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Zusammenfassung

Wir untersuchen Charaktere von reduziblen unitaren Darstellungen einer kompakten
zusammenhangenden halbeinfachen Liegruppe. Wir geben eine geometrische Bedin-
gung, unter welcher diese Charaktere auf abgeschlossenen Untergruppen eingeschrankt
werden konnen. Das wurde schon 1998 von T. Kobayashi untersucht, um ein Kriterium
fiir die diskrete Zerlegbarkeit von Einschrankungen reduzibler untarer Darstellungen
von reduktiven Liegruppen auf reduktive abgeschlossene Untergruppen zu erhalten. Der
Schliissel in seinem Beweis besteht darin, Charaktere von reduziblen unitaren Darstel-
lungen einer kompakten zusammenhangenden Liegruppe und ihre Einschrankungen auf
abgeschlossene Untergruppen mit Hilfe von Methoden der mikrolokalen Analysis fiir Hy-
perfunktionen zu betrachten. In dieser Arbeit benutzen wir mikrolokale Analysis fiir
Distributionen. Das Neue ist die Benutzung der Stetigkeit zwischen angepassten Distri-
butionenraumen und der Einschrankung auf abgeschlossene Untermannigfaltigkeiten.
Diese Stetigkeit ist im Falle der Hyperfunktionen nicht vorhanden.



Abstract

We consider characters of a reducible unitary representation of a compact connected
semisimple Lie group. We provide a geometric condition under which these characters
can be restricted to closed subgroups. This was already considered by T. Kobayashi in
1998 to establish a criterion for the discrete decomposability of restrictions of unitary
representations of reductive Lie groups to reductive closed subgroups. The crucial point
in his proof is to consider characters of a reducible unitary representation of a compact
connected Lie group and their restriction to closed subgroups using microlocal analysis
methods in the hyperfunctions setting. In this thesis we use microlocal analysis of dis-
tribution theory instead. The novelty consists in using the continuity between adapted
spaces of distributions and the restriction to closed submanifolds. This continuity is
not readily available in the hyperfunctions setting.



Introduction

The main motivation of this thesis is to help understanding how an irreducible repre-
sentation of a real reductive linear Lie group decomposes when restricted to a subgroup.
Following Kobayashi [K098] the main problem is studied by considering characters of
unitary representation of a connected compact semisimple Lie group and the decom-
position of its restriction to closed subgroups. Based on the the work of Kashiwara
and Vergne [KV79] Kobayashi used microlocal analysis methods in the hyperfunctions
setting. In this thesis we use microlocal analysis of distribution theory instead.

Chapter 1 provides notations, basic definitions, various theorems, and examples to
be used.

In Chapter 2 we consider a connected, compact, and semisimple Lie group K with a
maximal abelian torus T'. ¥ denotes the semisimple Lie algebra of K, t its subalgebra
corresponding to T', and ’D/(K ) the distributions defined on K. We identify the equiv-
alence classes of irreducible representation K with their highest weights, K=LNnC (
C C it*, i = /=1, denotes the closure of the (dual) Weyl chamber and L the weight
lattice in it*). Then due to Peter-Weyl Theorem, we get that for each u € D'(K) we
have the Fourier expansion

u=Y @,

XeLNC

If the Fourier coefficients vanish outside a closed cone Q C C'\ 0, vy = 0 if X ¢ Q,
then the wave front set of u satisfies

WF(u) C K x Ad* K(—iQ) Cc T*K.

Furthermore, the Fourier series of u converges to u in Dp(K), where I' := K x
Ad* K(—iQ) is a closed cone in T*K. Here D.(K) denotes the space of distributions
having their wave front set in I'. The convergence in D(K) is an important tool in
defining and analyzing the restriction of a distribution to a closed submanifold. We will
also prove a more precise relationship between the wave front set of distribution and
the asymptotic behavior of the L?-norm of the Fourier coefficients (was first introduced
by [KV79)).
In the first part of chapter 3 we introduce the K-character,

o = Z M (TA 2 T)Xry s

AXeLNC

of a unitary representation 7 of K with multiplicities mg (7 : 7) which are polynomially
bounded in |A|. Here ) denotes an irreducible representation of K corresponding to
the highest weight A and x., the character of m). ©F is a well-defined distribution on
K.

Furthermore, the set of \'s with mg(my : 7) # 0 is called the support of 7. The
support is approximated by the asymptotic K-support of 7 which is a closed conic
subset ASk(7) C C. We show that the wave front set of this distribution satisfies

WF(OF) ¢ K x Ad* K(—i ASk(7)) C T*K \ 0~ K x €.
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The rest of chapter 3 is devoted to the restriction of ©X to a closed subgroup. Here
we consider a closed subgroup H of K and their Lie algebras b and €, respectively. The
space of conormals is denoted by h C £*. If we assume that

ASk(T)Ni Ad* K (pt) = 0,

then the restriction ©F | is a well-defined distribution on H. Moreover, the restricted
distribution ©X |y coincides with the distribution ©F ., i.c.,

This dissertation gives a simplified proof, in the framework of distributions, of a
Theorem of Kobayashi [K0o98] on the restrictions of a K-character to closed subgroup.
The novelty consists in using the continuity between adapted spaces of distributions
and restriction to closed submanifolds. This continuity is not readily available in the
hyperfunctions setting which is used by Kobayashi [Ko98].



1 Preliminaries

1.1 Roots and Root Spaces

We will give in this section a brief overview of some facts about root (weight) spaces.

Let K be a compact, connected, and semisimple Lie group with a maximal torus 7.
Let £ and t be the semisimple Lie algebra of K and T. The algebra ¢z = £ @ C has
the root-space decomposition

te=tc® Pta (1.1)

acA

where « is a linear form on tc, A = A(fc, tc) is called the set of roots and
t, = {X € ¢ | [KX] = (a,Y)X, VY € t(c}

is the corresponding root space with respect to tc, where (-,-) denotes the duality
bracket tf. x t¢ — C, see [HeO1] p. 165.

An element X € t is said to be regular in t, if (o, X) # 0 for all roots a € A,
t® .=t \ (J,cp kera. Let ¢ be a connected component of ¢, it follows that for any
a € A, i7Ha, X) either > 0 or < 0 on ¢. Hence,

A=A UA ALNA_ =0, (1.2)
if we take
A(c)=Ay ={acA|ita>0oncl, (1.3)
A_={—a|ae A} Conversely, if A, is a subset of A satisfying (1.2), then the set

c(A) ={Xet|iHa,X)>0, Vaec Ay} (1.4)

is an open, convex polyhedral cone in t, contained in &, and equal to a connected
component of t*°¢, if and only if, the convex cone in it* generated by A, is proper, i.e.,
if A, satisfies the following condition:

Z cox =0, ¢, >0, Vae A, =c,=0, Vaoe A,. (1.5)

OZEA+

Remark 1.1. A subset A, of A satisfying (1.2) and (1.5), is called a choice of positive
roots. The connected components of t*°¢ are called the Weyl chambers in t (a equivalent
definition of the Weyl chambers will be presented later on). Moreover, the relation (1.3)
and (1.4) defines a bijection between the choice of a positive roots A, and the Weyl
chambers ¢ (see [DKO00], p.144-147).

The following definitions will be needed later on. For each x € K the map Adx :
y — xyz~! is the conjugation by z in the group K. Because Ad z(e) = e, the tangent
mapping of Ad z at e is a linear mapping

Adz =T, (Adx): ¢t — ¢
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called the adjoint mapping of x. That is, the mapping
Ad: K — GL(¥)

is a homomorphism of groups and called the adjoint representation of K in ¢t =T, K.
Accordingly, the linear map ad := T,(Ad) is given by

ad: € — L(€8),

ad X(Y) = [X,Y], X,Y € ¢ where [, ] is called the Lie bracket of X and Y (see
[DKO00], p. 3). The bilinear form on a Lie algebra is given by

B(X,Y) :=tr(ad X ocadY), X,Y et (1.6)

B is called the Killing form of €. This bilinear form is symmetric, because in general
tr(A o B) = tr(B o A), for linear endomorphisms A and B. Since the real trace of a
linear mapping is equal to the complex trace of its complex linear extension, the Killing
form extends to a complex bilinear form on £c by B(X,Y) = trc(ad X o adY'), where
X,Y € tc and ad Xoad Y is considered as an element of L¢ (€c, £c) (see [DKO0O], p. 148).
Moreover, for each X in the Lie algebra £ of a compact Lie group, ad X € L¢ (¢, &c) is
diagonalizable, with only purely imaginary eigenvalues (see [DK00], Lemma 3.5.1).

Remark 1.2. By« is nondegenerate, consequently to each root « corresponds X,
in t¢ with (a, X) = B(X, X,,) for all X € t¢ (see [Kn02], Proposition 2.17). On t¢ X t¢
the Killing form is given by

B(X,X') = (o, X){o, X (1.7)

a€EA

see [Kn02], Corollary 2.24. Moreover, we transfer the restriction to tc of the Killing
form to a bilinear form on the dual t7 by the definition

(a,A) = B(Xa, X)) = (0, X)) = (A, Xa) (1.8)

for a, A € t (see [Kn02], p. 144). Combining (1.7) and (1.8), we obtain

(@, X) = B(Xa, X) = Y (8, Xa)(B, X2) = > (B, 0) (8, ). (1.9)

BeEA BeA

The restriction of (-,-) to t* x t* is a positive definite inner product (see [Kn02], p.
147-149).

Definition 1.3. A simple Lie algebra is a non-abelian Lie algebra whose ideals are
0 or itself. A semisimple Lie algebra is a direct sum of simple Lie algebra. A Lie
group called semisimple if its Lie algebra is semisimple. A reductive Lie algebra is
a sum of abelian and semisimple lie algebra. A Lie group called reductive if its Lie
algebra is reductive.
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Definition 1.4. An abstract root system, in a finite-dimensional real inner product
space V with inner product (-, -) which induces a norm |- |, is a finite set A of non-zero
elements of V' such that;

(i) A spans V,
2(a, B)

|of?

(ii) the orthogonal transformation s,(3) = 3 — a, for « € A, map A to itself,

28, a)

af? is an integer whenever o and ( are in A.
Q

(i)
An abstract root system is said to be reduced system if a € A implies 2a ¢ A. If
a is a root and 1/2« is not a root, we say that a is reduced element (see [Kn02],
p. 152). We say that a member X of V' is dominant if (A\,a) > 0 for all « € A, (see
[Kn02], p. 168).

The next theorem will give the relation between roots and abstract root systems.

