first introduce a special case of a metric.

Definition 4.5.1 ((1, 2)−B Metric) Let U be a set and B ∈ N. A metric
d : U × U → R≥0 is called a (1, 2)−B metric if,

1. for all u, v ∈ U with u 6= v, we have d(u, v) ∈ {1, 2} and

2. for all u ∈ U , we have |{v ∈ U | d(u, v) = 1}| ≤ B.

These types of metrics arise naturally in graph theory as the 2-
truncated metric [Deza & Deza, 2009]. That is, we consider the stan-
dard path (also called geodesic) metric of a graph, but replace any
distance greater than 2 by 2. For a graph G = (V,E) this then forms
a (1, 2) − δ(G) metric where δ(G) ··= maxv∈V {deg(v)} is the maximum
degree of the vertices in the graph. (1, 2)−B metrics are particularly
interesting as they are a very restrictive type of metric, and despite hav-
ing such a simple structure, there are well-known problems which are
still hard when they are restricted to such a metric. For example, there
exists a constant B such that TRAVELLING SALESMAN PROBLEM (TSP) is
still MaxSNP-hard if it is restricted to (1, 2)−B metrics [Papadimitriou
& Yannakakis, 1993]. This means that there is no Polynomial Time
Approximation Scheme (PTAS) for the problem unless P = NP [Arora
et al., 1998].

One of the main difficulties when dealing with geometric problems
is finding an embedding of points exhibiting the required distances
between points. For our purposes in this section we use an embedding
result for (1, 2)−B metrics from coding theory.

Lemma 4.5.2 (Trevisan [2000]) Let U be a set with |U | = n, B ∈ N, and
d : U × U → R≥0 be a (1, 2) − B metric. There exists a polynomial time
algorithm which given U and d computes an embedding f : U → Rn(B+1)

such that, for all u, v ∈ U ,

• if d(u, v) = 1, then ‖f(u)− f(v)‖22 = 2 ·B and

• if d(u, v) = 2, then ‖f(u)− f(v)‖22 = 2 · (B + 1).

This embedding is based on Hadamard codes, actually maps the
elements in U to the unit hypercube {0, 1}n(B+1), and was designed as
an isometry for the Hamming distance. However, we can repurpose

44

4.5 Parameterized Hardness of DFRKM

this because Hamming distance and squared Euclidean distance coin-
cide on binary vectors. Using this embedding technique we obtain a
straightforward hardness proof for DFRKM.

Theorem 4.5.3 DISCRETE FUZZY RADIUS k-MEANS with w = 1 is NP-
complete.

Proof. In the following, we present a reduction from DS to DFRKM.
Let (G = (V,E), k) be an instance of DS. By Lemma 4.5.2, there exists

a function f : V → Rn·(δ(G)+1) such that

• if {u, v} ∈ E, then ‖f(u)− f(v)‖22 = 2 · δ(G), and

• if {u, v} 6∈ E, then ‖f(u)− f(v)‖22 = 2 · (δ(G) + 1).

Our reduction maps (G, k) to the instance (f [V] , k) for DFRKM and asks
for the cost bound

L = 2 · δ(G) · δ(G) + 1

δ(G) · k + 1
.

Assume C ⊆ V is a size k dominating set in G. We analyze the cost
of the set f [C]. Every point in f [V] is either in f [C], or has at least
one point in f [C] at distance 2 · δ(G). Hence, we can bound

frkm(f [V] , f [C]) = max
x∈f [V]\f [C]

{
1∑

µ∈f [C] ‖x− µ‖
−2
2

}

≤ 1

(2 · δ(G))−1 + (k − 1) · (2 · (δ(G) + 1))−1
= L .

Conversely assume that there is no dominating set of size k in G.
Hence, for every C ⊆ f [V] with |C| = k, there exists an x ∈ f [V] such
that, for every c ∈ C, we have {f−1(x), f−1(c)} 6∈ E. We conclude

frkm(f [V] , f [C]) =
1

k · (2 · (δ(G) + 1))−1
=

2 · (δ(G) + 1)

k
> L .

In general DFRKM is NP-complete if d and k are part of the input. In
the following, we discuss that we can at least bound the dimension d
we allow our instance to have.

Corollary 4.5.4 DISCRETE FUZZY RADIUS k-MEANS with w = 1 and
d ∈ O(n) is NP-complete.

45

CLASSICAL HARDNESS

Proof. Use the reduction from the proof of Theorem 4.5.3 and observe
that DS is still NP-complete when restricted to graphs G with δ(G) = 3
[Garey & Johnson, 1979].

Interestingly, we are able to obtain a stronger hardness result by
relaxing the bound on the dimensionality of the input set. To show
this we take a shallow dive into parameterized complexity. The central
notion of this domain of computational complexity is to understand
languages as sets of tuples (x, k) where x is the instance and k the
parameter. Such a parameterized language is called fixed-parameter
tractable if there exists a computable function f and an algorithm
deciding the language in time f(k) ·poly(|x|). The idea of this being that
the problem is polynomial-time solvable if we fix the parameter to a
constant. The class FPT then consists of all fixed-parameter tractable
parameterized languages. Above FPT there exists an infinite hierarchy
of classes of hard parameterized languages called the W-hierarchy.
Without going into the definition of the W classes, the hierarchy is
arranged as follows

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[Sat] ⊆W[P] .

A collapse of just the first inclusion of the W-hierarchy would also
refute the exponential time hypothesis. That is, if FPT = W[1], then
NP ⊆ DTIME(2o(n)) [Downey & Fellows, 2012]. Problems in this hierar-
chy are related to one another using parameterized reductions.

Definition 4.5.5 (Parameterised Reduction) We say that a parameter-
ized language A is parameterized reducible to parameterized language
B if there exist computable functions f ,g, and h such that

1. f(x, k) is computable in time h(k) · poly(|x|), and

2. (x, k) ∈ A⇔ (f(x, k), g(k)) ∈ B.

This very brief outline of the foundation of parameterized complexity
does no justice to this extensive and elegant subfield of computational
complexity. However, it is sufficient for the results presented here.
The interested reader can find a detailed exposition of the theory of
parameterized complexity in the seminal work by Downey & Fellows
[2012, 2013].

Usefully, DS is one of the most important problems of parameterized
hardness.

Theorem 4.5.6 (Downey & Fellows [2013]) DOMINATING SET with pa-
rameter k (size of the dominating set) is W[2]-complete.

46

4.6 DKM is Hard in Fixed Dimensions

Once again, consider the reduction presented in the proof of Theo-
rem 4.5.3. We can easily recognize that this is also a parameterized
reduction. g is the identity (k remains unchanged) and computing the
embedding of the graph is independent of k. Furthermore, observe
that for every graph G = (V,E) we have δ(G) ≤ |V |.

Corollary 4.5.7 DISCRETE FUZZY RADIUS k-MEANS with w = 1, d ∈
O(n2), and parameter k (number of representatives) is W[2]-complete.

4.6 DKM is Hard in Fixed Dimensions

For the problems discussed in this thesis we obtain the strongest
result, with respect to classical complexity, for DKM. We show that DKM

is NP-hard even for unweighted instances in the plane (i.e. w = 1 and
d = 2). The proof is just a slight adaptation of a proof Papadimitriou
[1981] used to establish NP-hardness of what he called k-MEDIAN,
which in terms of our notation is just DKM using the standard Eu-
clidean distance. In his proof he assumed that the input points lie on
an integral lattice and he assumed the distance between two points
to be rounded down to the nearest integer. This is necessary to avoid
comparing sums of radicals, which, to the best of our knowledge, is
not known to be solvable in deterministic polynomial time. A detailed
discussion of this long-standing open problem can for example be
found in [Blömer, 1993]. However, radicals do not arise in DKM where
we use the squared Euclidean distance. In the following, we establish
NP-hardness of DKM in the plane, essentially mirroring Papadimitri-
ou’s exposition. We present an explicit embedding of a point set into
Euclidean space which exhibits basically the same structure as the
point set constructed in the original proof, and outline the correctness
arguments.

Theorem 4.6.1 DISCRETE k-MEANS with w = 1 and d = 2 is NP-
complete.

Proof. We show X3C ≤p DKM where the reduction function constructs a
point set in R2. Let (U, S) be an instance of X3C and call m ··= |U | = 3 ·n
for some n ∈ N. If no such n exists, then (U, S) is a no-instance, and
we output some no-instance of DKM. We choose some ε > 0 such that
δ ··= 12/5 · ε− ε2 ≤ k−4 and X ··= ∅.

We add n2 copies of each of k rows R1, . . . Rk to X. Each row Rl
consists of 2 · m2 + 6 · m + 2 points. First, a grid of points 6 · m + 2
points pi,j,l, with i ∈ [3 ·m+ 1] and j ∈ [2]. We let pi,j,l ∈ R2 and denote

47

CLASSICAL HARDNESS

pi,j,l = (pxi,j,l, p
y
i,j,l). For an arbitrarily chosen p1,2,l, we let

pi,1,l =

(
pxi,2,l , p

y
i,2,l +

1

5

)
and

pi+1,j,l =
(
pxi,j,l + 1 , pyi,j,l

)
.

Second, m2 copies of each of the two points

b1,l =

(
px1,2,l −

6

5
, py1,2,l +

1

10

)
and

b2,l =

(
px3·m+1,2,l +

6

5
− ε , py3·m+1,2,l +

1

10

)
so that each row consists of points in 6 · m + 4 different locations.
Figure 4.6.2 sketches one of the rows.

b1,l

p1,1,l p2,1,l p3,1,l

p1,2,l p2,2,l p3,2,l
· · ·

· · ·
p3·m,1,l p3·m+1,1,l

p3·m,2,l p3·m+1,2,l

b2,l1
5 16

5
1
10

6
5 − ε 1

10

Figure 4.6.2: Sketch of a row Rl.

These k rows are arranged in parallel to each other. We choose an
arbitrary location for the point p1,2,1. Then, for each row l ∈ [k]2, we
choose p1,2,l = (px1,1,l−1, p

y
1,1,l−1 + 4).

Next, we add n2 copies of 6 · n · (k − 1) points qi,j,l, with i ∈ [m], j ∈ [2],
and l ∈ [k − 1]. We call each these the q-pairs and locate them at

qi,1,l =

(
px3·i,2,l+1 −

1

2
, py3·i,2,l+1 −

9

6

)
and

qi,2,l =

(
px3·i,2,l −

1

2
, py3·i,2,l +

9

6

)
.

For each q-pair, we consider four possible locations

xi,l =

(
qxi,1,l , q

y
i,1,l +

5

6

)
yi,l =

(
qxi,1,l +

1

2
, qyi,1,l +

4

6

)
wi,l =

(
qxi,2,l +

1

2
, qyi,2,l −

4

6

)

48

4.6 DKM is Hard in Fixed Dimensions

zi,l =

(
qxi,2,l , q

y
i,2,l −

5

6

)
.

We add a single point of each of these under certain conditions. For
each q-pair (qi,1,l, qi,2,l), we have

• xi,l ∈ X ⇔ ui 6∈ Sl+1,

• yi,l ∈ X ⇔ ui ∈ Sl+1,

• wi,l ∈ X ⇔ ui ∈ Sl, and

• zi,l ∈ X ⇔ ui 6∈ Sl.

Figure 4.6.3 sketches such a configuration of points.

p3i−2,1,l p3i−1,1,l p3i,1,l p3i+1,1,l

p3i−2,2,l+1 p3i−1,2,l+1 p3i,2,l+1 p3i+1,2,l+1

qi,1,l

qi,2,l

zi,l

wi,l

xi,l

yi,l

1

5
6

4
6

5
6

5
6

4
6 5

6

1
2

1
2

Figure 4.6.3: Sketch of a q-pair configuration.

Our DKM instance is then given as (X, k · (m+ 2) +m · (k− 1)) and we
ask for the cost bound L = n2 · (k · (m · 4.12 + 2.9)− n · 2 · δ+m · (k− 1)) +
n · (25/6) · (k − 1).

We only outline the correctness of this reduction as the arguments
are the same as in the original proof for the Euclidean distance [Pa-
padimitriou, 1981]. The core idea is that we can precisely characterize
the cheapest and the second cheapest solutions of a row Rl using m+2
representatives. The cost bound L of the instance X is fulfilled if and

49

CLASSICAL HARDNESS

only if m+ 2 representatives are assigned to each row and one to each
q-pair. Furthermore, we need to have exactly n rows using a cheapest
configuration of representatives and the rest a second cheapest config-
uration. Each row Rl in the cheapest configuration then corresponds
to the set Sl being part of an exact cover.

50

Complexity of Single-Swap
Local Search 5
Contribution Summary We present local search hardness of the
single-swap neighborhood for METRIC UNCAPACITATED FACILITY LOCA-
TION, DISCRETE k-MEANS, and DISCRETE FUZZY k-MEANS. The results
and proofs discussed in Section 5.3, Section 5.4, and Section 5.5 were
published in [Brauer, 2019], with a preliminary version presented in
[Brauer, 2017].

5.1 Polynomial Local Search 53
5.2 Related Work . 58
5.3 Completeness of MUFL/SingleSwap 59

5.3.1 Construction . 60
5.3.2 Correctness . 60
5.3.3 Tightness . 64

5.4 Completeness of DKM/SingleSwap 65
5.4.1 Construction . 66
5.4.2 Correctness and Tightness 67
5.4.3 Embedding . 72

5.5 Completeness of DFKM/SingleSwap 75
5.5.1 Construction . 76
5.5.2 Correctness, Tightness, and Embedding 77

A popular approach to dealing with hard optimization problems is
a metaheuristic called local search. The underlying principle is to
define a small neighborhood of each solution. A neighborhood usually
contains solutions that are in some sense similar to each other –
hence the name local search. Having defined such a neighborhood, we
immediately obtain a simple approximation algorithm for our problem.
Start by selecting any feasible solution and repeatedly replace the
current solution by a better solution from its neighborhood. This fairly
general framework exhibits several hyperparameters, each having

51

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

more of less significant impact on the quality of the local search. The
most prominent is the definition of the neighborhood, which has three
major impacts on the algorithm. First, we need to be able to check if
there is a better solution in the current neighborhood in polynomial
time. This is often achieved by defining a small enough neighborhood
so that we can simply check all solutions in the neighborhood. Second,
aside from the polynomial runtime of a single improvement, we also
need to bound the number of improvement steps a local search takes
before terminating. Finally, the neighborhood defines the quality of
the final solution. A local search terminates when it has found a
solution with no better solution in its neighborhood. This in itself is no
guarantee on the overall quality of the solution. Showing some global
guarantee of a locally optimal solution is the hard part of analyzing
local search neighborhoods and much harder to predict than just the
runtime aspect of the neighborhood.

In this chapter, we examine the single-swap neighborhood of MUFL,
DKM, and DFKM. While similar to each other, the neighborhood for
MUFL slightly differs from the other two. The neighborhood of some
MUFL solution O consists of all solutions opening at most one facility
which is closed in O, and having at most one facility closed which is
open in O. Formally, we set

Nocs(O) =
{
O′ ⊆ F

∣∣ ∣∣O \O′∣∣ ≤ 1 ∧
∣∣O′ \O∣∣ ≤ 1

}
.

We say that the MUFL neighborhood either opens a facility, closes a
facility, or swaps an open facility. Recall that solutions for DKM and
DFKM consists of at most k representatives and that using less than k
is always worse than using exactly k. Hence, for these problems, we
disallow the open and close operations. The neighborhood then con-
sists of the solutions swapping exactly one representative. Formally,
we set

Ns(O) =
{
O′ b X

∣∣ ∣∣O \O′∣∣ = 1 ∧
∣∣O′ \O∣∣ = 1

}
.

For MUFL and DKM it is known that a single-swap local search outputs
a constant factor approximation of the global optimum [Arya et al.,
2004; Kanungo et al., 2004]. However, no approximation bound has
so far been shown for DFKM. Nevertheless, we expect such an analysis
to be possible.

Conjecture 5.1 A single-swap local search finds a constant factor ap-
proximation for DISCRETE FUZZY k-MEANS.

52

5.1 Polynomial Local Search

5.1 Polynomial Local Search

The computational theory of local search is captured in the class
PLS. As one expects from a meaningful complexity class, PLS has its
own type of reductions, for which it has complete problems. In the
following, we present an introduction to the theory of PLS and some
of the relation of local search complexity to classical computational
complexity. The definitions and results presented in this section are
due to Johnson et al. [1988]; Papadimitriou et al. [1990]; Schäffer &
Yannakakis [1991].

In contrast to classical computational complexity, where we classify
decision problems, PLS classifies optimization problems.

Definition 5.1.1 (Combinatorial Optimization Problem) A combinato-
rial optimization problem Π = (g,D, F, cost) consists of

• an optimization goal g (min or max),

• a set of instances D,

• for each instance I ∈ D, a finite set of feasible solutions F (I), and

• an objective function cost mapping an instance I and a feasible
solution s ∈ F (I) to a numerical (usually positive real) value.

Given I ∈ D, the goal of the problem Π is to find s ∈ F (I) with

cost(I, s) = g
{

cost(I, s′)
∣∣ s′ ∈ F (I)

}
.

If we augment such a combinatorial optimization problem by a neigh-
borhood and show the existence of several polynomial-time algorithms,
then we obtain the class PLS.

Definition 5.1.2 (Polynomial Local Search (PLS)) Let Π = (g,D, F, cost)
be a combinatorial optimization problem and

NΠ = {N(I, s) ⊆ F (I) | I ∈ D, s ∈ F (I)}

be a collection of subsets of feasible solutions of Π. We call N(I, s) the
neighborhood of the solution s with respect to NΠ and I.

We call a pair of solutions (s, s′) ∈ F (I) × F (I) a local improvement
of s if s′ ∈ N(I, s) and cost(I, s′) is strictly better than cost(I, s) where
better depends on the optimization goal g. A solution s is called locally
optimal if there is no local improvement of s. We further call a solution
s′ reachable from solution s if there exists a sequence of solutions

(s = s1, . . . , sn = s′) ∈ F (I)n

53

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

such that, for all i ∈ [n− 1], the pair (si, si+1) is a local improvement of
si.

The class PLS consists of all problems Π/NΠ for which there exist
three polynomial-time algorithms A, B, and C such that

• A, given I ∈ D, outputs some solution s ∈ F (I),

• B, given I ∈ D and s ∈ F (I), outputs cost(I, s), and

• C, given I ∈ D and s ∈ F (I), outputs s′ such that (s, s′) is a lo-
cal improvement of s. If no local improvement of s exists, then C
reports that s is locally optimal.

The task of a PLS problem Π/NΠ is, given an instance I ∈ D, to find
a locally optimal solution. We observe that such a PLS problem always
lies in TFNP, the class of all function problems of the form

Given some x and a polynomial-time decidable relation ∼, where there
exists a y with x ∼ y, output z with x ∼ z.

Due to the definition using total relations, TFNP is a natural functional
analog to NP∩coNP. Hence, no problem in TFNP, and thus no problem
in PLS, can be NP-hard unless NP = coNP [Megiddo & Papadimitriou,
1991].

The motivation for the definition of PLS, as well as it sibling classes
PPA and PPP, was a little atypical. The goal was to group problems by
the technique used to prove their membership of TFNP. For problems
in PLS the proof relies on the fact that every finite directed acyclic
graph has a sink. We can find this argument in the definition of the
so-called standard algorithm. To solve a PLS problem one can always
use the algorithms A and C, which are provided by definition. Run
A to obtain some solution s and repeatedly update s using C until C
reports that s is locally optimal. Since the set of feasible solutions is
finite, this algorithm always terminates with a locally optimal solution.
This standard algorithm traverses a path on the transition graph.

Definition 5.1.3 (Transition Graph) Let Π/NΠ be a PLS problem and
I ∈ D. The transition graph TGΠ/NΠ

(I) = (F (I), E(I)) is a directed
graph such that (s, s′) ∈ E(I) if and only if (s, s′) is a local improvement
of s with respect to I.

The transition graph captures the local structure of the PLS problem.
Each vertex is a feasible solution, and the edges represent improving
steps the algorithm C might take. The transition graph is acyclic, and
thus, we find the reason why PLS problems lie in TFNP.

54

5.1 Polynomial Local Search

While we suspect that PLS problems are not NP-hard, we have no
universal recipe to finding locally optimal solutions except for the
standard algorithm. Thus, the second driving task in the definition of
PLS was the analysis of the runtime of the standard algorithm. This
led to the important notion of the standard algorithm problem:

Given a PLS problem Π/NΠ, an instance I ∈ D, and a solution
s ∈ F (I), find a locally optimal solution s∗ ∈ F (I) which is reachable

from s.

Notice that the standard algorithm problem is independent of the
concrete algorithm C. It covers all possible tiebreaks and improvement
choices an algorithm C might take. As we discuss later, solving the
standard algorithm problem might be significantly harder than solving
the corresponding PLS problem.

Definition 5.1.4 (PLS-reduction) Let Π/NΠ and Λ/NΛ be PLS prob-
lems. We say Π/NΠ is PLS-reducible to Λ/NΛ, write Π/NΠ ≤PLS Λ/NΛ,
if there are polynomial-time computable functions Φ and Ψ such that

• Φ maps an instance I ∈ DΠ to an instance Φ(I) ∈ DΛ,

• Ψ maps an instance I ∈ DΠ and a solution s ∈ FΛ(Φ(I)) to a
solution Ψ(I, s) ∈ FΠ(I), and

• if s ∈ FΛ(Φ(I)) is locally optimal, then Ψ(I, s) is locally optimal.

These reductions behave exactly as one expects from a sound re-
duction. PLS-reductions are reflexive, transitive, and there are PLS-
complete problems. However, being PLS-complete does not tell us
anything about the complexity of the respective standard algorithm
problem. To obtain such a classification, we need to consider a restric-
tion of PLS-reductions to so-called tight PLS-reductions.

Definition 5.1.5 (Tight PLS-reduction) Let Π/NΠ and Λ/NΛ be PLS
problems and let (Φ,Ψ) be a PLS-reduction from Π/NΠ to Λ/NΛ. We call
(Φ,Ψ) tight if for every I ∈ DΠ there is a set of reasonable solutions
R ⊆ FΛ(Φ(I)) with the following properties

• R contains all locally optimal solutions of Φ(I),

• there is a polynomial-time computable function h : FΠ(I)→ R such
that, for all s ∈ FΠ(I), we have s = Ψ(I, h(s)), and

• if s s′ be a path in TGΛ/NΛ
(Φ(I)) with s, s′ ∈ R such that all

internal path vertices are solutions in FΛ(Φ(I)) \ R, then either
Ψ(I, s) = Ψ(I, s′) or (Ψ(I, s),Ψ(I, s′)) is an edge in TGΠ/NΠ

(I).

55

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

We call a PLS problem tightly PLS-complete if all PLS problems are
reducible to it via a tight reduction.

Once again observe that tight PLS-reductions are reflexive and tran-
sitive. While the arguments are a little technical, this can be obtained
with a straightforward check of the required properties and will not be
presented here.

The third constraint to a tight PLS-reduction might seem a bit
daunting and technical. However, it is a technical formulation of an
intuitive idea: we require that tight PLS-reductions preserve paths
of local improvement. The problem that the tight reduction maps
to might introduce additional intermediate solutions to improving
paths in the original problem. This makes in some sense sure that
the standard algorithm of the reduced-to problem cannot take new
shortcuts that the original standard algorithm could not have taken.
This means that we cannot speed up a standard algorithm by first
reducing our problem to a different one. Tight PLS-reductions are of
special interest since they open a connection to classical complexity
theory and provide a lower bound for the worst case runtime of the
standard algorithm.

Theorem 5.1.6 Let Π/NΠ be a tightly PLS-complete problem.

• The standard algorithm problem of Π/NΠ is PSPACE-complete.

• There is no polynomial p such that, for each instance I ∈ D and
each solution s ∈ F (I), there is a locally optimal solution of I which
is reachable from s with less than p(|I|) local improvements.

This not only means that the standard algorithm problem of a
tightly PLS-complete problem is hard, but also, that there always
is a solution which is superpolynomially many steps away from every
local optimum.

In the following, we show that MUFL/SingleSwap, DKM/SingleSwap,
and DFKM/SingleSwap are tightly PLS-complete problems.

Local Search for Boolean Satisfiability For most complexity classes,
there is a variant of Boolean satisfiability which is a hard problem
within the class, and PLS poses no exception to this. We formally
present the MAX 2-SAT (M2SAT) and POSITIVE MAX 2-NOTALLEQUAL-
SAT (PM2NAESAT) problems, as well as the Flip neighborhood. Their
corresponding local search problems M2SAT/Flip and PM2NAESAT/Flip
play an important role in the the analysis of PLS.

56

5.1 Polynomial Local Search

Let B be a finite set of clauses (i.e. Boolean disjunctions) over the
set of variables X. As before, we denote occurrences of variables in a
clause, either positive or negated, as literals. For a literal x we denote
by B(x) the subset of clauses in B in which x appears. For a weight
function w : B → N on the clauses we denote wmax(B) = maxb∈B {w(b)}
and wmin(B) = minb∈B {w(b)}.

Let T be a truth assignment of the variables X. We denote by
Bt(T) the set of clauses in B which are satisfied by T in the classical
sense. That is, a clause is satisfied if at least one of the literals
evaluates to true. Analogously, we denote by BNAE

t (T) the set of
clauses which are NAE-satisfied by T . As a reminder: a clause is
NAE-satisfied if there is at least one literal evaluating to true and
at least one to false. Furthermore, we denote by Bf (T) = B \ Bt(T),
and BNAE

f (T) = B \ BNAE
t (T) respectively, the clauses which are not

(NAE-)satisfied. We formally introduce two optimization problems.

• Given a set of clauses B where each clause consists of exactly
two literals and a weight function w : B → N. The M2SAT problem
asks for a truth assignment maximizing

w (Bt(T)) .

• Given a set of clauses B where each clause consists of exactly two
positive literals and a weight function w : B → N. The PM2NAESAT

problem asks for a truth assignment maximizing

w
(
BNAE
t (T)

)
.

Notice that PM2NAESAT is equivalent to the well-known MAX CUT (MC)
problem. The MC problem is, given an undirected graph G = (V,E) and
a weight on the edges w : E → N, find a partition of the vertices into
two sets maximizing the sum of the weights of the edges going over the
cut (i.e. from one set of vertices to the other). We map each variable
to a vertex and draw edges between two vertices if and only if they
occur together in a clause. By interpreting a partition of the vertices
as assigning a truth value to the corresponding variable, one can
easily see that the value of the cut and the weight of the NAE-satisfied
clauses coincide. Furthermore, observe that it is not important which
of the two subsets of vertices is assigned true since the NAE weight
of a truth assignment is the same as the NAE weight of its conjugate
assignment.

