

Mean behaviour of uniformly summable \mathbb{Q} -multiplicative functions

Abstract: In this thesis, we prove, both for the q -adic case and general \mathbb{Q} -adic representations, new theorems about the average of multiplicative functions without the assumption $|f| \leq 1$; it turns out that the class of *uniformly summable functions* is the appropriate generalization. In this context, we also investigate α -almost-periodic q -multiplicative functions.

(I) For uniformly summable q -multiplicative functions:

We give a complete characterization of the means $\frac{1}{N} \sum_{n < N} f(n)$ and $\frac{1}{N} \sum_{n < N} |f(n)|^\alpha$ as $N \rightarrow \infty$, $\alpha > 0$, where f is uniformly summable and q -multiplicative.

To our surprise, we find that for q -multiplicative functions the space \mathcal{L}^α for every $\alpha > 0$ coincides with the space \mathcal{L}^* . Furthermore, applying our main results, we investigate finitely distributed q -additive functions and find characterizations for q -multiplicative functions belonging to the space \mathcal{D}^1 of limit-periodic functions and the space \mathcal{A}^1 of almost-periodic functions by their respective spectrum $\sigma(f)$.

(II) For uniformly summable \mathbb{Q} -multiplicative functions:

In the case of a bounded sequence $\{q_r\}_{r \geq 1}$ we have similar theorems as in the q -adic case. In the case of an unbounded sequence $\{q_r\}_{r \geq 1}$ the situation is quite different. Unavoidable for unbounded sequences $\{q_r\}_{r \geq 1}$ is the existence of a so-called first digit phenomenon.

We investigate the mean behaviour of uniformly summable \mathbb{Q} -multiplicative functions that belong to \mathcal{L}^2 and for which the first digit condition

$$\max_{1 \leq j \leq q_r-1} \frac{1}{j+1} \sum_{a=0}^j |f(a\mathbb{Q}_{r-1}) - 1|^2 \rightarrow 0 \quad \text{as } r \rightarrow \infty$$

holds.