Theorem 1.5. The root system of a complex semisimple Lie algebra €c with respect to
a Cartan subalgebra tc forms a reduced abstract root system in t* with respect to the
inner product (-,-) defined in 1.9 (see [Kn02], Proposition 2.42).

In the following we will present some definitions and results which are needed to state
Theorem of The Highest Weight.

The presence of the groups K and T gives us additional information about the root-
space decomposition (1.1). In fact, Ad(T) acts by orthogonal transformations on ¢
relative to our given inner product (Killing form). If we extend this inner product on € to
a Hermitian inner product on €¢, then Ad(7') acts on £ by a commuting family of unitary
transformations. Such a family must have a eigenspace decomposition, that is (1.1).
The action of Ad(T") on the 1-dimensional space &, is a 1-dimensional representation
of T', necessarily of the form

Ad(DX = xa()X  forteT, (1.10)

where x, : T — S! is a continuous homomorphism of 7" into the group of complex
numbers of modulus 1. We call x, a multiplicative character (see [Kn02], p. 254).

Proposition 1.6. If X\ € t*, then the following are equivalent:

(i) Whenever H € t satisfies exp(H) = 1, then (\, H) is in 2miZ.

(i) There is a multiplicative character x» of T with xx(exp(H)) = eMH) for all H € t
(see [Kn02], Proposition 4.58)

Remark 1.7. A linear form satisfying (i) and (ii) is called analytically integral.
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Proposition 1.8. If A € t* is analytically integral, then X satisfies the following con-
dition \
AMa)Y = A @) is in Z for eacha € A (1.11)

jo?

(see [Kn02], Proposition 4.59)

Remark 1.9. A linear form satisfying condition (1.11) is called algebraically inte-
gral.

Proposition 1.10. Let 7 be an irreducible finite-dimensional representation of K then
we have:

1. If X is the highest weight of 7, then A(a)Y >0 for all « € A,

2. For a weight A of 7, the following are equivalent:
(i) X is a highest weight of .
(i) If « € Ay, then a+ X is not a weight of 7.
(iii) For any weight p of m, we have = X\ — ZQEA+ nqa for some n, € Ny
(see [DKO0O], Proposition 4.9.4)

Definition 1.11. One introduces a partial ordering < by writting p < X if and only
fp=A=> Ay Mol for some n, € Ny. The customary definition is to call a weight
A a highest weight of an irreducible representation 7, if it is a maximal element of the
set of weights of 7, with respect to the partial ordering <; this is just condition (i#7) in
proposition (1.10) (2) (see [DKO00], p. 260).

Definition 1.12. The restriction of the Killing form to tc and to t is defined in (1.8)
and (1.9).
C = {deit'| (\,a)>0, Yae A} (1.12)

is called (dual) Weyl chamber. This definition is compatible with the definition of
the Weyl chamber we gave in remark 1.1, since we have a bijection between the choice
of a positive roots A, and the Weyl chamber ¢(A;) (see (1.4) and remark 1.1).

Definition 1.13. Suppose that II = {ay,...q;} is any set of [ independent reduced
elements «; (see definition 1.4), such that every expression of a member o« € A as
a = Y .n;a; has all non-zero n; of the same sign. We call II a system of simple
roots (see [Kn02], p. 164).

The continuous representation o : K — GL(U) and 7 : K — GL(V), where V' and
U are finite-dimensional vector spaces, respectively are said to be equivalent if there is
a toplogical linear isomorphism L from U onto V, such that Loo(k) = 7(k) o L for all
k € K. The set of equivalence classes of irreducible representations of K is called the
dual K of K (see [DKO00], p. 210).

Let m be an irreducible representation of £ on a finite-dimensional complex vector
space V and V) := {v € V | n(H)v = AN H)v, VH € t} be a weight space of V
(eigenspace with respect to ). Due to proposition 1.10 and definition 1.11 the largest
weight in the partial ordering is called the highest weight of .
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Theorem 1.14 (Theorem of The Highest Weight). Up to equivalence the irreducible
finite-dimensional representations ™ of € are in one-one correspondence with the dom-
inant algebraically integral linear functionals on tc, the correspondence being that A
15 the highest weight of w\. The highest weight X of w\ has the following additional
properties:

1. X depends only on the simple system I1 and not on the ordering used to define II.
2. The weight space Vy for X is 1-dimensional.

3. Each root vector E, for an arbitrary o € A, annihilates the members of Vi, and
the elements of Vy\ are the only vectors with this property.

4. Bvery weight of wy is of the form A — ) . n;a; with n; € Ny and the a; in II.
(see [Kn02], Theorem 5.5)
Definition 1.15. Let Ly := {X € t| eX =1}. Then
L:={aecit'|{a,X)e2miZ, VX € Lr}
is called the weight lattice in it* (see [DK00]. p. 271).

Remark 1.16. Due to the Theorem of Highest Weight 1.14 we can identify L NC with
K where C' the closure of the Weyl chamber and K the set of equivalence classes of
irreducible representations of K.

1.2 Analysis on Compact Groups

In this section we will present the Peter-Weyl Theorem.

Let K be a compact connected Lie group and 7 a continuous representation of K on
the Hilbert space H. Then 7 is said to be unitary representation if each 7 (x), for
x € K, is a unitary transformation in I, i.e.,

(m(x)v, 7(z)w) = (v, w), Vo,we H.

Furthermore, since K is a compact group, then there exists a Hermitian inner product
H (i.e., symmetric sesquilinear form) for which the representation 7 is unitary (see
[DKO00], Corollary 4.2.2.). Let K denote the equivalent classes of unitary irreducible
representation of K.

If 7 is a unitary representation of K on some Hilbert space JH, then the functions

Guo(z) = (7(2)u,v), u,v €KX

are called matrix elements of 7. If v and v are elements of an orthonormal basis {e; }
for H, then ¢, ,(z) is one of the entries of the matrix for m(x) with respect to that
basis, namely

i (£) = Pe;.e; () = (m()e;, €4). (1.13)
We denote the linear span of the matrix elements of = by E,. E, is a subspace of C'(K)
and hence also of LP(K) for all p (see [Fo95a], p. 129).
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Remark 1.17. We denote the character tr(m(z)) of @ by x.(x). The convolution is
defined as follows

[ xx(2) iz/Kf(:vy‘l)Xw(y) dy:/}(f(y)xw(y‘lzv) dy

We note that the space L'(K) is an algebra with respect to convolution.

Proposition 1.18. E. depends only on the unitary equivalence class of w. It is invari-
ant under left and right translation and is a two-sided ideal in L*(K). If dimH =n <
oo then dim E, < n? (see [Fo95a], Proposition 5.6).

We note that F which is given by

E = the linear span of U E,,

71'6[?

is an algebra (see [Fo95a], Proposition 5.10).

Any unitary representation 7w of K on H determines another representation 7 on the
dual space 3 of 3, namely 7(z) = m(2~"')" where the # denotes the transpose. Here we
identify a Hilbert space with its dual. Thus, if we choose an orthonormal basis for JH,
so that 7(z) is represented by a matrix M (x), then the matrix for 7(x) is the inverse
transpose of M (x), and since 7 is unitary this is nothing but the complex conjugate of
M (z) and 7 is called the contragredient of 7. We set d, = dimH (d, = dimH < oo
if 7 is irreducible see proposition 1.18).

Theorem 1.19 (Peter-Weyl Theorem). Let K be a compact group. Then E is uni-
formly dense in C(K), L*(K) = @, .z Fx (direct Hilbert sum). Let m;; be defined as
in (1.13), then

(Vderi; | i,5=1,...,dy, 7 € K}

is an orthonormal basis for L*(K). Each 7 € K occurs in the right and left regular
representations of K with multiplicity d,.. More precisely, fori =1,..., d, the subspace
of Ex (respectively Ex) spanned by the i-th row (respectively the i-th column) of the
matriz (m;;) (respectively (7;;)) is invariant under the right (respectively. left) regu-
lar representation, and the latter representation is equivalent to m there (see [Fo95a],
Theorem 5.12).

Due to the Peter-Weyl theorem, if f € L*(K) we have

dr
f= Z Z CHiTijs iy = dﬂ/ f(z)mi;(z) de. (1.14)
K

rek =1

Note that this decomposition of L? is dependent on the choice of an orthonormal
basis for H. However, it is possible to reformulate the equation (1.14) to avoid this
dependency.



15 1.3 Tangent and Cotangent Bundles of a Lie Group

Definition 1.20. If f € L'(K) and 7 € K, we define the operator f( ) on K by:

/f *dx:/Kf(x)ﬂ(x_l) de, (1.15)

where dr denotes the Haar measure. This map f — ]?is called the group Fourier
transformation of f at 7w (see [Fo95al, p.134). If we choose an orthonormal basis for

H so that 7(z) is represented by the matrix (7;;(z)), then F(w) is given by the matrix

f(x)mji(x) de = %C;Tz
But then R
Z (1) = dr Zf 7)jimij(x) = dr tr [ (7‘[‘)71’(17)}

(%]

so that (1.14) becomes a Fourier inversion formula,
=3 d,tr [f(n)w(x)] (1.16)
We get that
e [fmrto)] = [ s [l e(a)] dy
= / Fy)tr [w(y~"z)] dy

= [*xx(2),
so equation (1.16) becomes
F=Y dafsxa= > duyfsXn (1.17)
reK AeLNCT

In particular, d, f * x, is the orthogonal projection of f onto Fi.

1.3 Tangent and Cotangent Bundles of a Lie Group

Let K be a real Lie group with Lie algebra €. Let TK and T K denote the tangent and
contangent bundle of K. £ is defined as the tangent space T, K at the identity element
e € K. The Lie bracket is given by the Lie bracket of the left invariant vector fields
v,w € C®(K,TK) as follows: [X,Y] = [v,w](e) if X = v(e), Y = w(e). Elements
X € t are also viewed as generators of one-parameter group, X = %|t:0 e!® . Let
L, : K — K, y+— xy, denote left translation. Then we identify the tangent bundle
TK with K x £ using the bundle isomorphism

Kxt — TK

(0.X) — (dL)(X) = L gze™.

.CEG
dt't 0
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This gives a global trivialization of the tangent bundle. Similarly, we identify the
cotangent bundle 7*K with K x € as follows: Let dL, : T.K — T, K, dL} : T/ K —
T:K, and (dL})™': T*K — T*K. The last map defines the identification

Kxt¢ = T'K
(,6) = (dL;)7(&).