An intuitive local search approach to approximating MAX SAT-type
problems is the Flip neighborhood. Given a truth assignment T , its

57

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

Flip neighborhood is the set of all truth assignments differing from T
in the value of exactly one variable – the flipped variable. Notice that
M2SAT/Flip and PM2NAESAT/Flip are both PLS problems.

• The algorithm A can simply output any fixed truth assignment.

• The algorithm B computes the cost function in polynomial time
simply by evaluating each clause and summing up the weights of
(NAE-)satisfied clauses.

• The algorithm C uses algorithm B to compute the cost of every
assignment in the neighborhood and outputs either the best one
or reports that the current assignment is locally optimal. This
is also a polynomial-time algorithm since the Flip neighborhood
contains only |X| assignments.

Theorem 5.1.7 MAX 2-SAT/Flip and POSITIVE MAX 2-NOTALLEQUAL-
SAT/Flip are tightly PLS-complete problems.

A peculiarity of PLS-complete problems is that the restriction to
unweighted instances is usually not tightly PLS-complete. That is
because a local improvement step always strictly reduces the cost of
the current solution. For most PLS problems this means that there
is at least a constant improvement in every step, independent of the
actual instance. An unweighted instance (or one with a polynomial
bound on the weights, for that matter) has a polynomial upper and
lower (typically 0) bound on the total cost of a solution. Consequently,
the local search will terminate after a polynomial number of improving
steps. We know that a tightly PLS-complete problem has solutions
which are superpolynomially many steps away from every local opti-
mum. From this we conclude that even the restriction of these types
of problem to polynomially bounded weight functions cannot be tightly
PLS-complete.

5.2 Related Work

Swap-based local search heuristics for facility location and hard clus-
tering have already been analyzed in terms of their runtime and approx-
imation guarantee. A single-swap local search yields a 3-approximation
for MUFL [Arya et al., 2004]. Furthermore, UFL/SingleSwap for general
distance functions is known to be PLS-complete [Kochetov & Ivanenko,
2005].

58

5.3 Completeness of MUFL/SingleSwap

For DKM, single-swap also yields a constant-factor approximation
[Kanungo et al., 2004]. The authors claim the approximation factor
to be 25, however, there is a minor error in their calculations such
that the actual factor of their analysis is 81. They also do not show an
upper bound on the number of iterations. They instead show that a
relaxation of the single-swap heuristic where we impose a lower bound
on the cost improvement of a swap yields an algorithm with polynomial
runtime but a slightly worse approximation ratio. As a remark: this
result is also applicable to a more general formulation of the problem
where an instance consists of a set of points and a set of potential
representatives. Our problem DKM is a special case where the latter is
the data set itself. Furthermore, recall that due to Lemma 4.2.1, this
also yields a constant factor approximation for KM.

A straightforward generalization of single-swap is the multi-swap
heuristic. There we are allowed, for some constant l, to swap up-
to l representatives in a single step. This heuristic yields a PTAS for
variants of DKM in Euclidean space with fixed dimension [Cohen-Addad
et al., 2016] and in metric spaces with bounded doubling dimension
[Friggstad et al., 2016].

5.3 Completeness of MUFL/SingleSwap

The first tight PLS-reduction we present shows the completeness of
the metric case of facility location together with the single-swap neigh-
borhood. In particular, we show that this still holds for unweighted
instances, i.e. for the weight function w = 1 on the clients. This
appears to be in conflict with our earlier discussion on tightly PLS-
complete problems always being weighted. Recall that we argued that
a local improvement for problems discussed so far always improves
the cost by a constant. For example, a local improvement of M2SAT

always fulfils an additional clause hence the objective increases by at
least 1. This is not true for MUFL where improvements depend on the
metric. Specifically, our reduction encodes the weights of clauses into
the distance between points in the metric space.

Theorem 5.3.1 METRIC UNCAPACITATED FACILITY LOCATION with w =
1 and with single-swap neighborhood is tightly PLS-complete.

The proof of Theorem 5.3.1 consists of three parts. First, we present
the construction of the reduction functions Φ and Ψ, second we argue
the correctness of the reduction, and finally show that the reduction
is tight.

59

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

5.3.1 Construction

Let (B,w : B → N) be an instance of M2SAT over the set of variables X
and denote n ··= |X|, m ··= |B|, and

W ··= m · wmax(B) .

Without loss of generality, we assume m ≥ 2. We construct the function
Φ mapping (B,w) to an instance (C,F, f, d) of MUFL as follows: Similar
to the proof of Theorem 4.4.1 we add 2 · n points to F – two for each
variable in X. For each variable, one of these corresponds to the
positive literal, the other to the negation. For the clients we initially set
C = F and then add m additional points corresponding to the clauses
in B. Simply speaking, there is a client corresponding to each clause
and each literal, and facilities can be opened at the location of each
client corresponding to a literal. We set the opening cost function to

∀o ∈ F : f(o) ··= 2 .

We define the distance function d : C ∪ F × C ∪ F → R≥0 as

d(p, q) = d(q, p) ··=



0 if p = q

1 if p and q are a literal and its negation
1 + w(q)

W if p is a literal appearing in clause q
1 + c·w(q)

W if p̄ is a literal appearing in clause q
2 else

where 1 < c < 2 is some arbitrarily chosen constant.
It is easy to see that d is a metric. We immediately obtain non-

negativity, symmetry, and identity of indiscernibles by definition. To
recognize that d fulfils the triangle inequality, observe that the sum of
any two non-trivial distances is always at least 2 while the distance
between two points is itself at most 2.

Next, we construct the function Ψ mapping a solution of Φ(B,w) back
to a solution of (B,w). Let O ⊆ F be a set of opened facilities. For each
variable x ∈ X we set x to true if x ∈ O and to false otherwise. That is,
a variable is true if there is an open facility at the point corresponding
to its positive literal. There is no only if part to this statement. A
variable is also set to true if both corresponding literals are opened.

5.3.2 Correctness

In the following, fix any M2SAT instance (B,w), denote the image of the
reduction as (C,F, 2, d) ··= Φ(B,w), and for each set of opened facilities

60

5.3 Completeness of MUFL/SingleSwap

O ⊆ F denote by TO ··= Ψ(B,w,O) the truth assignment obtained as
the image of Ψ. One can easily verify that Φ and Ψ are polynomial-time
computable functions. It remains to show that TO is locally optimal
for (B,w) with respect to the flip neighborhood if O is locally optimal
for Φ(B,w) with respect to the single-swap neighborhood. Since we fix
the metric and the opening cost, for the remainder of this section, we
introduce the following shorthand notation

mfl(C,O) ··= mfl(C, 2, d, O) .

Observe that Φ(B,w) has significantly more feasible solutions than
(B,w). Thus, Ψ cannot be injective, which we already discussed as
the missing only if part in the definition of Ψ. In general this makes
it difficult to relate the cost of a solution to Φ(B,w) to the cost of its
image under Ψ. We tackle this problem by using a generalization of
the set of reasonable solutions we introduced in Definition 4.4.3.

Definition 5.3.2 (Reasonable Solutions) Let O ⊆ F . We call O reason-
able if |O| = n and for each variable x

x ∈ O ∨ x̄ ∈ O .

We deliberately call this set of solutions reasonable, a term we pre-
viously introduced as the name of the set R required to establish
tightness of a PLS-reduction. This is because these solutions consti-
tute the set R in the tightness proof of this reduction as it is presented
in Section 5.3.3. Reasonable solutions of Φ(B,w) have several useful
properties, which we establish in the following.

Recall the earlier discussion about reasonable solutions, which
applies in this case, as well. A reasonable solutions contains exactly
n open facilities and for each of the n variables occurring in B, either
the facility at its positive or at its negative literal is opened. Hence, the
restriction of Ψ to reasonable solutions is a bijection. We obtain a one-
to-one mapping between truth assignments and reasonable solutions
where a variable x is true if and only if x ∈ O and x is false if and only
if x̄ ∈ O. This allows us to express the cost of a reasonable solution O
in terms of the cost of the corresponding truth assignment TO.

Lemma 5.3.3 If O ⊆ F is reasonable, then

mfl(C,O) = 3 · n+m+
c

W
· w (B)− c− 1

W
· w (Bt(TO)) .

Proof. O incurs opening cost of 2 · n since it is reasonable and thus
opens exactly n facilities. Each client corresponding to a literal either

61

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

has a facility opened at its location and has cost 0, or there is an opened
facility at the location of its negated literal and it has cost 1. Overall
the service cost of clients corresponding to literals is n. By definition
of the point set and Ψ, we obtain that a client corresponding to a
clause b ∈ Bt(TO) has at least one open facility at distance 1 + w(b)/W .
Analogously, a client corresponding to a clause b ∈ Bf (TO) has two
facilities at distance 1 + c · w(b)/W . For both types of clauses, all other
facilities are at distance 2. We sum this up to obtain

mfl(C,O) = 2 · n+ n+
∑

b∈Bt(TO)

(
1 +

w(b)

W

)
+

∑
b∈Bf (TO)

(
1 +

c · w(b)

W

)

= 3 · n+m+
∑

b∈Bt(TO)

w(b)

W
+

∑
b∈Bf (TO)

c · w(b)

W

= 3 · n+m+
c

W
· w (B)− c− 1

W
·
∑

b∈Bt(TO)

w(b)

︸ ︷︷ ︸
=w(Bt(TO))

.

Using this, we obtain that a cost improvement in the M2SAT instance
(B,w) corresponds to a cost improvement of reasonable solutions in
the MUFL instance Φ(B,w) via Ψ.

Corollary 5.3.4 If O,O′ ⊆ F are reasonable, then

mfl(C,O) > mfl(C,O′) if and only if w (Bt(TO)) < w (Bt(TO′)) .

Proof. Using Lemma 5.3.3 we obtain that the cost of a reasonable
solution is a constant only depending on the instance minus a fraction
of the M2SAT cost of TO. Since c > 1, we obtain the claim.

The previous corollary illustrates that the M2SAT instance (B,w)
has the same notion of a better solution as the reasonable solutions
of its image under Φ. Hence, the bijection Ψ uniquely maps local
improvements of (B,w) to local improvements between two reasonable
solutions of Φ(B,w), and vice versa. However, there is no relation
of this kind if any of the MUFL solutions involved is not reasonable.
We show that this is irrelevant since all locally optimal solutions of
instances in the image of Φ are, in fact, reasonable.

Lemma 5.3.5 If O ⊆ F is locally optimal with respect to the single-
swap neighborhood, then O is reasonable.

62

5.3 Completeness of MUFL/SingleSwap

Proof. We differentiate two cases in contraposition of the claim. First,
we argue that no locally optimal solution can open a facility corre-
sponding to a literal and the facility corresponding to the respective
negated literal. Second, we show that every locally optimal solution
contains a facility corresponding to either the positive or the negative
literal of each of the variables.

Case 1 Assume there is a variable x ∈ X such that x, x̄ ∈ O. By
definition we have |B(x)| ≤ m and 0 < c− 1 < 1, and obtain

1 ≥ |B(x)|
m

≥
∑

b∈B(x)

w(b)

wmax(B) ·m
>

∑
b∈B(x)

(c− 1) · w(b)

W
.

By definition of the metric d, no client in C̃ ··= C \ (B(x) ∪ {x}) is
closer to x than it is to x̄. Thus, the service cost of these clients does
not change when we close the facility at x.

mfl(C,O)

=
∑
c∈C̃

min
o∈O
{d(c, o)}

︸ ︷︷ ︸
service cost of C̃

+
∑

b∈B(x)

min
o∈O
{d(b, o)}

︸ ︷︷ ︸
service cost of B(x)

+ 2 · |O|︸ ︷︷ ︸
opening cost

=
∑
c∈C̃

min
o∈O\{x}

{d(c, o)}+
∑

b∈B(x)

(
1 +

w(b)

W

)
+ 2 + 2 · (|O| − 1)

>
∑
c∈C̃

min
o∈O\{x}

{d(c, o)}+
∑

b∈B(x)

(
1 +

w(b)

W

)
+
∑

b∈B(x)

(c− 1) · w(b)

W

+ 1 + 2 · (|O| − 1) (Definition of c and W)

=
∑
c∈C̃

min
o∈O\{x}

{d(c, o)}+
∑

b∈B(x)

(
1 +

c · w(b)

W

)
︸ ︷︷ ︸

d(b,x̄)

+ 1︸︷︷︸
d(x,x̄)

+2 · (|O| − 1)

≥ mfl(C,O \ {x}) .

Case 2 Assume there is a variable x ∈ X such that x, x̄ 6∈ O. All
opened facilities are at distance 2 to the clients located at x and x̄.
Opening a facility at x is sufficient to reduce the overall cost.

63

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

mfl(C,O)

=
∑

c∈C\{x,x̄}

min
o∈O
{d(c, o)}+

∑
c∈{x,x̄}

min
o∈O
{d(c, o)}

︸ ︷︷ ︸
=4

+2 · |O|

>
∑

c∈C\{x,x̄}

min
o∈O
{pd(c, o)}+ 1︸︷︷︸

d(x,x̄)

+2 · (|O|+ 1)

≥ mfl(C,O ∪ {x}) .

By combining the facts that local improvements of (B,w) correspond
to improvements between reasonable solutions and that all locally
optimal solutions are reasonable, we can conclude correctness of our
reduction.

Corollary 5.3.6 If O ⊆ F is locally optimal for Φ(B,w) with respect to
the single-swap neighborhood, then TO is locally optimal for (B,w) with
respect to the Flip neighborhood.

Proof. Assume to the contrary that TO is not locally optimal. If O is not
reasonable, then it is not locally optimal by Lemma 5.3.5. Therefore
assume that O is, in fact, reasonable. Since TO is not locally optimal,
we know that there exists a variable x such that

w
(
Bt(T

x̄
O)
)
> w (Bt(TO))

where T x̄O denotes TO with a flipped assignment of the variable x.
Since Ox̄ ··= (O \ {x}) ∪ {x̄} is reasonable, Ψ(B,w,Ox̄) = T x̄O, and by
Corollary 5.3.4 we obtain that

mfl(C,Ox̄) < mfl(C,O) .

We conclude that O is not locally optimal because Ox̄ is in the single-
swap neighborhood of O.

5.3.3 Tightness

We validate that (Φ,Ψ) fulfils the properties required from a tight PLS-
reduction. Let R be the set of all reasonable solutions for the MUFL

instance Φ(B,w). In our analysis we focus on Φ
∣∣
R, the restriction of

Ψ to the set of reasonable solutions. We already discussed that, by

64

5.4 Completeness of DKM/SingleSwap

Corollary 5.3.4, the single-swap neighborhood behaves, with respect
to reasonable solutions, exactly the same way the Flip neighborhood
behaves on (B,w). If we inspect our previous analysis a little closer,
then we can see that once single-swap has reached a reasonable
solution it will always stay at a reasonable solution.

Lemma 5.3.7 If O ∈ R and O′ 6∈ R, then (O,O′) 6∈ TG(Φ(B,w)).

Proof. Assume O ∈ R and let x ∈ O be any (possibly negated) literal
opened by the solution. Recall the arguments we have seen in the
proof of Lemma 5.3.5. The solutions O \ {x} and O ∪ {x̄} are more
expensive than the current solution. A swap, let y ∈ O and choose
(O ∪ {ȳ}) \ {x} as the new solution, is even more expensive than either
only opening ȳ or only closing x.

Finally, we conclude this section with the tightness proof of our
reduction.

Lemma 5.3.8 The PLS-reduction (Φ,Ψ) is tight.

Proof. We need to verify that (Φ,Ψ) and R fulfil the properties re-
quired by Definition 5.1.5. R contains all local optima of Φ(B,w) by
Lemma 5.3.5. As the function h we choose (Ψ

∣∣
R)−1. This is well-

defined since Ψ
∣∣
R is a bijection. Furthermore, we can compute this

in polynomial-time by simply adding the respective literals to the
solution.

For the third property, let O O′ be a path in TG(Φ(B,w)) with
O,O′ ∈ R and all internal path vertices outside of R. Applying Lem-
ma 5.3.7 we obtain that either O = O′ or that the path consists of a
single edge (O,O′). In the former case we have Ψ(B,w,O) = Ψ(B,w,O′).

In the latter case (O,O′) is a local improvement of O under the
single-swap neighborhood. That is, there exists a variable x such
that O′ = Ox̄ and mfl(C,O) > mfl(C,Ox̄). Since Ψ(B,w,Ox̄) = T x̄O = TO′

and by applying Corollary 5.3.4, we have w (Bt(TO)) < w (Bt(TO′)). We
conclude by observing that (TO, TO′) ∈ TG(B,w).

5.4 Completeness of DKM/SingleSwap

In this section, we present our second tight PLS-reduction showing
the completeness of DKM together with the single-swap neighborhood.
Just like our previous reduction, this still holds for w = 1. However,
a reduction to DKM poses two difficulties, which did not occur in the
MUFL case. In our definition of DKM, each input point is a potential

65

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

representative. In contrast, a facility location instance contains a
dedicated set of potential locations for facilities. Furthermore, there is
a stronger restriction on distances we can choose between points. A
DKM instance is a point set inRd where the distance between two points
is the squared Euclidean distance. Thus, we have to ensure that there
exists a set of points in Rd exhibiting the required pairwise interpoint
distances. The MUFL reduction was able to freely assign distances
between points, only making sure that the final distance function is
a metric. There also is no opening cost for the representatives as
there was for the facilities. We extensively used this to dominate any
improvement in the service cost by the additional opening cost.

Despite these additional constraints, we maintain the general ap-
proach and obtain conceptually the same intermediate results.

Theorem 5.4.1 DISCRETE k-MEANS with w = 1 and with single-swap
neighborhood is tightly PLS-complete.

The construction of the reduction (Φ,Ψ) is similar to the proof of
Theorem 5.3.1. We start by pointing out modifications required to
adjust it to DKM. The ensuing proof of correctness and tightness is
based on an abstract definition of the point set via specified interpoint
distances. Subsequently, we argue on the existence of a point set in
Rd exhibiting the required squared Euclidean distances. The section is
concluded by a complementing result proving that our reduction can-
not be embedded in significantly less dimensions than the embedding
we provide.

5.4.1 Construction

As before, let (B,w : B → N) be an instance of M2SAT over the set of
variables X and denote n ··= |X| and m ··= |B|. The choice of W is
changed to

W ··= 2 ·m · wmax(B) .

We construct the function Φ mapping (B,w) to an instance (X, k) to
DKM. Abstractly define the point set X to contain 2 · n+m points – one
corresponding to the positive and negative literal of each variable and
one corresponding to each clause. This is the same as the set C in
the proof of Theorem 5.3.1. Let 1 < c < 2 be some arbitrarily chosen
constant and

ε ··=
1

4 · n+ 2 ·m
.

66

5.4 Completeness of DKM/SingleSwap

As the distance between points in X we choose

‖p− q‖22 ··=



0 if p = q

1 if p and q are a literal and its negation

1 + ε ·
(

3
2 + w(q)

W

)
if p is a literal appearing in clause q

1 + ε ·
(

3
2 + c·w(q)

W

)
if p̄ is a literal appearing in clause q

1 + 2 · ε else.

The number of clusters is set to k ··= n.
Also as before, the function Ψ, given some set M ⊆ X, sets each

variable x to true if x ∈ M and to false otherwise. Notice the still
missing only if part.

5.4.2 Correctness and Tightness

In the following, fix any M2SAT instance (B,w), denote the image of
the reduction as (X,n) ··= Φ(B,w), and, for each set of representatives
M ⊆ X, denote by TM ··= Ψ(B,w,M) the truth assignment obtained
under the image of Ψ. Again we use the concept of reasonable solutions
to tackle the non-injective function Ψ. However, in the DKM case the
condition |M | = n is trivially fulfilled for every feasible solution (which
means, reasonable solutions in the sense of Definition 4.4.3). Using
this we obtain the same proof structure as the correctness proof of the
MUFL reduction. However, we need to adapt to the changed distance
function and to the larger set of potential locations for representatives.

Lemma 5.4.2 If M ⊆ X is reasonable, then

km(X,M) = n+

(
1 +

3 · ε
2

)
·m+

c · ε
W
· w (B)− (c− 1) · ε

W
· w (Bt(TM)) .

Proof. We follow the same arguments as the proof of Lemma 5.3.3
where we simply insert the changed distances between points and
omit the opening cost. Recall that by definition of Ψ and reasonable
solutions, a variable x is assigned true if and only if x ∈M and false
if and only if x 6∈M . The cost of a point corresponding to a literals is
hence either 0 if the literal is part of M or its negated literal is in M
and its cost is 1. Thus, the total cost of these points is n. By definition
of the point set, each point corresponding to a clause b ∈ Bt(TM) has
at least one representative at distance 1 + ε · (3/2 + w(b)/W). A point
corresponding to a clause b ∈ Bf (TM) has two points in M at distance

67

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

1+ε·(3/2+c·w(b)/W). For both types of clauses all other representatives
are at distance 1 + 2 · ε. Summing this up we obtain

km(X,M) = n+
∑

b∈Bt(TM)

(
1 + ε ·

(
3

2
+
w(q)

W

))

+
∑

b∈Bf (TM)

(
1 + ε ·

(
3

2
+
c · w(q)

W

))

= n+

(
1 +

3

2
· ε
)
·m+

∑
b∈Bt(TM)

ε · w(b)

W
+

∑
b∈Bf (TM)

c · ε · w(b)

W

= n+

(
1 +

3

2
· ε
)
·m+

c · ε
W
· w (B)− (c− 1) · ε

W
·
∑

b∈Bt(TM)

w(b)

︸ ︷︷ ︸
=w(Bt(TM))

.

As before, we conclude that cost improvements in the M2SAT instance
(B,w) correspond to cost improvements of reasonable solutions in the
DKM instance Φ(B,w).

Corollary 5.4.3 If M,M ′ ⊆ X are reasonable, then

km(X,M) > km(X,M ′) if and only if w (Bt(TM)) < w
(
Bt(T

′
M)
)
.

Proof. Apply the proof of Corollary 5.3.4 with Lemma 5.4.2 instead of
Lemma 5.3.3.

Most of the additional work for our DKM correctness is found in the
proof of the following lemma. In this case, there are no facilities that
can simply be opened or closed. Previously, we could use this because
the opening cost dominated any potential increases or decreases in the
service cost. Furthermore, we now have to ensure that locally optimal
solutions contain no representatives at the locations corresponding to
clauses, which were simply not available as a facility in the MUFL case.

Lemma 5.4.4 If M ⊆ X is locally optimal with respect to the single-
swap neighborhood, then M is reasonable.

Proof. Each point corresponding to some clause b has exactly two
points at distance 1 + ε · (3/2 + w(b)/W) and two points at distance
1 + ε · (3/2 + c ·w(b)/W). The former are the points corresponding to the
literals in b, the latter are the points corresponding to the respective
negated literals. We call these the points adjacent to b. All other points

68

5.4 Completeness of DKM/SingleSwap

in X have distance 1 + 2 · ε to b, and thus, are strictly farther away than
the adjacent points. Moreover, for all b ∈ B, we have

3

2
<

3

2
+
w(b)

W
<

3

2
+
c · w(b)

W
< 2 .

Assume in contraposition that M is not reasonable. By definition,
there exists a variable x such that neither of the literals corresponding
to x are in M , i.e. x, x̄ 6∈M . Since all feasible solutions contain exactly
n representatives, we can differentiate two cases: either there exists a
point corresponding to a clause b with b ∈M or there exists a variable
y 6= x such that both of the corresponding literals are part of the
solution y, ȳ ∈M . In the following, we show that, in both cases, M is
not locally optimal.

Case 1 Assume there is clause b ∈ M and that, without loss of
generality, b = (z ∨ v). If any of the literals in the clause are negative,
then exchange the role of positive and negative literals in the following
arguments. An important observation is that if we exchange b for
some other representative, then only its own cost and the cost of its
adjacent points can increase. All other points in X which might have b
as their closest representative are at distance 1 + 2 · ε anyway and can
be reassigned to any other representative for at most the same cost.
Formally, we have

km(X \ {b, z, z̄, v, v̄},M) = km(X \ {b, z, z̄, v, v̄},M \ {b}) .

Recall that adding an additional mean to M can never increase the
cost of the solution. Hence, for any u ∈ X,

km(X \ {b, z, z̄, v, v̄},M) ≥ km(X \ {b, z, z̄, v, v̄}, (M \ {b}) ∪ {u}) . (5.4.5)

We differentiate three subcases depending on which of b’s adjacent
points are already part of the current solution M .

Case 1.1 Assume none of the adjacent points are part of the solution
z, z̄, v, v̄ 6∈M . None of the points adjacent to b has a representative at
distance 1, and hence, has cost at least 1 + ε · (3/2 + wmin(B)/W). We

69

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

obtain

km({b, z, z̄, v, v̄},M) ≥ 4 ·
(

1 + ε ·
(

3

2
+
wmin(B)

W

))
> 4 + 6 · ε

> 1 + ε ·
(

3

2
+
w(b)

W

)
︸ ︷︷ ︸

=‖b−z‖22

+ 1︸︷︷︸
‖z̄−z‖22

+ 2 + 4 · ε︸ ︷︷ ︸
‖v−z‖22+‖v̄−z‖22

= km({b, z, z̄, v, v̄}, {z}) .

By combining this with (5.4.5), we observe that M is not locally optimal
for the single-swap neighborhood since

km(X,M) > km(X, (M \ {b}) ∪ {z}) .

Case 1.2 Assume at least one of the adjacent points z ∈M or z̄ ∈M
but v, v̄ 6∈M . Removing b from M does not increase the cost of z and z̄
as they either both have cost 0 or one of them has cost 0 and the other
cost 1

km({z, z̄},M) = km({z, z̄},M \ {b}) .

Similar to the previous case we obtain

km({b, v, v̄},M) ≥ 2 ·
(

1 + ε ·
(

3

2
+
wmin(B)

W

))
> 2 + 3 · ε

> 1 + ε ·
(

3

2
+
w(b)

W

)
︸ ︷︷ ︸

=‖b−v‖22

+ 1︸︷︷︸
‖v̄−v‖22

= km({b, v, v̄}, {v}) .

Again in combination with (5.4.5), we observe that M is not locally
optimal for the single-swap neighborhood as

km(X,M) > km(X, (M \ {b}) ∪ {v}) .

Case 1.3 Assume at least two of the adjacent points are part of the
solution where at least one is located at the literals corresponding to z
and one at the literals corresponding to v. That is, z ∈M ∨ z̄ ∈M and

70

5.4 Completeness of DKM/SingleSwap

v ∈M ∨ v̄ ∈M . Removing b from M , similar to the previous case, does
not affect the cost of the four adjacent points

km(X \ {b},M) = km(X \ {b},M \ {b}) .