Definition 1.21. The map Ad* : K — GL(¥*) is called the co-adjoint representa-
tion of K which is defined by: (Ad*k()\), X) := (\,Adk~ (X)) for all A € €, k € K,
and X € € where (-, -) denotes the duality bracket ¢* x ¢ — C

Proposition 1.22. Let ¢ : K x K — K, (z,y) — (yxy~'). Using the identification
T.K =% via X — E|t:0metx. Then the derivative of ¢ is given as follows:
dp(z,y) :txt — ¢
(X,Y) — do(z,y)(X,Y)=Ady (X - Y + Ada"'(Y)).
The adjoint map do(z,y)* : € — € X € is given by
dp(,y) € — (Ad y(€), Ad oy~ (€) — Ad"y(€))
Proof. We start first by fixing y, then we have
dp(x): ¢ — ¢

d tX d tx  —1
Zlmoze™ — L Ure Y
and p J
T s N et Ady(X)
7 li=0y y T
Then we get

do(z) : X — Ady(X).

Similarly, now fix . Then we have

d ty d W oy
dt|t:0ye dt‘tZOye €T e Y.
We compute
d o d . o
E|t:oyethe tYy 1 _ E|t:0y$€tAd (V) o ty’y 1
d —
= E|t:0yl'€tAdx HY) y—l e tAdy(Y)
d - x— 1 _
- £|t:0yiﬂy 1 tAdya=H(Y) —tAdy(Y)
d - z1(Y)—
- £|t:0 (y:vy 1 ot Adyz=H(Y) tAdy(Y)+O(t2)>
d

Ehzo (y:vy‘l el Ady(Ade™ (V)-Y) O(t2)> _
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Then
do(y) : Y — Ady(Adz (V) - Y).

Therefore,

dp(xz,y):txt — ¢
(X,Y) = do(x)(X) + do(y)(Y)
= Ady(X)+Ady(Adz (V) —-Y)
= Ady(X —Y +Adz ' (Y))

For any £ € £ we get

(&, dp(z,y)(X,Y)) = (6,Ady(X +Adz"'(Y)-Y))
= (Ad"y7H), X + Ada~{(Y) - V).

Then the adjoint map is given by
do* & — ' x ¢
£ — (Ad"y (&), Ad zy ' (§) — Ad"y1(€))
m

We will need later on two more derivatives which we will compute in the following
examples.

Example 1.23. Let w : K x K — K, (z,y) — z. The derivative of this function is
denoted by dw. First we fix y, then we get

do:txt — ¢
(X,Y) — X.

Then the adjoint map of is given by

dw* : ¥ — " x ¥
£ — (£0)

Example 1.24. Let & : K x K — K, (x,y) — zy. The derivative of this function is
denoted by d®. We start first by fixing y, then we have

dd(z): ¢ — ¢

d tX d tX
—l,_pxe —limg e
dt‘t_o dt|t_0 Yy
where p
1|, X tAdy‘l(X).
dt!t_oxe Yy dt\t_oxye
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Then
dd(z) : X — Ady '(X).

Similarly, we will fix z, then we have

dd(y): ¢ — ¢
d Y

d
4 t 4 ty
dt!t_oye dt‘t_oxye

Then
dd(y) : Y — Y.

Therefore,

dd(z,y):txt — ¢
(X,Y) = do(z)(X) +do(y)(Y)
= Ady'(X)+Y

Then the adjoint map of is given by
dd* . ¢ — " x ¢
§ — (Ad"y(),¢)

1.4 Distributions

Definition 1.25. Let X be an open set in R". A distribution u in X is a linear form
on C§°(X) such that for every compact set B C X there exist a constant C' and integer
k such that:

[ule)] <C ) sup [0, Vi € CF¥(B). (1.18)

la| <k
The set of all distribution in X is denoted by D'(X) (see [Ho83], Definition 2.1.1).

Distributions can be restricted to open subsets. Let u € ’D/(X ), then the support of
u, denoted by supp u, is the set of points in X having no open neighborhood to which
the restriction of w is 0.

Definition 1.26. If u € D'(X), then the singular support of u, denoted by sing supp u,
is the set of points in X having no open neighborhood to which the restriction of w is
a smooth function.

If uw € D'(X) has a compact support, then (u|¢) can be defined for all p € C=(X).
Let ¢ € Cg°(X) and ¢ = 1 in a neighborhood of supp u, so we define (u|p) := (u|ye).
This definition does not depend on the choice of 1. It follows from (1.18) and the
product rule that

[ule)] <> sup |9°¢l, Vi € CX(X),

o<k
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where B = supp . Conversely, suppose that we have a linear form v on C*°(X) such
that for some constant C| integer k, and some compact set L C X

[CEESY sup (0%l Vi € C(X).

| <k

Then the restriction of v to C§°(X) is a distribution with support contained in L. We
denote the space of distribution with compact support & (X) (see [Ho83], p. 44).

Remark 1.27. The set € (X) can be identified with the set of distributions in & (R")
with supports contained in X (see [Ho83], Theorem 2.3.1 ).

Theorem 1.28. The Fourier transformation of a distribution u € & (R™) is the func-
tion .
U(E) = (ugle™ ). (1.19)

The right-hand side is also defined for every complex vector & € C™ and is entire analytic
function of €, called the Fourier-Laplace transformation of u (see [Ho83], Theorem
7.1.14).

Remark 1.29. If B is a compact set in R", v € & (R") is a linear form on C*(R")
with suppu C B, such that, if €2 is a neighborhood of B,

)] < > sup |D%l, ¥ € C(R").

o] <k
where D := (1/i) 9*. One can extend (u|p) by continuity to all ¢ € C*°(£).

The derivatives of an analytic function can be estimated in a compact set by the
maximum of its absolute value in a neighborhood. Therefore the following definition
makes sense.

Definition 1.30. Let B C C" be a compact set, then A'(B) , the set of analytic
functionals carried by B, is the space of linear forms u on the space A of entire
analytic functions in C", such that for every neighborhood €2 of B

[(ulp)| < Cq Slglzp |l Vo € A.

Definition 1.31. Let X be an open and bounded set in R™. The spaces of hyper-
functions which is denoted by B(X) can be defined as follows:

B(X) = A (X)/A (0X)
(see [Ho83], Definition 9.2.1).

The following theorem is a special case of Theorem 1.56 below.
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Theorem 1.32. Let U; C R", j = 1,2, be an open sets, and f : Uy — Uy a C* map
such that f'(x) is surjective for all x € Uy. Then there is a unique continuous linear
map f*: D' (Uy) — D'(Uy) such that f*u = wo f when u € C(Uy). One calls f*u the
pull-back of u by f (see [Ho83], Theorem 6.1.2).

Definition 1.33 (Distributions on a Manifold). Let M be a smooth manifold.
Assume that to every coordinate system « : U, C M — V, C R in M we have a
distribution u, € D'(V,) such that

uz = (ko E_l)*u,.€ in (U, NUz). (1.20)

Here (-)* denotes the pull-back of the map xo%~'. We call the system u, a distribution
u in M. The set of all distributions in M is denoted by D'(M).

Theorem 1.34. Let F be an atlas for M. If for every k € F we have a distribution
u, € D'(Vy), and (1.20) is valid when k and & belongs to F, it follows that there exists

one and only one distribution v € D' (M) such that uo k™" = u,, for every k € F (see
[Ho83], Theorem 6.3.4).

In our case the smooth manifold is a compact Lie group K. We can define the space
of distributions as the dual space of C§°(K). Then we can identify functions with
distributions via the Haar measure dk:

LK) - D(K),  fro(pr /K F(k)o(k) d)

Theorem 1.35. Let K be a a connected compact Lie group and u be a function on K
which has the Fourier expansion u =, ; & ¢ due to Peter-Weyl Theorem (compare
(1.17)), then

1u=> \crno®r is a C®-function on K if and only if for any m € N, there exists
a positive number L,, such that

lealle < Lo (1+]A)™

2. u =73 \crno P s a distribution on K if and only if there are positive numbers
m and L such that
lpallze < L (14 ]AD™ .

(see [Se65])

1.5 Microlocal Analysis

We will give the definitions of the wave front set of a distribution, the pull-back, and
the push-forward. Let I' C R™\ {0} conic set (i.e,if €t >0=t{ec,VteR)
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Definition 1.36. Let u be a distribution in an open subset X of R". The wave front
set of u is the subset WF(u) C X x (R™\ {0}) defined as follows: (xg, &) ¢ WF(u) iff
there exists a conic neighborhood I' of &y and ¢ € C§°(X) with (o) # 0 such that:

pu@) < Cn(1+1E)™N,  N=1,2,... €T, (1.21)
(see [Ho83], p. 252). Notice there is an equivalent statement which often used
pu(§) =0(E)™,  asT3¢— o0 (1.22)

for all N. Another equivalent formulation is: There is a neighborhood U of x such that
(1.22) holds for every ¢ € C§°(U). Now 1.22 is equivalent to

(ule”™ M)y = O(t™N) for t — o0 (1.23)

uniformly in |£] = 1 where £ € T, for all N where R 5 ¢ > 1. Here we tested
the distribution u with oscillatory test function e~ () and then investigated the
asymptotic behavior letting the frequency variable ¢ go to oo (see [Du96], p.15).

Remark 1.37. For any linear differential operator with C'*°-coefficients P we have
WF(Pu) C WF(u)
(see [Ho83], p. 256).

Definition 1.38. Let X be an open set in R” and I" be a closed cone in X x R™\ {0},
then we define the following:

i

DL(X) = {u € D'(X)| WF(u) C r}

Lemma 1.39. A distribution w € D'(X) is in Dr(X) if and only if for every ¢ €
C°(X) and every closed cone in V- C R™ with

I'N (supp(¢) x V) =10 (1.24)
we have; -
sup €| [pu(é)| <00 NeN
cev
Proof. See [Ho83|, Lemma 8.2.1. O

Definition 1.40. For a sequence u; € D(X) and u € Dp(X) we say that u; — u in
Dp(X) if

u; —u in D' (X)(weakly) (1.25)
sup f¢|" Gu(€) — ui (&) -0, j— o0, (1.26)

for N e Nif ¢ € C5°(X) and V is a closed cone in R" such that (1.24) is valid. Since

(1.25) implies that ¢u] — qﬁu uniformly on every compact set and N is arbitrary in
(1.26), we can replace (1.26) by

supsup [£|" [pu;(€)] <oco N eN (1.27)
J gev
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Theorem 1.41. For every u € DL(X) there is a sequence u; € C$(X) such that
uj — u in Dp(X).

Proof. See [Ho83], Theorem 8.2.3. O

We need more definitions. Let P be a differential operator of order m with C'°°-
coefficients defined on a manifold X. In local coordinates we have

P=P(x,D)= ) an(x)D".

laj<m

The principal symbol P,, is invariantly defined on 7*X \ 0

P(z,) = Y aa(z)”.

|a|=m
The characteristic variety (set) Char P is defined by
Char P := {(2,£) e T" X \ 0 | P,,(x,&) = 0}. (1.28)
(See [Ho83], p. 271.)

Theorem 1.42. If P is a differential operator of order m with C*°-coefficients on a
manifold X, then

WF(u) C CharP UWF(Pu), ue D(X),
(see [Ho83], Theorem 8.3.1).
If P is elliptic, that is, Py, (z,£) # 0 in T*X \ 0, then
WF(u) = WF(Pu), ueD(X).
(see [Ho83], Corollary 8.3.2)
Proposition 1.43. Let X be a manifold and Y a submanifold with co-normal bundle
NYY):={(,& |yeY, EeT,X, ((T,Y) =0},
where 1 1Y — X denotes the inclusion. For every distribution u in X with
WF(u) N N*(Y) =10

the restriction u),, to'Y is well defined distribution on'Y, the pull-back by the inclusion.
Proof. see [Ho83], Corollary 8.2.7. O

Remark 1.44. Let X be a smooth manifold. We will give an equivalent definition of
Dr(X) using pseudo-differential operator instead of Fourier transformation. First we
will give the definition of a pseudo-differential operator.
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Definition 1.45. Let r € R. a(z,n) € C®°(R™ x R") is a symbol of order < r iff
0802 a(, ) < Corp(1+ [0y (Yo, § € N). (1.29)

The lowest upper bounds of the constants in (1.29) are seminorms on the symbol space
ST turning it into a Fréchet space. S = U, S" and S~ = N,.S" (see[Ho85], Definition
18.1.1).

Let 8 denotes the Schwartz class and 8" the space of tempered distributions.

Theorem 1.46. Let a € S™ and u € 8. Then

Au(z) = alz, Dyu(z) = (27)~" / (3, €)(€) de (1.30)

n

defines a function a(x, D)u € 8, and the bilinear map (a,u) — a(x, D)u is continuous.
The commutator with D; and the multiplication by x; are

la(x, D)u, D;] = i(0,,a(x, D)) (1.31)
la(x, D), x;] = —i(0¢,a(x, D)). (1.32)

One calls A = a(z, D) a pseudo-differential operator of order m and denoted by
A e U™ (see [Ho85], Theorem 18.1.6).

Remark 1.47. Due to the definition of u in (1.30), it follows that the Schwartz
kernel K of A is given by

K(z,y) = (277)”/ eV g (x, €) dE, (1.33)

which is a partial Fourier transformation of a (see [Ho85], p. 69).

Theorem 1.48. Let a € S™. We denote by X € §' (R* x R") the Schwartz Kernel of A
defined by (1.33). Then X € CV(R" xR") if m+j+n <0, and K € C®(R" x R*\ A)
for any m if A\ is the diagonal {(z,x),x € R™}. More precisely,

WF(X) C {(z,2,n,—n) | z,n € R"} (1.34)
which is the the co-normal bundle of /. We have, for every u € §',

WF(Au) C WF(u), (1.35)
sing supp Au C sing supp u. (1.36)

If a € S=, then Au C C* (see [Ho85], Theorem 18.1.16).

We can define pseudo-differential operators on a manifold as follows
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Definition 1.49. Let X smooth manifold. A pseudo-differential operator of order m on
X is a continuous linear map A : C§°(X) — C>°(X) such that for every local coordinate
patch U, C X with coordinates U, 3 x — k(z) € V,, C R" and all ¢,9 € C§°(V,) the
map

8 (R") 3 u — ¢(k™ 1) Ar* (u) (1.37)

is in U™(X). We can extend A, by continuity, to a map & (X) — D'(X). (see [Ho85],
Definition 18.1.20)

Definition 1.50. The (pseudo-differential) operator A in X is said to be properly
supported if both projections from the support of the kernel in X x X to X are proper
maps, that is, for every compact subset B C X there is a compact set B° C X such
that

suppu C B = supp Au C B'. (1.38)

(see [Ho85], Definition 18.1.21)

Definition 1.51. If a € S™(T*X) is a principal symbol of A € ¥"(X) then A is said
to be non-characteristic at (xg, &) € T*X \ 0 if ab—1 € S~! in a conic neighborhood of
(20, &) for some b € S™™(T*X). The set of characteristic points is denoted by Char A.
The operator is said to be elliptic at a non-characteristic point (see [Ho85], Definition
18.1.25). This definition is independent of the choice of a. The proof of Theorem 18.1.9
in [Ho85] shows that in local coordinates an equivalent condition is that; A is elliptic
at (g, &) if and only if there exists a neighborhood U of zy, a conic neighborhood V' of
&o, and a constant C' > 0 such that |a(y,n)| > |n|*/C fory e U,ne V,neR, |n| > C.
If A has a homogeneous principal symbol a, the condition is equivalent to a(zg, &) # 0,
then the last definition of Char A coincides with (1.28) for differential operator.

Since WF(X), X denotes the kernel of the pseudo-differential operator A, is contained
in the diagonal of 7*X \ 0 x 7% X \ 0 it is natural to identify it with a conic subset of
T*X \ 0. We shall write

WE(A) = {y € T"X \ 0| (7,7) € WF(%)} (1.39)
Theorem 1.52. If u € D'(X) we have for every m € R
WF (u) = ﬂ Char A (1.40)

where the intersection is taken over all properly supported A € V™ (X) such that Au €
C>®(X) (see [Ho85], Theorem 18.1.27).

Definition 1.53. Let X be a smooth manifold and I' be a closed cone in 7*X \ 0. The
convergence of a sequence, u; — u in Dp(X) is equivalent to

uj — U in D'(X)(weakly) (1.41)

and that there exists for every (z,€) € (T*X \ 0) \ I, a pseudo-differential operator
A € ¥™(X) such that (z,&) ¢ Char A, WF(A)NT = 0, and Au; — Au € C=(X). (see
[Ho85], p. 89 remark following Theorem 18.1.28)
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Remark 1.54. To prove that u; — u in D(X) it suffices to show that for every closed
cone I'y C T*X \ 0 such that I' C T'; the following holds

w; —u  in D (X). (1.42)

This is clear from the last definition since for a given (z,£) € (T*X \ 0) \ I' we can
find T'; such that (x,&) ¢ T'y, a pseudo-differential operator A € U™(X) such that
(z,€) ¢ Char A, WF(A)NTy =0, and Au; — Au € C(X).

Proposition 1.55. Let K be a Lie group and T" be a closed cone in T*K \ 0. Let
(u;) be a sequence in Dp(K) with u; — u in D' (K). Assume that for every (zg,&) €
(T*K \ 0) \ T, there exist an open neighborhood U C K of x¢, a real-valued function
@ € C®(U x ¥), linear in the second variable, ny € & where & = @, (xo,10), and an
open conic neighborhood Wy C €\ 0 of ng where det 90;,7(3:, n) # 0 for (x,n) € (UxW,),
such that

sup sup ||V [(ujle DY) <00 YN €N, (1.43)

Jj neWo

and all ¢ € C(U). Then u; converges to u in Dp(K).

Proof. Let (x,&) € (T"K \ 0) \ I". Choose U, Wy, and ¢ as in the hypothesis, with U a
coordinate neighborhood, and 90;,7 #0on U x Wy. Let ¢ € C°(U) and a € S°(€*) is
elliptic at 79 with supp(a) € Wy. This implies that (zg,&;) ¢ Char(A). Consider the
operator A : C®°(K) — D'(K) with Schwartz Kernel compactly supported in U x U.
The operator A is, in terms of local coordinates, given by

/

Auly) = /W / 5006/ W20 (4 V()b () u(y) dydl
- /W My Ya(iy) (ole= D) dy, (1.44)

where y',y € U. Observe that the singular support of the Schwartz Kernel of A is
contained in the diagonal (compare theorem 1.48) and K can be covered with open sets
UC K. Let u € D'(K). Using theorem 1.52 we obtain that WF(u) = [ Char A, where
the intersection is taken over all properly supported A € WY(K) such that Au € C*(K).
The distributions space @}(K ) is equipped with a local convex topology (see definition
1.24). Moreover, for every u € Dp(K) there exists a sequence u; € C§°(X) such that
uj — u € DL(K) (see theorem 1.41). From definition 1.53 we obtain that a sequence
uj — u € Dp(K) is equivalent to u; — u € D'(K) (weakly) and the existence of,
for every (z,€) € (T*K \ 0) \ T, a pseudo-differential operator A € W°(K) such that
(x,€) ¢ Char A, and Au; — Au € C®(K).

We want to show that (Au;) is bounded sequence in C*°(K). Since A € WO(K), then
we can estimate the integral in (1.44) using (1.43),

Auy(y)] < /W €96 Dy Va)| d, < ¢ / mNdnp<C  (145)

Wo
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where the constants ¢,C' > 0 are independent of j. This implies that (Au;) and
(D*Auy) are bounded sequences in L®(K) for some o € Nj. This implies that (Au;)
is bounded sequence in C*°(K). Using Ascoli’s theorem and the continuity of A on
D'(K) we conclude that Au; — Au € C*(K). Since we can choose a and 1 such that
WF(A)NT = 0, then u; converges to u in Dy(K). O

Let X and Y be an open subsets of R™ and R" respectively, and f : X — YV
be a smooth map. The map f* : C®(Y) — C*®(X), u — wuo f, have a unique
continuous linear f* : D'(Y) — D'(X) if f is surjective (see Theorem 1.32) or under
some conditions which will be presented in theorem 1.56. First we recall the definition
of the pull-back of a distribution.

The pull-back of distribution is define as follows: Let X and Y be an open subsets
of R™ and R" respectively, and f : X — Y be a smooth map. For u € C§°(Y) and
@ € C5°(X) we have

(k) = 2o [ [ G o) dds (1.46)

We will rewrite this equality to generalize the pull-back operator to distributions which
have their wavefront sets in suitable position. The assumption on the wave front set
arises from the geometry. Let K be compact subset of X which denotes the support of
¢ and V be closed cone in R™ \ {0}. Moreover, we assume

reK,neV=(f(z)n+#0.

Choose ® € S° such that supp(®) € V and |(f (z))'n| > c|n| when z € K and
®(n) # 0. We note that

%ei(nf(w» _ i(nlag :U)>ei<n|f(w)>‘

Therefore we can find a differential operator L = . a;(x,1)0/0,, with coefficients
aj(x,n) € S7! such that

@(U)Leﬂnlf(x)) — q)(n)ei<n|f(x)>.