However, recall that still x 6∈M and x̄ 6∈M , and hence,

km({b, x, x̄},M) ≥ 2 ·
(

1 + ε ·
(

3

2
+
wmin(B)

W

))
> 2 + 3 · ε

> 1 + ε ·
(

3

2
+
c · w(b)

W

)
︸ ︷︷ ︸

=‖b−z̄‖22

+ 1︸︷︷︸
‖x̄−x‖22

= km({b, v, v̄}, {x}) .

Combining these two observations we again conclude that M is not
locally optimal for the single-swap neighborhood

km(X,M) > km(X, (M \ {b}) ∪ {x}) .

Case 2 Assume there is no point corresponding to a clause in M but
there exists a variable y 6= x with y, ȳ ∈M . We observe that, similar to
the first case, if we remove y from M , then only the cost of the point y
itself and the cost of points corresponding to clauses B(y) can increase.
Adding any representative to a solution never increases the cost. Thus,

km(X \ (B(y) ∪ {y, x, x̄}),M)

≥ km(X \ (B(y) ∪ {y, x, x̄}), (M \ {y}) ∪ {x}) .

The points x and x̄ have distance 1 + 2 · ε to any representative in
M since there is not representative at a location corresponding to a
clause. Additionally, all points corresponding to clauses in B(y) have
distance 1 + ε · (3/2 + c · w (B) /W) to ȳ ∈M and |B(y)| ≤ m. We obtain

km(B(y) ∪ {y, ȳ, x, x̄},M)

= 2 + 4 · ε+
∑

b∈B(y)

(
1 + ε ·

(
3

2
+
w(b)

W

))

> 2 +
∑

b∈B(y)

(
1 + ε ·

(
3

2
+
w(b)

W

))
+

(c− 1) · ε
2

(Definition of c)

≥ 2 +
∑

b∈B(y)

(
1 + ε ·

(
3

2
+
w(b)

W

))
+

(c− 1) · ε
W

∑
b∈B(y)

w(b)

︸ ︷︷ ︸
≤m·wmax(B)

71

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

= 1︸︷︷︸
‖y−ȳ‖22

+ 1︸︷︷︸
‖x̄−x‖22

+
∑

b∈B(y)

(
1 + ε ·

(
3

2
+
c · w(b)

W

))
= km(B(y) ∪ {y, ȳ, x, x̄}, {x, ȳ}) .

We conclude the proof as, also in this case, M is not locally optimal
with respect to the single-swap neighborhood

km(X,M) > km(X, (M \ {y}) ∪ {x}) .

Since the intermediate results are so similar to our MUFL reduction,
we obtain the correctness and the tightness of the DKM reduction
without requiring any additional arguments.

Lemma 5.4.6 (Φ,Ψ) is a tight PLS-reduction.

Proof. Substitute Corollary 5.4.3 and Lemma 5.4.4 into the proofs of
Corollary 5.3.6, Lemma 5.3.7, and Lemma 5.3.8.

5.4.3 Embedding

So far we treated X as an abstract point set purely defined by its
interpoint distances. In the following, we show that there is isometric
embedding of X into Euclidean space. That is, there exists a point set
in Rd exhibiting exactly the required interpoint distances as squared
Euclidean distance.

We represent point sets with fixed interpoint distances a so-called
distance matrix. That is, for a set P of size n and a distance function
d : P × P → R≥0, chose some ordering (p1, . . . , pn) of the points and let
DP be the matrix

DP = (DP)i,j ··= d(pi, pj) .

Throughout this section we denote by DX the distance matrix of the
point set X in Φ(B,w), by ~1d the d-dimensional vector of ones, and by
δij the Kronecker delta, which is 1 if i = j and 0 otherwise. We use the
following classic result to show that X can be isometrically embedded
into squared Euclidean space.

Theorem 5.4.7 (Schoenberg [1938]) Let D ∈ Rd×d be a distance matrix.
A point set P ⊆ Rd with squared Euclidean distance matrix DP = D
exists if and only if

∀u ∈ Rd with u · ~1d = 0 it holds that uTDu ≤ 0 .

72

5.4 Completeness of DKM/SingleSwap

Omitting further details: there is a well-know technique called MUL-
TIDIMENSIONAL SCALING, which finds points with the desired squared
Euclidean distances.

Theorem 5.4.8 (Torgerson [1952]) Let D ∈ Rd×d be a distance ma-
trix which is embeddable into squared Euclidean space. There is a
polynomial-time algorithm which computes a matrix P ∈ Rd×d whose
rows form a set {pi} ⊂ Rd with (D)ij = ‖pi − pj‖22.

Independent of the order of points chosen, observe that for our point
set X we have

(DX)i,j = ‖xi − xj‖22 = 1− δij + (‖xi − xj‖22 − 1) · (1− δij)

where the second summand is always non-negative.

Lemma 5.4.9 The point set X from Φ(B,w) can be isometrically em-
bedded into squared Euclidean space using 2 · n+m dimensions.

Proof. We apply Theorem 5.4.7 with d ··= 2 · n+m. For any u ∈ Rd with
u · ~1d = 0, we obtain

uTDXu

=
d∑
i=1

d∑
j=1

(DX)i,j · ui · uj

=
d∑
i=1

d∑
j=1

(
ui · uj − δij · ui · uj + (‖xi − xj‖22 − 1) · (1− δij) · ui · uj

)

=

(
d∑
i=1

ui

)2

−
d∑
i=1

u2
i +

d∑
i=1

d∑
j=1

(‖xi − xj‖22 − 1) · (1− δij) · ui · uj

= −‖u‖22 +

d∑
i=1

d∑
j=1

(‖xi − xj‖22 − 1) · (1− δij) · ui · uj (u · ~1d = 0)

≤ −‖u‖22 +

d∑
i=1

d∑
j=1

(‖xi − xj‖22 − 1) · |ui| · |uj |

≤ −‖u‖22 + 2 · ε ·

(
d∑
i=1

|ui|

)2

≤ −‖u‖22 + 2 · ε · d · ‖u‖22 (Cauchy-Schwarz inequality)

= 0 . (Definition of d and ε)

73

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

A downside of MULTIDIMENSIONAL SCALING is that, in general, the
algorithm requires 2·n+m dimensions to exactly preserve the distances
of the 2 · n + m points in our set X. We complement our embedding
result by showing that there cannot be another embedding of X which
uses asymptotically less than 2 · n+m dimensions.

Lemma 5.4.10 If P ⊂ Rd is a set of pairwise equidistant points, then
|P | ≤ d+ 1.

Proof. We prove the claim by induction on the number of dimensions.
The base case d = 1 holds since there are at most 2 pairwise equidis-

tant points on the real line.
Assume the claim holds for any fixed d ∈ N. Let c ∈ R>0 be some

constant and assume there exists a set P ⊂ Rd+1 of d+ 1 points with
pairwise distance c. We want to bound how many points q ∈ Rd+1

satisfy

∀p ∈ P : ‖p− q‖22 = c .

The points in P span a d-dimensional hyperplane H in Rd+1. By
induction hypothesis, H cannot contain a point q with distance c to
all points in P . Nevertheless, observe that the mean µ(P) ∈ H has the
same distance to all points in P . We have that

‖p− q‖22 = ‖p‖22 + ‖q‖22 − 2 · 〈p, q〉 ,

and thus, for all p, q ∈ P with p 6= q,

〈p, q〉 =
‖p‖22 + ‖q‖22 − c

2
.

For any fixed p ∈ P , we have

‖p− µ(P)‖22
= 〈p− µ(P), p− µ(P)〉

=
1

(d+ 1)2
·
∑
q∈P
q 6=p

∑
r∈P
r 6=p

〈p− q, p− r〉

=
1

(d+ 1)2
·
∑
q∈P
q 6=p

‖p− q‖22 +
1

(d+ 1)2
·
∑
q∈P
q 6=p

∑
r∈P

r 6=p,r 6=q

〈p− q, p− r〉

=
1

(d+ 1)2
·

c · d+
∑
q∈P
q 6=p

∑
r∈P

r 6=p,r 6=q

‖p‖22 − 〈p, q〉 − 〈p, r〉+ 〈q, r〉



74

5.5 Completeness of DFKM/SingleSwap

=
1

(d+ 1)2
·

c · d+
∑
q∈P
q 6=p

∑
r∈P

r 6=p,r 6=q

c

2


=

c · d
(d+ 1)2

·
(

1 +
d− 1

2

)
.

This means that the points in P all lie on the surface of a ball centered
at µ(P). Therefore, the only point in H that has the same distance to
all points in P is µ(P).

Let q ∈ Rd+1 be a point with distance c to all points in P . Since
the squared Euclidean distance is the sum of the squared distances
per dimension, we know that the orthogonal projection of q onto H
also has the same distance to all points in P . Thus, q has to lie on a
line which is orthogonal to H and intersects the hyperplane at µ(P).
There are exactly two points on this line having distance exactly c
to all points in P – one on each side of H. It is easy to see that the
distance between these points is larger than c. Thus, we can only add
one additional point from Rd+1 and still maintain pairwise distance c
between all points in P .

Observe that the set of positive/negative literals each form a set
of n equidistant points in X, and the set of clauses forms a set of m
equidistant points in X. Consequently, by Lemma 5.4.10, there is no
embedding of our point set into less than max{n,m} − 1 dimensions.
Thus, proving PLS-hardness of DKM with bounded, or even constant,
number of dimensions requires a substantially new reduction.

5.5 Completeness of DFKM/SingleSwap

The third and final reduction presented in this chapter is a tight PLS-
reduction showing the completeness of DFKM with m = 2 and with the
single-swap neighborhood. This reduction is, once again, similar to
the two previously presented reductions. However, in addition to the
difficulties of the DKM reduction we now also have to find a reduction
which circumvents the problems with overcovering (see Section 4.4).
Furthermore, due to the hard to analyze objective function of our
fuzzy problems, this result does not hold for unweighted instances.
Instead of somehow encoding the clause weights into the distances of
the points, here, we require a non-trivial weight function on the points.
Recall that for the tightly PLS-hard Boolean satisfiability problems

75

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

there cannot be a polynomial upper bound on the weights. Hence, we
are also unable to emulate these weights by copies of points.

Theorem 5.5.1 DISCRETE FUZZY k-MEANS withm = 2 and with single-
swap neighborhood is tightly PLS-complete.

The construction of (Φ,Ψ) is similar to the one presented in the proofs
of Theorem 5.3.1 and Theorem 5.4.1. However, to avoid problems with
overcovering we reduce from PM2NAESAT instead of M2SAT. As before,
we present the reduction based on an abstract point set purely defined
by interpoint distances and argue embeddability afterwards.

5.5.1 Construction

Let (B,w : B → N) be an instance of PM2NAESAT over the set of variables
X and denote n ··= |X|. We extend B to a larger set of clauses B′. For
each clause (x ∨ y) ∈ B, we add two clauses to B′:

b = (x ∨ y) and b′ = (x̄ ∨ ȳ)

where, by definition of PM2NAESAT, b′ does not appear in B. Let m ··= |B′|
and choose

W ··= 4 · n2 ·m · wmax(B) .

We construct the function Φ mapping (B,w) to an instance (X, k) to
DFKM. As before, abstractly define X to contain 2 · n+m points – one
corresponding to the positive and negative literal of each variable and
one corresponding to each clause in B′. This is the same construction
as the one used in the DKM reduction but for the extended clause set
B′. Let 1 < c < 2 be some arbitrarily chosen constant and

ε ··=
m− 1

9 · n2 ·m
.

As the distance between points in X we choose

‖p− q‖22 ··=



0 if p = q

1 if p and q are a literal and its negation
1 + ε if p is a literal appearing in clause q
1 + c · ε if p̄ is a literal appearing in clause q
1 + 2 · ε else.

76

5.5 Completeness of DFKM/SingleSwap

Observe that we still have ε ≤ 1/(4 · n + 2 ·m) since each clause is a
unique combination of two different positive or negative literals, and
hence, m ≤ 2 · n · (n− 1).

We let the weight function w : X → N be defined as

w(x) ··=

{
w(b) if x is a clause
W else.

The number of clusters is again set to k ··= n. Also as before, the
function Ψ, given some set M ⊆ X, sets each variable x to true if x ∈M
and to false otherwise. Once again notice the still missing only if part.

Before proceeding to the correctness proof we observe a basic prop-
erty of these types of point sets. For each set of representatives M b X,
we can lower bound the assignment of each point to each representa-
tive.

Lemma 5.5.2 If M b X with |M | = n and κ is an optimal assignment
function with respect to M , then

∀x ∈ X \\M ∀µ ∈M : κ(x, µ) >
1

2 · n
.

Proof. Fix any x ∈ X \\M and µ ∈M . Using Lemma 3.2.10 we conclude

κ(x, µ) =
‖x− µ‖−2

2∑
µ′∈M ‖x− µ′‖

−2
2

≥ (1 + 2 · ε)−1∑
µ′∈M 1

>
1

2 · n
.

Furthermore, recall that also by Lemma 3.2.10, for all M b X,

fkm(X,w,M) =
∑

x∈X\\M

w(x)∑
µ∈M ‖x− µ‖

−2
2

.

5.5.2 Correctness, Tightness, and Embedding

In the following, fix any PM2NAESAT instance (B,w), denote the image of
the reduction as (X,w, n) ··= Φ(B,w), and for each set of representatives
M b X denote by TM ··= Ψ(B,w,M) the truth assignment obtained
under the image of Ψ. The structure of the following arguments is
similar to the DKM reduction. Since Ψ is not injective, we use the
concept of reasonable solutions to characterize the cost of solutions
for the DFKM instance (X,w, n).

77

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

Lemma 5.5.3 If M b X is reasonable, then

fkm(X,w,M) =
n ·W · (1 + 2 · ε)

n+ 2 · ε
+ (Γ0 + Γ2) · w (B)

− (Γ0 + Γ2 − 2 · Γ1) · wNAE (Bt(TM))

where

Γi =

(
i

1 + ε
+

2− i
1 + c · ε

+
n− 2

1 + 2 · ε

)−1

.

Proof. Recall that, by the definitions of Ψ and reasonable solutions, a
variable x is assigned true if and only if x ∈ M and false if and only
if x 6∈ M . Consider the cost of points corresponding to literals. Each
of these either is in M and has cost 0 or it has a representative at
its negated literal at distance 1 and n− 1 representatives at distance
1 + 2 · ε. Since each of these points has weight W , we obtain an overall
cost of

W

1 + n−1
1+2·ε

=
W · (1 + 2 · ε)
n+ 2 · ε

.

Consider the cost of points corresponding to clauses. Each clause has
length 2 and has n− 2 representatives at distance 1 + 2 · ε. The other
two are either at distance 1 + ε or 1 + c · ε, dependent on whether the
literals in the clause are true or false. Hence, the cost of such a clause
b ∈ B′ is w(b) · Γi where i is the number of true literals in that clause.
Recall that a clause is NAE-satisfied if it contains exactly one true and
one false literal. Furthermore, for each clause b ∈ B we added a clause
b′ to B′, which contains the negated literals of the variables in b. Thus,
if b has i true literals, then b′ has 2 − i true literals. For each clause
b ∈ B we consider the pair of points b, b′ ∈ B′. If b ∈ BNAE

t (TM), then
this pair has cost 2 · w(b) · Γ1. If b ∈ BNAE

f (TM), then this pair has cost
w(b) · (Γ0 + Γ2). Taking the sum we obtain

fkm(X,w,M) =
n ·W · (1 + 2 · ε)

n+ 2 · ε
+

∑
b∈BNAE

t (TM)

2 · w(b) · Γ1

+
∑

b∈BNAE
f (TM)

w(b) · (Γ0 + Γ2)

=
n ·W · (1 + 2 · ε)

n+ 2 · ε
+ 2 · Γ1

∑
b∈BNAE

t (TM)

w(b)

+ (Γ0 + Γ2) ·
∑

b∈BNAE
f (TM)

w(b)

78

5.5 Completeness of DFKM/SingleSwap

=
n ·W · (1 + 2 · ε)

n+ 2 · ε
+ 2 · (Γ0 + Γ2) · w (B)

− (Γ0 + Γ2 − 2 · Γ1) ·
∑

b∈BNAE
t (TM)

w(b)

︸ ︷︷ ︸
=wNAE(Bt(TM))

.

Again we conclude that the cost improvements in the PM2NAESAT in-
stance (B,w) correspond to cost improvements of reasonable solutions
in the DFKM instance Φ(B,w).

Corollary 5.5.4 If M,M ′ b X are reasonable, then

fkm(X,w,M) > fkm(X,w,M ′) if and only if wNAE (Bt(TM)) < wNAE (Bt(T
′
M)) .

Proof. Observe that

Γ0 + Γ2 − 2 · Γ1

=
2 ·
(

1
1+c·ε −

1
1+ε

)2(
2

1+ε + n−2
1+2·ε

)
·
(

2
1+c·ε + n−2

1+2·ε

)
·
(

1
1+ε + 1

1+c·ε + n−2
1+2·ε

) > 0

and apply the proof of Corollary 5.3.4 with Lemma 5.5.3 instead of
Lemma 5.3.3.

In the following, we present a result analogous to Lemma 5.3.5 and
Lemma 5.4.4. The main challenge that we have to deal with in this
case is the analytical difficulty of the fuzzy objective function. This
means that we have to analyze the cost of solutions significantly closer
than before.

Lemma 5.5.5 If M b X is locally optimal with respect to the single-
swap neighborhood, then M is reasonable.

Proof. The structure of the following proof is similar to that of the proof
of Lemma 5.4.4. However, it is technically more demanding due to the
more involved objective function. Recall that each point corresponding
to a clause b ∈ B′ (where b is either a clause from B or one of the newly
added clauses) has four adjacent points: two at distance 1 + ε and two
at distance 1 + c · ε. All other points in X have distance 1 + 2 · ε to b.

Assume in contraposition that M is not reasonable. Recall that,
by definition, there exists a variable x such that x, x̄ 6∈ M . Again we
differentiate two cases: either there exists a point corresponding to a
clause b with b ∈M or there exists a variable y 6= x such that y, ȳ ∈M .
We show that in both cases M is not locally optimal.

79

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

Case 1 Assume there is a clause b ∈ M and that, without loss of
generality, b = (z ∨ v). We observe that if we exchange b for some other
representative, then only its own cost and the cost of its adjacent
points can increase. All other points in X are at distance 1 + 2 · ε from
b, thus, no location swapped in for b can be farther away from these
points than b. If we use a respective optimal assignment function κ,
then the cost of the other points cannot increase with respect to the
swap. In the following, let M̃ be a set of representatives obtainable
from M by a single swap removing b. That is, there exists some u ∈ X
such that

M̃ = (M \ {b}) ∪ {u} .

Formally, we have

fkm(X \ {b, z, z̄, v, z̄}, w,M) ≥ fkm(X \ {b, z, z̄, v, z̄}, w, M̃) ,

and hence,

fkm(X,w,M)− fkm(X,w, M̃)

≥ fkm({b, z, z̄, v, v̄}, w,M)− fkm({b, z, z̄, v, v̄}, w, M̃) .

Let κ be an optimal assignment function with respect to M and κ̃ be
an optimal assignment function with respect to M̃ . As a shorthand
notation, for each u ∈ X and µ ∈M , we introduce

K(u, µ) =
∑

µ′∈M\{µ}

κ(u, µ′)2 ·
∥∥u− µ′∥∥2

2
and (5.5.6)

K̃(u, µ) =
∑

µ′∈M\{µ}

κ̃(u, µ′)2 ·
∥∥u− µ′∥∥2

2
.

That is, K(u, µ) is the cost contribution of the representatives different
from µ to the total cost of u. We differentiate three subcases, depending
on which of b’s adjacent points are already part of the current solution
M . In each subcase, we analyze the difference of the cost of M to the
cost of a solution from the single-swap neighborhood of M .

Case 1.1 Assume none of the adjacent points are part of the solution
z, z̄, v, v̄ 6∈ M . We choose M̃ ··= (M \ {b}) ∪ {z}. Recall that the cost
of a solution can only increase if we use a non-optimal assignment
function, and since M and M̃ agree on all representatives except for b

80

5.5 Completeness of DFKM/SingleSwap

and z, we have, for all u ∈ X \ {b, z}, that K(u, z) = K(u, b). Thus, we
obtain

fkm({b, z, z̄, v, v̄}, w,M)− fkm({b, z, z̄, v, v̄}, w, M̃)

=
∑

u∈{z,z̄,v,v̄}

w(u) ·
(
κ(u, b)2 · ‖u− b‖22 +K(u, b)

)
−

∑
u∈{b,z̄,v,v̄}

w(u) ·
(
κ̃(u, z)2 · ‖u− z‖22 + K̃(u, z)

)
≥

∑
u∈{z,z̄,v,v̄}

w(u) ·
(
κ(u, b)2 · ‖u− b‖22 +K(u, b)

)
−

∑
u∈{b,z̄,v,v̄}

w(u) ·
(
κ(u, b)2 · ‖u− z‖22 +K(u, b)

)
.

Since b ∈M , there is an optimal κ with κ(b, b) = 1, and hence,

fkm({b, z, z̄, v, v̄}, w,M)− fkm({b, z, z̄, v, v̄}, w, M̃)

≥ w(z) ·
(
κ(z, b)2 · ‖z − b‖22 +K(z, b)︸ ︷︷ ︸

≥0

)
− w(b) ·

(
κ(b, b)2 · ‖b− z‖22 +K(b, b)︸ ︷︷ ︸

=0

)
+

∑
u∈{z̄,v,v̄}

w(u) · κ(u, b)2 ·
(
‖u− b‖22 − ‖u− z‖

2
2

)
≥
(
W · κ(z, b)2 − w(b)

)
· ‖z − b‖22 +W · κ(z̄, b)2 · c · ε︸ ︷︷ ︸

≥0

+W · (ε− 2 · ε) ·
(
κ(v, b)2 + κ(v̄, b)2

)
≥
(
W · 1

4 · n2
− w(b)

)
· ‖z − b‖22 (Lemma 5.5.2)

−W · ε · 2 (κ(v, b), κ(v̄, b) ≤ 1)

= (m · wmax(B)− w(b)) · (1 + ε)− 8 · n2 ·m · wmax(B) · m− 1

9 · n2 ·m
≥ (m− 1) · wmax(B)− (m− 1) · wmax(B) · 8

9
> 0 .

Case 1.2 Assume at least one of the adjacent points z ∈M or z̄ ∈M
but v, v̄ 6∈ M . Without loss of generality assume z̄ ∈ M . Removing b
from M does not increase the cost of z̄ as the point has cost 0 anyway.

81

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

We choose M̃ ··= (M \ {b}) ∪ {v}. As in the previous case, we have, for
all u ∈ X \ {b, v}, that K(u, v) = K(u, b) and that there is an optimal κ
with κ(b, b) = 1. Hence, we obtain

fkm({b, z, z̄, v, v̄}, w,M)− fkm({b, z, z̄, v, v̄}, w, M̃)

≥
∑

u∈{z,v,v̄}

w(u) ·
(
κ(u, b)2 · ‖u− b‖22 +K(u, b)

)
−

∑
u∈{b,z,v̄}

w(u) ·
(
κ(u, b)2 · ‖u− v‖22 +K(u, b)

)
≥ w(v) ·

(
κ(v, b)2 · ‖v − b‖22 +K(v, b)︸ ︷︷ ︸

≥0

)
− w(b) ·

(
κ(b, b)2 · ‖b− v‖22 +K(b, b)︸ ︷︷ ︸

=0

)
+

∑
u∈{z,v̄}

w(u) · κ(u, b)2 ·
(
‖u− b‖22 − ‖u− v‖

2
2

)
≥
(
W · κ(v, b)2 − w(b)

)
· ‖v − b‖22 +W · κ(v̄, b)2 · c · ε︸ ︷︷ ︸

≥0

+W · (ε− 2 · ε) · κ(z, b)2

≥
(
W · 1

4 · n2
− w(b)

)
· ‖v − b‖22 (Lemma 5.5.2)

−W · ε (κ(z, b) ≤ 1)

≥ (m− 1) · wmax(B)− (m− 1) · wmax(B) · 4

9
> 0 .

Case 1.3 Assume at least two of the adjacent points are part of the
solution where at least one is located at the literals corresponding to z
and one at the literals corresponding to v. Without loss of generality
assume z̄, v̄ ∈ M . Similar to the previous case, removing b from M
does not increase the cost of z̄ and v̄. Recall that x, x̄ 6∈M and choose
M̃ ··= (M \ {b}) ∪ {x}. Once again we have, for all u ∈ X \ {b, x},
that K(u, x) = K(u, b) and that there is an optimal κ with κ(b, b) = 1.
Analogously to the previous cases, we obtain

fkm({b, z, z̄, v, v̄, x, x̄}, w,M)− fkm({b, z, z̄, v, v̄, x, x̄}, w, M̃)

≥
∑

u∈{z,v,x,x̄}

w(u) ·
(
κ(u, b)2 · ‖u− b‖22 +K(u, b)

)

82

5.5 Completeness of DFKM/SingleSwap

−
∑

u∈{b,z,v,x̄}

w(u) ·
(
κ(u, b)2 · ‖u− x‖22 +K(u, b)

)
≥ w(x) ·

(
κ(x, b)2 · ‖x− b‖22 +K(x, b)︸ ︷︷ ︸

≥0

)
− w(b) ·

(
κ(b, b)2 · ‖b− x‖22 +K(b, b)︸ ︷︷ ︸

=0

)
+

∑
u∈{z,v,x̄}

w(u) · κ(u, b)2 ·
(
‖u− b‖22 − ‖u− x‖

2
2

)
≥
(
W · κ(x, b)2 − w(b)

)
· ‖x− b‖22 +W · κ(x̄, b)2 · 2 · ε︸ ︷︷ ︸

≥0

+W · (ε− 2 · ε) ·
(
κ(z, b)2 + κ(v, b)2

)
≥
(
W · 1

4 · n2
− w(b)

)
· ‖x− b‖22 (Lemma 5.5.2)

−W · ε · 2 (κ(z, b), κ(v, b) ≤ 1)

≥ (m− 1) · wmax(B)− (m− 1) · wmax(B) · 8

9
> 0 .

Case 2 Assume there is no point corresponding to a clause in M ,
but there exists a variable y 6= x with y, ȳ ∈ M . We choose M̃ ··=
(M \ {y}) ∪ {x}. Observe that, similar to before, if we remove y from
M , then only the cost of the point y itself and the cost of points
corresponding to clauses B(y) can increase. All other points in X
have distance 1 + 2 · ε to y, and thus, no location swapped in for y can
be farther away from these points than y. Hence, their cost cannot
increase if we use a respective optimal assignment function. We obtain

fkm(X \ (B(y) ∪ {y, x, x̄}),M) ≥ fkm(X \ (B(y) ∪ {y, x, x̄}), M̃) .