Now let u € €(Y), WF(u) C Y x V. Using partial integrations, we rewrite equation
(1.46) as follows:

() = @ [ [ e (L) () dnds
wem ™ [ [ = et eta) dnda

When N € N is sufficiently large the integrals exist and we take this equation as the
definition of the pull-back of distribution u (see [Du96|, p. 19). More precisely, the
following is true.
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Theorem 1.56. Let X and Y be an open subsets of R™ and R"™, respectively, and let
f: X —Y be a smooth map. Denote the set of the normals of the map by

Ny ={(f(z),n) €Y xR | (f (x))'n = 0}.

where (f () is the transpose of f (x). Then the pull-back f*u can be defined in one
and only way for allu € D' (Y) with

N; N WEF(u) = 0 (1.47)

so that f*u = wo f when u € C* and for any closed conic subset ' C' Y x R™\ {0}

with T'N Ny = 0 we have a continuous map f*: Dp(Y) — D}*F(X), where

FT = (f @)'n) | (f(),m) €T},
In particular we have for every u € D' (Y) satisfying (1.47)
WE(f*u) C f* WF(u).
(see [Ho83], Theorem 8.2.4)

Remark 1.57. It is useful to introduce the following sets

Cy = {(@y&n |y = fl@), (F (@)'n+¢=0} (1.48)
and
Cp = {(z,y:6,m) | (2,53 —€m) € Oy} (1.49)
Then ,
Ny =Cpo{(z, €| £=0} (1.50)
and
fT=Cjol. (1.51)

Remark 1.58. If X is a smooth manifold and u € D'(X) we can now define WF(u) C
T*X \ {0} so that the restriction to a coordinate patch X, is equal to £* WF(uo £71).
In fact when f is a diffeomorphism between open set in R"™ it follows from last theorem
1.56 that WF(f*u) is the pull-back of WF(u) considered as a subset of the cotangent
bundle. Hence the definition of the pull-back is independent of the choice of local
coordinates. Moreover, WF(u) is a closed subset of 7*X \ {0} which is conic in the

sense that the intersection with the vector space T X is a cone for every = € X (see
[Ho83], p. 265).

The following remark is a supplement to proposition 1.43 using theorem 1.56.
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Remark 1.59. Let X be a manifold and Y a submanifold with the inclusion ¢ : Y — X.
From proposition 1.43 we obtain that, for every distribution u defined on X with
WF(u) " N*(Y') = 0, the restriction u, is a well-defined distribution on Y and v, is
the pull-back of uw by the inclusion ¢. From theorem 1.56 and remark 1.57 we obtain
the following

Coi={w.ain.8) | = (), (W)€ +n =0}, (1.52)
here (¢'(y))! : Ty X — 1Y and
C = {(y, 0,6 | (y,25-n,6) € C.} (1.53)
Then /
N, =C,o{(y.n) | n=10} = N (Y), (1.54)
and

CroWF(u) ={(y.n) € T"Y | 3(x,¢) € WF(u),z = 1(y), (' ())'¢ =n}.  (L55)

We can define the tensor product u ® v € D'(X x X) of two distributions u,v €
D'(X). The corresponding bilinear map is separately sequentially continuous. In case
u,v € C(R™) we have u ® v(z,y) = u(z)v(y).

Theorem 1.60. Let X,Y be smooth manifolds and u € D'(X), v € D'(Y), then

WEF(u®v) C (WF(u) x WF(v)) U ((suppu x {0}) x WF(v)) (1.56)
U (WF(u) x (suppv x {0})) '

Proof. See [Ho83], Theorem 8.2.9. O

Proposition 1.61. Let X and Y be a smooth manifolds. Let ® : X — 'Y be a proper
map. The dual map ®, = (®*)' : D'(X) — D'(Y) is defined and continuous. It is called
the push-forward by ®. Moreover, for a given closed cone I' C T*X \ 0 the restriction

P, : Dp(X) — Dy (Y) is sequentially continuous. Here we get that the set ®.T is
contained in

U {(y.n) € T*Y\{0} |y = @(x) A (d,®(x))'n = 0} (1.57)

where d®(z) : T3 X — TF )Y .

(z)
Proof. See [Du96|, Proposition 1.3.4. and [FJ98], Proposition 11.3.3. O



2 Wave Front Set and Fourier Coefficients

In this chapter we are going to calculate the wave front set of a distribution defined on
connected, compact, and semisimple Lie groups.

Let K be a connected, semisimple, and compact Lie group and 7 an irreducible
representation of K on L?(K). We fix a Cartan subalgebra tc of &c and a positive
system of roots Ay = A, (¥, tc). We denote by C' C it* the closure of the Weyl chamber
(see definition 1.12) and L C it* the weight lattice (see definition 1.15). Recall that K
denotes the set of equivalence classes of irreducible representations of K. We identify
K with A € L N C using the theorem of Highest Weights 1.14. Due to the Peter-Weyl

Theorem 1.19 we have
[MK)= P En (2.1)

For v € L*(K) we have the Fourier series

ZSOA

XeLNC

where @) is an element of £ (compare theorem 1.19 E\ = Er, ). Here @) = dmu* Xy »
d, is the dimension of the representation m € K, X, is the character of 7. If u € D'(K)
then we have the same Fourier series because; x., € CP(K), u* xr, € E\ C C®(K),
and the convolution of a distribution with a C§°(K)-function is defined by u* x, (z) =
[, u( o U D)X, (y)dy, where the duality bracket written as an integral. Hence, the Fourier
series u converges to u in D' (K).

In the following 2 will always denote a closed cone contained in C'\ 0 C it*.

2.1 Wave Front Set of Truncated Distributions

In this section we aim to calculate the wave front set of a truncated distribution ug =
D xenna Pr-

Remark 2.1. Let X € ¢ and X be the cooresponding left invariant vector field (see
section 1.3). Let (z,§) € K x ¢ ~ T*K. We want to show that the principal symbol of
X, denoted by 0()~(), at the point (z, &), equals i(¢, X') where (-, -) denotes the duality
brackets £ x ¢ — C. Choose ¢ € C*(K) with dy(e) = &£, where e is the identity
element of K. Set ¢ := (L,-1)*) where (L,-1)* denotes the pull-back of ¢ by the left
translation L,-1 for z € K. Then dy(z) = (x,€) under the identification T} K ~ ¢*.

Then the principal symbol of X, in terms of local coordinates, can be define as follows,
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forO0<teRand z € K,

o(X)(db(x) = lim %e—iw(@ () (a)

= lim 1(L;,,,fl)* <e_itw(x) (Xe’w )) (x

t—oo t
1 . ~ .
= lim - <e’”w<x) (Xe’w(x)>> (e)

t—o0

1 . ) ~
= lim —e et (Xz/J(:c)) (e)

= i{di(e), X(e))
= (6. X).

This imply that o(X)(z, ) = (£, X).

= lim Lyt ) e @ (L, 1) (Xe”w )
(v )

Proposition 2.2. Let ug = Y ./ 1o @x be a distribution on K and all @y are highest

weight vectors with respect to the left action. Then ugq converges in D5(K) where
I':= K x (=) is a closed cone in T*K. In particular WF(ug) C T.

Proof. We assume also that () is convex. Let each ), € E) be a highest weight vector
of the highest weight A with respect to the left action on L?*(K). We denote by (-, )
denotes the duality bracket tf x t¢ — C. Let n:= &P £, then we have

acA
X-prn =0 for X en (2.2)
X-pxn = (NX) o for X et (2.3)

for the left action. Since X € £ is not only an element of the Lie algebra but acts as a
differential operator of first order with a smooth coefficients which we denote by a tilde
X to distinguish from the Lie algebra element, then X - oy = Xp,.

From (2.2) and because X is a continuous operator we get

X Z o\ = Z Xgpr=0

AELNQ AELNQ

Furthermore, due to theorem 1.42 we get
WF(ug) C CharX, for X en

where CharX denotes the characteristic variety of the operator X (see (1.28)). More-
over, using remark 2.1, we get that

CharX = K x X+ for X € n.
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Hence,
WF(ug) C (| K x X" =K x t".
Xen

Recall the identification of the cotangent bundle T*K = K x €* (see 1.3).

Now we consider equation (2.3). Let Uy be a neighborhood of 0 € ¢ and V{ be
a neighborhood of x € K defined by V¥ = L, o exp(Uy), where L, denotes the left
translation on K. Let k: V' C K — Uy C &, y — exp (27! - y) be a chart (y € V).
Then « is a diffeomorphism: V¥ — Uy (see [DKO00], Theorem 1.6.3).

Let X and X be differential operators of first order with real smooth coefficients such
that the following diagram commutes

/ z )z / $
D (V") —=D(Vy)

(Kl)*l l(ﬁl)*
/ ; ’
D (Uo) ——= D (lh)
where (k7')* denotes the pull-back operator (see theorem 1.56). In local coordinates

X is given by >, ¢;(y) 9/0y;.
The pull-back of Haar measure is (x71)*dy = J.(Y)dY, J.(Y) denotes the Jacobian
of k7', The function J,(Y) is smooth and will be calculated explicitly in remark 2.5.
To characterize the wave front set we use definition 1.53 and proposition 1.55. Let
¥ € C*(Uy x t¥) be a real-valued function satisfying the conditions in proposition 1.55.
(-|) denotes the duality brackets between D'(K)xC$°(K) and X denotes the transpose

~

of X. We choose a suitable localization function Y € C§°(8). Then, for Y € Uy C ¢,
X et &€t we have

(A X) (57" () [1pe™09) - = /E A X)oa (k™ (Y)w(Y) e J (Y)dY
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Recall that X = >.;¢j(Y)9/0y; in local coordinates. Then

~t n
X (6—1'79(1/,5)) _ Z % (cj(Y) e—m(Y,ﬁ))
; J

n

o N y
= ch(Y)Te ”<va>+2(a—ycjm) e~
j J

j Yi
_ X (it <_C, y) i OY:E) 2.4
::EYY)

Claim 2.3. Let )N( be a vector field with a real smooth coefficients. Then due to the
method of characteristics we obtain

X(e"09) = —ig, Xype 10, (25)

where ¥ € C*(Uj x t*) is a real-valued function satisfying the conditions in proposition
1.55.

Proof of claim 2.5. It is sufficient to consider the equation

~

X0(Y,§) = (6X)
S oW e = (6X) 2.6

This is a linear partial differential equation of first order. Assume, without loss of
generality, ¢,(y) # 0, then due to the method of characteristics (see [Fo95], p. 34-38)
we can find a solution ¥. It satisfies along any characteristic curve, i.e., a solution of

dy;
o = o)

y;(0) = (%0);,
the differential equation,

Doy S

€3 = GUO-YWEE. =D oM ve)

prALE
IV,E) = (E£Y)  on y,=0.

Observe that in local coordinates we can give a basis (y1,--- ,yn) =Y € Uy C ¢, and
(&1, -+, &) = £ € €, respectively. O
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Due to claim 2.3 and (2.4) we get that

A XD () (o) [pe™09) - = / ox (B(Y)Ju(Y))e 0O dy

4

~t
O Y(Y)J(Y)X (e7P8) gy

X
e

— Xt(w(Y)JK(Y))e’m(Y’é)dY

4

[

4

_/gpA

4

) (V) (i€, X)e 'O qy

_|_

(k1Y)

(k1))
~ - [av)

(" (V)Y

(k™ (V)Y (V) Z(Y ) "0y
Then we have the following

= Xper o (YD) N g (v)ay

The term on the left hand side equals to (A —i&, X) ((k7')*(¢x) | e™™)). The terms
on the right hand side, using Cauchy-Schwarz inequality, are bounded by a constant
C times [[@,||. Iterating 2N times we obtain

[(A =&, X)2V (57 (0a) [ e CO) | < Co[lnll,

where (] is independent of A € L N Q and £ € &. Since the L2-norms of the Fourier
coefficients are polynomially bounded we obtain, for some Ny € N

[{(57) (oa) [oe ™) | < Cy (A — i€, X) |7 (2.7)

Claim 2.4. Let 2 be a non-empty convex cone and V a closed cone contained in €*
such that @ NV = (). Then there exists Cy := Cq y > 0 and X € t such that the
following estimate holds true:

min (A — i€, X)| > Cs. (2.8)
I\ +[¢]=1
i€V, XeQ
In particular, we get

(A=, X)| = (A +E])  VAeQ VigeV (2.9)
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Proof of claim 2.4. Due to the condition above we get from Hahn-Banach separation
theorem (see [We05], Theorem II1.2.5): There exists an X € t VA € Q, Vi€ € V such
that (A —i&, X') # 0. The function [(\ —i&, X)| is continuous and defined on a compact
set where |\ +|¢] = 1, then it will take its minimum on this set which proves assertion
(2.8). Moreover, due to the homogeneity of A\, £, X we get assertion (2.9). O

Therefore, we obtain from claim 2.4 and estimate (2.7), for £ € V'
[{(5) (o) [9e™ P09 | < Co (A — i, X)|P2VIA™ < Loy Y ATVl Y. (2.10)
Hence, for N sufficiently large we obtain

sup sup [€|V[ {(k7)*(¢r) | we’w("g)> | < o0 VN e N. (2.11)
AEQ g€V

Set I' = K x (—2)€2. Then due to definition 1.53 and proposition 1.55 we get that the
series ug converges to uq in Dp(K). Hence,

WF(ug) C K x (—)QCT"K ~ K x ¢

We made an additional assumption at the beginning of the proof that §2 is convex. If
this were not true; let (€2;)1<j<n be a family of closed convex cones such that Q C U€Q;.
Choose A; C Q;, A;N Ay =0 for j # k, such that u = Zj Uj, U = Z)\eAJ_ ©x. Then
WF(u;) C K x (—iA;), hence WF(u) C K x U (—i€;). O
Remark 2.5. The pull-back of the Haar measure is (v ')*dy = J.(Y)dY. We will

_ —1y/

K
determine the Jacobian of k~! which we denote by J.(Y) = det((x™')") we first have
to calculate the derivative of k1 at Y € €

, 1 — —adY
(Lyoexp) (Y) =dLy(exp(Y)) odexp(Y) = dLy(exp(Y')) 0 dLexp(v)(e) © —ZY ,
a
the second equality follows from Theorem 1.7 in [He01]. Since the Haar measure is left
_ ,—adY
adY

1 — e~ 2adY eadY/Z — e adY/2 e(a,Y)/Z _ e—(a,Y}/2
det | ———— | =det = =: J(Y).
¢ ( adY ) ¢ ( adY/2 ) EIA (@, Y) ¥)

invariant, it is sufficient to consider only the term . Then we get, for Y € t

The first equality follows from Corollary 5.5 [BGV92] and the second equality follows
from [BGV92|, p. 253. In general, for each Y € ¢ there exists a k € K such that
Adk(Y) € t, then adY = Adk~! o ad(Adk(Y)) o Adk. Since the trace is invariant
under the adjoint action then the second equality is valid for all Y € €. Observe that the
enumerator and the denominator of J,(Y') has the same simple zero where (o, Y) = 0.

Remark 2.6. Note that in the last proposition the elements ¢, are assumed to be
highest weight vectors in E) (see (1.13)). Thus very special elements.
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2.1.1 Dirac-Distributions

Let us consider the Dirac-distribution ¢ which is supported at e (the identity element
of the group) and defined by

0 19) =yle),
where ¢ € C§°(K). We note that the characters {xr,}, xx, = trace(m,), form an

orthonormal basis for the space of Ad K-invariant L*-functions on K. x., is the unique
Ad K-invariant function in Fy. We obtain

0= Z dm\ X7ys

AXeLNC

where d., = dimm,. Note that J is the identity of the convolution, i.e., u*§ = u (see
also [DK00], p. 237).

2.1.2 Truncated Dirac-Distributions

In proposition 2.2 we assumed that the element ¢, in the Fourier expansion ), ; - ©a
are highest weight vectors.

Let m, be a continuous irreducible representation of K on the Hilbert space H,
and uy be a highest weight vector of 7, provided with a K-invariant hermitian inner
product (-, ). We set

Da(y) = (maly™ un, ua)
where y € K. Since the Haar measure is an invariant measure ([DKO00], p. 184) we
obtain

/\Iu(yrcyl)dy = /\Iu(ykfc(yk)l)dy = /\Ifx(ykxklyl)dy-

Then = — [ W(yzy ') dy is an Ad K-invariant function in ), hence proportional to

X=, and we obtain
1

/K gy ™) dy = —— X (), (2.12)

(see [KVT9] for more details). We define

Vo= Y  d2 U, €D (K),

AELNQ
(see remark 2.7). We note that
1. The pull-back of Uy by ¢ : K x K — K, (z,y) — yxy ', is

(") (2, y) = UA(d(2,y)) = Ca(yzy )

2. The push-forward of ¥y by w: K x K — K, (z,y) — z, is

w*\I/,\(:c):/K‘If,\(iﬁay)dya
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Then

U (1) = /K (2, ) dy = /K (6l ) dy = / W (yay ™) dy

K

and we get from (2.12)

2 /K U (yzy ™) dy = dr, Xy (7).

The truncated Dirac-Distribution Jq, is defined by the push-forward and pull-back
of the distribution Wq. Since the push-forward and pull-back are linear continuous
operators we obtain

00 = w, @'V = Z Ay Xy -

AELNQ

Remark 2.7. dr, = [[ e, <“<L/\Z>p>7 where p is the half sum of the positive roots (it is

called Weyl dimension formula which holds for connected and compact group (see
[DKO00], Theorem 4.9.2)). Then due to the characterization theorem 1.35 we get that
Y and dq are distribution on K.

Furthermore, due to Theorem 5.9 in [Fo95a] we have bijection between the matrix
element ¥, € FE), and any vector u € I, in particular the highest weight vector
uy. Hence, W) satisfies equation (2.2) and (2.3). From proposition 2.2 we obtain that
Vo= \crnqds, Wi converges in Dr(K) where I' = K x (—i)Q. In particular

WF(Wq) C K x (—i)Q

In the following we will study the effect of the pull-back and the push-forward of ¥q
respectively, on the wave front set.

Lemma 2.8. Let ¢ be defined as above and u € D/Kx(—iQ)(K>' Then
WEF (¢*u) C ¢* WF(u) CT"K x T"K.
More precisely, ¢* WF(u) is contained in the set T which is defined by
{(z,y:6m) [ 3¢ (yay ™, ¢) € WF(Tq),§ = Ad"y~(¢),n = (Ad"2 — ) Ad"y ' (()}
Proof. Following theorem 1.56 and using proposition 1.22 we get

dp(xz,y):txt — ¢
(X,)Y) — Z=do(z,y)(X,Y)=Ady(X —Y +Adz"*(Y))

Moreover, the graph of ¢ is given by

G(p) ={(z.y.2) | 2 =yzy = d(z,y)}.
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and the tangent space of this graph at (z,y, z) is given by
Tiy,:G(0) ={(X,Y,2) | Z = do(z,y)(X,Y) = Ady(X - Y + Adz"'(Y))}.

We will denote by &,n,( € € the dual variable corresponding to X,Y,Z € £. Let N,
be the the normals of the map ¢ (compare theorem 1.56 and remark 1.57)

Ny ={(2,0) | z = yry ™", (¢, do(z,y)(X,Y)) = 0, VX, Y € ¢},

The set C,y equals

Co ={(x,y,%&m,0) | VX, Y, Z) € T, .G(d), ((, Z) + (&, X) + (n,Y) =0},
Using the formula for dé(z,y)(X,Y) we obtain

Co = {(r,9,56n,0) [E=—Ad"y ™ (()n=—Ad 2y~ () + Ad"y ' ({)} .
Hence,

Co = {2,y gy 6,¢) [ € = Ad"y (), n = (Ad e — I) Ad"y ()}
Then we get that WF(¢*u) C ¢* WF(u) = C}, o WF (u) equals
{(z,9:6m) | 3¢ (yey™,¢) € WF(u),€ = Ad" y (), = (Ad"z — I) Ad"y ()}

and
WF(¢p*u) C 9" WF(u) CT"K x T*K.

]

Proposition 2.9. Set I' as in lemma 2.8. Let w be defined as above u € D%(K x K).
Then we get that
WF(w,u) C K x Ad" K(—iQ). (2.13)

Proof. Following proposition 1.61 and using the calculation in example 1.23 we get

dw* : ¥ — " x ¥

§ — (£0)
It follows from proposition 1.61
WEF(w.u) € {(2,€) | 3y« (z,9.£,0) € T}
Hence, by definition of f,

WF(w,u) C K x Ad* K(—i2)
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Proposition 2.10. The wave front set of the truncated Dirac-Distributions is contained
in = K x Ad" K(—iQ2) and

Z dr\ Xry converges in Dy (K). (2.14)
AELNQ

Proof. Set A := w, o ¢* and ¥q € ‘D,(Kx—iQ (K). Then

)
A pl(KX—z‘Q)(K) - ﬂ(KxAd*K(_m))(K)

is linear and continuous. Hence, (2.14) converges in Dp(K). O

2.2 Wave Front Set of Convolution

The goal of this section is to show that WF(u x ) C K x Ad* K(—if2). Observe that
D'(K) = &'(K).