Furthermore, since there is no representative at a location correspond-
ing to a clause, y ∈M , and x ∈ M̃ , we obtain

fkm({x, x̄, y}, w,M) = W · 2 + 4 · ε
n

and

fkm({x, x̄, y}, w, M̃) = W · 2 + 4 · ε
n+ 2 · ε

.

Let κ be an optimal assignment function with respect to M , K(u, µ)

83

COMPLEXITY OF SINGLE-SWAP LOCAL SEARCH

be defined as in (5.5.6), and recall that |B(y)| ≤ m. We observe

fkm(B(y) ∪ {x, x̄, y}, w, M̃)

≤ fkm({x, x̄, y}, w, M̃) + fkm(B(y), w, M̃ , κ)

= W · 2 + 4 · ε
n+ 2 · ε

+
∑

b∈B(y)

w(b) ·
(
κ(b, y)2 · ‖b− x‖22 +K(b, y)

)
.

Recall that, by definition of the distances, we have ∀y ∈ B(y) : ‖b− y‖22 =
1 + ε and ∀x ∈ X : ‖b− x‖22 ≤ 1 + 2 · ε. We conclude

fkm(B(y) ∪ {x, x̄, y}, w, M̃)

≤W · 2 + 4 · ε
n+ 2 · ε

+
∑

b∈B(y)

w(b) ·
(
κ(b, y)2 ·

(
‖b− y‖22 + ε

)
+K(b, y)

)
= W · 2 + 4 · ε

n+ 2 · ε
+
∑

b∈B(y)

w(b) · κ(b, y)2 · ε+ fkm(B(y), w,M)

≤W · 2 + 4 · ε
n+ 2 · ε

+ ε ·M · wmax(B) + fkm(B(y), w,M) (κ(b, y) ≤ 1)

= W · 2 + 4 · ε
n+ 2 · ε

+ ε · W

4 · n2
+ fkm(B(y), w,M)

< W · 2 + 4 · ε
n+ 2 · ε

+W · ε/n

n+ 2 · ε
+ fkm(B(y), w,M)

< W · 2 + 4 · ε+ 2 · ε · (2 + 4 · ε)/n
n+ 2 · ε

+ fkm(B(y), w,M)

= W · 2 + 4 · ε
n

+ fkm(B(y), w,M)

= fkm(B(y) ∪ {x, x̄, y}, w,M) .

Thus, M is not locally optimal for the single-swap neighborhood.

Fortunately, our careful analysis once again led to intermediate
results which are so similar to the ones of the previous two reduc-
tions that we obtain correctness and tightness without any additional
arguments.

Lemma 5.5.7 (Φ,Ψ) is a tight PLS-reduction.

Proof. Substitute Corollary 5.5.4 and Lemma 5.5.5 into the proofs of
Corollary 5.3.6, Lemma 5.3.7, and Lemma 5.3.8.

This also holds for the embedding of X.

84

5.5 Completeness of DFKM/SingleSwap

Lemma 5.5.8 The point set X can be embedded into squared Eu-
clidean space using 2 · n + m dimensions, and there is no embedding
using less than max{n,m} − 1 dimensions.

Proof. We can apply the proof of Lemma 5.4.9 as is. Furthermore, we
apply Lemma 5.4.10 since in X the set of positive/negative literals
each form a set of n equidistant points and the set of clauses forms a
set of m equidistant points.

85

Non-Representability of Solutions 6
Contribution Summary We present the unsolvability by radicals of
optimal solutions of FUZZY k-MEANS. The result discussed in Sec-
tion 6.3 has been published in [Blömer et al., 2016a], however, the
proof is not part of that publication.

6.1 Algebraic Basics . 88
6.2 Related Work . 90
6.3 Unsolvability of Optimal FKM Solutions 90
6.4 Implementation of the Finite Taylor Grid 97

So far, we focused on classifying the hardness of discrete versions of
fuzzy clustering problems. These types of geometric problems have
a finite solution space and thus enable us to analyze them using
combinatorial methods. One might think that the KM problem does not
have a finite solution space as representatives can be placed arbitrarily
in Rd. However, recall that there is a binary assignment of points
to representatives, and that, by Lemma 3.2.7, we can characterize
optimal representatives as a linear combination of the points assigned
to them. Thus, there is a finite subspace of solutions which we know to
contain all global optima, namely the set of all means of subsets of the
input points. We do not know of the existence of a similar subspace
for FKM. In the fuzzy variant of clustering we are allowed to freely
place representatives in Rd and to choose a continuous assignment
of points to the solution. This has led to the FKM problem resisting
any attempt to combinatorially express solutions in terms of the input
points without either fixing the representatives or the assignment
function. In the following, we show that no closed form combinatorial
expression can exist since optimal solutions to FKM are, in general,
algebraically difficult.

87

NON-REPRESENTABILITY OF SOLUTIONS

6.1 Algebraic Basics

We start by formalizing our notion of algebraically difficult. Our main
result is that, in general, optimal solutions of FKM are not solvable
by radicals. The mathematical foundation of unsolvability lies in
the theory of Galois groups of polynomials. It is not expedient to
actually take a deep dive into Galois theory as a part of this thesis.
The results we need to apply to prove our claim can be understood
without any knowledge of Galois groups. However, to provide some
context, we review core definitions and concepts of unsolvability. In the
following, we assume that the reader has basic knowledge of algebra.
The definitions and results presented in this section are taken from
[Herstein, 1975; Hungerford, 2003] where one can also find a thorough
discussion of the topic.

Let K and F be fields. If K ⊂ F , then we call K a subfield of F ,
respectively F an extension field of K. Let u1, . . . , un ∈ F . We denote
by K(u1, . . . , un) the subfield of F generated by K ∪ {u1, . . . , un}, that
is, the intersection of all subfields of F that contain K ∪ {u1, . . . , un}
(this is also the smallest subfield of F containing K ∪ {u1, . . . , un}). If
F = K(u1, . . . , un), then we call F a finitely generated extension.

Definition 6.1.1 A finitely generated extension K(u1, . . . , un) = F is
called radical extension if

1. there exists a p1 ∈ N such that up1
1 ∈ K, and,

2. for all i ∈ [n]2, there exists a pi ∈ N such that upii ∈ K(u1, . . . , ui−1).

Our main concern are radical extensions of Q. On the one hand,
if x ∈ Q(r1, . . . , rn), for some r1, . . . , rn ∈ R such that Q(r1, . . . , rn) is a
radical extension, then we can represent x as a finite concatenation
of rational numbers using addition, multiplication, and taking roots.
On the other hand, if x ∈ R does not lie in any radical extension of Q,
then we cannot represent x in the described manner. This has several
algorithmic consequences when x is the solution of some problem.
Mainly, there is no exact algorithm solving this problem in general,
assuming a model of computation using standard arithmetics and root
extraction to express roots of algebraic equations [Bajaj, 1988]. This
is independent of any runtime constraints when trying to compute
a solution. Numbers which do not lie in any radical extension of Q
cannot be explicitly represented in finite memory using the standard
model of Turing or RAM machines. As we see in the following, there
are such numbers which can be represented symbolically as “x is the

88

6.1 Algebraic Basics

root of the following (finite) polynomial”. However, it is not clear how
to, in general, efficiently compute the value of some objective function
given a solution which is implicitly represented as the root of some
polynomial.

The natural follow-up question is how to actually show that some
number x ∈ R does not lie in any radical extension of Q. To this end,
consider some non-constant polynomial p(x) with coefficients in K (we
also say p ∈ K[x]). A finitely generated extension F = K(u1, . . . , un) is
called a splitting field over K of the polynomial p if p splits over F and
u1, . . . , un are the roots of p in F . That is, there exists a c ∈ K such that

p(x) = c ·
n∏
i=1

(x− ui) .

Splitting fields are unique up-to isomorphism. Consequently, the
equation p(x) = 0 is called solvable by radicals over K if the splitting
field over K of p is a radical extension.

We introduce the Galois group of a polynomial. Let p ∈ K[x] be some
irreducible polynomial and F be the splitting field over K of p. The
Galois group of the polynomial p is the set of all automorphisms on F
fixing K. That is, the set of all isomorphisms ϕ : F → F such that ϕ

∣∣
K

is the identity on K. This set together with the function composition ◦
constitutes a group.

Lemma 6.1.2 Let p ∈ K[x] be an irreducible polynomial. If p(x) = 0 is
solvable by radicals over K, then the Galois group of p is solvable.

We do not discuss the concept of solvable groups, which is tied
to finite sequences of normal subgroups with abelian factor groups.
Instead, we only introduce a family of unsolvable groups which we
later use to prove our main result of this chapter. Let S be some finite
set and consider the set P (S) of all bijections ϕ : S → S. Again, together
with the function composition ◦ this forms a group. An element of
this group is called a permutation, and thus, (P (S), ◦) is called the
permutation group of S. Assume S = [n] for some natural n. The
permutation group of [n] is called the Symmetric group of n symbols
and is usually denoted as Sn. Symmetric groups are important in
the study of finite groups. Most notably for us as cases of unsolvable
groups.

Lemma 6.1.3 The Symmetric group Sn is not solvable for n ≥ 5.

We conclude this section by presenting a characterisation of the
Galois group of certain polynomials.

89

NON-REPRESENTABILITY OF SOLUTIONS

Lemma 6.1.4 (Bajaj [1988]) Let p ∈ Q[x] be a polynomial with n ··=
deg(p) > 2 and n = 0 mod 2. We call a prime number good for p if it
does not divide the discriminant of p.

If there are good prime numbers p1, p2, p3 for p such that

1. p mod p1 is an irreducible polynomial of degree n,

2. p mod p2 factors into a linear term and an irreducible polynomial
of degree n− 1, and

3. p mod p3 factors into a linear term, an irreducible polynomial of
degree 2, and an irreducible polynomial of degree n− 3,

then the Galois group of p is isomorphic to the Symmetric group Sn.

6.2 Related Work

The Weber problem asks for an optimal representative for the sum of
Euclidean distances error, also called the geometric median. That is,
given X b Rd find µ ∈ Rd minimizing

∑
x∈X ‖x− µ‖2. It is a straight-

forward generalization of Fermat’s problem, which asks for the same
point but only considering 3 points in the plane. Famously, Bajaj
[1988] resolved the Weber problem by showing that the solution for
n ≥ 5 points in d ≥ 2 dimensions is, in general, unsolvable by radicals
over Q. The proof consists of the construction of an instance with
5 points in the plane with integral coordinates. Using a symmetry
argument one can show that an optimal solution of this instance has
to lie on the y-axis. Thus, finding an optimal solution reduces to
finding a root of the derivative of a univariate polynomial. As it turns
out, the roots of this polynomial are unsolvable by radicals over Q.

6.3 Unsolvability of Optimal FKM Solutions

We state and prove the main result of this chapter.

Theorem 6.3.1 Optimal solutions to the FUZZY k-MEANS problem are,
in general, not solvable by radicals over Q.

A solution to FKM is not solvable by radicals if neither the repre-
sentatives nor all values of the assignment function are solvable by
radicals. Recall that optimal solutions are stationary pairs, and in
a stationary pair each representative is a rational expression in the
values of the assignment function, and vice versa. Hence, it is easy to

90

6.3 Unsolvability of Optimal FKM Solutions

see that either both representatives and the assignment function are
solvable or they are both not solvable. If all optimal solutions of an
instance are unsolvable by radicals, then there are two implications
for the FKM problem. First, we cannot finitely represent an optimal
solution to the problem, and thus, can only ever approximate the opti-
mum of the instance. Second, the iterative relocation scheme for FKM

never terminates if it is initialized with a rational solution (assuming
arbitrary precision).

Over the remainder of this chapter we show that the unique optimal
solution to the FKM problem with m = 2, k = 2, and

X = {−3,−2,−1, 1, 2, 3}

is not solvable by radicals over Q. Specifically note that this instance
is a set of integral points on the real line. Also note that

fkm(X,1, {−2, 2}) =
242

65
,

and hence, that any optimal solution has cost at most 242/65.
We start by showing that there is a unique (up to renumbering of

representatives) optimal solution for FKM on our instance.

Lemma 6.3.2 Let M = {µ1, µ2} be an optimal solution of our instance
and assume without loss of generality that µ1 ≤ µ2. It holds that

µ1 ∈ (−3,−1) and µ2 ∈ (1, 3) .

Proof. First, we show that the signs of µ1 and µ2 are different. To the
contrary assume that µ1, µ2 ≤ 0. Then we obtain

fkm(X,1,M) ≥ fkm({3},1,M) ≥ fkm({3},1, {0, 0}) =
1

1/9 + 1/9
= 4.5

where µ1, µ2 ≥ 0 is equivalent due to the symmetry of X.
Recall that optimal solutions always lie in the convex hull of the

input points. Hence, we can already conclude

µ1 ∈ [−3, 0] and µ2 ∈ [0, 3] .

Second, assume that µ1 ∈ [−1, 0]. We differentiate two subcases. If
µ2 ∈ [0, 1], then

fkm(X,1,M) ≥ fkm({−3, 3},1,M)

≥ fkm({−3},1, {−1, 0}) + fkm({3},1, {0, 1})

=
2

1/4 + 1/9
=

72

13
>

242

65
.

91

NON-REPRESENTABILITY OF SOLUTIONS

If µ2 ∈ [1, 3], then

fkm(X,1,M) ≥ fkm({−2,−3},1,M)

≥ fkm({−2,−3},1, {−1, 1})

=
1

1 + 1/9
+

1

1/4 + 1/16
=

41

10
>

242

65
.

Hence, we obtain µ1 ∈ [−3,−1) and by symmetry also µ2 ∈ (1, 3].
Third, assume that µ1 = −3. We also differentiate two subcases. If

µ2 ∈ [1, 2], then

fkm(X,1,M) ≥ fkm({−2,−1, 3},1,M)

≥ fkm({−2,−1},1, {−3, 1}) + fkm({3},1, {−3, 2})

=
1

1 + 1/9
+

1

1/4 + 1/4
+

1

1/81 + 1
=

797

205
>

242

65
.

If µ2 ∈ [2, 3], then

fkm(X,1,M) ≥ fkm({−2,−1, 1},1,M)

≥ fkm({−2,−1, 1},1, {−3, 2}) + fkm({1},1, {−3, 2})
1

1 + 1/16
+

1

1/4 + 1/9
+

1

1/16 + 1
=

1028

221
>

242

65
.

Hence, we obtain µ1 ∈ (−3,−1) and by symmetry also µ2 ∈ (1, 3).

We narrowed our solution space down to a small square in which
all optimal solutions of FKM on our instance X lie. In the next step,
we argue that the objective function is strictly convex on the square
(−3,−1) × (1, 3). This means that the objective function has a single
stationary point in the square and that this stationary point describes
the unique global optimum of the objective function (still, up to renum-
bering of the two representatives). As it turns out, classical manual
analysis is infeasible, which is why we resort to a computer-assisted
proof.

Lemma 6.3.3 The function fkm(X,1, {µ1, µ2}) is convex for µ1 ∈ (−3,−1)
and µ2 ∈ (1, 3).

Proof. Throughout this proof, we use the shorthand notation

fkm(µ1, µ2) ··= fkm(X,1, {µ1, µ2})

for our objective function.

92

6.3 Unsolvability of Optimal FKM Solutions

To prove that the objective function is strictly convex, it is sufficient
to show that its Hessian matrix is positive definite [Bertsekas, 1999].
This is equivalent to showing that both partial derivatives and the
determinant of the Hessian matrix are positive. That is, for all µ1 ∈
(−3,−1) and µ2 ∈ (1, 3), we have

• ∂2fkm
∂µ2

1
(µ1, µ2) > 0,

• ∂2fkm
∂µ2

2
(µ1, µ2) > 0, and

•
(
∂2fkm
∂µ2

1
· ∂2fkm

∂µ2
2
− ∂2fkm

∂µ1∂µ2
· ∂2fkm
∂µ2∂µ1

)
(µ1, µ2) > 0.

Each of these second derivatives is a fraction of two high-degree polyno-
mials. Showing the positiveness of these quantities manually seems to
be infeasible. This is why we propose a computer-assisted approach.

A core ingredient to our proof is the well-known Taylor Theorem.
More specifically, we use a variant of the theorem with the mean-value
form of the remainder.

Lemma 6.3.4 (Forster [2010]) Let f : R×R→ R be a bivariate function
and εx, εy > 0 be constants. For each x, y ∈ R such that f is continuously
differentiable on [x, x+ εx]× [y, y + εy], there exists a ξ ∈ [0, 1] such that

f(x+ εx, y + εy)

= f(x, y) +
∂f

∂x
(x+ ξ · εx, y + ξ · εy) · εx +

∂f

∂y
(x+ ξ · εx, y + ξ · εy) · εy .

We use Lemma 6.3.4 to prove that if our function is positive at
some point in the desired interval, then it is also positive in a small
neighborhood around this point. To this end, let ε > 0 be some
constant, x, y ∈ R such that f is continuously differentiable on [x, x+
ε]× [y, y + ε], and set

∆ε ··=
f(x, y)

ρx + ρy

where

ρx ··= max
(x0,y0)∈[x,x+ε]×[y,y+ε]

{∣∣∣∣∂f∂x (x0, y0)

∣∣∣∣}
ρy ··= max

(x0,y0)∈[x,x+ε]×[y,y+ε]

{∣∣∣∣∂f∂y (x0, y0)

∣∣∣∣} .

93

NON-REPRESENTABILITY OF SOLUTIONS

Assume f(x, y) > 0, let 0 ≤ εx, εy ≤ min{ε,∆ε}, and obtain ξ ∈ [0, 1]
from Lemma 6.3.4 applied to f(x+ εx, y + εy). We bound

f(x+ εx, y + εy)

= f(x, y) +
∂f

∂x
(x+ ξ · εx, y + ξ · εy) · εx +

∂f

∂y
(x+ ξ · εx, y + ξ · εy) · εy

≥ f(x, y)−
∣∣∣∣∂f∂x (x+ ξ · εx, y + ξ · εy)

∣∣∣∣ · εx − ∣∣∣∣∂f∂y (x+ ξ · εx, y + ξ · εy)
∣∣∣∣ · εy

≥ f(x, y)−
(∣∣∣∣∂f∂x (x+ ξ · εx, y + ξ · εy)

∣∣∣∣+

∣∣∣∣∂f∂y (x+ ξ · εx, y + ξ · εy)
∣∣∣∣) ·∆ε

= f(x, y) ·

1−

∣∣∣∂f∂x (x+ ξ · εx, y + ξ · εy)
∣∣∣+
∣∣∣∂f∂y (x+ ξ · εx, y + ξ · εy)

∣∣∣
ρx + ρy


≥ 0 . (since εx, εy ≤ ε)

Thus, if f is positive at (x, y), then f is also positive on the whole
square [x, x+ min{ε,∆ε}]× [y, y+ min{ε,∆ε}]. Based on this observation,
we propose the following general algorithm to verify the positiveness of
a function on a given area.

Algorithm 6.3.5: POSITIVENESSBYFINITETAYLORGRID

Input: Area A = [x0, x1]× [y0, y1] ⊂ R2, a continuously
differentiable f : A→ R, and ε > 0

1 if f(x0, y0) ≤ 0 then
2 return false

3 x← x0

4 y ← y0

5 εmin ← ε
6 while y ≤ y1 do
7 δ ← min

{
ε, f(x,y)
ρx+ρy

}
8 εmin ← min{δ, εmin}
9 x← x+ δ

10 if x > x1 then
11 x← x0

12 y ← y + εmin

13 εmin ← ε

14 return true

The core idea is to cover the area A by a finite grid. This grid is
chosen small enough such that we can use Lemma 6.3.4. If the

94

6.3 Unsolvability of Optimal FKM Solutions

function is positive on a corner of a cell of the grid, then it is positive
on the whole cell. The algorithm checks the function value at a corner
of A for positiveness and then adaptively chooses the correct grid size
at runtime. Thus, if the algorithm covers A by these small grid cells,
then f is positive on the whole area A.

We cannot give an upper bound on the runtime of Algorithm 6.3.5.
In fact, if f is negative at some point in the interior of A, then the
algorithm goes into an infinite loop. However, if Algorithm 6.3.5
terminates, then f is positive on A. There are two more issues we
have to resolve to accept a halting computation of the algorithm as
a formally sound proof of positiveness. First, we have to make sure
that we compute with enough precision to represent δ and εmin without
rounding errors. Second, we have to figure out how to compute ρx and
ρy. In the following, we discuss our approaches to solving these two
issues for our functions.

The core observation here is that our second derivatives of the
FKM objective function are fractions of polynomials. This has several
important implications. Each of them has continuous derivatives,
and if you evaluate them at a rational input, then the function val-
ue is also rational. Hence, we can solve the precision problem of
Algorithm 6.3.5 by starting at rational endpoints of our area, that
is, checking [−3,−1] × [1, 3]. All computations of the algorithm also
stay within rational numbers. Thus, we avoid rounding errors by
representing everything as a fraction of integers. We do not know how
to compute ρx and ρy exactly. However, we can easily find an upper
bound on these quantities. First, we compute a minimum/maximum
value, by plugging in the smallest/largest possible value for all terms
with a positive coefficient and the largest/smallest value for all terms
with a negative coefficient at the numerator, and vice versa at the
denominator. We assume that coefficients are adjusted for any sign
changes due to the sign of the arguments, for example, a positive
coefficient which is evaluated at a negative argument has to be treated
as a negative coefficient. Second, we obtain an upper bound on ρx
and ρy as the maximum of the absolute values of the upper and lower
bounds we just computed.

We implemented Algorithm 6.3.5 in Sage1, a general purpose com-
puter algebra system based on Python2. One of the strengths of
this language is that it inherently uses arbitrary size integers to rep-
resent rational numbers as numerator and denominator. The algo-

1https://www.sagemath.org, last access: 22.05.2019
2https://www.python.org, last access: 22.05.2019

95

https://www.sagemath.org
https://www.python.org

NON-REPRESENTABILITY OF SOLUTIONS

rithm terminates for ∂2fkm
∂µ2

1
, ∂2fkm

∂µ2
2

, and
(
∂2fkm
∂µ2

1
· ∂2fkm

∂µ2
2
− ∂2fkm

∂µ1∂µ2
· ∂2fkm
∂µ2∂µ1

)
on

[−3,−1]× [1, 3]. Our implementation can be found in Section 6.4.

The previous two lemmata tell us that all optimal solutions for FKM

on X lie in [−3,−1] × [1, 3] and that the objective function is convex
on this square. Hence, if we find a stationary point of the objective
function in that area, then this is the unique, globally optimal solution
of the problem. Let

f(µ) ··= fkm(X,1, {−µ, µ})

be the restriction of the FKM objective function on X to solutions which
are symmetric around 0, and consider its derivative

df

dµ
(µ) =

2·µ·(3·µ12+84·µ10+490·µ8−292·µ6−8 981·µ4−17 640·µ2−11 664)
(µ2+9)2·(µ2+4)2·(µ2+1)2 .

Since the denominator is strictly positive, we only have to find roots
of the numerator. The trivial root µ = 0 does not lie in our desired
interval and is thus not the global optimum we seek. Let

g(µ) ··= 3 · µ12 + 84 · µ10 + 490 · µ8 − 292 · µ6

− 8 981 · µ4 − 17 640 · µ2 − 11 664 ,

and observe that g(2) = −20 864 and g(3) = 8 658 576. Further notice
that the roots of the polynomial g are square roots of the roots of the
polynomial

h(µ) ··= 3 · µ6 + 84 · µ5 + 490 · µ4 − 292 · µ3 − 8 981 · µ2 − 17 640 · µ− 11 664 .

Thus, the unique global optimum of FKM on X is of the form {−µ∗, µ∗}
where µ∗ is the root of the polynomial h in the interval (2, 3).

Proof of Theorem 6.3.1. We apply Lemma 6.1.4 to the polynomial h.
The discriminant of h is

3 086 428 236 130 279 646 902 930 636 800 = 231 · 37 · 52 · 73 · 76 637 866 514 129 .

Thus, 11, 17, and 89 are good prime numbers for h. We factor the
polynomial modulo theses primes to obtain

h(µ) = 3 · (µ6 + 6 · µ5 + 2 · µ4 + 9 · µ3 + 2 · µ2 + 5 · µ+ 6) mod 11 ,

h(µ) = 3 · (µ5 + 3 · µ4 + 9 · µ3 + 12 · µ2 + 10 · µ+ 7) · (µ+ 8) mod 17 , and

h(µ) = 3 · (µ3 + 17 · µ2 + 50 · µ+ 17) · (µ2 + 9 · µ+ 27) · (µ+ 2) mod 89 .

Thus, the Galois group of h is isomorphic to S6, which yields the claim
by applying Lemma 6.1.3.