Fact 2.11. Let u,v € & (R") be a distribution with compact support. Then WF(u *v)
is contained in

{(z+y,8) e R" xR"\ {0} | (z,&) € WF(u), (y,§) € WF(v)} (2.15)
Proof. See [FJ98], p. 158 . O

Remark 2.12. The convolution in fact 2.11 is defined for distributions on R™. For
distribution defined on K we will first express the convolution via tensor product.
Next we will calculate the wave front set of the tensor product.

Let & : K x K — K denote the smooth map (z,y) — z -y. Then we write the
convolution of dq, u € SI(K ), with the duality brackets written as integrals, as follows:

(uxdg | ) = / / u(zy Moo (y)v(x) dydx

= // W(zy) dydz
_ / / (2, y) dydz

= < *(U®5ﬂ)|¢> (2.16)

where ¢ € C3°, ®* is the pull-back of ¢ by ®, and ®, is the push-forward of u ® dq by
®. It follows that u * dg = P, (u ® dq).

Proposition 2.13. Let 6g,u € € (K) and ® : K x K — K, (x,y) — x-y. Then we
obtain

WEF(®,(u® dq)) C K x Ad* K(—iQ)
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Proof. From proposition 1.60 we obtain that the wave front set of the tensor product
satisfies

WF(u® dq) C (WF(u) x WF(dg)) ((supp(u) x {0}) x WF(dq))

(WF(u) x (supp(da) x {0})).

Following proposition 1.61 and using the calculation in example 1.24 we get

U
U

dd* ¢ — P x e
§ — (Ad"y(6),9).

Hence, the wave front set of @, (u ® dg) is contained in

{0 132,y,6m: 2= 2y = (2,y), (z,4:§,1) € WF(u®do), & = Ad"y(),n = (}
In particular, WF(®,(u ® dq)) C K x Ad" K(—if2). O

Because of the relation between Fourier transformation and convolution, for a distri-
bution v = )., ez ¢x on K we get

U * 0 = Z O\ = UgQ

AELNQ

Proposition 2.14. Let T' := K x Ad" K(—iQ) be a closed cone in T*K. Then the
convolution
u * g converges in Dp(K)

In particular
WF(UQ) = WF(U * (59) Cc K x Ad”* K(—ZQ)

Proof. Due to proposition 2.10 we get that dq converges in @}(K ). Moreover, we get
from proposition 2.13 that WF (ux ) C K x Ad" K(—i£2). Finally, due the separately
continuity of the map * : D'(K) x Dp(K) — Dp(K), (u,dq) — dg * u (by fixing the
first component) and the properties of the convolution we get that u * dg converges in
D(K). O

2.3 Characterization of The Wave Front Set of Distributions

Finally we gather the results from the preceding discussion in the last two sections
to state the following characterization theorem. The next theorem was introduced by
[KV79] in the hyperfunction setting.

Theorem 2.15. Let u = ), ., & ¢x be a distribution on K and 2 be a closed cone
contained in C'\ 0. Then the following assertions are equivalent:

(i) WF(u) C K x Ad* K(—i€).
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(ii) For every closed cone Q in C such that Q N Q=0 and every N € N, there exists
a constant Ly > 0 such that

leallzz < Ly (14 AN, for A € Q (2.17)

Proof. First we are going to prove that (ii) implies (7). Choose Q as in (i), then we
write
u:u*éﬁ—i—u*ég\ﬁ,

set ug = ux 05 = Y \cpnapr and Ug\g = Uk dg\g = Doycrno\g P Due to the
characterization theorem 1.35 the assertion (i7) is equivalent to ug € C*°(K') which
implies that WF(ug) = (. Moreover, we obtain from proposition 2.14 that the WF(u) =

WF(uz\g) C K x Ad” K(C \ Q). Since we can choose (C \ ) as close to Q as we like,
then we obtain assertion (i).

On the other hand, if assertion (7) is satisfied, then the WF(ug) = ), hence ug €
C*°(K). Then assertion (ii) follows from Theorem 1.35. O




3 Restriction of Characters

In the last chapter we presented the wave front set of a distribution defined on con-
nected, semisimple, and compact Lie groups K. In this chapter we are going to apply
the results from the last chapter to achieve the restriction of characters of an irreducible
unitary representation of K to a closed subgroup H.

Let K be a connected, compact, and semisimple Lie group. We denote by C' C it*
the closure of the dominant Weyl chamber (see definition 1.12) and L C it* the weight
lattice (see definition 1.15). Let A be the highest weight of an irreducible representation
7w of K.

Definition 3.1. Let S be subset of a real vector space R™. We define a closed cone
Se in R™\ {0} by

Seo 1= {y e R"\ {0} | 3 (yn,tn) C S x Ry such that lim t¢,y, = yand lim ¢, = O} )

The following lemma is without proof in [K098], Lemma 2.5.

Lemma 3.2. Let S be a subset of a real vector space R™, and Y a closed cone in R™.
Then the following two condition are equivalent.

1. SeoNY = 0.
2. There exists an open cone V' containing Y such that S NV is relatively compact.

Proof. First we are going to prove that (1) implies (2). Let Y C V C V and S,,NV = 0.
It is sufficient to show that S NV is bounded. Assume that S NV is unbounded,
then exits a sequence (z,) C S NV such that |z,] — oo. Consider the sequence
(zu/]20]) €V, (2n,/)2;]) = y € V. Since Seo NV = 0, then y ¢ S.. On the other
hand y = lim; . t,,;2,; Where t,,, = 1/|2,,|, then y € S,. Hence, SNV is bounded.
Second we are going to prove that (2) implies (1). Due to the boundedness of SNV
we get that Seo NY = (S\ (SNV))ee NY = (S\ V) NY. Since (S\V)NY = 0,
it remains to show that (S\ V)e NY = (0. Assume that y € (S\ V) NY, it follows
that 3(yn,t,) C (S\ V) x Ry such that lim, .o t,y, = y € Y and lim,, .o t, = 0.
Moreover, we get that ¢,y, € V for n € N large enough. On the other hand, we have
that (y,) C S\ V = (yn) ¢V, then (t,y,) ¢V because V is an open cone. Hence,
(tayn) € S\ V but this contradicts to t,y, € V when n € N is large enough. O

Definition 3.3. Given v = ) ., rz¥r € D'(K) where @) € E\ (E\ = E,, see
theorem 1.19 ), we define

fsupp(u) :=={A € L N C | py # 0} Cit". (3.1)

Analogous to Lemma 2.6 in [Ko98|, we will prove the following lemma using wave
front set of distribution instead of singular spectrum of hyperfunction.

Lemma 3.4. Using definition 3.3, we have



42 3.1 K-Characters

1. WF(u) C K x Ad* K(—ifsupp(u)e) C T*K \ 0

2. Assume IM > 0 VA € fsupp(u): [[oallrzaey = (14 [A)"M /M. Assume there
exists a closed cone W C C \ 0 such that WF(u) C K x Ad* K(—iW). Then
fsupp(u)oo C W.

Proof. 1) We define a closed cone S := fsupp(u)o, C it*. Let Q be an arbitrary closed
cone in it* such that QNS = (). By lemma 3.2 1 = 2 we can find an open cone
V' containing  such that V' N fsupp(u) is relatively compact in it*. In particular,
Q N fsupp(u) is a finite set because fsupp(u) C L N C is discrete. Hence, for every
N € N there exists a constant Ly > 0 such that

leallzeey < Lv(L+ M)~ ¥AaeQn(Ln0), (3.2)

here Ly := maxyeq(1 + [A)N]|oall 2y < +oo. It follows from theorem 2.15 (ii) = (7)
that WF(u) C K x Ad" K(—ifsupp(u)so)-

2) Suppose fsupp(u)s ¢ W, then we can find a closed cones S" and S” and an open
cone V such that

0£S" c vcs cC,

" fsupp(u)se, (3.3)
S n W=
By assumption,
WF(u) C K xAd*K(—ilV). (3.5)

From (3.4) and (3.5) we obtain using theorem 2.15 (i) = (ii) that; for every N € N,
there exists a constant Ly such that

loallzaey < Lv A+ M)  foranyde S N (L N C). (3.6)

Because IM > 0 VA € fsupp(u) such that [|oxlz2() > (1 + [A))~ /M, we have that
fsupp(u) N S is bounded. In particular,

#(fsupp(u) N S") < oo. (3.7)

Hence, fsupp(u) NV is relatively compact. It follows from lemma 3.2 (2) = (1) that
S" N fsupp(u)os = @. This contradicts to (3.3) and S” # (). Hence, we get that
fsupp(u)s C W. O

3.1 K-Characters

Let 7 be a representation of K on the Hilbert space J{. The K-multiplicity is defined
by
mg(-:7): K — NgU {0}, m— mg(m:7) = dim Homg (7, 7).
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The asymptotic K-support of 7, denoted by ASk(7), is defined by
suppg (1) = {ANeLNC|mg(my:7)#0}, (3.8)
ASk(7T) = suppg(7T)s- (3.9)

ASk(7) is a closed cone contained in C' C it* because suppg(7) C (LN C).
We say that mg(- : 7) is of polynomial growth, if there exist constants C' and N
such that
mc(my 7)< C (14 [A)Y for A€ L N C. (3.10)

We denote by x, the (trace) character of the irreducible representation m of K.

Lemma 3.5. Suppose that mg(- : T) is of polynomial growth. Then the K -character
oK of T,
@7{( = Z mK<7T>\ : T)Xﬂ')\? (311)

xeLnC

is well-defined as a distribution on K.

Proof. Due to characterization theorem 1.35, ©X is a distribution if and only if there
exists a positive numbers M and a constant L such that

(a7 X 22 < L (14 [A)M. (3.12)

Since characters form an orthonormal basis for L?(K) (see [DK00], Theorem 4.3.4) and
because of the polynomial growth of mg (- : 7) we get that

Imac(ma s X Iz = (M (T T)Xmy s M (T 0 7)Ximy )12

= (mK<7T)\ : T))2<XTF>\> XTD\)LQ
(3.10)
< CP(L+ A

This proves inequality (3.12) which proves that ©F is a distribution on K. Since ©F
depends only on the equivalent class of 7, then ©X is well-defined. O

Analogous to Proposition 2.7. in [K098], we will prove the following proposition using
wave front set of distribution instead of singular spectrum of hyperfunction.