96

6.4 Implementation of the Finite Taylor Grid

6.4 Implementation of the Finite Taylor Grid

1 # Since we are only computing fractions and evaluating polynomials ,
2 # we can work with the rational numbers and receive exact
3 # computation results .
4 R.<x , y> = PolynomialRing (QQ, ’ x , y ’)
5

6 # Set our object ive function . . .
7 obj = (((3 − x)^(−2) + (3 − y)^(−2))^(−1) +
8 ((2 − x)^(−2) + (2 − y)^(−2))^(−1) +
9 ((1 − x)^(−2) + (1 − y)^(−2))^(−1) +

10 ((1 + x)^(−2) + (1 + y)^(−2))^(−1) +
11 ((2 + x)^(−2) + (2 + y)^(−2))^(−1) +
12 ((3 + x)^(−2) + (3 + y)^(−2))^(−1))
13 obj (x , y) = obj # Transform expression to function
14

15 # . . . and compute the second part ia l derivat ives
16 oxx = derivat ive (der ivat ive (obj , x) , x)
17 oxy = derivat ive (der ivat ive (obj , x) , y)
18 # Omit oyx , since dobj^2/dxdy = dobj^2/dydx
19 oyy = derivat ive (der ivat ive (obj , y) , y)
20 r = oxx∗oyy − oxy^2
21

22 # We need to show that , on the square [−3,−1]x [1 ,3] ,
23 # oxx > 0, oyy > 0, and oxx∗oyy − oxy^2 > 0.
24

25 # Next , we adjust the signs in each polynomial . Since x is always
26 # negative , we f l i p the sign of a l l terms with an odd powered
27 # occurrence of x . Afterwards , we can work with the square [1 ,3]^2.
28 def flipOddX (p) :
29 res (x , y) = [0 ,0]
30 p = p. numerator_denominator ()
31 for i in [0 ,1] :
32 for o in (expand (p [i])) . operands () :
33 degx = int (o . degree (x))
34 i f degx > 0 and degx % 2 == 1:
35 res [i] −= o
36 else :
37 res [i] += o
38 return res [0]/ res [1]
39

40 oxx = flipOddX (oxx)
41 oyy = flipOddX (oyy)
42 r = flipOddX (r)
43

44 # Finally , we check a l l function values for a
45 # su f f i c i en t l y small grid .
46

47 # Given a polynomial p , find an upper bound on the absolute value
48 # in the area XIxYI .
49 def ubAbsInInterval (p , XI , YI) :

97

NON-REPRESENTABILITY OF SOLUTIONS

50 # We compute a lower and an upper bound, and the take the
51 # maximum of the absolute values
52 lb , ub = [0 , 0] , [0 , 0]
53 p = p. numerator_denominator ()
54 for i in [0 ,1] :
55 for o in (expand (p [i])) . operands () :
56 i f o . leading_coef f ic ient (x) . leading_coef f ic ient (y) > 0:
57 lb [i] += o (x = XI [i] , y = YI [i])
58 ub[i] += o (x = XI[1− i] , y = YI[1− i])
59 else :
60 lb [i] += o (x = XI[1− i] , y = YI[1− i])
61 ub[i] += o (x = XI [i] , y = YI [i])
62 return max(abs (ub[0]/ub[1]) , abs (lb [0]/ lb [1]))
63

64 # We use the f i r s t order Taylor expansion to find a
65 # su f f i c i en t l y small grid .
66 def checkGrid (p) :
67 i f p(1 ,1) <= 0:
68 print (’Found a function value <= 0 at 1 1 ’)
69 sys . ex i t ()
70 maxstep = 1/16
71 dx = derivat ive (p , x)
72 dy = derivat ive (p , y)
73 curx , cury = 1, 1
74 epsmin = maxstep
75 while cury <= 3:
76 fvalue = p (curx , cury)
77 i f fvalue <= 0:
78 # This actually cannot happen.
79 # We ver i f y i t anyways as a simple sanity check .
80 print (’Found a function value <= 0 at ’+
81 str (curx)+ ’ ’+str (cury))
82 sys . ex i t ()
83 eps = min (maxstep ,
84 fvalue/
85 (ubAbsInInterval (dx , [curx , curx+maxstep] ,
86 [cury , cury+maxstep])
87 + ubAbsInInterval (dy , [curx , curx+maxstep] ,
88 [cury , cury+maxstep])))
89 epsmin = min (eps , epsmin)
90 curx += eps
91 i f curx > 3:
92 curx = 1
93 cury += epsmin
94 epsmin = maxstep
95 print (str (round ((cury−1)∗100/(2+maxstep))) + ’ %.. . ’)
96

97 print (’ Checking df^2/dx^2 . . . ’)
98 checkGrid (oxx)
99 print (’ Checking df^2/dy^2 . . . ’)

100 checkGrid (oyy)

98

6.4 Implementation of the Finite Taylor Grid

101 print (’ Checking df^2/dx^2∗df^2/dy^2 − (df /(dxdy))^2 . . . ’)
102 checkGrid (r)
103 print (’ A l l checks successful ’)

99

Part III

Approaching Hard Problems

Approximation Algorithms 7
Contribution Summary We present algorithms trying to solve FUZZY

k-MEANS and FUZZY RADIUS k-MEANS. The algorithm discussed in
Section 7.2 is an improvement over the algorithm published in [Blömer
et al., 2018], utilizing a variant of the soft-to-hard lemma published in
[Blömer et al., 2016a]. In Section 7.3 we present a previously unpub-
lished algorithm, solving FUZZY RADIUS k-MEANS for small instances.

7.1 Related Work . 104
7.2 A PTAS for FKM With Fixed Number of Clusters 105

7.2.1 From Soft to Hard Clusters 106
7.2.2 A Sampling Based Approach 111

7.3 Solving Small FRKM Instances 114

The first part of this thesis focused on complexity theory. We have
seen several hardness results for the discrete variants of our clustering
problems. Furthermore, in Chapter 6 we discussed that, in general,
no conventional algorithm is able to solve FKM exactly. Consequently,
the best we can expect is a polynomial-time algorithm, approximating
FKM up to a factor of (1 + ε), for an arbitrarily chosen ε > 0. In the
following, we present an algorithm solving the FKM problem up to a
factor of (1 + ε). The runtime of our algorithm is polynomial in the
number of points and the dimension, and exponential in the number
of clusters k. This makes it a PTAS for any constant k. To the best of
our knowledge, it is the first algorithm of this type whose runtime is
independent of the weight function on the input points. Furthermore,
it is also the first algorithm where the exponential dependence on k
is linear. Afterwards, we show that the radius variant FRKM can be
solved for two clusters on instances on the real line.

103

APPROXIMATION ALGORITHMS

The FKM algorithm we present in this chapter is not an improve-
ment to the fastest (1 + ε)-approximation algorithm known, which was
presented in Blömer et al. [2016a]. However, the independence of
the weight function makes it a key ingredient for our combination
with fuzzy coresets, which we present in Chapter 8. This combina-
tion then yields an approximation algorithm for FKM which is faster
than all previously presented algorithms with the same approximation
guarantee.

7.1 Related Work

Since most of the problems we discuss in this thesis are compu-
tationally hard, they have been subject to substantial research in
approximation algorithms.

Besides the approximation guarantee of local search algorithms
(see Section 5.2), MUFL can be approximated using many different
algorithmic techniques. A rounded solution of an LP formulation of
the problem yields a factor 4 approximation [Shmoys et al., 1997].
This was improved by utilizing primal-dual and filtering techniques, to
achieve a 3-approximation [Jain & Vazirani, 2001]. Furthermore, there
is a 1.61-approximative greedy algorithm [Jain et al., 2002]. Following
this, a lot of algorithms with constant approximation factor have been
presented, steadily closing in on the 1.463-inapproximability bound
(see Section 4.3). Currently, the best known algorithm has an expected
1.488-approximation ratio [Li, 2013].

Our radius covering problem RKM can be approximated with a factor
of 2 by a fairly simple farthest-first traversal algorithm [Gonzalez, 1985].
This bound is tight assuming P 6= NP (see Section 4.3).

Although the approximation factor is not constant, one of the most
popular approximation algorithms for KM is the k-means++ seeding
technique [Arthur & Vassilvitskii, 2007], due to its simplicity and
fast runtime. For some time, local search heuristics were the best
constant-factor approximation algorithms known for KM. Currently,
the best algorithm achieves a (6.357 + ε)-approximation ratio using a
primal-dual approach [Ahmadian et al., 2017]. The latter also yields
a (9 + ε)-approximation for the KM-problem on general metric spaces.
(1 + ε)-approximation algorithms for KM assume either a constant
number of clusters or constant dimension since there is probably no
PTAS for KM (see Section 4.3). For constant k, there has been a string of
research of successively improving runtimes based on coresets [Bādoiu
et al., 2002; Har-Peled & Kushal, 2006] (and many more) with the

104

7.2 A PTAS for FKM With Fixed Number of Clusters

currently fastest known algorithm due to Feldman et al. [2007]. Kumar
et al. [2010] present an algorithm based on sampling candidate means,
which has a similar runtime to the fastest coreset-based algorithms.

So far, the only algorithm with guaranteed approximation ratio for
FKM have been presented by Blömer et al. [2016a] and Blömer et al.
[2018]. They have presented several different approaches, which
all yielded (1 + ε)-approximations. The fastest of these has runtime
O(d · k · n) + (d · log(n))Õ(k2/ε) (where Õ hides logarithmic factors).

7.2 A PTAS for FKM With Fixed Number of Clusters

In the following, we present a (1 + ε)-approximation algorithm for
FKM, whose runtime is polynomial in the number of points n and the
dimensionality of the input set d. Notably, the runtime of the algorithm
does not depend on the weight function on the points. This makes
the algorithm particularly useful in combination with the coresets
we present in Chapter 8. However, the algorithms runtime is still
exponential in the number of clusters k and ε.

Algorithm 7.2.1: DERANDOMIZED SAMPLING

Input: X b Rd, w : X → N, k ∈ N, ε ∈ (0, 1)
1 T ← {µ(S) | S b X, |S| = 33/ε}
2 M ← arg minTbT ,|T |=k {fkm(X,w, T)}
3 return M

Notice that Algorithm 7.2.1 ignores the weight function for the com-
putation of the candidate representatives in T . The algorithm com-
putes the unweighted mean for each multiset of 33/ε points from X
where points can occur multiple times and are counted with multiplic-
ity. One might think of such a set S as drawing points from X with
replacement. However, despite ignoring the weight function, T con-
tains a set of k representatives which form a (1 + ε)-approximation to
the weighted problem. In addition to being independent of the weight
function, this constitutes the first (1 + ε)-approximation algorithm for
FKM where the exponential runtime dependence on k is only linear.

Theorem 7.2.2 Let (X,w, k) be an FKM instance and M∗ be an optimal
solution. Algorithm 7.2.1 computes a set M b Rd with |M | = k and

fkm(X,w,M) ≤ (1 + ε) · fkm(X,w,M∗) .

in time d · nO(k/ε).

105

APPROXIMATION ALGORITHMS

We prove Theorem 7.2.2 in two steps. First, we present a variation
of the soft-to-hard lemma, which has already been a key ingredient
in the proof of previously presented approximation algorithms for FKM

[Blömer et al., 2016a]. Our slightly modified variant of the lemma
shows that, for each representative in an FKM solution, there exists,
under a certain condition, a hard cluster (i.e. a subset of input points)
which has characteristics similar to certain statistics with respect to
the fuzzy representative. Second, we show how to use a sampling
technique, which is well-know from algorithms for the KM problem, to
generate a small number of candidate means. In this candidate set,
there is a multiset of representatives with the desired approximation
ratio.

7.2.1 From Soft to Hard Clusters

Once again, the main difficulty when analyzing algorithms intended to
solve FKM is the missing combinatorial structure of optimal solutions.
We circumvent this problem by proving the existence of similar hard
clusters. Similarity of clusters is expressed in three statistics: weight,
mean, and cost contribution. For a hard cluster, i.e. some set C b Rd

with weight w : C → N, these are w (C), µw(C) and km(C,w).

Definition 7.2.3 (Fuzzy Cluster Statistics) Let X b Rd, w : X → N,
M b Rd, and κ : X ×M → [0, 1]. For a representative µ ∈ M we denote
its cluster statistics

• κ(X,w, µ) ··=
∑

x∈X κ(x, µ)m · w(x) the weight,

• µκ(·,µ)m·w(·)(X) the mean, and

• fkm(X,w, {µ}, κ) the cost contribution.

For the following analysis we require several elementary observations
from probability theory. Instead of presenting a self-contained overview
of the field, we expect the reader to be familiar with the basic terms
and only outline core notation and results we apply later on. A full
introduction to probability theory, including proofs of the results we
present in the next paragraph, can, for example, be found in the book
by Mitzenmacher & Upfal [2005].

Basic Probability Theory Let R be a random variable. We call E [R] its
expected value and Var (R) its variance. For any non-negative random

106

7.2 A PTAS for FKM With Fixed Number of Clusters

variable R and a ∈ R>0, Markov’s inequality states

Pr (R ≥ a · E [R]) ≤ 1

a
.

For any random variable R with finite expected value and non-zero
variance and every a ∈ R>0, Chebyshev’s inequality states

Pr
(
|R− E [R]| ≥ a ·

√
Var (R)

)
≤ 1

a2
.

Fix some multiset X b Rd, weight function w : X → N, k ∈ N, and
stationary pair (M,κ) for FKM on (X,w, k). Technically speaking, the fol-
lowing results do not require a stationary pair but just some arbitrary
feasible assignment function and its induced set of representatives.
However, choosing a stationary pair is sufficient for our application
and eases notation.

We introduce a random process which creates, for each µ ∈ M , a
subset Cµ ⊆ X. Each point x ∈ X is independently added to Cµ with
probability κ(x, µ)m.

Fix some µ ∈M and let χCµ : X → {0, 1} be the indicator function of
the set Cµ. For each x ∈ X, χCµ(x) is a binary random variable with

Pr
(
χCµ(x) = 1

)
= κ(x, µ)m ,

E
[
χCµ(x)

]
= κ(x, µ)m , and

Var
(
χCµ(x)

)
= κ(x, µ)m · (1− κ(x, µ)m) .

Using χCµ we derive concentration bounds on the cluster statistics
of Cµ where each statistic is a random variable depending on the
process generating Cµ. Notice that the random variables χCµ(x) are
independent of the weight function w.

First, we bound the difference of the weights of the hard and fuzzy
clusters. Observe that

w (Cµ) =
∑
x∈Cµ

w(x) =
∑
x∈X

χCµ(x) · w(x) ,

and thus, we obtain

E [w (Cµ)] =
∑
x∈X

κ(x, µ)m · w(x) = κ(X,w, µ) .

Applying Chebyshev’s inequality yields

Pr

(
|w (Cµ)− κ(X,w, µ)| ≥

√
4 ·
√

Var (w (Cµ))

)
≤ 1

4
. (7.2.4)

107

APPROXIMATION ALGORITHMS

Second, we bound the squared Euclidean distance of the means of
the hard clusters to their respective mean µ. Let

Dµ ··=
∥∥∥∑
x∈X

χCµ(x) · w(x) · (x− µ)
∥∥∥2

2

be a random variable depending on χCµ, as well. Similar to the weights,
we apply Markov’s inequality to obtain

Pr (Dµ ≥ 4 · E [Dµ]) ≤ 1

4
. (7.2.5)

Finally, we bound the cost in the same fashion. Observe that

km(Cµ, w) ≤ km(Cµ, w, {µ}) =
∑
x∈X

χCµ(x) · w(c) · ‖x− µ‖22 ,

and since ‖x− µ‖22 is an independent of the random variables χCµ(x),

E [km(Cµ, w, {µ})] =
∑
x∈X

κ(x, µ)m · w(c) · ‖x− µ‖22 = fkm(X,w, {µ}, κ) .

Applying Markov’s inequality one more time we obtain

Pr (km(Cµ, w) ≥ 4 · fkm(X,w, {µ}, κ))

≤ Pr (km(Cµ, w) ≥ 4 · E [km(Cµ, w)]) ≤ 1

4
. (7.2.6)

We formulate our soft-to-hard lemma by combining these concen-
tration bounds into a single argument. In the following, we denote
wmax(X) ··= maxx∈X {w(x)}.

Lemma 7.2.7 (Soft-To-Hard) Let k, d ∈ N, X b Rd, w : X → N, (M,κ) a
stationary pair for FKM on (X,w, k), and ε ∈ (0, 1). For each µ ∈M with

κ(X,w, µ) ≥ 16 · wmax(X)

ε
,

there exists a set Cµ ⊆ X such that

w (Cµ) ≥ κ(X,w, µ)

2
, (7.2.8)

‖µw(Cµ)− µ‖22 ≤
ε

κ(X,w, µ)
· fkm(X,w, {µ}, κ) , and (7.2.9)

km(Cµ, w) ≤ 4 · fkm(X,w, {µ}, κ) . (7.2.10)

108

7.2 A PTAS for FKM With Fixed Number of Clusters

Proof. Let

ŵ : X → (0, 1]

x 7→ w(x)

wmax(X)

be the normalized weight function, fix some µ ∈ M with κ(X,w, µ) ≥
16 ·wmax(X)/ε, and let χCµ be the previously described random variable.
We apply the probabilistic method. Using the union bound we obtain
that the probability for the events (7.2.4), (7.2.5), and (7.2.6) (applied
to ŵ instead of w) to fail simultaneously is at least 1− 3/4 > 0. Hence,
there exists a set Cµ ⊆ X with

|ŵ (Cµ)− κ(X, ŵ, µ)| ≤ 2 ·
√

Var (ŵ (Cµ)) ,

Dµ ≤ 4 · E [Dµ] , and

km(Cµ, ŵ) ≤ 4 · fkm(X, ŵ, {µ}, κ) .

Observe that by our precondition we have

2 =

√
16

2
≤
√
ε · κ(X,w, µ)/wmax(X)

2
=

√
ε · κ(X, ŵ, µ)

2
≤
√
κ(X, ŵ, µ)

2
.

Furthermore, since the χCµ(x) are drawn independent of each other,√
Var (ŵ (Cµ)) =

√∑
x∈X

ŵ(x)2 · κ(x, µ)m · (1− κ(x, µ)m)

≤
√∑
x∈X

ŵ(x) · κ(x, µ)m (0 < ŵ(x), κ(x, µ) ≤ 1)

=
√
κ(X, ŵ, µ) .

Combining these inequalities, we conclude

|w (Cµ)− κ(X,w, µ)| = wmax(X) · |ŵ (Cµ)− κ(X, ŵ, µ)|

≤ wmax(X) · 2 ·
√

Var (ŵ (Cµ))

≤ wmax(X) · κ(X, ŵ, µ)

2
=
κ(X,w, µ)

2
,

and thus, (7.2.8).
Next, we compute the expectation E [Dµ]. We expand the term

Dµ =
∥∥∥∑
x∈X

χCµ(x) · ŵ(x) · (x− µ)
∥∥∥2

2

=
∑
x∈X

∑
y∈X

χCµ(x) · χCµ(y) · ŵ(x) · ŵ(y) · 〈x− µ , y − µ〉 .

109

APPROXIMATION ALGORITHMS

Since the χCµ(x) are independent binary random variables, we have
E
[
χCµ(x)2

]
= κ(x, µ)m and, for all x 6= y, that E

[
χCµ(x) · χCµ(y)

]
=

κ(x, µ)m · κ(y, µ)m. We obtain

E [Dµ]

=
∑
x∈X

∑
y∈X

E
[
χCµ(x) · χCµ(y)

]
· ŵ(x) · ŵ(y) · 〈x− µ , y − µ〉

=
∑
x∈X

(
κ(x, µ)m · ŵ(x)2 · ‖x− µ‖22

+
∑
y∈X
x 6=y

κ(x, µ)m · κ(y, µ)m · ŵ(x) · ŵ(y) · 〈x− µ , y − µ〉
)

=
∑
x∈X

(
(κ(x, µ)m − κ(x, µ)2·m) · ŵ(x)2 · ‖x− µ‖22

+
∑
y∈X

κ(x, µ)m · κ(y, µ)m · ŵ(x) · ŵ(y) · 〈x− µ , y − µ〉
)

=
∑
x∈X

(
κ(x, µ)m · (1− κ(x, µ)m) · ŵ(x)2 · ‖x− µ‖22

+ κ(x, µ)m · ŵ(x) ·
〈
x− µ ,

∑
y∈X

κ(y, µ)m · ŵ(y) · (y − µ)

︸ ︷︷ ︸
= 0 since (M,κ) stationary

〉)

≤
∑
x∈X

κ(x, µ)m · ŵ(x) · ‖x− µ‖22 (0 < ŵ(x), κ(x, µ) ≤ 1)

= fkm(X,w, {µ}, κ)/wmax(X) .

To bound the difference between the representatives, we rewrite

‖µŵ(Cµ)− µ‖22 =

∥∥∥∥∑x∈X χCµ(x) · ŵ(x) · (x− µ)

ŵ(Cµ)

∥∥∥∥2

2

=
Dµ

ŵ (Cµ)2 .

Recall that ŵ (Cµ)2 ≥ κ(X, ŵ, µ)/4, ε · κ(X, ŵ, µ)/4 ≥ 4, and µŵ(Cµ) =
µw(Cµ). Thus, we obtain (7.2.9) by

‖µw(Cµ)− µ‖2 =
Dµ

ŵ (Cµ)2 ≤
4 · fkm(X,w, {µ}, κ)/wmax(X)

κ(X, ŵ, µ)2/4

≤ ε · κ(X, ŵ, µ)

4
· 4 · fkm(X,w, {µ}, κ)

κ(X, ŵ, µ)2 · wmax(X)

=
ε · fkm(X,w, {µ}, κ)

κ(X,w, µ)
.

110

7.2 A PTAS for FKM With Fixed Number of Clusters

Finally, we obtain (7.2.10) immediately from

km(Cµ, w) = wmax(X) · km(Cµ, ŵ)

≤ wmax(X) · 4 · fkm(X, ŵ, {µ}, κ) = 4 · fkm(X,w, {µ}, κ) .

The soft-to-hard lemma shows us that, for each fuzzy representative
with a large enough assignment volume, there is a subset of input
points with similar cluster statistics. In the following, we use the prob-
abilistic method again, this time on a well-know sampling technique,
to show the correctness of Algorithm 7.2.1.

7.2.2 A Sampling Based Approach

We do not have any structural knowledge about the subsets of input
points we are trying to find. The only information available to us is a
lower bound on the number of points in each subset. To approximate
the means of such an unstructured subset, we use a simple uniform
sampling technique which is oblivious to any underlying structure
of the points. More specifically, that the mean of a uniformly drawn
subset is, with high probability, a good approximation of the mean of
the whole set.

Lemma 7.2.11 (Inaba et al. [1994]) Let P b Rd, n ∈ N, and δ ∈ (0, 1).
If S is a set of n points drawn uniformly at random from P , then

Pr

(
‖µ(S)− µ(P)‖22 ≤

1

δ · n
· km(P,1)

|P |

)
≥ 1− δ .

We use the probabilistic method to conclude the existence of a con-
stant size subset whose mean approximates the mean of an arbitrary
subset of X well.

Corollary 7.2.12 Let P b Rd, w : X → N, k ∈ N, and ε ∈ (0, 1). If
|P | > 0, then there exists a set S b P with |S| = 33/(32 · ε) such that

‖µ(S)− µw(P)‖22 ≤ ε ·
km(P,w)

w (P)
.

Proof. Let S b P with |S| = 33/(32 · ε) be uniformly sampled from P
with replacement. The sampling treats all points p ∈ P as w(p) copies
of points at the same location. Applying Lemma 7.2.11, we obtain

Pr

(
‖µ(S)− µw(P)‖22 ≤ ε ·

km(P,w)

w (P)

)
≥ 1/33 > 0 .

Hence, there exists a set S b P with the claimed property.

111

APPROXIMATION ALGORITHMS

We combine this result with the soft-to-hard lemma to finally proof
the correctness of Algorithm 7.2.1.

Correctness We analyze the result M of Algorithm 7.2.1. Consider
the point set Xc which contains

c ··=
⌈

64 · wmax(X)

ε ·minµ∈M {κ∗(X,w, µ)}

⌉
copies of each point x ∈ X. Notice that this is purely analytical as we
can not actually compute c. For all sets of representatives M and all
assignment functions κ, we have

fkm(Xc, w,M, κ) = c · fkm(X,w,M, κ) .

We extend κ∗ to an assignment function for Xc by setting, for each
µ ∈M , x ∈ X, and y ∈ Xc with y = x, κ∗(y, µ) ··= κ∗(x, µ). Then, (M∗, κ∗)
is also optimal for the instance (Xc, w, k). Furthermore, for all µ ∈M ,
we have

κ∗(Xc, w, µ) ≥ 64 · wmax(X)

ε ·minµ∈M {κ∗(X,w, µ)}
·
∑
x∈X

κ∗(x, µ)m · w(x)

≥ 64 · wmax(X)

ε
.

Hence, we can apply Lemma 7.2.7 to Xc, w, and ε/4, for each represen-
tative µ ∈M∗. There exists a collection of k non-empty subsets

{Cµ ⊆ Xc | µ ∈M∗} ,

such that, for each µ ∈M∗,

w (Cµ) ≥ κ∗(Xc, w, µ)

2
,

‖µw(Cµ)− µ‖2 ≤
ε

4 · κ∗(Xc, w, µ)
· fkm(Xc, w, {µ}, κ∗) , and

km(Cµ, w) ≤ 4 · fkm(Xc, w, {µ}, κ∗) .

Next, we apply Corollary 7.2.12 to w and ε/32, for each set Cµ. We
obtain that there exists another collection of k non-empty subsets

{Sµ b Cµ ⊆ Xc | µ ∈M∗}

such that, for each µ ∈M∗, we have |Sµ| = 33/ε and

‖µ(Sµ)− µw(Cµ)‖22 ≤
ε

32
· km(Cµ, w)

w (Cµ)
.

112

7.2 A PTAS for FKM With Fixed Number of Clusters

Recall that Xc consists only of copies of points from X. Hence, we
have, for each µ ∈ M∗, that Sµ b X. Simply speaking, we can also
obtain the sets Sµ from X by allowing each point to occur multiple
times independent of its actual multiplicity. Since Algorithm 7.2.1
computes the means of all sets S b X with |S| = 33/ε and chooses the
best k representatives among those, we have

fkm(X,w,M) ≤ fkm(X,w, {µ(Sµ) | µ ∈M∗}) .

Plugging all of this together, we bound the cost of M as follows.

fkm(X,w,M)

≤ fkm(X,w, {µ(Sµ) | µ ∈M∗})

=
1

c
· fkm(Xc, w, {µ(Sµ) | µ ∈M∗})

≤ 1

c
· fkm(Xc, w, {µ(Sµ) | µ ∈M∗} , κ∗)

=
1

c
·
∑
x∈Xc

∑
µ∈M∗

κ∗(x, µ)m · w(x) · ‖x− µ(Sµ)‖22

= fkm(X,w,M∗, κ∗) +
1

c
·
∑
x∈Xc

∑
µ∈M∗

κ∗(x, µ)m · w(x) · ‖µ− µ(Sµ)‖22

(Lemma 3.2.7)

≤ fkm(X,w,M∗, κ∗) +
2

c
·
∑
x∈Xc

∑
µ∈M∗

κ∗(x, µ)m · w(x) · ‖µ− µw(Cµ)‖22

+
2

c
·
∑
x∈Xc

∑
µ∈M∗

κ∗(x, µ)m · w(x) · ‖µw(Cµ)− µ(Sµ)‖22

(2-approximate triangle inquality)

≤ fkm(X,w,M∗, κ∗) +
ε

2 · c
∑
µ∈M∗

fkm(Xc, w, {µ}, κ∗)

+
ε

c · 16

∑
x∈Xc

∑
µ∈M∗

κ∗(x, µ)m · w(x) · km(Cµ, w)

w (Cµ)

=
(

1 +
ε

2

)
· fkm(X,w,M∗, κ∗) +

ε

c · 16

∑
µ∈M∗

κ∗(Xc, w, µ) · km(Cµ, w)

w (Cµ)

≤
(

1 +
ε

2

)
· fkm(X,w,M∗, κ∗) +

ε

c · 8
∑
µ∈M∗

km(Cµ, w)

≤
(

1 +
ε

2

)
· fkm(X,w,M∗, κ∗) +

ε

c · 2
∑
µ∈M∗

fkm(Xc, w, {µ}, κ∗)

= (1 + ε) · fkm(X,w,M∗, κ∗) .

113

APPROXIMATION ALGORITHMS

Bounding the runtime is straightforward. The algorithm evaluates the
cost of |T |k different FKM solutions where each evaluation costs time
O(d · k · n). Hence, the total runtime is bounded by

O
(
d · k · n · |T |k

)
= O

(
d · k · n ·

(
n33/ε

)k)
= d · nO(k/ε) .

7.3 Solving Small FRKM Instances

To the best of our knowledge, there is still no polynomial-time algo-
rithm with a constant approximation guarantee for the FKM problem.
One of the main motivations behind the definition of FRKM was to gain
additional algorithmic insight into FKM-type problems. As it turns out
however, just as with FKM, we still do not know of the existence of
a polynomial-time constant-factor approximation algorithm for the
radius problem, either. Albeit the similarly hard to analyze objec-
tive function, at least we are able to solve FRKM for two clusters on
unweighted instances on the real line.

Algorithm 7.3.1: FUZZYRADIUSSOLVER

Input: X ⊂ R
1 if |X| ≤ 2 then
2 return X

3 xmax ← maxx∈X {x}
4 xmin ← minx∈X {x}
5 xa ← arg minx∈X

{∣∣x− xmax+xmin
2

∣∣}
6 return

{
±
√(

x2
a + x2

max +
√
x4
a + 14 · x2

a · x2
max + x4

max

)
/6

}

Theorem 7.3.2 Algorithm 7.3.1 optimally solves the FUZZY RADIUS k-
MEANS problems with d = 1, k = 2, and w = 1 in time O(n).

Proof. Let xmax, xmin, and xa be defined as in Algorithm 7.3.1. Without
loss of generality assume that the midpoint (xmax + xmin)/2 of X is 0,
i.e. xmax = −xmin.

We start by showing that xmax and xmin are among the most expen-
sive points in each optimal solution. Let M = {µ1, µ2} and assume,
without loss of generality, that xmin ≤ µ1 ≤ µ2 ≤ xmax (recall that, by
Lemma 3.2.13, optimal solutions have to lie in the convex hull of the
input points). Assume xmax does not have the maximum cost among

114

7.3 Solving Small FRKM Instances

points in X. That is, there exists a point x ∈ X with

frkm({xmax},M) < frkm({x},M) .

All points µ2 ≤ y ≤ xmax are at most as far away from both representa-
tives as xmax. Thus, their cost is at most the cost of xmax and we obtain
x < µ2. Choose ε > 0 small enough such that for M ′ = {µ1, µ2 − ε} we
still have

x < µ2 − ε ,
@z ∈ X : µ2 − ε ≤ z < µ2 and

frkm({xmax},M ′) < frkm({x},M ′) .

Such an ε exists since the objective function is continuous. From this
we obtain

frkm({z ∈ X | z < µ2 − ε} ,M ′) < frkm({z ∈ X | z < µ2 − ε} ,M)

since µ2 got closer to these points. However, we still have

frkm({z ∈ X | z ≥ µ2} ,M ′) ≤ frkm({xmax},M ′) .

Since there are no points between µ2 − ε and µ2, we have that the
overall cost of M ′ is strictly smaller than the cost of M , and thus M is
not optimal.

Analogously, we can conclude that M is not optimal if xmin does not
have the maximum cost among points in X. Combining these two
observations, we obtain that if M is an optimal set of representatives,
then

frkm(X,M) = frkm({xmax},M) = frkm({xmin},M) .

From this we can already conclude xmin < µ1 ≤ 0 ≤ µ2 < xmax. If µ1 and
µ2 were both strictly larger (or smaller) than 0, then they were both
closer to xmax than to xmin (or vice versa). In that case the cost of the
two points would not be equal. If either µ1 = xmin or µ2 = xmax, then
both have to be true so that the overall cost is 0. In this case we have
|X| ≤ 2 because any third point in X would have cost strictly larger
than 0. Thus, Algorithm 7.3.1 would correctly answer by choosing the
points in X as the optimal set of representatives.

For the sake of brevity we denote u ··= xmax and −u ··= xmin = −xmax.

115

APPROXIMATION ALGORITHMS

Observe that

0 = frkm({−u},M)− frkm({u},M)

=
1

(−u− µ1)−2 + (−u− µ2)−2
− 1

(u− µ1)−2 + (u− µ2)−2

=
4 · u · (µ1 + µ2) ·

(
u4 − 2 · u2 · µ1 · µ2 + µ3

1 · µ2 + µ1 · µ3
2 − µ2

1 · µ2
2

)
((u− µ1)2 + (u− µ2)2) · ((u+ µ1)2 + (u+ µ2)2)

.

We differentiate the three cases for which the numerator vanishes.
First, if u = 0, then |X| = 1, which is once again a trivial special case.

Second, let u4 − 2 · u2 · µ1 · µ2 + µ3
1 · µ2 + µ1 · µ3

2 − µ2
1 · µ2

2 = 0, and fix any
u and 0 ≤ µ2 < u. Consider the polynomial as a function of µ1

f(µ1) = µ2 · µ3
1 − µ2

2 · µ2
1 +

(
µ3

2 − 2 · u2 · µ2

)
· µ1 + u4 .

The discriminant of f is

∆ = −
(
3 · µ4

2 − 14 · µ2
2 · u2 + 27 · u4

)
· (x+ µ2)2 · (x− µ2)2 · µ2

2

< −
(
3 · µ4

2 + 13 · u4
)
· (x+ µ2)2 · (x− µ2)2 · µ2

2 (µ2 < u)

< 0 .

Thus, f has one real and two non-real roots [Bronštein et al., 2008].
Furthermore, observe that

lim
µ1→∞

f(µ1) =∞ and

f(−u) = u4 + u3 · µ2 − u2 · µ2
2 − u · µ3

2 > u4 + u3 · µ2 − u4 − u3 · µ2 = 0 .

We conclude that ∀µ1 ≥ xmin : f(µ1) > 0, thus, is not 0 for any optimal
solution.

This leaves us with (µ1 +µ2) = 0 as the third case. We obtain that, for
all xmin < µ1 ≤ 0 ≤ µ2 < xmax with frkm({xmax},M) = frkm({xmin},M),
we have µ1 = −µ2.

We established that all optimal solutions are of the form M = {µ,−µ}
for some µ ∈ R≥0, µ < xmax. Next, we examine for which value of µ
the cost is minimized. As before, we still have that, for all x ∈ X with
xmin < x ≤ −µ or µ ≤ x < xmax,

frkm({x},M) < frkm(X,M)

as these points are closer to both means than the two extremal points.
Fix any µ ∈ R≥0 and consider the derivative of the objective function

in the direction of x for any x 6= µ, x 6= −µ

∂frkm

∂x
({x},M) =

x · (x− µ) · (x+ µ) · (x2 + 3 · µ2)

(x2 + µ2)2
,

116

7.3 Solving Small FRKM Instances

which is negative for all 0 ≤ x < µ and positive for all −µ < x ≤ 0.
Hence, points in X get more expensive the closer they are to 0 (in
general: the closer they are to the midpoint of X). Recall the definition
of xa. If xa < µ, then, for all x ∈ X with xa ≤ |x| < µ, we have

frkm({x},M) < frkm({xa},M) .

Due to symmetry, the actual sign of the closest point to 0 in X does
not matter. We already know that frkm({xa},M) cannot be larger than
frkm({xmax},M). Assume that frkm({xa},M) < frkm({xmax},M) and
consider the solution M = {µ+ ε,−µ− ε} for ε > 0 small enough such
that still

frkm({xa},M ′) < frkm({xmax},M ′) .

Consider the derivative of the objective function for xmax in the direction
of µ

∂frkm

∂µ
({xmax},M) =

µ · (µ− xmax) · (µ+ xmax) · (µ2 + 3 · x2
max)

(µ2 + x2
max)2

,

which is negative for all 0 ≤ µ < xmax. From this we conclude that

frkm({xmax},M ′) < frkm({xmax},M) .

Hence, we obtain that, for optimal M ,

frkm(X,M) = frkm({xmax},M) = frkm({xmin},M) = frkm({xa},M) .

Similar to before we consider

0 = frkm({xa},M)− frkm({xmax},M)

=
1

(xa − µ)−2 + (xa + µ)−2
− 1

(xmax − µ)−2 + (xmax + µ)−2

=
(3 · µ4 − µ2 · x2

a − µ2 · x2
max − x2

a · x2
max) · (xa + xmax) · (xmax − xa)

2 · (µ2 + x2
a) · (µ2 + x2

max)
.

The solutions to this are the roots of

g(µ) = 3 · µ4 − (x2
a + x2

max) · µ2 − x2
a · x2

max

because xmax and xa are distinct and positive real numbers. Since g is
biquadratic, its roots are

µ = ±

√
x2
a + x2

max ±
√

(x2
a + x2

max)2 + 12 · x2
a · x2

max

6
.

117

APPROXIMATION ALGORITHMS

Two of these are non-real because√
(x2
a + x2

max)2 + 12 · x2
a · x2

max > x2
a + x2

max .

The other two are symmetric around 0, and hence, define the same
solution M , which is also the set Algorithm 7.3.1 outputs. Since this
is the unique stationary point of the objective function with xmin <
−µ ≤ 0 ≤ µ < xmax and we know that there is an optimal solution with
those properties, we obtain that M is a unique global minimum.

The downside of the previous proof is its rather explicit character.
We closely examine the objective function using tools from real analysis
which use the order on the real numbers to provide strong symmetry
arguments. It is not clear if and how this could be generalized to a
larger number of clusters or dimensions.

118

Coresets 8
Contribution Summary We present an algorithm constructing small
coresets for FUZZY k-MEANS. The coreset construction in this chapter
is based on a construction by Chen [2009] and is published in [Blömer
et al., 2018]. The application of coresets to approximation algorithms
presented in Section 8.3 yields an improvement over [Blömer et al.,
2018] due to the improvement of the algorithm presented in Section 7.2.

8.1 Related Work . 120
8.2 Small Coresets for FKM 120

8.2.1 From Weak to Strong via Non-Negligibility 122
8.2.2 Weak Coresets for Non-Negligible Solutions . . . 125

8.3 Applying FKM Coresets 132
8.4 Correctness of our Weak Coreset Algorithm 133

A central technique for dealing with clustering problems on huge data
sets are coresets. Essentially, a coreset is a representation of a data
set that preserves certain properties of the original data [Har-Peled
& Mazumdar, 2004]. In the context of this thesis, we formalize this
by, given some number of clusters k, requiring the cost of any set of
at most k representatives on the coreset to be close to the cost of the
same set of representatives on the original data. Furthermore, the
coresets we discuss in the following are weighted subsets of the original
data. Such a coreset has two main applications. First, assume the
original data set to be so large, that it does not fit into main memory.
Constantly transferring data from main memory to hard drive, and
vice versa, is time consuming. Thus, we usually want to process such
a data set in a streaming setting, where we parse the data set only
once. If we are able to maintain a coreset while parsing the stream
and the resulting coreset is small enough so that it fits into main

119

CORESETS

memory after reading the whole stream, then we can apply standard
algorithms to the coreset to find approximative solutions to the original
data. Second, consider an approximation algorithm whose runtime is
independent of any weight function on the data set, but only depends
on the number of distinct point locations. For a small enough coreset,
such an algorithm runs significantly faster on the coreset than on the
original data. However, a good solution for the coreset is also a good
solution on the original data. In the following, we present an efficient
construction of small coresets for FKM. We also discuss how these can
be applied in the two previously described scenarios (specifically, how
our construction reduces the runtime of Algorithm 7.2.1).

8.1 Related Work

Coreset for KM have initially been introduced by Bādoiu et al. [2002].
Since then, there has been a long string of research producing contin-
uously improving results using different techniques, and constructing
smaller and smaller coresets, for example, Har-Peled & Mazumdar
[2004]; Har-Peled & Kushal [2006]; Chen [2009]; Feldman et al. [2013],
to name just a few. Currently, the smallest and most general coreset
is due to Sohler & Woodruff [2018]. They present a coreset of size
O(log(k/ε)) for any clustering and subspace approximation problem
with, for any p ≥ 1, the sum of Euclidean distances to the pth power as
the objective function.

There is a coreset construction for a large class of general soft
clustering problems based on µ-similar Bregman divergences with
size polynomial in k and d but independent of n [Lucic et al., 2016].
However, this construction can not be applied to FKM, and so far, there
have been no other constructions of small coresets for FKM.

8.2 Small Coresets for FKM

We begin by formalizing our notion of FKM coresets.

Definition 8.2.1 (Coreset) Let (X,w, k) be an FKM instance. A set S b
Rd together with a weight function wS : S → N is called an ε-coreset
(for the FKM problem) if, for all M b Rd with |M | ≤ k,

(1− ε) · fkm(X,w,M) ≤ fkm(S,wS ,M) ≤ (1 + ε) · fkm(X,w,M) .

We often omit the explicit ε and denote an ε-coreset simply as a coreset.
Furthermore, we sometimes refer to a coreset as a strong coreset.

120

8.2 Small Coresets for FKM

As it turns out, it is quite difficult to directly prove the existence of
small coresets for FKM. The main pitfall being, once again, the algebraic
structure of the FKM objective function. To still achieve our goal, we
take a slight detour over so-called weak coresets. Consider some
weighted set of points together with a set of candidate solutions. This
triple (consisting of the set of points, weight function, and candidate
solution set) is a weak coreset if the set of candidate solutions contains
a good approximation to the original problem and the coreset property
is fulfilled for all candidate solutions. We consider a set of candidate
solutions instead of a set of candidate representatives, as it is done
in the definition of weak coresets for KM [Feldman et al., 2007]. This
slight generalization allows us to characterize solutions more precisely.

Definition 8.2.2 (Weak Coreset) Let (X,w, k) be an FKM instance. A
set S b Rd together with a weight function wS : S → N and a set of
solutions Θ ⊆

{
θ b Rd

∣∣ |θ| ≤ k} is called a weak ε-coreset (for the FKM
problem) if there exists M ∈ Θ with

fkm(X,w,M) ≤ (1 + ε) · fkm(X,w,M∗)

where M∗ is an optimal solution for FKM on (X,w, k), and, for all M ∈ Θ,

(1− ε) · fkm(X,w,M) ≤ fkm(S,wS ,M) ≤ (1 + ε) · fkm(X,w,M) .

As before, we often omit the explicit ε and denote a weak ε-coreset
simply as a weak coreset.

In the following, we show how to efficiently construct small coreset
for FKM, with high probability. To this end, we present two independent
results. First, we argue that a weak coreset, with respect to so-called
non-negligible solutions, which forms a subset of the original data and
has an integral weight function is already a strong coreset. Second,
we present an adaptation of Chen’s coreset construction for KM [Chen,
2009] which computes a weak coreset with the desired properties, with
high probability.

Chen’s algorithm is neither the most efficient nor the smallest coreset
construction there is for KM. However, we still use it since it is the best
purely sampling based approach. Other techniques, such as ε-nets
[Har-Peled & Kushal, 2006] or subspace techniques [Feldman et al.,
2013] heavily rely on partitioning the input set. The issues with this is
that the assignment function of FKM effectively introduces an unknown
weighting of the input points. We do not know how to prevent the
introduction of an error factor on the order kO(1) to the cost estimation
if we partition the input set (or project it into some subspace) in the
way these algorithms do.

121

CORESETS

Theorem 8.2.3 Let d, k ∈ N, X b Rd, and ε, δ ∈ (0, 1). There is an
algorithm which, given X, k, ε, and δ, outputs a set S ⊆ X and wS : S →
N such that (S,wS) is a coreset for FKM on (X,1, k), with probability at
least 1− δ. The size of the coreset is

|S| ∈ O
(
d · k4·m · log(n) · log(log(n))2 · ε−3 · log(δ−1)

)
and the algorithm runs in time O(d · k · n · log(δ−1) + |S|).

The algorithm constructing the coreset inherently expects an un-
weighted input set. We can trivially obtain a coreset for weighted input
sets by giving the algorithm the weighted set as a multiset. However,
all occurrences of n in the size of the coreset and the runtime are then
replaced by w (X). For this reason, in the following, we always assume
X to be unweighted.

8.2.1 From Weak to Strong via Non-Negligibility

In contrast to hard clustering problems, an optimal FKM cluster is nev-
er empty. That is, if the assignment function is induced by the set of
representatives, then every input point (which is different from all rep-
resentatives) is always assigned to each representative by a non-trivial
amount. Thus, given a set of representatives, each representative
contributes non-trivially to the overall cost. It turns out that bounding
the cost incurred by a representative with a small total assignment
mass is rather difficult. We introduce the notion of negligible clusters
to circumvent this problem.

Definition 8.2.4 (Negligible Fuzzy Cluster) Let (X,w, k) be an FKM
instance, M b Rd, and κ : X × M → [0, 1] be a feasible assignment
function. We say that the cluster of a representative µ ∈ M is (k, ε)-
negligible if, for all x ∈ X,

κ(x, µ) ≤ ε

2 ·m · k + ε
.

We omit the parameters (k, ε) if they are clear from context.

We do not know whether optimal FKM solutions are in any way
connected to non-negligible clusters. That is, we do not know if one
could refute that there is a data set where all optimal solutions contain
at least one negligible cluster. However, the total assignment mass of a
negligible cluster is so small that we can simply remove the respective
representative from the solution without significantly increasing the
cost of the solution.

122

8.2 Small Coresets for FKM

Lemma 8.2.5 Let (X,w, k) be an FKM instance, M b Rd with |M | ≤ k,
and ε ∈ (0, 1). There exists a set M ′ ⊆M with

fkm(X,w,M ′) ≤ (1 + ε) · fkm(X,w,M)

such that there is an optimal assignment function κ′ : X ×M ′ → [0, 1]
for FKM on (X,w) that contains no negligible cluster.

Proof. We present a somewhat backward inductive argument. Let
M̃ b Rd with |M̃ | ≤ k, and let κ̃ : X × M̃ → [0, 1] be an optimal
assignment function for FKM on (X,w). Assume that the cluster of
µ ∈ M̃ is (k, ε)-negligible. Set M̂ ··= M̃ \ {µ} and define an assignment
function

κ̂ : X × M̂ → [0, 1]

(x, µ̂) 7→ κ̃(x, µ̂) +
κ̃(x, µ) · κ̃(x, µ̂)

1− κ̃(x, µ)
.

Observe that this is well-defined since κ̃(x, µ) < 1 because of κ’s negli-
gibility. For all x ∈ X, we have∑

µ̂∈M̂

κ̂(x, µ̂) =
∑
µ̂∈M̂

(1− κ̃(x, µ)) · κ̃(x, µ̂) + κ̃(x, µ) · κ̃(x, µ̂)

1− κ̃(x, µ)

=
∑
µ̂∈M̂

κ̃(x, µ̂)

1− κ̃(x, µ)
=

∑
µ̂∈M̂ κ̃(x, µ̂)∑

µ̃∈M̃\{µ} κ̃(x, µ̃)
= 1 ,

and hence, κ̂ is a feasible assignment function. Furthermore, we
can upper bound our new assignment function showing that the
assignment of each point to the remaining representatives has not
increased significantly. For all x ∈ X and µ̂ ∈ M̂ , we have

κ̂(x, µ̂)

= κ̃(x, µ̂) +
κ̃(x, µ) · κ̃(x, µ̂)

1− κ̃(x, µ)
≤ κ̃(x, µ̂) +

ε

2 ·m · k + ε
· κ̃(x, µ̂)

1− ε
2·m·k+ε

= κ̃(x, µ̂) ·
(

1 +
ε

2 ·m · k + ε
· 2 ·m · k + ε

2 ·m · k

)
=
(

1 +
ε

2 ·m · k

)
· κ̃(x, µ̂) .

Hence, we can bound the cost of M̂ as follows

fkm(X,w, M̂) ≤
∑
x∈X

∑
µ̂∈M̂

κ̂(x, µ̂)m · w(x) · ‖x− µ̂‖22

≤
∑
x∈X

∑
µ̂∈M̂

(
1 +

ε

2 ·m · k

)m
· κ̃(x, µ̂)m · w(x) · ‖x− µ̂‖22

<
(

1 +
ε

2 ·m · k

)m
· fkm(X,w, M̃) . (M̂ = M̃ \ {µ})

123

CORESETS

At first, we set M̃ ··= M . We repeatedly remove representatives with
(k, ε)-negligible clusters, setting M̃ ··= M̂ after each removal, until we
arrive at a set M ′ which has no negligible clusters. The set M ′ is
not empty because if there is only a single representative remaining,
then that cluster cannot be negligible. The previously presented cost
bound holds for each removal of a representative independently and
we remove less than k representatives. Thus,

fkm(X,w,M ′) ≤
(

1 +
ε

2 ·m · k

)m·k
· fkm(X,w,M) ≤ (1 + ε) · fkm(X,w,M) .

Recall that, given some set of representatives, an optimal assignment
of a point depends only on the location of that point relative to the
representatives. More specifically, it neither depends on the weight
of the point nor on the location of other points in the data set. This
means that if a cluster is negligible with respect to some data set,
then it is negligible with respect to all subsets of that data set. Simply
speaking, being negligible is preserved when we take a subset of the
data. This is the key observation in the proof of our weak-to-strong
lemma.

Lemma 8.2.6 (Weak-To-Strong) Let (X,w, k) be an FKM instance, ε ∈
(0, 1), and

Θ(k,ε)(X) ··=
{
M b Rd

∣∣∣∣ |M | ≤ k and M has no negligible cluster
with respect to X

}
.

If S b X and wS : S → N are such that (S,wS ,Θ(k,ε)(X)) is weak ε-
coreset for FKM on (X,w, k), then (S,wS) is a strong (3 · ε)-coreset for FKM
on (X,w, k).

Proof. We have to verify that the coreset property holds with a factor
of 3 · ε, for all M b Rd with |M | ≤ k. Since (S,wS ,Θ(k,ε)(X)) is a weak
coreset, this trivially holds for M ∈ Θ(k,ε)(X). Thus, we only need
to check solutions M 6∈ Θ(k,ε)(X). Consequently, fix some solution
M b Rd with M 6∈ Θ(k,ε)(X).

From Lemma 8.2.5, we obtain that there exists M ′ ∈ Θ(k,ε)(X) with
M ′ ⊆M and

fkm(X,w,M ′) ≤ (1 + ε) · fkm(X,w,M) .

124

8.2 Small Coresets for FKM

We immediately conclude the upper bound of the coreset property.

fkm(S,wS ,M) ≤ fkm(S,wS ,M
′) (M ′ ⊆M)

≤ (1 + ε) · fkm(X,w,M ′) (weak coreset property)

≤ (1 + ε)2 · fkm(X,w,M) ≤ (1 + 3 · ε) · fkm(X,w,M) .

The lower bound is more involved. Again, we apply Lemma 8.2.5,
but to S. There exists M ′S ∈ Θ(k,ε)(S) with M ′S ⊆M and

fkm(S,wS ,M
′
S) ≤ (1 + ε) · fkm(S,wS ,M) .

A negligible cluster is also negligible for all subsets of the data set.
That is, if there is a representative µ whose cluster is negligible with
respect to X, then there is no point in X whose assignment to µ is
more than some constant. Thus, there is also no point in S b X whose
assignment to µ is more than that constant. This means that the
cluster of µ is also negligible with respect to S. Since M ′ ∈ Θ(k,ε)(X),
it holds that the clusters of all representatives in M \ M ′ are also
negligible with respect to S, and thus, M ′S ⊆M ′. We conclude the proof
by observing

fkm(S,wS ,M) ≥ 1

1 + ε
· fkm(S,wS ,M

′
S)

≥ 1

1 + ε
· fkm(S,wS ,M

′) (M ′S ⊆M ′)

≥ 1− ε
1 + ε

· fkm(X,w,M ′) (weak coreset property)

≥ 1− ε
1 + ε

· fkm(X,w,M) (M ′ ⊆M)

≥ (1− 3 · ε) · fkm(X,w,M) .

Due to the weak-to-strong lemma, we only need to construct weak
coresets for solutions without negligible clusters. This helps us with
the initially mentioned problem: bounding the cost of representatives
which are far away from all input points.

8.2.2 Weak Coresets for Non-Negligible Solutions

In the following, we show how to adapt Chen’s coreset construction for
KM [Chen, 2009] to obtain a pair (S,wS) which fulfils the requirements
of Lemma 8.2.6. The core idea is easily explained. We take Chen’s

125

CORESETS

original construction and adapt some parameters with two main goals.
First, we need to compensate for the factor 1/km−1 incurred by using
KM bounds to bound the FKM objective function (see Lemma 3.2.12).
Second, we use non-negligibility to obtain a large lower bound for
representatives which are far away from all input points. However,
as usual with FKM, actually showing that this is sufficient requires
careful analysis.

Preliminaries Before proceeding to the actual construction, we intro-
duce the following notations and results. For some c ∈ Rd and r ∈ R
denote by B(c, r) ··=

{
x ∈ Rd

∣∣ ‖x− c‖2 ≤ r} the Euclidean ball with ra-
dius r around c. Let (X,w, k) be an instance of any of our clustering
problems. We call a set of representatives M b Rd an (α, β)-bicriteria
approximation if the cost of M are at most a factor α worse than the
optimal cost and |M | ≤ β · k. Furthermore, we apply the following
concentration bound on the average function value of uniform sample
sets.

Lemma 8.2.7 (Haussler [1992]) Let P b Rd, ε, δ ∈ (0, 1), f : X → R,
and F ∈ R such that, for all x ∈ X, we have 0 ≤ f(x) ≤ F . If S is a set
of at least (1/2) · ε−2 · ln(2/δ) points drawn uniformly at random from P ,
then

Pr

(∣∣∣∣f(P)

|P |
− f(S)

|S|

∣∣∣∣ ≤ ε · F) ≥ 1− δ .

Along the lines of the original proof, we first show how to construct
a set S b X and a weight function wS : S → N which fulfil the coreset
property for a finite number of solutions.

Notice that Algorithm 8.2.8 does not need to know for which solu-
tions the coreset property has to hold but only for how many. Strictly
speaking, the weight function wS, as the algorithm defines it, is not
integral, as is. However, this is just a minor technical issue. For each
Xa,j we take an arbitrary subset whose size is a multiple of q and
sample from among these. This leaves strictly less then q points which
are not considered during sampling. After sampling q points we add
the points which were not considered to Sa,j. Trivially, the coreset
property is fulfilled for all these points, and we only have to verify that
this also holds for the points we actually sampled from. This approach
increases the size of the coreset by at most a factor 2. Hence, in the
following, we assume that |Xa,j | is always some multiple of q.