Proposition 3.6. Suppose that my (- : T) is of polynomial growth. Then
1. The wave front set of the K-character ©X of T satisfies

WF(OF) ¢ K x Ad* K(—iASk(7)) C T*K \ 0 ~ K x ¢, (3.13)

2. Conwersely, if W C C'\ 0 is a closed cone such that
WF(0F) ¢ K x Ad* K(—iW).

Then
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Proof. By definition ©F = Y onennc Pr P = Mg (T 2 T)Xr,. It follows from (3.1) and
(3.8), that

fsupp(©7) = suppg (7). (3.15)

In particular, fsupp(©X),, = suppy(7)e = ASk(7). We apply now lemma 3.4 (1) with
u=0Fr

WF(0F) ¢ K x Ad* K(—ifsupp(0X).) = K x Ad* K(—i ASk(7)). (3.16)

2) Observe that ||[mg(my @ 7)xr, |2y = 1 if A € suppg (7). Using lemma 3.4 (2)
and the assumption WF(0©X) ¢ K x Ad* K(—iW) we obtain for u = O that

ASk(7) = fsupp(u)s C W. (3.17)

This complete the proof of the proposition. O

3.2 Restriction of Characters to a Closed Subgroup

Let H be a closed subgroup of K. We write pre_, : £ — h* for the projection dual to
the inclusion of the Lie algebras b — €. Let h* := ker (prf_)b).
Let p € H , define the set

Alp):={Xe L NC|mly:pu #0} (3.18)
where [my|g : p] is the multiplicity of p in my|g (see the following remark 3.7).

Remark 3.7. Let o be a representation of a compact group H on a finite dimensional
Hilbert space V.Then o is completely reducible, i.e.; V' can be written as a direct sum
of o(H)-invariant subspaces Vj, such that oy, is irreducible for each j (see [DKO0],
Corollary 4.2.2). Furthermore,

o= Yol
peH

is a finite sum, where X, is the trace of u, X, is the trace of o, and [0 : p] is a number
which denote the multiplicity of p in o (see [DKO00], Corollary 4.3.5).

Definition 3.8. The embedding ¢ : H — K defines the co-normal bundle N*(H) :=
kerp ~ H x b+, here p: T*K |y ~ H x ¢ — T*H ~ H x h* is the natural projection
(h,@) — (h,pre_p(a)). The projection (.')" in remark 1.59 agrees with p in this case.

Lemma 3.9. Let H be a closed subgroup of K and 7 a representation of K in H.

Suppose that mg(- : 7) is of polynomial growth. Define the closed cone I' :== K x
Ad* K(—iASk (7)) in T*K \ 0. Then we obtain the following:

1. The K-character of T

ek = Z M (TA 2 T) Xy converges in Dp(K) (3.19)
XeLNC
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2. Assume
N N*(H)=0. (3.20)

Then ©X|y is a well-defined distribution on H. Moreover,

|y = Z m(my : T)(Xﬂ-/\)’H converges in DI(H), (3.21)
AeLNC

and the wave front set of OK|y satisfies,

WF(0X|) C H x pro_y(Ad" K(—i ASk(7))) (3.22)

Proof. Let Y be an arbitrary closed cone in it* such that ASk(7) NY = (. By lemma
3.2 1 = 2, there exists an open cone V' containing Y such that supp,(7) NV is relative
compact in it*. In particular, suppy(7) NV is finite set because suppy(7) is discrete.

o

This implies that, for every closed cone W C C'\ 0 such that ASg(7) C W, the series
OF x do\w converges in C°°(K). Using proposition 2.14 we deduce that the series

T

OX xSy converges in D (K) where I'y := K x Ad* K(—iW). It follows that the series
OF = 0F « oovw + OX x 6y converges in Dy (K). The assertion (3.19) follows from
remark 1.54.

From assumption (3.20) and proposition 1.43 we obtain that ©X| is a well-defined
distribution on H. Moreover, ©F |} is the pull-back of ©F by the inclusion ¢ : H — K.
Using theorem 1.56 and remark 1.59 we obtain that ¢* : DL.(K) — D...(H) is contin-
uous. Hence, (3.21) holds and the wave front set of ©X | is contained in the image of
the projection p (see definition 3.8), i.e., WF(OX|y) C H x pr,_,(Ad" K(—i ASk(7))),
where pry_, : € — b*. O

Remark 3.10. The following theorem is introduced in [Ko98], Theorem 2.8 using
hyperfunctions. It was remarked in [Ko098] (remark following Theorem 2.8) that for a
convergent sequence of analytic functionals (hyperfunctions) restricted to a submanifold
may not converge in general. This limitation can be avoided when working, as in this
thesis, with the distribution spaces D5(K).

Theorem 3.11. Let 7 be a representation of K and H be a closed subgroup of K with
the inclusion H — K. We assume

ASk(T)NiAd* K(b*) = 0. (3.23)
Then we obtain the following:

1.
# (suppg (7) N Ap)) < oo (3.24)
for each 1 € H. If the K-multiplicity function mg(m : 7) < oo for any m € K.
Then the H-multiplicity function my(p @ 7|g) = Hompg(u, 7|g) < oo for any
we H.
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2. If the K-multiplicity function mg(- : ) : K — Ny is of polynomial growth,
then so is the H-multiplicity function my(- : 7|y) : H — No. Furthermore, the
restriction of ©X to the submanifold H is well-defined as a distribution and the
resulting distribution ©X|y coincides with

@ﬂH = Z mp (T o)X
peH

In particular, @f‘H has the wave front set given by:

WE (07,) € H x pre_y (Ad" K(~i ASx()))

b

Proof. (1) Let u € H. We fix a representation space H,(finite dimension). Let
o = ind% (i) be the unitary representation of K induced by p. We consider the repre-
sentation space H, of ¢ as a subrepresentation of L*(K, J,) defined by,

u(kh) = p(h™" u(k), (3.25)
where h € H and k € K.
Using (3.25) we obtain, for Y € b,

d d

E|t:0 (U(k?ety)) = %|t:0 (M(e_ty)u(k)) = —,u*(Y)u(k),

where g, : h — End(J,) is the Lie algebra representation induced by p. Here,

d tY\) IV
Ehzo (u(ke™)) = (k- Y)u(k) =: Yu(k).

Hence, u € L*(K,3,) belongs to H,, if and only if it satisfies, in the sense of
distributions, the differential equations of first order,

Yu + . (Y)u = 0.
This implies, using theorem 1.42,
WF(u) C Char(Y + p,(Y)) = Char(Y),  for Y €

where Char(Y) denotes the characteristic variety of an operator Y (see (1.28)). More-
over, using remark 2.1, we get that

Char(Y) € K x Y.

Hence,
WF(u) C (] Char(Y) C K x Ad* K (h™). (3.26)
Yeh

Claim 3.12. ASk (o) C i Ad* K(b1).
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Proof. Assume, to the contrary, ASk(c) ¢ i Ad* K(ht). Then there exists a closed

cone Q C C'\ 0 such that QN i Ad* K(h*) = 0 and ASx(c) NQ # (). Choose py, € Ej,
A€ LN Q, such that 37, ;6 [[0al172(x ¢, < +00. Then u =37\ ;¢ converges
in L*(K,3,), and since ¢, € E) then u € H,. From (3.26) we obtain that

WF(u) C K x Ad* K(hh). (3.27)

In addition, we can choose ¢,’s such that for some M > 0,

1
YAEL N Q:|eallre) > M(l +AN™M. (3.28)

Then L N Q C fsupp(u). It follows that  C fsupp(u). Therefore,

fsupp(u)eo €1 Ad” K (5°).
On the other hand (3.27), (3.28), and lemma 3.4 (2) lead to the contradiction fsupp(u)s, C
i Ad” K (). O

Since ASk (o) C i Ad* K(h*) then we obtain, using assumption (3.23), that AS ()N
ASk (1) = (0. Therefore, using lemma 3.2 (1 = 2), suppg (o) N suppg(7) is relatively
compact, hence finite. Using Frobenius reciprocity Theorem (see [Fo95a], Theorem
6.10) we obtain that suppy (o) = A(p). This implies that #(A(u) Nsuppg (7)) < 0o.
Moreover, we obtain

mu(p:ly) = Y mi(m: ) [l
XeLNC

- > my (T 7) [Tl ol (3.29)

A€ suppg (1) N A (1)

is a finite sum. Since the K-multiplicity function mg (7 : 7) < oo for every m € K , then
the H-multiplicity function my(p : 7|g) < oo for every p € H which proves assertion

(1).

(2) Because of proposition 3.6 and (3.23) we get
WEF(OF) N N*(H) C K x Ad* K(—i ASk(7)) N (H x h*) = 0.

Therefore, it follows from lemma 3.9 that the restriction ©X|y is well-defined as a
distribution on H and its wave front set satisfies

WEF(OF i) € H x pre_y(Ad* K(—i ASk(7))) C T*H \ 0.

Set I' := K x Ad" K(—i ASk (7)) which is a closed cone in T*K \ 0. It follows from
lemma 3.9 (1) that
Or = Z M (Ty: T)Xn, converges in Dp(K).

-
AXeLNC
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Furthermore, from (3.23) and lemma 3.9 (2) we obtain
Ofln = Y mrm:n)(xm)lu  €D(H).
AeLNC

On the other hand we obtain

@le = ZCV%V GD/(H>7

ve H

where Y, denotes the trace of v € H. Observe that ¢, 1s of polynomial growth because
OK|y is a distribution on H. We want to show: ¢, = my(u : 7|y) for each u € H.
Then the H-characters,

Of, =Y mup:7lm)x,  €D(H).

pe H
and ©F [y = ©f] . This means we have to show

(O 1, Xpu) = mu (= 7|u) (3.30)

where (-, -) denotes the anti-duality brackets, anti-linear in the second variable, between
D'(H) x C°(H) which is induced by the L? scalar product. Now

(@f|Ha %u) = Z mK(T‘-A : 7) ((XWA)|H7 %u)
WAEI?
NS g 7) [mali 0] (R X)-
TI')\EI?VGFI

Since the characters are orthonormal basis for L*(H), then (X,, X,) = ;. Furthermore,

(@ﬂH, 5@) = Z Z mK(W,\ : 7') [WA’H : V} (iu,%y)

WAE[?VEE[

= Z ZmK(WA:T)[W,\]H:VMZ
W/\EI?VGﬁ

= ZmK(W)\ZT)[W)\|H2[L].
F)\EI?

This and (3.29) imply (3.30). Therefore ¢, = mpy(p : 7|). Moreover we conclude that
the H-multiplicity function mg(- : 7|g) in (3.29) is of polynomial growth. Using lemma
3.9 we obtain

WF (05 ) = WF (0X|y) C H x pr_;, (Ad" K(—i ASk(7)))

alb

this proves (2). O
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