126

8.2 Small Coresets for FKM

Algorithm 8.2.8: CHEN’S SAMPLING

Input: X b Rd, k, γ ∈ N,α, β ∈ R≥1, an (α, β)-bicriteria
approximation A ⊂ Rd of KM on X, ε, δ ∈ (0, 1)

1 F ← d1
2 · log(α · n)e

2 R←
√

km(X,1, A)/(α · n)

3 q ← q ·
(
α · km−1/ε

)2 · ln (4 · β · k · F · (γ + 1)k/δ
)

/* where q is a sufficiently large constant */
4

5 for a ∈ A and j ∈ [F]0 do
6 if j = 0 then
7 La,j ← B(a,R)

8 else
9 La,j ← B(a, 2j ·R) \ B(a, 2j−1 ·R)

10 Xa,j ← La,j ∩ C(X,A)
a

11 if Xa,j 6= ∅ then
12 Sa,j ← ∅
13 for i ∈ [q] do
14 Sample x uniformly at random from Xa,j

15 Sa,j ← Sa,j + {x}
16 wS(x)← |Xa,j | /q

17 return
(⋃

a∈A , j∈[F]0
Sa,j , wS

)

Lemma 8.2.9 For each Γ b Rd with |Γ| ≤ γ, the output S b X, wS :
S → N of Algorithm 8.2.8 fulfils wS(S) = n and, with probability at least
1− δ, for all M b Γ with |M | ≤ k,

(1− ε) · fkm(X,1,M) ≤fkm(S,wS ,M) ≤ (1 + ε) · fkm(X,1,M)(
1− ε

km−1

)
· km(X,1,M) ≤km(S,wS ,M) ≤

(
1 +

ε

km−1

)
· km(X,1,M) .

Proof. We start by arguing that the sets Xa,j form a partition of X.
Observe that the Xa,j are pairwise disjoint subsets of X since Xa,j ⊆
C(X,A)
a ⊆ X and the clusters C(X,A)

a are pairwise disjoint by definition.
Additionally, we have to show that the union

⋃
a∈A , j∈[F]0

Xa,j contains
X. If y ∈ Rd but y 6∈

⋃
a∈A , j∈[F]0

Xa,j, then

min
a∈A
{‖y − a‖2} > 2F ·R =

√
α · n ·

√
km(X,1, A)/(α · n) =

√
km(X,1, A) .

127

CORESETS

However, for all x ∈ X, we have

min
a∈A

{
‖x− a‖22

}
= km({x},1, A)

≤ km(X,1, A) .

Hence, y 6∈ X and X ⊆
⋃
a∈A , j∈[F]0

Xa,j. Similarly, since the Sa,j are
sampled from Xa,j, they are pairwise disjoint and thus form a partition
of S. Further notice that each Sa,j contains q points with weight
|Xa,j | /q, and thus, wS(Sa,j) = |Xa,j | and wS(S) = n.

Fix an arbitrary Γ b Rd with |Γ| ≤ γ and some M b Γ with |M | ≤ k.
Since the Xa,j for a partition, we apply the triangle inequality to obtain

|fkm(X,1,M)− fkm(S,wS ,M)|

≤
∑
a∈A

F∑
j=0

|fkm(Xa,j ,1,M)− fkm(Sa,j , wS ,M)| .

We analyze each of these summands individually. To this end, fix some
a ∈ A and j ∈ [F]0. Again by definition of the weights, we observe

1

|Xa,j |
· fkm(Sa,j , wS ,M) =

1

|Xa,j |
·
∑
s∈Sa,j

wS(s) · fkm({s},1,M)

=
1

q
· fkm(Sa,j ,1,M) .

Using this, we rewrite the cost difference as a difference between the
scaled cost of two unweighted sets

|fkm(Xa,j ,1,M)− fkm(Sa,j , wS ,M)|

= |Xa,j |
∣∣∣∣ 1

|Xa,j |
· fkm(Xa,j ,1,M)− 1

|Xa,j |
· fkm(Sa,j , wS ,M)

∣∣∣∣
= |Xa,j | ·

∣∣∣∣ 1

|Xa,j |
· fkm(Xa,j ,1,M)− 1

q
· fkm(Sa,j ,1,M)

∣∣∣∣ .
Consider fkm({·},1,M) as a function in a single point y ∈ Rd. For

each point y ∈ Rd we have fkm({y},1,M) ≥ 0. For

xa,j ··= arg min
x∈Xa,j

{
min
µ∈M
{‖x− µ‖2}

}

128

8.2 Small Coresets for FKM

and each x ∈ Xa,j, we can bound

fkm({y},1,M) ≤ min
µ∈M

{
‖x− µ‖22

}
≤ 2 ·

(
min
µ∈M

{
‖xa,j − µ‖22

}
+ ‖x− xa,j‖22

)
(2-approximate triangle inequality)

≤ 4 ·
(

min
µ∈M

{
‖xa,j − µ‖22

}
+ ‖x− a‖22 + ‖a− xa,j‖22

)
(2-approximate triangle inequality)

≤ 4 ·
(

min
µ∈M

{
‖xa,j − µ‖22

}
+ 22·j+1 ·R2

)
.

(Xa,j ⊆ La,j ⊆ B(a, 2j ·R))

Algorithm 8.2.8 sets the number of uniform samples q such that we
can apply Lemma 8.2.7 to Xa,j, Sa,j,

ε′ ··=
ε

e · α · km−1
, and δ′ ··=

δ

2 · β · k · F · (γ + 1)k
,

for some large enough constant e, which yields that, with probability
at least 1− δ′,

|fkm(Xa,j ,1,M)− fkm(Sa,j , wS ,M)|

≤ 4 · ε′ · |Xa,j | ·
(

min
µ∈M

{
‖xa,j − µ‖22

}
+ 22·j+1 ·R2

)
.

We expand the term on the right hand side and bound the two sum-
mands separately.

By definition of xa,j we obtain

|Xa,j | · min
µ∈M

{
‖xa,j − µ‖22

}
≤

∑
x∈Xa,j

min
µ∈M

{
‖x− µ‖22

}
= km(Xa,j ,1,M) .

For the second term, we differentiate two different cases depending
on j. First, let j = 0 and observe

|Xa,j | · 22·j+1 ·R2 = 2 · |Xa,j | ·R2 =
2

α
· |Xa,j |

n
· km(X,1, A)

≤ 2 · |Xa,j |
n
· km(X,1, A) . (α ≥ 1)

Second, let j ≥ 1 and recall that Xa,j ⊆ La,j = B(a, 2j ·R) \ B(a, 2j−1 ·R).
Hence, for all x ∈ Xa,j, we observe

22·j−2 ·R2 = (2j−1 ·R)2 ≤ ‖x− a‖22 = km({x},1, A) ,

129

CORESETS

and thus,

|Xa,j | · 22·j+1 ·R2 ≤ 8 · km(Xa,j ,1, A) .

We combine the three upper bounds to obtain

|fkm(Xa,j ,1,M)− fkm(Sa,j , wS ,M)|
≤ 4 · ε′ · (km(Xa,j ,1,M)

+ 2 · |Xa,j |
n
· km(X,1, A) + 8 · km(Xa,j ,1, A)) , (8.2.10)

still with probability at least 1− δ′.
We apply the union bound to each event for a ∈ A and j ∈ [F]0. That

is, with probability at least 1− δ/(2 · (γ + 1)k), the upper bound (8.2.10)
holds simultaneously for all Xa,j. Recall that the Xa,j form a partition,
and thus, we can take the sum to obtain

∑
a∈A

F∑
j=0

|fkm(Xa,j ,1,M)− fkm(Sa,j , wS ,M)|

≤ 4 · ε′ · (km(X,1,M) + 10 · km(X,1, A)) .

Recall that, since |M | ≤ k,

km(X,1,M) ≤ km−1 · fkm(X,1,M) and

km(X,1, A) ≤ α · km(X,1,M) ≤ α · km−1 · fkm(X,1,M) .

We conclude

|fkm(X,1,M)− fkm(S,wS ,M)| ≤ 4 · ε′ · km−1 · (1 + 10 · α) · fkm(X,1,M)

≤ ε · fkm(X,1,M) .

We apply the union bound once more, this time to each set M b Γ
with |M | ≤ k. There are less than (γ + 1)k of these sets and hence our
upper bound holds simultaneously for each of these sets of represen-
tatives with probability at least 1− δ/2.

Following the same line of arguments, we can show that, also with
probability at least 1− δ/2, we have, for all M b Γ with |M | ≤ k,

|km(X,1,M)− km(S,wS ,M)| ≤ ε

km−1
· km(X,1,M) .

Using the union bound one final time, we conclude the proof by
observing that the claimed properties hold simultaneously, with prob-
ability at least 1− δ.

130

8.2 Small Coresets for FKM

Next, we present the algorithm which computes a weak coreset
fulfilling the requirements of Lemma 8.2.6. Basically, we apply Algo-
rithm 8.2.8 to appropriately chosen parameters. To this end, we fix
any (α, β)-bicriteria approximation for KM with α, β ∈ O(1), a signifi-
cantly reduced ε, and a large enough γ. The main technical challenge
is to prove the existence of a bounded size set of representatives such
that if the coreset property holds for solutions chosen from among
these representatives, then it holds for all solutions without negligible
clusters.

Algorithm 8.2.11: FUZZY k-MEANS CORESET

Input: X b Rd, k ∈ N, ε, δ ∈ (0, 1)
1 Apply the algorithm presented by Aggarwal et al. [2009] to

compute, with probability 1− δ/2, a (20, 32)-bicriteria
approximation A ⊂ Rd of KM on (X,1, k).

2 ε̃← ε/(a · km−1)
/* where a is a sufficiently large constant */

3

4 γ ← k ·
(
1/2 · log

(
b · n/

(
ε̃2 · (ε/(2 ·m · k + ε))m

)
+ 1
))
· (c/ε̃)d

/* where b and c are sufficiently large constants */
5

6 (S,wS)← Algorithm 8.2.8 applied to X, k, γ, 20, 32, ε̃, and δ/2
7 return (S,wS)

Lemma 8.2.12 Let (X,1, k) be an FKM instance. Algorithm 8.2.11 com-
putes a set S b X and a function wS : S → N such that (S,wS ,Θ(k,ε)(X))
is a weak ε-coreset for the FKM problem on (X,1, k), with probability at
least 1− δ.

To increase readability we moved the, rather technical, proof of
Lemma 8.2.12 to Section 8.4.

Proof of Theorem 8.2.3. We invoke Algorithm 8.2.11. Lemma 8.2.12
gives us the correctness. This leaves us with arguing the size of the
coreset and analyzing the runtime.

First, we bound |S| in terms of ε̃ and γ. S is the union of 32 · k ·F sets
of size at most 2 · q. By definition, we have F ∈ O(log(n)), and thus,

q ∈ O
(

(km−1/ε̃)2 · log
(
k · log(n) · γk/δ

))
⊆ O

(
k2·m · ε̃−2 · log(γ) · log(log(n)) · log(δ−1)

)
.

131

CORESETS

Second, we analyze our choice of parameters. We set ε̃ ∈ O(ε/km−1)
and

log(γ) ∈ O
(
log(k) + log

(
log(n) + log(ε̃−1) + log(m · k/ε)

)
+ d · log(ε̃−1)

)
⊆ O (d · log(k) · log(k/ε) · log(log(k/ε)) · log(log(n)))

Putting this together we obtain the claimed size.
For the runtime, note that the (20, 32)-bicriteria algorithm proposed

by Aggarwal et al. [2009] takes time O(d · k · n · log(δ−1)) to achieve the
desired success probability. Next, we analyze the runtime of Algo-
rithm 8.2.8. Given some x ∈ X, we can determine j ∈ [F]0 such that
x ∈ La,j by simply computing dlog(‖x−Ax‖2 /R)e. Hence, computing all
Xa,j takes time O(d · k · n). Afterwards, it is possible to sample the |S|
points in linear time.

8.3 Applying FKM Coresets

There are two main applications for coresets. One is the streaming
setting where we want to maintain a coreset of an insertion-only stream
of points (this is essentially equivalent to parsing the input once). There
is a general framework by Feldman et al. [2013], which maintains
a coreset of a stream, given a coreset construction fulfilling some
formal properties. One can easily check that our construction fulfils
these properties. We will not go into details on how the framework
works since we are not really interested in this slightly more practical
approach. Furthermore, we do not need to add anything to the already
well-researched framework to make it work for our case.

We are more interested in the application of a coreset to speed up
approximation algorithms for FKM – more specifically, Algorithm 7.2.1.
Recall that this algorithm’s runtime is independent of the weight
function on the points. Since our FKM coreset significantly reduces
the number of different points in the input set, we obtain the, so far,
fastest known (1 + ε)-approximation algorithm for FKM on unweighted
input sets by combining Algorithm 7.2.1 with our coreset construction.

Theorem 8.3.1 There exists an algorithm which, given k ∈ N, X b Rd,
and ε ∈ (0, 1), computes a (1 + ε)-approximation of the FUZZY k-MEANS

problem, with constant probability, and in time

O(d · k · n) + (d · k · log(n)/ε)O(k/ε) .

Proof. We call Algorithm 8.2.11 with k, X, and ε/3 to obtain, with
constant probability, an ε/3-coreset (S,wS) of (X,1). Let M be the

132

8.4 Correctness of our Weak Coreset Algorithm

output of Algorithm 7.2.1, given S, wS, and ε/3. Let M∗S be an optimal
set of representatives with respect to S, and M∗X be an optimal set of
representatives with respect to X. We bound

fkm(S,wS ,M) ≤ (1 + ε/3) · fkm(S,wS ,M
∗
S) ≤ (1 + ε/3) · fkm(S,wS ,M

∗
X)

≤ (1 + ε/3)2 · fkm(X,1,M∗X) ≤ (1 + ε) · fkm(X,1,M∗X) .

The overall runtime is

O(d · k · n+ |S|) + d · |S|O(k/ε)

⊆ O(d · k · n) + d ·
(
d · k4·m · log(n) · log(log(n))2 · ε−3

)O(k/ε)

⊆ O(d · k · n) + (d · k · log(n)/ε)O(k/ε)

Notice that the algorithm from Theorem 8.3.1 can also be applied
to weighted data sets. We argued that our PTAS Algorithm 7.2.1 has
runtime independent of any weight function. However, this is not
true for our coreset construction. Again, to compute our coreset for
a weighted set, we need to consider the weighted input as a set, and
hence, all occurrences of n in the runtime are replaced by w(X).

Strictly speaking, applying Algorithm 7.2.1 directly on X is faster
if d ∈ Ω(n). However, in that case we simply apply the Johnson &
Lindenstrauss [1984] Lemma to replace d by log(n)/ε2.

8.4 Correctness of our Weak Coreset Algorithm

In the following, we proof Lemma 8.2.12. Assume we want to compare
the cost of a set representatives with respect to a coreset computed by
Algorithm 8.2.8 to the cost of the same set with respect to the original
input data set X. Since wS(S) = n, we can treat treat the weighted
set (S,wS) as a set and compare the cost of two equally sized sets. We
present a result showing that the difference in cost is mainly bounded
by the distance of the points in the sets to each other.

Lemma 8.4.1 Let X,Y b Rd with |X| = |Y | = n, M b Rd, ε ∈ (0, 1), and
f : X → Y be any bijection between points. It holds that

|fkm(X,1,M)− fkm(Y,1,M)|

≤
(
1 + ε−1

)
·
∑
x∈X
‖x− f(x)‖22 + ε ·min{fkm(X,1,M) , fkm(Y,1,M)} .

133

CORESETS

Proof. Without loss of generality assume fkm(X,1,M) ≥ fkm(Y,1,M).
Let κ∗Y : Y ×M → [0, 1] be an optimal assignment function. We bound

fkm(X,1,M)− fkm(Y,1,M)

≤ fkm(X,1,M, κ∗Y ◦ f)− fkm(Y,1,M, κ∗Y)

=
∑
x∈X

∑
µ∈M

κ∗Y (f(x), µ)m · (‖x− µ‖22 − ‖f(x)− µ‖22)

≤
∑
x∈X

∑
µ∈M

κ∗Y (f(x), µ)m · (‖x− f(x)‖22 + 2 · ‖x− f(x)‖2 · ‖f(x)− µ‖2)

(squared triangle inequality)

≤
∑
x∈X
‖x− f(x)‖22 (

∑
µ∈M κ∗Y (x, µ)m ≤ 1)

+
∑
x∈X

∑
µ∈M

2 · κ∗Y (f(x), µ)m · ‖x− f(x)‖2 · ‖f(x)− µ‖2

≤
∑
x∈X
‖x− f(x)‖22

+
∑
x∈X

∑
µ∈M

κ∗Y (f(x), µ)m ·
(
ε−1 · ‖x− f(x)‖22 + ε · ‖f(x)− µ‖22

)
(∀a, b ∈ R≥0 : 0 ≤ (a/

√
ε−
√
ε · b)2 = a2/ε− 2 · a · b+ ε · b)

≤
(
1 + ε−1

)∑
x∈X
‖x− f(x)‖22 (

∑
µ∈M κ∗Y (x, µ)m ≤ 1)

+ ε ·
∑
x∈X

∑
µ∈M

κ∗Y (f(x), µ)m · ‖f(x)− µ‖22 .

In the following, we prove Lemma 8.2.12 by analyzing a single run
of Algorithm 8.2.11. Assume that the first step succeeded. That
is, A ⊂ Rd is a (20, 32)-bicriteria approximation of KM on (X,1, k).
Furthermore, fix some solution M ∈ Θ(k,ε)(X).

Overview We have to verify that the coreset property holds for M . To
this end, we pursue the following general approach, which closely mir-
rors Chen’s original exposition augmented with technical elaborations
for FKM. We define a subspace of Rd we call the grid. This grid is the
union of large balls around the representatives of the bicriteria approx-
imation A. As the name suggests, the grid contains many grid cells.
The sidelength of each cell depends on the distance to its nearest rep-
resentative in A – the closer the cell is to A, the smaller the sidelength.
We differentiate two cases of M : either all representatives lie inside

134

8.4 Correctness of our Weak Coreset Algorithm

the grid or at least one is outside. For each case we independently
establish that M fulfils the coreset property. More specifically, if M is
contained in the grid, then we snap each representative to a corner of
its surrounding grid cell. This does not significantly increase the cost
of the solution. Hence, we only have to verify the coreset property for
a finite number of solutions – the number of corners in the grid. To
this end, we use Algorithm 8.2.8.

The Grid The grid consists of a subspace G ⊂ Rd and a discretizing
function g : G → G, i.e. g has a finite image. We set

G ··=
⋃
a∈A
B(a, 2E ·R)

where E ··= b1/2·log
(
b · n/

(
ε̃2 · (ε/(2 ·m ·K + ε))m

))
c and, as before, R ··=√

km(X,1, A)/(α · n). We also partition G into annuli of exponentially
increasing radius. For each j ∈ [E]0 and a ∈ A we set

Ga,j ··=

{
B(a,R) if j = 0 and
B(a, 2j ·R) \ B(a, 2j−1 ·R) else.

We further partition each annulus into cells. Assume that each Ga,j
consists of an axis-parallel grid with sidelength

ε̃ · 2j ·R√
d

.

The function g maps each point G to the south-west corner of its
surrounding grid cell. In fact, any fixed point in the same grid cell is
fine, we simply choose one of the corners.

We bound the size of g [G], which is the set of corners in the grid.
Applying the volume argument provided by Chen [2009], one can prove
that

|g [G]| ≤ |A| · (E + 1) ·
(c
ε̃

)d
= γ .

By applying Lemma 8.2.9, we know that the result (S,wS) of our
algorithm fulfils the coreset property for all M b g [G] with |M | ≤
k for FKM with accuracy ε̃ and for KM with accuracy ε̃/km−1, with
probability at least 1− δ/2. In the following, we assume that the call to
Algorithm 8.2.8 successfully computed such an (S,wS). Note that the
union bound over the call to the algorithm by Aggarwal et al. [2009]

135

CORESETS

and the call to Algorithm 8.2.8, each with probability 1− δ/2, gives us
1− δ as the success probability of Algorithm 8.2.11.

The only modifications we make, compared to Chen’s original al-
gorithm, is that we modified some of the parameters. Hence, we
can apply the original proof to obtain that (S,wS) is already a strong
ε̃/km−1-coreset for the KM problem.

Sets of Representatives Outside the Grid We start with the simpler
case. Recall that all representatives have a non-negligible cluster.
Hence, if there is a representative outside of the grid, then the cost of
that representative is already so large that going from X to the coreset
has no significant impact on the cost.

Lemma 8.4.2 If there is a µ ∈M with µ 6∈ G, then

|fkm(X,1,M)− fkm(S,wS ,M)| ≤ ε · fkm(X,1,M) .

Proof. Recall the partitions X =
⋃
a∈A,j∈[F]0

Xa,j and S =
⋃
a∈A,j∈[F]0

Sa,j
from Algorithm 8.2.8. Where, for each a ∈ A and j ∈ [F]0, Sa,j consists
of q points sampled from Xa,j, each with weight |Xa,j | /q ∈ N. Hence, if
we treat (S,wS) as a set, then we can find a function s : X → X such
that Sa,j = {s(x) | x ∈ Xa,j} and, for each x ∈ S, the pre-image has size∣∣s−1(x)

∣∣ = wS(x). This function s essentially assigns each point in X
to a surrogate in the coreset. For every x ∈ X, the point x and its
surrogate s(x) are both contained in the same annulus La,j. Due to
the 2-approximate triangle inequality, any two points x, y ∈ La,j have
distance at most

‖x− y‖22 ≤ 2 · (‖x− a‖22 + ‖a− y‖22) ≤ 4 · (2j ·R)2 ,

and if j ≥ 1, then the distance to the nearest bicriteria representative
is at least

‖x− a‖22 ≥ (2j−1 ·R)2 .

We combine these observations to obtain that, for each x ∈ Xa,j,

‖x− s(x)‖22 ≤ 4 · (2j ·R)2

= 4 · 4 · (2j−1 ·R)2

≤ 4 ·max{4 · ‖x− a‖22 , R
2} .

(differentiate between j ≥ 1 and j = 0)

136

8.4 Correctness of our Weak Coreset Algorithm

By taking the sum over all data points, we obtain∑
x∈X
‖x− s(x)‖22 ≤

∑
x∈X

4 ·max{4 ·min
a∈A

{
‖x− a‖22

}
, R2}

≤
∑
x∈X

4 · (4 ·min
a∈A

{
‖x− a‖22

}
+R2)

= 16 · km(X,1, A) + 4 · n · km(X,1, A)

20 · n
≤ 17 · km(X,1, A) . (8.4.3)

Next, we lower bound the distance µ has to the representatives of
the bicriteria approximation. Since µ 6∈ G, we have

min
a∈A
{‖µ− a‖2} > 2E ·R

≥

√
b · n

ε̃2 · (ε/(2 ·m ·K + ε))m)
·
√

km(X,1, A)

20 · n

=

√
b · km(X,1, A)

20 · ε̃2 · (ε/(2 ·m ·K + ε))m
.

Thus, we can lower bound the distance of each point x ∈ Xa,j to µ by

‖x− µ‖2 ≥ ‖µ− a‖2 − ‖a− x‖2

≥

√
b · km(X,1, A)

20 · ε̃2 · (ε/(2 ·m ·K + ε))m
−
√

km(X,1, A)

≥

(√
b

20 · ε̃2 · (ε/(2 ·m ·K + ε))m
− 1

)
·
√

km(X,1, A)

≥

√
17

ε̃2 · (ε/(2 ·m ·K + ε))m
·
√

km(X,1, A) .

(for sufficiently large b)

Let κ be an optimal assignment with respect to M . Because of µ’s
non-negligibility, we have

fkm(X,1,M) ≥
∑
x∈X

κ(x, µ)m · ‖x− µ‖22

≥ 17

ε̃2 · (ε/(2 ·m ·K + ε))m
· km(X,1, A) ·

∑
x∈X

κ(x, µ)m

≥ 17

ε̃2
· km(X,1, A)

137

CORESETS

≥ 1

ε̃2
·
∑
x∈X
‖x− s(x)‖22 .

If we treat (S,wS) as a set, then s is a bijection between points in X
and S. Thus, we apply Lemma 8.4.1 with ε̃ to conclude

|fkm(X,1,M)− fkm(S,wS ,M)|

≤ (1 + ε̃−1) ·
∑
x∈X
‖x− s(x)‖22 + ε̃ ·min{fkm(X,1,M) , fkm(S,wS ,M)}

≤ (ε̃+ ε̃2) · fkm(X,1,M) + ε̃ · fkm(X,1,M)

≤ ε · fkm(X,1,M) . (choice of ε̃)

Sets of Representatives Inside the Grid Next, assume that M b G. Re-
call that we snap points x ∈ G to one of the corners of their containing
grid cell via function g. We bound the distance between points and
their image under g in terms of their KM cost with respect to the bicrite-
ria approximation A. For the sake of brevity, we introduce the following
shorthand notation: for a multiset M b Rd and a point x ∈ Rd, we
denote

Mx ··= min
µ∈M
{‖x− µ‖2} .

Lemma 8.4.4 If x ∈ G, then

‖x− g(x)‖2 ≤ 2 · ε̃ · (min{‖x−Ax‖2 ,
∥∥g(x)−Ag(x)

∥∥
2
}+R) .

Proof. Let Xa,j be the grid cell containing both x and g(x). By defini-
tion, we have, similar to before, that ‖x− g(x)‖2 ≤ ε̃ · 2j · R. If j ≥ 1,
then min{‖x−Ax‖2 ,

∥∥g(x)−Ag(x)

∥∥
2
} ≥ 2j−1 · R. Again as before, we

differentiate between j = 0 and j ≥ 1 and upper bound the maximum
between the two by taking the sum. This yields

‖x− g(x)‖2 ≤ ε̃ · 2
j ·R ≤ 2 · ε̃ · (min{‖x−Ax‖2 ,

∥∥g(x)−Ag(x)

∥∥
2
}+R) .

We use this to bound the cost increase from snapping representatives
to the grid.

Lemma 8.4.5 Let X b Rd be any multiset of points with |X| = n and
g [M]. It holds that

|fkm(X,1,M)− fkm(X,1, g [M])|
≤ 32 · ε̃ · (km(X,1,M) + km(X,1, A) + n ·R2) .

138

8.4 Correctness of our Weak Coreset Algorithm

Proof. Due to the triangle inequality, we can, once again, upper bound
the cost point-wise

|fkm(X,1,M)− fkm(X,1, g [M])|

≤
∑
x∈X
|fkm({x},1,M)− fkm({x},1, g [M])| .

In the following, fix some x ∈ X and let κ : X ×M → [0, 1] and κg :
X × g [M]→ [0, 1] be optimal assignment functions. If fkm({x},1,M) ≥
fkm({x},1, g [M]), then

fkm({x},1,M)− fkm({x},1, g [M])

≤ fkm({x},1,M, κg ◦ g)− fkm({x},1, g [M] , κg)

=
∑
µ∈M

κg(x, g(µ))m · (‖x− µ‖22 − ‖x− g(µ)‖22)

≤
∑
µ∈M

κg(x, g(µ))m · (‖µ− g(µ)‖22 + 2 · ‖µ− g(µ)‖2 · ‖x− g(µ)‖2) .

(squared triangle inequality)

Analogously, if fkm({x},1,M) ≤ fkm({x},1, g [M]), then

fkm({x},1, g [M])− fkm({x},1,M)

≤
∑
µ∈M

κ(x, µ)m · (‖µ− g(µ)‖22 + 2 · ‖µ− g(µ)‖2 · ‖x− µ‖2) .

For both cases, we derive upper bounds for each of the two summands
individually. Afterwards, we obtain the claim as the maximum of the
upper bounds for the two cases.

First, observe that

‖x− (g [M])x‖22
≤ ‖x− g(Mx)‖22
≤ ‖x−Mx‖22 + ‖Mx − g(Mx)‖22 + 2 · ‖x−Mx‖2 · ‖Mx − g(Mx)‖2

(squared triangle inequality)

≤ ‖x−Mx‖22 + (2 · ε̃ · (‖Mx −Ax‖2 +R))2

+ 2 · ‖x−Mx‖2 · (2 · ε̃ · (‖Mx −Ax‖2 +R)) (Lemma 8.4.4)

≤ ‖x−Mx‖22 + (2 · ε̃ · (‖Mx − x‖2 + ‖x−Ax‖2 +R))2

+ 4 · ε̃ · ‖x−Mx‖2 · (‖Mx − x‖2 + ‖x−Ax‖2 +R)
(triangle inequality)

≤ ‖x−Mx‖22 + 12 · ε̃2 · (‖x−Mx‖22 + ‖x−Ax‖22 +R2)

139

CORESETS

+ 2 · ε̃ · (‖x−Mx‖22 + (‖x−Mx‖2 + ‖x−Ax‖2 +R)2)

≤ ‖x−Mx‖22 + 20 · ε̃ · (‖x−Mx‖22 + ‖x−Ax‖22 +R2)

≤ 2 · ‖x−Mx‖22 + ‖x−Ax‖22 +R2 . (8.4.6)

We apply this to obtain∑
µ∈M

κg(x, g(µ))m · ‖µ− g(µ)‖22

≤
∑
µ∈M

κg(x, g(µ))m · (2 · ε̃ · (‖g(µ)− x‖2 + ‖x−Ax‖2 +R))2

(Lemma 8.4.4 and triangle inequality)

≤ 12 · ε̃2 ·
∑
µ∈M

κg(x, g(µ))m · (‖x− g(µ)‖22 + ‖x−Ax‖22 +R2)

≤ 12 · ε̃2 ·

∑
µ∈M

κg(x, g(µ))m · ‖x− g(µ)‖22 + ‖x−Ax‖22 +R2


(
∑

µ∈M κg(x, g(µ))m ≤ 1)

≤ 12 · ε̃2 · (‖x− (g [M])x‖22 + ‖x−Ax‖22 +R2)

≤ 12 · ε̃2 · (2 · ‖x−Mx‖22 + ‖x−Ax‖22 +R2 + ‖x−Ax‖22 +R2)
(by (8.4.6))

= 24 · ε̃2 · (‖x−Mx‖22 + ‖x−Ax‖22 +R2) ,

and similarly,∑
µ∈M

κ(x, g(µ))m · ‖µ− g(µ)‖22

≤ 12 · ε̃2 ·

∑
µ∈M

κ(x, µ)m · ‖x− µ‖22 + ‖x−Ax‖22 +R2


≤ 12 · ε̃2 ·

(
‖x−Mx‖22 + ‖x−Ax‖22 +R2

)
.

Using similar arguments, we bound the mixed terms∑
µ∈M

κg(x, g(µ))m · ‖µ− g(µ)‖2 · ‖x− g(µ)‖2

≤ 2 · ε̃ ·
∑
µ∈M

κg(x, g(µ))m · (‖x− g(µ)‖2 + ‖x−Ax‖2 +R) · ‖x− g(µ)‖2

(Lemma 8.4.4 and triangle inequality)

≤ ε̃ ·
∑
µ∈M

κg(x, g(µ))m · (4 · ‖x− g(µ)‖22 + 3 · ‖x−Ax‖22 + 3 ·R2)

140

8.4 Correctness of our Weak Coreset Algorithm

≤ 4 · ε̃ ·

∑
µ∈M

κg(x, g(µ))m · ‖x− g(µ)‖22 + ‖x−Ax‖22 +R2


≤ 8 · ε̃ ·

(
‖x−Mx‖22 + ‖x−Ax‖22 +R2

)
, (by (8.4.6))

and∑
µ∈M

κ(x, µ)m · ‖µ− g(µ)‖2 · ‖x− g(µ)‖2

≤ 2 · ε̃ ·
∑
µ∈M

κ(x, g(µ))m · (‖x− µ‖2 + ‖x−Ax‖2 +R) · ‖x− µ‖2

(Lemma 8.4.4 and triangle inequality)

≤ 4 · ε̃ ·
(
‖x−Mx‖22 + ‖x−Ax‖22 +R2

)
.

Taking the maximum of both sums we obtain the claimed upper
bound.

We conclude the correctness proof with the coreset property for all
sets of representatives inside the grid.

Lemma 8.4.7 If M b G, then

|fkm(X,1,M)− fkm(S,wS ,M)| ≤ ε · fkm(X,1,M) .

Proof. As before, let g [M] ··= {g(µ) | µ ∈M}. By the triangle inequality,
we have

|fkm(X,1,M)− fkm(S,wS ,M)|
≤ |fkm(X,1,M)− fkm(X,1, g [M])|

+ |fkm(X,1, g [M])− fkm(S,wS , g [M])|
+ |fkm(S,wS , g [M])− fkm(S,wS ,M)| .

We apply Lemma 8.4.5 to the first summand to obtain

|fkm(X,1,M)− fkm(X,1, g [M])|
≤ 32 · ε̃ · (km(X,1,M) + km(X,1, A) + n ·R2)

≤ 32 · ε̃ · (km(X,1,M) + (1 + 1/20) · km(X,1, A)) (definition of R)

≤ 704 · ε̃ · km(X,1,M) (A is bicriteria approximation)

≤ 704 · km−1 · ε̃ · fkm(X,1,M)

≤ ε/3 · fkm(X,1,M) . (definition of ε̃)

141

CORESETS

Recall that wS is an integral weight function with wS(S) = n. Further-
more, recall the function s : X → X, mapping input points to points in
the coreset. If we consider S as a set, then we obtain an unweighted
set of size n and can apply Lemma 8.4.5 again to obtain

|fkm(S,wS , g [M])− fkm(S,wS ,M)|
≤ 32 · ε̃ · (km(S,wS ,M) + km(S,wS , A) + n ·R2)

≤ 32 · ε̃ · ((2 + ε̃/km−1) · km(X,1,M) + km(S,wS , A)))
(S is an ε̃/km−1-coreset for KM and definition of R)

≤ 32 · ε̃ · ((2 + ε̃/km−1) · km(X,1,M)

+ 2 · km(X,1, A) + 2 ·
∑
x∈X
‖x− s(x)‖22)

(2-approximate triangle inequality)

≤ 32 · ε̃ · ((2 + ε̃/km−1) · km(X,1,M) + 36 · km(X,1, A)) (by (8.4.3))

≤ 32 · km−1 · ε̃ · (722 + ε̃/km−1) · fkm(X,1,M)

≤ ε/3 · fkm(X,1,M) . (definition of ε̃)

We previously assumed that Algorithm 8.2.8 was successful in finding
an ε̃-coreset for all solutions M b g [G]. Hence, we obtain

|fkm(X,1, g [M])− fkm(S,wS , g [M])| ≤ ε̃ · fkm(X,1,M)

≤ ε/3 · fkm(X,1,M) .

142

Future Research 9
The theory of geometric location problems, and particularly FKM, is far
from being fully understood. While we show that the radius variant
DFRKM is NP-hard in general, our result only holds if the dimension
d and the number of clusters k are part of the input. Moreover, we
show that a variant of FKM in general metric spaces with m = 2 is
NP-hard. For KM it is known that the problem is NP-hard even if d
or k is fixed to 2. Hence, an open question is whether FKM is NP-
hard (see Conjecture 4.4.6), and if its radius variant DFRKM (and given
NP-hardness, also FKM) is still hard if we fix the dimension or the
number of clusters to some constant. Furthermore, one might ask
if FKM lies in NP. Our unsolvability result for optimal solutions of
FKM does not answer this question. The class NP consists of decision
problems, thus, one only needs to find a solution with cost less than
some given (finitely represented) bound. It is possible that there is
no instance where a solution fulfilling this bound is necessarily an
optimal solution. Instead we might have that, for every finite cost
bound, if there is solution fulfilling this cost bound, then there also
is a solution fulfilling the bound which can be represented using size
polynomial in the input.

Similarly, our PLS-completeness results for DKM and DFKM assume
d and k to be part of the input. It is also unknown whether we
can fix either of the parameters and still obtain a hard local search
problem. We show a lower bound of Ω(n) for the embedding of our
reduction. Thus, any hardness result for bounded dimension requires
a fundamentally different approach to the reduction. Additionally,
in contrast to the MUFL and DKM reductions, our DFKM reduction
introduces a non-trivial weight function on the data points. It would
be interesting to explore whether we can encode these weights into the
distances between points, similar to the technique we used in the DKM

construction.
Generally, we could improve a lot of our results by showing a tighter

143

FUTURE RESEARCH

relation between KM and FKM. We show that the difference between
the KM and FKM cost of a set of representatives is at most km−1. This
bound is indeed tight (consider the set of k representatives located
at the mean of the data set). However, we suspect that this can be
improved if we only consider optimal solutions. If one could show
some structural properties of optimal (or at least almost optimal) FKM

solutions, then we might be able to obtain a tighter bound on the cost
difference to the solution with respect to KM.

The algorithm we present for FKM still lacks practicality. It is the
fastest algorithm (with a guaranteed approximation ratio) known for
the problem. However, even if we consider k to be a constant, it is
not reasonable to apply the algorithm to a practically relevant data
set. There are still many unexplored avenues in terms of constant
factor approximation of FKM. We do not know of the existence of a
bicriteria approximation algorithm with constant α and β. And the
quality of the single-swap heuristic, which was successfully applied to
many different location problems, has not yet been analyzed for FKM

(see Conjecture 5.1). Furthermore, our coreset construction is based
on a KM technique which is much worse than the most efficient KM

coreset constructions currently known. Applying any of the subspace
approximation based coreset results for KM to FKM probably yields
significantly faster approximation algorithms.

144

Bibliography

Aggarwal, A., Deshpande, A., and Kannan, R. (2009). Adaptive Sam-
pling for k-Means Clustering. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 15–
28. Springer Berlin Heidelberg. 131, 132, 135

Ahmadian, S., Norouzi-Fard, A., Svensson, O., and Ward, J. (2017).
Better Guarantees for k-Means and Euclidean k-Median by Primal-
Dual Algorithms. In 2017 IEEE 58th Annual Symposium on Founda-
tions of Computer Science. 104

Arora, S. and Barak, B. (2009). Computational Complexity: A Modern
Approach. Cambridge University Press. 32

Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. (1998).
Proof Verification and the Hardness of Approximation Problems.
Journal of the ACM, 45(3):501–555. 44

Arthur, D., Manthey, B., and Röglin, H. (2009). k-Means Has Polyno-
mial Smoothed Complexity. In 2009 50th Annual IEEE Symposium
on Foundations of Computer Science. 28

Arthur, D. and Vassilvitskii, S. (2006). Worst-case and Smoothed
Analysis of the ICP Algorithm, with an Application to the k-Means
Method. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science. 28

Arthur, D. and Vassilvitskii, S. (2007). k-Means++: The Advantages of
Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1027–1035. 104

Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., and
Pandit, V. (2004). Local Search Heuristics for k-Median and Facility
Location Problems. SIAM Journal on Computing, 33(3):544–562. 52,
58

Bādoiu, M., Har-Peled, S., and Indyk, P. (2002). Approximate Clus-
tering via Core-Sets. In Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing. 104, 120

145

Bibliography

Bajaj, C. (1988). The Algebraic Degree of Geometric Optimization
Problems. Discrete & Computational Geometry, 3(2):177–191. 88, 90

Bertsekas, D. P. (1999). Nonlinear Programming. Athena Scientific. 93

Bezdek, J. C., Ehrlich, R., and Full, W. (1984). FCM: The Fuzzy c-
Means Clustering Algorithm. Computers & Geosciences, 10(2-3):191–
203. 27, 28

Bezdek, J. C., Hathaway, R. J., Sabin, M. J., and Tucker, W. T.
(1987). Convergence Theory for Fuzzy c-Means: Counterexamples
and Repairs. IEEE Transactions on Systems, Man, and Cybernetics,
17(5):873–877. 28

Bishop, C. M. (2006). Pattern Recognition and Machine Learning.
Springer-Verlag New York Inc. 26

Blömer, J. (1993). Simplifying Expressions Involving Radicals. PhD
thesis, Freie Universität Berlin. 47

Blömer, J., Brauer, S., and Bujna, K. (2016a). A Theoretical Analysis
of the Fuzzy k-Means Problem. In 2016 IEEE 16th International
Conference on Data Mining. IEEE. 3, 23, 27, 28, 36, 87, 103, 104,
105, 106

Blömer, J., Brauer, S., and Bujna, K. (2018). Coresets for Fuzzy
k-Means with Applications. In 29th International Symposium on
Algorithms and Computation, volume 123, pages 46:1–46:12. 3, 103,
105, 119

Blömer, J., Lammersen, C., Schmidt, M., and Sohler, C. (2016b). The-
oretical Analysis of the k-Means Algorithm – A Survey. In Algorithm
Engineering, pages 81–116. Springer International Publishing. 28

Brauer, S. (2017). Complexity of Single-Swap Heuristics for Metric
Facility Location and Related Problems. In Lecture Notes in Computer
Science, pages 116–127. Springer International Publishing. 3, 51

Brauer, S. (2019). Complexity of Single-Swap Heuristics for Metric Fa-
cility Location and Related Problems. Theoretical Computer Science,
754:88–106. 3, 51

Bronštein, I. N., Semendjajew, K. A., Musiol, G., and Mühlig, H. (2008).
Taschenbuch der Mathematik. Verlag Harri Deutsch. (in German).
116

146

Bibliography

Chen, K. (2009). On Coresets for k-Median and k-Means Clustering in
Metric and Euclidean Spaces and Their Applications. SIAM Journal
on Computing, 39(3):923–947. 119, 120, 121, 125, 135

Cheng, D., Hu, X., and Martin, C. (2006). On the Smallest Enclosing
Balls. Communications in Information and Systems, 6(2):137–160.
34

Cohen-Addad, V., Klein, P. N., and Mathieu, C. (2016). Local Search
Yields Approximation Schemes for k-Means and k-Median in Eu-
clidean and Minor-Free Metrics. In 2016 IEEE 57th Annual Sympo-
sium on Foundations of Computer Science. 59

Cook, S. A. (1971). The Complexity of Theorem-Proving Procedures.
In Proceedings of the Third Annual ACM Symposium on Theory of
Computing. ACM Press. 33

Dasgupta, S. (2008). The Hardness of k-Means Clustering. Tech-
nical Report CS2008-0916, Department of Computer Science and
Engineering, University of California, San Diego. 36

de Fermat, P. (1891). Oeuvres de Fermat. Gauthier-Villars et fils. 27

Deza, E. and Deza, M. M. (2009). Encyclopedia of Distances. Springer
Berlin Heidelberg. 44

Dijkstra, E. W. (2000). The Notational Conventions I Adopted, and
Why. http://www.cs.utexas.edu/~EWD/transcriptions/EW
D13xx/EWD1300.html, last access: 22.05.2019. 7

Downey, R. G. and Fellows, M. R. (2012). Parameterized Complexity.
Springer New York. 46

Downey, R. G. and Fellows, M. R. (2013). Fundamentals of Parameter-
ized Complexity. Springer London. 46

Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and
Its Use in Detecting Compact Well-Separated Clusters. Journal of
Cybernetics, 3(3):32–57. 28

Feder, T. and Greene, D. (1988). Optimal Algorithms for Approximate
Clustering. In Proceedings of the twentieth annual ACM symposium
on Theory of computing. 36

Feldman, D., Monemizadeh, M., and Sohler, C. (2007). A PTAS for
k-Means Clustering Based on Weak Coresets. In Proceedings of the

147

http://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1300.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1300.html

Bibliography

twenty-third annual symposium on Computational geometry. 105,
121

Feldman, D., Schmidt, M., and Sohler, C. (2013). Turning Big Data Into
Tiny Data: Constant-Size Coresets for k-Means, PCA and Projective
Clustering. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms. 120, 121, 132

Forster, O. (2010). Analysis 2. Vieweg + Teubner. 93

Friggstad, Z., Rezapour, M., and Salavatipour, M. R. (2016). Local
Search Yields a PTAS for k-Means in Doubling Metrics. In 2016 IEEE
57th Annual Symposium on Foundations of Computer Science. 59

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability:
A Guide to the Theory of NP-Completeness (A Series of Books in the
Mathematical Sciences). W. H. Freeman. 33, 46

Goldreich, O. (2008). Computational Complexity. Cambridge University
Press. 32

Gonzalez, T. F. (1985). Clustering to Minimize the Maximum Interclus-
ter Distance. Theoretical Computer Science, 38:293–306. 104

Guha, S. and Khuller, S. (1999). Greedy Strikes Back: Improved
Facility Location Algorithms. Journal of Algorithms, 31(1):228–248.
36

Har-Peled, S. and Kushal, A. (2006). Smaller Coresets for k-Median
and k-Means Clustering. Discrete & Computational Geometry,
37(1):3–19. 104, 120, 121

Har-Peled, S. and Mazumdar, S. (2004). On Coresets for k-Means and
k-Median Clustering. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing. 119, 120

Haussler, D. (1992). Decision Theoretic Generalizations of the PAC
Model for Neural Net and Other Learning Applications. Information
and Computation, 100(1):78–150. 126

Herstein, I. N. (1975). Topics in Algebra. Wiley. 88

Hochbaum, D. S. and Shmoys, D. B. (1986). A Unified Approach to
Approximation Algorithms for Bottleneck Problems. Journal of the
ACM, 33(3):533–550. 36

148

Bibliography

Hoppner, F. and Klawonn, F. (2003). A Contribution to Convergence
Theory of Fuzzy c-Means and Derivatives. IEEE Transactions on
Fuzzy Systems, 11(5):682–694. 28

Hungerford, T. W. (2003). Algebra. Springer. 88

Inaba, M., Katoh, N., and Imai, H. (1994). Applications of Weight-
ed Voronoi Diagrams and Randomization to Variance-Based k-
Clustering. In Proceedings of the tenth annual symposium on Com-
putational geometry. 27, 111

Jain, K., Mahdian, M., and Saberi, A. (2002). A New Greedy Approach
for Facility Location Problems. In Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing. 104

Jain, K. and Vazirani, V. V. (2001). Approximation Algorithms for Met-
ric Facility Location and k-Median Problems Using the Primal-Dual
Schema and Lagrangian Relaxation. Journal of the ACM, 48(2):274–
296. 104

Johnson, D. S., Papadimitriou, C. H., and Yannakakis, M. (1988). How
Easy Is Local Search? Journal of Computer and System Sciences,
37(1):79–100. 53

Johnson, W. B. and Lindenstrauss, J. (1984). Extensions of Lipschitz
Mappings Into a Hilbert Space. Contemporary mathematics, 26:189–
206. 133

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman,
R., and Wu, A. Y. (2004). A Local Search Approximation Algorithm
for k-Means Clustering. Computational Geometry, 28(2-3):89–112.
27, 28, 52, 59

Karp, R. M. (1972). Reducibility Among Combinatorial Problems. In
Complexity of Computer Computations, pages 85–103. Springer US.
33

Kim, T., Bezdek, J. C., and Hathaway, R. J. (1988). Optimality Tests
for Fixed Points of the Fuzzy c-Means Algorithm. Pattern Recognition,
21(6):651–663. 28

Kochetov, Y. and Ivanenko, D. (2005). Computationally Difficult
Instances for the Uncapacitated Facility Location Problem. In
Metaheuristics: Progress as Real Problem Solvers, pages 351–367.
Springer-Verlag. 58

149

Bibliography

Kumar, A., Sabharwal, Y., and Sen, S. (2010). Linear-Time Approxima-
tion Schemes for Clustering Problems in Any Dimensions. Journal
of the ACM, 57(2):1–32. 105

Lee, E., Schmidt, M., and Wright, J. (2017). Improved and Simpli-
fied Inapproximability for k-Means. Information Processing Letters,
120:40–43. 36

Levin, L. A. (1973). Universal Sequential Search Problems. Problems
of Information Transmission, 9(3):115–116. (in Russian). 33

Li, S. (2013). A 1.488 Approximation Algorithm for the Uncapacitated
Facility Location Problem. Information and Computation, 222:45–58.
104

Lloyd, S. (1982). Least Squares Quantization in PCM. IEEE Transac-
tions on Information Theory, 28(2):129–137. 27

Lucic, M., Bachem, O., and Krause, A. (2016). Strong Coresets for
Hard and Soft Bregman Clustering with Applications to Exponential
Family Mixtures. In Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics, pages 1–9. 120

Mahajan, M., Nimbhorkar, P., and Varadarajan, K. (2012). The Planar
k-Means Problem is NP-Hard. Theoretical Computer Science, 442:13–
21. 36

Manthey, B. and Röglin, H. (2009). Improved Smoothed Analysis of the
k-Means Method. In Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 461–470. 28

Matoušek, J. (2000). On Approximate Geometric k-Clustering. Discrete
& Computational Geometry, 24(1):61–84. 36

Megiddo, N. and Papadimitriou, C. H. (1991). On Total Functions,
Existence Theorems and Computational Complexity. Theoretical
Computer Science, 81(2):317–324. 54

Megiddo, N. and Supowit, K. J. (1984). On the Complexity of Some
Common Geometric Location Problems. SIAM Journal on Computing,
13(1):182–196. 36

Mitzenmacher, M. and Upfal, E. (2005). Probability and Computing.
Cambridge University Press. 106

150

Bibliography

Papadimitriou, C. H. (1981). Worst-Case and Probabilistic Analysis of a
Geometric Location Problem. SIAM Journal on Computing, 10(3):542–
557. 31, 36, 47, 49

Papadimitriou, C. H. (1993). Computational Complexity. Pearson. 32

Papadimitriou, C. H., Schäffer, A. A., and Yannakakis, M. (1990). On
the Complexity of Local Search. In Proceedings of the twenty-second
annual ACM symposium on Theory of computing. ACM Press. 53

Papadimitriou, C. H. and Yannakakis, M. (1991). Optimization, Approx-
imation, and Complexity Classes. Journal of Computer and System
Sciences, 43(3):425–440. 32

Papadimitriou, C. H. and Yannakakis, M. (1993). The Traveling Sales-
man Problem with Distances One and Two. Mathematics of Opera-
tions Research, 18(1):1–11. 44

Pirkul, H. and Jayaraman, V. (1998). A Multi-Commodity, Multi-Plant,
Capacitated Facility Location Problem: Formulation and Efficient
Heuristic Solution. Computers & Operations Research, 25(10):869–
878. 27

Schoenberg, I. J. (1938). Metric Spaces and Positive Definite Functions.
Transactions of the American Mathematical Society, 44(3):522–522.
72

Schäffer, A. A. and Yannakakis, M. (1991). Simple Local Search Prob-
lems That Are Hard to Solve. SIAM Journal on Computing, 20(1):56–
87. 53

Shmoys, D. B., Tardos, É., and Aardal, K. (1997). Approximation
Algorithms for Facility Location Problems. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing. 104

Sipser, M. (2012). Introduction to the Theory of Computation. Course
Technology. 32

Sohler, C. and Woodruff, D. P. (2018). Strong Coresets for k-Median
and Subspace Approximation: Goodbye Dimension. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science. 120

Torgerson, W. S. (1952). Multidimensional Scaling: I. Theory and
Method. Psychometrika, 17(4):401–419. 73

151

Bibliography

Trevisan, L. (2000). When Hamming Meets Euclid: The Approximability
of Geometric TSP and Steiner Tree. SIAM Journal on Computing,
30(2):475–485. 44

Vattani, A. (2011). k-Means Requires Exponentially Many Iterations
Even in the Plane. Discrete & Computational Geometry, 45(4):596–
616. 28

152

	Introduction
	Outline
	Publication Notes

	Fundamentals
	Remarks on Notation
	Problem Statements
	Facility Location
	Clustering
	Hard Clustering
	Soft Clustering
	Discussion
	Further Analysis

	Related Work

	Classification and Impossibility
	Classical Hardness
	Basics of Computational Complexity
	Discrete Clustering Problems
	Related Work
	Towards a Classification of DFKM
	Construction
	Correctness

	Parameterized Hardness of DFRKM
	DKM is Hard in Fixed Dimensions

	Complexity of Single-Swap Local Search
	Polynomial Local Search
	Related Work
	Completeness of MUFL/SingleSwap
	Construction
	Correctness
	Tightness

	Completeness of DKM/SingleSwap
	Construction
	Correctness and Tightness
	Embedding

	Completeness of DFKM/SingleSwap
	Construction
	Correctness, Tightness, and Embedding

	Non-Representability of Solutions
	Algebraic Basics
	Related Work
	Unsolvability of Optimal FKM Solutions
	Implementation of the Finite Taylor Grid

	Approaching Hard Problems
	Approximation Algorithms
	Related Work
	A PTAS for FKM With Fixed Number of Clusters
	From Soft to Hard Clusters
	A Sampling Based Approach

	Solving Small FRKM Instances

	Coresets
	Related Work
	Small Coresets for FKM
	From Weak to Strong via Non-Negligibility
	Weak Coresets for Non-Negligible Solutions

	Applying FKM Coresets
	Correctness of our Weak Coreset Algorithm

	Future Research
	Bibliography

